Science.gov

Sample records for myocyte enhancer factor-2

  1. Regulation of Myocyte Enhancer Factor-2 Transcription Factors by Neurotoxins

    PubMed Central

    She, Hua; Mao, Zixu

    2011-01-01

    Various isoforms of myocyte enhancer factor-2 (MEF2) constitute a group of nuclear proteins found to play important roles in increasing types of cells. In neurons, MEF2s are required to regulate neuronal development, synaptic plasticity, as well as survival. MEF2s promote the survival of several types of neurons under different conditions. In cellular models, negative regulation of MEF2s by stress and toxic signals contributes to neuronal death. In contrast, enhancing MEF2 activity not only protects cultured primary neurons from death in vitro but also attenuates the loss of dopaminergic neurons in substantia nigra pars compacta in a 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. In this work, the mechanisms of regulation of MEF2 function by several well-known neurotoxins and their implications in various neurodegenerative diseases are reviewed. PMID:21741404

  2. Control of cardiac-specific transcription by p300 through myocyte enhancer factor-2D.

    PubMed

    Slepak, T I; Webster, K A; Zang, J; Prentice, H; O'Dowd, A; Hicks, M N; Bishopric, N H

    2001-03-09

    The transcriptional integrator p300 regulates gene expression by interaction with sequence-specific DNA-binding proteins and local remodeling of chromatin. p300 is required for cardiac-specific gene transcription, but the molecular basis of this requirement is unknown. Here we report that the MADS (MCM-1, agamous, deficiens, serum response factor) box transcription factor myocyte enhancer factor-2D (MEF-2D) acts as the principal conduit for cardiac transcriptional activation by p300. p300 activation of the native 2130-base pair human skeletal alpha-actin promoter required a single hybrid MEF-2/GATA-4 DNA motif centered at -1256 base pairs. Maximal expression of the promoter in cultured myocytes and in vivo correlated with binding of both MEF-2 and p300, but not GATA-4, to this AT-rich motif. p300 and MEF-2 were coprecipitated from cardiac nuclear extracts by an oligomer containing this element. p300 was found exclusively in a complex with MEF-2D at this and related sites in other cardiac-restricted promoters. MEF-2D, but not other MEFs, significantly potentiated cardiac-specific transcription by p300. No physical or functional interaction was observed between p300 and other factors implicated in skeletal actin transcription, including GATA-4, TEF-1, or SRF. These results show that, in the intact cell, p300 interactions with its protein targets are highly selective and that MEF-2D is the preferred channel for p300-mediated transcriptional control in the heart.

  3. Expression of myocyte enhancer factor-2 and downstream genes in ground squirrel skeletal muscle during hibernation.

    PubMed

    Tessier, Shannon N; Storey, Kenneth B

    2010-11-01

    Myocyte enhancer factor-2 (MEF2) transcription factors regulate the expression of a variety of genes encoding contractile proteins and other proteins associated with muscle performance. We proposed that changes in MEF2 levels and expression of selected downstream targets would aid the skeletal muscle of thirteen-lined ground squirrels (Spermophilus tridecemlineatus) in meeting metabolic challenges associated with winter hibernation; e.g., cycles of torpor-arousal, body temperature that can fall to near 0°C, long periods of inactivity that could lead to atrophy. MEF2A protein levels were significantly elevated when animals were in torpor (maximally 2.8-fold higher than in active squirrels) and the amount of phosphorylated active MEF2A Thr312 increased during entrance into torpor. MEF2C levels also rose significantly during entrance and torpor as did the amount of phosphorylated MEF2C Ser387. Furthermore, both MEF2 members showed elevated amounts in the nuclear fraction during torpor as well as enhanced binding to DNA indicating that MEF2-mediated gene expression was up-regulated in torpid animals. Indeed, the protein products of two MEF2 downstream gene targets increased in muscle during torpor (glucose transporter isoforms 4; GLUT4) or early arousal (myogenic differentiation; MyoD). Significant increases in Glut4 and MyoD mRNA transcript levels correlated with the rise in protein product levels and provided further support for the activation of MEF2-mediated gene expression in the hibernator. Transcript levels of Mef2a and Mef2c also showed time-dependent patterns with levels of both being highest during arousal from torpor. The data suggest a significant role for MEF2-mediated gene transcription in the selective adjustment of muscle protein complement over the course of torpor-arousal cycles.

  4. Polymorphism of chicken myocyte-specific enhancer-binding factor 2A gene and its association with chicken carcass traits.

    PubMed

    Zhou, Yan; Liu, Yiping; Jiang, Xiaosong; Du, Huarui; Li, Xiaocheng; Zhu, Qing

    2010-01-01

    Myocyte-specific enhancer-binding factor 2A (MEF2A) gene is a member of the myocyte-specific enhancer-binding factor 2 (MEF2) protein family which involved in vertebrate skeletal muscle development and differentiation. The aim of the current study is to investigate the potential associations between MEF2A gene SNPs (single nucleotide polymorphisms) and the carcass traits in 471 chicken samples from four populations. Three new SNPs (T46023C, A72626G, and T89232G) were detected in the chicken MEF2A gene. The T46023C genotypes were associated with live body weight (BW), carcass weight (CW), eviscerated weight, semi-eviscerated weight (SEW), and leg muscle weight (LMW) (P < 0.05); the A72626G genotypes were associated with BW, CW, LMW (P < 0.01) and breast muscle weight (BMW), leg muscle percentage (LMP) (P < 0.05); whereas the T89232G genotypes were associated with carcass percentage (CP) and semi-eviscerated percentage (SEP) (P < 0.05). The haplotypes constructed on the three SNPs were associated with BW, CW, LMW (P < 0.01), SEW, BMW, CP (P < 0.05). Significantly and suggestive dominant effects of diplotype H1H2 were observed for BW, CW, SEW, BMW and CP, whereas diplotype H5H5 had a negative effect on BW, CW, SEW, BMW and LMW. Our results suggest that the MEF2A gene may be a potential marker affecting the muscle trait of chickens.

  5. Myocyte enhancer factor 2c, an osteoblast transcription factor identified by dimethyl sulfoxide (DMSO)-enhanced mineralization.

    PubMed

    Stephens, Alexandre S; Stephens, Sebastien R; Hobbs, Carl; Hutmacher, Deitmar W; Bacic-Welsh, Desa; Woodruff, Maria Ann; Morrison, Nigel A

    2011-08-26

    Rapid mineralization of cultured osteoblasts could be a useful characteristic in stem cell-mediated therapies for fracture and other orthopedic problems. Dimethyl sulfoxide (DMSO) is a small amphipathic solvent molecule capable of stimulating cell differentiation. We report that, in primary human osteoblasts, DMSO dose-dependently enhanced the expression of osteoblast differentiation markers alkaline phosphatase activity and extracellular matrix mineralization. Furthermore, similar DMSO-mediated mineralization enhancement was observed in primary osteoblast-like cells differentiated from mouse mesenchymal cells derived from fat, a promising source of starter cells for cell-based therapy. Using a convenient mouse pre-osteoblast model cell line MC3T3-E1, we further investigated this phenomenon showing that numerous osteoblast-expressed genes were elevated in response to DMSO treatment and correlated with enhanced mineralization. Myocyte enhancer factor 2c (Mef2c) was identified as the transcription factor most induced by DMSO, among the numerous DMSO-induced genes, suggesting a role for Mef2c in osteoblast gene regulation. Immunohistochemistry confirmed expression of Mef2c in osteoblast-like cells in mouse mandible, cortical, and trabecular bone. shRNAi-mediated Mef2c gene silencing resulted in defective osteoblast differentiation, decreased alkaline phosphatase activity, and matrix mineralization and knockdown of osteoblast specific gene expression, including osteocalcin and bone sialoprotein. A flow on knockdown of bone-specific transcription factors, Runx2 and osterix by shRNAi knockdown of Mef2c, suggests that Mef2c lies upstream of these two important factors in the cascade of gene expression in osteoblasts.

  6. Myocyte Enhancer Factor 2C, an Osteoblast Transcription Factor Identified by Dimethyl Sulfoxide (DMSO)-enhanced Mineralization*

    PubMed Central

    Stephens, Alexandre S.; Stephens, Sebastien R.; Hobbs, Carl; Hutmacher, Deitmar W.; Bacic-Welsh, Desa; Woodruff, Maria Ann; Morrison, Nigel A.

    2011-01-01

    Rapid mineralization of cultured osteoblasts could be a useful characteristic in stem cell-mediated therapies for fracture and other orthopedic problems. Dimethyl sulfoxide (DMSO) is a small amphipathic solvent molecule capable of stimulating cell differentiation. We report that, in primary human osteoblasts, DMSO dose-dependently enhanced the expression of osteoblast differentiation markers alkaline phosphatase activity and extracellular matrix mineralization. Furthermore, similar DMSO-mediated mineralization enhancement was observed in primary osteoblast-like cells differentiated from mouse mesenchymal cells derived from fat, a promising source of starter cells for cell-based therapy. Using a convenient mouse pre-osteoblast model cell line MC3T3-E1, we further investigated this phenomenon showing that numerous osteoblast-expressed genes were elevated in response to DMSO treatment and correlated with enhanced mineralization. Myocyte enhancer factor 2c (Mef2c) was identified as the transcription factor most induced by DMSO, among the numerous DMSO-induced genes, suggesting a role for Mef2c in osteoblast gene regulation. Immunohistochemistry confirmed expression of Mef2c in osteoblast-like cells in mouse mandible, cortical, and trabecular bone. shRNAi-mediated Mef2c gene silencing resulted in defective osteoblast differentiation, decreased alkaline phosphatase activity, and matrix mineralization and knockdown of osteoblast specific gene expression, including osteocalcin and bone sialoprotein. A flow on knockdown of bone-specific transcription factors, Runx2 and osterix by shRNAi knockdown of Mef2c, suggests that Mef2c lies upstream of these two important factors in the cascade of gene expression in osteoblasts. PMID:21652706

  7. Dynamic Phosphorylation of the Myocyte Enhancer Factor 2Cα1 Splice Variant Promotes Skeletal Muscle Regeneration and Hypertrophy.

    PubMed

    Baruffaldi, Fiorenza; Montarras, Didier; Basile, Valentina; De Feo, Luca; Badodi, Sara; Ganassi, Massimo; Battini, Renata; Nicoletti, Carmine; Imbriano, Carol; Musarò, Antonio; Molinari, Susanna

    2017-03-01

    The transcription factor MEF2C (Myocyte Enhancer Factor 2C) plays an established role in the early steps of myogenic differentiation. However, the involvement of MEF2C in adult myogenesis and in muscle regeneration has not yet been systematically investigated. Alternative splicing of mammalian MEF2C transcripts gives rise to two mutually exclusive protein variants: MEF2Cα2 which exerts a positive control of myogenic differentiation, and MEF2Cα1, in which the α1 domain acts as trans-repressor of the MEF2C pro-differentiation activity itself. However, MEF2Cα1 variants are persistently expressed in differentiating cultured myocytes, suggesting a role in adult myogenesis. We found that overexpression of both MEF2Cα1/α2 proteins in a mouse model of muscle injury promotes muscle regeneration and hypertrophy, with each isoform promoting different stages of myogenesis. Besides the ability of MEF2Cα2 to increase differentiation, we found that overexpressed MEF2Cα1 enhances both proliferation and differentiation of primary myoblasts, and activates the AKT/mTOR/S6K anabolic signaling pathway in newly formed myofibers. The multiple activities of MEF2Cα1 are modulated by phosphorylation of Ser98 and Ser110, two amino acid residues located in the α1 domain of MEF2Cα1. These specific phosphorylations allow the interaction of MEF2Cα1 with the peptidyl-prolyl isomerase PIN1, a regulator of MEF2C functions. Overall, in this study we established a novel regulatory mechanism in which the expression and the phosphorylation of MEF2Cα1 are critically required to sustain the adult myogenesis. The described molecular mechanism will represent a new potential target for the development of therapeutical strategies to treat muscle-wasting diseases. Stem Cells 2017;35:725-738.

  8. PC4 Coactivates MyoD by Relieving the Histone Deacetylase 4-Mediated Inhibition of Myocyte Enhancer Factor 2C

    PubMed Central

    Micheli, Laura; Leonardi, Luca; Conti, Filippo; Buanne, Pasquale; Canu, Nadia; Caruso, Maurizia; Tirone, Felice

    2005-01-01

    Histone deacetylase 4 (HDAC4) negatively regulates skeletal myogenesis by associating with the myocyte enhancer factor 2 (MEF2) transcription factors. Our data indicate that the gene PC4 (interferon-related developmental regulator 1 [IFRD1], Tis7), which we have previously shown to be required for myoblast differentiation, is both induced by MyoD and potentiates the transcriptional activity of MyoD, thus revealing a positive regulatory loop between these molecules. Enhancement by PC4 of MyoD-dependent activation of muscle gene promoters occurs selectively through MEF2 binding sites. Furthermore, PC4 localizes in the nucleus of differentiating myoblasts, associates with MEF2C, and is able to counteract the HDAC4-mediated inhibition of MEF2C. This latter action can be explained by the observed ability of PC4 to dose dependently displace HDAC4 from MEF2C. Consistently, we have observed that (i) the region of PC4 that binds MEF2C is sufficient to counteract the inhibition by HDAC4; (ii) PC4, although able to bind HDAC4, does not inhibit the enzymatic activity of HDAC4; and (iii) PC4 overcomes the inhibition mediated by the amino-terminal domain of HDAC4, which associates with MEF2C but not with PC4. Together, our findings strongly suggest that PC4 acts as a coactivator of MyoD and MEF2C by removing the inhibitory effect of HDAC4, thus exerting a pivotal function during myogenesis. PMID:15743821

  9. Myocyte enhancer factor 2D promotes colorectal cancer angiogenesis downstream of hypoxia-inducible factor 1α.

    PubMed

    Xiang, Junyu; Sun, Hui; Su, Li; Liu, Limei; Shan, Juanjuan; Shen, Junjie; Yang, Zhi; Chen, Jun; Zhong, Xing; Ávila, Matías A; Yan, Xiaochu; Liu, Chungang; Qian, Cheng

    2017-08-01

    Myocyte enhancer factor 2D (MEF2D) is involved in many aspects of cancer progression, including cell proliferation, invasion, and migration. However, little is known about the role of MEF2D in tumor angiogenesis. Using clinical specimens, colorectal cancer (CRC) cell lines and a mouse model in the present study, we found that MEF2D expression was positively correlated with CD31-positive microvascular density in CRC tissues. MEF2D promoted tumor angiogenesis in vitro and in vivo and induced the expression of proangiogenic cytokines in CRC cells. MEF2D was found to be a downstream effector of hypoxia-inducible factor (HIF)-1α in the induction of tumor angiogenesis. HIF-1α transactivates MEF2D expression by binding to the MEF2D gene promoter. These results demonstrate that the HIF-1α/MEF2D axis can serve as a therapeutic target for the treatment of CRC. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Endothelial Myocyte Enhancer Factor 2c Inhibits Migration of Smooth Muscle Cells Through Fenestrations in the Internal Elastic Lamina.

    PubMed

    Lu, Yao Wei; Lowery, Anthony M; Sun, Li-Yan; Singer, Harold A; Dai, Guohao; Adam, Alejandro P; Vincent, Peter A; Schwarz, John J

    2017-07-01

    Laminar flow activates myocyte enhancer factor 2 (MEF2) transcription factors in vitro to induce expression of atheroprotective genes in the endothelium. Here we sought to establish the role of Mef2c in the vascular endothelium in vivo. To study endothelial Mef2c, we generated endothelial-specific deletion of Mef2c using Tie2-Cre or Cdh5-Cre-ER(T2) and examined aortas and carotid arteries by en face immunofluorescence. We observed enhanced actin stress fiber formation in the Mef2c-deleted thoracic aortic endothelium (laminar flow region), similar to those observed in normal aortic inner curvature (disturbed flow region). Furthermore, Mef2c deletion resulted in the de novo formation of subendothelial intimal cells expressing markers of differentiated smooth muscle in the thoracic aortas and carotids. Lineage tracing showed that these cells were not of endothelial origin. To define early events in intimal development, we induced endothelial deletion of Mef2c and examined aortas at 4 and 12 weeks postinduction. The number of intimal cell clusters increased from 4 to 12 weeks, but the number of cells within a cluster peaked at 2 cells in both cases, suggesting ongoing migration but minimal proliferation. Moreover, we identified cells extending from the media through fenestrations in the internal elastic lamina into the intima, indicating transfenestral smooth muscle migration. Similar transfenestral migration was observed in wild-type carotid arteries ligated to induce neointimal formation. These results indicate that endothelial Mef2c regulates the endothelial actin cytoskeleton and inhibits smooth muscle cell migration into the intima. © 2017 American Heart Association, Inc.

  11. Localization of myocyte enhancer factor 2 in the rodent forebrain: regionally-specific cytoplasmic expression of MEF2A.

    PubMed

    Neely, M Diana; Robert, Elizabeth M; Baucum, Anthony J; Colbran, Roger J; Muly, E Chris; Deutch, Ariel Y

    2009-06-05

    The transcription factor myocyte enhancer factor 2 (MEF2) is expressed throughout the central nervous system, where four MEF2 isoforms play important roles in neuronal survival and differentiation and in synapse formation and maintenance. It is therefore somewhat surprising that there is a lack of detailed information on the localization of MEF2 isoforms in the mammalian brain. We have analyzed the regional, cellular, and subcellular expression of MEF2A and MEF2D in the rodent brain. These two MEF2 isoforms were co-expressed in virtually all neurons in the cortex and the striatum, but were not detected in astrocytes. MEF2A and MEF2D were localized to the nuclei of neurons in many forebrain areas, consistent with their roles as transcriptional regulators. However, in several subcortical sites we observed extensive cytoplasmic expression of MEF2A but not MEF2D. MEF2A was particularly enriched in processes of neurons in the lateral septum and bed nucleus of the stria terminalis, as well as in several other limbic sites, including the central amygdala and paraventricular nuclei of the hypothalamus and thalamus. Ultrastructural examination similarly revealed MEF2A-ir in axons and dendrites as well as MEF2A-ir nuclei in the lateral septum and bed nucleus of the stria terminalis neurons. This study demonstrates for the first time extensive cytoplasmic localization of a MEF2 transcription factor in the mammalian brain in vivo. The extranuclear localization of MEF2A suggests novel roles for MEF2A in specific neuronal populations.

  12. Identification of a new hybrid serum response factor and myocyte enhancer factor 2-binding element in MyoD enhancer required for MyoD expression during myogenesis.

    PubMed

    L'honore, Aurore; Rana, Vanessa; Arsic, Nikola; Franckhauser, Celine; Lamb, Ned J; Fernandez, Anne

    2007-06-01

    MyoD is a critical myogenic factor induced rapidly upon activation of quiescent satellite cells, and required for their differentiation during muscle regeneration. One of the two enhancers of MyoD, the distal regulatory region, is essential for MyoD expression in postnatal muscle. This enhancer contains a functional divergent serum response factor (SRF)-binding CArG element required for MyoD expression during myoblast growth and muscle regeneration in vivo. Electrophoretic mobility shift assay, chromatin immunoprecipitation, and microinjection analyses show this element is a hybrid SRF- and MEF2 Binding (SMB) sequence where myocyte enhancer factor 2 (MEF2) complexes can compete out binding of SRF at the onset of differentiation. As cells differentiate into postmitotic myotubes, MyoD expression no longer requires SRF but instead MEF2 binding to this dual-specificity element. As such, the MyoD enhancer SMB element is the site for a molecular relay where MyoD expression is first initiated in activated satellite cells in an SRF-dependent manner and then increased and maintained by MEF2 binding in differentiated myotubes. Therefore, SMB is a DNA element with dual and stage-specific binding activity, which modulates the effects of regulatory proteins critical in controlling the balance between proliferation and differentiation.

  13. Deletion of calcineurin and myocyte enhancer factor 2 (MEF2) binding domain of Cabin1 results in enhanced cytokine gene expression in T cells.

    PubMed

    Esau, C; Boes, M; Youn, H D; Tatterson, L; Liu, J O; Chen, J

    2001-11-19

    Cabin1 binds calcineurin and myocyte enhancer factor 2 (MEF2) through its COOH-terminal region. In cell lines, these interactions were shown to inhibit calcineurin activity after T cell receptor (TCR) signaling and transcriptional activation of Nur77 by MEF2. The role of these interactions under physiological conditions was investigated using a mutant mouse strain that expresses a truncated Cabin1 lacking the COOH-terminal calcineurin and MEF2 binding domains. T and B cell development and thymocyte apoptosis were normal in mutant mice. In response to anti-CD3 stimulation, however, mutant T cells expressed significantly higher levels of interleukin (IL)-2, IL-4, IL-9, IL-13, and interferon gamma than wild-type T cells. The enhanced cytokine gene expression was not associated with change in nuclear factor of activated T cells (NF-AT)c or NF-ATp nuclear translocation but was preceded by the induction of a phosphorylated form of MEF2D in mutant T cells. Consistent with the enhanced cytokine expression, mutant mice had elevated levels of serum immunoglobulin (Ig)G1, IgG2b, and IgE and produced more IgG1 in response to a T cell-dependent antigen. These findings suggest that the calcineurin and MEF2 binding domain of Cabin1 is dispensable for thymocyte development and apoptosis, but is required for proper regulation of T cell cytokine expression probably through modulation of MEF2 activity.

  14. Myocyte enhancer factor 2D regulates ectoderm specification and adhesion properties of animal cap cells in the early Xenopus embryo.

    PubMed

    Katz Imberman, Sandra; Kolpakova, Alina; Keren, Aviad; Bengal, Eyal

    2015-08-01

    In Xenopus, animal cap (AC) cells give rise to ectoderm and its derivatives: epidermis and the central nervous system. Ectoderm has long been considered a default pathway of embryonic development, with cells that are not under the influence of vegetal Nodal signaling adopting an ectodermal program of gene expression. In the present study, we describe the involvement of the animally-localized maternal transcription factor myocyte enhancer factor (Mef) 2D in regulating the identity of AC cells. We find that Mef2D is required for the formation of both ectodermal lineages: neural and epidermis. Gain and loss of function experiments indicate that Mef2D regulates early gastrula expression of key ectodermal/epidermal genes in the animal region. Mef2D controls the activity of zygotic bone morphogenetic protein (BMP) signaling known to dictate the epidermal differentiation program. Exogenous expression of Mef2D in vegetal blastomeres was sufficient to induce ectopic expression of ectoderm/epidermal genes in the vegetal half of the embryo, when Nodal signaling was inhibited. Depletion of Mef2D caused a loss of AC cell adhesion that was rescued by the expression of E-cadherin or bone morphogenetic protein 4. In addition, expression of Mef2D in the prospective endoderm caused unusual aggregation of vegetal cells with animal cells in vitro and inappropriate segregation to other germ layers in vivo. Mef2D cooperates with another animally-expressed transcription factor, FoxI1e. Together, they regulate the expression of genes encoding signaling proteins and the transcription factors that control the regional identity of animal cells. Therefore, we describe a new role for the animally-localized Mef2D protein in early ectoderm specification, which is similar to that of the vegetally-localized VegT in endoderm and mesoderm formation. © 2015 FEBS.

  15. Class IIa Histone Deacetylases and Myocyte Enhancer Factor 2 Proteins Regulate the Mesenchymal-to-Epithelial Transition of Somatic Cell Reprogramming*

    PubMed Central

    Zhuang, Qiang; Qing, Xiaobing; Ying, Yue; Wu, Haitao; Benda, Christina; Lin, Jiao; Huang, Zhijian; Liu, Longqi; Xu, Yan; Bao, Xichen; Qin, Baoming; Pei, Duanqing; Esteban, Miguel A.

    2013-01-01

    Class IIa histone deacetylases (HDACs) and myocyte enhancer factor 2 (MEF2) proteins compose a signaling module that orchestrates lineage specification during embryogenesis. We show here that this module also regulates the generation of mouse induced pluripotent stem cells by defined transcription factors. Class IIa HDACs and MEF2 proteins rise steadily during fibroblast reprogramming to induced pluripotent stem cells. MEF2 proteins tend to block the process by inducing the expression of Tgfβ cytokines, which impairs the necessary phase of mesenchymal-to-epithelial transition (MET). Conversely, class IIa HDACs endeavor to suppress the activity of MEF2 proteins, thus enhancing the MET and colony formation efficiency. Our work highlights an unexpected role for a developmental axis in somatic cell reprogramming and provides new insight into how the MET is regulated in this context. PMID:23467414

  16. Myocyte enhancer factor 2 (MEF2) is a key modulator of the expression of the prothoracicotropic hormone gene in the silkworm, Bombyx mori.

    PubMed

    Shiomi, Kunihiro; Fujiwara, Yoshihiro; Atsumi, Tsutomu; Kajiura, Zenta; Nakagaki, Masao; Tanaka, Yoshiaki; Mizoguchi, Akira; Yaginuma, Toshinobu; Yamashita, Okitsugu

    2005-08-01

    Prothoracicotropic hormone (PTTH) plays a central role in controlling molting, metamorphosis, and diapause termination in insects by stimulating the prothoracic glands to synthesize and release the molting hormone, ecdysone. Using Autographa californica nucleopolyhedrovirus (AcNPV)-mediated transient gene transfer into the central nervous sytem (CNS) of the silkworm, Bombyx mori, we identified two cis-regulatory elements that participate in the decision and the enhancement of PTTH gene expression in PTTH-producing neurosecretory cells (PTPCs). The cis-element mediating the enhancement of PTTH gene expression binds the transcription factor Bombyx myocyte enhancer factor 2 (BmMEF2). The BmMEF2 gene was expressed in various tissues including the CNS. In brain, the BmMEF2 gene was expressed at elevated levels in two types of lateral neurosecretory cells, namely PTPCs and corazonin-like immunoreactive lateral neurosecretory cells. Overexpression of BmMEF2 cDNA caused an increase in the transcription of PTTH. Therefore, BmMEF2 appears to be particularly important in the brain where it is responsible for the differentiation of lateral neurosecretory cells, including the enhancement of PTTH gene expression. This is the first report to identify a target gene of MEF2 in the invertebrate nervous system.

  17. Effects of new polymorphisms in the bovine myocyte enhancer factor 2D (MEF2D) gene on the expression rates of the longissimus dorsi muscle.

    PubMed

    Juszczuk-Kubiak, E; Starzyński, R R; Sakowski, T; Wicińska, K; Flisikowski, K

    2012-08-01

    Myocyte enhancer factor 2D (MEF2D), a product of the MEF2D gene, belongs to the myocyte enhancer factor 2 (MEF2) protein family which is involved in vertebrate skeletal muscle development and differentiation during myogenesis. The aim of the present study was to search for polymorphisms in the bovine MEF2D gene and to analyze their effect on MEF2D mRNA and on protein expression levels in the longissimus dorsi muscle of Polish Holstein-Friesian cattle. Overall, three novel variations, namely, insertion/deletion g.-818_-814AGCCG and g.-211C

  18. Identification of singles bar as a direct transcriptional target of Drosophila Myocyte enhancer factor-2 and a regulator of adult myoblast fusion.

    PubMed

    Brunetti, Tonya M; Fremin, Brayon J; Cripps, Richard M

    2015-05-15

    In Drosophila, myoblast fusion is a conserved process in which founder cells (FCs) and fusion competent myoblasts (FCMs) fuse to form a syncytial muscle fiber. Mutants for the myogenic regulator Myocyte enhancer factor-2 (MEF2) show a failure of myoblast fusion, indicating that MEF2 regulates the fusion process. Indeed, chromatin immunoprecipitation studies show that several genes involved in myoblast fusion are bound by MEF2 during embryogenesis. Of these, the MARVEL domain gene singles bar (sing), is down-regulated in MEF2 knockdown pupae, and has five consensus MEF2 binding sites within a 9000-bp region. To determine if MEF2 is an essential and direct regulator of sing during pupal muscle development, we identified a 315-bp myoblast enhancer of sing. This enhancer was active during myoblast fusion, and mutation of two MEF2 sites significantly decreased enhancer activity. We show that lack of sing expression resulted in adult lethality and muscle loss, due to a failure of fusion during the pupal stage. Additionally, we sought to determine if sing was required in either FCs or FCMs to support fusion. Interestingly, knockdown of sing in either population did not significantly affect fusion, however, knockdown in both FCs and FCMs resulted in muscles with significantly reduced nuclei numbers, provisionally indicating that sing function is required in either cell type, but not both. Finally, we found that MEF2 regulated sing expression at the embryonic stage through the same 315-bp enhancer, indicating that sing is a MEF2 target at both critical stages of myoblast fusion. Our studies define for the first time how MEF2 directly controls fusion at multiple stages of the life cycle, and provide further evidence that the mechanisms of fusion characterized in Drosophila embryos is also used in the formation of the more complex adult muscles.

  19. Interactions between mitochondria and the transcription factor myocyte enhancer factor 2 (MEF2) regulate neuronal structural and functional plasticity and metaplasticity.

    PubMed

    Brusco, Janaina; Haas, Kurt

    2015-08-15

    The classical view of mitochondria as housekeeping organelles acting in the background to simply maintain cellular energy demands has been challenged by mounting evidence of their direct and active participation in synaptic plasticity in neurons. Time-lapse imaging has revealed that mitochondria are motile in dendrites, with their localization and fusion and fission events regulated by synaptic activity. The positioning of mitochondria directly influences function of nearby synapses through multiple pathways including control over local concentrations of ATP, Ca(2+) and reactive oxygen species. Recent studies have also shown that mitochondrial protein cascades, classically associated with apoptosis, are involved in neural plasticity in healthy cells. These findings link mitochondria to the plasticity- and metaplasticity-associated activity-dependent transcription factor myocyte enhancer factor 2 (MEF2), further repositioning mitochondria as potential command centres for regulation of synaptic plasticity. Intriguingly, MEF2 and mitochondrial functions appear to be intricately intertwined, as MEF2 is a target of mitochondrial apoptotic caspases and, in turn, MEF2 regulates mitochondrial genome transcription essential for production of superoxidase and hydrogen peroxidase. Here, we review evidence supporting mitochondria as central organelles controlling the spatiotemporal expression of neuronal plasticity, and attempt to disentangle the MEF2-mitochondria relationship mediating these functions. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  20. Interactions between mitochondria and the transcription factor myocyte enhancer factor 2 (MEF2) regulate neuronal structural and functional plasticity and metaplasticity

    PubMed Central

    Brusco, Janaina; Haas, Kurt

    2015-01-01

    The classical view of mitochondria as housekeeping organelles acting in the background to simply maintain cellular energy demands has been challenged by mounting evidence of their direct and active participation in synaptic plasticity in neurons. Time-lapse imaging has revealed that mitochondria are motile in dendrites, with their localization and fusion and fission events regulated by synaptic activity. The positioning of mitochondria directly influences function of nearby synapses through multiple pathways including control over local concentrations of ATP, Ca2+ and reactive oxygen species. Recent studies have also shown that mitochondrial protein cascades, classically associated with apoptosis, are involved in neural plasticity in healthy cells. These findings link mitochondria to the plasticity- and metaplasticity-associated activity-dependent transcription factor myocyte enhancer factor 2 (MEF2), further repositioning mitochondria as potential command centres for regulation of synaptic plasticity. Intriguingly, MEF2 and mitochondrial functions appear to be intricately intertwined, as MEF2 is a target of mitochondrial apoptotic caspases and, in turn, MEF2 regulates mitochondrial genome transcription essential for production of superoxidase and hydrogen peroxidase. Here, we review evidence supporting mitochondria as central organelles controlling the spatiotemporal expression of neuronal plasticity, and attempt to disentangle the MEF2–mitochondria relationship mediating these functions. PMID:25581818

  1. Autism-Associated Chromatin Regulator Brg1/SmarcA4 Is Required for Synapse Development and Myocyte Enhancer Factor 2-Mediated Synapse Remodeling.

    PubMed

    Zhang, Zilai; Cao, Mou; Chang, Chia-Wei; Wang, Cindy; Shi, Xuanming; Zhan, Xiaoming; Birnbaum, Shari G; Bezprozvanny, Ilya; Huber, Kimberly M; Wu, Jiang I

    2016-01-01

    Synapse development requires normal neuronal activities and the precise expression of synapse-related genes. Dysregulation of synaptic genes results in neurological diseases such as autism spectrum disorders (ASD). Mutations in genes encoding chromatin-remodeling factor Brg1/SmarcA4 and its associated proteins are the genetic causes of several developmental diseases with neurological defects and autistic symptoms. Recent large-scale genomic studies predicted Brg1/SmarcA4 as one of the key nodes of the ASD gene network. We report that Brg1 deletion in early postnatal hippocampal neurons led to reduced dendritic spine density and maturation and impaired synapse activities. In developing mice, neuronal Brg1 deletion caused severe neurological defects. Gene expression analyses indicated that Brg1 regulates a significant number of genes known to be involved in synapse function and implicated in ASD. We found that Brg1 is required for dendritic spine/synapse elimination mediated by the ASD-associated transcription factor myocyte enhancer factor 2 (MEF2) and that Brg1 regulates the activity-induced expression of a specific subset of genes that overlap significantly with the targets of MEF2. Our analyses showed that Brg1 interacts with MEF2 and that MEF2 is required for Brg1 recruitment to target genes in response to neuron activation. Thus, Brg1 plays important roles in both synapse development/maturation and MEF2-mediated synapse remodeling. Our study reveals specific functions of the epigenetic regulator Brg1 in synapse development and provides insights into its role in neurological diseases such as ASD. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Autism-Associated Chromatin Regulator Brg1/SmarcA4 Is Required for Synapse Development and Myocyte Enhancer Factor 2-Mediated Synapse Remodeling

    PubMed Central

    Zhang, Zilai; Cao, Mou; Chang, Chia-Wei; Wang, Cindy; Shi, Xuanming; Zhan, Xiaoming; Birnbaum, Shari G.; Bezprozvanny, Ilya; Huber, Kimberly M.

    2015-01-01

    Synapse development requires normal neuronal activities and the precise expression of synapse-related genes. Dysregulation of synaptic genes results in neurological diseases such as autism spectrum disorders (ASD). Mutations in genes encoding chromatin-remodeling factor Brg1/SmarcA4 and its associated proteins are the genetic causes of several developmental diseases with neurological defects and autistic symptoms. Recent large-scale genomic studies predicted Brg1/SmarcA4 as one of the key nodes of the ASD gene network. We report that Brg1 deletion in early postnatal hippocampal neurons led to reduced dendritic spine density and maturation and impaired synapse activities. In developing mice, neuronal Brg1 deletion caused severe neurological defects. Gene expression analyses indicated that Brg1 regulates a significant number of genes known to be involved in synapse function and implicated in ASD. We found that Brg1 is required for dendritic spine/synapse elimination mediated by the ASD-associated transcription factor myocyte enhancer factor 2 (MEF2) and that Brg1 regulates the activity-induced expression of a specific subset of genes that overlap significantly with the targets of MEF2. Our analyses showed that Brg1 interacts with MEF2 and that MEF2 is required for Brg1 recruitment to target genes in response to neuron activation. Thus, Brg1 plays important roles in both synapse development/maturation and MEF2-mediated synapse remodeling. Our study reveals specific functions of the epigenetic regulator Brg1 in synapse development and provides insights into its role in neurological diseases such as ASD. PMID:26459759

  3. Perturbation of transcription factor Nur77 expression mediated by myocyte enhancer factor 2D (MEF2D) regulates dopaminergic neuron loss in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).

    PubMed

    Mount, Matthew P; Zhang, Yi; Amini, Mandana; Callaghan, Steve; Kulczycki, Jerzy; Mao, Zixu; Slack, Ruth S; Anisman, Hymie; Park, David S

    2013-05-17

    We have earlier reported the critical nature of calpain-CDK5-MEF2 signaling in governing dopaminergic neuronal loss in vivo. CDK5 mediates phosphorylation of the neuronal survival factor myocyte enhancer factor 2 (MEF2) leading to its inactivation and loss. However, the downstream factors that mediate MEF2-regulated survival are unknown. Presently, we define Nur77 as one such critical downstream survival effector. Following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in vivo, Nur77 expression in the nigrostriatal region is dramatically reduced. This loss is attenuated by expression of MEF2. Importantly, MEF2 constitutively binds to the Nur77 promoter in neurons under basal conditions. This binding is lost following 1-methyl-4-phenylpyridinium treatment. Nur77 deficiency results in significant sensitization to dopaminergic loss following 1-methyl-4-phenylpyridinium/MPTP treatment, in vitro and in vivo. Furthermore, Nur77-deficient MPTP-treated mice displayed significantly reduced levels of dopamine and 3,4-Dihydroxyphenylacetic acid in the striatum as well as elevated post synaptic FosB activity, indicative of increased nigrostriatal damage when compared with WT MPTP-treated controls. Importantly, this sensitization in Nur77-deficient mice was rescued with ectopic Nur77 expression in the nigrostriatal system. These results indicate that the inactivation of Nur77, induced by loss of MEF2 activity, plays a critical role in nigrostriatal degeneration in vivo.

  4. Assignment of human myocyte-specific enhancer binding factor 2C (hMEF2C) to human chromosome 5q14 and evidence that MEF2C is evolutionarily conserved

    SciTech Connect

    Krainc, D.; Lipton, S.A.; Haas, M.; Ward, D.C.

    1995-10-10

    Human myocyte-specific enhancer binding factor 2C (hMEF2C) belongs to the MEF2 subfamily of the MADS (MCM1, AGAMOUS, DEF A, serum response factor) family of transcription factors. Members of the MADS family share a conserved domain - the MADS domain - that is necessary for DNA binding. Highly conserved versions of the MADS domain and of an adjacent domain that is known as the MEF2 domain are found in members of the MEF2 subfamily. Both of these domains are necessary for binding to the MEF2 regulatory element. This regulatory element is known to be functionally important in a variety of muscle-specific genes and possibly in the brain creatine kinase gene. The MEF2C gene product activates transcription by binding to the MEF2 element. hMEF2C is expressed at high levels in postmitotic neurons in the brain, where it is most abundant in the cerebral cortex, and is also expressed in differentiated myotubes. Several lines of evidence suggest the existence of a rat homologue of MEF2C, and a mouse homologue has been cloned. The mouse gene was mapped to mouse chromosome 13 in a region that is syntenic to human 5q13-q15. 12 refs., 1 fig.

  5. [Regulation of myostatin promoter activity by myocyte enhancer factor 2].

    PubMed

    Li, Jia; Deng, Jie; Zhang, Junlin; Cheng, De; Wang, Huayan

    2012-08-01

    Myostatin (Mstn) is a member of the transforming growth factor-beta superfamily that functions as a negative regulator of skeletal muscle growth and differentiation in mammals. The transcriptional regulation of Mstn is controlled by multiple genes including MEF2, which raise the importance of identifying the binding sites of MEF2 on myostatin promoter region and mechanisms underlying. In this study, we investigated the transcriptional regulation of MEF2 on porcine Mstn promoter activity in C2C12 cells. Sequence analysis of the 1 969 bp porcine Mstn promoter region revealed that it contained three potential MEF2 motifs. Using a serial deletion strategy, we tested the activity of several promoter fragments by luciferase assay. Overexpression of MEF2C, but not MEF2A increased Mstn promoter activity in all the promoter fragments with MEF2 motifs by two to six folds, in both C2C12 myoblasts and myotubes. When we transfected exogenous MEF2C, Mstn mRNA level was also upregulated in C2C12 cells, but the protein level was only significantly increased in myotubes. Thus, we propose that MEF2C could modulate and restrain myogenesis by Mstn activation and Mstn-dependent gene processing in porcine. Our research also provided potential targets and an effective molecule to regulate Mstn expression and gave a new way to explore the functional performance of Mstn.

  6. Overexpression of miR-18a negatively regulates myocyte enhancer factor 2D to increase the permeability of the blood-tumor barrier via Krüppel-like factor 4-mediated downregulation of zonula occluden-1, claudin-5, and occludin.

    PubMed

    Zhao, Ying-Yu; Zhao, Li-Ni; Wang, Ping; Miao, Yin-Sha; Liu, Yun-Hui; Wang, Zhen-Hua; Ma, Jun; Li, Zhen; Li, Zhi-Qing; Xue, Yi-Xue

    2015-12-01

    miR-18a represses angiogenesis and tumor evasion by weakening vascular endothelial growth factor and transforming growth factor-β signaling to prolong the survival of glioma patients, although it is thought to be an oncogene. This study investigates the potential effects of miR-18a on the permeability of the blood-tumor barrier (BTB) and its possible molecular mechanisms. An in vitro BTB model was successfully established. The endogenous expression of miR-18a in glioma vascular endothelial cells (GECs) was significantly lower than that in normal vascular ECs, and the overexpression of miR-18a significantly increased the permeability of the BTB as well as downregulating the mRNA and protein expressions of tight junction-related proteins zonula occluden-1 (ZO-1), claudin-5, and occludin in GECs. Dual luciferase reporter assays revealed that miR-18a bound to the 3'-untranslated region (3'UTR) of myocyte enhancer factor 2D (MEF2D). The overexpression of both miR-18a and MEF2D with the 3'UTR significantly weakened the effect caused by miR-18a of decreasing the mRNA and protein expressions of ZO-1, claudin-5 and occludin and of increasing the permeability of the BTB. Chromatin immunoprecipitation showed that MEF2D could directly bind to KLF4 promoter. This study shows that miR-18a targets and negatively regulates MEF2D, which further regulates tight junction-related proteins ZO-1, claudin-5, and occludin through transactivation of KLF4 and, finally, changes the permeability of the BTB. MiR-18a should garner growing attention because it might serve as a potential target in opening the BTB and providing a new strategy for the treatment of gliomas.

  7. Nitrate-containing beetroot enhances myocyte metabolism and mitochondrial content.

    PubMed

    Vaughan, Roger A; Gannon, Nicholas P; Carriker, Colin R

    2016-01-01

    Beetroot ( tián cài) juice consumption is of current interest for improving aerobic performance by acting as a vasodilator and possibly through alterations in skeletal muscle metabolism and physiology. This work explored the effects of a commercially available beetroot supplement on metabolism, gene expression, and mitochondrial content in cultured myocytes. C2C12 myocytes were treated with various concentrations of the beetroot supplement for various durations. Glycolytic metabolism and oxidative metabolism were quantified via measurement of extracellular acidification and oxygen consumption, respectively. Metabolic gene expression was measured using quantitative reverse transcription-polymerase chain reaction, and mitochondrial content was assessed with flow cytometry and confocal microscopy. Cells treated with beetroot exhibited significantly increased oxidative metabolism, concurrently with elevated metabolic gene expression including peroxisome proliferator-activated receptor gamma coactivator-1 alpha, nuclear respiratory factor 1, mitochondrial transcription factor A, and glucose transporter 4, leading to increased mitochondrial biogenesis. Our data show that treatment with a beetroot supplement increases basal oxidative metabolism. Our observations are also among the first to demonstrate that beetroot extract is an inducer of metabolic gene expression and mitochondrial biogenesis. These observations support the need for further investigation into the therapeutic and pharmacological effects of nitrate-containing supplements for health and athletic benefits.

  8. Enhanced expression of ROCK in left atrial myocytes of mitral regurgitation: a potential mechanism of myolysis.

    PubMed

    Chen, Huang-Chung; Chang, Jen-Ping; Chang, Tzu-Hao; Lin, Yu-Sheng; Huang, Yao-Kuang; Pan, Kuo-Li; Fang, Chih-Yuan; Chen, Chien-Jen; Ho, Wan-Chun; Chen, Mien-Cheng

    2015-05-09

    MR sinus group (p < 0.04) compared with the normal control group. The enhanced expression of ROCKs might be involved in the myolysis of the left atrial myocytes of MR patients.

  9. Alterations in action potential profile enhance excitation-contraction coupling in rat cardiac myocytes

    PubMed Central

    Sah, Rajan; Ramirez, Rafael J; Kaprielian, Roger; Backx, Peter H

    2001-01-01

    Action potential (AP) prolongation typically occurs in heart disease due to reductions in transient outward potassium currents (Ito), and is associated with increased Ca2+ transients. We investigated the underlying mechanisms responsible for enhanced Ca2+ transients in normal isolated rat ventricular myocytes in response to the AP changes that occur following myocardial infarction. Normal myocytes stimulated with a train of long post-myocardial infarction (MI) APs showed a 2.2-fold elevation of the peak Ca2+ transient and a 2.7-fold augmentation of fractional cell shortening, relative to myocytes stimulated with a short control AP. The steady-state Ca2+ load of the sarcoplasmic reticulum (SR) was increased 2.0-fold when myocytes were stimulated with trains of long post-MI APs (111 ± 21.6 μmol l−1) compared with short control APs (56 ± 7.2 μmol l−1). Under conditions of equal SR Ca2+ load, long post-MI APs still resulted in a 1.7-fold increase in peak [Ca2+]i and a 3.8-fold increase in fractional cell shortening relative to short control APs, establishing that changes in the triggering of SR Ca2+ release are largely responsible for elevated Ca2+ transients following AP prolongation. Fractional SR Ca2+ release calculated from the measured SR Ca2+ load and the integrated SR Ca2+ fluxes was 24 ± 3 and 11 ± 2 % following post-MI and control APs, respectively. The fractional release (FR) of Ca2+ from the SR divided by the integrated L-type Ca2+ flux (FR/∫FCa,L) was increased 1.2-fold by post-MI APs compared with control APs. Similar increases in excitation-contraction (E-C) coupling gains were observed establishing enhanced E-C coupling efficiency. Our findings demonstrate that AP prolongation alone can markedly enhance E-C coupling in normal myocytes through increases in the L-type Ca2+ current (ICa,L) trigger combined with modest enhancements in Ca2+ release efficiency. We propose that such changes in AP profile in diseased myocardium may contribute

  10. Ankyrin-B reduction enhances Ca spark-mediated SR Ca release promoting cardiac myocyte arrhythmic activity

    PubMed Central

    Camors, Emmanuel; Mohler, Peter J.; Bers, Donald M.; Despa, Sanda

    2012-01-01

    Ankyrin-B (AnkB) loss-of-function may cause ventricular arrhythmias and sudden cardiac death in humans. Cardiac myocytes from AnkB heterozygous mice (AnkB+/−) show reduced expression and altered localization of Na/Ca exchanger (NCX) and Na/K-ATPase (NKA), key players in regulating [Na]i and [Ca]i. Here we investigate how AnkB reduction affects cardiac [Na]i, [Ca]i and SR Ca release. We found reduced NCX and NKA transport function but unaltered [Na]i and diastolic [Ca]i in myocytes from AnkB+/− vs. wild-type (WT) mice. Ca transients, SR Ca content and fractional SR Ca release were larger in AnkB+/− myocytes. The frequency of spontaneous, diastolic Ca sparks (CaSpF) was significantly higher in intact myocytes from AnkB+/− vs. WT myocytes (with and without isoproterenol), even when normalized for SR Ca load. However, total ryanodine receptor (RyR)-mediated SR Ca leak (tetracaine-sensitive) was not different between groups. Thus, in AnkB+/− mice SR Ca leak is biased towards more Ca sparks (vs. smaller release events), suggesting more coordinated openings of RyRs in a cluster. This is due to local cytosolic RyR regulation, rather than intrinsic RyR differences, since CaSpF was similar in saponin-permeabilized myocytes from WT and AnkB+/− mice. The more coordinated RyRs openings resulted in an increased propensity of pro-arrhythmic Ca waves in AnkB+/− myocytes. In conclusion, AnkB reduction alters cardiac Na and Ca transport and enhances the coupled RyR openings, resulting in more frequent Ca sparks and waves although the total SR Ca leak is unaffected. This could enhance the propensity for triggered arrhythmias in AnkB+/− mice. PMID:22406428

  11. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes.

    PubMed

    Takahashi, Tomosaburo; Lord, Bernadette; Schulze, P Christian; Fryer, Ryan M; Sarang, Satinder S; Gullans, Steven R; Lee, Richard T

    2003-04-15

    Embryonic stem (ES) cells are capable of self-renewal and differentiation into cellular derivatives of all 3 germ layers. In appropriate culture conditions, ES cells can differentiate into specialized cells, including cardiac myocytes, but the efficiency is typically low and the process is incompletely understood. We evaluated a chemical library for its potential to induce cardiac differentiation of ES cells in the absence of embryoid body formation. Using ES cells stably transfected with cardiac-specific alpha-cardiac myosin heavy chain (MHC) promoter-driven enhanced green fluorescent protein (EGFP), 880 compounds approved for human use were screened for their ability to induce cardiac differentiation. Treatment with ascorbic acid, also known as vitamin C, markedly increased the number of EGFP-positive cells, which displayed spontaneous and rhythmic contractile activity and stained positively for sarcomeric myosin and alpha-actinin. Furthermore, ascorbic acid induced the expression of cardiac genes, including GATA4, alpha-MHC, and beta-MHC in untransfected ES cells in a developmentally controlled manner. This effect of ascorbic acid on cardiac differentiation was not mimicked by the other antioxidants such as N-acetylcysteine, Tiron, or vitamin E. Ascorbic acid induces cardiac differentiation in ES cells. This study demonstrates the potential for chemically modifying the cardiac differentiation program of ES cells.

  12. Cardiac Non-myocyte Cells Show Enhanced Pharmacological Function Suggestive of Contractile Maturity in Stem Cell Derived Cardiomyocyte Microtissues

    PubMed Central

    Ravenscroft, Stephanie M.; Pointon, Amy; Williams, Awel W.; Cross, Michael J.; Sidaway, James E.

    2016-01-01

    The immature phenotype of stem cell derived cardiomyocytes is a significant barrier to their use in translational medicine and pre-clinical in vitro drug toxicity and pharmacological analysis. Here we have assessed the contribution of non-myocyte cells on the contractile function of co-cultured human embryonic stem cell derived cardiomyocytes (hESC-CMs) in spheroid microtissue format. Microtissues were formed using a scaffold free 96-well cell suspension method from hESC-CM cultured alone (CM microtissues) or in combination with human primary cardiac microvascular endothelial cells and cardiac fibroblasts (CMEF microtissues). Contractility was characterized with fluorescence and video-based edge detection. CMEF microtissues displayed greater Ca2+ transient amplitudes, enhanced spontaneous contraction rate and remarkably enhanced contractile function in response to both positive and negative inotropic drugs, suggesting a more mature contractile phenotype than CM microtissues. In addition, for several drugs the enhanced contractile response was not apparent when endothelial cell or fibroblasts from a non-cardiac tissue were used as the ancillary cells. Further evidence of maturity for CMEF microtissues was shown with increased expression of genes that encode proteins critical in cardiac Ca2+ handling (S100A1), sarcomere assembly (telethonin/TCAP) and β-adrenergic receptor signalling. Our data shows that compared with single cell-type cardiomyocyte in vitro models, CMEF microtissues are superior at predicting the inotropic effects of drugs, demonstrating the critical contribution of cardiac non-myocyte cells in mediating functional cardiotoxicity. PMID:27125969

  13. Transforming growth factor-{beta}2 enhances differentiation of cardiac myocytes from embryonic stem cells

    SciTech Connect

    Kumar, Dinender . E-mail: Dinender.Kumar@uvm.edu; Sun, Baiming

    2005-06-24

    Stem cell therapy holds great promise for the treatment of injured myocardium, but is challenged by a limited supply of appropriate cells. Three different isoforms of transforming growth factor-{beta} (TGF-{beta}) -{beta}1, -{beta}2, and -{beta}3 exhibit distinct regulatory effects on cell growth, differentiation, and migration during embryonic development. We compared the effects of these three different isoforms on cardiomyocyte differentiation from embryonic stem (ES) cells. In contrast to TGF-{beta}1, or -{beta}3, treatment of mouse ES cells with TGF-{beta}2 isoform significantly increased embryoid body (EB) proliferation as well as the extent of the EB outgrowth that beat rhythmically. At 17 days, 49% of the EBs treated with TGF-{beta}2 exhibited spontaneous beating compared with 15% in controls. Cardiac myocyte specific protein markers sarcomeric myosin and {alpha}-actin were demonstrated in beating EBs and cells isolated from EBs. In conclusion, TGF-{beta}2 but not TGF-{beta}1, or -{beta}3 promotes cardiac myocyte differentiation from ES cells.

  14. Nitroxyl enhances myocyte Ca2+ transients by exclusively targeting SR Ca2+-cycling

    PubMed Central

    Kohr, Mark J; Kaludercic, Nina; Tocchetti, Carlo G; Gao, Wei Dong; Kass, David A; Janssen, Paul ML; Paolocci, Nazareno; Ziolo, Mark T

    2011-01-01

    Nitroxyl (HNO), the 1-electron reduction product of nitric oxide, improves myocardial contraction in normal and failing hearts. Here we test whether the HNO donor Angeli’s salt (AS) will change myocyte action potential (AP) waveform by altering the L-type Ca2+ current (ICa) and contrast the contractile effects of HNO with that of the hydroxyl radical (·OH) and nitrite (NO2-), two potential breakdown products of AS. We confirmed the positive effect of AS/HNO on basal cardiomyocyte function, as opposed to the detrimental effect of ·OH and the negligible effect of NO2-. Upon examination of the myocyte AP, we observed no change in resting membrane potential or AP duration to 20% repolarization with AS/HNO, whereas AP duration to 90% repolarization was slightly prolonged. However, perfusion with AS/HNO did not elicit a change in basal ICa, but did hasten ICa inactivation. Upon further examination of the SR, the AS/HNO-induced increase in cardiomyocyte Ca2+ transients was abolished with inhibition of SR Ca2+-cycling. Therefore, the HNO-induced increase in Ca2+ transients results exclusively from changes in SR Ca2+-cycling, and not from ICa. PMID:20036906

  15. Transcription factor 4 and myocyte enhancer factor 2C mutations are not common causes of Rett syndrome.

    PubMed

    Armani, Roksana; Archer, Hayley; Clarke, Angus; Vasudevan, Pradeep; Zweier, Christiane; Ho, Gladys; Williamson, Sarah; Cloosterman, Desiree; Yang, Nan; Christodoulou, John

    2012-04-01

    The systematic screening of Rett syndrome (RTT) patients for pathogenetic sequence variations has focused on three genes that have been associated with RTT or related clinical phenotypes, namely MECP2, CDKL5, and FOXG1. More recently, it has been suggested that phenotypes associated with TCF4 and MEF2C mutations may represent a form of RTT. Here we report on the screening of the TCF4 and MEF2C genes in a cohort of 81 classical, atypical, and incomplete atypical RTT patients harboring no known mutations in MECP2, CDKL5, and FOXG1 genes. No pathogenetic sequence variations were identified in the MEF2C gene in our cohort. However, a frameshift mutation in TCF4 was identified in a patient with a clinical diagnosis of "variant" RTT, in whom the clinical evolution later raised the possibility of Pitt-Hopkins syndrome. Although our results suggest that these genes are not commonly associated with RTT, we note the clinical similarity between RTT and Pitt-Hopkins syndrome, and suggest that RTT patients with no mutation identified in MECP2 be considered for molecular screening of the TCF4 gene.

  16. Deptor Knockdown Enhances mTOR Activity and Protein Synthesis in Myocytes and Ameliorates Disuse Muscle Atrophy

    PubMed Central

    Kazi, Abid A; Hong-Brown, Ly; Lang, Susan M; Lang, Charles H

    2011-01-01

    Deptor is an mTOR binding protein that affects cell metabolism. We hypothesized that knockdown (KD) of Deptor in C2C12 myocytes will increase protein synthesis via stimulating mTOR-S6K1 signaling. Deptor KD was achieved using lentiviral particles containing short hairpin (sh)RNA targeting the mouse Deptor mRNA sequence, and control cells were transfected with a scrambled control shRNA. KD reduced Deptor mRNA and protein content by 90%, which increased phosphorylation of mTOR kinase substrates, 4E-BP1 and S6K1, and concomitantly increased protein synthesis. Deptor KD myoblasts were both larger in diameter and exhibited an increased mean cell volume. Deptor KD increased the percentage of cells in the S phase, coincident with an increased phosphorylation (S807/S811) of retinoblastoma protein (pRb) that is critical for the G1 to S phase transition. Deptor KD did not appear to alter basal apoptosis or autophagy, as evidenced by the lack of change for cleaved caspase-3 and light chain (LC)3B, respectively. Deptor KD increased proliferation rate and enhanced myotube formation. Finally, in vivo Deptor KD (~50% reduction) by electroporation into gastrocnemius of C57/BL6 mice did not alter weight or protein synthesis in control muscle. However, Deptor KD prevented atrophy produced by 3 d of hindlimb immobilization, at least in part by increasing protein synthesis. Thus, our data support the hypothesis that Deptor is an important regulator of protein metabolism in myocytes and demonstrate that decreasing Deptor expression in vivo is sufficient to ameliorate muscle atrophy. PMID:21607293

  17. Crosstalk between monocytes and myometrial smooth muscle in culture generates synergistic pro-inflammatory cytokine production and enhances myocyte contraction, with effects opposed by progesterone

    PubMed Central

    Rajagopal, S.P.; Hutchinson, J.L.; Dorward, D.A.; Rossi, A.G.; Norman, J.E.

    2015-01-01

    Both term and preterm parturition are characterized by an influx of macrophages and neutrophils into the myometrium and cervix, with co-incident increased peripheral blood monocyte activation. Infection and inflammation are strongly implicated in the pathology of preterm labour (PTL), with progesterone considered a promising candidate for its prevention or treatment. In this study, we investigated the effect of monocytes on myometrial smooth muscle cell inflammatory cytokine production both alone and in response to LPS, a TLR4 agonist used to trigger PTL in vivo. We also investigated the effect of monocytes on myocyte contraction. Monocytes, isolated from peripheral blood samples from term pregnant women, were cultured alone, or co-cultured with PHM1-41 myometrial smooth muscle cells, for 24 h. In a third set of experiments, PHM1-41 myocytes were cultured for 24 h in isolation. Cytokine secretion was determined by ELISA or multiplex assays. Co-culture of monocytes and myocytes led to synergistic secretion of pro-inflammatory cytokines and chemokines including IL-6, IL-8 and MCP-1, with the secretion being further enhanced by LPS (100 ng/ml). The synergistic secretion of IL-6 and IL-8 from co-cultures was mediated in part by direct cell–cell contact, and by TNF. Conditioned media from co-cultures stimulated contraction of PHM1-41 myocytes, and the effect was inhibited by progesterone. Both progesterone and IL-10 inhibited LPS-stimulated IL-6 and IL-8 secretion from co-cultures, while progesterone also inhibited chemokine secretion. These data suggest that monocytes infiltrating the myometrium at labour participate in crosstalk that potentiates pro-inflammatory cytokine secretion, an effect that is enhanced by LPS, and can augment myocyte contraction. These effects are all partially inhibited by progesterone. PMID:26002969

  18. Crosstalk between monocytes and myometrial smooth muscle in culture generates synergistic pro-inflammatory cytokine production and enhances myocyte contraction, with effects opposed by progesterone.

    PubMed

    Rajagopal, S P; Hutchinson, J L; Dorward, D A; Rossi, A G; Norman, J E

    2015-08-01

    Both term and preterm parturition are characterized by an influx of macrophages and neutrophils into the myometrium and cervix, with co-incident increased peripheral blood monocyte activation. Infection and inflammation are strongly implicated in the pathology of preterm labour (PTL), with progesterone considered a promising candidate for its prevention or treatment. In this study, we investigated the effect of monocytes on myometrial smooth muscle cell inflammatory cytokine production both alone and in response to LPS, a TLR4 agonist used to trigger PTL in vivo. We also investigated the effect of monocytes on myocyte contraction. Monocytes, isolated from peripheral blood samples from term pregnant women, were cultured alone, or co-cultured with PHM1-41 myometrial smooth muscle cells, for 24 h. In a third set of experiments, PHM1-41 myocytes were cultured for 24 h in isolation. Cytokine secretion was determined by ELISA or multiplex assays. Co-culture of monocytes and myocytes led to synergistic secretion of pro-inflammatory cytokines and chemokines including IL-6, IL-8 and MCP-1, with the secretion being further enhanced by LPS (100 ng/ml). The synergistic secretion of IL-6 and IL-8 from co-cultures was mediated in part by direct cell-cell contact, and by TNF. Conditioned media from co-cultures stimulated contraction of PHM1-41 myocytes, and the effect was inhibited by progesterone. Both progesterone and IL-10 inhibited LPS-stimulated IL-6 and IL-8 secretion from co-cultures, while progesterone also inhibited chemokine secretion. These data suggest that monocytes infiltrating the myometrium at labour participate in crosstalk that potentiates pro-inflammatory cytokine secretion, an effect that is enhanced by LPS, and can augment myocyte contraction. These effects are all partially inhibited by progesterone. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

  19. JS-K, a GST-activated nitric oxide donor prodrug, enhances chemo-sensitivity in renal carcinoma cells and prevents cardiac myocytes toxicity induced by Doxorubicin.

    PubMed

    Qiu, Mingning; Ke, Longzhi; Zhang, Sai; Zeng, Xin; Fang, Zesong; Liu, Jianjun

    2017-08-01

    Doxorubicin, a highly effective and widely used anthracycline antibiotic in multiple chemotherapy regimens, has been limited by its cardiotoxicity. The aim of this study is to investigate the effect of nitric oxide donor prodrug JS-K on proliferation and apoptosis in renal carcinoma cells and cardiac myocytes toxicity induced by Doxorubicin and to explore possible p53-related mechanism in renal carcinoma cells. The effect of JS-K on anti-cancer activity of Doxorubicin was investigated in renal carcinoma cells via detecting cell proliferation, cytotoxicity, cell death and apoptosis and expressions of apoptotic-related proteins. Effect of p53 on the combination of JS-K and Doxorubicin was determined using p53 inhibitor Pifithrin-α and p53 activator III. Furthermore, the effect of JS-K on cardiac myocytes toxicity of Doxorubicin was investigated in H9c2 (2-1) cardiac myocytes via measuring cell growth, cell death and apoptosis, expressions of proteins involved in apoptosis and intracellular reactive oxygen species. We demonstrated that JS-K could increase Doxorubicin-induced renal carcinoma cell growth suppression and apoptosis and could increase expressions of proteins that are involved in apoptosis. Additionally, Pifithrin-α reversed the promoting effect of JS-K on Doxorubicin-induced renal carcinoma cell apoptosis; conversely, the p53 activator III exacerbated the promoting effect of JS-K on Doxorubicin-induced renal carcinoma cell apoptosis. Furthermore, JS-K protected H9c2 (2-1) cardiac myocytes against Doxorubicin-induced toxicity and decreased Doxorubicin-induced reactive oxygen species production. JS-K enhances the anti-cancer activity of Doxorubicin in renal carcinoma cells by upregulating p53 expression and prevents cardiac myocytes toxicity of Doxorubicin by decreasing oxidative stress.

  20. Neuropeptide Y rapidly enhances [Ca2+]i transients and Ca2+ sparks in adult rat ventricular myocytes through Y1 receptor and PLC activation.

    PubMed

    Heredia, María del Puy; Delgado, Carmen; Pereira, Laetitia; Perrier, Romain; Richard, Sylvain; Vassort, Guy; Bénitah, Jean-Pierre; Gómez, Ana María

    2005-01-01

    Neuropeptide Y (NPY) is the most abundant peptide in the mammalian heart, but its cardiac actions are not fully understood. Here we investigate the effect of NPY in intracellular Ca2+ release, using isolated rat cardiac myocytes and confocal microscopy. Cardiac myocytes were field-stimulated at 1 Hz. The evoked [Ca2+]i transient was of higher amplitude and of faster decay in the presence of 100 nM NPY. Cell contraction was also increased by NPY. We analyzed the occurrence of Ca2+ sparks and their characteristics after NPY application. NPY significantly increased Ca2+ sparks frequency in quiescent cells. The Ca2+ spark amplitude was enhanced by NPY but the other characteristics of Ca2+ sparks were not significantly altered. Because cardiac myocytes express both Y1 and Y2 NPY receptors, we repeated the experiments in the presence of the receptor blockers, BIBP3226 and BIIE0246. We found that Y1 NPY receptor blockade completely inhibited NPY effects on [Ca2+]i transient. PTX-sensitive G-proteins and/or phospholypase C (PLC) have been invoked to mediate NPY effects in other cell types. We tested these two hypotheses. In PTX-treated myocytes NPY was still effective, which suggests that the observed NPY actions are not mediated by PTX-sensitive G-proteins. In contrast, the increase in [Ca2+]i transient by NPY was completely inhibited by the PLC inhibitor U73122. In conclusion, we find that NPY has a positive inotropic effect in isolated rat cardiac myocytes, which involves increase in Ca2+ release after activation of Y1 NPY receptor and subsequent stimulation of PLC.

  1. MicroRNA-1 transfected embryonic stem cells enhance cardiac myocyte differentiation and inhibit apoptosis by modulating the PTEN/Akt pathway in the infarcted heart.

    PubMed

    Glass, Carley; Singla, Dinender K

    2011-11-01

    microRNAs (miRs) have emerged as critical modulators of various physiological processes including stem cell differentiation. Indeed, miR-1 has been reported to play an integral role in the regulation of cardiac muscle progenitor cell differentiation. However, whether overexpression of miR-1 in embryonic stem (ES) cells (miR-1-ES cells) will enhance cardiac myocyte differentiation following transplantation into the infarcted myocardium is unknown. In the present study, myocardial infarction (MI) was produced in C57BL/6 mice by left anterior descending artery ligation. miR-1-ES cells, ES cells, or culture medium (control) was transplanted into the border zone of the infarcted heart, and 2 wk post-MI, cardiac myocyte differentiation, adverse ventricular remodeling, and cardiac function were assessed. We provide evidence demonstrating enhanced cardiac myocyte commitment of transplanted miR-1-ES cells in the mouse infarcted heart as compared with ES cells. Assessment of apoptosis revealed that overexpression of miR-1 in transplanted ES cells protected host myocardium from MI-induced apoptosis through activation of p-AKT and inhibition of caspase-3, phosphatase and tensin homolog, and superoxide production. A significant reduction in interstitial and vascular fibrosis was quantified in miR-1-ES cell and ES cell transplanted groups compared with control MI. However, no statistical significance between miR-1-ES cell and ES cell groups was observed. Finally, mice receiving miR-1-ES cell transplantation post-MI had significantly improved heart function compared with respective controls (P < 0.05). Our data suggest miR-1 drives cardiac myocyte differentiation from transplanted ES cells and inhibits apoptosis post-MI, ultimately giving rise to enhanced cardiac repair, regeneration, and function.

  2. Myogenin induces the myocyte-specific enhancer binding factor MEF-2 independently of other muscle-specific gene products.

    PubMed Central

    Cserjesi, P; Olson, E N

    1991-01-01

    The myocyte-specific enhancer-binding factor MEF-2 is a nuclear factor that interacts with a conserved element in the muscle creatine kinase and myosin light-chain 1/3 enhancers (L. A. Gossett, D. J. Kelvin, E. A. Sternberg, and E. N. Olson, Mol. Cell. Biol. 9:5022-5033, 1989). We show in this study that MEF-2 is regulated by the myogenic regulatory factor myogenin and that mitogenic signals block this regulatory interaction. Induction of MEF-2 by myogenin occurs in transfected 10T1/2 cells that have been converted to myoblasts by myogenin, as well as in CV-1 kidney cells that do not activate the myogenic program in response to myogenin. Through mutagenesis of the MEF-2 site, we further defined the binding site requirements for MEF-2 and identified potential MEF-2 sites within numerous muscle-specific regulatory regions. The MEF-2 site was also found to bind a ubiquitous nuclear factor whose binding specificity was similar to but distinct from that of MEF-2. Our results reveal that MEF-2 is controlled, either directly or indirectly, by a myogenin-dependent regulatory pathway and suggest that growth factor signals suppress MEF-2 expression through repression of myogenin expression or activity. The ability of myogenin to induce MEF-2 activity in CV-1 cells, which do not activate downstream genes associated with terminal differentiation, also demonstrates that myogenin retains limited function within cell types that are nonpermissive for myogenesis and suggests that MEF-2 is regulated independently of other muscle-specific genes. Images PMID:1656214

  3. Changes in Intracellular Na+ following Enhancement of Late Na+ Current in Virtual Human Ventricular Myocytes

    PubMed Central

    Giles, Wayne R.

    2016-01-01

    The slowly inactivating or late Na+ current, INa-L, can contribute to the initiation of both atrial and ventricular rhythm disturbances in the human heart. However, the cellular and molecular mechanisms that underlie these pro-arrhythmic influences are not fully understood. At present, the major working hypothesis is that the Na+ influx corresponding to INa-L significantly increases intracellular Na+, [Na+]i; and the resulting reduction in the electrochemical driving force for Na+ reduces and (may reverse) Na+/Ca2+ exchange. These changes increase intracellular Ca2+, [Ca2+]i; which may further enhance INa-L due to calmodulin-dependent phosphorylation of the Na+ channels. This paper is based on mathematical simulations using the O’Hara et al (2011) model of baseline or healthy human ventricular action potential waveforms(s) and its [Ca2+]i homeostasis mechanisms. Somewhat surprisingly, our results reveal only very small changes (≤ 1.5 mM) in [Na+]i even when INa-L is increased 5-fold and steady-state stimulation rate is approximately 2 times the normal human heart rate (i.e. 2 Hz). Previous work done using well-established models of the rabbit and human ventricular action potential in heart failure settings also reported little or no change in [Na+]i when INa-L was increased. Based on our simulations, the major short-term effect of markedly augmenting INa-L is a significant prolongation of the action potential and an associated increase in the likelihood of reactivation of the L-type Ca2+ current, ICa-L. Furthermore, this action potential prolongation does not contribute to [Na+]i increase. PMID:27875582

  4. Changes in Intracellular Na+ following Enhancement of Late Na+ Current in Virtual Human Ventricular Myocytes.

    PubMed

    Cardona, Karen; Trenor, Beatriz; Giles, Wayne R

    2016-01-01

    The slowly inactivating or late Na+ current, INa-L, can contribute to the initiation of both atrial and ventricular rhythm disturbances in the human heart. However, the cellular and molecular mechanisms that underlie these pro-arrhythmic influences are not fully understood. At present, the major working hypothesis is that the Na+ influx corresponding to INa-L significantly increases intracellular Na+, [Na+]i; and the resulting reduction in the electrochemical driving force for Na+ reduces and (may reverse) Na+/Ca2+ exchange. These changes increase intracellular Ca2+, [Ca2+]i; which may further enhance INa-L due to calmodulin-dependent phosphorylation of the Na+ channels. This paper is based on mathematical simulations using the O'Hara et al (2011) model of baseline or healthy human ventricular action potential waveforms(s) and its [Ca2+]i homeostasis mechanisms. Somewhat surprisingly, our results reveal only very small changes (≤ 1.5 mM) in [Na+]i even when INa-L is increased 5-fold and steady-state stimulation rate is approximately 2 times the normal human heart rate (i.e. 2 Hz). Previous work done using well-established models of the rabbit and human ventricular action potential in heart failure settings also reported little or no change in [Na+]i when INa-L was increased. Based on our simulations, the major short-term effect of markedly augmenting INa-L is a significant prolongation of the action potential and an associated increase in the likelihood of reactivation of the L-type Ca2+ current, ICa-L. Furthermore, this action potential prolongation does not contribute to [Na+]i increase.

  5. Elevated InsP3R expression underlies enhanced calcium fluxes and spontaneous extra-systolic calcium release events in hypertrophic cardiac myocytes.

    PubMed

    Harzheim, Dagmar; Talasila, Amarnath; Movassagh, Mehregan; Foo, Roger S-Y; Figg, Nichola; Bootman, Martin D; Roderick, H Llewelyn

    2010-01-01

    Cardiac hypertrophy is associated with profound remodeling of Ca(2+) signaling pathways. During the early, compensated stages of hypertrophy, Ca(2+) fluxes may be enhanced to facilitate greater contraction, whereas as the hypertrophic heart decompensates, Ca(2+) homeostatic mechanisms are dysregulated leading to decreased contractility, arrhythmia and death. Although ryanodine receptor Ca(2+) release channels (RyR) on the sarcoplasmic reticulum (SR) intracellular Ca(2+) store are primarily responsible for the Ca(2+) flux that induces myocyte contraction, a role for Ca(2+) release via the inositol 1,4,5-trisphosphate receptor (InsP(3)R) in cardiac physiology has also emerged. Specifically, InsP(3)-induced Ca(2+) signals generated following myocyte stimulation with an InsP(3)-generating agonist (e.g., endothelin, ET-1), lead to modulation of Ca(2+) signals associated with excitation-contraction coupling (ECC) and the induction of spontaneous Ca(2+) release events that cause cellular arrhythmia. Using myocytes from spontaneously hypertensive rats (SHR), we recently reported that expression of the type 2 InsP(3)R (InsP(3)R2) is significantly increased during hypertrophy. Notably, this increased expression was restricted to the junctional SR in close proximity to RyRs. There, enhanced Ca(2+) release via InsP(3)Rs serves to sensitize neighboring RyRs causing an augmentation of Ca(2+) fluxes during ECC as well as an increase in non-triggered Ca(2+) release events. Although the sensitization of RyRs may be a beneficial consequence of elevated InsP(3)R expression during hypertrophy, the spontaneous Ca(2+) release events are potentially of pathological significance giving rise to cardiac arrhythmia. InsP(3)R2 expression was also increased in hypertrophic hearts from patients with ischemic dilated cardiomyopathy and aortically-banded mice demonstrating that increased InsP(3)R expression may be a general phenomenon that underlies Ca(2+) changes during hypertrophy.

  6. Enhanced effect of VEGF165 on L-type calcium currents in guinea-pig cardiac ventricular myocytes.

    PubMed

    Xing, Wenlu; Gao, Chuanyu; Qi, Datun; Zhang, You; Hao, Peiyuan; Dai, Guoyou; Yan, Ganxin

    2017-01-01

    The mechanisms of vascular endothelial growth factor 165 (VEGF165) on electrical properties of cardiomyocytes have not been fully elucidated. The aim of this study is to test the hypothesis that VEGF165, an angiogenesis-initiating factor, affects L-type calcium currents (ICa,L) and cell membrane potential in cardiac myocytes by acting on VEGF type-2 receptors (VEGFR2). ICa,L and action potentials (AP) were recorded by the whole-cell patch clamp method in isolated guinea-pig ventricular myocytes treated with different concentrations of VEGF165 proteins. Using a VEGFR2 inhibitor, we also tested the receptor of VEGF165 in cardiomyocytes. We found that VEGF165 increased ICa,L in a concentration-dependent manner. SU5416, a VEGFR2 inhibitor, almost completely eliminated VEGF165-induced ICa,L increase. VEGF165 had no significant influence on action potential 90 (APD90) and other properties of AP. We conclude that in guinea-pig ventricular myocytes, ICa,L can be increased by VEGF165 in a concentration-dependent manner through binding to VEGFR2 without causing any significant alteration to action potential duration. Results of this study may further expound the safety of VEGF165 when used in the intervention of heart diseases.

  7. Fibroblast growth factor-2 enhances extinction and reduces renewal of conditioned fear.

    PubMed

    Graham, Bronwyn M; Richardson, Rick

    2010-05-01

    Anxiety disorders are increasingly prevalent in society; hence, there is a need to improve on existing treatments for such disorders. Fibroblast growth factor-2 (FGF2), a mitogen that is involved in brain development and regeneration, has been shown to both facilitate long-term extinction of fear and reduce stress-precipitated relapse in rats. Extinction is the laboratory analog of exposure-based therapies in humans. In this study, we continued to investigate the clinical potential of FGF2 as a pharmacological enhancer of extinction by examining its effect on renewal, a common type of relapse. In all experiments, rats were trained to fear a white noise-conditioned stimulus, and then this learned fear was extinguished the following day. Rats received systemic injections of FGF2 or vehicle immediately after extinction training. At test, on the day after extinction training, levels of freezing elicited by the white noise in either the extinction context or the original training context were measured. FGF2-treated rats showed less renewal of fear when tested in the original training context than did vehicle-treated rats. This pattern occurred even when vehicle rats were given double the amount of extinction training, and when FGF2-treated rats were given equivalent exposure to the extinction context. These results show that FGF2 facilitates long-term extinction and attenuates relapse, and thus highlight its potential as a novel pharmacological adjunct to exposure therapy.

  8. Intramyocardial Fibroblast - Myocyte Communication

    PubMed Central

    Kakkar, Rahul; Lee, Richard T.

    2009-01-01

    Cardiac fibroblasts are emerging as key components of normal cardiac function as well as the response to stressors and injury. These most numerous cells of the heart interact with myocytes via paracrine mechanisms, alterations in extracellular matrix homeostasis, and direct cell-cell interactions. It is possible that they are a contributor to the inability of adult myocytes to proliferate, and may influence cardiac progenitor biology. Furthering our understanding of how cardiac fibroblast and myocytes interact may provide an avenue to novel treatments for heart failure prevention. This review discusses the most recent concepts in cardiac fibroblast-myocyte communication and areas of potential future research. PMID:20056945

  9. Inhibition of muscarinic K+ current in guinea-pig atrial myocytes by PD 81,723, an allosteric enhancer of adenosine binding to A1 receptors

    PubMed Central

    Brandts, B; Bünemann, M; Hluchy, J; Sabin, G V; Pott, L

    1997-01-01

    PD 81,723 has been shown to enhance binding of adenosine to A1 receptors by stabilizing G protein-receptor coupling (‘allosteric enhancement'). Evidence has been provided that in the perfused hearts and isolated atria PD 81,723 causes a sensitization to adenosine via this mechanism. We have studied the effect of PD 81,723 in guinea-pig isolated atrial myocytes by use of whole-cell measurement of the muscarinic K+ current (IK(ACh)) activated by different Gi-coupled receptors (A1, M2, sphingolipid). PD 81,273 caused inhibition of IK(ACh) (IC50≃5 μM) activated by either of the three receptors. Receptor-independent IK(ACh) in cells loaded with GTP-γ-S and background IK(ACh), which contributes to the resting conductance of atrial myocytes, were equally sensitive to PD 81,723. At no combination of concentrations of adenosine and PD 81,723 could an enhancing effect be detected. The compound was active from the outside only. Loading of the cells with PD 81,723 (50 μM) via the patch pipette did not affect either IK(ACh) or its sensitivity to adenosine. We suggest that PD 81,723 acts as an inhibitor of inward rectifying K+ channels; this is supported by the finding that ventricular IK1, which shares a large degree of homology with the proteins (GIRK1/GIRK4) forming IK(ACh) but is not G protein-gated, was also blocked by this compound. It is concluded that the functional effects of PD 81,723 described in the literature are not mediated by the A1 adenosine receptor-Gi-IK(ACh) pathway. PMID:9249260

  10. Enhancement of energy production by black ginger extract containing polymethoxy flavonoids in myocytes through improving glucose, lactic acid and lipid metabolism.

    PubMed

    Toda, Kazuya; Takeda, Shogo; Hitoe, Shoketsu; Nakamura, Seikou; Matsuda, Hisashi; Shimoda, Hiroshi

    2016-04-01

    Enhancement of muscular energy production is thought to improve locomotive functions and prevent metabolic syndromes including diabetes and lipidemia. Black ginger (Kaempferia parviflora) has been cultivated for traditional medicine in Thailand. Recent studies have shown that black ginger extract (KPE) activated brown adipocytes and lipolysis in white adipose tissue, which may cure obesity-related dysfunction of lipid metabolism. However, the effect of KPE on glucose and lipid utilization in muscle cells has not been examined yet. Hence, we evaluated the effect of KPE and its constituents on energy metabolism in pre-differentiated (p) and differentiated (d) C2C12 myoblasts. KPE (0.1-10 μg/ml) was added to pC2C12 cells in the differentiation process for a week or used to treat dC2C12 cells for 24 h. After culturing, parameters of glucose and lipid metabolism and mitochondrial biogenesis were assessed. In terms of the results, KPE enhanced the uptake of 2-deoxyglucose and lactic acid as well as the mRNA expression of glucose transporter (GLUT) 4 and monocarboxylate transporter (MCT) 1 in both types of cells. The expression of peroxisome proliferator-activated receptor γ coactivator (PGC)-1α was enhanced in pC2C12 cells. In addition, KPE enhanced the production of ATP and mitochondrial biogenesis. Polymethoxy flavonoids in KPE including 5-hydroxy-7-methoxyflavone, 5-hydroxy-3,7,4'-trimethoxyflavone and 5,7-dimethoxyflavone enhanced the expression of GLUT4 and PGC-1α. Moreover, KPE and 5,7-dimethoxyflavone enhanced the phosphorylation of 5'AMP-activated protein kinase (AMPK). In conclusion, KPE and its polymethoxy flavonoids were found to enhance energy metabolism in myocytes. KPE may improve the dysfunction of muscle metabolism that leads to metabolic syndrome and locomotive dysfunction.

  11. MicroRNA-23a reduces slow myosin heavy chain isoforms composition through myocyte enhancer factor 2C (MEF2C) and potentially influences meat quality.

    PubMed

    Shen, Linyuan; Chen, Lei; Zhang, Shunhua; Zhang, Yi; Wang, Jingyong; Zhu, Li

    2016-06-01

    MicroRNAs (miRNAs) are non-coding small RNAs that participate in the regulation of a variety of biological processes. Muscle fiber types were very important to meat quality traits, however, the molecular mechanism by which miRNAs regulate the muscle fiber type composition is not fully understood. The aim of this study was to investigate whether miRNA-23a can affect muscle fiber type composition. Luciferase reporter assays proved that miRNA-23a directly targets the 3' untranslated region (UTRs) of MEF2c. Overexpression of miRNA-23a significantly suppressed the expression of MEF2c both in mRNA and protein levels, thus caused down-regulation of the expression of some key downstream genes of MEF2c (PGC1-α, NRF1 and mtTFA). More interestingly, overexpression of miRNA-23a significantly restrained the myogenic differentiation and decreased the ratio of slow myosin heavy chain in myoblasts (p<0.05). Our findings hinted a novel role of miRNA-23a in the epigenetic regulation of meat quality via decreasing the ratio of slow myosin heavy chain isoforms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Chicken stem cell factor enhances primordial germ cell proliferation cooperatively with fibroblast growth factor 2

    PubMed Central

    MIYAHARA, Daichi; OISHI, Isao; MAKINO, Ryuichi; KURUMISAWA, Nozomi; NAKAYA, Ryuma; ONO, Tamao; KAGAMI, Hiroshi; TAGAMI, Takahiro

    2015-01-01

    An in vitro culture system of chicken primordial germ cells (PGCs) has been recently developed, but the growth factor involved in the proliferation of PGCs is largely unknown. In the present study, we investigated the growth effects of chicken stem cell factor (chSCF) on the in vitro proliferation of chicken PGCs. We established two feeder cell lines (buffalo rat liver cells; BRL cells) that stably express the putative secreted form of chSCF (chSCF1-BRL) and membrane bound form of chSCF (chSCF2-BRL). Cultured PGC lines were incubated on chSCF1 or chSCF2-BRL feeder cells with fibroblast growth factor 2 (FGF2), and growth effects of each chSCF isoform were investigated. The in vitro proliferation rate of the PGCs cultured on chSCF2-BRL at 20 days of culture was more than threefold higher than those cultured on chSCF1-BRL cells and more than fivefold higher than those cultured on normal BRL cells. Thus, use of chSCF2-BRL feeder layer was effective for in vitro proliferation of chicken PGCs. However, the acceleration of PGC proliferation on chSCF2-BRL was not observed without FGF2, suggesting that chSCF2 would act as a proliferation co-factor of FGF2. We transferred the PGCs cultured on chSCF2-BRL cells to recipient embryos, generated germline chimeric chickens and assessed the germline competency of cultured PGCs by progeny test. Donor-derived progenies were obtained, and the frequency of germline transmission was 3.39%. The results of this study demonstrate that chSCF2 induces hyperproliferation of chicken PGCs retaining germline competency in vitro in cooperation with FGF2. PMID:26727404

  13. The transcription factor neural retina leucine zipper (NRL) controls photoreceptor-specific expression of myocyte enhancer factor Mef2c from an alternative promoter.

    PubMed

    Hao, Hong; Tummala, Padmaja; Guzman, Eduardo; Mali, Raghuveer S; Gregorski, Janina; Swaroop, Anand; Mitton, Kenneth P

    2011-10-07

    Neural retina leucine zipper (NRL) is an essential transcription factor for cell fate specification and functional maintenance of rod photoreceptors in the mammalian retina. In the Nrl(-/-) mouse retina, photoreceptor precursors fail to produce rods and generate functional cone photoreceptors that predominantly express S-opsin. Previous global expression analysis using microarrays revealed dramatically reduced expression of myocyte enhancer factor Mef2c in the adult Nrl(-/-) retina. We undertook this study to examine the biological relevance of Mef2c expression in retinal rod photoreceptors. Bioinformatics analysis, rapid analysis of cDNA ends (5'-RACE), and reverse transcription coupled with qPCR using splice site-specific oligonucleotides suggested that Mef2c is expressed in the mature retina from an alternative promoter. Chromatin immunoprecipitation (ChIP) studies showed the association of active RNA polymerase II and acetylated histone H3 just upstream of Mef2c exon 4, providing additional evidence for the utilization of an alternative promoter in the retina. In concordance, we observed the binding of NRL to a putative NRL-response element (NRE) at this location by ChIP-seq and electrophoretic mobility shift assays. NRL also activated the Mef2c alternative promoter in vitro and in vivo. Notably, MEF2C could support Rhodopsin promoter activity in rod photoreceptors. We conclude that Mef2c expression from an alternative promoter in the retina is regulated by NRL. Our studies also implicate MEF2C as a transcriptional regulator of homeostasis in rod photoreceptor cells.

  14. The Transcription Factor Neural Retina Leucine Zipper (NRL) Controls Photoreceptor-specific Expression of Myocyte Enhancer Factor Mef2c from an Alternative Promoter*

    PubMed Central

    Hao, Hong; Tummala, Padmaja; Guzman, Eduardo; Mali, Raghuveer S.; Gregorski, Janina; Swaroop, Anand; Mitton, Kenneth P.

    2011-01-01

    Neural retina leucine zipper (NRL) is an essential transcription factor for cell fate specification and functional maintenance of rod photoreceptors in the mammalian retina. In the Nrl−/− mouse retina, photoreceptor precursors fail to produce rods and generate functional cone photoreceptors that predominantly express S-opsin. Previous global expression analysis using microarrays revealed dramatically reduced expression of myocyte enhancer factor Mef2c in the adult Nrl−/− retina. We undertook this study to examine the biological relevance of Mef2c expression in retinal rod photoreceptors. Bioinformatics analysis, rapid analysis of cDNA ends (5′-RACE), and reverse transcription coupled with qPCR using splice site-specific oligonucleotides suggested that Mef2c is expressed in the mature retina from an alternative promoter. Chromatin immunoprecipitation (ChIP) studies showed the association of active RNA polymerase II and acetylated histone H3 just upstream of Mef2c exon 4, providing additional evidence for the utilization of an alternative promoter in the retina. In concordance, we observed the binding of NRL to a putative NRL-response element (NRE) at this location by ChIP-seq and electrophoretic mobility shift assays. NRL also activated the Mef2c alternative promoter in vitro and in vivo. Notably, MEF2C could support Rhodopsin promoter activity in rod photoreceptors. We conclude that Mef2c expression from an alternative promoter in the retina is regulated by NRL. Our studies also implicate MEF2C as a transcriptional regulator of homeostasis in rod photoreceptor cells. PMID:21849497

  15. S-Nitrosoglutathione Reductase Deficiency Enhances the Proliferative Expansion of Adult Heart Progenitors and Myocytes Post Myocardial Infarction

    PubMed Central

    Hatzistergos, Konstantinos E; Paulino, Ellena C; Dulce, Raul A; Takeuchi, Lauro M; Bellio, Michael A; Kulandavelu, Shathiyah; Cao, Yenong; Balkan, Wayne; Kanashiro-Takeuchi, Rosemeire M; Hare, Joshua M

    2015-01-01

    Background Mammalian heart regenerative activity is lost before adulthood but increases after cardiac injury. Cardiac repair mechanisms, which involve both endogenous cardiac stem cells (CSCs) and cardiomyocyte cell-cycle reentry, are inadequate to achieve full recovery after myocardial infarction (MI). Mice deficient in S-nitrosoglutathione reductase (GSNOR−⁄−), an enzyme regulating S-nitrosothiol turnover, have preserved cardiac function after MI. Here, we tested the hypothesis that GSNOR activity modulates cardiac cell proliferation in the post-MI adult heart. Methods and Results GSNOR−⁄− and C57Bl6/J (wild-type [WT]) mice were subjected to sham operation (n=3 GSNOR−⁄−; n=3 WT) or MI (n=41 GSNOR−⁄−; n=65 WT). Compared with WT,GSNOR−⁄− mice exhibited improved survival, cardiac performance, and architecture after MI, as demonstrated by higher ejection fraction (P<0.05), lower endocardial volumes (P<0.001), and diminished scar size (P<0.05). In addition, cardiomyocytes from post-MI GSNOR−⁄− hearts exhibited faster calcium decay and sarcomeric relaxation times (P<0.001). Immunophenotypic analysis illustrated that post-MI GSNOR−⁄− hearts demonstrated enhanced neovascularization (P<0.001), c-kit+ CSC abundance (P=0.013), and a ≈3-fold increase in proliferation of adult cardiomyocytes and c-kit+/CD45− CSCs (P<0.0001 and P=0.023, respectively) as measured by using 5-bromodeoxyuridine. Conclusions Loss of GSNOR confers enhanced post-MI cardiac regenerative activity, characterized by enhanced turnover of cardiomyocytes and CSCs. Endogenous denitrosylases exert an inhibitory effect over cardiac repair mechanisms and therefore represents a potential novel therapeutic target. PMID:26178404

  16. Exogenous insulin-like growth factor 2 administration enhances memory consolidation and persistence in a time-dependent manner.

    PubMed

    Lee, Younghwan; Lee, Young Woo; Gao, Qingtao; Lee, Younghwa; Lee, Hyung Eun; Ryu, Jong Hoon

    2015-10-05

    Memory consolidation is an important process for the formation of long-term memory. We have previously reported that mature brain-derived neurotrophic factor enhances memory consolidation within 9h after initial learning. Recent studies suggest that insulin-like growth factor 2 (IGF2) significantly enhances memory consolidation and prevents forgetting. Thus, we hypothesized that IGF2 exerts its activity on cognitive performance in a time-dependent manner as observed in our previous study. In the one-trial step-through inhibitory avoidance task, we demonstrate that a bilateral injection of IGF2 into the dorsal hippocampus 6 or 9 h after training significantly enhanced the step-through latencies compared with the vehicle-treated controls in the retention trial, which was conducted 24 h after the acquisition trial. However, 12h post-training, IGF2 injection did not increase the step-through latencies. Intriguingly, in the retention trial at 21 days after the training, hippocampal IGF2 injection 6, 9 or 12 h after the acquisition trial significantly increased the step-through latencies compared with the vehicle-treated controls. IGF2 administration at 9 h and 12 h after the acquisition trial significantly increased discrimination index and exploration time on the novel-located object in the test trial at 24 h and 21 days, respectively, after the acquisition trial in the novel location recognition task. In addition, IGF2-induced an increase in the step-through latencies in the retention trial 24 h or 21 days, respectively, after the initial learning was completely abolished by co-injected anti-IGF2 receptor antibody. These results suggest that IGF2 enhances memory consolidation within 9h after initial learning, and increased IGF2 within the 12 h after the acquisition trial, which represents a delayed consolidation phase, is also critical for memory persistence.

  17. Insulin-like growth factor 2 enhances regulatory T-cell functions and suppresses food allergy in an experimental model.

    PubMed

    Yang, Gui; Geng, Xiao-Rui; Song, Jiang-Ping; Wu, Yingying; Yan, Hao; Zhan, Zhengke; Yang, Litao; He, Weiyi; Liu, Zhi-Qiang; Qiu, Shuqi; Liu, Zhigang; Yang, Ping-Chang

    2014-06-01

    The functions of regulatory T (Treg) cells are important in immunity, and the regulatory mechanisms of Treg cell activities are not fully understood yet. We sought to investigate the role of insulin-like growth factor (IGF) 2 in the upregulation of Treg cell function. The expression of insulin-like growth factor 2 receptor (IGF2R) on T cells was assessed by using flow cytometry. Treg cell functions were evaluated by assessing the suppressor effect on proliferation of other effector T (Teff) cells. The effect of IGF2 on regulating Treg cell functions were evaluated with a cell-culture model and a food allergy mouse model. Expression of IGF2R was observed in more than 90% of murine and human Treg cells but in less than 10% of effector CD4(+) T cells. Activation of IGF2R and T-cell receptor induced marked Treg cell proliferation and release of TGF-β from Treg cells, which enhanced Treg cell immune suppressor effects on other Teff cell activities and allergic inflammation in the intestine. Activation of IGF2R enhances Treg cell functions in suppressing other Teff cell activities and inhibiting allergic inflammation in the intestine. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  18. Four-and-a-half LIM domains proteins are novel regulators of the protein kinase D pathway in cardiac myocytes

    PubMed Central

    Stathopoulou, Konstantina; Cuello, Friederike; Candasamy, Alexandra J.; Kemp, Elizabeth M.; Ehler, Elisabeth; Haworth, Robert S.; Avkiran, Metin

    2013-01-01

    PKD (protein kinase D) is a serine/threonine kinase implicated in multiple cardiac roles, including the phosphorylation of the class II HDAC5 (histone deacetylase isoform 5) and thereby de-repression of MEF2 (myocyte enhancer factor 2) transcription factor activity. In the present study we identify FHL1 (four-and-a-half LIM domains protein 1) and FHL2 as novel binding partners for PKD in cardiac myocytes. This was confirmed by pull-down assays using recombinant GST-fused proteins and heterologously or endogenously expressed PKD in adult rat ventricular myocytes or NRVMs (neonatal rat ventricular myocytes) respectively, and by co-immunoprecipitation of FHL1 and FHL2 with GFP–PKD1 fusion protein expressed in NRVMs. In vitro kinase assays showed that neither FHL1 nor FHL2 is a PKD1 substrate. Selective knockdown of FHL1 expression in NRVMs significantly inhibited PKD activation and HDAC5 phosphorylation in response to endothelin 1, but not to the α1-adrenoceptor agonist phenylephrine. In contrast, selective knockdown of FHL2 expression caused a significant reduction in PKD activation and HDAC5 phosphorylation in response to both stimuli. Interestingly, neither intervention affected MEF2 activation by endothelin 1 or phenylephrine. We conclude that FHL1 and FHL2 are novel cardiac PKD partners, which differentially facilitate PKD activation and HDAC5 phosphorylation by distinct neurohormonal stimuli, but are unlikely to regulate MEF2-driven transcriptional reprogramming. PMID:24219103

  19. Myocyte-specific M-CAT and MEF-1 elements regulate G-protein gamma 3 gene (gamma3) expression in cardiac myocytes.

    PubMed

    McWhinney, Charlene; Robishaw, Janet D

    2008-07-01

    Little is known regarding the mechanisms that control the expression of G-protein alpha, beta, and gamma subtypes. We have previously shown that the G-protein gamma(3) gene is expressed in the heart, brain, lung, spleen, kidney, muscle, and testis in mice. We have also reported that the G-protein gamma(3) subunit is expressed in rat cardiac myocytes, but not in cardiac fibroblasts. Other studies have shown that the gamma(3) subunit couples to the angiotensin A1A receptor in portal vein myocytes, and has been shown to mediate beta-adrenergic desensitization in cardiac myocytes treated with atorvastatin. In the present study, we evaluated G-protein gamma(3) promoter-luciferase reporter constructs in primary myocytes to identify key regulatory promoter regions. We identified two important regions of the promoter (upstream promoter region [UPR] and downstream promoter region [DPR]), which are required for expression in cardiac myocytes. We observed that removal of 48 bp in the UPR diminished gene transcription by 75%, and that the UPR contains consensus elements for myocyte-specific M-CAT and myocyte enhancer factor 1 (MEF-1) elements. The UPR and DPR share transcription factor elements for myocyte-specific M-CAT element. We observed that cardiac myocyte proteins bind to gamma(3) oligonucleotides containing transcription factor elements for myocyte-specific M-CAT and MEF-1. Myocyte-specific M-CAT proteins were supershifted with transcriptional enhancer factor-1 (TEF-1) antibodies binding to the gamma(3) M-CAT element, which is in agreement with reports showing that the M-CAT element binds the TEF-1 family of transcription factors. The 150 bp DPR contains three M-CAT elements, an INR element, an upstream stimulatory factor 1 element, and the transcription start site. We have shown that myocyte gamma(3) gene expression is regulated by myocyte-specific M-CAT and MEF-1 elements.

  20. Rescue of Injured Myocytes

    DTIC Science & Technology

    1989-01-01

    model of chemical hypoxia, we decreased extracellular pH (pH ) as we added the metabolic inhibitors , KCN and iodoacetate, to hepaocyte suspensions...that an acidic extracellular pH protected against loss of viability during ATP deple- tion in a model of ’ chemical hypoxia’ with metabolic inhibitors ...functional re- covery of myocytes after various periods of chemical hypoxia, a model of ATP depletion using inhibitors of oxidative phosphorylation and gly

  1. Vascular endothelial growth factor and fibroblast growth factor 2 delivery from spinal cord bridges to enhance angiogenesis following injury.

    PubMed

    De Laporte, Laura; des Rieux, Anne; Tuinstra, Hannah M; Zelivyanskaya, Marina L; De Clerck, Nora M; Postnov, Andrei A; Préat, Véronique; Shea, Lonnie D

    2011-09-01

    The host response to spinal cord injury can lead to an ischemic environment that can induce cell death and limits cell transplantation approaches to promote spinal cord regeneration. Spinal cord bridges that provide a localized and sustained release of vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF-2) were investigated for their ability to promote angiogenesis and nerve growth within the injury. Bridges were fabricated by fusion of poly(lactide-co-glycolide) microspheres using a gas foaming/particulate leaching technique, and proteins were incorporated by encapsulation into the microspheres and/or mixing with the microspheres before foaming. Compared to the mixing method, encapsulation reduced the losses during leaching and had a slower protein release, while VEGF was released more rapidly than FGF-2. In vivo implantation of bridges loaded with VEGF enhanced the levels of VEGF within the injury at 1 week, and bridges releasing VEGF and FGF-2 increased the infiltration of endothelial cells and the formation of blood vessel at 6 weeks postimplantation. Additionally, substantial neurofilament staining was observed within the bridge; however, no significant difference was observed between bridges with or without protein. Bridges releasing angiogenic factors may provide an approach to overcome an ischemic environment that limits regeneration and cell transplantation-based approaches. Copyright © 2011 Wiley Periodicals, Inc.

  2. Microfluidic Screening Reveals Heparan Sulfate Enhances Human Mesenchymal Stem Cell Growth by Modulating Fibroblast Growth Factor-2 Transport.

    PubMed

    Titmarsh, Drew M; Tan, Clarissa L L; Glass, Nick R; Nurcombe, Victor; Cooper-White, Justin J; Cool, Simon M

    2017-04-01

    Cost-effective expansion of human mesenchymal stem/stromal cells (hMSCs) remains a key challenge for their widespread clinical deployment. Fibroblast growth factor-2 (FGF-2) is a key hMSC mitogen often supplemented to increase hMSC growth rates. However, hMSCs also produce endogenous FGF-2, which critically interacts with cell surface heparan sulfate (HS). We assessed the interplay of FGF-2 with a heparan sulfate variant (HS8) engineered to bind FGF-2 and potentiate its activity. Bone marrow-derived hMSCs were screened in perfused microbioreactor arrays (MBAs), showing that HS8 (50 μg/ml) increased hMSC proliferation and cell number after 3 days, with an effect equivalent to FGF-2 (50 ng/ml). In combination, the effects of HS8 and FGF-2 were additive. Differential cell responses, from upstream to downstream culture chambers under constant flow of media in the MBA, provided insights into modulation of FGF-2 transport by HS8. HS8 treatment induced proliferation mainly in the downstream chambers, suggesting a requirement for endogenous FGF-2 accumulation, whereas responses to FGF-2 occurred primarily in the upstream chambers. Adding HS8 along with FGF-2, however, maximized the range of FGF-2 effectiveness. Measurements of FGF-2 in static cultures then revealed that this was because HS8 caused increased endogenous FGF-2 production and liberated FGF-2 from the cell surface into the supernatant. HS8 also sustained levels of supplemented FGF-2 available over 3 days. These results suggest HS8 enhances hMSC proliferation and expansion by leveraging endogenous FGF-2 production and maximizing the effect of supplemented FGF-2. This is an exciting strategy for cost-effective expansion of hMSCs. Stem Cells Translational Medicine 2017;6:1178-1190.

  3. Nuclear factor E2-related factor 2 knockdown enhances glucose uptake and alters glucose metabolism in AML12 hepatocytes.

    PubMed

    Yuan, Xiaoyang; Huang, Huijing; Huang, Yi; Wang, Jinli; Yan, Jinhua; Ding, Ling; Zhang, Cuntai; Zhang, Le

    2017-05-01

    Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor known to induce the expression of a variety of antioxidant and detoxification genes. Recently, increasing evidence has revealed roles for Nrf2 in glucose, lipid, and energy metabolism; however, the exact functions of Nrf2 in hepatocyte biology are largely unclear. In the current study, the transient knockdown of Nrf2 via siRNA transfection enhanced the glucose uptake of fasting AML12 hepatocytes to 325.3 ± 11.1% ( P < 0.05) of that of untransfected control cells. The impacts of Nrf2 knockdown (NK) on the antioxidant system, inflammatory response, and glucose metabolism were then examined in AML12 cells under both high-glucose (33 mmol/L) and low-glucose (4.5 mmol/L) conditions. NK lowered the gene and protein expression of the anti-oxidases heme oxygenase-1 and NAD(P)H: quinone oxidoreductase 1 and increased p-eukaryotic initiation factor-2α(S51), p-nuclear factor-κB p65(S276), and its downstream proinflammatory factors, including interleukin-1 beta, tumor necrosis factor-α, matrix metalloproteinase 2, and matrix metalloproteinase 9, at the protein level. NK also altered the protein expression of fibroblast growth factor 21, glucose transporter type 4, insulin-like growth factor 1, forkhead box protein O1, p-AKT(S473), and p-GSK3α/β(Y279/Y216), which are involved in glucose uptake, glycogenesis, and gluconeogenesis in AML12 cells. Our results provide a comprehensive understanding of the central role of Nrf2 in the regulation of glucose metabolism in AML12 hepatocytes, in addition to its classical roles in the regulation of redox signaling, endoplasmic reticulum stress and proinflammatory responses, and support the potential of Nrf2 as a therapeutic target for the prevention and treatment of obesity and other associated metabolic syndromes. Impact statement Increasing evidence supports the complexity of Nrf2 functions beyond the antioxidant and detoxification response. Previous in

  4. Fibroblast Growth Factor-2 Induced by Enriched Environment Enhances Angiogenesis and Motor Function in Chronic Hypoxic-Ischemic Brain Injury

    PubMed Central

    Suh, Hwal; Kim, Myung-Sun; Cho, Sung-Rae

    2013-01-01

    This study aimed to investigate the effects of enriched environment (EE) on promoting angiogenesis and neurobehavioral function in an animal model of chronic hypoxic-ischemic (HI) brain injury. HI brain damage was induced in seven day-old CD-1® mice by unilateral carotid artery ligation and exposure to hypoxia (8% O2 for 90 min). At six weeks of age, the mice were randomly assigned to either EE or standard cages (SC) for two months. Rotarod, forelimb-use asymmetry, and grip strength tests were performed to evaluate neurobehavioral function. In order to identify angiogenic growth factors regulated by EE, an array-based multiplex ELISA assay was used to measure the expression in frontal cortex, striatum, and cerebellum. Among the growth factors, the expression of fibroblast growth factor-2 (FGF-2) was confirmed using western blotting. Platelet endothelial cell adhesion molecule-1 (PECAM-1) and α-smooth muscle actin (α-SMA) were also evaluated using immunohistochemistry. As a result, mice exposed to EE showed significant improvements in rotarod and ladder walking performances compared to SC controls. The level of FGF-2 was significantly higher in the frontal cortex of EE mice at 8 weeks after treatment in multiplex ELISA and western blot. On the other hand, FGF-2 in the striatum significantly increased at 2 weeks after exposure to EE earlier than in the frontal cortex. Expression of activin A was similarly upregulated as FGF-2 expression pattern. Particularly, all animals treated with FGF-2 neutralizing antibody abolished the beneficial effect of EE on motor performance relative to mice not given anti-FGF-2. Immunohistochemistry showed that densities of α-SMA+ and PECAM-1+ cells in frontal cortex, striatum, and hippocampus were significantly increased following EE, suggesting the histological findings exhibit a similar pattern to the upregulation of FGF-2 in the brain. In conclusion, EE enhances endogenous angiogenesis and neurobehavioral functions mediated by

  5. Ca(2+)/Calmodulin-Dependent Protein Kinase II and Androgen Signaling Pathways Modulate MEF2 Activity in Testosterone-Induced Cardiac Myocyte Hypertrophy.

    PubMed

    Duran, Javier; Lagos, Daniel; Pavez, Mario; Troncoso, Mayarling F; Ramos, Sebastián; Barrientos, Genaro; Ibarra, Cristian; Lavandero, Sergio; Estrada, Manuel

    2017-01-01

    Testosterone is known to induce cardiac hypertrophy through androgen receptor (AR)-dependent and -independent pathways, but the molecular underpinnings of the androgen action remain poorly understood. Previous work has shown that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and myocyte-enhancer factor 2 (MEF2) play key roles in promoting cardiac myocyte growth. In order to gain mechanistic insights into the action of androgens on the heart, we investigated how testosterone affects CaMKII and MEF2 in cardiac myocyte hypertrophy by performing studies on cultured rat cardiac myocytes and hearts obtained from adult male orchiectomized (ORX) rats. In cardiac myocytes, MEF2 activity was monitored using a luciferase reporter plasmid, and the effects of CaMKII and AR signaling pathways on MEF2C were examined by using siRNAs and pharmacological inhibitors targeting these two pathways. In the in vivo studies, ORX rats were randomly assigned to groups that were administered vehicle or testosterone (125 mg⋅kg(-1)⋅week(-1)) for 5 weeks, and plasma testosterone concentrations were determined using ELISA. Cardiac hypertrophy was evaluated by measuring well-characterized hypertrophy markers. Moreover, western blotting was used to assess CaMKII and phospholamban (PLN) phosphorylation, and MEF2C and AR protein levels in extracts of left-ventricle tissue from control and testosterone-treated ORX rats. Whereas testosterone treatment increased the phosphorylation levels of CaMKII (Thr286) and phospholambam (PLN) (Thr17) in cardiac myocytes in a time- and concentration-dependent manner, testosterone-induced MEF2 activity and cardiac myocyte hypertrophy were prevented upon inhibition of CaMKII, MEF2C, and AR signaling pathways. Notably, in the hypertrophied hearts obtained from testosterone-administered ORX rats, both CaMKII and PLN phosphorylation levels and AR and MEF2 protein levels were increased. Thus, this study presents the first evidence indicating that testosterone

  6. Regulation of L-type calcium channel by phospholemman in cardiac myocytes.

    PubMed

    Zhang, Xue-Qian; Wang, JuFang; Song, Jianliang; Rabinowitz, Joseph; Chen, Xiongwen; Houser, Steven R; Peterson, Blaise Z; Tucker, Amy L; Feldman, Arthur M; Cheung, Joseph Y

    2015-07-01

    We evaluated whether phospholemman (PLM) regulates L-type Ca(2+) current (ICa) in mouse ventricular myocytes. Expression of α1-subunit of L-type Ca(2+) channels between wild-type (WT) and PLM knockout (KO) hearts was similar. Compared to WT myocytes, peak ICa (at -10 mV) from KO myocytes was ~41% larger, the inactivation time constant (τ(inact)) of ICa was ~39% longer, but deactivation time constant (τ(deact)) was similar. In the presence of isoproterenol (1 μM), peak ICa was ~48% larger and τ(inact) was ~144% higher in KO myocytes. With Ba(2+) as the permeant ion, PLM enhanced voltage-dependent inactivation but had no effect on τ(deact). To dissect the molecular determinants by which PLM regulated ICa, we expressed PLM mutants by adenovirus-mediated gene transfer in cultured KO myocytes. After 24h in culture, KO myocytes expressing green fluorescent protein (GFP) had significantly larger peak ICa and longer τ(inact) than KO myocytes expressing WT PLM; thereby independently confirming the observations in freshly isolated myocytes. Compared to KO myocytes expressing GFP, KO myocytes expressing the cytoplasmic domain truncation mutant (TM43), the non-phosphorylatable S68A mutant, the phosphomimetic S68E mutant, and the signature PFXYD to alanine (ALL5) mutant all resulted in lower peak ICa. Expressing PLM mutants did not alter expression of α1-subunit of L-type Ca(2+) channels in cultured KO myocytes. Our results suggested that both the extracellular PFXYD motif and the transmembrane domain of PLM but not the cytoplasmic tail were necessary for regulation of peak ICa amplitude. We conclude that PLM limits Ca(2+) influx in cardiac myocytes by reducing maximal ICa and accelerating voltage-dependent inactivation.

  7. Regulation of L-type calcium channel by phospholemman in cardiac myocytes

    PubMed Central

    Zhang, Xue-Qian; Wang, JuFang; Song, Jianliang; Rabinowitz, Joseph; Chen, Xiongwen; Houser, Steven R.; Peterson, Blaise Z.; Tucker, Amy L.; Feldman, Arthur M.; Cheung, Joseph Y.

    2015-01-01

    We evaluated whether phospholemman (PLM) regulates L-type Ca2+ current (ICa) in mouse ventricular myocytes. Expression of α1-subunit of L-type Ca2+ channels between wild-type (WT) and PLM knockout (KO) hearts was similar. Compared to WT myocytes, peak ICa (at −10 mV) from KO myocytes was ~41% larger, the inactivation time constant (τinact) of ICa was ~39% longer, but deactivation time constant (τdeact) was similar. In the presence of isoproterenol (1 µM), peak ICa was ~48% larger and τinact was ~144% higher in KO myocytes. With Ba2+ as the permeant ion, PLM enhanced voltage-dependent inactivation but had no effect on τdeact. To dissect the molecular determinants by which PLM regulated ICa, we expressed PLM mutants by adenovirus- mediated gene transfer in cultured KO myocytes. After 24 h in culture, KO myocytes expressing green fluorescent protein (GFP) had significantly larger peak ICa and longer τinact than KO myocytes expressing WT PLM; thereby independently confirming the observations in freshly isolated myocytes. Compared to KO myocytes expressing GFP, KO myocytes expressing the cytoplasmic domain truncation mutant (TM43), the non-phosphorylable S68A mutant, the phosphomimetic S68E mutant, and the signature PFXYD to alanine (ALL5) mutant all resulted in lower peak ICa. Expressing PLM mutants did not alter expression of α1-subunit of L-type Ca2+ channels in cultured KO myocytes. Our results suggested that both the extracellular PFXYD motif and the transmembrane domain of PLM but not the cytoplasmic tail were necessary for regulation of peak ICa amplitude. We conclude that PLM limits Ca2+ influx in cardiac myocytes by reducing maximal ICa and accelerating voltage-dependent inactivation. PMID:25918050

  8. Syndecan-4 proteoliposomes enhance fibroblast growth factor-2 (FGF-2)–induced proliferation, migration, and neovascularization of ischemic muscle

    PubMed Central

    Jang, Eugene; Albadawi, Hassan; Watkins, Michael T.; Edelman, Elazer R.; Baker, Aaron B.

    2012-01-01

    Ischemia of the myocardium and lower limbs is a common consequence of arterial disease and a major source of morbidity and mortality in modernized countries. Inducing neovascularization for the treatment of ischemia is an appealing therapeutic strategy for patients for whom traditional treatment modalities cannot be performed or are ineffective. In the past, the stimulation of blood vessel growth was pursued using direct delivery of growth factors, angiogenic gene therapy, or cellular therapy. Although therapeutic angiogenesis holds great promise for treating patients with ischemia, current methods have not found success in clinical trials. Fibroblast growth factor-2 (FGF-2) was one of the first growth factors to be tested for use in therapeutic angiogenesis. Here, we present a method for improving the biological activity of FGF-2 by codelivering the growth factor with a liposomally embedded coreceptor, syndecan-4. This technique was shown to increase FGF-2 cellular signaling, uptake, and nuclear localization in comparison with FGF-2 alone. Delivery of syndecan-4 proteoliposomes also increased endothelial proliferation, migration, and angiogenic tube formation in response to FGF-2. Using an animal model of limb ischemia, syndecan-4 proteoliposomes markedly improved the neovascularization following femoral artery ligation and recovery of perfusion of the ischemic limb. Taken together, these results support liposomal delivery of syndecan-4 as an effective means to improving the potential of using growth factors to achieve therapeutic neovascularization of ischemic tissue. PMID:22307630

  9. Syndecan-4 proteoliposomes enhance fibroblast growth factor-2 (FGF-2)-induced proliferation, migration, and neovascularization of ischemic muscle.

    PubMed

    Jang, Eugene; Albadawi, Hassan; Watkins, Michael T; Edelman, Elazer R; Baker, Aaron B

    2012-01-31

    Ischemia of the myocardium and lower limbs is a common consequence of arterial disease and a major source of morbidity and mortality in modernized countries. Inducing neovascularization for the treatment of ischemia is an appealing therapeutic strategy for patients for whom traditional treatment modalities cannot be performed or are ineffective. In the past, the stimulation of blood vessel growth was pursued using direct delivery of growth factors, angiogenic gene therapy, or cellular therapy. Although therapeutic angiogenesis holds great promise for treating patients with ischemia, current methods have not found success in clinical trials. Fibroblast growth factor-2 (FGF-2) was one of the first growth factors to be tested for use in therapeutic angiogenesis. Here, we present a method for improving the biological activity of FGF-2 by codelivering the growth factor with a liposomally embedded coreceptor, syndecan-4. This technique was shown to increase FGF-2 cellular signaling, uptake, and nuclear localization in comparison with FGF-2 alone. Delivery of syndecan-4 proteoliposomes also increased endothelial proliferation, migration, and angiogenic tube formation in response to FGF-2. Using an animal model of limb ischemia, syndecan-4 proteoliposomes markedly improved the neovascularization following femoral artery ligation and recovery of perfusion of the ischemic limb. Taken together, these results support liposomal delivery of syndecan-4 as an effective means to improving the potential of using growth factors to achieve therapeutic neovascularization of ischemic tissue.

  10. Heat shock factor 2 is associated with the occurrence of lung cancer by enhancing the expression of heat shock proteins

    PubMed Central

    Zhong, Yun-Hua; Cheng, Hong-Zhong; Peng, Hao; Tang, Shi-Cong; Wang, Ping

    2016-01-01

    Cancer is the leading cause of morbidity and mortality worldwide, particularly lung cancer. Heat shock proteins and their upstream heat shock factors are involved in the occurrence of cancer and have been widely researched. However, the role of heat shock factor 2 (HSF2) in lung cancer remains unclear. In the present study, expression levels of HSF2 in lung cancer tissues from 50 lung cancer patients were detected by reverse transcription quantitative polymerase chain reaction, and 76% (38/50) were upregulated compared with the matched normal tissues. This suggested possible involvement of HSF2 in lung cancer. To additionally investigate the role of HSF2 in lung cancer occurrence, a plasmid encoding HSF2 was constructed. HSF2 was over expressed in normal lung epithelial BEAS-2B cells and lung cancer A549 cells. The results showed that HSF2 overexpression promoted cell proliferation and cell migration in BEAS-2B and A549 cells. Additional experiments showed that the HSF2-induced cell proliferation and cell migration were dependent on induction of HSPs, particularly HSP27 and HSP90, as co-transfection of HSP27 small interfering RNA (siRNA) or HSP90 siRNA attenuated HSF2-induced cell growth and migration. In conclusion, the present study showed that HSF2 is aberrantly expressed in lung cancer, and it may be an upstream regulator of HSPs, which may strongly affect cell growth and cell migration. Additional studies are required to explain the detailed mechanism between lung cancer, HSF2, HSPs and other possible signaling pathways. PMID:28101237

  11. Local control of nuclear calcium signaling in cardiac myocytes by perinuclear microdomains of sarcolemmal insulin-like growth factor 1 receptors.

    PubMed

    Ibarra, Cristian; Vicencio, Jose M; Estrada, Manuel; Lin, Yingbo; Rocco, Paola; Rebellato, Paola; Munoz, Juan P; Garcia-Prieto, Jaime; Quest, Andrew F G; Chiong, Mario; Davidson, Sean M; Bulatovic, Ivana; Grinnemo, Karl-Henrik; Larsson, Olle; Szabadkai, Gyorgy; Uhlén, Per; Jaimovich, Enrique; Lavandero, Sergio

    2013-01-18

    The ability of a cell to independently regulate nuclear and cytosolic Ca(2+) signaling is currently attributed to the differential distribution of inositol 1,4,5-trisphosphate receptor channel isoforms in the nucleoplasmic versus the endoplasmic reticulum. In cardiac myocytes, T-tubules confer the necessary compartmentation of Ca(2+) signals, which allows sarcomere contraction in response to plasma membrane depolarization, but whether there is a similar structure tunneling extracellular stimulation to control nuclear Ca(2+) signals locally has not been explored. To study the role of perinuclear sarcolemma in selective nuclear Ca(2+) signaling. We report here that insulin-like growth factor 1 triggers a fast and independent nuclear Ca(2+) signal in neonatal rat cardiac myocytes, human embryonic cardiac myocytes, and adult rat cardiac myocytes. This fast and localized response is achieved by activation of insulin-like growth factor 1 receptor signaling complexes present in perinuclear invaginations of the plasma membrane. The perinuclear insulin-like growth factor 1 receptor pool connects extracellular stimulation to local activation of nuclear Ca(2+) signaling and transcriptional upregulation through the perinuclear hydrolysis of phosphatidylinositol 4,5-biphosphate inositol 1,4,5-trisphosphate production, nuclear Ca(2+) release, and activation of the transcription factor myocyte-enhancing factor 2C. Genetically engineered Ca(2+) buffers--parvalbumin--with cytosolic or nuclear localization demonstrated that the nuclear Ca(2+) handling system is physically and functionally segregated from the cytosolic Ca(2+) signaling machinery. These data reveal the existence of an inositol 1,4,5-trisphosphate-dependent nuclear Ca(2+) toolkit located in direct apposition to the cell surface, which allows the local control of rapid and independent activation of nuclear Ca(2+) signaling in response to an extracellular ligand.

  12. Fibroblast growth factor 2 retargeted adenovirus has redirected cellular tropism: evidence for reduced toxicity and enhanced antitumor activity in mice.

    PubMed

    Gu, D L; Gonzalez, A M; Printz, M A; Doukas, J; Ying, W; D'Andrea, M; Hoganson, D K; Curiel, D T; Douglas, J T; Sosnowski, B A; Baird, A; Aukerman, S L; Pierce, G F

    1999-06-01

    Adenovirus (Ad) have been used as vectors to deliver genes to a wide variety of tissues. Despite achieving high expression levels in vivo, Ad vectors display normal tissue toxicity, transient expression, and antivector immune responses that limit therapeutic potential. To circumvent these problems, several retargeting strategies to abrogate native tropism and redirect Ad uptake through defined receptors have been attempted. Despite success in cell culture, in vivo results have generally not shown sufficient selectivity for target tissues. We have previously identified (C. K. Goldman et al., Cancer Res., 57: 1447-1451, 1997) the fibroblast growth factor (FGF) ligand and receptor families as conferring sufficient specificity and binding affinity to be useful for targeting DNA in vivo. In the present studies, we retargeted Ad using basic FGF (FGF2) as a targeting ligand. Cellular uptake is redirected through high-affinity FGF receptors (FGFRs) and not the more ubiquitous lower-affinity Ad receptors. Initial in vitro experiments demonstrated a 10- to 100-fold increase in gene expression in numerous FGFR positive (FGFR+) cell lines using FGF2-Ad when compared with Ad. To determine whether increased selectivity could be detected in vivo, FGF2-Ad was administered i.v. to normal mice. FGF2-Ad demonstrates markedly decreased hepatic toxicity and liver transgene expression compared with Ad treatment. Importantly, FGF2-Ad encoding the herpes simplex virus thymidine kinase (TK) gene transduces Ad-resistant FGFR+ tumor cells both ex vivo and in vivo, which results in substantially enhanced survival (180-260%) when the prodrug ganciclovir is administered. Because FGFRs are up-regulated on many types of malignant or injured cells, this broadly useful method to redirect native Ad tropism and to increase the potency of gene expression may offer significant therapeutic advantages.

  13. Vgl-4, a novel member of the vestigial-like family of transcription cofactors, regulates alpha1-adrenergic activation of gene expression in cardiac myocytes.

    PubMed

    Chen, Hsiao-Huei; Mullett, Steven J; Stewart, Alexandre F R

    2004-07-16

    Cardiac and skeletal muscle genes are regulated by the transcriptional enhancer factor (TEF-1) family of transcription factors. In skeletal muscle, TEF-1 factors interact with a skeletal muscle-specific cofactor called Vestigial-like 2 (Vgl-2) that is related to the Drosophila protein Vestigial. Here, we characterize Vgl-4, the only member of the Vestigial-like family expressed in the heart. Unlike other members of the Vgl family that have a single TEF-1 interaction domain called the tondu (TDU) motif, Vgl-4 has two TDU motifs in its carboxyl-terminal domain. Like other Vgl factors, Vgl-4 physically interacts with TEF-1 in an immunoprecipitation assay. Vgl-4 functionally interacts with TEF-1 and also with myocyte enhancer factor 2 in a mammalian two-hybrid assay. Overexpression of Vgl-4 in cardiac myocytes interfered with the basal expression and alpha1-adrenergic receptor-dependent activation of a TEF-1-dependent skeletal alpha-actin promoter. In cardiac myocytes cultured in serum and in serum-free medium, a myc-tagged Vgl-4 protein was located in the nucleus and cytoplasm but was exported from the nucleus when cells were treated with alpha1-adrenergic receptor agonist. A chimeric nuclear-retained Vgl-4 protein inhibited alpha1-adrenergic receptor-dependent activation. In contrast, deletion of the TDU motifs of Vgl-4 prevented Vgl-4 nuclear localization, relieved Vgl-4 interference of basal activity, and enhanced alpha1-adrenergic up-regulation of the skeletal alpha-actin promoter. Nuclear export of Vgl-4 is dependent on the nuclear exportin CRM-1. These results suggest that Vgl-4 modulates the activity of TEF-1 factors and counteracts alpha1-adrenergic activation of gene expression in cardiac myocytes.

  14. Cell contact as an independent factor modulating cardiac myocyte hypertrophy and survival in long-term primary culture

    NASA Technical Reports Server (NTRS)

    Clark, W. A.; Decker, M. L.; Behnke-Barclay, M.; Janes, D. M.; Decker, R. S.

    1998-01-01

    Cardiac myocytes maintained in cell culture develop hypertrophy both in response to mechanical loading as well as to receptor-mediated signaling mechanisms. However, it has been shown that the hypertrophic response to these stimuli may be modulated through effects of intercellular contact achieved by maintaining cells at different plating densities. In this study, we show that the myocyte plating density affects not only the hypertrophic response and features of the differentiated phenotype of isolated adult myocytes, but also plays a significant role influencing myocyte survival in vitro. The native rod-shaped phenotype of freshly isolated adult myocytes persists in an environment which minimizes myocyte attachment and spreading on the substratum. However, these conditions are not optimal for long-term maintenance of cultured adult cardiac myocytes. Conditions which promote myocyte attachment and spreading on the substratum, on the other hand, also promote the re-establishment of new intercellular contacts between myocytes. These contacts appear to play a significant role in the development of spontaneous activity, which enhances the redevelopment of highly differentiated contractile, junctional, and sarcoplasmic reticulum structures in the cultured adult cardiomyocyte. Although it has previously been shown that adult cardiac myocytes are typically quiescent in culture, the addition of beta-adrenergic agonists stimulates beating and myocyte hypertrophy, and thereby serves to increase the level of intercellular contact as well. However, in densely-plated cultures with intrinsically high levels of intercellular contact, spontaneous contractile activity develops without the addition of beta-adrenergic agonists. In this study, we compare the function, morphology, and natural history of adult feline cardiomyocytes which have been maintained in cultures with different levels of intercellular contact, with and without the addition of beta-adrenergic agonists

  15. Cell contact as an independent factor modulating cardiac myocyte hypertrophy and survival in long-term primary culture

    NASA Technical Reports Server (NTRS)

    Clark, W. A.; Decker, M. L.; Behnke-Barclay, M.; Janes, D. M.; Decker, R. S.

    1998-01-01

    Cardiac myocytes maintained in cell culture develop hypertrophy both in response to mechanical loading as well as to receptor-mediated signaling mechanisms. However, it has been shown that the hypertrophic response to these stimuli may be modulated through effects of intercellular contact achieved by maintaining cells at different plating densities. In this study, we show that the myocyte plating density affects not only the hypertrophic response and features of the differentiated phenotype of isolated adult myocytes, but also plays a significant role influencing myocyte survival in vitro. The native rod-shaped phenotype of freshly isolated adult myocytes persists in an environment which minimizes myocyte attachment and spreading on the substratum. However, these conditions are not optimal for long-term maintenance of cultured adult cardiac myocytes. Conditions which promote myocyte attachment and spreading on the substratum, on the other hand, also promote the re-establishment of new intercellular contacts between myocytes. These contacts appear to play a significant role in the development of spontaneous activity, which enhances the redevelopment of highly differentiated contractile, junctional, and sarcoplasmic reticulum structures in the cultured adult cardiomyocyte. Although it has previously been shown that adult cardiac myocytes are typically quiescent in culture, the addition of beta-adrenergic agonists stimulates beating and myocyte hypertrophy, and thereby serves to increase the level of intercellular contact as well. However, in densely-plated cultures with intrinsically high levels of intercellular contact, spontaneous contractile activity develops without the addition of beta-adrenergic agonists. In this study, we compare the function, morphology, and natural history of adult feline cardiomyocytes which have been maintained in cultures with different levels of intercellular contact, with and without the addition of beta-adrenergic agonists

  16. Salvianolic acid B inhibits autophagy and protects starving cardiac myocytes

    PubMed Central

    Han, Xiao; Liu, Jian-xun; Li, Xin-zhi

    2011-01-01

    Aim: To investigate the protective or lethal role of autophagy and the effects of Salvianolic acid B (Sal B) on autophagy in starving myocytes. Methods: Cardiac myocytes were incubated under starvation conditions (GD) for 0, 1, 2, 3, and 6 h. Autophagic flux in starving cells was measured via chloroquine (3 μmol/L). After myocytes were treated with Sal B (50 μmol/L) in the presence or absence of chloroquine (3 μmol/L) under GD 3 h, the amount of LC3-II, the abundance of LC3-positive fluorescent dots in cells, cell viability and cellular ATP levels were determined using immunoblotting, immunofluorescence microscopy, MTT assay and luminometer, respectively. Moreover, electron microscopy (EM) and immunofluorescent duel labeling of LC3 and Caspase-8 were used to examine the characteristics of autophagy and apoptosis. Results: Immunoblot analysis showed that the amount of LC3-II in starving cells increased in a time-dependent manner accompanied by increased LC3-positive fluorescence and decreased cell viability and ATP content. Sal B (50 μmol/L) inhibited the increase in LC3-II, reduced the abundance of LC3 immunofluorescence and intensity of Caspase-8 fluorescence, and enhanced cellular viability and ATP levels in myocytes under GD 3 h, regardless of whether chloroquine was present. Conclusion: Autophagy induced by starvation for 3 h led to cell injury. Sal B protected starving cells by blocking the early stage of autophagic flux and inhibiting apoptosis that occurred during autophagy. PMID:21113177

  17. Rat cardiac myocyte adenosine transport and metabolism

    SciTech Connect

    Ford, D.A.; Rovetto, M.J.

    1987-01-01

    Based on the importance of myocardial adenosine and adenine nucleotide metabolism, the adenosine salvage pathway in ventricular myocytes was studied. Accurate estimates of transport rates, separate from metabolic fllux, were determined. Adenosine influx was constant between 3 and 60 s. Adenosine metabolism maintained intracellular adenosine concentrations < 10% of the extracellular adenosine concentrations and thus unidirectional influx could be measured. Myocytes transported adenosine via saturable and nonsaturable processes. A minimum estimate of the V/sub max/ of myocytic adenosine kinase indicated the saturable component of adenosine influx was independent of adenosine kinase activity. Saturable transport was inhibited by nitrobenzylthioinosine and verapamil. Extracellular adenosine taken up myocytes was rapidly phosphorylated to adenine taken up by myocytes was rapidly phosphorylated to adenine nucleotides. Not all extracellular adenosine, though, was phosphorylated on entering myocytes, since free, as opposed to protein-bound, intracellular adenosine was detected after digitonin extraction of cells in the presence of 1 mM ethylene-diaminetetraacetic acid.

  18. Prolonged Action Potential and After depolarizations Are Not due to Changes in Potassium Currents in NOS3 Knockout Ventricular Myocytes.

    PubMed

    Wang, Honglan; Bonilla, Ingrid M; Huang, Xin; He, Quanhua; Kohr, Mark J; Carnes, Cynthia A; Ziolo, Mark T

    2012-01-01

    Ventricular myocytes deficient in endothelial nitric oxide synthase (NOS3(-/-)) exhibit prolonged action potential (AP) duration and enhanced spontaneous activity (early and delayed afterdepolarizations) during β-adrenergic (β-AR) stimulation. Studies have shown that nitric oxide is able to regulate various K(+) channels. Our objective was to examine if NOS3(-/-) myocytes had altered K(+) currents. APs, transient outward (I(to)), sustained (I(Ksus)), and inward rectifier (I(K1)) K(+) currents were measured in NOS3(-/-) and wild-type (WT) myocytes. During β-AR stimulation, AP duration (measured as 90% repolarization-APD(90)) was prolonged in NOS3(-/-) compared to WT myocytes. Nevertheless, we did not observe differences in I(to), I(Ksus), or I(K1) between WT and NOS3(-/-) myocytes. Our previous work showed that NOS3(-/-) myocytes had a greater Ca(2+) influx via L-type Ca(2+) channels with β-AR stimulation. Thus, we measured β-AR-stimulated SR Ca(2+) load and found a greater increase in NOS3(-/-) versus WT myocytes. Hence, our data suggest that the prolonged AP in NOS3(-/-) myocytes is not due to changes in I(to), I(Ksus), or I(K1). Furthermore, the increase in spontaneous activity in NOS3(-/-) myocytes may be due to a greater increase in SR Ca(2+) load. This may have important implications for heart failure patients, where arrhythmias are increased and NOS3 expression is decreased.

  19. MicroRNAs in the Myocyte Enhancer Factor 2 (MEF2)-regulated Gtl2-Dio3 Noncoding RNA Locus Promote Cardiomyocyte Proliferation by Targeting the Transcriptional Coactivator Cited2.

    PubMed

    Clark, Amanda L; Naya, Francisco J

    2015-09-18

    Understanding cell cycle regulation in postmitotic cardiomyocytes may lead to new therapeutic approaches to regenerate damaged cardiac tissue. We have demonstrated previously that microRNAs encoded by the Gtl2-Dio3 noncoding RNA locus function downstream of the MEF2A transcription factor in skeletal muscle regeneration. We have also reported expression of these miRNAs in the heart. Here we investigated the role of two Gtl2-Dio3 miRNAs, miR-410 and miR-495, in cardiac muscle. Overexpression of miR-410 and miR-495 robustly stimulated cardiomyocyte DNA synthesis and proliferation. Interestingly, unlike our findings in skeletal muscle, these miRNAs did not modulate the activity of the WNT signaling pathway. Instead, these miRNAs targeted Cited2, a coactivator required for proper cardiac development. Consistent with miR-410 and miR-495 overexpression, siRNA knockdown of Cited2 in neonatal cardiomyocytes resulted in robust proliferation. This phenotype was associated with reduced expression of Cdkn1c/p57/Kip2, a cell cycle inhibitor, and increased expression of VEGFA, a growth factor with proliferation-promoting effects. Therefore, miR-410 and miR-495 are among a growing number of miRNAs that have the ability to potently stimulate neonatal cardiomyocyte proliferation.

  20. J chain and myocyte enhancer factor 2B are useful in differentiating classical Hodgkin lymphoma from nodular lymphocyte predominant Hodgkin lymphoma and primary mediastinal large B-cell lymphoma.

    PubMed

    Moore, Erika M; Swerdlow, Steven H; Gibson, Sarah E

    2017-08-26

    Although most classical Hodgkin lymphomas (CHL) are easily distinguished from nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) and primary mediastinal large B-cell lymphoma (PMBL), cases with significant CD20 expression cause diagnostic confusion. Although the absence of OCT-2 and BOB.1 are useful in these circumstances, a variable proportion of CHL are positive for these antigens. We investigated the utility of J chain and MEF2B in the diagnosis of CHL, NLPHL, PMBL, T-cell/histiocyte-rich large B-cell lymphoma (TCRLBL), and B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and CHL (BCLU, DLBCL/CHL) compared to OCT-2 and BOB.1. J chain and MEF2B highlighted lymphocyte predominant (LP) cells in 20/20 (100%) NLPHL and were negative in 43/43 (100%) CHL. 14/15 (93%) PMBL and 4/4 (100%) TCRLBL were MEF2B-positive, while 67% of PMBL and 50% of TCRLBL were J chain-positive. 3/3 BCLU, DLBCL/CHL were negative for J chain and MEF2B. J chain and MEF2B were 100% sensitive and specific for NLPHL versus CHL. MEF2B was 100% sensitive and 98% specific for PMBL versus CHL. Whereas loss of OCT-2 and/or BOB.1 expression had a sensitivity of only 86% and specificity of 100% for CHL versus NLPHL, PMBL, and TCRLBL, lack of both J chain and MEF2B expression was 100% sensitive and 97% specific. J chain and MEF2B are highly sensitive and specific markers of NLPHL versus CHL, are particularly useful in highlighting LP cells, and, with rare exception, are of greater utility than OCT-2 and BOB.1 in differentiating CHL from NLPHL and other large B-cell lymphomas. Copyright © 2017. Published by Elsevier Inc.

  1. Controlled Dual Delivery of Fibroblast Growth Factor-2 and Interleukin-10 by Heparin-based Coacervate Synergistically Enhances Ischemic Heart Repair

    PubMed Central

    Chen, William C.W.; Lee, Brandon G.; Park, Dae Woo; Kim, Kyobum; Chu, Hunghao; Kim, Kang; Huard, Johnny; Wang, Yadong

    2015-01-01

    Myocardial infarction (MI) causes myocardial necrosis, triggers chronic inflammatory responses, and leads to pathological remodeling. Controlled delivery of a combination of angiogenic and immunoregulatory proteins may be a promising therapeutic approach for MI. We investigated the bioactivity and therapeutic potential of an injectable, heparin-based coacervate co-delivering an angiogenic factor, fibroblast growth factor-2 (FGF2), and an anti-inflammatory cytokine, Interleukin-10 (IL-10) in a spatially and temporally controlled manner. Coacervate delivery of FGF2 and IL-10 preserved their bioactivities on cardiac stromal cell proliferation in vitro. Upon intramyocardial injection into a mouse MI model, echocardiography revealed that FGF2/IL-10 coacervate treated groups showed significantly improved long-term LV contractile function and ameliorated LV dilatation. FGF2/IL-10 coacervate substantially augmented LV myocardial elasticity. Additionally, FGF2/IL-10 coacervate notably enhanced long-term revascularization, especially at the infarct area. In addition, coacervate loaded with 500 ng FGF2 and 500 ng IL-10 significantly reduced LV fibrosis, considerably preserved infarct wall thickness, and markedly inhibited chronic inflammation at the infarct area. These results indicate that FGF2/IL-10 coacervate has notably greater therapeutic potential than coacervate containing only FGF2. Overall, our data suggest therapeutically synergistic effects of FGF-2/IL-10 coacervate, particularly coacervate with FGF2 and 500 ng IL-10, for the treatment of ischemic heart disease. PMID:26370927

  2. Controlled dual delivery of fibroblast growth factor-2 and Interleukin-10 by heparin-based coacervate synergistically enhances ischemic heart repair.

    PubMed

    Chen, William C W; Lee, Brandon G; Park, Dae Woo; Kim, Kyobum; Chu, Hunghao; Kim, Kang; Huard, Johnny; Wang, Yadong

    2015-12-01

    Myocardial infarction (MI) causes myocardial necrosis, triggers chronic inflammatory responses, and leads to pathological remodeling. Controlled delivery of a combination of angiogenic and immunoregulatory proteins may be a promising therapeutic approach for MI. We investigated the bioactivity and therapeutic potential of an injectable, heparin-based coacervate co-delivering an angiogenic factor, fibroblast growth factor-2 (FGF2), and an anti-inflammatory cytokine, Interleukin-10 (IL-10) in a spatially and temporally controlled manner. Coacervate delivery of FGF2 and IL-10 preserved their bioactivities on cardiac stromal cell proliferation in vitro. Upon intramyocardial injection into a mouse MI model, echocardiography revealed that FGF2/IL-10 coacervate treated groups showed significantly improved long-term LV contractile function and ameliorated LV dilatation. FGF2/IL-10 coacervate substantially augmented LV myocardial elasticity. Additionally, FGF2/IL-10 coacervate notably enhanced long-term revascularization, especially at the infarct area. In addition, coacervate loaded with 500 ng FGF2 and 500 ng IL-10 significantly reduced LV fibrosis, considerably preserved infarct wall thickness, and markedly inhibited chronic inflammation at the infarct area. These results indicate that FGF2/IL-10 coacervate has notably greater therapeutic potential than coacervate containing only FGF2. Overall, our data suggest therapeutically synergistic effects of FGF-2/IL-10 coacervate, particularly coacervate with FGF2 and 500 ng IL-10, for the treatment of ischemic heart disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. {beta}1-Adrenergic receptor activation induces mouse cardiac myocyte death through both L-type calcium channel-dependent and -independent pathways.

    PubMed

    Wang, Wei; Zhang, Hongyu; Gao, Hui; Kubo, Hajime; Berretta, Remus M; Chen, Xiongwen; Houser, Steven R

    2010-08-01

    Cardiac diseases persistently increase the contractility demands of cardiac myocytes, which require activation of the sympathetic nervous system and subsequent increases in myocyte Ca(2+) transients. Persistent exposure to sympathetic and/or Ca(2+) stress is associated with myocyte death. This study examined the respective roles of persistent beta-adrenergic receptor (beta-AR) agonist exposure and high Ca(2+) concentration in myocyte death. Ventricular myocytes (VMs) were isolated from transgenic (TG) mice with cardiac-specific and inducible expression of the beta(2a)-subunit of the L-type Ca(2+) channel (LTCC). VMs were cultured, and the rate of myocyte death was measured in the presence of isoproterenol (ISO), other modulators of Ca(2+) handling and the beta-adrenergic system, and inhibitors of caspases and reactive oxygen species generation. The rate of myocyte death was greater in TG vs. wild-type myocytes and accelerated by ISO in both groups, although ISO did not increase LTCC current (I(Ca-L)) in TG-VMs. Nifedipine, an LTCC antagonist, only partially prevented myocyte death. These results suggest both LTCC-dependent and -independent mechanisms in ISO induced myocyte death. ISO increased the contractility of wild type and TG-VMs by enhancing sarcoplasmic reticulum function and inhibiting sarco(endo)plasmic reticulum Ca(2+)-ATPase, Na(+)/Ca(2+) exchanger, and CaMKII partially protected myocyte from death induced by both Ca(2+) and ISO. Caspase and reactive oxygen species inhibitors did not, but beta(2)-AR activation did, reduce myocyte death induced by enhanced I(Ca-L) and ISO stimulation. Our results suggest that catecholamines induce myocyte necrosis primarily through beta(1)-AR-mediated increases in I(Ca-L), but other mechanisms are also involved in rodents.

  4. Phosphoproteomic profiling of the myocyte.

    PubMed

    Edwards, Alistair V G; Cordwell, Stuart J; White, Melanie Y

    2011-10-01

    Protein phosphorylation underpins major cellular processes including energy metabolism, signal transduction, excitation-contraction coupling, apoptosis, and cell survival mechanisms and is thus critical to the myocyte. Targeted approaches, whereby a handful of phosphoproteins are investigated, can suffer from a relatively narrow view of cellular phosphorylation. In contrast, recent technical advances have allowed for the comprehensive documentation of phosphorylation events in complex biological environments, providing a deeper view of the "phosphoproteome." A global, high-throughput characterization of the myocardial phosphoproteome, however, has not yet been achieved. Efficient analysis of phosphorylated proteins and their roles in a dynamic cellular environment requires high-resolution strategies that can identify, localize, and quantify many thousands of phosphorylation sites in a single experiment. Such an approach requires specific enrichment and purification techniques, developed to align with high-end instrumentation for analysis. Cutting-edge phosphoproteomics is no longer restricted to gel-based technology, instead focusing on affinity enrichment prior to liquid chromatography and mass spectrometry. We will describe the best current methods and how they can be applied, as well as the challenges associated with them. We also present current phosphoproteomic investigations in the myocyte and its subcompartments. Although the techniques and instrumentation required to achieve the goal of a myocardial phosphoprotein catalog in physiological and diseased states are highly specialized, the potential biological insight provided by such an approach makes phosphoproteomics an important new avenue of investigation for the cardiovascular researcher.

  5. An optimized dosing regimen of cimaglermin (neuregulin 1β3, glial growth factor 2) enhances molecular markers of neuroplasticity and functional recovery after permanent ischemic stroke in rats

    PubMed Central

    Parry, Tom J.; Huang, Zhihong; Pavlopoulos, Elias; Finklestein, Seth P.; Ren, Jingmei; Caggiano, Anthony

    2015-01-01

    Cimaglermin (neuregulin 1β3, glial growth factor 2) is a neuregulin growth factor family member in clinical development for chronic heart failure. Previously, in a permanent middle cerebral artery occlusion (pMCAO) rat stroke model, systemic cimaglermin treatment initiated up to 7 days after ischemia onset promoted recovery without reduced lesion volume. Presented here to extend the evidence are two studies that use a rat stroke model to evaluate the effects of cimaglermin dose level and dose frequency initiated 24 hr after pMCAO. Forelimb‐ and hindlimb‐placing scores (proprioceptive behavioral tests), body‐swing symmetry, and infarct volume were compared between treatment groups (n = 12/group). Possible mechanisms underlying cimaglermin‐mediated neurologic recovery were examined through axonal growth and synapse formation histological markers. Cimaglermin was evaluated over a wider dose range (0.02, 0.1, or 1.0 mg/kg) than doses previously shown to be effective but used the same dosing regimen (2 weeks of daily intravenous administration, then 1 week without treatment). The dose‐frequency study used the dose‐ranging study's most effective dose (1.0 mg/kg) to compare daily, once per week, and twice per week dosing for 3 weeks (then 1 week without treatment). Dose‐ and frequency‐dependent functional improvements were observed with cimaglermin without reduced lesion volume. Cimaglermin treatment significantly increased growth‐associated protein 43 expression in both hemispheres (particularly somatosensory and motor cortices) and also increased synaptophysin expression. These data indicate that cimaglermin enhances recovery after stroke. Immunohistochemical changes were consistent with axonal sprouting and synapse formation but not acute neuroprotection. Cimaglermin represents a potential clinical development candidate for ischemic stroke treatment. © 2015 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc

  6. Engineering design of a cardiac myocyte

    NASA Astrophysics Data System (ADS)

    Adams, W. J.; Pong, T.; Geisse, N. A.; Sheehy, S. P.; Diop-Frimpong, B.; Parker, K. K.

    2007-04-01

    We describe a design algorithm to build a cardiac myocyte with specific spatial dimensions and physiological function. Using a computational model of a cardiac muscle cell, we modeled calcium (Ca2+) wave dynamics in a cardiac myocyte with controlled spatial dimensions. The modeled myocyte was replicated in vitro when primary neonate rat ventricular myocytes were cultured on micropatterned substrates. The myocytes remodel to conform to the two dimensional boundary conditions and assume the shape of the printed extracellular matrix island. Mechanical perturbation of the myocyte with an atomic force microscope results in calcium-induced calcium release from intracellular stores and the propagation of a Ca2+ wave, as indicated by high speed video microscopy using fluorescent indicators of intracellular Ca2+. Analysis and comparison of the measured wavefront dynamics with those simulated in the computer model reveal that the engineered myocyte behaves as predicted by the model. These results are important because they represent the use of computer modeling, computer-aided design, and physiological experiments to design and validate the performance of engineered cells. The ability to successfully engineer biological cells and tissues for assays or therapeutic implants will require design algorithms and tools for quality and regulatory assurance.

  7. Redox signaling in cardiac myocytes

    PubMed Central

    Santos, Celio X.C.; Anilkumar, Narayana; Zhang, Min; Brewer, Alison C.; Shah, Ajay M.

    2011-01-01

    The heart has complex mechanisms that facilitate the maintenance of an oxygen supply–demand balance necessary for its contractile function in response to physiological fluctuations in workload as well as in response to chronic stresses such as hypoxia, ischemia, and overload. Redox-sensitive signaling pathways are centrally involved in many of these homeostatic and stress-response mechanisms. Here, we review the main redox-regulated pathways that are involved in cardiac myocyte excitation–contraction coupling, differentiation, hypertrophy, and stress responses. We discuss specific sources of endogenously generated reactive oxygen species (e.g., mitochondria and NADPH oxidases of the Nox family), the particular pathways and processes that they affect, the role of modulators such as thioredoxin, and the specific molecular mechanisms that are involved—where this knowledge is available. A better understanding of this complex regulatory system may allow the development of more specific therapeutic strategies for heart diseases. PMID:21236334

  8. MondoA coordinately regulates skeletal myocyte lipid homeostasis and insulin signaling

    PubMed Central

    Ahn, Byungyong; Soundarapandian, Mangala M.; Sessions, Hampton; Peddibhotla, Satyamaheshwar; Roth, Gregory P.; Sugarman, Eliot; Koo, Ada; Malany, Siobhan; Wang, Miao; Yea, Kyungmoo; Brooks, Jeanne; Leone, Teresa C.; Han, Xianlin; Vega, Rick B.

    2016-01-01

    Intramuscular lipid accumulation is a common manifestation of chronic caloric excess and obesity that is strongly associated with insulin resistance. The mechanistic links between lipid accumulation in myocytes and insulin resistance are not completely understood. In this work, we used a high-throughput chemical biology screen to identify a small-molecule probe, SBI-477, that coordinately inhibited triacylglyceride (TAG) synthesis and enhanced basal glucose uptake in human skeletal myocytes. We then determined that SBI-477 stimulated insulin signaling by deactivating the transcription factor MondoA, leading to reduced expression of the insulin pathway suppressors thioredoxin-interacting protein (TXNIP) and arrestin domain–containing 4 (ARRDC4). Depleting MondoA in myocytes reproduced the effects of SBI-477 on glucose uptake and myocyte lipid accumulation. Furthermore, an analog of SBI-477 suppressed TXNIP expression, reduced muscle and liver TAG levels, enhanced insulin signaling, and improved glucose tolerance in mice fed a high-fat diet. These results identify a key role for MondoA-directed programs in the coordinated control of myocyte lipid balance and insulin signaling and suggest that this pathway may have potential as a therapeutic target for insulin resistance and lipotoxicity. PMID:27500491

  9. Microstructured Cocultures of Cardiac Myocytes and Fibroblasts: A Two-Dimensional In Vitro Model of Cardiac Tissue

    NASA Astrophysics Data System (ADS)

    Camelliti, Patrizia; McCulloch, Andrew D.; Kohl, Peter

    2005-06-01

    Cardiac myocytes and fibroblasts are essential elements of myocardial tissue structure and function. In vivo, myocytes constitute the majority of cardiac tissue volume, whereas fibroblasts dominate in numbers. In vitro, cardiac cell cultures are usually designed to exclude fibroblasts, which, because of their maintained proliferative potential, tend to overgrow the myocytes. Recent advances in microstructuring of cultures and cell growth on elastic membranes have greatly enhanced in vitro preservation of tissue properties and offer a novel platform technology for producing more in vivo-like models of myocardium. We used microfluidic techniques to grow two-dimensional structured cardiac tissue models, containing both myocytes and fibroblasts, and characterized cell morphology, distribution, and coupling using immunohistochemical techniques. In vitro findings were compared with in vivo ventricular cyto-architecture. Cardiac myocytes and fibroblasts, cultured on intersecting 30-[mu]m-wide collagen tracks, acquire an in vivo-like phenotype. Their spatial arrangement closely resembles that observed in native tissue: Strands of highly aligned myocytes are surrounded by parallel threads of fibroblasts. In this in vitro system, fibroblasts form contacts with other fibroblasts and myocytes, which can support homogeneous and heterogeneous gap junctional coupling, as observed in vivo. We conclude that structured cocultures of cardiomyocytes and fibroblasts mimic in vivo ventricular tissue organization and provide a novel tool for in vitro research into cardiac electromechanical function.

  10. Resveratrol protects rabbit ventricular myocytes against oxidative stress-induced arrhythmogenic activity and Ca2+ overload

    PubMed Central

    Li, Wei; Wang, Yue-peng; Gao, Ling; Zhang, Peng-pai; Zhou, Qing; Xu, Quan-fu; Zhou, Zhi-wen; Guo, Kai; Chen, Ren-hua; Yang, Huang-tian; Li, Yi-gang

    2013-01-01

    Aim: To investigate whether resveratrol suppressed oxidative stress-induced arrhythmogenic activity and Ca2+ overload in ventricular myocytes and to explore the underlying mechanisms. Methods: Hydrogen peroxide (H2O2, 200 μmol/L)) was used to induce oxidative stress in rabbit ventricular myocytes. Cell shortening and calcium transients were simultaneously recorded to detect arrhythmogenic activity and to measure intracellular Ca2+ ([Ca2+]i). Ca2+/calmodulin-dependent protein kinases II (CaMKII) activity was measured using a CaMKII kit or Western blotting analysis. Voltage-activated Na+ and Ca2+ currents were examined using whole-cell recording in myocytes. Results: H2O2 markedly prolonged Ca2+ transient duration (CaTD), and induced early afterdepolarization (EAD)-like and delayed afterdepolarization (DAD)-like arrhythmogenic activity in myocytes paced at 0.16 Hz or 0.5 Hz. Application of resveratrol (30 or 50 μmol/L) dose-dependently suppressed H2O2-induced EAD-like arrhythmogenic activity and attenuated CaTD prolongation. Co-treatment with resveratrol (50 μmol/L) effectively prevented both EAD-like and DAD-like arrhythmogenic activity induced by H2O2. In addition, resveratrol markedly blunted H2O2-induced diastolic [Ca2+]i accumulation and prevented the myocytes from developing hypercontracture. In whole-cell recording studies, H2O2 significantly enhanced the late Na+ current (INa,L) and L-type Ca2+ current (ICa,L) in myocytes, which were dramatically suppressed or prevented by resveratrol. Furthermore, H2O2-induced ROS production and CaMKII activation were significantly prevented by resveratrol. Conclusion: Resveratrol protects ventricular myocytes against oxidative stress-induced arrhythmogenic activity and Ca2+ overload through inhibition of INa,L/ICa,L, reduction of ROS generation, and prevention of CaMKII activation. PMID:23912472

  11. Resveratrol protects rabbit ventricular myocytes against oxidative stress-induced arrhythmogenic activity and Ca2+ overload.

    PubMed

    Li, Wei; Wang, Yue-peng; Gao, Ling; Zhang, Peng-pai; Zhou, Qing; Xu, Quan-fu; Zhou, Zhi-wen; Guo, Kai; Chen, Ren-hua; Yang, Huang-tian; Li, Yi-gang

    2013-09-01

    To investigate whether resveratrol suppressed oxidative stress-induced arrhythmogenic activity and Ca(2+) overload in ventricular myocytes and to explore the underlying mechanisms. Hydrogen peroxide (H2O2, 200 μmol/L)) was used to induce oxidative stress in rabbit ventricular myocytes. Cell shortening and calcium transients were simultaneously recorded to detect arrhythmogenic activity and to measure intracellular Ca(2+) ([Ca(2+)]i). Ca(2+)/calmodulin-dependent protein kinases II (CaMKII) activity was measured using a CaMKII kit or Western blotting analysis. Voltage-activated Na(+) and Ca(2+) currents were examined using whole-cell recording in myocytes. H2O2 markedly prolonged Ca(2+) transient duration (CaTD), and induced early afterdepolarization (EAD)-like and delayed afterdepolarization (DAD)-like arrhythmogenic activity in myocytes paced at 0.16 Hz or 0.5 Hz. Application of resveratrol (30 or 50 μmol/L) dose-dependently suppressed H2O2-induced EAD-like arrhythmogenic activity and attenuated CaTD prolongation. Co-treatment with resveratrol (50 μmol/L) effectively prevented both EAD-like and DAD-like arrhythmogenic activity induced by H2O2. In addition, resveratrol markedly blunted H2O2-induced diastolic [Ca(2+)]i accumulation and prevented the myocytes from developing hypercontracture. In whole-cell recording studies, H2O2 significantly enhanced the late Na(+) current (I(Na,L)) and L-type Ca(2+) current (I(Ca,L)) in myocytes, which were dramatically suppressed or prevented by resveratrol. Furthermore, H2O2-induced ROS production and CaMKII activation were significantly prevented by resveratrol. Resveratrol protects ventricular myocytes against oxidative stress-induced arrhythmogenic activity and Ca(2+) overload through inhibition of I(Na,L)/I(Ca,L), reduction of ROS generation, and prevention of CaMKII activation.

  12. Prolonged Action Potential and After depolarizations Are Not due to Changes in Potassium Currents in NOS3 Knockout Ventricular Myocytes

    PubMed Central

    Wang, Honglan; Bonilla, Ingrid M.; Huang, Xin; He, Quanhua; Kohr, Mark J.; Carnes, Cynthia A.; Ziolo, Mark T.

    2012-01-01

    Ventricular myocytes deficient in endothelial nitric oxide synthase (NOS3−/−) exhibit prolonged action potential (AP) duration and enhanced spontaneous activity (early and delayed afterdepolarizations) during β-adrenergic (β-AR) stimulation. Studies have shown that nitric oxide is able to regulate various K+ channels. Our objective was to examine if NOS3−/− myocytes had altered K+ currents. APs, transient outward (I to), sustained (I Ksus), and inward rectifier (I K1) K+ currents were measured in NOS3−/− and wild-type (WT) myocytes. During β-AR stimulation, AP duration (measured as 90% repolarization-APD90) was prolonged in NOS3−/− compared to WT myocytes. Nevertheless, we did not observe differences in I to, I Ksus, or I K1 between WT and NOS3−/− myocytes. Our previous work showed that NOS3−/− myocytes had a greater Ca2+ influx via L-type Ca2+ channels with β-AR stimulation. Thus, we measured β-AR-stimulated SR Ca2+ load and found a greater increase in NOS3−/− versus WT myocytes. Hence, our data suggest that the prolonged AP in NOS3−/− myocytes is not due to changes in I to, I Ksus, or I K1. Furthermore, the increase in spontaneous activity in NOS3−/− myocytes may be due to a greater increase in SR Ca2+ load. This may have important implications for heart failure patients, where arrhythmias are increased and NOS3 expression is decreased. PMID:22970362

  13. Evolution of ventricular myocyte electrophysiology.

    PubMed

    Rosati, Barbara; Dong, Min; Cheng, Lan; Liou, Shian-Ren; Yan, Qinghong; Park, Ji Young; Shiang, Elaine; Sanguinetti, Michael; Wang, Hong-Sheng; McKinnon, David

    2008-11-12

    The relative importance of regulatory versus structural evolution for the evolution of different biological systems is a subject of controversy. The primacy of regulatory evolution in the diversification of morphological traits has been promoted by many evolutionary developmental biologists. For physiological traits, however, the role of regulatory evolution has received less attention or has been considered to be relatively unimportant. To address this issue for electrophysiological systems, we examined the importance of regulatory and structural evolution in the evolution of the electrophysiological function of cardiac myocytes in mammals. In particular, two related phenomena were studied: the change in action potential morphology in small mammals and the scaling of action potential duration across mammalian phylogeny. In general, the functional properties of the ion channels involved in ventricular action potential repolarization were found to be relatively invariant. In contrast, there were large changes in the expression levels of multiple ion channel and transporter genes. For the Kv2.1 and Kv4.2 potassium channel genes, which are primary determinants of the action potential morphology in small mammals, the functional properties of the proximal promoter regions were found to vary in concordance with species-dependent differences in mRNA expression, suggesting that evolution of cis-regulatory elements is the primary determinant of this trait. Scaling of action potential duration was found to be a complex phenomenon, involving changes in the expression of a large number of channels and transporters. In this case, it is concluded that regulatory evolution is the predominant mechanism by which the scaling is achieved.

  14. Integrative modeling of the cardiac ventricular myocyte

    PubMed Central

    Winslow, Raimond L.; Cortassa, Sonia; O'Rourke, Brian; Hashambhoy, Yasmin L.; Rice, John Jeremy; Greenstein, Joseph L.

    2011-01-01

    Cardiac electrophysiology is a discipline with a rich 50-year history of experimental research coupled with integrative modeling which has enabled us to achieve a quantitative understanding of the relationships between molecular function and the integrated behavior of the cardiac myocyte in health and disease. In this paper, we review the development of integrative computational models of the cardiac myocyte. We begin with a historical overview of key cardiac cell models that helped shape the field. We then narrow our focus to models of the cardiac ventricular myocyte and describe these models in the context of their subcellular functional systems including dynamic models of voltage-gated ion channels, mitochondrial energy production, ATP-dependent and electrogenic membrane transporters, intracellular Ca dynamics, mechanical contraction, and regulatory signal transduction pathways. We describe key advances and limitations of the models as well as point to new directions for future modeling research. PMID:20865780

  15. Direct contact between sympathetic neurons and rat cardiac myocytes in vitro increases expression of functional calcium channels.

    PubMed Central

    Ogawa, S; Barnett, J V; Sen, L; Galper, J B; Smith, T W; Marsh, J D

    1992-01-01

    To test the hypothesis that direct contact between sympathetic neurons and myocytes regulates expression and function of cardiac Ca channels, we prepared cultures of neonatal rat ventricular myocytes with and without sympathetic ganglia. Contractile properties of myocytes were assessed by an optical-video system. Contractility-pCa curves showed a 60% greater increase in contractility for innervated myocytes compared with control cells at 6.3 mM [Ca]0 (n = 8, P less than 0.05). Cells grown in medium conditioned by growth of ganglia and myocytes were indistinguishable physiologically from control cells. [Bay K 8644]-contractility curves revealed a 60 +/- 10% enhancement of the contractility response at 10(-6) M for innervated cells compared with control cells. The increased response to Bay K 8644 was not blocked by alpha- or beta-adrenergic antagonists. Moreover, increased efficacy of Bay K 8644 was maintained for at least 24 h after denervation produced by removal of ganglia from the culture. Dihydropyridine binding sites were assessed with the L channel-specific radioligand 3[H]PN200-110. PN200-110 binding sites were increased by innervation (51 +/- 5 to 108 +/- 20 fmol/mg protein, P less than 0.01), with no change in KD. Peak current-voltage curves were determined by whole-cell voltage clamp techniques for myocytes contacted by a neuron, control myocytes, and myocytes grown in conditioned medium. Current density of L-type Ca channels was significantly higher in innervated myocytes (10.5 +/- 0.4 pA/pF, n = 5) than in control myocytes (5.9 +/- 0.3 pA/pF, n = 8, P less than 0.01) or myocytes grown in conditioned medium (6.2 +/- 0.2 pA/pF, n = 10, P less than 0.01). Thus, physical contact between a sympathetic neuron and previously uninnervated neonatal rat ventricular myocytes increases expression of functional L-type calcium channels as judged by contractile responses to Ca0 and Bay K 8644, as well as by electrophysiological and radioligand binding properties

  16. Cyclic GMP protein kinase activity is reduced in thyroxine-induced hypertrophic cardiac myocytes.

    PubMed

    Yan, Lin; Zhang, Qihang; Scholz, Peter M; Weiss, Harvey R

    2003-12-01

    1. We tested the hypothesis that the cGMP-dependent protein kinase has major negative functional effects in cardiac myocytes and that the importance of this pathway is reduced in thyroxine (T4; 0.5 mg/kg per day for 16 days) hypertrophic myocytes. 2. Using isolated ventricular myocytes from control (n = 7) and T4-treated (n = 9) rabbit hypertrophic hearts, myocyte shortening was studied with a video edge detector. Oxygen consumption was measured using O2 electrodes. Protein phosphorylation was measured autoradiographically. 3. Data were collected following treatment with: (i) 8-(4-chlorophenylthio)guanosine-3',5'-monophosphate (PCPT; 10-7 or 10-5 mol/L); (ii) 8-bromo-cAMP (10-5 mol/L) followed by PCPT; (iii) beta-phenyl-1,N2-etheno-8-bromoguanosine-3',5'-monophosphorothioate, SP-isomer (SP; 10-7 or 10-5 mol/L); or (iv) 8-bromo-cAMP (10-5 mol/L) followed by SP. 4. There were no significant differences between groups in baseline percentage shortening (Pcs; 4.9 +/- 0.2 vs 5.6 +/- 0.4% for control and T4 groups, respectively) and maximal rate of shortening (Rs; 64.8 +/- 5.9 vs 79.9 +/- 7.1 micro m/ s for control and T4 groups, respectively). Both SP and PCPT decreased Pcs (-43 vs-21% for control and T4 groups, respectively) and Rs (-36 vs-22% for control and T4 groups, respectively), but the effect was significantly reduced in T4 myocytes. 8-Bromo-cAMP similarly increased Pcs (28 vs 23% for control and T4 groups, respectively) and Rs (20 vs 19% for control and T4 groups, respectively). After 8-bromo-cAMP, SP and PCPT decreased Pcs (-34%) and Rs (-29%) less in the control group. However, the effects of these drugs were not altered in T4 myocytes (Pcs -24%; Rs -22%). Both PCPT and cAMP phosphorylated the same five protein bands. In T4 myocytes, these five bands were enhanced less. 5. We conclude that, in control ventricular myocytes, the cGMP-dependent protein kinase exerted major negative functional effects but, in T4-induced hypertrophic myocytes, the importance of

  17. Human monocyte-derived insulin-like growth factor-2 enhances the infection of human arterial endothelial cells by Chlamydia pneumoniae.

    PubMed

    Lin, T M; Campbell, L A; Rosenfeld, M E; Kuo, C C

    2001-05-01

    It has been shown that infection of human endothelial cells by Chlamydia pneumoniae is enhanced by co-culturing endothelial cells with human monocytes and is mediated by monocyte-derived soluble factors. This study was conducted to identify the infectivity-enhancing factor. Serum-free conditioned medium of human monocytic cells was fractionated by ultrafiltration. The enhancing activity was found in the fraction in the molecular mass range between 5000 and 10,000 kDa. Recombinant human insulin-like growth factor (IGF)-1 or -2, with a molecular mass of 7500 kDa, was added to the culture medium of human endothelial cells for growing C. pneumoniae. Only IGF-2 enhanced C. pneumoniae growth. Pretreatment of the conditioned medium with a monoclonal antibody against IGF-2 blocked the enhancing activity. This suggests that the infectivity-enhancing factor is IGF-2 and that paracrine interactions between monocytes and endothelial cells in vivo can induce secretory products and sustain infection with C. pneumoniae within atherosclerotic lesions.

  18. Mechanically induced orientation of adult rat cardiac myocytes in vitro

    NASA Technical Reports Server (NTRS)

    Samuel, J.-L.; Vandenburgh, H. H.

    1990-01-01

    The present study describes the spatial orientation of a population of freshly isolated adult rat cardiac myocytes using a computerized mechanical cell stimulator device for tissue cultured cells. A continuous unidirectional stretch of the substratum at 60 to 400 microns/min for 120 to 30 min, respectively, during the cell attachment period in a serum-free medium was found to induce a significant threefold increase in the number of rod-shaped myocytes oriented parallel to the direction of movement. The myocytes orient less well with unidirectional substratum stretching after their adhesion to the substratum. Adult myocytes plated onto a substratum undergoing continuous 10-percent stretch-relaxation cycling show no significant change in the myocyte orientation or cytoskeletal organization. In addition to the type of mechanical activity, orientation of rod-shaped myocytes is dependent on the speed of the substratum, the final stretch amplitude, and the timing between initiation of substratum stretching and adhesion of myocytes to the substratum.

  19. Mechanically induced orientation of adult rat cardiac myocytes in vitro

    NASA Technical Reports Server (NTRS)

    Samuel, J.-L.; Vandenburgh, H. H.

    1990-01-01

    The present study describes the spatial orientation of a population of freshly isolated adult rat cardiac myocytes using a computerized mechanical cell stimulator device for tissue cultured cells. A continuous unidirectional stretch of the substratum at 60 to 400 microns/min for 120 to 30 min, respectively, during the cell attachment period in a serum-free medium was found to induce a significant threefold increase in the number of rod-shaped myocytes oriented parallel to the direction of movement. The myocytes orient less well with unidirectional substratum stretching after their adhesion to the substratum. Adult myocytes plated onto a substratum undergoing continuous 10-percent stretch-relaxation cycling show no significant change in the myocyte orientation or cytoskeletal organization. In addition to the type of mechanical activity, orientation of rod-shaped myocytes is dependent on the speed of the substratum, the final stretch amplitude, and the timing between initiation of substratum stretching and adhesion of myocytes to the substratum.

  20. Mechano-chemo-transduction in cardiac myocytes.

    PubMed

    Chen-Izu, Ye; Izu, Leighton T

    2017-06-15

    The heart has the ability to adjust to changing mechanical loads. The Frank-Starling law and the Anrep effect describe exquisite intrinsic mechanisms the heart has for autoregulating the force of contraction to maintain cardiac output under changes of preload and afterload. Although these mechanisms have been known for more than a century, their cellular and molecular underpinnings are still debated. How does the cardiac myocyte sense changes in preload or afterload? How does the myocyte adjust its response to compensate for such changes? In cardiac myocytes Ca(2+) is a crucial regulator of contractile force and in this review we compare and contrast recent studies from different labs that address these two important questions. The 'dimensionality' of the mechanical milieu under which experiments are carried out provide important clues to the location of the mechanosensors and the kinds of mechanical forces they can sense and respond to. As a first approximation, sensors inside the myocyte appear to modulate reactive oxygen species while sensors on the cell surface appear to also modulate nitric oxide signalling; both signalling pathways affect Ca(2+) handling. Undoubtedly, further studies will add layers to this simplified picture. Clarifying the intimate links from cellular mechanics to reactive oxygen species and nitric oxide signalling and to Ca(2+) handling will deepen our understanding of the Frank-Starling law and the Anrep effect, and also provide a unified view on how arrhythmias may arise in seemingly disparate diseases that have in common altered myocyte mechanics. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  1. C-reactive protein augments hypoxia-induced apoptosis through mitochondrion-dependent pathway in cardiac myocytes.

    PubMed

    Yang, Jin; Wang, Junhong; Zhu, Shushu; Chen, Xiangjian; Wu, Hengfang; Yang, Di; Zhang, Jinan

    2008-03-01

    C-reactive protein (CRP) is an important predictive factor for cardiac disorders including acute myocardial infarction. Therapeutic inhibition of CRP has been shown to be a promising new approach to cardioprotection in acute myocardial infarction in rat models, but the direct effects of CRP on cardiac myocytes are poorly defined. In this study, we investigated the effects of CRP on cardiac myocytes and its molecular mechanism involved. Neonatal rat cardiac myocytes were exposed to hypoxia for 8 h. Hypoxia induced myocyte apoptosis under serum-deprived conditions, which was accompanied by cytochrome c release from mitochondria into cytosol, as well as activation of Caspase-9, Caspase-3. Hypoxia also increased Bax and decreased Bcl-2 mRNA and protein expression, thereby significantly increasing Bax/Bcl-2 ratio. Cotreatment of CRP (100 mug/ml) under hypoxia significantly increased the percentage of apoptotic myocytes, translocation of cytochrome c, Bax/Bcl-2 ratio, and the activity of Caspase-9 and Caspase-3. However, no effects were observed on myocyte apoptosis when cotreatment of CRP under normoxia. Furthermore, Bcl-2 overexpression significantly improved cellular viability through inhibition of hypoxia or cotreatment with CRP induced Bax/Bcl-2 ratio changes and cytochrome c release from mitochondria to cytosol, and significantly blocked the activity of Caspase-9 and Caspase-3. The present study demonstrates that CRP could enhance apoptosis in hypoxia-stimulated myocytes through the mitochondrion-dependent pathway but CRP alone has no effects on neonatal rat cardiac myocytes under normoxia. Bcl-2 overexpression might prevent CRP-induced apoptosis by inhibiting cytochrome c release from the mitochondria and block activation of Caspase-9 and Caspase-3.

  2. Myocyte cellular hypertrophy and hyperplasia contribute to ventricular wall remodeling in anemia-induced cardiac hypertrophy in rats.

    PubMed Central

    Olivetti, G.; Quaini, F.; Lagrasta, C.; Ricci, R.; Tiberti, G.; Capasso, J. M.; Anversa, P.

    1992-01-01

    To determine the effects of chronic anemia on the functional and structural characteristics of the heart, 1-month-old male rats were fed a diet deficient in iron and copper, which led to a hemoglobin concentration of 4.63 g/dl, for 8 weeks. At sacrifice, under fentanyl citrate and droperidol anesthesia, systolic, diastolic, and mean arterial blood pressures were decreased, whereas differential pressure was increased. Left ventricular systolic pressure and the ventricular rate of pressure rise (mmHg/s) were reduced by 9% and 14%, respectively. Moreover, developed peak systolic ventricular pressure and maximal dP/dt diminished 14% and 12%. After perfusion fixation of the coronary vasculature and the myocardium, at a left ventricular intracavitary pressure equal to the in vivo measured end diastolic pressure, a 10% thickening of the left ventricular wall was measured in association with a 13% increase in the equatorial cavitary diameter and a 44% augmentation in ventricular mass. The 52% hypertrophy of the right ventricle was characterized by an 11% thicker wall and a 37% larger ventricular area. The 33% expansion in the aggregate myocyte volume of the left ventricle was found to be due to a 14% myocyte cellular hypertrophy and a 17% myocyte cellular hyperplasia. These cellular parameters were calculated from the estimation of the number of myocyte nuclei per unit volume of myocardium in situ and the evaluation of the distribution of nuclei per cell in enzymatically dissociated myocytes. Myocyte cellular hyperplasia provoked a 9% increase in the absolute number of cells across the left ventricular wall. In contrast, myocyte cellular hypertrophy (42%) was responsible for the increase in myocyte volume of the right ventricle. The proliferative response of left ventricular myocytes was not capable of restoring diastolic cell stress, which was enhanced by the changes in ventricular anatomy with anemia. In conclusion, chronic anemia induced an unbalanced load on the left

  3. [Fibroblast growth factor-2].

    PubMed

    Faitová, J

    2004-01-01

    Fibroblast growth factor-2 is a member of a large family of proteins that bind heparin and heparan sulfate and modulate the function of a wide range of cell types. FGF-2 occurs in several isoforms resulting from alternative initiations of traslation: an 18 kDa cytoplasmic isoform and four larger molecular weight nuclear isoforms (22, 22.5, 24 and 34 kDa). It acts mainly through a paracrine/autocrine mechanism involving high affinity transmembrane receptors and heparan sulfate proteoglycan low affinity receptors. It is expressed mostly in tissues of mesoderm and neuroectoderm origin, and plays an important role in mesoderm induction, stimulates the growth and development of the new blood vessels (angiogenesis), normal wound healing and tissue development. FGF-2 positively regulates hematopoiesis by acting on various cellular targets: stromal cells, early and committed hematopoietic progenitors and possibly some mature blood cells. FGF-2 is a potent hematopoietic growth factor that is likely to play an important role in physiological and pathological hematopoiesis.

  4. Loss of hypoxia-inducible factor 2 alpha in the lung alveolar epithelium of mice leads to enhanced eosinophilic inflammation in cobalt-induced lung injury.

    PubMed

    Proper, Steven P; Saini, Yogesh; Greenwood, Krista K; Bramble, Lori A; Downing, Nathaniel J; Harkema, Jack R; Lapres, John J

    2014-02-01

    Hard metal lung disease (HMLD) is an occupational lung disease specific to inhalation of cobalt-containing particles whose mechanism is largely unknown. Cobalt is a known hypoxia mimic and stabilizer of the alpha subunits of hypoxia-inducible factors (HIFs). Previous work revealed that though HIF1α contrib utes to cobalt toxicity in vitro, loss of HIF1α in the alveolar epithelial cells does not provide in vivo protection from cobalt-induced lung inflammation. HIF1α and HIF2α show unique tissue expression profiles, and HIF2α is known to be the predominant HIF mRNA isoform in the adult lung. Thus, if HIF2α activation by cobalt contributes to pathophysiology of HMLD, we hypothesized that loss of HIF2α in lung epithelium would provide protection from cobalt-induced inflammation. Mice with HIF2α-deficiency in Club and alveolar type II epithelial cells (ATIIs) (HIF2α(Δ/Δ)) were exposed to cobalt (60 µg/day) or saline using a subacute occupational exposure model. Bronchoalveolar lavage cellularity, cytokines, qRT-PCR, and histopathology were analyzed. Results show that loss of HIF2α leads to enhanced eosinophilic inflammation and increased goblet cell metaplasia. Additionally, control mice demonstrated a mild recovery from cobalt-induced lung injury compared with HIF2α(Δ/Δ) mice, suggesting a role for epithelial HIF2α in repair mechanisms. The expression of important cytokines, such as interleukin (IL)-5 and IL-10, displayed significant differences following cobalt exposure when HIF2α(Δ/Δ) and control mice were compared. In summary, our data suggest that although loss of HIF2α does not afford protection from cobalt-induced lung inflammation, epithelial HIF2α signaling does play an important role in modulating the inflammatory and repair response in the lung.

  5. Loss of Hypoxia-Inducible Factor 2 Alpha in the Lung Alveolar Epithelium of Mice Leads to Enhanced Eosinophilic Inflammation in Cobalt-Induced Lung Injury

    PubMed Central

    Proper, Steven P.; Saini, Yogesh; LaPres, John J.

    2014-01-01

    Hard metal lung disease (HMLD) is an occupational lung disease specific to inhalation of cobalt-containing particles whose mechanism is largely unknown. Cobalt is a known hypoxia mimic and stabilizer of the alpha subunits of hypoxia-inducible factors (HIFs). Previous work revealed that though HIF1α contrib utes to cobalt toxicity in vitro, loss of HIF1α in the alveolar epithelial cells does not provide in vivo protection from cobalt-induced lung inflammation. HIF1α and HIF2α show unique tissue expression profiles, and HIF2α is known to be the predominant HIF mRNA isoform in the adult lung. Thus, if HIF2α activation by cobalt contributes to pathophysiology of HMLD, we hypothesized that loss of HIF2α in lung epithelium would provide protection from cobalt-induced inflammation. Mice with HIF2α-deficiency in Club and alveolar type II epithelial cells (ATIIs) (HIF2αΔ/Δ) were exposed to cobalt (60 µg/day) or saline using a subacute occupational exposure model. Bronchoalveolar lavage cellularity, cytokines, qRT-PCR, and histopathology were analyzed. Results show that loss of HIF2α leads to enhanced eosinophilic inflammation and increased goblet cell metaplasia. Additionally, control mice demonstrated a mild recovery from cobalt-induced lung injury compared with HIF2αΔ/Δ mice, suggesting a role for epithelial HIF2α in repair mechanisms. The expression of important cytokines, such as interleukin (IL)-5 and IL-10, displayed significant differences following cobalt exposure when HIF2αΔ/Δ and control mice were compared. In summary, our data suggest that although loss of HIF2α does not afford protection from cobalt-induced lung inflammation, epithelial HIF2α signaling does play an important role in modulating the inflammatory and repair response in the lung. PMID:24218148

  6. Relaxation abnormalities in single cardiac myocytes from renovascular hypertensive rats.

    PubMed

    Yelamarty, R V; Moore, R L; Yu, F T; Elensky, M; Semanchick, A M; Cheung, J Y

    1992-04-01

    In myocardial hypertrophy secondary to renovascular hypertension, the rate of intracellular Ca2+ concentration decline during relaxation in paced left ventricular (LV) myocytes isolated from hypertensive (Hyp) rats is much slower compared with that from normotensive (Sham) rats. By use of a novel liquid-crystal television-based optical-digital processor capable of performing on-line real-time Fourier transformation and the striated pattern (similar to 1-dimensional diffraction grating) of cardiac muscle cells, sarcomere shortening and relaxation velocities were measured in single Hyp and Sham myocytes 18 h after isolation. There were no differences in resting sarcomere length, percent of maximal shortening, time to peak shortening, and average sarcomere shortening velocity between Sham and Hyp cardiac cells. In contrast, average sarcomere relaxation velocity and half-relaxation time were significantly prolonged in Hyp myocytes. Contractile differences between Sham and Hyp myocytes detected by the optical-digital processor are confirmed by an independent method of video tracking of whole cell length changes during excitation-contraction. Despite the fact that freshly isolated myocytes contract more rigorously than 18-h-old myocytes, the relaxation abnormality was still observed in freshly isolated Hyp myocytes, suggesting impaired relaxation is an intrinsic property of Hyp myocytes rather than changes brought about by short-term culture. We postulate that reduced sarcomere relaxation velocity is a direct consequence of impaired Ca2+ sequestration-extrusion during relaxation in Hyp myocytes and may be responsible for diastolic dysfunction in hypertensive hypertrophic myocardium at the cellular level.

  7. Modulation of excitability, membrane currents and survival of cardiac myocytes by N-acylethanolamines.

    PubMed

    Voitychuk, Oleg I; Asmolkova, Valentyna S; Gula, Nadiya M; Sotkis, Ganna V; Galadari, Sehamuddin; Howarth, Frank C; Oz, Murat; Shuba, Yaroslav M

    2012-09-01

    N-acylethanolamines (NAE) are endogenously produced lipids playing important roles in a diverse range of physiological and pathological conditions. In the present study, using whole-cell patch clamp technique, we have for the first time investigated the effects of the most abundantly produced NAEs, N-stearoylethanolamine (SEA) and N-oleoylethanolamine (OEA), on electric excitability and membrane currents in cardiomyocytes isolated from endocardial, epicardial, and atrial regions of neonatal rat heart. SEA and OEA (1-10μM) attenuated electrical activity of the myocytes from all regions of the cardiac muscle by hyperpolarizing resting potential, reducing amplitude, and shortening the duration of the action potential. However, the magnitudes of these effects varied significantly depending on the type of cardiac myocyte (i.e., endocardial, epicardial, atrial) with OEA being generally more potent. OEA and to a lesser extent SEA suppressed in a concentration-dependent manner currents through voltage-gated Na(+) (VGSC) and L-type Ca(2+) (VGCC) channels, but induced variable cardiac myocyte type-dependent effects on background K(+) and Cl(-) conductance. The mechanisms of inhibitory action of OEA on cardiac VGSCs and VGCCs involved influence on channels' activation/inactivation gating and partial blockade of ion permeation. OEA also enhanced the viability of cardiac myocytes by reducing necrosis without a significant effect on apoptosis. We conclude that SEA and OEA attenuate the excitability of cardiac myocytes mainly through inhibition of VGSCs and VGCC-mediated Ca(2+) entry. Since NAEs are known to increase during tissue ischemia and infarction, these effects of NAEs may mediate some of their cardioprotective actions during these pathological conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Novel Protective Role of Endogenous Cardiac Myocyte P2X4 Receptors in Heart Failure

    PubMed Central

    Yang, Tiehong; Shen, Jian-bing; Yang, Ronghua; Redden, John; Dodge-Kafka, Kimberly; Grady, James; Jacobson, Kenneth A.; Liang, Bruce T.

    2014-01-01

    Background Heart failure (HF), despite continuing progress, remains a leading cause of mortality and morbidity. P2X4 receptors (P2X4R) have emerged as potentially important molecules in regulating cardiac function and as potential targets for HF therapy. Transgenic P2X4R overexpression can protect against HF, but this does not explain the role of native cardiac P2X4R. Our goal is to define the physiological role of endogenous cardiac myocyte P2X4R under basal conditions and during HF induced by myocardial infarction or pressure overload. Methods and Results Mice established with conditional cardiac-specific P2X4R knockout were subjected to left anterior descending coronary artery ligation–induced postinfarct or transverse aorta constriction–induced pressure overload HF. Knockout cardiac myocytes did not show P2X4R by immunoblotting or by any response to the P2X4R-specific allosteric enhancer ivermectin. Knockout hearts showed normal basal cardiac function but depressed contractile performance in postinfarct and pressure overload models of HF by in vivo echocardiography and ex vivo isolated working heart parameters. P2X4R coimmunoprecipitated and colocalized with nitric oxide synthase 3 (eNOS) in wild-type cardiac myocytes. Mice with cardiac-specific P2X4R overexpression had increased S-nitrosylation, cyclic GMP, NO formation, and were protected from postinfarct and pressure overload HF. Inhibitor of eNOS, L-N5-(1-iminoethyl)ornithine hydrochloride, blocked the salutary effect of cardiac P2X4R overexpression in postinfarct and pressure overload HF as did eNOS knockout. Conclusions This study establishes a new protective role for endogenous cardiac myocyte P2X4R in HF and is the first to demonstrate a physical interaction between the myocyte receptor and eNOS, a mediator of HF protection. PMID:24622244

  9. Adipose triglyceride lipase deletion from adipocytes, but not skeletal myocytes, impairs acute exercise performance in mice

    PubMed Central

    Dubé, John J.; Sitnick, Mitch T.; Schoiswohl, Gabriele; Wills, Rachel C.; Basantani, Mahesh K.; Cai, Lingzhi; Pulinilkunnil, Thomas

    2015-01-01

    Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme mediating triacylglycerol hydrolysis in virtually all cells, including adipocytes and skeletal myocytes, and hence, plays a critical role in mobilizing fatty acids. Global ATGL deficiency promotes skeletal myopathy and exercise intolerance in mice and humans, and yet the tissue-specific contributions to these phenotypes remain unknown. The goal of this study was to determine the relative contribution of ATGL-mediated triacylglycerol hydrolysis in adipocytes vs. skeletal myocytes to acute exercise performance. To achieve this goal, we generated murine models with adipocyte- and skeletal myocyte-specific targeted deletion of ATGL. We then subjected untrained mice to acute peak and submaximal exercise interventions and assessed exercise performance and energy substrate metabolism. Impaired ATGL-mediated lipolysis within adipocytes reduced peak and submaximal exercise performance, reduced peripheral energy substrate availability, shifted energy substrate preference toward carbohydrate oxidation, and decreased HSL Ser660 phosphorylation and mitochondrial respiration within skeletal muscle. In contrast, impaired ATGL-mediated lipolysis within skeletal myocytes was not sufficient to reduce peak and submaximal exercise performance or peripheral energy substrate availability and instead tended to enhance metabolic flexibility during peak exercise. Furthermore, the expanded intramyocellular triacylglycerol pool in these mice was reduced following exercise in association with preserved HSL phosphorylation, suggesting that HSL may compensate for impaired ATGL action in skeletal muscle during exercise. These data suggest that adipocyte rather than skeletal myocyte ATGL-mediated lipolysis plays a greater role during acute exercise in part because of compensatory mechanisms that maintain lipolysis in muscle, but not adipose tissue, when ATGL is absent. PMID:25783895

  10. Adipose triglyceride lipase deletion from adipocytes, but not skeletal myocytes, impairs acute exercise performance in mice.

    PubMed

    Dubé, John J; Sitnick, Mitch T; Schoiswohl, Gabriele; Wills, Rachel C; Basantani, Mahesh K; Cai, Lingzhi; Pulinilkunnil, Thomas; Kershaw, Erin E

    2015-05-15

    Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme mediating triacylglycerol hydrolysis in virtually all cells, including adipocytes and skeletal myocytes, and hence, plays a critical role in mobilizing fatty acids. Global ATGL deficiency promotes skeletal myopathy and exercise intolerance in mice and humans, and yet the tissue-specific contributions to these phenotypes remain unknown. The goal of this study was to determine the relative contribution of ATGL-mediated triacylglycerol hydrolysis in adipocytes vs. skeletal myocytes to acute exercise performance. To achieve this goal, we generated murine models with adipocyte- and skeletal myocyte-specific targeted deletion of ATGL. We then subjected untrained mice to acute peak and submaximal exercise interventions and assessed exercise performance and energy substrate metabolism. Impaired ATGL-mediated lipolysis within adipocytes reduced peak and submaximal exercise performance, reduced peripheral energy substrate availability, shifted energy substrate preference toward carbohydrate oxidation, and decreased HSL Ser(660) phosphorylation and mitochondrial respiration within skeletal muscle. In contrast, impaired ATGL-mediated lipolysis within skeletal myocytes was not sufficient to reduce peak and submaximal exercise performance or peripheral energy substrate availability and instead tended to enhance metabolic flexibility during peak exercise. Furthermore, the expanded intramyocellular triacylglycerol pool in these mice was reduced following exercise in association with preserved HSL phosphorylation, suggesting that HSL may compensate for impaired ATGL action in skeletal muscle during exercise. These data suggest that adipocyte rather than skeletal myocyte ATGL-mediated lipolysis plays a greater role during acute exercise in part because of compensatory mechanisms that maintain lipolysis in muscle, but not adipose tissue, when ATGL is absent.

  11. Control of Pathological Cardiac Hypertrophy by Transcriptional Corepressor IRF2BP2 (Interferon Regulatory Factor-2 Binding Protein 2).

    PubMed

    Fang, Jing; Li, Tianyu; Zhu, Xuehai; Deng, Ke-Qiong; Ji, Yan-Xiao; Fang, Chun; Zhang, Xiao-Jing; Guo, Jun-Hong; Zhang, Peng; Li, Hongliang; Wei, Xiang

    2017-09-01

    The transcription factor NFAT1 (nuclear factor of activated T-cells 1), with the aid of transcriptional coactivators, has been recognized for its necessity and sufficiency to drive pathological cardiac hypertrophy. However, how the transcriptional activity of NFAT1 in terms of cardiac hypertrophy is controlled at the transcriptional level has not been well defined. Herein, we showed that a cardiac-enriched protein IRF2BP2 (interferon regulatory factor-2 binding protein 2) was further upregulated in both human and mouse hypertrophied myocardium and negatively regulated cardiomyocyte hypertrophic response in vitro. By generating cardiomyocyte-specific Irf2bp2 knockout and Irf2bp2-transgenic mouse strains, our in vivo experiments showed that, whereas IRF2BP2 loss-of-function exacerbated both aortic banding- and angiotensin II infusion-induced cardiac hypertrophic response, IRF2BP2 overexpression exerted a strong protective effect against these maladaptive processes. Particularly, IRF2BP2 directly interacted with the C-terminal transactivation domain of NFAT1 by competing with myocyte enhancer factor-2C and disturbing their transcriptional synergism, thereby impeding NFAT1-transactivated hypertrophic transcriptome. As a result, the devastating effect of Irf2bp2 deficiency on cardiac hypertrophy was largely rescued by NFAT1 blockage. Our study, thus, defined IRF2BP2 as a novel negative regulator in controlling pathological cardiac hypertrophy at the transcriptional level. © 2017 American Heart Association, Inc.

  12. Distinct effects of Abelson kinase mutations on myocytes and neurons in dissociated Drosophila embryonic cultures: mimicking of high temperature.

    PubMed

    Liu, Lijuan; Wu, Chun-Fang

    2014-01-01

    Abelson tyrosine kinase (Abl) is known to regulate axon guidance, muscle development, and cell-cell interaction in vivo. The Drosophila primary culture system offers advantages in exploring the cellular mechanisms mediated by Abl with utilizing various experimental manipulations. Here we demonstrate that single-embryo cultures exhibit stage-dependent characteristics of cellular differentiation and developmental progression in neurons and myocytes, as well as nerve-muscle contacts. In particular, muscle development critically depends on the stage of dissociated embryos. In wild-type (WT) cultures derived from embryos before stage 12, muscle cells remained within cell clusters and were rarely detected. Interestingly, abundant myocytes were spotted in Abl mutant cultures, exhibiting enhanced myocyte movement and fusion, as well as neuron-muscle contacts even in cultures dissociated from younger, stage 10 embryos. Notably, Abl myocytes frequently displayed well-expanded lamellipodia. Conversely, Abl neurons were characterized with fewer large veil-like lamellipodia, but instead had increased numbers of filopodia and darker nodes along neurites. These distinct phenotypes were equally evident in both homo- and hetero-zygous cultures (Abl/Abl vs. Abl/+) of different alleles (Abl(1) and Abl(4) ) indicating dominant mutational effects. Strikingly, in WT cultures derived from stage 10 embryos, high temperature (HT) incubation promoted muscle migration and fusion, partially mimicking the advanced muscle development typical of Abl cultures. However, HT enhanced neuronal growth with increased numbers of enlarged lamellipodia, distinct from the characteristic Abl neuronal morphology. Intriguingly, HT incubation also promoted Abl lamellipodia expansion, with a much greater effect on nerve cells than muscle. Our results suggest that Abl is an essential regulator for myocyte and neuron development and that high-temperature incubation partially mimics the faster muscle development

  13. Signaling Pathways in Cardiac Myocyte Apoptosis

    PubMed Central

    Xia, Peng; Liu, Yuening

    2016-01-01

    Cardiovascular diseases, the number 1 cause of death worldwide, are frequently associated with apoptotic death of cardiac myocytes. Since cardiomyocyte apoptosis is a highly regulated process, pharmacological intervention of apoptosis pathways may represent a promising therapeutic strategy for a number of cardiovascular diseases and disorders including myocardial infarction, ischemia/reperfusion injury, chemotherapy cardiotoxicity, and end-stage heart failure. Despite rapid growth of our knowledge in apoptosis signaling pathways, a clinically applicable treatment targeting this cellular process is currently unavailable. To help identify potential innovative directions for future research, it is necessary to have a full understanding of the apoptotic pathways currently known to be functional in cardiac myocytes. Here, we summarize recent progress in the regulation of cardiomyocyte apoptosis by multiple signaling molecules and pathways, with a focus on the involvement of these pathways in the pathogenesis of heart disease. In addition, we provide an update regarding bench to bedside translation of this knowledge and discuss unanswered questions that need further investigation. PMID:28101515

  14. Patterning, Prestress, and Peeling Dynamics of Myocytes

    PubMed Central

    Griffin, Maureen A.; Engler, Adam J.; Barber, Thomas A.; Healy, Kevin E.; Sweeney, H. Lee; Discher, Dennis E.

    2004-01-01

    As typical anchorage-dependent cells myocytes must balance contractility against adequate adhesion. Skeletal myotubes grown as isolated strips from myoblasts on micropatterned glass exhibited spontaneous peeling after one end of the myotube was mechanically detached. Such results indicate the development of a prestress in the cells. To assess this prestress and study the dynamic adhesion strength of single myocytes, the shear stress of fluid aspirated into a large-bore micropipette was then used to forcibly peel myotubes. The velocity at which cells peeled from the surface, Vpeel, was measured as a continuously increasing function of the imposed tension, Tpeel, which ranges from ∼0 to 50 nN/μm. For each cell, peeling proved highly heterogeneous, with Vpeel fluctuating between 0 μm/s (∼80% of time) and ∼10 μm/s. Parallel studies of smooth muscle cells expressing GFP-paxillin also exhibited a discontinuous peeling in which focal adhesions fractured above sites of strong attachment (when pressure peeled using a small-bore pipette). The peeling approaches described here lend insight into the contractile-adhesion balance and can be used to study the real-time dynamics of stressed adhesions through both physical detection and the use of GFP markers; the methods should prove useful in comparing normal versus dystrophic muscle cells. PMID:14747355

  15. Effects of histone deacetylase inhibitor valproic acid on skeletal myocyte development

    PubMed Central

    Li, Qiao; Foote, Michelle; Chen, Jihong

    2014-01-01

    The tight interaction between genomic DNA and histones, which normally represses gene transcription, can be relaxed by histone acetylation. This loosening of the DNA-histone complex is important for selective gene activation during stem cell differentiation. Histone acetylation may be increased through the application of histone deacetylase inhibitors at the early stages of differentiation to modulate lineage commitment. We examined the effects of the histone deacetylase inhibitor valproic acid on the differentiation of pluripotent stem cells into skeletal myocytes. Our data demonstrated that valproic acid can act in concert with retinoic acid to enhance the commitment of stem cells into the skeletal myocyte lineage reinforcing the notion that histone acetylation is important for skeletal myogenesis. Thus, using a combination of small molecules to exploit different signaling pathways pertaining to specific gene programs will allow for modulation of lineage specification and stem cell differentiation in potential cell-based therapies. PMID:25423891

  16. The Scaffold Protein Muscle A-Kinase Anchoring Protein β Orchestrates Cardiac Myocyte Hypertrophic Signaling Required for the Development of Heart Failure

    PubMed Central

    Kritzer, Michael D.; Li, Jinliang; Passariello, Catherine L.; Gayanilo, Marjorie; Thakur, Hrishikesh; Dayan, Joseph; Dodge-Kafka, Kimberly; Kapiloff, Michael S.

    2014-01-01

    Background Cardiac myocyte hypertrophy is regulated by an extensive intracellular signal transduction network. In vitro evidence suggests that the scaffold protein muscle A-kinase anchoring protein β (mAKAPβ) serves as a nodal organizer of hypertrophic signaling. However, the relevance of mAKAPβ signalosomes to pathological remodeling and heart failure in vivo remains unknown. Methods and Results Using conditional, cardiac myocyte–specific gene deletion, we now demonstrate that mAKAPβ expression in mice is important for the cardiac hypertrophy induced by pressure overload and catecholamine toxicity. mAKAPβ targeting prevented the development of heart failure associated with long-term transverse aortic constriction, conferring a survival benefit. In contrast to 29% of control mice (n=24), only 6% of mAKAPβ knockout mice (n=31) died in the 16 weeks of pressure overload (P=0.02). Accordingly, mAKAPβ knockout inhibited myocardial apoptosis and the development of interstitial fibrosis, left atrial hypertrophy, and pulmonary edema. This improvement in cardiac status correlated with the attenuated activation of signaling pathways coordinated by the mAKAPβ scaffold, including the decreased phosphorylation of protein kinase D1 and histone deacetylase 4 that we reveal to participate in a new mAKAP signaling module. Furthermore, mAKAPβ knockout inhibited pathological gene expression directed by myocyte-enhancer factor-2 and nuclear factor of activated T-cell transcription factors that associate with the scaffold. Conclusions mAKAPβ orchestrates signaling that regulates pathological cardiac remodeling in mice. Targeting of the underlying physical architecture of signaling networks, including mAKAPβ signalosome formation, may constitute an effective therapeutic strategy for the prevention and treatment of pathological remodeling and heart failure. PMID:24812305

  17. Physiological changes induced in cardiac myocytes by cytotoxic T lymphocytes

    SciTech Connect

    Hassin, D.; Fixler, R.; Shimoni, Y.; Rubinstein, E.; Raz, S.; Gotsman, M.S.; Hasin, Y.

    1987-01-01

    The lethal hit induced by viral specific, sensitized, cytotoxic T lymphocytes (CTL) attacking virus-infected heart cells is important in the pathogenesis of viral myocarditis and reflects the key role of CTL in this immune response. The mechanisms involved are incompletely understood. Studies of the physiological changes induced in mengovirus-infected, cultured, neonatal, rat heart cells by CTL that had been previously sensitized by the same virus are presented. The CTL were obtained from spleens of mengovirus-infected, major histocompatibility complex (MHC) matched adult rats. Cell wall motion was measured by an optical method, action potentials with intracellular microelectrodes, and total exchangeable calcium content by /sup 45/Ca tracer measurements after loading the myocytes with /sup 45/Ca and then exposing them to CTL. After 50 min (mean time) of exposing mengovirus-infected myocytes to the CTL, the mechanical relaxation of the myocyte was slowed, with a subsequent slowing of beating rate and a reduced amplitude of contraction. Impaired relaxation progressed, and prolonged oscillatory contractions lasting up to several seconds appeared, with accompanying oscillations in the prolonged plateau phase of the action potentials. Arrest of the myocyte contractions appeared 98 min (mean time) after exposure to CTL. It is concluded that infection of cultured myocytes with mengovirus predisposes them to attack by mengovirus specific CTL, and that persistent dysfunction of the myocyte is preceded by reversible changes in membrane potential and contraction. This is suggestive of an altered calcium handling by the myocytes possibly resulting in the cytotoxic effect.

  18. Quality Metrics for Stem Cell-Derived Cardiac Myocytes

    PubMed Central

    Sheehy, Sean P.; Pasqualini, Francesco; Grosberg, Anna; Park, Sung Jin; Aratyn-Schaus, Yvonne; Parker, Kevin Kit

    2014-01-01

    Summary Advances in stem cell manufacturing methods have made it possible to produce stem cell-derived cardiac myocytes at industrial scales for in vitro muscle physiology research purposes. Although FDA-mandated quality assurance metrics address safety issues in the manufacture of stem cell-based products, no standardized guidelines currently exist for the evaluation of stem cell-derived myocyte functionality. As a result, it is unclear whether the various stem cell-derived myocyte cell lines on the market perform similarly, or whether any of them accurately recapitulate the characteristics of native cardiac myocytes. We propose a multiparametric quality assessment rubric in which genetic, structural, electrophysiological, and contractile measurements are coupled with comparison against values for these measurements that are representative of the ventricular myocyte phenotype. We demonstrated this procedure using commercially available, mass-produced murine embryonic stem cell- and induced pluripotent stem cell-derived myocytes compared with a neonatal mouse ventricular myocyte target phenotype in coupled in vitro assays. PMID:24672752

  19. Network Reconstruction and Systems Analysis of Cardiac Myocyte Hypertrophy Signaling*

    PubMed Central

    Ryall, Karen A.; Holland, David O.; Delaney, Kyle A.; Kraeutler, Matthew J.; Parker, Audrey J.; Saucerman, Jeffrey J.

    2012-01-01

    Cardiac hypertrophy is managed by a dense web of signaling pathways with many pathways influencing myocyte growth. A quantitative understanding of the contributions of individual pathways and their interactions is needed to better understand hypertrophy signaling and to develop more effective therapies for heart failure. We developed a computational model of the cardiac myocyte hypertrophy signaling network to determine how the components and network topology lead to differential regulation of transcription factors, gene expression, and myocyte size. Our computational model of the hypertrophy signaling network contains 106 species and 193 reactions, integrating 14 established pathways regulating cardiac myocyte growth. 109 of 114 model predictions were validated using published experimental data testing the effects of receptor activation on transcription factors and myocyte phenotypic outputs. Network motif analysis revealed an enrichment of bifan and biparallel cross-talk motifs. Sensitivity analysis was used to inform clustering of the network into modules and to identify species with the greatest effects on cell growth. Many species influenced hypertrophy, but only a few nodes had large positive or negative influences. Ras, a network hub, had the greatest effect on cell area and influenced more species than any other protein in the network. We validated this model prediction in cultured cardiac myocytes. With this integrative computational model, we identified the most influential species in the cardiac hypertrophy signaling network and demonstrate how different levels of network organization affect myocyte size, transcription factors, and gene expression. PMID:23091058

  20. Phenotypic screen quantifying differential regulation of cardiac myocyte hypertrophy identifies CITED4 regulation of myocyte elongation

    PubMed Central

    Ryall, Karen A.; Bezzerides, Vassilios J.; Rosenzweig, Anthony; Saucerman, Jeffrey J.

    2014-01-01

    Cardiac hypertrophy is controlled by a highly connected signaling network with many effectors of cardiac myocyte size. Quantification of the contribution of individual pathways to specific changes in shape and transcript abundance is needed to better understand hypertrophy signaling and to improve heart failure therapies. We stimulated cardiac myocytes with 15 hypertrophic agonists and quantitatively characterized differential regulation of 5 shape features using high-throughput microscopy and transcript levels of 12 genes using qPCR. Transcripts measured were associated with phenotypes including fibrosis, cell death, contractility, proliferation, angiogenesis, inflammation, and the fetal cardiac gene program. While hypertrophy pathways are highly connected, the agonist screen revealed distinct hypertrophy phenotypic signatures for the 15 receptor agonists. We then used k-means clustering of inputs and outputs to identify a network map linking input modules to output modules. Five modules were identified within inputs and outputs with many maladaptive outputs grouping together in one module: Bax, C/EBPβ, Serca2a, TNFα, and CTGF. Subsequently, we identified mechanisms underlying two correlations revealed in the agonist screen: correlation between regulators of fibrosis and cell death signaling (CTGF and Bax mRNA) caused by AngII; and myocyte proliferation (CITED4 mRNA) and elongation caused by Nrg1. Follow-up experiments revealed positive regulation of Bax mRNA level by CTGF and an incoherent feedforward loop linking Nrg1, CITED4 and elongation. With this agonist screen, we identified the most influential inputs in the cardiac hypertrophy signaling network for a variety of features related to pathological and protective hypertrophy signaling and shared regulation among cardiac myocyte phenotypes. PMID:24613264

  1. Contribution of I Ks to ventricular repolarization in canine myocytes.

    PubMed

    Horváth, Balázs; Magyar, János; Szentandrássy, Norbert; Birinyi, Péter; Nánási, Péter P; Bányász, Tamás

    2006-09-01

    The role of the slow delayed rectifier K(+) current (I (Ks)) in cardiac repolarization seems to be largely influenced by the experimental conditions including the species and tissue studied. The aim of this study was to determine the contribution of I (Ks) to repolarization in canine ventricular myocytes by measuring the frequency dependent action potential lengthening effect of 10 microM chromanol 293B using sharp microelectrodes. Pretreatment with isoproterenol (2 nM), E-4031 (1 microM), and injection of inward current pulses were applied to modify action potential configuration. Chromanol alone caused moderate but statistically significant lengthening of action potentials at cycle lengths longer than 500 ms. The lengthening effect of chromanol, which was strongly enhanced in the presence of either isoproterenol or E-4031, was proportional to the amplitude of plateau, whereas poor correlation was found with action potential duration. Similar results were obtained when action potential configuration was modified by injection of depolarizing current pulses. Computer simulations revealed that activation of I (Ks) is a sharp function of the plateau amplitude within the physiological range, while elongation of repolarization may enhance I (Ks) only when it is excessive. It was concluded that the effect of I (Ks) on ventricular repolarization critically depends on the level of action potential plateau; however, other factors, like action potential duration, cycle length, or suppression of other K(+) currents can also influence its contribution.

  2. Aged garlic extract enhances heme oxygenase-1 and glutamate-cysteine ligase modifier subunit expression via the nuclear factor erythroid 2-related factor 2-antioxidant response element signaling pathway in human endothelial cells.

    PubMed

    Hiramatsu, Kei; Tsuneyoshi, Tadamitsu; Ogawa, Takahiro; Morihara, Naoaki

    2016-02-01

    The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway defends cells against oxidative stress and regulates the cellular redox balance. Activation of this pathway induces a variety of antioxidant enzymes, resulting in the protection of our bodies against oxidative damage. It has been reported that aged garlic extract (AGE), a garlic preparation that is rich in water-soluble cysteinyl moieties, reduces oxidative stress and helps to ameliorate of cardiovascular, renal and hepatic diseases. We hypothesized that AGE enhances the expression of antioxidant enzymes via the Nrf2-ARE pathway in human umbilical vein endothelial cells in culture. Gene expression of antioxidant enzymes was measured using real-time polymerase chain reaction. Nuclear accumulation of Nrf2 and antioxidant enzymes expression were evaluated using western blotting analyses. We found that AGE promoted the accumulation of Nrf2 into the nucleus in a time- and dose-dependent manner and increased the gene expression and polypeptide level of heme oxygenase-1 (HO-1) and glutamate-cysteine ligase modifier subunit (GCLM). Moreover, the effect of AGE in elevating the gene expression of HO-1 and GCLM was found to be mediated via Nrf2 activation in human umbilical vein endothelial cells. Taken together, these observations suggest that AGE induces the expression of HO-1 and GCLM, which are antioxidant enzymes, via activation of the Nrf2-ARE signaling pathway.

  3. Delayed remote ischemic preconditioning produces an additive cardioprotection to sevoflurane postconditioning through an enhanced heme oxygenase 1 level partly via nuclear factor erythroid 2-related factor 2 nuclear translocation.

    PubMed

    Zhou, Chenghui; Li, Huatong; Yao, Yuntai; Li, Lihuan

    2014-11-01

    Although both sevoflurane postconditioning (SPoC) and delayed remote ischemic preconditioning (DRIPC) have been proved effective in various animal and human studies, the combined effect of these 2 strategies remains unclear. Therefore, this study was designed to investigate this effect and elucidate the related signal mechanisms in a Langendorff perfused rat heart model. After 30-minute balanced perfusion, isolated hearts were subjected to 30-minute ischemia followed by 60-minute reperfusion except 90-minute perfusion for control. A synergic cardioprotective effect of SPoC (3% v/v) and DRIPC (4 cycles 5-minute occlusion/5-minute reflow at the unilateral hindlimb once per day for 3 days before heart isolation) was observed with facilitated cardiac functional recovery and decreased cardiac enzyme release. The infarct size-limiting effect was more pronounced in the combined group (6.76% ± 2.18%) than in the SPoC group (16.50% ± 4.55%, P < .001) or in the DRIPC group (10.22% ± 2.57%, P = .047). Subsequent analysis revealed that an enhanced heme oxygenase 1 (HO-1) expression, but not protein kinase B/AKt or extracellular signal-regulated kinase 1 and 2 activation, was involved in the synergic cardioprotective effect, which was further confirmed in the messenger RNA level of HO-1. Such trend was also observed in the nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, an upstream regulation of HO-1. In addition, correlation analysis showed a significantly positive relationship between HO-1 expression and Nrf2 translocation (r = 0.729, P < .001). Hence, we conclude that DRIPC may produce an additive cardioprotection to SPoC through an enhanced HO-1 expression partly via Nrf2 translocation.

  4. Effects of mitoxantrone on excitation-contraction coupling in guinea pig ventricular myocytes.

    PubMed

    Wang, G X; Zhou, X B; Korth, M

    2000-05-01

    The mechanisms of the inotropic effect of mitoxantrone (MTO), a synthetic dihydroxyanthracenedione derivative with antineoplastic activity, was investigated in guinea pig ventricular myocytes using whole-cell patch-clamp methods combined with fura-2 fluorescence and cell-edge tracking techniques. In right ventricular papillary muscles, 30 microM MTO increased isometric force of contraction as well as action potential duration (APD) in a time-dependent manner. The force of contraction was increased approximately 3-fold within 4 h. This positive inotropic effect was accompanied by a prolongation of time to peak force and relaxation time. In current-clamped single myocytes treated with 30 microM MTO for 30 min, an increase of cell shortening by 77% and a prolongation of APD by 19% was observed. Peak amplitude of the intracellular Ca(2+) transients was also increased by 10%. The contribution of APD prolongation to the enhancement of cell shortening induced by MTO was assessed by clamping control myocytes with action potentials of various duration. Prolongation of APD(90) (ADP measured at 90% of repolarization) by 24% led to an increase of cell shortening by 13%. When the cells were clamped by an action potential with constant APD, MTO still caused an increase of cell shortening by 59% within 30 min. No increase of the peak intracellular Ca(2+) transients, however, was observed under this condition. We conclude that both the APD prolongation and a direct interaction with the contractile proteins contributed to the positive inotropic effect of MTO.

  5. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    PubMed Central

    He, Quan; Harris, Nicole; Ren, Jun; Han, Xianlin

    2014-01-01

    Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS) have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress. PMID:25247053

  6. Mild electrical pulse current stimulation upregulates S100A4 and promotes cardiogenesis in MSC and cardiac myocytes coculture monolayer.

    PubMed

    Wen, Lei; Zhang, Changhai; Nong, Yaoming; Yao, Qing; Song, Zhiyuan

    2013-01-01

    < 0.01) and 6 h/day group (P < 0.05). Since coculture was used as stimuli, immunofluorescence was used to visualize the changes during EPCS for the purpose of elucidating the impact of EPCS on cardiac myocytes and MSCs. We found that after 5 days exposure, EPCS can enhance the expression of S100A4, which is 2.33 fold in cardiac myocytes (P < 0.01) and 1.99 fold in MSCs (P < 0.01) in gray value. A significant increasing expression of the myocyte enhancer factor (MEF) and GATA4 is detected in neonatal rat cardiac myocytes (P < 0.01) compared with cotemporary coculture monolayer in the control group. Also, EPCS can trigger the assembly of MEF2c in the nuclei. In addition, more cardiac myocytes were found to have two nuclei. But MSCs fail to active MEF2C transcriptional factor like that in cardiac myocytes after EPCS exposure. The elevation of MEF2 in both cytoplasm and nuclei of cardiac myocytes can always make a clear distinction of the cardiac myocytes and MSCs in coculture. Some factors show strong upregulation tendency with EPCS in both cardiac myocytes and MSCs-these include the troponin T (P < 0.01) and Cx43 (P < 0.05) in cardiac myocytes, and troponin T (P < 0.01) and Cx43 (P < 0.01) in MSCs. Collagen I expression is not affected with EPCS. In conclusion, mild EPCS can upregulate the secretion of S100A4 in both cardiac myocytes and MSCs, which is a factor supporting the cardiomyogenesis and angiogenesis; it further triggers the development of neonatal rat cardiac myocytes through upregulation of MEF2C and GATA4, the number of cardiac myocytes with two nuclei increases with EPCS, but this phenomenon does not appear in MSCs. Despite this, Cx43 and troponin T in both cardiac myocytes and MSCs are very sensitive to EPCS. EPCS can act as an effective and multi-targeted physical intervention method in cardiomyogenesis.

  7. [Ultrastructural features of femoral artery myocytes during experimental leg lengthening].

    PubMed

    Ir'ianov, Iu M; Migalkin, N S; Kniazeva, L M

    1984-11-01

    Femoral arteries in mature dogs have been studied electron microscopically at various stages of the shin lengthening performed after G. A. Ilizarov method. Certain ultrastructural signs demonstrating biosynthetic and secretory activation of myocytes directed to intensification of elastogenetic processes have been revealed. Immature elastic fibers are forming around myocytes as aggregations of microfibrils, later accumulations of amorphous material appear in them. On the 28th, 42d days of distraction, hyperproduction of intra- and extracellular vesicles is noted, as well as that of intracellular matrix. Cytoplasmic islets of myocytes and intercellular connections increase in number. In the subintimal layer, of the tunica media and at its border with adventitium, longitudinally situating fasciculi of smooth muscle cells are forming. The myocytic ultrastructural peculiarities noted, the new formations of elastic elements depend, at early stages of the experiment, on changes of regional hemodynamics, and at advanced stages - also on the effect of longitudinally acting tension stress.

  8. Distribution of phenotypically disparate myocyte subpopulations in airway smooth muscle.

    PubMed

    Halayko, Andrew J; Stelmack, Gerald L; Yamasaki, Akira; McNeill, Karol; Unruh, Helmut; Rector, Edward

    2005-01-01

    Phenotype and functional heterogeneity of airway smooth muscle (ASM) cells in vitro is well known, but there is limited understanding of these features in vivo. We tested whether ASM is composed of myocyte subsets differing in contractile phenotype marker expression. We used flow cytometry to compare smooth muscle myosin heavy chain (smMHC) and smooth muscle-alpha-actin (sm-alpha-actin) abundance in myocytes dispersed from canine trachealis. Based on immunofluorescent intensity and light scatter characteristics (forward and 90 degrees side scatter), 2 subgroups were identified and isolated. Immunoblotting confirmed smMHC and sm-alpha-actin were 10- and 5-fold greater, respectively, in large, elongate myocytes that comprised approximately 60% of total cells. Immunohistochemistry revealed similar phenotype heterogeneity in human bronchial smooth muscle. Canine tracheal myocyte subpopulations isolated by flow cytometry were used to seed primary subcultures. Proliferation of subcultures established with myocytes exhibiting low levels of smMHC and sm-alpha-actin was approximately 2 x faster than subcultures established with ASM cells with a high marker protein content. These studies demonstrate broad phenotypic heterogeneity of myocytes in normal ASM tissue that is maintained in cell culture, as demonstrated by divergent proliferative capacity. The distinct roles of these subgroups could be a key determinant of normal and pathological lung development and biology.

  9. Acute Simvastatin Inhibits KATP Channels of Porcine Coronary Artery Myocytes

    PubMed Central

    Zhang, Qian; Li, Rachel Wai Sum; Kong, Siu Kai; Ngai, Sai Ming; Wan, Song; Ho, Ho Pui; Lee, Simon Ming Yuen; Hoi, Maggie Pui Man; Chan, Shun Wan; Leung, George Pak Heng; Kwan, Yiu Wa

    2013-01-01

    Background Statins (3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors) consumption provides beneficial effects on cardiovascular systems. However, effects of statins on vascular KATP channel gatings are unknown. Methods Pig left anterior descending coronary artery and human left internal mammary artery were isolated and endothelium-denuded for tension measurements and Western immunoblots. Enzymatically-dissociated/cultured arterial myocytes were used for patch-clamp electrophysiological studies and for [Ca2+]i, [ATP]i and [glucose]o uptake measurements. Results The cromakalim (10 nM to 10 µM)- and pinacidil (10 nM to 10 µM)-induced concentration-dependent relaxation of porcine coronary artery was inhibited by simvastatin (3 and 10 µM). Simvastatin (1, 3 and 10 µM) suppressed (in okadaic acid (10 nM)-sensitive manner) cromakalim (10 µM)- and pinacidil (10 µM)-mediated opening of whole-cell KATP channels of arterial myocytes. Simvastatin (10 µM) and AICAR (1 mM) elicited a time-dependent, compound C (1 µM)-sensitive [3H]-2-deoxy-glucose uptake and an increase in [ATP]i levels. A time (2–30 min)- and concentration (0.1–10 µM)-dependent increase by simvastatin of p-AMPKα-Thr172 and p-PP2A-Tyr307 expression was observed. The enhanced p-AMPKα-Thr172 expression was inhibited by compound C, ryanodine (100 µM) and KN93 (10 µM). Simvastatin-induced p-PP2A-Tyr307 expression was suppressed by okadaic acid, compound C, ryanodine, KN93, phloridzin (1 mM), ouabain (10 µM), and in [glucose]o-free or [Na+]o-free conditions. Conclusions Simvastatin causes ryanodine-sensitive Ca2+ release which is important for AMPKα-Thr172 phosphorylation via Ca2+/CaMK II. AMPKα-Thr172 phosphorylation causes [glucose]o uptake (and an [ATP]i increase), closure of KATP channels, and phosphorylation of AMPKα-Thr172 and PP2A-Tyr307 resulted. Phosphorylation of PP2A-Tyr307 occurs at a site downstream of AMPKα-Thr172 phosphorylation. PMID:23799098

  10. The Unfolded Protein Response Regulates Uterine Myocyte Antioxidant Responsiveness During Pregnancy.

    PubMed

    Ramnarayanan, Saiprasad; Kyathanahalli, Chandrashekara; Ingles, Judith; Park-York, MieJung; Jeyasuria, Pancharatnam; Condon, Jennifer C

    2016-12-01

    There is considerable evidence that implicates oxidative stress in the pathophysiology of human pregnancy complications. However, the role and the mechanism of maintaining an antioxidant prosurvival uterine environment during normal pregnancy is largely unresolved. Herein we report that the highly active uterine unfolded protein response plays a key role in promoting antioxidant activity in the uterine myocyte across gestation. The unfolded protein response (UPR) senses the accumulation of misfolded proteins in the endoplasmic reticulum (ER) and activates a signaling network that consists of the transmembrane protein kinase eukaryotic translation initiation factor 2 alpha kinase 3/PKR-like-ER kinase (EIF2AK3), which acts to decrease protein translation levels, allowing for a lowered need for protein folding during periods of ER stress. However, independent of its translational regulatory capacity, EIF2AK3-dependent signals elicit the activation of the transcription factor, nuclear factor erythroid 2-like 2 (NFE2L2) in response to oxidative stress. NFE2L2 binds to antioxidant response elements in the promoters of a variety of antioxidant genes that minimize the opportunities for generation of reactive oxygen intermediates. Our analysis demonstrates that in the absence of EIF2AK3, the uterine myocyte experiences increased levels of reactive oxygen species due to decreased NFE2L2 activation. Elevated levels of intracellular reactive oxygen species were observed in the EIF2AK3 null cells, and this was associated with the onset of apoptotic cell death. These findings confirm the prosurvival and antioxidant role of UPR-mediated EIF2AK3 activation in the context of the human uterine myocyte.

  11. Epigallocatechin-3-gallate inhibits STAT-1 activation and protects cardiac myocytes from ischemia/reperfusion-induced apoptosis.

    PubMed

    Townsend, Paul A; Scarabelli, Tiziano M; Pasini, Evasio; Gitti, Gianluca; Menegazzi, Marta; Suzuki, Hisanori; Knight, Richard A; Latchman, David S; Stephanou, Anastasis

    2004-10-01

    We have previously demonstrated that STAT-1 plays a critical role in promoting apoptotic cell death in cardiac myocytes following ischemia/reperfusion (I/R) injury. Epigallocatechin-3-gallate (EGCG), the major constituent of green tea, has recently been reported to inhibit STAT-1 activity in noncardiac cells. In the present study, we have assessed the protective effects of EGCG and green tea extract (GTE) infusion on both cultures of cardiac myocytes and the isolated rat heart. EGCG reduced STAT-1 phosphorylation and protected cardiac myocytes against I/R-induced apoptotic cell death. Moreover, EGCG reduced the expression of a known STAT-1 pro-apoptotic target gene, Fas receptor. More interestingly, oral administration of GTE as well as EGCG infusion limited the extent of infarct size and attenuated the magnitude of myocyte apoptosis in the isolated rat heart exposed to I/R injury. This reduction cell death was associated with improved hemodynamic recovery and ventricular function in the ischemic/reperfused rat heart. This is the first report to show that consumption of green tea is able to mediate cardioprotection and enhance cardiac function during I/R injury. Because GTE-mediated cardioprotection is achieved, at least in part, through inhibition of STAT-1 activity, we may postulate that a similar action can be implemented in the clinical setting to minimize STAT-1 activation levels in patients with acute coronary artery disease (CAD).

  12. Targeted intracellular catalase delivery protects neonatal rat myocytes from hypoxia-reoxygenation and ischemia-reperfusion injury

    PubMed Central

    Undyala, Vishnu; Terlecky, Stanley R.; Vander Heide, Richard S.

    2010-01-01

    Hypoxia followed by reoxygenation (HR) and ischemia-reperfusion (IR) cause cell death in neonatal rat ventricular myocytes (NRVM) primarily through the generation of oxidative stress. Extracellular catalase (CAT) has not been effective in reducing or eliminating IR or HR-induced cell death due both to extracellular degradation and poor cellular uptake. Aims 1) to determine if a cell penetrating catalase derivative with enhanced peroxisome targeting efficiency (catalase-SKL) increases intracellular levels of the antioxidant enzyme in NVRM; and 2) to determine if catalase-SKL protects against both HR and IR injury. Methods NRVM were subjected to 3 or 6 hr of HR or 1 hr of IR. CAT concentration, activity, and subcellular distribution were determined using standard techniques. Reactive oxygen species (ROS) and related oxidative stress were visualized using 2’,7’-dichlorofluorescin diacetate. Cell death was measured using trypan blue exclusion or lactate dehydrogenase (LDH) release assays. Results CAT activity was higher in (catalase-SKL) transduced myocytes, was concentrated in a membranous cellular fraction, and potently inhibited oxidative stress. In contrast to non-transducible (unmodified) CAT, catalase-SKL-treated myocytes were protected against both HR and IR. Conclusions 1) catalase-SKL increased myocyte CAT content and activity and dramatically increased resistance to hydrogen peroxide-induced oxidation; 2) catalase-SKL protects against both HR and IR; 3) catalase-SKL may represent a new therapeutic approach to protect hearts against myocardial HR or IR. PMID:20708413

  13. Activation of nuclear factor erythroid 2-related factor 2 coordinates dimethylarginine dimethylaminohydrolase/PPAR-γ/endothelial nitric oxide synthase pathways that enhance nitric oxide generation in human glomerular endothelial cells.

    PubMed

    Luo, Zaiming; Aslam, Shakil; Welch, William J; Wilcox, Christopher S

    2015-04-01

    Dimethylarginine dimethylaminohydrolase (DDAH) degrades asymmetric dimethylarginine, which inhibits nitric oxide (NO) synthase (NOS). Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcriptional factor that binds to antioxidant response elements and transcribes many antioxidant genes. Because the promoters of the human DDAH-1 and DDAH-2, endothelial NOS (eNOS) and PPAR-γ genes contain 2 to 3 putative antioxidant response elements, we hypothesized that they were regulated by Nrf2/antioxidant response element. Incubation of human renal glomerular endothelial cells with the Nrf2 activator tert-butylhydroquinone (20 μmol·L(-1)) significantly (P<0.05) increased NO and activities of NOS and DDAH and decreased asymmetric dimethylarginine. It upregulated genes for hemoxygenase-1, eNOS, DDAH-1, DDAH-2, and PPAR-γ and partitioned Nrf2 into the nucleus. Knockdown of Nrf2 abolished these effects. Nrf2 bound to one antioxidant response element on DDAH-1 and DDAH-2 and PPAR-γ promoters but not to the eNOS promoter. An increased eNOS and phosphorylated eNOS (P-eNOSser-1177) expression with tert-butylhydroquinone was prevented by knockdown of PPAR-γ. Expression of Nrf2 was reduced by knockdown of PPAR-γ, whereas PPAR-γ was reduced by knockdown of Nrf2, thereby demonstrating 2-way positive interactions. Thus, Nrf2 transcribes HO-1 and other genes to reduce reactive oxygen species, and DDAH-1 and DDAH-2 to reduce asymmetric dimethylarginine and PPAR-γ to increase eNOS and its phosphorylation and activity thereby coordinating 3 pathways that enhance endothelial NO generation.

  14. Transcriptional repression of Kruppel like factor-2 by the adaptor protein p66shc

    PubMed Central

    Kumar, Ajay; Hoffman, Timothy A.; DeRicco, Jeremy; Naqvi, Asma; Jain, Mukesh K.; Irani, Kaikobad

    2009-01-01

    The adaptor protein p66shc promotes cellular oxidative stress and apoptosis. Here, we demonstrate a novel mechanistic relationship between p66shc and the kruppel like factor-2 (KLF2) transcription factor and show that this relationship has biological relevance to p66shc-regulated cellular oxidant level, as well as KLF2-induced target gene expression. Genetic knockout of p66shc in mouse embryonic fibroblasts (MEFs) stimulates activity of the core KLF2 promoter and increases KLF2 mRNA and protein expression. Similarly, shRNA-induced knockdown of p66shc increases KLF2-promoter activity in HeLa cells. The increase in KLF2-promoter activity in p66shc-knockout MEFs is dependent on a myocyte enhancing factor-2A (MEF2A)-binding sequence in the core KLF2 promoter. Short-hairpin RNA-induced knockdown of p66shc in endothelial cells also stimulates KLF2 mRNA and protein expression, as well as expression of the endothelial KLF2 target gene thrombomodulin. MEF2A protein and mRNA are more abundant in p66shc-knockout MEFs, resulting in greater occupancy of the KLF2 promoter by MEF2A. In endothelial cells, the increase in KLF2 and thrombomodulin protein by shRNA-induced decrease in p66shc expression is partly abrogated by knockdown of MEF2A. Finally, knockdown of KLF2 abolishes the decrease in the cellular reactive oxygen species hydrogen peroxide observed with knockdown of p66shc, and KLF2 overexpression suppresses cellular hydrogen peroxide levels, independent of p66shc expression. These findings illustrate a novel mechanism by which p66shc promotes cellular oxidative stress, through suppression of MEF2A expression and consequent repression of KLF2 transcription.—Kumar, A., Hoffman, T. A., DeRicco, J., Naqvi, A., Jain, M. K., Irani, K. Transcriptional repression of Kruppel like factor-2 by the adaptor protein p66shc. PMID:19696221

  15. Stem cell stimulation of endogenous myocyte regeneration.

    PubMed

    Weil, Brian R; Canty, John M

    2013-08-01

    Cell-based therapy has emerged as a promising approach to combat the myocyte loss and cardiac remodelling that characterize the progression of left ventricular dysfunction to heart failure. Several clinical trials conducted over the past decade have shown that a variety of autologous bone-marrow- and peripheral-blood-derived stem and progenitor cell populations can be safely administered to patients with ischaemic heart disease and yield modest improvements in cardiac function. Concurrently, rapid progress has been made at the pre-clinical level to identify novel therapeutic cell populations, delineate the mechanisms underlying cell-mediated cardiac repair and optimize cell-based approaches for clinical use. The following review summarizes the progress that has been made in this rapidly evolving field over the past decade and examines how our current understanding of the mechanisms involved in successful cardiac regeneration should direct future investigation in this area. Particular emphasis is placed on discussion of the general hypothesis that the benefits of cell therapy primarily result from stimulation of endogenous cardiac repair processes that have only recently been identified in the adult mammalian heart, rather than direct differentiation of exogenous cells. Continued scientific investigation in this area will guide the optimization of cell-based approaches for myocardial regeneration, with the ultimate goal of clinical implementation and substantial improvement in our ability to restore cardiac function in ischaemic heart disease patients.

  16. Benchmarking electrophysiological models of human atrial myocytes

    PubMed Central

    Wilhelms, Mathias; Hettmann, Hanne; Maleckar, Mary M.; Koivumäki, Jussi T.; Dössel, Olaf; Seemann, Gunnar

    2013-01-01

    Mathematical modeling of cardiac electrophysiology is an insightful method to investigate the underlying mechanisms responsible for arrhythmias such as atrial fibrillation (AF). In past years, five models of human atrial electrophysiology with different formulations of ionic currents, and consequently diverging properties, have been published. The aim of this work is to give an overview of strengths and weaknesses of these models depending on the purpose and the general requirements of simulations. Therefore, these models were systematically benchmarked with respect to general mathematical properties and their ability to reproduce certain electrophysiological phenomena, such as action potential (AP) alternans. To assess the models' ability to replicate modified properties of human myocytes and tissue in cardiac disease, electrical remodeling in chronic atrial fibrillation (cAF) was chosen as test case. The healthy and remodeled model variants were compared with experimental results in single-cell, 1D and 2D tissue simulations to investigate AP and restitution properties, as well as the initiation of reentrant circuits. PMID:23316167

  17. Glycolytic oscillations in isolated rabbit ventricular myocytes.

    PubMed

    Yang, Jun-Hai; Yang, Ling; Qu, Zhilin; Weiss, James N

    2008-12-26

    Previous studies have shown that glycolysis can oscillate periodically, driven by feedback loops in regulation of key glycolytic enzymes by free ADP and other metabolites. Here we show both theoretically and experimentally in cardiac myocytes that when the capacity of oxidative phosphorylation and the creatine kinase system to buffer the cellular ATP/ADP ratio is suppressed, glycolysis can cause large scale periodic oscillations in cellular ATP levels (0.02-0.067 Hz), monitored from glibenclamide-sensitive changes in action potential duration or intracellular free Mg2+. Action potential duration oscillations originate primarily from glycolysis, since they 1) occur in the presence of cyanide or rotenone, 2) are suppressed by iodoacetate, 3) are accompanied by at most very small mitochondrial membrane potential oscillations, and 4) exhibit an anti-phase relationship to NADH fluorescence. By uncoupling energy supply-demand balance, glycolytic oscillations may promote injury and electrophysiological heterogeneity during acute metabolic stresses, such as acute myocardial ischemia in which both oxidative phosphorylation and creatine kinase activity are inhibited.

  18. Stem Cell Stimulation of Endogenous Myocyte Regeneration

    PubMed Central

    Weil, Brian R.; Canty, John M.

    2015-01-01

    Cell-based therapy has emerged as a promising approach to combat the myocyte loss and cardiac remodeling that characterize the progression of left ventricular dysfunction to heart failure. Several clinical trials conducted during the past decade have shown that a variety of autologous bone marrow- and peripheral blood-derived stem and progenitor cell populations can be safely administered to patients with ischemic heart disease and yield modest improvements in cardiac function. Concurrently, rapid progress has been made at the preclinical level to identify novel therapeutic cell populations, delineate the mechanisms underlying cell-mediated cardiac repair, and optimize cell-based approaches for clinical use. The following review summarizes the progress that has been made in this rapidly evolving field over the past decade and examines how our current understanding of the mechanisms involved in successful cardiac regeneration should direct future investigation in this area. Particular emphasis is placed on discussion of the general hypothesis that the benefits of cell therapy primarily result from stimulation of endogenous cardiac repair processes that have only recently been identified in the adult mammalian heart, rather than direct differentiation of exogenous cells. Continued scientific investigation in this area will guide the optimization of cell-based approaches for myocardial regeneration, with the ultimate goal of clinical implementation and substantial improvement in our ability to restore cardiac function in ischemic heart disease patients. PMID:23577634

  19. Regulatory Effect of Connexin 43 on Basal Ca2+ Signaling in Rat Ventricular Myocytes

    PubMed Central

    Li, Chen; Yu, Xinfeng; Jing, Xian; Xu, Pingxiang; Luo, Dali

    2012-01-01

    Background It has been found that gap junction-associated intracellular Ca2+ [Ca2+]i disturbance contributes to the arrhythmogenesis and hyperconstriction in diseased heart. However, whether functional gaps are also involved in the regulation of normal Ca2+ signaling, in particular the basal [Ca2+]i activities, is unclear. Methods and Results Global and local Ca2+ signaling and gap permeability were monitored in cultured neonatal rat ventricular myocytes (NRVMs) and freshly isolated mouse ventricular myocytes by Fluo4/AM and Lucifer yellow (LY), respectively. The results showed that inhibition of gap communication by heptanol, Gap 27 and flufenamic acid or interference of connexin 43 (Cx43) with siRNA led to a significant suppression of LY uptake and, importantly, attenuations of global Ca2+ transients and local Ca2+ sparks in monolayer NRVMs and Ca2+ sparks in adult ventricular myocytes. In contrast, overexpression of rat-Cx43 in NRVMs induced enhancements in the above measurements, and so did in HEK293 cells expressing rat Cx43. Additionally, membrane-permeable inositol 1,4,5-trisphosphate (IP3 butyryloxymethyl ester) and phenylephrine, an agonist of adrenergic receptor, could relieve the inhibited Ca2+ signal and LY uptake by gap uncouplers, whereas blockade of IP3 receptor with xestospongin C or 2-aminoethoxydiphenylborate mimicked the effects of gap inhibitors. More importantly, all these gap-associated effects on Ca2+ signaling were also found in single NRVMs that only have hemichannels instead of gap junctions. Further immunostaining/immunoblotting single myocytes with antibody against Cx43 demonstrated apparent increases in membrane labeling of Cx43 and non-junctional Cx43 in overexpressed cells, suggesting functional hemichannels exist and also contribute to the Ca2+ signaling regulation in cardiomyocytes. Conclusions These data demonstrate that Cx43-associated gap coupling plays a role in the regulation of resting Ca2+ signaling in normal ventricular

  20. Allicin inhibits transient outward potassium currents in mouse ventricular myocytes.

    PubMed

    Cao, Hong; Huang, Congxin; Wang, Xin

    2016-05-01

    Allicin is the active constituent of garlic, a widely used spice and food. The remedial properties of garlic have also been extensively researched and it has been demonstrated that allicin is able to inhibit the transient outward potassium current (Ito) in atrial myocytes. However, the direct effect of allicin on Ito in ventricular myocytes has yet to be elucidated. In the present study, the effects of allicin on Ito in ventricular myocytes isolated from mice were investigated, using the whole-cell patch recording technique. The results revealed that Ito current was not significantly suppressed by allicin in the low-dose group (10 µmol/l; P>0.05). However, Ito was significantly inhibited by higher doses of allicin (30, 100 and 300 µmol/l; P<0.05 vs. control; n=6) in a concentration-dependent manner (IC50=41.6 µmol/l). In addition, a high concentration of allicin (≥100 µmol/l) was able to accelerate the voltage-dependent inactivation of Ito in mouse ventricular myocytes. In conclusion, the present study revealed that allicin inhibited the Ito in mouse ventricular myocytes, which may be the mechanism through which allicin exerts its antiarrhythmic effect.

  1. Nuclear morphology and deformation in engineered cardiac myocytes and tissues.

    PubMed

    Bray, Mark-Anthony P; Adams, William J; Geisse, Nicholas A; Feinberg, Adam W; Sheehy, Sean P; Parker, Kevin K

    2010-07-01

    Cardiac tissue engineering requires finely-tuned manipulation of the extracellular matrix (ECM) microenvironment to optimize internal myocardial organization. The myocyte nucleus is mechanically connected to the cell membrane via cytoskeletal elements, making it a target for the cellular response to perturbation of the ECM. However, the role of ECM spatial configuration and myocyte shape on nuclear location and morphology is unknown. In this study, printed ECM proteins were used to configure the geometry of cultured neonatal rat ventricular myocytes. Engineered one- and two-dimensional tissue constructs and single myocyte islands were assayed using live fluorescence imaging to examine nuclear position, morphology and motion as a function of the imposed ECM geometry during diastolic relaxation and systolic contraction. Image analysis showed that anisotropic tissue constructs cultured on microfabricated ECM lines possessed a high degree of nuclear alignment similar to that found in vivo; nuclei in isotropic tissues were polymorphic in shape with an apparently random orientation. Nuclear eccentricity was also increased for the anisotropic tissues, suggesting that intracellular forces deform the nucleus as the cell is spatially confined. During systole, nuclei experienced increasing spatial confinement in magnitude and direction of displacement as tissue anisotropy increased, yielding anisotropic deformation. Thus, the nature of nuclear displacement and deformation during systole appears to rely on a combination of the passive myofibril spatial organization and the active stress fields induced by contraction. Such findings have implications in understanding the genomic consequences and functional response of cardiac myocytes to their ECM surroundings under conditions of disease.

  2. Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes

    PubMed Central

    Lee, Hyungsuk; Adams, William J; Alford, Patrick W; McCain, Megan L; Feinberg, Adam W; Sheehy, Sean P; Goss, Josue A

    2015-01-01

    Mechanical stresses on the myocyte nucleus have been associated with several diseases and potentially transduce mechanical stimuli into cellular responses. Although a number of physical links between the nuclear envelope and cytoplasmic filaments have been identified, previous studies have focused on the mechanical properties of individual components of the nucleus, such as the nuclear envelope and lamin network. The mechanical interaction between the cytoskeleton and chromatin on nuclear deformability remains elusive. Here, we investigated how cytoskeletal and chromatin structures influence nuclear mechanics in cardiac myocytes. Rapid decondensation of chromatin and rupture of the nuclear membrane caused a sudden expansion of DNA, a consequence of prestress exerted on the nucleus. To characterize the prestress exerted on the nucleus, we measured the shape and the stiffness of isolated nuclei and nuclei in living myocytes during disruption of cytoskeletal, myofibrillar, and chromatin structure. We found that the nucleus in myocytes is subject to both tensional and compressional prestress and its deformability is determined by a balance of those opposing forces. By developing a computational model of the prestressed nucleus, we showed that cytoskeletal and chromatin prestresses create vulnerability in the nuclear envelope. Our studies suggest the cytoskeletal–nuclear–chromatin interconnectivity may play an important role in mechanics of myocyte contraction and in the development of laminopathies by lamin mutations. PMID:25908635

  3. Myomaker mediates fusion of fast myocytes in zebrafish embryos

    SciTech Connect

    Landemaine, Aurélie; Rescan, Pierre-Yves; Gabillard, Jean-Charles

    2014-09-05

    Highlights: • Myomaker is transiently expressed in fast myocytes during embryonic myogenesis. • Myomaker is essential for fast myocyte fusion in zebrafish. • The function of myomaker is conserved among Teleostomi. - Abstract: Myomaker (also called Tmem8c), a new membrane activator of myocyte fusion was recently discovered in mice. Using whole mount in situ hybridization on zebrafish embryos at different stages of embryonic development, we show that myomaker is transiently expressed in fast myocytes forming the bulk of zebrafish myotome. Zebrafish embryos injected with morpholino targeted against myomaker were alive after yolk resorption and appeared morphologically normal, but they were unable to swim, even under effect of a tactile stimulation. Confocal observations showed a marked phenotype characterized by the persistence of mononucleated muscle cells in the fast myotome at developmental stages where these cells normally fuse to form multinucleated myotubes. This indicates that myomaker is essential for myocyte fusion in zebrafish. Thus, there is an evolutionary conservation of myomaker expression and function among Teleostomi.

  4. The evolutionary origin of bilaterian smooth and striated myocytes

    PubMed Central

    Brunet, Thibaut; Fischer, Antje HL; Steinmetz, Patrick RH; Lauri, Antonella; Bertucci, Paola; Arendt, Detlev

    2016-01-01

    The dichotomy between smooth and striated myocytes is fundamental for bilaterian musculature, but its evolutionary origin is unsolved. In particular, interrelationships of visceral smooth muscles remain unclear. Absent in fly and nematode, they have not yet been characterized molecularly outside vertebrates. Here, we characterize expression profile, ultrastructure, contractility and innervation of the musculature in the marine annelid Platynereis dumerilii and identify smooth muscles around the midgut, hindgut and heart that resemble their vertebrate counterparts in molecular fingerprint, contraction speed and nervous control. Our data suggest that both visceral smooth and somatic striated myocytes were present in the protostome-deuterostome ancestor and that smooth myocytes later co-opted the striated contractile module repeatedly – for example, in vertebrate heart evolution. During these smooth-to-striated myocyte conversions, the core regulatory complex of transcription factors conveying myocyte identity remained unchanged, reflecting a general principle in cell type evolution. DOI: http://dx.doi.org/10.7554/eLife.19607.001 PMID:27906129

  5. Dynamic investigation of Drosophila myocytes with second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Greenhalgh, Catherine; Stewart, Bryan; Cisek, Richard; Prent, Nicole; Major, Arkady; Barzda, Virginijus

    2006-09-01

    The functional dynamics and structure of both larval and adult Drosophila melanogaster muscle were investigated with a nonlinear multimodal microscope. Imaging was carried out using a home built microscope capable of recording the multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation signals simultaneously at a scanning rate of up to ~12 frames/sec. The sample was excited by a home built femtosecond Ti:Sapphire laser at 840 nm, or by a Yb-ion doped potassium gadolinium tungstate (Yb:KGW) crystal based oscillator at 1042 nm. There was no observable damage detected in the myocyte after prolonged scanning with either of the lasers. Microscopic second harmonic generation (SHG) appears particularly strong in the myocytes. This allows the fast contraction dynamics of the myocytes to be followed. The larger sarcomere size observed in the larvae myocytes is especially well suited for studying the contraction dynamics. Microscopic imaging of muscle contractions showed different relaxation and contraction rates. The SHG intensities were significantly higher in the relaxed state of the myocyte compared to the contracted state. The imaging also revealed disappearance of SHG signal in highly stretched sarcomeres, indicating that SHG diminishes in the disordered structures. The study illustrates that SHG microscopy, combined with other nonlinear contrast mechanisms, can help to elucidate physiological mechanisms of contraction. This study also provides further insight into the mechanisms of harmonic generation in biological tissue and shows that crystalline arrangement of macromolecules has a determining factor for the high efficiency second harmonic generation from the bulk structures.

  6. Oxidative stress decreases microtubule growth and stability in ventricular myocytes.

    PubMed

    Drum, Benjamin M L; Yuan, Can; Li, Lei; Liu, Qinghang; Wordeman, Linda; Santana, L Fernando

    2016-04-01

    Microtubules (MTs) have many roles in ventricular myocytes, including structural stability, morphological integrity, and protein trafficking. However, despite their functional importance, dynamic MTs had never been visualized in living adult myocytes. Using adeno-associated viral vectors expressing the MT-associated protein plus end binding protein 3 (EB3) tagged with EGFP, we were able to perform live imaging and thus capture and quantify MT dynamics in ventricular myocytes in real time under physiological conditions. Super-resolution nanoscopy revealed that EB1 associated in puncta along the length of MTs in ventricular myocytes. The vast (~80%) majority of MTs grew perpendicular to T-tubules at a rate of 0.06μm∗s(-1) and growth was preferentially (82%) confined to a single sarcomere. Microtubule catastrophe rate was lower near the Z-line than M-line. Hydrogen peroxide increased the rate of catastrophe of MTs ~7-fold, suggesting that oxidative stress destabilizes these structures in ventricular myocytes. We also quantified MT dynamics after myocardial infarction (MI), a pathological condition associated with increased production of reactive oxygen species (ROS). Our data indicate that the catastrophe rate of MTs increases following MI. This contributed to decreased transient outward K(+) currents by decreasing the surface expression of Kv4.2 and Kv4.3 channels after MI. On the basis of these data, we conclude that, under physiological conditions, MT growth is directionally biased and that increased ROS production during MI disrupts MT dynamics, decreasing K(+) channel trafficking.

  7. Allicin inhibits transient outward potassium currents in mouse ventricular myocytes

    PubMed Central

    CAO, HONG; HUANG, CONGXIN; WANG, XIN

    2016-01-01

    Allicin is the active constituent of garlic, a widely used spice and food. The remedial properties of garlic have also been extensively researched and it has been demonstrated that allicin is able to inhibit the transient outward potassium current (Ito) in atrial myocytes. However, the direct effect of allicin on Ito in ventricular myocytes has yet to be elucidated. In the present study, the effects of allicin on Ito in ventricular myocytes isolated from mice were investigated, using the whole-cell patch recording technique. The results revealed that Ito current was not significantly suppressed by allicin in the low-dose group (10 µmol/l; P>0.05). However, Ito was significantly inhibited by higher doses of allicin (30, 100 and 300 µmol/l; P<0.05 vs. control; n=6) in a concentration-dependent manner (IC50=41.6 µmol/l). In addition, a high concentration of allicin (≥100 µmol/l) was able to accelerate the voltage-dependent inactivation of Ito in mouse ventricular myocytes. In conclusion, the present study revealed that allicin inhibited the Ito in mouse ventricular myocytes, which may be the mechanism through which allicin exerts its antiarrhythmic effect. PMID:27168824

  8. Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes.

    PubMed

    Lee, Hyungsuk; Adams, William J; Alford, Patrick W; McCain, Megan L; Feinberg, Adam W; Sheehy, Sean P; Goss, Josue A; Parker, Kevin Kit

    2015-11-01

    Mechanical stresses on the myocyte nucleus have been associated with several diseases and potentially transduce mechanical stimuli into cellular responses. Although a number of physical links between the nuclear envelope and cytoplasmic filaments have been identified, previous studies have focused on the mechanical properties of individual components of the nucleus, such as the nuclear envelope and lamin network. The mechanical interaction between the cytoskeleton and chromatin on nuclear deformability remains elusive. Here, we investigated how cytoskeletal and chromatin structures influence nuclear mechanics in cardiac myocytes. Rapid decondensation of chromatin and rupture of the nuclear membrane caused a sudden expansion of DNA, a consequence of prestress exerted on the nucleus. To characterize the prestress exerted on the nucleus, we measured the shape and the stiffness of isolated nuclei and nuclei in living myocytes during disruption of cytoskeletal, myofibrillar, and chromatin structure. We found that the nucleus in myocytes is subject to both tensional and compressional prestress and its deformability is determined by a balance of those opposing forces. By developing a computational model of the prestressed nucleus, we showed that cytoskeletal and chromatin prestresses create vulnerability in the nuclear envelope. Our studies suggest the cytoskeletal-nuclear-chromatin interconnectivity may play an important role in mechanics of myocyte contraction and in the development of laminopathies by lamin mutations. © 2015 by the Society for Experimental Biology and Medicine.

  9. The pacemaker current in cardiac Purkinje myocytes

    PubMed Central

    1995-01-01

    It is generally assumed that in cardiac Purkinje fibers the hyperpolarization activated inward current i(f) underlies the pacemaker potential. Because some findings are at odds with this interpretation, we used the whole cell patch clamp method to study the currents in the voltage range of diastolic depolarization in single canine Purkinje myocytes, a preparation where many confounding limitations can be avoided. In Tyrode solution ([K+]o = 5.4 mM), hyperpolarizing steps from Vh = -50 mV resulted in a time-dependent inwardly increasing current in the voltage range of diastolic depolarization. This time- dependent current (iKdd) appeared around -60 mV and reversed near EK. Small superimposed hyperpolarizing steps (5 mV) applied during the voltage clamp step showed that the slope conductance decreases during the development of this time-dependent current. Decreasing [K+]o from 5.4 to 2.7 mM shifted the reversal potential to a more negative value, near the corresponding EK. Increasing [K+]o to 10.8 mM almost abolished iKdd. Cs+ (2 mM) markedly reduced or blocked the time-dependent current at potentials positive and negative to EK. Ba2+ (4 mM) abolished the time-dependent current in its usual range of potentials and unmasked another time-dependent current (presumably i(f)) with a threshold of approximately -90 mV (> 20 mV negative to that of the time-dependent current in Tyrode solution). During more negative steps, i(f) increased in size and did not reverse. During i(f) the slope conductance measured with small (8-10 mV) superimposed clamp steps increased. High [K+]o (10.8 mM) markedly increased and Cs+ (2 mM) blocked i(f). We conclude that: (a) in the absence of Ba2+, a time-dependent current does reverse near EK and its reversal is unrelated to K+ depletion; (b) the slope conductance of that time-dependent current decreases in the absence of K+ depletion at potentials positive to EK where inactivation of iK1 is unlikely to occur. (c) Ba2+ blocks this time

  10. LabHEART: an interactive computer model of rabbit ventricular myocyte ion channels and Ca transport

    NASA Technical Reports Server (NTRS)

    Puglisi, J. L.; Bers, D. M.

    2001-01-01

    An interactive computer program, LabHEART, was developed to simulate the action potential (AP), ionic currents, and Ca handling mechanisms in a rabbit ventricular myocyte. User-oriented, its design allows switching between voltage and current clamp and easy on-line manipulation of key parameters to change the original formulation. The model reproduces normal rabbit ventricular myocyte currents, Ca transients, and APs. We also changed parameters to simulate data from heart failure (HF) myocytes, including reduced transient outward (I(to)) and inward rectifying K currents (I(K1)), enhanced Na/Ca exchange expression, and reduced sarcoplasmic reticulum Ca-ATPase function, but unaltered Ca current density. These changes caused reduced Ca transient amplitude and increased AP duration (especially at lower frequency) as observed experimentally. The model shows that the increased Na/Ca exchange current (I(NaCa)) in HF lowers the intracellular [Ca] threshold for a triggered AP from 800 to 540 nM. Similarly, the decrease in I(K1) reduces the threshold to 600 nM. Changes in I(to) have no effect. Combining enhanced Na/Ca exchange with reduced I(K1) (as in HF) lowers the threshold to trigger an AP to 380 nM. These changes reproduce experimental results in HF, where the contributions of different factors are not readily distinguishable. We conclude that the triggered APs that contribute to nonreentrant ventricular tachycardia in HF are due approximately equally (and nearly additively) to alterations in I(NaCa) and I(K1). A free copy of this software can be obtained at http://www.meddean.luc.edu/lumen/DeptWebs/physio/bers.html.

  11. Some growth factors stimulate cultured adult rabbit ventricular myocyte hypertrophy in the absence of mechanical loading

    NASA Technical Reports Server (NTRS)

    Decker, R. S.; Cook, M. G.; Behnke-Barclay, M.; Decker, M. L.

    1995-01-01

    Cultured adult rabbit cardiac myocytes treated with recombinant growth factors display enhanced rates of protein accumulation (ie, growth) in response to insulin and insulin-like growth factors (IGFs), but epidermal growth factor, acidic or basic fibroblast growth factor, and platelet-derived growth factor failed to increase contractile protein synthesis or growth of the heart cells. Insulin and IGF-1 increased growth rates by stimulating anabolic while simultaneously inhibiting catabolic pathways, whereas IGF-2 elevated growth modestly by apparently inhibiting lysosomal proteolysis. Neutralizing antibodies directed against either IGF-1 or IGF-2 or IGF binding protein 3 blocked protein accumulation. A monoclonal antibody directed against the IGF-1 receptor also inhibited changes in protein turnover provoked by recombinant human IGF-1 but not IGF-2. Of the other growth factors tested, only transforming growth factor-beta 1 increased the fractional rate of myosin heavy chain (MHC) synthesis, with beta-MHC synthesis being elevated and alpha-MHC synthesis being suppressed. However, the other growth factors were able to modestly stimulate the rate of DNA synthesis in this preparation. Bromodeoxyuridine labeling revealed that these growth factors increased DNA synthesis in myocytes and nonmyocytes alike, but the heart cells displayed neither karyokinesis or cytokinesis. In contrast, cocultures of cardiac myocytes and nonmyocytes and nonmyocyte-conditioned culture medium failed to enhance the rate of cardiac MHC synthesis or its accumulation, implying that quiescent heart cells do not respond to "conditioning" by cardiac nonmyocytes. These findings demonstrated that insulin and the IGFs promote passively loaded cultured adult rabbit heart cells to hypertrophy but suggest that other growth factors tested may be limited in this regard.

  12. LabHEART: an interactive computer model of rabbit ventricular myocyte ion channels and Ca transport

    NASA Technical Reports Server (NTRS)

    Puglisi, J. L.; Bers, D. M.

    2001-01-01

    An interactive computer program, LabHEART, was developed to simulate the action potential (AP), ionic currents, and Ca handling mechanisms in a rabbit ventricular myocyte. User-oriented, its design allows switching between voltage and current clamp and easy on-line manipulation of key parameters to change the original formulation. The model reproduces normal rabbit ventricular myocyte currents, Ca transients, and APs. We also changed parameters to simulate data from heart failure (HF) myocytes, including reduced transient outward (I(to)) and inward rectifying K currents (I(K1)), enhanced Na/Ca exchange expression, and reduced sarcoplasmic reticulum Ca-ATPase function, but unaltered Ca current density. These changes caused reduced Ca transient amplitude and increased AP duration (especially at lower frequency) as observed experimentally. The model shows that the increased Na/Ca exchange current (I(NaCa)) in HF lowers the intracellular [Ca] threshold for a triggered AP from 800 to 540 nM. Similarly, the decrease in I(K1) reduces the threshold to 600 nM. Changes in I(to) have no effect. Combining enhanced Na/Ca exchange with reduced I(K1) (as in HF) lowers the threshold to trigger an AP to 380 nM. These changes reproduce experimental results in HF, where the contributions of different factors are not readily distinguishable. We conclude that the triggered APs that contribute to nonreentrant ventricular tachycardia in HF are due approximately equally (and nearly additively) to alterations in I(NaCa) and I(K1). A free copy of this software can be obtained at http://www.meddean.luc.edu/lumen/DeptWebs/physio/bers.html.

  13. Paracrine Effects of the Pluripotent Stem Cell-Derived Cardiac Myocytes Salvage the Injured Myocardium.

    PubMed

    Tachibana, Atsushi; Santoso, Michelle R; Mahmoudi, Morteza; Shukla, Praveen; Wang, Lei; Bennett, Mihoko; Goldstone, Andrew B; Wang, Mouer; Fukushi, Masahiro; Ebert, Antje D; Woo, Y Joseph; Rulifson, Eric; Yang, Phillip C

    2017-09-01

    Cardiac myocytes derived from pluripotent stem cells have demonstrated the potential to mitigate damage of the infarcted myocardium and improve left ventricular ejection fraction. However, the mechanism underlying the functional benefit is unclear. To evaluate whether the transplantation of cardiac-lineage differentiated derivatives enhance myocardial viability and restore left ventricular ejection fraction more effectively than undifferentiated pluripotent stem cells after a myocardial injury. Herein, we utilize novel multimodality evaluation of human embryonic stem cells (hESCs), hESC-derived cardiac myocytes (hCMs), human induced pluripotent stem cells (iPSCs), and iPSC-derived cardiac myocytes (iCMs) in a murine myocardial injury model. Permanent ligation of the left anterior descending coronary artery was induced in immunosuppressed mice. Intramyocardial injection was performed with (1) hESCs (n=9), (2) iPSCs (n=8), (3) hCMs (n=9), (4) iCMs (n=14), and (5) PBS control (n=10). Left ventricular ejection fraction and myocardial viability, measured by cardiac magnetic resonance imaging and manganese-enhanced magnetic resonance imaging, respectively, was significantly improved in hCM- and iCM-treated mice compared with pluripotent stem cell- or control-treated mice. Bioluminescence imaging revealed limited cell engraftment in all treated groups, suggesting that the cell secretions may underlie the repair mechanism. To determine the paracrine effects of the transplanted cells, cytokines from supernatants from all groups were assessed in vitro. Gene expression and immunohistochemistry analyses of the murine myocardium demonstrated significant upregulation of the promigratory, proangiogenic, and antiapoptotic targets in groups treated with cardiac lineage cells compared with pluripotent stem cell and control groups. This study demonstrates that the cardiac phenotype of hCMs and iCMs salvages the injured myocardium effectively than undifferentiated stem cells through

  14. Some growth factors stimulate cultured adult rabbit ventricular myocyte hypertrophy in the absence of mechanical loading

    NASA Technical Reports Server (NTRS)

    Decker, R. S.; Cook, M. G.; Behnke-Barclay, M.; Decker, M. L.

    1995-01-01

    Cultured adult rabbit cardiac myocytes treated with recombinant growth factors display enhanced rates of protein accumulation (ie, growth) in response to insulin and insulin-like growth factors (IGFs), but epidermal growth factor, acidic or basic fibroblast growth factor, and platelet-derived growth factor failed to increase contractile protein synthesis or growth of the heart cells. Insulin and IGF-1 increased growth rates by stimulating anabolic while simultaneously inhibiting catabolic pathways, whereas IGF-2 elevated growth modestly by apparently inhibiting lysosomal proteolysis. Neutralizing antibodies directed against either IGF-1 or IGF-2 or IGF binding protein 3 blocked protein accumulation. A monoclonal antibody directed against the IGF-1 receptor also inhibited changes in protein turnover provoked by recombinant human IGF-1 but not IGF-2. Of the other growth factors tested, only transforming growth factor-beta 1 increased the fractional rate of myosin heavy chain (MHC) synthesis, with beta-MHC synthesis being elevated and alpha-MHC synthesis being suppressed. However, the other growth factors were able to modestly stimulate the rate of DNA synthesis in this preparation. Bromodeoxyuridine labeling revealed that these growth factors increased DNA synthesis in myocytes and nonmyocytes alike, but the heart cells displayed neither karyokinesis or cytokinesis. In contrast, cocultures of cardiac myocytes and nonmyocytes and nonmyocyte-conditioned culture medium failed to enhance the rate of cardiac MHC synthesis or its accumulation, implying that quiescent heart cells do not respond to "conditioning" by cardiac nonmyocytes. These findings demonstrated that insulin and the IGFs promote passively loaded cultured adult rabbit heart cells to hypertrophy but suggest that other growth factors tested may be limited in this regard.

  15. Overexpression of connexin 43 using a retroviral vector improves electrical coupling of skeletal myoblasts with cardiac myocytes in vitro

    PubMed Central

    Tolmachov, Oleg; Ma, Yu-Ling; Themis, Michael; Patel, Pravina; Spohr, Hilmar; MacLeod, Kenneth T; Ullrich, Nina D; Kienast, Yvonne; Coutelle, Charles; Peters, Nicholas S

    2006-01-01

    Background Organ transplantation is presently often the only available option to repair a damaged heart. As heart donors are scarce, engineering of cardiac grafts from autologous skeletal myoblasts is a promising novel therapeutic strategy. The functionality of skeletal muscle cells in the heart milieu is, however, limited because of their inability to integrate electrically and mechanically into the myocardium. Therefore, in pursuit of improved cardiac integration of skeletal muscle grafts we sought to modify primary skeletal myoblasts by overexpression of the main gap-junctional protein connexin 43 and to study electrical coupling of connexin 43 overexpressing myoblasts to cardiac myocytes in vitro. Methods To create an efficient means for overexpression of connexin 43 in skeletal myoblasts we constructed a bicistronic retroviral vector MLV-CX43-EGFP expressing the human connexin 43 cDNA and the marker EGFP gene. This vector was employed to transduce primary rat skeletal myoblasts in optimised conditions involving a concomitant use of the retrovirus immobilising protein RetroNectin® and the polycation transduction enhancer Transfectam®. The EGFP-positive transduced cells were then enriched by flow cytometry. Results More than four-fold overexpression of connexin 43 in the transduced skeletal myoblasts, compared with non-transduced cells, was shown by Western blotting. Functionality of the overexpressed connexin 43 was demonstrated by microinjection of a fluorescent dye showing enhanced gap-junctional intercellular transfer in connexin 43 transduced myoblasts compared with transfer in non-transduced myoblasts. Rat cardiac myocytes were cultured in multielectrode array culture dishes together with connexin 43/EGFP transduced skeletal myoblasts, control non-transduced skeletal myoblasts or alone. Extracellular field action potential activation rates in the co-cultures of connexin 43 transduced skeletal myoblasts with cardiac myocytes were significantly higher than

  16. Myomaker mediates fusion of fast myocytes in zebrafish embryos.

    PubMed

    Landemaine, Aurélie; Rescan, Pierre-Yves; Gabillard, Jean-Charles

    2014-09-05

    Myomaker (also called Tmem8c), a new membrane activator of myocyte fusion was recently discovered in mice. Using whole mount in situ hybridization on zebrafish embryos at different stages of embryonic development, we show that myomaker is transiently expressed in fast myocytes forming the bulk of zebrafish myotome. Zebrafish embryos injected with morpholino targeted against myomaker were alive after yolk resorption and appeared morphologically normal, but they were unable to swim, even under effect of a tactile stimulation. Confocal observations showed a marked phenotype characterized by the persistence of mononucleated muscle cells in the fast myotome at developmental stages where these cells normally fuse to form multinucleated myotubes. This indicates that myomaker is essential for myocyte fusion in zebrafish. Thus, there is an evolutionary conservation of myomaker expression and function among Teleostomi.

  17. Inhibition of cAMP-Dependent PKA Activates β2-Adrenergic Receptor Stimulation of Cytosolic Phospholipase A2 via Raf-1/MEK/ERK and IP3-Dependent Ca2+ Signaling in Atrial Myocytes

    PubMed Central

    Ji, X.; Maxwell, J. T.; Mignery, G. A.; Samarel, A. M.; Lipsius, S. L.

    2016-01-01

    We previously reported in atrial myocytes that inhibition of cAMP-dependent protein kinase (PKA) by laminin (LMN)-integrin signaling activates β2-adrenergic receptor (β2-AR) stimulation of cytosolic phospholipase A2 (cPLA2). The present study sought to determine the signaling mechanisms by which inhibition of PKA activates β2-AR stimulation of cPLA2. We therefore determined the effects of zinterol (0.1 μM; zint-β2-AR) to stimulate ICa,L in atrial myocytes in the absence (+PKA) and presence (-PKA) of the PKA inhibitor (1 μM) KT5720 and compared these results with atrial myocytes attached to laminin (+LMN). Inhibition of Raf-1 (10 μM GW5074), phospholipase C (PLC; 0.5 μM edelfosine), PKC (4 μM chelerythrine) or IP3 receptor (IP3R) signaling (2 μM 2-APB) significantly inhibited zint-β2-AR stimulation of ICa,L in–PKA but not +PKA myocytes. Western blots showed that zint-β2-AR stimulation increased ERK1/2 phosphorylation in–PKA compared to +PKA myocytes. Adenoviral (Adv) expression of dominant negative (dn) -PKCα, dn-Raf-1 or an IP3 affinity trap, each inhibited zint-β2-AR stimulation of ICa,L in + LMN myocytes compared to control +LMN myocytes infected with Adv-βgal. In +LMN myocytes, zint-β2-AR stimulation of ICa,L was enhanced by adenoviral overexpression of wild-type cPLA2 and inhibited by double dn-cPLA2S505A/S515A mutant compared to control +LMN myocytes infected with Adv-βgal. In–PKA myocytes depletion of intracellular Ca2+ stores by 5 μM thapsigargin failed to inhibit zint-β2-AR stimulation of ICa,L via cPLA2. However, disruption of caveolae formation by 10 mM methyl-β-cyclodextrin inhibited zint-β2-AR stimulation of ICa,L in–PKA myocytes significantly more than in +PKA myocytes. We conclude that inhibition of PKA removes inhibition of Raf-1 and thereby allows β2-AR stimulation to act via PKCα/Raf-1/MEK/ERK1/2 and IP3-mediated Ca2+ signaling to stimulate cPLA2 signaling within caveolae. These findings may be relevant to the

  18. Photoelectric recording of mechanical responses of cardiac myocytes.

    PubMed

    Meyer, R; Wiemer, J; Dembski, J; Haas, H G

    1987-04-01

    A method to monitor contraction of isolated myocytes by transmicroscopic photometry is illustrated. Two photodiodes are mounted inside an inverse microscope used for visual control of a cell. Illumination of one diode varies in proportion to changes in cell length. The contraction signal is amplified in a comparator circuit. Spatial resolution of the device is in the order of 1 micron which corresponds to about 5% of cell shortening in the fully activated state of contraction. The method was tested on isolated myocytes from guinea-pig ventricle. Optical records of contraction in response to action potentials or during voltage clamp compare well with the contractile behavior of multicellular preparations.

  19. ErbB4 localization to cardiac myocyte nuclei, and its role in myocyte DNA damage response

    SciTech Connect

    Icli, Basak; Bharti, Ajit; Pentassuglia, Laura; Peng, Xuyang; Sawyer, Douglas B.

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer ErbB4 localizes to cardiac myocyte nuclei as a full-length receptor. Black-Right-Pointing-Pointer Cardiac myocytes express predominantly JM-a/CYT-1 ErbB4. Black-Right-Pointing-Pointer Myocyte p53 activation in response to doxorubicin requires ErbB4 activity. -- Abstract: The intracellular domain of ErbB4 receptor tyrosine kinase is known to translocate to the nucleus of cells where it can regulate p53 transcriptional activity. The purpose of this study was to examine whether ErbB4 can localize to the nucleus of adult rat ventricular myocytes (ARVM), and regulate p53 in these cells. We demonstrate that ErbB4 does locate to the nucleus of cardiac myocytes as a full-length protein, although nuclear location occurs as a full-length protein that does not require Protein Kinase C or {gamma}-secretase activity. Consistent with this we found that only the non-cleavable JM-b isoform of ErbB4 is expressed in ARVM. Doxorubicin was used to examine ErbB4 role in regulation of a DNA damage response in ARVM. Doxorubicin induced p53 and p21 was suppressed by treatment with AG1478, an EGFR and ErbB4 kinase inhibitor, or suppression of ErbB4 expression with small interfering RNA. Thus ErbB4 localizes to the nucleus as a full-length protein, and plays a role in the DNA damage response induced by doxorubicin in cardiac myocytes.

  20. Modeling beta-adrenergic control of cardiac myocyte contractility in silico

    NASA Technical Reports Server (NTRS)

    Saucerman, Jeffrey J.; Brunton, Laurence L.; Michailova, Anushka P.; McCulloch, Andrew D.; McCullough, A. D. (Principal Investigator)

    2003-01-01

    The beta-adrenergic signaling pathway regulates cardiac myocyte contractility through a combination of feedforward and feedback mechanisms. We used systems analysis to investigate how the components and topology of this signaling network permit neurohormonal control of excitation-contraction coupling in the rat ventricular myocyte. A kinetic model integrating beta-adrenergic signaling with excitation-contraction coupling was formulated, and each subsystem was validated with independent biochemical and physiological measurements. Model analysis was used to investigate quantitatively the effects of specific molecular perturbations. 3-Fold overexpression of adenylyl cyclase in the model allowed an 85% higher rate of cyclic AMP synthesis than an equivalent overexpression of beta 1-adrenergic receptor, and manipulating the affinity of Gs alpha for adenylyl cyclase was a more potent regulator of cyclic AMP production. The model predicted that less than 40% of adenylyl cyclase molecules may be stimulated under maximal receptor activation, and an experimental protocol is suggested for validating this prediction. The model also predicted that the endogenous heat-stable protein kinase inhibitor may enhance basal cyclic AMP buffering by 68% and increasing the apparent Hill coefficient of protein kinase A activation from 1.0 to 2.0. Finally, phosphorylation of the L-type calcium channel and phospholamban were found sufficient to predict the dominant changes in myocyte contractility, including a 2.6x increase in systolic calcium (inotropy) and a 28% decrease in calcium half-relaxation time (lusitropy). By performing systems analysis, the consequences of molecular perturbations in the beta-adrenergic signaling network may be understood within the context of integrative cellular physiology.

  1. Modeling beta-adrenergic control of cardiac myocyte contractility in silico

    NASA Technical Reports Server (NTRS)

    Saucerman, Jeffrey J.; Brunton, Laurence L.; Michailova, Anushka P.; McCulloch, Andrew D.; McCullough, A. D. (Principal Investigator)

    2003-01-01

    The beta-adrenergic signaling pathway regulates cardiac myocyte contractility through a combination of feedforward and feedback mechanisms. We used systems analysis to investigate how the components and topology of this signaling network permit neurohormonal control of excitation-contraction coupling in the rat ventricular myocyte. A kinetic model integrating beta-adrenergic signaling with excitation-contraction coupling was formulated, and each subsystem was validated with independent biochemical and physiological measurements. Model analysis was used to investigate quantitatively the effects of specific molecular perturbations. 3-Fold overexpression of adenylyl cyclase in the model allowed an 85% higher rate of cyclic AMP synthesis than an equivalent overexpression of beta 1-adrenergic receptor, and manipulating the affinity of Gs alpha for adenylyl cyclase was a more potent regulator of cyclic AMP production. The model predicted that less than 40% of adenylyl cyclase molecules may be stimulated under maximal receptor activation, and an experimental protocol is suggested for validating this prediction. The model also predicted that the endogenous heat-stable protein kinase inhibitor may enhance basal cyclic AMP buffering by 68% and increasing the apparent Hill coefficient of protein kinase A activation from 1.0 to 2.0. Finally, phosphorylation of the L-type calcium channel and phospholamban were found sufficient to predict the dominant changes in myocyte contractility, including a 2.6x increase in systolic calcium (inotropy) and a 28% decrease in calcium half-relaxation time (lusitropy). By performing systems analysis, the consequences of molecular perturbations in the beta-adrenergic signaling network may be understood within the context of integrative cellular physiology.

  2. Isorhamnetin protects rat ventricular myocytes from ischemia and reperfusion injury.

    PubMed

    Zhang, Najuan; Pei, Fei; Wei, Huaying; Zhang, Tongtong; Yang, Chao; Ma, Gang; Yang, Chunlei

    2011-01-01

    Ischemia/reperfusion (I/R) has been known to cause damages to ventricular myocytes. Isorhamnetin, one member of flavonoid compounds, has cardioprotective effect, the effect that suggests a possible treatment for I/R damages. In the present investigation, we found that isorhamnetin could significantly promote the viability of neonatal rat ventricular myocytes that were exposed to ischemia/reperfusion (I/R) in vitro. Ventricular myocytes were obtained from neonatal SD rats, and then were divided randomly into three groups, namely I/R-/isor-, I/R+/isor- and I/R+/isor+ group. Before the whole experiment, the most appropriate concentration of isorhamnetin (4 μM) was determined by MTT assay. Our results showed that isorhamnetin could alleviate the damages of I/R to ventricular myocytes through inhibiting lactate dehydrogenase (LDH) activity, and repressing apoptosis. Compared with the counterpart of the I/R+/isor- group, LDH activity in the isorhamnetin-treated group weakened, halving from 24.1 ± 2.3 to 11.4 ± 1.2U/L. Additionally, flow cytometry showed the apparently increased apoptosis rate induced by I/R, the result that was further confirmed by transmission electron microscope. Administration of isorhamnetin, however, assuaged the apoptosis induced by I/R. Corresponding to the reduced apoptosis rate in the I/R+/isor+ group, western blotting assay showed increased amount of Bcl-2 and p53, decreased amount of Bax, and nuclear accumulation of NF-κB/p65.

  3. The Frank-Starling mechanism in vertebrate cardiac myocytes.

    PubMed

    Shiels, Holly A; White, Ed

    2008-07-01

    The Frank-Starling law of the heart applies to all classes of vertebrates. It describes how stretch of cardiac muscle, up to an optimum length, increases contractility thereby linking cardiac ejection to cardiac filling. The cellular mechanisms underlying the Frank-Starling response include an increase in myofilament sensitivity for Ca2+, decreased myofilament lattice spacing and increased thin filament cooperativity. Stretching of mammalian, amphibian and fish cardiac myocytes reveal that the functional peak of the sarcomere length (SL)-tension relationship occurs at longer SL in the non-mammalian classes. These findings correlate with in vivo cardiac function as non-mammalian vertebrates, such as fish, vary stroke volume to a relatively larger extent than mammals. Thus, it seems the length-dependent properties of individual myocytes are modified to accommodate differences in organ function, and the high extensibility of certain hearts is matched by the extensibility of their myocytes. Reasons for the differences between classes are still to be elucidated, however, the structure of mammalian ventricular myocytes, with larger widths and higher levels of passive stiffness than those from other vertebrate classes may be implicated.

  4. Integration of differentiation signals during indirect flight muscle formation by a novel enhancer of Drosophila vestigial gene.

    PubMed

    Bernard, Frédéric; Kasherov, Petar; Grenetier, Sabrina; Dutriaux, Annie; Zider, Alain; Silber, Joël; Lalouette, Alexis

    2009-08-15

    The gene vestigial (vg) plays a key role in indirect flight muscle (IFM) development. We show here that vg is controlled by the Notch anti-myogenic signaling pathway in myoblasts and is regulated by a novel 822 bp enhancer during IFM differentiation. Interestingly, this muscle enhancer is activated in developing fibers and in a small number of myoblasts before the fusion of myoblasts with the developing muscle fibers. Moreover, we show that this enhancer is activated by Drosophila Myocyte enhancing factor 2 (MEF2), Scalloped (SD) and VG but repressed by Twist, demonstrating a sensitivity to differentiation in vivo. In vitro experiments reveal that SD can directly bind this enhancer and MEF2 can physically interact with both SD and TWI. Cumulatively, our data reveal the interplay between different myogenic factors responsible for the expression of an enhancer activated during muscle differentiation.

  5. A modular instrument for exploring the mechanics of cardiac myocytes.

    PubMed

    Garcia-Webb, M G; Taberner, A J; Hogan, N C; Hunter, I W

    2007-07-01

    The cardiac ventricular myocyte is a key experimental system for exploring the mechanical properties of the diseased and healthy heart. Millions of primary myocytes, which remain viable for 4-6 h, can be readily isolated from animal models. However, currently available instrumentation allows the mechanical properties of only a few physically loaded myocytes to be explored within 4-6 h. Here we describe a modular and inexpensive prototype instrument that could form the basis of an array of devices for probing the mechanical properties of single mammalian myocytes in parallel. This device would greatly increase the throughput of scientific experimentation and could be applied as a high-content screening instrument in the pharmaceutical industry. The instrument module consists of two independently controlled Lorentz force actuators-force transducers in the form of 0.025 x 1 x 5 mm stainless steel cantilevers with 0.5 m/N compliance and 360-Hz resonant frequency. Optical position sensors focused on each cantilever provide position and force resolution of <1 nm/ radicalHz and <2 nN/ radicalHz, respectively. The motor structure can produce peak displacements and forces of +/-200 mum and +/-400 microN, respectively. Custom Visual Basic.Net software provides data acquisition, signal processing, and digital control of cantilever position. The functionality of the instrument was demonstrated by implementation of novel methodologies for loading and attaching healthy mammalian ventricular myocytes to the force sensor and actuator and use of stochastic system identification techniques to measure their passive dynamic stiffness at various sarcomere lengths.

  6. Caveolin Contributes to the Modulation of Basal and β-Adrenoceptor Stimulated Function of the Adult Rat Ventricular Myocyte by Simvastatin: A Novel Pleiotropic Effect

    PubMed Central

    Agarwal, Shailesh R.; Harvey, Robert D.; Porter, Karen E.; Calaghan, Sarah

    2014-01-01

    The number of people taking statins is increasing across the globe, highlighting the importance of fully understanding statins' effects on the cardiovascular system. The beneficial impact of statins extends well beyond regression of atherosclerosis to include direct effects on tissues of the cardiovascular system (‘pleiotropic effects’). Pleiotropic effects on the cardiac myocyte are often overlooked. Here we consider the contribution of the caveolin protein, whose expression and cellular distribution is dependent on cholesterol, to statin effects on the cardiac myocyte. Caveolin is a structural and regulatory component of caveolae, and is a key regulator of cardiac contractile function and adrenergic responsiveness. We employed an experimental model in which inhibition of myocyte HMG CoA reductase could be studied in the absence of paracrine influences from non-myocyte cells. Adult rat ventricular myocytes were treated with 10 µM simvastatin for 2 days. Simvastatin treatment reduced myocyte cholesterol, caveolin 3 and caveolar density. Negative inotropic and positive lusitropic effects (with corresponding changes in [Ca2+]i) were seen in statin-treated cells. Simvastatin significantly potentiated the inotropic response to β2-, but not β1-, adrenoceptor stimulation. Under conditions of β2-adrenoceptor stimulation, phosphorylation of phospholamban at Ser16 and troponin I at Ser23/24 was enhanced with statin treatment. Simvastatin increased NO production without significant effects on eNOS expression or phosphorylation (Ser1177), consistent with the reduced expression of caveolin 3, its constitutive inhibitor. In conclusion, statin treatment can reduce caveolin 3 expression, with functional consequences consistent with the known role of caveolae in the cardiac cell. These data are likely to be of significance, particularly during the early phases of statin treatment, and in patients with heart failure who have altered β-adrenoceptor signalling. In addition

  7. Adolescent feline heart contains a population of small, proliferative ventricular myocytes with immature physiological properties.

    PubMed

    Chen, Xiongwen; Wilson, Rachel M; Kubo, Hajime; Berretta, Remus M; Harris, David M; Zhang, Xiaoying; Jaleel, Naser; MacDonnell, Scott M; Bearzi, Claudia; Tillmanns, Jochen; Trofimova, Irina; Hosoda, Toru; Mosna, Federico; Cribbs, Leanne; Leri, Annarosa; Kajstura, Jan; Anversa, Piero; Houser, Steven R

    2007-03-02

    Recent studies suggest that rather than being terminally differentiated, the adult heart is a self-renewing organ with the capacity to generate new myocytes from cardiac stem/progenitor cells (CS/PCs). This study examined the hypotheses that new myocytes are generated during adolescent growth, to increase myocyte number, and these newly formed myocytes are initially small, mononucleated, proliferation competent, and have immature properties. Ventricular myocytes (VMs) and cKit(+) (stem cell receptor) CS/PCs were isolated from 11- and 22-week feline hearts. Bromodeoxyuridine incorporation (in vivo) and p16(INK4a) immunostaining were measured to assess myocyte cell cycle activity and senescence, respectively. Telomerase activity, contractions, Ca(2+) transients, and electrophysiology were compared in small mononucleated (SMMs) and large binucleated (LBMs) myocytes. Heart mass increased by 101% during adolescent growth, but left ventricular myocyte volume only increased by 77%. Most VMs were binucleated (87% versus 12% mononucleated) and larger than mononucleated myocytes. A greater percentage of SMMs was bromodeoxyuridine positive (SMMs versus LBMs: 3.1% versus 0.8%; P<0.05), and p16(INK4a) negative and small myocytes had greater telomerase activity than large myocytes. Contractions and Ca(2+) transients were prolonged in SMMs versus LBMs and Ca(2+) release was disorganized in SMMs with reduced transient outward current and T-tubule density. The T-type Ca(2+) current, usually seen in fetal/neonatal VMs, was found exclusively in SMMs and in myocytes derived from CS/PC. Myocyte number increases during adolescent cardiac growth. These new myocytes are initially small and functionally immature, with patterns of ion channel expression normally found in the fetal/neonatal period.

  8. Loss of the eukaryotic initiation factor 2α kinase general control nonderepressible 2 protects mice from pressure overload-induced congestive heart failure without affecting ventricular hypertrophy.

    PubMed

    Lu, Zhongbing; Xu, Xin; Fassett, John; Kwak, Dongmin; Liu, Xiaoyu; Hu, Xinli; Wang, Huan; Guo, Haipeng; Xu, Dachun; Yan, Shuo; McFalls, Edward O; Lu, Fei; Bache, Robert J; Chen, Yingjie

    2014-01-01

    In response to several stresses, including nutrient deprivation, general control nonderepressible 2 kinase (GCN2) attenuates mRNA translation by phosphorylating eukaryotic initiation factor 2α(Ser51). Energy starvation is known to exacerbate congestive heart failure, and eukaryotic initiation factor 2α(Ser51) phosphorylation is increased in the failing heart. However, the effect of GCN2 during the evolution of congestive heart failure has not been tested. In this study, we examined the influence of GCN2 expression in response to a cardiac stress by inducing chronic pressure overload with transverse aortic constriction in wild-type and GCN2 knockout mice. Under basal conditions, GCN2 knockout mice had normal left ventricular structure and function, but after transverse aortic constriction, they demonstrated less contractile dysfunction, less increase in lung weight, less increase in lung inflammation and vascular remodeling, and less myocardial apoptosis and fibrosis compared with wild-type mice, despite an equivalent degree of left ventricular hypertrophy. As expected, GCN2 knockout attenuated transverse aortic constriction-induced cardiac eukaryotic initiation factor 2α(Ser51) phosphorylation and preserved sarcoplasmic reticulum Ca(2+) ATPase expression compared with wild-type mice. Interestingly, the expression of the antiapoptotic protein Bcl-2 was significantly elevated in GCN2 knockout hearts, whereas in isolated neonatal cardiomyocytes, selective knockdown of GCN2 increased Bcl-2 protein expression and enhanced myocyte resistance to an apoptotic stress. Collectively, our data support the notion that GCN2 impairs the ventricular adaptation to chronic pressure overload by reducing Bcl-2 expression and increasing cardiomyocyte susceptibility to apoptotic stimuli. Our findings suggest that strategies to reduce GCN2 activity in cardiac tissue may be a novel approach to attenuate congestive heart failure development.

  9. Distance constraints on activation of TRPV4 channels by AKAP150-bound PKCα in arterial myocytes.

    PubMed

    Tajada, Sendoa; Moreno, Claudia M; O'Dwyer, Samantha; Woods, Sean; Sato, Daisuke; Navedo, Manuel F; Santana, L Fernando

    2017-06-05

    TRPV4 (transient receptor potential vanilloid 4) channels are Ca(2+)-permeable channels that play a key role in regulating vascular tone. In arterial myocytes, opening of TRPV4 channels creates local increases in Ca(2+) influx, detectable optically as "TRPV4 sparklets." TRPV4 sparklet activity can be enhanced by the action of the vasoconstrictor angiotensin II (AngII). This modulation depends on the activation of subcellular signaling domains that comprise protein kinase C α (PKCα) bound to the anchoring protein AKAP150. Here, we used super-resolution nanoscopy, patch-clamp electrophysiology, Ca(2+) imaging, and mathematical modeling approaches to test the hypothesis that AKAP150-dependent modulation of TRPV4 channels is critically dependent on the distance between these two proteins in the sarcolemma of arterial myocytes. Our data show that the distance between AKAP150 and TRPV4 channel clusters varies with sex and arterial bed. Consistent with our hypothesis, we further find that basal and AngII-induced TRPV4 channel activity decays exponentially as the distance between TRPV4 and AKAP150 increases. Our data suggest a maximum radius of action of ∼200 nm for local modulation of TRPV4 channels by AKAP150-associated PKCα. © 2017 Tajada et al.

  10. Effects of parabolic flight on the cytoskeleton in cultured cardiac myocytes

    NASA Astrophysics Data System (ADS)

    Yang, F.; Li, Y. H.; Dai, Z. Q.; Nie, J. L.; Tan, Y. J.; Yu, J. R.

    As intracellular load-bearing structure cytoskeleton is hypothesized to play a crucial role in gravity perception and transduction of cells Recent data show that the cytoskeleton including actin microfilaments and microtubules is involved in modulating both the electrical activity and mechanical activity of myocardium Using fluorescence-labeling of cells with specific antibodies or agentsLwe found discontinued abruption of microtubules and enhanced polymerization of filamentous F actin in neonatal rat cardiac myocytes after exposure to the acute gravitational changes micro- and hyper-gravity in parabolic flight By staining of globular monomeric G actin and F-actin with Alexa Fluor conjugated DNase I and Texas red-phalloidin respectively confocal microscopy demonstrated more prominent structure of F-actin and decreased cytosolic G-actin in flight cells implying a shift in the F G equilibrium in favor of F-actin Using specific antibody against phosphorylated activated forms of extracellular signal-regulated kinase ERK and focal adhesion kinase FAK we found that active ERK is co-localized with reorganized F-actin in flight cells while active FAK did not show evident collateral distribution with actin cytoskeleton indicating that ERK but not FAK might be involved in parabolic flight-induced polymerization of F-actin These results suggest that gravitational changes induced by parabolic flight substantially affected the distribution and organization of the actin microfilaments and microtubules in cultured cardiac myocytes and ERK might participate in the

  11. Dynamics of Ca2+-dependent Cl- channel modulation by niflumic acid in rabbit coronary arterial myocytes.

    PubMed

    Ledoux, Jonathan; Greenwood, Iain A; Leblanc, Normand

    2005-01-01

    Calcium-activated chloride channels (Cl(Ca)) are crucial regulators of vascular tone by promoting a depolarizing influence on the resting membrane potential of vascular smooth muscle cells. Niflumic acid (NFA), a potent blocker of Cl(Ca) in vascular myocytes, was shown recently to cause inhibition and paradoxical stimulation of sustained calcium-activated chloride currents [I(Cl(Ca))] in rabbit pulmonary artery myocytes. The aims of the present study were to investigate whether NFA produced a similar dual effect in coronary artery smooth muscle cells and to determine the concentration-dependence and dynamics of such a phenomenon. Sustained I(Cl(Ca)) evoked by intracellular Ca(2+) clamped at 500 nM were dose-dependently inhibited by NFA (IC(50) = 159 microM) and transiently augmented in a concentration-independent manner (10 microM to 1 mM) approximately 2-fold after NFA removal. However, the time to peak and duration of NFA-enhanced I(Cl(Ca)) increased in a concentration-dependent fashion. Moreover, the rate of recovery was reduced by membrane depolarization, suggesting the involvement of a voltage-dependent step in the interaction of NFA, leading to stimulation of I(Cl(Ca)). Computer simulations derived from a kinetic model involving low (K(i) = 1.25 mM) and high (K(i) < 30 microM) affinity sites could reproduce the properties of the NFA-modulated I(Cl(Ca)) fairly well.

  12. Preferential accumulation and export of high molecular weight FGF-2 by rat cardiac non-myocytes.

    PubMed

    Santiago, Jon-Jon; Ma, Xin; McNaughton, Leslie J; Nickel, Barbara E; Bestvater, Brian P; Yu, Liping; Fandrich, Robert R; Netticadan, Thomas; Kardami, Elissavet

    2011-01-01

    fibroblast growth factor-2 (FGF-2), implicated in paracrine induction of cardiac hypertrophy, is translated as high molecular weight (Hi-FGF-2) and low molecular weight (Lo-FGF-2) isoforms. Paracrine activities are assigned to Lo-FGF-2, whereas Hi-FGF-2 is presumed to have nuclear functions. In this work, we re-examined the latter presumption by asking whether: cardiac non-myocytes (CNMs) accumulate and export Hi-FGF-2 in response to pro-hypertrophic [angiotensin II (Ang II)] stimuli; an unconventional secretory pathway requiring activated caspase-1 affects Hi-FGF2 export; and secreted Hi-FGF-2 is pro-hypertrophic. using neonatal rat heart-derived cultures and immunoblotting, we show that CNMs accumulated over 90% Hi-FGF-2, at levels at least five-fold higher than cardiomyocytes (CMs). Pro-hypertrophic agents (Ang II, endothelin-1, and isoproterenol) up-regulated CNM-associated Hi-FGF-2. The Ang II effect was mediated by Ang II receptor-1 but not Ang II receptor-2 as it was blocked by losartan but not PD123319. CNM-derived Hi-FGF-2 was detected in two extracellular pools: in conditioned medium from Ang II-stimulated CNMs and in association with the cell surface/matrix, eluted with a gentle 2 M NaCl wash of the cell monolayer. Conditioned medium from Ang II-treated CNMs increased neonatal CM size, an effect prevented by anti-FGF-2-neutralizing antibodies. The caspase-1 inhibitor YVAD prevented the Ang II-induced release of Hi-FGF-2 to both extracellular pools. CNMs are major producers of Hi-FGF-2, up-regulated by hypertrophic stimuli and exported to the extracellular environment by a mechanism requiring caspase-1 activity, suggesting a link to the innate immune response. Hi-FGF-2 is likely to promote paracrine induction of myocyte hypertrophy in vivo.

  13. Integrins and Integrin-Associated Proteins in the Cardiac Myocyte

    PubMed Central

    Ross, Robert S.

    2014-01-01

    Integrins are heterodimeric, transmembrane receptors that are expressed in all cells, including those in the heart. They participate in multiple critical cellular processes including adhesion, extracellular matrix organization, signaling, survival, and proliferation. Particularly relevant for a contracting muscle cell, integrins are mechanotransducers, translating mechanical to biochemical information. While it is likely that cardiovascular clinicians and scientists have highest recognition of integrins in the cardiovascular system from drugs used to inhibit platelet aggregation, the focus of this article will be on the role of integrins specifically in the cardiac myocyte. Following a general introduction to integrin biology, the manuscript will discuss important work on integrin signaling, mechanotransduction, and lessons learned about integrin function from a range of model organisms. Then we will detail work on integrin-related proteins in the myocyte, how integrins may interact with ion channels and mediate viral uptake into cells, and also play a role in stem cell biology. Finally, we will discuss directions for future study. PMID:24481847

  14. Cardiac myocyte exosomes: stability, HSP60, and proteomics.

    PubMed

    Malik, Z A; Kott, K S; Poe, A J; Kuo, T; Chen, L; Ferrara, K W; Knowlton, A A

    2013-04-01

    Exosomes, which are 50- to 100-nm-diameter lipid vesicles, have been implicated in intercellular communication, including transmitting malignancy, and as a way for viral particles to evade detection while spreading to new cells. Previously, we demonstrated that adult cardiac myocytes release heat shock protein (HSP)60 in exosomes. Extracellular HSP60, when not in exosomes, causes cardiac myocyte apoptosis via the activation of Toll-like receptor 4. Thus, release of HSP60 from exosomes would be damaging to the surrounding cardiac myocytes. We hypothesized that 1) pathological changes in the environment, such as fever, change in pH, or ethanol consumption, would increase exosome permeability; 2) different exosome inducers would result in different exosomal protein content; 3) ethanol at "physiological" concentrations would cause exosome release; and 4) ROS production is an underlying mechanism of increased exosome production. We found the following: first, exosomes retained their protein cargo under different physiological/pathological conditions, based on Western blot analyses. Second, mass spectrometry demonstrated that the protein content of cardiac exosomes differed significantly from other types of exosomes in the literature and contained cytosolic, sarcomeric, and mitochondrial proteins. Third, ethanol did not affect exosome stability but greatly increased the production of exosomes by cardiac myocytes. Fourth, ethanol- and hypoxia/reoxygenation-derived exosomes had different protein content. Finally, ROS inhibition reduced exosome production but did not completely inhibit it. In conclusion, exosomal protein content is influenced by the cell source and stimulus for exosome formation. ROS stimulate exosome production. The functions of exosomes remain to be fully elucidated.

  15. Phospholemman Overexpression Inhibits Na+-K+-ATPase in Adult Rat Cardiac Myocytes: Relevance to Decreased Na+ pump Activity in Post-Infarction Myocytes

    PubMed Central

    Zhang, Xue-Qian; Moorman, J. Randall; Ahlers, Belinda A.; Carl, Lois L.; Lake, Douglas E.; Song, Jianliang; Mounsey, J. Paul; Tucker, Amy L.; Chan, Yiu-mo; Rothblum, Lawrence I.; Stahl, Richard C.; Carey, David J.; Cheung, Joseph Y.

    2005-01-01

    Messenger RNA levels of phospholemman (PLM), a member of the FXYD family of small single-span membrane proteins with putative ion-transport regulatory properties, were increased in postinfarction (MI) rat myocytes. We tested the hypothesis that the previously observed reduction in Na+-K+-ATPase activity in MI rat myocytes was due to PLM overexpression. In rat hearts harvested 3 and 7 days post-MI, PLM protein expression was increased by 2- and 4-fold, respectively. To simulate increased PLM expression post-MI, PLM was overexpressed in normal adult rat myocytes by adenovirus-mediated gene transfer. PLM overexpression did not affect the relative level of phosphorylation on serine68 of PLM. Na+-K+-ATPase activity was measured as ouabain-sensitive Na+-K+ pump current (Ip). Compared to control myocytes overexpressing green fluorescent protein alone, Ip measured in myocytes overexpressing PLM was significantly (P<0.0001) lower at similar membrane voltages, pipette Na+ ([Na+]pip) and extracellular K+ concentrations ([K+]o). From −70 to +60 mV, neither [Na+]pip nor [K+]o required to attain half-maximal Ip was significantly different between control and PLM myocytes. This phenotype of decreased Vmax without appreciable changes in Km for Na+ and K+ in PLM overexpressed myocytes was similar to that observed in MI rat myocytes. Inhibition of Ip by PLM overexpression was not due to decreased Na+-K+-ATPase expression since there were no changes in either protein or messenger RNA levels of either α1 or α2 isoforms of Na+-K+-ATPase. In native rat cardiac myocytes, PLM co-immunoprecipitated with α-subunits of Na+-K+-ATPase. Inhibition of Na+-K+-ATPase by PLM overexpression, in addition to previously reported decrease in Na+-K+-ATPase expression, may explain altered Vmax but not Km of Na+-K+-ATPase in postinfarction rat myocytes. PMID:16195392

  16. A unified theory of calcium alternans in ventricular myocytes

    NASA Astrophysics Data System (ADS)

    Qu, Zhilin; Liu, Michael B.; Nivala, Michael

    2016-10-01

    Intracellular calcium (Ca2+) alternans is a dynamical phenomenon in ventricular myocytes, which is linked to the genesis of lethal arrhythmias. Iterated map models of intracellular Ca2+ cycling dynamics in ventricular myocytes under periodic pacing have been developed to study the mechanisms of Ca2+ alternans. Two mechanisms of Ca2+ alternans have been demonstrated in these models: one relies mainly on fractional sarcoplasmic reticulum Ca2+ release and uptake, and the other on refractoriness and other properties of Ca2+ sparks. Each of the two mechanisms can partially explain the experimental observations, but both have their inconsistencies with the experimental results. Here we developed an iterated map model that is composed of two coupled iterated maps, which unifies the two mechanisms into a single cohesive mathematical framework. The unified theory can consistently explain the seemingly contradictory experimental observations and shows that the two mechanisms work synergistically to promote Ca2+ alternans. Predictions of the theory were examined in a physiologically-detailed spatial Ca2+ cycling model of ventricular myocytes.

  17. A unified theory of calcium alternans in ventricular myocytes

    PubMed Central

    Qu, Zhilin; Liu, Michael B.; Nivala, Michael

    2016-01-01

    Intracellular calcium (Ca2+) alternans is a dynamical phenomenon in ventricular myocytes, which is linked to the genesis of lethal arrhythmias. Iterated map models of intracellular Ca2+ cycling dynamics in ventricular myocytes under periodic pacing have been developed to study the mechanisms of Ca2+ alternans. Two mechanisms of Ca2+ alternans have been demonstrated in these models: one relies mainly on fractional sarcoplasmic reticulum Ca2+ release and uptake, and the other on refractoriness and other properties of Ca2+ sparks. Each of the two mechanisms can partially explain the experimental observations, but both have their inconsistencies with the experimental results. Here we developed an iterated map model that is composed of two coupled iterated maps, which unifies the two mechanisms into a single cohesive mathematical framework. The unified theory can consistently explain the seemingly contradictory experimental observations and shows that the two mechanisms work synergistically to promote Ca2+ alternans. Predictions of the theory were examined in a physiologically-detailed spatial Ca2+ cycling model of ventricular myocytes. PMID:27762397

  18. Grape seed proanthocyanidin extracts enhance endothelial nitric oxide synthase expression through 5'-AMP activated protein kinase/Surtuin 1-Krüpple like factor 2 pathway and modulate blood pressure in ouabain induced hypertensive rats.

    PubMed

    Cui, Xiaopei; Liu, Xiangju; Feng, Hua; Zhao, Shaohua; Gao, Haiqing

    2012-01-01

    Grape seed proanthocyanidin extracts (GSPE) belonging to polyphenols, possess various biological effects including anti-inflammation, anti-oxidant, anti-aging, anti-atherosclerosis, etc. GSPE is potential in regulating endothelial function. However, the underlying mechanism is not clear yet. In this study, by small interfering RNA (siRNA) knocking down, we proved that GSPE increase endothelial nitric oxide synthase (eNOS) expression in human umbilical vessel cells (HUVECs) in vitro, which was attributed to its transcription factor Krüpple like factor 2 (KLF2) induction. Furthermore, GSPE activate 5'-AMP activated protein kinase (AMPK) and increase surtuin 1 (SIRT1) protein level, critical for KLF2 induction. We also illuminated the role of GSPE in hypertension treatment. By chronic administration of GSPE in ouabain induced hypertensive rats model, we access the effect of GSPE on blood pressure regulation and the possible mechanisms involved. After 5 weeks feeding, GSPE significantly block the ouabain induced blood pressure increase. The aortic NO production impaired by ouabain was improved. In conclusion, GSPE increase eNOS expression and NO production in an AMPK/SIRT1 dependent manner through KLF2 induction, and attenuate ouabain induced hypertension.

  19. Altered Na/Ca exchange distribution in ventricular myocytes from failing hearts

    PubMed Central

    Gadeberg, Hanne C.; Bryant, Simon M.; James, Andrew F.

    2015-01-01

    In mammalian cardiac ventricular myocytes, Ca efflux via Na/Ca exchange (NCX) occurs predominantly at T tubules. Heart failure is associated with disrupted t-tubular structure, but its effect on t-tubular function is less clear. We therefore investigated t-tubular NCX activity in ventricular myocytes isolated from rat hearts ∼18 wk after coronary artery ligation (CAL) or corresponding sham operation (Sham). NCX current (INCX) and l-type Ca current (ICa) were recorded using the whole cell, voltage-clamp technique in intact and detubulated (DT) myocytes; intracellular free Ca concentration ([Ca]i) was monitored simultaneously using fluo-4. INCX was activated and measured during application of caffeine to release Ca from sarcoplasmic reticulum (SR). Whole cell INCX was not significantly different in Sham and CAL myocytes and occurred predominantly in the T tubules in Sham myocytes. CAL was associated with redistribution of INCX and ICa away from the T tubules to the cell surface and an increase in t-tubular INCX/ICa density from 0.12 in Sham to 0.30 in CAL myocytes. The decrease in t-tubular INCX in CAL myocytes was accompanied by an increase in the fraction of Ca sequestered by SR. However, SR Ca content was not significantly different in Sham, Sham DT, and CAL myocytes but was significantly increased by DT of CAL myocytes. In Sham myocytes, there was hysteresis between INCX and [Ca]i, which was absent in DT Sham but present in CAL and DT CAL myocytes. These data suggest altered distribution of NCX in CAL myocytes. PMID:26566728

  20. Voltage and Calcium Dual Channel Optical Mapping of Cultured HL-1 Atrial Myocyte Monolayer

    PubMed Central

    Zhao, Weiwei; Fast, Vladimir G.; Ye, Tong; Ai, Xun

    2015-01-01

    Optical mapping has proven to be a valuable technique to detect cardiac electrical activity on both intact ex vivo hearts and in cultured myocyte monolayers. HL-1 cells have been widely used as a 2-Dimensional cellular model for studying diverse aspects of cardiac physiology. However, it has been a great challenge to optically map calcium (Ca) transients and action potentials simultaneously from the same field of view in a cultured HL-1 atrial cell monolayer. This is because special handling and care is required to prepare healthy cells that can be electrically captured and optically mapped. Therefore, we have developed an optimal working protocol for dual channel optical mapping. In this manuscript, we have described in detail how to perform the dual channel optical mapping experiment. This protocol is a useful tool to enhance the understanding of action potential propagation and Ca kinetics in arrhythmia development. PMID:25867896

  1. The Heart: Mostly Postmitotic or Mostly Premitotic? Myocyte Cell Cycle, Senescence and Quiescence

    PubMed Central

    Siddiqi, Sailay; Sussman, Mark A

    2014-01-01

    The concept of myocyte division and myocyte-mediated regeneration has re-emerged in the past five years through development of sophisticated transgenic mice and carbon-dating of cells. Although, recently, a couple of studies have been conducted as an attempt to intervene in myocyte division, the efficiency in adult animals remains discouragingly low. Re-enforcing myocyte division is a vision that has been desired for decades, leading to years of experience in myocytes resistance to pro-proliferative stimuli. Previous attempts have indeed provided a platform for basic knowledge on molecular players and signaling in myocytes. However, natural biological processes such as hypertrophy and binucleation provide layers of complexity in interpretation of previous and current findings. A major hurdle in mediating myocyte division is a lack of insight in the myocyte cell cycle. To date, no knowledge is gained on myoycte cell cycle progression and/or duration. The current review will provide an overview of previous and current literature on myocytes cell cycle and division. Furthermore, this overview will point-out the limitations of current approaches and focus on re-igniting basic questions that may be essential in understand myocardial resistance to division. PMID:25442430

  2. Sympathetic neurons are a powerful driver of myocyte function in cardiovascular disease

    PubMed Central

    Larsen, Hege E.; Lefkimmiatis, Konstantinos; Paterson, David J.

    2016-01-01

    Many therapeutic interventions in disease states of heightened cardiac sympathetic activity are targeted to the myocytes. However, emerging clinical data highlights a dominant role in disease progression by the neurons themselves. Here we describe a novel experimental model of the peripheral neuro-cardiac axis to study the neuron’s ability to drive a myocyte cAMP phenotype. We employed a co-culture of neonatal ventricular myocytes and sympathetic stellate neurons from normal (WKY) and pro-hypertensive (SHR) rats that are sympathetically hyper-responsive and measured nicotine evoked cAMP responses in the myocytes using a fourth generation FRET cAMP sensor. We demonstrated the dominant role of neurons in driving the myocyte ß-adrenergic phenotype, where SHR cultures elicited heightened myocyte cAMP responses during neural activation. Moreover, cross-culturing healthy neurons onto diseased myocytes rescued the diseased cAMP response of the myocyte. Conversely, healthy myocytes developed a diseased cAMP response if diseased neurons were introduced. Our results provide evidence for a dominant role played by the neuron in driving the adrenergic phenotype seen in cardiovascular disease. We also highlight the potential of using healthy neurons to turn down the gain of neurotransmission, akin to a smart pre-synaptic ß-blocker. PMID:27966588

  3. Incomplete recovery of myocyte contractile function despite improvement of myocardial architecture with left ventricular assist device support.

    PubMed

    Ambardekar, Amrut V; Walker, John S; Walker, Lori A; Cleveland, Joseph C; Lowes, Brian D; Buttrick, Peter M

    2011-07-01

    Unloading a failing heart with a left ventricular assist device (LVAD) can improve ejection fraction (EF) and LV size; however, recovery with LVAD explantation is rare. We hypothesized that evaluation of myocyte contractility and biochemistry at the sarcomere level before and after LVAD may explain organ-level changes. Paired LV tissue samples were frozen from 8 patients with nonischemic cardiomyopathy at LVAD implantation (before LVAD) and before cardiac transplantation (after LVAD). These were compared with 8 nonfailing hearts. Isolated skinned myocytes were purified and attached to a force transducer, and dimensions, maximum calcium-saturated force, calcium sensitivity, and myofilament cooperativity were assessed. Relative isoform abundance and phosphorylation levels of sarcomeric contractile proteins were measured. With LVAD support, the unloaded EF improved (10.0±1.0% to 25.6±11.0%, P=0.007), LV size decreased (LV internal dimension at end diastole, 7.6±1.2 to 4.9±1.4 cm; P<0.001), and myocyte dimensions decreased (cross-sectional area, 1247±346 to 638±254 μm(2); P=0.001). Maximum calcium-saturated force improved after LVAD (3.6±0.9 to 7.3±1.8 mN/mm(2), P<0.001) implantation but was still lower than in nonfailing hearts (7.3±1.8 versus 17.6±1.8 mN/mm(2), P<0.001). An increase in troponin I (TnI) phosphorylation after LVAD implantation was noted, but protein kinase C phosphorylation of TnI decreased. Biochemical changes of other sarcomeric proteins were not observed after LVAD. There is significant improvement in LV and myocyte size with LVAD, but there is only partial recovery of EF and myocyte contractility. LVAD support was associated only with biochemical changes in TnI, suggesting that alternate mechanisms might contribute to contractile changes after LVAD and that additional interventions may be needed to alter biochemical remodeling of the sarcomere to further enhance myofilament and organ-level recovery.

  4. Caveolin and β1-integrin Coordinate Angiotensinogen Expression in Cardiac Myocytes

    PubMed Central

    Lal, Hind; Verma, Suresh K.; Feng, Hao; Golden, Honey B.; Gerilechaogetu, Fnu; Nizamutdinov, Damir; Foster, Donald M.; Glaser, Shannon S.; Dostal, David E.

    2012-01-01

    Background The cardiac renin-angiotensin system (RAS) has been implicated in mediating myocyte hypertrophy and remodeling, although the biochemical mechanisms responsible for regulating the local RAS are poorly understood. Caveolin-1 (Cav-1)/Cav-3 double-knockout mice display cardiac hypertrophy, and in vitro disruption of lipid rafts/caveolae using methyl-β-cyclodextrin (MβCD) abolishes cardiac protection. Methods In this study, neonatal rat ventricular myocytes (NRVM) were used to determine whether lipid rafts/caveolae may be involved in the regulation of angiotensinogen (Ao) gene expression, a substrate of the RAS system. Results Treatment with MβCD caused a time-dependent upregulation of Ao gene expression, which was associated with differential regulation of mitogen-activated protein (MAP) kinases ERK1/2, p38 and JNK phosphorylation. JNK was highly phosphorylated shortly after MβCD treatment (2 – 30 min), whereas marked activation of ERK1/2 and p38 occurred much later (2 – 4 h). β1D-integrin was required for MβCD-induced activation of the MAP kinases. Pharmacologic inhibition of ERK1/2 and JNK enhanced MβCD-induced Ao gene expression, whereas p38 blockade inhibited this response. Adenovirus-mediated expression of wild-type p38α enhanced MβCD-induced Ao gene expression; conversely expression of dominant negative p38α blocked the stimulatory effects of MβCD. Expression of Cav-3 siRNA stimulated Ao gene expression, whereas overexpression of Cav-3 was inhibitory. Cav-1 and Cav-3 expression levels were found to be positively regulated by p38, but unaffected by ERK1/2 and JNK. Conclusion Collectively, these studies indicate that lipid rafts/caveolae couple to Ao gene expression through a mechanism that involves β1-integrin and the differential actions of MAP kinase family members. PMID:23058350

  5. Colony-stimulating factor 2 enhances the developmental competence of yak (Poephagus grunniens) preimplantation embryos by modulating the expression of heat shock protein 70 kDa 1A.

    PubMed

    Wen, Zexing; Pan, Yangyang; Cui, Yan; Peng, Xiumei; Chen, Ping; Fan, Jiangfeng; Li, Guyue; Zhao, Tian; Zhang, Jian; Qin, Shujian; Yu, Sijiu

    2017-04-15

    Colony-stimulating factor 2 (CSF2) is known to promote the development and survival of rodents and ruminants preimplantation embryos; however, the effect of CSF2 on yak embryos has not been reported. The objective of this study was to investigate the effects of CSF2 on the developmental competence of yak embryos cultured in vitro in modified synthetic oviduct fluid (mSOF) medium and on the expression pattern of heat shock protein 70 kDa 1A (HSPA1A). In each experiment, cumulus-oocyte complexes (COCs) were matured in vitro and fertilized with frozen-thawed semen. Zygotes were treated with varying concentrations of CSF2 (0, 10, 50, 100 ng/mL) until day 8 after fertilization. Embryo development was calculated as the percentage of oocytes that formed embryos at the 2-cell, 4-cell, 8-cell, 16-cell, morula and blastocyst stages. The total cell numbers (TCN) per blastocyst and their allocation to the inner cell mass (ICM) and trophectoderm (TE) lineages were determined using differential CDX2 staining. The expression of HSPA1A was examined by quantitative real-time PCR (qRT-PCR) and immunochemistry to determine the mRNA and protein levels. The results showed that treatment with 50 ng/mL CSF2 significantly (P < 0.05) increased the rate of blastocyst formation (19.01% versus 9.93%) and the TCN per blastocyst (96.94 versus 81.41) compared to the control group. However, no significant differences were observed in the other stages of development. qRT-PCR analysis confirmed that treatment with 50 ng/mL CSF2 significantly (P < 0.05) inhibited the expression of HSPA1A mRNA in blastocysts cultured in vitro relative to the control group, but there were no significant differences between the other treatment groups. Immunocytochemical analysis confirmed that HSPA1A protein accumulation was gradually reduced in yak blastocysts cultured in 0, 10, 100 or 50 ng/mL CSF2, however, no significant differences were observed between the 10 and 100 ng/mL treatments (P > 0.05). In

  6. Loss of Adult Cardiac Myocyte GSK-3 Leads to Mitotic Catastrophe Resulting in Fatal Dilated Cardiomyopathy.

    PubMed

    Zhou, Jibin; Ahmad, Firdos; Parikh, Shan; Hoffman, Nichole E; Rajan, Sudarsan; Verma, Vipin K; Song, Jianliang; Yuan, Ancai; Shanmughapriya, Santhanam; Guo, Yuanjun; Gao, Erhe; Koch, Walter; Woodgett, James R; Madesh, Muniswamy; Kishore, Raj; Lal, Hind; Force, Thomas

    2016-04-15

    Cardiac myocyte-specific deletion of either glycogen synthase kinase (GSK)-3α and GSK-3β leads to cardiac protection after myocardial infarction, suggesting that deletion of both isoforms may provide synergistic protection. This is an important consideration because of the fact that all GSK-3-targeted drugs, including the drugs already in clinical trial target both isoforms of GSK-3, and none are isoform specific. To identify the consequences of combined deletion of cardiac myocyte GSK-3α and GSK-3β in heart function. We generated tamoxifen-inducible cardiac myocyte-specific mice lacking both GSK-3 isoforms (double knockout). We unexpectedly found that cardiac myocyte GSK-3 is essential for cardiac homeostasis and overall survival. Serial echocardiographic analysis reveals that within 2 weeks of tamoxifen treatment, double-knockout hearts leads to excessive dilatative remodeling and ventricular dysfunction. Further experimentation with isolated adult cardiac myocytes and fibroblasts from double-knockout implicated cardiac myocytes intrinsic factors responsible for observed phenotype. Mechanistically, loss of GSK-3 in adult cardiac myocytes resulted in induction of mitotic catastrophe, a previously unreported event in cardiac myocytes. Double-knockout cardiac myocytes showed cell cycle progression resulting in increased DNA content and multinucleation. However, increased cell cycle activity was rivaled by marked activation of DNA damage, cell cycle checkpoint activation, and mitotic catastrophe-induced apoptotic cell death. Importantly, mitotic catastrophe was also confirmed in isolated adult cardiac myocytes. Together, our findings suggest that cardiac myocyte GSK-3 is required to maintain normal cardiac homeostasis, and its loss is incompatible with life because of cell cycle dysregulation that ultimately results in a severe fatal dilated cardiomyopathy. © 2016 American Heart Association, Inc.

  7. Loss of Adult Cardiac Myocyte GSK-3 Leads to Mitotic Catastrophe Resulting in Fatal Dilated Cardiomyopathy

    PubMed Central

    Zhou, Jibin; Ahmad, Firdos; Parikh, Shan; Hoffman, Nichole E.; Rajan, Sudarsan; Verma, Vipin K.; Song, Jianliang; Yuan, Ancai; Shanmughapriya, Santhanam; Guo, Yuanjun; Gao, Erhe; Koch, Walter; Woodgett, James R.; Muniswamy, Madesh; Kishore, Raj; Lal, Hind; Force, Thomas

    2016-01-01

    Rationale Cardiac myocyte-specific deletion of either Glycogen Synthase Kinase (GSK)3A or GSK3B leads to cardiac protection following myocardial infarction, suggesting that deletion of both isoforms may provide synergistic protection. This is an important consideration due to the fact that all GSK-3–targeted drugs including the drugs already in clinical trial target both isoforms of GSK-3 and none are isoform specific. Objective To identify the consequences of combined deletion of cardiac myocyte GSK3A and GSK3B in heart function. Methods and Results We generated tamoxifen-inducible cardiac myocyte-specific mice lacking both GSK-3 isoforms (double knockout, DKO). We unexpectedly found that cardiac myocyte GSK-3 is essential for cardiac homeostasis and overall survival. Serial echocardiographic analysis reveals that within 2 weeks of tamoxifen treatment, DKO hearts leads to excessive dilatative remodeling and ventricular dysfunction. Further experimentation with isolated adult cardiac myocytes and fibroblasts from DKO implicated cardiac myocytes intrinsic factors responsible for observed phenotype. Mechanistically, loss of GSK-3 in adult cardiac myocytes resulted in induction of mitotic catastrophe, a previously unreported event in cardiac myocytes. DKO cardiac myocytes showed cell cycle progression resulting in increased DNA content and multi-nucleation. However, increased cell cycle activity was rivaled by marked activation of DNA damage, cell cycle checkpoint activation, and mitotic catastrophe induced apoptotic cell death. Importantly, mitotic catastrophe was also confirmed in isolated adult cardiac myocytes. Conclusion Together, our findings suggest that cardiac myocyte GSK-3 is required to maintain normal cardiac homeostasis and its loss is incompatible with life due to cell cycle dysregulation that ultimately results in a severe fatal dilated cardiomyopathy. PMID:26976650

  8. Myomaker is required for the fusion of fast-twitch myocytes in the zebrafish embryo.

    PubMed

    Zhang, Weibin; Roy, Sudipto

    2017-03-01

    During skeletal muscle development, myocytes aggregate and fuse to form multinucleated muscle fibers. Inhibition of myocyte fusion is thought to significantly derail the differentiation of functional muscle fibers. Despite the purported importance of fusion in myogenesis, in vivo studies of this process in vertebrates are rather limited. Myomaker, a multipass transmembrane protein, has been shown to be the first muscle-specific fusion protein essential for myocyte fusion in the mouse. We have generated loss-of-function alleles in zebrafish myomaker, and found that fusion of myocytes into syncytial fast-twitch muscles was significantly compromised. However, mutant myocytes could be recruited to fuse with wild-type myocytes in chimeric embryos, albeit rather inefficiently. Conversely, overexpression of Myomaker was sufficient to induce hyperfusion among fast-twitch myocytes, and it also induced fusion among slow-twitch myocytes that are normally fusion-incompetent. In line with this, Myomaker overexpression also triggered fusion in another myocyte fusion mutant compromised in the function of the junctional cell adhesion molecule, Jam2a. We also provide evidence that Rac, a regulator of actin cytoskeleton, requires Myomaker activity to induce fusion, and that an approximately 3kb of myomaker promoter sequence, with multiple E-box motifs, is sufficient to direct expression within the fast-twitch muscle lineage. Taken together, our findings underscore a conserved role for Myomaker in vertebrate myocyte fusion. Strikingly, and in contrast to the mouse, homozygous myomaker mutants are viable and do not exhibit discernible locomotory defects. Thus, in the zebrafish, myocyte fusion is not an absolute requirement for skeletal muscle morphogenesis and function.

  9. Resveratrol reduces intracellular free calcium concentration in rat ventricular myocytes.

    PubMed

    Liu, Zheng; Zhang, Li-Ping; Ma, Hui-Jie; Wang, Chuan; Li, Ming; Wang, Qing-Shan

    2005-10-25

    Resveratrol (trans-3, 4', 5-trihydroxy stilbene), a phytoalexin found in grape skins and red wine, has been reported to have a wide range of biological and pharmacological properties. It has been speculated that resveratrol may have cardioprotective activity. The objective of our study was to investigate the effects of resveratrol on intracellular calcium concentration ([Ca(2+)](i)) in rat ventricular myocytes. [Ca(2+)](i) was detected by laser scanning confocal microscopy. The results showed that resveratrol (15~60 mumol/L) reduced [Ca(2+)](i) in normal and Ca(2+)-free Tyrode's solution in a concentration-dependent manner. The effects of resveratrol on [Ca(2+)](i) in normal Tyrode's solution was partially inhibited by pretreatment with sodium orthovanadate (Na3VO4, 1.0 mmol/L, P<0.01), an inhibitor of protein tyrosine phosphatase, or L-type Ca(2+) channel agonist Bay K8644 (10 mumol/L, P<0.05), but could not be antagonized by NO synthase inhibitor L-NAME (1.0 mmol/L). Resveratrol also markedly inhibited the ryanodine-induced [Ca(2+)](i) increase in Ca(2+)-free Tyrode's solution (P<0.01). When Ca(2+) waves were produced by increasing extracellular Ca(2+) concentration from 1 to 10 mmol/L, resveratrol (60 mumol/L) could reduce the velocity and duration of propagating waves, and block the propagating waves of elevated [Ca(2+)](i). These results suggest that resveratrol may reduce the [Ca(2+)](i) in isolated rat ventricular myocytes. The inhibition of voltage-dependent Ca(2+) channel and tyrosine kinase, and alleviation of Ca(2+) release from sarcoplasmic reticulum (SR) are possibly involved in the effects of resveratrol on rat ventricular myocytes. These findings could help explain the protective activity of resveratrol against cardiovascular disease.

  10. Transformation of adult rat cardiac myocytes in primary culture.

    PubMed

    Banyasz, Tamas; Lozinskiy, Ilya; Payne, Charles E; Edelmann, Stephanie; Norton, Byron; Chen, Biyi; Chen-Izu, Ye; Izu, Leighton T; Balke, C William

    2008-03-01

    We characterized the morphological, electrical and mechanical alterations of cardiomyocytes in long-term cell culture. Morphometric parameters, sarcomere length, T-tubule density, cell capacitance, L-type calcium current (I(Ca,L)), inward rectifier potassium current (I(K1)), cytosolic calcium transients, action potential and contractile parameters of adult rat ventricular myocytes were determined on each day of 5 days in culture. We also analysed the health of the myocytes using an apoptotic/necrotic viability assay. The data show that myocytes undergo profound morphological and functional changes during culture. We observed a progressive reduction in the cell area (from 2502 +/- 70 microm(2) on day 0 to 1432 +/- 50 microm(2) on day 5), T-tubule density, systolic shortening (from 0.11 +/- 0.02 to 0.05 +/- 0.01 microm) and amplitude of calcium transients (from 1.54 +/- 0.19 to 0.67 +/- 0.19) over 5 days of culture. The negative force-frequency relationship, characteristic of rat myocardium, was maintained during the first 2 days but diminished thereafter. Cell capacitance (from 156 +/- 8 to 105 +/- 11 pF) and membrane currents were also reduced (I(Ca,L), from 3.98 +/- 0.39 to 2.12 +/- 0.37 pA pF; and I(K1), from 34.34p +/- 2.31 to 18.00 +/- 5.97 pA pF(-1)). We observed progressive depolarization of the resting membrane potential during culture (from 77.3 +/- 2.5 to 34.2 +/- 5.9 mV) and, consequently, action potential morphology was profoundly altered as well. The results of the viability assays indicate that these alterations could not be attributed to either apoptosis or necrosis but are rather an adaptation to the culture conditions over time.

  11. Myocyte Dedifferentiation Drives Extraocular Muscle Regeneration in Adult Zebrafish

    PubMed Central

    Saera-Vila, Alfonso; Kasprick, Daniel S.; Junttila, Tyler L.; Grzegorski, Steven J.; Louie, Ke'ale W.; Chiari, Estelle F.; Kish, Phillip E.; Kahana, Alon

    2015-01-01

    Purpose The purpose of this study was to characterize the injury response of extraocular muscles (EOMs) in adult zebrafish. Methods Adult zebrafish underwent lateral rectus (LR) muscle myectomy surgery to remove 50% of the muscle, followed by molecular and cellular characterization of the tissue response to the injury. Results Following myectomy, the LR muscle regenerated an anatomically correct and functional muscle within 7 to 10 days post injury (DPI). Following injury, the residual muscle stump was replaced by a mesenchymal cell population that lost cell polarity and expressed mesenchymal markers. Next, a robust proliferative burst repopulated the area of the regenerating muscle. Regenerating cells expressed myod, identifying them as myoblasts. However, both immunofluorescence and electron microscopy failed to identify classic Pax7-positive satellite cells in control or injured EOMs. Instead, some proliferating nuclei were noted to express mef2c at the very earliest point in the proliferative burst, suggesting myonuclear reprogramming and dedifferentiation. Bromodeoxyuridine (BrdU) labeling of regenerating cells followed by a second myectomy without repeat labeling resulted in a twice-regenerated muscle broadly populated by BrdU-labeled nuclei with minimal apparent dilution of the BrdU signal. A double-pulse experiment using BrdU and 5-ethynyl-2′-deoxyuridine (EdU) identified double-labeled nuclei, confirming the shared progenitor lineage. Rapid regeneration occurred despite a cell cycle length of 19.1 hours, whereas 72% of the regenerating muscle nuclei entered the cell cycle by 48 hours post injury (HPI). Dextran lineage tracing revealed that residual myocytes were responsible for muscle regeneration. Conclusions EOM regeneration in adult zebrafish occurs by dedifferentiation of residual myocytes involving a muscle-to-mesenchyme transition. A mechanistic understanding of myocyte reprogramming may facilitate novel approaches to the development of molecular

  12. Isolation of cardiac myocytes and fibroblasts from neonatal rat pups.

    PubMed

    Golden, Honey B; Gollapudi, Deepika; Gerilechaogetu, Fnu; Li, Jieli; Cristales, Ricardo J; Peng, Xu; Dostal, David E

    2012-01-01

    Neonatal rat ventricular myocytes (NRVM) and fibroblasts (FBs) serve as in vitro models for studying fundamental mechanisms underlying cardiac pathologies, as well as identifying potential therapeutic targets. Both cell types are relatively easy to culture as monolayers and can be manipulated using molecular and pharmacological tools. Because NRVM cease to proliferate after birth, and FBs undergo phenotypic changes and senescence after a few passages in tissue culture, primary cultures of both cell types are required for experiments. Below we describe methods that provide good cell yield and viability of primary cultures of NRVM and FBs from 0 to 3-day-old neonatal rat pups.

  13. Metabolic coupling of glutathione between mouse and quail cardiac myocytes and its protective role against oxidative stress.

    PubMed

    Nakamura, T Y; Yamamoto, I; Kanno, Y; Shiba, Y; Goshima, K

    1994-05-01

    Cultured quail myocytes were much more resistant to H2O2 toxicity than cultured mouse myocytes. The intracellular concentration of glutathione ([GSH]i) and the activity of gamma-glutamylcysteine synthetase (gamma-GCS) in quail heart cells were about five and three times higher, respectively, than in mouse heart cells, although catalase and glutathione peroxidase (GSHpx) activity was similar in both. Preloading of gamma-glutamylcysteine monoethyl ester (gamma-GCE), a membrane-permeating GSH precursor, increased the H2O2 resistance of cultured mouse myocytes. These observations suggest that the high [GSH]i and the high activity of gamma-GCS in quail myocytes are responsible for their high resistance to H2O2. Both H2O2 sensitivity and [GSH]i of mosaic sheets composed of equal amounts of mouse and quail myocytes approximated those of sheets composed entirely of quail myocytes. From these observations, it is hypothesized that GSH was transferred from quail myocytes to mouse myocytes, probably through gap junctions between them, and that quail myocytes resynthesized GSH by a feedback mechanism, thus maintaining their intracellular GSH levels. When the fluorescent dye lucifer yellow was injected into a beating quail myocyte in a mosaic sheet, it spread to neighboring mouse myocytes but not to neighboring L cells (a cell line derived from mouse connective tissue). These observations indicate that existence of gap junctions in the region of cell contact between mouse and quail myocytes but not between quail myocytes and L cells. When quail myocytes preloaded with [3H]gamma-GCE were cocultured with mouse myocytes and L cells, the radioactivity was transmitted to neighboring mouse myocytes but not L cells. These observations show that GSH and/or its precursors can be transmitted from quail myocytes to mouse myocytes through gap junctions and that this can protect mouse myocytes from H2O2 toxicity. Mouse myocyte sheets composed of 10(4) cells or more showed higher resistance

  14. On the mechanism of cesium-induced voltage and current tails in single ventricular myocytes.

    PubMed

    Shen, J B; Vassalle, M

    1999-01-01

    The mechanisms by which different concentrations of cesium modify membrane potentials and currents were investigated in guinea pig single ventricular myocytes. In a dose-dependent manner, cesium reversibly decreases the resting potential and action potential amplitude and duration, and induces a diastolic decaying voltage tail (Vex), which increases at more negative and reverses at less negative potentials. In voltage-clamped myocytes, Cs+ increases the holding current, increases the outward current at plateau levels while decreasing it at potentials closer to resting potential, induces an inward tail current (Iex) on return to resting potential and causes a negative shift of the threshold for the inward current. During depolarizing ramps, Cs+ decreases the outward current negative to inward rectification range, whereas it increases the current past that range. During repolarizing ramps, Cs+ shifts the threshold for removal of inward rectification negative slope to less negative values. Cs+-induced voltage and current tails are increased by repetitive activity, caffeine (5 mM) and high [Ca2+]O (8.1 mM), and are reduced by low Ca2+ (0.45 mM), Cd2+ (0.2 mM) and Ni2+ (2 mM). Ni2+ also abolishes the tail current that follows steps more positive than ECa. We conclude that Cs+ (1) decreases the resting potential by decreasing the outward current at more negative potentials, (2) shortens the action potential by increasing the outward current at potentials positive to the negative slope of inward rectification, and (3) induces diastolic tails through a Ca2+-dependent mechanism, which apparently is an enhanced electrogenic Na-Ca exchange.

  15. T-tubule disruption promotes calcium alternans in failing ventricular myocytes: mechanistic insights from computational modeling.

    PubMed

    Nivala, Michael; Song, Zhen; Weiss, James N; Qu, Zhilin

    2015-02-01

    In heart failure (HF), T-tubule (TT) disruption contributes to dyssynchronous calcium (Ca) release and impaired contraction, but its role in arrhythmogenesis remains unclear. In this study, we investigate the effects of TT disruption and other HF remodeling factors on Ca alternans in ventricular myocytes using computer modeling. A ventricular myocyte model with detailed spatiotemporal Ca cycling modeled by a coupled Ca release unit (CRU) network was used, in which the L-type Ca channels and the ryanodine receptor (RyR) channels were simulated by random Markov transitions. TT disruption, which removes the L-type Ca channels from the associated CRUs, results in "orphaned" RyR clusters and thus provides increased opportunity for spark-induced Ca sparks to occur. This effect combined with other HF remodeling factors promoted alternans by two distinct mechanisms: 1) for normal sarco-endoplasmic reticulum Ca ATPase (SERCA) activity, alternans was caused by both CRU refractoriness and coupling. The increased opportunity for spark-induced sparks by TT disruption combined with the enhanced CRU coupling by Ca elevation in the presence or absence of increased RyR leakiness facilitated spark synchronization on alternate beats to promote Ca alternans; 2) for down-regulated SERCA, alternans was caused by the sarcoplasmic reticulum (SR) Ca load-dependent mechanism, independent of CRU refractoriness. TT disruption and increased RyR leakiness shifted and steepened the SR Ca release-load relationship, which combines with down-regulated SERCA to promote Ca alternans. In conclusion, the mechanisms of Ca alternans for normal and down-regulated SERCA are different, and TT disruption promotes Ca alternans by both mechanisms, which may contribute to alternans at different stages of HF.

  16. N-acetylcysteine reverses cardiac myocyte dysfunction in a rodent model of behavioral stress

    PubMed Central

    Chen, Fangping; Hadfield, Jessalyn M.; Berzingi, Chalak; Hollander, John M.; Miller, Diane B.; Nichols, Cody E.

    2013-01-01

    Compelling clinical reports reveal that behavioral stress alone is sufficient to cause reversible myocardial dysfunction in selected individuals. We developed a rodent stress cardiomyopathy model by a combination of prenatal and postnatal behavioral stresses (Stress). We previously reported a decrease in percent fractional shortening by echo, both systolic and diastolic dysfunction by catheter-based hemodynamics, as well as attenuated hemodynamic and inotropic responses to the β-adrenergic agonist, isoproterenol (ISO) in Stress rats compared with matched controls (Kan H, Birkle D, Jain AC, Failinger C, Xie S, Finkel MS. J Appl Physiol 98: 77–82, 2005). We now report enhanced catecholamine responses to behavioral stress, as evidenced by increased circulating plasma levels of norepinephrine (P < 0.01) and epinephrine (P < 0.01) in Stress rats vs. controls. Cardiac myocytes isolated from Stress rats also reveal evidence of oxidative stress, as indicated by decreased ATP, increased GSSG, and decreased GSH-to-GSSG ratio in the presence of increased GSH peroxidase and catalase activities (P < 0.01, for each). We also report blunted inotropic and intracellular Ca2+ concentration responses to extracellular Ca2+ (P < 0.05), as well as altered inotropic responses to the intracellular calcium regulator, caffeine (20 mM; P < 0.01). Treatment of cardiac myocytes with N-acetylcysteine (NAC) (10−3 M) normalized calcium handling in response to ISO and extracellular Ca2+ concentration and inotropic response to caffeine (P < 0.01, for each). NAC also attenuated the blunted inotropic response to ISO and Ca2+ (P < 0.01, for each). Surprisingly, NAC did not reverse the changes in GSH, GSSG, or GSH-to-GSSG ratio. These data support a GSH-independent salutary effect of NAC on intracellular calcium signaling in this rodent model of stress-induced cardiomyopathy. PMID:23722706

  17. T-tubule Disruption Promotes Calcium Alternans in Failing Ventricular Myocytes: Mechanistic Insights from Computational Modeling

    PubMed Central

    Nivala, Michael; Song, Zhen; Weiss, James N.; Qu, Zhilin

    2015-01-01

    In heart failure (HF), T-tubule (TT) disruption contributes to dyssynchronous calcium (Ca) release and impaired contraction, but its role in arrhythmogenesis remains unclear. In this study, we investigate the mechanisms of TT disruption and other HF remodeling factors on Ca alternans in ventricular myocytes using computer modeling. A ventricular myocyte model with detailed spatiotemporal Ca cycling modeled by a coupled Ca release unit (CRU) network was used, in which the L-type Ca channels and the ryanodine receptor (RyR) channels were simulated by random Markov transitions. TT disruption, which removes the L-type Ca channels from the associated CRUs, results in “orphaned” RyR clusters and thus provides increased opportunity for spark-induced Ca sparks to occur. This effect combined with other HF remodeling factors promoted alternans by two distinct mechanisms: 1) for normal sarco-endoplasmic reticulum Ca ATPase (SERCA) activity, alternans was caused by both CRU refractoriness and coupling. The increased opportunity for spark-induced sparks by TT disruption combined with the enhanced CRU coupling by Ca elevation in the presence or absence of increased RyR leakiness facilitated spark synchronization on alternate beats to promote Ca alternans; 2) for down-regulated SERCA, alternans was caused by the sarcoplasmic reticulum (SR) Ca load-dependent mechanism, independent of CRU refractoriness. TT disruption and increased RyR leakiness shifted and steepened the SR Ca release-load relationship, which combines with down-regulated SERCA to promote Ca alternans. In conclusion, the mechanisms of Ca alternans for normal and down-regulated SERCA are different, and TT disruption promotes Ca alternans by both mechanisms, which may contribute to alternans at different stages of HF. PMID:25450613

  18. Effects of Na+ Current and Mechanogated Channels in Myofibroblasts on Myocyte Excitability and Repolarization

    PubMed Central

    Zhang, Jingtao; Lin, Jialun; Han, Guilai

    2016-01-01

    Fibrotic remodeling, characterized by fibroblast phenotype switching, is often associated with atrial fibrillation and heart failure. This study aimed to investigate the effects on electrotonic myofibroblast-myocyte (Mfb-M) coupling on cardiac myocytes excitability and repolarization of the voltage-gated sodium channels (VGSCs) and single mechanogated channels (MGCs) in human atrial Mfbs. Mathematical modeling was developed from a combination of (1) models of the human atrial myocyte (including the stretch activated ion channel current, ISAC) and Mfb and (2) our formulation of currents through VGSCs (INa_Mfb) and MGCs (IMGC_Mfb) based upon experimental findings. The effects of changes in the intercellular coupling conductance, the number of coupled Mfbs, and the basic cycle length on the myocyte action potential were simulated. The results demonstrated that the integration of ISAC, INa_Mfb, and IMGC_Mfb reduced the amplitude of the myocyte membrane potential (Vmax) and the action potential duration (APD), increased the depolarization of the resting myocyte membrane potential (Vrest), and made it easy to trigger spontaneous excitement in myocytes. For Mfbs, significant electrotonic depolarizations were exhibited with the addition of INa_Mfb and IMGC_Mfb. Our results indicated that ISAC, INa_Mfb, and IMGC_Mfb significantly influenced myocytes and Mfbs properties and should be considered in future cardiac pathological mathematical modeling. PMID:27980607

  19. Regulation of cardiac myocyte contractility by phospholemman: Na+/Ca2+ exchange versus Na+ -K+ -ATPase.

    PubMed

    Song, Jianliang; Zhang, Xue-Qian; Wang, JuFang; Cheskis, Ellina; Chan, Tung O; Feldman, Arthur M; Tucker, Amy L; Cheung, Joseph Y

    2008-10-01

    Phospholemman (PLM) regulates cardiac Na(+)/Ca(2+) exchanger (NCX1) and Na(+)-K(+)-ATPase in cardiac myocytes. PLM, when phosphorylated at Ser(68), disinhibits Na(+)-K(+)-ATPase but inhibits NCX1. PLM regulates cardiac contractility by modulating Na(+)-K(+)-ATPase and/or NCX1. In this study, we first demonstrated that adult mouse cardiac myocytes cultured for 48 h had normal surface membrane areas, t-tubules, and NCX1 and sarco(endo)plasmic reticulum Ca(2+)-ATPase levels, and retained near normal contractility, but alpha(1)-subunit of Na(+)-K(+)-ATPase was slightly decreased. Differences in contractility between myocytes isolated from wild-type (WT) and PLM knockout (KO) hearts were preserved after 48 h of culture. Infection with adenovirus expressing green fluorescent protein (GFP) did not affect contractility at 48 h. When WT PLM was overexpressed in PLM KO myocytes, contractility and cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients reverted back to those observed in cultured WT myocytes. Both Na(+)-K(+)-ATPase current (I(pump)) and Na(+)/Ca(2+) exchange current (I(NaCa)) in PLM KO myocytes rescued with WT PLM were depressed compared with PLM KO myocytes. Overexpressing the PLMS68E mutant (phosphomimetic) in PLM KO myocytes resulted in the suppression of I(NaCa) but had no effect on I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the PLMS68E mutant were depressed compared with PLM KO myocytes overexpressing GFP. Overexpressing the PLMS68A mutant (mimicking unphosphorylated PLM) in PLM KO myocytes had no effect on I(NaCa) but decreased I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the S68A mutant were similar to PLM KO myocytes overexpressing GFP. We conclude that at the single-myocyte level, PLM affects cardiac contractility and [Ca(2+)](i) homeostasis primarily by its direct

  20. Sarcomere length dependence of rat skinned cardiac myocyte mechanical properties: dependence on myosin heavy chain

    PubMed Central

    Korte, F Steven; McDonald, Kerry S

    2007-01-01

    The effects of sarcomere length (SL) on sarcomeric loaded shortening velocity, power output and rates of force development were examined in rat skinned cardiac myocytes that contained either α-myosin heavy chain (α-MyHC) or β-MyHC at 12 ± 1°C. When SL was decreased from 2.3 μm to 2.0 μm submaximal isometric force decreased ∼40% in both α-MyHC and β-MyHC myocytes while peak absolute power output decreased 55% in α-MyHC myocytes and 70% in β-MyHC myocytes. After normalization for the fall in force, peak power output decreased about twice as much in β-MyHC as in α-MyHC myocytes (41%versus 20%). To determine whether the fall in normalized power was due to the lower force levels, [Ca2+] was increased at short SL to match force at long SL. Surprisingly, this led to a 32% greater peak normalized power output at short SL compared to long SL in α-MyHC myocytes, whereas in β-MyHC myocytes peak normalized power output remained depressed at short SL. The role that interfilament spacing plays in determining SL dependence of power was tested by myocyte compression at short SL. Addition of 2% dextran at short SL decreased myocyte width and increased force to levels obtained at long SL, and increased peak normalized power output to values greater than at long SL in both α-MyHC and β-MyHC myocytes. The rate constant of force development (ktr) was also measured and was not different between long and short SL at the same [Ca2+] in α-MyHC myocytes but was greater at short SL in β-MyHC myocytes. At short SL with matched force by either dextran or [Ca2+], ktr was greater than at long SL in both α-MyHC and β-MyHC myocytes. Overall, these results are consistent with the idea that an intrinsic length component increases loaded crossbridge cycling rates at short SL and β-MyHC myocytes exhibit a greater sarcomere length dependence of power output. PMID:17347271

  1. Myocyte apoptosis occurs early during the development of pressure-overload hypertrophy in infant myocardium.

    PubMed

    Choi, Yeong-Hoon; Cowan, Douglas B; Moran, Adrian M; Colan, Steven D; Stamm, Christof; Takeuchi, Koh; Friehs, Ingeborg; del Nido, Pedro J; McGowan, Francis X

    2009-06-01

    Abnormal hemodynamic loading often accompanies congenital heart disease both before and after surgical repair. Adaptive and maladaptive myocardial responses to increased load are numerous. This study examined the hypothesis that myocyte loss occurs during compensatory hypertrophic growth in the developing infant myocardium subjected to progressive pressure overload. Pressure-overload left ventricular hypertrophy was induced in 7- to 10-day-old rabbits by banding the thoracic aorta. Left ventricular function and mechanics were quantified by serial echocardiography and noninvasive left ventricular wall stress analysis. Left ventricular tissue sections were examined for fibrosis by using Masson's trichrome stain and for myocyte apoptosis by using a myocyte-specific DNA fragmentation assay and caspase-3 activation (specific fluorescent substrate). Significant myocyte apoptosis (198 +/- 37/10(6) myocytes, P < .01 vs control) and caspase-3 activation were present in early hypertrophy when left ventricular contractility was preserved and compensatory hypertrophy had normalized wall stress. By 6 weeks, multiple indices of left ventricular contractility were reduced, and left ventricular wall stress was increased. Myocyte apoptosis was accelerated (361 +/- 56/10(6) myocytes), caspase-3 activity further increased, and the estimated total number of left ventricular myocytes was significantly reduced by 18% +/- 4%. In experimental infant left ventricular hypertrophy, myocyte apoptosis is initiated in the face of normalized wall stress and preserved contractility. The ongoing rate of apoptosis causes a measurable decrease in myocyte number that is coincident with the onset of ventricular dysfunction. It thus appears that pressure overload, even at its earliest stages, is not well tolerated by the developing ventricle.

  2. Myocyte repolarization modulates myocardial function in aging dogs.

    PubMed

    Sorrentino, Andrea; Signore, Sergio; Qanud, Khaled; Borghetti, Giulia; Meo, Marianna; Cannata, Antonio; Zhou, Yu; Wybieralska, Ewa; Luciani, Marco; Kannappan, Ramaswamy; Zhang, Eric; Matsuda, Alex; Webster, Andrew; Cimini, Maria; Kertowidjojo, Elizabeth; D'Alessandro, David A; Wunimenghe, Oriyanhan; Michler, Robert E; Royer, Christopher; Goichberg, Polina; Leri, Annarosa; Barrett, Edward G; Anversa, Piero; Hintze, Thomas H; Rota, Marcello

    2016-04-01

    Studies of myocardial aging are complex and the mechanisms involved in the deterioration of ventricular performance and decreased functional reserve of the old heart remain to be properly defined. We have studied a colony of beagle dogs from 3 to 14 yr of age kept under a highly regulated environment to define the effects of aging on the myocardium. Ventricular, myocardial, and myocyte function, together with anatomical and structural properties of the organ and cardiomyocytes, were evaluated. Ventricular hypertrophy was not observed with aging and the structural composition of the myocardium was modestly affected. Alterations in the myocyte compartment were identified in aged dogs, and these factors negatively interfere with the contractile reserve typical of the young heart. The duration of the action potential is prolonged in old cardiomyocytes contributing to the slower electrical recovery of the myocardium. Also, the remodeled repolarization of cardiomyocytes with aging provides inotropic support to the senescent muscle but compromises its contractile reserve, rendering the old heart ineffective under conditions of high hemodynamic demand. The defects in the electrical and mechanical properties of cardiomyocytes with aging suggest that this cell population is an important determinant of the cardiac senescent phenotype. Collectively, the delayed electrical repolarization of aging cardiomyocytes may be viewed as a critical variable of the aging myopathy and its propensity to evolve into ventricular decompensation under stressful conditions.

  3. Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration.

    PubMed

    O'Meara, Caitlin C; Wamstad, Joseph A; Gladstone, Rachel A; Fomovsky, Gregory M; Butty, Vincent L; Shrikumar, Avanti; Gannon, Joseph B; Boyer, Laurie A; Lee, Richard T

    2015-02-27

    Neonatal mice have the capacity to regenerate their hearts in response to injury, but this potential is lost after the first week of life. The transcriptional changes that underpin mammalian cardiac regeneration have not been fully characterized at the molecular level. The objectives of our study were to determine whether myocytes revert the transcriptional phenotype to a less differentiated state during regeneration and to systematically interrogate the transcriptional data to identify and validate potential regulators of this process. We derived a core transcriptional signature of injury-induced cardiac myocyte (CM) regeneration in mouse by comparing global transcriptional programs in a dynamic model of in vitro and in vivo CM differentiation, in vitro CM explant model, as well as a neonatal heart resection model. The regenerating mouse heart revealed a transcriptional reversion of CM differentiation processes, including reactivation of latent developmental programs similar to those observed during destabilization of a mature CM phenotype in the explant model. We identified potential upstream regulators of the core network, including interleukin 13, which induced CM cell cycle entry and STAT6/STAT3 signaling in vitro. We demonstrate that STAT3/periostin and STAT6 signaling are critical mediators of interleukin 13 signaling in CMs. These downstream signaling molecules are also modulated in the regenerating mouse heart. Our work reveals new insights into the transcriptional regulation of mammalian cardiac regeneration and provides the founding circuitry for identifying potential regulators for stimulating heart regeneration. © 2014 American Heart Association, Inc.

  4. Erythromycin contracts rabbit colon myocytes via occupation of motilin receptors.

    PubMed

    Hasler, W L; Heldsinger, A; Chung, O Y

    1992-01-01

    Erythromycin stimulates gastroduodenal motility via action on motilin receptors. We evaluated erythromycin as a colonic muscle motilin agonist using in vitro rabbit colon studies. Isolated myocytes contracted to erythromycin with a half-maximal effective concentration of 2 pM and peak shortening of 22.4 +/- 2.5% at 1 nM, which was superimposable with the response to motilin. 125I-labeled motilin binding to colon muscle homogenates was saturable and specific with a dissociation constant (Kd) of 0.39 nM and maximal binding (Bmax) of 41 +/- 3 fmol/mg protein. Motilin displaced specifically bound 125I-motilin, with a Kd of 0.31 nM. Erythromycin displaced 125I-motilin but was less potent, with an inhibitory constant of 84.0 nM. Bmax values from displacement studies were similar to the Scatchard data. Motilin receptor protection from alkylation by N-ethylmaleimide preserved contraction to motilin and erythromycin but not acetylcholine or cholecystokinin, whereas protection with erythromycin preserved contraction to motilin but not other agonists. In conclusion, erythromycin binds to colon muscle motilin receptors present in densities similar to reported values for the upper gut. Furthermore, erythromycin contracts colonic myocytes via specific action on motilin receptors. Thus erythromycin may have colonic motor-stimulating properties by action on motilin receptors.

  5. Microfluidic partitioning of the extracellular space around single cardiac myocytes.

    PubMed

    Klauke, Norbert; Smith, Godfrey L; Cooper, Jonathan M

    2007-02-01

    This paper describes the partitioning of the extracellular space around an electrically activated single cardiac myocyte, constrained within a microfluidic device. Central to this new method is the production of a hydrophobic gap-structure, which divides the extracellular space into two distinct microfluidic pools. The content of these pools was controlled using a pair of concentric automated pipets (subsequently called "dual superfusion pipet"), each providing the ability to dispense (i.e., the source, inner pipet) and aspirate (the sink, outer pipet) a buffer solution (perfusate) into each of the two pools. For rapid solution switching around the cell, additional dual superfusion pipets were inserted into the microchannel for defined time periods using a piezostepper, enabling us to add a test solution, such as a drug. Three distinct areas of the cell were manipulated, namely, the microfluidic environment, the cellular membrane, and the intracellular space. Planar integrated microelectrodes enabled the electrical stimulation of the cardiomyocyte and the recording of the evoked action potential. The device was mounted on an inverted microscope to allow simultaneous sarcomere length and epifluorescence measurements during evoked electrical activity, including, for example, the response of the stimulated end of the cardiac myocyte in comparison with the untreated cell end.

  6. Arrhythmia and neuronal/endothelial myocyte uncoupling in hyperhomocysteinemia*

    PubMed Central

    ROSENBERGER, DOROTHEA; MOSHAL, KARNI S.; KARTHA, GANESH K.; TYAGI, NEETU; SEN, UTPAL; LOMINADZE, DAVID; MALDONADO, CLAUDIO; ROBERTS, ANDREW M.; TYAGI, SURESH C.

    2011-01-01

    Elevated levels of homocysteine (Hcy) known as hyperhomocysteinemia (HHcy) are associated with arrhythmogenesis and sudden cardiac death (SCD). Hcy decreases constitutive neuronal and endothelial nitric oxide (NO), and cardiac diastolic relaxation. Hcy increases the iNOS/NO, peroxynitrite, mitochondrial NADPH oxidase, and suppresses superoxide dismutase (SOD) and redoxins. Hcy activates matrix metalloproteinase (MMP), disrupts connexin-43 and increases collagen/elastin ratio. The disruption of connexin-43 and accumulation of collagen (fibrosis) disrupt the normal pattern of cardiac conduction and attenuate NO transport from endothelium to myocyte (E-M) causing E-M uncoupling, leading to a pro-arrhythmic environment. The goal of this review is to elaborate the mechanism of Hcy-mediated iNOS/NO in E-M uncoupling and SCD. It is known that Hcy creates arrhythmogenic substrates (i.e. increase in collagen/elastin ratio and disruption in connexin-43) and exacerbates heart failure during chronic volume overload. Also, Hcy behaves as an agonist to N-methyl-D-aspartate (NMDA, an excitatory neurotransmitter) receptor-1, and blockade of NMDA-R1 reduces the increase in heart rate-evoked by NMDA-analog and reduces SCD. This review suggest that Hcy increases iNOS/NO, superoxide, metalloproteinase activity, and disrupts connexin-43, exacerbates endothelial-myocyte uncoupling and cardiac failure secondary to inducing NMDA-R1. PMID:17178594

  7. Myocyte repolarization modulates myocardial function in aging dogs

    PubMed Central

    Sorrentino, Andrea; Signore, Sergio; Borghetti, Giulia; Meo, Marianna; Cannata, Antonio; Zhou, Yu; Wybieralska, Ewa; Luciani, Marco; Kannappan, Ramaswamy; Zhang, Eric; Matsuda, Alex; Webster, Andrew; Cimini, Maria; Kertowidjojo, Elizabeth; D'Alessandro, David A.; Wunimenghe, Oriyanhan; Michler, Robert E.; Royer, Christopher; Goichberg, Polina; Leri, Annarosa; Barrett, Edward G.; Anversa, Piero; Hintze, Thomas H.

    2016-01-01

    Studies of myocardial aging are complex and the mechanisms involved in the deterioration of ventricular performance and decreased functional reserve of the old heart remain to be properly defined. We have studied a colony of beagle dogs from 3 to 14 yr of age kept under a highly regulated environment to define the effects of aging on the myocardium. Ventricular, myocardial, and myocyte function, together with anatomical and structural properties of the organ and cardiomyocytes, were evaluated. Ventricular hypertrophy was not observed with aging and the structural composition of the myocardium was modestly affected. Alterations in the myocyte compartment were identified in aged dogs, and these factors negatively interfere with the contractile reserve typical of the young heart. The duration of the action potential is prolonged in old cardiomyocytes contributing to the slower electrical recovery of the myocardium. Also, the remodeled repolarization of cardiomyocytes with aging provides inotropic support to the senescent muscle but compromises its contractile reserve, rendering the old heart ineffective under conditions of high hemodynamic demand. The defects in the electrical and mechanical properties of cardiomyocytes with aging suggest that this cell population is an important determinant of the cardiac senescent phenotype. Collectively, the delayed electrical repolarization of aging cardiomyocytes may be viewed as a critical variable of the aging myopathy and its propensity to evolve into ventricular decompensation under stressful conditions. PMID:26801307

  8. Docosahexaenoic Acid Reduces the Incidence of Early Afterdepolarizations Caused by Oxidative Stress in Rabbit Ventricular Myocytes

    PubMed Central

    Zhao, Zhenghang; Wen, Hairuo; Fefelova, Nadezhda; Allen, Charelle; Guillaume, Nancy; Xiao, Dandan; Huang, Chen; Zang, Weijin; Gwathmey, Judith K.; Xie, Lai-Hua

    2012-01-01

    Accumulating evidence has suggested that ω3-polyunsaturated fatty acids (ω3-PUFAs) may have beneficial effects in the prevention/treatment of cardiovascular diseases, while controversies still remain regarding their anti-arrhythmic potential. It is not clear yet whether ω-3-PUFAs can suppress early afterdepolarizations (EADs) induced by oxidative stress. In the present study, we recorded action potentials using the patch-clamp technique in ventricular myocytes isolated from rabbit hearts. The treatment of myocytes with H2O2 (200 μM) prolonged AP durations and induced EADs, which were significantly suppressed by docosahexaenoic acid (DHA, 10 or 25 μM; n = 8). To reveal the ionic mechanisms, we examined the effects of DHA on L-type calcium currents (ICa.L), late sodium (INa), and transient outward potassium currents (Ito) in ventricular myocytes pretreated with H2O2. H2O2 (200 μM) increased ICa.L by 46.4% from control (−8.4 ± 1.4 pA/pF) to a peak level (−12.3 ± 1.8 pA/pF, n = 6, p < 0.01) after 6 min of H2O2 perfusion. H2O2-enhanced ICa.L was significantly reduced by DHA (25 μM; −7.1 ± 0.9 pA/pF, n = 6, p < 0.01). Similarly, H2O2-increased the late INa (−3.2 ± 0.3 pC) from control level (−0.7 ± 0.1 pC). DHA (25 μM) completely reversed the H2O2-induced increase in late INa (to −0.8 ± 0.2 pC, n = 5). H2O2 also increased the peak amplitude of and the steady state Ito from 8.9 ± 1.0 and 2.16 ± 0.25 pA/pF to 12.8 ± 1.21 and 3.13 ± 0.47 pA/pF respectively (n = 6, p < 0.01, however, treatment with DHA (25 μM) did not produce significant effects on current amplitudes and dynamics of Ito altered by H2O2. In addition, DHA (25 μM) did not affect the increase of intracellular reactive oxygen species (ROS) levels induced by H2O2 in rabbit ventricular myocytes. These findings demonstrate that DHA suppresses exogenous H2O2-induced EADs mainly by

  9. Profound regulation of Na/K pump activity by transient elevations of cytoplasmic calcium in murine cardiac myocytes

    PubMed Central

    Lu, Fang-Min; Deisl, Christine; Hilgemann, Donald W

    2016-01-01

    Small changes of Na/K pump activity regulate internal Ca release in cardiac myocytes via Na/Ca exchange. We now show conversely that transient elevations of cytoplasmic Ca strongly regulate cardiac Na/K pumps. When cytoplasmic Na is submaximal, Na/K pump currents decay rapidly during extracellular K application and multiple results suggest that an inactivation mechanism is involved. Brief activation of Ca influx by reverse Na/Ca exchange enhances pump currents and attenuates current decay, while repeated Ca elevations suppress pump currents. Pump current enhancement reverses over 3 min, and results are similar in myocytes lacking the regulatory protein, phospholemman. Classical signaling mechanisms, including Ca-activated protein kinases and reactive oxygen, are evidently not involved. Electrogenic signals mediated by intramembrane movement of hydrophobic ions, such as hexyltriphenylphosphonium (C6TPP), increase and decrease in parallel with pump currents. Thus, transient Ca elevation and Na/K pump inactivation cause opposing sarcolemma changes that may affect diverse membrane processes. DOI: http://dx.doi.org/10.7554/eLife.19267.001 PMID:27627745

  10. Local control of β-adrenergic stimulation: Effects on ventricular myocyte electrophysiology and Ca2+-transient1

    PubMed Central

    Heijman, Jordi; Volders, Paul G.A.; Westra, Ronald L.; Rudy, Yoram

    2011-01-01

    Local signaling domains and numerous interacting molecular pathways and substrates contribute to the whole-cell response of myocytes during β-adrenergic stimulation (βARS). We aimed to elucidate the quantitative contribution of substrates and their local signaling environments during βARS to the canine epicardial ventricular myocyte electrophysiology and calcium transient (CaT). We present a computational compartmental model of βARS and its electrophysiological effects. Novel aspects of the model include localized signaling domains, incorporation of β1 and β2 receptor isoforms, a detailed population-based approach to integrate the βAR and Ca2+/Calmodulin kinase (CaMKII) signaling pathways and their effects on a wide range of substrates that affect whole-cell electrophysiology and CaT. The model identifies major roles for phosphodiesterases, adenylyl cyclases, PKA and restricted diffusion in the control of local cAMP levels and shows that activation of specific cAMP domains by different receptor isoforms allows for specific control of action potential and CaT properties. In addition, the model predicts increased CaMKII activity during βARS due to rate-dependent accumulation and increased Ca2+ cycling. CaMKII inhibition, reduced compartmentation, and selective blockade of β1AR are predicted to reduce the occurrence of delayed afterdepolarizations during βARS. Finally, the relative contribution of each PKA substrate to whole-cell electrophysiology is quantified by comparing simulations with and without phosphorylation of each target. In conclusion, this model enhances our understanding of localized βAR signaling and its whole-cell effects in ventricular myocytes by incorporating receptor isoforms, multiple pathways and a detailed representation of multiple-target phosphorylation; it provides a basis for further studies of βARS under pathological conditions. PMID:21345340

  11. Metabolic Remodeling of Human Skeletal Myocytes by Cocultured Adipocytes Depends on the Lipolytic State of the System

    PubMed Central

    Kovalik, Jean-Paul; Slentz, Dorothy; Stevens, Robert D.; Kraus, William E.; Houmard, Joseph A.; Nicoll, James B.; Lea-Currie, Y. Renee; Everingham, Karen; Kien, C. Lawrence; Buehrer, Benjamin M.; Muoio, Deborah M.

    2011-01-01

    OBJECTIVE Adipocyte infiltration of the musculoskeletal system is well recognized as a hallmark of aging, obesity, and type 2 diabetes. Intermuscular adipocytes might serve as a benign storage site for surplus lipid or play a role in disrupting energy homeostasis as a result of dysregulated lipolysis or secretion of proinflammatory cytokines. This investigation sought to understand the net impact of local adipocytes on skeletal myocyte metabolism. RESEARCH DESIGN AND METHODS Interactions between these two tissues were modeled using a coculture system composed of primary human adipocytes and human skeletal myotubes derived from lean or obese donors. Metabolic analysis of myocytes was performed after coculture with lipolytically silent or activated adipocytes and included transcript and metabolite profiling along with assessment of substrate selection and insulin action. RESULTS Cocultured adipocytes increased myotube mRNA expression of genes involved in oxidative metabolism, regardless of the donor and degree of lipolytic activity. Adipocytes in the basal state sequestered free fatty acids, thereby forcing neighboring myotubes to rely more heavily on glucose fuel. Under this condition, insulin action was enhanced in myotubes from lean but not obese donors. In contrast, when exposed to lipolytically active adipocytes, cocultured myotubes shifted substrate use in favor of fatty acids, which was accompanied by intracellular accumulation of triacylglycerol and even-chain acylcarnitines, decreased glucose oxidation, and modest attenuation of insulin signaling. CONCLUSIONS The effects of cocultured adipocytes on myocyte substrate selection and insulin action depended on the metabolic state of the system. These findings are relevant to understanding the metabolic consequences of intermuscular adipogenesis. PMID:21602515

  12. Adenylyl Cyclase Subtype-Specific Compartmentalization: Differential Regulation of L-type Ca2+ Current in Ventricular Myocytes

    PubMed Central

    Timofeyev, Valeriy; Myers, Richard E.; Kim, Hyo Jeong; Woltz, Ryan L.; Sirish, Padmini; Heiserman, James P.; Li, Ning; Singapuri, Anil; Tang, Tong; Yarov-Yarovoy, Vladimir; Yamoah, Ebenezer N.; Hammond, H. Kirk; Chiamvimonvat, Nipavan

    2013-01-01

    Rationale Adenylyl cyclase (AC) represents one of the principal molecules in the β-adrenergic receptor (βAR) signaling pathway, responsible for the conversion of ATP to the second messenger, cAMP. AC type 5 (ACV) and 6 (ACVI) are the two main isoforms in the heart. While highly homologous in sequence, these two proteins nevertheless play different roles during the development of heart failure. Caveolin-3 is a scaffolding protein, integrating many intracellular signaling molecules in specialized areas called caveolae. In cardiomyocytes, caveolin is predominantly located along invaginations of the cell membrane known as t-tubules. Objective We take advantage of ACV and ACVI knockout mouse models to test the hypothesis that there is distinct compartmentalization of these two isoforms in ventricular myocytes. Methods and Results We demonstrate that ACV and ACVI isoforms exhibit distinct subcellular localization. ACVI isoform is localized in the plasma membrane outside of the t-tubular region, and is responsible for β1AR signaling-mediated enhancement of the L-type Ca2+ current (ICa,L) in ventricular myocytes. In contrast, ACV isoform is localized mainly in the t-tubular region where its influence on ICa,L is restricted by phosphodiesterase (PDE). We further demonstrate that the interaction between caveolin-3 with ACV and PDE is responsible for the compartmentalization of ACV signaling. Conclusions Our results provide new insights into the compartmentalization of the two AC isoforms in the regulation of ICa,L in ventricular myocytes. Since caveolae are found in most mammalian cells, the mechanism of βAR and AC compartmentalization may also be important for βAR signaling in other cell types. PMID:23609114

  13. STAT3 balances myocyte hypertrophy vis-à-vis autophagy in response to Angiotensin II by modulating the AMPKα/mTOR axis.

    PubMed

    Chen, Lei; Zhao, Lin; Samanta, Anweshan; Mahmoudi, Seyed Morteza; Buehler, Tanner; Cantilena, Amy; Vincent, Robert J; Girgis, Magdy; Breeden, Joshua; Asante, Samuel; Xuan, Yu-Ting; Dawn, Buddhadeb

    2017-01-01

    Signal transducers and activators of transcription 3 (STAT3) is known to participate in various cardiovascular signal transduction pathways, including those responsible for cardiac hypertrophy and cytoprotection. However, the role of STAT3 signaling in cardiomyocyte autophagy remains unclear. We tested the hypothesis that Angiotensin II (Ang II)-induced cardiomyocyte hypertrophy is effected, at least in part, through STAT3-mediated inhibition of cellular autophagy. In H9c2 cells, Ang II treatment resulted in STAT3 activation and cellular hypertrophy in a dose-dependent manner. Ang II enhanced autophagy, albeit without impacting AMPKα/mTOR signaling or cellular ADP/ATP ratio. Pharmacologic inhibition of STAT3 with WP1066 suppressed Ang II-induced myocyte hypertrophy and mRNA expression of hypertrophy-related genes ANP and β-MHC. These molecular events were recapitulated in cells with STAT3 knockdown. Genetic or pharmacologic inhibition of STAT3 significantly increased myocyte ADP/ATP ratio and enhanced autophagy through AMPKα/mTOR signaling. Pharmacologic activation and inhibition of AMPKα attenuated and exaggerated, respectively, the effects of Ang II on ANP and β-MHC gene expression, while concomitant inhibition of STAT3 accentuated the inhibition of hypertrophy. Together, these data indicate that novel nongenomic effects of STAT3 influence myocyte energy status and modulate AMPKα/mTOR signaling and autophagy to balance the transcriptional hypertrophic response to Ang II stimulation. These findings may have significant relevance for various cardiovascular pathological processes mediated by Ang II signaling.

  14. Glycolytic inhibition: effects on diastolic relaxation and intracellular calcium handling in hypertrophied rat ventricular myocytes.

    PubMed Central

    Kagaya, Y; Weinberg, E O; Ito, N; Mochizuki, T; Barry, W H; Lorell, B H

    1995-01-01

    We tested the hypothesis that glycolytic inhibition by 2-deoxyglucose causes greater impairment of diastolic relaxation and intracellular calcium handling in well-oxygenated hypertrophied adult rat myocytes compared with control myocytes. We simultaneously measured cell motion and intracellular free calcium concentration ([Ca2+]i) with indo-1 in isolated paced myocytes from aortic-banded rats and sham-operated rats. There was no difference in either the end-diastolic or peak-systolic [Ca2+]i between control and hypertrophied myocytes (97 +/- 18 vs. 105 +/- 15 nM, 467 +/- 92 vs. 556 +/- 67 nM, respectively). Myocytes were first superfused with oxygenated Hepes-buffered solution containing 1.2 mM CaCl2, 5.6 mM glucose, and 5 mM acetate, and paced at 3 Hz at 36 degrees C. Exposure to 20 mM 2-deoxyglucose as substitution of glucose for 15 min caused an upward shift of end-diastolic cell position in both control (n = 5) and hypertrophied myocytes (n = 10) (P < 0.001 vs. baseline), indicating an impaired extent of relaxation. Hypertrophied myocytes, however, showed a greater upward shift in end-diastolic cell position and slowing of relaxation compared with control myocytes (delta 144 +/- 28 vs. 55 +/- 15% of baseline diastolic position, P < 0.02). Exposure to 2-deoxyglucose increased end-diastolic [Ca2+]i in both groups (P < 0.001 vs. baseline), but there was no difference between hypertrophied and control myocytes (218 +/- 38 vs. 183 +/- 29 nM, respectively). The effects of 2-deoxyglucose were corroborated in isolated oxygenated perfused hearts in which glycolytic inhibition which caused severe elevation of isovolumic diastolic pressure and prolongation of relaxation in the hypertrophied hearts compared with controls. In summary, the inhibition of the glycolytic pathway impairs diastolic relaxation to a greater extent in hypertrophied myocytes than in control myocytes even in well-oxygenated conditions. The severe impairment of diastolic relaxation induced by 2

  15. Ketamine attenuates the Na+-dependent Ca2+ overload in rabbit ventricular myocytes in vitro by inhibiting late Na+ and L-type Ca2+ currents.

    PubMed

    Luo, An-tao; Cao, Zhen-zhen; Xiang, Yu; Zhang, Shuo; Qian, Chun-ping; Fu, Chen; Zhang, Pei-hua; Ma, Ji-hua

    2015-11-01

    Intracellular Ca(2+) ([Ca(2+)]i) overload occurs in myocardial ischemia. An increase in the late sodium current (INaL) causes intracellular Na(+) overload and subsequently [Ca(2+)]i overload via the reverse-mode sodium-calcium exchanger (NCX). Thus, inhibition of INaL is a potential therapeutic target for cardiac diseases associated with [Ca(2+)]i overload. The aim of this study was to investigate the effects of ketamine on Na(+)-dependent Ca(2+) overload in ventricular myocytes in vitro. Ventricular myocytes were enzymatically isolated from hearts of rabbits. INaL, NCX current (INCX) and L-type Ca(2+) current (ICaL) were recorded using whole-cell patch-clamp technique. Myocyte shortening and [Ca(2+)]i transients were measured simultaneously using a video-based edge detection and dual excitation fluorescence photomultiplier system. Ketamine (20, 40, 80 μmol/L) inhibited INaL in a concentration-dependent manner. In the presence of sea anemone toxin II (ATX, 30 nmol/L), INaL was augmented by more than 3-fold, while ketamine concentration-dependently suppressed the ATX-augmented INaL. Ketamine (40 μmol/L) also significantly suppressed hypoxia or H2O2-induced enhancement of INaL. Furthermore, ketamine concentration-dependently attenuated ATX-induced enhancement of reverse-mode INCX. In addition, ketamine (40 μmol/L) inhibited ICaL by 33.4%. In the presence of ATX (3 nmol/L), the rate and amplitude of cell shortening and relaxation, the diastolic [Ca(2+)]i, and the rate and amplitude of [Ca(2+)]i rise and decay were significantly increased, which were reverted to control levels by tetrodotoxin (TTX, 2 μmol/L) or by ketamine (40 μmol/L). Ketamine protects isolated rabbit ventricular myocytes against [Ca(2+)]i overload by inhibiting INaL and ICaL.

  16. Effects of phorbol ester on contraction, intracellular pH and intracellular Ca2+ in isolated mammalian ventricular myocytes.

    PubMed Central

    MacLeod, K T; Harding, S E

    1991-01-01

    1. We have investigated the actions of certain phorbol esters on the intracellular pH, intracellular Ca2+ and contractility of isolated rat and guinea-pig cardiac myocytes. Intracellular pH was measured using 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) and intracellular Ca2+ was measured using Fura-2. 2. Application of the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (also called phorbol 12-myristate 13-acetate) (TPA) (which activates protein kinase C) to rat cardiac myocytes significantly increased cell shortening by 116 +/- 34% (n = 8) (p less than 0.02). The rate of change of cell length during contraction (i.e. +dL/dt) increased from 67.2 +/- 8.7 microns/s to 127.7 +/- 14.1 microns/s (n = 7). The rate of change of cell length during relaxation (-dL/dt) increased from 55.8 +/- 7.4 microns/s to 118.9 +/- 12.1 microns/s (n = 7). Time to peak shortening was unchanged. 3. Application of 4 alpha-phorbol 12,13-didecanoate, which does not activate protein kinase C, did not affect rat myocyte contractility. An insignificant decrease in contractility (by 7.5 +/- 7.5%) was observed (n = 5). The positive inotropic effect of TPA may therefore be evoked through an activation of protein kinase C. 4. In rat myocytes we have measured the changes of pHi and contractility (cell shortening) during an alkalosis and acidosis induced by exposure to and subsequent removal of NH4Cl both in the presence and absence of TPA. Recovery times from an acid load were significantly (p less than 0.05) enhanced by 15.1 +/- 6.9% (n = 13) in the presence of TPA. Recovery times of cell shortening were also more rapid (p less than 0.05) by an average of 59.1 +/- 10.6% (n = 5) in the presence of TPA. Recovery times were unchanged in the presence of 4-phorbol 12,13-didecanoate (which does not activate protein kinase C). 5. Since pHi recovery of an isolated myocyte from an acid load is partially inhibited by the presence of 1 mM-amiloride and inhibited by removing extracellular Na

  17. Tissue-Specific Cell Cycle Indicator Reveals Unexpected Findings for Cardiac Myocyte Proliferation

    PubMed Central

    Hirai, Maretoshi; Chen, Ju; Evans, Sylvia M.

    2017-01-01

    Rationale Discerning cardiac myocyte cell cycle behavior is challenging owing to commingled cell types with higher proliferative activity. Objective To investigate cardiac myocyte cell cycle activity in development and the early postnatal period. Methods and Results To facilitate studies of cell type–specific proliferation, we have generated tissue-specific cell cycle indicator BAC transgenic mouse lines. Experiments using embryonic fibroblasts from CyclinA2-LacZ-floxed-EGFP, or CyclinA2-EGFP mice, demonstrated that CyclinA2-βgal and CyclinA2-EGFP were expressed from mid-G1 to mid-M phase. Using Troponin T-Cre;CyclinA2-LacZ-EGFP mice, we examined cardiac myocyte cell cycle activity during embryogenesis and in the early postnatal period. Our data demonstrated that right ventricular cardiac myocytes exhibited reduced cell cycle activity relative to left ventricular cardiac myocytes in the immediate perinatal period. Additionally, in contrast to a recent report, we could find no evidence to support a burst of cardiac myocyte cell cycle activity at postnatal day 15. Conclusions Our data highlight advantages of a cardiac myocyte–specific cell cycle reporter for studies of cardiac myocyte cell cycle regulation. PMID:26472817

  18. Direct toxic effects of aqueous extract of cigarette smoke on cardiac myocytes at clinically relevant concentrations

    SciTech Connect

    Yamada, Shigeyuki; Zhang Xiuquan; Kadono, Toshie; Matsuoka, Nobuhiro; Rollins, Douglas; Badger, Troy; Rodesch, Christopher K.; Barry, William H.

    2009-04-01

    Aims: Our goal was to determine if clinically relevant concentrations of aqueous extract of cigarette smoke (CSE) have direct deleterious effects on ventricular myocytes during simulated ischemia, and to investigate the mechanisms involved. Methods: CSE was prepared with a smoking chamber. Ischemia was simulated by metabolic inhibition (MI) with cyanide (CN) and 0 glucose. Adult rabbit and mouse ventricular myocyte [Ca{sup 2+}]{sub i} was measured by flow cytometry using fluo-3. Mitochondrial [Ca{sup 2+}] was measured with confocal microscopy, and Rhod-2 fluorescence. The mitochondrial permeability transition (MPT) was detected by TMRM fluorescence and myocyte contracture. Myocyte oxidative stress was quantified by dichlorofluorescein (DCF) fluorescence with confocal microscopy. Results: CSE 0.1% increased myocyte contracture caused by MI. The nicotine concentration (HPLC) in 0.1% CSE was 15 ng/ml, similar to that in humans after smoking cigarettes. CSE 0.1% increased mitochondrial Ca{sup 2+} uptake, and increased the susceptibility of mitochondria to the MPT. CSE 0.1% increased DCF fluorescence in isolated myocytes, and increased [Ca{sup 2+}]{sub i} in paced myocytes exposed to 2.0 mM CN, 0 glucose (P-MI). These effects were inhibited by the superoxide scavenger Tiron. The effect of CSE on [Ca{sup 2+}]{sub i} during P-MI was also prevented by ranolazine. Conclusions: CSE in clinically relevant concentrations increases myocyte [Ca{sup 2+}]{sub i} during simulated ischemia, and increases myocyte susceptibility to the MPT. These effects appear to be mediated at least in part by oxidative radicals in CSE, and likely contribute to the effects of cigarette smoke to increase myocardial infarct size, and to decrease angina threshold.

  19. Morphologic features and nuclide composition of infarction-associated cardiac myocyte mineralization in humans.

    PubMed Central

    Lockard, V. G.; Bloom, S.

    1991-01-01

    Low dietary Mg results in Ca loading of cardiac myocytes, which increases the likelihood of myocyte calcification in the event of acute myocardial infarction (AMI), and possibly increases myocyte vulnerability to necrosis. Bloom and Peric-Golia1 previously reported an autopsy study of cases from the Washington, D.C. area (a region with low levels of Mg in the drinking water), demonstrating AMI-associated mineralization in myocytes with histologically normal nuclei and cross striations, as well as in obviously necrotic myocytes. The authors have re-examined mineralized myocytes from the same autopsy material, using electron probe microanalysis, light microscopy, and transmission electron microscopy. Microprobe analysis identified Ca and P as the nuclides composing the inorganic phase of the mineral deposits. Ultrastructurally, all Ca deposits, regardless of size or intracellular location, were composed of aggregates of needlelike hydroxyapatite crystals. The mildest form of intracellular Ca deposition was observed as small Ca deposits limited to some mitochondria of myocytes, which demonstrated intact nuclei and regular sarcomere pattern. More advanced stages of intracellular calcification, in the form of Ca deposits associated with mitochondria, Z-band regions and nuclei, were observed in other myocytes that also retained intact nuclei and sarcomeres. Massive Ca deposits were associated with myocytes which showed morphologic features of advanced necrosis, including loss of nuclei, disruption of sarcomere structure and masses of cellular debris. These observations support the theory originally proposed by Bloom and Peric-Golia1 suggesting that Ca loading of myocytes, possibly related to Mg deficiency in humans, increased vulnerability of the myocytes to subsequent AMI-associated necrosis and dystrophic calcification. In addition, the light microscopic impression of calcification of otherwise normal myocytes is contradicted by the electron microscopic identification

  20. Vector-averaged gravity alters myocyte and neuron properties in cell culture

    NASA Technical Reports Server (NTRS)

    Gruener, Raphael; Hoeger, Glenn

    1991-01-01

    The effect of changes in the gravitational field of developing neurons and myocytes on the development of these cells was investigated using observations of rotated cultures of embryonic spinal neurons and myocytes in a horizontal clinostat, in which rotation produces, from the cells' perspective, a 'vector-free' gravity environment by continous averaging of the vector, thus simulating the microgravity of space. It was found that, at rotation rates between 1 and 50 rpm, cellular and nuclear areas of myocytes become significantly enlarged and the number of presumptive nucleoli increase; in neurons, frequent and large swellings appeared along neuritic shafts. Some of these changes were reversible after the cessation of rotation.

  1. Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents.

    PubMed

    Livshitz, Leonid M; Rudy, Yoram

    2007-06-01

    Alternans of cardiac repolarization is associated with arrhythmias and sudden death. At the cellular level, alternans involves beat-to-beat oscillation of the action potential (AP) and possibly Ca(2+) transient (CaT). Because of experimental difficulty in independently controlling the Ca(2+) and electrical subsystems, mathematical modeling provides additional insights into mechanisms and causality. Pacing protocols were conducted in a canine ventricular myocyte model with the following results: 1) CaT alternans results from refractoriness of the sarcoplasmic reticulum Ca(2+) release system; alternation of the L-type calcium current has a negligible effect; 2) CaT-AP coupling during late AP occurs through the sodium-calcium exchanger and underlies AP duration (APD) alternans; 3) increased Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activity extends the range of CaT and APD alternans to slower frequencies and increases alternans magnitude; its decrease suppresses CaT and APD alternans, exerting an antiarrhythmic effect; and 4) increase of the rapid delayed rectifier current (I(Kr)) also suppresses APD alternans but without suppressing CaT alternans. Thus CaMKII inhibition eliminates APD alternans by eliminating its cause (CaT alternans) while I(Kr) enhancement does so by weakening CaT-APD coupling. The simulations identify combined CaMKII inhibition and I(Kr) enhancement as a possible antiarrhythmic intervention.

  2. Cardiac sodium channel palmitoylation regulates channel availability and myocyte excitability with implications for arrhythmia generation

    PubMed Central

    Pei, Zifan; Xiao, Yucheng; Meng, Jingwei; Hudmon, Andy; Cummins, Theodore R.

    2016-01-01

    Cardiac voltage-gated sodium channels (Nav1.5) play an essential role in regulating cardiac electric activity by initiating and propagating action potentials in the heart. Altered Nav1.5 function is associated with multiple cardiac diseases including long-QT3 and Brugada syndrome. Here, we show that Nav1.5 is subject to palmitoylation, a reversible post-translational lipid modification. Palmitoylation increases channel availability and late sodium current activity, leading to enhanced cardiac excitability and prolonged action potential duration. In contrast, blocking palmitoylation increases closed-state channel inactivation and reduces myocyte excitability. We identify four cysteines as possible Nav1.5 palmitoylation substrates. A mutation of one of these is associated with cardiac arrhythmia (C981F), induces a significant enhancement of channel closed-state inactivation and ablates sensitivity to depalmitoylation. Our data indicate that alterations in palmitoylation can substantially control Nav1.5 function and cardiac excitability and this form of post-translational modification is likely an important contributor to acquired and congenital arrhythmias. PMID:27337590

  3. Trafficking of an endogenous potassium channel in adult ventricular myocytes

    PubMed Central

    Wang, Tiantian; Cheng, Yvonne; Dou, Ying; Goonesekara, Charitha; David, Jens-Peter; Steele, David F.; Huang, Chen

    2012-01-01

    The roles of several small GTPases in the expression of an endogenous potassium current, Ito,f, in adult rat ventricular myocytes have been investigated. The results indicate that forward trafficking of newly synthesized Kv4.2, which underlies Ito,f in these cells, requires both Rab1 and Sar1 function. Expression of a Rab1 dominant negative (DN) reduced Ito,f current density by roughly one-half relative to control, mCherry-transfected myocytes. Similarly, expression of a Sar1DN nearly halved Ito,f current density. Rab11 is not essential to trafficking of Kv4.2, as expression of a Rab11DN had no effect on Ito,f over the time frames investigated here. In a process dependent on intact endoplasmic reticulum (ER)-to-Golgi transport, however, overexpression of wild-type Rab11 resulted in a doubling of Ito,f density; block of ER-to-Golgi traffic by Brefeldin A completely abrogated the effect. Also implicated in the trafficking of Kv4.2 are Rab5 and Rab4. Rab5DN expression increased endogenous Ito,f by two- to threefold, nonadditively with inhibition of dynamin-dependent endocytosis. And, in a phenomenon similar to that previously reported for myoblast-expressed Kv1.5, Rab4DN expression roughly doubled endogenous peak transient currents. Colocalization experiments confirmed the involvement of Rab4 in postinternalization trafficking of Kv4.2. There was little role evident for the lysosome in the degradation of internalized Kv4.2, as overexpression of neither wild-type nor DN isoforms of Rab7 had any effect on Ito,f. Instead, degradation may depend largely on the proteasome; the proteasome inhibitor MG132 significantly increased Ito,f density. PMID:22914645

  4. Intracellular calcium handling in ventricular myocytes from mdx mice.

    PubMed

    Williams, Iwan A; Allen, David G

    2007-02-01

    Duchenne muscular dystrophy (DMD) is a lethal degenerative disease of skeletal muscle, characterized by the absence of the cytoskeletal protein dystrophin. Some DMD patients show a dilated cardiomyopathy leading to heart failure. This study explores the possibility that dystrophin is involved in the regulation of a stretch-activated channel (SAC), which in the absence of dystrophin has increased activity and allows greater Ca(2+) into cardiomyocytes. Because cardiac failure only appears late in the progression of DMD, we examined age-related effects in the mdx mouse, an animal model of DMD. Ca(2+) measurements using a fluorescent Ca(2+)-sensitive dye fluo-4 were performed on single ventricular myocytes from mdx and wild-type mice. Immunoblotting and immunohistochemistry were performed on whole hearts to determine expression levels of key proteins involved in excitation-contraction coupling. Old mdx mice had raised resting intracellular Ca(2+) concentration ([Ca(2+)](i)). Isolated ventricular myocytes from young and old mdx mice displayed abnormal Ca(2+) transients, increased protein expression of the ryanodine receptor, and decreased protein expression of serine-16-phosphorylated phospholamban. Caffeine-induced Ca(2+) transients showed that the Na(+)/Ca(2+) exchanger function was increased in old mdx mice. Two SAC inhibitors streptomycin and GsMTx-4 both reduced resting [Ca(2+)](i) in old mdx mice, suggesting that SACs may be involved in the Ca(2+)-handling abnormalities in these animals. This finding was supported by immunoblotting data, which demonstrated that old mdx mice had increased protein expression of canonical transient receptor potential channel 1, a likely candidate protein for SACs. SACs may play a role in the pathogenesis of the heart failure associated with DMD. Early in the disease process and before the onset of clinical symptoms increased, SAC activity may underlie the abnormal Ca(2+) handling in young mdx mice.

  5. Criticality in intracellular calcium signaling in cardiac myocytes.

    PubMed

    Nivala, Michael; Ko, Christopher Y; Nivala, Melissa; Weiss, James N; Qu, Zhilin

    2012-06-06

    Calcium (Ca) is a ubiquitous second messenger that regulates many biological functions. The elementary events of local Ca signaling are Ca sparks, which occur randomly in time and space, and integrate to produce global signaling events such as intra- and intercellular Ca waves and whole-cell Ca oscillations. Despite extensive experimental characterization in many systems, the transition from local random to global synchronous events is still poorly understood. Here we show that criticality, a ubiquitous dynamical phenomenon in nature, is responsible for the transition from local to global Ca signaling. We demonstrate this first in a computational model of Ca signaling in a cardiac myocyte and then experimentally in mouse ventricular myocytes, complemented by a theoretical agent-based model to delineate the underlying dynamics. We show that the interaction between the Ca release units via Ca-induced Ca release causes self-organization of Ca spark clusters. When the coupling between Ca release units is weak, the cluster-size distribution is exponential. As the interactions become strong, the cluster-size distribution changes to a power-law distribution, which is characteristic of criticality in thermodynamic and complex nonlinear systems, and facilitates the formation and propagation of Ca waves and whole-cell Ca oscillations. Our findings illustrate how criticality is harnessed by a biological cell to regulate Ca signaling via self-organization of random subcellular events into cellular-scale oscillations, and provide a general theoretical framework for the transition from local Ca signaling to global Ca signaling in biological cells.

  6. l-Arginine currents in rat cardiac ventricular myocytes

    PubMed Central

    Peluffo, R Daniel

    2007-01-01

    l-Arginine (l-Arg) is a basic amino acid that plays a central role in the biosynthesis of nitric oxide, creatine, agmantine, polyamines, proline and glutamate. Most tissues, including myocardium, must import l-Arg from the circulation to ensure adequate intracellular levels of this amino acid. This study reports novel l-Arg-activated inward currents in whole-cell voltage-clamped rat ventricular cardiomyocytes. Ion-substitution experiments identified extracellular l-Arg as the charge-carrying cationic species responsible for these currents, which, thus, represent l-Arg import into cardiac myocytes. This result was independently confirmed by an increase in myocyte nitric oxide production upon extracellular application of l-Arg. The inward movement of Arg molecules was found to be passive and independent of Na2+, K2+, Ca2+ and Mg2+. The process displayed saturation and membrane potential (Vm)-dependent kinetics, with a K0.5 for l-Arg that increased from 5 mm at hyperpolarizing Vm to 20 mm at +40 mV. l-Lysine and l-ornithine but not d-Arg produced currents with characteristics similar to that activated by l-Arg indicating that the transport process is stereospecific for cationic l-amino acids. l-Arg current was fully blocked after brief incubation with 0.2 mmN-ethylmaleimide. These features suggest that the activity of the low-affinity, high-capacity CAT-2A member of the y2+ family of transporters is responsible for l-Arg currents in acutely isolated cardiomyocytes. Regardless of the mechanism, we hypothesize that a low-affinity arginine transport process in heart, by ensuring substrate availability for sustained NO production, might play a cardio-protective role during catabolic states known to increase Arg plasma levels severalfold. PMID:17303641

  7. Evidence that NO/cGMP/PKG signalling cascade mediates endothelium dependent inhibition of IP₃R mediated Ca²⁺ oscillations in myocytes and pericytes of ureteric microvascular network in situ.

    PubMed

    Borysova, Lyudmyla; Burdyga, Theodor

    2015-12-01

    In ureteric microvessels the antagonistic relationship between Ca(2+) signalling in endothelium and Ca(2+) oscillations in myocytes and pericytes of arterioles and venules involves nitric oxide (NO), but the underlying mechanisms are not well understood. In the present study we investigated the effects of carbachol and NO donor SNAP on Ca(2+) signalling and vasomotor responses of arterioles and venules in intact urteric microvascular network in situ using confocal microscopy. Vasomotor responses of arterioles and venules induced by AVP correlated with the occurrence of Ca(2+) oscillations in the myocytes and pericytes and were not abolished by the removal of Ca(2+) from extracellular fluid. Carbachol-induced rise of intracellular Ca(2+) in endothelium was accompanied by the termination of the Ca(2+) oscillations in myocytes and pericytes. This carbachol-induced inhibitory effect on Ca(2+) oscillations in myocytes and pericytes was reversed by ODQ, an inhibitor of soluble guanylyl cyclase (sGC) and by Rp-8-pCPT-cGMPS, an inhibitor of protein kinase G (PKG). Ca(2+) oscillations in myocytes and pericytes were also effectively blocked by NO donor SNAP. An Inhibitory effect of SNAP was markedly enhanced by zaprinast, a selective inhibitor of cGMP-specific phosphodiesterase-5, and reversed by sGC inhibitor, ODQ and PKG inhibitor, Rp-8-pCPT-cGMPS. The cGMP analogue and selective PKG activator 8pCPT-cGMP also induced inhibition of the AVP-induced Ca(2+) oscillations in myocytes and pericytes. SNAP had no effects on Ca(2+) oscillations induced by caffeine in distributing arcade arterioles. Consequently, we conclude that NO- mediated inhibition of Ca(2+) oscillations in myocytes and pericytes predominantly recruits the cGMP/PKG dependent pathway. The inhibitory effect of NO/cGMP/PKG cascade is associated with suppressed Ca(2+) release from the SR of myocytes and pericytes selectively via the inositol triphosphate receptor (IP3R) channels. Copyright © 2015 The Authors

  8. Variations in local calcium signaling in adjacent cardiac myocytes of the intact mouse heart detected with two-dimensional confocal microscopy

    PubMed Central

    Hammer, Karin P.; Hohendanner, Felix; Blatter, Lothar A.; Pieske, Burkert M.; Heinzel, Frank R.

    2015-01-01

    Dyssynchronous local Ca release within individual cardiac myocytes has been linked to cellular contractile dysfunction. Differences in Ca kinetics in adjacent cells may also provide a substrate for inefficient contraction and arrhythmias. In a new approach we quantify variation in local Ca transients between adjacent myocytes in the whole heart. Langendorff-perfused mouse hearts were loaded with Fluo-8 AM to detect Ca and Di-4-ANEPPS to visualize cell membranes. A spinning disc confocal microscope with a fast camera allowed us to record Ca signals within an area of 465 μm by 315 μm with an acquisition speed of 55 fps. Images from multiple transients recorded at steady state were registered to their time point in the cardiac cycle to restore averaged local Ca transients with a higher temporal resolution. Local Ca transients within and between adjacent myocytes were compared with regard to amplitude, time to peak and decay at steady state stimulation (250 ms cycle length). Image registration from multiple sequential Ca transients allowed reconstruction of high temporal resolution (2.4 ± 1.3 ms) local CaT in 2D image sets (N = 4 hearts, n = 8 regions). During steady state stimulation, spatial Ca gradients were homogeneous within cells in both directions and independent of distance between measured points. Variation in CaT amplitudes was similar across the short and the long side of neighboring cells. Variations in TAU and TTP were similar in both directions. Isoproterenol enhanced the CaT but not the overall pattern of spatial heterogeneities. Here we detected and analyzed local Ca signals in intact mouse hearts with high temporal and spatial resolution, taking into account 2D arrangement of the cells. We observed significant differences in the variation of CaT amplitude along the long and short axis of cardiac myocytes. Variations of Ca signals between neighboring cells may contribute to the substrate of cardiac remodeling. PMID:25628569

  9. De Novo Human Cardiac Myocytes for Medical Research: Promises and Challenges

    PubMed Central

    Hamel, Veronique; Cheng, Kang; Liao, Shudan; Lu, Aizhu; Zheng, Yong; Chen, Yawen; Xie, Yucai

    2017-01-01

    The advent of cellular reprogramming technology has revolutionized biomedical research. De novo human cardiac myocytes can now be obtained from direct reprogramming of somatic cells (such as fibroblasts), from induced pluripotent stem cells (iPSCs, which are reprogrammed from somatic cells), and from human embryonic stem cells (hESCs). Such de novo human cardiac myocytes hold great promise for in vitro disease modeling and drug screening and in vivo cell therapy of heart disease. Here, we review the technique advancements for generating de novo human cardiac myocytes. We also discuss several challenges for the use of such cells in research and regenerative medicine, such as the immature phenotype and heterogeneity of de novo cardiac myocytes obtained with existing protocols. We focus on the recent advancements in addressing such challenges. PMID:28303153

  10. Effects of troglitazone and pioglitazone on the action potentials and membrane currents of rabbit ventricular myocytes.

    PubMed

    Ikeda, S; Watanabe, T

    1998-09-18

    The effects of the antidiabetic thiazolidinediones troglitazone and pioglitazone on action potentials and membrane currents were studied in rabbit ventricular myocytes. Troglitazone (10 microM) reversibly reduced excitability of the myocytes and modified their action potential configuration. It significantly increased the stimulation threshold required to elicit action potentials and decreased action potential amplitude and the maximum upstroke velocity of the action potentials. The Inhibition of the maximum upstroke velocity by troglitazone was also significant at 1 microM. Voltage-clamp experiments revealed that troglitazone (10 microM) reversibly inhibited both the slow inward Ca2+ current and the steady-state K+ current. In contrast to troglitazone, pioglitazone (1-10 microM) had no significant effect on the excitability, action potential configuration, or membrane currents of myocytes. These results suggest that troglitazone, but not pioglitazone, modulates Na+, Ca2+ and K+ currents, leading to the changes in excitability and action potential configuration of ventricular myocytes.

  11. Characterization of human septic sera induced gene expression modulation in human myocytes

    PubMed Central

    Hussein, Shaimaa; Michael, Paul; Brabant, Danielle; Omri, Abdelwahab; Narain, Ravin; Passi, Kalpdrum; Ramana, Chilakamarti V.; Parrillo, Joseph E.; Kumar, Anand; Parissenti, Amadeo; Kumar, Aseem

    2009-01-01

    To gain a better understanding of the gene expression changes that occurs during sepsis, we have performed a cDNA microarray study utilizing a tissue culture model that mimics human sepsis. This study utilized an in vitro model of cultured human fetal cardiac myocytes treated with 10% sera from septic patients or 10% sera from healthy volunteers. A 1700 cDNA expression microarray was used to compare the transcription profile from human cardiac myocytes treated with septic sera vs normal sera. Septic sera treatment of myocytes resulted in the down-regulation of 178 genes and the up-regulation of 4 genes. Our data indicate that septic sera induced cell cycle, metabolic, transcription factor and apoptotic gene expression changes in human myocytes. Identification and characterization of gene expression changes that occur during sepsis may lead to the development of novel therapeutics and diagnostics. PMID:19684886

  12. Ontogeny of Ca2+-induced Ca2+ release in rabbit ventricular myocytes.

    PubMed

    Huang, Jingbo; Hove-Madsen, Leif; Tibbits, Glen F

    2008-02-01

    It is commonly accepted that L-type Ca(2+) channel-mediated Ca(2+)-induced Ca(2+) release (CICR) is the dominant mode of excitation-contraction (E-C) coupling in the adult mammalian heart and that there is no appreciable CICR in neonates. However, we have observed that cell contraction in the neonatal heart was significantly decreased after sarcoplasmic reticulum (SR) Ca(2+) depletion with caffeine. Therefore, the present study investigated the developmental changes of CICR in rabbit ventricular myocytes at 3, 10, 20, and 56 days of age. We found that the inhibitory effect of the L-type Ca(2+) current (I(Ca)) inhibitor nifedipine (Nif; 15 microM) caused an increasingly larger reduction of Ca(2+) transients on depolarization in older age groups [from approximately 15% in 3-day-old (3d) myocytes to approximately 90% in 56-day-old (56d) myocytes]. The remaining Ca(2+) transient in the presence of Nif in younger age groups was eliminated by the inhibition of Na(+)/Ca(2+) exchanger (NCX) with the subsequent addition of 10 microM KB-R7943 (KB-R). Furthermore, Ca(2+) transients were significantly reduced in magnitude after the depletion of SR Ca(2+) with caffeine in all age groups, although the effect was significantly greater in the older age groups (from approximately 40% in 3d myocytes up to approximately 70% in 56d myocytes). This SR Ca(2+)-sensitive Ca(2+) transient in the earliest developmental stage was insensitive to Nif but was sensitive to the subsequent addition of KB-R, indicating the presence of NCX-mediated CICR that decreased significantly with age (from approximately 37% in 3d myocytes to approximately 0.5% in 56d myocytes). In contrast, the I(Ca)-mediated CICR increased significantly with age (from approximately 10% in 3d myocytes to approximately 70% in 56d myocytes). The CICR gain as estimated by the integral of the CICR Ca(2+) transient divided by the integral of its Ca(2+) transient trigger was smaller when mediated by NCX ( approximately 1.0 for 3d

  13. Contribution of the late sodium current to intracellular sodium and calcium overload in rabbit ventricular myocytes treated by anemone toxin.

    PubMed

    Kornyeyev, Dmytro; El-Bizri, Nesrine; Hirakawa, Ryoko; Nguyen, Steven; Viatchenko-Karpinski, Serge; Yao, Lina; Rajamani, Sridharan; Belardinelli, Luiz

    2016-02-01

    Pathological enhancement of late Na(+) current (INa) can potentially modify intracellular ion homeostasis and contribute to cardiac dysfunction. We tested the hypothesis that modulation of late INa can be a source of intracellular Na(+) ([Na(+)]i) overload. Late INa was enhanced by exposing rabbit ventricular myocytes to Anemonia sulcata toxin II (ATX-II) and measured using whole cell patch-clamp technique. [Na(+)]i was determined with fluorescent dye Asante NaTRIUM Green-2 AM. Pacing-induced changes in the dye fluorescence measured at 37°C were more pronounced in ATX-II-treated cells than in control (dye washout prevented calibration). At 22-24°C, resting [Na(+)]i was 6.6 ± 0.8 mM. Treatment with 5 nM ATX-II increased late INa 8.7-fold. [Na(+)]i measured after 2 min of electrical stimulation (1 Hz) was 10.8 ± 1.5 mM and 22.1 ± 1.6 mM (P < 0.001) in the absence and presence of 5 nM ATX-II, respectively. Inhibition of late INa with GS-967 (1 μM) prevented Na(+) i accumulation. A strong positive correlation was observed between the late INa and the pacing-induced increase of [Na(+)]i (R(2) = 0.88) and between the rise in [Na(+)]i and the increases in cytosolic Ca(2+) (R(2) = 0.96). ATX-II, tetrodotoxin, or GS-967 did not affect [Na(+)]i in quiescent myocytes suggesting that late INa was solely responsible for triggering the ATX-II effect on [Na(+)]i. Experiments with pinacidil and E4031 indicate that prolongation of the action potential contributes to as much as 50% of the [Na(+)]i overload associated with the increase in late INa caused by ATX-II. Enhancement of late INa can cause intracellular Na(+) overload in ventricular myocytes. Copyright © 2016 the American Physiological Society.

  14. Decreased expression of ryanodine receptors alters calcium-induced calcium release mechanism in mdx duodenal myocytes.

    PubMed

    Morel, Jean-Luc; Rakotoarisoa, Lala; Jeyakumar, Loice H; Fleischer, Sidney; Mironneau, Chantal; Mironneau, Jean

    2004-05-14

    It is generally believed that alterations of calcium homeostasis play a key role in skeletal muscle atrophy and degeneration observed in Duchenne's muscular dystrophy and mdx mice. Mechanical activity is also impaired in gastrointestinal muscles, but the cellular and molecular mechanisms of this pathological state have not yet been investigated. We showed, in mdx duodenal myocytes, that both caffeine- and depolarization-induced calcium responses were inhibited, whereas acetylcholine- and thapsigargin-induced calcium responses were not significantly affected compared with control mice. Calcium-induced calcium release efficiency was impaired in mdx duodenal myocytes depending only on inhibition of ryanodine receptor expression. Duodenal myocytes expressed both type 2 and type 3 ryanodine receptors and were unable to produce calcium sparks. In control and mdx duodenal myocytes, both caffeine- and depolarization-induced calcium responses were dose-dependently and specifically inhibited with the anti-type 2 ryanodine receptor antibody. A strong inhibition of type 2 ryanodine receptor in mdx duodenal myocytes was observed on the mRNA as well as on the protein level. Taken together, our results suggest that inhibition of type 2 ryanodine receptor expression in mdx duodenal myocytes may account for the decreased calcium release from the sarcoplasmic reticulum and reduced mechanical activity.

  15. Systems analysis of PKA-mediated phosphorylation gradients in live cardiac myocytes

    PubMed Central

    Saucerman, Jeffrey J.; Zhang, Jin; Martin, Jody C.; Peng, Lili X.; Stenbit, Antine E.; Tsien, Roger Y.; McCulloch, Andrew D.

    2006-01-01

    Compartmentation and dynamics of cAMP and PKA signaling are important determinants of specificity among cAMP’s myriad cellular roles. Both cardiac inotropy and the progression of heart disease are affected by spatiotemporal variations in cAMP/PKA signaling, yet the dynamic patterns of PKA-mediated phosphorylation that influence differential responses to agonists have not been characterized. We performed live-cell imaging and systems modeling of PKA-mediated phosphorylation in neonatal cardiac myocytes in response to G-protein coupled receptor stimuli and UV photolysis of “caged” cAMP. cAMP accumulation was rate-limiting in PKA-mediated phosphorylation downstream of the β-adrenergic receptor. Prostaglandin E1 stimulated higher PKA activity in the cytosol than at the sarcolemma, whereas isoproterenol triggered faster sarcolemmal responses than cytosolic, likely due to restricted cAMP diffusion from submembrane compartments. Localized UV photolysis of caged cAMP triggered gradients of PKA-mediated phosphorylation, enhanced by phosphodiesterase activity and PKA-mediated buffering of cAMP. These findings indicate that combining live-cell FRET imaging and mechanistic computational models can provide quantitative understanding of spatiotemporal signaling. PMID:16905651

  16. Biphasic effects of hyposmotic challenge on excitation-contraction coupling in rat ventricular myocytes.

    PubMed

    Brette, F; Calaghan, S C; Lappin, S; White, E; Colyer, J; Le Guennec, J Y

    2000-10-01

    The effects of short (1 min) and long (7-10 min) exposure to hyposmotic solution on excitation-contraction coupling in rat ventricular myocytes were studied. After short exposure, the action potential duration at 90% repolarization (APD(90)), the intracellular Ca(2+) concentration ([Ca(2+)](i)) transient amplitude, and contraction increased, whereas the L-type Ca(2+) current (I(Ca, L)) amplitude decreased. Fractional sarcoplasmic reticulum (SR) Ca(2+) release increased but SR Ca(2+) load did not. After a long exposure, I(Ca,L), APD(90), [Ca(2+)](i) transient amplitude, and contraction decreased. The abbreviation of APD(90) was partially reversed by 50 microM DIDS, which is consistent with the participation of Cl(-) current activated by swelling. After 10-min exposure to hyposmotic solution in cells labeled with di-8-aminonaphthylethenylpyridinium, t-tubule patterning remained intact, suggesting the loss of de-t-tubulation was not responsible for the fall in I(Ca,L). After long exposure, Ca(2+) load of the SR was not increased, and swelling had no effect on the site-specific phosphorylation of phospholamban, but fractional SR Ca(2+) release was depressed. The initial positive inotropic response to hyposmotic challenge may be accounted for by enhanced coupling between Ca(2+) entry and release. The negative inotropic effect of prolonged exposure can be accounted for by shortening of the action potential duration and a fall in the I(Ca,L) amplitude.

  17. Exploration of Pharmacophore in Chrysosplenol C as Activator in Ventricular Myocyte Contraction

    PubMed Central

    2015-01-01

    Chrysosplenol C (4′,5,6-trihydroxy-3,3′,7-trimethoxyflavone) isolated from Miliusa balansae has unique structural features as a reversible inotropic agent independent of β-adrenergic signaling and with selective activation of cardiac myosin ATPase. Hence, a series of chrysosplenol analogues were synthesized and explored for identification of pharmacophore that is essential for the increasing contractility in rat ventricular myocytes. Analogue 7-chloro-2-(3-hydroxyphenyl)-3-methoxy-4H-chromen-4-one showed highly potent contractility (54.8% at 10 μM) through activating cardiac myosin ATPase (38.7% at 10 μM). Our systematic structure–activity relationship study revealed that flavonoid nucleus of chrososplenol C appears to be an essential basic skeleton and hydrophobic substituent at position 7 of chromenone such as methoxy or chloro enhances the activity. Additionally, our ATPase study suggested that these chrysosplenol analogues have selectivity toward cardiac myosin activation. Thus, the novel flavonone with 3-/7-hydrophobic substituent and 3′-hydrogen bonding donor function is a novel scaffold for discovery of a new positive inotropic agent. PMID:26191362

  18. Modeling CICR in rat ventricular myocytes: voltage clamp studies

    PubMed Central

    2010-01-01

    Background The past thirty-five years have seen an intense search for the molecular mechanisms underlying calcium-induced calcium-release (CICR) in cardiac myocytes, with voltage clamp (VC) studies being the leading tool employed. Several VC protocols including lowering of extracellular calcium to affect Ca2+ loading of the sarcoplasmic reticulum (SR), and administration of blockers caffeine and thapsigargin have been utilized to probe the phenomena surrounding SR Ca2+ release. Here, we develop a deterministic mathematical model of a rat ventricular myocyte under VC conditions, to better understand mechanisms underlying the response of an isolated cell to calcium perturbation. Motivation for the study was to pinpoint key control variables influencing CICR and examine the role of CICR in the context of a physiological control system regulating cytosolic Ca2+ concentration ([Ca2+]myo). Methods The cell model consists of an electrical-equivalent model for the cell membrane and a fluid-compartment model describing the flux of ionic species between the extracellular and several intracellular compartments (cell cytosol, SR and the dyadic coupling unit (DCU), in which resides the mechanistic basis of CICR). The DCU is described as a controller-actuator mechanism, internally stabilized by negative feedback control of the unit's two diametrically-opposed Ca2+ channels (trigger-channel and release-channel). It releases Ca2+ flux into the cyto-plasm and is in turn enclosed within a negative feedback loop involving the SERCA pump, regulating[Ca2+]myo. Results Our model reproduces measured VC data published by several laboratories, and generates graded Ca2+ release at high Ca2+ gain in a homeostatically-controlled environment where [Ca2+]myo is precisely regulated. We elucidate the importance of the DCU elements in this process, particularly the role of the ryanodine receptor in controlling SR Ca2+ release, its activation by trigger Ca2+, and its refractory characteristics

  19. An Experimental Model Using Cultured Cardiac Myocytes for a Study of the Generation of Premature Ventricular Contractions Under Ultrasound Exposure

    NASA Astrophysics Data System (ADS)

    Kudo, Nobuki; Yamamoto, Masaya

    2011-09-01

    It is known that use of a contrast agents in echocardiography increases the probability of generation of premature ventricular contractions (PVCs). As a basic study to elucidate the mechanisms and to reduce adverse effects, the generation of PVCs was investigated using cultured cardiac myocytes instead of the intact heart in vivo. Cardiac myocytes were isolated from neonatal rats and cultured on a cover slip. The myocyte sample was exposed to pulsed ultrasound with microbubbles adjacent to the myocytes, and generation of PVCs was examined with ultrasound exposure at various delay times after onset of myocyte contraction. The experimental results showed that generation of PVCs had a stable threshold delay time and that PVCs were generated only when myocytes were exposed to ultrasound with delay times longer than the threshold. The results indicate that the model used in this study is useful for revealing the mechanisms by which PVCs are induced by ultrasound exposure.

  20. β-adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model

    PubMed Central

    Negroni, Jorge A.; Morotti, Stefano; Lascano, Elena C.; Gomes, Aldrin V.; Grandi, Eleonora; Puglisi, José L; Bers, Donald M.

    2015-01-01

    A five-state model of myofilament contraction was integrated into a well-established rabbit ventricular myocyte model of ion channels, Ca2+ transporters and kinase signaling to analyze the relative contribution of different phosphorylation targets to the overall mechanical response driven by β-adrenergic stimulation (β-AS). β-AS effect on sarcoplasmic reticulum Ca2+ handling, Ca2+, K+ and Cl− currents, and Na+/K+-ATPase properties were included based on experimental data. The inotropic effect on the myofilaments was represented as reduced myofilament Ca2+ sensitivity (XBCa) and titin stiffness, and increased cross-bridge (XB) cycling rate (XBcy). Assuming independent roles of XBCa and XBcy, the model reproduced experimental β-AS responses on action potentials and Ca2+ transient amplitude and kinetics. It also replicated the behavior of force-Ca2+, release-restretch, length-step, stiffness-frequency and force-velocity relationships, and increased force and shortening in isometric and isotonic twitch contractions. The β-AS effect was then switched off from individual targets to analyze their relative impact on contractility. Preventing β-AS effects on L-type Ca2+ channels or phospholamban limited Ca2+ transients and contractile responses in parallel, while blocking phospholemman and K+ channel (IKs) effects enhanced Ca2+ and inotropy. Removal of β-AS effects from XBCa enhanced contractile force while decreasing peak Ca2+ (due to greater Ca2+ buffering), but had less effect on shortening. Conversely, preventing β-AS effects on XBcy preserved Ca2+ transient effects, but blunted inotropy (both isometric force and especially shortening). Removal of titin effects had little impact on contraction. Finally, exclusion of β-AS from XBCa and XBcy while preserving effects on other targets resulted in preserved peak isometric force response (with slower kinetics) but nearly abolished enhanced shortening. β-AS effects on XBCa vs. XBcy have greater impact on isometric

  1. β-adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model.

    PubMed

    Negroni, Jorge A; Morotti, Stefano; Lascano, Elena C; Gomes, Aldrin V; Grandi, Eleonora; Puglisi, José L; Bers, Donald M

    2015-04-01

    A five-state model of myofilament contraction was integrated into a well-established rabbit ventricular myocyte model of ion channels, Ca(2+) transporters and kinase signaling to analyze the relative contribution of different phosphorylation targets to the overall mechanical response driven by β-adrenergic stimulation (β-AS). β-AS effect on sarcoplasmic reticulum Ca(2+) handling, Ca(2+), K(+) and Cl(-) currents, and Na(+)/K(+)-ATPase properties was included based on experimental data. The inotropic effect on the myofilaments was represented as reduced myofilament Ca(2+) sensitivity (XBCa) and titin stiffness, and increased cross-bridge (XB) cycling rate (XBcy). Assuming independent roles of XBCa and XBcy, the model reproduced experimental β-AS responses on action potentials and Ca(2+) transient amplitude and kinetics. It also replicated the behavior of force-Ca(2+), release-restretch, length-step, stiffness-frequency and force-velocity relationships, and increased force and shortening in isometric and isotonic twitch contractions. The β-AS effect was then switched off from individual targets to analyze their relative impact on contractility. Preventing β-AS effects on L-type Ca(2+) channels or phospholamban limited Ca(2+) transients and contractile responses in parallel, while blocking phospholemman and K(+) channel (IKs) effects enhanced Ca(2+) and inotropy. Removal of β-AS effects from XBCa enhanced contractile force while decreasing peak Ca(2+) (due to greater Ca(2+) buffering), but had less effect on shortening. Conversely, preventing β-AS effects on XBcy preserved Ca(2+) transient effects, but blunted inotropy (both isometric force and especially shortening). Removal of titin effects had little impact on contraction. Finally, exclusion of β-AS from XBCa and XBcy while preserving effects on other targets resulted in preserved peak isometric force response (with slower kinetics) but nearly abolished enhanced shortening. β-AS effects on XBCa and XBcy

  2. BAG3 regulates contractility and Ca(2+) homeostasis in adult mouse ventricular myocytes.

    PubMed

    Feldman, Arthur M; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D; Tilley, Douglas G; Gao, Erhe; Hoffman, Nicholas E; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y

    2016-03-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na(+)-K(+)-ATPase and L-type Ca(2+) channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca(2+) channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca(2+)]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca(2+) current (ICa) and sarcoplasmic reticulum (SR) Ca(2+) content but not Na(+)/Ca(2+) exchange current (INaCa) or SR Ca(2+) uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyryl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca(2+) entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca(2+) channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure.

  3. BAG3 regulates contractility and Ca2+ homeostasis in adult mouse ventricular myocytes

    PubMed Central

    Feldman, Arthur M.; Gordon, Jennifer; Wang, JuFang; Song, Jianliang; Zhang, Xue-Qian; Myers, Valerie D.; Tilley, Douglas G.; Gao, Erhe; Hoffman, Nicholas E.; Tomar, Dhanendra; Madesh, Muniswamy; Rabinowitz, Joseph; Koch, Walter J.; Su, Feifei; Khalili, Kamel; Cheung, Joseph Y.

    2016-01-01

    Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid anti-apoptotic protein that is constitutively expressed in the heart. BAG3 mutations, including mutations leading to loss of protein, are associated with familial cardiomyopathy. Furthermore, BAG3 levels have been found to be reduced in end-stage non-familial failing myocardium. In contrast to neonatal myocytes in which BAG3 is found in the cytoplasm and involved in protein quality control and apoptosis, in adult mouse left ventricular (LV) myocytes BAG3 co-localized with Na+-K+-ATPase and L-type Ca2+ channels in the sarcolemma and t-tubules. BAG3 co-immunoprecipitated with β1-adrenergic receptor, L-type Ca2+ channels and phospholemman. To simulate decreased BAG3 protein levels observed in human heart failure, we targeted BAG3 by shRNA (shBAG3) in adult LV myocytes. Reducing BAG3 by 55% resulted in reduced contraction and [Ca2+]i transient amplitudes in LV myocytes stimulated with isoproterenol. L-type Ca2+ current (ICa) and sarcoplasmic reticulum (SR) Ca2+ content but not Na+/Ca2+ exchange current (INaCa) or SR Ca2+ uptake were reduced in isoproterenol-treated shBAG3 myocytes. Forskolin or dibutyrl cAMP restored ICa amplitude in shBAG3 myocytes to that observed in WT myocytes, consistent with BAG3 having effects upstream and at the level of the receptor. Resting membrane potential and action potential amplitude were unaffected but APD50 and APD90 were prolonged in shBAG3 myocytes. Protein levels of Ca2+ entry molecules and other important excitation-contraction proteins were unchanged in myocytes with lower BAG3. Our findings that BAG3 is localized at the sarcolemma and t-tubules while modulating myocyte contraction and action potential duration through specific interaction with the β1-adrenergic receptor and L-type Ca2+ channel provide novel insight into the role of BAG3 in cardiomyopathies and increased arrhythmia risks in heart failure. PMID:26796036

  4. Regional differences in action potential characteristics and membrane currents of guinea-pig left ventricular myocytes.

    PubMed

    Main, M C; Bryant, S M; Hart, G

    1998-11-01

    Regional differences in action potential characteristics and membrane currents were investigated in subendocardial, midmyocardial and subepicardial myocytes isolated from the left ventricular free wall of guinea-pig hearts. Action potential duration (APD) was dependent on the region of origin of the myocytes (P < 0.01, ANOVA). Mean action potential duration at 90 % repolarization (APD90) was 237 +/- 8 ms in subendocardial (n = 30 myocytes), 251 +/- 7 ms in midmyocardial (n = 30) and 204 +/- 7 ms in subepicardial myocytes (n = 36). L-type calcium current (ICa) density and background potassium current (IK1) density were similar in the three regions studied. Delayed rectifier current (IK) was measured as deactivating tail current, elicited on repolarization back to -45 mV after 2 s step depolarizations to test potentials ranging from -10 to +80 mV. Mean IK density (after a step to +80 mV) was larger in subepicardial myocytes (1.59 +/- 0.16 pA pF-1, n = 16) than in either subendocardial (1.16 +/- 0.12 pA pF-1, n = 17) or midmyocardial (1. 13 +/- 0.11 pA pF-1, n = 21) myocytes (P < 0.05, ANOVA). The La3+-insensitive current (IKs) elicited on repolarization back to -45 mV after a 250 ms step depolarization to +60 mV was similar in the three regions studied. The La3+-sensitive tail current, (IKr) was greater in subepicardial (0.50 +/- 0.04 pA pF-1, n = 11) than in subendocardial (0.25 +/- 0.05 pA pF-1, n = 9) or in midmyocardial myocytes (0.38 +/- 0.05 pA pF-1, n = 11, P < 0.05, ANOVA). The contribution of a Na+ background current to regional differences in APD was assessed by application of 0.1 microM tetrodotoxin (TTX). TTX-induced shortening of APD90 was greater in subendocardial myocytes (35.7 +/- 7.1 %, n = 11) than in midmyocardial (15.7 +/- 3. 8 %, n = 10) and subepicardial (20.2 +/- 4.3 %, n = 11) myocytes (P < 0.05, ANOVA). Regional differences in action potential characteristics between subendocardial, midmyocardial, and subepicardial myocytes isolated from

  5. PS1-05: Hyperglycemia Stimulates Intracellular Renin Expression in Both Cardiac Myocytes and Fibroblasts: Implications for Diabetic Cardiomyopathy

    PubMed Central

    Singh, Vivek; Naik, Sunil; Baker, Kenneth; Kumar, Rajesh

    2010-01-01

    Background / Aim: The upregulation of the renin-angiotensin system (RAS) represents a major pathological mechanism in diabetes. We have previously reported that hyperglycemia preferentially increases intracellular generation of angiotensin (Ang) II. However, circulating RAS is down regulated in diabetes implying the accelerated intracellular RAS mechanism as a major contributor to diabetic cardiomyopathy. In this study, we determined expression of RAS components and their effect on cardiac cells to give us a venue to intervene. Methods: Diabetes was induced in Sprague-Dawley rats and C57/BL6J mice with injection of streptozotocin for 5 days and verified by sustained blood glucose levels >15 mmol/L. Control mice received buffered saline alone. One week after diabetes induction the mice hearts were removed and perfused by the Langendorff method. Myocytes were isolated with enzymatic dispersion and centrifugation. RAS proteins were determined by real-time PCR and Western analysis. These included angiotensinogen, renin, angiotensin converting enzyme, AT1, AT2, and ACE 2. Angiotensin II was purified by reverse-phase chromatography and quantified by competitive ELISA. Results: Among cells obtained from diabetic hearts, expression of AGT (3.5+/− 0.8 fold), renin (2.4 +/− 0.4), and AT1 (2.6+/− 0.3) was significantly increased compared to cells from control hearts (p<0.05, ANOVA). No significant change in the gene expression of ACE (1.2+/− 0.4), ACE2 (0.97+/− 0.2), and AT2 (1.2+/− 0.2), was observed. Increased expression at the protein level for AGT (2.2 +/− 0.1), renin (1.9 +/− 0.08), and AT1 (2.3+/− 0.2) was also observed by Western analysis. No significant changes in the protein levels of AT2, ACE, and ACE2 were observed. AngII levels in cardiac myocytes were determined by quantitative ELISA, which demonstrated significantly enhanced levels of AngII (140+/− 10 fmol/mg protein) synthesis in diabetic mice compared to controls (20 +/− 10 fmol

  6. [Eukaryotic expression vector pcDNA3-HERG transfection inhibits angiotensin II induced neonatal rabbit ventricular myocyte hypertrophy in vitro].

    PubMed

    Zhao, Yong-hui; Cui, Chang-cong; Li, Yu; Huang, Chen

    2009-10-01

    To explore the effects of eukaryotic expression vector pcDNA3-HERG transfection on angiotensin II (Ang II) induced myocyte hypertrophy in cultured neonatal rabbit ventricular myocytes. Neonatal rabbit ventricular myocytes and eukaryotic expression vector pcDNA3-HERG transfected ventricular myocytes were cultured in Dulbecco's-modified Eagle medium (DMEM), containing 1% fetal bovine serum (FBS) for 6 h, then stimulated with Ang II (10(-7) mol/L) for 48 h. Control ventricular myocytes were cultured in Dulbecco's-modified Eagle medium (DMEM), containing 1% fetal bovine serum (FBS) for 54 h. At 6 and 54 h, myocyte hypertrophic parameters including myocyte volume, total protein content and membrane capacitance, action potential duration (APD) and Calcineurin (CaN) activity were measured. Compared to control myocytes, APD at 90% repolarization (APD(90)) was prolonged by 19.8% (P < 0.01), without signs of myocyte hypertrophy at 6 h post Ang II stimulation, APD(90) was prolonged by 22.1% (P < 0.01), myocyte volume, total protein content and membrane capacitance and CaN activity were significantly increased by 40.4%, 40.4%, 38.2% and 114.7% respectively (all P < 0.01) at 48 h after Ang II stimulation. HERG gene transfection upregulated I(HERG) tail current (3.6-fold higher than I(Kr)-rapidly activating delayed rectifier potassium current, P < 0.01). HERG gene transfection also accelerated and repolarization and a shortened APD(90) and inhibited myocyte hypertrophy and CaN activation induced by Ang II. Ang II induced prolongation of APD(90) is directly associated with myocyte hypertrophy by increasing the Ca(2+) influx and resulting in the increment of intracellular Ca(2+) and activation of CaN reaction pathway.

  7. Impact of myocyte strain on cardiac myofilament activation.

    PubMed

    Campbell, Kenneth S

    2011-07-01

    When cardiac myocytes are stretched by a longitudinal strain, they develop proportionally more active force at a given sub-maximal Ca(2+) concentration than they did at the shorter length. This is known as length-dependent activation. It is one of the most important contributors to the Frank-Starling relationship, a critical part of normal cardiovascular function. Despite intense research efforts, the mechanistic basis of the Frank-Starling relationship remains unclear. Potential mechanisms involving myofibrillar lattice spacing, titin-based effects, and cooperative activation have all been proposed. This review summarizes some of these mechanisms and discusses two additional potential theories that reflect the effects of localized strains that occur within and between half-sarcomeres. The main conclusion is that the Frank-Starling relationship is probably the integrated result of many interacting molecular mechanisms. Multiscale computational modeling may therefore provide the best way of determining the key processes that underlie length-dependent activation and their relative strengths.

  8. Modeling Hypertrophic IP3 Transients in the Cardiac Myocyte

    PubMed Central

    Cooling, Michael; Hunter, Peter; Crampin, Edmund J.

    2007-01-01

    Cardiac hypertrophy is a known risk factor for heart disease, and at the cellular level is caused by a complex interaction of signal transduction pathways. The IP3-calcineurin pathway plays an important role in stimulating the transcription factor NFAT which binds to DNA cooperatively with other hypertrophic transcription factors. Using available kinetic data, we construct a mathematical model of the IP3 signal production system after stimulation by a hypertrophic α-adrenergic agonist (endothelin-1) in the mouse atrial cardiac myocyte. We use a global sensitivity analysis to identify key controlling parameters with respect to the resultant IP3 transient, including the phosphorylation of cell-membrane receptors, the ligand strength and binding kinetics to precoupled (with GαGDP) receptor, and the kinetics associated with precoupling the receptors. We show that the kinetics associated with the receptor system contribute to the behavior of the system to a great extent, with precoupled receptors driving the response to extracellular ligand. Finally, by reparameterizing for a second hypertrophic α-adrenergic agonist, angiotensin-II, we show that differences in key receptor kinetic and membrane density parameters are sufficient to explain different observed IP3 transients in essentially the same pathway. PMID:17693463

  9. Electrophysiological Determination of Submembrane Na(+) Concentration in Cardiac Myocytes.

    PubMed

    Hegyi, Bence; Bányász, Tamás; Shannon, Thomas R; Chen-Izu, Ye; Izu, Leighton T

    2016-09-20

    In the heart, Na(+) is a key modulator of the action potential, Ca(2+) homeostasis, energetics, and contractility. Because Na(+) currents and cotransport fluxes depend on the Na(+) concentration in the submembrane region, it is necessary to accurately estimate the submembrane Na(+) concentration ([Na(+)]sm). Current methods using Na(+)-sensitive fluorescent indicators or Na(+) -sensitive electrodes cannot measure [Na(+)]sm. However, electrophysiology methods are ideal for measuring [Na(+)]sm. In this article, we develop patch-clamp protocols and experimental conditions to determine the upper bound of [Na(+)]sm at the peak of action potential and its lower bound at the resting state. During the cardiac cycle, the value of [Na(+)]sm is constrained within these bounds. We conducted experiments in rabbit ventricular myocytes at body temperature and found that 1) at a low pacing frequency of 0.5 Hz, the upper and lower bounds converge at 9 mM, constraining the [Na(+)]sm value to ∼9 mM; 2) at 2 Hz pacing frequency, [Na(+)]sm is bounded between 9 mM at resting state and 11.5 mM; and 3) the cells can maintain [Na(+)]sm to the above values, despite changes in the pipette Na(+) concentration, showing autoregulation of Na(+) in beating cardiomyocytes.

  10. Myocyte renewal and therapeutic myocardial regeneration using various progenitor cells.

    PubMed

    Hayashi, Emiko; Hosoda, Toru

    2014-11-01

    Whereas the demand on effective treatment options for chronic heart failure is dramatically increasing, the recent recognition of physiological and pathological myocyte turnover in the adult human heart provided a fundamental basis for the therapeutic regeneration. Divergent modalities were experimentally introduced to this field, and selected ones have been applied clinically; the history began with skeletal myoblasts and bone-marrow-derived cells, and lately mesenchymal stem/stromal cells and resident cardiac cells joined the repertoire. Among them, autologous transplantation of c-kit-positive cardiac stem cells in patients with chronic ventricular dysfunction resulted in an outstanding outcome with long-lasting effects without increasing major adverse events. To further optimize currently available approaches, we have to consider multiple factors, such as the targeting disease, the cell population and number to be administered, and the timing and the route of cell delivery. Exploration of the consequence of the previous clinical trials would allow us to envision an ideal cellular therapy for various cardiovascular disorders.

  11. Syzygium aromaticum L. (Clove) extract regulates energy metabolism in myocytes.

    PubMed

    Tu, Zheng; Moss-Pierce, Tijuana; Ford, Paul; Jiang, T Alan

    2014-09-01

    The prevalence of metabolic syndrome and type 2 diabetes is increasing worldwide. Herbs and spices have been used for the treatment of diabetes for centuries in folk medicine. Syzygium aromaticum L. (Clove) extracts (SE) have been shown to perform comparably to insulin by significantly reducing blood glucose levels in animal models; however, the mechanisms are not well understood. We investigated the effects of clove on metabolism in C2C12 myocytes and demonstrated that SE significantly increases glucose consumption. The phosphorylation of AMP-activated protein kinase (AMPK), as well as its substrate, acetyl-CoA carboxylase (ACC) was increased by SE treatment. SE also transcriptionally regulates genes involved in metabolism, including sirtuin 1 (SIRT1) and PPARγ coactivator 1α (PGC1α). Nicotinamide, an SIRT1 inhibitor, diminished SE's effects on glucose consumption. Furthermore, treatment with SE dose-dependently increases muscle glycolysis and mitochondrial spare respiratory capacity. Overall, our study suggests that SE has the potential to increase muscle glycolysis and mitochondria function by activating both AMPK and SIRT1 pathways.

  12. Calcium Movements Inside the Sarcoplasmic Reticulum of Cardiac Myocytes

    PubMed Central

    Bers, Donald M.; Shannon, Thomas R.

    2013-01-01

    Sarcoplasmic reticulum (SR) Ca content ([Ca]SRT) is critical to both normal cardiac function and electrophysiology, and changes associated with pathology contribute to systolic and diastolic dysfunction and arrhythmias. The intra-SR free [Ca] ([Ca]SR) dictates the [Ca]SRT, the driving force for Ca release and regulates release channel gating. We discuss measurement of [Ca]SR and [Ca]SRT, how [Ca]SR regulates activation and termination of release, and how Ca diffuses within the SR and influences SR Ca release during excitation-contraction coupling, Ca sparks and Ca waves. The entire SR network is connected and its lumen is also continuous with the nuclear envelope. Rapid Ca diffusion within the SR could stabilize and balance local [Ca]SR within the myocyte, but restrictions to diffusion can create spatial inhomogeneities. Experimental measurements and mathematical models of [Ca]SR to date have greatly enriched our understanding of these [Ca]SR dynamics, but controversies exist and may stimulate new measurements and analysis. PMID:23321551

  13. A mathematical model of spontaneous calcium release in cardiac myocytes

    PubMed Central

    Chen, Wei; Aistrup, Gary; Wasserstrom, J. Andrew

    2011-01-01

    In cardiac myocytes, calcium (Ca) can be released from the sarcoplasmic reticulum independently of Ca influx from voltage-dependent membrane channels. This efflux of Ca, referred to as spontaneous Ca release (SCR), is due to Ryanodine receptor fluctuations, which can induce spontaneous Ca sparks, which propagate to form Ca waves. This release of Ca can then induce delayed after-depolarizations (DADs), which can lead to arrhythmogenic-triggered activity in the heart. However, despite its importance, to date there is no mathematical model of SCR that accounts for experimentally observed features of subcellular Ca. In this article, we present an experimentally based model of SCR that reproduces the timing distribution of spontaneous Ca sparks and key features of the propagation of Ca waves emanating from these spontaneous sparks. We have coupled this model to an ionic model for the rabbit ventricular action potential to simulate SCR within several thousand cells in cardiac tissue. We implement this model to study the formation of an ectopic beat on a cable of cells that exhibit SCR-induced DADs. PMID:21357507

  14. Analysis of Cardiac Myocyte Maturation Using CASAAV, A Platform for Rapid Dissection of Cardiac Myocyte Gene Function In Vivo.

    PubMed

    Guo, Yuxuan; VanDusen, Nathan J; Zhang, Lina; Gu, Weiliang; Sethi, Isha; Guatimosim, Silvia; Ma, Qing; Jardin, Blake D; Ai, Yulan; Zhang, Donghui; Chen, Biyi; Guo, Ang; Yuan, Guo-Cheng; Song, Long-Sheng; Pu, William T

    2017-03-29

    Rationale: Loss-of-function studies in cardiac myocytes (CMs) are currently limited by the need for appropriate conditional knockout alleles. The factors that regulate CM maturation are poorly understood. Prior studies on CM maturation have been confounded by heart dysfunction caused by whole organ gene inactivation. Objective: To develop a new technical platform to rapidly characterize cell-autonomous gene function in postnatal murine CMs and apply it to identify genes that regulate T-tubules, a hallmark of mature cardiac myocytes. Methods and Results: We developed CASAAV (CRISPR/Cas9-AAV9-based somatic mutagenesis), a platform in which AAV9 delivers tandem guide RNAs targeting a gene of interest and cardiac troponin T promoter (cTNT)-driven Cre to Rosa(Cas9GFP/Cas9GFP) neonatal mice. When directed against junctophilin-2 (Jph2), a gene previously implicated in T-tubule maturation, we achieved efficient, rapid, and CM-specific JPH2 depletion. High-dose AAV9 ablated JPH2 in 64% CMs and caused lethal heart failure, whereas low-dose AAV9 ablated JPH2 in 22% CMs and preserved normal heart function. In the context of preserved heart function, CMs lacking JPH2 developed T-tubules that were nearly morphologically normal, indicating that JPH2 does not have a major, cell-autonomous role in T-tubule maturation. However, in hearts with severe dysfunction, both AAV-transduced and non-transduced CMs exhibited T-tubule disruption, which was more severe in the transduced subset. These data indicate that cardiac dysfunction disrupts T-tubule structure, and that JPH2 protects T-tubules in this context. We then used CASAAV to screen 8 additional genes for required, cell-autonomous roles in T-tubule formation. We identified ryanodine receptor 2 (RYR2) as a novel, cell-autonomously required T-tubule maturation factor. Conclusions: CASAAV is a powerful tool to study cell-autonomous gene functions. Genetic mosaics are invaluable to accurately define cell-autonomous gene function. JPH2

  15. Methamphetamine oxidative stress, neurotoxicity, and functional deficits are modulated by nuclear factor-E2-related factor 2.

    PubMed

    Ramkissoon, Annmarie; Wells, Peter G

    2015-12-01

    Activation of redox-sensitive transcription factors like nuclear factor-E2-related factor 2 (Nrf2) can enhance the transcription of cytoprotective genes during oxidative stress. We investigated whether Nrf2 is activated by methamphetamine (METH) thereby altering neurotoxicity in Nrf2 +/+ and -/- adult mouse brain. A single dose of METH can induce the mRNA levels of Nrf2-regulated antioxidant and cytoprotective proteins in mouse brain. Multiple-day dosing with METH enhanced DNA oxidation and decreased tyrosine hydroxylase and dopamine transporter staining in the striatum, indicating dopaminergic nerve terminal toxicity, which was more severe in -/- mice, as were deficits in motor coordination and olfactory discrimination. These Nrf2-dependent effects were independent of changes in METH metabolism or the induction of hyperthermia. Similarly, METH increased striatal glial fibrillary acidic protein, indicating neurotoxicity. METH neurotoxicity was also observed in the glial cells and in the GABAergic system of the olfactory bulbs and was enhanced in -/- mice, whereas dopaminergic parameters were unaffected. With one-day dosing of METH, there were no differences between +/+ and -/- mice in either basal or METH-enhanced DNA oxidation and neurotoxicity markers. Nrf2-mediated pathways accordingly may protect against the neurodegenerative effects and functional deficits initiated by METH and perhaps other reactive oxygen species-enhancing neurotoxicants, when there is time for transcriptional activation and protein induction. In human users of METH, this mechanism may be essential when differences in drug abuse patterns may alter the induction and duration of Nrf2 activation thereby modulating susceptibility to the neurotoxic effects of METH.

  16. Azimilide causes reverse rate-dependent block while reducing both components of delayed-rectifier current in canine ventricular myocytes.

    PubMed

    Gintant, G A

    1998-06-01

    Most class III antiarrhythmic drugs reduce the rapidly activating component of delayed-rectifier current (IKr) without affecting the slowly activating component (IKs). Recently the novel antiarrhythmic agent azimilide (NE-10064) was reported to enhance IKs at low (nanomolar) concentrations and to block both IKr and IKs at higher (micromolar) concentrations. Further to understand the electrophysiologic effects of azimilide, we compared its effects on IKr and IKs (by using whole cell clamp techniques) and action potentials (microelectrode and perforated-patch techniques) on canine ventricular myocytes. A lower azimilide concentration (50 nM) did not enhance IKs. In contrast, a therapeutic azimilide concentration (2 microM) was equieffective in reducing IKr (300-ms isochrones) and IKs (3-s isochrones) by approximately 40% during depolarizing test pulses, as well as reducing IKr (38% decrease) and IKs (33% decrease) tail currents on repolarization. Block of IKs was independent of voltage at positive test potentials. In action-potential studies, 50 nM azimilide had no effect on the action-potential duration (APD), whereas 2 microM azimilide delayed repolarization and caused reverse rate-dependent effects on the APD. Whereas the extent of APD prolongation by azimilide was not correlated with the drug-free APD, azimilide preferentially exaggerated the APD-rate relationship of myocytes displaying the steepest APD-rate relationship under drug-free conditions. In conclusion, therapeutic concentrations of azimilide that cause comparable reduction of canine ventricular IKr and IKs exert reverse rate-dependent effects, which are dependent on the steepness of the APD-rate relationship.

  17. Contractile reserve and intracellular calcium regulation in mouse myocytes from normal and hypertrophied failing hearts

    NASA Technical Reports Server (NTRS)

    Ito, K.; Yan, X.; Tajima, M.; Su, Z.; Barry, W. H.; Lorell, B. H.; Schneider, M. (Principal Investigator)

    2000-01-01

    Mouse myocyte contractility and the changes induced by pressure overload are not fully understood. We studied contractile reserve in isolated left ventricular myocytes from mice with ascending aortic stenosis (AS) during compensatory hypertrophy (4-week AS) and the later stage of early failure (7-week AS) and from control mice. Myocyte contraction and [Ca(2+)](i) transients with fluo-3 were measured simultaneously. At baseline (0.5 Hz, 1.5 mmol/L [Ca(2+)](o), 25 degrees C), the amplitude of myocyte shortening and peak-systolic [Ca(2+)](i) in 7-week AS were not different from those of controls, whereas contraction, relaxation, and the decline of [Ca(2+)](i) transients were slower. In response to the challenge of high [Ca(2+)](o), fractional cell shortening was severely depressed with reduced peak-systolic [Ca(2+)](i) in 7-week AS compared with controls. In response to rapid pacing stimulation, cell shortening and peak-systolic [Ca(2+)](i) increased in controls, but this response was depressed in 7-week AS. In contrast, the responses to both challenge with high [Ca(2+)](o) and rapid pacing in 4-week AS were similar to those of controls. Although protein levels of Na(+)-Ca(2+) exchanger were increased in both 4-week and 7-week AS, the ratio of SR Ca(2+)-ATPase to phospholamban protein levels was depressed in 7-week AS compared with controls but not in 4-week AS. This was associated with an impaired capacity to increase sarcoplasmic reticulum Ca(2+) load during high work states in 7-week AS myocytes. In hypertrophied failing mouse myocytes, depressed contractile reserve is related to an impaired augmentation of systolic [Ca(2+)](i) and SR Ca(2+) load and simulates findings in human failing myocytes.

  18. Inhibition of fibroblast proliferation in cardiac myocyte cultures by surface microtopography.

    PubMed

    Boateng, Samuel Y; Hartman, Thomas J; Ahluwalia, Neil; Vidula, Himabindu; Desai, Tejal A; Russell, Brenda

    2003-07-01

    Cardiac myocyte cultures usually require pharmacological intervention to prevent overproliferation of contaminating nonmyocytes. Our aim is to prevent excessive fibroblast cell proliferation without the use of cytostatins. We have produced a silicone surface with 10-microm vertical projections that we term "pegs," to which over 80% of rat neonatal cardiac fibroblasts attach within 48 h after plating. There was a 50% decrease in cell proliferation by 5 days of culture compared with flat membranes (P < 0.001) and a concomitant 60% decrease (P < 0.01) in cyclin D1 protein levels, suggesting a G1/S1 cell cycle arrest due to microtopography. Inhibition of Rho kinase with 5 or 20 microM Y-27632 reduced attachment of fibroblasts to the pegs by over 50% (P < 0.001), suggesting that this signaling pathway plays an important role in the process. Using mobile and immobile 10-microm polystyrene spheres, we show that reactive forces are important for inhibiting fibroblast cell proliferation, because mobile spheres failed to reduce cell proliferation. In primary myocyte cultures, pegs also inhibit fibroblast proliferation in the absence of cytostatins. The ratio of aminopropeptide of collagen protein from fibroblasts to myosin from myocytes was significantly reduced in cultures from pegged surfaces (P < 0.01), suggesting an increase in the proportion of myocytes on the pegged surfaces. Connexin43 protein expression was also increased, suggesting improved myocyte-myocyte interaction in the presence of pegs. We conclude that this microtextured culture system is useful for preventing proliferation of fibroblasts in myocyte cultures and may ultimately be useful for tissue engineering applications in vivo.

  19. Angiotensin II stimulates internalization and degradation of arterial myocyte plasma membrane BK channels to induce vasoconstriction.

    PubMed

    Leo, M Dennis; Bulley, Simon; Bannister, John P; Kuruvilla, Korah P; Narayanan, Damodaran; Jaggar, Jonathan H

    2015-09-15

    Arterial smooth muscle cells (myocytes) express large-conductance Ca(2+)-activated K(+) (BK) channel α and auxiliary β1 subunits that modulate arterial contractility. In arterial myocytes, β1 subunits are stored within highly mobile rab11A-positive recycling endosomes. In contrast, BKα subunits are primarily plasma membrane-localized. Trafficking pathways for BKα and whether physiological stimuli that regulate arterial contractility alter BKα localization in arterial myocytes are unclear. Here, using biotinylation, immunofluorescence resonance energy transfer (immunoFRET) microscopy, and RNAi-mediated knockdown, we demonstrate that rab4A-positive early endosomes traffic BKα to the plasma membrane in myocytes of resistance-size cerebral arteries. Angiotensin II (ANG II), a vasoconstrictor, reduced both surface and total BKα, an effect blocked by bisindolylmaleimide-II, concanavalin A, and dynasore, protein kinase C (PKC), internalization, and endocytosis inhibitors, respectively. In contrast, ANG II did not reduce BKα mRNA, and sodium nitroprusside, a nitric oxide donor, did not alter surface BKα protein over the same time course. MG132 and bafilomycin A, proteasomal and lysosomal inhibitors, respectively, also inhibited the ANG II-induced reduction in surface and total BKα, resulting in intracellular BKα accumulation. ANG II-mediated BK channel degradation reduced BK currents in isolated myocytes and functional responses to iberiotoxin, a BK channel blocker, and NS1619, a BK activator, in pressurized (60 mmHg) cerebral arteries. These data indicate that rab4A-positive early endosomes traffic BKα to the plasma membrane in arterial myocytes. We also show that ANG II stimulates PKC-dependent BKα internalization and degradation. These data describe a unique mechanism by which ANG II inhibits arterial myocyte BK currents, by reducing surface channel number, to induce vasoconstriction. Copyright © 2015 the American Physiological Society.

  20. Contractile reserve and calcium regulation are depressed in myocytes from chronically unloaded hearts

    NASA Technical Reports Server (NTRS)

    Ito, Kenta; Nakayama, Masaharu; Hasan, Faisal; Yan, Xinhua; Schneider, Michael D.; Lorell, Beverly H.

    2003-01-01

    BACKGROUND: Chronic cardiac unloading of the normal heart results in the reduction of left ventricular (LV) mass, but effects on myocyte contractile function are not known. METHODS AND RESULTS: Cardiac unloading and reduction in LV mass were induced by heterotopic heart transplantation to the abdominal aorta in isogenic rats. Contractility and [Ca(2+)](i) regulation in LV myocytes were studied at both 2 and 5 weeks after transplantation. Native in situ hearts from recipient animals were used as the controls for all experiments. Contractile function indices in myocytes from 2-week unloaded and native (control) hearts were similar under baseline conditions (0.5 Hz, 1.2 mmol/L [Ca(2+)](o), and 36 degrees C) and in response to stimulation with high [Ca(2+)](o) (range 2.5 to 4.0 mmol/L). In myocytes from 5-week unloaded hearts, there were no differences in fractional cell shortening and peak-systolic [Ca(2+)](i) at baseline; however, time to 50% relengthening and time to 50% decline in [Ca(2+)](i) were prolonged compared with controls. Severe defects in fractional cell shortening and peak-systolic [Ca(2+)](i) were elicited in myocytes from 5-week unloaded hearts in response to high [Ca(2+)](o). However, there were no differences in the contractile response to isoproterenol between myocytes from unloaded and native hearts. In 5-week unloaded hearts, but not in 2-week unloaded hearts, LV protein levels of phospholamban were increased (345% of native heart values). Protein levels of sarcoplasmic reticulum Ca(2+) ATPase and the Na(+)/Ca(2+) exchanger were not changed. CONCLUSIONS: Chronic unloading of the normal heart caused a time-dependent depression of myocyte contractile function, suggesting the potential for impaired performance in states associated with prolonged cardiac atrophy.

  1. Contractile reserve and intracellular calcium regulation in mouse myocytes from normal and hypertrophied failing hearts

    NASA Technical Reports Server (NTRS)

    Ito, K.; Yan, X.; Tajima, M.; Su, Z.; Barry, W. H.; Lorell, B. H.; Schneider, M. (Principal Investigator)

    2000-01-01

    Mouse myocyte contractility and the changes induced by pressure overload are not fully understood. We studied contractile reserve in isolated left ventricular myocytes from mice with ascending aortic stenosis (AS) during compensatory hypertrophy (4-week AS) and the later stage of early failure (7-week AS) and from control mice. Myocyte contraction and [Ca(2+)](i) transients with fluo-3 were measured simultaneously. At baseline (0.5 Hz, 1.5 mmol/L [Ca(2+)](o), 25 degrees C), the amplitude of myocyte shortening and peak-systolic [Ca(2+)](i) in 7-week AS were not different from those of controls, whereas contraction, relaxation, and the decline of [Ca(2+)](i) transients were slower. In response to the challenge of high [Ca(2+)](o), fractional cell shortening was severely depressed with reduced peak-systolic [Ca(2+)](i) in 7-week AS compared with controls. In response to rapid pacing stimulation, cell shortening and peak-systolic [Ca(2+)](i) increased in controls, but this response was depressed in 7-week AS. In contrast, the responses to both challenge with high [Ca(2+)](o) and rapid pacing in 4-week AS were similar to those of controls. Although protein levels of Na(+)-Ca(2+) exchanger were increased in both 4-week and 7-week AS, the ratio of SR Ca(2+)-ATPase to phospholamban protein levels was depressed in 7-week AS compared with controls but not in 4-week AS. This was associated with an impaired capacity to increase sarcoplasmic reticulum Ca(2+) load during high work states in 7-week AS myocytes. In hypertrophied failing mouse myocytes, depressed contractile reserve is related to an impaired augmentation of systolic [Ca(2+)](i) and SR Ca(2+) load and simulates findings in human failing myocytes.

  2. Contractile reserve and calcium regulation are depressed in myocytes from chronically unloaded hearts

    NASA Technical Reports Server (NTRS)

    Ito, Kenta; Nakayama, Masaharu; Hasan, Faisal; Yan, Xinhua; Schneider, Michael D.; Lorell, Beverly H.

    2003-01-01

    BACKGROUND: Chronic cardiac unloading of the normal heart results in the reduction of left ventricular (LV) mass, but effects on myocyte contractile function are not known. METHODS AND RESULTS: Cardiac unloading and reduction in LV mass were induced by heterotopic heart transplantation to the abdominal aorta in isogenic rats. Contractility and [Ca(2+)](i) regulation in LV myocytes were studied at both 2 and 5 weeks after transplantation. Native in situ hearts from recipient animals were used as the controls for all experiments. Contractile function indices in myocytes from 2-week unloaded and native (control) hearts were similar under baseline conditions (0.5 Hz, 1.2 mmol/L [Ca(2+)](o), and 36 degrees C) and in response to stimulation with high [Ca(2+)](o) (range 2.5 to 4.0 mmol/L). In myocytes from 5-week unloaded hearts, there were no differences in fractional cell shortening and peak-systolic [Ca(2+)](i) at baseline; however, time to 50% relengthening and time to 50% decline in [Ca(2+)](i) were prolonged compared with controls. Severe defects in fractional cell shortening and peak-systolic [Ca(2+)](i) were elicited in myocytes from 5-week unloaded hearts in response to high [Ca(2+)](o). However, there were no differences in the contractile response to isoproterenol between myocytes from unloaded and native hearts. In 5-week unloaded hearts, but not in 2-week unloaded hearts, LV protein levels of phospholamban were increased (345% of native heart values). Protein levels of sarcoplasmic reticulum Ca(2+) ATPase and the Na(+)/Ca(2+) exchanger were not changed. CONCLUSIONS: Chronic unloading of the normal heart caused a time-dependent depression of myocyte contractile function, suggesting the potential for impaired performance in states associated with prolonged cardiac atrophy.

  3. Endoplasmic reticulum stress induced by tunicamycin increases resistin messenger ribonucleic acid through the pancreatic endoplasmic reticulum eukaryotic initiation factor 2α kinase-activating transcription factor 4-CAAT/enhancer binding protein-α homologous protein pathway in THP-1 human monocytes.

    PubMed

    Hamada, Junpei; Onuma, Hiroshi; Ochi, Fumihiro; Hirai, Hiroki; Takemoto, Koji; Miyoshi, Akiko; Matsushita, Manami; Kadota, Yuko; Ohashi, Jun; Kawamura, Ryoichi; Takata, Yasunori; Nishida, Wataru; Hashida, Seiichi; Ishii, Eiichi; Osawa, Haruhiko

    2016-05-01

    Resistin, secreted from adipocytes, causes insulin resistance in mice. In humans, the resistin gene is mainly expressed in monocytes and macrophages. Tunicamycin is known to induce endoplasmic reticulum (ER) stress, and reduce resistin gene expression in 3T3-L1 mouse adipocytes. The aim of the present study was to examine whether ER stress affects resistin gene expression in human monocytes. The relationship between resistin messenger ribonucleic acid (mRNA) and ER stress markers mRNA was analyzed by reverse transcription polymerase chain reaction in isolated monocytes of 30 healthy volunteers. The effect of endotoxin/lipopolysaccharides or tunicamycin on resistin gene expression was analyzed in THP-1 human monocytes. Signaling pathways leading to resistin mRNA were assessed by the knockdown using small interfering RNA or overexpression of key molecules involved in unfolded protein response. Resistin mRNA was positively associated with immunoglobulin heavy chain-binding protein (BiP) or CAAT/enhancer binding protein-α homologous protein (CHOP) mRNA in human isolated monocytes. In THP-1 cells, lipopolysaccharides increased mRNA of BiP, pancreatic endoplasmic reticulum eukaryotic initiation factor 2α kinase (PERK) and CHOP, as well as resistin. Tunicamycin also increased resistin mRNA. This induction appeared to be dose- and time-dependent. Tunicamycin-induced resistin mRNA was inhibited by chemical chaperone, 4-phenylbutyric acid. The knockdown of either PERK, activating transcription factor 4 (ATF4) or CHOP reduced tunicamycin-induced resistin mRNA. Conversely, overexpression of ATF4 or CHOP increased resistin mRNA. Endoplasmic reticulum stress induced by tunicamycin increased resistin mRNA through the PERK-ATF4-CHOP pathway in THP-1 human monocytes. ER stress could lead to insulin resistance through enhanced resistin gene expression in human monocytes.

  4. VEGF-C/VEGFR-3 pathway promotes myocyte hypertrophy and survival in the infarcted myocardium

    PubMed Central

    Zhao, Tieqiang; Zhao, Wenyuan; Meng, Weixin; Liu, Chang; Chen, Yuanjian; Gerling, Ivan C; Weber, Karl T; Bhattacharya, Syamal K; Kumar, Rahul; Sun, Yao

    2015-01-01

    Background: Numerous studies have shown that in addition to angio/lymphangiogenesis, the VEGF family is involved in other cellular actions. We have recently reported that enhanced VEGF-C and VEGFR-3 in the infarcted rat myocardium, suggesting the paracrine/autocrine function of VEGF-C on cardiac remodeling. The current study was designed to test the hypothesis that VEGF-C regulates cardiomyocyte growth and survival in the infarcted myocardium. Methods and results: Gene profiling and VEGFR-3 expression of cardiomyocytes were assessed by laser capture microdissection/microarray and immunohistochemistry in the normal and infarcted myocardium. The effect of VEGF-C on myocyte hypertrophy and apoptosis during normoxia and hypoxia was detected by RT-PCR and western blotting in cultured rat neonatal cardiomyocytes. VEGFR-3 was minimally expressed in cardiomyocytes of the normal and noninfarcted myocardium, while markedly elevated in the surviving cardiomyocytes of the infarcted myocardium and border zone. Genes altered in the surviving cardiomyocytes were associated with the networks regulating cellular growth and survival. VEGF-C significantly increased the expression of atrial natriuretic factor (ANP), brain natriuretic factor (BNP), and β-myosin heavy chain (MHC), markers of hypertrophy, in neonatal cardiomyocytes. Hypoxia caused neonatal cardiomyocyte atrophy, which was prevented by VEGF-C treatment. Hypoxia significantly enhanced apoptotic mediators, including cleaved caspase 3, 8, and 9, and Bax in neonatal cardiomyocytes, which were abolished by VEGF-C treatment. Conclusion: Our findings indicate that VEGF-C/VEGFR-3 pathway exerts a beneficial role in the infarcted myocardium by promoting compensatory cardiomyocyte hypertrophy and survival. PMID:26064438

  5. Cholinergic modulation of the basal L-type calcium current in ferret right ventricular myocytes

    PubMed Central

    Bett, Glenna C L; Dai, Shuiping; Campbell, Donald L

    2002-01-01

    The effects of the cholinergic muscarinic agonist carbachol (CCh) on the basal L-type calcium current, ICa,L, in ferret right ventricular (RV) myocytes were studied using whole cell patch clamp. CCh produced two major effects: (i) in all myocytes, extracellular application of CCh inhibited ICa,L in a reversible concentration-dependent manner; and (ii) in many (but not all) myocytes, upon washout CCh produced a significant transient stimulation of ICa,L (‘rebound stimulation’). Inhibitory effects could be observed at 1 × 10−10m CCh. The mean steady-state inhibitory concentration-response relationship was shallow and could be described with a single Hill equation (maximum inhibition = 34.5 %, IC50 = 4 × 10−8m, Hill coefficient n = 0.60). Steady-state inhibition (1 or 10 μM CCh) had no significant effect on ICa,L selectivity or macroscopic (i) activation characteristics, (ii) inactivation kinetics, (iii) steady-state inactivation or (iv) kinetics of recovery from inactivation. Maximal inhibition of nitric oxide synthase (NOS) activity (preincubation of myocytes in 1 mm l-NMMA (NG-monomethyl-l-arginine) + 1 mm l-NNA (NG-nitro-l-arginine) for 2–3 h plus inclusion of 1 mm l-NMMA + 1 mm l-NNA in the patch pipette solution) produced no significant attenuation of the CCh-mediated inhibition of ICa,L. Protocols involving (i) the nitric oxide (NO) scavenger PTIO (2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide; 200 μM), (ii) imposition of a ‘cGMP clamp’ (100 μM 8-Bromo-cGMP), and (iii) inhibition of soluble guanylyl cyclase (ODQ (1H-[1,2,4,]oxadiazolo(4,3,-a)quinoxalin-1-one), 50 μM) all failed to attenuate CCh-mediated inhibition of Ica,L. While CCh consistently inhibited basal ICa,L in all RV myocytes studied, not all myocytes displayed rebound stimulation upon CCh washout. However, there was no difference between CCh-mediated inhibition of ICa,L between these two RV myocyte types, and in myocytes displaying rebound stimulation neither ODQ nor 8

  6. Metabolites of MDMA induce oxidative stress and contractile dysfunction in adult rat left ventricular myocytes.

    PubMed

    Shenouda, Sylvia K; Varner, Kurt J; Carvalho, Felix; Lucchesi, Pamela A

    2009-03-01

    Repeated administration of 3,4-methylenedioxymethamphetamine (MDMA) (ecstasy) produces eccentric left ventricular (LV) dilation and diastolic dysfunction. While the mechanism(s) underlying this toxicity are unknown, oxidative stress plays an important role. MDMA is metabolized into redox cycling metabolites that produce superoxide. In this study, we demonstrated that metabolites of MDMA induce oxidative stress and contractile dysfunction in adult rat left ventricular myocytes. Metabolites of MDMA used in this study included alpha-methyl dopamine, N-methyl alpha-methyl dopamine and 2,5-bis(glutathion-S-yl)-alpha-MeDA. Dihydroethidium was used to detect drug-induced increases in reactive oxygen species (ROS) production in ventricular myocytes. Contractile function and changes in intracellular calcium transients were measured in paced (1 Hz), Fura-2 AM loaded, myocytes using the IonOptix system. Production of ROS in ventricular myocytes treated with MDMA was not different from control. In contrast, all three metabolites of MDMA exhibited time- and concentration-dependent increases in ROS that were prevented by N-acetyl-cysteine (NAC). The metabolites of MDMA, but not MDMA alone, significantly decreased contractility and impaired relaxation in myocytes stimulated at 1 Hz. These effects were prevented by NAC. Together, these data suggest that MDMA-induced oxidative stress in the left ventricle can be due, at least in part, to the metabolism of MDMA to redox active metabolites.

  7. Heat stress responses modulate calcium regulations and electrophysiological characteristics in atrial myocytes.

    PubMed

    Chen, Yao-Chang; Kao, Yu-Hsun; Huang, Chun-Feng; Cheng, Chen-Chuan; Chen, Yi-Jen; Chen, Shih-Ann

    2010-04-01

    Heat stress-induced responses change the ionic currents and calcium homeostasis. However, the molecular insights into the heat stress responses on calcium homeostasis remain unclear. The purposes of this study were to examine the mechanisms of heat stress responses on calcium handling and electrophysiological characteristics in atrial myocytes. We used indo-1 fluorimetric ratio technique and whole-cell patch clamp to investigate the intracellular calcium, action potentials, and ionic currents in isolated rabbit single atrial cardiomyocytes with or without (control) exposure to heat stress (43 degrees C, 15 min) 5+/-1 h before experiments. The expressions of sarcoplasmic reticulum ATPase (SERCA2a), and Na(+)-Ca(2+) exchanger (NCX) in the control and heat stress-treated atrial myocytes were evaluated by Western blot and real-time PCR. As compared with control myocytes, the heat stress-treated myocytes had larger sarcoplasmic reticulum calcium content and larger intracellular calcium transient with a shorter decay portion. Heat stress-treated myocytes also had larger L-type calcium currents, transient outward potassium currents, but smaller NCX currents. Heat stress responses increased the protein expressions, SERCA2a, NCX, and heat shock protein. However, heat stress responses did not change the RNA expression of SERCA2a and NCX. In conclusion, heat stress responses change calcium handling through protein but not RNA regulation.

  8. Three-dimensional alignment of the aggregated myocytes in the normal and hypertrophic murine heart.

    PubMed

    Schmitt, Boris; Fedarava, Katsiaryna; Falkenberg, Jan; Rothaus, Kai; Bodhey, Narendra K; Reischauer, Carolin; Kozerke, Sebastian; Schnackenburg, Bernhard; Westermann, Dirk; Lunkenheimer, Paul P; Anderson, Robert H; Berger, Felix; Kuehne, Titus

    2009-09-01

    Several observations suggest that the transmission of myocardial forces is influenced in part by the spatial arrangement of the myocytes aggregated together within ventricular mass. Our aim was to assess, using diffusion tensor magnetic resonance imaging (DT-MRI), any differences in the three-dimensional arrangement of these myocytes in the normal heart compared with the hypertrophic murine myocardium. We induced ventricular hypertrophy in seven mice by infusion of angiotensin II through a subcutaneous pump, with seven other mice serving as controls. DT-MRI of explanted hearts was performed at 3.0 Tesla. We used the primary eigenvector in each voxel to determine the three-dimensional orientation of aggregated myocytes in respect to their helical angles and their transmural courses (intruding angles). Compared with controls, the hypertrophic hearts showed significant increases in myocardial mass and the outer radius of the left ventricular chamber (P < 0.05). In both groups, a significant change was noted from positive intruding angles at the base to negative angles at the ventricular apex (P < 0.01). Compared with controls, the hypertrophied hearts had significantly larger intruding angles of the aggregated myocytes, notably in the apical and basal slices (P < 0.001). In both groups, the helical angles were greatest in midventricular sections, albeit with significantly smaller angles in the mice with hypertrophied myocardium (P < 0.01). The use of DT-MRI revealed significant differences in helix and intruding angles of the myocytes in the mice with hypertrophied myocardium.

  9. Simultaneous orientation and cellular force measurements in adult cardiac myocytes using three-dimensional polymeric microstructures.

    PubMed

    Zhao, Yi; Lim, Chee Chew; Sawyer, Douglas Brian; Liao, Ronglih; Zhang, Xin

    2007-09-01

    A number of techniques have been developed to monitor contractile function in isolated cardiac myocytes. While invaluable observations have been gained from these methodologies in understanding the contractile processes of the heart, they are invariably limited by their in vitro conditions. The present challenge is to develop innovative assays to mimic the in vivo milieu so as to allow a more physiological assessment of cardiac myocyte contractile forces. Here we demonstrate the use of a silicone elastomer, poly(dimethylsiloxane) (PDMS), to simultaneously orient adult cardiac myocytes in primary culture and measure the cellular forces in a three-dimensional substrate. The realignment of adult cardiac myocytes in long-term culture (7 days) was achieved due to directional reassembly of the myofibrils along the parallel polymeric sidewalls. The cellular mechanical forces were recorded in situ by observing the deformation of the micropillars embedded in the substrate. By coupling the cellular mechanical force measurements with on-chip cell orientation, this novel assay is expected to provide a means of a more physiological assessment of single cardiac myocyte contractile function and may facilitate the future development of in vitro assembled functional cardiac tissue.

  10. Malonyl-CoA metabolism in cardiac myocytes.

    PubMed Central

    Hamilton, C; Saggerson, E D

    2000-01-01

    (1) Malonyl-CoA is thought to play a signalling role in fuel-selection in cardiac muscle, but the rate at which the concentration of this potential signal can be changed has not previously been investigated. (2) Rapid changes in cellular malonyl-CoA could be observed when rat cardiac myocytes were incubated in glucose-free medium followed by re-addition of 5 mM glucose, or when cells were transferred from a medium containing glucose to a glucose-free medium. On addition of glucose, malonyl-CoA increased by 62% to a new steady-state level, at a rate of at least 0.4 nmol/g dry wt. per min. The half-time of this change was less than 3 min. After removal of glucose the malonyl-CoA content was estimated to decline by 0.43-0.55 nmol/g dry wt. per min. (3) Malonyl-CoA decarboxylase (MDC) is a possible route for disposal of malonyl-CoA. No evidence was obtained for a cytosolic activity of MDC in rat heart where most of the activity was found in the mitochondrial fraction. MDC in the mitochondrial matrix was not accessible to extramitochondrial malonyl-CoA. However, approx. 16% of the MDC activity in mitochondria was overt, in a manner that could not be explained by mitochondrial leakage. It is suggested that this, as yet uncharacterized, overt MDC activity could provide a route for disposal of cytosolic malonyl-CoA in the heart. (4) No activity of the condensing enzyme for the fatty acid elongation system could be detected in any heart subcellular fraction using two assay systems. A previous suggestion [Awan and Saggerson (1993) Biochem. J. 295, 61-66] that this could provide a route for disposal of cytosolic malonyl-CoA in heart should therefore be abandoned. PMID:10926826

  11. Hyperoxia Induces Inflammation and Cytotoxicity in Human Adult Cardiac Myocytes.

    PubMed

    Hafner, Christina; Wu, Jing; Tiboldi, Akos; Hess, Moritz; Mitulovic, Goran; Kaun, Christoph; Krychtiuk, Konstantin Alexander; Wojta, Johann; Ullrich, Roman; Tretter, Eva Verena; Markstaller, Klaus; Klein, Klaus Ulrich

    2017-04-01

    Supplemental oxygen (O2) is used as adjunct therapy in anesthesia, emergency, and intensive care medicine. We hypothesized that excessive O2 levels (hyperoxia) can directly injure human adult cardiac myocytes (HACMs). HACMs obtained from the explanted hearts of transplantation patients were exposed to constant hyperoxia (95% O2), intermittent hyperoxia (alternating 10 min exposures to 5% and 95% O2), constant normoxia (21% O2), or constant mild hypoxia (5% O2) using a bioreactor. Changes in cell morphology, viability as assessed by lactate dehydrogenase (LDH) release and trypan blue (TB) staining, and secretion of vascular endothelial growth factor (VEGF), macrophage migration inhibitory factor (MIF), and various pro-inflammatory cytokines (interleukin, IL; chemokine C-X-C motif ligand, CXC; granulocyte-colony stimulating factor, G-CSF; intercellular adhesion molecule, ICAM; chemokine C-C motif ligand, CCL) were compared among treatment groups at baseline (0 h) and after 8, 24, and 72 h of treatment. Changes in HACM protein expression were determined by quantitative proteomic analysis after 48 h of exposure. Compared with constant normoxia and mild hypoxia, constant hyperoxia resulted in a higher TB-positive cell count, greater release of LDH, and elevated secretion of VEGF, MIF, IL-1β, IL-6, IL-8, CXCL-1, CXCL-10, G-CSF, ICAM-1, CCL-3, and CCL-5. Cellular inflammation and cytotoxicity gradually increased and was highest after 72 h of constant and intermittent hyperoxia. Quantitative proteomic analysis revealed that hypoxic and hyperoxic O2 exposure differently altered the expression levels of proteins involved in cell-cycle regulation, energy metabolism, and cell signaling. In conclusion, constant and intermittent hyperoxia induced inflammation and cytotoxicity in HACMs. Cell injury occurred earliest and was greatest after constant hyperoxia, but even relatively brief repeating hyperoxic episodes induced a substantial inflammatory response.

  12. STAT3 balances myocyte hypertrophy vis-à-vis autophagy in response to Angiotensin II by modulating the AMPKα/mTOR axis

    PubMed Central

    Samanta, Anweshan; Mahmoudi, Seyed Morteza; Buehler, Tanner; Cantilena, Amy; Vincent, Robert J.; Girgis, Magdy; Breeden, Joshua; Asante, Samuel; Xuan, Yu-Ting

    2017-01-01

    Signal transducers and activators of transcription 3 (STAT3) is known to participate in various cardiovascular signal transduction pathways, including those responsible for cardiac hypertrophy and cytoprotection. However, the role of STAT3 signaling in cardiomyocyte autophagy remains unclear. We tested the hypothesis that Angiotensin II (Ang II)-induced cardiomyocyte hypertrophy is effected, at least in part, through STAT3-mediated inhibition of cellular autophagy. In H9c2 cells, Ang II treatment resulted in STAT3 activation and cellular hypertrophy in a dose-dependent manner. Ang II enhanced autophagy, albeit without impacting AMPKα/mTOR signaling or cellular ADP/ATP ratio. Pharmacologic inhibition of STAT3 with WP1066 suppressed Ang II-induced myocyte hypertrophy and mRNA expression of hypertrophy-related genes ANP and β-MHC. These molecular events were recapitulated in cells with STAT3 knockdown. Genetic or pharmacologic inhibition of STAT3 significantly increased myocyte ADP/ATP ratio and enhanced autophagy through AMPKα/mTOR signaling. Pharmacologic activation and inhibition of AMPKα attenuated and exaggerated, respectively, the effects of Ang II on ANP and β-MHC gene expression, while concomitant inhibition of STAT3 accentuated the inhibition of hypertrophy. Together, these data indicate that novel nongenomic effects of STAT3 influence myocyte energy status and modulate AMPKα/mTOR signaling and autophagy to balance the transcriptional hypertrophic response to Ang II stimulation. These findings may have significant relevance for various cardiovascular pathological processes mediated by Ang II signaling. PMID:28686615

  13. IGF-I and amino acids effects through TOR signaling on proliferation and differentiation of gilthead sea bream cultured myocytes.

    PubMed

    Vélez, Emilio J; Lutfi, Esmail; Jiménez-Amilburu, Vanesa; Riera-Codina, Miquel; Capilla, Encarnación; Navarro, Isabel; Gutiérrez, Joaquim

    2014-09-01

    Skeletal muscle growth and development is controlled by nutritional (amino acids, AA) as well as hormonal factors (insulin-like growth factor, IGF-I); however, how its interaction modulates muscle mass in fish is not clearly elucidated. The purpose of this study was to analyze the development of gilthead sea bream cultured myocytes to describe the effects of AA and IGF-I on proliferating cell nuclear antigen (PCNA) and myogenic regulatory factors (MRFs) expression, as well as on the transduction pathways involved in its signaling (TOR/AKT). Our results showed that AA and IGF-I separately increased the number of PCNA-positive cells and, together produced a synergistic effect. Furthermore, AA and IGF-I, combined or separately, increased significantly Myogenin protein expression, whereas MyoD was not affected. These results indicate a role for these factors in myocyte proliferation and differentiation. At the mRNA level, AA significantly enhanced PCNA expression, but no effects were observed on the expression of the MRFs or AKT2 and FOXO3 upon treatment. Nonetheless, we demonstrated for the first time in gilthead sea bream that AA significantly increased the gene expression of TOR and its downstream effectors 4EBP1 and 70S6K, with IGF-I having a supporting role on 4EBP1 up-regulation. Moreover, AA and IGF-I also activated TOR and AKT by phosphorylation, respectively, being this activation decreased by specific inhibitors. In summary, the present study demonstrates the importance of TOR signaling on the stimulatory role of AA and IGF-I in gilthead sea bream myogenesis and contributes to better understand the potential regulation of muscle growth and development in fish.

  14. Mature adipocyte-derived dedifferentiated fat cells can transdifferentiate into skeletal myocytes in vitro

    SciTech Connect

    Kazama, Tomohiko; Fujie, Masaki; Endo, Tuyoshi; Kano, Koichiro

    2008-12-19

    We have previously reported the establishment of preadipocyte cell lines, termed dedifferentiated fat (DFAT) cells, from mature adipocytes of various animals. DFAT cells possess long-term viability and can redifferentiate into adipocytes both in vivo and in vitro. Furthermore, DFAT cells can transdifferentiate into osteoblasts and chondrocytes under appropriate culture conditions. However, it is unclear whether DFAT cells are capable of transdifferentiating into skeletal myocytes, which is common in the mesodermal lineage. Here, we show that DFAT cells can be induced to transdifferentiate into skeletal myocytes in vitro. Myogenic induction of DFAT cells resulted in the expression of MyoD and myogenin, followed by cell fusion and formation of multinucleated cells expressing sarcomeric myosin heavy chain. These results indicate that DFAT cells derived from mature adipocytes can transdifferentiate into skeletal myocytes in vitro.

  15. Mature adipocyte-derived dedifferentiated fat cells can transdifferentiate into skeletal myocytes in vitro.

    PubMed

    Kazama, Tomohiko; Fujie, Masaki; Endo, Tuyoshi; Kano, Koichiro

    2008-12-19

    We have previously reported the establishment of preadipocyte cell lines, termed dedifferentiated fat (DFAT) cells, from mature adipocytes of various animals. DFAT cells possess long-term viability and can redifferentiate into adipocytes both in vivo and in vitro. Furthermore, DFAT cells can transdifferentiate into osteoblasts and chondrocytes under appropriate culture conditions. However, it is unclear whether DFAT cells are capable of transdifferentiating into skeletal myocytes, which is common in the mesodermal lineage. Here, we show that DFAT cells can be induced to transdifferentiate into skeletal myocytes in vitro. Myogenic induction of DFAT cells resulted in the expression of MyoD and myogenin, followed by cell fusion and formation of multinucleated cells expressing sarcomeric myosin heavy chain. These results indicate that DFAT cells derived from mature adipocytes can transdifferentiate into skeletal myocytes in vitro.

  16. Electrical coupling of single cardiac rat myocytes to field-effect and bipolar transistors.

    PubMed

    Kind, Thomas; Issing, Matthias; Arnold, Rüdiger; Müller, Bernt

    2002-12-01

    A novel bipolar transistor for extracellular recording the electrical activity of biological cells is presented, and the electrical behavior compared with the field-effect transistor (FET). Electrical coupling is examined between single cells separated from the heart of adults rats (cardiac myocytes) and both types of transistors. To initiate a local extracellular voltage, the cells are periodically stimulated by a patch pipette in voltage clamp and current clamp mode. The local extracellular voltage is measured by the planar integrated electronic sensors: the bipolar and the FET. The small signal transistor currents correspond to the local extracellular voltage. The two types of sensor transistors used here were developed and manufactured in the laboratory of our institute. The manufacturing process and the interfaces between myocytes and transistors are described. The recordings are interpreted by way of simulation based on the point-contact model and the single cardiac myocyte model.

  17. Fibroblast-myocyte coupling in the heart: Potential relevance for therapeutic interventions.

    PubMed

    Ongstad, Emily; Kohl, Peter

    2016-02-01

    Cardiac myocyte-fibroblast electrotonic coupling is a well-established fact in vitro. Indirect evidence of its presence in vivo exists, but few functional studies have been published. This review describes the current knowledge of fibroblast-myocyte electrical signaling in the heart. Further research is needed to understand the frequency and extent of heterocellular interactions in vivo in order to gain a better understanding of their relevance in healthy and diseased myocardium. It is hoped that associated insight into myocyte-fibroblast coupling in the heart may lead to the discovery of novel therapeutic targets and the development of agents for improving outcomes of myocardial scarring and fibrosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Fibroblast–myocyte electrotonic coupling: Does it occur in native cardiac tissue?☆

    PubMed Central

    Kohl, Peter; Gourdie, Robert G.

    2014-01-01

    Heterocellular electrotonic coupling between cardiac myocytes and non-excitable connective tissue cells has been a long-established and well-researched fact in vitro. Whether or not such coupling exists in vivo has been a matter of considerable debate. This paper reviews the development of experimental insight and conceptual views on this topic, describes evidence in favour of and against the presence of such coupling in native myocardium, and identifies directions for further study needed to resolve the riddle, perhaps less so in terms of principal presence which has been demonstrated, but undoubtedly in terms of extent, regulation, patho-physiological context, and actual relevance of cardiac myocyte–non-myocyte coupling in vivo. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium." PMID:24412581

  19. Coupled oscillator systems of cultured cardiac myocytes: Fluctuation and scaling properties

    NASA Astrophysics Data System (ADS)

    Yoneyama, Mitsuru; Kawahara, Koichi

    2004-08-01

    Isolated and cultured neonatal cardiac myocytes exhibit autonomous rhythmic contraction, and their dynamics vary dramatically depending on the extent of mutual coupling among individual myocytes. We study the temporal changes of interbeat interval series in aggregated systems of spontaneously beating cultured neonatal rat cardiac myocytes and observe a rich variety of complex, nonlinear features such as frequent alternations, bistability, and periodic spikes. Fluctuation analysis of the interval series reveals that there occurs a transition in scaling behavior from persistent correlations to antipersistent correlations as the coupling develops with incubation time. Additionally, we perform computer simulations using interacting Bonhoeffer-van der Pol oscillators to understand the effects of coupling on the fluctuation dynamics of each constituent oscillator. We find that the formation of strong and heterogeneous coupling among the oscillators is a key factor to yield the complexity in the interval series as well as in the scaling behavior.

  20. Fibroblast-Myocyte Coupling in the Heart: Potential Relevance for Therapeutic Interventions

    PubMed Central

    Ongstad, Emily; Kohl, Peter

    2016-01-01

    Cardiac myocyte-fibroblast electrotonic coupling is a well-established fact in vitro. Indirect evidence of its presence in vivo exists, but few functional studies have been published. This review describes the current knowledge of fibroblast-myocyte electrical signalling in the heart. Further research is needed to understand the frequency and extent of heterocellular interactions in vivo in order to gain a better understanding of their relevance in healthy and diseased myocardium. It is hoped that associated insight into myocyte-fibroblast coupling in the heart may lead to the discovery of novel therapeutic targets and the development of agents for improving outcomes of myocardial scarring and fibrosis. This article is part of a special issue entitled “Exploring Fibrosis as the Next Target for Myocardial Remodeling.” PMID:26774702

  1. Increased Apoptosis and Myocyte Enlargement with Decreased Cardiac Mass; Distinctive Features of the Aging Male, but not Female, Monkey Heart

    PubMed Central

    Zhang, Xiao-Ping; Vatner, Stephen F.; Shen, You-Tang; Rossi, Franco; Tian, Yimin; Peppas, Athanasios; Resuello, Ranillo R.G.; Natividad, Filipinas F.; Vatner, Dorothy E.

    2009-01-01

    We studied gender-specific changes in aging cardiomyopathy in a primate model, Macaca fascicularis, free of the major human diseases, complicating the interpretation of data specific to aging in humans. Left ventricular (LV) weight/body weight decreased, p<0.05, in old males, but did not change in old females. However, despite the decrease in LV weight, mean myocyte cross-sectional area in the old males increased by 51%. This increase in myocyte size was not uniform in old males, i.e., it was manifest in only 20–30% of all the myocytes from old males. In old males there was a 4-fold increase in frequency of myocyte apoptosis without any increase in proliferation-capable myocytes assessed by Ki-67 expression. Apoptosis was unchanged in old female monkey hearts, whereas the frequency of myocytes expressing Ki-67 declined 90%. These results, opposite to findings from rodent studies, indicate distinct differences in which male and female monkeys maintain functional heart mass during aging. The old male hearts demonstrated increased apoptosis, which more than offset the myocyte hypertrophy, which interestingly was not uniform, without a significant increase in myocyte proliferation. PMID:17720187

  2. Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles

    PubMed Central

    Kohl, Tobias; Lehnart, Stephan E.

    2014-01-01

    In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied

  3. Oxidative metabolism in guinea pig ventricular myocytes protected from proteolytic enzyme activity.

    PubMed

    Bailey, L E; Carlos, H; Amian, A; Moon, K E

    1987-07-01

    Surface structures on guinea pig ventricular myocytes were protected from proteolytic enzyme activity with 100 KIU.ml-2 aprotinin during mechanical disaggregation. Intact myocytes, approximately 7.5 X 10(6) cells.g-1 ventricular wet weight, were separated from debris and damaged cells using Cytodex I tissue culture supports. Cellular ultrastructure did not differ from that observed in intact tissue. Neither spontaneous contractions nor contracture were ever observed in these myocytes in calcium concentrations of 10 mmol.litre-1. Dinitrophenol (0.2 mmol. litre-1) uncoupled respiration in the myocytes but only after the sarcolemma had been disrupted with Triton X100. The adenosine diphosphate to oxygen ratio of mitochondria isolated from the myocytes was 2.4(0.2) and the respiratory control index 2.6(0.3). Calcium (1.8 mmol.litre-1) increased oxygen uptake in the presence of 10 mmol.litre-1 pyruvate or 11 mmol.litre-1 glucose but not 17 mmol. litre-1 succinate. Succinate dependent oxygen consumption was greater than pyruvate dependent oxygen consumption (1090.0(190.0) and 40.1(0.8) nl.min-1.mg-1 protein respectively). The Crabtree effect was present. Oxidative metabolism was normal in cells stored at 10 degrees C for seven days but deteriorated rapidly thereafter. The results indicate that myocytes disaggregated by this procedure retain many of the morphological and metabolic characteristics of intact cardiac muscle cells and are relatively homogeneous with respect to calcium tolerance and metabolic function.

  4. Multimodal SHG-2PF Imaging of Microdomain Ca2+-Contraction Coupling in Live cardiac myocytes

    PubMed Central

    Awasthi, Samir; Izu, Leighton T.; Mao, Ziliang; Jian, Zhong; Landas, Trevor; Lerner, Aaron; Shimkunas, Rafael; Woldeyesus, Rahwa; Bossuyt, Julie; Wood, Brittani; Chen, Yi-Je; Matthews, Dennis L.; Lieu, Deborah K.; Chiamvimonvat, Nipavan; Lam, Kit S.; Chen-Izu, Ye; Chan, James W.

    2015-01-01

    Rationale cardiac myocyte contraction is caused by Ca2+ binding to troponin C, which triggers the cross-bridge power stroke and myofilament sliding in sarcomeres. Synchronized Ca2+ release causes whole cell contraction and is readily observable with current microscopy techniques. However, it is unknown whether localized Ca2+ release, such as Ca2+ sparks and waves, can cause local sarcomere contraction. Contemporary imaging methods fall short of measuring microdomain Ca2+-contraction coupling in live cardiac myocytes. Objective To develop a method for imaging sarcomere-level Ca2+-contraction coupling in healthy and disease-model cardiac myocytes. Methods and Results Freshly isolated cardiac myocytes were loaded with the Ca2+-indicator Fluo-4. A confocal microscope equipped with a femtosecond-pulsed near-infrared laser was used to simultaneously excite second harmonic generation (SHG) from A-bands of myofibrils and two-photon fluorescence (2PF) from Fluo-4. Ca2+ signals and sarcomere strain correlated in space and time with short delays. Furthermore, Ca2+ sparks and waves caused contractions in subcellular microdomains, revealing a previously underappreciated role for these events in generating subcellular strain during diastole. Ca2+ activity and sarcomere strain were also imaged in paced cardiac myocytes under mechanical load, revealing spontaneous Ca2+ waves and correlated local contraction in pressure overload-induced cardiomyopathy. Conclusions Multi-modal SHG-2PF microscopy enables the simultaneous observation of Ca2+ release and mechanical strain at the sub-sarcomere level in living cardiac myocytes. The method benefits from the label-free nature of SHG, which allows A-bands to be imaged independently of T-tubule morphology and simultaneously with Ca2+ indicators. SHG-2PF imaging is widely applicable to the study of Ca2+-contraction coupling and mechano-chemo-transduction in both health and disease. PMID:26643875

  5. Pacemaker current i(f) in adult canine cardiac ventricular myocytes.

    PubMed Central

    Yu, H; Chang, F; Cohen, I S

    1995-01-01

    1. Single cells enzymatically isolated from canine ventricle and canine Purkinje fibres were studied with the whole-cell patch clamp technique, and the properties of the pacemaker current i(f) compared. 2. Steady-state i(f) activation occurred in canine ventricular myocytes at more negative potentials (-120 to -170 mV) than in canine Purkinje cells (-80 to -130 mV). 3. Reversal potentials were obtained in various extracellular Na+ (140, 79 or 37 mM) and K+ concentrations (25, 9 or 5.4 mM) to determine the ionic selectivity of i(f) in the ventricle. The results suggest that this current was carried by both sodium and potassium ions. 4. The plots of the time constants of i(f) activation against voltage were 'bell shaped' in both canine ventricular and Purkinje myocytes. The curve for the ventricular myocytes was shifted about 30 mV in the negative direction. In both ventricular and Purkinje myocytes, the fully activated I-V relationship exhibited outward rectification in 5.4 mM extracellular K+. 5. Calyculin A (0.5 microM) increased i(f) by shifting its activation to more positive potentials in ventricular myocytes. Protein kinase inhibition by H-7 (200 microM) or H-8 (100 microM) reversed the positive voltage shift of i(f) activation. This effect of calyculin A also occurred when the permeabilized patch was used for whole-cell recording. 6. These results indicate i(f) is present in ventricular myocytes. If shifted to more positive potentials i(f) could play a role in ischaemia-induced ventricular arrhythmias. The negative shift of i(f) in the ventricle might play a role in differentiating non-pacing regions of the heart from those regions that pace. PMID:7545232

  6. Differences between outward currents of human atrial and subepicardial ventricular myocytes.

    PubMed Central

    Amos, G J; Wettwer, E; Metzger, F; Li, Q; Himmel, H M; Ravens, U

    1996-01-01

    1. Outward currents were studied in myocytes isolated from human atrial and subepicardial ventricular myocardium using the whole-cell voltage clamp technique at 22 degrees C. The Na+ current was inactivated with prepulses to -40 mV and the Ca2+ current was eliminated by both reducing extracellular [Ca2+] to 0.5 mM and addition of 100 microM CdCl2 to the bath solution. 2. In human myocytes, three different outward currents were observed. A slowly inactivating sustained outward current, I(so), was found in atrial but not ventricular myocytes. A rapidly inactivating outward current, I(to), of similar current density was observed in cells from the two tissues. An additional uncharacterized non-inactivating background current of similar size was observed in atrial and in ventricular myocytes. 3. I(to) and I(so) could be differentiated in atrial myocytes by their different kinetics and potential dependence of inactivation, and their different sensitivities to block by 4-amino-pyridine, suggesting that two individual channel types were involved. 4. In atrial cells, inactivation of I(to) was more rapid and steady-state inactivation occurred at more negative membrane potentials than in ventricular cells. Furthermore, the recovery of I(to) from inactivation was slower and without overshoot in atrial myocytes. In addition, 4-aminopyridine-induced block of I(to) was more efficient in atrial than in ventricular cells. These observations suggest that the channels responsible for atrial and ventricular I(to) were not identical. 5. We conclude that the differences in outward currents substantially contribute to the particular shapes of human atrial and ventricular action potentials. The existence of I(so) in atrial cells only provides a clinically interesting target for anti-arrhythmic drug action, since blockers of I(so) would selectively prolong the atrial refractory period, leaving ventricular refractoriness unaltered. PMID:9011620

  7. Vagus nerve stimulation mitigates intrinsic cardiac neuronal and adverse myocyte remodeling postmyocardial infarction

    PubMed Central

    Beaumont, Eric; Southerland, Elizabeth M.; Hardwick, Jean C.; Wright, Gary L.; Ryan, Shannon; Li, Ying; KenKnight, Bruce H.; Armour, J. Andrew

    2015-01-01

    This paper aims to determine whether chronic vagus nerve stimulation (VNS) mitigates myocardial infarction (MI)-induced remodeling of the intrinsic cardiac nervous system (ICNS), along with the cardiac tissue it regulates. Guinea pigs underwent VNS implantation on the right cervical vagus. Two weeks later, MI was produced by ligating the ventral descending coronary artery. VNS stimulation started 7 days post-MI (20 Hz, 0.9 ± 0.2 mA, 14 s on, 48 s off; VNS-MI, n = 7) and was compared with time-matched MI animals with sham VNS (MI n = 7) vs. untreated controls (n = 8). Echocardiograms were performed before and at 90 days post-MI. At termination, IC neuronal intracellular voltage recordings were obtained from whole-mount neuronal plexuses. MI increased left ventricular end systolic volume (LVESV) 30% (P = 0.027) and reduced LV ejection fraction (LVEF) 6.5% (P < 0.001) at 90 days post-MI compared with baseline. In the VNS-MI group, LVESV and LVEF did not differ from baseline. IC neurons showed depolarization of resting membrane potentials and increased input resistance in MI compared with VNS-MI and sham controls (P < 0.05). Neuronal excitability and sensitivity to norepinephrine increased in MI and VNS-MI groups compared with controls (P < 0.05). Synaptic efficacy, as determined by evoked responses to stimulating input axons, was reduced in VNS-MI compared with MI or controls (P < 0.05). VNS induced changes in myocytes, consistent with enhanced glycogenolysis, and blunted the MI-induced increase in the proapoptotic Bcl-2-associated X protein (P < 0.05). VNS mitigates MI-induced remodeling of the ICNS, correspondingly preserving ventricular function via both neural and cardiomyocyte-dependent actions. PMID:26276818

  8. Vagus nerve stimulation mitigates intrinsic cardiac neuronal and adverse myocyte remodeling postmyocardial infarction.

    PubMed

    Beaumont, Eric; Southerland, Elizabeth M; Hardwick, Jean C; Wright, Gary L; Ryan, Shannon; Li, Ying; KenKnight, Bruce H; Armour, J Andrew; Ardell, Jeffrey L

    2015-10-01

    This paper aims to determine whether chronic vagus nerve stimulation (VNS) mitigates myocardial infarction (MI)-induced remodeling of the intrinsic cardiac nervous system (ICNS), along with the cardiac tissue it regulates. Guinea pigs underwent VNS implantation on the right cervical vagus. Two weeks later, MI was produced by ligating the ventral descending coronary artery. VNS stimulation started 7 days post-MI (20 Hz, 0.9 ± 0.2 mA, 14 s on, 48 s off; VNS-MI, n = 7) and was compared with time-matched MI animals with sham VNS (MI n = 7) vs. untreated controls (n = 8). Echocardiograms were performed before and at 90 days post-MI. At termination, IC neuronal intracellular voltage recordings were obtained from whole-mount neuronal plexuses. MI increased left ventricular end systolic volume (LVESV) 30% (P = 0.027) and reduced LV ejection fraction (LVEF) 6.5% (P < 0.001) at 90 days post-MI compared with baseline. In the VNS-MI group, LVESV and LVEF did not differ from baseline. IC neurons showed depolarization of resting membrane potentials and increased input resistance in MI compared with VNS-MI and sham controls (P < 0.05). Neuronal excitability and sensitivity to norepinephrine increased in MI and VNS-MI groups compared with controls (P < 0.05). Synaptic efficacy, as determined by evoked responses to stimulating input axons, was reduced in VNS-MI compared with MI or controls (P < 0.05). VNS induced changes in myocytes, consistent with enhanced glycogenolysis, and blunted the MI-induced increase in the proapoptotic Bcl-2-associated X protein (P < 0.05). VNS mitigates MI-induced remodeling of the ICNS, correspondingly preserving ventricular function via both neural and cardiomyocyte-dependent actions.

  9. Blockade of Na+ current by promethazine in guinea-pig ventricular myocytes.

    PubMed Central

    Tanaka, H.; Habuchi, Y.; Nishimura, M.; Sato, N.; Watanabe, Y.

    1992-01-01

    1. To elucidate the antiarrhythmic mechanism of promethazine, its effects on the fast Na+ current (INa) were examined in single guinea-pig ventricular myocytes by whole-cell voltage clamp methods. 2. Promethazine blocked INa with a KD of 42.6 microM and Hill's coefficient of 1.1 at a holding potential of -140 mV. 3. The INa blockade was enhanced at a less negative holding potential of -80 mV with a change of KD to 4.4 microM. Although 10 microM promethazine did not change the inactivation time constants of INa, it shifted the steady-state inactivation curve (h infinity curve) toward more negative potentials by 19.5 mV with the slope factor unaffected. 4. Double pulse experiments revealed that the development of blockade followed two-exponential functions having time constants of 7 and 220 ms at -20 mV. 5. Promethazine slowed the repriming of INa. This was associated with the development of slow phase having a time constant of 1160 +/- 59 ms. 6. Promethazine produced a profound use-dependent block when the cell was repeatedly stimulated with interpulse intervals shorter than 1 s. However, short pulses of 2 ms duration hardly produced such a use-dependent block. Hence, open channel blockade is considered to play a minor role in the promethazine action on INa. 7. These results suggest that promethazine blocks cardiac INa in a manner similar to class I antiarrhythmic drugs and that this effect may account for its antiarrhythmic action. PMID:1327391

  10. Current-Voltage Relationship for Late Na(+) Current in Adult Rat Ventricular Myocytes.

    PubMed

    Clark, R B; Giles, W R

    2016-01-01

    It is now well established that the slowly inactivating component of the Na(+) current (INa-L) in the mammalian heart is a significant regulator of the action potential waveform. This insight has led to detailed studies of the role of INa-L in a number of important and challenging pathophysiological settings. These include genetically based ventricular arrhythmias (LQT 1, 2, and 3), ventricular arrhythmias arising from progressive cardiomyopathies (including diabetic), and proarrhythmic abnormalities that develop during local or global ventricular ischemia. Inhibition of INa-L may also be a useful strategy for management of atrial flutter and fibrillation. Many important biophysical parameters that characterize INa-L have been identified; and INa-L as an antiarrhythmia drug target has been studied extensively. However, relatively little information is available regarding (1) the ion transfer or current-voltage relationship for INa-L or (2) the time course of its reactivation at membrane potentials similar to the resting or diastolic membrane potential in mammalian ventricle. This chapter is based on our preliminary findings concerning these two very important physiological/biophysical descriptors for INa-L. Our results were obtained using whole-cell voltage clamp methods applied to enzymatically isolated rat ventricular myocytes. A chemical agent, BDF 9148, which was once considered to be a drug candidate in the Na(+)-dependent inotropic agent category has been used to markedly enhance INa-L current. BDF acts in a potent, selective, and reversible fashion. These BDF 9148 effects are compared and contrasted with the prototypical activator of INa-L, a sea anemone toxin, ATX II.

  11. Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes.

    PubMed Central

    Berlin, J R; Bassani, J W; Bers, D M

    1994-01-01

    Intracellular passive Ca2+, buffering was measured in voltage-clamped rat ventricular myocytes. Cells were loaded with indo-1 (K+ salt) to an estimated cytosolic concentration of 44 +/- 5 microM (Mean +/- SEM, n = 5), and accessible cell volume was estimated to be 24.5 +/- 3.6 pl. Ca2+ transport by the sarcoplasmic reticulum (SR) Ca-ATPase and sarcolemmal Na-Ca exchange was inhibited by treatment with thapsigargin and Na-free solutions, respectively. Extracellular [Ca2+] was maintained at 10 mM and, in some experiments, the mitochondrial uncoupler "1799" was used to assess the degree of mitochondrial Ca2+ uptake. To perform single cell titrations, intracellular Ca2+ ([Ca2+]i) was increased progressively by a train of depolarizing voltage clamp pulses from -40 to +10 mV. The total Ca2+ gain with each pulse was calculated by integration of the Ca current and then analyzed as a function of the rapid change in [Ca2+]i during the pulse. In the range of [Ca2+]i from 0.1 to 2 microM, overall cell buffering was well described as a single lumped Michaelis-Menten type species with an apparent dissociation constant, KD, of of 0.63 +/- 0.07 microM (n = 5) and a binding capacity, Bmax, of 162 +/- 15 mumol/l cell H2O. Correction for buffering attributable to cytosolic indo-1 gives intrinsic cytosolic Ca2+ buffering parameters of KD = 0.96 +/- 0.18 microM and Bmax = 123 +/- 18 mumol/l cell H2O. The fast Ca2+ buffering measured in this manner agrees reasonably with the characteristics of known rapid Ca buffers (e.g., troponin C, calmodulin, and SR Ca-ATPase), but is only about half of the total Ca2+ buffering measured at equilibrium. Inclusion of slow Ca buffers such as the Ca/Mg sites on troponin C and myosin can account for the differences between fast Ca2+ buffering in phase with the Ca current measured in the present experiments and equilibrium Ca2+ buffering. The present data indicate that a rapid rise of [Ca2+]i from 0.1 to 1 microM during a contraction requires

  12. Post-translational modifications of tubulin and microtubule stability in adult rat ventricular myocytes and immortalized HL-1 cardiomyocytes.

    PubMed

    Belmadani, Souad; Poüs, Christian; Fischmeister, Rodolphe; Méry, Pierre-François

    2004-03-01

    Little is known about the subcellular distribution and the dynamics of tubulins in adult cardiac myocytes although both are modified during cardiac hypertrophy and heart failure. Using confocal microscopy, we examined post-translational modifications of tubulin in fully differentiated ventricular myocytes isolated from adult rat hearts, as well as in immortalized and dividing HL-1 cardiomyocytes. Detyrosinated Glu-alpha-tubulin was the most abundant post-translationally modified tubulin found in ventricular myocytes, while acetylated- and delta2-alpha-tubulins were found in lower amounts or absent. In contrast, dividing HL-1 cardiomyocytes exhibited high levels of tyrosinated or acetylated alpha-tubulins. A mild nocodazole treatment (0.1 microM, 1 h) disrupted microtubules in HL-1 myocytes, but not in adult ventricular myocytes. A stronger treatment (10 microM, 2 h) was required to disassemble tubulins in adult myocytes. Glu-alpha-tubulin containing microtubules were more resistant to nocodazole treatment in HL-1 cardiomyocytes than in ventricular myocytes. Endogenous activation of the cAMP pathway with the forskolin analog L858051 (20 microM) or the beta-adrenergic agonist isoprenaline (10 microM) disrupted the most labile microtubules in HL-1 cardiomyocytes. In contrast, isoprenaline (10 microM), cholera toxin (200 ng/ml, a G(S)-protein activator), L858051 (20 microM) or forskolin (10 microM) had no effect on the microtubule network in ventricular myocytes. In addition, intracellular Ca2+ accumulation induced either by thapsigargin (2 microM) or caffeine (10 mM) did not modify microtubule stability in ventricular myocytes. Our data demonstrate the unique stability of the microtubule network in adult cardiac myocytes. We speculate that microtubule stability is required to support cellular integrity during cardiac contraction.

  13. IP3R and RyR calcium channels are involved in neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-α

    PubMed Central

    Wang, Gui-Jun; Guo, Lian-Yi; Wang, Hong-Xin; Yao, Yu-Sheng

    2017-01-01

    To investigate which calcium channels are involved in cardiac myocyte hypertrophy induced by TNF-α, cultured cardiomyocytes were treated with 100 μg/L TNF-α. In addition, three different calcium channel blockers (2-APB, ryanodine and nifedipine) were used, and the effects of each calcium channel blocker on cardiac hypertrophy induced by TNF-α were carefully observed. Measurements included cytosolic calcium transients ([Ca2+]i), the level of intracellular calcium in individual cells, cell protein content, cell protein synthesis and cell volume. We found that the IP3R inhibitor (2-APB) and RyR inhibitor (ryanodine) both had significant suppressive effects on the level of [Ca2+]i, calcium concentration, cell protein content, cell protein synthesis and cell volume of cardiomyocytes treated with TNF-α (P<0.01). Moreover, their combined effects were significantly enhanced compared with their single effects (P<0.01). However, the inhibitor of the L type Ca2+ channel nifedipine exhibited no significant suppressive effects on the increase in [Ca2+]i, calcium concentration, cell protein content, cell protein synthesis and cell volume of cardiomyocytes induced by TNF-α (P>0.05). Our results suggest that TNF-α probably induces cardiac myocyte hypertrophy by activating IP3R and RyR calcium channels, which control the release of calcium ions from the sarcoplasmic reticulum (SR) in cardiomyocytes. On the other hand, extracellular calcium influx, which is mainly regulated by the L type Ca2+ channel, may not be involved in cardiac myocyte hypertrophy induced by TNF-α. PMID:28337264

  14. The Electrophysiological Effects of Qiliqiangxin on Cardiac Ventricular Myocytes of Rats

    PubMed Central

    Wei, Yidong; Liu, Xiaoyu; Wei, Haidong; Hou, Lei; Che, Wenliang; The, Erlinda; Li, Gang; Jhummon, Muktanand Vikash; Wei, Wanlin

    2013-01-01

    Qiliqiangxin, a Chinese herb, represents the affection in Ca channel function of cardiac myocytes. It is unknown whether Qiliqiangxin has an effect on Na current and K current because the pharmacological actions of this herb's compound are very complex. We investigated the rational usage of Qiliqiangxin on cardiac ventricular myocytes of rats. Ventricular myocytes were exposed acutely to 1, 10, and 50 mg/L Qiliqiangxin, and whole cell patch-clamp technique was used to study the acute effects of Qiliqiangxin on Sodium current (I Na), outward currents delayed rectifier outward K+ current (I K), slowly activating delayed rectifier outward K+ current (I Ks), transient outward K+ current (I to), and inward rectifier K+ current (I K1). Qiliqiangxin can decrease I Na by 28.53% ± 5.98%, and its IC50 was 9.2 mg/L. 10 and 50 mg/L Qiliqiangxin decreased by 37.2% ± 6.4% and 55.9% ± 5.5% summit current density of I to. 10 and 50 mg/L Qiliqiangxin decreased I Ks by 15.51% ± 4.03% and 21.6% ± 5.6%. Qiliqiangxin represented a multifaceted pharmacological profile. The effects of Qiliqiangxin on Na and K currents of ventricular myocytes were more profitable in antiarrhythmic therapy in the clinic. We concluded that the relative efficacy of Qiliqiangxin was another choice for the existing antiarrhythmic therapy. PMID:24250713

  15. Effects of cannabidiol on contractions and calcium signaling in rat ventricular myocytes.

    PubMed

    Ali, Ramez M; Al Kury, Lina T; Yang, Keun-Hang Susan; Qureshi, Anwar; Rajesh, Mohanraj; Galadari, Sehamuddin; Shuba, Yaroslav M; Howarth, Frank Christopher; Oz, Murat

    2015-04-01

    Cannabidiol (CBD), a major nonpsychotropic cannabinoid found in Cannabis plant, has been shown to influence cardiovascular functions under various physiological and pathological conditions. In the present study, the effects of CBD on contractility and electrophysiological properties of rat ventricular myocytes were investigated. Video edge detection was used to measure myocyte shortening. Intracellular Ca(2+) was measured in cells loaded with the Ca(2+) sensitive fluorescent indicator fura-2 AM. Whole-cell patch clamp was used to measure action potential and Ca(2+) currents. Radioligand binding was employed to study pharmacological characteristics of CBD binding. CBD (1μM) caused a significant decrease in the amplitudes of electrically evoked myocyte shortening and Ca(2+) transients. However, the amplitudes of caffeine-evoked Ca(2+) transients and the rate of recovery of electrically evoked Ca(2+) transients following caffeine application were not altered. CBD (1μM) significantly decreased the duration of APs. Further studies on L-type Ca(2+) channels indicated that CBD inhibits these channels with IC50 of 0.1μM in a voltage-independent manner. Radioligand studies indicated that the specific binding of [(3)H]Isradipine, was not altered significantly by CBD. The results suggest that CBD depresses myocyte contractility by suppressing L-type Ca(2+) channels at a site different than dihydropyridine binding site and inhibits excitation-contraction coupling in cardiomyocytes.

  16. Feedback-control induced pattern formation in cardiac myocytes: a mathematical modeling study

    PubMed Central

    Gaeta, Stephen A; Krogh-Madsen, Trine; Christini, David J.

    2010-01-01

    Cardiac alternans is a dangerous rhythm disturbance of the heart, in which rapid stimulation elicits a beat-to-beat alternation in the action potential duration (APD) and calcium (Ca) transient amplitude of individual myocytes. Recently, “subcellular alternans,” in which the Ca transients of adjacent regions within individual myocytes alternate out-of-phase, has been observed. A previous theoretical study suggested that subcellular alternans may result during static pacing from a Turing-type symmetry breaking instability, but this was only predicted in a subset of cardiac myocytes (with negative Ca to voltage (Ca→Vm) coupling) and has never been directly verified experimentally. A recent experimental study, however, showed that subcellular alternans is dynamically induced in the remaining subset of myocytes during pacing with a simple feedback control algorithm (“alternans control”). Here we show that alternans control pacing changes the effective coupling between the APD and the Ca transient (Vm→Ca coupling), such that subcellular alternans is predicted to occur by a Turing instability in cells with positive Ca→Vm coupling. In addition to strengthening the understanding of the proposed mechanism for subcellular alternans formation, this work (in concert with previous theoretical and experimental results) illuminates subcellular alternans as a striking example of a biological Turing instability in which the diffusing morphogens can be clearly identified. PMID:20620154

  17. Calcium waves in rat cardiac myocytes underlie the principles of self-organization in excitable media

    NASA Astrophysics Data System (ADS)

    Wussling, Manfred; Mair, Thomas

    The propagation dynamics of traveling calcium waves in rat cardiac myocytes have been investigated by means of confocal laser scanning microscopy. We found, that the calcium waves behave as reaction-diffusion waves, demonstrating the velocity-curvature relationship as well as the dispersion relation. We conclude that thes spatio-temporal pattern of calcium are governed by the properties of an excitable medium.

  18. Interleukin 1 and Tumor Necrosis Factor Inhibit Cardiac Myocyte β -adrenergic Responsiveness

    NASA Astrophysics Data System (ADS)

    Gulick, Tod; Chung, Mina K.; Pieper, Stephen J.; Lange, Louis G.; Schreiner, George F.

    1989-09-01

    Reversible congestive heart failure can accompany cardiac allograft rejection and inflammatory myocarditis, conditions associated with an immune cell infiltrate of the myocardium. To determine whether immune cell secretory products alter cardiac muscle metabolism without cytotoxicity, we cultured cardiac myocytes in the presence of culture supernatants from activated immune cells. We observed that these culture supernatants inhibit β -adrenergic agonist-mediated increases in cultured cardiac myocyte contractility and intracellular cAMP accumulation. The myocyte contractile response to increased extracellular Ca2+ concentration is unaltered by prior exposure to these culture supernatants, as is the increase in myocyte intracellular cAMP concentration in response to stimulation with forskolin, a direct adenyl cyclase activator. Inhibition occurs in the absence of alteration in β -adrenergic receptor density or ligand binding affinity. Suppressive activity is attributable to the macrophage-derived cytokines interleukin 1 and tumor necrosis factor. Thus, these observations describe a role for defined cytokines in regulating the hormonal responsiveness and function of contractile cells. The effects of interleukin 1 and tumor necrosis factor on intracellular cAMP accumulation may be a model for immune modulation of other cellular functions dependent upon cyclic nucleotide metabolism. The uncoupling of agonist-occupied receptors from adenyl cyclase suggests that β -receptor or guanine nucleotide binding protein function is altered by the direct or indirect action of cytokines on cardiac muscle cells.

  19. Effects of phytoestrogens on protein turnover in rainbow trout primary myocytes

    USDA-ARS?s Scientific Manuscript database

    Soybean-derived ingredients used in aquaculture feeds may contain phytoestrogens, but it is unknown if these compounds can mimic the catabolic effects of estradiol in fish muscle. Six day-old rainbow trout primary myocytes were exposed to increasing concentrations (10 nM – 100 µM) of either geniste...

  20. Heterogeneous distribution of acetylcholine receptors in chick myocytes induced by cholesterol enrichment.

    PubMed

    Lasalde, J A; Colom, A; Resto, E; Zuazaga, C

    1995-05-04

    The cholesterol concentration at the cell surface of cultured chick myocytes was increased in order to determine the effects of high levels of cholesterol on the ion channel properties of the nicotinic acetylcholine receptor. Single channel recordings and fluorescence polarization studies using 1,6-diphenyl-1,3,5-hexatriene (DPH) were performed under equivalent conditions for normal and cholesterol enriched myocytes. In cell attached patches from myocytes with a cholesterol to phospholipid molar ratio (c/p) of 0.24 and a microviscosity of 1.35 poise a single conductance of 51 pS was detected. The cholesterol enriched myocytes with a c/p of 0.52 and a microviscosity of 2.05 poise showed two conductances, a 54 pS and a 39 pS channel: both were blocked by alpha-bungarotoxin. The 39 pS channel was detected with the simultaneous appearance of a slow component of tau m (modulation time) for DPH fluorescence measured by phase demodulation. The 80% reduction in the open time constant (tau 2) of the 39 pS channel suggest an inhibition of the normal conformational state. The combined results suggest that cholesterol enrichment may induced a more heterogeneous lipid environment and that the two types of channel properties could result from the distribution of the receptors in different domains.

  1. EXPOSURE OF CULTURED MYOCYTES TO ZINC RESULTS IN ALTERED BEAT RATE AND INTERCELLULAR COMMUNICATION.

    EPA Science Inventory

    Exposure of cultured myocytes to zinc results in altered beat rate and intercellular communication

    Graff, Donald W, Devlin, Robert B, Brackhan, Joseph A, Muller-Borer, Barbara J, Bowman, Jill S, Cascio, Wayne E.

    Exposure to ambient air pollution particulate matter (...

  2. Oxygen radical-mediated injury of myocytes-protection by propranolol.

    PubMed

    Mak, I T; Kramer, J H; Freedman, A M; Tse, S Y; Weglicki, W B

    1990-06-01

    UIe effects of propranolol and atenolol on free radical mediated injury in myocytes were examined. Freshly isolated adult canine myocytes were incubated with a superoxide generating (from dihydroxyfumarate) and Fe-catalyzed free radical system. Exposure of the myocytes to free radicals for 20 min resulted in more than a 5-fold increase in thiobarbituric acid reactant (peroxide) formation and elevated levels of lactate dehydrogenase (LDH) activity released into the media compared to controls. Ultrastructurally, severe sarcolemmal damage, mitochondrial and myofibril derangements were evident. At 40 min, cellular viability (trypan blue exclusion) in the samples exposed to free radicals decreased to about one-third of controls; concomitantly, major losses in total cellular phospholipids occurred. When the cells were pretreated with 200 microM propranolol before the addition of free radicals, both peroxide formation and increased LDH release were inhibited; in agreement, complete ultrastructural preservation was observed. In addition, the subsequent losses in cellular viability and phospholipids were prevented. For comparison, the more water soluble beta-blocker, atenolol at 200 microM was shown ineffective in providing significant protection against the induced injury. The results suggest that propranolol may provide antiperoxidative protection to myocytes when elevated levels of free radicals are present.

  3. Cardiac p300 Is Involved in Myocyte Growth with Decompensated Heart Failure

    PubMed Central

    Yanazume, Tetsuhiko; Hasegawa, Koji; Morimoto, Tatsuya; Kawamura, Teruhisa; Wada, Hiromichi; Matsumori, Akira; Kawase, Yosuke; Hirai, Maretoshi; Kita, Toru

    2003-01-01

    A variety of stresses on the heart initiate a number of subcellular signaling pathways, which finally reach the nuclei of cardiac myocytes and cause myocyte hypertrophy with heart failure. However, common nuclear pathways that lead to this state are unknown. A zinc finger protein, GATA-4, is one of the transcription factors that mediate changes in gene expression during myocardial-cell hypertrophy. p300 not only acts as a transcriptional coactivator of GATA-4, but also possesses an intrinsic histone acetyltransferase activity. In primary cardiac myocytes derived from neonatal rats, we show that stimulation with phenylephrine increased an acetylated form of GATA-4 and its DNA-binding activity, as well as expression of p300. A dominant-negative mutant of p300 suppressed phenylephrine-induced nuclear acetylation, activation of GATA-4-dependent endothelin-1 promoters, and hypertrophic responses, such as increase in cell size and sarcomere organization. In sharp contrast to the activation of cardiac MEK-1, which phosphorylates GATA-4 and causes compensated hypertrophy in vivo, p300-mediated acetylation of mouse cardiac nuclear proteins, including GATA-4, results in marked eccentric dilatation and systolic dysfunction. These findings suggest that p300-mediated nuclear acetylation plays a critical role in the development of myocyte hypertrophy and represents a pathway that leads to decompensated heart failure. PMID:12724418

  4. Pleiotropic Effects of Neutrophils on Myocyte Apoptosis and Left Ventricular Remodeling During Early Volume Overload

    PubMed Central

    Kolpakov, Mikhail A; Seqqat, Rachid; Rafiq, Khadija; Xi, Hang; Margulies, Kennneth B; Libonati, Joseph R; Powel, Pamela; Houser, Steven R; Dell'italia, Louis J; Sabri, Abdelkarim

    2009-01-01

    Most of the available evidence on the role of neutrophils on pathological cardiac remodeling has been pertained after acute myocardial infarction. However, whether neutrophils directly contribute to the pathogenesis of cardiac remodeling after events other than acute myocardial infarction remains unknown. Here we show that acute eccentric hypertrophy induced by aorto-caval fistula (ACF) in the rats induced an increase in the inflammatory response characterized by activation of the STAT pathway and increased infiltration of neutrophils in the myocardium. This early inflammation was associated with a decrease in interstitial collagen accumulation and an increase in myocyte apoptosis. Neutrophil infiltration blockade attenuated MMP activation, ECM degradation, and myocyte apoptosis induced by ACF at 24hrs and attenuated the development of eccentric hypertrophy induced by ACF at 2- and 3-weeks, suggesting a causal relationship between neutrophils and the ACF-induced cardiac remodeling. In contrast, sustained neutrophil depletion over 4-weeks resulted in adverse cardiac remodeling with further increase in cardiac dilatation and macrophage infiltration, but with no change in myocyte apoptosis level. These data support a functional role for neutrophils in MMP activation, ECM degradation, and myocyte apoptosis during eccentric cardiac hypertrophy and underscore the adverse effects of chronic anti-neutrophil therapy on cardiac remodeling induced by early VO. PMID:19716828

  5. EXPOSURE OF CULTURED MYOCYTES TO ZINC RESULTS IN ALTERED BEAT RATE AND INTERCELLULAR COMMUNICATION.

    EPA Science Inventory

    Exposure of cultured myocytes to zinc results in altered beat rate and intercellular communication

    Graff, Donald W, Devlin, Robert B, Brackhan, Joseph A, Muller-Borer, Barbara J, Bowman, Jill S, Cascio, Wayne E.

    Exposure to ambient air pollution particulate matter (...

  6. CHOP deficiency prevents methylglyoxal-induced myocyte apoptosis and cardiac dysfunction.

    PubMed

    Nam, Dae-Hwan; Han, Jung-Hwa; Lee, Tae-Jin; Shishido, Tetsuro; Lim, Jae Hyang; Kim, Geun-Young; Woo, Chang-Hoon

    2015-08-01

    Epidemiological studies indicate that methylglyoxal (MGO) plasma levels are closely linked to diabetes and the exacerbation of diabetic cardiovascular complications. Recently, it was established that endoplasmic reticulum (ER) stress importantly contributes to the pathogenesis of diabetes and its cardiovascular complications. The objective of this study was to explore the mechanism by which diabetes instigates cardiomyocyte apoptosis and cardiac dysfunction via MGO-mediated myocyte apoptosis. Intriguingly, the MGO activated unfolded protein response pathway accompanying apoptotic events, such as cleavages of PARP-1 and caspase-3. In addition, Western blot analysis revealed that MGO-induced myocyte apoptosis was inhibited by depletion of CHOP with siRNA against Ddit3, the gene name for rat CHOP. To investigate the physiologic roles of CHOP in vivo, glucose tolerance and cardiac dysfunction were assessed in CHOP-deficient mice. No significant difference was observed between CHOP KO and littermate naïve controls in terms of the MGO-induced impairment of glucose tolerance. In contrast, myocyte apoptosis, inflammation, and cardiac dysfunction were significantly diminished in CHOP KO compared with littermate naïve controls. These results showed that CHOP is the key signal for myocyte apoptosis and cardiac dysfunction induced by MGO. These findings suggest a therapeutic potential of CHOP inhibition in the management of diabetic cardiovascular complications including diabetic cardiomyopathy.

  7. The oral iron chelator ICL670A (deferasirox) does not protect myocytes against doxorubicin.

    PubMed

    Hasinoff, Brian B; Patel, Daywin; Wu, Xing

    2003-12-01

    The oral iron chelating agent ICL670A (deferasirox) and the clinically approved cardioprotective agent dexrazoxane (ICRF-187) were compared for their ability to protect neonatal rat cardiac myocytes from doxorubicin-induced damage. Doxorubicin is thought to induce oxidative stress on the heart muscle through iron-mediated oxygen radical damage. While dexrazoxane was able to protect myocytes from doxorubicin-induced lactate dehydrogenase release, ICL670A, in contrast, depending upon the concentration, synergistically increased or did not affect the cytotoxicity of doxorubicin. This occurred in spite of the fact that ICL670A quickly and efficiently removed iron(III) from its complex with doxorubicin, and rapidly entered myocytes and displaced iron from a fluorescence-quenched trapped intracellular iron-calcein complex. Continuous exposure of ICL670A to either myocytes or Chinese hamster ovary (CHO) cells resulted in cytotoxicity while treatment of CHO cells with the ferric complex of ICL670A did not. These results suggest that ICL670A was cytotoxic either by removing or withholding iron from critical iron-containing proteins. Electron paramagnetic resonance spectroscopy was used to show that neither ICL670A nor its ferric complex were able to generate free radicals in either oxidizing or reducing systems suggesting that its cytotoxicity is not due to radical generation.

  8. Excavatolide B Modulates the Electrophysiological Characteristics and Calcium Homeostasis of Atrial Myocytes

    PubMed Central

    Hwang, Hwong-Ru; Tai, Buh-Yuan; Cheng, Pao-Yun; Chen, Ping-Nan; Sung, Ping-Jyun; Wen, Zhi-Hong; Hsu, Chih-Hsueng

    2017-01-01

    Severe bacterial infections caused by sepsis always result in profound physiological changes, including fever, hypotension, arrhythmia, necrosis of tissue, systemic multi-organ dysfunction, and finally death. The lipopolysaccharide (LPS) provokes an inflammatory response under sepsis, which may increase propensity to arrhythmogenesis. Excavatolide B (EXCB) possesses potent anti-inflammatory effects. However, it is not clear whether EXCB could modulate the electrophysiological characteristics and calcium homeostasis of atrial myocytes. This study investigated the effects of EXCB on the atrial myocytes exposed to lipopolysaccharide. A whole-cell patch clamp and indo-1 fluorimetric ratio technique was employed to record the action potential (AP), ionic currents, and intracellular calcium ([Ca2+]i) in single, isolated rabbit left atrial (LA) cardiomyocytes, with and without LPS (1 μg/mL) and LPS + EXCB administration (10 μM) for 6 ± 1 h, in order to investigate the role of EXCB on atrial electrophysiology. In the presence of LPS, EXCB-treated LA myocytes (n = 13) had a longer AP duration at 20% (29 ± 2 vs. 20 ± 2 ms, p < 0.05), 50% (52 ± 4 vs. 40 ± 3 ms, p < 0.05), and 90% (85 ± 5 vs. 68 ± 3 ms, p < 0.05), compared to the LPS-treated cells (n = 12). LPS-treated LA myocytes showed a higher late sodium current, Na+/Ca2+ exchanger current, transient outward current, and delayed rectifier potassium current, but a lower l-type Ca2+ current, than the control LA myocytes. Treatment with EXCB reversed the LPS-induced alterations of the ionic currents. LPS-treated, EXCB-treated, and control LA myocytes exhibited similar Na+ currents. In addition, the LPS-treated LA myocytes exhibited a lower [Ca2+]i content and higher sarcoplasmic reticulum calcium content, than the controls. EXCB reversed the LPS-induced calcium alterations. In conclusion, EXCB modulates LPS-induced LA electrophysiological characteristics and calcium homeostasis, which may contribute to attenuating

  9. Phosphatidic acid increases in response to noradrenaline and endothelin-1 in adult rabbit ventricular myocytes.

    PubMed

    Ye, H; Wolf, R A; Kurz, T; Corr, P B

    1994-12-01

    The aim was to assess whether noradrenaline and endothelin-1 can stimulate endogenous production of phosphatidic acid in adult ventricular myocytes. After stimulation of rabbit ventricular myocytes with noradrenaline and endothelin-1, total lipids were extracted using the Bligh and Dyer procedure and separated by thin layer chromatography, and phosphatidic acid was quantified using photodensitometric analysis of visualised lipids with CuSO4/H3PO4. Noradrenaline (10(-5) M) elicited a rapid increase in phosphatidic acid at 2 min, followed by a decrease at 5 min. A second delayed and sustained increase in phosphatidic acid occurred at 10 min. The response to noradrenaline (10(-9) to 10(-5) M) was concentration dependent with a half maximum response (EC50) of 3.1 x 10(-8) M and the maximum effect at 10(-6) M. The increase in phosphatidic acid production in response to noradrenaline was abolished by an alpha 1 adrenergic receptor blocking agent (2-[beta-(4-hydroxyphenyl)-ethylaminomethyl]tetralone) but unaffected by the beta adrenergic blocking agent L-propranolol. An increase in phosphatidic acid was also elicited in rabbit ventricular myocytes in response to endothelin-1. The response was time and concentration dependent with the maximal increase at 12 min, EC50 5.3 x 10(-9) M, and maximum effect at 10(-6) M. Both noradrenalin and endothelin-1 stimulated phosphatidylbutanol production in the presence of butanol (100 mM), indicating that both agonists activate phospholipase D. Noradrenaline at physiological concentrations elicits both a rapid and a delayed increase in phosphatidic acid in adult rabbit ventricular myocytes. Endothelial-1, at physiological concentrations, also stimulates an increase in the mass of phosphatidic acid in myocytes, but the increase induced by endothelin-1 is monophasic, in contrast to the biphasic response seen during stimulation with noradrenaline. Activation of phospholipase D contributes to the increase in phosphatidic acid seen during

  10. Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53.

    PubMed Central

    Bialik, S; Geenen, D L; Sasson, I E; Cheng, R; Horner, J W; Evans, S M; Lord, E M; Koch, C J; Kitsis, R N

    1997-01-01

    Significant numbers of myocytes die by apoptosis during myocardial infarction. The molecular mechanism of this process, however, remains largely unexplored. To facilitate a molecular genetic analysis, we have developed a model of ischemia-induced cardiac myocyte apoptosis in the mouse. Surgical occlusion of the left coronary artery results in apoptosis, as indicated by the presence of nucleosome ladders and in situ DNA strand breaks. Apoptosis occurs mainly in cardiac myocytes, and is shown for the first time to be limited to hypoxic regions during acute infarction. Since hypoxia-induced apoptosis in other cell types is dependent on p53, and p53 is induced by hypoxia in cardiac myocytes, we investigated the necessity of p53 for myocyte apoptosis during myocardial infarction. Myocyte apoptosis occurs as readily, however, in the hearts of mice nullizygous for p53 as in wild-type littermates. These data demonstrate the existence of a p53-independent pathway that mediates myocyte apoptosis during myocardial infarction. PMID:9294101

  11. Shear stress induces a longitudinal Ca(2+) wave via autocrine activation of P2Y1 purinergic signalling in rat atrial myocytes.

    PubMed

    Kim, Joon-Chul; Woo, Sun-Hee

    2015-12-01

    Atrial myocytes are exposed to shear stress during the cardiac cycle and haemodynamic disturbance. In response, they generate a longitudinally propagating global Ca(2+) wave. Here, we investigated the cellular mechanisms underlying the shear stress-mediated Ca(2+) wave, using two-dimensional confocal Ca(2+) imaging combined with a pressurized microflow system in single rat atrial myocytes. Shear stress of ∼16 dyn cm(-2) for 8 s induced ∼1.2 aperiodic longitudinal Ca(2+) waves (∼79 μm s(-1)) with a delay of 0.2-3 s. Pharmacological blockade of ryanodine receptors (RyRs) or inositol 1,4,5-trisphosphate receptors (IP3 Rs) abolished shear stress-induced Ca(2+) wave generation. Furthermore, in atrial myocytes from type 2 IP3R (IP3R2) knock-out mice, shear stress failed to induce longitudinal Ca(2+) waves. The phospholipase C (PLC) inhibitor U73122, but not its inactive analogue U73343, abolished the shear-induced longitudinal Ca(2+) wave. However, pretreating atrial cells with blockers for stretch-activated channels, Na(+)-Ca(2+) exchanger, transient receptor potential melastatin subfamily 4, or nicotinamide adenine dinucleotide phosphate oxidase did not suppress wave generation under shear stress. The P2 purinoceptor inhibitor suramin, and the potent P2Y1 receptor antagonist MRS 2179, both suppressed the Ca(2+) wave, whereas the P2X receptor antagonist, iso-PPADS, did not alter it. Suppression of gap junction hemichannels permeable to ATP or extracellular application of ATP-metabolizing apyrase inhibited the wave. Removal of external Ca(2+) to enhance hemichannel opening facilitated the wave generation. Our data suggest that longitudinally propagating, regenerative Ca(2+) release through RyRs is triggered by P2Y1-PLC-IP3R2 signalling that is activated by gap junction hemichannel-mediated ATP release in atrial myocytes under shear stress. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  12. Stimulation of ICa by basal PKA activity is facilitated by caveolin-3 in cardiac ventricular myocytes.

    PubMed

    Bryant, Simon; Kimura, Tomomi E; Kong, Cherrie H T; Watson, Judy J; Chase, Anabelle; Suleiman, M Saadeh; James, Andrew F; Orchard, Clive H

    2014-03-01

    L-type Ca channels (LTCC), which play a key role in cardiac excitation-contraction coupling, are located predominantly at the transverse (t-) tubules in ventricular myocytes. Caveolae and the protein caveolin-3 (Cav-3) are also present at the t-tubules and have been implicated in localizing a number of signaling molecules, including protein kinase A (PKA) and β2-adrenoceptors. The present study investigated whether disruption of Cav-3 binding to its endogenous binding partners influenced LTCC activity. Ventricular myocytes were isolated from male Wistar rats and LTCC current (ICa) recorded using the whole-cell patch-clamp technique. Incubation of myocytes with a membrane-permeable peptide representing the scaffolding domain of Cav-3 (C3SD) reduced basal ICa amplitude in intact, but not detubulated, myocytes, and attenuated the stimulatory effects of the β2-adrenergic agonist zinterol on ICa. The PKA inhibitor H-89 also reduced basal ICa; however, the inhibitory effects of C3SD and H-89 on basal ICa amplitude were not summative. Under control conditions, myocytes stained with antibody against phosphorylated LTCC (pLTCC) displayed a striated pattern, presumably reflecting localization at the t-tubules. Both C3SD and H-89 reduced pLTCC staining at the z-lines but did not affect staining of total LTCC or Cav-3. These data are consistent with the idea that the effects of C3SD and H-89 share a common pathway, which involves PKA and is maximally inhibited by H-89, and suggest that Cav-3 plays an important role in mediating stimulation of ICa at the t-tubules via PKA-induced phosphorylation under basal conditions, and in response to β2-adrenoceptor stimulation. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. -Adrenergic receptors on rat ventricular myocytes: characteristics and linkage to cAMP metabolism

    SciTech Connect

    Buxton, I.L.O.; Brunton, L.L.

    1986-08-01

    When incubated with purified cardiomyocytes from adult rat ventricle, the 1-antagonist (TH)prazosin binds to a single class of sites with high affinity. Competition for (TH)prazosin binding by the 2-selective antagonist yohimbine and the nonselective -antagonist phentolamine demonstrates that these receptors are of the 1-subtype. In addition, incubation of myocyte membranes with (TH)yohimbine results in no measurable specific binding. Agonist competition for (TH)prazosin binding to membranes prepared from purified myocytes demonstrates the presence of two components of binding: 28% of 1-receptors interact with norepinephrine with high affinity (K/sub D/ = 36 nM), whereas the majority of receptors (72%) have a low affinity for agonist (K/sub D/ = 2.2 M). After addition of 10 M GTP, norepinephrine competes for (TH)prazosin binding to a single class of sites with lower affinity (K/sub D/ = 2.2 M). Incubation of intact myocytes for 2 min with 1 M norepinephrine leads to significantly less cyclic AMP (cAMP) accumulation than stimulation with either norepinephrine plus prazosin or isoproterenol. Likewise, incubation of intact myocytes with 10 W M norepinephrine leads to significantly less activation of cAMP-dependent protein kinase than when myocytes are stimulated by both norepinephrine and the 1-adrenergic antagonist, prazosin or the US -adrenergic agonist, isoproterenol. They conclude that the cardiomyocyte 1 receptor is coupled to a guanine nucleotide-binding protein, that 1-receptors are functionally linked to decreased intracellular cAMP content, and that this change in cellular cAMP is expressed as described activation of cAMP-dependent protein kinase.

  14. Restoring forces in cardiac myocytes. Insight from relaxations induced by photolysis of caged ATP.

    PubMed Central

    Niggli, E; Lederer, W J

    1991-01-01

    Concentration jumps of intracellular ATP were produced by photolysis of P3-1-(2-nitrophenyl)ethyl (NPE)-caged ATP and were used to investigate the passive relengthening properties in unloaded cardiac myocytes. Patch-clamp pipettes in the whole-cell mode were used to voltage-clamp the myocytes and to load the cells with caged ATP while optical methods were applied to record sarcomere length or cell length simultaneously. Cell length was varied using energy deprivation contractures while intracellular Ca2+ was controlled with EGTA. At sarcomere lengths between 1.8 and 1.4 microns cellular relengthening after photolysis of caged ATP was rapid (t1/2 approximately 100 ms) and could be well described by a simple mechanical model. However, ATP jumps made at sarcomere lengths approximately 1.1 microns led to slow relengthening (t1/2 approximately seconds), comparable to the slow reextensions observed in skinned myocytes after bulk solution changes. We attribute the slow and incomplete relengthening of intact and skinned myocytes after severe rigor shortening to deformation and alteration of structural elements inside the cell. Relengthening from intermediate sarcomere lengths in intact cells is elastic and provides information about the underlying relengthening forces inside the cell. The data do not support the presence of a significant discontinuity in elastic modulus at a sarcomere length of approximately 1.6 microns expected from ultrastructural features of the sarcomeres and from observations in skinned myocytes. Our results suggest that the cell length measurements usually performed in this preparation provide an adequate description of the force produced by the unloaded cell in the steady state. The results also provide a way to estimate the error arising from viscous forces during rapid shortening. PMID:1868157

  15. Protein kinase C-alpha-induced hypertrophy of neonatal rat ventricular myocytes.

    PubMed

    Vijayan, Kalpana; Szotek, Erika L; Martin, Jody L; Samarel, Allen M

    2004-12-01

    Protein kinase C (PKC) isoenzymes play a critical role in cardiomyocyte hypertrophy. At least three different phorbol ester-sensitive PKC isoenzymes are expressed in neonatal rat ventricular myocytes (NRVMs): PKC-alpha, -delta, and -epsilon. Using replication-defective adenoviruses (AdVs) that express wild-type (WT) and dominant-negative (DN) PKC-alpha together with phorbol myristate acetate (PMA), which is a hypertrophic agonist and activator of all three PKC isoenzymes, we studied the role of PKC-alpha in signaling-specific aspects of the hypertrophic phenotype. PMA induced nuclear translocation of endogenous and AdV-WT PKC-alpha in NRVMs. WT PKC-alpha overexpression increased protein synthesis and the protein-to-DNA (P/D) ratio but did not affect cell surface area (CSA) or cell shape compared with uninfected or control AdV beta-galactosidase (AdV betagal)-infected cells. PMA-treated uninfected cells displayed increased protein synthesis, P/D ratio, and CSA and elongated morphology. PMA did not further enhance protein synthesis or P/D ratio in AdV-WT PKC-alpha-infected cells. To assess the requirement of PKC-alpha for these PMA-induced changes, AdV-DN PKC-alpha or AdV betagal-infected NRVMs were stimulated with PMA. Without PMA, AdV-DN PKC-alpha had no effects on protein synthesis, P/D ratio, CSA, or shape vs. AdV betagal-infected NRVMs. PMA increased protein synthesis, P/D ratio, and CSA in AdV betagal-infected cells, but these parameters were significantly reduced in PMA-stimulated AdV-DN PKC-alpha-infected NRVMs. Overexpression of DN PKC-alpha enhanced PMA-induced cell elongation. Neither WT PKC-alpha nor DN PKC-alpha affected atrial natriuretic factor gene expression. Insulin-like growth factor-1 also induced nuclear translocation of endogenous PKC-alpha. PMA but not WT PKC-alpha overexpression induced ERK1/2 activation. However, AdV-DN PKC-alpha partially blocked PMA-induced ERK activation. Thus PKC-alpha is necessary for certain aspects of PMA-induced NRVM

  16. Regulation of Ca2+ and electrical alternans in cardiac myocytes: Role of CaMKII and repolarizing currents

    PubMed Central

    Livshitz, Leonid M.; Rudy, Yoram

    2007-01-01

    Alternans of cardiac repolarization is associated with arrhythmias and sudden death. At the cellular level, alternans involves beat-to-beat oscillation of the action potential (AP) and possibly Ca2+ transient (CaT). Because of experimental difficulty in independently controlling the Ca2+ and electrical subsystems, mathematical modelling provides additional insights into mechanisms and causality. Pacing protocols were conducted in a canine ventricular myocyte model with the following results: 1. (I) CaT alternans results from refractoriness of the SR Ca2+ release system; alternation of the L-type calcium current (ICa(L)) has a negligible effect; (II) CaT-AP coupling during late AP occurs through the sodium-calcium exchanger (INaCa) and underlies APD alternans; (III) Increased Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity extends the range of CaT and APD alternans to slower frequencies and increases alternans magnitude; its decrease suppresses CaT and APD alternans, exerting an antiarrhythmic effect; (IV). Increase of the rapid delayed rectifier current (IKr) also suppresses APD alternans, but without suppressing CaT alternans. Thus, CaMKII inhibition eliminates APD alternans by eliminating its cause (CaT alternans), while IKr enhancement does so by weakening CaT-APD coupling. The simulations identify combined CaMKII inhibition and IKr enhancement as a possible antiar-rhythmic intervention. PMID:17277017

  17. Ca2+ influx-induced sarcoplasmic reticulum Ca2+ overload causes mitochondrial-dependent apoptosis in ventricular myocytes.

    PubMed

    Chen, Xiongwen; Zhang, Xiaoying; Kubo, Hajime; Harris, David M; Mills, Geoffrey D; Moyer, Jed; Berretta, Remus; Potts, Sabine Telemaque; Marsh, James D; Houser, Steven R

    2005-11-11

    Increases in Ca2+ influx through the L-type Ca2+ channel (LTCC, Cav1.2) augment sarcoplasmic reticulum (SR) Ca2+ loading and the amplitude of the cytosolic Ca2+ transient to enhance cardiac myocyte contractility. Our hypothesis is that persistent increases in Ca2+ influx through the LTCC cause apoptosis if the excessive influx results in SR Ca2+ overload. Feline ventricular myocytes (VMs) in primary culture were infected with either an adenovirus (Ad) containing a rat Cav1.2 beta2a subunit-green fluorescent protein (GFP) fusion gene (Adbeta2a) to increase Ca2+ influx or with AdGFP as a control. Significantly fewer beta2a-VMs (21.4+/-5.6%) than GFP-VMs (99.6+/-1.7%) were viable at 96 hours. A fraction of beta2a-VMs (20.8+/-1.8%) contracted spontaneously (SC-beta2a-VMs), and viability was significantly correlated with the percentage of SC-beta2a-VMs. Higher percentages of apoptotic nuclei, DNA laddering, and cytochrome C release were detected in beta2a-VMs. This apoptosis was prevented with pancaspase or caspase-3 or caspase-9 inhibitors. L-type calcium current (I(Ca-L)) density was greater in beta2a-VMs (23.4+/-2.8 pA/pF) than in GFP-VMs (7.6+/-1.6 pA/pF). SC-beta2a-VMs had higher diastolic intracellular Ca2+ (Indo-1 ratio: 1.1+/-0.1 versus 0.7+/-0.03, P<0.05) and systolic Ca2+ transients (1.89+/-0.27 versus 0.80+/-0.08) than GFP-VMs. Inhibitors of Ca2+ influx, SR Ca2+ uptake and release, mitochondrial Ca2+ uptake, mitochondrial permeation transition pore, calpain, and Bcl-2-associated X protein protected beta2a-VMs from apoptosis. These results show that persistent increases in Ca2+ influx through the I(Ca-L) enhance contractility but lead to apoptosis through a mitochondrial death pathway if SR Ca2+ overload is induced.

  18. Study of proliferative processes and nuclear estradiol and progesterone receptors in myocytes in pregnant and postpartum mouse uterus.

    PubMed

    Skurupiy, V A; Obedinskaya, K S

    2012-08-01

    Numerical densities of the nuclei were morhometrically evaluated in all myocytes and myocytes expressing nuclear estrogen- and progesterone-receptor complexes, which were revealed immunohistochemically with monoclonal antibodies in C57Bl/6 mice. It was shown that the above quantitative parameters of myometrial cells after the first pregnancy were similar to those in nonpregnant mice by day 10 after delivery. In the third pregnancy, especially developed after the second interrupted pregnancy, proliferation processes in the myometrium were not completed by postpartum day 10, but dramatically progressed. It was associated with a significant decrease in the fraction of myocytes carrying nuclear hormone-receptor complexes with estradiol and progesterone and their disturbed physiological relations in the myometrium during and after pregnancy probably due to dedifferentiation of a considerable part of myocytes.

  19. Influence of semicrystalline order on the second-harmonic generation efficiency in the anisotropic bands of myocytes

    NASA Astrophysics Data System (ADS)

    Greenhalgh, Catherine; Prent, Nicole; Green, Chantal; Cisek, Richard; Major, Arkady; Stewart, Bryan; Barzda, Virginijus

    2007-04-01

    The influence of semicrystalline order on the second-harmonic generation (SHG) efficiency in the anisotropic bands of Drosophila melanogaster sarcomeres from larval and adult muscle has been investigated. Differences in the semicrystalline order were obtained by using wild-type and mutant strains containing different amounts of headless myosin. The reduction in semicrystalline order without altering the chemical composition of myofibrils was achieved by observing highly stretched sarcomeres and by inducing a loss of viability in myocytes. In all cases the reduction of semicrystalline order in anisotropic bands of myocytes resulted in a substantial decrease in SHG. Second-harmonic imaging during periodic contractions of myocytes revealed higher intensities when sarcomeres were in the relaxed state compared with the contracted state. This study demonstrates that an ordered semicrystalline arrangement of anisotropic bands plays a determining role in the efficiency of SHG in myocytes.

  20. The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity

    SciTech Connect

    Hasinoff, Brian B.

    2010-04-15

    The use of the new anticancer tyrosine kinase inhibitors (TKI) has revolutionized the treatment of certain cancers. However, the use of some of these results in cardiotoxicity. Large-scale profiling data recently made available for the binding of 7 of the 9 FDA-approved tyrosine kinase inhibitors to a panel of 317 kinases has allowed us to correlate kinase inhibitor binding selectivity scores with TKI-induced damage to neonatal rat cardiac myocytes. The tyrosine kinase selectivity scores, but not the serine-threonine kinase scores, were highly correlated with the myocyte damaging effects of the TKIs. Additionally, we showed that damage to myocytes gave a good rank order correlation with clinical cardiotoxicity. Finally, strength of TKI binding to colony-stimulating factor 1 receptor (CSF1R) was highly correlated with myocyte damage, thus possibly implicating this kinase in contributing to TKI-induced cardiotoxicity.

  1. Intracellular sodium affects ouabain interaction with the Na/K pump in cultured chick cardiac myocytes

    PubMed Central

    1990-01-01

    Whether a given dose of ouabain will produce inotropic or toxic effects depends on factors that affect the apparent affinity (K0.5) of the Na/K pump for ouabain. To accurately resolve these factors, especially the effect of intracellular Na concentration (Nai), we have applied three complementary techniques for measuring the K0.5 for ouabain in cultured embryonic chick cardiac myocytes. Under control conditions with 5.4 mM Ko, the value of the K0.5 for ouabain was 20.6 +/- 1.2, 12.3 +/- 1.7, and 6.6 +/- 0.4 microM, measured by voltage-clamp, Na-selective microelectrode, and equilibrium [3H]ouabain-binding techniques, respectively. A significant difference in the three techniques was the time of exposure to ouabain (30 s-30 min). Since increased duration of exposure to ouabain would increase Nai, monensin was used to raise Nai to investigate what effect Nai might have on the apparent affinity of block by ouabain. Monensin enhanced the rise in Na content induced by 1 microM ouabain. In the presence of 1 microM [3H]ouabain, total binding was found to be a saturating function of Na content. Using the voltage- clamp method, we found that the value of the K0.5 for ouabain was lowered by nearly an order of magnitude in the presence of 3 microM monensin to 2.4 +/- 0.2 microM and the magnitude of the Na/K pump current was increased about threefold. Modeling the Na/K pump as a cyclic sequence of states with a single state having high affinity for ouabain shows that changes in Nai alone are sufficient to cause a 10- fold change in K0.5. These results suggest that Nai reduces the value of the apparent affinity of the Na/K pump for ouabain in 5.4 mM Ko by increasing its turnover rate, thus increasing the availability of the conformation of the Na/K pump that binds ouabain with high affinity. PMID:2299333

  2. Altered distribution of ICa impairs Ca release at the t-tubules of ventricular myocytes from failing hearts.

    PubMed

    Bryant, Simon M; Kong, Cherrie H T; Watson, Judy; Cannell, Mark B; James, Andrew F; Orchard, Clive H

    2015-09-01

    In mammalian cardiac ventricular myocytes, Ca influx and release occur predominantly at t-tubules, ensuring synchronous Ca release throughout the cell. Heart failure is associated with disrupted t-tubule structure, but its effect on t-tubule function is less clear. We therefore investigated Ca influx and release at the t-tubules of ventricular myocytes isolated from rat hearts ~18weeks after coronary artery ligation (CAL) or corresponding Sham operation. L-type Ca current (ICa) was recorded using the whole-cell voltage-clamp technique in intact and detubulated myocytes; Ca release at t-tubules was monitored using confocal microscopy with voltage- and Ca-sensitive fluorophores. CAL was associated with cardiac and cellular hypertrophy, decreased ejection fraction, disruption of t-tubule structure and a smaller, slower Ca transient, but no change in ryanodine receptor distribution, L-type Ca channel expression, or ICa density. In Sham myocytes, ICa was located predominantly at the t-tubules, while in CAL myocytes, it was uniformly distributed between the t-tubule and surface membranes. Inhibition of protein kinase A with H-89 caused a greater decrease of t-tubular ICa in CAL than in Sham myocytes; in the presence of H-89, t-tubular ICa density was smaller in CAL than in Sham myocytes. The smaller t-tubular ICa in CAL myocytes was accompanied by increased latency and heterogeneity of SR Ca release at t-tubules, which could be mimicked by decreasing ICa using nifedipine. These data show that CAL decreases t-tubular ICa via a PKA-independent mechanism, thereby impairing Ca release at t-tubules and contributing to the altered excitation-contraction coupling observed in heart failure. Copyright © 2015. Published by Elsevier Ltd.

  3. Altered distribution of ICa impairs Ca release at the t-tubules of ventricular myocytes from failing hearts

    PubMed Central

    Bryant, Simon M.; Kong, Cherrie H.T.; Watson, Judy; Cannell, Mark B.; James, Andrew F.; Orchard, Clive H.

    2015-01-01

    In mammalian cardiac ventricular myocytes, Ca influx and release occur predominantly at t-tubules, ensuring synchronous Ca release throughout the cell. Heart failure is associated with disrupted t-tubule structure, but its effect on t-tubule function is less clear. We therefore investigated Ca influx and release at the t-tubules of ventricular myocytes isolated from rat hearts ~ 18 weeks after coronary artery ligation (CAL) or corresponding Sham operation. L-type Ca current (ICa) was recorded using the whole-cell voltage-clamp technique in intact and detubulated myocytes; Ca release at t-tubules was monitored using confocal microscopy with voltage- and Ca-sensitive fluorophores. CAL was associated with cardiac and cellular hypertrophy, decreased ejection fraction, disruption of t-tubule structure and a smaller, slower Ca transient, but no change in ryanodine receptor distribution, L-type Ca channel expression, or ICa density. In Sham myocytes, ICa was located predominantly at the t-tubules, while in CAL myocytes, it was uniformly distributed between the t-tubule and surface membranes. Inhibition of protein kinase A with H-89 caused a greater decrease of t-tubular ICa in CAL than in Sham myocytes; in the presence of H-89, t-tubular ICa density was smaller in CAL than in Sham myocytes. The smaller t-tubular ICa in CAL myocytes was accompanied by increased latency and heterogeneity of SR Ca release at t-tubules, which could be mimicked by decreasing ICa using nifedipine. These data show that CAL decreases t-tubular ICa via a PKA-independent mechanism, thereby impairing Ca release at t-tubules and contributing to the altered excitation–contraction coupling observed in heart failure. PMID:26103619

  4. Identification of a contractile deficit in adult cardiac myocytes expressing hypertrophic cardiomyopathy–associated mutant troponin T proteins

    PubMed Central

    Rust, Elizabeth M.; Albayya, Faris P.; Metzger, Joseph M.

    1999-01-01

    The direct effects of expressing hypertrophic cardiomyopathy–associated (HCM-associated) mutant troponin T (TnT) proteins on the force generation of single adult cardiac myocytes have not been established. Replication-defective recombinant adenovirus vectors were generated for gene transfer of HCM-associated I79N and R92Q mutant cardiac TnT cDNAs into fully differentiated adult cardiac myocytes in primary culture. We tested the hypothesis that the mutant TnT proteins would be expressed and incorporated into the cardiac sarcomere and would behave as dominant-negative proteins to directly alter calcium-activated force generation at the level of the single cardiac myocyte. Interestingly, under identical experimental conditions, the ectopic expression of the mutant TnTs was significantly less (∼8% of total) than that obtained with expression of wild-type TnT (∼35%) in the myocytes. Confocal imaging of immunolabeled TnT showed a regular periodic pattern of localization of ectopic mutant TnT that was not different than that in normal controls, suggesting that mutant TnT incorporation had no deleterious effects on sarcomeric architecture. Direct measurements of isometric force production in single cardiac myocytes demonstrated marked desensitization of submaximal calcium-activated tension, with unchanged maximum tension generation in mutant TnT–expressing myocytes compared with control myocytes. Collectively, these results demonstrate an impaired expression of the mutant protein and a disabling of cardiac contraction in the submaximal range of myoplasmic calcium concentrations. Our functional results suggest that development of new pharmacological, chemical, or genetic approaches to sensitize the thin-filament regulatory protein system could ameliorate force deficits associated with expression of I79N and R92Q in adult cardiac myocytes. PMID:10330428

  5. Contrasting effects of hypoxia on cytosolic Ca2+ spikes in conduit and resistance myocytes of the rabbit pulmonary artery.

    PubMed Central

    Ureña, J; Franco-Obregón, A; López-Barneo, J

    1996-01-01

    1. The effects of hypoxia on cytosolic Ca2+ ¿[Ca2+]i) and spontaneous cytosolic Ca2+ spikes were examined in fura 2-loaded myocytes isolated from conduit and resistance branches of the rabbit pulmonary artery. In all myocyte classes, generation of the Ca2+ spikes was modulated by basal [Ca2+]i which, in turn, was influenced by the influx of Ca2+ through L-type Ca2+ channels of the plasmalemma. 2. Conduit and resistance myocytes responded distinctly to hypoxia. In most conduit myocytes (approximately 82% of total; n = 23) exposure to hypoxia reduced basal [Ca2+]i. This effect was often associated with the abolition of the Ca2+ spikes. Hypoxia gave rise to two main responses in resistance myocytes. In a subset of resistance myocytes (41 % of total; n = 34) hypoxia incremented basal [Ca2+]i but reduced Ca2+ spike amplitude. This response mimicked the effect of membrane depolarization with K+ and was reverted by nifedipine or the removal of extracellular Ca2+. In a second subset of resistance myocytes (59% of total; n = 34) hypoxia decreased basal [Ca2+]i and, in most cases, increased spike amplitude; a response counteracted by depolarization with K+. 3. These results indicate that hypoxia can differentially modulate [Ca2+]i in smooth muscle cells from large and small diameter pulmonary vessels through a dual effect on transmembrane Ca2+ influx. Our observations further demonstrate the longitudinal heterogeneity of myocytes along the pulmonary arterial tree and help to explain the hypoxic vasomotor responses in the pulmonary circulation. Images Figure 1 Figure 2 PMID:8910199

  6. Injectable fibroblast growth factor-2 coacervate for persistent angiogenesis

    PubMed Central

    Chu, Hunghao; Gao, Jin; Chen, Chien-Wen; Huard, Johnny; Wang, Yadong

    2011-01-01

    Enhancing the maturity of the newly formed blood vessels is critical for the success of therapeutic angiogenesis. The maturation of vasculature relies on active participation of mural cells to stabilize endothelium and a basal level of relevant growth factors. We set out to design and successfully achieved robust angiogenesis using an injectable polyvalent coacervate of a polycation, heparin, and fibroblast growth factor-2 (FGF2). FGF2 was loaded into the coacervate at nearly 100% efficiency. In vitro assays demonstrated that the matrix protected FGF2 from proteolytic degradations. FGF2 released from the coacervate was more effective in the differentiation of endothelial cells and chemotaxis of pericytes than free FGF2. One injection of 500 ng of FGF2 in the coacervate elicited comprehensive angiogenesis in vivo. The number of endothelial and mural cells increased significantly, and the local tissue contained more and larger blood vessels with increased circulation. Mural cells actively participated during the whole angiogenic process: Within 7 d of the injection, pericytes were recruited to close proximity of the endothelial cells. Mature vasculature stabilized by vascular smooth muscle cells persisted till at least 4 wk. On the other hand, bolus injection of an identical amount of free FGF2 induced weak angiogenic responses. These results demonstrate the potential of polyvalent coacervate as a new controlled delivery platform. PMID:21808045

  7. Speckle based configuration for simultaneous in vitro inspection of mechanical contractions of cardiac myocyte cells

    NASA Astrophysics Data System (ADS)

    Golberg, Mark; Fixler, Dror; Shainberg, Asher; Zlochiver, Sharon; Micó, Vicente; Garcia, Javier; Beiderman, Yevgeny; Zalevsky, Zeev

    2013-04-01

    In this manuscript we propose optical lensless configuration for a remote non-contact measuring of mechanical contractions of vast number of cardiac myocytes. All the myocytes were taken from rats, and the measurements were done in an in vitro mode. The optical method is based on temporal analysis of secondary reflected speckle patterns generated in lensless microscope configuration. The processing involves analyzing the movement and the change in the statistics of the generated secondary speckle patterns that are created on top of the cell culture when it is illuminated by a spot of laser beam. The main advantage of the proposed system is the ability to measure many cells simultaneously (approximately one thousand cells) and to extract the statistical data of their movement at once. The presented experimental results also include investigation the effect of isoproteranol on cells contraction process.

  8. Gaining myocytes or losing fibroblasts: Challenges in cardiac fibroblast reprogramming for infarct repair.

    PubMed

    Nagalingam, Raghu S; Safi, Hamza A; Czubryt, Michael P

    2016-04-01

    Unlike most somatic tissues, the heart possesses a very limited inherent ability to repair itself following damage. Attempts to therapeutically salvage the myocardium after infarction, either by sparing surviving myocytes or by injection of exogenous cells of varied provenance, have met with limited success. Cardiac fibroblasts are numerous, resistant to hypoxia, and amenable to phenotype reprogramming to cardiomyocytes - a potential panacea to an intractable problem. However, the long-term effects of mass conversion of fibroblasts are as-yet unknown. Since fibroblasts play key roles in normal cardiac function, treating these cells as a ready source of replacements for myocytes may have the effect of swapping one problem for another. This review briefly examines the roles of cardiac fibroblasts, recaps the strides made so far in their reprogramming to cardiomyocytes both in vitro and in vivo, and discusses the potential ramifications of large-scale cellular identity swapping. While such therapy offers great promise, the potential repercussions require consideration and careful study.

  9. Computational Approach to Measuring Myocyte Disarray in Animal Models of Heart Disease.

    PubMed

    Wan, William; Leinwand, Leslie

    2017-04-06

    In cardiovascular disease research, studies often include measuring cardiac function and performing histological examination of heart tissue. After measuring contractility, hearts from animals such as mice and rats are often frozen or fixed, sliced, and stained to quantify the morphology of various structures such as extracellular matrix proteins, cell nuclei, and F-actin. Traditional scoring methods have largely consisted of assessing sections of images for the presence or absence of myocyte disarray. These approaches require unbiased manual assessment, which can require extra personnel, and are not scalable to the quantity of data that can be generated by modern automated experimental techniques. Here, we describe an automated image analysis approach for unbiased numerical measurement of myocyte disarray. We provide step-by-step instructions for image preparation as well as a basic Matlab script for measurements. © 2017 by John Wiley & Sons, Inc.

  10. Maturation status of sarcomere structure and function in human iPSC-derived cardiac myocytes.

    PubMed

    Bedada, Fikru B; Wheelwright, Matthew; Metzger, Joseph M

    2016-07-01

    Human heart failure due to myocardial infarction is a major health concern. The paucity of organs for transplantation limits curative approaches for the diseased and failing adult heart. Human induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) have the potential to provide a long-term, viable, regenerative-medicine alternative. Significant progress has been made with regard to efficient cardiac myocyte generation from hiPSCs. However, directing hiPSC-CMs to acquire the physiological structure, gene expression profile and function akin to mature cardiac tissue remains a major obstacle. Thus, hiPSC-CMs have several hurdles to overcome before they find their way into translational medicine. In this review, we address the progress that has been made, the void in knowledge and the challenges that remain. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  11. Speckle-based configuration for simultaneous in vitro inspection of mechanical contractions of cardiac myocyte cells.

    PubMed

    Golberg, Mark; Fixler, Dror; Shainberg, Asher; Zlochiver, Sharon; Micó, Vicente; Garcia, Javier; Beiderman, Yevgeny; Zalevsky, Zeev

    2013-10-01

    An optical lensless configuration for a remote noncontact measuring of mechanical contractions of a vast number of cardiac myocytes is proposed. All the myocytes were taken from rats, and the measurements were done in an in vitro mode. The optical method is based on temporal analysis of secondary reflected speckle patterns generated in lensless microscope configuration. The processing involves analyzing the movement and the change in the statistics of the secondary speckle patterns that are created on top of the cell culture when it is illuminated by a spot of laser beam. The main advantage of the proposed system is the ability to measure many cells simultaneously (∼1000 cells) and to extract the statistical data of their movement at once. The presented experimental results also include investigation of the effect of isoproteranol on cell contraction process.

  12. Can triggered arrhythmias arise from propagation of calcium waves between cardiac myocytes?

    PubMed

    Nahhas, Amanda F; Kumar, Manvinder S; O'Toole, Matthew J; Aistrup, Gary L; Wasserstrom, J Andrew

    2013-06-01

    Intracellular Ca2+ overload can induce regenerative Ca2+ waves that activate inward current in cardiac myocytes, allowing the cell membrane to achieve threshold. The result is a triggered extrasystole that can, under the right conditions, lead to sustained triggered arrhythmias. In this review, we consider the issue of whether or not Ca2+ waves can travel between neighboring myocytes and if this intercellular Ca2+ diffusion can involve enough cells over a short enough period of time to actually induce triggered activity in the heart. This review is not intended to serve as an exhaustive review of the literature summarizing Ca2+ flux through cardiac gap junctions or of how Ca2+ waves move from cell to cell. Rather, it summarizes many of the pertinent experimental studies and considers their results in the theoretical context of whether or not the intercellular propagation of Ca2+ overload can contribute to triggered beats and arrhythmias in the intact heart.

  13. Calcium-sensing receptor activation contributed to apoptosis stimulates TRPC6 channel in rat neonatal ventricular myocytes

    SciTech Connect

    Sun, Yi-hua; Li, Yong-quan; Feng, Shan-li; Li, Bao-xin; Pan, Zhen-wei; Xu, Chang-qing; Li, Ting-ting; Yang, Bao-feng

    2010-04-16

    Capacitative calcium entry (CCE) refers to the influx of calcium through plasma membrane channels activated on depletion of endoplasmic sarcoplasmic/reticulum (ER/SR) Ca{sup 2+} stores, which is performed mainly by the transient receptor potential (TRP) channels. TRP channels are expressed in cardiomyocytes. Calcium-sensing receptor (CaR) is also expressed in rat cardiac tissue and plays an important role in mediating cardiomyocyte apoptosis. However, there are no data regarding the link between CaR and TRP channels in rat heart. In this study, in rat neonatal myocytes, by Ca{sup 2+} imaging, we found that the depletion of ER/SR Ca{sup 2+} stores by thapsigargin (TG) elicited a transient rise in cytoplasmic Ca{sup 2+} ([Ca{sup 2+}]{sub i}), followed by sustained increase depending on extracellular Ca{sup 2+}. But, TRP channels inhibitor (SKF96365), not L-type channels or the Na{sup +}/Ca{sup 2+} exchanger inhibitors, inhibited [Ca{sup 2+}]{sub i} relatively high. Then, we found that the stimulation of CaR with its activator gadolinium chloride (GdCl{sub 3}) or by an increased extracellular Ca{sup 2+}([Ca{sup 2+}]{sub o}) increased the concentration of intracelluar Ca{sup 2+}, whereas, the sustained elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of SKF96365. Similarly, the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of extracellular Ca{sup 2+}. Western blot analysis showed that GdCl{sub 3} increased the expression of TRPC6, which was reversed by SKF96365. Additionally, SKF96365 reduced cardiomyocyte apoptosis induced by GdCl{sub 3}. Our results suggested that CCE exhibited in rat neonatal myocytes and CaR activation induced Ca{sup 2+}-permeable cationic channels TRPCs to gate the CCE, for which TRPC6 was one of the most likely candidates. TRPC6 channel was functionally coupled with CaR to enhance the cardiomyocyte apoptosis.

  14. Total internal reflectance fluorescence imaging of genetically engineered ryanodine receptor-targeted Ca(2+) probes in rat ventricular myocytes.

    PubMed

    Pahlavan, Sara; Morad, Marin

    2017-09-01

    The details of cardiac Ca(2+) signaling within the dyadic junction remain unclear because of limitations in rapid spatial imaging techniques, and availability of Ca(2+) probes localized to dyadic junctions. To critically monitor ryanodine receptors' (RyR2) Ca(2+) nano-domains, we combined the use of genetically engineered RyR2-targeted pericam probes, (FKBP-YCaMP, Kd=150nM, or FKBP-GCaMP6, Kd=240nM) with rapid total internal reflectance fluorescence (TIRF) microscopy (resolution, ∼80nm). The punctate z-line patterns of FKBP,(2)-targeted probes overlapped those of RyR2 antibodies and sharply contrasted to the images of probes targeted to sarcoplasmic reticulum (SERCA2a/PLB), or cytosolic Fluo-4 images. FKBP-YCaMP signals were too small (∼20%) and too slow (2-3s) to detect Ca(2+) sparks, but the probe was effective in marking where Fluo-4 Ca(2+) sparks developed. FKBP-GCaMP6, on the other hand, produced rapidly decaying Ca(2+) signals that: a) had faster kinetics and activated synchronous with ICa(3) but were of variable size at different z-lines and b) were accompanied by spatially confined spontaneous Ca(2+) sparks, originating from a subset of eager sites. The frequency of spontaneously occurring sparks was lower in FKBP-GCaMP6 infected myocytes as compared to Fluo-4 dialyzed myocytes, but isoproterenol enhanced their frequency more effectively than in Fluo-4 dialyzed cells. Nevertheless, isoproterenol failed to dissociate FKBP-GCaMP6 from the z-lines. The data suggests that FKBP-GCaMP6 binds predominantly to junctional RyR2s and has sufficient on-rate efficiency as to monitor the released Ca(2+) in individual dyadic clefts, and supports the idea that β-adrenergic agonists may modulate the stabilizing effects of native FKBP on RyR2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Optimal range for parvalbumin as relaxing agent in adult cardiac myocytes: gene transfer and mathematical modeling.

    PubMed Central

    Coutu, Pierre; Metzger, Joseph M

    2002-01-01

    Parvalbumin (PV) has recently been shown to increase the relaxation rate when expressed in intact isolated cardiac myocytes via adenovirus gene transfer. We report here a combined experimental and mathematical modeling approach to determine the dose-response and the sarcomere length (SL) shortening-frequency relationship of PV in adult rat cardiac myocytes in primary culture. The dose-response was obtained experimentally by observing the PV-transduced myocytes at different time points after gene transfer. Calcium transients and unloaded mechanical contractions were measured. The results were as follows. At low estimated [PV] (approximately 0.01 mM), contractile parameters were unchanged; at intermediate [PV], relaxation rate of the mechanical contraction and the decay rate of the calcium transient increased with little effects on amplitude; and at high [PV] (approximately 0.1 mM), relaxation rate was further increased, but the amplitudes of the mechanical contraction and the calcium transient were diminished when compared with control myocytes. The SL shortening-frequency relationship exhibited a biphasic response to increasing stimulus frequency in controls (decrease in amplitude and re-lengthening time from 0.2 to 1.0 Hz followed by an increase in these parameters from 2.0 to 4.0 Hz). The effect of PV was to flatten this frequency response. This flattening effect was partly explained by a reduction in the variation in fractional binding of PV to calcium during beats at high frequency. In conclusion, experimental results and mathematical modeling indicate that there is an optimal PV range for which relaxation rate is increased with little effect on contractile amplitude and that PV effectiveness decreases as the stimulus frequency increases. PMID:11964244

  16. Type 2 diabetes and obesity induce similar transcriptional reprogramming in human myocytes.

    PubMed

    Väremo, Leif; Henriksen, Tora Ida; Scheele, Camilla; Broholm, Christa; Pedersen, Maria; Uhlén, Mathias; Pedersen, Bente Klarlund; Nielsen, Jens

    2017-05-25

    Skeletal muscle is one of the primary tissues involved in the development of type 2 diabetes (T2D). The close association between obesity and T2D makes it difficult to isolate specific effects attributed to the disease alone. Therefore, here we set out to identify and characterize intrinsic properties of myocytes, associated independently with T2D or obesity. We generated and analyzed RNA-seq data from primary differentiated myotubes from 24 human subjects, using a factorial design (healthy/T2D and non-obese/obese), to determine the influence of each specific factor on genome-wide transcription. This setup enabled us to identify intrinsic properties, originating from muscle precursor cells and retained in the corresponding myocytes. Bioinformatic and statistical methods, including differential expression analysis, gene-set analysis, and metabolic network analysis, were used to characterize the different myocytes. We found that the transcriptional program associated with obesity alone was strikingly similar to that induced specifically by T2D. We identified a candidate epigenetic mechanism, H3K27me3 histone methylation, mediating these transcriptional signatures. T2D and obesity were independently associated with dysregulated myogenesis, down-regulated muscle function, and up-regulation of inflammation and extracellular matrix components. Metabolic network analysis identified that in T2D but not obesity a specific metabolite subnetwork involved in sphingolipid metabolism was transcriptionally regulated. Our findings identify inherent characteristics in myocytes, as a memory of the in vivo phenotype, without the influence from a diabetic or obese extracellular environment, highlighting their importance in the development of T2D.

  17. Effects of Acetylcholine and Noradrenalin on Action Potentials of Isolated Rabbit Sinoatrial and Atrial Myocytes

    PubMed Central

    Verkerk, Arie O.; Geuzebroek, Guillaume S. C.; Veldkamp, Marieke W.; Wilders, Ronald

    2012-01-01

    The autonomic nervous system controls heart rate and contractility through sympathetic and parasympathetic inputs to the cardiac tissue, with acetylcholine (ACh) and noradrenalin (NA) as the chemical transmitters. In recent years, it has become clear that specific Regulators of G protein Signaling proteins (RGS proteins) suppress muscarinic sensitivity and parasympathetic tone, identifying RGS proteins as intriguing potential therapeutic targets. In the present study, we have identified the effects of 1 μM ACh and 1 μM NA on the intrinsic action potentials of sinoatrial (SA) nodal and atrial myocytes. Single cells were enzymatically isolated from the SA node or from the left atrium of rabbit hearts. Action potentials were recorded using the amphotericin-perforated patch-clamp technique in the absence and presence of ACh, NA, or a combination of both. In SA nodal myocytes, ACh increased cycle length and decreased diastolic depolarization rate, whereas NA decreased cycle length and increased diastolic depolarization rate. Both ACh and NA increased maximum upstroke velocity. Furthermore, ACh hyperpolarized the maximum diastolic potential. In atrial myocytes stimulated at 2 Hz, both ACh and NA hyperpolarized the maximum diastolic potential, increased the action potential amplitude, and increased the maximum upstroke velocity. Action potential duration at 50 and 90% repolarization was decreased by ACh, but increased by NA. The effects of both ACh and NA on action potential duration showed a dose dependence in the range of 1–1000 nM, while a clear-cut frequency dependence in the range of 1–4 Hz was absent. Intermediate results were obtained in the combined presence of ACh and NA in both SA nodal and atrial myocytes. Our data uncover the extent to which SA nodal and atrial action potentials are intrinsically dependent on ACh, NA, or a combination of both and may thus guide further experiments with RGS proteins. PMID:22754533

  18. Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes

    PubMed Central

    Richards, Mark; Lomas, Oliver; Jalink, Kees; Ford, Kerrie L.; Vaughan-Jones, Richard D.; Lefkimmiatis, Konstantinos; Swietach, Pawel

    2016-01-01

    Aims 3′,5′-Cyclic adenosine monophosphate (cAMP) signals in the heart are often confined to concentration microdomains shaped by cAMP diffusion and enzymatic degradation. While the importance of phosphodiesterases (degradative enzymes) in sculpting cAMP microdomains is well established in cardiomyocytes, less is known about cAMP diffusivity (DcAMP) and factors affecting it. Many earlier studies have reported fast diffusivity, which argues against sharply defined microdomains. Methods and results [cAMP] dynamics in the cytoplasm of adult rat ventricular myocytes were imaged using a fourth generation genetically encoded FRET-based sensor. The [cAMP]-response to the addition and removal of isoproterenol (β-adrenoceptor agonist) quantified the rates of cAMP synthesis and degradation. To obtain a read out of DcAMP, a stable [cAMP] gradient was generated using a microfluidic device which delivered agonist to one half of the myocyte only. After accounting for phosphodiesterase activity, DcAMP was calculated to be 32 µm2/s; an order of magnitude lower than in water. Diffusivity was independent of the amount of cAMP produced. Saturating cAMP-binding sites with the analogue 6-Bnz-cAMP did not accelerate DcAMP, arguing against a role of buffering in restricting cAMP mobility. cAMP diffused at a comparable rate to chemically unrelated but similar sized molecules, arguing for a common physical cause of restricted diffusivity. Lower mitochondrial density and order in neonatal cardiac myocytes allowed for faster diffusion, demonstrating the importance of mitochondria as physical barriers to cAMP mobility. Conclusion In adult cardiac myocytes, tortuosity due to physical barriers, notably mitochondria, restricts cAMP diffusion to levels that are more compatible with microdomain signalling. PMID:27089919

  19. In vitro characterization of HCN channel kinetics and frequency dependence in myocytes predicts biological pacemaker functionality

    PubMed Central

    Zhao, Xin; Bucchi, Annalisa; Oren, Ronit V; Kryukova, Yelena; Dun, Wen; Clancy, Colleen E; Robinson, Richard B

    2009-01-01

    The pacemaker current, mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, contributes to the initiation and regulation of cardiac rhythm. Previous experiments creating HCN-based biological pacemakers in vivo found that an engineered HCN2/HCN1 chimeric channel (HCN212) resulted in significantly faster rates than HCN2, interrupted by 1–5 s pauses. To elucidate the mechanisms underlying the differences in HCN212 and HCN2 in vivo functionality as biological pacemakers, we studied newborn rat ventricular myocytes over-expressing either HCN2 or HCN212 channels. The HCN2- and HCN212-over-expressing myocytes manifest similar voltage dependence, current density and sensitivity to saturating cAMP concentrations, but HCN212 has faster activation/deactivation kinetics. Compared with HCN2, myocytes expressing HCN212 exhibit a faster spontaneous rate and greater incidence of irregular rhythms (i.e. periods of rapid spontaneous rate followed by pauses). To explore these rhythm differences further, we imposed consecutive pacing and found that activation kinetics of the two channels are slower at faster pacing frequencies. As a result, time-dependent HCN current flowing during diastole decreases for both constructs during a train of stimuli at a rapid frequency, with the effect more pronounced for HCN2. In addition, the slower deactivation kinetics of HCN2 contributes to more pronounced instantaneous current at a slower frequency. As a result of the frequency dependence of both instantaneous and time-dependent current, HCN2 exhibits more robust negative feedback than HCN212, contributing to the maintenance of a stable pacing rhythm. These results illustrate the benefit of screening HCN constructs in spontaneously active myocyte cultures and may provide the basis for future optimization of HCN-based biological pacemakers. PMID:19171659

  20. Progesterone Protects Against BPA-induced Arrhythmias in Female Rat Cardiac Myocytes via Rapid Signaling.

    PubMed

    Ma, Jianyong; Hong, Kui; Wang, Hong-Sheng

    2017-01-25

    Bisphenol A (BPA) is an estrogenic endocrine disrupting chemical (EDC) that has a range of potential adverse health effects. Previously we showed that acute exposure to BPA promoted arrhythmias in female rat hearts through estrogen receptor rapid signaling. Progesterone (P4) and estrogen have antagonistic or complementary actions in a number of tissues and systems. In the current study, we examined the influence, and possible protective effect, of P4 on the rapid cardiac actions of BPA in female rat cardiac myocytes. Preincubation with physiological concentration (1 nM) of P4 abolished BPA-induced triggered activities in female cardiac myocytes. Further, P4 abrogated BPA-induced alterations in Ca2+ handling including elevated sarcoplasmic reticulum Ca2+ leak and Ca2+ load. Key to the inhibitory effect of P4 is its blockade of BPA-induced increase in the phosphorylation of phospholamban. At myocyte and protein levels, these inhibitory actions of P4 were blocked by pretreatment with the nuclear P4 receptor (nPR) antagonist RU486. Analysis using membrane impermeable BSA-conjugated P4 suggested that the actions of P4 were mediated by membrane-initiated signaling. The inhibitory G (Gi) protein and phophoinositide-3 kinase (PI3K), but not tyrosine protein kinase activation, were involved in the observed effects of P4. In conclusion, P4 exerts an acute protective effect against BPA-induced arrhythmogenesis in female cardiac myocytes, through nPR and the Gi/PI3K signaling pathway. Our findings highlight the importance of considering the impact of EDCs in the context of native hormonals, and may provide potential therapeutic strategies for the protection against the cardiac toxicities associated with BPA exposure.

  1. Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes.

    PubMed

    Richards, Mark; Lomas, Oliver; Jalink, Kees; Ford, Kerrie L; Vaughan-Jones, Richard D; Lefkimmiatis, Konstantinos; Swietach, Pawel

    2016-06-01

    3',5'-Cyclic adenosine monophosphate (cAMP) signals in the heart are often confined to concentration microdomains shaped by cAMP diffusion and enzymatic degradation. While the importance of phosphodiesterases (degradative enzymes) in sculpting cAMP microdomains is well established in cardiomyocytes, less is known about cAMP diffusivity (DcAMP) and factors affecting it. Many earlier studies have reported fast diffusivity, which argues against sharply defined microdomains. [cAMP] dynamics in the cytoplasm of adult rat ventricular myocytes were imaged using a fourth generation genetically encoded FRET-based sensor. The [cAMP]-response to the addition and removal of isoproterenol (β-adrenoceptor agonist) quantified the rates of cAMP synthesis and degradation. To obtain a read out of DcAMP, a stable [cAMP] gradient was generated using a microfluidic device which delivered agonist to one half of the myocyte only. After accounting for phosphodiesterase activity, DcAMP was calculated to be 32 µm(2)/s; an order of magnitude lower than in water. Diffusivity was independent of the amount of cAMP produced. Saturating cAMP-binding sites with the analogue 6-Bnz-cAMP did not accelerate DcAMP, arguing against a role of buffering in restricting cAMP mobility. cAMP diffused at a comparable rate to chemically unrelated but similar sized molecules, arguing for a common physical cause of restricted diffusivity. Lower mitochondrial density and order in neonatal cardiac myocytes allowed for faster diffusion, demonstrating the importance of mitochondria as physical barriers to cAMP mobility. In adult cardiac myocytes, tortuosity due to physical barriers, notably mitochondria, restricts cAMP diffusion to levels that are more compatible with microdomain signalling. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  2. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    SciTech Connect

    Morton, M.J.; Armstrong, D.; Abi Gerges, N.; Bridgland-Taylor, M.; Pollard, C.E.; Bowes, J.; Valentin, J.-P.

    2014-09-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.

  3. Comparison of sarcolemmal calcium channel current in rabbit and rat ventricular myocytes.

    PubMed Central

    Yuan, W; Ginsburg, K S; Bers, D M

    1996-01-01

    1. Fundamental properties of Ca2+ channel currents in rat and rabbit ventricular myocytes were measured using whole cell voltage clamp. 2. In rat, as compared with rabbit myocytes, Ca2+ channel current (ICa) was half-activated at about 10 mV more negative potential, decayed slower, was half-inactivated (in steady state) at about 5 mV more positive potential, and recovered faster from inactivation. 3. These features result in a larger steady-state window current in rat, and also suggest that under comparable voltage clamp conditions, including action potential (AP) clamp, more Ca2+ influx would be expected in rat myocytes. 4. Ca2+ channel current carried by Na+ and Cs+ in the absence of divalent ions (Ins) also activated at more negative potential and decayed more slowly in rat. 5. The reversal potential for Ins was 6 mV more positive in rabbit, consistent with a larger permeability ratio (PNa/PCs) in rabbit than in rat. ICa also reversed at slightly more positive potentials in rabbit (such that PCa/PCs might also be higher). 6. Ca2+ influx was calculated by integration of ICa evoked by voltage clamp pulses (either square pulses or pulses based on recorded rabbit or rat APs). For a given clamp waveform, the Ca2+ influx was up to 25% greater in rat, as predicted from the fundamental properties of ICa and Ins. 7. However, the longer duration of the AP in rabbit myocytes compensated for the difference in influx, such that the integrated Ca2+ influx via ICa in response to the species-appropriate waveform was about twice as large as that seen in rat. PMID:8799895

  4. 9-Phenanthrol inhibits recombinant and arterial myocyte TMEM16A channels

    PubMed Central

    Burris, Sarah K; Wang, Qian; Bulley, Simon; Neeb, Zachary P; Jaggar, Jonathan H

    2015-01-01

    Background and Purpose In arterial smooth muscle cells (myocytes), intravascular pressure stimulates membrane depolarization and vasoconstriction (the myogenic response). Ion channels proposed to mediate pressure-induced depolarization include several transient receptor potential (TRP) channels, including TRPM4, and transmembrane protein 16A (TMEM16A), a Ca2+-activated Cl− channel (CaCC). 9-Phenanthrol, a putative selective TRPM4 channel inhibitor, abolishes myogenic tone in cerebral arteries, suggesting that either TRPM4 is essential for pressure-induced depolarization, upstream of activation of other ion channels or that 9-phenanthrol is non-selective. Here, we tested the hypothesis that 9-phenanthrol is also a TMEM16A channel blocker, an ion channel for which few inhibitors have been identified. Experimental Approach Patch clamp electrophysiology was used to measure rat cerebral artery myocyte and human recombinant TMEM16A (rTMEM16A) currents or currents generated by recombinant bestrophin-1, another Ca2+-activated Cl− channel, expressed in HEK293 cells. Key Results 9-Phenanthrol blocked myocyte TMEM16A currents activated by either intracellular Ca2+ or Eact, a TMEM16A channel activator. In contrast, 9-phenanthrol did not alter recombinant bestrophin-1 currents. 9-Phenanthrol reduced arterial myocyte TMEM16A currents with an IC50 of ∼12 μM. Cell-attached patch recordings indicated that 9-phenanthrol reduced single rTMEM16A channel open probability and mean open time, and increased mean closed time without affecting the amplitude. Conclusions and Implications These data identify 9-phenanthrol as a novel TMEM16A channel blocker and provide an explanation for the previous observation that 9-phenanthrol abolishes myogenic tone when both TRPM4 and TMEM16A channels contribute to this response. 9-Phenanthrol may be a promising candidate from which to develop TMEM16A channel-specific inhibitors. PMID:25573456

  5. Interactions between endothelin-1 and atrial natriuretic peptide influence cultured chick cardiac myocyte contractility.

    PubMed

    Bézie, Y; Mesnard, L; Longrois, D; Samson, F; Perret, C; Mercadier, J J; Laurent, S

    1996-09-12

    We have previously shown that rat atrial natriuretic peptide (ANP) reduces the contractility of cultured, spontaneously beating chick embryo ventricular cells, an effect opposite to that of endothelin-1. Endothelin-1 has been described as a secretagogue for natriuretic peptides in vitro and in vivo. Natriuretic peptides can inhibit endothelin-1 secretion from cultured endothelial cells, suggesting a negative feedback mechanism between endothelial cells and cardiomyocytes. The aim of this study was to determine whether ANP attenuated the endothelin-1-induced increase in myocyte contractility. Using a video-microscopy system we studied the contractility of isolated cultured chick ventricular myocytes in response to endothelin-1, chicken natriuretic peptide (ChNP), and both. We also used Northern blot analysis to study the time course of ChNP expression in response to endothelin-1. Endothelin-1 (10(-8) M) increased chick cardiomyocyte contractility by 20-25% between 5 and 15 min (P < 0.05). Although ChNP (3 x 10(-7) M) did not significantly change the amplitude of contraction in basal conditions, it prevented the endothelin-1-induced increase in contractility (P < 0.05) when perfused prior to endothelin-1, and reversed it when perfused 5 min after endothelin-1 exposure (P < 0.05). Endothelin-1 significantly increased the accumulation of ChNP mRNA in chick ventricular myocytes as early as the 30 min after exposure (P < 0.05), with a maximal effect after 2 h of stimulation (P < 0.01); no effect was observed after 4 h. These data support an interaction between endothelin-1 and natriuretic peptides as autocrine/paracrine factors regulating the contractile function of chick cardiac myocytes, as well as their antagonistic effects on cardiac cell contractility. The early and transient expression of ChNP mRNA in response to endothelin-1 may be involved in this interaction.

  6. Increase of the delayed rectifier K+ and Na(+)-K+ pump currents by hypotonic solutions in guinea pig cardiac myocytes.

    PubMed

    Sasaki, N; Mitsuiye, T; Wang, Z; Noma, A

    1994-11-01

    To investigate the membrane current changes induced by membrane stretching, single guinea pig ventricular myocytes were superfused with solutions of various osmolarities, and the whole-cell current was recorded by the patch-clamp technique. The application of 70% and 130% osmolar bath solutions increased and decreased the amplitude of delayed rectifier K+ current (IK), respectively, whereas no obvious change was observed in the L-type Ca2+ current or the inward rectifier K+ current. When the Na(+)-K+ pump current (Ipump) was recorded by the use of high-Na+ (> 35 mmol/L) pipette solutions, Ipump was also increased and decreased by the superfusion of hypotonic and hypertonic solutions, respectively, in approximately half of the cells. An increase of the Ipump was also observed in the absence of external Na+, excluding a possibility that the enhancement of Ipump was secondary to an elevation of cytosolic Na+. In most cells that did not show the increase of Ipump, the hypotonic superfusion induced a gradual activation of Cl- current. The hypertonic superfusion did not cause any consistent change in the membrane Cl- conductance. Since the response of IK was observed in all experiments, its mechanism was studied. We failed to observe marked changes in the kinetic and conductance properties of IK in the hypotonic solution. The involvements of either the protein kinases or Ca2+ were also ruled out as major mechanisms underlying the IK response.

  7. Effects of ventricular unloading on apoptosis and atrophy of cardiac myocytes.

    PubMed

    Schena, Stefano; Kurimoto, Yoshihiko; Fukada, Johji; Tack, Ivan; Ruiz, Phillip; Pang, Manhui; Striker, Liliane J; Aitouche, Abdelouahab; Pham, Si M

    2004-07-01

    Ventricular unloading decreases cardiac ventricular mass. This loss of ventricular mass can be due to either atrophy (a reversible process) or apoptosis (an irreversible process) of the cardiac myocytes. We investigated the effect of ventricular unloading on atrophy and apoptosis of cardiac myocytes, using working and nonworking transplant heart models in rats. ACI rats underwent heterotopic heart transplantation with two different techniques to create working and nonworking cardiac grafts. Cardiac grafts were harvested at different time points after transplantation. TUNEL, caspase-3 assay, and electron microscopy were used to assess the degree of apoptosis while cellular atrophy was estimated by calculation of the cytoplasmic index (CI = mean sectional cytoplasmic area/nucleus). Ventricular mass reduction was more pronounced in nonworking than in working hearts (P < 0.05). Apoptotic index and caspase-3 activities increased in both groups, peaking at 3 days after transplantation, but were not significantly different between the two models. The cytoplasmic index was significantly lower in nonworking than in working grafts (P < 0.05). These data suggest that cellular atrophy is the primary mechanism that accounts for myocardial weight reduction following ventricular unloading. The inference is that ventricular unloading by ventricular assist devices may not cause permanent loss of cardiac myocytes, thus allowing for functional recovery.

  8. Caveolae in Ventricular Myocytes are Required for Stretch-Dependent Conduction Slowing

    PubMed Central

    Pfeiffer, E.R.; Wright, A.T.; Edwards, A.G.; Stowe, J.C.; McNall, K.; Tan, J.; Niesman, I.; Patel, H.H.; Roth, D.M.; Omens, J.H.; McCulloch, A.D.

    2014-01-01

    Mechanical stretch of cardiac muscle modulates action potential propagation velocity, causing potentially arrhythmogenic conduction slowing. The mechanisms by which stretch alters cardiac conduction remain unknown, but previous studies suggest that stretch can affect the conformation of caveolae in myocytes and other cell types. We tested the hypothesis that slowing of action potential conduction due to cardiac myocyte stretch is dependent on caveolae. Cardiac action potential propagation velocities, measured by optical mapping in isolated mouse hearts and in micropatterned mouse cardiomyocyte cultures, decreased reversibly with volume loading or stretch, respectively (by 19±5% and 26±4%). Stretch-dependent conduction slowing was not altered by stretch-activated channel blockade with gadolinium or by GsMTx-4 peptide, but was inhibited when caveolae were disrupted via genetic deletion of caveolin-3 (Cav3 KO) or membrane cholesterol depletion by methyl-β-cyclodextrin. In wild-type mouse hearts, stretch coincided with recruitment of caveolae to the sarcolemma, as observed by electron microscopy. In myocytes from wild-type but not Cav3 KO mice, stretch significantly increased cell membrane capacitance (by 98±64%), electrical time constant (by 285±149%), and lipid recruitment to the bilayer (by 84±39%). Recruitment of caveolae to the sarcolemma during physiologic cardiomyocyte stretch slows ventricular action potential propagation by increasing cell membrane capacitance. PMID:25257915

  9. Quantification of Myocyte Chemotaxis: A Role for FAK in Regulating Directional Motility

    PubMed Central

    Zajac, Britni; Hakim, Zeenat S.; Cameron, Morgan V.; Smithies, Oliver; Taylor, Joan M.

    2015-01-01

    Formation of a fully functional four-chambered heart involves an intricate and complex series of events that includes precise spatial–temporal regulation of cell specification, proliferation, and migration. The formation of the ventricular septum during mid-gestation ensures the unidirectional flow of blood, and is necessary for postnatal viability. Notably, a majority of all congenital malformations of the cardiovascular system in humans involve septal abnormalities which afflict 1 out of 100 newborn children in the United States. Thus, a clear understanding of the precise mechanisms involved in this morphogenetic event will undoubtedly reveal important therapeutic targets. The final step in valvuloseptal morphogenesis occurs, in part, by directed movement of flanking myocytes into the cushion mesenchyme. In order to identify the molecular mechanisms that regulate this critical myocyte function, we have developed two in vitro methodologies; a transwell assay to assess population changes in motility and a single-cell tracking assay to identify signals that drive the coordinated movement of these cells. These methods have proven effective to identify focal adhesion kinase (FAK) as an intracellular component that is critical for myocyte chemotaxis. PMID:22222526

  10. The red wine polyphenol, resveratrol, exerts acute direct actions on guinea-pig ventricular myocytes.

    PubMed

    Liew, Reginald; Stagg, Mark A; MacLeod, Kenneth T; Collins, Peter

    2005-09-05

    Epidemiological evidence suggests that moderate consumption of red wine may be cardioprotective, although the precise mechanism(s) responsible remains poorly understood. We hypothesized that the red wine polyphenol, resveratrol, may exert direct actions on the heart and thus potentially contribute to cardioprotection. We show that resveratrol acutely decreases Ca2+ transient amplitude in isolated cardiac myocytes. Intriguingly, resveratrol simultaneously increases cell shortening in half the cells tested, while decreasing shortening in the other half. The former could be attributed to heightened myofilament Ca2+ sensitivity. This was no longer observed in myocytes that had been incubated with the oestrogen receptor antagonist, ICI 182,780, suggesting an oestrogen-receptor dependent mechanism of action. In addition, resveratrol significantly decreased action potential duration and the peak L-type Ca2+ current. Our findings provide evidence that resveratrol exerts multiple direct actions on cardiac myocytes, the net result of which is no overall change in cell contraction. The clinical significance of these results remains to be determined.

  11. Mathematical Models of Atrial and Ventricular Myocytes from the Rabbit Heart

    NASA Astrophysics Data System (ADS)

    Murphey, Carey Richard

    Mathematical models of rabbit atrial and ventricular myocytes that are based on quantitative voltage clamp data from emzymatically isolated cardiac myocytes have been developed. These models are capable of accurately simulating the transmembrane ionic currents recorded in response to a step change in membrane potential (whole-cell voltage clamp response), the nonpropagated membrane action potential (MAP), and the frequency-dependent action potential waveshape changes occurring in response to variations in rate of stimulation. Rectangular pulse, ramp and action potential voltage -clamp measurements of the transmembrane ionic currents have allowed us to model a number of processes thought to be important during repolarization. These computations provide important biophysical insights into the electrophysiological activity of atrial and ventricular cells and their associated intra- and extracellular ionic concentration changes. The present model also has useful predictive capabilities. We have used the model to: (1) estimate the intracellular Ca^{2+} transient in these myocytes and to compare the relative occupancy of the Ca^{2+} binding sites in the contractile proteins with known cellular mechanical activity, and (2) predict the response of the atrial cell to potassium current blockade via BaCl_2 to the bathing medium.

  12. Formulation and In vitro Interaction of Rhodamine-B Loaded PLGA Nanoparticles with Cardiac Myocytes

    PubMed Central

    Jonderian, Antranik; Maalouf, Rita

    2016-01-01

    This study aims to characterize rhodamine B (Rh B) loaded poly(D,L-lactide-co-glycolide; PLGA) nanoparticles (NPs) and their interactions with cardiac myocytes. PLGA NPs were formulated using single emulsion solvent evaporation technique. The influence of varying parameters such as the stabilizer concentration, the sonication time, and the organic to aqueous ratio were investigated. The diameter, the dispersity, the encapsulation efficiency and the zeta potential of the optimized NPs were about 184 nm, 0.19, 40% and -21.7 mV, respectively. In vitro release showed that 29% of the Rh B was released within the first 8 h. Scanning electron microscopy measurements performed on the optimized NPs showed smooth surface and spherical shapes. No significant cytotoxic or apoptotic effects were observed on cardiac myocytes after 24 and 48 h of exposure with concentrations up to 200 μg/mL. The kinetic of the intracellular uptake was confirmed by confocal microscopy and cells took up PLGA NPs within the 1st hours. Interestingly, our data show an increase in the NPs’ uptake with time of exposure. Taken together, we demonstrate for the first time that the designed NPs can be used as potential probes for drug delivery in cardiac myocytes. PMID:27999542

  13. Cyclin D2 induces proliferation of cardiac myocytes and represses hypertrophy

    SciTech Connect

    Busk, Peter K. . E-mail: pkbu@novonordisk.com; Hinrichsen, Rebecca; Bartkova, Jirina; Hansen, Ane H.; Christoffersen, Tue E.H.; Bartek, Jiri; Haunso, Stig

    2005-03-10

    The myocytes of the adult mammalian heart are considered unable to divide. Instead, mitogens induce cardiomyocyte hypertrophy. We have investigated the effect of adenoviral overexpression of cyclin D2 on myocyte proliferation and morphology. Cardiomyocytes in culture were identified by established markers. Cyclin D2 induced DNA synthesis and proliferation of cardiomyocytes and impaired hypertrophy induced by angiotensin II and serum. At the molecular level, cyclin D2 activated CDK4/6 and lead to pRB phosphorylation and downregulation of the cell cycle inhibitors p21{sup Waf1/Cip1} and p27{sup Kip1}. Expression of the CDK4/6 inhibitor p16 inhibited proliferation and cyclin D2 overexpressing myocytes became hypertrophic under such conditions. Inhibition of hypertrophy by cyclin D2 correlated with downregulation of p27{sup Kip1}. These data show that hypertrophy and proliferation are highly related processes and suggest that cardiomyocyte hypertrophy is due to low amounts of cell cycle activators unable to overcome the block imposed by cell cycle inhibitors. Cell cycle entry upon hypertrophy may be converted to cell division by increased expression of activators such as cyclin D2.

  14. Dinitrophenol pretreatment of rat ventricular myocytes protects against damage by metabolic inhibition and reperfusion.

    PubMed

    Rodrigo, G C; Lawrence, C L; Standen, N B

    2002-05-01

    We have investigated the protective effects of pretreatment with the mitochondrial uncoupler 2,4-dinitrophenol on the cellular damage induced by metabolic inhibition (with cyanide and iodoacetic acid) and reperfusion in freshly isolated adult rat ventricular myocytes. Damage was assessed from changes in cell length and morphology measured using video microscopy. Intracellular Ca(2+), mitochondrial membrane potential, and NADH were measured using fura-2, tetramethylrhodamine ethyl ester and autofluorescence, respectively. During metabolic inhibition myocytes developed rigor, and on reperfusion 73.6+/-8.1% hypercontracted and 10.8+/-6.7% recovered contractile function in response to electrical stimulation. Intracellular Ca(2+) increased substantially, indicated by a rise in the fura-2 ratio (340/380 nm) on reperfusion from 0.86+/-0.04 to 1.93+/-0.18. Myocytes pretreated with substrate-free Tyrode containing 50 microm dinitrophenol showed reduced reperfusion injury: 29.0+/-7.4% of cells hypercontracted and 65.3+/-7.3% recovered contractile function (P<0.001 vs control). The fura-2 ratio on reperfusion was also lower at 1.01+/-0.08. Fluorescence measurements showed that dinitrophenol caused mitochondrial depolarisation, and decreased NADH. The presence of the substrates glucose and pyruvate reduced these effects, and abolished the protection against damage by metabolic inhibition and reperfusion. However protection was unaffected by block of ATP-sensitive potassium channels. Thus the protective effects of pretreatment with dinitrophenol may result from a reduction in NADH in response to mitochondrial depolarisation.

  15. A computational model of the human left-ventricular epicardial myocyte.

    PubMed

    Iyer, Vivek; Mazhari, Reza; Winslow, Raimond L

    2004-09-01

    A computational model of the human left-ventricular epicardial myocyte is presented. Models of each of the major ionic currents present in these cells are formulated and validated using experimental data obtained from studies of recombinant human ion channels and/or whole-cell recording from single myocytes isolated from human left-ventricular subepicardium. Continuous-time Markov chain models for the gating of the fast Na(+) current, transient outward current, rapid component of the delayed rectifier current, and the L-type calcium current are modified to represent human data at physiological temperature. A new model for the gating of the slow component of the delayed rectifier current is formulated and validated against experimental data. Properties of calcium handling and exchanger currents are altered to appropriately represent the dynamics of intracellular ion concentrations. The model is able to both reproduce and predict a wide range of behaviors observed experimentally including action potential morphology, ionic currents, intracellular calcium transients, frequency dependence of action-potential duration, Ca(2+)-frequency relations, and extrasystolic restitution/post-extrasystolic potentiation. The model therefore serves as a useful tool for investigating mechanisms of arrhythmia and consequences of drug-channel interactions in the human left-ventricular myocyte.

  16. Calcium signalling through nucleotide receptor P2X1 in rat portal vein myocytes.

    PubMed

    Mironneau, J; Coussin, F; Morel, J L; Barbot, C; Jeyakumar, L H; Fleischer, S; Mironneau, C

    2001-10-15

    1. ATP-mediated Ca2+ signalling was studied in freshly isolated rat portal vein myocytes by means of a laser confocal microscope and the patch-clamp technique. 2. In vascular myocytes held at -60 mV, ATP induced a large inward current that was supported mainly by activation of P2X1 receptors, although other P2X receptor subtypes (P2X3, P2X4 and P2X5) were revealed by reverse transcription-polymerase chain reaction. 3. Confocal Ca2+ measurements revealed that ATP-mediated Ca2+ responses started at initiation sites where spontaneous or triggered Ca2+ sparks were not detected, whereas membrane depolarizations triggered Ca2+ waves by repetitive activation of Ca2+ sparks from a single initiation site. 4. ATP-mediated Ca2+ responses depended on Ca2+ influx through non-selective cation channels that activated, in turn, Ca2+ release from the intracellular store via ryanodine receptors (RYRs). Using specific antibodies directed against the RYR subtypes, we show that ATP-mediated Ca2+ release requires, at least, RYR2, but not RYR3. 5. Our results suggest that, in vascular myocytes, Ca2+ influx through P2X1 receptors may trigger Ca2+-induced Ca2+ release at intracellular sites where RYRs are not clustered.

  17. Calcium signalling through nucleotide receptor P2X1 in rat portal vein myocytes

    PubMed Central

    Mironneau, J; Coussin, F; Morel, J L; Barbot, C; Jeyakumar, L H; Fleischer, S; Mironneau, C

    2001-01-01

    ATP-mediated Ca2+ signalling was studied in freshly isolated rat portal vein myocytes by means of a laser confocal microscope and the patch-clamp technique. In vascular myocytes held at −60 mV, ATP induced a large inward current that was supported mainly by activation of P2X1 receptors, although other P2X receptor subtypes (P2X3, P2X4 and P2X5) were revealed by reverse transcription-polymerase chain reaction. Confocal Ca2+ measurements revealed that ATP-mediated Ca2+ responses started at initiation sites where spontaneous or triggered Ca2+ sparks were not detected, whereas membrane depolarizations triggered Ca2+ waves by repetitive activation of Ca2+ sparks from a single initiation site. ATP-mediated Ca2+ responses depended on Ca2+ influx through non-selective cation channels that activated, in turn, Ca2+ release from the intracellular store via ryanodine receptors (RYRs). Using specific antibodies directed against the RYR subtypes, we show that ATP-mediated Ca2+ release requires, at least, RYR2, but not RYR3. Our results suggest that, in vascular myocytes, Ca2+ influx through P2X1 receptors may trigger Ca2+-induced Ca2+ release at intracellular sites where RYRs are not clustered. PMID:11600670

  18. Computational Approaches to Understanding the Role of Fibroblast-Myocyte Interactions in Cardiac Arrhythmogenesis

    PubMed Central

    Brown, Tashalee R.; Krogh-Madsen, Trine; Christini, David J.

    2015-01-01

    The adult heart is composed of a dense network of cardiomyocytes surrounded by nonmyocytes, the most abundant of which are cardiac fibroblasts. Several cardiac diseases, such as myocardial infarction or dilated cardiomyopathy, are associated with an increased density of fibroblasts, that is, fibrosis. Fibroblasts play a significant role in the development of electrical and mechanical dysfunction of the heart; however the underlying mechanisms are only partially understood. One widely studied mechanism suggests that fibroblasts produce excess extracellular matrix, resulting in collagenous septa. These collagenous septa slow propagation, cause zig-zag conduction paths, and decouple cardiomyocytes resulting in a substrate for arrhythmia. Another emerging mechanism suggests that fibroblasts promote arrhythmogenesis through direct electrical interactions with cardiomyocytes via gap junctions. Due to the challenges of investigating fibroblast-myocyte coupling in native cardiac tissue, computational modeling and in vitro experiments have facilitated the investigation into the mechanisms underlying fibroblast-mediated changes in cardiomyocyte action potential morphology, conduction velocity, spontaneous excitability, and vulnerability to reentry. In this paper, we summarize the major findings of the existing computational studies investigating the implications of fibroblast-myocyte interactions in the normal and diseased heart. We then present investigations from our group into the potential role of voltage-dependent gap junctions in fibroblast-myocyte interactions. PMID:26601107

  19. Measurement of intracellular ionized magnesium concentration in myocytes isolated from the septomarginal band of sheep hearts.

    PubMed

    Gow, I F; Latham, T; Ellis, D; Flatman, P W

    1995-09-01

    The preparation by collagenase dispersion is described of isolated, calcium-tolerant myocytes from the septomarginal (moderator) band dissected from the sheep heart. Cells obtained were small rods (85 x 9 microns), with pronounced striations characteristic of cardiac myocytes. Isolated cells were loaded with the fluorescent ion-sensitive probes Mag-fura-2 or fura-2, for use in microspectrofluorimetry experiments to measure cytosolic free magnesium ([Mg2+]i) and calcium ([Ca2+]i) respectively; cells remained usable for up to 8 h after isolation. Glycolysis and electron transport were inhibited by a short exposure (4 min) to deoxyglucose (15 mM) and cyanide (2 mM), added simultaneously. This appeared to produce a small, but not statistically significant (P = 0.056) rise in [Mg2+]i, presumably resulting from Mg2+ liberated following consumption of MgATP. Inhibition of the Na pump by strophanthidin (20 microM), followed by removal of external Na in the presence of strophanthidin, caused an increase in both [Mg2+]i and [Ca2+]i. The time course of changes in the two ions were dissimilar, so it seems unlikely that the observed rise in the [Mg2+]i was due solely to a direct effect of [Ca2+]i on Mag-fura-2 or due to the displacement of [Mg2+]i by Ca from binding sites. Evidence is presented that suggests sodium-magnesium exchange plays a role in the regulation of myocyte [Mg2+]i.

  20. Reduced efficiency of sarcolipin-dependent respiration in myocytes from humans with severe obesity

    PubMed Central

    Paran, Christopher W.; Verkerke, Anthony R.P.; Heden, Timothy D.; Park, Sanghee; Zou, Kai; Lawson, Heather A.; Song, Haowei; Turk, John; Houmard, Joseph A.; Funai, Katsuhiko

    2015-01-01

    Objective Sarcolipin (SLN) regulates muscle energy expenditure through its action on sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump. It is unknown whether SLN-dependent respiration has relevance to human obesity, but whole-transcriptome gene expression profiling revealed that SLN was more highly expressed in myocytes from individuals with severe obesity (OB) than in lean controls (LN). The purpose of this study was to examine SLN-dependent cellular respiratory rates in LN and OB human muscles. Design and Methods Primary myocytes were isolated from muscle biopsy from seven LN and OB Caucasian females. Cellular respiration was assessed with and without lentivirus-mediated SLN knockdown in LN and OB myocytes. Results SLN mRNA and protein abundance was greater in OB compared to LN cells. Despite elevated SLN levels in wildtype OB cells, respiratory rates among SLN-deficient cells were higher in OB compared to LN. Obesity-induced reduction in efficiency of SLN-dependent respiration was associated with altered SR phospholipidome. Conclusions SLN-dependent respiration is reduced in muscles from humans with severe obesity compared to lean controls. Identification of molecular mechanism that affects SLN-efficiency might promote an increase in skeletal muscle energy expenditure. PMID:25970801

  1. Pannexin 1 Constitutes the Large Conductance Cation Channel of Cardiac Myocytes

    PubMed Central

    Kienitz, Marie-Cecile; Bender, Kirsten; Dermietzel, Rolf; Pott, Lutz; Zoidl, Georg

    2011-01-01

    A large conductance (∼300 picosiemens) channel (LCC) of unknown molecular identity, activated by Ca2+ release from the sarcoplasmic reticulum, particularly when augmented by caffeine, has been described previously in isolated cardiac myocytes. A potential candidate for this channel is pannexin 1 (Panx1), which has been shown to form large ion channels when expressed in Xenopus oocytes and mammalian cells. Panx1 function is implicated in ATP-mediated auto-/paracrine signaling, and a crucial role in several cell death pathways has been suggested. Here, we demonstrate that after culturing for 4 days LCC activity is no longer detected in myocytes but can be rescued by adenoviral gene transfer of Panx1. Endogenous LCCs and those related to expression of Panx1 share key pharmacological properties previously used for identifying and characterizing Panx1 channels. These data demonstrate that Panx1 constitutes the LCC of cardiac myocytes. Sporadic openings of single Panx1 channels in the absence of Ca2+ release can trigger action potentials, suggesting that Panx1 channels potentially promote arrhythmogenic activities. PMID:21041301

  2. Glucose Sensing by Skeletal Myocytes Couples Nutrient Signaling to Systemic Homeostasis.

    PubMed

    Meng, Zhuo-Xian; Gong, Jianke; Chen, Zhimin; Sun, Jingxia; Xiao, Yuanyuan; Wang, Lin; Li, Yaqiang; Liu, Jianfeng; Xu, X Z Shawn; Lin, Jiandie D

    2017-05-04

    Skeletal muscle is a major site of postprandial glucose disposal. Inadequate insulin action in skeletal myocytes contributes to hyperglycemia in diabetes. Although glucose is known to stimulate insulin secretion by β cells, whether it directly engages nutrient signaling pathways in skeletal muscle to maintain systemic glucose homeostasis remains largely unexplored. Here we identified the Baf60c-Deptor-AKT pathway as a target of muscle glucose sensing that augments insulin action in skeletal myocytes. Genetic activation of this pathway improved postprandial glucose disposal in mice, whereas its muscle-specific ablation impaired insulin action and led to postprandial glucose intolerance. Mechanistically, glucose triggers KATP channel-dependent calcium signaling, which promotes HDAC5 phosphorylation and nuclear exclusion, leading to Baf60c induction and insulin-independent AKT activation. This pathway is engaged by the anti-diabetic sulfonylurea drugs to exert their full glucose-lowering effects. These findings uncover an unexpected mechanism of glucose sensing in skeletal myocytes that contributes to homeostasis and therapeutic action. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Nuclear Compartmentalization of α1-Adrenergic Receptor Signaling in Adult Cardiac Myocytes

    PubMed Central

    Wu, Steven C.

    2015-01-01

    Abstract: Although convention dictates that G protein-coupled receptors localize to and signal at the plasma membrane, accumulating evidence suggests that G protein-coupled receptors localize to and signal at intracellular membranes, most notably the nucleus. In fact, there is now significant evidence indicating that endogenous alpha-1 adrenergic receptors (α1-ARs) localize to and signal at the nuclei in adult cardiac myocytes. Cumulatively, the data suggest that α1-ARs localize to the inner nuclear membrane, activate intranuclear signaling, and regulate physiologic function in adult cardiac myocytes. Although α1-ARs signal through Gαq, unlike other Gq-coupled receptors, α1-ARs mediate important cardioprotective functions including adaptive/physiologic hypertrophy, protection from cell death (survival signaling), positive inotropy, and preconditioning. Also unlike other Gq-coupled receptors, most, if not all, functional α1-ARs localize to the nuclei in adult cardiac myocytes, as opposed to the sarcolemma. Together, α1-AR nuclear localization and cardioprotection might suggest a novel model for compartmentalization of Gq-coupled receptor signaling in which nuclear Gq-coupled receptor signaling is cardioprotective. PMID:25264754

  4. Uniaxial cyclic strain enhances adipose-derived stem cell fusion with skeletal myocytes

    SciTech Connect

    Andersen, Jens Isak; Juhl, Morten; Nielsen, Thøger; Emmersen, Jeppe; Fink, Trine; Zachar, Vladimir; Pennisi, Cristian Pablo

    2014-07-25

    Highlights: • Uniaxial cyclic tensile strain (CTS) applied to ASCs alone or in coculture with myogenic precursors. • CTS promoted the formation of a highly ordered array of parallel ASCs. • Without biochemical supplements, CTS did not support advanced myogenic differentiation of ASCs. • Mechanical stimulation of cocultures boosted fusion of ASCs with skeletal myoblasts. - Abstract: Although adult muscle tissue possesses an exceptional capacity for regeneration, in the case of large defects, the restoration to original state is not possible. A well-known source for the de novo regeneration is the adipose-derived stem cells (ASCs), which can be readily isolated and have been shown to have a broad differentiation and regenerative potential. In this work, we employed uniaxial cyclic tensile strain (CTS), to mechanically stimulate human ASCs to participate in the formation skeletal myotubes in an in vitro model of myogenesis. The application of CTS for 48 h resulted in the formation of a highly ordered array of parallel ASCs, but failed to support skeletal muscle terminal differentiation. When the same stimulation paradigm was applied to cocultures with mouse skeletal muscle myoblasts, the percentage of ASCs contributing to the formation of myotubes significantly exceeded the levels reported in the literature hitherto. In perspective, the mechanical strain may be used to increase the efficiency of incorporation of ASCs in the skeletal muscles, which could be found useful in diverse traumatic or pathologic scenarios.

  5. Enhancement of Ca2+-dependent outward current in sheep bladder myocytes by evans blue dye.

    PubMed

    Hollywood, M A; Cotton, K D; McHale, N G; Thornbury, K D

    1998-04-01

    Whole-cell and inside-out patch-clamp techniques were used to assess the action of a well-known dye, Evans blue, on membrane currents in bladder isolated smooth muscle cells from sheep. In whole cells Evans blue dose-dependently increased the outward current by up to fivefold. In contrast, Evans blue had no effect on inward Ca2+ current. The effect on outward current was abolished or reduced if the cells were bathed in Ca2+-free solution, iberiotoxin (5 x 10(-8) M), or charybdotoxin (5 x 10(-8) M), but was unaffected by externally applied caffeine (5 mM) or in cells exposed to heparin (1 mg/ml) via the patch pipette. In inside-out patches bathed in a Ca2+ concentration of 5 x 10(-7) M, Evans blue (10(-4) M) increased the open probability of large-conductance (298-pS) Ca2+-dependent K+ channels (BK channels), shifting the half maximal-activation voltage by -70 mV. We conclude that Evans blue dye acts as an opener of BK channels.

  6. Na/K pump inactivation, subsarcolemmal Na measurements, and cytoplasmic ion turnover kinetics contradict restricted Na spaces in murine cardiac myocytes.

    PubMed

    Lu, Fang-Min; Hilgemann, Donald W

    2017-07-03

    Decades ago, it was proposed that Na transport in cardiac myocytes is modulated by large changes in cytoplasmic Na concentration within restricted subsarcolemmal spaces. Here, we probe this hypothesis for Na/K pumps by generating constitutive transsarcolemmal Na flux with the Na channel opener veratridine in whole-cell patch-clamp recordings. Using 25 mM Na in the patch pipette, pump currents decay strongly during continuous activation by extracellular K (τ, ∼2 s). In contradiction to depletion hypotheses, the decay becomes stronger when pump currents are decreased by hyperpolarization. Na channel currents are nearly unchanged by pump activity in these conditions, and conversely, continuous Na currents up to 0.5 nA in magnitude have negligible effects on pump currents. These outcomes are even more pronounced using 50 mM Li as a cytoplasmic Na congener. Thus, the Na/K pump current decay reflects mostly an inactivation mechanism that immobilizes Na/K pump charge movements, not cytoplasmic Na depletion. When channel currents are increased beyond 1 nA, models with unrestricted subsarcolemmal diffusion accurately predict current decay (τ ∼15 s) and reversal potential shifts observed for Na, Li, and K currents through Na channels opened by veratridine, as well as for Na, K, Cs, Li, and Cl currents recorded in nystatin-permeabilized myocytes. Ion concentrations in the pipette tip (i.e., access conductance) track without appreciable delay the current changes caused by sarcolemmal ion flux. Importantly, cytoplasmic mixing volumes, calculated from current decay kinetics, increase and decrease as expected with osmolarity changes (τ >30 s). Na/K pump current run-down over 20 min reflects a failure of pumps to recover from inactivation. Simulations reveal that pump inactivation coupled with Na-activated recovery enhances the rapidity and effectivity of Na homeostasis in cardiac myocytes. In conclusion, an autoregulatory mechanism enhances cardiac Na/K pump activity when

  7. Global Intracoronary Infusion of Allogeneic Cardiosphere-Derived Cells Improves Ventricular Function and Stimulates Endogenous Myocyte Regeneration throughout the Heart in Swine with Hibernating Myocardium

    PubMed Central

    Suzuki, Gen; Weil, Brian R.; Leiker, Merced M.; Ribbeck, Amanda E.; Young, Rebeccah F.; Cimato, Thomas R.; Canty, John M.

    2014-01-01

    Background Cardiosphere-derived cells (CDCs) improve ventricular function and reduce fibrotic volume when administered via an infarct-related artery using the “stop-flow” technique. Unfortunately, myocyte loss and dysfunction occur globally in many patients with ischemic and non-ischemic cardiomyopathy, necessitating an approach to distribute CDCs throughout the entire heart. We therefore determined whether global intracoronary infusion of CDCs under continuous flow improves contractile function and stimulates new myocyte formation. Methods and Results Swine with hibernating myocardium from a chronic LAD occlusion were studied 3-months after instrumentation (n = 25). CDCs isolated from myocardial biopsies were infused into each major coronary artery (∼33×106 icCDCs). Global icCDC infusion was safe and while ∼3% of injected CDCs were retained, they did not affect ventricular function or myocyte proliferation in normal animals. In contrast, four-weeks after icCDCs were administered to animals with hibernating myocardium, %LADWT increased from 23±6 to 51±5% (p<0.01). In diseased hearts, myocyte proliferation (phospho-histone-H3) increased in hibernating and remote regions with a concomitant increase in myocyte nuclear density. These effects were accompanied by reductions in myocyte diameter consistent with new myocyte formation. Only rare myocytes arose from sex-mismatched donor CDCs. Conclusions Global icCDC infusion under continuous flow is feasible and improves contractile function, regresses myocyte cellular hypertrophy and increases myocyte proliferation in diseased but not normal hearts. New myocytes arising via differentiation of injected cells are rare, implicating stimulation of endogenous myocyte regeneration as the primary mechanism of repair. PMID:25402428

  8. Validation of an in vitro contractility assay using canine ventricular myocytes

    SciTech Connect

    Harmer, A.R. Abi-Gerges, N.; Morton, M.J.; Pullen, G.F.; Valentin, J.P.; Pollard, C.E.

    2012-04-15

    Measurement of cardiac contractility is a logical part of pre-clinical safety assessment in a drug discovery project, particularly if a risk has been identified or is suspected based on the primary- or non-target pharmacology. However, there are limited validated assays available that can be used to screen several compounds in order to identify and eliminate inotropic liability from a chemical series. We have therefore sought to develop an in vitro model with sufficient throughput for this purpose. Dog ventricular myocytes were isolated using a collagenase perfusion technique and placed in a perfused recording chamber on the stage of a microscope at ∼ 36 °C. Myocytes were stimulated to contract at a pacing frequency of 1 Hz and a digital, cell geometry measurement system (IonOptix™) was used to measure sarcomere shortening in single myocytes. After perfusion with vehicle (0.1% DMSO), concentration–effect curves were constructed for each compound in 4–30 myocytes taken from 1 or 2 dog hearts. The validation test-set was 22 negative and 8 positive inotropes, and 21 inactive compounds, as defined by their effect in dog, cynolomolgous monkey or humans. By comparing the outcome of the assay to the known in vivo contractility effects, the assay sensitivity was 81%, specificity was 75%, and accuracy was 78%. With a throughput of 6–8 compounds/week from 1 cell isolation, this assay may be of value to drug discovery projects to screen for direct contractility effects and, if a hazard is identified, help identify inactive compounds. -- Highlights: ► Cardiac contractility is an important physiological function of the heart. ► Assessment of contractility is a logical part of pre-clinical drug safety testing. ► There are limited validated assays that predict effects of compounds on contractility. ► Using dog myocytes, we have developed an in vitro cardiac contractility assay. ► The assay predicted the in vivo contractility with a good level of accuracy.

  9. Sarcolemmal hydraulic conductivity of guinea-pig and rat ventricular myocytes.

    PubMed

    Ogura, Toshitsugu; Matsuda, Hiroyuki; Imanishi, Sunao; Shibamoto, Toshishige

    2002-06-01

    Osmotic gradient-induced volume change and sarcolemmal water permeability of cardiac myocytes were evaluated to characterize the mechanism of water flux across the plasma membranes. Cell surface dimensions were measured from isolated guinea-pig and rat ventricular myocytes by digital videomicroscopy, and membrane hydraulic conductivity (L(p)) was obtained by analyzing the time course of cell swelling and shrinkage in response to osmotic gradients. Superfusion with anisosmotic solution (0.5-4 times normal osmolality) caused a rapid (<3 min to steady states) and reversible myocyte swelling or shrinkage. L(p) was approximately 1.9 x 10(-10) l N(-1) s(-1) for guinea-pig myocytes and approximately 1.7 x 10(-10) l N(-1) s(-1) for rat myocytes at 35 degrees C. Arrhenius activation energy (E(a)), a measure of the energy barrier to water flux, was approximately 3.7 (guinea-pig) and approximately 3.6 kcal mol(-1) (rat) between 11 and 35 degrees C; these values are equivalent to E(a) of self-diffusion of water in bulk solution ( approximately 4 kcal mol(-1)). Treatment with 0.1 mM Hg(2+), a sulfhydryl-oxidizing reagent that blocks membrane water channels, reduced L(p) by approximately 80%, and the sulfhydryl-reducing reagent dithiothreitol (10 mM) antagonized the inhibitory action of Hg(2+). Inhibition of the volume-sensitive cation (30 microM Gd3+) and anion (1 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonate) channels and Na+-K+ pump (10 microM ouabain) modified the size of osmotic swelling but had little effect on L(p). Although the observed L(p) is relatively small in magnitude, the low E(a) and the sulfhydryl reagent-induced modification of L(p) are characteristic of channel-mediated water transport. These data suggest that water flux across the sarcolemma of guinea-pig and rat heart cells occurs through parallel pathways, i.e., the majority passing through water channels and the remainder penetrating the lipid bilayers.

  10. Ca2+ transients in cardiac myocytes measured with high and low affinity Ca2+ indicators.

    PubMed Central

    Berlin, J R; Konishi, M

    1993-01-01

    Intracellular calcium ion ([Ca2+]i) transients were measured in voltage-clamped rat cardiac myocytes with fura-2 or furaptra to quantitate rapid changes in [Ca2+]i. Patch electrode solutions contained the K+ salt of fura-2 (50 microM) or furaptra (300 microM). With identical experimental conditions, peak amplitude of stimulated [Ca2+]i transients in furaptra-loaded myocytes was 4- to 6-fold greater than that in fura-2-loaded cells. To determine the reason for this discrepancy, intracellular fura-2 Ca2+ buffering, kinetics of Ca2+ binding, and optical properties were examined. Decreasing cellular fura-2 concentration by lowering electrode fura-2 concentration 5-fold, decreased the difference between the amplitudes of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes by twofold. Thus, fura-2 buffers [Ca2+]i under these conditions; however, Ca2+ buffering is not the only factor that explains the different amplitudes of the [Ca2+]i transients measured with these indicators. From the temporal comparison of the [Ca2+]i transients measured with fura-2 and furaptra, the apparent reverse rate constant for Ca2+ binding of fura-2 was at least 65s-1, much faster than previously reported in skeletal muscle fibers. These binding kinetics do not explain the difference in the size of the [Ca2+]i transients reported by fura-2 and furaptra. Parameters for fura-2 calibration, Rmin, Rmax, and beta, were obtained in salt solutions (in vitro) and in myocytes exposed to the Ca2+ ionophore, 4-Br A23187, in EGTA-buffered solutions (in situ). Calibration of fura-2 fluorescence signals with these in situ parameters yielded [Ca2+]i transients whose peak amplitude was 50-100% larger than those calculated with in vitro parameters. Thus, in vitro calibration of fura-2 fluorescence significantly underestimates the amplitude of the [Ca2+]i transient. These data suggest that the difference in amplitude of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes is due, in part, to Ca2

  11. Phorbol ester activation of chloride current in guinea-pig ventricular myocytes.

    PubMed Central

    Shuba, L. M.; Asai, T.; McDonald, T. F.

    1996-01-01

    1. Although earlier studies with phorbol esters indicate that protein kinase C (PKC) may be an important regulator of Cl- current (Icl) in cardiac cells, there is a need for additional quantitative data and investigation of conflicting findings. Our objectives were to measure the magnitude, time course, and concentration-dependence of Icl activated in guinea-pig ventricular myocytes by phorbol 12-myristate 13-acetate (PMA), evaluate its PKC dependence, and examine its modification by external and internal ions. 2. The whole-cell patch clamp technique was used to apply short depolarizing and hyperpolarizing pulses to myocytes superfused with Na(+)-, K(+)-, Ca(2+)-free solution (36 degrees C) and dialysed with Cs+ solution. Stimulation of membrane currents by PMA (threshold < or = 1nM, EC50 approximately equal to 14 nM, maximal 40% increase with > or = 100 nM) plateaued within 6-10 min. 3. PMA-activated current was time-independent, and suppressed by l mM 9-anthracenecarboxylic acid (9-AC). Its reversal potential (Erev) was sensitive to changes in the Cl- gradient, and outward rectification of the current-voltage (I-V) relationship was more pronounced with 30 mM than 140 mM Cl- dialysate. 4. The relative permeability of PMA-activated channels estimated from Erev measurements was I- > Cl- > > aspartate. Channel activation was independent of external Na+. 5. PMA failed to activate Icl in myocytes pretreated with 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) or dialysed with pCa 10.5 solution. Lack of response to 4 alpha-phorbol 12, 13-didecanoate (alpha PDD) was a further indication of mediation by PKC. 6. Icl induced by 2 microM forskolin was far larger than that induced by PMA, suggesting that endogenous protein kinase A is a much stronger Cl- channel activator than endogenous PKC in these myocytes. 7. The macroscopic properties of PMA-induced Icl appear to be indistinguishable from those of PKA-activated Icl. We discount stimulation of PKA by PMA as an

  12. Pro-Death Signaling of GRK2 in Cardiac Myocytes after Ischemic Stress Occurs via ERK-Dependent, Hsp90-Mediated Mitochondrial Targeting

    PubMed Central

    Chen, Mai; Sat, Priscila Y.; Chuprun, J. Kurt; Peroutka, Raymond J.; Otis, Nicholas J.; Ibetti, Jessica; Pan, Shi; Sheu, Shey-Shing; Gao, Erhe; Koch, Walter J.

    2013-01-01

    Rationale GRK2 is abundantly expressed in the heart and its expression and activity is increased in injured or stressed myocardium. This up-regulation has been shown to be pathological. GRK2 can promote cell death in ischemic myocytes and its inhibition by a peptide comprised of the last 194 amino acids of GRK2 (known as βARKct) is cardioprotective. Objective The aim of this study was to elucidate the signaling mechanism that accounts for the pro-death signaling seen in the presence of elevated GRK2 and the cardioprotection afforded by the βARKct. Methods and Results Using in vivo mouse models of ischemic injury and also cultured myocytes we found that GRK2 localizes to mitochondria providing novel insight into GRK2-dependent pathophysiological signaling mechanisms. Mitochondrial localization of GRK2 in cardiomyocytes was enhanced after ischemic and oxidative stress, events that induced pro-death signaling. Localization of GRK2 to mitochondria was dependent upon phosphorylation at residue Ser670 within its extreme carboxyl-terminus by extracellular signal-regulated kinases (ERKs), resulting in enhanced GRK2 binding to heat shock protein 90 (Hsp90), which chaperoned GRK2 to mitochondria. Mechanistic studies invivo and invitro showed that ERK regulation of the C-tail of GRK2 was an absolute requirement for stress-induced, mitochondrial-dependent pro-death signaling, and blocking this led to cardioprotection. Elevated mitochondrial GRK2 also caused increased Ca2+-induced opening of the mitochondrial permeability transition pore, a key step in cellular injury. Conclusions We identify GRK2 as a pro-death kinase in the heart acting in a novel manner through mitochondrial localization via ERK regulation. PMID:23467820

  13. Myocyte contractility can be maintained by storing cells with the myosin ATPase inhibitor 2,3 butanedione monoxime

    PubMed Central

    Chung, Charles S; Mechas, Charles; Campbell, Kenneth S

    2015-01-01

    Isolated intact myocytes can be used to investigate contractile mechanisms and to screen new therapeutic compounds. These experiments typically require euthanizing an animal and isolating fresh cells each day or analyzing cultured myocytes, which quickly lose their rod-shaped morphology. Recent data suggest that the viability of canine myocytes can be prolonged using low temperature and N-benzyl-p-toluene sulfonamide (an inhibitor of skeletal myosin ATPase). We performed similar studies in rat myocytes in order to test whether the cardiac myosin ATPase inhibitors 2,3-Butanedione monoxime (BDM) and blebbistatin help to maintain cell-level function over multiple days. Myocytes were isolated from rats and separated into batches that were stored at 4°C in a HEPES-buffered solution that contained 0.5 mmol L−1 Ca2+ and (1) no myosin ATPase inhibitors; (2) 10 mmol L−1 BDM; or (3) 3 μmol L−1 blebbistatin. Functional viability of myocytes was assessed up to 3 days after the isolation by measuring calcium transients and unloaded shortening profiles induced by electrical stimuli in inhibitor-free Tyrode's solution. Cells stored without myosin ATPase inhibitors had altered morphology (fewer rod-shaped cells, shorter diastolic sarcomere lengths, and membrane blebbing) and were not viable for contractile assays after 24 h. Cells stored in BDM maintained morphology and contractile function for 48 h. Storage in blebbistatin maintained cell morphology for 72 h but inhibited contractility. These data show that storing cells with myosin ATPase inhibitors can extend the viability of myocytes that will be used for functional assays. This may help to refine and reduce the use of animals in experiments. PMID:26116551

  14. Effects of tanshinone VI on the hypertrophy of cardiac myocytes and fibrosis of cardiac fibroblasts of neonatal rats.

    PubMed

    Maki, Toshiyuki; Kawahara, Yuji; Tanonaka, Kouichi; Yagi, Akira; Takeo, Satoshi

    2002-12-01

    The possible effects of tanshinone VI (tsh), a diterpene from the root of Tan-Shen (Salvia miltiorrhiza, Bunge (Labiatae)) on hypertrophy and fibrosis in cultured neonatal rat cardiac myocytes and fibroblasts were examined. Tsh had no significant effect on protein synthesis, which was evaluated by [3H]-leucine incorporation into the acid insoluble fraction in the cells, in the absence of stimulatory factors in cardiac myocytes. The amount of protein produced in cardiac myocytes was increased by 10(-8) M endothelin-1 (ET-1), 10(-6) M phenylephrine (PE), or 10(-8) M insulin-like growth factor-1 (IGF-1), suggesting that hypertrophy of cardiac myocytes in vitro was induced by these factors. The ET-1-, PE-, or IGF-1-induced increase in protein synthesis was attenuated by treatment with 10(-5) M tsh. Treatment with 10(-5) M tsh significantly decreased the synthesis of collagen by cardiac fibroblasts, which was evaluated by [3H]-proline incorpolation into acid-insoluble fraction of the fiblobrasts, in the absence of stimulatory factors for the production. Fetal bovine serum (FBS) or IGF-1 increased collagen synthesis in a concentration-dependent manner. The increase at 5% FBS or 10(-8) M IGF-1 was inhibited by 10(-5) M tsh. Fibroblast-conditioned medium (FB-CM) increased protein synthesis in cardiac myocytes in a concentration-dependent manner (10; - 100 %). Tsh attenuated the FB-CM-induced increase in protein synthesis by cardiac myocytes. These results show that tsh may attenuate the humoral factor-induced hypertrophy of cardiac myocytes and fibrosis of cardiac fibroblasts. The findings suggest that tsh may improve the development of cardiac remodeling under pathophysiological conditions. Abbreviations. ANP:atrial natriuretic peptide DMEM:Dulbecco-modified Eagle's medium ET-1:endothelin-1 FB-CM:fibroblast-conditioned medium FBS:fetal bovine serum IGF-1:insulin-like growth factor-1 PE:phenylephrine tsh:tanshinone VI

  15. Decreased Ca2+ extrusion via Na+/Ca2+ exchange in epicardial left ventricular myocytes during compensated hypertrophy.

    PubMed

    Fowler, Mark R; Naz, James R; Graham, Mark D; Bru-Mercier, Gilles; Harrison, Simon M; Orchard, Clive H

    2005-05-01

    Hypertension-induced cardiac hypertrophy alters the amplitude and time course of the systolic Ca2+ transient of subepicardial and subendocardial ventricular myocytes. The present study was designed to elucidate the mechanisms underlying these changes. Myocytes were isolated from the left ventricular subepicardium and subendocardium of 20-wk-old spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto rats (WKY; control). We monitored intracellular Ca2+ using fluo 3 or fura 2; caffeine (20 mmol/l) was used to release Ca2+ from the sarcoplasmic reticulum (SR), and Ni2+ (10 mM) was used to inhibit Na+/Ca2+ exchange (NCX) function. SHR myocytes were significantly larger than those from WKY hearts, consistent with cellular hypertrophy. Subepicardial myocytes from SHR hearts showed larger Ca2+ transient amplitude and SR Ca2+ content and less Ca2+ extrusion via NCX compared with subepicardial WKY myocytes. These parameters did not change in subendocardial myocytes. The time course of decline of the Ca2+ transient was the same in all groups of cells, but its time to peak was shorter in subepicardial cells than in subendocardial cells in WKY and SHR and was slightly prolonged in subendocardial SHR cells compared with WKY subendocardial myocytes. It is concluded that the major change in Ca2+ cycling during compensated hypertrophy in SHR is a decrease in NCX activity in subepicardial cells; this increases SR Ca2+ content and hence Ca2+ transient amplitude, thus helping to maintain the strength of contraction in the face of an increased afterload.

  16. Hypertension-induced remodeling of cardiac excitation-contraction coupling in ventricular myocytes occurs prior to hypertrophy development.

    PubMed

    Chen-Izu, Ye; Chen, Ling; Bányász, Tamás; McCulle, Stacey L; Norton, Byron; Scharf, Steven M; Agarwal, Anuj; Patwardhan, Abhijit; Izu, Leighton T; Balke, C William

    2007-12-01

    Hypertension is a major risk factor for developing cardiac hypertrophy and heart failure. Previous studies show that hypertrophied and failing hearts display alterations in excitation-contraction (E-C) coupling. However, it is unclear whether remodeling of the E-C coupling system occurs before or after heart disease development. We hypothesized that hypertension might cause changes in the E-C coupling system that, in turn, induce hypertrophy. Here we tested this hypothesis by utilizing the progressive development of hypertensive heart disease in the spontaneously hypertensive rat (SHR) to identify a window period when SHR had just developed hypertension but had not yet developed hypertrophy. We found the following major changes in cardiac E-C coupling during this window period. 1) Using echocardiography and hemodynamics measurements, we found a decrease of left ventricular ejection fraction and cardiac output after the onset of hypertension. 2) Studies in isolated ventricular myocytes showed that myocardial contraction was also enhanced at the same time. 3) The action potential became prolonged. 4) The E-C coupling gain was increased. 5) The systolic Ca(2+) transient was augmented. These data show that profound changes in E-C coupling already occur at the onset of hypertension and precede hypertrophy development. Prolonged action potential and increased E-C coupling gain synergistically increase the Ca(2+) transient. Functionally, augmented Ca(2+) transient causes enhancement of myocardial contraction that can partially compensate for the greater workload to maintain cardiac output. The increased Ca(2+) signaling cascade as a molecular mechanism linking hypertension to cardiac hypertrophy development is also discussed.

  17. p21-Activated kinase1 (Pak1) is a negative regulator of NADPH-oxidase 2 in ventricular myocytes.

    PubMed

    DeSantiago, Jaime; Bare, Dan J; Xiao, Lei; Ke, Yunbo; Solaro, R John; Banach, Kathrin

    2014-02-01

    Ischemic conditions reduce the activity of the p21-activated kinase (Pak1) resulting in increased arrhythmic activity. Triggered arrhythmic activity during ischemia is based on changes in cellular ionic balance and the cells Ca(2+) handling properties. In the current study we used isolated mouse ventricular myocytes (VMs) deficient for the expression of Pak1 (Pak1(-/-)) to determine the mechanism by which Pak1 influences the generation of arrhythmic activity during simulated ischemia. The Ca(2+) transient amplitude and kinetics did not significantly change in wild type (WT) and Pak1(-/-) VMs during 15 min of simulated ischemia. However, Pak1(-/-) VMs exhibited an exaggerated increase in [Ca(2+)]i, which resulted in spontaneous Ca(2+) release events and waves. The Ca(2+) overload in Pak1(-/-) VMs could be suppressed with a reverse mode blocker (KB-R7943) of the sodium calcium exchanger (NCX), a cytoplasmic scavenger of reactive oxygen species (ROS; TEMPOL) or a RAC1 inhibitor (NSC23766). Measurements of the cytoplasmic ROS levels revealed that decreased Pak1 activity in Pak1(-/-) VMs or VMs treated with the Pak1 inhibitor (IPA3) enhanced cellular ROS production. The Pak1 dependent increase in ROS was attenuated in VMs deficient for NADPH oxidase 2 (NOX2; p47(phox-/-)) or in VMs where NOX2 was inhibited (gp91ds-tat). Voltage clamp recordings showed increased NCX activity in Pak1(-/-) VMs that depended on enhanced NOX2 induced ROS production. The exaggerated Ca(2+) overload in Pak1(-/-) VMs could be mimicked by low concentrations of ouabain. Overall our data show that Pak1 is a critical negative regulator of NOX2 dependent ROS production and that a latent ROS dependent stimulation of NCX activity can predispose VMs to Ca(2+) overload under conditions where no significant changes in excitation-contraction coupling are yet evident. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. p21-activated kinase1 (Pak1) is a negative regulator of NADPH-oxidase 2 in ventricular myocytes

    PubMed Central

    DeSantiago, Jaime; Bare, Dan J; Xiao, Lei; Ke, Yunbo; Solaro, R. John; Banach, Kathrin

    2014-01-01

    Ischemic conditions reduce the activity of the p21-activated kinase (Pak1) resulting in increased arrhythmic activity. Triggered arrhythmic activity during ischemia is based on changes in cellular ionic balance and the cells Ca2+ handling properties. In the current study we used isolated mouse ventricular myocytes (VMs) deficient for the expression of Pak1 (Pak1-/-) to determine the mechanism by which Pak1 influences the generation of arrhythmic activity during simulated ischemia. The Ca2+ transient amplitude and kinetics did not significantly change in wild type (WT) and Pak1-/- VMs during 15 min of simulated ischemia. However, Pak1-/- VMs exhibited an exaggerated increase in [Ca2+]i, which resulted in spontaneous Ca2+ release events and waves. The Ca2+ overload in Pak1-/- VMs could be suppressed with a reverse mode blocker (KB-R7943) of the sodium calcium exchanger (NCX), a cytoplasmic scavenger of reactive oxygen species (ROS; TEMPOL) or a RAC1 inhibitor (NSC23766). Measurements of the cytoplasmic ROS levels revealed that decreased Pak1 activity in Pak1-/- VMs or VMs treated with the Pak1 inhibitor (IPA3) enhanced cellular ROS production. The Pak1 dependent increase in ROS was attenuated in VMs deficient for NADPH oxidase 2 (NOX2; p47phox-/-) or in VMs where NOX2 was inhibited (gp91ds-tat). Voltage clamp recordings showed increased NCX activity in Pak1-/- VMs that depended on enhanced NOX2 induced ROS production. The exaggerated Ca2+ overload in Pak1-/- VMs could be mimicked by low concentrations of ouabain. Overall our data show that Pak1 is a critical negative regulator of NOX2 dependent ROS production and that a latent ROS dependent stimulation of NCX activity can predispose VMs to Ca2+ overload under conditions where no significant changes in excitation-contraction coupling are yet evident. PMID:24380729

  19. Antiarrhythmic effects of (-)-epicatechin-3-gallate, a novel sodium channel agonist in cultured neonatal rat ventricular myocytes.

    PubMed

    Wu, Adonis Zhi-Yang; Loh, Shih-Hurng; Cheng, Tzu-Hurng; Lu, Hsin-Hsiang; Lin, Cheng-I

    2013-01-01

    (-)-Epicatechin-3-gallate (ECG), a polyphenol extracted from green tea, has been proposed as an effective compound for improving cardiac contractility. However, the therapeutic potential of ECG on the treatment of arrhythmia remains unknown. We investigated the direct actions of ECG on the modulation of ion currents and cardiac cell excitability in the primary culture of neonatal rat ventricular myocyte (NRVM), which is considered a hypertrophic model for analysis of myocardial arrhythmias. By using the whole-cell patch-clamp configurations, we found ECG enhanced the slowly inactivating component of voltage-gated Na(+) currents (I(Na)) in a concentration-dependent manner (0.1-100 μM) with an EC(50) value of 3.8 μM. ECG not only shifted the current-voltage relationship of peak I(Na) to the hyperpolarizing direction but also accelerated I(Na) recovery kinetics. Working at a concentration level of I(Na) enhancement, ECG has no notable effect on voltage-gated K(+) currents and L-type Ca(2+) currents. With culture time increment, the firing rate of spontaneous action potential (sAP) in NRVMs was gradually decreased until spontaneous early after-depolarization (EAD) was observed after about one week culture. ECG increased the firing rate of normal sAP about two-fold without waveform alteration. Interestingly, the bradycardia-dependent EAD could be significantly restored by ECG in fast firing rate to normal sAP waveform. The expression of dominant cardiac sodium channel subunit, Nav1.5, was consistently detected throughout the culture periods. Our results reveal how ECG, the novel I(Na) agonist, may act as a promising candidate in clinical applications on cardiac arrhythmias. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Interferon-γ causes cardiac myocyte atrophy via selective degradation of myosin heavy chain in a model of chronic myocarditis.

    PubMed

    Cosper, Pippa F; Harvey, Pamela A; Leinwand, Leslie A

    2012-12-01

    Interferon-γ (IFN-γ), a proinflammatory cytokine, has been implicated in the pathogenesis of a number of forms of heart disease including myocarditis and congestive heart failure. In fact, overexpression of IFN-γ in mice causes dilated cardiomyopathy. However, the direct effects of IFN-γ on cardiac myocytes and the mechanism by which it causes cardiac dysfunction have not been described. Here, we present the molecular pathology of IFN-γ exposure and its effect on myofibrillar proteins in isolated neonatal rat ventricular myocytes. Treatment with IFN-γ caused cardiac myocyte atrophy attributable to a specific decrease in myosin heavy chain protein. This selective degradation of myosin heavy chain was not accompanied by a decrease in total protein synthesis or by an increase in total protein degradation. IFN-γ increased both proteasome and immunoproteasome activity in cardiac myocytes and their inhibition blocked myosin heavy chain loss and myocyte atrophy, whereas inhibition of the lysosome or autophagosome did not. Collectively, these results provide a mechanism by which IFN-γ causes cardiac pathology in the setting of chronic inflammatory diseases. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Interferon-γ Causes Cardiac Myocyte Atrophy via Selective Degradation of Myosin Heavy Chain in a Model of Chronic Myocarditis

    PubMed Central

    Cosper, Pippa F.; Harvey, Pamela A.; Leinwand, Leslie A.

    2013-01-01

    Interferon-γ (IFN-γ), a proinflammatory cytokine, has been implicated in the pathogenesis of a number of forms of heart disease including myocarditis and congestive heart failure. In fact, overexpression of IFN-γ in mice causes dilated cardiomyopathy. However, the direct effects of IFN-γ on cardiac myocytes and the mechanism by which it causes cardiac dysfunction have not been described. Here, we present the molecular pathology of IFN-γ exposure and its effect on myofibrillar proteins in isolated neonatal rat ventricular myocytes. Treatment with IFN-γ caused cardiac myocyte atrophy attributable to a specific decrease in myosin heavy chain protein. This selective degradation of myosin heavy chain was not accompanied by a decrease in total protein synthesis or by an increase in total protein degradation. IFN-γ increased both proteasome and immunoproteasome activity in cardiac myocytes and their inhibition blocked myosin heavy chain loss and myocyte atrophy, whereas inhibition of the lysosome or autophagosome did not. Collectively, these results provide a mechanism by which IFN-γ causes cardiac pathology in the setting of chronic inflammatory diseases. PMID:23058369

  2. Myocyte-Derived Hsp90 Modulates Collagen Upregulation via Biphasic Activation of STAT-3 in Fibroblasts during Cardiac Hypertrophy.

    PubMed

    Datta, Ritwik; Bansal, Trisha; Rana, Santanu; Datta, Kaberi; Datta Chaudhuri, Ratul; Chawla-Sarkar, Mamta; Sarkar, Sagartirtha

    2017-03-15

    Signal transducer and activator of transcription 3 (STAT-3)-mediated signaling in relation to upregulated collagen expression in fibroblasts during cardiac hypertrophy is well defined. Our recent findings have identified heat shock protein 90 (Hsp90) to be a critical modulator of fibrotic signaling in cardiac fibroblasts in this disease milieu. The present study was therefore intended to analyze the role of Hsp90 in the STAT-3-mediated collagen upregulation process. Our data revealed a significant difference between in vivo and in vitro results, pointing to a possible involvement of myocyte-fibroblast cross talk in this process. Cardiomyocyte-targeted knockdown of Hsp90 in rats (Rattus norvegicus) in which the renal artery was ligated showed downregulated collagen synthesis. Furthermore, the results obtained with cardiac fibroblasts conditioned with Hsp90-inhibited hypertrophied myocyte supernatant pointed toward cardiomyocytes' role in the regulation of collagen expression in fibroblasts during hypertrophy. Our study also revealed a novel signaling mechanism where myocyte-derived Hsp90 orchestrates not only p65-mediated interleukin-6 (IL-6) synthesis but also its release in exosomal vesicles. Such myocyte-derived exosomes and myocyte-secreted IL-6 are responsible in unison for the biphasic activation of STAT-3 signaling in cardiac fibroblasts that culminates in excess collagen synthesis, leading to severely compromised cardiac function during cardiac hypertrophy.

  3. Overexpression of insulin-like growth factor-1 in the heart is coupled with myocyte proliferation in transgenic mice.

    PubMed Central

    Reiss, K; Cheng, W; Ferber, A; Kajstura, J; Li, P; Li, B; Olivetti, G; Homcy, C J; Baserga, R; Anversa, P

    1996-01-01

    Transgenic mice were generated in which the cDNA for the human insulin-like growth factor 1B (IGF-1B) was placed under the control of a rat alpha-myosin heavy chain promoter. In mice heterozygous for the transgene, IGF-1B mRNA was not detectable in the fetal heart at the end of gestation, was present in modest levels at 1 day after birth, and increased progressively with postnatal maturation, reaching a peak at 75 days. Myocytes isolated from transgenic mice secreted 1.15 +/- 0.25 ng of IGF-1 per 10(6) cells per 24 hr versus 0.27 +/- 0.10 ng in myocytes from homozygous wild-type littermates. The plasma level of IGF-1 increased 84% in transgenic mice. Heart weight was comparable in wild-type littermates and transgenic mice up to 45 days of age, but a 42%, 45%, 62%, and 51% increase was found at 75, 135, 210, and 300 days, respectively, after birth. At 45, 75, and 210 days, the number of myocytes in the heart was 21%, 31%, and 55% higher, respectively, in transgenic animals. In contrast, myocyte cell volume was comparable in transgenic and control mice at all ages. In conclusion, overexpression of IGF-1 in myocytes leads to cardiomegaly mediated by an increased number of cells in the heart. Images Fig. 2 PMID:8710922

  4. Characterization of L-type calcium channel activity in atrioventricular nodal myocytes from rats with streptozotocin-induced Diabetes mellitus.

    PubMed

    Yuill, Kathryn H; Al Kury, Lina T; Howarth, Frank Christopher

    2015-11-01

    Cardiovascular complications are common in patients with Diabetes mellitus (DM). In addition to changes in cardiac muscle inotropy, electrical abnormalities are also commonly observed in these patients. We have previously shown that spontaneous cellular electrical activity is altered in atrioventricular nodal (AVN) myocytes, isolated from the streptozotocin (STZ) rat model of type-1 DM. In this study, utilizing the same model, we have characterized the changes in L-type calcium channel activity in single AVN myocytes. Ionic currents were recorded from AVN myocytes isolated from the hearts of control rats and from those with STZ-induced diabetes. Patch-clamp recordings were used to assess the changes in cellular electrical activity in individual myocytes. Type-1 DM significantly altered the cellular characteristics of L-type calcium current. A reduction in peak ICaL density was observed, with no corresponding changes in the activation parameters of the current. L-type calcium channel current also exhibited faster time-dependent inactivation in AVN myocytes from diabetic rats. A negative shift in the voltage dependence of inactivation was also evident, and a slowing of restitution parameters. These findings demonstrate that experimentally induced type-1 DM significantly alters AVN L-type calcium channel cellular electrophysiology. These changes in ion channel activity may contribute to the abnormalities in cardiac electrical function that are associated with high mortality levels in patients with DM.

  5. Molecular variants of KCNQ channels expressed in murine portal vein myocytes: a role in delayed rectifier current.

    PubMed

    Ohya, Susumu; Sergeant, Gerard P; Greenwood, Iain A; Horowitz, Burton

    2003-05-16

    We have analyzed the expression of KCNQ genes in murine portal vein myocytes and determined that of the 5 known KCNQ channels, only KCNQ1 was expressed. In addition to the full-length KCNQ1 transcript, a novel spliced form (termed KCNQ1b) was detected that had a 63 amino acid truncation at the C-terminus. KCNQ1b was not detected in heart or brain but represented approximately half the KCNQ1 transcripts expressed in PV. Antibodies specific for KCNQ1a stained cell membranes from portal vein myocytes and HEK cells expressing the channel. However, because the antibodies were generated against an epitope in the deleted, C-terminal portion of the protein, these antibodies did not stain HEK cells expressing KCNQ1b. In murine portal vein myocytes, in the presence of 5 mmol/L 4-aminopyridine, an outwardly rectifying K+ current was recorded that was sensitive to linopirdine, a specific blocker of KCNQ channels. Currents produced by the heterologous expression of KCNQ1a or KCNQ1b were inhibited by similar concentrations of linopirdine, and linopirdine prolonged the time-course of the action potential in isolated portal vein myocytes. Our data suggest that these two KCNQ1 splice forms are expressed in murine portal vein and contribute to the delayed rectifier current in these myocytes.

  6. Effect of resveratrol on L-type calcium current in rat ventricular myocytes.

    PubMed

    Zhang, Li-ping; Yin, Jing-xiang; Liu, Zheng; Zhang, Yi; Wang, Qing-shan; Zhao, Juan

    2006-02-01

    To study the effect of resveratrol on L-type calcium current (I(Ca-L)) in isolated rat ventricular myocytes and the mechanisms underlying these effects. I(Ca-L) was examined in isolated single rat ventricular myocytes by using the whole cell patch-clamp recording technique. Resveratrol (10-40 micromol/L) reduced the peak amplitude of I(Ca-L) and shifted the current-voltage (I-V) curve upwards in a concentration-dependent manner. Resveratrol (10, 20, 40 micromol/L) decreased the peak amplitude of I(Ca-L) from -14.2+/-1.5 pA/pF to -10.5+/-1.5 pA/pF (P<0.05), -7.5+/-2.4 pA/pF (P<0.01), and -5.2+/-1.2 pA/pF (P<0.01), respectively. Resveratrol (40 micromol/L) shifted the steady-state activation curve of I(Ca-L) to the right and changed the half-activation potential (V0.5) from -19.4+/-0.4 mV to -15.4+/-1.9 mV (P<0.05). Resveratrol at a concentration of 40 micromol/L did not affect the steady-state inactivation curve of I(Ca-L), but did markedly shift the time-dependent recovery curve of I(Ca-L) to the right, and slow down the recovery of I(Ca-L) from inactivation. Sodium orthovanadate (Na(3)VO(4); 1 mmol/L), a potent inhibitor of tyrosine phosphatase, significantly inhibited the effects of resveratrol (P<0.01). Resveratrol inhibited I(Ca-L) mainly by inhibiting the activation of L-type calcium channels and slowing down the recovery of L-type calcium channels from inactivation. This inhibitory effect of resveratrol was mediated by the inhibition of protein tyrosine kinase in rat ventricular myocytes.

  7. Spiral-Wave Dynamics in a Mathematical Model of Human Ventricular Tissue with Myocytes and Fibroblasts

    PubMed Central

    Nayak, Alok Ranjan; Shajahan, T. K.; Panfilov, A. V.; Pandit, Rahul

    2013-01-01

    Cardiac fibroblasts, when coupled functionally with myocytes, can modulate the electrophysiological properties of cardiac tissue. We present systematic numerical studies of such modulation of electrophysiological properties in mathematical models for (a) single myocyte-fibroblast (MF) units and (b) two-dimensional (2D) arrays of such units; our models build on earlier ones and allow for zero-, one-, and two-sided MF couplings. Our studies of MF units elucidate the dependence of the action-potential (AP) morphology on parameters such as , the fibroblast resting-membrane potential, the fibroblast conductance , and the MF gap-junctional coupling . Furthermore, we find that our MF composite can show autorhythmic and oscillatory behaviors in addition to an excitable response. Our 2D studies use (a) both homogeneous and inhomogeneous distributions of fibroblasts, (b) various ranges for parameters such as , and , and (c) intercellular couplings that can be zero-sided, one-sided, and two-sided connections of fibroblasts with myocytes. We show, in particular, that the plane-wave conduction velocity decreases as a function of , for zero-sided and one-sided couplings; however, for two-sided coupling, decreases initially and then increases as a function of , and, eventually, we observe that conduction failure occurs for low values of . In our homogeneous studies, we find that the rotation speed and stability of a spiral wave can be controlled either by controlling or . Our studies with fibroblast inhomogeneities show that a spiral wave can get anchored to a local fibroblast inhomogeneity. We also study the efficacy of a low-amplitude control scheme, which has been suggested for the control of spiral-wave turbulence in mathematical models for cardiac tissue, in our MF model both with and without heterogeneities. PMID:24023798

  8. Elevated Cytosolic Na+ Increases Mitochondrial Formation of Reactive Oxygen Species in Failing Cardiac Myocytes

    PubMed Central

    Kohlhaas, Michael; Liu, Ting; Knopp, Andreas; Zeller, Tanja; Ong, Mei Fang; Böhm, Michael; O'Rourke, Brian; Maack, Christoph

    2010-01-01

    Background —Oxidative stress is causally linked to the progression of heart failure, and mitochondria are critical sources of reactive oxygen species in failing myocardium. We previously observed that in heart failure, elevated cytosolic Na+ ([Na+]i) reduces mitochondrial Ca2+ ([Ca2+]m) by accelerating Ca2+ efflux via the mitochondrial Na+/Ca2+ exchanger. Because the regeneration of antioxidative enzymes requires NADPH, which is indirectly regenerated by the Krebs cycle, and Krebs cycle dehydrogenases are activated by [Ca2+]m, we speculated that in failing myocytes, elevated [Na+]i promotes oxidative stress. Methods and Results —We used a patch-clamp–based approach to simultaneously monitor cytosolic and mitochondrial Ca2+ and, alternatively, mitochondrial H2O2 together with NAD(P)H in guinea pig cardiac myocytes. Cells were depolarized in a voltage-clamp mode (3 Hz), and a transition of workload was induced by β-adrenergic stimulation. During this transition, NAD(P)H initially oxidized but recovered when [Ca2+]m increased. The transient oxidation of NAD(P)H was closely associated with an increase in mitochondrial H2O2 formation. This reactive oxygen species formation was potentiated when mitochondrial Ca2+ uptake was blocked (by Ru360) or Ca2+ efflux was accelerated (by elevation of [Na+]i). In failing myocytes, H2O2 formation was increased, which was prevented by reducing mitochondrial Ca2+ efflux via the mitochondrial Na+/Ca2+ exchanger. Conclusions —Besides matching energy supply and demand, mitochondrial Ca2+ uptake critically regulates mitochondrial reactive oxygen species production. In heart failure, elevated [Na+]i promotes reactive oxygen species formation by reducing mitochondrial Ca2+ uptake. This novel mechanism, by which defects in ion homeostasis induce oxidative stress, represents a potential drug target to reduce reactive oxygen species production in the failing heart. PMID:20351235

  9. Selective activation of heteromeric SK channels contributes to action potential repolarization in mouse atrial myocytes.

    PubMed

    Hancock, Jane M; Weatherall, Kate L; Choisy, Stéphanie C; James, Andrew F; Hancox, Jules C; Marrion, Neil V

    2015-05-01

    Activation of small conductance calcium-activated potassium (SK) channels is proposed to contribute to repolarization of the action potential in atrial myocytes. This role is controversial, as these cardiac SK channels appear to exhibit an uncharacteristic pharmacology. The objectives of this study were to resolve whether activation of SK channels contributes to atrial action potential repolarization and to determine the likely subunit composition of the channel. The effect of 2 SK channel inhibitors was assessed on outward current evoked in voltage clamp and on action potential duration in perforated patch and whole-cell current clamp recording from acutely isolated mouse atrial myocytes. The presence of SK channel subunits was assessed using immunocytochemistry. A significant component of outward current was reduced by the SK channel blockers apamin and UCL1684. Block by apamin displayed a sensitivity indicating that this current was carried by homomeric SK2 channels. Action potential duration was significantly prolonged by UCL1684, but not by apamin. This effect was accompanied by an increase in beat-to-beat variability and action potential triangulation. This pharmacology was matched by that of expressed heteromeric SK2-SK3 channels in HEK293 cells. Immunocytochemistry showed that atrial myocytes express both SK2 and SK3 channels with an overlapping expression pattern. Only proposed heteromeric SK2-SK3 channels are physiologically activated to contribute to action potential repolarization, which is indicated by the difference in pharmacology of evoked outward current and prolongation of atrial action potential duration. The effect of blocking this channel on the action potential suggests that SK channel inhibition during cardiac function has the potential to be proarrhythmic. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  10. Dynamics of Muscle Microcirculatory and Blood-myocyte O2 Flux During Contractions

    PubMed Central

    Poole, David C.; Copp, Steven W.; Hirai, Daniel M.; Musch, Timothy I.

    2011-01-01

    The O2 requirements of contracting skeletal muscle may increase 100-fold above rest. In 1919 August Krogh’s brilliant insights recognized the capillary as the principal site for this increased blood-myocyte O2 flux. Based on the premise that most capillaries did not sustain RBC flux at rest Krogh proposed that capillary recruitment (i.e., initiation of red blood cell (RBC) flux in previously non-flowing capillaries) increased the capillary surface area available for O2 flux and reduced mean capillary-to-mitochondrial diffusion distances. More modern experimental approaches reveal that most muscle capillaries may support RBC flux at rest. Thus, rather than contraction-induced capillary recruitment per se, increased RBC flux and hematocrit within already-flowing capillaries likely elevate perfusive and diffusive O2 conductances and hence blood-myocyte O2 flux. Additional surface area for O2 exchange is recruited but, crucially, this may occur along the length of already-flowing capillaries (i.e. longitudinal recruitment). Today, the capillary is still considered the principal site for O2 and substrate delivery to contracting skeletal muscle. Indeed, the presence of very low intramyocyte O2 partial pressures (PO2’s) and the absence of PO2 gradients, whilst refuting the relevance of diffusion distances, place an even greater importance on capillary hemodynamics. This emergent picture calls for a paradigm-shift in our understanding of the function of capillaries by de-emphasizing de novo ‘capillary recruitment.’ Diseases such as heart failure impair blood-myocyte O2 flux, in part, by decreasing the proportion of RBC-flowing capillaries. Knowledge of capillary function in healthy muscle is requisite for identification of pathology and efficient design of therapeutic treatments. PMID:21199399

  11. Activation of PKN mediates survival of cardiac myocytes in the heart during ischemia/reperfusion

    PubMed Central

    Takagi, Hiromitsu; Hsu, Chiao-Po; Kajimoto, Katsuya; Shao, Dan; Yang, Yanfei; Maejima, Yasuhiro; Zhai, Peiyong; Yehia, Ghassan; Yamada, Chikaomi; Zablocki, Daniela; Sadoshima, Junichi

    2011-01-01

    Rationale The function of PKN, a stress-activated protein kinase, in the heart is poorly understood. Objective We investigated the functional role of PKN during myocardial ischemia/reperfusion (I/R). Methods and Results PKN is phosphorylated at Thr774 in hearts subjected to ischemia and reperfusion. Myocardial infarction/area at risk (MI/AAR) produced by 45 min ischemia and 24 hours reperfusion was significantly smaller in transgenic mice with cardiac specific overexpression of constitutively active (CA) PKN (Tg-CAPKN) than in non-transgenic (NTg) mice (15 ± 5 vs 38 ± 5%, p<0.01). The number of TUNEL positive nuclei was significantly lower in Tg-CAPKN (0.3 ± 0.2 vs 1.0 ± 0.2%, p<0.05). Both MI/AAR (63 ± 9 vs 45 ± 8%, p<0.05) and the number of TUNEL positive cells (7.9 ± 1.0 vs 1.3 ± 0.9%, p<0.05) were greater in transgenic mice with cardiac specific overexpression of dominant negative PKN (Tg-DNPKN) than in NTg mice. Thr774 phosphorylation of PKN was also observed in response to H2O2 in cultured cardiac myocytes. Stimulation of PKN prevented, whereas inhibition of PKN aggravated cell death induced by H2O2, suggesting that the cell protective effect of PKN is cell-autonomous in cardiac myocytes. PKN induced phosphorylation of alpha B crystallin and increased cardiac proteasome activity. The infarct reducing effect in Tg-CAPKN mice was partially inhibited by epoxomicin, a proteasome inhibitor. Conclusion PKN is activated by I/R and inhibits apoptosis of cardiac myocytes, thereby protecting the heart from I/R injury. PKN mediates phosphorylation of alpha B crystallin and stimulation of proteasome activity, which in part mediates the protective effect of PKN in the heart. PMID:20595653

  12. Testosterone induces an intracellular calcium increase by a nongenomic mechanism in cultured rat cardiac myocytes.

    PubMed

    Vicencio, Jose Miguel; Ibarra, Cristian; Estrada, Manuel; Chiong, Mario; Soto, Dagoberto; Parra, Valentina; Diaz-Araya, Guillermo; Jaimovich, Enrique; Lavandero, Sergio

    2006-03-01

    Androgens are associated with important effects on the heart, such as hypertrophy or apoptosis. These responses involve the intracellular androgen receptor. However, the mechanisms of how androgens activate several membrane signaling pathways are not fully elucidated. We have investigated the effect of testosterone on intracellular calcium in cultured rat cardiac myocytes. Using fluo3-AM and epifluorescence microscopy, we found that exposure to testosterone rapidly (1-7 min) led to an increase of intracellular Ca2+, an effect that persisted in the absence of external Ca2+. Immunocytochemical analysis showed that these effects occurred before translocation of the intracellular androgen receptor to the perinuclear zone. Pretreatment of the cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethylester and thapsigargin blocked this response, suggesting the involvement of internal Ca2+ stores. U-73122, an inhibitor of phospholipase C, and xestospongin C, an inhibitor of inositol 1,4,5-trisphosphate receptor, abolished the Ca2+ signal. The rise in intracellular Ca2+ was not inhibited by cyproterone, an antagonist of intracellular androgen receptor. Moreover, the cell impermeant testosterone-BSA complex also produced the Ca2+ signal, indicating its origin in the plasma membrane. This effect was observed in cultured neonatal and adult rat cardiac myocytes. Pertussis toxin and the adenoviral transduction of beta- adrenergic receptor kinase carboxy terminal peptide, a peptide inhibitor of betagamma-subunits of G protein, abolished the testosterone-induced Ca2+ release. In summary, this is the first study of rapid, nongenomic intracellular Ca2+ signaling of testosterone in cardiac myocytes. Using various inhibitors and testosterone-BSA complex, the mechanism for the rapid, testosterone-induced increase in intracellular Ca2+ is through activation of a plasma membrane receptor associated with a Pertussis toxin-sensitive G protein-phospholipase C

  13. Ca2+ paradox injury mediated through TRPC channels in mouse ventricular myocytes.

    PubMed

    Kojima, Akiko; Kitagawa, Hirotoshi; Omatsu-Kanbe, Mariko; Matsuura, Hiroshi; Nosaka, Shuichi

    2010-12-01

    BACKGROUND AND PURPOSE The Ca(2+) paradox is an important phenomenon associated with Ca(2+) overload-mediated cellular injury in myocardium. The present study was undertaken to elucidate molecular and cellular mechanisms for the development of the Ca(2+) paradox. EXPERIMENTAL APPROACH Fluorescence imaging was performed on fluo-3 loaded quiescent mouse ventricular myocytes using confocal laser scanning microscope. KEY RESULTS The Ca(2+) paradox was readily evoked by restoration of the extracellular Ca(2+) following 10-20 min of nominally Ca(2+)-free superfusion. The Ca(2+) paradox was significantly reduced by blockers of transient receptor potential canonical (TRPC) channels (2-aminoethoxydiphenyl borate, Gd(3+), La(3+)) and anti-TRPC1 antibody. The sarcoplasmic reticulum (SR) Ca(2+) content, assessed by caffeine application, gradually declined during Ca(2+)-free superfusion, which was further accelerated by metabolic inhibition. Block of SR Ca(2+) leak by tetracaine prevented Ca(2+) paradox. The Na(+) /Ca(2+) exchange (NCX) blocker KB-R7943 significantly inhibited Ca(2+) paradox when applied throughout superfusion period, but had little effect when added for a period of 3 min before and during Ca(2+) restoration. The SR Ca(2+) content was better preserved during Ca(2+) depletion by KB-R7943. Immunocytochemistry confirmed the expression of TRPC1, in addition to TRPC3 and TRPC4, in mouse ventricular myocytes. CONCLUSIONS AND IMPLICATIONS These results provide evidence that (i) the Ca(2+) paradox is primarily mediated by Ca(2+) entry through TRPC (probably TRPC1) channels that are presumably activated by SR Ca(2+) depletion; and (ii) reverse mode NCX contributes little to the Ca(2+) paradox, whereas inhibition of NCX during Ca(2+) depletion improves SR Ca(2+) loading, and is associated with reduced incidence of Ca(2+) paradox in mouse ventricular myocytes. © 2010 The Authors. British Journal of Pharmacology © 2010 The British Pharmacological Society.

  14. Ca2+ paradox injury mediated through TRPC channels in mouse ventricular myocytes

    PubMed Central

    Kojima, Akiko; Kitagawa, Hirotoshi; Omatsu-Kanbe, Mariko; Matsuura, Hiroshi; Nosaka, Shuichi

    2010-01-01

    BACKGROUND AND PURPOSE The Ca2+ paradox is an important phenomenon associated with Ca2+ overload-mediated cellular injury in myocardium. The present study was undertaken to elucidate molecular and cellular mechanisms for the development of the Ca2+ paradox. EXPERIMENTAL APPROACH Fluorescence imaging was performed on fluo-3 loaded quiescent mouse ventricular myocytes using confocal laser scanning microscope. KEY RESULTS The Ca2+ paradox was readily evoked by restoration of the extracellular Ca2+ following 10–20 min of nominally Ca2+-free superfusion. The Ca2+ paradox was significantly reduced by blockers of transient receptor potential canonical (TRPC) channels (2-aminoethoxydiphenyl borate, Gd3+, La3+) and anti-TRPC1 antibody. The sarcoplasmic reticulum (SR) Ca2+ content, assessed by caffeine application, gradually declined during Ca2+-free superfusion, which was further accelerated by metabolic inhibition. Block of SR Ca2+ leak by tetracaine prevented Ca2+ paradox. The Na+/Ca2+ exchange (NCX) blocker KB-R7943 significantly inhibited Ca2+ paradox when applied throughout superfusion period, but had little effect when added for a period of 3 min before and during Ca2+ restoration. The SR Ca2+ content was better preserved during Ca2+ depletion by KB-R7943. Immunocytochemistry confirmed the expression of TRPC1, in addition to TRPC3 and TRPC4, in mouse ventricular myocytes. CONCLUSIONS AND IMPLICATIONS These results provide evidence that (i) the Ca2+ paradox is primarily mediated by Ca2+ entry through TRPC (probably TRPC1) channels that are presumably activated by SR Ca2+ depletion; and (ii) reverse mode NCX contributes little to the Ca2+ paradox, whereas inhibition of NCX during Ca2+ depletion improves SR Ca2+ loading, and is associated with reduced incidence of Ca2+ paradox in mouse ventricular myocytes. PMID:20718730

  15. Decreased transient outward K+ current in ventricular myocytes from acromegalic rats.

    PubMed

    Xu, X P; Best, P M

    1991-03-01

    Cardiac hypertrophy and heart failure are common to acromegalic patients who have abnormally high serum growth hormone (GH). While the function of cardiac muscle is clearly affected by chronically elevated GH, the electrical activity of myocytes from hearts with GH-dependent hypertrophy has not been studied. We used adult, female Wistar-Furth rats with induced GH-secreting tumors to study the effect of excessive GH on ion channels of cardiac myocytes. GH-secreting tumors were induced by subcutaneous inoculation of GH3 cells. Eight weeks after inoculation, the rats had doubled their body weight and heart size compared with age-matched controls. There were no differences in either action potential amplitude or resting potential of right ventricular myocytes from control and tumor-bearing rats. However, action potential duration increased significantly in tumor-bearing rats; the time to 50% repolarization was 23 +/- 14 ms (n = 10) compared with 6.6 +/- 1.5 ms (n = 14) in controls. The prolongation of the action potential was mainly due to a decrease in density of a transient outward current (It,o) carried by K+. The normalized conductance for It,o decreased from 0.53 +/- 0.10 nS/pF (n = 25) in controls to 0.33 +/- 0.09 nS/pF (n = 26) in tumor-bearing rats. The decrease in It,o) and increase in heart weight occurred with a similar time course. The increased action potential duration prolongs Ca2+ influx through L-type Ca2+ channels in the tumor-bearing animals; this may be important in cardiovascular adaptation.

  16. Regulation of intracellular calcium by bupivacaine isomers in cardiac myocytes from Wistar rats.

    PubMed

    Chedid, Núbia G B; Sudo, Roberto T; Aguiar, Marli I S; Trachez, Margarete M; Masuda, Masako O; Zapata-Sudo, Gisele

    2006-03-01

    In this study we investigated the effects of a racemic mixture of bupivacaine (RS(+/-)bupivacaine) and its isomers (S(-)bupivacaine and R(+)bupivacaine) on the Ca2+ handling by ventricular myocytes from Wistar rats. Single ventricular myocytes were enzymatically isolated and loaded with the fluorescent Ca2+ indicator fura 2-am to estimate intracellular Ca2+ concentration during contraction and relaxation cycles. S(-)bupivacaine (10 muM) significantly increased peak amplitude and the rate of increase of Ca2+ transients in 155% +/- 54% (P < 0.05) and 194% +/- 94% (P < 0.01) of control. However, exposure to R(+)bupivacaine had no effect on either peak amplitude or rate of increase at any concentration tested. Saponin-skinned ventricular fibers were used to investigate the effect of bupivacaine on the intracellular Ca2+ regulation by sarcoplasmic reticulum (SR) and on the Ca2+ sensitivity of contractile system. S(-), R(+), and RS(+/-)bupivacaine induced Ca2+ release from SR (P < 0.01). In SR-disrupted skinned ventricular cells, bupivacaine and its isomers (5 mM) increased the sensitivity of contractile system to Ca(2+). S(-), RS(+/-), and R(+)bupivacaine significantly increased pCa50 from 5.8 +/- 0.1, 5.8 +/- 0.1, and 5.8 +/- 0.1, to 6.1 +/- 0.1 (P < 0.05), 6.0 +/- 0.1 (P < 0.05), and 6.1 +/- 0.1 (P < 0.05). Ca2+ release from SR through RyR2 activation could explain the increase of Ca2+ transients in cardiac cells. Increased intracellular Ca2+ in cardiac myocytes display a stereoselectivity to S(-)bupivacaine.

  17. Regional acidosis locally inhibits but remotely stimulates Ca2+ waves in ventricular myocytes.

    PubMed

    Ford, Kerrie L; Moorhouse, Emma L; Bortolozzi, Mario; Richards, Mark A; Swietach, Pawel; Vaughan-Jones, Richard D

    2017-07-01

    Spontaneous Ca2+ waves in cardiomyocytes are potentially arrhythmogenic. A powerful controller of Ca2+ waves is the cytoplasmic H+ concentration ([H+]i), which fluctuates spatially and temporally in conditions such as myocardial ischaemia/reperfusion. H+-control of Ca2+ waves is poorly understood. We have therefore investigated how [H+]i co-ordinates their initiation and frequency. Spontaneous Ca2+ waves were imaged (fluo-3) in rat isolated ventricular myocytes, subjected to modest Ca2+-overload. Whole-cell intracellular acidosis (induced by acetate-superfusion) stimulated wave frequency. Pharmacologically blocking sarcolemmal Na+/H+ exchange (NHE1) prevented this stimulation, unveiling inhibition by H+. Acidosis also increased Ca2+ wave velocity. Restricting acidosis to one end of a myocyte, using a microfluidic device, inhibited Ca2+ waves in the acidic zone (consistent with ryanodine receptor inhibition), but stimulated wave emergence elsewhere in the cell. This remote stimulation was absent when NHE1 was selectively inhibited in the acidic zone. Remote stimulation depended on a locally evoked, NHE1-driven rise of [Na+]i that spread rapidly downstream. Acidosis influences Ca2+ waves via inhibitory Hi+ and stimulatory Nai+ signals (the latter facilitating intracellular Ca2+-loading through modulation of sarcolemmal Na+/Ca2+ exchange activity). During spatial [H+]i-heterogeneity, Hi+-inhibition dominates in acidic regions, while rapid Nai+ diffusion stimulates waves in downstream, non-acidic regions. Local acidosis thus simultaneously inhibits and stimulates arrhythmogenic Ca2+-signalling in the same myocyte. If the principle of remote H+-stimulation of Ca2+ waves also applies in multicellular myocardium, it raises the possibility of electrical disturbances being driven remotely by adjacent ischaemic areas, which are known to be intensely acidic.

  18. Calcium alternans in a couplon network model of ventricular myocytes: role of sarcoplasmic reticulum load

    PubMed Central

    Nivala, Michael

    2012-01-01

    Intracellular calcium (Ca) alternans in cardiac myocytes have been shown in many experimental studies, and the mechanisms remain incompletely understood. We recently developed a “3R theory” that links Ca sparks to whole cell Ca alternans through three critical properties: randomness of Ca sparks; recruitment of a Ca spark by neighboring Ca sparks; and refractoriness of Ca release units. In this study, we used computer simulation of a physiologically detailed mathematical model of a ventricular myocyte couplon network to study how sarcoplasmic reticulum (SR) Ca load and other physiological parameters, such as ryanodine receptor sensitivity, SR uptake rate, Na-Ca exchange strength, and Ca buffer levels affect Ca alternans in the context of 3R theory. We developed a method to calculate the parameters used in the 3R theory (i.e., the primary spark rate and the recruitment rate) from the physiologically detailed Ca cycling model and paced the model periodically to elicit Ca alternans. We show that alternans only occurs for an intermediate range of the SR Ca load, and the underlying mechanism can be explained via its effects on the 3Rs. Furthermore, we show that altering the physiological parameters not only directly changes the 3Rs but also alters the SR Ca load, having an indirect effect on the 3Rs as well. Therefore, our present study links the SR Ca load and other physiological parameters to whole cell Ca alternans through the framework of the 3R theory, providing a general mechanistic understanding of Ca alternans in ventricular myocytes. PMID:22661509

  19. The Heat Shock Paradox and Cardiac Myocytes: Role of Heat Shock Factor

    PubMed Central

    Kobba, Samuel; Kim, Se-Chan; Chen, Le; Kim, EunJung; Tran, Alice L.; Knuefermann, Pascal; Knowlton, Anne A.

    2012-01-01

    The induction of the heat shock response is accepted to be a protective response, reducing injury and improving cell survival. However, when inflammation precedes heat shock there is an unexpected increase in injury, known as the heat shock paradox, which is hypothesized to be a mechanism underlying multi-organ dysfunction. We hypothesized that the heat shock paradox would occur in adult cardiac myocytes and that heat shock factor (HSF)1 would contribute to injury. Heat shock (HS) at 42°C and TNF (10 ng/ml) were used as the HS and the inflammatory insult, respectively. The combination of TNF followed by HS (TNF/HS) caused the greatest amount of apoptosis in adult rat cardiac myocytes. TNF/HS resulted in an increase in heat shock protein (HSP) 60, compared to untreated cells, those receiving HS/TNF, or TNF alone. There was no increase in heme oxygenase 1 in any of the groups. HSP72 increased in all the groups, with the greatest levels with TNF/HS. NFκB activation was greatest with TNF/HS. Pretreatment with a DNA binding decoy for HSF1 prevented the increase in HSPs and decreased apoptosis in all groups. However, the increase in iNOS, seen in all treatment groups, was unaffected by the HSF1 binding decoy. We conclude that the heat shock paradox occurs in adult cardiac myocytes, that HSP60 is increased as part of the heat shock paradox, and that HSF1 activation contributes to injury. PMID:21192280

  20. Transverse tubules are a common feature in large mammalian atrial myocytes including human

    PubMed Central

    Richards, M. A.; Clarke, J. D.; Saravanan, P.; Voigt, N.; Dobrev, D.; Eisner, D. A.; Trafford, A. W.

    2011-01-01

    Transverse (t) tubules are surface membrane invaginations that are present in all mammalian cardiac ventricular cells. The apposition of L-type Ca2+ channels on t tubules with the sarcoplasmic reticulum (SR) constitutes a “calcium release unit” and allows close coupling of excitation to the rise in systolic Ca2+. T tubules are virtually absent in the atria of small mammals, and therefore Ca2+ release from the SR occurs initially at the periphery of the cell and then propagates into the interior. Recent work has, however, shown the occurrence of t tubules in atrial myocytes from sheep. As in the ventricle, Ca2+ release in these cells occurs simultaneously in central and peripheral regions. T tubules in both the atria and the ventricle are lost in disease, contributing to cellular dysfunction. The aim of this study was to determine if the occurrence of t tubules in the atrium is restricted to sheep or is a more general property of larger mammals including humans. In atrial tissue sections from human, horse, cow, and sheep, membranes were labeled using wheat germ agglutinin. As previously shown in sheep, extensive t-tubule networks were present in horse, cow, and human atrial myocytes. Analysis shows half the volume of the cell lies within 0.64 ± 0.03, 0.77 ± 0.03, 0.84 ± 0.03, and 1.56 ± 0.19 μm of t-tubule membrane in horse, cow, sheep, and human atrial myocytes, respectively. The presence of t tubules in the human atria may play an important role in determining the spatio-temporal properties of the systolic Ca2+ transient and how this is perturbed in disease. PMID:21841013

  1. Uncoupling the coupled calcium and zinc dyshomeostasis in cardiac myocytes and mitochondria seen in aldosteronism.

    PubMed

    Kamalov, German; Ahokas, Robert A; Zhao, Wenyuan; Zhao, Tieqiang; Shahbaz, Atta U; Johnson, Patti L; Bhattacharya, Syamal K; Sun, Yao; Gerling, Ivan C; Weber, Karl T

    2010-03-01

    Intracellular [Ca2+]i overloading in cardiomyocytes is a fundamental pathogenic event associated with chronic aldosterone/salt treatment (ALDOST) and accounts for an induction of oxidative stress that leads to necrotic cell death and consequent myocardial scarring. This prooxidant response to Ca2+ overloading in cardiac myocytes and mitochondria is intrinsically coupled to simultaneous increased Zn2+ entry serving as an antioxidant. Herein, we investigated whether Ca2+ and Zn2+ dyshomeostasis and prooxidant to antioxidant dysequilibrium seen at 4 weeks, the pathologic stage of ALDOST, could be uncoupled in favor of antioxidants, using cotreatment with a ZnSO4 supplement; pyrrolidine dithiocarbamate (PDTC), a Zn2+ ionophore; or ZnSO4 in combination with amlodipine (Amlod), a Ca2+ channel blocker. We monitored and compared responses in cardiomyocyte free [Ca2+]i and [Zn2+]i together with biomarkers of oxidative stress in cardiac myocytes and mitochondria. At week 4 of ALDOST and compared with controls, we found (1) an elevation in [Ca2+]i coupled with [Zn2+]i and (2) increased mitochondrial H2O2 production and increased mitochondrial and cardiac 8-isoprostane levels. Cotreatment with the ZnSO4 supplement alone, PDTC, or ZnSO4+Amlod augmented the rise in cardiomyocyte [Zn2+]i beyond that seen with ALDOST alone, whereas attenuating the rise in [Ca2+]i, which together served to reduce oxidative stress. Thus, a coupled dyshomeostasis of intracellular Ca2+ and Zn2+ was demonstrated in cardiac myocytes and mitochondria during 4-week ALDOST, where prooxidants overwhelm antioxidant defenses. This intrinsically coupled Ca2+ and Zn2+ dyshomeostasis could be uncoupled in favor of antioxidant defenses by selectively increasing free [Zn2+]i and/or reducing [Ca2+]i using cotreatment with ZnSO4 or PDTC alone or ZnSO4+Amlod in combination.

  2. UNCOUPLING THE COUPLED CALCIUM AND ZINC DYSHOMEOSTASIS IN CARDIAC MYOCYTES AND MITOCHONDRIA SEEN IN ALDOSTERONISM

    PubMed Central

    Kamalov, German; Ahokas, Robert A.; Zhao, Wenyuan; Zhao, Tieqiang; Shahbaz, Atta U.; Johnson, Patti L.; Bhattacharya, Syamal K.; Sun, Yao; Gerling, Ivan C.; Weber, Karl T.

    2010-01-01

    Intracellular [Ca2+]i overloading in cardiomyocytes is a fundamental pathogenic event associated with chronic aldosterone/salt treatment (ALDOST) and accounts for an induction of oxidative stress that leads to necrotic cell death and consequent myocardial scarring. This prooxidant response to Ca2+ overloading in cardiac myocytes and mitochondria is intrinsically coupled to simultaneous increased Zn2+ entry serving as an antioxidant. Herein, we investigated whether Ca2+ and Zn2+ dyshomeostasis and prooxidant:antioxidant dysequilibrium seen at 4 wks, the pathologic stage of ALDOST, could be uncoupled in favor of antioxidants, using cotreatment with a ZnSO4 supplement, pyrrolidine dithiocarbamate (PDTC), a Zn2+ ionophore, or ZnSO4 in combination with amlodipine (Amlod), a Ca2+ channel blocker. We monitored and compared responses in cardiomyocyte free [Ca2+]i and [Zn2+]i together with biomarkers of oxidative stress in cardiac myocytes and mitochondria. At wk 4 ALDOST and compared to controls, we found: i) an elevation in [Ca2+]i coupled with [Zn2+]i; and ii) increased mitochondrial H2O2 production, and increased mitochondrial and cardiac 8-isoprostane levels. Cotreatment with the ZnSO4 supplement alone, PDTC, or ZnSO4+Amlod augmented the rise in cardiomyocyte [Zn2+]i beyond that seen with ALDOST alone, while attenuating the rise in [Ca2+]i which together served to reduce oxidative stress. Thus, a coupled dyshomeostasis of intracellular Ca2+ and Zn2+ was demonstrated in cardiac myocytes and mitochondria during 4 wks ALDOST, where prooxidants overwhelm antioxidant defenses. This intrinsically coupled Ca2+ and Zn2+ dyshomeostasis could be uncoupled in favor of antioxidant defenses by selectively increasing free [Zn2+]i and/or reducing [Ca2+]i using cotreatment with ZnSO4 or PDTC alone or ZnSO4+Amlod in combination. PMID:20051880

  3. Structural and molecular mechanisms of gap junction remodeling in epicardial border zone myocytes following myocardial infarction.

    PubMed

    Kieken, Fabien; Mutsaers, Nancy; Dolmatova, Elena; Virgil, Kelly; Wit, Andrew L; Kellezi, Admir; Hirst-Jensen, Bethany J; Duffy, Heather S; Sorgen, Paul L

    2009-05-08

    Lateralization of the ventricular gap junction protein connexin 43 (Cx43) occurs in epicardial border zone myocytes following myocardial infarction (MI) and is arrhythmogenic. Alterations in Cx43 protein partners have been hypothesized to play a role in lateralization although mechanisms by which this occurs are unknown. To examine potential mechanisms we did nuclear magnetic resonance, yeast 2-hybrid, and surface plasmon resonance studies and found that the SH3 domain of the tyrosine kinase c-Src binds to the Cx43 scaffolding protein zonula occludens-1 (ZO-1) with a higher affinity than does Cx43. This suggests c-Src outcompetes Cx43 for binding to ZO-1, thus acting as a chaperone for ZO-1 and causing unhooking from Cx43. To determine whether c-Src/ZO-1 interactions affect Cx43 lateralization within the epicardial border zone, we performed Western blot, immunoprecipitation, and immunolocalization for active c-Src (p-cSrc) post-MI using a canine model of coronary occlusion. We found that post-MI p-cSrc interacts with ZO-1 as Cx43 begins to decrease its interaction with ZO-1 and undergo initial loss of intercalated disk localization. This indicates that the molecular mechanisms by which Cx43 is lost from the intercalated disk following MI includes an interaction of p-cSrc with ZO-1 and subsequent loss of scaffolding of Cx43 leaving Cx43 free to diffuse in myocyte membranes from areas of high Cx43, as at the intercalated disk, to regions of lower Cx43 content, the lateral myocyte membrane. Therefore shifts in Cx43 protein partners may underlie, in part, arrhythmogenesis in the post-MI heart.

  4. Irreversible injury of isolated adult rat myocytes. Osmotic fragility during metabolic inhibition.

    PubMed Central

    Ganote, C. E.; Vander Heide, R. S.

    1988-01-01

    Isolated myocytes can be established as a valid model for studying changes in cytoskeletal proteins during the development of irreversible injury only if isolated cells develop lesions similar to those that occur during irreversible injury to intact hearts, specifically osmotic fragility and subsarcolemmal blebs. In the first experiment, isolated cells were irreversibly injured by metabolic inhibition with 5 mM Iodoacetic acid (IAA) and 6 mM amobarbital (Amy). Osmotic fragility of control and injured cells was determined by comparing the rates of development of trypan blue permeability during 60 minutes of isotonic or hypotonic (50% reduction in osmolality) incubations. Cell morphology was monitored by light and electron microscopy. Control cells remained elongated and excluded trypan blue. Metabolically inhibited cells rapidly contracted to a nearly square shape. The inhibited squared cells initially excluded trypan blue, but during 60 minutes of incubation became permeable to trypan blue. Cells in hypotonic buffer developed blue staining at a more rapid rate than cells in isotonic buffer, indicating increased osmotic fragility. In a second experiment, control and inhibited cells were first incubated for 25 minutes in isotonic buffer and then in either isotonic or hypotonic buffer. In this experiment, inhibited cells also developed more extensive and rapid permeability increases when transferred to the hypotonic buffer than cells maintained in the isotonic buffer. In both experiments, increased permeability of cells to trypan blue was accompanied by formation of subsarcolemmal blebs along the lateral cell border and at the intercalated disks. The results show that metabolically inhibited, isolated myocytes do exhibit morphologic lesions and increased osmotic fragility properties similar to those reported during anoxic or ischemic injury to intact hearts. Therefore, isolated myocytes may be a useful model with which to study cytoskeletal-sarcolemmal membrane

  5. The calcium-frequency response in the rat ventricular myocyte: an experimental and modelling study.

    PubMed

    Gattoni, Sara; Røe, Åsmund Treu; Frisk, Michael; Louch, William E; Niederer, Steven A; Smith, Nicolas P

    2016-08-01

    In the majority of species, including humans, increased heart rate increases cardiac contractility. This change is known as the force-frequency response (FFR). The majority of mammals have a positive force-frequency relationship (FFR). In rat the FFR is controversial. We derive a species- and temperature-specific data-driven model of the rat ventricular myocyte. As a measure of the FFR, we test the effects of changes in frequency and extracellular calcium on the calcium-frequency response (CFR) in our model and three altered models. The results show a biphasic peak calcium-frequency response, due to biphasic behaviour of the ryanodine receptor and the combined effect of the rapid calmodulin buffer and the frequency-dependent increase in diastolic calcium. Alterations to the model reveal that inclusion of Ca(2+) /calmodulin-dependent protein kinase II (CAMKII)-mediated L-type channel and transient outward K(+) current activity enhances the positive magnitude calcium-frequency response, and the absence of CAMKII-mediated increase in activity of the sarco/endoplasmic reticulum Ca(2+) -ATPase induces a negative magnitude calcium-frequency response. An increase in heart rate affects the strength of cardiac contraction by altering the Ca(2+) transient as a response to physiological demands. This is described by the force-frequency response (FFR), a change in developed force with pacing frequency. The majority of mammals, including humans, have a positive FFR, and cardiac contraction strength increases with heart rate. However, the rat and mouse are exceptions, with the majority of studies reporting a negative FFR, while others report either a biphasic or a positive FFR. Understanding the differences in the FFR between humans and rats is fundamental to interpreting rat-based experimental findings in the context of human physiology. We have developed a novel model of rat ventricular electrophysiology and calcium dynamics, derived predominantly from experimental data

  6. GSK-3β/NFAT Signaling Is Involved in Testosterone-Induced Cardiac Myocyte Hypertrophy.

    PubMed

    Duran, Javier; Oyarce, Cesar; Pavez, Mario; Valladares, Denisse; Basualto-Alarcon, Carla; Lagos, Daniel; Barrientos, Genaro; Troncoso, Mayarling Francisca; Ibarra, Cristian; Estrada, Manuel

    2016-01-01

    Testosterone induces cardiac hypertrophy through a mechanism that involves a concerted crosstalk between cytosolic and nuclear signaling pathways. Nuclear factor of activated T-cells (NFAT) is associated with the promotion of cardiac hypertrophy, glycogen synthase kinase-3β (GSK-3β) is considered to function as a negative regulator, mainly by modulating NFAT activity. However, the role played by calcineurin-NFAT and GSK-3β signaling in testosterone-induced cardiac hypertrophy has remained unknown. Here, we determined that testosterone stimulates cardiac myocyte hypertrophy through NFAT activation and GSK-3β inhibition. Testosterone increased the activity of NFAT-luciferase (NFAT-Luc) in a time- and dose-dependent manner, with the activity peaking after 24 h of stimulation with 100 nM testosterone. NFAT-Luc activity induced by testosterone was blocked by the calcineurin inhibitors FK506 and cyclosporine A and by 11R-VIVIT, a specific peptide inhibitor of NFAT. Conversely, testosterone inhibited GSK-3β activity as determined by increased GSK-3β phosphorylation at Ser9 and β-catenin protein accumulation, and also by reduction in β-catenin phosphorylation at residues Ser33, Ser37, and Thr41. GSK-3β inhibition with 1-azakenpaullone or a GSK-3β-targeting siRNA increased NFAT-Luc activity, whereas overexpression of a constitutively active GSK-3β mutant (GSK-3βS9A) inhibited NFAT-Luc activation mediated by testosterone. Testosterone-induced cardiac myocyte hypertrophy was established by increased cardiac myocyte size and [3H]-leucine incorporation (as a measurement of cellular protein synthesis). Calcineurin-NFAT inhibition abolished and GSK-3β inhibition promoted the hypertrophy stimulated by testosterone. GSK-3β activation by GSK-3βS9A blocked the increase of hypertrophic markers induced by testosterone. Moreover, inhibition of intracellular androgen receptor prevented testosterone-induced NFAT-Luc activation. Collectively, these results suggest that

  7. Toward improved myocardial maturity in an organ-on-chip platform with immature cardiac myocytes.

    PubMed

    Sheehy, Sean P; Grosberg, Anna; Qin, Pu; Behm, David J; Ferrier, John P; Eagleson, Mackenzie A; Nesmith, Alexander P; Krull, David; Falls, James G; Campbell, Patrick H; McCain, Megan L; Willette, Robert N; Hu, Erding; Parker, Kevin K

    2017-01-01

    In vitro studies of cardiac physiology and drug response have traditionally been performed on individual isolated cardiomyocytes or isotropic monolayers of cells that may not mimic desired physiological traits of the laminar adult myocardium. Recent studies have reported a number of advances to Heart-on-a-Chip platforms for the fabrication of more sophisticated engineered myocardium, but cardiomyocyte immaturity remains a challenge. In the anisotropic musculature of the heart, interactions between cardiac myocytes, the extracellular matrix (ECM), and neighboring cells give rise to changes in cell shape and tissue architecture that have been implicated in both development and disease. We hypothesized that engineered myocardium fabricated from cardiac myocytes cultured in vitro could mimic the physiological characteristics and gene expression profile of adult heart muscle. To test this hypothesis, we fabricated engineered myocardium comprised of neonatal rat ventricular myocytes with laminar architectures reminiscent of that observed in the mature heart and compared their sarcomere organization, contractile performance characteristics, and cardiac gene expression profile to that of isolated adult rat ventricular muscle strips. We found that anisotropic engineered myocardium demonstrated a similar degree of global sarcomere alignment, contractile stress output, and inotropic concentration-response to the β-adrenergic agonist isoproterenol. Moreover, the anisotropic engineered myocardium exhibited comparable myofibril related gene expression to muscle strips isolated from adult rat ventricular tissue. These results suggest that tissue architecture serves an important developmental cue for building in vitro model systems of the myocardium that could potentially recapitulate the physiological characteristics of the adult heart. Impact statement With the recent focus on developing in vitro Organ-on-Chip platforms that recapitulate tissue and organ-level physiology

  8. Ca(2+) release events in cardiac myocytes up close: insights from fast confocal imaging.

    PubMed

    Shkryl, Vyacheslav M; Blatter, Lothar A

    2013-01-01

    The spatio-temporal properties of Ca(2+) transients during excitation-contraction coupling and elementary Ca(2+) release events (Ca(2+) sparks) were studied in atrial and ventricular myocytes with ultra-fast confocal microscopy using a Zeiss LSM 5 LIVE system that allows sampling rates of up to 60 kHz. Ca(2+) sparks which originated from subsarcolemmal junctional sarcoplasmic reticulum (j-SR) release sites in atrial myocytes were anisotropic and elongated in the longitudinal direction of the cell. Ca(2+) sparks in atrial cells originating from non-junctional SR and in ventricular myocytes were symmetrical. Ca(2+) spark recording in line scan mode at 40,000 lines/s uncovered step-like increases of [Ca(2+)]i. 2-D imaging of Ca(2+) transients revealed an asynchronous activation of release sites and allowed the sequential recording of Ca(2+) entry through surface membrane Ca(2+) channels and subsequent activation of Ca(2+)-induced Ca(2+) release. With a latency of 2.5 ms after application of an electrical stimulus, Ca(2+) entry could be detected that was followed by SR Ca(2+) release after an additional 3 ms delay. Maximum Ca(2+) release was observed 4 ms after the beginning of release. The timing of Ca(2+) entry and release was confirmed by simultaneous [Ca(2+)]i and membrane current measurements using the whole cell voltage-clamp technique. In atrial cells activation of discrete individual release sites of the j-SR led to spatially restricted Ca(2+) release events that fused into a peripheral ring of elevated [Ca(2+)]i that subsequently propagated in a wave-like fashion towards the center of the cell. In ventricular myocytes asynchronous Ca(2+) release signals from discrete sites with no preferential subcellular location preceded the whole-cell Ca(2+) transient. In summary, ultra-fast confocal imaging allows investigation of Ca(2+) signals with a time resolution similar to patch clamp technique, however in a less invasive fashion.

  9. GSK-3β/NFAT Signaling Is Involved in Testosterone-Induced Cardiac Myocyte Hypertrophy

    PubMed Central

    Duran, Javier; Oyarce, Cesar; Pavez, Mario; Valladares, Denisse; Basualto-Alarcon, Carla; Lagos, Daniel; Barrientos, Genaro; Troncoso, Mayarling Francisca; Ibarra, Cristian

    2016-01-01

    Testosterone induces cardiac hypertrophy through a mechanism that involves a concerted crosstalk between cytosolic and nuclear signaling pathways. Nuclear factor of activated T-cells (NFAT) is associated with the promotion of cardiac hypertrophy, glycogen synthase kinase-3β (GSK-3β) is considered to function as a negative regulator, mainly by modulating NFAT activity. However, the role played by calcineurin-NFAT and GSK-3β signaling in testosterone-induced cardiac hypertrophy has remained unknown. Here, we determined that testosterone stimulates cardiac myocyte hypertrophy through NFAT activation and GSK-3β inhibition. Testosterone increased the activity of NFAT-luciferase (NFAT-Luc) in a time- and dose-dependent manner, with the activity peaking after 24 h of stimulation with 100 nM testosterone. NFAT-Luc activity induced by testosterone was blocked by the calcineurin inhibitors FK506 and cyclosporine A and by 11R-VIVIT, a specific peptide inhibitor of NFAT. Conversely, testosterone inhibited GSK-3β activity as determined by increased GSK-3β phosphorylation at Ser9 and β-catenin protein accumulation, and also by reduction in β-catenin phosphorylation at residues Ser33, Ser37, and Thr41. GSK-3β inhibition with 1-azakenpaullone or a GSK-3β-targeting siRNA increased NFAT-Luc activity, whereas overexpression of a constitutively active GSK-3β mutant (GSK-3βS9A) inhibited NFAT-Luc activation mediated by testosterone. Testosterone-induced cardiac myocyte hypertrophy was established by increased cardiac myocyte size and [3H]-leucine incorporation (as a measurement of cellular protein synthesis). Calcineurin-NFAT inhibition abolished and GSK-3β inhibition promoted the hypertrophy stimulated by testosterone. GSK-3β activation by GSK-3βS9A blocked the increase of hypertrophic markers induced by testosterone. Moreover, inhibition of intracellular androgen receptor prevented testosterone-induced NFAT-Luc activation. Collectively, these results suggest that

  10. Electrophysiological effects of OPC-88117, a new antiarrhythmic agent on papillary muscles and single ventricular myocytes isolated from guinea-pig hearts.

    PubMed Central

    Toyama, J.; Kodama, I.; Honjo, H.; Kamiya, K.

    1989-01-01

    1. The effects of OPC-88117, a new antiarrhythmic agent, on transmembrane action potentials were examined in right ventricular papillary muscles and in single ventricular myocytes isolated from guinea-pig hearts. 2. In papillary muscles, OPC-88117 above 3 x 10(-6) M caused a dose-dependent prolongation of action potential duration (APD). 3. OPC-88117 above 3 x 10(-5) M caused a significant decrease in the maximum upstroke velocity (Vmax) of the action potential without affecting the resting membrane potential. The inhibition of Vmax was enhanced at higher stimulation frequencies. 4. In the presence of OPC-88117, trains of stimuli at rates greater than or equal to 1.0 Hz led to a use-dependent inhibition of Vmax with rapid onset. The time constant for the recovery of Vmax from the use-dependent block was 456 ms. 5. The curves relating membrane potential and Vmax were shifted by OPC-88117 to the direction of more negative potentials (9 mV at 10(-4) M). 6. In single ventricular myocytes treated with OPC-88117 (1-3 x 10(-4) M), the Vmax of test action potentials preceded by conditioning clamp pulses to 0 mV was decreased progressively as the clamp pulse duration was prolonged. 7. These findings suggest that the primary electrophysiological effect of OPC-88117 on the cardiac muscle cell is prolongation of APD (Class III action) and that at high concentrations, it may also possess a lignocaine-like sodium channel inhibitory effect (Class I action). PMID:2553186

  11. Caveolae act as membrane reserves which limit mechanosensitive I(Cl,swell) channel activation during swelling in the rat ventricular myocyte.

    PubMed

    Kozera, Lukasz; White, Ed; Calaghan, Sarah

    2009-12-14

    Many ion channels are preferentially located in caveolae where compartmentalisation/scaffolding with signal transduction components regulates their activity. Channels that are mechanosensitive may be additionally dependent on caveolar control of the mechanical state of the membrane. Here we test which mechanism underlies caveolar-regulation of the mechanosensitive I(Cl,swell) channel in the adult cardiac myocyte. Rat ventricular myocytes were exposed to solution of 0.02 tonicity (T; until lysis), 0.64T for 10-15 min (swelling), and/or methyl-beta-cyclodextrin (MBCD; to disrupt caveolae). MBCD and 0.64T swelling reduced the number of caveolae visualised by electron microscopy by 75 and 50% respectively. MBCD stimulated translocation of caveolin 3 from caveolae-enriched buoyant membrane fractions, but both caveolin 1 and 3 remained in buoyant fractions after swelling. I(Cl,swell) inhibition in control cells decreased time to half-maximal volume (t(0.5,vol); 0.64T), consistent with a role for I(Cl,swell) in volume regulation. MBCD-treated cells showed reduced time to lysis (0.02T) and t(0.5,vol) (0.64T) compared with controls. The negative inotropic response to swelling (an index of I(Cl,swell) activation) was enhanced by MBCD. These data show that disrupting caveolae removes essential membrane reserves, which speeds swelling in hyposmotic conditions, and thereby promotes activation of I(Cl,swell). They illustrate a general principle whereby caveolae as a membrane reserve limit increases in membrane tension during stretch/swelling thereby restricting mechanosensitive channel activation.