Okubo, Hiroyuki; Iwai, Masanori; Iwai, Sosuke; Chaen, Shigeru
2010-05-28
Previous in vitro motility assays using bipolar myosin thick filaments demonstrated that actin filaments were capable of moving in both directions along the myosin filament tracks. The movements; however, were slower in the direction leading away from the central bare zone than towards it. To understand the mechanism underlying these different direction-dependent motilities, we have examined the effects of temperature on the velocities of the bidirectional movements along reconstituted myosin filaments. Activation energies of the movements were determined by Arrhenius plots at high and low concentrations of ATP. As a result, the thermal activation energy of the movement away from the central bare zone was significantly higher than that of the movement toward the zone. Given that the backward movement away from the central bare zone would cause the myosin heads to be constrained and the stiffness of the cross-bridges to increase, these results suggest that elastic energy required for the cross-bridge transition is supplied by thermal fluctuations. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Foe, Victoria E.; von Dassow, George
2008-01-01
The cytokinetic furrow arises from spatial and temporal regulation of cortical contractility. To test the role microtubules play in furrow specification, we studied myosin II activation in echinoderm zygotes by assessing serine19-phosphorylated regulatory light chain (pRLC) localization after precisely timed drug treatments. Cortical pRLC was globally depressed before cytokinesis, then elevated only at the equator. We implicated cell cycle biochemistry (not microtubules) in pRLC depression, and differential microtubule stability in localizing the subsequent myosin activation. With no microtubules, pRLC accumulation occurred globally instead of equatorially, and loss of just dynamic microtubules increased equatorial pRLC recruitment. Nocodazole treatment revealed a population of stable astral microtubules that formed during anaphase; among these, those aimed toward the equator grew longer, and their tips coincided with cortical pRLC accumulation. Shrinking the mitotic apparatus with colchicine revealed pRLC suppression near dynamic microtubule arrays. We conclude that opposite effects of stable versus dynamic microtubules focuses myosin activation to the cell equator during cytokinesis. PMID:18955555
Painter, R G; Ginsberg, M H
1984-11-01
We have examined the F-actin and myosin distribution in resting and thrombin-activated platelets by double label immunofluorescence microscopy. In resting, discoid platelets, F-actin and myosin staining was distributed in a diffuse pattern throughout the interior of the cell with slight accentuation at the cell periphery. In contrast, platelet factor 4 antigen (PF4) was more centrally localized in a fine punctate distribution which is consistent with its localization in alpha-granules. Within 5 sec after thrombin stimulation both F-actin and myosin staining were increased at the periphery of the now spherical platelets. Subsequently, a myosin-containing spherical structure decreased in diameter closely surrounding a phase-dense central zone. In contrast, F-actin staining continued to be accentuated at the cell periphery and was prominent in filopodia and blebs. As previously shown, PF4 staining was localized after 30 sec within large intracellular masses that corresponded to closed vacuolar structures at the ultrastructural level. Morphometric analysis of electron micrographs showed that formation of these vacuolar structures kinetically paralleled alpha-granule disappearance and preceded PF4 release. These PF4-containing structures translocated to the cell periphery after 1-3 min, where they appeared to fuse with the plasma membrane. Ultrastructural analysis of thin sections showed that the myosin-rich spherical structure spatially and temporally correlated with a band of microfilaments that closely surrounded the organelle-rich central zone of the cell. Morphometric analysis of these micrographs showed that the absolute volume of this central zone decreased with time after thrombin addition, showing a significant change after 15 sec and reaching a maximum value after 3-5 min. Changes in the volume of this compartment kinetically preceded PF4 release. On the basis of these data, we propose that an actomyosin contractile force is generated which centripetally redistributes the myosinrich structure and organelle zone. Conceivably this inward force may not only accelerate granule-granule fusion to form intracellular secretory vacuoles, but may also provide aid in their extrusion toward the platelet plasma membrane.
Reverse actin sliding triggers strong myosin binding that moves tropomyosin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bekyarova, T.I.; Reedy, M.C.; Baumann, B.A.J.
2008-09-03
Actin/myosin interactions in vertebrate striated muscles are believed to be regulated by the 'steric blocking' mechanism whereby the binding of calcium to the troponin complex allows tropomyosin (TM) to change position on actin, acting as a molecular switch that blocks or allows myosin heads to interact with actin. Movement of TM during activation is initiated by interaction of Ca{sup 2+} with troponin, then completed by further displacement by strong binding cross-bridges. We report x-ray evidence that TM in insect flight muscle (IFM) moves in a manner consistent with the steric blocking mechanism. We find that both isometric contraction, at highmore » [Ca{sup 2+}], and stretch activation, at lower [Ca{sup 2+}], develop similarly high x-ray intensities on the IFM fourth actin layer line because of TM movement, coinciding with x-ray signals of strong-binding cross-bridge attachment to helically favored 'actin target zones.' Vanadate (Vi), a phosphate analog that inhibits active cross-bridge cycling, abolishes all active force in IFM, allowing high [Ca{sup 2+}] to elicit initial TM movement without cross-bridge attachment or other changes from relaxed structure. However, when stretched in high [Ca{sup 2+}], Vi-'paralyzed' fibers produce force substantially above passive response at pCa {approx} 9, concurrent with full conversion from resting to active x-ray pattern, including x-ray signals of cross-bridge strong-binding and TM movement. This argues that myosin heads can be recruited as strong-binding 'brakes' by backward-sliding, calcium-activated thin filaments, and are as effective in moving TM as actively force-producing cross-bridges. Such recruitment of myosin as brakes may be the major mechanism resisting extension during lengthening contractions.« less
NASA Technical Reports Server (NTRS)
Muller, S. A.; Haner, M.; Ortiz, I.; Aebi, U.; Epstein, H. F.
2001-01-01
In the thick filaments of body muscle in Caenorhabditis elegans, myosin A and myosin B isoforms and a subpopulation of paramyosin, a homologue of myosin heavy chain rods, are organized about a tubular core. As determined by scanning transmission electron microscopy, the thick filaments show a continuous decrease in mass-per-length (MPL) from their central zones to their polar regions. This is consistent with previously reported morphological studies and suggests that both their content and structural organization are microdifferentiated as a function of position. The cores are composed of a second distinct subpopulation of paramyosin in association with the alpha, beta, and gamma-filagenins. MPL measurements suggest that cores are formed from seven subfilaments containing four strands of paramyosin molecules, rather than the two originally proposed. The periodic locations of the filagenins within different regions and the presence of a central zone where myosin A is located, implies that the cores are also microdifferentiated with respect to molecular content and structure. This differentiation may result from a novel "induced strain" assembly mechanism based upon the interaction of the filagenins, paramyosin and myosin A. The cores may then serve as "differentiated templates" for the assembly of myosin B and paramyosin in the tapering, microdifferentiated polar regions of the thick filaments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Shenping; Liu, Jun; Reedy, Mary C.
2010-10-22
Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filamentmore » density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the 'target zone', situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77{sup o}/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127{sup o} range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very different from strong binding attachments.« less
Functional adaptation between yeast actin and its cognate myosin motors.
Stark, Benjamin C; Wen, Kuo-Kuang; Allingham, John S; Rubenstein, Peter A; Lord, Matthew
2011-09-02
We employed budding yeast and skeletal muscle actin to examine the contribution of the actin isoform to myosin motor function. While yeast and muscle actin are highly homologous, they exhibit different charge density at their N termini (a proposed myosin-binding interface). Muscle myosin-II actin-activated ATPase activity is significantly higher with muscle versus yeast actin. Whether this reflects inefficiency in the ability of yeast actin to activate myosin is not known. Here we optimized the isolation of two yeast myosins to assess actin function in a homogenous system. Yeast myosin-II (Myo1p) and myosin-V (Myo2p) accommodate the reduced N-terminal charge density of yeast actin, showing greater activity with yeast over muscle actin. Increasing the number of negative charges at the N terminus of yeast actin from two to four (as in muscle) had little effect on yeast myosin activity, while other substitutions of charged residues at the myosin interface of yeast actin reduced activity. Thus, yeast actin functions most effectively with its native myosins, which in part relies on associations mediated by its outer domain. Compared with yeast myosin-II and myosin-V, muscle myosin-II activity was very sensitive to salt. Collectively, our findings suggest differing degrees of reliance on electrostatic interactions during weak actomyosin binding in yeast versus muscle. Our study also highlights the importance of native actin isoforms when considering the function of myosins.
The actin-activated ATPase of co-polymer filaments of myosin and myosin-rod.
Stepkowski, D; Orlova, A A; Moos, C
1994-01-01
The actin activated ATPase of myosin at low ionic strength shows a complex dependence on actin concentration, in contrast with the simple hyperbolic actin activation kinetics of heavy meromyosin and subfragment-1. To investigate how the aggregation of myosin influences the actomyosin ATPase kinetics, we have studied the actin-activated ATPase of mixed filaments in which the myosin molecules are separated from each other by copolymerization with myosin rod. Electron microscopy of copolymer filaments, alone and bound to actin, indicates that the myosin heads are distributed randomly along the co-polymer filaments. The actin-activated ATPase of myosin decreases with increasing rod, approaching a plateau of about 30% of the control at a rod/myosin molar ratio of 4:1. The decrease in ATPase persists even at Vmax, the extrapolated limit at infinite actin, indicating that it is not due merely to the loss of cooperative actin binding. Furthermore, the actin dependence of the ATPase still shows a biphasic character like that of control myosin, even at rod/myosin ratio of 12:1, so this complexity is not probably due solely to the structural proximity of myosin molecules, but may involve a non-equivalence of myosin heads or myosin molecules in the filament environment. Images Figure 1 Figure 2 PMID:8198528
Manickam, Manoj; Jalani, Hitesh B; Pillaiyar, Thanigaimalai; Sharma, Niti; Boggu, Pulla Reddy; Venkateswararao, Eeda; Lee, You-Jung; Jeon, Eun-Seok; Jung, Sang-Hun
2017-07-07
A series of flexible urea derivatives have been synthesized and demonstrated as selective cardiac myosin ATPase activator. Among them 1-phenethyl-3-(3-phenylpropyl)urea (1, cardiac myosin ATPase activation at 10 μM = 51.1%; FS = 18.90; EF = 12.15) and 1-benzyl-3-(3-phenylpropyl)urea (9, cardiac myosin ATPase activation = 53.3%; FS = 30.04; EF = 18.27) showed significant activity in vitro and in vivo. The change of phenyl ring with tetrahydropyran-4-yl moiety viz., 1-(3-phenylpropyl)-3-((tetrahydro-2H-pyran-4-yl)methyl)urea (14, cardiac myosin ATPase activation = 81.4%; FS = 20.50; EF = 13.10), and morpholine moiety viz., 1-(2-morpholinoethyl)-3-(3-phenylpropyl)urea (21, cardiac myosin ATPase activation = 44.0%; FS = 24.79; EF = 15.65), proved to be efficient to activate the cardiac myosin. The potent compounds 1, 9, 14 and 21 were found to be selective for cardiac myosin over skeletal and smooth myosins. Thus, these urea derivatives are potent scaffold to develop as a newer cardiac myosin activator for the treatment of systolic heart failure. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Myosin VIIa as a common component of cilia and microvilli.
Wolfrum, U; Liu, X; Schmitt, A; Udovichenko, I P; Williams, D S
1998-01-01
The distribution of myosin VIIa, which is defective or absent in Usher syndrome 1B, was studied in a variety of tissues by immunomicroscopy. The primary aim was to determine whether this putative actin-based mechanoenzyme is a common component of cilia. Previously, it has been proposed that defective ciliary function might be the basis of some forms of Usher syndrome. Myosin VIIa was detected in cilia from cochlear hair cells, olfactory neurons, kidney distal tubules, and lung bronchi. It was also found to cofractionate with the axonemal fraction of retinal photoreceptor cells. Immunolabeling appeared most concentrated in the periphery of the transition zone of the cilia. This general presence of a myosin in cilia is surprising, given that cilia are dominated by microtubules, and not actin filaments. In addition to cilia, myosin VIIa was also found in actin-rich microvilli of different types of cell. We conclude that myosin VIIa is a common component of cilia and microvilli.
A novel actin binding site of myosin required for effective muscle contraction.
Várkuti, Boglárka H; Yang, Zhenhui; Kintses, Bálint; Erdélyi, Péter; Bárdos-Nagy, Irén; Kovács, Attila L; Hári, Péter; Kellermayer, Miklós; Vellai, Tibor; Málnási-Csizmadia, András
2012-02-12
F-actin serves as a track for myosin's motor functions and activates its ATPase activity by several orders of magnitude, enabling actomyosin to produce effective force against load. Although actin activation is a ubiquitous property of all myosin isoforms, the molecular mechanism and physiological role of this activation are unclear. Here we describe a conserved actin-binding region of myosin named the 'activation loop', which interacts with the N-terminal segment of actin. We demonstrate by biochemical, biophysical and in vivo approaches using transgenic Caenorhabditis elegans strains that the interaction between the activation loop and actin accelerates the movement of the relay, stimulating myosin's ATPase activity. This interaction results in efficient force generation, but it is not essential for the unloaded motility. We conclude that the binding of actin to myosin's activation loop specifically increases the ratio of mechanically productive to futile myosin heads, leading to efficient muscle contraction.
Sugi, Haruo; Chaen, Shigeru; Kobayashi, Takakazu; Abe, Takahiro; Kimura, Kazushige; Saeki, Yasutake; Ohnuki, Yoshiki; Miyakawa, Takuya; Tanokura, Masaru; Sugiura, Seiryo
2014-01-01
Muscle contraction results from attachment-detachment cycles between myosin heads extending from myosin filaments and actin filaments. It is generally believed that a myosin head first attaches to actin, undergoes conformational changes to produce force and motion in muscle, and then detaches from actin. Despite extensive studies, the molecular mechanism of myosin head conformational changes still remains to be a matter for debate and speculation. The myosin head consists of catalytic (CAD), converter (CVD) and lever arm (LD) domains. To give information about the role of these domains in the myosin head performance, we have examined the effect of three site-directed antibodies to the myosin head on in vitro ATP-dependent actin-myosin sliding and Ca2+-activated contraction of muscle fibers. Antibody 1, attaching to junctional peptide between 50K and 20K heavy chain segments in the CAD, exhibited appreciable effects neither on in vitro actin-myosin sliding nor muscle fiber contraction. Since antibody 1 covers actin-binding sites of the CAD, one interpretation of this result is that rigor actin-myosin linkage is absent or at most a transient intermediate in physiological actin-myosin cycling. Antibody 2, attaching to reactive lysine residue in the CVD, showed a marked inhibitory effect on in vitro actin-myosin sliding without changing actin-activated myosin head (S1) ATPase activity, while it showed no appreciable effect on muscle contraction. Antibody 3, attaching to two peptides of regulatory light chains in the LD, had no significant effect on in vitro actin-myosin sliding, while it reduced force development in muscle fibers without changing MgATPase activity. The above definite differences in the effect of antibodies 2 and 3 between in vitro actin-myosin sliding and muscle contraction can be explained by difference in experimental conditions; in the former, myosin heads are randomly oriented on a glass surface, while in the latter myosin heads are regularly arranged within filament-lattice structures.
Sugi, Haruo; Chaen, Shigeru; Kobayashi, Takakazu; Abe, Takahiro; Kimura, Kazushige; Saeki, Yasutake; Ohnuki, Yoshiki; Miyakawa, Takuya; Tanokura, Masaru; Sugiura, Seiryo
2014-01-01
Muscle contraction results from attachment-detachment cycles between myosin heads extending from myosin filaments and actin filaments. It is generally believed that a myosin head first attaches to actin, undergoes conformational changes to produce force and motion in muscle, and then detaches from actin. Despite extensive studies, the molecular mechanism of myosin head conformational changes still remains to be a matter for debate and speculation. The myosin head consists of catalytic (CAD), converter (CVD) and lever arm (LD) domains. To give information about the role of these domains in the myosin head performance, we have examined the effect of three site-directed antibodies to the myosin head on in vitro ATP-dependent actin-myosin sliding and Ca2+-activated contraction of muscle fibers. Antibody 1, attaching to junctional peptide between 50K and 20K heavy chain segments in the CAD, exhibited appreciable effects neither on in vitro actin-myosin sliding nor muscle fiber contraction. Since antibody 1 covers actin-binding sites of the CAD, one interpretation of this result is that rigor actin-myosin linkage is absent or at most a transient intermediate in physiological actin-myosin cycling. Antibody 2, attaching to reactive lysine residue in the CVD, showed a marked inhibitory effect on in vitro actin-myosin sliding without changing actin-activated myosin head (S1) ATPase activity, while it showed no appreciable effect on muscle contraction. Antibody 3, attaching to two peptides of regulatory light chains in the LD, had no significant effect on in vitro actin-myosin sliding, while it reduced force development in muscle fibers without changing MgATPase activity. The above definite differences in the effect of antibodies 2 and 3 between in vitro actin-myosin sliding and muscle contraction can be explained by difference in experimental conditions; in the former, myosin heads are randomly oriented on a glass surface, while in the latter myosin heads are regularly arranged within filament-lattice structures. PMID:24918754
Drosophila non-muscle myosin II motor activity determines the rate of tissue folding
Vasquez, Claudia G; Heissler, Sarah M; Billington, Neil; Sellers, James R; Martin, Adam C
2016-01-01
Non-muscle cell contractility is critical for tissues to adopt shape changes. Although, the non-muscle myosin II holoenzyme (myosin) is a molecular motor that powers contraction of actin cytoskeleton networks, recent studies have questioned the importance of myosin motor activity cell and tissue shape changes. Here, combining the biochemical analysis of enzymatic and motile properties for purified myosin mutants with in vivo measurements of apical constriction for the same mutants, we show that in vivo constriction rate scales with myosin motor activity. We show that so-called phosphomimetic mutants of the Drosophila regulatory light chain (RLC) do not mimic the phosphorylated RLC state in vitro. The defect in the myosin motor activity in these mutants is evident in developing Drosophila embryos where tissue recoil following laser ablation is decreased compared to wild-type tissue. Overall, our data highlights that myosin activity is required for rapid cell contraction and tissue folding in developing Drosophila embryos. DOI: http://dx.doi.org/10.7554/eLife.20828.001 PMID:28035903
Distinct Functional Interactions between Actin Isoforms and Nonsarcomeric Myosins
Müller, Mirco; Diensthuber, Ralph P.; Chizhov, Igor; Claus, Peter; Heissler, Sarah M.; Preller, Matthias; Taft, Manuel H.; Manstein, Dietmar J.
2013-01-01
Despite their near sequence identity, actin isoforms cannot completely replace each other in vivo and show marked differences in their tissue-specific and subcellular localization. Little is known about isoform-specific differences in their interactions with myosin motors and other actin-binding proteins. Mammalian cytoplasmic β- and γ-actin interact with nonsarcomeric conventional myosins such as the members of the nonmuscle myosin-2 family and myosin-7A. These interactions support a wide range of cellular processes including cytokinesis, maintenance of cell polarity, cell adhesion, migration, and mechano-electrical transduction. To elucidate differences in the ability of isoactins to bind and stimulate the enzymatic activity of individual myosin isoforms, we characterized the interactions of human skeletal muscle α-actin, cytoplasmic β-actin, and cytoplasmic γ-actin with human myosin-7A and nonmuscle myosins-2A, -2B and -2C1. In the case of nonmuscle myosins-2A and -2B, the interaction with either cytoplasmic actin isoform results in 4-fold greater stimulation of myosin ATPase activity than was observed in the presence of α-skeletal muscle actin. Nonmuscle myosin-2C1 is most potently activated by β-actin and myosin-7A by γ-actin. Our results indicate that β- and γ-actin isoforms contribute to the modulation of nonmuscle myosin-2 and myosin-7A activity and thereby to the spatial and temporal regulation of cytoskeletal dynamics. FRET-based analyses show efficient copolymerization abilities for the actin isoforms in vitro. Experiments with hybrid actin filaments show that the extent of actomyosin coupling efficiency can be regulated by the isoform composition of actin filaments. PMID:23923011
Shaffer, Justin F.; Kier, William M.
2012-01-01
SUMMARY The speed of muscle contraction is largely controlled at the sarcomere level by the ATPase activity of the motor protein myosin. Differences in amino acid sequence in catalytically important regions of myosin yield different myosin isoforms with varying ATPase activities and resulting differences in cross-bridge cycling rates and interfilamentary sliding velocities. Modulation of whole-muscle performance by changes in myosin isoform ATPase activity is regarded as a universal mechanism to tune contractile properties, especially in vertebrate muscles. Invertebrates such as squid, however, may exhibit an alternative mechanism to tune contractile properties that is based on differences in muscle ultrastructure, including variable myofilament and sarcomere lengths. To determine definitively whether contractile properties of squid muscles are regulated via different myosin isoforms (i.e. different ATPase activities), the nucleotide and amino acid sequences of the myosin heavy chain from the squid Doryteuthis pealeii were determined from the mantle, arm, tentacle, fin and funnel retractor musculature. We identified three myosin heavy chain isoforms in squid muscular tissues, with differences arising at surface loop 1 and the carboxy terminus. All three isoforms were detected in all five tissues studied. These results suggest that the muscular tissues of D. pealeii express identical myosin isoforms, and it is likely that differences in muscle ultrastructure, not myosin ATPase activity, represent the most important mechanism for tuning contractile speeds. PMID:22189767
Mouse Myosin-19 Is a Plus-end-directed, High-duty Ratio Molecular Motor*
Lu, Zekuan; Ma, Xiao-Nan; Zhang, Hai-Man; Ji, Huan-Hong; Ding, Hao; Zhang, Jie; Luo, Dan; Sun, Yujie; Li, Xiang-dong
2014-01-01
Class XIX myosin (Myo19) is a vertebrate-specific unconventional myosin, responsible for the transport of mitochondria. To characterize biochemical properties of Myo19, we prepared recombinant mouse Myo19-truncated constructs containing the motor domain and the IQ motifs using the baculovirus/Sf9 expression system. We identified regulatory light chain (RLC) of smooth muscle/non-muscle myosin-2 as the light chain of Myo19. The actin-activated ATPase activity and the actin-gliding velocity of Myo19-truncated constructs were about one-third and one-sixth as those of myosin-5a, respectively. The apparent affinity of Myo19 to actin was about the same as that of myosin-5a. The RLCs bound to Myo19 could be phosphorylated by myosin light chain kinase, but this phosphorylation had little effect on the actin-activated ATPase activity and the actin-gliding activity of Myo19-truncated constructs. Using dual fluorescence-labeled actin filaments, we determined that Myo19 is a plus-end-directed molecular motor. We found that, similar to that of the high-duty ratio myosin, such as myosin-5a, ADP release rate was comparable with the maximal actin-activated ATPase activity of Myo19, indicating that ADP release is a rate-limiting step for the ATPase cycle of acto-Myo19. ADP strongly inhibited the actin-activated ATPase activity and actin-gliding activity of Myo19-truncated constructs. Based on the above results, we concluded that Myo19 is a high-duty ratio molecular motor moving to the plus-end of the actin filament. PMID:24825904
Price, Kari L.; Rose, Lesilee S.
2017-01-01
The anaphase spindle determines the position of the cytokinesis furrow, such that the contractile ring assembles in an equatorial zone between the two spindle poles. Contractile ring formation is mediated by RhoA activation at the equator by the centralspindlin complex and midzone microtubules. Astral microtubules also inhibit RhoA accumulation at the poles. In the Caenorhabditis elegans one-cell embryo, the astral microtubule–dependent pathway requires anillin, NOP-1, and LET-99. LET-99 is well characterized for generating the asymmetric cortical localization of the Gα-dependent force-generating complex that positions the spindle during asymmetric division. However, whether the role of LET-99 in cytokinesis is specific to asymmetric division and whether it acts through Gα to promote furrowing are unclear. Here we show that LET-99 contributes to furrowing in both asymmetrically and symmetrically dividing cells, independent of its function in spindle positioning and Gα regulation. LET-99 acts in a pathway parallel to anillin and is required for myosin enrichment into the contractile ring. These and other results suggest a positive feedback model in which LET-99 localizes to the presumptive cleavage furrow in response to the spindle and myosin. Once positioned there, LET-99 enhances myosin accumulation to promote furrowing in both symmetrically and asymmetrically dividing cells. PMID:28701343
Impacts of Usher Syndrome Type IB Mutations on Human Myosin VIIa Motor Function†
Watanabe, Shinya; Umeki, Nobuhisa; Ikebe, Reiko; Ikebe, Mitsuo
2010-01-01
Usher syndrome (USH) is a human hereditary disorder characterized by profound congenital deafness, retinitis pigmentosa and vestibular dysfunction. Myosin VIIa has been identified as the responsible gene for USH type 1B, and a number of missense mutations have been identified in the affected families. However, the molecular basis of the dysfunction of USH gene, myosin VIIa, in the affected families is unknown to date. Here we clarified the effects of USH1B mutations on human myosin VIIa motor function for the first time. The missense mutations of USH1B significantly inhibited the actin activation of ATPase activity of myosin VIIa. G25R, R212C, A397D and E450Q mutations abolished the actin-activated ATPase activity completely. P503L mutation increased the basal ATPase activity for 2-3 fold, but reduced the actin-activated ATPase activity to 50% of the wild type. While all the mutations examined, except for R302H, reduced the affinity for actin and the ATP hydrolysis cycling rate, they did not largely decrease the rate of ADP release from acto-myosin, suggesting that the mutations reduce the duty ratio of myosin VIIa. Taken together, the results suggest that the mutations responsible for USH1B cause the complete loss of the actin-activated ATPase activity or the reduction of duty ratio of myosin VIIa. PMID:18700726
Nonmuscle myosin is regulated during smooth muscle contraction.
Yuen, Samantha L; Ogut, Ozgur; Brozovich, Frank V
2009-07-01
The participation of nonmuscle myosin in force maintenance is controversial. Furthermore, its regulation is difficult to examine in a cellular context, as the light chains of smooth muscle and nonmuscle myosin comigrate under native and denaturing electrophoresis techniques. Therefore, the regulatory light chains of smooth muscle myosin (SM-RLC) and nonmuscle myosin (NM-RLC) were purified, and these proteins were resolved by isoelectric focusing. Using this method, intact mouse aortic smooth muscle homogenates demonstrated four distinct RLC isoelectric variants. These spots were identified as phosphorylated NM-RLC (most acidic), nonphosphorylated NM-RLC, phosphorylated SM-RLC, and nonphosphorylated SM-RLC (most basic). During smooth muscle activation, NM-RLC phosphorylation increased. During depolarization, the increase in NM-RLC phosphorylation was unaffected by inhibition of either Rho kinase or PKC. However, inhibition of Rho kinase blocked the angiotensin II-induced increase in NM-RLC phosphorylation. Additionally, force for angiotensin II stimulation of aortic smooth muscle from heterozygous nonmuscle myosin IIB knockout mice was significantly less than that of wild-type littermates, suggesting that, in smooth muscle, activation of nonmuscle myosin is important for force maintenance. The data also demonstrate that, in smooth muscle, the activation of nonmuscle myosin is regulated by Ca(2+)-calmodulin-activated myosin light chain kinase during depolarization and a Rho kinase-dependent pathway during agonist stimulation.
Toepfer, Christopher N; Sikkel, Markus B; Caorsi, Valentina; Vydyanath, Anupama; Torre, Iratxe; Copeland, O'Neal; Lyon, Alexander R; Marston, Steven B; Luther, Pradeep K; Macleod, Kenneth T; West, Timothy G; Ferenczi, Michael A
2016-08-01
Myocardial remodeling in response to chronic myocardial infarction (CMI) progresses through two phases, hypertrophic "compensation" and congestive "decompensation." Nothing is known about the ability of uninfarcted myocardium to produce force, velocity, and power during these clinical phases, even though adaptation in these regions likely drives progression of compensation. We hypothesized that enhanced cross-bridge-level contractility underlies mechanical compensation and is controlled in part by changes in the phosphorylation states of myosin regulatory proteins. We induced CMI in rats by left anterior descending coronary artery ligation. We then measured mechanical performance in permeabilized ventricular trabecula taken distant from the infarct zone and assayed myosin regulatory protein phosphorylation in each individual trabecula. During full activation, the compensated myocardium produced twice as much power and 31% greater isometric force compared with noninfarcted controls. Isometric force during submaximal activations was raised >2.4-fold, while power was 2-fold greater. Electron and confocal microscopy demonstrated that these mechanical changes were not a result of increased density of contractile protein and therefore not an effect of tissue hypertrophy. Hence, sarcomere-level contractile adaptations are key determinants of enhanced trabecular mechanics and of the overall cardiac compensatory response. Phosphorylation of myosin regulatory light chain (RLC) increased and remained elevated post-MI, while phosphorylation of myosin binding protein-C (MyBP-C) was initially depressed but then increased as the hearts became decompensated. These sensitivities to CMI are in accordance with phosphorylation-dependent regulatory roles for RLC and MyBP-C in crossbridge function and with compensatory adaptation in force and power that we observed in post-CMI trabeculae. Copyright © 2016 the American Physiological Society.
Zihni, Ceniz; Harris, Andrew R.; Bailly, Maryse; Charras, Guillaume T.; Balda, Maria S.; Matter, Karl
2012-01-01
Actinomyosin activity is an important driver of cell locomotion and has been shown to promote collective cell migration of epithelial sheets as well as single cell migration and tumor cell invasion. However, the molecular mechanisms underlying activation of cortical myosin to stimulate single cell movement, and the relationship between the mechanisms that drive single cell locomotion and those that mediate collective cell migration of epithelial sheets are incompletely understood. Here, we demonstrate that p114RhoGEF, an activator of RhoA that associates with non-muscle myosin IIA, regulates collective cell migration of epithelial sheets and tumor cell invasion. Depletion of p114RhoGEF resulted in specific spatial inhibition of myosin activation at cell-cell contacts in migrating epithelial sheets and the cortex of migrating single cells, but only affected double and not single phosphorylation of myosin light chain. In agreement, overall elasticity and contractility of the cells, processes that rely on persistent and more constant forces, were not affected, suggesting that p114RhoGEF mediates process-specific myosin activation. Locomotion was p114RhoGEF-dependent on Matrigel, which favors more roundish cells and amoeboid-like actinomyosin-driven movement, but not on fibronectin, which stimulates flatter cells and lamellipodia-driven, mesenchymal-like migration. Accordingly, depletion of p114RhoGEF led to reduced RhoA, but increased Rac activity. Invasion of 3D matrices was p114RhoGEF-dependent under conditions that do not require metalloproteinase activity, supporting a role of p114RhoGEF in myosin-dependent, amoeboid-like locomotion. Our data demonstrate that p114RhoGEF drives cortical myosin activation by stimulating myosin light chain double phosphorylation and, thereby, collective cell migration of epithelial sheets and amoeboid-like motility of tumor cells. PMID:23185572
Myosin II Activity Softens Cells in Suspension.
Chan, Chii J; Ekpenyong, Andrew E; Golfier, Stefan; Li, Wenhong; Chalut, Kevin J; Otto, Oliver; Elgeti, Jens; Guck, Jochen; Lautenschläger, Franziska
2015-04-21
The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Dual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes.
Fulcher, F Kent; Smith, Bethany T; Russ, Misty; Patel, Yashomati M
2008-10-15
Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform via MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity.
Dual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulcher, F. Kent; Smith, Bethany T.; Russ, Misty
2008-10-15
Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform viamore » MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity.« less
Impacts of Usher syndrome type IB mutations on human myosin VIIa motor function.
Watanabe, Shinya; Umeki, Nobuhisa; Ikebe, Reiko; Ikebe, Mitsuo
2008-09-09
Usher syndrome (USH) is a human hereditary disorder characterized by profound congenital deafness, retinitis pigmentosa, and vestibular dysfunction. Myosin VIIa has been identified as the responsible gene for USH type 1B, and a number of missense mutations have been identified in the affected families. However, the molecular basis of the dysfunction of USH gene, myosin VIIa, in the affected families is unknown to date. Here we clarified the effects of USH1B mutations on human myosin VIIa motor function for the first time. The missense mutations of USH1B significantly inhibited the actin activation of ATPase activity of myosin VIIa. G25R, R212C, A397D, and E450Q mutations abolished the actin-activated ATPase activity completely. P503L mutation increased the basal ATPase activity for 2-3-fold but reduced the actin-activated ATPase activity to 50% of the wild type. While all of the mutations examined, except for R302H, reduced the affinity for actin and the ATP hydrolysis cycling rate, they did not largely decrease the rate of ADP release from actomyosin, suggesting that the mutations reduce the duty ratio of myosin VIIa. Taken together, the results suggest that the mutations responsible for USH1B cause the complete loss of the actin-activated ATPase activity or the reduction of duty ratio of myosin VIIa.
Myosin II Dynamics during Embryo Morphogenesis
NASA Astrophysics Data System (ADS)
Kasza, Karen
2013-03-01
During embryonic morphogenesis, the myosin II motor protein generates forces that help to shape tissues, organs, and the overall body form. In one dramatic example in the Drosophila melanogaster embryo, the epithelial tissue that will give rise to the body of the adult animal elongates more than two-fold along the head-to-tail axis in less than an hour. This elongation is accomplished primarily through directional rearrangements of cells within the plane of the tissue. Just prior to elongation, polarized assemblies of myosin II accumulate perpendicular to the elongation axis. The contractile forces generated by myosin activity orient cell movements along a common axis, promoting local cell rearrangements that contribute to global tissue elongation. The molecular and mechanical mechanisms by which myosin drives this massive change in embryo shape are poorly understood. To investigate these mechanisms, we generated a collection of transgenic flies expressing variants of myosin II with altered motor function and regulation. We found that variants that are predicted to have increased myosin activity cause defects in tissue elongation. Using biophysical approaches, we found that these myosin variants also have decreased turnover dynamics within cells. To explore the mechanisms by which molecular-level myosin dynamics are translated into tissue-level elongation, we are using time-lapse confocal imaging to observe cell movements in embryos with altered myosin activity. We are utilizing computational approaches to quantify the dynamics and directionality of myosin localization and cell rearrangements. These studies will help elucidate how myosin-generated forces control cell movements within tissues. This work is in collaboration with J. Zallen at the Sloan-Kettering Institute.
Prochniewicz, Ewa; Lowe, Dawn A; Spakowicz, Daniel J; Higgins, LeeAnn; O'Conor, Kate; Thompson, LaDora V; Ferrington, Deborah A; Thomas, David D
2008-02-01
To understand the molecular mechanism of oxidation-induced inhibition of muscle contractility, we have studied the effects of hydrogen peroxide on permeabilized rabbit psoas muscle fibers, focusing on changes in myosin purified from these fibers. Oxidation by 5 mM peroxide decreased fiber contractility (isometric force and shortening velocity) without significant changes in the enzymatic activity of myofibrils and isolated myosin. The inhibitory effects were reversed by treating fibers with dithiothreitol. Oxidation by 50 mM peroxide had a more pronounced and irreversible inhibitory effect on fiber contractility and also affected enzymatic activity of myofibrils, myosin, and actomyosin. Peroxide treatment also affected regulation of contractility, resulting in fiber activation in the absence of calcium. Electron paramagnetic resonance of spin-labeled myosin in muscle fibers showed that oxidation increased the fraction of myosin heads in the strong-binding structural state under relaxing conditions (low calcium) but had no effect under activating conditions (high calcium). This change in the distribution of structural states of myosin provides a plausible explanation for the observed changes in both contractile and regulatory functions. Mass spectroscopy analysis showed that 50 mM but not 5 mM peroxide induced oxidative modifications in both isoforms of the essential light chains and in the heavy chain of myosin subfragment 1 by targeting multiple methionine residues. We conclude that 1) inhibition of muscle fiber contractility via oxidation of myosin occurs at high but not low concentrations of peroxide and 2) the inhibitory effects of oxidation suggest a critical and previously unknown role of methionines in myosin function.
In vivo myosin step-size from zebrafish skeletal muscle
Ajtai, Katalin; Sun, Xiaojing; Takubo, Naoko; Wang, Yihua
2016-01-01
Muscle myosins transduce ATP free energy into actin displacement to power contraction. In vivo, myosin side chains are modified post-translationally under native conditions, potentially impacting function. Single myosin detection provides the ‘bottom-up’ myosin characterization probing basic mechanisms without ambiguities inherent to ensemble observation. Macroscopic muscle physiological experimentation provides the definitive ‘top-down’ phenotype characterizations that are the concerns in translational medicine. In vivo single myosin detection in muscle from zebrafish embryo models for human muscle fulfils ambitions for both bottom-up and top-down experimentation. A photoactivatable green fluorescent protein (GFP)-tagged myosin light chain expressed in transgenic zebrafish skeletal muscle specifically modifies the myosin lever-arm. Strychnine induces the simultaneous contraction of the bilateral tail muscles in a live embryo, causing them to be isometric while active. Highly inclined thin illumination excites the GFP tag of single lever-arms and its super-resolution orientation is measured from an active isometric muscle over a time sequence covering many transduction cycles. Consecutive frame lever-arm angular displacement converts to step-size by its product with the estimated lever-arm length. About 17% of the active myosin steps that fall between 2 and 7 nm are implicated as powerstrokes because they are beyond displacements detected from either relaxed or ATP-depleted (rigor) muscle. PMID:27249818
UCS Protein Rng3p Is Essential for Myosin-II Motor Activity during Cytokinesis in Fission Yeast
Stark, Benjamin C.; James, Michael L.; Pollard, Luther W.; Sirotkin, Vladimir; Lord, Matthew
2013-01-01
UCS proteins have been proposed to operate as co-chaperones that work with Hsp90 in the de novo folding of myosin motors. The fission yeast UCS protein Rng3p is essential for actomyosin ring assembly and cytokinesis. Here we investigated the role of Rng3p in fission yeast myosin-II (Myo2p) motor activity. Myo2p isolated from an arrested rng3-65 mutant was capable of binding actin, yet lacked stability and activity based on its expression levels and inactivity in ATPase and actin filament gliding assays. Myo2p isolated from a myo2-E1 mutant (a mutant hyper-sensitive to perturbation of Rng3p function) showed similar behavior in the same assays and exhibited an altered motor conformation based on limited proteolysis experiments. We propose that Rng3p is not required for the folding of motors per se, but instead works to ensure the activity of intrinsically unstable myosin-II motors. Rng3p is specific to conventional myosin-II and the actomyosin ring, and is not required for unconventional myosin motor function at other actin structures. However, artificial destabilization of myosin-I motors at endocytic actin patches (using a myo1-E1 mutant) led to recruitment of Rng3p to patches. Thus, while Rng3p is specific to myosin-II, UCS proteins are adaptable and can respond to changes in the stability of other myosin motors. PMID:24244528
Molecular mechanisms underlying deoxy‐ADP.Pi activation of pre‐powerstroke myosin
Nowakowski, Sarah G.
2017-01-01
Abstract Myosin activation is a viable approach to treat systolic heart failure. We previously demonstrated that striated muscle myosin is a promiscuous ATPase that can use most nucleoside triphosphates as energy substrates for contraction. When 2‐deoxy ATP (dATP) is used, it acts as a myosin activator, enhancing cross‐bridge binding and cycling. In vivo, we have demonstrated that elevated dATP levels increase basal cardiac function and rescues function of infarcted rodent and pig hearts. Here we investigate the molecular mechanism underlying this physiological effect. We show with molecular dynamics simulations that the binding of dADP.Pi (dATP hydrolysis products) to myosin alters the structure and dynamics of the nucleotide binding pocket, myosin cleft conformation, and actin binding sites, which collectively yield a myosin conformation that we predict favors weak, electrostatic binding to actin. In vitro motility assays at high ionic strength were conducted to test this prediction and we found that dATP increased motility. These results highlight alterations to myosin that enhance cross‐bridge formation and reveal a potential mechanism that may underlie dATP‐induced improvements in cardiac function. PMID:28097776
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solecki, Dr. David; Trivedi, Dr. Niraj; Govek, Eve-Ellen
2009-01-01
Lamination of cortical regions of the vertebrate brain depends on glial-guided neuronal migration. The conserved polarity protein Par6{alpha} localizes to the centrosome and coordinates forward movement of the centrosome and soma in migrating neurons. The cytoskeletal components that produce this unique form of cell polarity and their relationship to polarity signaling cascades are unknown. We show that F-actin and Myosin II motors are enriched in the neuronal leading process and that Myosin II activity is necessary for leading process actin dynamics. Inhibition of Myosin II decreased the speed of centrosome and somal movement, whereas Myosin II activation increased coordinated movement.more » Ectopic expression or silencing of Par6{alpha} inhibited Myosin II motors by decreasing Myosin light-chain phosphorylation. These findings suggest leading-process Myosin II may function to 'pull' the centrosome and soma forward during glial-guided migration by a mechanism involving the conserved polarity protein Par6{alpha}.« less
Myofilament dysfunction contributes to impaired myocardial contraction in the infarct border zone
Shimkunas, Rafael; Makwana, Om; Spaulding, Kimberly; Bazargan, Mona; Khazalpour, Michael; Takaba, Kiyoaki; Soleimani, Mehrdad; Myagmar, Bat-Erdene; Lovett, David H.; Simpson, Paul C.; Ratcliffe, Mark B.
2014-01-01
After myocardial infarction, a poorly contracting nonischemic border zone forms adjacent to the infarct. The cause of border zone dysfunction is unclear. The goal of this study was to determine the myofilament mechanisms involved in postinfarction border zone dysfunction. Two weeks after anteroapical infarction of sheep hearts, we studied in vitro isometric and isotonic contractions of demembranated myocardium from the infarct border zone and a zone remote from the infarct. Maximal force development (Fmax) of the border zone myocardium was reduced by 31 ± 2% versus the remote zone myocardium (n = 6/group, P < 0.0001). Decreased border zone Fmax was not due to a reduced content of contractile material, as assessed histologically, and from myosin content. Furthermore, decreased border zone Fmax did not involve altered cross-bridge kinetics, as assessed by muscle shortening velocity and force development kinetics. Decreased border zone Fmax was associated with decreased cross-bridge formation, as assessed from muscle stiffness in the absence of ATP where cross-bridge formation should be maximized (rigor stiffness was reduced 34 ± 6%, n = 5, P = 0.011 vs. the remote zone). Furthermore, the border zone myocardium had significantly reduced phosphorylation of myosin essential light chain (ELC; 41 ± 10%, n = 4, P < 0.05). However, for animals treated with doxycycline, an inhibitor of matrix metalloproteinases, rigor stiffness and ELC phosphorylation were not reduced in the border zone myocardium, suggesting that doxycycline had a protective effect. In conclusion, myofilament dysfunction contributes to postinfarction border zone dysfunction, myofilament dysfunction involves impaired cross-bridge formation and decreased ELC phosphorylation, and matrix metalloproteinase inhibition may be beneficial for limiting postinfarct border zone dysfunction. PMID:25128171
Actomyosin-based tissue folding requires a multicellular myosin gradient
Miller, Pearson W.; Chanet, Soline; Stoop, Norbert; Dunkel, Jörn
2017-01-01
Tissue folding promotes three-dimensional (3D) form during development. In many cases, folding is associated with myosin accumulation at the apical surface of epithelial cells, as seen in the vertebrate neural tube and the Drosophila ventral furrow. This type of folding is characterized by constriction of apical cell surfaces, and the resulting cell shape change is thought to cause tissue folding. Here, we use quantitative microscopy to measure the pattern of transcription, signaling, myosin activation and cell shape in the Drosophila mesoderm. We found that cells within the ventral domain accumulate different amounts of active apical non-muscle myosin 2 depending on the distance from the ventral midline. This gradient in active myosin depends on a newly quantified gradient in upstream signaling proteins. A 3D continuum model of the embryo with induced contractility demonstrates that contractility gradients, but not contractility per se, promote changes to surface curvature and folding. As predicted by the model, experimental broadening of the myosin domain in vivo disrupts tissue curvature where myosin is uniform. Our data argue that apical contractility gradients are important for tissue folding. PMID:28432215
Calmodulin Bound to the First IQ Motif Is Responsible for Calcium-dependent Regulation of Myosin 5a*
Lu, Zekuan; Shen, Mei; Cao, Yang; Zhang, Hai-Man; Yao, Lin-Lin; Li, Xiang-dong
2012-01-01
Myosin 5a is as yet the best-characterized unconventional myosin motor involved in transport of organelles along actin filaments. It is well-established that myosin 5a is regulated by its tail in a Ca2+-dependent manner. The fact that the actin-activated ATPase activity of myosin 5a is stimulated by micromolar concentrations of Ca2+ and that calmodulin (CaM) binds to IQ motifs of the myosin 5a heavy chain indicates that Ca2+ regulates myosin 5a function via bound CaM. However, it is not known which IQ motif and bound CaM are responsible for the Ca2+-dependent regulation and how the head-tail interaction is affected by Ca2+. Here, we found that the CaM in the first IQ motif (IQ1) is responsible for Ca2+ regulation of myosin 5a. In addition, we demonstrate that the C-lobe fragment of CaM in IQ1 is necessary for mediating Ca2+ regulation of myosin 5a, suggesting that the C-lobe fragment of CaM in IQ1 participates in the interaction between the head and the tail. We propose that Ca2+ induces a conformational change of the C-lobe of CaM in IQ1 and prevents interaction between the head and the tail, thus activating motor function. PMID:22437832
Cammarato, Anthony; Dambacher, Corey M.; Knowles, Aileen F.; Kronert, William A.; Bodmer, Rolf
2008-01-01
Striated muscle myosin is a multidomain ATP-dependent molecular motor. Alterations to various domains affect the chemomechanical properties of the motor, and they are associated with skeletal and cardiac myopathies. The myosin transducer domain is located near the nucleotide-binding site. Here, we helped define the role of the transducer by using an integrative approach to study how Drosophila melanogaster transducer mutations D45 and Mhc5 affect myosin function and skeletal and cardiac muscle structure and performance. We found D45 (A261T) myosin has depressed ATPase activity and in vitro actin motility, whereas Mhc5 (G200D) myosin has these properties enhanced. Depressed D45 myosin activity protects against age-associated dysfunction in metabolically demanding skeletal muscles. In contrast, enhanced Mhc5 myosin function allows normal skeletal myofibril assembly, but it induces degradation of the myofibrillar apparatus, probably as a result of contractile disinhibition. Analysis of beating hearts demonstrates depressed motor function evokes a dilatory response, similar to that seen with vertebrate dilated cardiomyopathy myosin mutations, and it disrupts contractile rhythmicity. Enhanced myosin performance generates a phenotype apparently analogous to that of human restrictive cardiomyopathy, possibly indicating myosin-based origins for the disease. The D45 and Mhc5 mutations illustrate the transducer's role in influencing the chemomechanical properties of myosin and produce unique pathologies in distinct muscles. Our data suggest Drosophila is a valuable system for identifying and modeling mutations analogous to those associated with specific human muscle disorders. PMID:18045988
Disordered Actomyosin Is Sufficient to Promote Cooperative and Telescopic Contractility
NASA Astrophysics Data System (ADS)
Murrell, Michael; Linsmeier, Ian; Banerjee, Shiladitya; Kim, Tae Yoon; Jung, Wonyeong; Oakes, Patrick
While the molecular interactions between myosin motors and F-actin are well known, the relationship between F-actin organization and myosin-mediated force generation remains poorly understood. Here, we explore the accumulation of myosin-induced stresses within a 2D biomimetic model of the actomyosin cortex, where myosin activity is controlled spatially and temporally using light. By controlling the geometry and the duration of myosin activation, we show that contraction of disordered actomyosin is highly cooperative, telescopic with the activation area and generates a pattern of mechanical stresses consistent with those observed in contractile cells. We quantitatively reproduce these properties using an in vitro isotropic model of the actomyosin cytoskeleton, and explore the physical origins of telescopic contractility in disordered networks using agent-based simulations. NSF CMMI-1525316.
Miyake, Yuka; Inoue, Naoko; Nishimura, Koji; Kinoshita, Nagatoki; Hosoya, Hiroshi; Yonemura, Shigenobu
2006-05-15
The adherens junction (AJ) densely associated with actin filaments is a major cell-cell adhesion structure. To understand the importance of actin filament association in AJ formation, we first analyzed punctate AJs in NRK fibroblasts where one actin cable binds to one AJ structure unit. The accumulation of AJ components such as the cadherin/catenin complex and vinculin, as well as the formation of AJ-associated actin cables depended on Rho activity. Inhibitors for the Rho target, ROCK, which regulates myosin II activity, and for myosin II ATPase prevented the accumulation of AJ components, indicating that myosin II activity is more directly involved than Rho activity. Depletion of myosin II by RNAi showed similar results. The inhibition of myosin II activity in polarized epithelial MTD-1A cells affected the accumulation of vinculin to circumferential AJ (zonula adherens). Furthermore, correct zonula occludens (tight junction) formation along the apicobasal axis that requires cadherin activity was also impaired. Although MDCK cells which are often used as typical epithelial cells do not have a typical zonula adherens, punctate AJs formed dependently on myosin II activity by inducing wound closure in a MDCK cell sheet. These findings suggest that tension generated by actomyosin is essential for correct AJ assembly.
1985-01-01
A monoclonal antibody, MF20, which has been shown previously to bind the myosin heavy chain of vertebrate striated muscle, has been proven to bind the light meromyosin (LMM) fragment by solid phase radioimmune assay with alpha-chymotryptic digests of purified myosin. Epitope mapping by electron microscopy of rotary-shadowed, myosin-antibody complexes has localized the antibody binding site to LMM at a point approximately 92 nm from the C-terminus of the myosin heavy chain. Since this epitope in native thick filaments is accessible to monoclonal antibodies, we used this antibody as a high affinity ligand to analyze the packing of LMM along the backbone of the thick filament. By immunofluorescence microscopy, MF20 was shown to bind along the entire A-band of chicken pectoralis myofibrils, although the epitope accessibility was greater near the ends than at the center of the A- bands. Thin-section, transmission electron microscopy of myofibrils decorated with MF20 revealed 50 regularly spaced, cross-striations in each half A-band, with a repeat distance of approximately 13 nm. These were numbered consecutively, 1-50, from the A-band to the last stripe, approximately 68 nm from the filament tips. These same striations could be visualized by negative staining of native thick filaments labeled with MF20. All 50 striations were of a consecutive, uninterrupted repeat which approximated the 14-15-nm axial translation of cross- bridges. Each half M-region contained five MF20 striations (approximately 13 nm apart) with a distance between stripes 1 and 1', on each half of the bare zone, of approximately 18 nm. This is compatible with a packing model with full, antiparallel overlap of the myosin rods in the bare zone region. Differences in the spacings measured with negatively stained myofilaments and thin-sectioned myofibrils have been shown to arise from specimen shrinkage in the fixed and embedded preparations. These observations provide strong support for Huxley's original proposal for myosin packing in thick filaments of vertebrate muscle (Huxley, H. E., 1963, J. Mol. Biol., 7:281-308) and, for the first time, directly demonstrate that the 14-15- nm axial translation of LMM in the thick filament backbone corresponds to the cross-bridge repeat detected with x-ray diffraction of living muscle. PMID:3897243
Labyntseva, R D; Bevza, A A; Lul'ko, A O; Cherenok, S O; Kalchenko, V I; Kosterin, S O
2015-01-01
Calix[4]arenes are cup-like macrocyclic (polyphenolic) compounds, they are regarded as promising molecular "platforms" for the design of new physiologically active compounds. We have earlier found that calix[4]arene C-99 inhibits the ATPase activity of actomyosin and myosin subfragment-1 of pig uterus in vitro. The aim of this study was to investigate the interaction of calix[4]arene C-99 with myosin from rat uterine myocytes. It was found that the ATPase activity of myosin prepared from pre-incubated with 100 mM of calix[4]arene C-99 myocytes was almost 50% lower than in control. Additionally, we have revealed the effect of calix[4]arene C-99 on the subcellular distribution of actin and myosin in uterus myocytes by the method of confocal microscopy. This effect can be caused by reorganization of the structure of the contractile smooth muscle cell proteins due to their interaction with calix[4]arene. The obtained results demonstrate the ability of calix[4]arene C-99 to penetrate into the uterus muscle cells and affect not only the myosin ATPase activity, but also the structure of the actin and myosin filaments in the myometrial cells. Demonstrated ability of calix[4]arene C-99 can be used for development of new pharmacological agents for efficient normalization of myometrial contractile hyperfunction.
Characterization of Blebbistatin Inhibition of Smooth Muscle Myosin and Nonmuscle Myosin-2.
Zhang, Hai-Man; Ji, Huan-Hong; Ni, Tong; Ma, Rong-Na; Wang, Aibing; Li, Xiang-Dong
2017-08-15
Blebbistatin is a potent and specific inhibitor of the motor functions of class II myosins, including striated muscle myosin and nonmuscle myosin-2 (NM2). However, the blebbistatin inhibition of NM2c has not been assessed and remains controversial with respect to its efficacy with smooth muscle myosin (SmM), which is highly homologous to NM2. To clarify these issues, we analyzed the effects of blebbistatin on the motor activities of recombinant SmM and three NM2s (NM2a, -2b, and -2c). We found that blebbistatin potently inhibits the actin-activated ATPase activities of SmM and NM2s with following IC 50 values: 6.47 μM for SmM, 3.58 μM for NM2a, 2.30 μM for NM2b, and 1.57 μM for NM2c. To identify the blebbistatin-resistant myosin-2 mutant, we performed mutagenesis analysis of the conserved residues in the blebbistatin-binding site of SmM and NM2s. We found that the A456F mutation renders SmM and NM2s resistant to blebbistatin without greatly altering their motor activities or phosphorylation-dependent regulation, making A456F a useful mutant for investigating the cellular function of NM2s.
Interaction between cardiac myosin-binding protein C and formin Fhod3.
Matsuyama, Sho; Kage, Yohko; Fujimoto, Noriko; Ushijima, Tomoki; Tsuruda, Toshihiro; Kitamura, Kazuo; Shiose, Akira; Asada, Yujiro; Sumimoto, Hideki; Takeya, Ryu
2018-05-08
Mutations in cardiac myosin-binding protein C (cMyBP-C) are a major cause of familial hypertrophic cardiomyopathy. Although cMyBP-C has been considered to regulate the cardiac function via cross-bridge arrangement at the C-zone of the myosin-containing A-band, the mechanism by which cMyBP-C functions remains unclear. We identified formin Fhod3, an actin organizer essential for the formation and maintenance of cardiac sarcomeres, as a cMyBP-C-binding protein. The cardiac-specific N-terminal Ig-like domain of cMyBP-C directly interacts with the cardiac-specific N-terminal region of Fhod3. The interaction seems to direct the localization of Fhod3 to the C-zone, since a noncardiac Fhod3 variant lacking the cMyBP-C-binding region failed to localize to the C-zone. Conversely, the cardiac variant of Fhod3 failed to localize to the C-zone in the cMyBP-C-null mice, which display a phenotype of hypertrophic cardiomyopathy. The cardiomyopathic phenotype of cMyBP-C-null mice was further exacerbated by Fhod3 overexpression with a defect of sarcomere integrity, whereas that was partially ameliorated by a reduction in the Fhod3 protein levels, suggesting that Fhod3 has a deleterious effect on cardiac function under cMyBP-C-null conditions where Fhod3 is aberrantly mislocalized. Together, these findings suggest the possibility that Fhod3 contributes to the pathogenesis of cMyBP-C-related cardiomyopathy and that Fhod3 is critically involved in cMyBP-C-mediated regulation of cardiac function via direct interaction.
Preller, Matthias
2017-01-01
Despite a generic, highly conserved motor domain, ATP turnover kinetics and their activation by F-actin vary greatly between myosin-2 isoforms. Here, we present a 2.25 Å pre-powerstroke state (ADP⋅VO4) crystal structure of the human nonmuscle myosin-2C motor domain, one of the slowest myosins characterized. In combination with integrated mutagenesis, ensemble-solution kinetics, and molecular dynamics simulation approaches, the structure reveals an allosteric communication pathway that connects the distal end of the motor domain with the active site. Disruption of this pathway by mutation of hub residue R788, which forms the center of a cluster of interactions connecting the converter, the SH1-SH2 helix, the relay helix, and the lever, abolishes nonmuscle myosin-2 specific kinetic signatures. Our results provide insights into structural changes in the myosin motor domain that are triggered upon F-actin binding and contribute critically to the mechanochemical behavior of stress fibers, actin arcs, and cortical actin-based structures. PMID:29256864
Myosin Light Chain Kinase and the Role of Myosin Light Chain Phosphorylation in Skeletal Muscle
Stull, James T.; Kamm, Kristine E.; Vandenboom, Rene
2011-01-01
Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+/calmodulin-dependent serine-threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a diffusion limited, stoichiometic binding and displacement of a regulatory segment from skMLCK catalytic core. The N-terminal sequence of RLC then extends through the exposed catalytic cleft for Ser15 phosphorylation. Removal of Ca2+ results in the slow dissociation of calmodulin and inactivation of skMLCK. Combined biochemical properties provide unique features for the physiological responsiveness of RLC phosphorylation, including (1) rapid activation of MLCK by Ca2+/calmodulin, (2) limiting kinase activity so phosphorylation is slower than contraction, (3) slow MLCK inactivation after relaxation and (4) much greater kinase activity relative to myosin light chain phosphatase (MLCP). SkMLCK phosphorylation of myosin RLC modulates mechanical aspects of vertebrate skeletal muscle function. In permeabilized skeletal muscle fibers, phosphorylation-mediated alterations in myosin structure increase the rate of force-generation by myosin cross bridges to increase Ca2+-sensitivity of the contractile apparatus. Stimulation-induced increases in RLC phosphorylation in intact muscle produces isometric and concentric force potentiation to enhance dynamic aspects of muscle work and power in unfatigued or fatigued muscle. Moreover, RLC phosphorylation-mediated enhancements may interact with neural strategies for human skeletal muscle activation to ameliorate either central or peripheral aspects of fatigue. PMID:21284933
Lucero, Amy; Stack, Christianna; Bresnick, Anne R; Shuster, Charles B
2006-09-01
Myosin II is the force-generating motor for cytokinesis, and although it is accepted that myosin contractility is greatest at the cell equator, the temporal and spatial cues that direct equatorial contractility are not known. Dividing sea urchin eggs were placed under compression to study myosin II-based contractile dynamics, and cells manipulated in this manner underwent an abrupt, global increase in cortical contractility concomitant with the metaphase-anaphase transition, followed by a brief relaxation and the onset of furrowing. Prefurrow cortical contractility both preceded and was independent of astral microtubule elongation, suggesting that the initial activation of myosin II preceded cleavage plane specification. The initial rise in contractility required myosin light chain kinase but not Rho-kinase, but both signaling pathways were required for successful cytokinesis. Last, mobilization of intracellular calcium during metaphase induced a contractile response, suggesting that calcium transients may be partially responsible for the timing of this initial contractile event. Together, these findings suggest that myosin II-based contractility is initiated at the metaphase-anaphase transition by Ca2+-dependent myosin light chain kinase (MLCK) activity and is maintained through cytokinesis by both MLCK- and Rho-dependent signaling. Moreover, the signals that initiate myosin II contractility respond to specific cell cycle transitions independently of the microtubule-dependent cleavage stimulus.
Lucero, Amy; Stack, Christianna; Bresnick, Anne R.
2006-01-01
Myosin II is the force-generating motor for cytokinesis, and although it is accepted that myosin contractility is greatest at the cell equator, the temporal and spatial cues that direct equatorial contractility are not known. Dividing sea urchin eggs were placed under compression to study myosin II-based contractile dynamics, and cells manipulated in this manner underwent an abrupt, global increase in cortical contractility concomitant with the metaphase–anaphase transition, followed by a brief relaxation and the onset of furrowing. Prefurrow cortical contractility both preceded and was independent of astral microtubule elongation, suggesting that the initial activation of myosin II preceded cleavage plane specification. The initial rise in contractility required myosin light chain kinase but not Rho-kinase, but both signaling pathways were required for successful cytokinesis. Last, mobilization of intracellular calcium during metaphase induced a contractile response, suggesting that calcium transients may be partially responsible for the timing of this initial contractile event. Together, these findings suggest that myosin II-based contractility is initiated at the metaphase–anaphase transition by Ca2+-dependent myosin light chain kinase (MLCK) activity and is maintained through cytokinesis by both MLCK- and Rho-dependent signaling. Moreover, the signals that initiate myosin II contractility respond to specific cell cycle transitions independently of the microtubule-dependent cleavage stimulus. PMID:16837551
Wu, Shenping; Liu, Jun; Perz-Edwards, Robert J.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.
2012-01-01
The application of rapidly applied length steps to actively contracting muscle is a classic method for synchronizing the response of myosin cross-bridges so that the average response of the ensemble can be measured. Alternatively, electron tomography (ET) is a technique that can report the structure of the individual members of the ensemble. We probed the structure of active myosin motors (cross-bridges) by applying 0.5% changes in length (either a stretch or a release) within 2 ms to isometrically contracting insect flight muscle (IFM) fibers followed after 5–6 ms by rapid freezing against a liquid helium cooled copper mirror. ET of freeze-substituted fibers, embedded and thin-sectioned, provides 3-D cross-bridge images, sorted by multivariate data analysis into ∼40 classes, distinct in average structure, population size and lattice distribution. Individual actin subunits are resolved facilitating quasi-atomic modeling of each class average to determine its binding strength (weak or strong) to actin. ∼98% of strong-binding acto-myosin attachments present after a length perturbation are confined to “target zones” of only two actin subunits located exactly midway between successive troponin complexes along each long-pitch helical repeat of actin. Significant changes in the types, distribution and structure of actin-myosin attachments occurred in a manner consistent with the mechanical transients. Most dramatic is near disappearance, after either length perturbation, of a class of weak-binding cross-bridges, attached within the target zone, that are highly likely to be precursors of strong-binding cross-bridges. These weak-binding cross-bridges were originally observed in isometrically contracting IFM. Their disappearance following a quick stretch or release can be explained by a recent kinetic model for muscle contraction, as behaviour consistent with their identification as precursors of strong-binding cross-bridges. The results provide a detailed model for contraction in IFM that may be applicable to contraction in other types of muscle. PMID:22761792
Biochemical and bioinformatic analysis of the MYO19 motor domain
Adikes, Rebecca C.; Unrath, William C.; Yengo, Christopher M.; Quintero, Omar A.
2014-01-01
Mitochondrial dynamics are dependent on both the microtubule and actin cytoskeletal systems. Evidence for the involvement of myosin motors has been described in many systems, and until recently a candidate mitochondrial transport motor had not been described in vertebrates. Myosin-XIX (MYO19) was predicted to represent a novel class of myosin and had previously been shown to bind to mitochondria and increase mitochondrial network dynamics when ectopically expressed. Our analyses comparing ∼40 MYO19 orthologs to ∼2000 other myosin motor domain sequences identified instances of homology well-conserved within class XIX myosins that were not found in other myosin classes, suggesting MYO19-specific mechanochemistry. Steady-state biochemical analyses of the MYO19 motor domain indicate that Homo sapiens MYO19 is a functional motor. Insect cell-expressed constructs bound calmodulin as a light chain at the predicted stoichiometry and displayed actin-activated ATPase activity. MYO19 constructs demonstrated high actin affinity in the presence of ATP in actin-cosedimentation assays, and translocated actin filaments in gliding assays. Expression of GFP-MYO19 containing a mutation impairing ATPase activity did not enhance mitochondrial network dynamics, as occurs with wild-type MYO19, indicating that myosin motor activity is required for mitochondrial motility. The measured biochemical properties of MYO19 suggest it is a high-duty ratio motor that could serve to transport mitochondria or anchor mitochondria, depending upon the cellular microenvironment. PMID:23568824
Samant, Sadhana A.; Pillai, Vinodkumar B.; Sundaresan, Nagalingam R.; Shroff, Sanjeev G.; Gupta, Mahesh P.
2015-01-01
Reversible lysine acetylation is a widespread post-translational modification controlling the activity of proteins in different subcellular compartments. We previously demonstrated that a class II histone deacetylase (HDAC), HDAC4, and a histone acetyltransferase, p300/CREB-binding protein-associated factor, associate with cardiac sarcomeres and that a class I and II HDAC inhibitor, trichostatin A, enhances contractile activity of myofilaments. In this study we show that a class I HDAC, HDAC3, is also present at cardiac sarcomeres. By immunohistochemical and electron microscopic analyses, we found that HDAC3 was localized to A-band of sarcomeres and capable of deacetylating myosin heavy chain (MHC) isoforms. The motor domains of both cardiac α- and β-MHC isoforms were found to be reversibly acetylated. Biomechanical studies revealed that lysine acetylation significantly decreased the Km for the actin-activated ATPase activity of MHC isoforms. By in vitro motility assay, we found that lysine acetylation increased the actin-sliding velocity of α-myosin by 20% and β-myosin by 36% compared with their respective non-acetylated isoforms. Moreover, myosin acetylation was found to be sensitive to cardiac stress. During induction of hypertrophy, myosin isoform acetylation increased progressively with duration of stress stimuli independently of isoform shift, suggesting that lysine acetylation of myosin could be an early response of myofilaments to increase contractile performance of the heart. These studies provide the first evidence for localization of HDAC3 at myofilaments and uncover a novel mechanism modulating the motor activity of cardiac MHC isoforms. PMID:25911107
Kinesins and Myosins: Molecular Motors that Coordinate Cellular Functions in Plants.
Nebenführ, Andreas; Dixit, Ram
2018-04-29
Kinesins and myosins are motor proteins that can move actively along microtubules and actin filaments, respectively. Plants have evolved a unique set of motors that function as regulators and organizers of the cytoskeleton and as drivers of long-distance transport of various cellular components. Recent progress has established the full complement of motors encoded in plant genomes and has revealed valuable insights into the cellular functions of many kinesin and myosin isoforms. Interestingly, several of the motors were found to functionally connect the two cytoskeletal systems and thereby to coordinate their activities. In this review, we discuss the available genetic, cell biological, and biochemical data for each of the plant kinesin and myosin families from the context of their subcellular mechanism of action as well as their physiological function in the whole plant. We particularly emphasize work that illustrates mechanisms by which kinesins and myosins coordinate the activities of the cytoskeletal system.
Integration of actomyosin contractility with cell-cell adhesion during dorsal closure.
Duque, Julia; Gorfinkiel, Nicole
2016-12-15
In this work, we combine genetic perturbation, time-lapse imaging and quantitative image analysis to investigate how pulsatile actomyosin contractility drives cell oscillations, apical cell contraction and tissue closure during morphogenesis of the amnioserosa, the main force-generating tissue during the dorsal closure in Drosophila We show that Myosin activity determines the oscillatory and contractile behaviour of amnioserosa cells. Reducing Myosin activity prevents cell shape oscillations and reduces cell contractility. By contrast, increasing Myosin activity increases the amplitude of cell shape oscillations and the time cells spend in the contracted phase relative to the expanded phase during an oscillatory cycle, promoting cell contractility and tissue closure. Furthermore, we show that in AS cells, Rok controls Myosin foci formation and Mbs regulates not only Myosin phosphorylation but also adhesion dynamics through control of Moesin phosphorylation, showing that Mbs coordinates actomyosin contractility with cell-cell adhesion during amnioserosa morphogenesis. © 2016. Published by The Company of Biologists Ltd.
Life without double-headed non-muscle myosin II motor proteins
Betapudi, Venkaiah
2014-01-01
Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients' life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life. PMID:25072053
Life without double-headed non-muscle myosin II motor proteins
NASA Astrophysics Data System (ADS)
Betapudi, Venkaiah
2014-07-01
Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients’ life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.
Gabriele, Sylvain; Benoliel, Anne-Marie; Bongrand, Pierre; Théodoly, Olivier
2009-01-01
Circulating leukocyte sequestration in pulmonary capillaries is arguably the initiating event of lung injury in acute respiratory distress syndrome. We present a microfluidic investigation of the roles of actin organization and myosin II activity during the different stages of leukocyte trafficking through narrow capillaries (entry, transit and shape relaxation) using specific drugs (latrunculin A, jasplakinolide, and blebbistatin). The deformation rate during entry reveals that cell stiffness depends strongly on F-actin organization and hardly on myosin II activity, supporting a microfilament role in leukocyte sequestration. In the transit stage, cell friction is influenced by stiffness, demonstrating that the actin network is not completely broken after a forced entry into a capillary. Conversely, membrane unfolding was independent of leukocyte stiffness. The surface area of sequestered leukocytes increased by up to 160% in the absence of myosin II activity, showing the major role of molecular motors in microvilli wrinkling and zipping. Finally, cell shape relaxation was largely independent of both actin organization and myosin II activity, whereas a deformed state was required for normal trafficking through capillary segments. PMID:19450501
Price, Kari L; Rose, Lesilee S
2017-09-01
The anaphase spindle determines the position of the cytokinesis furrow, such that the contractile ring assembles in an equatorial zone between the two spindle poles. Contractile ring formation is mediated by RhoA activation at the equator by the centralspindlin complex and midzone microtubules. Astral microtubules also inhibit RhoA accumulation at the poles. In the Caenorhabditis elegans one-cell embryo, the astral microtubule-dependent pathway requires anillin, NOP-1, and LET-99. LET-99 is well characterized for generating the asymmetric cortical localization of the Gα-dependent force-generating complex that positions the spindle during asymmetric division. However, whether the role of LET-99 in cytokinesis is specific to asymmetric division and whether it acts through Gα to promote furrowing are unclear. Here we show that LET-99 contributes to furrowing in both asymmetrically and symmetrically dividing cells, independent of its function in spindle positioning and Gα regulation. LET-99 acts in a pathway parallel to anillin and is required for myosin enrichment into the contractile ring. These and other results suggest a positive feedback model in which LET-99 localizes to the presumptive cleavage furrow in response to the spindle and myosin. Once positioned there, LET-99 enhances myosin accumulation to promote furrowing in both symmetrically and asymmetrically dividing cells. © 2017 Price and Rose. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
A new model for the surface arrangement of myosin molecules in tarantula thick filaments.
Offer, G; Knight, P J; Burgess, S A; Alamo, L; Padrón, R
2000-04-28
Three-dimensional reconstructions of the negatively stained thick filaments of tarantula muscle with a resolution of 50 A have previously suggested that the helical tracks of myosin heads are zigzagged, short diagonal ridges being connected by nearly axial links. However, surface views of lower contour levels reveal an additional J-shaped feature approximately the size and shape of a myosin head. We have modelled the surface array of myosin heads on the filaments using as a building block a model of a two-headed regulated myosin molecule in which the regulatory light chains of the two heads together form a compact head-tail junction. Four parameters defining the radius, orientation and rotation of each myosin molecule were varied. In addition, the heads were allowed independently to bend in a plane perpendicular to the coiled-coil tail at three sites, and to tilt with respect to the tail and to twist at one of these sites. After low-pass filtering, models were aligned with the reconstruction, scored by cross-correlation and refined by simulated annealing. Comparison of the geometry of the reconstruction and the distance between domains in the myosin molecule narrowed the choice of models to two main classes. A good match to the reconstruction was obtained with a model in which each ridge is formed from the motor domain of a head pointing to the bare zone together with the head-tail junction of a neighbouring molecule. The heads pointing to the Z-disc intermittently occupy the J-position. Each motor domain interacts with the essential and regulatory light chains of the neighbouring heads. A near-radial spoke in the reconstruction connecting the backbone to one end of the ridge can be identified as the start of the coiled-coil tail. Copyright 2000 Academic Press.
Heart failure drug changes the mechanoenzymology of the cardiac myosin powerstroke.
Rohde, John A; Thomas, David D; Muretta, Joseph M
2017-03-07
Omecamtiv mecarbil (OM), a putative heart failure therapeutic, increases cardiac contractility. We hypothesize that it does this by changing the structural kinetics of the myosin powerstroke. We tested this directly by performing transient time-resolved FRET on a ventricular cardiac myosin biosensor. Our results demonstrate that OM stabilizes myosin's prepowerstroke structural state, supporting previous measurements showing that the drug shifts the equilibrium constant for myosin-catalyzed ATP hydrolysis toward the posthydrolysis biochemical state. OM slowed the actin-induced powerstroke, despite a twofold increase in the rate constant for actin-activated phosphate release, the biochemical step in myosin's ATPase cycle associated with force generation and the conversion of chemical energy into mechanical work. We conclude that OM alters the energetics of cardiac myosin's mechanical cycle, causing the powerstroke to occur after myosin weakly binds to actin and releases phosphate. We discuss the physiological implications for these changes.
Myosin II dynamics are regulated by tension in intercalating cells.
Fernandez-Gonzalez, Rodrigo; Simoes, Sérgio de Matos; Röper, Jens-Christian; Eaton, Suzanne; Zallen, Jennifer A
2009-11-01
Axis elongation in Drosophila occurs through polarized cell rearrangements driven by actomyosin contractility. Myosin II promotes neighbor exchange through the contraction of single cell boundaries, while the contraction of myosin II structures spanning multiple pairs of cells leads to rosette formation. Here we show that multicellular actomyosin cables form at a higher frequency than expected by chance, indicating that cable assembly is an active process. Multicellular cables are sites of increased mechanical tension as measured by laser ablation. Fluorescence recovery after photobleaching experiments show that myosin II is stabilized at the cortex in regions of increased tension. Myosin II is recruited in response to an ectopic force and relieving tension leads to a rapid loss of myosin, indicating that tension is necessary and sufficient for cortical myosin localization. These results demonstrate that myosin II dynamics are regulated by tension in a positive feedback loop that leads to multicellular actomyosin cable formation and efficient tissue elongation.
Reciprocal and dynamic polarization of planar cell polarity core components and myosin
Newman-Smith, Erin; Kourakis, Matthew J; Reeves, Wendy; Veeman, Michael; Smith, William C
2015-01-01
The Ciona notochord displays planar cell polarity (PCP), with anterior localization of Prickle (Pk) and Strabismus (Stbm). We report that a myosin is polarized anteriorly in these cells and strongly colocalizes with Stbm. Disruption of the actin/myosin machinery with cytochalasin or blebbistatin disrupts polarization of Pk and Stbm, but not of myosin complexes, suggesting a PCP-independent aspect of myosin localization. Wash out of cytochalasin restored Pk polarization, but not if done in the presence of blebbistatin, suggesting an active role for myosin in core PCP protein localization. On the other hand, in the pk mutant line, aimless, myosin polarization is disrupted in approximately one third of the cells, indicating a reciprocal action of core PCP signaling on myosin localization. Our results indicate a complex relationship between the actomyosin cytoskeleton and core PCP components in which myosin is not simply a downstream target of PCP signaling, but also required for PCP protein localization. DOI: http://dx.doi.org/10.7554/eLife.05361.001 PMID:25866928
Brzeska, Hanna; Pridham, Kevin; Chery, Godefroy; Titus, Margaret A.; Korn, Edward D.
2014-01-01
F-actin structures and their distribution are important determinants of the dynamic shapes and functions of eukaryotic cells. Actin waves are F-actin formations that move along the ventral cell membrane driven by actin polymerization. Dictyostelium myosin IB is associated with actin waves but its role in the wave is unknown. Myosin IB is a monomeric, non-filamentous myosin with a globular head that binds to F-actin and has motor activity, and a non-helical tail comprising a basic region, a glycine-proline-glutamine-rich region and an SH3-domain. The basic region binds to acidic phospholipids in the plasma membrane through a short basic-hydrophobic site and the Gly-Pro-Gln region binds F-actin. In the current work we found that both the basic-hydrophobic site in the basic region and the Gly-Pro-Gln region of the tail are required for the association of myosin IB with actin waves. This is the first evidence that the Gly-Pro-Gln region is required for localization of myosin IB to a specific actin structure in situ. The head is not required for myosin IB association with actin waves but binding of the head to F-actin strengthens the association of myosin IB with waves and stabilizes waves. Neither the SH3-domain nor motor activity is required for association of myosin IB with actin waves. We conclude that myosin IB contributes to anchoring actin waves to the plasma membranes by binding of the basic-hydrophobic site to acidic phospholipids in the plasma membrane and binding of the Gly-Pro-Gln region to F-actin in the wave. PMID:24747353
Kang, J O; Ito, T; Fukazawa, T
1983-01-01
The effect of frozen storage on the biochemical properties of myofibrils, and of their major constituents, actin and myosin, was investigated. Extractability of myofibrillar proteins increased slightly for 3 weeks during frozen storage of muscle, decreasing thereafter. The change in myofibrillar ATPase activity during frozen storage was consistent with that of a reconstituted acto-heavy meromyosin (HMM) complex prepared from frozen stored muscle at the same weight ratio of actin to myosin as in situ. However, myosin ATPase activity showed a different pattern of change when compared with myofibrillar ATPase activity. The maximum velocity of acto-HMM ATPase activity and the apparent dissociation constant of the acto-HMM complex decreased for 1 week during frozen storage, increasing thereafter, indicating that the affinity of actin for myosin was greatest in muscle which had been frozen for 1 week. Copyright © 1983. Published by Elsevier Ltd.
Back-to-back mechanisms drive actomyosin ring closure during Drosophila embryo cleavage
2016-01-01
Contraction of actomyosin rings during cytokinesis is typically attributed to actin filaments sliding toward each other via Myosin-2 motor activity. However, rings constrict in some cells in the absence of Myosin-2 activity. Thus, ring closure uses Myosin-2–dependent and –independent mechanisms. But what the Myosin-2–independent mechanisms are, and to what extent they are sufficient to drive closure, remains unclear. During cleavage in Drosophila melanogaster embryos, actomyosin rings constrict in two sequential and mechanistically distinct phases. We show that these phases differ in constriction speed and are genetically and pharmacologically separable. Further, Myosin-2 activity is required for slow constriction in “phase 1” but is largely dispensable for fast constriction in “phase 2,” and F-actin disassembly is only required for fast constriction in phase 2. Switching from phase 1 to phase 2 seemingly relies on the spatial organization of F-actin as controlled by Cofilin, Anillin, and Septin. Our work shows that fly embryos present a singular opportunity to compare separable ring constriction mechanisms, with varying Myosin-2 dependencies, in one cell type and in vivo. PMID:27799369
Betaine protects urea-induced denaturation of myosin subfragment-1.
Ortiz-Costa, Susana; Sorenson, Martha M; Sola-Penna, Mauro
2008-07-01
We have demonstrated previously that urea inhibits the activity and alters the tertiary structure of skeletal muscle myosin in a biphasic manner. This was attributed to differential effects on its globular and filamentous portion. The inhibition of catalytic activity was counteracted by methylamines. With the aim of comprehending the effects of urea on the catalytic (globular) portion of myosin, this study examines the effects of urea and the countereffects of betaine on the catalytic activity and structure of myosin subfragment-1. It is shown that urea inactivates subfragment-1 in parallel with its ability to induce exposure of the enzyme hydrophobic domains, as assessed using intrinsic and extrinsic fluorescence. Both effects are counteracted by betaine, which alone does not significantly affect subfragment-1. Urea also enhances the accessibility of thiol groups, promotes aggregation and decreases the alpha-helix content of S1, effects that are also counteracted by betaine. We conclude that urea-induced inactivation of the enzyme is caused by partial unfolding of the myosin catalytic domain.
Kwon, Tae-Jun; Oh, Se-Kyung; Park, Hong-Joon; Sato, Osamu; Venselaar, Hanka; Choi, Soo Young; Kim, SungHee; Lee, Kyu-Yup; Bok, Jinwoong; Lee, Sang-Heun; Vriend, Gert; Ikebe, Mitsuo; Kim, Un-Kyung; Choi, Jae Young
2014-07-01
Mutations in five unconventional myosin genes have been associated with genetic hearing loss (HL). These genes encode the motor proteins myosin IA, IIIA, VI, VIIA and XVA. To date, most mutations in myosin genes have been found in the Caucasian population. In addition, only a few functional studies have been performed on the previously reported myosin mutations. We performed screening and functional studies for mutations in the MYO1A and MYO6 genes in Korean cases of autosomal dominant non-syndromic HL. We identified four novel heterozygous mutations in MYO6. Three mutations (p.R825X, p.R991X and Q918fsX941) produce a premature truncation of the myosin VI protein. Another mutation, p.R205Q, was associated with diminished actin-activated ATPase activity and actin gliding velocity of myosin VI in an in vitro analysis. This finding is consistent with the results of protein modelling studies and corroborates the pathogenicity of this mutation in the MYO6 gene. One missense variant, p.R544W, was found in the MYO1A gene, and in silico analysis suggested that this variant has deleterious effects on protein function. This finding is consistent with the results of protein modelling studies and corroborates the pathogenic effect of this mutation in the MYO6 gene.
Kwon, Tae-Jun; Oh, Se-Kyung; Park, Hong-Joon; Sato, Osamu; Venselaar, Hanka; Choi, Soo Young; Kim, SungHee; Lee, Kyu-Yup; Bok, Jinwoong; Lee, Sang-Heun; Vriend, Gert; Ikebe, Mitsuo; Kim, Un-Kyung; Choi, Jae Young
2014-01-01
Mutations in five unconventional myosin genes have been associated with genetic hearing loss (HL). These genes encode the motor proteins myosin IA, IIIA, VI, VIIA and XVA. To date, most mutations in myosin genes have been found in the Caucasian population. In addition, only a few functional studies have been performed on the previously reported myosin mutations. We performed screening and functional studies for mutations in the MYO1A and MYO6 genes in Korean cases of autosomal dominant non-syndromic HL. We identified four novel heterozygous mutations in MYO6. Three mutations (p.R825X, p.R991X and Q918fsX941) produce a premature truncation of the myosin VI protein. Another mutation, p.R205Q, was associated with diminished actin-activated ATPase activity and actin gliding velocity of myosin VI in an in vitro analysis. This finding is consistent with the results of protein modelling studies and corroborates the pathogenicity of this mutation in the MYO6 gene. One missense variant, p.R544W, was found in the MYO1A gene, and in silico analysis suggested that this variant has deleterious effects on protein function. This finding is consistent with the results of protein modelling studies and corroborates the pathogenic effect of this mutation in the MYO6 gene. PMID:25080041
Sugi, Haruo; Chaen, Shigeru; Akimoto, Tsuyoshi
2018-05-04
The most straightforward way to get information on the performance of individual myosin heads producing muscle contraction may be to record their movement, coupled with ATP hydrolysis, electron-microscopically using the gas environmental chamber (EC). The EC enables us to visualize and record ATP-induced myosin head movement in hydrated skeletal muscle myosin filaments. When actin filaments are absent, myosin heads fluctuate around a definite neutral position, so that their time-averaged mean position remains unchanged. On application of ATP, myosin heads are found to move away from, but not towards, the bare region, indicating that myosin heads perform a recovery stroke (average amplitude, 6 nm). After exhaustion of ATP, myosin heads return to their neutral position. In the actin⁻myosin filament mixture, myosin heads form rigor actin myosin linkages, and on application of ATP, they perform a power stroke by stretching adjacent elastic structures because of a limited amount of applied ATP ≤ 10 µM. The average amplitude of the power stroke is 3.3 nm and 2.5 nm at the distal and the proximal regions of the myosin head catalytic domain (CAD), respectively. The power stroke amplitude increases appreciably at low ionic strength, which is known to enhance Ca 2+ -activated force in muscle. In both the power and recovery strokes, myosin heads return to their neutral position after exhaustion of ATP.
Zhang, Wenwu; Gunst, Susan J
2017-07-01
Non-muscle (NM) and smooth muscle (SM) myosin II are both expressed in smooth muscle tissues, however the role of NM myosin in SM contraction is unknown. Contractile stimulation of tracheal smooth muscle tissues stimulates phosphorylation of the NM myosin heavy chain on Ser1943 and causes NM myosin filament assembly at the SM cell cortex. Expression of a non-phosphorylatable NM myosin mutant, NM myosin S1943A, in SM tissues inhibits ACh-induced NM myosin filament assembly and SM contraction, and also inhibits the assembly of membrane adhesome complexes during contractile stimulation. NM myosin regulatory light chain (RLC) phosphorylation but not SM myosin RLC phosphorylation is regulated by RhoA GTPase during ACh stimulation, and NM RLC phosphorylation is required for NM myosin filament assembly and SM contraction. NM myosin II plays a critical role in airway SM contraction that is independent and distinct from the function of SM myosin. The molecular function of non-muscle (NM) isoforms of myosin II in smooth muscle (SM) tissues and their possible role in contraction are largely unknown. We evaluated the function of NM myosin during contractile stimulation of canine tracheal SM tissues. Stimulation with ACh caused NM myosin filament assembly, as assessed by a Triton solubility assay and a proximity ligation assay aiming to measure interactions between NM myosin monomers. ACh stimulated the phosphorylation of NM myosin heavy chain on Ser1943 in tracheal SM tissues, which can regulate NM myosin IIA filament assembly in vitro. Expression of the non-phosphorylatable mutant NM myosin S1943A in SM tissues inhibited ACh-induced endogenous NM myosin Ser1943 phosphorylation, NM myosin filament formation, the assembly of membrane adhesome complexes and tension development. The NM myosin cross-bridge cycling inhibitor blebbistatin suppressed adhesome complex assembly and SM contraction without inhibiting NM myosin Ser1943 phosphorylation or NM myosin filament assembly. RhoA inactivation selectively inhibited phosphorylation of the NM myosin regulatory light chain (RLC), NM myosin filament assembly and contraction, although it did not inhibit SM RLC phosphorylation. We conclude that the assembly and activation of NM myosin II is regulated during contractile stimulation of airway SM tissues by RhoA-mediated NM myosin RLC phosphorylation and by NM myosin heavy chain Ser1943 phosphorylation. NM myosin II actomyosin cross-bridge cycling regulates the assembly of membrane adhesome complexes that mediate the cytoskeletal processes required for tension generation. NM myosin II plays a critical role in airway SM contraction that is independent and distinct from the function of SM myosin. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Ultraslow myosin molecular motors of placental contractile stem villi in humans.
Lecarpentier, Yves; Claes, Victor; Lecarpentier, Edouard; Guerin, Catherine; Hébert, Jean-Louis; Arsalane, Abdelilah; Moumen, Abdelouahab; Krokidis, Xénophon; Michel, Francine; Timbely, Oumar
2014-01-01
Human placental stem villi (PSV) present contractile properties. In vitro mechanics were investigated in 40 human PSV. Contraction of PSV was induced by both KCl exposure (n = 20) and electrical tetanic stimulation (n = 20). Isotonic contractions were registered at several load levels ranging from zero-load up to isometric load. The tension-velocity relationship was found to be hyperbolic. This made it possible to apply the A. Huxley formalism for determining the rate constants for myosin cross-bridge (CB) attachment and detachment, CB single force, catalytic constant, myosin content, and maximum myosin ATPase activity. These molecular characteristics of myosin CBs did not differ under either KCl exposure or tetanus. A comparative approach was established from studies previously published in the literature and driven by mean of a similar method. As compared to that described in mammalian striated muscles, we showed that in human PSV, myosin CB rate constants for attachment and detachment were about 103 times lower whereas myosin ATPase activity was 105 times lower. Up to now, CB kinetics of contractile cells arranged along the long axis of the placental sheath appeared to be the slowest ever observed in any mammalian contractile tissue.
Nie, Wei; Wei, Ming-Tzo; Ou-Yang, Daniel H.; Jedlicka, Sabrina S.; Vavylonis, Dimitrios
2015-01-01
The morphology of adhered cells depends crucially on the formation of a contractile meshwork of parallel and cross-linked fibers along the contacting surface. The motor activity and minifilament assembly of non-muscle myosin-II is an important component of cortical cytoskeletal remodeling during mechanosensing. We used experiments and computational modeling to study cortical myosin-II dynamics in adhered cells. Confocal microscopy was used to image the medial cell cortex of HeLa cells stably expressing myosin regulatory light chain tagged with GFP (MRLC-GFP). The distribution of MRLC-GFP fibers and focal adhesions was classified into three types of network morphologies. Time-lapse movies show: myosin foci appearance and disappearance; aligning and contraction; stabilization upon alignment. Addition of blebbistatin, which perturbs myosin motor activity, leads to a reorganization of the cortical networks and to a reduction of contractile motions. We quantified the kinetics of contraction, disassembly and reassembly of myosin networks using spatio-temporal image correlation spectroscopy (STICS). Coarse-grained numerical simulations include bipolar minifilaments that contract and align through specified interactions as basic elements. After assuming that minifilament turnover decreases with increasing contractile stress, the simulations reproduce stress-dependent fiber formation in between focal adhesions above a threshold myosin concentration. The STICS correlation function in simulations matches the function measured in experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness. PMID:25641802
Tice, Lois W.; Smith, David S.
1965-01-01
The distribution of ATPase activity in the asynchronous flight muscles of Calliphora erythrocephala (Diptera) was studied at a fine structural level, using preparations of teased fibers, both unfixed and after brief fixation in hydroxyadipaldehyde, incubated in a medium for the histochemical demonstration of myosin or actomyosin ATPase. In relaxed fibrils, activity was found confined to the A bands and was absent from the H zones as well as from the Z and I band regions. At high magnification, deposits of final product, lead phosphate, appeared primarily related to the thick filaments, or to short lateral extensions from them. Evidence was gathered which indicated that this enzyme activity was that of a triphosphatase which did not act on dinucleoside or non-nucleoside substrates. PMID:4221034
Kuster, Diederik W. D.; Govindan, Suresh; Springer, Tzvia I.; Martin, Jody L.; Finley, Natosha L.; Sadayappan, Sakthivel
2015-01-01
Hypertrophic cardiomyopathy (HCM) results from mutations in genes encoding sarcomeric proteins, most often MYBPC3, which encodes cardiac myosin binding protein-C (cMyBP-C). A recently discovered HCM-associated 25-base pair deletion in MYBPC3 is inherited in millions worldwide. Although this mutation causes changes in the C10 domain of cMyBP-C (cMyBP-CC10mut), which binds to the light meromyosin (LMM) region of the myosin heavy chain, the underlying molecular mechanism causing HCM is unknown. In this study, adenoviral expression of cMyBP-CC10mut in cultured adult rat cardiomyocytes was used to investigate protein localization and evaluate contractile function and Ca2+ transients, compared with wild-type cMyBP-C expression (cMyBP-CWT) and controls. Forty-eight hours after infection, 44% of cMyBP-CWT and 36% of cMyBP-CC10mut protein levels were determined in total lysates, confirming equal expression. Immunofluorescence experiments showed little or no localization of cMyBP-CC10mut to the C-zone, whereas cMyBP-CWT mostly showed C-zone staining, suggesting that cMyBP-CC10mut could not properly integrate in the C-zone of the sarcomere. Subcellular fractionation confirmed that most cMyBP-CC10mut resided in the soluble fraction, with reduced presence in the myofilament fraction. Also, cMyBP-CC10mut displayed significantly reduced fractional shortening, sarcomere shortening, and relaxation velocities, apparently caused by defects in sarcomere function, because Ca2+ transients were unaffected. Co-sedimentation and protein cross-linking assays confirmed that C10mut causes the loss of C10 domain interaction with myosin LMM. Protein homology modeling studies showed significant structural perturbation in cMyBP-CC10mut, providing a potential structural basis for the alteration in its mode of interaction with myosin LMM. Therefore, expression of cMyBP-CC10mut protein is sufficient to cause contractile dysfunction in vitro. PMID:25583989
Myosin light chain kinase facilitates endocytosis of synaptic vesicles at hippocampal boutons.
Li, Lin; Wu, Xiaomei; Yue, Hai-Yuan; Zhu, Yong-Chuan; Xu, Jianhua
2016-07-01
At nerve terminals, endocytosis efficiently recycles vesicle membrane to maintain synaptic transmission under different levels of neuronal activity. Ca(2+) and its downstream signal pathways are critical for the activity-dependent regulation of endocytosis. An activity- and Ca(2+) -dependent kinase, myosin light chain kinase (MLCK) has been reported to regulate vesicle mobilization, vesicle cycling, and motility in different synapses, but whether it has a general contribution to regulation of endocytosis at nerve terminals remains unknown. We investigated this issue at rat hippocampal boutons by imaging vesicle endocytosis as the real-time retrieval of vesicular synaptophysin tagged with a pH-sensitive green fluorescence protein. We found that endocytosis induced by 200 action potentials (5-40 Hz) was slowed by acute inhibition of MLCK and down-regulation of MLCK with RNA interference, while the total amount of vesicle exocytosis and somatic Ca(2+) channel current did not change with MLCK down-regulation. Acute inhibition of myosin II similarly impaired endocytosis. Furthermore, down-regulation of MLCK prevented depolarization-induced phosphorylation of myosin light chain, an effect shared by blockers of Ca(2+) channels and calmodulin. These results suggest that MLCK facilitates vesicle endocytosis through activity-dependent phosphorylation of myosin downstream of Ca(2+) /calmodulin, probably as a widely existing mechanism among synapses. Our study suggests that MLCK is an important activity-dependent regulator of vesicle recycling in hippocampal neurons, which are critical for learning and memory. The kinetics of vesicle membrane endocytosis at nerve terminals has long been known to depend on activity and Ca(2+) . This study provides evidence suggesting that myosin light chain kinase increases endocytosis efficiency at hippocampal neurons by mediating Ca(2+) /calmodulin-dependent phosphorylation of myosin. The authors propose that this signal cascade may serve as a common pathway contributing to the activity-dependent regulation of vesicle endocytosis at synapses. © 2016 International Society for Neurochemistry.
Separation of large mammalian ventricular myosin differing in ATPase activity.
Rupp, Heinz; Maisch, Bernhard
2007-01-01
To investigate a possible heterogeneity of human ventricular myosin, papillary muscles of patients with valvular dysfunction were examined using a modified native gel electrophoresis. Myosin was separated into 2 components termed VA and VB, whereby the VA to VB proportion appeared to depend on the ventricular load. The proportion of the faster migrating band VA was correlated (P<0.05) with end-diastolic pressure and the aortic pressure-cardiac index product. The regression based on these variables accounted for 67% of the variation in VA (R2=0.67). The VA proportion was, however, not significantly correlated with cardiac norepinephrine concentration. The ATPase activity of the 2 components of myosin was assessed from the Ca3(PO4)2 precipitation by incubating the gel in the presence of ATP and CaCl2. The ATPase activity of VA was 60% of that of VB. The VA and VB forms were observed also in the cat (31.4% VA), dog (32.1% VA), pig (28.5% VA), wild pig (33.7% VA), and roe deer (30.5% VA). VA and VB were not detected in the rat exhibiting the 3 isoforms V1, V2, and V3, rabbit (100% V3), and hare (86% V1). The data demonstrate a heterogeneity of large mammalian ventricular myosin, whereby an increased cardiac load appeared to be associated with a higher myosin VA proportion that exhibited a reduced ATPase activity.
Isolation, properties and P content of the human brain myosin.
Fazekas, S; Ováry, I; Horváth, E; Székessy-Hermann, V; Juhász, P
1982-01-01
KCl-, and NaCl-myosins were prepared from different parts of the central nervous system (CNS). Throughout these experiments P and lipid contents were higher in NaCl-myosins than in KCl-preparations. Both KCl-, and NaCl-myosins have increased lipid and P contents compared with skeletal muscle myosins. When the specimens were separated by a molecular sieve, it was found by chromatographic technique on Sepharose 4B column that the cerebral and cerebellar myosins were composed of two fractions of different molecular mass while the brain stem and spinal cord myosins revealed only a single peak. The myosin fractions' Ca-ATPase activity could be augmented by rabbit muscle actin. The myosin preparations developed filamentous systems and aggregates which could be shown by scanning electron microscopy. All the CNS-myosin preparations could be phosphorylated; however, they were saturated to a different degree and were influenced by the presence or absence of serotonin. The kinetic studies revealed that the phosphate saturation of the brain stem, cerebellar and cerebral myosins depended on the ATP concentration and incubation time. The alkaline hydrolysates of lipid-free human brain myosin preparations contained amino acid phosphates, P-Arg, P-Lys and P-His in different amounts depending on their sources. In response to a phosphorylating mixture only the amount of P-Arg was elevated in the cerebral myosins, P-Arg and P-His in the brain stem preparations, and P-Arg, P-His and the amounts of unidentified compounds in the cerebellar ones.
Tsai, Ming-Ho; Jiang, Meei Jyh
2010-08-23
Reactive oxygen species (ROS) were shown to mediate aberrant contractility in hypertension, yet the physiological roles of ROS in vascular smooth muscle contraction have remained elusive. This study aimed to examine whether ROS regulate alpha1-adrenoceptor-activated contraction by altering myosin phosphatase activities. Using endothelium-denuded rat tail artery (RTA) strips, effects of anti-oxidants on isometric force, ROS production, phosphorylation of the 20-kDa myosin light chain (MLC20), and myosin phosphatase stimulated by alpha1-adrenoceptor agonist phenylephrine were examined. An antioxidant, N-acetyl-L-cysteine (NAC), and two NADPH oxidase inhibitors, apocynin and VAS2870, dose-dependently inhibited contraction activated by phenylephrine. Phenylephrine stimulated superoxide anion production that was diminished by the pretreatment of apocynin, VAS2870, superoxide scavenger tiron or mitochondria inhibitor rotenone, but not by xanthine oxidase inhibitor allopurinol or cyclooxygenase inhibitor indomethacin. Concurrently, NADPH oxidase activity in RTA homogenates increased within 1 min upon phenylephrine stimulation, sustained for 10 min, and was abolished by the co-treatment with apocynin, but not allopurinol or rotenone. Phenylephrine-induced MLC20 phosphorylation was dose-dependently decreased by apocynin. Furthermore, apocynin inhibited phenylephrine-stimulated RhoA translocation to plasma membrane and phosphorylation of both myosin phosphatase regulatory subunit MYPT1Thr855 and myosin phosphatase inhibitor CPI-17Thr38. ROS, probably derived from NADPH oxidase and mitochondria, partially regulate alpha1-adrenoceptor-activated smooth muscle contraction by altering myosin phosphatase-mediated MLC20 phosphorylation through both RhoA/Rho kinase- and CPI-17-dependent pathways.
Yang, Qing; Zhang, Xiao-Feng; Pollard, Thomas D.
2012-01-01
The Arp2/3 complex nucleates actin filaments to generate networks at the leading edge of motile cells. Nonmuscle myosin II produces contractile forces involved in driving actin network translocation. We inhibited the Arp2/3 complex and/or myosin II with small molecules to investigate their respective functions in neuronal growth cone actin dynamics. Inhibition of the Arp2/3 complex with CK666 reduced barbed end actin assembly site density at the leading edge, disrupted actin veils, and resulted in veil retraction. Strikingly, retrograde actin flow rates increased with Arp2/3 complex inhibition; however, when myosin II activity was blocked, Arp2/3 complex inhibition now resulted in slowing of retrograde actin flow and veils no longer retracted. Retrograde flow rate increases induced by Arp2/3 complex inhibition were independent of Rho kinase activity. These results provide evidence that, although the Arp2/3 complex and myosin II are spatially segregated, actin networks assembled by the Arp2/3 complex can restrict myosin II–dependent contractility with consequent effects on growth cone motility. PMID:22711700
Brotto, Marco A; Biesiadecki, Brandon J; Brotto, Leticia S; Nosek, Thomas M; Jin, Jian-Ping
2006-02-01
Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca(2+) via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin, troponin T (TnT), and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton X-100-skinned single fibers from soleus, diaphragm, gastrocnemius, and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of the TnT and TnI isoforms to investigate their role in determining contractility. Types IIa, IIx, and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca(2+) sensitivity than that of the fast troponin fibers, whereas fibers containing fast troponin showed a higher cooperativity of Ca(2+) activation than that of the slow troponin fibers. These results demonstrate distinct but coordinated regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties of muscle.
BROTTO, MARCO A.; BIESIADECKI, BRANDON J.; BROTTO, LETICIA S.; NOSEK, THOMAS M; JIN, J.-P.
2005-01-01
(Summary) Brotto, Marco A., Brandon J. Biesiadecki, Leticia S. Brotto, Thomas M. Nosek, and J.-P. Jin. Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca2+ via the troponin complex. Slow and fast twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin and troponin T (TnT) and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton skinned single fibers from soleus, diaphragm, gastrocnemius and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of TnT and TnI isoform to investigate their role in determining contractility. Type IIa, IIx and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca2+ sensitivity than that of the fast troponin fibers, while fibers containing fast troponin showed a higher cooperativity of Ca2+ activation than that of the slow troponin fibers. The results demonstrate distinctive, but coordinated, regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties. PMID:16192301
Kronert, William A.; Melkani, Girish C.; Melkani, Anju; Bernstein, Sanford I.
2015-01-01
Our molecular modeling studies suggest a charge-dependent interaction between residues Glu-497 in the relay domain and Arg-712 in the converter domain of human β-cardiac myosin. To test the significance of this putative interaction, we generated transgenic Drosophila expressing indirect flight muscle myosin with charge reversal mutations in the relay (E496R) or converter (R713E). Each mutation yielded dramatic reductions in myosin Ca-ATPase activity (∼80%) as well as in basal (∼67%) and actin-activated (∼84%) Mg-ATPase activity. E496R myosin-induced in vitro actin-sliding velocity was reduced by 71% and R713E myosin permitted no actin motility. Indirect flight muscles of late pupae from each mutant displayed disrupted myofibril assembly, with adults having severely abnormal myofibrils and no flight ability. To understand the molecular basis of these defects, we constructed a putative compensatory mutant that expresses myosin with both E496R and R713E. Intriguingly, ATPase values were restored to ∼73% of wild-type and actin-sliding velocity increased to 40%. The double mutation suppresses myofibril assembly defects in pupal indirect flight muscles and dramatically reduces myofibril disruption in young adults. Although sarcomere organization is not sustained in older flies and flight ability is not restored in homozygotes, young heterozygotes fly well. Our results indicate that this charge-dependent interaction between the myosin relay and converter domains is essential to the mechanochemical cycle and sarcomere assembly. Furthermore, the same inter-domain interaction is disrupted when modeling human β-cardiac myosin heavy chain cardiomyopathy mutations E497D or R712L, implying that abolishing this salt bridge is one cause of the human disease. PMID:26446785
The role of the myosin ATPase activity in adaptive thermogenesis by skeletal muscle.
Cooke, Roger
2011-03-01
Resting skeletal muscle is a major contributor to adaptive thermogenesis, i.e., the thermogenesis that changes in response to exposure to cold or to overfeeding. The identification of the "furnace" that is responsible for increased heat generation in resting muscle has been the subject of a number of investigations. A new state of myosin, the super relaxed state (SRX), with a very slow ATP turnover rate has recently been observed in skeletal muscle (Stewart et al. in Proc Natl Acad Sci USA 107:430-435, 2010). Inhibition of the myosin ATPase activity in the SRX was suggested to be caused by binding of the myosin head to the core of the thick filament in a structural motif identified earlier by electron microscopy. To be compatible with the basal metabolic rate observed in vivo for resting muscle, most myosin heads would have to be in the SRX. Modulation of the population of this state, relative to the normal relaxed state, was proposed to be a major contributor to adaptive thermogenesis in resting muscle. Transfer of only 20% of myosin heads from the SRX into the normal relaxed state would cause muscle thermogenesis to double. Phosphorylation of the myosin regulatory light chain was shown to transfer myosin heads from the SRX into the relaxed state, which would increase thermogenesis. In particular, thermogenesis by myosin has been proposed to play a role in the dissipation of calories during overfeeding. Up-regulation of muscle thermogenesis by pharmaceuticals that target the SRX would provide new approaches to the treatment of obesity or high blood sugar levels.
Kampourakis, Thomas; Zhang, Xuemeng; Sun, Yin-Biao; Irving, Malcolm
2018-01-01
Omecamtiv mecarbil and blebbistatin perturb the regulatory state of the thick filament in heart muscle. Omecamtiv mecarbil increases contractility at low levels of activation by stabilizing the ON state of the thick filament. Omecamtiv mecarbil decreases contractility at high levels of activation by disrupting the acto-myosin ATPase cycle. Blebbistatin reduces contractility by stabilizing the thick filament OFF state and inhibiting acto-myosin ATPase. Thick filament regulation is a promising target for novel therapeutics in heart disease. Contraction of heart muscle is triggered by a transient rise in intracellular free calcium concentration linked to a change in the structure of the actin-containing thin filaments that allows the head or motor domains of myosin from the thick filaments to bind to them and induce filament sliding. It is becoming increasingly clear that cardiac contractility is also regulated through structural changes in the thick filaments, although the molecular mechanisms underlying thick filament regulation are still relatively poorly understood. Here we investigated those mechanisms using small molecules - omecamtiv mecarbil (OM) and blebbistatin (BS) - that bind specifically to myosin and respectively activate or inhibit contractility in demembranated cardiac muscle cells. We measured isometric force and ATP utilization at different calcium and small-molecule concentrations in parallel with in situ structural changes determined using fluorescent probes on the myosin regulatory light chain in the thick filaments and on troponin C in the thin filaments. The results show that BS inhibits contractility and actin-myosin ATPase by stabilizing the OFF state of the thick filament in which myosin head domains are more parallel to the filament axis. In contrast, OM stabilizes the ON state of the thick filament, but inhibits contractility at high intracellular calcium concentration by disrupting the actin-myosin ATPase pathway. The effects of BS and OM on the calcium sensitivity of isometric force and filament structural changes suggest that the co-operativity of calcium activation in physiological conditions is due to positive coupling between the regulatory states of the thin and thick filaments. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Kampourakis, Thomas; Zhang, Xuemeng; Sun, Yin‐Biao
2017-01-01
Key points Omecamtiv mecarbil and blebbistatin perturb the regulatory state of the thick filament in heart muscle.Omecamtiv mecarbil increases contractility at low levels of activation by stabilizing the ON state of the thick filament.Omecamtiv mecarbil decreases contractility at high levels of activation by disrupting the acto‐myosin ATPase cycle.Blebbistatin reduces contractility by stabilizing the thick filament OFF state and inhibiting acto‐myosin ATPase.Thick filament regulation is a promising target for novel therapeutics in heart disease. Abstract Contraction of heart muscle is triggered by a transient rise in intracellular free calcium concentration linked to a change in the structure of the actin‐containing thin filaments that allows the head or motor domains of myosin from the thick filaments to bind to them and induce filament sliding. It is becoming increasingly clear that cardiac contractility is also regulated through structural changes in the thick filaments, although the molecular mechanisms underlying thick filament regulation are still relatively poorly understood. Here we investigated those mechanisms using small molecules – omecamtiv mecarbil (OM) and blebbistatin (BS) – that bind specifically to myosin and respectively activate or inhibit contractility in demembranated cardiac muscle cells. We measured isometric force and ATP utilization at different calcium and small‐molecule concentrations in parallel with in situ structural changes determined using fluorescent probes on the myosin regulatory light chain in the thick filaments and on troponin C in the thin filaments. The results show that BS inhibits contractility and actin‐myosin ATPase by stabilizing the OFF state of the thick filament in which myosin head domains are more parallel to the filament axis. In contrast, OM stabilizes the ON state of the thick filament, but inhibits contractility at high intracellular calcium concentration by disrupting the actin‐myosin ATPase pathway. The effects of BS and OM on the calcium sensitivity of isometric force and filament structural changes suggest that the co‐operativity of calcium activation in physiological conditions is due to positive coupling between the regulatory states of the thin and thick filaments. PMID:29052230
Sharing is Caring: The Role of Actin/Myosin-V in Synaptic Vesicle Transport between Synapses in vivo
NASA Astrophysics Data System (ADS)
Gramlich, Michael
Inter-synaptic vesicle sharing is an important but not well understood process of pre-synaptic function. Further, the molecular mechanisms that underlie this inter-synaptic exchange are not well known, and whether this inter-synaptic vesicle sharing is regulated by neural activity remains largely unexplored. I address these questions by studying CA1/CA3 Hippocampal neurons at the single synaptic vesicle level. Using high-resolution tracking of individual vesicles that have recently undergone endocytosis, I observe long-distance axonal transport of synaptic vesicles is partly mediated by the actin network. Further, the actin-dependent transport is predominantly carried out by Myosin-V. I develop a correlated-motion analysis to characterize the mechanics of how actin and Myosin-V affect vesicle transport. Lastly, I also observe that vesicle exit rates from the synapse to the axon and long-distance vesicle transport are both regulated by activity, but Myosin-V does not appear to mediate the activity dependence. These observations highlight the roles of the axonal actin network, and Myosin-V in particular, in regulating inter-synaptic vesicle exchange.
Andruchov, Oleg; Galler, Stefan
2008-03-01
This study contributes to understand the physiological role of slow myosin light chain isoforms in fast-twitch type IIA fibres of skeletal muscle. These isoforms are often attached to the myosin necks of rat type IIA fibres, whereby the slow alkali myosin light chain isoform MLC1s is much more frequent and abundant than the slow regulatory myosin light chain isoform MLC2s. In the present study, single-skinned rat type IIA fibres were maximally Ca(2+) activated and subjected to stepwise stretches for causing a perturbation of myosin head pulling cycles. From the time course of the resulting force transients, myosin head kinetics was deduced. Fibres containing MLC1s exhibited slower kinetics independently of the presence or absence of MLC2s. At the maximal MLC1s concentration of about 75%, the slowing was about 40%. The slowing effect of MLC1s is possibly due to differences in the myosin heavy chain binding sites of the fast and slow alkali MLC isoforms, which changes the rigidity of the myosin neck. Compared with the impact of myosin heavy chain isoforms in various fast-twitch fibre types, the influence of MLC1s on myosin head kinetics of type IIA fibres is much smaller. In conclusion, the physiological role of fast and slow MLC isoforms in type IIA fibres is a fine-tuning of the myosin head kinetics.
Kronert, William A; Melkani, Girish C; Melkani, Anju; Bernstein, Sanford I
2010-05-21
We used an integrative approach to probe the significance of the interaction between the relay loop and converter domain of the myosin molecular motor from Drosophila melanogaster indirect flight muscle. During the myosin mechanochemical cycle, ATP-induced twisting of the relay loop is hypothesized to reposition the converter, resulting in cocking of the contiguous lever arm into the pre-power stroke configuration. The subsequent movement of the lever arm through its power stroke generates muscle contraction by causing myosin heads to pull on actin filaments. We generated a transgenic line expressing myosin with a mutation in the converter domain (R759E) at a site of relay loop interaction. Molecular modeling suggests that the interface between the relay loop and converter domain of R759E myosin would be significantly disrupted during the mechanochemical cycle. The mutation depressed calcium as well as basal and actin-activated MgATPase (V(max)) by approximately 60% compared to wild-type myosin, but there is no change in apparent actin affinity (K(m)). While ATP or AMP-PNP (adenylyl-imidodiphosphate) binding to wild-type myosin subfragment-1 enhanced tryptophan fluorescence by approximately 15% or approximately 8%, respectively, enhancement does not occur in the mutant. This suggests that the mutation reduces lever arm movement. The mutation decreases in vitro motility of actin filaments by approximately 35%. Mutant pupal indirect flight muscles display normal myofibril assembly, myofibril shape, and double-hexagonal arrangement of thick and thin filaments. Two-day-old fibers have occasional "cracking" of the crystal-like array of myofilaments. Fibers from 1-week-old adults show more severe cracking and frayed myofibrils with some disruption of the myofilament lattice. Flight ability is reduced in 2-day-old flies compared to wild-type controls, with no upward mobility but some horizontal flight. In 1-week-old adults, flight capability is lost. Thus, altered myosin function permits myofibril assembly, but results in a progressive disruption of the myofilament lattice and flight ability. We conclude that R759 in the myosin converter domain is essential for normal ATPase activity, in vitro motility and locomotion. Our results provide the first mutational evidence that intramolecular signaling between the relay loop and converter domain is critical for myosin function both in vitro and in muscle. (c) 2010 Elsevier Ltd. All rights reserved.
Kinetic Characterization of Nonmuscle Myosin IIB at the Single Molecule Level*
Nagy, Attila; Takagi, Yasuharu; Billington, Neil; Sun, Sara A.; Hong, Davin K. T.; Homsher, Earl; Wang, Aibing; Sellers, James R.
2013-01-01
Nonmuscle myosin IIB (NMIIB) is a cytoplasmic myosin, which plays an important role in cell motility by maintaining cortical tension. It forms bipolar thick filaments with ∼14 myosin molecule dimers on each side of the bare zone. Our previous studies showed that the NMIIB is a moderately high duty ratio (∼20–25%) motor. The ADP release step (∼0.35 s−1) of NMIIB is only ∼3 times faster than the rate-limiting phosphate release (0.13 ± 0.01 s−1). The aim of this study was to relate the known in vitro kinetic parameters to the results of single molecule experiments and to compare the kinetic and mechanical properties of single- and double-headed myosin fragments and nonmuscle IIB thick filaments. Examination of the kinetics of NMIIB interaction with actin at the single molecule level was accomplished using total internal reflection fluorescence (TIRF) with fluorescence imaging with 1-nm accuracy (FIONA) and dual-beam optical trapping. At a physiological ATP concentration (1 mm), the rate of detachment of the single-headed and double-headed molecules was similar (∼0.4 s−1). Using optical tweezers we found that the power stroke sizes of single- and double-headed heavy meromyosin (HMM) were each ∼6 nm. No signs of processive stepping at the single molecule level were observed in the case of NMIIB-HMM in optical tweezers or TIRF/in vitro motility experiments. In contrast, robust motility of individual fluorescently labeled thick filaments of full-length NMIIB was observed on actin filaments. Our results are in good agreement with the previous steady-state and transient kinetic studies and show that the individual nonprocessive nonmuscle myosin IIB molecules form a highly processive unit when polymerized into filaments. PMID:23148220
The Globular Tail Domain of Myosin-5a Functions as a Dimer in Regulating the Motor Activity.
Zhang, Wen-Bo; Yao, Lin-Lin; Li, Xiang-Dong
2016-06-24
Myosin-5a contains two heavy chains, which are dimerized via the coiled-coil regions. Thus, myosin-5a comprises two heads and two globular tail domains (GTDs). The GTD is the inhibitory domain that binds to the head and inhibits its motor function. Although the two-headed structure is essential for the processive movement of myosin-5a along actin filaments, little is known about the role of GTD dimerization. Here, we investigated the effect of GTD dimerization on its inhibitory activity. We found that the potent inhibitory activity of the GTD is dependent on its dimerization by the preceding coiled-coil regions, indicating synergistic interactions between the two GTDs and the two heads of myosin-5a. Moreover, we found that alanine mutations of the two conserved basic residues at N-terminal extension of the GTD not only weaken the inhibitory activity of the GTD but also enhance the activation of myosin-5a by its cargo-binding protein melanophilin (Mlph). These results are consistent with the GTD forming a head to head dimer, in which the N-terminal extension of the GTD interacts with the Mlph-binding site in the counterpart GTD. The Mlph-binding site at the GTD-GTD interface must be exposed prior to the binding of Mlph. We therefore propose that the inhibited Myo5a is equilibrated between the folded state, in which the Mlph-binding site is buried, and the preactivated state, in which the Mlph-binding site is exposed, and that Mlph is able to bind to the Myo5a in preactivated state and activates its motor function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Mechanics and Activation of Unconventional Myosins.
Batters, Christopher; Veigel, Claudia
2016-08-01
Many types of cellular motility are based on the myosin family of motor proteins ranging from muscle contraction to exo- and endocytosis, cytokinesis, cell locomotion or signal transduction in hearing. At the center of this wide range of motile processes lies the adaptation of the myosins for each specific mechanical task and the ability to coordinate the timing of motor protein mobilization and targeting. In recent years, great progress has been made in developing single molecule technology to characterize the diverse mechanical properties of the unconventional myosins. Here, we discuss the basic mechanisms and mechanical adaptations of unconventional myosins, and emerging principles regulating motor mobilization and targeting. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
MyTH4-FERM myosins have an ancient and conserved role in filopod formation
Goodson, Holly V.; Arthur, Ashley L.; Luxton, G. W. Gant; Houdusse, Anne; Titus, Margaret A.
2016-01-01
The formation of filopodia in Metazoa and Amoebozoa requires the activity of myosin 10 (Myo10) in mammalian cells and of Dictyostelium unconventional myosin 7 (DdMyo7) in the social amoeba Dictyostelium. However, the exact roles of these MyTH4-FERM myosins (myosin tail homology 4-band 4.1, ezrin, radixin, moesin; MF) in the initiation and elongation of filopodia are not well defined and may reflect conserved functions among phylogenetically diverse MF myosins. Phylogenetic analysis of MF myosin domains suggests that a single ancestral MF myosin existed with a structure similar to DdMyo7, which has two MF domains, and that subsequent duplications in the metazoan lineage produced its functional homolog Myo10. The essential functional features of the DdMyo7 myosin were identified using quantitative live-cell imaging to characterize the ability of various mutants to rescue filopod formation in myo7-null cells. The two MF domains were found to function redundantly in filopod formation with the C-terminal FERM domain regulating both the number of filopodia and their elongation velocity. DdMyo7 mutants consisting solely of the motor plus a single MyTH4 domain were found to be capable of rescuing the formation of filopodia, establishing the minimal elements necessary for the function of this myosin. Interestingly, a chimeric myosin with the Myo10 MF domain fused to the DdMyo7 motor also was capable of rescuing filopod formation in the myo7-null mutant, supporting fundamental functional conservation between these two distant myosins. Together, these findings reveal that MF myosins have an ancient and conserved role in filopod formation. PMID:27911821
Scale dependence of the mechanics of active gels with increasing motor concentration.
Sonn-Segev, Adar; Bernheim-Groswasser, Anne; Roichman, Yael
2017-10-18
Actin is a protein that plays an essential role in maintaining the mechanical integrity of cells. In response to strong external stresses, it can assemble into large bundles, but it grows into a fine branched network to induce cell motion. In some cases, the self-organization of actin fibers and networks involves the action of bipolar filaments of the molecular motor myosin. Such self-organization processes mediated by large myosin bipolar filaments have been studied extensively in vitro. Here we create active gels, composed of single actin filaments and small myosin bipolar filaments. The active steady state in these gels persists long enough to enable the characterization of their mechanical properties using one and two point microrheology. We study the effect of myosin concentration on the mechanical properties of this model system for active matter, for two different motor assembly sizes. In contrast to previous studies of networks with large motor assemblies, we find that the fluctuations of tracer particles embedded in the network decrease in amplitude as motor concentration increases. Nonetheless, we show that myosin motors stiffen the actin networks, in accordance with bulk rheology measurements of networks containing larger motor assemblies. This implies that such stiffening is of universal nature and may be relevant to a wider range of cytoskeleton-based structures.
Myosin Vb Is Associated with Plasma Membrane Recycling Systems
Lapierre, Lynne A.; Kumar, Ravindra; Hales, Chadwick M.; Navarre, Jennifer; Bhartur, Sheela G.; Burnette, Jason O.; Provance, D. William; Mercer, John A.; Bähler, Martin; Goldenring, James R.
2001-01-01
Myosin Va is associated with discrete vesicle populations in a number of cell types, but little is known of the function of myosin Vb. Yeast two-hybrid screening of a rabbit parietal cell cDNA library with dominant active Rab11a (Rab11aS20V) identified myosin Vb as an interacting protein for Rab11a, a marker for plasma membrane recycling systems. The isolated clone, corresponding to the carboxyl terminal 60 kDa of the myosin Vb tail, interacted with all members of the Rab11 family (Rab11a, Rab11b, and Rab25). GFP-myosin Vb and endogenous myosin Vb immunoreactivity codistributed with Rab11a in HeLa and Madin-Darby canine kidney (MDCK) cells. As with Rab11a in MDCK cells, the myosin Vb immunoreactivity was dispersed with nocodazole treatment and relocated to the apical corners of cells with taxol treatment. A green fluorescent protein (GFP)-myosin Vb tail chimera overexpressed in HeLa cells retarded transferrin recycling and caused accumulation of transferrin and the transferrin receptor in pericentrosomal vesicles. Expression of the myosin Vb tail chimera in polarized MDCK cells stably expressing the polymeric IgA receptor caused accumulation of basolaterally endocytosed polymeric IgA and the polymeric IgA receptor in the pericentrosomal region. The myosin Vb tail had no effects on transferrin trafficking in polarized MDCK cells. The GFP-myosin Va tail did not colocalize with Rab11a and had no effects on recycling system vesicle distribution in either HeLa or MDCK cells. The results indicate myosin Vb is associated with the plasma membrane recycling system in nonpolarized cells and the apical recycling system in polarized cells. The dominant negative effects of the myosin Vb tail chimera indicate that this unconventional myosin is required for transit out of plasma membrane recycling systems. PMID:11408590
Tropomyosin movement on F-actin during muscle activation explained by energy landscapes
Orzechowski, Marek; Moore, Jeffrey R.; Fischer, Stefan; Lehman, William
2014-01-01
Muscle contraction is regulated by tropomyosin movement across the thin filament surface, which exposes or blocks myosin-binding sites on actin. Recent atomic structures of F-actin-tropomyosin have yielded the positions of tropomyosin on myosin-free and myosin-decorated actin. Here, the repositioning of α-tropomyosin between these locations on F-actin was systematically examined by optimizing the energy of the complex for a wide range of tropomyosin positions on F-actin. The resulting energy landscape provides a full-map of the F-actin surface preferred by tropomyosin, revealing a broad energy basin associated with the tropomyosin position that blocks myosin-binding. This is consistent with previously proposed low-energy oscillations of semi-rigid tropomyosin, necessary for shifting of tropomyosin following troponin-binding. In contrast, the landscape shows much less favorable energies when tropomyosin locates near its myosin-induced “open-state” position. This indicates that spontaneous movement of tropomyosin away from its energetic “ground-state” to the open-state is unlikely in absence of myosin. Instead, myosin-binding must drive tropomyosin toward the open-state to activate the thin filament. Additional energy landscapes were computed for disease-causing actin mutants that distort the topology of the actin-tropomyosin energy landscape, explaining their phenotypes. Thus, the computation of such energy landscapes offers a sensitive way to estimate the impact of mutations. PMID:24412204
Tropomyosin movement on F-actin during muscle activation explained by energy landscapes.
Orzechowski, Marek; Moore, Jeffrey R; Fischer, Stefan; Lehman, William
2014-03-01
Muscle contraction is regulated by tropomyosin movement across the thin filament surface, which exposes or blocks myosin-binding sites on actin. Recent atomic structures of F-actin-tropomyosin have yielded the positions of tropomyosin on myosin-free and myosin-decorated actin. Here, the repositioning of α-tropomyosin between these locations on F-actin was systematically examined by optimizing the energy of the complex for a wide range of tropomyosin positions on F-actin. The resulting energy landscape provides a full-map of the F-actin surface preferred by tropomyosin, revealing a broad energy basin associated with the tropomyosin position that blocks myosin-binding. This is consistent with previously proposed low-energy oscillations of semi-rigid tropomyosin, necessary for shifting of tropomyosin following troponin-binding. In contrast, the landscape shows much less favorable energies when tropomyosin locates near its myosin-induced "open-state" position. This indicates that spontaneous movement of tropomyosin away from its energetic "ground-state" to the open-state is unlikely in absence of myosin. Instead, myosin-binding must drive tropomyosin toward the open-state to activate the thin filament. Additional energy landscapes were computed for disease-causing actin mutants that distort the topology of the actin-tropomyosin energy landscape, explaining their phenotypes. Thus, the computation of such energy landscapes offers a sensitive way to estimate the impact of mutations. Copyright © 2014 Elsevier Inc. All rights reserved.
van den Boom, Frank; Düssmann, Heiko; Uhlenbrock, Katharina; Abouhamed, Marouan
2007-01-01
Myosin IXb (Myo9b) is a single-headed processive myosin that exhibits Rho GTPase-activating protein (RhoGAP) activity in its tail region. Using live cell imaging, we determined that Myo9b is recruited to extending lamellipodia, ruffles, and filopodia, the regions of active actin polymerization. A functional motor domain was both necessary and sufficient for targeting Myo9b to these regions. The head domains of class IX myosins comprise a large insertion in loop2. Deletion of the large Myo9b head loop 2 insertion abrogated the enrichment in extending lamellipodia and ruffles, but enhanced significantly the enrichment at the tips of filopodia and retraction fibers. The enrichment in the tips of filopodia and retraction fibers depended on four lysine residues C-terminal to the loop 2 insertion and the tail region. Fluorescence recovery after photobleaching and photoactivation experiments in lamellipodia revealed that the dynamics of Myo9b was comparable to that of actin. The exchange rates depended on the Myo9b motor region and motor activity, and they were also dependent on the turnover of F-actin. These results demonstrate that Myo9b functions as a motorized RhoGAP molecule in regions of actin polymerization and identify Myo9b head sequences important for in vivo motor properties. PMID:17314409
Seebohm, B; Matinmehr, F; Köhler, J; Francino, A; Navarro-Lopéz, F; Perrot, A; Ozcelik, C; McKenna, W J; Brenner, B; Kraft, T
2009-08-05
The ability of myosin to generate motile forces is based on elastic distortion of a structural element of the actomyosin complex (cross-bridge) that allows strain to develop before filament sliding. Addressing the question, which part of the actomyosin complex experiences main elastic distortion, we suggested previously that the converter domain might be the most compliant region of the myosin head domain. Here we test this proposal by studying functional effects of naturally occurring missense mutations in the beta-myosin heavy chain, 723Arg --> Gly (R723G) and 736Ile --> Thr (I736T), in comparison to 719Arg --> Trp (R719W). All three mutations are associated with hypertrophic cardiomyopathy and are located in the converter region of the myosin head domain. We determined several mechanical parameters of single skinned slow fibers isolated from Musculus soleus biopsies of hypertrophic cardiomyopathy patients and healthy controls. Major findings of this study for mutation R723G were i), a >40% increase in fiber stiffness in rigor with a 2.9-fold increase in stiffness per myosin head (S( *)(rigor R723G) = 0.84 pN/nm S( *)(rigor WT) = 0.29 pN/nm); and ii), a significant increase in force per head (F( *)(10 degrees C), 1.99 pN vs. 1.49 pN = 1.3-fold increase; F( *)(20 degrees C), 2.56 pN vs. 1.92 pN = 1.3-fold increase) as well as stiffness per head during isometric steady-state contraction (S( *)(active10 degrees C), 0.52 pN/nm vs. 0.28 pN/nm = 1.9-fold increase). Similar changes were found for mutation R719W (2.6-fold increase in S( *)(rigor); 1.8-fold increase in F( *)(10 degrees C), 1.6-fold in F( *)(20 degrees C); twofold increase in S( *)(active10 degrees C)). Changes in active cross-bridge cycling kinetics could not account for the increase in force and active stiffness. For the above estimates the previously determined fraction of mutated myosin in the biopsies was taken into account. Data for wild-type myosin of slow soleus muscle fibers support previous findings that for the slow myosin isoform S( *) and F( *) are significantly lower than for fast myosin e.g., of rabbit psoas muscle. The data indicate that two mutations, R723G and R719W, are associated with an increase in resistance to elastic distortion of the individual mutated myosin heads whereas mutation I736T has essentially no effect. The data strongly support the notion that major elastic distortion occurs within the converter itself. Apparently, the compliance depends on specific residues, e.g., R719 and R723, presumably located at strategic positions near the long alpha-helix of the light chain binding domain. Because amino acids 719 and 723 are nonconserved residues, cross-bridge stiffness may well be specifically tuned for different myosins.
Sang, Qing; Yan, Xukun; Wang, Huan; Feng, Ruizhi; Fei, Xiang; Ma, Duan; Xing, Qinghe; Li, Qiaoli; Zhao, Xinzhi; Jin, Li; He, Lin; Li, Huawei; Wang, Lei
2013-01-01
The MYO7A encodes a protein classified as an unconventional myosin. Here, we present a family with non-syndromic autosomal dominant hearing impairment that clinically resembles other previously published DFNA11 families. Affected members of the family present with an ascending audiogram affecting low and middle frequencies at young ages and then affecting all frequencies with increasing age. Genome-wide linkage analysis using Illumina Cyto-12 Chip mapped the disease locus to the DFNA11 interval in the family. A c.2003G→A (p.R668H) mutation of the MYO7A, is heterozygous in all affected family members and absent in 100 healthy individuals. Arg668His is located in a region of the myosin VIIA motor domain that is highly conserved among different species. Molecular modeling predicts that the conserved R668 residue plays important structural role in linking different lobes of motor domain together. In the actin-activated ATPase activity assay, the rate of NADH oxidation was higher in the wild-type myosin VIIA, indicating that the ATPase activity in the p.R668H mutant myosin VIIA was significantly destroyed.
NASA Astrophysics Data System (ADS)
Reinach, Fernando C.; Nagai, Kiyoshi; Kendrick-Jones, John
1986-07-01
The regulatory light chains, small polypeptides located on the myosin head, regulate the interaction of myosin with actin in response to either Ca2+ or phosphorylation. The demonstration that the regulatory light chains on scallop myosin can be replaced by light chains from other myosins has allowed us to compare the functional capabilities of different light chains1, but has not enabled us to probe the role of features, such as the Ca2+/Mg2+ binding site, that are common to all of them. Here, we describe the use of site-directed mutagenesis to study the function of that site. We synthesized the chicken skeletal myosin light chain in Escherichia coli and constructed mutants with substitutions within the Ca2+/Mg2+ binding site. When the aspartate residues at the first and sixth Ca2+ coordination positions are replaced by uncharged alanines, the light chains have a reduced Ca2+ binding capacity but still bind to scallop myosin with high affinity. Unlike the wild-type skeletal light chain which inhibits myosin interaction with actin, the mutants activate it. Thus, an intact Ca2+/Mg2+ binding site in the N-terminal region of the light chain is essential for regulating the interaction of myosin with actin.
Raghavan, Srivatsan; Shen, Colette J.; Desai, Ravi A.; Sniadecki, Nathan J.; Nelson, Celeste M.; Chen, Christopher S.
2010-01-01
We present a novel microfabricated platform to culture cells within arrays of micrometer-scale three-dimensional (3D) extracellular matrix scaffolds (microgels). These microscale cultures eliminate diffusion barriers that are intrinsic to traditional 3D culture systems (macrogels) and enable uniform cytokine stimulation of the entire culture population, as well as allow immunolabeling, imaging and population-based biochemical assays across the relatively coplanar microgels. Examining early signaling associated with hepatocyte growth factor (HGF)-mediated scattering and tubulogenesis of MDCK cells revealed that 3D culture modulates cellular responses both through dimensionality and altered stimulation rates. Comparing responses in 2D culture, microgels and macrogels demonstrated that HGF-induced ERK signaling was driven by the dynamics of stimulation and not by whether cells were in a 2D or 3D environment, and that this ERK signaling was equally important for HGF-induced cell scattering on 2D substrates and tubulogenesis in 3D. By contrast, we discovered a specific HGF-induced increase in myosin expression leading to sustained downregulation of myosin activity that occurred only within 3D contexts and was required for 3D tubulogenesis but not 2D scattering. Interestingly, although absent in cells on collagen-coated plates, downregulation of myosin activity also occurred for cells on collagen gels, but was transient and mediated by a combination of myosin dephosphorylation and enhanced myosin expression. Furthermore, upregulating myosin activity via siRNA targeted to a myosin phosphatase did not attenuate scattering in 2D but did inhibit tubulogenesis in 3D. Together, these results demonstrate that cellular responses to soluble cues in 3D culture are regulated by both rates of stimulation and by matrix dimensionality, and highlight the importance of decoupling these effects to identify early signals relevant to cellular function in 3D environments. PMID:20682635
Hong, Feng; Brizendine, Richard K; Carter, Michael S; Alcala, Diego B; Brown, Avery E; Chattin, Amy M; Haldeman, Brian D; Walsh, Michael P; Facemyer, Kevin C; Baker, Josh E; Cremo, Christine R
2015-10-01
Smooth muscle myosin (SMM) light chain kinase (MLCK) phosphorylates SMM, thereby activating the ATPase activity required for muscle contraction. The abundance of active MLCK, which is tightly associated with the contractile apparatus, is low relative to that of SMM. SMM phosphorylation is rapid despite the low ratio of MLCK to SMM, raising the question of how one MLCK rapidly phosphorylates many SMM molecules. We used total internal reflection fluorescence microscopy to monitor single molecules of streptavidin-coated quantum dot-labeled MLCK interacting with purified actin, actin bundles, and stress fibers of smooth muscle cells. Surprisingly, MLCK and the N-terminal 75 residues of MLCK (N75) moved on actin bundles and stress fibers of smooth muscle cell cytoskeletons by a random one-dimensional (1-D) diffusion mechanism. Although diffusion of proteins along microtubules and oligonucleotides has been observed previously, this is the first characterization to our knowledge of a protein diffusing in a sustained manner along actin. By measuring the frequency of motion, we found that MLCK motion is permitted only if acto-myosin and MLCK-myosin interactions are weak. From these data, diffusion coefficients, and other kinetic and geometric considerations relating to the contractile apparatus, we suggest that 1-D diffusion of MLCK along actin (a) ensures that diffusion is not rate limiting for phosphorylation, (b) allows MLCK to locate to areas in which myosin is not yet phosphorylated, and (c) allows MLCK to avoid getting "stuck" on myosins that have already been phosphorylated. Diffusion of MLCK along actin filaments may be an important mechanism for enhancing the rate of SMM phosphorylation in smooth muscle. © 2015 Hong et al.
Sugi, Haruo; Abe, Takahiro; Kobayashi, Takakazu; Chaen, Shigeru; Ohnuki, Yoshiki; Saeki, Yasutake; Sugiura, Seiryo
2013-01-01
Although evidence has been presented that, at low ionic strength, myosin heads in relaxed skeletal muscle fibers form linkages with actin filaments, the effect of low ionic strength on contraction characteristics of Ca(2+)-activated muscle fibers has not yet been studied in detail. To give information about the mechanism of muscle contraction, we have examined the effect of low ionic strength on the mechanical properties and the contraction characteristics of skinned rabbit psoas muscle fibers in both relaxed and maximally Ca(2+)-activated states. By progressively decreasing KCl concentration from 125 mM to 0 mM (corresponding to a decrease in ionic strength μ from 170 mM to 50 mM), relaxed fibers showed changes in mechanical response to sinusoidal length changes and ramp stretches, which are consistent with the idea of actin-myosin linkage formation at low ionic strength. In maximally Ca(2+)-activated fibers, on the other hand, the maximum isometric force increased about twofold by reducing KCl concentration from 125 to 0 mM. Unexpectedly, determination of the force-velocity curves indicated that, the maximum unloaded shortening velocity Vmax, remained unchanged at low ionic strength. This finding indicates that the actin-myosin linkages, which has been detected in relaxed fibers at low ionic strength, are broken quickly on Ca(2+) activation, so that the linkages in relaxed fibers no longer provide any internal resistance against fiber shortening. The force-velocity curves, obtained at various levels of steady Ca(2+)-activated isometric force, were found to be identical if they are normalized with respect to the maximum isometric force. The MgATPase activity of muscle fibers during isometric force generation was found not to change appreciably at low ionic strength despite the two-fold increase in Ca(2+)-activated isometric force. These results can be explained in terms of enhancement of force generated by individual myosin heads, but not by any changes in kinetic properties of cyclic actin-myosin interaction.
Chen, Cai-Ping; Chen, Xin; Qiao, Yan-Ning; Wang, Pei; He, Wei-Qi; Zhang, Cheng-Hai; Zhao, Wei; Gao, Yun-Qian; Chen, Chen; Tao, Tao; Sun, Jie; Wang, Ye; Gao, Ning; Kamm, Kristine E; Stull, James T; Zhu, Min-Sheng
2015-01-01
Force production and maintenance in smooth muscle is largely controlled by different signalling modules that fine tune myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. To investigate the regulation of MLCP activity in vivo, we analysed the role of two phosphorylation sites on MYPT1 (regulatory subunit of MLCP) that biochemically inhibit MLCP activity in vitro. MYPT1 is constitutively phosphorylated at T694 by unidentified kinases in vivo, whereas the T852 site is phosphorylated by RhoA-associated protein kinase (ROCK). We established two mouse lines with alanine substitution of T694 or T852. Isolated bladder smooth muscle from T852A mice displayed no significant changes in RLC phosphorylation or force responses, but force was inhibited with a ROCK inhibitor. In contrast, smooth muscles containing the T694A mutation showed a significant reduction of force along with reduced RLC phosphorylation. The contractile responses of T694A mutant smooth muscle were also independent of ROCK activation. Thus, phosphorylation of MYPT1 T694, but not T852, is a primary mechanism contributing to inhibition of MLCP activity and enhancement of RLC phosphorylation in vivo. The constitutive phosphorylation of MYPT1 T694 may provide a mechanism for regulating force maintenance of smooth muscle. Key points Force production and maintenance in smooth muscle is largely controlled by myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. MYPT1 is the regulatory subunit of MLCP that biochemically inhibits MLCP activity via T694 or T852 phosphorylation in vitro. Here we separately investigated the contribution of these two phosphorylation sites in bladder smooth muscles by establishing two single point mutation mouse lines, T694A and T852A, and found that phosphorylation of MYPT1 T694, but not T852, mediates force maintenance via inhibition of MLCP activity and enhancement of RLC phosphorylation in vivo. Our findings reveal the role of MYPT1 T694/T852 phosphorylation in vivo in regulation of smooth muscle contraction. PMID:25433069
Chen, Cai-Ping; Chen, Xin; Qiao, Yan-Ning; Wang, Pei; He, Wei-Qi; Zhang, Cheng-Hai; Zhao, Wei; Gao, Yun-Qian; Chen, Chen; Tao, Tao; Sun, Jie; Wang, Ye; Gao, Ning; Kamm, Kristine E; Stull, James T; Zhu, Min-Sheng
2015-02-01
Force production and maintenance in smooth muscle is largely controlled by myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. MYPT1 is the regulatory subunit of MLCP that biochemically inhibits MLCP activity via T694 or T852 phosphorylation in vitro. Here we separately investigated the contribution of these two phosphorylation sites in bladder smooth muscles by establishing two single point mutation mouse lines, T694A and T852A, and found that phosphorylation of MYPT1 T694, but not T852, mediates force maintenance via inhibition of MLCP activity and enhancement of RLC phosphorylation in vivo. Our findings reveal the role of MYPT1 T694/T852 phosphorylation in vivo in regulation of smooth muscle contraction. Force production and maintenance in smooth muscle is largely controlled by different signalling modules that fine tune myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. To investigate the regulation of MLCP activity in vivo, we analysed the role of two phosphorylation sites on MYPT1 (regulatory subunit of MLCP) that biochemically inhibit MLCP activity in vitro. MYPT1 is constitutively phosphorylated at T694 by unidentified kinases in vivo, whereas the T852 site is phosphorylated by RhoA-associated protein kinase (ROCK). We established two mouse lines with alanine substitution of T694 or T852. Isolated bladder smooth muscle from T852A mice displayed no significant changes in RLC phosphorylation or force responses, but force was inhibited with a ROCK inhibitor. In contrast, smooth muscles containing the T694A mutation showed a significant reduction of force along with reduced RLC phosphorylation. The contractile responses of T694A mutant smooth muscle were also independent of ROCK activation. Thus, phosphorylation of MYPT1 T694, but not T852, is a primary mechanism contributing to inhibition of MLCP activity and enhancement of RLC phosphorylation in vivo. The constitutive phosphorylation of MYPT1 T694 may provide a mechanism for regulating force maintenance of smooth muscle. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Holz, Oliver; Apel, David; Steinmetz, Patrick; Lange, Ellen; Hopfenmüller, Simon; Ohler, Kerstin; Sudhop, Stefanie
2017-01-01
Background: Hydra propagates asexually by exporting tissue into a bud, which detaches 4 days later as a fully differentiated young polyp. Prerequisite for detachment is activation of fibroblast growth factor receptor (FGFR) signaling. The mechanism which enables constriction and tissue separation within the monolayered ecto‐ and endodermal epithelia is unknown. Results: Histological sections and staining of F‐actin by phalloidin revealed conspicuous cell shape changes at the bud detachment site indicating a localized generation of mechanical forces and the potential enhancement of secretory functions in ectodermal cells. By gene expression analysis and pharmacological inhibition, we identified a candidate signaling pathway through Rho, ROCK, and myosin II, which controls bud base constriction and rearrangement of the actin cytoskeleton. Specific regional myosin phosphorylation suggests a crucial role of ectodermal cells at the detachment site. Inhibition of FGFR, Rho, ROCK, or myosin II kinase activity is permissive for budding, but represses myosin phosphorylation, rearrangement of F‐actin and constriction. The young polyp remains permanently connected to the parent by a broad tissue bridge. Conclusions: Our data suggest an essential role of FGFR and a Rho‐ROCK‐myosin II pathway in the control of cell shape changes required for bud detachment. Developmental Dynamics 246:502–516, 2017. © 2017 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists PMID:28411398
Holz, Oliver; Apel, David; Steinmetz, Patrick; Lange, Ellen; Hopfenmüller, Simon; Ohler, Kerstin; Sudhop, Stefanie; Hassel, Monika
2017-07-01
Hydra propagates asexually by exporting tissue into a bud, which detaches 4 days later as a fully differentiated young polyp. Prerequisite for detachment is activation of fibroblast growth factor receptor (FGFR) signaling. The mechanism which enables constriction and tissue separation within the monolayered ecto- and endodermal epithelia is unknown. Histological sections and staining of F-actin by phalloidin revealed conspicuous cell shape changes at the bud detachment site indicating a localized generation of mechanical forces and the potential enhancement of secretory functions in ectodermal cells. By gene expression analysis and pharmacological inhibition, we identified a candidate signaling pathway through Rho, ROCK, and myosin II, which controls bud base constriction and rearrangement of the actin cytoskeleton. Specific regional myosin phosphorylation suggests a crucial role of ectodermal cells at the detachment site. Inhibition of FGFR, Rho, ROCK, or myosin II kinase activity is permissive for budding, but represses myosin phosphorylation, rearrangement of F-actin and constriction. The young polyp remains permanently connected to the parent by a broad tissue bridge. Our data suggest an essential role of FGFR and a Rho-ROCK-myosin II pathway in the control of cell shape changes required for bud detachment. Developmental Dynamics 246:502-516, 2017. © 2017 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists. © 2017 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Force generation within tissues during development
NASA Astrophysics Data System (ADS)
Kasza, Karen
During embryonic development, multicellular tissues physically change shape, move, and grow. Changes in epithelial tissue organization are often accomplished by local movements of cells that are driven largely by forces generated by the motor protein myosin II. These forces are patterned to orient cell movements, resulting in changes in tissue shape and organization to build functional tissues and organs. To investigate the mechanisms of force generation in vivo, we use the fruit fly embryo as a model system. Spatial patterns of forces orient cell movements to drive rapid tissue elongation along the head-to-tail axis of the embryo. I will describe how studying embryos generated with engineered myosin variants provides insight into where, when, and how forces are generated to efficiently reorganize tissues. We found that a myosin variant that is locked-in to the active or ``on'' state accelerates cell movements, while two mutant myosin variants associated with human disease produce slowed cell movement. These myosin variants all disrupt tissue elongation, but live imaging and biophysical measurements reveal distinct effects on myosin organization and dynamics within cells and uncover mechanisms that control the spatial and temporal patterns of force generation. These studies shed light not only on how defects in force generation contribute to disease but also on physical principles at work in active, living materials.
NASA Astrophysics Data System (ADS)
Nucciotti, V.; Stringari, C.; Sacconi, L.; Vanzi, F.; Linari, M.; Piazzesi, G.; Lombardi, V.; Pavone, F. S.
2009-02-01
Recently, the use of Second Harmonic Generation (SHG) for imaging biological samples has been explored with regard to intrinsic SHG in highly ordered biological samples. As shown by fractional extraction of proteins, myosin is the source of SHG signal in skeletal muscle. SHG is highly dependent on symmetries and provides selective information on the structural order and orientation of the emitting proteins and the dynamics of myosin molecules responsible for the mechano-chemical transduction during contraction. We characterise the polarization-dependence of SHG intensity in three different physiological states: resting, rigor and isometric tetanic contraction in a sarcomere length range between 2.0 μm and 4.0 μm. The orientation of motor domains of the myosin molecules is dependent on their physiological states and modulate the SHG signal. We can discriminate the orientation of the emitting dipoles in four different molecular conformations of myosin heads in intact fibers during isometric contraction, in resting and rigor. We estimate the contribution of the myosin motor domain to the total second order bulk susceptibility from its molecular structure and its functional conformation. We demonstrate that SHG is sensitive to the fraction of ordered myosin heads by disrupting the order of myosin heads in rigor with an ATP analog. We estimate the fraction of myosin motors generating the isometric force in the active muscle fiber from the dependence of the SHG modulation on the degree of overlap between actin and myosin filaments during an isometric contraction.
An, Yanru; Xue, Guosheng; Shaobo, Yang; Mingxi, Deng; Zhou, Xiaowei; Yu, Weichuan; Ishibashi, Toyotaka; Zhang, Lei; Yan, Yan
2017-06-15
Cell delamination is a conserved morphogenetic process important for the generation of cell diversity and maintenance of tissue homeostasis. Here, we used Drosophila embryonic neuroblasts as a model to study the apical constriction process during cell delamination. We observe dynamic myosin signals both around the cell adherens junctions and underneath the cell apical surface in the neuroectoderm. On the cell apical cortex, the nonjunctional myosin forms flows and pulses, which are termed medial myosin pulses. Quantitative differences in medial myosin pulse intensity and frequency are crucial to distinguish delaminating neuroblasts from their neighbors. Inhibition of medial myosin pulses blocks delamination. The fate of a neuroblast is set apart from that of its neighbors by Notch signaling-mediated lateral inhibition. When we inhibit Notch signaling activity in the embryo, we observe that small clusters of cells undergo apical constriction and display an abnormal apical myosin pattern. Together, these results demonstrate that a contractile actomyosin network across the apical cell surface is organized to drive apical constriction in delaminating neuroblasts. © 2017. Published by The Company of Biologists Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasik, Anita A.; Dumont, Vincent; Tienari, Jukka
Glomerular epithelial cells, podocytes, are insulin responsive and can develop insulin resistance. Here, we demonstrate that the small GTPase septin 7 forms a complex with nonmuscle myosin heavy chain IIA (NMHC-IIA; encoded by MYH9), a component of the nonmuscle myosin IIA (NM-IIA) hexameric complex. We observed that knockdown of NMHC-IIA decreases insulin-stimulated glucose uptake into podocytes. Both septin 7 and NM-IIA associate with SNAP23, a SNARE protein involved in GLUT4 storage vesicle (GSV) docking and fusion with the plasma membrane. We observed that insulin decreases the level of septin 7 and increases the activity of NM-IIA in the SNAP23 complex,more » as visualized by increased phosphorylation of myosin regulatory light chain. Also knockdown of septin 7 increases the activity of NM-IIA in the complex. The activity of NM-IIA is increased in diabetic rat glomeruli and cultured human podocytes exposed to macroalbuminuric sera from patients with type 1 diabetes. Collectively, the data suggest that the activity of NM-IIA in the SNAP23 complex plays a key role in insulin-stimulated glucose uptake into podocytes. Furthermore, we observed that septin 7 reduces the activity of NM-IIA in the SNAP23 complex and thereby hinders GSV docking and fusion with the plasma membrane. - Highlights: • Septin 7, nonmuscle myosin heavy chain IIA (NMHC-IIA) and SNAP23 form a complex. • Knockdown of septin 7 increases NM-IIA activity in the SNAP23 complex. • Insulin decreases septin 7 level and increases NM-IIA activity in the SNAP23 complex. • Septin 7 hinders GSV docking/fusion by reducing NM-IIA activity in the SNAP23 complex.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenitzer, Veronika; Universitaet Regensburg, Biochemie I, Universitaetsstrasse 31, D-93053 Regensburg; Eichner, Norbert
Highlights: Black-Right-Pointing-Pointer Dictyostelium produces the 264 kDa myosin chitin synthase of bivalve mollusc Atrina. Black-Right-Pointing-Pointer Chitin synthase activity releases chitin, partly associated with the cell surface. Black-Right-Pointing-Pointer Membrane extracts of transgenic slime molds produce radiolabeled chitin in vitro. Black-Right-Pointing-Pointer Chitin producing Dictyostelium cells can be characterized by atomic force microscopy. Black-Right-Pointing-Pointer This model system enables us to study initial processes of chitin biomineralization. -- Abstract: Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report themore » heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA{sup -} cell lines are shown.« less
NASA Astrophysics Data System (ADS)
Veksler, Alexander; Vavylonis, Dimitrios
2011-03-01
The formation and constriction of the contractile ring during cytokinesis, the final step of cell division, depends on the recruitment of motor protein myosin to the cell's equatorial region. During animal cell cytokinesis, cortical myosin filaments (MF) disassemble at the flanking regions and concentrate in the equator. This recruitment depends on myosin motor activity and the Rho proteins that regulate MF assembly and disassembly. Central spindle and astral microtubules help establish a spatial pattern of differential Rho activity. We propose a reaction-diffusion model for the dynamics of MF recruitment to the equatorial region. In the model, the central spindle and mechanical stress promote self-reinforcing MF assembly. Negative feedback is introduced by MF-induced recruitment of inhibitor myosin phosphatase. Our model yields various dynamical regimes and explains both the recruitment of MF to the cleavage furrow and the observed damped MF oscillations in the flanking regions, as well as steady MF assembly. Space and time parameters of MF oscillations are calculated. We predict oscillatory relaxation of cortical MF upon removal of locally-applied external stress.
Sugi, H; Iwamoto, H; Akimoto, T; Ushitani, H
1998-03-03
Although a contracting muscle regulates its energy output depending on the load imposed on it ("Fenn effect"), the mechanism underlying the load-dependent energy output remains obscure. To explore the possibility that the mechanical efficiency, with which chemical energy derived from ATP hydrolysis is converted into mechanical work, of individual myosin heads changes in a load-dependent manner, we examined the auxotonic shortening of glycerinated rabbit psoas muscle fibers, containing ATP molecules almost equal in number to the myosin heads, after laser-flash photolysis of caged calcium. Immediately before laser-flash activation, almost all of the myosin heads in the fiber are in the state M.ADP.Pi, and can undergo only one ATP hydrolysis cycle after activation. When the fibers were activated to shorten under various auxotonic loads, the length, force, and power output changes were found to be scaled according to the auxotonic load. Both the power and energy outputs were maximal under a moderate auxotonic load. The amount of M.ADP.Pi utilized at a time after activation was estimated from the amount of isometric force developed after interruption of fiber shortening. This amount was minimal in the isometric condition and increased nearly in proportion to the distance of fiber shortening. These results are taken as evidence that the efficiency of chemomechanical energy conversion in individual myosin heads changes in a load-dependent manner.
Sugi, H; Iwamoto, H; Akimoto, T; Ushitani, H
1998-01-01
Although a contracting muscle regulates its energy output depending on the load imposed on it ("Fenn effect"), the mechanism underlying the load-dependent energy output remains obscure. To explore the possibility that the mechanical efficiency, with which chemical energy derived from ATP hydrolysis is converted into mechanical work, of individual myosin heads changes in a load-dependent manner, we examined the auxotonic shortening of glycerinated rabbit psoas muscle fibers, containing ATP molecules almost equal in number to the myosin heads, following laser flash photolysis of caged calcium. Immediately before laser flash activation, almost all of the myosin heads in the fiber are in the state, M.ADP.Pi, and can undergo only one ATP hydrolysis cycle after activation. When the fibers were activated to shorten under various auxotonic loads, the length, force and power output changes were found to be scaled according to the auxotonic load. Both the power and energy outputs were maximal under a moderate auxotonic load. The amount of M.ADP.Pi utilized at a time after activation was estimated from the amount of isometric force developed after interruption of fiber shortening. This amount was minimal in the isometric condition, and increased nearly in proportion to the distance of fiber shortening. These results are taken as evidence that the efficiency of chemo-mechanical energy conversion in individual myosin heads changes in a load-dependent manner.
Hertzano, Ronna; Shalit, Ella; Rzadzinska, Agnieszka K; Dror, Amiel A; Song, Lin; Ron, Uri; Tan, Joshua T; Shitrit, Alina Starovolsky; Fuchs, Helmut; Hasson, Tama; Ben-Tal, Nir; Sweeney, H Lee; de Angelis, Martin Hrabe; Steel, Karen P; Avraham, Karen B
2008-10-03
Myosin VI, found in organisms from Caenorhabditis elegans to humans, is essential for auditory and vestibular function in mammals, since genetic mutations lead to hearing impairment and vestibular dysfunction in both humans and mice. Here, we show that a missense mutation in this molecular motor in an ENU-generated mouse model, Tailchaser, disrupts myosin VI function. Structural changes in the Tailchaser hair bundles include mislocalization of the kinocilia and branching of stereocilia. Transfection of GFP-labeled myosin VI into epithelial cells and delivery of endocytic vesicles to the early endosome revealed that the mutant phenotype displays disrupted motor function. The actin-activated ATPase rates measured for the D179Y mutation are decreased, and indicate loss of coordination of the myosin VI heads or 'gating' in the dimer form. Proper coordination is required for walking processively along, or anchoring to, actin filaments, and is apparently destroyed by the proximity of the mutation to the nucleotide-binding pocket. This loss of myosin VI function may not allow myosin VI to transport its cargoes appropriately at the base and within the stereocilia, or to anchor the membrane of stereocilia to actin filaments via its cargos, both of which lead to structural changes in the stereocilia of myosin VI-impaired hair cells, and ultimately leading to deafness.
Feng, Ruizhi; Fei, Xiang; Ma, Duan; Xing, Qinghe; Li, Qiaoli; Zhao, Xinzhi; Jin, Li; He, Lin; Li, Huawei; Wang, Lei
2013-01-01
The MYO7A encodes a protein classified as an unconventional myosin. Here, we present a family with non-syndromic autosomal dominant hearing impairment that clinically resembles other previously published DFNA11 families. Affected members of the family present with an ascending audiogram affecting low and middle frequencies at young ages and then affecting all frequencies with increasing age. Genome-wide linkage analysis using Illumina Cyto-12 Chip mapped the disease locus to the DFNA11 interval in the family. A c.2003G→A (p.R668H) mutation of the MYO7A, is heterozygous in all affected family members and absent in 100 healthy individuals. Arg668His is located in a region of the myosin VIIA motor domain that is highly conserved among different species. Molecular modeling predicts that the conserved R668 residue plays important structural role in linking different lobes of motor domain together. In the actin-activated ATPase activity assay, the rate of NADH oxidation was higher in the wild-type myosin VIIA, indicating that the ATPase activity in the p.R668H mutant myosin VIIA was significantly destroyed. PMID:23383098
Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration.
Croft, Daniel R; Coleman, Mathew L; Li, Shuixing; Robertson, David; Sullivan, Teresa; Stewart, Colin L; Olson, Michael F
2005-01-17
Membrane blebbing during the apoptotic execution phase results from caspase-mediated cleavage and activation of ROCK I. Here, we show that ROCK activity, myosin light chain (MLC) phosphorylation, MLC ATPase activity, and an intact actin cytoskeleton, but not microtubular cytoskeleton, are required for disruption of nuclear integrity during apoptosis. Inhibition of ROCK or MLC ATPase activity, which protect apoptotic nuclear integrity, does not affect caspase-mediated degradation of nuclear proteins such as lamins A, B1, or C. The conditional activation of ROCK I was sufficient to tear apart nuclei in lamin A/C null fibroblasts, but not in wild-type fibroblasts. Thus, apoptotic nuclear disintegration requires actin-myosin contractile force and lamin proteolysis, making apoptosis analogous to, but distinct from, mitosis where nuclear disintegration results from microtubule-based forces and from lamin phosphorylation and depolymerization.
Kim, Kye-Young; Kawamoto, Sachiyo; Bao, Jianjun; Sellers, James R.; Adelstein, Robert S.
2008-01-01
We report the initial biochemical characterization of an alternatively spliced isoform of nonmuscle heavy meromyosin (HMM) II-B2 and compare it with HMM II-B0, the non-spliced isoform. HMM II-B2 is the HMM derivative of an alternatively spliced isoform of endogenous nonmuscle myosin (NM) II-B, which has 21-amino acids inserted into loop 2, near the actin-binding region. NM II-B2 is expressed in the Purkinje cells of the cerebellum as well as in other neuronal cells (Ma et al., Mol. Biol. Cell 15 (2006) 2138-2149). In contrast to any of the previously described isoforms of NM II (II-A, II-B0, II-B1, II-C0 and II-C1) or to smooth muscle myosin, the actin-activated MgATPase activity of HMM II-B2 is not significantly increased from a low, basal level by phosphorylation of the 20 kDa myosin light chain (MLC-20). Moreover, although HMM II-B2 can bind to actin in the absence of ATP and is released in its presence, it cannot propel actin in the sliding actin filament assay following MLC-20 phosphorylation. Unlike HMM II-B2, the actin-activated MgATPase activity of a chimeric HMM with the 21-amino acids II-B2 sequence inserted into the homologous location in the heavy chain of HMM II-C is increased following MLC-20 phosphorylation. This indicates that the effect of the II-B2 insert is myosin heavy chain specific. PMID:18060863
Trivedi, Niraj; Ramahi, Joseph S.; Karakaya, Mahmut; ...
2014-12-02
During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Our results show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia aremore » motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. In conclusion, we propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trivedi, Niraj; Ramahi, Joseph S.; Karakaya, Mahmut
During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Our results show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia aremore » motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. In conclusion, we propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.« less
Myosin IIA-related Actomyosin Contractility Mediates Oxidative Stress-induced Neuronal Apoptosis
Wang, Yan; Xu, Yingqiong; Liu, Qian; Zhang, Yuanyuan; Gao, Zhen; Yin, Mingzhu; Jiang, Nan; Cao, Guosheng; Yu, Boyang; Cao, Zhengyu; Kou, Junping
2017-01-01
Oxidative stress-induced neuronal apoptosis plays an important role in the progression of central nervous system (CNS) diseases. In our study, when neuronal cells were exposed to hydrogen peroxide (H2O2), an exogenous oxidant, cell apoptosis was observed with typical morphological changes including membrane blebbing, neurite retraction and cell contraction. The actomyosin system is considered to be responsible for the morphological changes, but how exactly it regulates oxidative stress-induced neuronal apoptosis and the distinctive functions of different myosin II isoforms remain unclear. We demonstrate that myosin IIA was required for neuronal contraction, while myosin IIB was required for neuronal outgrowth in normal conditions. During H2O2-induced neuronal apoptosis, myosin IIA, rather than IIB, interacted with actin filaments to generate contractile forces that lead to morphological changes. Moreover, myosin IIA knockout using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9) reduced H2O2-induced neuronal apoptosis and the associated morphological changes. We further demonstrate that caspase-3/Rho-associated kinase 1 (ROCK1) dependent phosphorylation of myosin light chain (MLC) was required for the formation of the myosin IIA-actin complex. Meanwhile, either inhibition of myosin II ATPase with blebbistatin or knockdown of myosin IIA with siRNA reversely attenuated caspase-3 activation, suggesting a positive feedback loop during oxidative stress-induced apoptosis. Based on our observation, myosin IIA-actin complex contributes to actomyosin contractility and is associated with the positive feedback loop of caspase-3/ROCK1/MLC pathway. This study unravels the biochemical and mechanistic mechanisms during oxidative stress-induced neuronal apoptosis and may be applicable for the development of therapies for CNS diseases. PMID:28352215
Washabau, Robert J; Holt, David E; Brockman, Daniel J
2002-05-01
To determine the role of myosin light chain phosphorylation in feline colonic smooth muscle contraction. Colonic tissue was obtained from eight 12- to 24-month-old cats. Colonic longitudinal smooth muscle strips were attached to isometric force transducers for measurements of isometric stress. Myosin light chain phosphorylation was determined by isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Stress and phosphorylation were determined following stimulation with ACh or SP, in the absence or presence of a calmodulin antagonist (W-7; 0.1 to 1.0 mM), myosin light chain kinase inhibitor (ML-9; 1 to 10 microM), or extracellular calcium free solutions. Unstimulated longitudinal colonic smooth muscle contained low amounts (6.9+/-3.2%) of phosphorylated myosin light chain. Phosphorylation of the myosin light chains was dose and time dependent with maximal values of 58.5% at 30 seconds of stimulation with 100 microM Ach and 60.2% at 45 seconds of stimulation with 100 nM SP Active isometric stress development closely paralleled phosphorylation of the myosin light chains in ACh- or SP-stimulated muscle. W-7 and ML-9 dose dependently inhibited myosin light chain phosphorylation and isometric stress development associated with ACh or SP stimulation. Removal of extracellular calcium inhibited myosin light chain phosphorylation and isometric stress development in ACh-stimulated smooth muscle. Feline longitudinal colonic smooth muscle contraction is calcium-, calmodulin-, and myosin light chain kinase-dependent. Myosin light chain phosphorylation is necessary for the initiation of contraction in feline longitudinal colonic smooth muscle. These findings may prove useful in determining the biochemical and molecular defects that accompany feline colonic motility disorders.
Modulating Beta-Cardiac Myosin Function at the Molecular and Tissue Levels
Tang, Wanjian; Blair, Cheavar A.; Walton, Shane D.; Málnási-Csizmadia, András; Campbell, Kenneth S.; Yengo, Christopher M.
2017-01-01
Inherited cardiomyopathies are a common form of heart disease that are caused by mutations in sarcomeric proteins with beta cardiac myosin (MYH7) being one of the most frequently affected genes. Since the discovery of the first cardiomyopathy associated mutation in beta-cardiac myosin, a major goal has been to correlate the in vitro myosin motor properties with the contractile performance of cardiac muscle. There has been substantial progress in developing assays to measure the force and velocity properties of purified cardiac muscle myosin but it is still challenging to correlate results from molecular and tissue-level experiments. Mutations that cause hypertrophic cardiomyopathy are more common than mutations that lead to dilated cardiomyopathy and are also often associated with increased isometric force and hyper-contractility. Therefore, the development of drugs designed to decrease isometric force by reducing the duty ratio (the proportion of time myosin spends bound to actin during its ATPase cycle) has been proposed for the treatment of hypertrophic cardiomyopathy. Para-Nitroblebbistatin is a small molecule drug proposed to decrease the duty ratio of class II myosins. We examined the impact of this drug on human beta cardiac myosin using purified myosin motor assays and studies of permeabilized muscle fiber mechanics. We find that with purified human beta-cardiac myosin para-Nitroblebbistatin slows actin-activated ATPase and in vitro motility without altering the ADP release rate constant. In permeabilized human myocardium, para-Nitroblebbistatin reduces isometric force, power, and calcium sensitivity while not changing shortening velocity or the rate of force development (ktr). Therefore, designing a drug that reduces the myosin duty ratio by inhibiting strong attachment to actin while not changing detachment can cause a reduction in force without changing shortening velocity or relaxation. PMID:28119616
Dynamics of myosin II organization into contractile networks and fibers at the medial cell cortex
NASA Astrophysics Data System (ADS)
Nie, Wei
The cellular morphology of adhered cells depends crucially on the formation of a contractile meshwork of parallel and cross-linked stress fibers along the contacting surface. The motor activity and mini-filament assembly of non-muscle myosin II is an important component of cell-level cytoskeletal remodeling during mechanosensing. To monitor the dynamics of non-muscle myosin II, we used confocal microscopy to image cultured HeLa cells that stably express myosin regulatory light chain tagged with GFP (MRLC-GFP). MRLC-GFP was monitored in time-lapse movies at steady state and during the response of cells to varying concentrations of blebbistatin (which disrupts actomyosin stress fibers). Using image correlation spectroscopy analysis, we quantified the kinetics of disassembly and reassembly of actomyosin networks and compared to studies by other groups. This analysis suggested the following processes: myosin minifilament assembly and disassembly; aligning and contraction; myosin filament stabilization upon increasing contractile tension. Numerical simulations that include those processes capture some of the main features observed in the experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness. We discuss methods to monitor myosin reorganization using non-linear imaging methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Le Thi Kim, E-mail: ngocanh@nutr.med.tokushima-u.ac.jp; Hosaka, Toshio; Harada, Nagakatsu
2010-01-01
In adipocytes and myocytes, insulin stimulation translocates glucose transporter 4 (Glut4) storage vesicles (GSVs) from their intracellular storage sites to the plasma membrane (PM) where they dock with the PM. Then, Glut4 is inserted into the PM and initiates glucose uptake into these cells. Previous studies using chemical inhibitors demonstrated that myosin II participates in fusion of GSVs and the PM and increase in the intrinsic activity of Glut4. In this study, the effect of myosin IIA on GSV trafficking was examined by knocking down myosin IIA expression. Myosin IIA knockdown decreased both glucose uptake and exposures of myc-tagged Glut4more » to the cell surface in insulin-stimulated cells, but did not affect insulin signal transduction. Interestingly, myosin IIA knockdown failed to decrease insulin-dependent trafficking of Glut4 to the PM. Moreover, in myosin IIA knockdown cells, insulin-stimulated binding of GSV SNARE protein, vesicle-associated membrane protein 2 (VAMP2) to PM SNARE protein, syntaxin 4 was inhibited. These data suggest that myosin IIA plays a role in insulin-stimulated docking of GSVs to the PM in 3T3-L1 adipocytes through SNARE complex formation.« less
Thick filament mechano-sensing is a calcium-independent regulatory mechanism in skeletal muscle.
Fusi, L; Brunello, E; Yan, Z; Irving, M
2016-10-31
Recent X-ray diffraction studies on actively contracting fibres from skeletal muscle showed that the number of myosin motors available to interact with actin-containing thin filaments is controlled by the stress in the myosin-containing thick filaments. Those results suggested that thick filament mechano-sensing might constitute a novel regulatory mechanism in striated muscles that acts independently of the well-known thin filament-mediated calcium signalling pathway. Here we test that hypothesis using probes attached to the myosin regulatory light chain in demembranated muscle fibres. We show that both the extent and kinetics of thick filament activation depend on thick filament stress but are independent of intracellular calcium concentration in the physiological range. These results establish direct control of myosin motors by thick filament mechano-sensing as a general regulatory mechanism in skeletal muscle that is independent of the canonical calcium signalling pathway.
Thick filament mechano-sensing is a calcium-independent regulatory mechanism in skeletal muscle
Fusi, L.; Brunello, E.; Yan, Z.; Irving, M.
2016-01-01
Recent X-ray diffraction studies on actively contracting fibres from skeletal muscle showed that the number of myosin motors available to interact with actin-containing thin filaments is controlled by the stress in the myosin-containing thick filaments. Those results suggested that thick filament mechano-sensing might constitute a novel regulatory mechanism in striated muscles that acts independently of the well-known thin filament-mediated calcium signalling pathway. Here we test that hypothesis using probes attached to the myosin regulatory light chain in demembranated muscle fibres. We show that both the extent and kinetics of thick filament activation depend on thick filament stress but are independent of intracellular calcium concentration in the physiological range. These results establish direct control of myosin motors by thick filament mechano-sensing as a general regulatory mechanism in skeletal muscle that is independent of the canonical calcium signalling pathway. PMID:27796302
Myosin Light Chain Kinase Is Necessary for Tonic Airway Smooth Muscle Contraction*
Zhang, Wen-Cheng; Peng, Ya-Jing; Zhang, Gen-Sheng; He, Wei-Qi; Qiao, Yan-Ning; Dong, Ying-Ying; Gao, Yun-Qian; Chen, Chen; Zhang, Cheng-Hai; Li, Wen; Shen, Hua-Hao; Ning, Wen; Kamm, Kristine E.; Stull, James T.; Gao, Xiang; Zhu, Min-Sheng
2010-01-01
Different interacting signaling modules involving Ca2+/calmodulin-dependent myosin light chain kinase, Ca2+-independent regulatory light chain phosphorylation, myosin phosphatase inhibition, and actin filament-based proteins are proposed as specific cellular mechanisms involved in the regulation of smooth muscle contraction. However, the relative importance of specific modules is not well defined. By using tamoxifen-activated and smooth muscle-specific knock-out of myosin light chain kinase in mice, we analyzed its role in tonic airway smooth muscle contraction. Knock-out of the kinase in both tracheal and bronchial smooth muscle significantly reduced contraction and myosin phosphorylation responses to K+-depolarization and acetylcholine. Kinase-deficient mice lacked bronchial constrictions in normal and asthmatic airways, whereas the asthmatic inflammation response was not affected. These results indicate that myosin light chain kinase acts as a central participant in the contractile signaling module of tonic smooth muscle. Importantly, contractile airway smooth muscles are necessary for physiological and asthmatic airway resistance. PMID:20018858
Kinetic Adaptations of Myosins for their Diverse Cellular Functions
Heissler, Sarah M.; Sellers, James R.
2016-01-01
Members of the myosin superfamily are involved in all aspects of eukaryotic life. Their function ranges from the transport of organelles and cargos to the generation of membrane tension, and the contraction of muscle. The diversity of physiological functions is remarkable, given that all enzymatically active myosins follow a conserved mechanoenzymatic cycle in which the hydrolysis of ATP to ADP and inorganic phosphate is coupled to either actin-based transport or tethering of actin to defined cellular compartments. Kinetic capacities and limitations of a myosin are determined by the extent to with actin can accelerate the hydrolysis of ATP and the release of the hydrolysis products and are indispensably linked to its physiological tasks. This review focuses on kinetic competencies that – together with structural adaptations – result in myosins with unique mechanoenzymatic properties targeted to their diverse cellular function. PMID:26929436
Azevedo, Elisama; Oliveira, Leandro Teixeira; Castro Lima, Ana Karina; Terra, Rodrigo; Dutra, Patrícia Maria Lourenço; Salerno, Verônica P.
2012-01-01
Leishmaniasis is a neglected tropical disease with no effective vaccines. Actin, microtubules and the actin-based molecular motor myosin Va were investigated for their involvement in Leishmania braziliensis macrophage interactions. Results showed a decrease in the association index when macrophages were without F-actin or microtubules regardless of the activation state of the macrophage. In the absence of F-actin, the production of NO in non-activated cells increased, while in activated cells, the production of NO was reduced independent of parasites. The opposite effect of an increased NO production was observed in the absence of microtubules. In activated cells, the loss of cytoskeletal components inhibited the release of IL-10 during parasite interactions. The production of IL-10 also decreased in the absence of actin or microtubules in non-activated macrophages. Only the disruption of actin altered the production of TNF-α in activated macrophages. The expression of myosin Va tail resulted in an acute decrease in the association index between transfected macrophages and L. braziliensis promastigotes. These data reveal the importance of F-actin, microtubules, and myosin-Va suggesting that modulation of the cytoskeleton may be a mechanism used by L. braziliensis to overcome the natural responses of macrophages to establish infections. PMID:22792440
Azevedo, Elisama; Oliveira, Leandro Teixeira; Castro Lima, Ana Karina; Terra, Rodrigo; Dutra, Patrícia Maria Lourenço; Salerno, Verônica P
2012-01-01
Leishmaniasis is a neglected tropical disease with no effective vaccines. Actin, microtubules and the actin-based molecular motor myosin Va were investigated for their involvement in Leishmania braziliensis macrophage interactions. Results showed a decrease in the association index when macrophages were without F-actin or microtubules regardless of the activation state of the macrophage. In the absence of F-actin, the production of NO in non-activated cells increased, while in activated cells, the production of NO was reduced independent of parasites. The opposite effect of an increased NO production was observed in the absence of microtubules. In activated cells, the loss of cytoskeletal components inhibited the release of IL-10 during parasite interactions. The production of IL-10 also decreased in the absence of actin or microtubules in non-activated macrophages. Only the disruption of actin altered the production of TNF-α in activated macrophages. The expression of myosin Va tail resulted in an acute decrease in the association index between transfected macrophages and L. braziliensis promastigotes. These data reveal the importance of F-actin, microtubules, and myosin-Va suggesting that modulation of the cytoskeleton may be a mechanism used by L. braziliensis to overcome the natural responses of macrophages to establish infections.
Schmitt, Joachim P; Debold, Edward P; Ahmad, Ferhaan; Armstrong, Amy; Frederico, Andrea; Conner, David A; Mende, Ulrike; Lohse, Martin J; Warshaw, David; Seidman, Christine E; Seidman, J G
2006-09-26
Dilated cardiomyopathy (DCM) leads to heart failure, a leading cause of death in industrialized nations. Approximately 30% of DCM cases are genetic in origin, with some resulting from point mutations in cardiac myosin, the molecular motor of the heart. The effects of these mutations on myosin's molecular mechanics have not been determined. We have engineered two murine models characterizing the physiological, cellular, and molecular effects of DCM-causing missense mutations (S532P and F764L) in the alpha-cardiac myosin heavy chain and compared them with WT mice. Mutant mice developed morphological and functional characteristics of DCM consistent with the human phenotypes. Contractile function of isolated myocytes was depressed and preceded left ventricular dilation and reduced fractional shortening. In an in vitro motility assay, both mutant cardiac myosins exhibited a reduced ability to translocate actin (V(actin)) but had similar force-generating capacities. Actin-activated ATPase activities were also reduced. Single-molecule laser trap experiments revealed that the lower V(actin) in the S532P mutant was due to a reduced ability of the motor to generate a step displacement and an alteration of the kinetics of its chemomechanical cycle. These results suggest that the depressed molecular function in cardiac myosin may initiate the events that cause the heart to remodel and become pathologically dilated.
Sugi, Haruo; Abe, Takahiro; Kobayashi, Takakazu; Chaen, Shigeru; Ohnuki, Yoshiki; Saeki, Yasutake; Sugiura, Seiryo
2013-01-01
Although evidence has been presented that, at low ionic strength, myosin heads in relaxed skeletal muscle fibers form linkages with actin filaments, the effect of low ionic strength on contraction characteristics of Ca2+-activated muscle fibers has not yet been studied in detail. To give information about the mechanism of muscle contraction, we have examined the effect of low ionic strength on the mechanical properties and the contraction characteristics of skinned rabbit psoas muscle fibers in both relaxed and maximally Ca2+-activated states. By progressively decreasing KCl concentration from 125 mM to 0 mM (corresponding to a decrease in ionic strength μ from 170 mM to 50 mM), relaxed fibers showed changes in mechanical response to sinusoidal length changes and ramp stretches, which are consistent with the idea of actin-myosin linkage formation at low ionic strength. In maximally Ca2+-activated fibers, on the other hand, the maximum isometric force increased about twofold by reducing KCl concentration from 125 to 0 mM. Unexpectedly, determination of the force-velocity curves indicated that, the maximum unloaded shortening velocity Vmax, remained unchanged at low ionic strength. This finding indicates that the actin-myosin linkages, which has been detected in relaxed fibers at low ionic strength, are broken quickly on Ca2+ activation, so that the linkages in relaxed fibers no longer provide any internal resistance against fiber shortening. The force-velocity curves, obtained at various levels of steady Ca2+-activated isometric force, were found to be identical if they are normalized with respect to the maximum isometric force. The MgATPase activity of muscle fibers during isometric force generation was found not to change appreciably at low ionic strength despite the two-fold increase in Ca2+-activated isometric force. These results can be explained in terms of enhancement of force generated by individual myosin heads, but not by any changes in kinetic properties of cyclic actin-myosin interaction. PMID:23691080
A comparison of rat myosin from fast and slow skeletal muscle and the effect of disuse
NASA Technical Reports Server (NTRS)
Unsworth, B. R.; Witzmann, F. A.; Fitts, R. H.
1981-01-01
Certain enzymatic and structural features of myosin, purified from rat skeletal muscles representative of the fast twitch glycolytic (type IIb), the fast twitch oxidative (type IIa), and the slow twitch oxidative (type I) fiber, were determined and the results were compared with the measured contractile properties. Good correlation was found between the shortening velocities and Ca(2+)-activated ATPase activity for each fiber type. Short term hind limb immobilization caused prolongation of contraction time and one-half relaxation time in the fast twitch muscles and a reduction of these contractile properties in slow twitch soleus. Furthermore, the increased maximum shortening velocity in the immobilized soleus could be correlated with increased Ca(2+)-ATPase, but no change was observed in the enzymatic activity of the fast twitch muscles. No alteration in light chain distribution with disuse was observed in any of the fiber types. The myosin from slow twitch soleus could be distinguished from fast twitch myosins on the basis of the pattern of peptides generated by proteolysis of the heavy chains. Six weeks of hind limb immobilization resulted in both an increased ATPase activity and an altered heavy chain primary structure in the slow twitch soleus muscle.
Inhibiting Myosin Light Chain Kinase Induces Apoptosis In Vitro and In Vivo
Fazal, Fabeha; Gu, Lianzhi; Ihnatovych, Ivanna; Han, YooJeong; Hu, WenYang; Antic, Nenad; Carreira, Fernando; Blomquist, James F.; Hope, Thomas J.; Ucker, David S.; de Lanerolle, Primal
2005-01-01
Previous short-term studies have correlated an increase in the phosphorylation of the 20-kDa light chain of myosin II (MLC20) with blebbing in apoptotic cells. We have found that this increase in MLC20 phosphorylation is rapidly followed by MLC20 dephosphorylation when cells are stimulated with various apoptotic agents. MLC20 dephosphorylation is not a consequence of apoptosis because MLC20 dephosphorylation precedes caspase activation when cells are stimulated with a proapoptotic agent or when myosin light chain kinase (MLCK) is inhibited pharmacologically or by microinjecting an inhibitory antibody to MLCK. Moreover, blocking caspase activation increased cell survival when MLCK is inhibited or when cells are treated with tumor necrosis factor alpha. Depolymerizing actin filaments or detaching cells, processes that destabilize the cytoskeleton, or inhibiting myosin ATPase activity also resulted in MLC20 dephosphorylation and cell death. In vivo experiments showed that inhibiting MLCK increased the number of apoptotic cells and retarded the growth of mammary cancer cells in mice. Thus, MLC20 dephosphorylation occurs during physiological cell death and prolonged MLC20 dephosphorylation can trigger apoptosis. PMID:15988034
Small, Lawrence E.; Dawes, Adriana T.
2017-01-01
Establishment of anterior–posterior polarity in the Caenorhabditis elegans zygote requires two different processes: mechanical activity of the actin–myosin cortex and biochemical activity of partitioning-defective (PAR) proteins. Here we analyze how PARs regulate the behavior of the cortical motor protein nonmuscle myosin (NMY-2) to complement recent efforts that investigate how PARs regulate the Rho GTPase CDC-42, which in turn regulates the actin-myosin cortex. We find that PAR-3 and PAR-6 concentrate CDC-42–dependent NMY-2 in the anterior cortex, whereas PAR-2 inhibits CDC-42–dependent NMY-2 in the posterior domain by inhibiting PAR-3 and PAR-6. In addition, we find that PAR-1 and PAR-3 are necessary for inhibiting movement of NMY-2 across the cortex. PAR-1 protects NMY-2 from being moved across the cortex by forces likely originating in the cytoplasm. Meanwhile, PAR-3 stabilizes NMY-2 against PAR-2 and PAR-6 dynamics on the cortex. We find that PAR signaling fulfills two roles: localizing NMY-2 to the anterior cortex and preventing displacement of the polarized cortical actin–myosin network. PMID:28615321
Ripoll, Léa; Heiligenstein, Xavier; Hurbain, Ilse; Domingues, Lia; Figon, Florent; Petersen, Karl J; Dennis, Megan K; Houdusse, Anne; Marks, Michael S; Raposo, Graça; Delevoye, Cédric
2018-06-06
Vesicular and tubular transport intermediates regulate organellar cargo dynamics. Transport carrier release involves local and profound membrane remodeling before fission. Pinching the neck of a budding tubule or vesicle requires mechanical forces, likely exerted by the action of molecular motors on the cytoskeleton. Here, we show that myosin VI, together with branched actin filaments, constricts the membrane of tubular carriers that are then released from melanosomes, the pigment containing lysosome-related organelles of melanocytes. By combining superresolution fluorescence microscopy, correlative light and electron microscopy, and biochemical analyses, we find that myosin VI motor activity mediates severing by constricting the neck of the tubule at specific melanosomal subdomains. Pinching of the tubules involves the cooperation of the myosin adaptor optineurin and the activity of actin nucleation machineries, including the WASH and Arp2/3 complexes. The fission and release of these tubules allows for the export of components from melanosomes, such as the SNARE VAMP7, and promotes melanosome maturation and transfer to keratinocytes. Our data reveal a new myosin VI- and actin-dependent membrane fission mechanism required for organelle function. © 2018 Ripoll et al.
Grassie, Michael E; Sutherland, Cindy; Ulke-Lemée, Annegret; Chappellaz, Mona; Kiss, Enikö; Walsh, Michael P; MacDonald, Justin A
2012-10-19
Ca(2+) sensitization of smooth muscle contraction depends upon the activities of protein kinases, including Rho-associated kinase, that phosphorylate the myosin phosphatase targeting subunit (MYPT1) at Thr(697) and/or Thr(855) (rat sequence numbering) to inhibit phosphatase activity and increase contractile force. Both Thr residues are preceded by the sequence RRS, and it has been suggested that phosphorylation at Ser(696) prevents phosphorylation at Thr(697). However, the effects of Ser(854) and dual Ser(696)-Thr(697) and Ser(854)-Thr(855) phosphorylations on myosin phosphatase activity and contraction are unknown. We characterized a suite of MYPT1 proteins and phosphospecific antibodies for specificity toward monophosphorylation events (Ser(696), Thr(697), Ser(854), and Thr(855)), Ser phosphorylation events (Ser(696)/Ser(854)) and dual Ser/Thr phosphorylation events (Ser(696)-Thr(697) and Ser(854)-Thr(855)). Dual phosphorylation at Ser(696)-Thr(697) and Ser(854)-Thr(855) by cyclic nucleotide-dependent protein kinases had no effect on myosin phosphatase activity, whereas phosphorylation at Thr(697) and Thr(855) by Rho-associated kinase inhibited phosphatase activity and prevented phosphorylation by cAMP-dependent protein kinase at the neighboring Ser residues. Forskolin induced phosphorylation at Ser(696), Thr(697), Ser(854), and Thr(855) in rat caudal artery, whereas U46619 induced Thr(697) and Thr(855) phosphorylation and prevented the Ser phosphorylation induced by forskolin. Furthermore, pretreatment with forskolin prevented U46619-induced Thr phosphorylations. We conclude that cross-talk between cyclic nucleotide and RhoA signaling pathways dictates the phosphorylation status of the Ser(696)-Thr(697) and Ser(854)-Thr(855) inhibitory regions of MYPT1 in situ, thereby regulating the activity of myosin phosphatase and contraction.
Kasahara, Kohji; Kaneda, Mizuho; Miki, Toshiaki; Iida, Kazuko; Sekino-Suzuki, Naoko; Kawashima, Ikuo; Suzuki, Hidenori; Shimonaka, Motoyuki; Arai, Morio; Ohno-Iwashita, Yoshiko; Kojima, Soichi; Abe, Mitsuhiro; Kobayashi, Toshihide; Okazaki, Toshiro; Souri, Masayoshi; Ichinose, Akitada; Yamamoto, Naomasa
2013-11-07
Membrane rafts are spatially and functionally heterogenous in the cell membrane. We observed that lysenin-positive sphingomyelin (SM)-rich rafts are identified histochemically in the central region of adhered platelets where fibrin and myosin are colocalized on activation by thrombin. The clot retraction of SM-depleted platelets from SM synthase knockout mouse was delayed significantly, suggesting that platelet SM-rich rafts are involved in clot retraction. We found that fibrin converted by thrombin translocated immediately in platelet detergent-resistant membrane (DRM) rafts but that from Glanzmann's thrombasthenic platelets failed. The fibrinogen γ-chain C-terminal (residues 144-411) fusion protein translocated to platelet DRM rafts on thrombin activation, but its mutant that was replaced by A398A399 at factor XIII crosslinking sites (Q398Q399) was inhibited. Furthermore, fibrin translocation to DRM rafts was impaired in factor XIII A subunit-deficient mouse platelets, which show impaired clot retraction. In the cytoplasm, myosin translocated concomitantly with fibrin translocation into the DRM raft of thrombin-stimulated platelets. Furthermore, the disruption of SM-rich rafts by methyl-β-cyclodextrin impaired myosin activation and clot retraction. Thus, we propose that clot retraction takes place in SM-rich rafts where a fibrin-αIIbβ3-myosin complex is formed as a primary axis to promote platelet contraction.
Regulation of intracellular trafficking and secretion of adiponectin by myosin II.
Bedi, Deepa; Dennis, John C; Morrison, Edward E; Braden, Tim D; Judd, Robert L
2017-08-19
Adiponectin is a protein secreted by white adipocytes that plays an important role in insulin action, energy homeostasis and the development of atherosclerosis. The intracellular localization and trafficking of GLUT4 and leptin in adipocytes has been well studied, but little is known regarding the intracellular trafficking of adiponectin. Recent studies have demonstrated that constitutive adiponectin secretion is dependent on PIP2 levels and the integrity of cortical F-actin. Non-muscle myosin II is an actin-based motor that is associated with membrane vesicles and participates in vesicular trafficking in mammalian cells. Therefore, we investigated the role of myosin II in the trafficking and secretion of adiponectin in 3T3-L1 adipocytes. Confocal microscopy revealed that myosin IIA and IIB were dispersed throughout the cytoplasm of the adipocyte. Both myosin isoforms were localized in the Golgi/TGN region as evidenced by colocalization with the cis-Golgi marker, p115 and the trans-Golgi marker, γ-adaptin. Inhibition of myosin II activity by blebbistatin or actin depolymerization by latrunculin B dispersed myosin IIA and IIB towards the periphery while significantly inhibiting adiponectin secretion. Therefore, the constitutive trafficking and secretion of adiponectin in 3T3-L1 adipocytes occurs by an actin-dependent mechanism that involves the actin-based motors, myosin IIA and IIB. Copyright © 2017 Elsevier Inc. All rights reserved.
Dynamics of myosin II organization into cortical contractile networks and fibers
NASA Astrophysics Data System (ADS)
Nie, Wei; Wei, Ming-Tzo; Ou-Yang, Daniel; Jedlicka, Sabrina; Vavylonis, Dimitrios
2014-03-01
The morphology of adhered cells critically depends on the formation of a contractile meshwork of parallel and cross-linked stress fibers along the contacting surface. The motor activity and mini-filament assembly of non-muscle myosin II is an important component of cell-level cytoskeletal remodeling during mechanosensing. To monitor the dynamics of myosin II, we used confocal microscopy to image cultured HeLa cells that stably express myosin regulatory light chain tagged with GFP (MRLC-GFP). MRLC-GFP was monitored in time-lapse movies at steady state and during the response of cells to varying concentrations of blebbistatin which disrupts actomyosin stress fibers. Using image correlation spectroscopy analysis, we quantified the kinetics of disassembly and reassembly of actomyosin networks and compared them to studies by other groups. This analysis suggested that the following processes contribute to the assembly of cortical actomyosin into fibers: random myosin mini-filament assembly and disassembly along the cortex; myosin mini-filament aligning and contraction; stabilization of cortical myosin upon increasing contractile tension. We developed simple numerical simulations that include those processes. The results of simulations of cells at steady state and in response to blebbistatin capture some of the main features observed in the experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness.
Calcium-responsive contractility during fertilization in sea urchin eggs.
Stack, Christianna; Lucero, Amy J; Shuster, Charles B
2006-04-01
Fertilization triggers a reorganization of oocyte cytoskeleton, and in sea urchins, there is a dramatic increase in cortical F-actin. However, the role that myosin II plays during fertilization remains largely unexplored. Myosin II is localized to the cortical cytoskeleton both before and after fertilization and to examine myosin II contractility in living cells, Lytechinus pictus eggs were observed by time-lapse microscopy. Upon sperm binding, a cell surface deflection traversed the egg that was followed by and dependent on the calcium wave. The calcium-dependence of surface contractility could be reproduced in unfertilized eggs, where mobilization of intracellular calcium in unfertilized eggs under compression resulted in a marked contractile response. Lastly, inhibition of myosin II delayed absorption of the fertilization cone, suggesting that myosin II not only responds to the same signals that activate eggs but also participates in the remodeling of the cortical actomyosin cytoskeleton during the first zygotic cell cycle. (c) 2006 Wiley-Liss, Inc.
Calcium-Responsive Contractility During Fertilization in Sea Urchin Eggs
Stack, Christianna; Lucero, Amy J.; Shuster, Charles B.
2008-01-01
Fertilization triggers a reorganization of oocyte cytoskeleton, and in sea urchins there is a dramatic increase in cortical F-actin. However, the role that myosin II plays during fertilization remains largely unexplored. Myosin II is localized to the cortical cytoskeleton both prior to- and following fertilization, and to examine myosin II contractility in living cells, Lytechinus pictus eggs were observed by time-lapse microscopy. Upon sperm binding, a cell surface deflection traversed the egg that was followed- and dependent on the calcium wave. The calcium-dependence of surface contractility could be reproduced in unfertilized eggs, where mobilization of intracellular calcium in unfertilized eggs under compression resulted in a marked contractile response. Lastly, inhibition of myosin II delayed absorption of the fertilization cone, suggesting that myosin II not only responds to the same signals that activate eggs, but also participates in the remodeling of the cortical actomyosin cytoskeleton during the first zygotic cell cycle. PMID:16470603
Sliding movement of single actin filaments on one-headed myosin filaments
NASA Astrophysics Data System (ADS)
Harada, Yoshie; Noguchi, Akira; Kishino, Akiyoshi; Yanagida, Toshio
1987-04-01
The myosin molecule consists of two heads, each of which contains an enzymatic active site and an actin-binding site. The fundamental problem of whether the two heads function independently or cooperatively during muscle contraction has been studied by methods using an actomyosin thread1, superprecipitation2-4 and chemical modification of muscle fibres5. No clear conclusion has yet been reached. We have approached this question using an assay system in which sliding movements of fluorescently labelled single actin filaments along myosin filaments can be observed directly6,7. Here, we report direct measurement of the sliding of single actin filaments along one-headed myosin filaments in which the density of heads was varied over a wide range. Our results show that cooperative interaction between the two heads of myosin is not essential for inducing the sliding movement of actin filaments.
Myosin phosphatase Fine-tunes Zebrafish Motoneuron Position during Axonogenesis
Granato, Michael
2016-01-01
During embryogenesis the spinal cord shifts position along the anterior-posterior axis relative to adjacent tissues. How motor neurons whose cell bodies are located in the spinal cord while their axons reside in adjacent tissues compensate for such tissue shift is not well understood. Using live cell imaging in zebrafish, we show that as motor axons exit from the spinal cord and extend through extracellular matrix produced by adjacent notochord cells, these cells shift several cell diameters caudally. Despite this pronounced shift, individual motoneuron cell bodies stay aligned with their extending axons. We find that this alignment requires myosin phosphatase activity within motoneurons, and that mutations in the myosin phosphatase subunit mypt1 increase myosin phosphorylation causing a displacement between motoneuron cell bodies and their axons. Thus, we demonstrate that spinal motoneurons fine-tune their position during axonogenesis and we identify the myosin II regulatory network as a key regulator. PMID:27855159
PARAMETERS OF TEXTURE CHANGE IN PROCESSED FISH: MYOSIN DENATURATION.
Chu, George Hao; Sterling, Clarence
1970-03-01
The white muscle of the Sacramento blackfish (Orthodon microlepidotus) was processed by freezing, dehydration, and cooking. Myosin was extracted immediately afterwards or following a period of storage in order to examine evidence for denaturation. The tests used were the solubility of whole muscle protein and the intrinsic viscosity, isoelectric point, ATPase activity, ultra-violet absorption spectrum, and optical rotatory dispersion of purified myosin extract. Almost all measures used showed that denaturation increased in the order: fresh < frozen < frozen-stored < dehydrated < dehydrated-stored < cooked.
NASA Astrophysics Data System (ADS)
Roman, Bart I.; Guedes, Rita C.; Stevens, Christian V.; García-Sosa, Alfonso T.
2018-05-01
In multitarget drug design, it is critical to identify active and inactive compounds against a variety of targets and antitargets. Multitarget strategies thus test the limits of available technology, be that in screening large databases of compounds versus a large number of targets, or in using in silico methods for understanding and reliably predicting these pharmacological outcomes. In this paper, we have evaluated the potential of several in silico approaches to predict the target, antitarget and physicochemical profile of (S)-blebbistatin, the best-known myosin II ATPase inhibitor, and a series of analogs thereof. Standard and augmented structure-based design techniques could not recover the observed activity profiles. A ligand-based method using molecular fingerprints was, however, able to select actives for myosin II inhibition. Using further ligand- and structure-based methods, we also evaluated toxicity through androgen receptor binding, affinity for an array of antitargets and the ADME profile (including assay-interfering compounds) of the series. In conclusion, in the search for (S)-blebbistatin analogs, the dissimilarity distance of molecular fingerprints to known actives and the computed antitarget and physicochemical profile of the molecules can be used for compound design for molecules with potential as tools for modulating myosin II and motility-related diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frye, Jeremiah J.; Klenchin, Vadim A.; Bagshaw, Clive R.
2010-09-22
The active site of myosin contains a group of highly conserved amino acid residues whose roles in nucleotide hydrolysis and energy transduction might appear to be obvious from the initial structural and kinetic analyses but become less clear on deeper investigation. One such residue is Ser236 (Dictyostelium discoideum myosin II numbering) which was proposed to be involved in a hydrogen transfer network during {gamma}-phosphate hydrolysis of ATP, which would imply a critical function in ATP hydrolysis and motility. The S236A mutant protein shows a comparatively small decrease in hydrolytic activity and motility, and thus this residue does not appear tomore » be essential. To understand better the contribution of Ser236 to the function of myosin, structural and kinetic studies have been performed on the S236A mutant protein. The structures of the D. discoideum motor domain (S1dC) S236A mutant protein in complex with magnesium pyrophosphate, MgAMPPNP, and MgADP{center_dot}vanadate have been determined. In contrast to the previous structure of wild-type S1dC, the S236A{center_dot}MgAMPPNP complex crystallized in the closed state. Furthermore, transient-state kinetics showed a 4-fold reduction of the nucleotide release step, suggesting that the mutation stabilizes a closed active site. The structures show that a water molecule approximately adopts the location of the missing hydroxyl of Ser236 in the magnesium pyrophosphate and MgAMPPNP structures. This study suggests that the S236A mutant myosin proceeds via a different structural mechanism than wild-type myosin, where the alternate mechanism is able to maintain near normal transient-state kinetic values.« less
Zhou, Zhiqun; Huang, Wenrui; Liang, Jingsheng; Szczesna-Cordary, Danuta
2016-01-01
The homozygous appearance of the intronic mutation (IVS6-1) in the MYL2 gene encoding for myosin ventricular/slow-twitch skeletal regulatory light chain (RLC) was recently linked to the development of slow skeletal muscle fiber type I hypotrophy and early cardiac death. The IVS6-1 (c403-1G>C) mutation resulted from a cryptic splice site in MYL2 causing a frameshift and replacement of the last 32 codons by 19 different amino acids in the RLC mutant protein. Infants who were IVS6-1+∕+-positive died between 4 and 6 months of age due to cardiomyopathy and heart failure. In this report we have investigated the molecular mechanism and functional consequences associated with the IVS6-1 mutation using recombinant human cardiac IVS6-1 and wild-type (WT) RLC proteins. Recombinant proteins were reconstituted into RLC-depleted porcine cardiac muscle preparations and subjected to enzymatic and functional assays. IVS6-1-RLC showed decreased binding to the myosin heavy chain (MHC) compared with WT, and IVS6-1-reconstituted myosin displayed reduced binding to actin in rigor. The IVS6-1 myosin demonstrated a significantly lower Vmax of the actin-activated myosin ATPase activity compared with WT. In stopped-flow experiments, IVS6-1 myosin showed slower kinetics of the ATP induced dissociation of the acto-myosin complex and a significantly reduced slope of the kobs-[MgATP] relationship compared to WT. In skinned porcine cardiac muscles, RLC-depleted and IVS6-1 reconstituted muscle strips displayed a significant decrease in maximal contractile force and a significantly increased Ca2+ sensitivity, both hallmarks of hypertrophic cardiomyopathy-associated mutations in MYL2. Our results showed that the amino-acid changes in IVS6-1 were sufficient to impose significant conformational alterations in the RLC protein and trigger a series of abnormal protein-protein interactions in the cardiac muscle sarcomere. Notably, the mutation disrupted the RLC-MHC interaction and the steady-state and kinetics of the acto-myosin interaction. Specifically, slower myosin cross-bridge turnover rates and slower second-order MgATP binding rates of acto-myosin interactions were observed in IVS6-1 vs. WT reconstituted cardiac preparations. Our in vitro results suggest that when placed in vivo, IVS6-1 may lead to cardiomyopathy and early death of homozygous infants by severely compromising the ability of myosin to develop contractile force and maintain normal systolic and diastolic cardiac function. PMID:27378946
Yengo, Christopher M; Ananthanarayanan, Shobana K; Brosey, Chris A; Mao, Suli; Tyska, Matthew J
2008-01-15
Missense mutations in the membrane-binding actin-based motor protein, myosin-1a (Myo1a), have recently been linked to sensorineural deafness in humans. One of these mutations, E385D, impacts a residue in the switch II region of the motor domain that is present in virtually all members of the myosin superfamily. We sought to examine the impact of E385D on the function of Myo1a, both in terms of mechanochemical activity and ability to target to actin-rich microvilli in polarized epithelial cells. While E385D-Myo1a demonstrated actin-activated ATPase activity, the V(MAX) was reduced threefold relative to wild-type. Despite maintaining an active mechanochemical cycle, E385D-Myo1a was unable to move actin in the sliding filament assay. Intriguingly, when an enhanced-green-fluorescent-protein-tagged form of E385D-Myo1a was stably expressed in polarized epithelial cells, this mutation abolished the microvillar targeting normally demonstrated by wild-type Myo1a. Notably, these data are the first to suggest that mechanical activity is essential for proper localization of Myo1a in microvilli. These studies also provide a unique example of how even the most mild substitution of invariant switch II residues can effectively uncouple enzymatic and mechanical activity of the myosin motor domain.
Allosteric modulation of cardiac myosin dynamics by omecamtiv mecarbil
Tiberti, Matteo
2017-01-01
New promising avenues for the pharmacological treatment of skeletal and heart muscle diseases rely on direct sarcomeric modulators, which are molecules that can directly bind to sarcomeric proteins and either inhibit or enhance their activity. A recent breakthrough has been the discovery of the myosin activator omecamtiv mecarbil (OM), which has been shown to increase the power output of the cardiac muscle and is currently in clinical trials for the treatment of heart failure. While the overall effect of OM on the mechano-chemical cycle of myosin is to increase the fraction of myosin molecules in the sarcomere that are strongly bound to actin, the molecular basis of its action is still not completely clear. We present here a Molecular Dynamics study of the motor domain of human cardiac myosin bound to OM, where the effects of the drug on the dynamical properties of the protein are investigated for the first time with atomistic resolution. We found that OM has a double effect on myosin dynamics, inducing a) an increased coupling of the motions of the converter and lever arm subdomains to the rest of the protein and b) a rewiring of the network of dynamic correlations, which produces preferential communication pathways between the OM binding site and distant functional regions. The location of the residues responsible for these effects suggests possible strategies for the future development of improved drugs and the targeting of specific cardiomyopathy-related mutations. PMID:29108014
NASA Technical Reports Server (NTRS)
McDonald, K. S.; Fitts, R. H.
1993-01-01
This study characterizes the time course of change in single soleus muscle fiber size and function elicited by hindlimb un weighting (HU) and analyzes the extent to which varying durations of HU altered maximal velocity of shortening (V(sub o)), myofibrillar adenosinetriphosphatase (ATPase), and relative content of slow and fast myosin in individual soleus fibers. After 1, 2, or 3 weeks of HU, soleus muscle bundles were prepared and stored in skinning solution at -20 C. Single fibers were isolated and mounted between a motor arm and a transducer, and fiber force, V(sub o), and ATPase activity were measured. Fiber myosin content was determined by one-dimensional sodium dodecyl sulfate- (SDS) polyacrylamide gel electrophoresis. After 1, 2, and 3 weeks of HU, soleus fibers exhibited a progressive reduction in fiber diameter (16, 22, and 42%, respectively) and peak force (42, 48, and 7%, respectively). Peak specific tension was significantly reduced after 1 week of HU (18%) and showed no further change in 2-3 weeks of HU. During 1 and 3 wk of HU, fiber V(sub o) and ATPase showed a significant increase. By 3 week, V(sub o) had increased from 1.32 +/- 0.04 to 2.94 +/- 0.17 fiber lengths/s and fiber ATPase from 291 +/- 16 to 1064 +/- 128 micro-M min(sub -1) mm(sub -3). The percent fibers expressing fast myosin heavy chain increased from 4% to 29% by 3 week of HU, and V(sub o) and ATPase activity within a fiber were highly correlated. However, a large population of fibers after 1, 2, and 3 weeks of HU showed increases in V(sub o) and ATPase but displayed the same myosin protein profile on SDS gels as control fibers. The mechanism eliciting increased fiber V(sub o) and ATPase activity was not obvious but may have been due to increases in fast myosin that went undetected on SDS gels and/or other factors unrelated to the myosin filament.
Contractile and mechanical properties of epithelia with perturbed actomyosin dynamics.
Fischer, Sabine C; Blanchard, Guy B; Duque, Julia; Adams, Richard J; Arias, Alfonso Martinez; Guest, Simon D; Gorfinkiel, Nicole
2014-01-01
Mechanics has an important role during morphogenesis, both in the generation of forces driving cell shape changes and in determining the effective material properties of cells and tissues. Drosophila dorsal closure has emerged as a reference model system for investigating the interplay between tissue mechanics and cellular activity. During dorsal closure, the amnioserosa generates one of the major forces that drive closure through the apical contraction of its constituent cells. We combined quantitation of live data, genetic and mechanical perturbation and cell biology, to investigate how mechanical properties and contraction rate emerge from cytoskeletal activity. We found that a decrease in Myosin phosphorylation induces a fluidization of amnioserosa cells which become more compliant. Conversely, an increase in Myosin phosphorylation and an increase in actin linear polymerization induce a solidification of cells. Contrary to expectation, these two perturbations have an opposite effect on the strain rate of cells during DC. While an increase in actin polymerization increases the contraction rate of amnioserosa cells, an increase in Myosin phosphorylation gives rise to cells that contract very slowly. The quantification of how the perturbation induced by laser ablation decays throughout the tissue revealed that the tissue in these two mutant backgrounds reacts very differently. We suggest that the differences in the strain rate of cells in situations where Myosin activity or actin polymerization is increased arise from changes in how the contractile forces are transmitted and coordinated across the tissue through ECadherin-mediated adhesion. Altogether, our results show that there is an optimal level of Myosin activity to generate efficient contraction and suggest that the architecture of the actin cytoskeleton and the dynamics of adhesion complexes are important parameters for the emergence of coordinated activity throughout the tissue.
Contractile and Mechanical Properties of Epithelia with Perturbed Actomyosin Dynamics
Fischer, Sabine C.; Blanchard, Guy B.; Duque, Julia; Adams, Richard J.; Arias, Alfonso Martinez; Guest, Simon D.; Gorfinkiel, Nicole
2014-01-01
Mechanics has an important role during morphogenesis, both in the generation of forces driving cell shape changes and in determining the effective material properties of cells and tissues. Drosophila dorsal closure has emerged as a reference model system for investigating the interplay between tissue mechanics and cellular activity. During dorsal closure, the amnioserosa generates one of the major forces that drive closure through the apical contraction of its constituent cells. We combined quantitation of live data, genetic and mechanical perturbation and cell biology, to investigate how mechanical properties and contraction rate emerge from cytoskeletal activity. We found that a decrease in Myosin phosphorylation induces a fluidization of amnioserosa cells which become more compliant. Conversely, an increase in Myosin phosphorylation and an increase in actin linear polymerization induce a solidification of cells. Contrary to expectation, these two perturbations have an opposite effect on the strain rate of cells during DC. While an increase in actin polymerization increases the contraction rate of amnioserosa cells, an increase in Myosin phosphorylation gives rise to cells that contract very slowly. The quantification of how the perturbation induced by laser ablation decays throughout the tissue revealed that the tissue in these two mutant backgrounds reacts very differently. We suggest that the differences in the strain rate of cells in situations where Myosin activity or actin polymerization is increased arise from changes in how the contractile forces are transmitted and coordinated across the tissue through ECadherin-mediated adhesion. Altogether, our results show that there is an optimal level of Myosin activity to generate efficient contraction and suggest that the architecture of the actin cytoskeleton and the dynamics of adhesion complexes are important parameters for the emergence of coordinated activity throughout the tissue. PMID:24759936
Moreira, Cleci M.; Meira, Eduardo F.; Vestena, Luis; Stefanon, Ivanita; Vassallo, Dalton V.; Padilha, Alessandra S.
2012-01-01
OBJECTIVES: Tension cost, the ratio of myosin ATPase activity to tension, reflects the economy of tension development in the myocardium. To evaluate the mechanical advantage represented by the tension cost, we studied papillary muscle contractility and the activity of myosin ATPase in the left ventricles in normal and pathophysiological conditions. METHODS: Experimental protocols were performed using rat left ventricles from: (1) streptozotocin-induced diabetic and control Wistar rats; (2) N-nitro-L-arginine methyl ester (L-NAME) hypertensive and untreated Wistar rats; (3) deoxycorticosterone acetate (DOCA) salt-treated, nephrectomized and salt- and DOCA-treated rats; (4) spontaneous hypertensive rats (SHR) and Wistar Kyoto (WKY) rats; (5) rats with myocardial infarction and sham-operated rats. The isometric force, tetanic tension, and the activity of myosin ATPase were measured. RESULTS: The results obtained from infarcted, diabetic, and deoxycorticosterone acetate-salt-treated rats showed reductions in twitch and tetanic tension compared to the control and sham-operated groups. Twitch and tetanic tension increased in the N-nitro-L-arginine methyl ester-treated rats compared with the Wistar rats. Myosin ATPase activity was depressed in the infarcted, diabetic, and deoxycorticosterone acetate salt-treated rats compared with control and sham-operated rats and was increased in N-nitro-L-arginine methyl ester-treated rats. These parameters did not differ between SHR and WKY rats. In the studied conditions (e.g., post-myocardial infarction, deoxycorticosterone acetate salt-induced hypertension, chronic N-nitro-L-arginine methyl ester treatment, and streptozotocin-induced diabetes), a positive correlation between force or plateau tetanic tension and myosin ATPase activity was observed. CONCLUSION: Our results suggest that the myocardium adapts to force generation by increasing or reducing the tension cost to maintain myocardial contractility with a better mechanical advantage. PMID:22666794
Willoughby, Christy L.; Fleuriet, Jérome; Walton, Mark M.; Mustari, Michael J.; McLoon, Linda K.
2015-01-01
Purpose. We evaluated promising new treatment options for strabismus. Neurotrophic factors have emerged as a potential treatment for oculomotor disorders because of diverse roles in signaling to muscles and motor neurons. Unilateral treatment with sustained release brain-derived neurotrophic factor (BDNF) to a single lateral rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop in correlation with extraocular muscle (EOM) changes during the critical period for development of binocularity. Methods. The lateral rectus muscles of one eye in two infant macaques were treated with sustained delivery of BDNF for 3 months. Eye alignment was assessed using standard photographic methods. Muscle specimens were analyzed to examine the effects of BDNF on the density, morphology, and size of neuromuscular junctions, as well as myofiber size. Counts were compared to age-matched controls. Results. No change in eye alignment occurred with BDNF treatment. Compared to control muscle, neuromuscular junctions on myofibers expressing slow myosins had a larger area. Myofibers expressing slow myosin had larger diameters, and the percentage of myofibers expressing slow myosins increased in the proximal end of the muscle. Expression of BDNF was examined in control EOM, and observed to have strongest immunoreactivity outside the endplate zone. Conclusions. We hypothesize that the oculomotor system adapted to sustained BDNF treatment to preserve normal alignment. Our results suggest that BDNF treatment preferentially altered myofibers expressing slow myosins. This implicates BDNF signaling as influencing the slow twitch properties of EOM. PMID:26030102
Willoughby, Christy L; Fleuriet, Jérome; Walton, Mark M; Mustari, Michael J; McLoon, Linda K
2015-06-01
We evaluated promising new treatment options for strabismus. Neurotrophic factors have emerged as a potential treatment for oculomotor disorders because of diverse roles in signaling to muscles and motor neurons. Unilateral treatment with sustained release brain-derived neurotrophic factor (BDNF) to a single lateral rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop in correlation with extraocular muscle (EOM) changes during the critical period for development of binocularity. The lateral rectus muscles of one eye in two infant macaques were treated with sustained delivery of BDNF for 3 months. Eye alignment was assessed using standard photographic methods. Muscle specimens were analyzed to examine the effects of BDNF on the density, morphology, and size of neuromuscular junctions, as well as myofiber size. Counts were compared to age-matched controls. No change in eye alignment occurred with BDNF treatment. Compared to control muscle, neuromuscular junctions on myofibers expressing slow myosins had a larger area. Myofibers expressing slow myosin had larger diameters, and the percentage of myofibers expressing slow myosins increased in the proximal end of the muscle. Expression of BDNF was examined in control EOM, and observed to have strongest immunoreactivity outside the endplate zone. We hypothesize that the oculomotor system adapted to sustained BDNF treatment to preserve normal alignment. Our results suggest that BDNF treatment preferentially altered myofibers expressing slow myosins. This implicates BDNF signaling as influencing the slow twitch properties of EOM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, S.; White, H; Offer, G
2009-01-01
The degree of helical order of the thick filament of mammalian skeletal muscle is highly dependent on temperature and the nature of the ligand. Previously, we showed that there was a close correlation between the conformation of the myosin heads on the surface of the thick filaments and the extent of their helical order. Helical order required the heads to be in the closed conformation. In addition, we showed that, with the same ligand bound at the active site, three conformations of myosin coexisted in equilibrium. Hitherto, however, there was no detectable helical order as measured by x-ray diffraction undermore » the temperatures studied for myosin with MgADP and the nucleotide-free myosin, raising the possibility that the concept of multiple conformations has limited validity. In this study, blebbistatin was used to stabilize the closed conformation of myosin. The degree of helical order is substantially improved with MgATP at low temperature or with MgADP or in the absence of nucleotide. The thermodynamic parameters of the disorder?order transition and the characteristics of the ordered array were not significantly altered by binding blebbistatin. The simplest explanation is that the binding of blebbistatin increases the proportion of myosin in the closed conformation from being negligible to substantial. These results provide further evidence for the coexistence of multiple conformations of myosin under a wide range of conditions and for the closed conformation being directly coupled to helical order.« less
Zhang, Wenwu; Bhetwal, Bhupal P; Gunst, Susan J
2018-05-10
The mechanisms by which Rho kinase (ROCK) regulates airway smooth muscle contraction were determined in tracheal smooth muscle tissues. ROCK may mediate smooth muscle contraction by inhibiting myosin regulatory light chain (RLC) phosphatase. ROCK can also regulate F-actin dynamics during cell migration, and actin polymerization is critical for airway smooth muscle contraction. Our results show that ROCK does not regulate airway smooth muscle contraction by inhibiting myosin RLC phosphatase or by stimulating myosin RLC phosphorylation. We find that ROCK regulates airway smooth muscle contraction by activating the serine-threonine kinase Pak, which mediates the activation of Cdc42 and Neuronal-Wiskott-Aldrich Syndrome protein (N-WASp). N-WASP transmits signals from cdc42 to the Arp2/3 complex for the nucleation of actin filaments. These results demonstrate a novel molecular function for ROCK in the regulation of Pak and cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle. Rho kinase (ROCK), a RhoA GTPase effector, can regulate the contraction of airway and other smooth muscle tissues. In some tissues, ROCK can inhibit myosin regulatory light chain (RLC) phosphatase, which increases the phosphorylation of myosin RLC and promotes smooth muscle contraction. ROCK can also regulate cell motility and migration by affecting F-actin dynamics. Actin polymerization is stimulated by contractile agonists in airway smooth muscle tissues and is required for contractile tension development in addition to myosin RLC phosphorylation. We investigated the mechanisms by which ROCK regulates the contractility of tracheal smooth muscle tissues by expressing a kinase inactive mutant of ROCK, ROCK-K121G, in the tissues or by treating them with the ROCK inhibitor, H-1152P. Our results show no role for ROCK in the regulation of non-muscle or smooth muscle myosin RLC phosphorylation during contractile stimulation in this tissue. We find that ROCK regulates airway smooth muscle contraction by mediating activation of the serine-threonine kinase, Pak, to promote actin polymerization. Pak catalyzes paxillin phosphorylation on Ser273 and coupling of the GIT1-βPIX-Pak signaling module to paxillin, which activates the GEF activity βPIX towards cdc42. Cdc42 is required for the activation of Neuronal Wiskott-Aldrich Syndrome protein (N-WASp), which transmits signals from cdc42 to the Arp2/3 complex for the nucleation of actin filaments. Our results demonstrate a novel molecular function for ROCK in the regulation of Pak and cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Shaffer, Justin F.; Kier, William M.
2015-01-01
The contractile protein myosin II is ubiquitous in muscle. It is widely accepted that animals express tissue-specific myosin isoforms that differ in amino acid sequence and ATPase activity in order to tune muscle contractile velocities. Recent studies, however, suggested that the squid Doryteuthis pealeii might be an exception; members of this species do not express muscle-specific myosin isoforms, but instead alter sarcomeric ultrastructure to adjust contractile velocities. We investigated whether this alternative mechanism of tuning muscle contractile velocity is found in other coleoid cephalopods. We analyzed myosin heavy chain transcript sequences and expression profiles from muscular tissues of a cuttlefish, Sepia officinalis, and an octopus, Octopus bimaculoides, in order to determine if these cephalopods express tissue-specific myosin heavy chain isoforms. We identified transcripts of four and six different myosin heavy chain isoforms in S. officinalis and O. bimaculoides muscular tissues, respectively. Transcripts of all isoforms were expressed in all muscular tissues studied, and thus S. officinalis and O. bimaculoides do not appear to express tissue-specific muscle myosin isoforms. We also examined the sarcomeric ultrastructure in the transverse muscle fibers of the arms of O. bimaculoides and the arms and tentacles of S. officinalis using transmission electron microscopy and found that the fast contracting fibers of the prey capture tentacles of S. officinalis have shorter thick filaments than those found in the slower transverse muscle fibers of the arms of both species. It thus appears that coleoid cephalopods, including the cuttlefish and octopus, may use ultrastructural modifications rather than tissue-specific myosin isoforms to adjust contractile velocities. PMID:26997860
Cobley, James N.; Ab. Malik, Zulezwan; Morton, James P.; Close, Graeme L.; Edwards, Ben J.; Burniston, Jatin G.
2016-01-01
Traditional methods for phenotyping skeletal muscle (e.g., immunohistochemistry) are labor-intensive and ill-suited to multixplex analysis, i.e., assays must be performed in a series. Addressing these concerns represents a largely unmet research need but more comprehensive parallel analysis of myofibrillar proteins could advance knowledge regarding age- and activity-dependent changes in human muscle. We report a label-free, semi-automated and time efficient LC-MS proteomic workflow for phenotyping the myofibrillar proteome. Application of this workflow in old and young as well as trained and untrained human skeletal muscle yielded several novel observations that were subsequently verified by multiple reaction monitoring (MRM). We report novel data demonstrating that human ageing is associated with lesser myosin light chain 1 content and greater myosin light chain 3 content, consistent with an age-related reduction in type II muscle fibers. We also disambiguate conflicting data regarding myosin regulatory light chain, revealing that age-related changes in this protein more closely reflect physical activity status than ageing per se. This finding reinforces the need to control for physical activity levels when investigating the natural process of ageing. Taken together, our data confirm and extend knowledge regarding age- and activity-related phenotypes. In addition, the MRM transitions described here provide a methodological platform that can be fine-tuned to suite multiple research needs and thus advance myofibrillar phenotyping. PMID:28248225
Mangold, Sabine; Norwood, Suzanne J.; Yap, Alpha S.; Collins, Brett M.
2012-01-01
We recently identified the atypical myosin, Myosin VI, as a component of epithelial cell-cell junctions that interacts with E-cadherin. Recombinant proteins bearing the cargo-binding domain of Myosin VI (Myo VI-CBD) or the cytoplasmic tail of E-cadherin can interact directly with one another. In this report we further investigate the molecular requirements of the interaction between Myo VI-CBD and E-cadherin combining truncation mutation analysis with in vitro binding assays. We report that a short (28 amino acid) juxtamembrane region of the cadherin cytoplasmic tail is sufficient to bind Myo VI-CBD. However, central regions of the cadherin tail adjacent to the juxtamembrane sequence also display binding activity for Myo VI-CBD. It is therefore possible that the cadherin tail bears two binding sites for Myosin VI, or an extended binding site that includes the juxtamembrane region. Nevertheless, our biochemical data highlight the capacity for the juxtamembrane region to interact with functionally-significant cytoplasmic proteins. PMID:23007415
Patterson, B; Ruppel, K M; Wu, Y; Spudich, J A
1997-10-31
Cold-sensitive myosin mutants represent powerful tools for dissecting discrete deficiencies in myosin function. Biochemical characterization of two such mutants, G680V and G691C, has allowed us to identify separate facets of myosin motor function perturbed by each alteration. Compared with wild type, the G680V myosin exhibits a substantially enhanced affinity for several nucleotides, decreased ATPase activity, and overoccupancy or creation of a novel strongly actin-binding state. The properties of the novel strong binding state are consistent with a partial arrest or pausing at the onset of the mechanical stroke. The G691C mutant, on the other hand, exhibits an elevated basal ATPase indicative of premature phosphate release. By releasing phosphate without a requirement for actin binding, the G691C can bypass the part of the cycle involving the mechanical stroke. The two mutants, despite having alterations in glycine residues separated by only 11 residues, have dramatically different consequences on the mechanochemical cycle.
Tetley, Robert J; Blanchard, Guy B; Fletcher, Alexander G; Adams, Richard J; Sanson, Bénédicte
2016-01-01
Convergence and extension movements elongate tissues during development. Drosophila germ-band extension (GBE) is one example, which requires active cell rearrangements driven by Myosin II planar polarisation. Here, we develop novel computational methods to analyse the spatiotemporal dynamics of Myosin II during GBE, at the scale of the tissue. We show that initial Myosin II bipolar cell polarization gives way to unipolar enrichment at parasegmental boundaries and two further boundaries within each parasegment, concomitant with a doubling of cell number as the tissue elongates. These boundaries are the primary sites of cell intercalation, behaving as mechanical barriers and providing a mechanism for how cells remain ordered during GBE. Enrichment at parasegment boundaries during GBE is independent of Wingless signaling, suggesting pair-rule gene control. Our results are consistent with recent work showing that a combinatorial code of Toll-like receptors downstream of pair-rule genes contributes to Myosin II polarization via local cell-cell interactions. We propose an updated cell-cell interaction model for Myosin II polarization that we tested in a vertex-based simulation. DOI: http://dx.doi.org/10.7554/eLife.12094.001 PMID:27183005
Sousa, Duncan R.; Stagg, Scott M.; Stroupe, M. Elizabeth
2013-01-01
Tropomyosin is a key factor in the molecular mechanisms that regulate the binding of myosin motors to actin filaments in most eukaryotic cells. This regulation is achieved by the azimuthal repositioning of tropomyosin along the actin:tropomyosin:troponin thin filament to block or expose myosin binding sites on actin. In striated muscle, including involuntary cardiac muscle, tropomyosin regulates muscle contraction by coupling Ca2+ binding to troponin with myosin binding to the thin filament. In smooth muscle, the switch is the post-translational modification of the myosin. Depending on the activation state of troponin and the binding state of myosin, tropomyosin can occupy the blocked, closed, or open position on actin. Using native cryogenic 3DEM, we have directly resolved and visualized cardiac and gizzard muscle tropomyosin on filamentous actin in the position that corresponds to the closed state. From the 8-Å resolution structure of the reconstituted Ac:Tm filament formed with gizzard-derived Tm we discuss two possible mechanisms for the transition from closed to open state and describe the role Tm plays in blocking myosin tight binding in the closed state position. PMID:24021812
Suggs, Jennifer A.; Melkani, Girish C.; Glasheen, Bernadette M.; Detor, Mia M.; Melkani, Anju; Marsan, Nathan P.; Swank, Douglas M.
2017-01-01
ABSTRACT Individuals with inclusion body myopathy type 3 (IBM3) display congenital joint contractures with early-onset muscle weakness that becomes more severe in adulthood. The disease arises from an autosomal dominant point mutation causing an E706K substitution in myosin heavy chain type IIa. We have previously expressed the corresponding myosin mutation (E701K) in homozygous Drosophila indirect flight muscles and recapitulated the myofibrillar degeneration and inclusion bodies observed in the human disease. We have also found that purified E701K myosin has dramatically reduced actin-sliding velocity and ATPase levels. Since IBM3 is a dominant condition, we now examine the disease state in heterozygote Drosophila in order to gain a mechanistic understanding of E701K pathogenicity. Myosin ATPase activities in heterozygotes suggest that approximately equimolar levels of myosin accumulate from each allele. In vitro actin sliding velocity rates for myosin isolated from the heterozygotes were lower than the control, but higher than for the pure mutant isoform. Although sarcomeric ultrastructure was nearly wild type in young adults, mechanical analysis of skinned indirect flight muscle fibers revealed a 59% decrease in maximum oscillatory power generation and an approximately 20% reduction in the frequency at which maximum power was produced. Rate constant analyses suggest a decrease in the rate of myosin attachment to actin, with myosin spending decreased time in the strongly bound state. These mechanical alterations result in a one-third decrease in wing beat frequency and marginal flight ability. With aging, muscle ultrastructure and function progressively declined. Aged myofibrils showed Z-line streaming, consistent with the human heterozygote phenotype. Based upon the mechanical studies, we hypothesize that the mutation decreases the probability of the power stroke occurring and/or alters the degree of movement of the myosin lever arm, resulting in decreased in vitro motility, reduced muscle power output and focal myofibrillar disorganization similar to that seen in individuals with IBM3. PMID:28258125
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leger, J.; Chevalier, J.; Larue, C.
1991-08-01
The use of three different monoclonal antibodies specific for human ventricular myosin heavy chains in the visualization of the location and extent of necrosis in dogs with experimental acute myocardial infarction and in humans is described. Using a classic immunohistochemical method or ex vivo analysis of heart slices in dogs with acute myocardial infarction subjected to intravenous injection of unlabeled antimyosin antibodies or antimyosin antibodies labeled with indium-111, it was observed that all antibody fragments specifically reached the targeted necrotic zone less than 2 h after antibody injection and remained bound for up to 24 h. In a limited butmore » significant number of cases (5 of the 12 humans and 11 of 43 dogs), it was possible to image the necrotic zone in vivo as early as 2 to 4 h after antibody injection. In other cases, individual blood clearance variations retarded or even prevented in vivo necrosis detection. Higher antimyosin fixation values were obtained in the necrotic zones in dogs with a rapid blood clearance relative to that of the other dogs. It is concluded that antimyosin antibodies always reached necrotic areas within 2 h. If blood clearance was rapid, in vivo imaging of the necrotic area was possible 2 to 6 h after necrosis, even in humans. In some cases, however, uncontrolled individual variations in the timing required for sufficient blood clearance hampered this rapid in vivo detection of myocardial necrosis.« less
Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm
2016-01-01
Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease. PMID:27162358
Morita, Toshiyuki; Tsuchiya, Akiko; Sugimoto, Masazumi
2011-09-01
Re-epithelialization in skin wound healing is a process in which epidermal sheets grow and close the wound. Although the actin-myosin system is thought to have a pivotal role in re-epithelialization, its role is not clear. In fish skin, re-epithelialization occurs around 500 μm/h and is 50 times faster than in mammalian skin. We had previously reported that leading-edge cells of the epidermal outgrowth have both polarized large lamellipodia and "purse string"-like actin filament cables in the scale-skin culture system of medaka fish, Oryzias latipes (Cell Tissue Res, 2007). The actin purse-string (APS) is a supracellular contractile machinery in which adherens junctions (AJs) link intracellular myosin II-including actin cables between neighboring cells. In this study, we developed a modified "face-to-face" scale-skin culture system as an ex vivo model to study epidermal wound healing, and examined the role of the actin-myosin system in the rapid re-epithelialization using a myosin II ATPase inhibitor, blebbistatin. A low level of blebbistatin suppressed the formation of APS and induced the dissociation of keratocytes from the leading edge without attenuating the growth of the epidermal sheet or the migration rate of solitary keratocytes. AJs in the superficial layer showed no obvious changes elicited by blebbistatin. However, two epidermal sheets without APSs did not make a closure with each other, which was confirmed by inhibiting the connecting AJs between the superficial layers. These results suggest that myosin II activity is required for functional leading-edge cells and for epidermal closure.
Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm
2016-05-24
Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease.
Bakkehaug, Jens Petter; Kildal, Anders Benjamin; Engstad, Erik Torgersen; Boardman, Neoma; Næsheim, Torvind; Rønning, Leif; Aasum, Ellen; Larsen, Terje Steinar; Myrmel, Truls; How, Ole-Jakob
2015-07-01
Omecamtiv mecarbil (OM) is a novel inotropic agent that prolongs systolic ejection time and increases ejection fraction through myosin ATPase activation. We hypothesized that a potentially favorable energetic effect of unloading the left ventricle, and thus reduction of wall stress, could be counteracted by the prolonged contraction time and ATP-consumption. Postischemic left ventricular dysfunction was created by repetitive left coronary occlusions in 7 pigs (7 healthy pigs also included). In both groups, systolic ejection time and ejection fraction increased after OM (0.75 mg/kg loading for 10 minutes, followed by 0.5 mg/kg/min continuous infusion). Cardiac efficiency was assessed by relating myocardial oxygen consumption to the cardiac work indices, stroke work, and pressure-volume area. To circumvent potential neurohumoral reflexes, cardiac efficiency was additionally assessed in ex vivo mouse hearts and isolated myocardial mitochondria. OM impaired cardiac efficiency; there was a 31% and 23% increase in unloaded myocardial oxygen consumption in healthy and postischemic pigs, respectively. Also, the oxygen cost of the contractile function was increased by 63% and 46% in healthy and postischemic pigs, respectively. The increased unloaded myocardial oxygen consumption was confirmed in OM-treated mouse hearts and explained by an increased basal metabolic rate. Adding the myosin ATPase inhibitor, 2,3-butanedione monoxide abolished all surplus myocardial oxygen consumption in the OM-treated hearts. Omecamtiv mecarbil, in a clinically relevant model, led to a significant myocardial oxygen wastage related to both the contractile and noncontractile function. This was mediated by that OM induces a continuous activation in resting myosin ATPase. © 2015 American Heart Association, Inc.
Huang, Shaohui; Lifshitz, Larry; Patki-Kamath, Varsha; Tuft, Richard; Fogarty, Kevin; Czech, Michael P.
2004-01-01
A major regulator of endocytosis and cortical F-actin is thought to be phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] present in plasma membranes. Here we report that in 3T3-L1 adipocytes, clathrin-coated membrane retrieval and dense concentrations of polymerized actin occur in restricted zones of high endocytic activity. Ultrafast-acquisition and superresolution deconvolution microscopy of cultured adipocytes expressing an enhanced green fluorescent protein- or enhanced cyan fluorescent protein (ECFP)-tagged phospholipase Cδ1 (PLCδ1) pleckstrin homology (PH) domain reveals that these zones spatially coincide with large-scale PtdIns(4,5)P2-rich plasma membrane patches (PRMPs). PRMPs exhibit lateral dimensions exceeding several micrometers, are relatively stationary, and display extensive local membrane folding that concentrates PtdIns(4,5)P2 in three-dimensional space. In addition, a higher concentration of PtdIns(4,5)P2 in the membranes of PRMPs than in other regions of the plasma membrane can be detected by quantitative fluorescence microscopy. Vesicular structures containing both clathrin heavy chains and PtdIns(4,5)P2 are revealed immediately beneath PRMPs, as is dense F actin. Blockade of PtdIns(4,5)P2 function in PRMPs by high expression of the ECFP-tagged PLCδ1 PH domain inhibits transferrin endocytosis and reduces the abundance of cortical F-actin. Membrane ruffles induced by the expression of unconventional myosin 1c were also found to localize at PRMPs. These results are consistent with the hypothesis that PRMPs organize active PtdIns(4,5)P2 signaling zones in the adipocyte plasma membrane that in turn control regulators of endocytosis, actin dynamics, and membrane ruffling. PMID:15456883
Sun, Xiaojing; Wang, Yihua; Ajtai, Katalin
2017-01-01
Myosin motors in cardiac ventriculum convert ATP free energy to the work of moving blood volume under pressure. The actin bound motor cyclically rotates its lever-arm/light-chain complex linking motor generated torque to the myosin filament backbone and translating actin against resisting force. Previous research showed that the unloaded in vitro motor is described with high precision by single molecule mechanical characteristics including unitary step-sizes of approximately 3, 5, and 8 nm and their relative step-frequencies of approximately 13, 50, and 37%. The 3 and 8 nm unitary step-sizes are dependent on myosin essential light chain (ELC) N-terminus actin binding. Step-size and step-frequency quantitation specifies in vitro motor function including duty-ratio, power, and strain sensitivity metrics. In vivo, motors integrated into the muscle sarcomere form the more complex and hierarchically functioning muscle machine. The goal of the research reported here is to measure single myosin step-size and step-frequency in vivo to assess how tissue integration impacts motor function. A photoactivatable GFP tags the ventriculum myosin lever-arm/light-chain complex in the beating heart of a live zebrafish embryo. Detected single GFP emission reports time-resolved myosin lever-arm orientation interpreted as step-size and step-frequency providing single myosin mechanical characteristics over the active cycle. Following step-frequency of cardiac ventriculum myosin transitioning from low to high force in relaxed to auxotonic to isometric contraction phases indicates that the imposition of resisting force during contraction causes the motor to down-shift to the 3 nm step-size accounting for >80% of all the steps in the near-isometric phase. At peak force, the ATP initiated actomyosin dissociation is the predominant strain inhibited transition in the native myosin contraction cycle. The proposed model for motor down-shifting and strain sensing involves ELC N-terminus actin binding. Overall, the approach is a unique bottom-up single molecule mechanical characterization of a hierarchically functional native muscle myosin. PMID:28423017
Chesarone-Cataldo, Melissa; Guérin, Christophe; Yu, Jerry H.; Wedlich-Soldner, Roland; Blanchoin, Laurent; Goode, Bruce L.
2011-01-01
Summary Formins are a conserved family of proteins with robust effects in promoting actin nucleation and elongation. However, the mechanisms restraining formin activities in cells to generate actin networks with particular dynamics and architectures are not well understood. In S. cerevisiae, formins assemble actin cables, which serve as tracks for myosin-dependent intracellular transport. Here, we show that the kinesin-like myosin passenger-protein Smy1 interacts with the FH2 domain of the formin Bnr1 to decrease rates of actin filament elongation, which is distinct from the formin displacement activity of Bud14. In vivo analysis of smy1Δ mutants demonstrates that this ‘damper’ mechanism is critical for maintaining proper actin cable architecture, dynamics, and function. We directly observe Smy1–3GFP being transported by myosin V and transiently pausing at the neck in a manner dependent on Bnr1. These observations suggest that Smy1 is part of a negative feedback mechanism that detects cable length and prevents overgrowth. PMID:21839918
Perz-Edwards, Robert J.; Irving, Thomas C.; Baumann, Bruce A. J.; Gore, David; Hutchinson, Daniel C.; Kržič, Uroš; Porter, Rebecca L.; Ward, Andrew B.; Reedy, Michael K.
2011-01-01
Stretch activation is important in the mechanical properties of vertebrate cardiac muscle and essential to the flight muscles of most insects. Despite decades of investigation, the underlying molecular mechanism of stretch activation is unknown. We investigated the role of recently observed connections between myosin and troponin, called “troponin bridges,” by analyzing real-time X-ray diffraction “movies” from sinusoidally stretch-activated Lethocerus muscles. Observed changes in X-ray reflections arising from myosin heads, actin filaments, troponin, and tropomyosin were consistent with the hypothesis that troponin bridges are the key agent of mechanical signal transduction. The time-resolved sequence of molecular changes suggests a mechanism for stretch activation, in which troponin bridges mechanically tug tropomyosin aside to relieve tropomyosin’s steric blocking of myosin–actin binding. This enables subsequent force production, with cross-bridge targeting further enhanced by stretch-induced lattice compression and thick-filament twisting. Similar linkages may operate in other muscle systems, such as mammalian cardiac muscle, where stretch activation is thought to aid in cardiac ejection. PMID:21148419
Rapid Glucose Depletion Immobilizes Active Myosin-V on Stabilized Actin Cables
Xu, Li; Bretscher, Anthony
2014-01-01
Summary Polarization of eukaryotic cells requires organelles and protein complexes to be transported to their proper destinations along the cytoskeleton [1]. When nutrients are abundant, budding yeast grows rapidly transporting secretory vesicles for localized growth and actively segregating organelles [2, 3]. This is mediated by myosin-Vs transporting cargos along F-actin bundles known as actin cables [4]. Actin cables are dynamic structures regulated by assembly, stabilization and disassembly [5]. Polarized growth and actin filament dynamics consume energy. For most organisms, glucose is the preferred energy source and generally represses alternative carbon source usage [6]. Thus upon abrupt glucose depletion, yeast shuts down pathways consuming large amounts of energy, including the vacuolar-ATPase [7, 8], translation [9] and phosphoinositide metabolism [10]. Here we show that glucose withdrawal rapidly (<1 min) depletes ATP levels and the yeast myosin V, Myo2, responds by relocalizing to actin cables, making it the fastest response documented. Myo2 immobilized on cables releases its secretory cargo, defining a new rigor-like state of a myosin-V in vivo. Only actively transporting Myo2 can be converted to the rigor-like state. Glucose depletion has differential effects on the actin cytoskeleton resulting in disassembly of actin patches with concomitant inhibition of endocytosis, and strong stabilization of actin cables, thereby revealing a selective and previously unappreciated ATP requirement for actin cable disassembly. A similar response is seen in HeLa cells to ATP depletion. These findings reveal a new fast-acting energy conservation strategy halting growth by immobilizing myosin-V in a newly described state on selectively stabilized actin cables. PMID:25308080
Metal cation controls phosphate release in the myosin ATPase.
Ge, Jinghua; Huang, Furong; Nesmelov, Yuri E
2017-11-01
Myosin is an enzyme that utilizes ATP to produce a conformational change generating a force. The kinetics of the myosin reverse recovery stroke depends on the metal cation complexed with ATP. The reverse recovery stroke is slow for MgATP and fast for MnATP. The metal ion coordinates the γ phosphate of ATP in the myosin active site. It is accepted that the reverse recovery stroke is correlated with the phosphate release; therefore, magnesium "holds" phosphate tighter than manganese. Magnesium and manganese are similar ions in terms of their chemical properties and the shell complexation; hence, we propose to use these ions to study the mechanism of the phosphate release. Analysis of octahedral complexes of magnesium and manganese show that the partial charge of magnesium is higher than that of manganese and the slightly larger size of manganese ion makes its ionic potential smaller. We hypothesize that electrostatics play a role in keeping and releasing the abstracted γ phosphate in the active site, and the stronger electric charge of magnesium ion holds γ phosphate tighter. We used stable myosin-nucleotide analog complex and Raman spectroscopy to examine the effect of the metal cation on the relative position of γ phosphate analog in the active site. We found that in the manganese complex, the γ phosphate analog is 0.01 nm further away from ADP than in the magnesium complex. We conclude that the ionic potential of the metal cation plays a role in the retention of the abstracted phosphate. © 2017 The Protein Society.
Barnhart, Erin; Lee, Kun-Chun; Allen, Greg M; Theriot, Julie A; Mogilner, Alex
2015-04-21
Cells are dynamic systems capable of spontaneously switching among stable states. One striking example of this is spontaneous symmetry breaking and motility initiation in fish epithelial keratocytes. Although the biochemical and mechanical mechanisms that control steady-state migration in these cells have been well characterized, the mechanisms underlying symmetry breaking are less well understood. In this work, we have combined experimental manipulations of cell-substrate adhesion strength and myosin activity, traction force measurements, and mathematical modeling to develop a comprehensive mechanical model for symmetry breaking and motility initiation in fish epithelial keratocytes. Our results suggest that stochastic fluctuations in adhesion strength and myosin localization drive actin network flow rates in the prospective cell rear above a critical threshold. Above this threshold, high actin flow rates induce a nonlinear switch in adhesion strength, locally switching adhesions from gripping to slipping and further accelerating actin flow in the prospective cell rear, resulting in rear retraction and motility initiation. We further show, both experimentally and with model simulations, that the global levels of adhesion strength and myosin activity control the stability of the stationary state: The frequency of symmetry breaking decreases with increasing adhesion strength and increases with increasing myosin contraction. Thus, the relative strengths of two opposing mechanical forces--contractility and cell-substrate adhesion--determine the likelihood of spontaneous symmetry breaking and motility initiation.
Protein Phosphatase 1ß Limits Ring Canal Constriction during Drosophila Germline Cyst Formation
Yamamoto, Shinya; Bayat, Vafa; Bellen, Hugo J.; Tan, Change
2013-01-01
Germline cyst formation is essential for the propagation of many organisms including humans and flies. The cytoplasm of germline cyst cells communicate with each other directly via large intercellular bridges called ring canals. Ring canals are often derived from arrested contractile rings during incomplete cytokinesis. However how ring canal formation, maintenance and growth are regulated remains unclear. To better understand this process, we carried out an unbiased genetic screen in Drosophila melanogaster germ cells and identified multiple alleles of flapwing (flw), a conserved serine/threonine-specific protein phosphatase. Flw had previously been reported to be unnecessary for early D. melanogaster oogenesis using a hypomorphic allele. We found that loss of Flw leads to over-constricted nascent ring canals and subsequently tiny mature ring canals, through which cytoplasmic transfer from nurse cells to the oocyte is impaired, resulting in small, non-functional eggs. Flw is expressed in germ cells undergoing incomplete cytokinesis, completely colocalized with the Drosophila myosin binding subunit of myosin phosphatase (DMYPT). This colocalization, together with genetic interaction studies, suggests that Flw functions together with DMYPT to negatively regulate myosin activity during ring canal formation. The identification of two subunits of the tripartite myosin phosphatase as the first two main players required for ring canal constriction indicates that tight regulation of myosin activity is essential for germline cyst formation and reproduction in D. melanogaster and probably other species as well. PMID:23936219
Borman, Meredith A; Freed, Tiffany A; Haystead, Timothy A J; Macdonald, Justin A
2009-07-01
In this study, we provide further insight into the contribution of the smoothelin-like 1 (SMTNL1) calponin homology (CH)-domain on myosin light chain phosphatase (SMPP-1M) activity and smooth muscle contraction. SMTNL1 protein was shown to have inhibitory effects on SMPP-1M activity but not on myosin light chain kinase (MLCK) activity. Treatment of beta-escin permeabilized rabbit, ileal smooth muscle with SMTNL1 had no effect on the time required to reach half-maximal force (t(1/2)) during stimulation with pCa6.3 solution. The addition of recombinant SMTNL1 protein to permeabilized, smooth muscle strips caused a significant decrease in contractile force. While the calponin homology (CH)-domain was essential for maximal SMTNL1-associated relaxation, it alone did not cause significant changes in force. SMTNL1 was poorly dephosphorylated by PP-1C in the presence of the myosin targeting subunit (MYPT1), suggesting that phosphorylated SMTNL1 does not possess "substrate trapping" properties. Moreover, while full-length SMTNL1 could suppress SMPP-1M activity toward LC(20) in vitro, truncated SMTNL1 lacking the CH-domain was ineffective. In summary, our findings suggest an important role for the CH-domain in mediating the effects of SMTNL1 on smooth muscle contraction.
Coupling between myosin head conformation and the thick filament backbone structure.
Hu, Zhongjun; Taylor, Dianne W; Edwards, Robert J; Taylor, Kenneth A
2017-12-01
The recent high-resolution structure of the thick filament from Lethocerus asynchronous flight muscle shows aspects of thick filament structure never before revealed that may shed some light on how striated muscles function. The phenomenon of stretch activation underlies the function of asynchronous flight muscle. It is most highly developed in flight muscle, but is also observed in other striated muscles such as cardiac muscle. Although stretch activation is likely to be complex, involving more than a single structural aspect of striated muscle, the thick filament itself, would be a prime site for regulatory function because it must bear all of the tension produced by both its associated myosin motors and any externally applied force. Here we show the first structural evidence that the arrangement of myosin heads within the interacting heads motif is coupled to the structure of the thick filament backbone. We find that a change in helical angle of 0.16° disorders the blocked head preferentially within the Lethocerus interacting heads motif. This observation suggests a mechanism for how tension affects the dynamics of the myosin heads leading to a detailed hypothesis for stretch activation and shortening deactivation, in which the blocked head preferentially binds the thin filament followed by the free head when force production occurs. Copyright © 2017 Elsevier Inc. All rights reserved.
In the Thick of It: HCM-Causing Mutations in Myosin Binding Proteins of the Thick Filament
Harris, Samantha P.; Lyons, Ross G.; Bezold, Kristina L.
2010-01-01
In the 20 yrs since the discovery of the first mutation linked to familial hypertrophic cardiomyopathy (HCM) an astonishing number of mutations affecting numerous sarcomeric proteins have been described. Among the most prevalent of these are mutations that affect thick filament binding proteins including the myosin essential and regulatory light chains and cardiac myosin binding protein-C (cMyBP-C). However, despite the frequency with which myosin binding proteins, especially cMyBP-C, have been linked to inherited cardiomyopathies, the functional consequences of mutations in these proteins and the mechanisms by which they cause disease are still only partly understood. The purpose of this review is to summarize the known disease-causing mutations that affect the major thick filament binding proteins and to relate these mutations to protein function. Conclusions emphasize the impact that discovery of HCM causing mutations has had on fueling insights into the basic biology of thick filament proteins and reinforce the idea that myosin binding proteins are dynamic regulators of the activation state of the thick filament that contribute to the speed and force of myosin driven muscle contraction. Additional work is still needed to determine the mechanisms by which individual mutations induce hypertrophic phenotypes. PMID:21415409
Regulatory light chain mutants linked to heart disease modify the cardiac myosin lever arm.
Burghardt, Thomas P; Sikkink, Laura A
2013-02-19
Myosin is the chemomechanical energy transducer in striated heart muscle. The myosin cross-bridge applies impulsive force to actin while consuming ATP chemical energy to propel myosin thick filaments relative to actin thin filaments in the fiber. Transduction begins with ATP hydrolysis in the cross-bridge driving rotary movement of a lever arm converting torque into linear displacement. Myosin regulatory light chain (RLC) binds to the lever arm and modifies its ability to translate actin. Gene sequencing implicated several RLC mutations in heart disease, and three of them are investigated here using photoactivatable GFP-tagged RLC (RLC-PAGFP) exchanged into permeabilized papillary muscle fibers. A single-lever arm probe orientation is detected in the crowded environment of the muscle fiber by using RLC-PAGFP with dipole orientation deduced from the three-spatial dimension fluorescence emission pattern of the single molecule. Symmetry and selection rules locate dipoles in their half-sarcomere, identify those at the minimal free energy, and specify active dipole contraction intermediates. Experiments were performed in a microfluidic chamber designed for isometric contraction, total internal reflection fluorescence detection, and two-photon excitation second harmonic generation to evaluate sarcomere length. The RLC-PAGFP reports apparently discretized lever arm orientation intermediates in active isometric fibers that on average produce the stall force. Disease-linked mutants introduced into RLC move intermediate occupancy further down the free energy gradient, implying lever arms rotate more to reach stall force because mutant RLC increases lever arm shear strain. A lower free energy intermediate occupancy involves a lower energy conversion efficiency in the fiber relating a specific myosin function modification to the disease-implicated mutant.
Myosin II Motor Activity in the Lateral Amygdala Is Required for Fear Memory Consolidation
ERIC Educational Resources Information Center
Gavin, Cristin F.; Rubio, Maria D.; Young, Erica; Miller, Courtney; Rumbaugh, Gavin
2012-01-01
Learning induces dynamic changes to the actin cytoskeleton that are required to support memory formation. However, the molecular mechanisms that mediate filamentous actin (F-actin) dynamics during learning and memory are poorly understood. Myosin II motors are highly expressed in actin-rich growth structures including dendritic spines, and we have…
Engineering controllable bidirectional molecular motors based on myosin
Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev
2012-01-01
Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells1, and have potential applications in molecular detection and diagnostic devices2,3. Engineering molecular motors with dynamically controllable properties will allow selective perturbation of mechanical processes in living cells, and yield optimized device components for complex tasks such as molecular sorting and directed assembly3. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions4,5 and other signals6. Here we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies7–11 and guided by a structural model12 for the redirected power stroke of myosin VI, we constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our general strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should enable spatiotemporal control over a range of motor properties including processivity, stride size13, and branchpoint turning14. PMID:22343382
Engineering controllable bidirectional molecular motors based on myosin
NASA Astrophysics Data System (ADS)
Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev
2012-04-01
Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells and have potential applications in molecular detection and diagnostic devices. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions and other signals. Here, we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies and guided by a structural model for the redirected power stroke of myosin VI, we have constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should make it possible to achieve spatiotemporal control over a range of motor properties including processivity, stride size and branchpoint turning.
Myosin light chains: Teaching old dogs new tricks
Heissler, Sarah M; Sellers, James R
2014-01-01
The myosin holoenzyme is a multimeric protein complex consisting of heavy chains and light chains. Myosin light chains are calmodulin family members which are crucially involved in the mechanoenzymatic function of the myosin holoenzyme. This review examines the diversity of light chains within the myosin superfamily, discusses interactions between the light chain and the myosin heavy chain as well as regulatory and structural functions of the light chain as a subunit of the myosin holoenzyme. It covers aspects of the myosin light chain in the localization of the myosin holoenzyme, protein-protein interactions and light chain binding to non-myosin binding partners. Finally, this review challenges the dogma that myosin regulatory and essential light chain exclusively associate with conventional myosin heavy chains while unconventional myosin heavy chains usually associate with calmodulin. PMID:26155737
Bookwalter, Carol S.; Kelsen, Anne; Leung, Jacqueline M.; Ward, Gary E.; Trybus, Kathleen M.
2014-01-01
Many diverse myosin classes can be expressed using the baculovirus/Sf9 insect cell expression system, whereas others have been recalcitrant. We hypothesized that most myosins utilize Sf9 cell chaperones, but others require an organism-specific co-chaperone. TgMyoA, a class XIVa myosin from the parasite Toxoplasma gondii, is required for the parasite to efficiently move and invade host cells. The T. gondii genome contains one UCS family myosin co-chaperone (TgUNC). TgMyoA expressed in Sf9 cells was soluble and functional only if the heavy and light chain(s) were co-expressed with TgUNC. The tetratricopeptide repeat domain of TgUNC was not essential to obtain functional myosin, implying that there are other mechanisms to recruit Hsp90. Purified TgMyoA heavy chain complexed with its regulatory light chain (TgMLC1) moved actin in a motility assay at a speed of ∼1.5 μm/s. When a putative essential light chain (TgELC1) was also bound, TgMyoA moved actin at more than twice that speed (∼3.4 μm/s). This result implies that two light chains bind to and stabilize the lever arm, the domain that amplifies small motions at the active site into the larger motions that propel actin at fast speeds. Our results show that the TgMyoA domain structure is more similar to other myosins than previously appreciated and provide a molecular explanation for how it moves actin at fast speeds. The ability to express milligram quantities of a class XIV myosin in a heterologous system paves the way for detailed structure-function analysis of TgMyoA and identification of small molecule inhibitors. PMID:25231988
Sarcomere-length dependence of myosin filament structure in skeletal muscle fibres of the frog.
Reconditi, Massimo; Brunello, Elisabetta; Fusi, Luca; Linari, Marco; Martinez, Manuel Fernandez; Lombardi, Vincenzo; Irving, Malcolm; Piazzesi, Gabriella
2014-03-01
X-ray diffraction patterns were recorded at beamline ID02 of the European Synchrotron Radiation Facility from small bundles of skeletal muscle fibres from Rana esculenta at sarcomere lengths between 2.1 and 3.5 μm at 4°C. The intensities of the X-ray reflections from resting fibres associated with the quasi-helical order of the myosin heads and myosin binding protein C (MyBP-C) decreased in the sarcomere length range 2.6-3.0 μm but were constant outside it, suggesting that an OFF conformation of the thick filament is maintained by an interaction between MyBP-C and the thin filaments. During active isometric contraction the intensity of the M3 reflection from the regular repeat of the myosin heads along the filaments decreased in proportion to the overlap between thick and thin filaments, with no change in its interference fine structure. Thus, myosin heads in the regions of the thick filaments that do not overlap with thin filaments are highly disordered during isometric contraction, in contrast to their quasi-helical order at rest. Heads in the overlap region that belong to two-headed myosin molecules that are fully detached from actin are also highly disordered, in contrast to the detached partners of actin-attached heads. These results provide strong support for the concept of a regulatory structural transition in the thick filament involving changes in both the organisation of the myosin heads on its surface and the axial periodicity of the myosin tails in its backbone, mediated by an interaction between MyBP-C and the thin filaments.
Sarcomere-length dependence of myosin filament structure in skeletal muscle fibres of the frog
Reconditi, Massimo; Brunello, Elisabetta; Fusi, Luca; Linari, Marco; Martinez, Manuel Fernandez; Lombardi, Vincenzo; Irving, Malcolm; Piazzesi, Gabriella
2014-01-01
X-ray diffraction patterns were recorded at beamline ID02 of the European Synchrotron Radiation Facility from small bundles of skeletal muscle fibres from Rana esculenta at sarcomere lengths between 2.1 and 3.5 μm at 4°C. The intensities of the X-ray reflections from resting fibres associated with the quasi-helical order of the myosin heads and myosin binding protein C (MyBP-C) decreased in the sarcomere length range 2.6–3.0 μm but were constant outside it, suggesting that an OFF conformation of the thick filament is maintained by an interaction between MyBP-C and the thin filaments. During active isometric contraction the intensity of the M3 reflection from the regular repeat of the myosin heads along the filaments decreased in proportion to the overlap between thick and thin filaments, with no change in its interference fine structure. Thus, myosin heads in the regions of the thick filaments that do not overlap with thin filaments are highly disordered during isometric contraction, in contrast to their quasi-helical order at rest. Heads in the overlap region that belong to two-headed myosin molecules that are fully detached from actin are also highly disordered, in contrast to the detached partners of actin-attached heads. These results provide strong support for the concept of a regulatory structural transition in the thick filament involving changes in both the organisation of the myosin heads on its surface and the axial periodicity of the myosin tails in its backbone, mediated by an interaction between MyBP-C and the thin filaments. PMID:24344169
Moesin and myosin phosphatase confine neutrophil orientation in a chemotactic gradient
Liu, Xiaowen; Yang, Tao; Suzuki, Koya; Tsukita, Sachiko; Ishii, Masaru; Zhou, Shuping; Wang, Gang; Cao, Luyang; Qian, Feng; Taylor, Shalina; Oh, Myung-Jin; Levitan, Irena; Ye, Richard D.; Carnegie, Graeme K.; Malik, Asrar B.
2015-01-01
Neutrophils respond to invading bacteria by adopting a polarized morphology, migrating in the correct direction, and engulfing the bacteria. How neutrophils establish and precisely orient this polarity toward pathogens remains unclear. Here we report that in resting neutrophils, the ERM (ezrin, radixin, and moesin) protein moesin in its active form (phosphorylated and membrane bound) prevented cell polarization by inhibiting the small GTPases Rac, Rho, and Cdc42. Attractant-induced activation of myosin phosphatase deactivated moesin at the prospective leading edge to break symmetry and establish polarity. Subsequent translocation of moesin to the trailing edge confined the formation of a prominent pseudopod directed toward pathogens and prevented secondary pseudopod formation in other directions. Therefore, both moesin-mediated inhibition and its localized deactivation by myosin phosphatase are essential for neutrophil polarization and effective neutrophil tracking of pathogens. PMID:25601651
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomibuchi, Yuki; Uyeda, Taro Q.P.; Wakabayashi, Takeyuki, E-mail: tw007@nasu.bio.teikyo-u.ac.jp
2013-11-29
Highlights: •The effect of mutation of Tyr143 that becomes more exposed on assembly was examined. •Mutation of tyrosine-143 of Dictyostelium actin changed actin polymerizability. •The bulkiness or aromatic nature of Tyr143 is important for the weak binding. •The weak interaction between myosin and actin strengthened by Tyr143Trp mutation. -- Abstract: Actin filaments (F-actin) interact with myosin and activate its ATPase to support force generation. By comparing crystal structures of G-actin and the quasi-atomic model of F-actin based on high-resolution cryo-electron microscopy, the tyrosine-143 was found to be exposed more than 60 Å{sup 2} to the solvent in F-actin. Because tyrosine-143more » flanks the hydrophobic cleft near the hydrophobic helix that binds to myosin, the mutant actins, of which the tyrosine-143 was replaced with tryptophan, phenylalanine, or isoleucine, were generated using the Dictyostelium expression system. It polymerized significantly poorly when induced by NaCl, but almost normally by KCl. In the presence of phalloidin and KCl, the extents of the polymerization of all the mutant actins were comparable to that of the wild-type actin so that the actin-activated myosin ATPase activity could be reliably compared. The affinity of skeletal heavy meromyosin to F-actin and the maximum ATPase activity (V{sub max}) were estimated by a double reciprocal plot. The Tyr143Trp-actin showed the higher affinity (smaller K{sub app}) than that of the wild-type actin, with the V{sub max} being almost unchanged. The K{sub app} and V{sub max} of the Tyr143Phe-actin were similar to those of the wild-type actin. However, the activation by Tyr143Ile-actin was much smaller than the wild-type actin and the accurate determination of K{sub app} was difficult. Comparison of the myosin ATPase activated by the various mutant actins at the same concentration of F-actin showed that the extent of activation correlates well with the solvent-accessible surface areas (ASA) of the replaced amino acid molecule. Because 1/K{sub app} reflects the affinity of F-actin for the myosin–ADP-phosphate intermediate (M.ADP.Pi) through the weak binding, these data suggest that the bulkiness or the aromatic nature of the tyrosin-143 is important for the initial binding of the M.ADP.Pi intermediate with F-actin but not for later processes such as the phosphate release.« less
Piras, B A; Tian, Y; Xu, Y; Thomas, N A; O'Connor, D M; French, B A
2016-05-01
Adeno-associated virus (AAV) has been used to direct gene transfer to a variety of tissues, including heart, liver, skeletal muscle, brain, kidney and lung, but it has not previously been shown to effectively target fibroblasts in vivo, including cardiac fibroblasts. We constructed expression cassettes using a modified periostin promoter to drive gene expression in a cardiac myofibroblast-like lineage, with only occasional spillover into cardiomyocyte-like cells. We compared AAV serotypes 6 and 9 and found robust gene expression when the vectors were delivered by systemic injection after myocardial infarction (MI), with little expression in healthy, non-infarcted mice. AAV9 provided expression in a greater number of cells than AAV6, with reporter gene expression visible in the cardiac infarct and border zones from 5 to 62 days post MI, as assessed by luciferase and Cre-activated green fluorescent protein expression. Although common myofibroblast markers were expressed in low abundance, most of the targeted cells expressed myosin IIb, an embryonic form of smooth muscle myosin heavy chain that has previously been associated with myofibroblasts after reperfused MI. This study is the first to demonstrate AAV-mediated expression in a potentially novel myofibroblast-like lineage in mouse hearts post MI and may open new avenues of gene therapy to treat patients surviving MI.
Direct real-time detection of the structural and biochemical events in the myosin power stroke.
Muretta, Joseph M; Rohde, John A; Johnsrud, Daniel O; Cornea, Sinziana; Thomas, David D
2015-11-17
A principal goal of molecular biophysics is to show how protein structural transitions explain physiology. We have developed a strategic tool, transient time-resolved FRET [(TR)(2)FRET], for this purpose and use it here to measure directly, with millisecond resolution, the structural and biochemical kinetics of muscle myosin and to determine directly how myosin's power stroke is coupled to the thermodynamic drive for force generation, actin-activated phosphate release, and the weak-to-strong actin-binding transition. We find that actin initiates the power stroke before phosphate dissociation and not after, as many models propose. This result supports a model for muscle contraction in which power output and efficiency are tuned by the distribution of myosin structural states. This technology should have wide application to other systems in which questions about the temporal coupling of allosteric structural and biochemical transitions remain unanswered.
Asokan, Sreeja B.; Johnson, Heath E.; Rahman, Anisur; King, Samantha J.; Rotty, Jeremy D.; Lebedeva, Irina P.; Haugh, Jason M.; Bear, James E.
2014-01-01
Summary Chemotaxis, migration towards soluble chemical cues, is critical for processes such as wound healing and immune surveillance, and is exhibited by various cell types from rapidly-migrating leukocytes to slow-moving mesenchymal cells. To interrogate the mechanisms involved in mesenchymal chemotaxis, we observed cell migration in microfluidic chambers that generate stable gradients of the chemoattractant PDGF. Surprisingly, we found that pathways implicated in amoeboid chemotaxis, such as PI3K and mTOR signaling, are dispensable for chemotaxis to PDGF. Instead, we find that local inactivation of Myosin IIA, through a non-canonical Ser1/2 phosphorylation of the regulatory light chain, is essential. This site is phosphorylated by PKCα, which is activated by an intracellular gradient of diacylglycerol generated by PLCγ. Using a combination of TIRF imaging and gradients of activators/inhibitors in the microfluidic chambers, we demonstrate that this signaling pathway and subsequent inhibition of Myosin II activity at the leading edge is required for mesenchymal chemotaxis. PMID:25482883
The work of titin protein folding as a major driver in muscle contraction
Eckels, Edward C.; Tapia-Rojo, Rafael; Rivas-Pardo, Jamie Andrés; Fernández, Julio M.
2018-01-01
Single molecule atomic force microscopy and magnetic tweezers experiments have demonstrated that titin Ig domains are capable of folding against a pulling force, generating mechanical work which exceeds that produced by a myosin motor. We hypothesize that upon muscle activation, formation of actomyosin crossbridges reduces the force on titin causing entropic recoil of the titin polymer and triggering the folding of the titin Ig domains. In the physiological force range of 4–15 pN under which titin operates in muscle, the folding contraction of a single Ig domain can generate 200% of the work of entropic recoil, and occurs at forces which exceed the maximum stalling force of single myosin motors. Thus titin operates like a mechanical battery storing elastic energy efficiently by unfolding Ig domains, and delivering the charge back by folding when the motors are activated during a contraction. We advance the hypothesis that titin folding and myosin activation act as inextricable partners during muscle contraction. PMID:29433413
Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells
Kampourakis, Thomas; Yan, Ziqian; Gautel, Mathias; Sun, Yin-Biao; Irving, Malcolm
2014-01-01
Myosin binding protein-C (MyBP-C) is a key regulatory protein in heart muscle, and mutations in the MYBPC3 gene are frequently associated with cardiomyopathy. However, the mechanism of action of MyBP-C remains poorly understood, and both activating and inhibitory effects of MyBP-C on contractility have been reported. To clarify the function of the regulatory N-terminal domains of MyBP-C, we determined their effects on the structure of thick (myosin-containing) and thin (actin-containing) filaments in intact sarcomeres of heart muscle. We used fluorescent probes on troponin C in the thin filaments and on myosin regulatory light chain in the thick filaments to monitor structural changes associated with activation of demembranated trabeculae from rat ventricle by the C1mC2 region of rat MyBP-C. C1mC2 induced larger structural changes in thin filaments than calcium activation, and these were still present when active force was blocked with blebbistatin, showing that C1mC2 directly activates the thin filaments. In contrast, structural changes in thick filaments induced by C1mC2 were smaller than those associated with calcium activation and were abolished or reversed by blebbistatin. Low concentrations of C1mC2 did not affect resting force but increased calcium sensitivity and reduced cooperativity of force and structural changes in both thin and thick filaments. These results show that the N-terminal region of MyBP-C stabilizes the ON state of thin filaments and the OFF state of thick filaments and lead to a novel hypothesis for the physiological role of MyBP-C in the regulation of cardiac contractility. PMID:25512492
Kampourakis, Thomas; Yan, Ziqian; Gautel, Mathias; Sun, Yin-Biao; Irving, Malcolm
2014-12-30
Myosin binding protein-C (MyBP-C) is a key regulatory protein in heart muscle, and mutations in the MYBPC3 gene are frequently associated with cardiomyopathy. However, the mechanism of action of MyBP-C remains poorly understood, and both activating and inhibitory effects of MyBP-C on contractility have been reported. To clarify the function of the regulatory N-terminal domains of MyBP-C, we determined their effects on the structure of thick (myosin-containing) and thin (actin-containing) filaments in intact sarcomeres of heart muscle. We used fluorescent probes on troponin C in the thin filaments and on myosin regulatory light chain in the thick filaments to monitor structural changes associated with activation of demembranated trabeculae from rat ventricle by the C1mC2 region of rat MyBP-C. C1mC2 induced larger structural changes in thin filaments than calcium activation, and these were still present when active force was blocked with blebbistatin, showing that C1mC2 directly activates the thin filaments. In contrast, structural changes in thick filaments induced by C1mC2 were smaller than those associated with calcium activation and were abolished or reversed by blebbistatin. Low concentrations of C1mC2 did not affect resting force but increased calcium sensitivity and reduced cooperativity of force and structural changes in both thin and thick filaments. These results show that the N-terminal region of MyBP-C stabilizes the ON state of thin filaments and the OFF state of thick filaments and lead to a novel hypothesis for the physiological role of MyBP-C in the regulation of cardiac contractility.
3D Model of Cytokinetic Contractile Ring Assembly: Node-Mediated and Backup Pathways
NASA Astrophysics Data System (ADS)
Bidone, Tamara; Vavylonis, Dimitrios
Cytokinetic ring assembly in model organism fission yeast is a dynamic process, involving condensation of a network of actin filaments and myosin motors bound to the cell membrane through cortical nodes. A 3D computational model of ring assembly illustrates how the combined activities of myosin motors, filament crosslinkers and actin turnover lead to robust ring formation [Bidone et al. Biophys. J, 2014]. We modeled the importance of the physical properties of node movement along the cell membrane and of myosin recruitment to nodes. Experiments by D. Zhang (Temasek Life Sciences) show that tethering of the cortical endoplasmic reticulum (ER) to the plasma membrane modulates the speed of node condensation and the degree of node clumping. We captured the trend observed in these experiments by changes in the node drag coefficient and initial node distribution in simulations PM. The model predicted that reducing crosslinking activities in ER tethering mutants with faster node speed enhances actomyosin clumping. We developed a model of how tilted and/or misplaced rings assemble in cells that lack the node structural component anillin-like Mid1 and thus fail to recruit myosin II to nodes independently of actin. If actin-dependent binding of diffusive myosin to the cortex is incorporated into the model, it generates progressively elongating cortical actomyosin strands with fluctuating actin bundles at the tails. These stands often close into a ring, similar to observations by the group of J.Q. Wu (The Ohio State University). NIH R01GM098430.
Rho/Rho-dependent kinase affects locomotion and actin-myosin II activity of Amoeba proteus.
Kłopocka, W; Redowicz, M J
2004-10-01
The highly motile free-living unicellular organism Amoeba proteus has been widely used as a model to study cell motility. However, the molecular mechanisms underlying its unique locomotion are still scarcely known. Recently, we have shown that blocking the amoebae's endogenous Rac- and Rho-like proteins led to distinct and irreversible changes in the appearance of these large migrating cells as well as to a significant inhibition of their locomotion. In order to elucidate the mechanism of the Rho pathway, we tested the effects of blocking the endogenous Rho-dependent kinase (ROCK) by anti-ROCK antibodies and Y-27632, (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide dihydrochloride, a specific inhibitor of ROCK, on migrating amoebae and the effect of the Rho and ROCK inhibition on the actin-activated Mg-ATPase of the cytosolic fraction of the amoebae. Amoebae microinjected with anti-ROCK inhibitors remained contracted and strongly attached to the glass surface and exhibited an atypical locomotion. Despite protruding many pseudopodia that were advancing in various directions, the amoebae could not effectively move. Immunofluorescence studies showed that ROCK-like protein was dispersed throughout the cytoplasm and was also found in the regions of actin-myosin II interaction during both isotonic and isometric contraction. The Mg-ATPase activity was about two- to threefold enhanced, indicating that blocking the Rho/Rho-dependent kinase activated myosin. It is possible then that in contrast to the vertebrate cells, the inactivation of Rho/Rho-dependent kinase in amoebae leads to the activation of myosin II and to the observed hypercontracted cells which cannot exert effective locomotion.
Mauro, Annunziata; Ciccarelli, Carmela; De Cesaris, Paola; Scoglio, Arianna; Bouché, Marina; Molinaro, Mario; Aquino, Angelo; Zani, Bianca Maria
2002-09-15
We have previously suggested that PKCalpha has a role in 12-O-Tetradecanoylphorbol-13-acetate (TPA)-mediated growth arrest and myogenic differentiation in human embryonal rhabdomyosarcoma cells (RD). Here, by monitoring the signalling pathways triggered by TPA, we demonstrate that PKCalpha mediates these effects by inducing transient activation of c-Jun N-terminal protein kinases (JNKs) and sustained activation of both p38 kinase and extracellular signal-regulated kinases (ERKs) (all referred to as MAPKs). Activation of MAPKs following ectopic expression of constitutively active PKCalpha, but not its dominant-negative form, is also demonstrated. We investigated the selective contribution of MAPKs to growth arrest and myogenic differentiation by monitoring the activation of MAPK pathways, as well as by dissecting MAPK pathways using MEK1/2 inhibitor (UO126), p38 inhibitor (SB203580) and JNK and p38 agonist (anisomycin) treatments. Growth-arresting signals are triggered either by transient and sustained JNK activation (by TPA and anisomycin, respectively) or by preventing both ERK and JNK activation (UO126) and are maintained, rather than induced, by p38. We therefore suggest a key role for JNK in controlling ERK-mediated mitogenic activity. Notably, sarcomeric myosin expression is induced by both TPA and UO126 but is abrogated by the p38 inhibitor. This finding indicates a pivotal role for p38 in controlling the myogenic program. Anisomycin persistently activates p38 and JNKs but prevents myosin expression induced by TPA. In accordance with this negative role, reactivation of JNKs by anisomycin, in UO126-pre-treated cells, also prevents myosin expression. This indicates that, unlike the transient JNK activation that occurs in the TPA-mediated myogenic process, long-lasting JNK activation supports the growth-arrest state but antagonises p38-mediated myosin expression. Lastly, our results with the MEK inhibitor suggest a key role of the ERK pathway in regulating myogenic-related morphology in differentiated RD cells.
Diverse functions of myosin VI elucidated by an isoform-specific α-helix domain
Magistrati, Elisa; Molteni, Erika; Lupia, Michela; Soffientini, Paolo; Rottner, Klemens; Cavallaro, Ugo; Pozzoli, Uberto; Mapelli, Marina; Walters, Kylie J.; Polo, Simona
2016-01-01
Myosin VI functions in endocytosis and cell motility. Alternative splicing of myosin VI mRNA generates two distinct isoform types, myosin VIshort and myosin VIlong, which differ in the C-terminal region. Their physiological and pathological role remains unknown. Here we identified an isoform-specific regulatory helix, named α2-linker that defines specific conformations and hence determines the target selectivity of human myosin VI. The presence of the α2-linker structurally defines a novel clathrin-binding domain that is unique to myosin VIlong and masks the known RRL interaction motif. This finding is relevant to ovarian cancer, where alternative myosin VI splicing is aberrantly regulated, and exon skipping dictates cell addiction to myosin VIshort for tumor cell migration. The RRL interactor optineurin contributes to this process by selectively binding myosin VIshort. Thus the α2-linker acts like a molecular switch that assigns myosin VI to distinct endocytic (myosin VIlong) or migratory (myosin VIshort) functional roles. PMID:26950368
Diverse functions of myosin VI elucidated by an isoform-specific α-helix domain.
Wollscheid, Hans-Peter; Biancospino, Matteo; He, Fahu; Magistrati, Elisa; Molteni, Erika; Lupia, Michela; Soffientini, Paolo; Rottner, Klemens; Cavallaro, Ugo; Pozzoli, Uberto; Mapelli, Marina; Walters, Kylie J; Polo, Simona
2016-04-01
Myosin VI functions in endocytosis and cell motility. Alternative splicing of myosin VI mRNA generates two distinct isoform types, myosin VI(short) and myosin VI(long), which differ in the C-terminal region. Their physiological and pathological roles remain unknown. Here we identified an isoform-specific regulatory helix, named the α2-linker, that defines specific conformations and hence determines the target selectivity of human myosin VI. The presence of the α2-linker structurally defines a new clathrin-binding domain that is unique to myosin VI(long) and masks the known RRL interaction motif. This finding is relevant to ovarian cancer, in which alternative myosin VI splicing is aberrantly regulated, and exon skipping dictates cell addiction to myosin VI(short) in tumor-cell migration. The RRL interactor optineurin contributes to this process by selectively binding myosin VI(short). Thus, the α2-linker acts like a molecular switch that assigns myosin VI to distinct endocytic (myosin VI(long)) or migratory (myosin VI(short)) functional roles.
Structure of myosin filaments from relaxed Lethocerus flight muscle by cryo-EM at 6 Å resolution
Hu, Zhongjun; Taylor, Dianne W.; Reedy, Michael K.; Edwards, Robert J.; Taylor, Kenneth A.
2016-01-01
We describe a cryo–electron microscopy three-dimensional image reconstruction of relaxed myosin II–containing thick filaments from the flight muscle of the giant water bug Lethocerus indicus. The relaxed thick filament structure is a key element of muscle physiology because it facilitates the reextension process following contraction. Conversely, the myosin heads must disrupt their relaxed arrangement to drive contraction. Previous models predicted that Lethocerus myosin was unique in having an intermolecular head-head interaction, as opposed to the intramolecular head-head interaction observed in all other species. In contrast to the predicted model, we find an intramolecular head-head interaction, which is similar to that of other thick filaments but oriented in a distinctly different way. The arrangement of myosin’s long α-helical coiled-coil rod domain has been hypothesized as either curved layers or helical subfilaments. Our reconstruction is the first report having sufficient resolution to track the rod α helices in their native environment at resolutions ~5.5 Å, and it shows that the layer arrangement is correct for Lethocerus. Threading separate paths through the forest of myosin coiled coils are four nonmyosin peptides. We suggest that the unusual position of the heads and the rod arrangement separated by nonmyosin peptides are adaptations for mechanical signal transduction whereby applied tension disrupts the myosin heads as a component of stretch activation. PMID:27704041
Jana, Biman; Onuchic, José N
2016-08-01
A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities.
Jana, Biman; Onuchic, José N.
2016-01-01
A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities. PMID:27494025
Myh7b/miR-499 gene expression is transcriptionally regulated by MRFs and Eos
Yeung, Fan; Chung, Eunhee; Guess, Martin G.; Bell, Matthew L.; Leinwand, Leslie A.
2012-01-01
The sarcomeric myosin gene, Myh7b, encodes an intronic microRNA, miR-499, which regulates cardiac and skeletal muscle biology, yet little is known about its transcriptional regulation. To identify the transcription factors involved in regulating Myh7b/miR-499 gene expression, we have mapped the transcriptional start sites and identified an upstream 6.2 kb region of the mouse Myh7b gene whose activity mimics the expression pattern of the endogenous Myh7b gene both in vitro and in vivo. Through promoter deletion analysis, we have mapped a distal E-box element and a proximal Ikaros site that are essential for Myh7b promoter activity in muscle cells. We show that the myogenic regulatory factors, MyoD, Myf5 and Myogenin, bind to the E-box, while a lymphoid transcription factor, Ikaros 4 (Eos), binds to the Ikaros motif. Further, we show that through physical interaction, MyoD and Eos form an active transcriptional complex on the chromatin to regulate the expression of the endogenous Myh7b/miR-499 gene in muscle cells. We also provide the first evidence that Eos can regulate expression of additional myosin genes (Myosin 1 and β-Myosin) via the miR-499/Sox6 pathway. Therefore, our results indicate a novel role for Eos in the regulation of the myofiber gene program. PMID:22638570
The regulation of smooth muscle contractility by zipper-interacting protein kinase.
Ihara, Eikichi; MacDonald, Justin A
2007-01-01
Smooth muscle contractility is mainly regulated by phosphorylation of the 20 kDa myosin light chains (LC20), a process that is controlled by the opposing activities of myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP). Recently, intensive research has revealed that various protein kinase networks including Rho-kinase, integrin-linked kinase, zipper-interacting protein kinase (ZIPK), and protein kinase C (PKC) are involved in the regulation of LC20 phosphorylation and have important roles in modulating smooth muscle contractile responses to Ca2+ (i.e., Ca2+ sensitization and Ca2+ desensitization). Here, we review the general background and structure of ZIPK and summarize our current understanding of its involvement in a number of cell processes including cell death (apoptosis), cell motility, and smooth muscle contraction. ZIPK has been found to induce the diphosphorylation of LC20 at Ser-19 and Thr-18 in a Ca2+-independent manner and to regulate MLCP activity directly through its phosphorylation of the myosin-targeting subunit of MLCP or indirectly through its phosphorylation of the PKC-potentiated inhibitory protein of MLCP. Future investigations of ZIPK function in smooth muscle will undoubtably focus on determining the mechanisms that regulate its cellular activity, including the identification of upstream signaling pathways, the characterization of autoinhibitory domains and regulatory phosphorylation sites, and the development of specific inhibitor compounds.
Analysis of the myosins encoded in the recently completed Arabidopsis thaliana genome sequence
NASA Technical Reports Server (NTRS)
Reddy, A. S.; Day, I. S.
2001-01-01
BACKGROUND: Three types of molecular motors play an important role in the organization, dynamics and transport processes associated with the cytoskeleton. The myosin family of molecular motors move cargo on actin filaments, whereas kinesin and dynein motors move cargo along microtubules. These motors have been highly characterized in non-plant systems and information is becoming available about plant motors. The actin cytoskeleton in plants has been shown to be involved in processes such as transportation, signaling, cell division, cytoplasmic streaming and morphogenesis. The role of myosin in these processes has been established in a few cases but many questions remain to be answered about the number, types and roles of myosins in plants. RESULTS: Using the motor domain of an Arabidopsis myosin we identified 17 myosin sequences in the Arabidopsis genome. Phylogenetic analysis of the Arabidopsis myosins with non-plant and plant myosins revealed that all the Arabidopsis myosins and other plant myosins fall into two groups - class VIII and class XI. These groups contain exclusively plant or algal myosins with no animal or fungal myosins. Exon/intron data suggest that the myosins are highly conserved and that some may be a result of gene duplication. CONCLUSIONS: Plant myosins are unlike myosins from any other organisms except algae. As a percentage of the total gene number, the number of myosins is small overall in Arabidopsis compared with the other sequenced eukaryotic genomes. There are, however, a large number of class XI myosins. The function of each myosin has yet to be determined.
Mita, Mitsuo; Tanaka, Hitoshi; Yanagihara, Hayato; Nakagawa, Jun-ichi; Hishinuma, Shigeru; Sutherland, Cindy; Walsh, Michael P.; Shoji, Masaru
2013-01-01
Rho-associated kinase (ROK) activation plays an important role in K+-induced contraction of rat caudal arterial smooth muscle (Mita et al., Biochem J. 2002; 364: 431–40). The present study investigated a potential role for tyrosine kinase activity in K+-induced RhoA activation and contraction. The non-selective tyrosine kinase inhibitor genistein, but not the src family tyrosine kinase inhibitor PP2, inhibited K+-induced sustained contraction (IC50 = 11.3 ± 2.4 µM). Genistein (10 µM) inhibited the K+-induced increase in myosin light chain (LC20) phosphorylation without affecting the Ca2+ transient. The tyrosine phosphatase inhibitor vanadate induced contraction that was reversed by genistein (IC50 = 6.5 ± 2.3 µM) and the ROK inhibitor Y-27632 (IC50 = 0.27 ± 0.04 µM). Vanadate also increased LC20 phosphorylation in a genistein- and Y-27632-dependent manner. K+ stimulation induced translocation of RhoA to the membrane, which was inhibited by genistein. Phosphorylation of MYPT1 (myosin-targeting subunit of myosin light chain phosphatase) was significantly increased at Thr855 and Thr697 by K+ stimulation in a genistein- and Y-27632-sensitive manner. Finally, K+ stimulation induced genistein-sensitive tyrosine phosphorylation of proteins of ∼55, 70 and 113 kDa. We conclude that a genistein-sensitive tyrosine kinase, activated by the membrane depolarization-induced increase in [Ca2+]i, is involved in the RhoA/ROK activation and sustained contraction induced by K+. Ca2+ sensitization, myosin light chain phosphatase, RhoA, Rho-associated kinase, tyrosine kinase PMID:24133693
The principal motions involved in the coupling mechanism of the recovery stroke of the myosin motor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mesentean, Sidonia; Koppole, Sampath; Smith, Jeremy C
2006-12-01
Muscle contraction is driven by a cycle of conformational changes in the myosin II head. After myosin binds ATP and releases from the actin fibril, myosin prepares for the next power stroke by rotating back the converter domain that carries the lever arm by {approx}60 degrees. This recovery stroke is coupled to the activation of myosin's ATPase by a mechanism that is essential for an efficient motor cycle. The mechanics of this coupling have been proposed to occur via two distinct and successive motions of the two helices that hold the converter domain: in a first phase a see-saw motionmore » of the relay helix, followed by a piston/seesaw motion of the SH1 helix in a second phase. To test this model, we have determined the principal motions of these structural elements during equilibrium molecular dynamics simulations of the crystallographic end states of the recovery stroke by using Principal Component Analysis. This reveals that the only principal motions of these two helices that make a large amplitude contribution towards the conformational change of the recovery stroke are indeed the predicted seesaw and piston motions.« less
Motor Force Homeostasis in Skeletal Muscle Contraction
Chen, Bin; Gao, Huajian
2011-01-01
In active biological contractile processes such as skeletal muscle contraction, cellular mitosis, and neuronal growth, an interesting common observation is that multiple motors can perform coordinated and synchronous actions, whereas individual myosin motors appear to randomly attach to and detach from actin filaments. Recent experiment has demonstrated that, during skeletal muscle shortening at a wide range of velocities, individual myosin motors maintain a force of ∼6 pN during a working stroke. To understand how such force-homeostasis can be so precisely regulated in an apparently chaotic system, here we develop a molecular model within a coupled stochastic-elastic theoretical framework. The model reveals that the unique force-stretch relation of myosin motor and the stochastic behavior of actin-myosin binding cause the average number of working motors to increase in linear proportion to the filament load, so that the force on each working motor is regulated at ∼6 pN, in excellent agreement with experiment. This study suggests that it might be a general principle to use catch bonds together with a force-stretch relation similar to that of myosin motors to regulate force homeostasis in many biological processes. PMID:21767492
A simplified method for identification of human cardiac myosin heavy-chain isoforms.
Piao, Shengfu; Yu, Fushun; Mihm, Michael J; Reiser, Peter J; McCarthy, Patrick M; Van Wagoner, David R; Bauer, John Anthony
2003-02-01
Cardiac myosin is a central participant in the cross-bridge cycling that mediates myocyte contraction and consists of multiple subunits that mediate both hydrolysis of ATP and mechanical production of contractile force Two isoforms of myosin heavy chain (MHC- alpha and MHC- beta ) are known to exist in mammalian cardiac tissue, and it is within this myosin subunit that ATPase activity resides. These isoforms differ by less than 0.2% in total molecular mass and amino acid sequence, but, strikingly, influence the rate and efficiency of energy utilization for generation of contractile force. Changes in the MHC- alpha /MHC- beta ratio has been classically viewed as an adaptation of a failing myocyte in both animal models and humans; however, their measurement has traditionally required specialized preparations and materials for sufficient resolution. Here we describe a greatly simplified method for routine assessments of myosin isoform composition in human cardiac tissues. The primary advantages of our approach include higher throughput and reduced supply costs with no apparent loss of statistical power, reproducibility or achieved results. Use of this more convenient method may provide enhanced access to an otherwise specialized technique and could provide additional opportunity for investigation of cardiac myocyte adaptive changes.
Evaluation of Acanthamoeba Myosin-IC as a Potential Therapeutic Target
Lorenzo-Morales, Jacob; López-Arencibia, Atteneri; Reyes-Batlle, María; Piñero, José E.; Valladares, Basilio; Maciver, Sutherland K.
2014-01-01
Members of the genus Acanthamoeba are facultative pathogens of humans, causing a sight-threatening keratitis and a fatal encephalitis. We have targeted myosin-IC by using small interfering RNA (siRNA) silencing as a therapeutic approach, since it is known that the function of this protein is vital for the amoeba. In this work, specific siRNAs against the Acanthamoeba myosin-IC gene were developed. Treated and control amoebae were cultured in growth and encystment media to evaluate the induced effects after myosin-IC gene knockdown, as we have anticipated that cyst formation may be impaired. The effects of myosin-IC gene silencing were inhibition of cyst formation, inhibition of completion of cytokinesis, inhibition of osmoregulation under osmotic stress conditions, and death of the amoebae. The finding that myosin-IC silencing caused incompletion of cytokinesis is in agreement with earlier suggestions that the protein plays a role in cell locomotion, which is necessary to pull daughter cells apart after mitosis in a process known as “traction-mediated cytokinesis”. We conclude that myosin-IC is a very promising potential drug target for the development of much-needed antiamoebal drugs and that it should be further exploited for Acanthamoeba therapy. PMID:24468784
Porter, Melissa; Evans, Melissa C; Miner, Amy S; Berg, Krystina M; Ward, Kevin R; Ratz, Paul H
2006-06-01
Contractile stimuli can sensitize myosin to Ca2+ by activating RhoA kinase (ROK) and PKC that inhibit myosin light chain phosphatase (MLCP) activity. Relaxant stimuli, acting through PKA and PKG (cyclic nucleotide-dependent protein kinases), and pretreatment with contractile agents such as phenylephrine (PE), can desensitize myosin to Ca2+. It is unknown precisely how these stimuli cause Ca2+ desensitization. To test the hypothesis that PKA, PKG, and PE pretreatment signaling systems converge to cause relaxation by inhibition of ROK in intact, isolated tissues, we examined the effects of forskolin (FSK; PKA activation), 8-bromo-cGMP (8br-cGMP; PKG activation), and PE pretreatment on KCl-induced force maintenance in rabbit arteries, a response nearly completely dependent on ROK activation. PE pretreatment and agents activating PKA and PKG caused Ca2+ desensitization by inhibiting KCl-induced tonic force and MLC phosphorylation without inhibiting intracellular [Ca2+]. At pCa 5 in beta-escin-permeabilized muscle, FSK and 8b-cGMP accelerated the relaxation rate when tissues were returned to pCa 9, suggesting that both agents can elevate MLCP activity. However, a component of the Ca2+ desensitization attributed to PKG activation in intact tissues appeared to involve a MLC phosphorylation-independent component. Inhibition of KCl-induced tonic force by the ROK inhibitor, Y-27632, and by PE pretreatment, were synergistically potentiated by 8b-cGMP, but not FSK. FSK and PE pretreatment, but not 8b-cGMP, inhibited the KCl-induced increase in site-specific myosin phosphatase target protein-1 phosphorylation at Thr853. These data support the hypothesis that PKA and PE pretreatment converge on a common Ca2+-desensitization pathway, but that PKG can act by a mechanism different from that activated by PKA and PE pretreatment.
Scheid, Lisa-Mareike; Weber, Cornelia; Bopp, Nasrin; Mosqueira, Matias; Fink, Rainer H. A.
2017-01-01
The in vitro motility assay (IVMA) is a technique that enables the measurement of the interaction between actin and myosin providing a relatively simple model to understand the mechanical muscle function. For actin-myosin IVMA, myosin is immobilized in a measurement chamber, where it converts chemical energy provided by ATP hydrolysis into mechanical energy. The result is the movement of fluorescently labeled actin filaments that can be recorded microscopically and analyzed quantitatively. Resulting sliding speeds and patterns help to characterize the underlying actin-myosin interaction that can be affected by different factors such as mutations or active compounds. Additionally, modulatory actions of the regulatory proteins tropomyosin and troponin in the presence of calcium on actin-myosin interaction can be studied with the IVMA. Zebrafish is considered a suitable model organism for cardiovascular and skeletal muscle research. In this context, straightforward protocols for the isolation and use of zebrafish muscle proteins in the IVMA would provide a useful tool in molecular studies. Currently, there are no protocols available for the mentioned purpose. Therefore, we developed fast and easy protocols for characterization of zebrafish proteins in the IVMA. Our protocols enable the interested researcher to (i) isolate actin from zebrafish skeletal muscle and (ii) extract functionally intact myosin from cardiac and skeletal muscle of individual adult zebrafish. Zebrafish tail muscle actin is isolated after acetone powder preparation, polymerized, and labeled with Rhodamine-Phalloidin. Myosin from ventricles of adult zebrafish is extracted directly into IVMA flow-cells. The same extraction protocol is applicable for comparably small tissue pieces as from zebrafish tail, mouse and frog muscle. After addition of the fluorescently labeled F-actin from zebrafish—or other origin—and ATP, sliding movement can be visualized using a fluorescence microscope and an intensified CCD camera. Taken together, we introduce a method for functional analysis in zebrafish cardiac and skeletal muscle research to study mutations at the molecular level of thick or thin filament proteins. Additionally, preliminary data indicate the usefulness of the presented method to perform the IVMA with myosin extracted from muscles of other animal models. PMID:28620318
Haldeman, Brian D.; Brizendine, Richard K.; Facemyer, Kevin C.; Baker, Josh E.; Cremo, Christine R.
2014-01-01
Actin-myosin interactions are well studied using soluble myosin fragments, but little is known about effects of myosin filament structure on mechanochemistry. We stabilized unphosphorylated smooth muscle myosin (SMM) and phosphorylated smooth muscle myosin (pSMM) filaments against ATP-induced depolymerization using a cross-linker and attached fluorescent rhodamine (XL-Rh-SMM). Electron micrographs showed that these side polar filaments are very similar to unmodified filaments. They are ∼0.63 μm long and contain ∼176 molecules. Rate constants for ATP-induced dissociation and ADP release from acto-myosin for filaments and S1 heads were similar. Actin-activated ATPases of SMM and XL-Rh-SMM were similarly regulated. XL-Rh-pSMM filaments moved processively on F-actin that was bound to a PEG brush surface. ATP dependence of filament velocities was similar to that for solution ATPases at high [actin], suggesting that both processes are limited by the same kinetic step (weak to strong transition) and therefore are attachment-limited. This differs from actin sliding over myosin monomers, which is primarily detachment-limited. Fitting filament data to an attachment-limited model showed that approximately half of the heads are available to move the filament, consistent with a side polar structure. We suggest the low stiffness subfragment 2 (S2) domain remains unhindered during filament motion in our assay. Actin-bound negatively displaced heads will impart minimal drag force because of S2 buckling. Given the ADP release rate, the velocity, and the length of S2, these heads will detach from actin before slack is taken up into a backwardly displaced high stiffness position. This mechanism explains the lack of detachment-limited kinetics at physiological [ATP]. These findings address how nonlinear elasticity in assemblies of motors leads to efficient collective force generation. PMID:24907276
A physiological basis for variation in the contractile properties of isolated rat heart.
Lin, L E; McClellan, G; Weisberg, A; Winegrad, S
1991-01-01
1. The maximum Ca(2+)-activated force, maximum velocity of unloaded shortening and both Ca(2+)- and actin-activated ATPase activities of myosin have been measured in detergent-skinned preparations of isolated bundles of rat right ventricle after exposure of the intact tissue to different conditions of superfusion, mechanical activity and temperature. 2. Maximum Ca(2+)-activated force per unit cross-sectional area decreases with increasing cross-sectional area, and, in the absence of electrical stimulation, with the duration of superfusion. Maximum velocity of unloaded shortening is not influenced by these differences. 3. Actin-activated ATPase activity of myosin decreases as cross-sectional area increases and duration of superfusion increases, but the extent of the decrease in enzymatic activity is less than that of developed force. Ca(2+)-activated ATPase activity is independent of these differences. 4. Actin-activated ATPase activity in cryostatic sections of quickly frozen tissue is not uniform across the transverse section. In thin bundles, it is highest in the centre and lowest at the edge of the section, which correspond, respectively, to the centre and the surface of the tissue bundle. Exposure of the tissue section to 1 microM-cyclic AMP increases the actin-activated ATPase activity of myosin with the largest increase in activity occurring at or near the surface of the bundle. 5. Ca(2+)-activated ATPase activity of myosin is uniform across the transverse section and is not changed by cyclic AMP. 6. Electrical stimulation, elevated Ca2+ concentration in the superfusion medium, or isoprenaline partially or completely reverse the decline in maximum Ca(2+)-activated force produced by prolonged superfusion of the bundle before its skinning. 7. These observations are similar in many ways to those made on frog skeletal muscles by Elzinga, Howarth, Rull, Wilson & Woledge (1989a). An explanation based on the existence of a physiological mechanism for regulating the properties of force generators is proposed. Regulation of the attachment of the cross-bridge to an actin filament may be the basis for the regulatory mechanism. Images Fig. 4 Fig. 7 PMID:1667804
Miller, Mark S; Bedrin, Nicholas G; Ades, Philip A; Palmer, Bradley M; Toth, Michael J
2015-03-15
Skeletal muscle contractile performance is governed by the properties of its constituent fibers, which are, in turn, determined by the molecular interactions of the myofilament proteins. To define the molecular determinants of contractile function in humans, we measured myofilament mechanics during maximal Ca(2+)-activated and passive isometric conditions in single muscle fibers with homogenous (I and IIA) and mixed (I/IIA and IIA/X) myosin heavy chain (MHC) isoforms from healthy, young adult male (n = 5) and female (n = 7) volunteers. Fibers containing only MHC II isoforms (IIA and IIA/X) produced higher maximal Ca(2+)-activated forces over the range of cross-sectional areas (CSAs) examined than MHC I fibers, resulting in higher (24-42%) specific forces. The number and/or stiffness of the strongly bound myosin-actin cross bridges increased in the higher force-producing MHC II isoforms and, in all isoforms, better predicted force than CSA. In men and women, cross-bridge kinetics, in terms of myosin attachment time and rate of myosin force production, were independent of CSA, although women had faster (7-15%) kinetics. The relative proportion of cross bridges and/or their stiffness was reduced as fiber size increased, causing a decline in specific force. Results from our examination of molecular mechanisms across the range of physiological CSAs explain the variation in specific force among the different fiber types in human skeletal muscle, which may have relevance to understanding how various physiological and pathophysiological conditions modulate single-fiber and whole muscle contractility. Copyright © 2015 the American Physiological Society.
Bedrin, Nicholas G.; Ades, Philip A.; Palmer, Bradley M.; Toth, Michael J.
2015-01-01
Skeletal muscle contractile performance is governed by the properties of its constituent fibers, which are, in turn, determined by the molecular interactions of the myofilament proteins. To define the molecular determinants of contractile function in humans, we measured myofilament mechanics during maximal Ca2+-activated and passive isometric conditions in single muscle fibers with homogenous (I and IIA) and mixed (I/IIA and IIA/X) myosin heavy chain (MHC) isoforms from healthy, young adult male (n = 5) and female (n = 7) volunteers. Fibers containing only MHC II isoforms (IIA and IIA/X) produced higher maximal Ca2+-activated forces over the range of cross-sectional areas (CSAs) examined than MHC I fibers, resulting in higher (24–42%) specific forces. The number and/or stiffness of the strongly bound myosin-actin cross bridges increased in the higher force-producing MHC II isoforms and, in all isoforms, better predicted force than CSA. In men and women, cross-bridge kinetics, in terms of myosin attachment time and rate of myosin force production, were independent of CSA, although women had faster (7–15%) kinetics. The relative proportion of cross bridges and/or their stiffness was reduced as fiber size increased, causing a decline in specific force. Results from our examination of molecular mechanisms across the range of physiological CSAs explain the variation in specific force among the different fiber types in human skeletal muscle, which may have relevance to understanding how various physiological and pathophysiological conditions modulate single-fiber and whole muscle contractility. PMID:25567808
Abrams, Joshua; Einhorn, Zev; Seiler, Christoph; Zong, Alan B; Sweeney, H Lee; Pack, Michael
2016-05-01
Smooth muscle contraction is controlled by the regulated activity of the myosin heavy chain ATPase (Myh11). Myh11 mutations have diverse effects in the cardiovascular, digestive and genitourinary systems in humans and animal models. We previously reported a recessive missense mutation, meltdown (mlt), which converts a highly conserved tryptophan to arginine (W512R) in the rigid relay loop of zebrafish Myh11. The mlt mutation disrupts myosin regulation and non-autonomously induces invasive expansion of the intestinal epithelium. Here, we report two newly identified missense mutations in the switch-1 (S237Y) and coil-coiled (L1287M) domains of Myh11 that fail to complement mlt Cell invasion was not detected in either homozygous mutant but could be induced by oxidative stress and activation of oncogenic signaling pathways. The smooth muscle defect imparted by the mlt and S237Y mutations also delayed intestinal transit, and altered vascular function, as measured by blood flow in the dorsal aorta. The cell-invasion phenotype induced by the three myh11 mutants correlated with the degree of myosin deregulation. These findings suggest that the vertebrate intestinal epithelium is tuned to the physical state of the surrounding stroma, which, in turn, governs its response to physiologic and pathologic stimuli. Genetic variants that alter the regulation of smooth muscle myosin might be risk factors for diseases affecting the intestine, vasculature, and other tissues that contain smooth muscle or contractile cells that express smooth muscle proteins, particularly in the setting of redox stress. © 2016. Published by The Company of Biologists Ltd.
Mutation of the myosin converter domain alters cross-bridge elasticity
Köhler, Jan; Winkler, Gerhard; Schulte, Imke; Scholz, Tim; McKenna, William; Brenner, Bernhard; Kraft, Theresia
2002-01-01
Elastic distortion of a structural element of the actomyosin complex is fundamental to the ability of myosin to generate motile forces. An elastic element allows strain to develop within the actomyosin complex (cross-bridge) before movement. Relief of this strain then drives filament sliding, or more generally, movement of a cargo. Even with the known crystal structure of the myosin head, however, the structural element of the actomyosin complex in which elastic distortion occurs remained unclear. To assign functional relevance to various structural elements of the myosin head, e.g., to identify the elastic element within the cross-bridge, we studied mechanical properties of muscle fibers from patients with familial hypertrophic cardiomyopathy with point mutations in the head domain of the β-myosin heavy chain. We found that the Arg-719 → Trp (Arg719Trp) mutation, which is located in the converter domain of the myosin head fragment, causes an increase in force generation and fiber stiffness under isometric conditions by 48–59%. Under rigor and relaxing conditions, fiber stiffness was 45–47% higher than in control fibers. Yet, kinetics of active cross-bridge cycling were unchanged. These findings, especially the increase in fiber stiffness under rigor conditions, indicate that cross-bridges with the Arg719Trp mutation are more resistant to elastic distortion. The data presented here strongly suggest that the converter domain that forms the junction between the catalytic and the light-chain-binding domain of the myosin head is not only essential for elastic distortion of the cross-bridge, but that the main elastic distortion may even occur within the converter domain itself. PMID:11904418
Martin, Sophie G.
2012-01-01
The exocyst complex is essential for many exocytic events, by tethering vesicles at the plasma membrane for fusion. In fission yeast, polarized exocytosis for growth relies on the combined action of the exocyst at cell poles and myosin-driven transport along actin cables. We report here the identification of fission yeast Schizosaccharomyces pombe Sec3 protein, which we identified through sequence homology of its PH-like domain. Like other exocyst subunits, sec3 is required for secretion and cell division. Cells deleted for sec3 are only conditionally lethal and can proliferate when osmotically stabilized. Sec3 is redundant with Exo70 for viability and for the localization of other exocyst subunits, suggesting these components act as exocyst tethers at the plasma membrane. Consistently, Sec3 localizes to zones of growth independently of other exocyst subunits but depends on PIP2 and functional Cdc42. FRAP analysis shows that Sec3, like all other exocyst subunits, localizes to cell poles largely independently of the actin cytoskeleton. However, we show that Sec3, Exo70 and Sec5 are transported by the myosin V Myo52 along actin cables. These data suggest that the exocyst holocomplex, including Sec3 and Exo70, is present on exocytic vesicles, which can reach cell poles by either myosin-driven transport or random walk. PMID:22768263
Structural basis for drug-induced allosteric changes to human β-cardiac myosin motor activity
Winkelmann, Donald A.; Forgacs, Eva; Miller, Matthew T.; Stock, Ann M.
2015-01-01
Omecamtiv Mecarbil (OM) is a small molecule allosteric effector of cardiac myosin that is in clinical trials for treatment of systolic heart failure. A detailed kinetic analysis of cardiac myosin has shown that the drug accelerates phosphate release by shifting the equilibrium of the hydrolysis step towards products, leading to a faster transition from weak to strong actin-bound states. The structure of the human β-cardiac motor domain (cMD) with OM bound reveals a single OM-binding site nestled in a narrow cleft separating two domains of the human cMD where it interacts with the key residues that couple lever arm movement to the nucleotide state. In addition, OM induces allosteric changes in three strands of the β-sheet that provides the communication link between the actin-binding interface and the nucleotide pocket. The OM-binding interactions and allosteric changes form the structural basis for the kinetic and mechanical tuning of cardiac myosin. PMID:26246073
Remote control of molecular motors using light-activated gearshifting
NASA Astrophysics Data System (ADS)
Bryant, Zev
2013-03-01
Engineering molecular motors with dynamically controllable properties will allow selective perturbation of mechanical processes in vivo and provide sophisticated components for directed nanoscale transport in vitro. We previously constructed myosin motors that respond to a change in [Ca++] by reversing their direction of motion along the polarized actin filament. To expand the potential applications of controllable molecular motors, we have now developed myosins that shift gears in response to blue light illumination. Light is a versatile control signal that can be readily modulated in time and space, and is generally orthogonal to cellular signaling. Using structure-guided protein engineering, we have incorporated LOV photoreceptor domains into the lever arms of chimeric myosins, resulting in motors that robustly speed up, slow down, or switch directions upon illumination. These genetically encoded motors should be directly deployable inside living cells. Our successful designs include constructs based on two different myosin classes, and we show that optical velocity control can be implemented in motors that move at microns/sec speeds, enabling practical biological and bioengineering applications.
Coulton, Arthur T.; East, Daniel A.; Galinska-Rakoczy, Agnieszka; Lehman, William; Mulvihill, Daniel P.
2010-01-01
Tropomyosin (Tm) is a conserved dimeric coiled-coil protein, which forms polymers that curl around actin filaments in order to regulate actomyosin function. Acetylation of the Tm N-terminal methionine strengthens end-to-end bonds, which enhances actin binding as well as the ability of Tm to regulate myosin motor activity in both muscle and non-muscle cells. In this study we explore the function of each Tm form within fission yeast cells. Electron microscopy and live cell imaging revealed that acetylated and unacetylated Tm associate with distinct actin structures within the cell, and that each form has a profound effect upon the shape and integrity of the polymeric actin filament. We show that, whereas Tm acetylation is required to regulate the in vivo motility of class II myosins, acetylated Tm had no effect on the motility of class I and V myosins. These findings illustrate a novel Tm-acetylation-state-dependent mechanism for regulating specific actomyosin cytoskeletal interactions. PMID:20807799
Morgan-Fisher, Marie; Wait, Robin; Couchman, John R.; Wewer, Ulla M.
2012-01-01
Collapsin response mediator protein 2 (CRMP-2) is known as a regulator of neuronal polarity and differentiation through microtubule assembly and trafficking. Here, we show that CRMP-2 is ubiquitously expressed and a splice variant (CRMP-2L), which is expressed mainly in epithelial cells among nonneuronal cells, regulates myosin II-mediated cellular functions, including cell migration. While the CRMP-2 short form (CRMP-2S) is recognized as a substrate of the Rho-GTP downstream kinase ROCK in neuronal cells, a CRMP-2 complex containing 2L not only bound the catalytic domain of ROCK II through two binding domains but also trapped and inhibited the kinase. CRMP-2L protein levels profoundly affected haptotactic migration and the actin-myosin cytoskeleton of carcinoma cells as well as nontransformed epithelial cell migration in a ROCK activity-dependent manner. Moreover, the ectopic expression of CRMP-2L but not -2S inhibited fibronectin matrix assembly in fibroblasts. Underlying these responses, CRMP-2L regulated the kinase activity of ROCK II but not ROCK I, independent of GTP-RhoA levels. This study provides a new insight into CRMP-2 as a controller of myosin II-mediated cellular functions through the inhibition of ROCK II in nonneuronal cells. PMID:22431514
Apico-basal forces exerted by apoptotic cells drive epithelium folding.
Monier, Bruno; Gettings, Melanie; Gay, Guillaume; Mangeat, Thomas; Schott, Sonia; Guarner, Ana; Suzanne, Magali
2015-02-12
Epithelium folding is a basic morphogenetic event that is essential in transforming simple two-dimensional epithelial sheets into three-dimensional structures in both vertebrates and invertebrates. Folding has been shown to rely on apical constriction. The resulting cell-shape changes depend either on adherens junction basal shift or on a redistribution of myosin II, which could be driven by mechanical signals. Yet the initial cellular mechanisms that trigger and coordinate cell remodelling remain largely unknown. Here we unravel the active role of apoptotic cells in initiating morphogenesis, thus revealing a novel mechanism of epithelium folding. We show that, in a live developing tissue, apoptotic cells exert a transient pulling force upon the apical surface of the epithelium through a highly dynamic apico-basal myosin II cable. The apoptotic cells then induce a non-autonomous increase in tissue tension together with cortical myosin II apical stabilization in the surrounding tissue, eventually resulting in epithelium folding. Together our results, supported by a theoretical biophysical three-dimensional model, identify an apoptotic myosin-II-dependent signal as the initial signal leading to cell reorganization and tissue folding. This work further reveals that, far from being passively eliminated as generally assumed (for example, during digit individualization), apoptotic cells actively influence their surroundings and trigger tissue remodelling through regulation of tissue tension.
Morimura, Shigeru; Suzuki, Katsuo; Takahashi, Kazuhide
2011-01-21
Investigation of the mechanism underlying cell membrane-targeted WAVE2 capture by phosphatidylinositol 3,4,5-triphosphate (PIP(3)) through IRSp53 revealed an unidentified 250-kDa protein (p250) bound to PIP(3). We identified p250 as nonmuscle myosin IIA heavy chain (MYH9) by mass spectrometry and immunoblot analysis using anti-MYH9 antibody. After stimulation with insulin-like growth factor I (IGF-I), MYH9 colocalized with PIP(3) in lamellipodia at the leading edge of cells. Depletion of MYH9 expression by small interfering RNA (siRNA) and inhibition of myosin II activity by blebbistatin abrogated the formation of actin filament (F-actin) arcs and lamellipodia induced by IGF-I. MYH9 was constitutively associated with WAVE2, which was dependent on myosin II activity, and the MYH9-WAVE2 complex colocalized to PIP(3) at the leading edge after IGF-I stimulation. These results indicate that MYH9 is required for lamellipodia formation since it provides contractile forces and tension for the F-actin network to form convex arcs at the leading edge through constitutive binding to WAVE2 and colocalization with PIP(3) in response to IGF-I. Copyright © 2010 Elsevier Inc. All rights reserved.
Jiao, Meng; Wu, Di; Wei, Qize
2018-01-01
Blebs are involved in various biological processes such as cell migration, cytokinesis, and apoptosis. While the expansion of blebs is largely an intracellular pressure-driven process, the retraction of blebs is believed to be driven by RhoA activation that leads to the reassembly of the actomyosin cortex at the bleb membrane. However, it is still poorly understood how RhoA is activated at the bleb membrane. Here, we provide evidence demonstrating that myosin II–interacting guanine nucleotide exchange factor (MYOGEF) is implicated in bleb retraction via stimulating RhoA activation and the reassembly of an actomyosin network at the bleb membrane during bleb retraction. Interaction of MYOGEF with ezrin, a well-known regulator of bleb retraction, is required for MYOGEF localization to retracting blebs. Notably, knockout of MYOGEF or ezrin not only disrupts RhoA activation at the bleb membrane, but also interferes with nonmuscle myosin II localization and activation, as well as actin polymerization in retracting blebs. Importantly, MYOGEF knockout slows down bleb retraction. We propose that ezrin interacts with MYOGEF and recruits it to retracting blebs, where MYOGEF activates RhoA and promotes the reassembly of the cortical actomyosin network at the bleb membrane, thus contributing to the regulation of bleb retraction. PMID:29321250
PTP1B triggers integrin-mediated repression of myosin activity and modulates cell contractility
González Wusener, Ana E.; González, Ángela; Nakamura, Fumihiko; Arregui, Carlos O.
2016-01-01
ABSTRACT Cell contractility and migration by integrins depends on precise regulation of protein tyrosine kinase and Rho-family GTPase activities in specific spatiotemporal patterns. Here we show that protein tyrosine phosphatase PTP1B cooperates with β3 integrin to activate the Src/FAK signalling pathway which represses RhoA-myosin-dependent contractility. Using PTP1B null (KO) cells and PTP1B reconstituted (WT) cells, we determined that some early steps following cell adhesion to fibronectin and vitronectin occurred robustly in WT cells, including aggregation of β3 integrins and adaptor proteins, and activation of Src/FAK-dependent signalling at small puncta in a lamellipodium. However, these events were significantly impaired in KO cells. We established that cytoskeletal strain and cell contractility was highly enhanced at the periphery of KO cells compared to WT cells. Inhibition of the Src/FAK signalling pathway or expression of constitutive active RhoA in WT cells induced a KO cell phenotype. Conversely, expression of constitutive active Src or myosin inhibition in KO cells restored the WT phenotype. We propose that this novel function of PTP1B stimulates permissive conditions for adhesion and lamellipodium assembly at the protruding edge during cell spreading and migration. PMID:26700725
DOE Office of Scientific and Technical Information (OSTI.GOV)
Compagnucci, Claudia; Barresi, Sabina; Petrini, Stefania
2015-04-03
Rho-kinase (ROCK) has been well documented to play a key role in RhoA-induced actin remodeling. ROCK activation results in myosin light chain (MLC) phosphorylation either by direct action on MLC kinase (MLCK) or by inhibition of MLC phosphatase (MLCP), modulating actin–myosin contraction. We found that inhibition of the ROCK pathway in induced pluripotent stem cells, leads to nuclear export of HDAC7 and transcriptional activation of the orphan nuclear receptor NR4A1 while in cells with constitutive ROCK hyperactivity due to loss of function of the RhoGTPase activating protein Oligophrenin-1 (OPHN1), the orphan nuclear receptor NR4A1 is downregulated. Our study identify amore » new target of ROCK signaling via myosin phosphatase subunit (MYPT1) and Histone Deacetylase (HDAC7) at the nuclear level and provide new insights in the cellular functions of ROCK. - Highlights: • ROCK regulates nucleocytoplasmic shuttling of HDAC7 via phosphorylation of MYPT1. • Nuclear export of HDAC7 and upregulation of NR4A1 occurs with low ROCK activity. • High levels of ROCK activity due to OPHN1 loss of function downregulate NR4A1.« less
Tanner, Bertrand C.W.; McNabb, Mark; Palmer, Bradley M.; Toth, Michael J.; Miller, Mark S.
2014-01-01
Diminished skeletal muscle performance with aging, disuse, and disease may be partially attributed to the loss of myofilament proteins. Several laboratories have found a disproportionate loss of myosin protein content relative to other myofilament proteins, but due to methodological limitations, the structural manifestation of this protein loss is unknown. To investigate how variations in myosin content affect ensemble cross-bridge behavior and force production we simulated muscle contraction in the half-sarcomere as myosin was removed either i) uniformly, from the Z-line end of thick-filaments, or ii) randomly, along the length of thick-filaments. Uniform myosin removal decreased force production, showing a slightly steeper force-to-myosin content relationship than the 1:1 relationship that would be expected from the loss of cross-bridges. Random myosin removal also decreased force production, but this decrease was less than observed with uniform myosin loss, largely due to increased myosin attachment time (ton) and fractional cross-bridge binding with random myosin loss. These findings support our prior observations that prolonged ton may augment force production in single fibers with randomly reduced myosin content from chronic heart failure patients. These simulation also illustrate that the pattern of myosin loss along thick-filaments influences ensemble cross-bridge behavior and maintenance of force throughout the sarcomere. PMID:24486373
Cell elongation is an adaptive response for clearing long chromatid arms from the cleavage plane
Kotadia, Shaila; Montembault, Emilie; Sullivan, William
2012-01-01
Chromosome segregation must be coordinated with cell cleavage to ensure correct transmission of the genome to daughter cells. Here we identify a novel mechanism by which Drosophila melanogaster neuronal stem cells coordinate sister chromatid segregation with cleavage furrow ingression. Cells adapted to a dramatic increase in chromatid arm length by transiently elongating during anaphase/telophase. The degree of cell elongation correlated with the length of the trailing chromatid arms and was concomitant with a slight increase in spindle length and an enlargement of the zone of cortical myosin distribution. Rho guanine-nucleotide exchange factor (Pebble)–depleted cells failed to elongate during segregation of long chromatids. As a result, Pebble-depleted adult flies exhibited morphological defects likely caused by cell death during development. These studies reveal a novel pathway linking trailing chromatid arms and cortical myosin that ensures the clearance of chromatids from the cleavage plane at the appropriate time during cytokinesis, thus preserving genome integrity. PMID:23185030
Petzoldt, Astrid G; Coutelis, Jean-Baptiste; Géminard, Charles; Spéder, Pauline; Suzanne, Magali; Cerezo, Delphine; Noselli, Stéphane
2012-05-01
In bilateria, positioning and looping of visceral organs requires proper left-right (L/R) asymmetry establishment. Recent work in Drosophila has identified a novel situs inversus gene encoding the unconventional type ID myosin (MyoID). In myoID mutant flies, the L/R axis is inverted, causing reversed looping of organs, such as the gut, spermiduct and genitalia. We have previously shown that MyoID interacts physically with β-Catenin, suggesting a role of the adherens junction in Drosophila L/R asymmetry. Here, we show that DE-Cadherin co-immunoprecipitates with MyoID and is required for MyoID L/R activity. We further demonstrate that MyoIC, a closely related unconventional type I myosin, can antagonize MyoID L/R activity by preventing its binding to adherens junction components, both in vitro and in vivo. Interestingly, DE-Cadherin inhibits MyoIC, providing a protective mechanism to MyoID function. Conditional genetic experiments indicate that DE-Cadherin, MyoIC and MyoID show temporal synchronicity for their function in L/R asymmetry. These data suggest that following MyoID recruitment by β-Catenin at the adherens junction, DE-Cadherin has a twofold effect on Drosophila L/R asymmetry by promoting MyoID activity and repressing that of MyoIC. Interestingly, the product of the vertebrate situs inversus gene inversin also physically interacts with β-Catenin, suggesting that the adherens junction might serve as a conserved platform for determinants to establish L/R asymmetry both in vertebrates and invertebrates.
NASA Technical Reports Server (NTRS)
Sharma, Prasanta; Cheung, Herbert C.
1989-01-01
Configurational study of S1-Myosin is an important step towards understanding force generation in muscle contraction. Previously reported NMR studies were corroborated. A new compound was synthesized, 3-(Bromoacetamido)-propylamine hydrochloride. Its potential as a sulfhydryl reagent provides an indirect but elegant approach towards future structural elucidation of S1-Myosin. The preliminary investigation has shown that this compound, BAAP, reacted with S1 in the absence of MgADP. The modified enzyme had a 2-fold increase in CaATPase activity and no detectable K-EDTA ATPase activity. Reaction of BAAP with S1 in the presence of MgADP resulted in a modified enzyme which retained a Ca-ATPase activity that was about 60 percent of the unmodified S1 and had essentially zero K-EDTA ATPase activity. Sulfhydryl titration indicated that about 1.5 and 3.5 SH groups per S1 molecule were blocked by BAAP in the absence and presence of MgADP, respectively. When coupled to a carboxyl group of EDTA, the resulting reagent could become a useful SH reagent in which chelated paramagnetic or luminescent lanthanide ions can be exploited to probe S1 conformation.
Myosin storage myopathy: slow skeletal myosin (MYH7) mutation in two isolated cases.
Laing, N G; Ceuterick-de Groote, C; Dye, D E; Liyanage, K; Duff, R M; Dubois, B; Robberecht, W; Sciot, R; Martin, J-J; Goebel, H H
2005-02-08
Myosin storage myopathy is a congenital myopathy characterized by subsarcolemmal hyaline bodies in type 1 muscle fibers, which are ATPase positive and thus contain myosin. Mutations recently were identified in the type 1 muscle fiber myosin gene (MYH7) in Swedish and Saudi families with myosin storage myopathy. The authors have identified the arginine 1845 tryptophan mutation found in the Swedish families in two isolated Belgian cases, indicating a critical role for myosin residue arginine 1845.
Yokota, Etsuo; Ueda, Shunpei; Tamura, Kentaro; Orii, Hidefumi; Uchi, Satoko; Sonobe, Seiji; Hara-Nishimura, Ikuko; Shimmen, Teruo
2009-01-01
The involvement of myosin XI in generating the motive force for cytoplasmic streaming in plant cells is becoming evident. For a comprehensive understanding of the physiological roles of myosin XI isoforms, it is necessary to elucidate the properties and functions of each isoform individually. In tobacco cultured BY-2 cells, two types of myosins, one composed of 175 kDa heavy chain (175 kDa myosin) and the other of 170 kDa heavy chain (170 kDa myosin), have been identified biochemically and immunocytochemically. From sequence analyses of cDNA clones encoding heavy chains of 175 kDa and 170 kDa myosin, both myosins have been classified as myosin XI. Immunocytochemical studies using a polyclonal antibody against purified 175 kDa myosin heavy chain showed that the 175 kDa myosin is distributed throughout the cytoplasm as fine dots in interphase BY-2 cells. During mitosis, some parts of 175 kDa myosin were found to accumulate in the pre-prophase band (PPB), spindle, the equatorial plane of a phragmoplast and on the circumference of daughter nuclei. In transgenic BY-2 cells, in which an endoplasmic reticulum (ER)-specific retention signal, HDEL, tagged with green fluorescent protein (GFP) was stably expressed, ER showed a similar behaviour to that of 175 kDa myosin. Furthermore, this myosin was co-fractionated with GFP-ER by sucrose density gradient centrifugation. From these findings, it was suggested that the 175 kDa myosin is a molecular motor responsible for translocating ER in BY-2 cells.
Beatty, Alexander; Morton, Diane G.; Kemphues, Kenneth
2013-01-01
In the one-cell C. elegans embryo, polarity is maintained by mutual antagonism between the anterior cortical proteins PAR-3, PKC-3, PAR-6 and CDC-42, and the posterior cortical proteins PAR-2 and LGL-1 on the posterior cortex. The mechanisms by which these proteins interact to maintain polarity are incompletely understood. In this study, we investigate the interplay among PAR-2, LGL-1, myosin, the anterior PAR proteins and CDC-42. We find that PAR-2 and LGL-1 affect cortical myosin accumulation by different mechanisms. LGL-1 does not directly antagonize the accumulation of cortical myosin and instead plays a role in regulating PAR-6 levels. By contrast, PAR-2 likely has separate roles in regulating cortical myosin accumulation and preventing the expansion of the anterior cortical domain. We also provide evidence that asymmetry of active CDC-42 can be maintained independently of LGL-1 and PAR-2 by a redundant pathway that includes the CDC-42 GAP CHIN-1. Finally, we show that, in addition to its primary role in regulating the size of the anterior cortical domain via its binding to PAR-6, CDC-42 has a secondary role in regulating cortical myosin that is not dependent on PAR-6. PMID:23536568
Beatty, Alexander; Morton, Diane G; Kemphues, Kenneth
2013-05-01
In the one-cell C. elegans embryo, polarity is maintained by mutual antagonism between the anterior cortical proteins PAR-3, PKC-3, PAR-6 and CDC-42, and the posterior cortical proteins PAR-2 and LGL-1 on the posterior cortex. The mechanisms by which these proteins interact to maintain polarity are incompletely understood. In this study, we investigate the interplay among PAR-2, LGL-1, myosin, the anterior PAR proteins and CDC-42. We find that PAR-2 and LGL-1 affect cortical myosin accumulation by different mechanisms. LGL-1 does not directly antagonize the accumulation of cortical myosin and instead plays a role in regulating PAR-6 levels. By contrast, PAR-2 likely has separate roles in regulating cortical myosin accumulation and preventing the expansion of the anterior cortical domain. We also provide evidence that asymmetry of active CDC-42 can be maintained independently of LGL-1 and PAR-2 by a redundant pathway that includes the CDC-42 GAP CHIN-1. Finally, we show that, in addition to its primary role in regulating the size of the anterior cortical domain via its binding to PAR-6, CDC-42 has a secondary role in regulating cortical myosin that is not dependent on PAR-6.
Conti, Antonio; Riva, Nilo; Pesca, Mariasabina; Iannaccone, Sandro; Cannistraci, Carlo V; Corbo, Massimo; Previtali, Stefano C; Quattrini, Angelo; Alessio, Massimo
2014-01-01
Amyotrophic lateral sclerosis (ALS) is a severe and fatal neurodegenerative disease of still unknown pathogenesis. Recent findings suggest that the skeletal muscle may play an active pathogenetic role. To investigate ALS's pathogenesis and to seek diagnostic markers, we analyzed skeletal muscle biopsies with the differential expression proteomic approach. We studied skeletal muscle biopsies from healthy controls (CN), sporadic ALS (sALS), motor neuropathies (MN) and myopathies (M). Pre-eminently among several differentially expressed proteins, Myosin binding protein H (MyBP-H) expression in ALS samples was anomalously high. MyBP-H is a component of the thick filaments of the skeletal muscle and has strong affinity for myosin, but its function is still unclear. High MyBP-H expression level was associated with abnormal expression of Rho kinase 2 (ROCK2), LIM domain kinase 1 (LIMK1) and cofilin2, that might affect the actin-myosin interaction. We propose that MyBP-H expression level serves, as a putative biomarker in the skeletal muscle, to discriminate ALS from motor neuropathies, and that it signals the onset of dysregulation in actin-myosin interaction; this in turn might contribute to the pathogenesis of ALS. © 2013 Elsevier B.V. All rights reserved.
Hoh, Joseph F Y; Li, Zhao-Bo; Qin, Han; Hsu, Michael K H; Rossmanith, Gunther H
2007-01-01
Mechanical properties of the jaw-closing muscles of the cat are poorly understood. These muscles are known to differ in myosin and fibre type compositions from limb muscles. This work aims to correlate mechanical properties of single fibres in cat jaw and limb muscles with their myosin subunit compositions. The stiffness minimum frequency, f(min), which reflects isometric cross-bridge kinetics, was measured in Ca(2+)-activated glycerinated fast and slow fibres from cat jaw and limb muscles for temperatures ranging between 15 and 30 degrees C by mechanical perturbation analysis. At 15 degrees C, f(min) was 0.5 Hz for limb-slow fibres, 4-6 Hz for jaw-slow fibres, and 10-13 Hz for limb-fast and jaw-fast fibres. The activation energy for f(min) obtained from the slope of the Arrhenius plot for limb-slow fibres was 30-40% higher than values for the other three types of fibres. SDS-PAGE and western blotting using highly specific antibodies verified that limb-fast fibres contained IIA or IIX myosin heavy chain (MyHC). Jaw-fast fibres expressed masticatory MyHC while both jaw-fast and jaw-slow fibres expressed masticatory myosin light chains (MLCs). The nucleotide sequences of the 3' ends of the slow MyHC cDNAs isolated from cat masseter and soleus cDNA libraries showed identical coding and 3'-untranslated regions, suggesting that jaw-slow and limb-slow fibres express the same slow MyHC gene. We conclude that the isometric cross-bridge cycling kinetics of jaw-fast and limb-fast fibres detected by f(min) are indistinguishable in spite of differences in MyHC and light chain compositions. However, jaw-slow fibres, in which the same slow MyHCs are found in combination with MLCs of the jaw type, show enhanced cross-bridge cycling kinetics and reduced activation energy for cross-bridge detachment.
A technique for studying cardiac myosin dynamics using optical tweezers
NASA Astrophysics Data System (ADS)
Paolino, Michael; Migirditch, Sam; Nesmelov, Yuri; Hester, Brooke; Appalachian State Biophysics; Optical Sciences Facility Team
A primary protein involved in human muscle contraction is myosin, which exists in α- and β- isoforms. Myosin exerts forces on actin filaments when ATP is present, driving muscle contraction. A significant decrease in the population of cardiac α-myosin has been linked to heart failure. It is proposed that slow β-myosin in a failing heart could, through introduction of a drug, be made to mimic the action of α-myosin, thereby improving cardiac muscle performance. In working towards testing this hypothesis, the focus of this work is to develop a technique to measure forces exerted by myosin on actin using optical tweezers. An actin-myosin arrangement is constructed between two optically trapped polystyrene microspheres. The displacement of a microsphere is monitored when ATP is introduced, and the force responsible is measured. With this achieved, we can then modify the actin-myosin arrangement, for example with varying amounts of α- and β- myosin and test the effects on forces exerted. In this work, assemblies of actin and myosin molecules and preliminary force measurements are discussed. North Carolina Space Grant.
The structural coupling between ATPase activation and recovery stroke in the myosin II motor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koppole, Sampath; Smith, Jeremy C; Fischer, S.
2007-07-01
Before the myosin motor head can perform the next power stroke, it undergoes a large conformational transition in which the converter domain, bearing the lever arm, rotates {approx} 65{sup o}. Simultaneous with this 'recovery stroke', myosin activates its ATPase function by closing the Switch-2 loop over the bound ATP. This coupling between the motions of the converter domain and of the 40 {angstrom}-distant Switch-2 loop is essential to avoid unproductive ATP hydrolysis. The coupling mechanism is determined here by finding a series of optimized intermediates between crystallographic end structures of the recovery stroke (Dictyostelium discoideum), yielding movies of the transitionmore » at atomic detail. The successive formation of two hydrogen bonds by the Switch-2 loop is correlated with the successive see-saw motions of the relay and SH1 helices that hold the converter domain. SH1 helix and Switch-2 loop communicate via a highly conserved loop that wedges against the SH1-helix upon Switch-2 closing.« less
Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms
NASA Technical Reports Server (NTRS)
Baldwin, Kenneth M.; Haddad, Fadia
2002-01-01
The goal of this article is to examine our current understanding of the chain of events known to be involved in the adaptive process whereby specific genes and their protein products undergo altered expression; specifically, skeletal muscle adaptation in response to altered loading states will be discussed, with a special focus on the regulation of the contractile protein, myosin heavy chain gene expression. This protein, which is both an important structural and regulatory protein comprising the contractile apparatus, can be expressed as different isoforms, thereby having an impact on the functional diversity of the muscle. Because the regulation of the myosin gene family is under the control of a complex set of processes including, but not limited to, activity, hormonal, and metabolic factors, this protein will serve as a cellular "marker" for studies of muscle plasticity in response to various mechanical perturbations in which the quantity and type of myosin isoform, along with other important cellular proteins, are altered in expression.
The structural coupling between ATPase activation and recovery stroke in the myosin II motor.
Koppole, Sampath; Smith, Jeremy C; Fischer, Stefan
2007-07-01
Before the myosin motor head can perform the next power stroke, it undergoes a large conformational transition in which the converter domain, bearing the lever arm, rotates approximately 65 degrees . Simultaneous with this "recovery stroke," myosin activates its ATPase function by closing the Switch-2 loop over the bound ATP. This coupling between the motions of the converter domain and of the 40 A-distant Switch-2 loop is essential to avoid unproductive ATP hydrolysis. The coupling mechanism is determined here by finding a series of optimized intermediates between crystallographic end structures of the recovery stroke (Dictyostelium discoideum), yielding movies of the transition at atomic detail. The successive formation of two hydrogen bonds by the Switch-2 loop is correlated with the successive see-saw motions of the relay and SH1 helices that hold the converter domain. SH1 helix and Switch-2 loop communicate via a highly conserved loop that wedges against the SH1-helix upon Switch-2 closing.
Ng, Mei Rosa; Besser, Achim
2012-01-01
The mechanical microenvironment is known to influence single-cell migration; however, the extent to which mechanical cues affect collective migration of adherent cells is not well understood. We measured the effects of varying substrate compliance on individual cell migratory properties in an epithelial wound-healing assay. Increasing substrate stiffness increased collective cell migration speed, persistence, and directionality as well as the coordination of cell movements. Dynamic analysis revealed that wounding initiated a wave of motion coordination from the wound edge into the sheet. This was accompanied by a front-to-back gradient of myosin-II activation and establishment of cell polarity. The propagation was faster and farther reaching on stiff substrates, indicating that substrate stiffness affects the transmission of directional cues. Manipulation of myosin-II activity and cadherin–catenin complexes revealed that this transmission is mediated by coupling of contractile forces between neighboring cells. Thus, our findings suggest that the mechanical environment integrates in a feedback with cell contractility and cell–cell adhesion to regulate collective migration. PMID:23091067
Myosin head orientation: a structural determinant for the Frank-Starling relationship
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farman, Gerrie P.; Gore, David; Allen, Edward
The cellular mechanism underlying the Frank-Starling law of the heart is myofilament length-dependent activation. The mechanism(s) whereby sarcomeres detect changes in length and translate this into increased sensitivity to activating calcium has been elusive. Small-angle X-ray diffraction studies have revealed that the intact myofilament lattice undergoes numerous structural changes upon an increase in sarcomere length (SL): lattice spacing and the I{sub 1,1}/I{sub 1,0} intensity ratio decreases, whereas the M3 meridional reflection intensity (I{sub M3}) increases, concomitant with increases in diastolic and systolic force. Using a short ({approx}10 ms) X-ray exposure just before electrical stimulation, we were able to obtain detailedmore » structural information regarding the effects of external osmotic compression (with mannitol) and obtain SL on thin intact electrically stimulated isolated rat right ventricular trabeculae. We show that over the same incremental increases in SL, the relative changes in systolic force track more closely to the relative changes in myosin head orientation (as reported by IM3) than to the relative changes in lattice spacing. We conclude that myosin head orientation before activation determines myocardial sarcomere activation levels and that this may be the dominant mechanism for length-dependent activation.« less
Characterization of myosin heavy chain and its gene in Amoeba proteus.
Oh, S W; Jeon, K W
1998-01-01
Monoclonal antibodies against the myosin heavy chain of Amoeba proteus were obtained and used to localize myosin inside amoebae and to clone cDNAs encoding myosin. Myosin was found throughout the amoeba cytoplasm but was more concentrated in the ectoplasmic regions as determined by indirect immunofluorescence microscopy. In symbiont-bearing xD amoebae, myosin was also found on the symbiosome membranes, as checked by indirect immunofluorescence microscopy and by immunoelectron microscopy. The open reading frame of a cloned myosin cDNA contained 6,414 nucleotides, coding for a polypeptide of 2,138 amino acids. While the amino-acid sequence of the globular head region of amoeba's myosin had a high degree of similarity with that of myosins from various organisms, the tail region building a coiled-coil structure did not show a significant sequence similarity. There appeared to be at least three different isoforms of myosins in amoebae, with closely related amino acids in the globular head region.
Sequential activation of apical and basolateral contractility drives ascidian endoderm invagination
Sherrard, Kristin; Robin, François; Lemaire, Patrick; Munro1, Edwin
2014-01-01
SUMMARY Background Epithelial invagination is a fundamental morphogenetic behavior that transforms a flat cell sheet into a pit or groove. Previous studies of invagination have focused on the role of actomyosin-dependent apical contraction; other mechanisms remain largely unexplored. Results We combined experimental and computational approaches to identify a two-step mechanism for endoderm invagination during ascidian gastrulation. During Step 1, which immediately precedes invagination, endoderm cells constrict their apices due to Rho/Rhokinase-dependent apical enrichment of 1P–myosin. Our data suggest that endoderm invagination itself occurs during Step 2, without further apical shrinkage, via a novel mechanism we call collared rounding: Rho/Rho-kinase-independent lateral enrichment of 1P–myosin drives apico-basal shortening, while Rho/Rho-kinase-dependent enrichment of 1P and 2P myosin in circumapical collars is required to prevent apical expansion and for deep invagination. Simulations show that boundary-specific tension values consistent with these distributions of active myosin can explain the cell shape changes observed during invagination both in normal embryos and in embryos treated with pharmacological inhibitors of either Rho-kinase or Myosin II ATPase. Indeed, we find that the balance of strong circumapical and basolateral tension is the only mechanism based on differential cortical tension that can explain ascidian endoderm invagination. Finally, simulations suggest that mesectoderm cells resist endoderm shape changes during both steps and we confirm this prediction experimentally. Conclusions Our findings suggest that early ascidian gastrulation is driven by the coordinated apposition of circumapical and lateral endoderm contraction, working against a resisting mesectoderm. We propose that similar mechanisms may operate during other invaginations. PMID:20691592
Rao, Mala V.; Engle, Linda J.; Mohan, Panaiyur S.; Yuan, Aidong; Qiu, Dike; Cataldo, Anne; Hassinger, Linda; Jacobsen, Stephen; Lee, Virginia M-Y.; Andreadis, Athena; Julien, Jean-Pierre; Bridgman, Paul C.; Nixon, Ralph A.
2002-01-01
The identification of molecular motors that modulate the neuronal cytoskeleton has been elusive. Here, we show that a molecular motor protein, myosin Va, is present in high proportions in the cytoskeleton of mouse CNS and peripheral nerves. Immunoelectron microscopy, coimmunoprecipitation, and blot overlay analyses demonstrate that myosin Va in axons associates with neurofilaments, and that the NF-L subunit is its major ligand. A physiological association is indicated by observations that the level of myosin Va is reduced in axons of NF-L–null mice lacking neurofilaments and increased in mice overexpressing NF-L, but unchanged in NF-H–null mice. In vivo pulse-labeled myosin Va advances along axons at slow transport rates overlapping with those of neurofilament proteins and actin, both of which coimmunoprecipitate with myosin Va. Eliminating neurofilaments from mice selectively accelerates myosin Va translocation and redistributes myosin Va to the actin-rich subaxolemma and membranous organelles. Finally, peripheral axons of dilute-lethal mice, lacking functional myosin Va, display selectively increased neurofilament number and levels of neurofilament proteins without altering axon caliber. These results identify myosin Va as a neurofilament-associated protein, and show that this association is essential to establish the normal distribution, axonal transport, and content of myosin Va, and the proper numbers of neurofilaments in axons. PMID:12403814
Actin Age Orchestrates Myosin-5 and Myosin-6 Runlengths
Zimmermann, Dennis; Santos, Alicja; Kovar, David R.; Rock, Ronald S.
2015-01-01
Summary Unlike a static and immobile skeleton, the actin cytoskeleton is a highly dynamic network of filamentous actin (F-actin) polymers that continuously turn over. In addition to generating mechanical forces and sensing mechanical deformation, dynamic F-actin networks serve as cellular tracks for myosin motor traffic. However, much of our mechanistic understanding of processive myosins comes from in vitro studies where motility was studied on pre-assembled and artificially stabilized, static F-actin tracks. In this work, we examine the role of actin dynamics in single-molecule myosin motility using assembling F-actin and the two highly processive motors, myosin-5 and myosin-6. These two myosins have distinct functions in the cell and travel in opposite directions along actin filaments [1–3]. Myosin-5 walks towards the barbed ends of F-actin, traveling to sites of actin polymerization at the cell periphery [4]. Myosin-6 walks towards the pointed end of F-actin [5], traveling towards the cell center along older segments of the actin filament. We find that myosin-5 takes 1.3 to 1.5-fold longer runs on ADP•Pi (young) F-actin, while myosin-6 takes 1.7 to 3.6-fold longer runs along ADP (old) F-actin. These results suggest that conformational differences between ADP•Pi and ADP F-actin tailor these myosins to walk farther toward their preferred actin filament end. Taken together, these experiments define a new mechanism by which myosin traffic may sort to different F-actin networks depending on filament age. PMID:26190073
Cross-reactivity of termite myosin; a potential allergen
USDA-ARS?s Scientific Manuscript database
Myosin and myosin isoforms are common food allergens in crustaceans; such as, shrimp, lobster, and crab. Allergy to Shellfish is a prevalent and potentially long lasting disorder that can severely affect health and quality of life. Myosin and myosin isoforms of dust mites and cockroaches are simil...
Hong, Feng; Facemyer, Kevin C.; Carter, Michael S.; Jackson, Del R.; Haldeman, Brian D.; Ruana, Nick; Sutherland, Cindy; Walsh, Michael P.; Cremo, Christine R.; Baker, Josh E.
2013-01-01
During activation of smooth muscle contraction, one myosin light chain kinase (MLCK) molecule rapidly phosphorylates many smooth muscle myosin (SMM) molecules, suggesting that muscle activation rates are influenced by the kinetics of MLCK-SMM interactions. To determine the rate-limiting step underlying activation of SMM by MLCK, we measured the kinetics of calcium-calmodulin (Ca2+-CaM)-MLCK-mediated SMM phosphorylation and the corresponding initiation of SMM-based F-actin motility in an in vitro system with SMM attached to a coverslip surface. Fitting the time course of SMM phosphorylation to a kinetic model gave an initial phosphorylation rate, kpo, of ~1.17 heads s−1·MLCK−1. Also we measured the dwell time of single QD-labeled MLCK molecules interacting with surface-attached SMM and phosphorylated SMM using total internal reflection fluorescence microscopy. From these data, the dissociation rate constant from phosphorylated SMM was 0.80 s−1, which was similar to kpo mentioned above and with rates measured in solution. This dissociation rate was essentially independent of the phosphorylation state of SMM. From calculations using our measured dissociation rates and Kds, and estimates of [SMM] and [MLCK] in muscle, we predict that the dissociation of MLCK from phosphorylated SMM is rate-limiting and that the rate of the phosphorylation step is faster than this dissociation rate. Also, association to SMM (11-46 s−1) would be much faster than to pSMM (<0.1-0.2 s−1). This suggests that the probability of MLCK interacting with unphosphorylated versus pSMM is 55-460 times greater. This would avoid sequestering MLCK to unproductive interactions with previously phosphorylated SMM, potentially leading to faster rates of phosphorylation in muscle. PMID:24144337
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farman, Gerrie P.; Miller, Mark S.; Reedy, Mary C.
2010-02-02
X-ray diffraction of the indirect flight muscle (IFM) in living Drosophila at rest and electron microscopy of intact and glycerinated IFM was used to compare the effects of mutations in the regulatory light chain (RLC) on sarcomeric structure. Truncation of the RLC N-terminal extension (Dmlc2{sup {Delta}2-46}) or disruption of the phosphorylation sites by substituting alanines (Dmlc2{sup S66A, S67A}) decreased the equatorial intensity ratio (I{sub 20}/I{sub 10}), indicating decreased myosin mass associated with the thin filaments. Phosphorylation site disruption (Dmlc2{sup S66A, S67A}), but not N-terminal extension truncation (Dmlc2{sup {Delta}2-46}), decreased the 14.5 nm reflection intensity, indicating a spread of the axialmore » distribution of the myosin heads. The arrangement of thick filaments and myosin heads in electron micrographs of the phosphorylation mutant (Dmlc2{sup S66A, S67A}) appeared normal in the relaxed and rigor states, but when calcium activated, fewer myosin heads formed cross-bridges. In transgenic flies with both alterations to the RLC (Dmlc2{sup {Delta}2-46; S66A, S67A}), the effects of the dual mutation were additive. The results suggest that the RLC N-terminal extension serves as a 'tether' to help pre-position the myosin heads for attachment to actin, while phosphorylation of the RLC promotes head orientations that allow optimal interactions with the thin filament.« less
Internal dynamics of F-actin and myosin subfragment-1 studied by quasielastic neutron scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuo, Tatsuhito; Arata, Toshiaki; Oda, Toshiro
2015-04-10
Various biological functions related to cell motility are driven by the interaction between the partner proteins, actin and myosin. To obtain insights into how this interaction occurs, the internal dynamics of F-actin and myosin subfragment-1 (S1) were characterized by the quasielastic neutron scattering measurements on the solution samples of F-actin and S1. Contributions of the internal motions of the proteins to the scattering spectra were separated from those of the global macromolecular diffusion. Analysis of the spectra arising from the internal dynamics showed that the correlation times of the atomic motions were about two times shorter for F-actin than formore » S1, suggesting that F-actin fluctuates more rapidly than S1. It was also shown that the fraction of the immobile atoms is larger for S1 than for F-actin. These results suggest that F-actin actively facilitates the binding of myosin by utilizing the more frequent conformational fluctuations than those of S1. - Highlights: • We studied the internal dynamics of F-actin and myosin S1 by neutron scattering. • The correlation times of the atomic motions were smaller for F-actin than for S1. • The fraction of the immobile atoms was also smaller for F-actin than for S1. • Our results suggest that mobility of atoms in F-actin is higher than that in S1. • We propose that high flexibility of F-actin facilitates the binding of myosin.« less
Continued Expression of Neonatal Myosin Heavy Chain in Adult Dystrophic Skeletal Muscle
NASA Astrophysics Data System (ADS)
Bandman, Everett
1985-02-01
The expression of myosin heavy chain isoforms was examined in normal and dystrophic chicken muscle with a monoclonal antibody specific for neonatal myosin. Adult dystrophic muscle continued to contain neonatal myosin long after it disappeared from adult normal muscle. A new technique involving western blotting and peptide mapping demonstrated that the immunoreactive myosin in adult dystrophic muscle was identical to that found in neonatal normal muscle. Immunocytochemistry revealed that all fibers in the dystrophic muscle failed to repress neonatal myosin heavy chain. These studies suggest that muscular dystrophy inhibits the myosin gene switching that normally occurs during muscle maturation.
Structured Post-IQ Domain Governs Selectivity of Myosin X for Fascin-Actin Bundles*
Nagy, Stanislav; Rock, Ronald S.
2010-01-01
Without guidance cues, cytoskeletal motors would traffic components to the wrong destination with disastrous consequences for the cell. Recently, we identified a motor protein, myosin X, that identifies bundled actin filaments for transport. These bundles direct myosin X to a unique destination, the tips of cellular filopodia. Because the structural and kinetic features that drive bundle selection are unknown, we employed a domain-swapping approach with the nonselective myosin V to identify the selectivity module of myosin X. We found a surprising role of the myosin X tail region (post-IQ) in supporting long runs on bundles. Moreover, the myosin X head is adapted for initiating processive runs on bundles. We found that the tail is structured and biases the orientation of the two myosin X heads because a targeted insertion that introduces flexibility in the tail abolishes selectivity. Together, these results suggest how myosin motors may manage to read cellular addresses. PMID:20538587
Kiehart, D P; Lutz, M S; Chan, D; Ketchum, A S; Laymon, R A; Nguyen, B; Goldstein, L S
1989-01-01
In contrast to vertebrate species Drosophila has a single myosin heavy chain gene that apparently encodes all sarcomeric heavy chain polypeptides. Flies also contain a cytoplasmic myosin heavy chain polypeptide that by immunological and peptide mapping criteria is clearly different from the major thoracic muscle isoform. Here, we identify the gene that encodes this cytoplasmic isoform and demonstrate that it is distinct from the muscle myosin heavy chain gene. Thus, fly myosin heavy chains are the products of a gene family. Our data suggest that the contractile function required to power myosin based movement in non-muscle cells requires myosin diversity beyond that available in a single heavy chain gene. In addition, we show, that accumulation of cytoplasmic myosin transcripts is regulated in a developmental stage specific fashion, consistent with a key role for this protein in the movements of early embryogenesis. Images PMID:2498088
Structure of the Rigor Actin-Tropomyosin-Myosin Complex
Behrmann, Elmar; Müller, Mirco; Penczek, Pawel A.; Mannherz, Hans Georg; Manstein, Dietmar J.; Raunser, Stefan
2014-01-01
The interaction of myosin with actin filaments is the central feature of muscle contraction and cargo movement along actin filaments of the cytoskeleton. Myosin converts the chemical energy stored in ATP into force and movement along actin filaments. Myosin binding to actin induces conformational changes that are coupled to the nucleotide-binding pocket and amplified by a specialized region of the motor domain for efficient force generation. Tropomyosin plays a key role in regulating the productive interaction between myosins and actin. Here, we report the 8 Å resolution structure of the actin-tropomyosin-myosin complex determined by cryo electron microscopy. The pseudo-atomic model of the complex obtained from fitting crystal structures into the map defines the large actin-myosin-tropomyosin interface and the molecular interactions between the proteins in detail and allows us to propose a structural model for tropomyosin dependent myosin binding to actin and actin-induced nucleotide release from myosin. PMID:22817895
NASA Astrophysics Data System (ADS)
McCall, Patrick; Stam, Samantha; Kovar, David; Gardel, Margaret
The shape and mechanics of animal cells are controlled by a dynamic, thin network of semiflexible actin filaments and myosin-II motor proteins called the actomyosin cortex. Motor-generated stresses in the cortex drive changes in cell shape during cell division and morphogenesis, while dynamic turnover of actin filaments dissipates stress. The relative effects that force generation, force dissipation, and disassembly and reassembly of material have on motion in these networks are unknown. We find that cross-linked actin networks in vitro contract under myosin-generated stresses, resulting in partial filament disassembly, the formation of asters, and clustering of myosin motors. We observe a rapid restoration of uniform polymer density in the presence of the assembly factors which catalyze network turnover through elongation of severed actin filaments. When severing is accelerated further by the addition of a severing protein, network contraction and motor clustering are dramatically suppressed. We test the relative effects of material regeneration and force transmission using image analysis, and conclude that the dominant mechanism for this effect is relatively short-lived stresses that do not propagate over considerable distance or push network deformation into the nonlinear contractile regime we have previously characterized. Our results present a framework to understand cytoskeletal active matter that are influenced by a complex interplay between stress generation, network reorganization, and polymer turnover.
Coffman, Valerie C.; Nile, Aaron H.; Lee, I-Ju; Liu, Huayang
2009-01-01
Two prevailing models have emerged to explain the mechanism of contractile-ring assembly during cytokinesis in the fission yeast Schizosaccharomyces pombe: the spot/leading cable model and the search, capture, pull, and release (SCPR) model. We tested some of the basic assumptions of the two models. Monte Carlo simulations of the SCPR model require that the formin Cdc12p is present in >30 nodes from which actin filaments are nucleated and captured by myosin-II in neighboring nodes. The force produced by myosin motors pulls the nodes together to form a compact contractile ring. Live microscopy of cells expressing Cdc12p fluorescent fusion proteins shows for the first time that Cdc12p localizes to a broad band of 30–50 dynamic nodes, where actin filaments are nucleated in random directions. The proposed progenitor spot, essential for the spot/leading cable model, usually disappears without nucleating actin filaments. α-Actinin ain1 deletion cells form a normal contractile ring through nodes in the absence of the spot. Myosin motor activity is required to condense the nodes into a contractile ring, based on slower or absent node condensation in myo2-E1 and UCS rng3-65 mutants. Taken together, these data provide strong support for the SCPR model of contractile-ring formation in cytokinesis. PMID:19864459
Switch II Mutants Reveal Coupling between the Nucleotide- and Actin-Binding Regions in Myosin V
Trivedi, Darshan V.; David, Charles; Jacobs, Donald J.; Yengo, Christopher M.
2012-01-01
Conserved active-site elements in myosins and other P-loop NTPases play critical roles in nucleotide binding and hydrolysis; however, the mechanisms of allosteric communication among these mechanoenzymes remain unresolved. In this work we introduced the E442A mutation, which abrogates a salt-bridge between switch I and switch II, and the G440A mutation, which abolishes a main-chain hydrogen bond associated with the interaction of switch II with the γ phosphate of ATP, into myosin V. We used fluorescence resonance energy transfer between mant-labeled nucleotides or IAEDANS-labeled actin and FlAsH-labeled myosin V to examine the conformation of the nucleotide- and actin-binding regions, respectively. We demonstrate that in the absence of actin, both the G440A and E442A mutants bind ATP with similar affinity and result in only minor alterations in the conformation of the nucleotide-binding pocket (NBP). In the presence of ADP and actin, both switch II mutants disrupt the formation of a closed NBP actomyosin.ADP state. The G440A mutant also prevents ATP-induced opening of the actin-binding cleft. Our results indicate that the switch II region is critical for stabilizing the closed NBP conformation in the presence of actin, and is essential for communication between the active site and actin-binding region. PMID:22713570
Bultema, Jarred J.; Boyle, Judith A.; Malenke, Parker B.; Martin, Faye E.; Dell'Angelica, Esteban C.; Cheney, Richard E.; Di Pietro, Santiago M.
2014-01-01
Class V myosins are actin-based motors with conserved functions in vesicle and organelle trafficking. Herein we report the discovery of a function for Myosin Vc in melanosome biogenesis as an effector of melanosome-associated Rab GTPases. We isolated Myosin Vc in a yeast two-hybrid screening for proteins that interact with Rab38, a Rab protein involved in the biogenesis of melanosomes and other lysosome-related organelles. Rab38 and its close homolog Rab32 bind to Myosin Vc but not to Myosin Va or Myosin Vb. Binding depends on residues in the switch II region of Rab32 and Rab38 and regions of the Myosin Vc coiled-coil tail domain. Myosin Vc also interacts with Rab7a and Rab8a but not with Rab11, Rab17, and Rab27. Although Myosin Vc is not particularly abundant on pigmented melanosomes, its knockdown in MNT-1 melanocytes caused defects in the trafficking of integral membrane proteins to melanosomes with substantially increased surface expression of Tyrp1, nearly complete loss of Tyrp2, and significant Vamp7 mislocalization. Knockdown of Myosin Vc in MNT-1 cells more than doubled the abundance of pigmented melanosomes but did not change the number of unpigmented melanosomes. Together the data demonstrate a novel role for Myosin Vc in melanosome biogenesis and secretion. PMID:25324551
Wang, Yang; Melkani, Girish C; Suggs, Jennifer A; Melkani, Anju; Kronert, William A; Cammarato, Anthony; Bernstein, Sanford I
2012-06-01
Hereditary myosin myopathies are characterized by variable clinical features. Inclusion body myopathy 3 (IBM-3) is an autosomal dominant disease associated with a missense mutation (E706K) in the myosin heavy chain IIa gene. Adult patients experience progressive muscle weakness. Biopsies reveal dystrophic changes, rimmed vacuoles with cytoplasmic inclusions, and focal disorganization of myofilaments. We constructed a transgene encoding E706K myosin and expressed it in Drosophila (E701K) indirect flight and jump muscles to establish a novel homozygous organism with homogeneous populations of fast IBM-3 myosin and muscle fibers. Flight and jump abilities were severely reduced in homozygotes. ATPase and actin sliding velocity of the mutant myosin were depressed >80% compared with wild-type myosin. Light scattering experiments and electron microscopy revealed that mutant myosin heads bear a dramatic propensity to collapse and aggregate. Thus E706K (E701K) myosin appears far more labile than wild-type myosin. Furthermore, mutant fly fibers exhibit ultrastructural hallmarks seen in patients, including cytoplasmic inclusions containing aberrant proteinaceous structures and disorganized muscle filaments. Our Drosophila model reveals the unambiguous consequences of the IBM-3 lesion on fast muscle myosin and fibers. The abnormalities observed in myosin function and muscle ultrastructure likely contribute to muscle weakness observed in our flies and patients.
Alamo, Lorenzo; Koubassova, Natalia; Pinto, Antonio; Gillilan, Richard; Tsaturyan, Andrey; Padrón, Raúl
2017-10-01
The tarantula skeletal muscle X-ray diffraction pattern suggested that the myosin heads were helically arranged on the thick filaments. Electron microscopy (EM) of negatively stained relaxed tarantula thick filaments revealed four helices of heads allowing a helical 3D reconstruction. Due to its low resolution (5.0 nm), the unambiguous interpretation of densities of both heads was not possible. A resolution increase up to 2.5 nm, achieved by cryo-EM of frozen-hydrated relaxed thick filaments and an iterative helical real space reconstruction, allowed the resolving of both heads. The two heads, "free" and "blocked", formed an asymmetric structure named the "interacting-heads motif" (IHM) which explained relaxation by self-inhibition of both heads ATPases. This finding made tarantula an exemplar system for thick filament structure and function studies. Heads were shown to be released and disordered by Ca 2+ -activation through myosin regulatory light chain phosphorylation, leading to EM, small angle X-ray diffraction and scattering, and spectroscopic and biochemical studies of the IHM structure and function. The results from these studies have consequent implications for understanding and explaining myosin super-relaxed state and thick filament activation and regulation. A cooperative phosphorylation mechanism for activation in tarantula skeletal muscle, involving swaying constitutively Ser35 mono-phosphorylated free heads, explains super-relaxation, force potentiation and post-tetanic potentiation through Ser45 mono-phosphorylated blocked heads. Based on this mechanism, we propose a swaying-swinging, tilting crossbridge-sliding filament for tarantula muscle contraction.
Heat-induced gelation of myosin in a low ionic strength solution containing L-histidine.
Hayakawa, T; Yoshida, Y; Yasui, M; Ito, T; Iwasaki, T; Wakamatsu, J; Hattori, A; Nishimura, T
2012-01-01
Binding properties are important for meat products and are substantially derived from the heat-induced gelation of myosin. We have shown that myosin is solubilized in a low ionic strength solution containing L-histidine. To clarify its processing characteristics, we investigated properties and structures of heat-induced gels of myosin solubilized in a low ionic strength solution containing L-histidine. Myosin in a low ionic strength solution formed transparent gels at 40-50°C, while myosin in a high ionic strength solution formed opaque gels at 60-70°C. The gel of myosin in a low ionic strength solution with L-histidine showed a fine network consisting of thin strands and its viscosity was lower than that of myosin in a high ionic strength solution at 40-50°C. The rheological properties of heat-induced gels of myosin at low ionic strength are different from those at high ionic strength. This difference might be caused by structural changes in the rod region of myosin in a low ionic strength solution containing L-histidine. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wang, Guifeng; Zhong, Mingyu; Wang, Gang; Song, Rentao
2014-01-01
The actin-based myosin system is essential for the organization and dynamics of the endomembrane system and transport network in plant cells. Plants harbour two unique myosin groups, class VIII and class XI, and the latter is structurally and functionally analogous to the animal and fungal class V myosin. Little is known about myosins in grass, even though grass includes several agronomically important cereal crops. Here, we identified 14 myosin genes from the genome of maize (Zea mays). The relatively larger sizes of maize myosin genes are due to their much longer introns, which are abundant in transposable elements. Phylogenetic analysis indicated that maize myosin genes could be classified into class VIII and class XI, with three and 11 members, respectively. Apart from subgroup XI-F, the remaining subgroups were duplicated at least in one analysed lineage, and the duplication events occurred more extensively in Arabidopsis than in maize. Only two pairs of maize myosins were generated from segmental duplication. Expression analysis revealed that most maize myosin genes were expressed universally, whereas a few members (XI-1, -6, and -11) showed an anther-specific pattern, and many underwent extensive alternative splicing. We also found a short transcript at the O1 locus, which conceptually encoded a headless myosin that most likely functions at the transcriptional level rather than via a dominant-negative mechanism at the translational level. Together, these data provide significant insights into the evolutionary and functional characterization of maize myosin genes that could transfer to the identification and application of homologous myosins of other grasses. PMID:24363426
Evolution and Classification of Myosins, a Paneukaryotic Whole-Genome Approach
Sebé-Pedrós, Arnau; Grau-Bové, Xavier; Richards, Thomas A.; Ruiz-Trillo, Iñaki
2014-01-01
Myosins are key components of the eukaryotic cytoskeleton, providing motility for a broad diversity of cargoes. Therefore, understanding the origin and evolutionary history of myosin classes is crucial to address the evolution of eukaryote cell biology. Here, we revise the classification of myosins using an updated taxon sampling that includes newly or recently sequenced genomes and transcriptomes from key taxa. We performed a survey of eukaryotic genomes and phylogenetic analyses of the myosin gene family, reconstructing the myosin toolkit at different key nodes in the eukaryotic tree of life. We also identified the phylogenetic distribution of myosin diversity in terms of number of genes, associated protein domains and number of classes in each taxa. Our analyses show that new classes (i.e., paralogs) and domain architectures were continuously generated throughout eukaryote evolution, with a significant expansion of myosin abundance and domain architectural diversity at the stem of Holozoa, predating the origin of animal multicellularity. Indeed, single-celled holozoans have the most complex myosin complement among eukaryotes, with paralogs of most myosins previously considered animal specific. We recover a dynamic evolutionary history, with several lineage-specific expansions (e.g., the myosin III-like gene family diversification in choanoflagellates), convergence in protein domain architectures (e.g., fungal and animal chitin synthase myosins), and important secondary losses. Overall, our evolutionary scheme demonstrates that the ancestral eukaryote likely had a complex myosin repertoire that included six genes with different protein domain architectures. Finally, we provide an integrative and robust classification, useful for future genomic and functional studies on this crucial eukaryotic gene family. PMID:24443438
Zhang, Jihui; Chen, Jie; Mangat, Shannon C; Perera Baruhupolage, Chathuri; Garrod, David R; Robinson, Clive
2018-06-01
Intracellular reactive oxidant species (ROS) are generated in human airway epithelial cells by the prothrombinase action of Group 1 house dust mite (HDM) allergens and by ligation of viral RNA sensor Toll-like receptors (TLRs). We explored signaling convergence between HDM allergens and TLRs in ROS generation because epithelial cells form the primary barrier against inhaled substances and dictate host responses to allergens and viruses. ROS formation by Calu-3 human airway cells was studied by measuring dihydrorhodamine 123 oxidation after activation by polyinosinic:polycytidylic acid (to activate TLR3), CL097 (to activate TLR7), a natural mixture of HDM allergens, or BzATP. TLR4 activation was identified as an indispensable response element for all stimuli, operating downstream from myosin motor activation, pannexon gating for ATP release and the endogenous activation of prothrombin. Exogenous prothrombin activation by HDM allergens was prevented by SGUL 1733, a novel inhibitor of the proteolytic activity of Group 1 HDM allergens, which thus prevented TLR4 from being activated at source. Our data identify for the first time that endogenously-generated prothrombin and TLR4 form a shared effector mechanism essential to intracellular ROS generation activated by a group 1 HDM allergen (itself a prothrombinase) or by ligation of viral RNA-sensing TLRs. These stimuli operate a confluent signaling pathway in which myosin motors, gating of pannexons, and ADAM 10 lead to prothrombin-dependent activation of TLR4 with a recycling activation of pannexons. © 2018 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.
Collings, David A; Harper, John D I; Vaughn, Kevin C
2003-12-01
We have investigated changes in the distribution of peroxisomes through the cell cycle in onion ( Allium cepa L.) root meristem cells with immunofluorescence and electron microscopy, and in leek ( Allium porrum L.) epidermal cells with immunofluorescence and peroxisomal-targeted green fluorescent protein. During interphase and mitosis, peroxisomes distribute randomly throughout the cytoplasm, but beginning late in anaphase, they accumulate at the division plane. Initially, peroxisomes occur within the microtubule phragmoplast in two zones on either side of the developing cell plate. However, as the phragmoplast expands outwards to form an annulus, peroxisomes redistribute into a ring immediately inside the location of the microtubules. Peroxisome aggregation depends on actin microfilaments and myosin. Peroxisomes first accumulate in the division plane prior to the formation of the microtubule phragmoplast, and throughout cytokinesis, always co-localise with microfilaments. Microfilament-disrupting drugs (cytochalasin and latrunculin), and a putative inhibitor of myosin (2,3-butanedione monoxime), inhibit aggregation. We propose that aggregated peroxisomes function in the formation of the cell plate, either by regulating hydrogen peroxide production within the developing cell plate, or by their involvement in recycling of excess membranes from secretory vesicles via the beta-oxidation pathway. Differences in aggregation, a phenomenon which occurs in onion, some other monocots and to a lesser extent in tobacco BY-2 suspension cells, but which is not obvious in the roots of Arabidopsis thaliana (L.) Heynh., may reflect differences within the primary cell walls of these plants.
Identification and the molecular mechanism of a novel myosin-derived ACE inhibitory peptide.
Yu, Zhipeng; Wu, Sijia; Zhao, Wenzhu; Ding, Long; Shiuan, David; Chen, Feng; Li, Jianrong; Liu, Jingbo
2018-01-24
The objective of this work was to identify a novel ACE inhibitory peptide from myosin using a number of in silico methods. Myosin was evaluated as a substrate for use in the generation of ACE inhibitory peptides using BIOPEP and ExPASy PeptideCutter. Then the ACE inhibitory activity prediction of peptides in silico was evaluated using the program peptide ranker, following the database search of known and unknown peptides using the program BIOPEP. In addition, the interaction mechanisms of the peptide and ACE were evaluated by DS. All of the tripeptides were predicted to be nontoxic. Results suggested that the tripeptide NCW exerted potent ACE inhibitory activity with an IC 50 value of 35.5 μM. Furthermore, the results suggested that the peptide NCW comes into contact with Zn 701, Tyr 523, His 383, Glu 384, Glu 411, and His 387. The potential molecular mechanism of the NCW/ACE interaction was investigated. Results confirmed that the higher inhibitory potency of NCW might be attributed to the formation of more hydrogen bonds with the ACE's active site. Therefore, the in silico method is effective to predict and identify novel ACE inhibitory peptides from protein hydrolysates.
Structural dynamics of the skeletal muscle fiber by second harmonic generation
NASA Astrophysics Data System (ADS)
Nucciotti, V.; Stringari, C.; Sacconi, L.; Vanzi, F.; Linari, M.; Piazzesi, G.; Lombardi, V.; Pavone, F. S.
2008-02-01
The high degree of structural order in skeletal muscle allows imaging of this tissue by Second Harmonic Generation (SHG). As previously found (Vanzi et al., J. Muscle Cell Res. Motil. 2006) by fractional extraction of proteins, myosin is the source of SHG signal. A full characterization of the polarization-dependence of the SHG signal can provide very selective information on the orientation of the emitting proteins and their dynamics during contraction. We developed a line scan polarization method, allowing measurements of a full polarization curve in intact muscle fibers from skeletal muscle of the frog to characterize the SHG polarization dependence on different physiological states (resting, rigor and isometric tetanic contraction). The polarization data have been interpreted by means of a model in terms of the average orientation of SHG emitters.The different physiological states are characterized by distinct patterns of SHG polarization. The variation of the orientation of emitting molecules in relation to the physiological state of the muscle demonstrates that one part of SHG signal arises from the globular head of the myosin molecule that cross-links actin and myosin filaments. The dependence of the SHG modulation on the degree of overlap between actin and myosin filaments during an isometric contraction, provides the constraints to estimate the fraction of myosin heads generating the isometric force in the active muscle fiber.
Tsaturyan, Andrey K; Bershitsky, Sergey Y; Koubassova, Natalia A; Fernandez, Manuel; Narayanan, Theyencheri; Ferenczi, Michael A
2011-07-20
The duty ratio, or the part of the working cycle in which a myosin molecule is strongly attached to actin, determines motor processivity and is required to evaluate the force generated by each molecule. In muscle, it is equal to the fraction of myosin heads that are strongly, or stereospecifically, bound to the thin filaments. Estimates of this fraction during isometric contraction based on stiffness measurements or the intensities of the equatorial or meridional x-ray reflections vary significantly. Here, we determined this value using the intensity of the first actin layer line, A1, in the low-angle x-ray diffraction patterns of permeable fibers from rabbit skeletal muscle. We calibrated the A1 intensity by considering that the intensity in the relaxed and rigor states corresponds to 0% and 100% of myosin heads bound to actin, respectively. The fibers maximally activated with Ca(2+) at 4°C were heated to 31-34°C with a Joule temperature jump (T-jump). Rigor and relaxed-state measurements were obtained on the same fibers. The intensity of the inner part of A1 during isometric contraction compared with that in rigor corresponds to 41-43% stereospecifically bound myosin heads at near-physiological temperature, or an average force produced by a head of ~6.3 pN. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
The fungal myosin I is essential for Fusarium toxisome formation.
Tang, Guangfei; Chen, Yun; Xu, Jin-Rong; Kistler, H Corby; Ma, Zhonghua
2018-01-01
Myosin-I molecular motors are proposed to function as linkers between membranes and the actin cytoskeleton in several cellular processes, but their role in the biosynthesis of fungal secondary metabolites remain elusive. Here, we found that the myosin I of Fusarium graminearum (FgMyo1), the causal agent of Fusarium head blight, plays critical roles in mycotoxin biosynthesis. Inhibition of myosin I by the small molecule phenamacril leads to marked reduction in deoxynivalenol (DON) biosynthesis. FgMyo1 also governs translation of the DON biosynthetic enzyme Tri1 by interacting with the ribosome-associated protein FgAsc1. Disruption of the ATPase activity of FgMyo1 either by the mutation E420K, down-regulation of FgMyo1 expression or deletion of FgAsc1 results in reduced Tri1 translation. The DON biosynthetic enzymes Tri1 and Tri4 are mainly localized to subcellular structures known as toxisomes in response to mycotoxin induction and the FgMyo1-interacting protein, actin, participates in toxisome formation. The actin polymerization disruptor latrunculin A inhibits toxisome assembly. Consistent with this observation, deletion of the actin-associated proteins FgPrk1 and FgEnd3 also results in reduced toxisome formation. Unexpectedly, the FgMyo1-actin cytoskeleton is not involved in biosynthesis of another secondary metabolite tested. Taken together, this study uncovers a novel function of myosin I in regulating mycotoxin biosynthesis in filamentous fungi.
The fungal myosin I is essential for Fusarium toxisome formation
Xu, Jin-Rong
2018-01-01
Myosin-I molecular motors are proposed to function as linkers between membranes and the actin cytoskeleton in several cellular processes, but their role in the biosynthesis of fungal secondary metabolites remain elusive. Here, we found that the myosin I of Fusarium graminearum (FgMyo1), the causal agent of Fusarium head blight, plays critical roles in mycotoxin biosynthesis. Inhibition of myosin I by the small molecule phenamacril leads to marked reduction in deoxynivalenol (DON) biosynthesis. FgMyo1 also governs translation of the DON biosynthetic enzyme Tri1 by interacting with the ribosome-associated protein FgAsc1. Disruption of the ATPase activity of FgMyo1 either by the mutation E420K, down-regulation of FgMyo1 expression or deletion of FgAsc1 results in reduced Tri1 translation. The DON biosynthetic enzymes Tri1 and Tri4 are mainly localized to subcellular structures known as toxisomes in response to mycotoxin induction and the FgMyo1-interacting protein, actin, participates in toxisome formation. The actin polymerization disruptor latrunculin A inhibits toxisome assembly. Consistent with this observation, deletion of the actin-associated proteins FgPrk1 and FgEnd3 also results in reduced toxisome formation. Unexpectedly, the FgMyo1-actin cytoskeleton is not involved in biosynthesis of another secondary metabolite tested. Taken together, this study uncovers a novel function of myosin I in regulating mycotoxin biosynthesis in filamentous fungi. PMID:29357387
Kensler, Robert W.; Craig, Roger; Moss, Richard L.
2017-01-01
Cardiac myosin binding protein C (cMyBP-C) has a key regulatory role in cardiac contraction, but the mechanism by which changes in phosphorylation of cMyBP-C accelerate cross-bridge kinetics remains unknown. In this study, we isolated thick filaments from the hearts of mice in which the three serine residues (Ser273, Ser282, and Ser302) that are phosphorylated by protein kinase A in the m-domain of cMyBP-C were replaced by either alanine or aspartic acid, mimicking the fully nonphosphorylated and the fully phosphorylated state of cMyBP-C, respectively. We found that thick filaments from the cMyBP-C phospho-deficient hearts had highly ordered cross-bridge arrays, whereas the filaments from the cMyBP-C phospho-mimetic hearts showed a strong tendency toward disorder. Our results support the hypothesis that dephosphorylation of cMyBP-C promotes or stabilizes the relaxed/superrelaxed quasi-helical ordering of the myosin heads on the filament surface, whereas phosphorylation weakens this stabilization and binding of the heads to the backbone. Such structural changes would modulate the probability of myosin binding to actin and could help explain the acceleration of cross-bridge interactions with actin when cMyBP-C is phosphorylated because of, for example, activation of β1-adrenergic receptors in myocardium. PMID:28167762
Kensler, Robert W; Craig, Roger; Moss, Richard L
2017-02-21
Cardiac myosin binding protein C (cMyBP-C) has a key regulatory role in cardiac contraction, but the mechanism by which changes in phosphorylation of cMyBP-C accelerate cross-bridge kinetics remains unknown. In this study, we isolated thick filaments from the hearts of mice in which the three serine residues (Ser273, Ser282, and Ser302) that are phosphorylated by protein kinase A in the m-domain of cMyBP-C were replaced by either alanine or aspartic acid, mimicking the fully nonphosphorylated and the fully phosphorylated state of cMyBP-C, respectively. We found that thick filaments from the cMyBP-C phospho-deficient hearts had highly ordered cross-bridge arrays, whereas the filaments from the cMyBP-C phospho-mimetic hearts showed a strong tendency toward disorder. Our results support the hypothesis that dephosphorylation of cMyBP-C promotes or stabilizes the relaxed/superrelaxed quasi-helical ordering of the myosin heads on the filament surface, whereas phosphorylation weakens this stabilization and binding of the heads to the backbone. Such structural changes would modulate the probability of myosin binding to actin and could help explain the acceleration of cross-bridge interactions with actin when cMyBP-C is phosphorylated because of, for example, activation of β 1 -adrenergic receptors in myocardium.
Role of the tail in the regulated state of myosin 2
Jung, HyunSuk; Billington, Neil; Thirumurugan, Kavitha; Salzameda, Bridget; Cremo, Christine R.; Chalovich, Joseph M.; Chantler, Peter D.; Knight, Peter J.
2013-01-01
Myosin 2 from vertebrate smooth muscle or non-muscle sources is in equilibrium between compact, inactive monomers and thick filaments under physiological conditions. In the inactive monomer, the two heads pack compactly together and the long tail is folded into three closely-packed segments that are associated chiefly with one of the heads. The molecular basis of the folding of the tail remains unexplained. Using electron microscopy, we show that compact monomers of smooth muscle myosin 2 have the same structure in both the native state and following specific, intramolecular photo-cross-linking between Cys109 of the regulatory light chain (RLC) and segment 3 of the tail. Non-specific cross-linking between lysine residues of the folded monomer by glutaraldehyde also does not perturb the compact conformation, and stabilises it against unfolding at high ionic strength. Sequence comparisons across phyla and myosin 2 isoforms suggest that folding of the tail is stabilised by ionic interactions between the positively-charged N-terminal sequence of the RLC and a negatively-charged region near the start of tail segment 3, and that phosphorylation of the RLC could perturb these interactions. Our results support the view that interactions between the heads and the distal tail perform a critical role in regulating activity of myosin 2 molecules through stabilising the compact monomer conformation. PMID:21419133
Linari, Marco; Caremani, Marco; Piperio, Claudia; Brandt, Philip; Lombardi, Vincenzo
2007-04-01
The stiffness of the single myosin motor (epsilon) is determined in skinned fibers from rabbit psoas muscle by both mechanical and thermodynamic approaches. Changes in the elastic strain of the half-sarcomere (hs) are measured by fast mechanics both in rigor, when all myosin heads are attached, and during active contraction, with the isometric force (T0) modulated by changing either [Ca2+] or temperature. The hs compliance is 43.0+/-0.8 nm MPa-1 in isometric contraction at saturating [Ca2+], whereas in rigor it is 28.2+/-1.1 nm MPa-1. The equivalent compliance of myofilaments is 21.0+/-3.3 nm MPa-1. Accordingly, the stiffness of the ensemble of myosin heads attached in the hs is 45.5+/-1.7 kPa nm-1 in isometric contraction at saturating [Ca2+] (e0), and in rigor (er) it rises to 138.9+/-21.2 kPa nm-1. Epsilon, calculated from er and the lattice molecular dimensions, is 1.21+/-0.18 pN nm-1. epsilon estimated, using a thermodynamic approach, from the relation of T0 at saturating [Ca2+] versus the reciprocal of absolute temperature is 1.25+/-0.14 pN nm-1, similar to that estimated for fibers in rigor. Consequently, the ratio e0/er (0.33+/-0.05) can be used to estimate the fraction of attached heads during isometric contraction at saturating [Ca2+]. If the osmotic agent dextran T-500 (4 g/100 ml) is used to reduce the lateral filament spacing of the relaxed fiber to the value before skinning, both e0 and er increase by approximately 40%. Epsilon becomes approximately 1.7 pN nm-1 and the fraction and the force of myosin heads attached in the isometric contraction remain the same as before dextran application. The finding that the fraction of myosin heads attached to actin in an isometric contraction is 0.33 rules out the hypothesis of multiple mechanical cycles per ATP hydrolyzed.
Actin-myosin–based contraction is responsible for apoptotic nuclear disintegration
Croft, Daniel R.; Coleman, Mathew L.; Li, Shuixing; Robertson, David; Sullivan, Teresa; Stewart, Colin L.; Olson, Michael F.
2005-01-01
Membrane blebbing during the apoptotic execution phase results from caspase-mediated cleavage and activation of ROCK I. Here, we show that ROCK activity, myosin light chain (MLC) phosphorylation, MLC ATPase activity, and an intact actin cytoskeleton, but not microtubular cytoskeleton, are required for disruption of nuclear integrity during apoptosis. Inhibition of ROCK or MLC ATPase activity, which protect apoptotic nuclear integrity, does not affect caspase-mediated degradation of nuclear proteins such as lamins A, B1, or C. The conditional activation of ROCK I was sufficient to tear apart nuclei in lamin A/C null fibroblasts, but not in wild-type fibroblasts. Thus, apoptotic nuclear disintegration requires actin-myosin contractile force and lamin proteolysis, making apoptosis analogous to, but distinct from, mitosis where nuclear disintegration results from microtubule-based forces and from lamin phosphorylation and depolymerization. PMID:15657395
Li, Tongchao; Giagtzoglou, Nikolaos; Eberl, Daniel F; Jaiswal, Sonal Nagarkar; Cai, Tiantian; Godt, Dorothea; Groves, Andrew K; Bellen, Hugo J
2016-06-22
Myosins play essential roles in the development and function of auditory organs and multiple myosin genes are associated with hereditary forms of deafness. Using a forward genetic screen in Drosophila, we identified an E3 ligase, Ubr3, as an essential gene for auditory organ development. Ubr3 negatively regulates the mono-ubiquitination of non-muscle Myosin II, a protein associated with hearing loss in humans. The mono-ubiquitination of Myosin II promotes its physical interaction with Myosin VIIa, a protein responsible for Usher syndrome type IB. We show that ubr3 mutants phenocopy pathogenic variants of Myosin II and that Ubr3 interacts genetically and physically with three Usher syndrome proteins. The interactions between Myosin VIIa and Myosin IIa are conserved in the mammalian cochlea and in human retinal pigment epithelium cells. Our work reveals a novel mechanism that regulates protein complexes affected in two forms of syndromic deafness and suggests a molecular function for Myosin IIa in auditory organs.
Shimizu, H
1984-01-01
I would like to report some results obtained by Yano , Yamamoto and myself on a novel system ( Yano et al., 1982) we have named the actomyosin motor in which a rotor with attached F-actin rotates in a specific direction, driven by the ATP-splitting interaction with active fragments of myosin, heavy meromyosin or subfragment-1, in a solution containing MgATP. The actomyosin motor is not only interesting as a new kind of motor made of biological material but also, as a stream cell ( Yano , 1978; Yano et al., 1978; Yano & Shimizu, 1978; Shimizu & Yano , 1978; Shimizu, 1979), is suitable for the study of chemo-mechanical coupling by actin and active fragments of myosin. Active motion of the motor was observed in almost 100% of the experiments, when carefully performed.
Bultema, Jarred J; Boyle, Judith A; Malenke, Parker B; Martin, Faye E; Dell'Angelica, Esteban C; Cheney, Richard E; Di Pietro, Santiago M
2014-11-28
Class V myosins are actin-based motors with conserved functions in vesicle and organelle trafficking. Herein we report the discovery of a function for Myosin Vc in melanosome biogenesis as an effector of melanosome-associated Rab GTPases. We isolated Myosin Vc in a yeast two-hybrid screening for proteins that interact with Rab38, a Rab protein involved in the biogenesis of melanosomes and other lysosome-related organelles. Rab38 and its close homolog Rab32 bind to Myosin Vc but not to Myosin Va or Myosin Vb. Binding depends on residues in the switch II region of Rab32 and Rab38 and regions of the Myosin Vc coiled-coil tail domain. Myosin Vc also interacts with Rab7a and Rab8a but not with Rab11, Rab17, and Rab27. Although Myosin Vc is not particularly abundant on pigmented melanosomes, its knockdown in MNT-1 melanocytes caused defects in the trafficking of integral membrane proteins to melanosomes with substantially increased surface expression of Tyrp1, nearly complete loss of Tyrp2, and significant Vamp7 mislocalization. Knockdown of Myosin Vc in MNT-1 cells more than doubled the abundance of pigmented melanosomes but did not change the number of unpigmented melanosomes. Together the data demonstrate a novel role for Myosin Vc in melanosome biogenesis and secretion. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Viswanathan, Meera C; Tham, Rick C; Kronert, William A; Sarsoza, Floyd; Trujillo, Adriana S; Cammarato, Anthony; Bernstein, Sanford I
2017-12-15
Myosin storage myopathy (MSM) is a congenital skeletal muscle disorder caused by missense mutations in the β-cardiac/slow skeletal muscle myosin heavy chain rod. It is characterized by subsarcolemmal accumulations of myosin that have a hyaline appearance. MSM mutations map near or within the assembly competence domain known to be crucial for thick filament formation. Drosophila MSM models were generated for comprehensive physiological, structural, and biochemical assessment of the mutations' consequences on muscle and myosin structure and function. L1793P, R1845W, and E1883K MSM mutant myosins were expressed in an indirect flight (IFM) and jump muscle myosin null background to study the effects of these variants without confounding influences from wild-type myosin. Mutant animals displayed highly compromised jump and flight ability, disrupted muscle proteostasis, and severely perturbed IFM structure. Electron microscopy revealed myofibrillar disarray and degeneration with hyaline-like inclusions. In vitro assembly assays demonstrated a decreased ability of mutant myosin to polymerize, with L1793P filaments exhibiting shorter lengths. In addition, limited proteolysis experiments showed a reduced stability of L1793P and E1883K filaments. We conclude that the disrupted hydropathy or charge of residues in the heptad repeat of the mutant myosin rods likely alters interactions that stabilize coiled-coil dimers and thick filaments, causing disruption in ordered myofibrillogenesis and/or myofibrillar integrity, and the consequent myosin aggregation. Our Drosophila models are the first to recapitulate the human MSM phenotype with ultrastructural inclusions, suggesting that the diminished ability of the mutant myosin to form stable thick filaments contributes to the dystrophic phenotype observed in afflicted subjects. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
An ionic-chemical-mechanical model for muscle contraction.
Manning, Gerald S
2016-12-01
The dynamic process underlying muscle contraction is the parallel sliding of thin actin filaments along an immobile thick myosin fiber powered by oar-like movements of protruding myosin cross bridges (myosin heads). The free energy for functioning of the myosin nanomotor comes from the hydrolysis of ATP bound to the myosin heads. The unit step of translational movement is based on a mechanical-chemical cycle involving ATP binding to myosin, hydrolysis of the bound ATP with ultimate release of the hydrolysis products, stress-generating conformational changes in the myosin cross bridge, and relief of built-up stress in the myosin power stroke. The cycle is regulated by a transition between weak and strong actin-myosin binding affinities. The dissociation of the weakly bound complex by addition of salt indicates the electrostatic basis for the weak affinity, while structural studies demonstrate that electrostatic interactions among negatively charged amino acid residues of actin and positively charged residues of myosin are involved in the strong binding interface. We therefore conjecture that intermediate states of increasing actin-myosin engagement during the weak-to-strong binding transition also involve electrostatic interactions. Methods of polymer solution physics have shown that the thin actin filament can be regarded in some of its aspects as a net negatively charged polyelectrolyte. Here we employ polyelectrolyte theory to suggest how actin-myosin electrostatic interactions might be of significance in the intermediate stages of binding, ensuring an engaged power stroke of the myosin motor that transmits force to the actin filament, and preventing the motor from getting stuck in a metastable pre-power stroke state. We provide electrostatic force estimates that are in the pN range known to operate in the cycle. © 2016 Wiley Periodicals, Inc.
Bird, Jonathan E.; Takagi, Yasuharu; Billington, Neil; Strub, Marie-Paule; Sellers, James R.; Friedman, Thomas B.
2014-01-01
Unconventional myosin 15 is a molecular motor expressed in inner ear hair cells that transports protein cargos within developing mechanosensory stereocilia. Mutations of myosin 15 cause profound hearing loss in humans and mice; however, the properties of this motor and its regulation within the stereocilia organelle are unknown. To address these questions, we expressed a subfragment 1-like (S1) truncation of mouse myosin 15, comprising the predicted motor domain plus three light-chain binding sites. Following unsuccessful attempts to express functional myosin 15-S1 using the Spodoptera frugiperda (Sf9)-baculovirus system, we discovered that coexpression of the muscle-myosin–specific chaperone UNC45B, in addition to the chaperone heat-shock protein 90 (HSP90) significantly increased the yield of functional protein. Surprisingly, myosin 15-S1 did not bind calmodulin with high affinity. Instead, the IQ domains bound essential and regulatory light chains that are normally associated with class II myosins. We show that myosin 15-S1 is a barbed-end–directed motor that moves actin filaments in a gliding assay (∼430 nm·s−1 at 30 °C), using a power stroke of 7.9 nm. The maximum ATPase rate (kcat ∼6 s−1) was similar to the actin-detachment rate (kdet = 6.2 s−1) determined in single molecule optical trapping experiments, indicating that myosin 15-S1 was rate limited by transit through strongly actin-bound states, similar to other processive myosin motors. Our data further indicate that in addition to folding muscle myosin, UNC45B facilitates maturation of an unconventional myosin. We speculate that chaperone coexpression may be a simple method to optimize the purification of other myosin motors from Sf9 insect cells. PMID:25114250
Fajmut, Ales; Dobovisek, Andrej; Brumen, Milan
2005-01-01
In this paper the 4-state latch bridge model proposed by Rembold and Murphy is expanded; first by incorporation of the analytical expression of Ca2+ dependent MLCK activation from the work of Kato et al. and second, by inclusion of the myosin dephosphorylation based on the Michaelis-Menten kinetics. The analysis of the proposed model and the comparison with the original model results as well as with the experimental data is presented. The model is able to predict the steady-state isometric stress and the myosin phosphorylation in dependence on steady cytosolic [Ca2+] as well as the temporal evolution of the system in dependence on the input Ca2+ signal in the form of biphasic transient, whereby our model results are in several aspects in better agreement with experimental observations.
In Vivo Orientation of Single Myosin Lever Arms in Zebrafish Skeletal Muscle
Sun, Xiaojing; Ekker, Stephen C.; Shelden, Eric A.; Takubo, Naoko; Wang, Yihua; Burghardt, Thomas P.
2014-01-01
Cardiac and skeletal myosin assembled in the muscle lattice power contraction by transducing ATP free energy into the mechanical work of moving actin. Myosin catalytic/lever-arm domains comprise the transduction/mechanical coupling machinery that move actin by lever-arm rotation. In vivo, myosin is crowded and constrained by the fiber lattice as side chains are mutated and otherwise modified under normal, diseased, or aging conditions that collectively define the native myosin environment. Single-myosin detection uniquely defines bottom-up characterization of myosin functionality. The marriage of in vivo and single-myosin detection to study zebrafish embryo models of human muscle disease is a multiscaled technology that allows one-to-one registration of a selected myosin molecular alteration with muscle filament-sarcomere-cell-fiber-tissue-organ- and organism level phenotypes. In vivo single-myosin lever-arm orientation was observed at superresolution using a photoactivatable-green-fluorescent-protein (PAGFP)-tagged myosin light chain expressed in zebrafish skeletal muscle. By simultaneous observation of multiphoton excitation fluorescence emission and second harmonic generation from myosin, we demonstrated tag specificity for the lever arm. Single-molecule detection used highly inclined parallel beam illumination and was verified by quantized photoactivation and photobleaching. Single-molecule emission patterns from relaxed muscle in vivo provided extensive superresolved dipole orientation constraints that were modeled using docking scenarios generated for the myosin (S1) and GFP crystal structures. The dipole orientation data provided sufficient constraints to estimate S1/GFP coordination. The S1/GFP coordination in vivo is rigid and the lever-arm orientation distribution is well-ordered in relaxed muscle. For comparison, single myosins in relaxed permeabilized porcine papillary muscle fibers indicated slightly differently oriented lever arms and rigid S1/GFP coordination. Lever arms in both muscles indicated one preferred spherical polar orientation and widely distributed azimuthal orientations relative to the fiber symmetry axis. Cardiac myosin is more radially displaced from the fiber axis. Probe rigidity implies the PAGFP tag reliably indicates cross-bridge orientation in situ and in vivo. PMID:25229148
Pinniger, G J; Bruton, J D; Westerblad, H; Ranatunga, K W
2005-01-01
We have examined the effects of N-benzyl-p-toluene sulphonamide (BTS), a potent and specific inhibitor of fast muscle myosin-II, using small bundles of intact fibres or single fibres from rat foot muscle. BTS decreased tetanic tension reversibly in a concentration-dependent manner with half-maximal inhibition at approximately approximately 2 microM at 20 degrees C. The inhibition of tension with 10 microM BTS was marked at the three temperatures examined (10, 20 and 30 degrees C), but greatest at 10 degrees C. BTS decreased active muscle stiffness to a lesser extent than tetanic tension indicating that not all of the tension inhibition was due to a reduced number of attached cross-bridges. BTS-induced inhibition of active tension was not accompanied by any change in the free myoplasmic Ca2+ transients. The potency and specificity of BTS make it a very suitable myosin inhibitor for intact mammalian fast muscle and should be a useful tool for the examination of outstanding questions in muscle contraction.
Biased Brownian motion mechanism for processivity and directionality of single-headed myosin-VI.
Iwaki, Mitsuhiro; Iwane, Atsuko Hikikoshi; Ikebe, Mitsuo; Yanagida, Toshio
2008-01-01
Conventional form to function as a vesicle transporter is not a 'single molecule' but a coordinated 'two molecules'. The coordinated two molecules make it complicated to reveal its mechanism. To overcome the difficulty, we adopted a single-headed myosin-VI as a model protein. Myosin-VI is an intracellular vesicle and organelle transporter that moves along actin filaments in a direction opposite to most other known myosin classes. The myosin-VI was expected to form a dimer to move processively along actin filaments with a hand-over-hand mechanism like other myosin organelle transporters. However, wild-type myosin-VI was demonstrated to be monomer and single-headed, casting doubt on its processivity. Using single molecule techniques, we show that green fluorescent protein (GFP)-fused single-headed myosin-VI does not move processively. However, when coupled to a 200 nm polystyrene bead (comparable to an intracellular vesicle in size) at a ratio of one head per bead, single-headed myosin-VI moves processively with large (40 nm) steps. Furthermore, we found that a single-headed myosin-VI-bead complex moved more processively in a high-viscous solution (40-fold higher than water) similar to cellular environment. Because diffusion of the bead is 60-fold slower than myosin-VI heads alone in water, we propose a model in which the bead acts as a diffusional anchor for the myosin-VI, enhancing the head's rebinding following detachment and supporting processive movement of the bead-monomer complex. This investigation will help us understand how molecular motors utilize Brownian motion in cells.
Li, Tongchao; Giagtzoglou, Nikolaos; Eberl, Daniel F; Jaiswal, Sonal Nagarkar; Cai, Tiantian; Godt, Dorothea; Groves, Andrew K; Bellen, Hugo J
2016-01-01
Myosins play essential roles in the development and function of auditory organs and multiple myosin genes are associated with hereditary forms of deafness. Using a forward genetic screen in Drosophila, we identified an E3 ligase, Ubr3, as an essential gene for auditory organ development. Ubr3 negatively regulates the mono-ubiquitination of non-muscle Myosin II, a protein associated with hearing loss in humans. The mono-ubiquitination of Myosin II promotes its physical interaction with Myosin VIIa, a protein responsible for Usher syndrome type IB. We show that ubr3 mutants phenocopy pathogenic variants of Myosin II and that Ubr3 interacts genetically and physically with three Usher syndrome proteins. The interactions between Myosin VIIa and Myosin IIa are conserved in the mammalian cochlea and in human retinal pigment epithelium cells. Our work reveals a novel mechanism that regulates protein complexes affected in two forms of syndromic deafness and suggests a molecular function for Myosin IIa in auditory organs. DOI: http://dx.doi.org/10.7554/eLife.15258.001 PMID:27331610
Load-dependent ADP binding to myosins V and VI: Implications for subunit coordination and function
Oguchi, Yusuke; Mikhailenko, Sergey V.; Ohki, Takashi; Olivares, Adrian O.; De La Cruz, Enrique M.; Ishiwata, Shin'ichi
2008-01-01
Dimeric myosins V and VI travel long distances in opposite directions along actin filaments in cells, taking multiple steps in a “hand-over-hand” fashion. The catalytic cycles of both myosins are limited by ADP dissociation, which is considered a key step in the walking mechanism of these motors. Here, we demonstrate that external loads applied to individual actomyosin V or VI bonds asymmetrically affect ADP affinity, such that ADP binds weaker under loads assisting motility. Model-based analysis reveals that forward and backward loads modulate the kinetics of ADP binding to both myosins, although the effect is less pronounced for myosin VI. ADP dissociation is modestly accelerated by forward loads and inhibited by backward loads. Loads applied in either direction slow ADP binding to myosin V but accelerate binding to myosin VI. We calculate that the intramolecular load generated during processive stepping is ≈2 pN for both myosin V and myosin VI. The distinct load dependence of ADP binding allows these motors to perform different cellular functions. PMID:18509050
The closed MTIP-MyosinA-tail complex from the malaria parasite invasion machinery
Bosch, Jürgen; Turley, Stewart; Roach, Claudia M.; Daly, Thomas M.; Bergman, Lawrence W.; Hol, Wim G. J.
2009-01-01
The Myosin A-tail Interacting Protein (MTIP) of the malaria parasite links the actomyosin motor of the host cell invasion machinery to its inner membrane complex. We report here that at neutral pH Plasmodium falciparum MTIP in complex with Myosin A adopts a compact conformation, with its two domains completely surrounding the Myosin A-tail helix, dramatically different from previously observed extended MTIP structures. Crystallographic and mutagenesis studies show that H810 and K813 of Myosin A are key players in the formation of the compact MTIP:Myosin A complex. Only the unprotonated state of Myosin A-H810 is compatible with the compact complex. Most surprisingly, every side chain atom of Myosin A-K813 is engaged in contacts with MTIP. While this side chain was previously considered to prevent a compact conformation of MTIP with Myosin A, it actually appears to be essential for the formation of the compact complex. The hydrophobic pockets and adaptability seen in the available series of MTIP structures bodes well for the discovery of inhibitors of cell invasion by malaria parasites. PMID:17628590
Myosin conformational states determined by single fluorophore polarization
Warshaw, David M.; Hayes, Eric; Gaffney, Donald; Lauzon, Anne-Marie; Wu, Junru; Kennedy, Guy; Trybus, Kathleen; Lowey, Susan; Berger, Christopher
1998-01-01
Muscle contraction is powered by the interaction of the molecular motor myosin with actin. With new techniques for single molecule manipulation and fluorescence detection, it is now possible to correlate, within the same molecule and in real time, conformational states and mechanical function of myosin. A spot-confocal microscope, capable of detecting single fluorophore polarization, was developed to measure orientational states in the smooth muscle myosin light chain domain during the process of motion generation. Fluorescently labeled turkey gizzard smooth muscle myosin was prepared by removal of endogenous regulatory light chain and re-addition of the light chain labeled at cysteine-108 with the 6-isomer of iodoacetamidotetramethylrhodamine (6-IATR). Single myosin molecule fluorescence polarization data, obtained in a motility assay, provide direct evidence that the myosin light chain domain adopts at least two orientational states during the cyclic interaction of myosin with actin, a randomly disordered state, most likely associated with myosin whereas weakly bound to actin, and an ordered state in which the light chain domain adopts a finite angular orientation whereas strongly bound after the powerstroke. PMID:9653135
Myosin: A Link between Streptococci and Heart
NASA Astrophysics Data System (ADS)
Krisher, Karen; Cunningham, Madeleine W.
1985-01-01
Murine monoclonal antibodies to Streptococcus pyogenes reacted with skeletal muscle myosin. High molecular weight proteins in extracts of human heart tissue that reacted with an antibody to S. pyogenes also reacted with a monoclonal antibody to ventricular myosin. Adsorption of the antibody to streptococci with S. pyogenes simultaneously removed reactivity of the antibody for either S. pyogenes or myosin. These results indicate that myosin shares immunodeterminants with a component of S. pyogenes.
Why Muscle is an Efficient Shock Absorber
Kopylova, Galina V.; Fernandez, Manuel; Narayanan, Theyencheri
2014-01-01
Skeletal muscles power body movement by converting free energy of ATP hydrolysis into mechanical work. During the landing phase of running or jumping some activated skeletal muscles are subjected to stretch. Upon stretch they absorb body energy quickly and effectively thus protecting joints and bones from impact damage. This is achieved because during lengthening, skeletal muscle bears higher force and has higher instantaneous stiffness than during isometric contraction, and yet consumes very little ATP. We wish to understand how the actomyosin molecules change their structure and interaction to implement these physiologically useful mechanical and thermodynamical properties. We monitored changes in the low angle x-ray diffraction pattern of rabbit skeletal muscle fibers during ramp stretch compared to those during isometric contraction at physiological temperature using synchrotron radiation. The intensities of the off-meridional layer lines and fine interference structure of the meridional M3 myosin x-ray reflection were resolved. Mechanical and structural data show that upon stretch the fraction of actin-bound myosin heads is higher than during isometric contraction. On the other hand, the intensities of the actin layer lines are lower than during isometric contraction. Taken together, these results suggest that during stretch, a significant fraction of actin-bound heads is bound non-stereo-specifically, i.e. they are disordered azimuthally although stiff axially. As the strong or stereo-specific myosin binding to actin is necessary for actin activation of the myosin ATPase, this finding explains the low metabolic cost of energy absorption by muscle during the landing phase of locomotion. PMID:24465673
Myosin Vb mediates Cu+ export in polarized hepatocytes
Gupta, Arnab; Schell, Michael J.; Bhattacharjee, Ashima; Lutsenko, Svetlana; Hubbard, Ann L.
2016-01-01
ABSTRACT The cellular machinery responsible for Cu+-stimulated delivery of the Wilson-disease-associated protein ATP7B to the apical domain of hepatocytes is poorly understood. We demonstrate that myosin Vb regulates the Cu+-stimulated delivery of ATP7B to the apical domain of polarized hepatic cells, and that disruption of the ATP7B-myosin Vb interaction reduces the apical surface expression of ATP7B. Overexpression of the myosin Vb tail, which competes for binding of subapical cargos to myosin Vb bound to subapical actin, disrupted the surface expression of ATP7B, leading to reduced cellular Cu+ export. The myosin-Vb-dependent targeting step occurred in parallel with hepatocyte-like polarity. If the myosin Vb tail was expressed acutely in cells just prior to the establishment of polarity, it appeared as part of an intracellular apical compartment, centered on γ-tubulin. ATP7B became selectively arrested in this compartment at high [Cu+] in the presence of myosin Vb tail, suggesting that these compartments are precursors of donor–acceptor transfer stations for apically targeted cargos of myosin Vb. Our data suggest that reduced hepatic Cu+ clearance in idiopathic non-Wilsonian types of disease might be associated with the loss of function of myosin Vb. PMID:26823605
Milograna, Sarah Ribeiro; Ribeiro, Márcia Regina; Baqui, Munira Muhammad Abdel; McNamara, John Campbell
2014-12-01
The binding of red pigment concentrating hormone (RPCH) to membrane receptors in crustacean chromatophores triggers Ca²⁺/cGMP signaling cascades that activate cytoskeletal motors, driving pigment granule translocation. We investigate the distributions of microfilaments and microtubules and their associated molecular motors, myosin and dynein, by confocal and transmission electron microscopy, evaluating a functional role for the cytoskeleton in pigment translocation using inhibitors of polymer turnover and motor activity in vitro. Microtubules occupy the chromatophore cell extensions whether the pigment granules are aggregated or dispersed. The inhibition of microtubule turnover by taxol induces pigment aggregation and inhibits re-dispersion. Phalloidin-FITC actin labeling, together with tannic acid fixation and ultrastructural analysis, reveals that microfilaments form networks associated with the pigment granules. Actin polymerization induced by jasplaquinolide strongly inhibits RPCH-induced aggregation, causes spontaneous pigment dispersion, and inhibits pigment re-dispersion. Inhibition of actin polymerization by latrunculin-A completely impedes pigment aggregation and re-dispersion. Confocal immunocytochemistry shows that non-muscle myosin II (NMMII) co-localizes mainly with pigment granules while blebbistatin inhibition of NMMII strongly reduces the RPCH response, also inducing spontaneous pigment dispersion. Myosin II and dynein also co-localize with the pigment granules. Inhibition of dynein ATPase by erythro-9-(2-hydroxy-3-nonyl) adenine induces aggregation, inhibits RPCH-triggered aggregation, and inhibits re-dispersion. Granule aggregation and dispersion depend mainly on microfilament integrity although microtubules may be involved. Both cytoskeletal polymers are functional only when subunit turnover is active. Myosin and dynein may be the molecular motors that drive pigment aggregation. These mechanisms of granule translocation in crustacean chromatophores share various features with those of vertebrate pigment cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Kampourakis, Thomas; Ponnam, Saraswathi; Irving, Malcolm
2018-04-01
Hypertrophic cardiomyopathy (HCM) is frequently linked to mutations in the protein components of the myosin-containing thick filaments leading to contractile dysfunction and ultimately heart failure. However, the molecular structure-function relationships that underlie these pathological effects remain largely obscure. Here we chose an example mutation (R58Q) in the myosin regulatory light chain (RLC) that is associated with a severe HCM phenotype and combined the results from a wide range of in vitro and in situ structural and functional studies on isolated protein components, myofibrils and ventricular trabeculae to create an extensive map of structure-function relationships. The results can be understood in terms of a unifying hypothesis that illuminates both the effects of the mutation and physiological signaling pathways. R58Q promotes an OFF state of the thick filaments that reduces the number of myosin head domains that are available for actin interaction and ATP utilization. Moreover this mutation uncouples two aspects of length-dependent activation (LDA), the cellular basis of the Frank-Starling relation that couples cardiac output to venous return; R58Q reduces maximum calcium-activated force with no significant effect on myofilament calcium sensitivity. Finally, phosphorylation of R58Q-RLC to levels that may be relevant both physiologically and pathologically restores the regulatory state of the thick filament and the effect of sarcomere length on maximum calcium-activated force and thick filament structure, as well as increasing calcium sensitivity. We conclude that perturbation of thick filament-based regulation may be a common mechanism in the etiology of missense mutation-associated HCM, and that this signaling pathway offers a promising target for the development of novel therapeutics. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Oplatka, A
2005-12-16
In the early seventies we discovered that isolated, active, myosin fragments can induce movement and tension generation by actin filaments in both in vitro and in vivo systems, employing a variety of techniques. It was not in line with the domineering swinging crossbridge theory of muscle contraction. We then proposed an hydrodynamic mechanism which explained our results and was applied to muscle contraction and to other biological engines. Our discovery has been ignored for a long time until the so-called "in vitro motility essays" appeared. By using this artifact--laden technique the mechanochemical reactivity of the active myosin fragments was re-discovered without giving us any credit. The essays gave continuously changing values for fundamental parameters of muscle contraction; the values were appreciably different in different laboratories and decreased in a continuous fashion in the hands of one scientist. By analyzing recent experiments which derived the rate of ATP hydrolysis of active muscles as function of the applied load I calculated the value of the sliding distance resulting from the breakdown of one ATP molecule by each of the myosin heads in contracting muscle. According to the contemporary theory this should be the same for all muscles under any environmental conditions and determined by length of the myosin head's neck. My examination led to the conclusion that the sliding distance varies from one muscle to another and with different temperatures for the same muscle. This again, contradicts the current theory and should give the final blow to both this theory and the "essays". Furthermore: it can be explained by a hydrodynamic mechanism such as that proposed by us more than 30 years ago.
Lin, Guiting; Fandel, Thomas M; Shindel, Alan W; Wang, Guifang; Banie, Lia; Ning, Hongxiu; Lue, Tom F; Lin, Ching-Shwun
2011-07-01
To assess and compare the expression and activity of myosin light-chain kinase (MLCK) and MLC phosphatase (MLCP) in rat bladder and urethra. Bladder and urethral smooth muscles were obtained from 2-month-old female Sprague-Dawley rats. They were analysed by real-time polymerase chain reaction for the mRNA expression of MLCK and myosin phosphatase-targeting subunit of protein phosphatase type 1 (MYPT1, a subunit of MLCP). Levels of MLCK and MYPT1 mRNA expression were determined as a ratio to the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The tissues were also analysed by Western blotting for MLCK and MYPT1 protein expression as a ratio to the expression of β-actin. A two-step enzymatic activity assay using phosphorylated and dephosphorylated smooth muscle myosin was used to assess MLCK and MLCP activity. MLCK mRNA expression was higher in the bladder than in the urethra [mean (sd) ratio to GAPDH: 0.26 (0.17) vs 0.14 (0.12); P = 0.09]. MYPT1 mRNA expression was significantly higher in the bladder than in the urethra [mean (sd) ratio to GAPDH: 2.31 (1.04) vs 0.56 (0.36); P = 0.001]. Expression of both MLCK and MYPT1 protein was significantly higher in the bladder compared with the urethra [mean (sd) ratio to β-actin: 1.63 (0.25) vs 0.91 (0.29) and 0.97 (0.10) vs 0.37 (0.29), respectively; both P < 0.001]. Enzymatic assay identified significantly greater MLCK activity in the bladder than in the urethra. While, MLCP activity was lower in the bladder than in the urethra. In healthy young female rats, MLCK activity is higher and MLCP activity is lower in the bladder relative to the urethra. These differences probably play a role in modulating the functional differences between bladder and urethral smooth muscle tone. © 2010 THE AUTHORS. BJU INTERNATIONAL © 2010 BJU INTERNATIONAL.
Boundaries steer the contraction of active gels
NASA Astrophysics Data System (ADS)
Schuppler, Matthias; Keber, Felix C.; Kröger, Martin; Bausch, Andreas R.
2016-10-01
Cells set up contractile actin arrays to drive various shape changes and to exert forces to their environment. To understand their assembly process, we present here a reconstituted contractile system, comprising F-actin and myosin II filaments, where we can control the local activation of myosin by light. By stimulating different symmetries, we show that the force balancing at the boundaries determine the shape changes as well as the dynamics of the global contraction. Spatially anisotropic attachment of initially isotropic networks leads to a self-organization of highly aligned contractile fibres, being reminiscent of the order formation in muscles or stress fibres. The observed shape changes and dynamics are fully recovered by a minimal physical model.
In Vitro and In Vivo Single Myosin Step-Sizes in Striated Muscle a
Burghardt, Thomas P.; Sun, Xiaojing; Wang, Yihua; Ajtai, Katalin
2016-01-01
Myosin in muscle transduces ATP free energy into the mechanical work of moving actin. It has a motor domain transducer containing ATP and actin binding sites, and, mechanical elements coupling motor impulse to the myosin filament backbone providing transduction/mechanical-coupling. The mechanical coupler is a lever-arm stabilized by bound essential and regulatory light chains. The lever-arm rotates cyclically to impel bound filamentous actin. Linear actin displacement due to lever-arm rotation is the myosin step-size. A high-throughput quantum dot labeled actin in vitro motility assay (Qdot assay) measures motor step-size in the context of an ensemble of actomyosin interactions. The ensemble context imposes a constant velocity constraint for myosins interacting with one actin filament. In a cardiac myosin producing multiple step-sizes, a “second characterization” is step-frequency that adjusts longer step-size to lower frequency maintaining a linear actin velocity identical to that from a shorter step-size and higher frequency actomyosin cycle. The step-frequency characteristic involves and integrates myosin enzyme kinetics, mechanical strain, and other ensemble affected characteristics. The high-throughput Qdot assay suits a new paradigm calling for wide surveillance of the vast number of disease or aging relevant myosin isoforms that contrasts with the alternative model calling for exhaustive research on a tiny subset myosin forms. The zebrafish embryo assay (Z assay) performs single myosin step-size and step-frequency assaying in vivo combining single myosin mechanical and whole muscle physiological characterizations in one model organism. The Qdot and Z assays cover “bottom-up” and “top-down” assaying of myosin characteristics. PMID:26728749
Cannabinoid-induced actomyosin contractility shapes neuronal morphology and growth
Roland, Alexandre B; Ricobaraza, Ana; Carrel, Damien; Jordan, Benjamin M; Rico, Felix; Simon, Anne; Humbert-Claude, Marie; Ferrier, Jeremy; McFadden, Maureen H; Scheuring, Simon; Lenkei, Zsolt
2014-01-01
Endocannabinoids are recently recognized regulators of brain development, but molecular effectors downstream of type-1 cannabinoid receptor (CB1R)-activation remain incompletely understood. We report atypical coupling of neuronal CB1Rs, after activation by endo- or exocannabinoids such as the marijuana component ∆9-tetrahydrocannabinol, to heterotrimeric G12/G13 proteins that triggers rapid and reversible non-muscle myosin II (NM II) dependent contraction of the actomyosin cytoskeleton, through a Rho-GTPase and Rho-associated kinase (ROCK). This induces rapid neuronal remodeling, such as retraction of neurites and axonal growth cones, elevated neuronal rigidity, and reshaping of somatodendritic morphology. Chronic pharmacological inhibition of NM II prevents cannabinoid-induced reduction of dendritic development in vitro and leads, similarly to blockade of endocannabinoid action, to excessive growth of corticofugal axons into the sub-ventricular zone in vivo. Our results suggest that CB1R can rapidly transform the neuronal cytoskeleton through actomyosin contractility, resulting in cellular remodeling events ultimately able to affect the brain architecture and wiring. DOI: http://dx.doi.org/10.7554/eLife.03159.001 PMID:25225054
aPKCζ affects directed cell migration through the regulation of myosin light chain phosphorylation
Petrov, Daria; Dahan, Inbal; Cohen-Kfir, Einav; Ravid, Shoshana
2017-01-01
ABSTRACT Cell motility is an essential cellular process for a variety of biological events. It requires cross-talk between the signaling and the cytoskeletal systems. Despite the recognized importance of aPKCζ for cell motility, there is little understanding of the mechanism by which aPKCζ mediates extracellular signals to the cytoskeleton. In the present study, we report that aPKCζ is required for the cellular organization of acto-non-muscle myosin II (NMII) cytoskeleton, for proper cell adhesion and directed cell migration. We show that aPKCζ mediates EGF-dependent RhoA activation and recruitment to the cell membrane. We also show that aPKCζ mediates EGF-dependent myosin light chain (MRLC) phosphorylation that is carried out by Rho-associated protein kinase (ROCK), and that aPKCζ is required for EGF-dependent phosphorylation and inhibition of the myosin phosphatase targeting subunit (MYPT). Finally, we show that aPKCζ mediates the spatial organization of the acto-NMII cytoskeleton in response to EGF stimulation. Our data suggest that aPKCζ is an essential component regulator of acto-NMII cytoskeleton organization leading to directed cell migration, and is a mediator of the EGF signal to the cytoskeleton. PMID:27541056
Myosin Storage Myopathy in C. elegans and Human Cultured Muscle Cells
Dahl-Halvarsson, Martin; Pokrzywa, Malgorzata; Rauthan, Manish; Pilon, Marc
2017-01-01
Myosin storage myopathy is a protein aggregate myopathy associated with the characteristic subsarcolemmal accumulation of myosin heavy chain in muscle fibers. Despite similar histological findings, the clinical severity and age of onset are highly variable, ranging from no weakness to severe impairment of ambulation, and usually childhood-onset to onset later in life. Mutations located in the distal end of the tail of slow/ß-cardiac myosin heavy chain are associated with myosin storage myopathy. Four missense mutations (L1793P, R1845W, E1883K and H1901L), two of which have been reported in several unrelated families, are located within or closed to the assembly competence domain. This location is critical for the proper assembly of sarcomeric myosin rod filaments. To assess the mechanisms leading to protein aggregation in myosin storage myopathy and to evaluate the impact of these mutations on myosin assembly and muscle function, we expressed mutated myosin proteins in cultured human muscle cells and in the nematode Caenorhabditis elegans. While L1793P mutant myosin protein efficiently incorporated into the sarcomeric thick filaments, R1845W and H1901L mutants were prone to formation of myosin aggregates without assembly into striated sarcomeric thick filaments in cultured muscle cells. In C. elegans, mutant alleles of the myosin heavy chain gene unc-54 corresponding to R1845W, E1883K and H1901L, were as effective as the wild-type myosin gene in rescuing the null mutant worms, indicating that they retain functionality. Taken together, our results suggest that the basis for the pathogenic effect of the R1845W and H1901L mutations are primarily structural rather than functional. Further analyses are needed to identify the primary trigger for the histological changes seen in muscle biopsies of patients with L1793P and E1883K mutations. PMID:28125727
Myosin Storage Myopathy in C. elegans and Human Cultured Muscle Cells.
Dahl-Halvarsson, Martin; Pokrzywa, Malgorzata; Rauthan, Manish; Pilon, Marc; Tajsharghi, Homa
2017-01-01
Myosin storage myopathy is a protein aggregate myopathy associated with the characteristic subsarcolemmal accumulation of myosin heavy chain in muscle fibers. Despite similar histological findings, the clinical severity and age of onset are highly variable, ranging from no weakness to severe impairment of ambulation, and usually childhood-onset to onset later in life. Mutations located in the distal end of the tail of slow/ß-cardiac myosin heavy chain are associated with myosin storage myopathy. Four missense mutations (L1793P, R1845W, E1883K and H1901L), two of which have been reported in several unrelated families, are located within or closed to the assembly competence domain. This location is critical for the proper assembly of sarcomeric myosin rod filaments. To assess the mechanisms leading to protein aggregation in myosin storage myopathy and to evaluate the impact of these mutations on myosin assembly and muscle function, we expressed mutated myosin proteins in cultured human muscle cells and in the nematode Caenorhabditis elegans. While L1793P mutant myosin protein efficiently incorporated into the sarcomeric thick filaments, R1845W and H1901L mutants were prone to formation of myosin aggregates without assembly into striated sarcomeric thick filaments in cultured muscle cells. In C. elegans, mutant alleles of the myosin heavy chain gene unc-54 corresponding to R1845W, E1883K and H1901L, were as effective as the wild-type myosin gene in rescuing the null mutant worms, indicating that they retain functionality. Taken together, our results suggest that the basis for the pathogenic effect of the R1845W and H1901L mutations are primarily structural rather than functional. Further analyses are needed to identify the primary trigger for the histological changes seen in muscle biopsies of patients with L1793P and E1883K mutations.
Wang, Fei; Kovacs, Mihaly; Hu, Aihua; Limouze, John; Harvey, Estelle V; Sellers, James R
2003-07-25
Besides driving contraction of various types of muscle tissue, conventional (class II) myosins serve essential cellular functions and are ubiquitously expressed in eukaryotic cells. Three different isoforms in the human myosin complement have been identified as non-muscle class II myosins. Here we report the kinetic characterization of a human non-muscle myosin IIB subfragment-1 construct produced in the baculovirus expression system. Transient kinetic data show that most steps of the actomyosin ATPase cycle are slowed down compared with other class II myosins. The ADP affinity of subfragment-1 is unusually high even in the presence of actin filaments, and the rate of ADP release is close to the steady-state ATPase rate. Thus, non-muscle myosin IIB subfragment-1 spends a significantly higher proportion of its kinetic cycle strongly attached to actin than do the muscle myosins. This feature is even more pronounced at slightly elevated ADP levels, and it may be important in carrying out the cellular functions of this isoform working in small filamentous assemblies.
Salas-Cortes, Laura; Ye, Fei; Tenza, Danièle; Wilhelm, Claire; Theos, Alexander; Louvard, Daniel; Raposo, Graça; Coudrier, Evelyne
2005-10-15
Members of at least four classes of myosin (I, II, V and VI) have been implicated in the dynamics of a large variety of organelles. Despite their common motor domain structure, some of these myosins, however, are non processive and cannot move organelles along the actin tracks. Here, we demonstrate in the human pigmented MNT-1 cell line that, (1) the overexpression of one of these myosins, myosin 1b, or the addition of cytochalasin D affects the morphology of the sorting multivesicular endosomes; (2) the overexpression of myosin 1b delays the processing of Pmel17 (the product of murine silver locus also named GP100), which occurs in these multivesicular endosomes; (3) myosin 1b associated with endosomes coimmunoprecipitates with Pmel17. All together, these observations suggest that myosin 1b controls the traffic of protein cargo in multivesicular endosomes most probably through its ability to modulate with actin the morphology of these sorting endosomes.
Second harmonic generation polarization properties of myofilaments
NASA Astrophysics Data System (ADS)
Samim, Masood; Prent, Nicole; Dicenzo, Daniel; Stewart, Bryan; Barzda, Virginijus
2014-05-01
Second harmonic generation (SHG) polarization microscopy was used to investigate the organization of myosin nanomotors in myofilaments of muscle cells. The distribution of the second-order nonlinear susceptibility component ratio χzzz(2)/χzxx(2) along anisotropic bands of sarcomeres revealed differences between the headless and head-containing regions of myofilaments. The polarization-in polarization-out SHG measurements of headless myosin mutants of indirect flight muscle in Drosophila melanogaster confirmed a lower susceptibility component ratio compared to the head-containing myocytes with wild-type myosins. The increase in the ratio is assigned to the change in the deflection angle of the myosin S2 domain and possible contribution of myosin heads. The nonlinear susceptibility component ratio is a sensitive indicator of the myosin structure, and therefore, it can be used for conformational studies of myosin nanomotors. The measured ratio values can also be used as the reference for ab initio calculations of nonlinear optical properties of different parts of myosins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josephson, Matthew P.; Sikkink, Laura A.; Penheiter, Alan R.
2011-12-16
Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chainmore » kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant kinase in cardiac tissue on the basis of its specificity, kinetics, and tissue expression.« less
Spudich, James A; Aksel, Tural; Bartholomew, Sadie R; Nag, Suman; Kawana, Masataka; Yu, Elizabeth Choe; Sarkar, Saswata S; Sung, Jongmin; Sommese, Ruth F; Sutton, Shirley; Cho, Carol; Adhikari, Arjun S; Taylor, Rebecca; Liu, Chao; Trivedi, Darshan; Ruppel, Kathleen M
2016-01-01
Hypertrophic cardiomyopathy is the most frequently occurring inherited cardiovascular disease, with a prevalence of more than one in 500 individuals worldwide. Genetically acquired dilated cardiomyopathy is a related disease that is less prevalent. Both are caused by mutations in the genes encoding the fundamental force-generating protein machinery of the cardiac muscle sarcomere, including human β-cardiac myosin, the motor protein that powers ventricular contraction. Despite numerous studies, most performed with non-human or non-cardiac myosin, there is no clear consensus about the mechanism of action of these mutations on the function of human β-cardiac myosin. We are using a recombinantly expressed human β-cardiac myosin motor domain along with conventional and new methodologies to characterize the forces and velocities of the mutant myosins compared with wild type. Our studies are extending beyond myosin interactions with pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin, the roles of regulatory light chain phosphorylation on the functions of the system, and the possible roles of myosin binding protein-C and titin, important regulatory components of both cardiac and skeletal muscles. © 2016. Published by The Company of Biologists Ltd.
Initial diameter of the polar body contractile ring is minimized by the centralspindlin complex.
Fabritius, Amy S; Flynn, Jonathan R; McNally, Francis J
2011-11-01
Polar body formation is an essential step in forming haploid eggs from diploid oocytes. This process involves completion of a highly asymmetric cytokinesis that results in a large egg and two small polar bodies. Unlike mitotic contractile rings, polar body contractile rings assemble over one spindle pole so that the spindle must move through the contractile ring before cytokinesis. During time-lapse imaging of C. elegans meiosis, the contractile ring moved downward along the length of the spindle and completed scission at the midpoint of the spindle, even when spindle length or rate of ring movement was increased. Patches of myosin heavy chain and dynamic furrowing of the plasma membrane over the entire embryo suggested that global cortical contraction forces the meiotic spindle and overlying membrane out through the contractile ring center. Consistent with this model, depletion of myosin phosphatase increased the velocity of ring movement along the length of the spindle. Global dynamic furrowing, which was restricted to anaphase I and II, was dependent on myosin II, the anaphase promoting complex and separase, but did not require cortical contact by the spindle. Large cortical patches of myosin during metaphase I and II indicated that myosin was already in the active form before activation of separase. To identify the signal at the midpoint of the anaphase spindle that induces scission, we depleted two proteins that mark the exact midpoint of the spindle during late anaphase, CYK-4 and ZEN-4. Depletion of either protein resulted in the unexpected phenotype of initial ingression of a polar body ring with twice the diameter of wild type. This phenotype revealed a novel mechanism for minimizing polar body size. Proteins at the spindle midpoint are required for initial ring ingression to occur close to the membrane-proximal spindle pole. 2011 Elsevier Inc. All rights reserved.
Rotational dynamics of spin-labeled F-actin during activation of myosin S1 ATPase using caged ATP.
Ostap, E. M.; Thomas, D. D.
1991-01-01
The most probable source of force generation in muscle fibers in the rotation of the myosin head when bound to actin. This laboratory has demonstrated that ATP induces microsecond rotational motions of spin-labeled myosin heads bound to actin (Berger, C. L. E. C. Svensson, and D. D. Thomas. 1989. Proc. Natl. Acad. Sci. USA. 86:8753-8757). Our goal is to determine whether the observed ATP-induced rotational motions of actin-bound heads are accompanied by changes in actin rotational motions. We have used saturation transfer electron paramagnetic resonance (ST-EPR) and laser-induced photolysis of caged ATP to monitor changes in the microsecond rotational dynamics of spin-labeled F-actin in the presence of myosin subfragment-1 (S1). A maleimide spin label was attached selectively to cys-374 on actin. In the absence of ATP (with or without caged ATP), the ST-EPR spectrum (corresponding to an effective rotational time of approximately 150 microseconds) was essentially the same as observed for the same spin label bound to cys-707 (SH1) on S1, indicating that S1 is rigidly bound to actin in rigor. At normal ionic strength (micro = 186 mM), a decrease in ST-EPR intensity (increase in microsecond F-actin mobility) was clearly indicated upon photolysis of 1 mM caged ATP with a 50-ms, 351-nm laser pulse. This increase in mobility is due to the complete dissociation of Si from the actin filament. At low ionic strength (micro, = 36 mM), when about half the Si heads remain bound during ATP hydrolysis, no change in the actin mobility was detected, despite much faster motions of labeled S1 bound to actin. Therefore, we conclude that the active interaction of Si, actin,and ATP induces rotation of myosin heads relative to actin, but does not affect the microsecond rotational motion of actin itself, as detected at cys-374 of actin. PMID:1651780
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colson, Brett A.; Locher, Matthew R.; Bekyarova, Tanya
2010-05-25
Phosphorylation of myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) and myosin binding protein-C (cMyBP-C) by protein kinase A (PKA) independently accelerate the kinetics of force development in ventricular myocardium. However, while MLCK treatment has been shown to increase the Ca{sup 2+} sensitivity of force (pCa{sub 50}), PKA treatment has been shown to decrease pCa{sub 50}, presumably due to cardiac troponin I phosphorylation. Further, MLCK treatment increases Ca{sup 2+}-independent force and maximum Ca{sup 2+}-activated force, whereas PKA treatment has no effect on either force. To investigate the structural basis underlying the kinase-specific differential effects on steady-state force,more » we used synchrotron low-angle X-ray diffraction to compare equatorial intensity ratios (I{sub 1,1}/I{sub 1,0}) to assess the proximity of myosin cross-bridge mass relative to actin and to compare lattice spacings (d{sub 1,0}) to assess the inter-thick filament spacing in skinned myocardium following treatment with either MLCK or PKA. As we showed previously, PKA phosphorylation of cMyBP-C increases I{sub 1,1}/I{sub 1,0} and, as hypothesized, treatment with MLCK also increased I{sub 1,1}/I{sub 1,0}, which can explain the accelerated rates of force development during activation. Importantly, interfilament spacing was reduced by {approx}2 nm ({Delta} 3.5%) with MLCK treatment, but did not change with PKA treatment. Thus, RLC or cMyBP-C phosphorylation increases the proximity of cross-bridges to actin, but only RLC phosphorylation affects lattice spacing, which suggests that RLC and cMyBP-C modulate the kinetics of force development by similar structural mechanisms; however, the effect of RLC phosphorylation to increase the Ca{sup 2+} sensitivity of force is mediated by a distinct mechanism, most probably involving changes in interfilament spacing.« less
Marston, Daniel J.; Higgins, Christopher D.; Peters, Kimberly A.; Cupp, Timothy D.; Dickinson, Daniel J.; Pani, Ariel M.; Moore, Regan P.; Cox, Amanda H.; Kiehart, Daniel P.; Goldstein, Bob
2016-01-01
Summary Apical constriction is a change in cell shape that drives key morphogenetic events including gastrulation and neural tube formation. Apical force-producing actomyosin networks drive apical constriction by contracting while connected to cell-cell junctions. The mechanisms by which developmental patterning regulates these actomyosin networks and associated junctions with spatial precision are not fully understood. Here, we identify a myosin light chain kinase MRCK-1 as a key regulator of C. elegans gastrulation that integrates spatial and developmental patterning information. We show that MRCK-1 is required for activation of contractile actomyosin dynamics and elevated cortical tension in the apical cell cortex of endodermal precursor cells. MRCK-1 is apically localized by active Cdc42 at the external, cell-cell contact-free surfaces of apically constricting cells, downstream of cell fate determination mechanisms. We establish that the junctional components α-catenin, β-catenin, and cadherin become highly enriched at the apical junctions of apically-constricting cells, and that MRCK-1 and myosin activity are required in vivo for this enrichment. Taken together, our results define mechanisms that position a myosin activator to a specific cell surface where it both locally increases cortical tension and locally enriches junctional components to facilitate apical constriction. These results reveal crucial links that can tie spatial information to local force generation to drive morphogenesis. PMID:27451898
Kamisago, Mitsuhiro; Schmitt, Joachim P; McNamara, Dennis; Seidman, Christine; Seidman, J G
2006-01-01
Inherited human cardiomyopathies often lead to heart failure. A common feature of these conditions is that affected individuals can express the disease causing mutations for many years without showing clinical signs of the disease. Previous studies have demonstrated that sarcomere protein gene mutations can cause either dilated cardiomyopathy or hypertrophic cardiomyopathy. Here we demonstrate that the Arg442His missense mutation in beta-cardiac myosin heavy chain (betaMHC) causes dilated cardiomyopathy, endocardial fibroelastosis and heart failure at a very early age. Using standard genetic engineering tools we and others have made murine models by introducing human disease causing mutations into mice. The central hypothesis of these studies has been that by identifying the pathophysiological pathways activated by these mutations we can define enzymatic activities that are modified during the disease process and which may be involved in pathways that involve more common forms of cardiac disease. Murine models bearing different mutant myosins are being used to address whether each disease causing mutant betaMHC activates the same or different cellular pathways. Dissecting the molecular pathways modulated by mutations in sarcomere protein genes as well as other genes has already demonstrated that there are multiple pathways leading to cardiac remodelling and heart failure. Defining the mechanisms by which mutations in the same genes activate different cellular pathways remains an important question.
Myosin filament activation in the heart is tuned to the mechanical task
Reconditi, Massimo; Caremani, Marco; Pinzauti, Francesca; Powers, Joseph D.; Narayanan, Theyencheri; Stienen, Ger J. M.; Linari, Marco; Lombardi, Vincenzo
2017-01-01
The mammalian heart pumps blood through the vessels, maintaining the dynamic equilibrium in a circulatory system driven by two pumps in series. This vital function is based on the fine-tuning of cardiac performance by the Frank–Starling mechanism that relates the pressure exerted by the contracting ventricle (end systolic pressure) to its volume (end systolic volume). At the level of the sarcomere, the structural unit of the cardiac myocytes, the Frank–Starling mechanism consists of the increase in active force with the increase of sarcomere length (length-dependent activation). We combine sarcomere mechanics and micrometer–nanometer-scale X-ray diffraction from synchrotron light in intact ventricular trabeculae from the rat to measure the axial movement of the myosin motors during the diastole–systole cycle under sarcomere length control. We find that the number of myosin motors leaving the off, ATP hydrolysis-unavailable state characteristic of the diastole is adjusted to the sarcomere length-dependent systolic force. This mechanosensing-based regulation of the thick filament makes the energetic cost of the systole rapidly tuned to the mechanical task, revealing a prime aspect of the Frank–Starling mechanism. The regulation is putatively impaired by cardiomyopathy-causing mutations that affect the intramolecular and intermolecular interactions controlling the off state of the motors. PMID:28265101
Two-Phase Acto-Cytosolic Fluid Flow in a Moving Keratocyte: A 2D Continuum Model.
Nikmaneshi, M R; Firoozabadi, B; Saidi, M S
2015-09-01
The F-actin network and cytosol in the lamellipodia of crawling cells flow in a centripetal pattern and spout-like form, respectively. We have numerically studied this two-phase flow in the realistic geometry of a moving keratocyte. Cytosol has been treated as a low viscosity Newtonian fluid flowing through the high viscosity porous medium of F-actin network. Other involved phenomena including myosin activity, adhesion friction, and interphase interaction are also discussed to provide an overall view of this problem. Adopting a two-phase coupled model by myosin concentration, we have found new accurate perspectives of acto-cytosolic flow and pressure fields, myosin distribution, as well as the distribution of effective forces across the lamellipodia of a keratocyte with stationary shape. The order of magnitude method is also used to determine the contribution of forces in the internal dynamics of lamellipodia.
Myosin VI facilitates connexin 43 gap junction accretion.
Waxse, Bennett J; Sengupta, Prabuddha; Hesketh, Geoffrey G; Lippincott-Schwartz, Jennifer; Buss, Folma
2017-03-01
In this study, we demonstrate myosin VI enrichment at Cx43 (also known as GJA1)-containing gap junctions (GJs) in heart tissue, primary cardiomyocytes and cell culture models. In primary cardiac tissue and in fibroblasts from the myosin VI-null mouse as well as in tissue culture cells transfected with siRNA against myosin VI, we observe reduced GJ plaque size with a concomitant reduction in intercellular communication, as shown by fluorescence recovery after photobleaching (FRAP) and a new method of selective calcein administration. Analysis of the molecular role of myosin VI in Cx43 trafficking indicates that myosin VI is dispensable for the delivery of Cx43 to the cell surface and connexon movement in the plasma membrane. Furthermore, we cannot corroborate clathrin or Dab2 localization at gap junctions and we do not observe a function for the myosin-VI-Dab2 complex in clathrin-dependent endocytosis of annular gap junctions. Instead, we found that myosin VI was localized at the edge of Cx43 plaques by using total internal reflection fluorescence (TIRF) microscopy and use FRAP to identify a plaque accretion defect as the primary manifestation of myosin VI loss in Cx43 homeostasis. A fuller understanding of this derangement may explain the cardiomyopathy or gliosis associated with the loss of myosin VI. © 2017. Published by The Company of Biologists Ltd.
Regulation of contractile protein gene expression in unloaded mouse skeletal muscle
NASA Technical Reports Server (NTRS)
Criswell, D. S.; Carson, J. A.; Booth, F. W.
1996-01-01
Hindlimb unloading was performed on mice in an effort to study the regulation of contractile protein genes. In particular, the regulation of myosin heavy chain IIb was examined. During unloading, muscle fibers undergo a type conversion. Preliminary data from this study does not support the hypothesis that the fiber type conversion is due to an increase in promoter activity of fast isoform genes, such as myosin heavy chain IIb. The consequences of this finding are examined, with particular focus on other factors controlling gene regulation.
Fropofol decreases force development in cardiac muscle.
Ren, Xianfeng; Schmidt, William; Huang, Yiyuan; Lu, Haisong; Liu, Wenjie; Bu, Weiming; Eckenhoff, Roderic; Cammarato, Anthony; Gao, Wei Dong
2018-03-09
Supranormal contractile properties are frequently associated with cardiac diseases. Anesthetic agents, including propofol, can depress myocardial contraction. We tested the hypothesis that fropofol, a propofol derivative, reduces force development in cardiac muscles via inhibition of cross-bridge cycling and may therefore have therapeutic potential. Force and intracellular Ca 2+ ([Ca 2+ ] i ) transients of rat trabecular muscles were determined. Myofilament ATPase, actin-activated myosin ATPase, and velocity of actin filaments propelled by myosin were also measured. Fropofol dose dependently decreased force without altering [Ca 2+ ] i in normal and pressure-induced hypertrophied-hypercontractile muscles. Similarly, fropofol depressed maximum Ca 2+ -activated force ( F max ) and increased the [Ca 2+ ] i required for 50% activation at steady-state (Ca 50 ) without affecting the Hill coefficient in both intact and skinned cardiac fibers. The drug also depressed cardiac myofibrillar and actin-activated myosin ATPase activity. In vitro actin sliding velocity was significantly reduced when fropofol was introduced during rigor binding of cross-bridges. The data suggest that the depressing effects of fropofol on cardiac contractility are likely to be related to direct targeting of actomyosin interactions. From a clinical standpoint, these findings are particularly significant, given that fropofol is a nonanesthetic small molecule that decreases myocardial contractility specifically and thus may be useful in the treatment of hypercontractile cardiac disorders.-Ren, X., Schmidt, W., Huang, Y., Lu, H., Liu, W., Bu, W., Eckenhoff, R., Cammarato, A., Gao, W. D. Fropofol decreases force development in cardiac muscle.
Ratz, Paul H; Miner, Amy S; Barbour, Suzanne E
2009-07-01
In vascular smooth muscle, KCl not only elevates intracellular free Ca(2+) ([Ca(2+)](i)), myosin light chain kinase activity and tension (T), but also can inhibit myosin light chain phosphatase activity by activation of rhoA kinase (ROCK), resulting in Ca(2+) sensitization (increased T/[Ca(2+)](i) ratio). Precisely how KCl causes ROCK-dependent Ca(2+) sensitization remains to be determined. Using Fura-2-loaded isometric rings of rabbit artery, we found that the Ca(2+)-independent phospholipase A(2) (iPLA(2)) inhibitor, bromoenol lactone (BEL), reduced the KCl-induced tonic but not early phasic phase of T and potentiated [Ca(2+)](i), reducing Ca(2+) sensitization. The PKC inhibitor, GF-109203X (> or =3 microM) and the pseudo-substrate inhibitor of PKCzeta produced a response similar to BEL. BEL reduced basal and KCl-stimulated myosin phosphatase phosphorylation. Whereas BEL and H-1152 produced strong inhibition of KCl-induced tonic T (approximately 50%), H-1152 did not induce additional inhibition of tissues already inhibited by BEL, suggesting that iPLA(2) links KCl stimulation with ROCK activation. The cPLA(2) inhibitor, pyrrolidine-1, inhibited KCl-induced tonic increases in [Ca(2+)](i) but not T, whereas the inhibitor of 20-HETE production, HET0016, acted like the ROCK inhibitor H-1152 by causing Ca(2+) desensitization. These data support a model in which iPLA(2) activity regulates Ca(2+) sensitivity.
Focal Contacts as Mechanosensors
Riveline, Daniel; Zamir, Eli; Balaban, Nathalie Q.; Schwarz, Ulrich S.; Ishizaki, Toshimasa; Narumiya, Shuh; Kam, Zvi; Geiger, Benjamin; Bershadsky, Alexander D.
2001-01-01
The transition of cell–matrix adhesions from the initial punctate focal complexes into the mature elongated form, known as focal contacts, requires GTPase Rho activity. In particular, activation of myosin II–driven contractility by a Rho target known as Rho-associated kinase (ROCK) was shown to be essential for focal contact formation. To dissect the mechanism of Rho-dependent induction of focal contacts and to elucidate the role of cell contractility, we applied mechanical force to vinculin-containing dot-like adhesions at the cell edge using a micropipette. Local centripetal pulling led to local assembly and elongation of these structures and to their development into streak-like focal contacts, as revealed by the dynamics of green fluorescent protein–tagged vinculin or paxillin and interference reflection microscopy. Inhibition of Rho activity by C3 transferase suppressed this force-induced focal contact formation. However, constitutively active mutants of another Rho target, the formin homology protein mDia1 (Watanabe, N., T. Kato, A. Fujita, T. Ishizaki, and S. Narumiya. 1999. Nat. Cell Biol. 1:136–143), were sufficient to restore force-induced focal contact formation in C3 transferase-treated cells. Force-induced formation of the focal contacts still occurred in cells subjected to myosin II and ROCK inhibition. Thus, as long as mDia1 is active, external tension force bypasses the requirement for ROCK-mediated myosin II contractility in the induction of focal contacts. Our experiments show that integrin-containing focal complexes behave as individual mechanosensors exhibiting directional assembly in response to local force. PMID:11402062
Kaya, Motoshi; Higuchi, Hideo
2013-11-01
In muscles, the arrays of skeletal myosin molecules interact with actin filaments and continuously generate force at various contraction speeds. Therefore, it is crucial for myosin molecules to generate force collectively and minimize the interference between individual myosin molecules. Knowledge of the elasticity of myosin molecules is crucial for understanding the molecular mechanisms of muscle contractions because elasticity directly affects the working and drag (resistance) force generation when myosin molecules are positively or negatively strained. The working stroke distance is also an important mechanical property necessary for elucidation of the thermodynamic efficiency of muscle contractions at the molecular level. In this review, we focus on these mechanical properties obtained from single-fiber and single-molecule studies and discuss recent findings associated with these mechanical properties. We also discuss the potential molecular mechanisms associated with reduction of the drag effect caused by negatively strained myosin molecules.
Single Molecule Stepping and Structural Dynamics of Myosin X
Sun, Yujie; Sato, Osamu; Ruhnow, Felix; Arsenault, Mark E.; Ikebe, Mitsuo; Goldman, Yale E.
2010-01-01
Myosin X is an unconventional myosin with puzzling motility properties. We studied the motility of dimerized myosin X using single molecule fluorescence techniques – polTIRF, FIONA, and Parallax to measure rotation angles and 3-dimensional position of the molecule during its walk. It was found that Myosin X steps processively in a hand-over-hand manner following a left-handed helical path along both single actin filaments and bundles. Its step size and velocity are smaller on actin bundles than individual filaments, suggesting myosin X often steps onto neighboring filaments in a bundle. The data suggest that a previously postulated single α-helical domain mechanically extends the 3-IQ motif lever arm and either the neck-tail hinge or the tail is flexible. These structural features, in conjunction with the membrane and microtubule binding domains, enable myosin X to perform multiple functions on varied actin structures in cells. PMID:20364131
Involvement of myosin light-chain kinase in endothelial cell retraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wysolmerski, R.B.; Lagunoff, D.
Permeabilized bovine pulmonary artery endothelial cell monolayers were used to investigate the mechanism of endothelial cell retraction. Postconfluent endothelial cells permeabilized with saponin retracted upon exposure to ATP and Ca{sup 2+}. Retraction was accompanied by thiophosphorylation of 19,000-Da myosin light chains when adenosine 5'-(gamma-({sup 35}S)thio)triphosphate was included in the medium. Both retraction and thiophosphorylation of myosin light chains exhibited a graded quantitative dependence on Ca{sup 2+}. When permeabilized monolayers were extracted in buffer D containing 100 mM KCl and 30 mM MgCl2 for 30 min, the cells failed to retract upon exposure to ATP and Ca{sup 2+}, and no thiophosphorylationmore » of myosin light chains occurred. The ability both to retract and to thiophosphorylate myosin light chains was restored by the addition to the permeabilized, extracted cells of myosin light-chain kinase and calmodulin together but not by either alone. These studies indicate that endothelial cell retraction, as does smooth muscle contraction, depends on myosin light-chain kinase phosphorylation of myosin light chains.« less
Long-range self-organization of cytoskeletal myosin II filament stacks.
Hu, Shiqiong; Dasbiswas, Kinjal; Guo, Zhenhuan; Tee, Yee-Han; Thiagarajan, Visalatchi; Hersen, Pascal; Chew, Teng-Leong; Safran, Samuel A; Zaidel-Bar, Ronen; Bershadsky, Alexander D
2017-02-01
Although myosin II filaments are known to exist in non-muscle cells, their dynamics and organization are incompletely understood. Here, we combined structured illumination microscopy with pharmacological and genetic perturbations, to study the process of actomyosin cytoskeleton self-organization into arcs and stress fibres. A striking feature of the myosin II filament organization was their 'registered' alignment into stacks, spanning up to several micrometres in the direction orthogonal to the parallel actin bundles. While turnover of individual myosin II filaments was fast (characteristic half-life time 60 s) and independent of actin filament turnover, the process of stack formation lasted a longer time (in the range of several minutes) and required myosin II contractility, as well as actin filament assembly/disassembly and crosslinking (dependent on formin Fmnl3, cofilin1 and α-actinin-4). Furthermore, myosin filament stack formation involved long-range movements of individual myosin filaments towards each other suggesting the existence of attractive forces between myosin II filaments. These forces, possibly transmitted via mechanical deformations of the intervening actin filament network, may in turn remodel the actomyosin cytoskeleton and drive its self-organization.
Robust mechanobiological behavior emerges in heterogeneous myosin systems.
Egan, Paul F; Moore, Jeffrey R; Ehrlicher, Allen J; Weitz, David A; Schunn, Christian; Cagan, Jonathan; LeDuc, Philip
2017-09-26
Biological complexity presents challenges for understanding natural phenomenon and engineering new technologies, particularly in systems with molecular heterogeneity. Such complexity is present in myosin motor protein systems, and computational modeling is essential for determining how collective myosin interactions produce emergent system behavior. We develop a computational approach for altering myosin isoform parameters and their collective organization, and support predictions with in vitro experiments of motility assays with α-actinins as molecular force sensors. The computational approach models variations in single myosin molecular structure, system organization, and force stimuli to predict system behavior for filament velocity, energy consumption, and robustness. Robustness is the range of forces where a filament is expected to have continuous velocity and depends on used myosin system energy. Myosin systems are shown to have highly nonlinear behavior across force conditions that may be exploited at a systems level by combining slow and fast myosin isoforms heterogeneously. Results suggest some heterogeneous systems have lower energy use near stall conditions and greater energy consumption when unloaded, therefore promoting robustness. These heterogeneous system capabilities are unique in comparison with homogenous systems and potentially advantageous for high performance bionanotechnologies. Findings open doors at the intersections of mechanics and biology, particularly for understanding and treating myosin-related diseases and developing approaches for motor molecule-based technologies.
Single cardiac ventricular myosins are autonomous motors
Wang, Yihua; Yuan, Chen-Ching; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta
2018-01-01
Myosin transduces ATP free energy into mechanical work in muscle. Cardiac muscle has dynamically wide-ranging power demands on the motor as the muscle changes modes in a heartbeat from relaxation, via auxotonic shortening, to isometric contraction. The cardiac power output modulation mechanism is explored in vitro by assessing single cardiac myosin step-size selection versus load. Transgenic mice express human ventricular essential light chain (ELC) in wild- type (WT), or hypertrophic cardiomyopathy-linked mutant forms, A57G or E143K, in a background of mouse α-cardiac myosin heavy chain. Ensemble motility and single myosin mechanical characteristics are consistent with an A57G that impairs ELC N-terminus actin binding and an E143K that impairs lever-arm stability, while both species down-shift average step-size with increasing load. Cardiac myosin in vivo down-shifts velocity/force ratio with increasing load by changed unitary step-size selections. Here, the loaded in vitro single myosin assay indicates quantitative complementarity with the in vivo mechanism. Both have two embedded regulatory transitions, one inhibiting ADP release and a second novel mechanism inhibiting actin detachment via strain on the actin-bound ELC N-terminus. Competing regulators filter unitary step-size selection to control force-velocity modulation without myosin integration into muscle. Cardiac myosin is muscle in a molecule. PMID:29669825
Robust mechanobiological behavior emerges in heterogeneous myosin systems
NASA Astrophysics Data System (ADS)
Egan, Paul F.; Moore, Jeffrey R.; Ehrlicher, Allen J.; Weitz, David A.; Schunn, Christian; Cagan, Jonathan; LeDuc, Philip
2017-09-01
Biological complexity presents challenges for understanding natural phenomenon and engineering new technologies, particularly in systems with molecular heterogeneity. Such complexity is present in myosin motor protein systems, and computational modeling is essential for determining how collective myosin interactions produce emergent system behavior. We develop a computational approach for altering myosin isoform parameters and their collective organization, and support predictions with in vitro experiments of motility assays with α-actinins as molecular force sensors. The computational approach models variations in single myosin molecular structure, system organization, and force stimuli to predict system behavior for filament velocity, energy consumption, and robustness. Robustness is the range of forces where a filament is expected to have continuous velocity and depends on used myosin system energy. Myosin systems are shown to have highly nonlinear behavior across force conditions that may be exploited at a systems level by combining slow and fast myosin isoforms heterogeneously. Results suggest some heterogeneous systems have lower energy use near stall conditions and greater energy consumption when unloaded, therefore promoting robustness. These heterogeneous system capabilities are unique in comparison with homogenous systems and potentially advantageous for high performance bionanotechnologies. Findings open doors at the intersections of mechanics and biology, particularly for understanding and treating myosin-related diseases and developing approaches for motor molecule-based technologies.
Alternative S2 Hinge Regions of the Myosin Rod Affect Myofibrillar Structure and Myosin Kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Mark S.; Dambacher, Corey M.; Knowles, Aileen F.
2009-07-01
The subfragment 2/light meromyosin 'hinge' region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifyingmore » this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length.« less
Kim, Jong-Hee; Thompson, LaDora V
2014-07-15
We tested the hypothesis that non-weight bearing-induced muscle weakness (i.e., specific force) results from decreases in myosin protein quantity (i.e., myosin content per half-sarcomere and the ratio of myosin to actin) and quality (i.e., force per half-sarcomere and population of myosin heads in the strong-binding state during muscle contraction) in single myosin heavy chain (MHC) type II fibers. Fisher-344 rats were assigned to weight-bearing control (Con) or non-weight bearing (NWB). The NWB rats were hindlimb unloaded for 2 wk. Diameter, force, and MHC content were determined in permeabilized single fibers from the semimembranosus muscle. MHC isoform and the ratio of MHC to actin in each fiber were determined by gel electrophoresis and silver staining techniques. The structural distribution of myosin from spin-labeled fiber bundles during maximal isometric contraction was evaluated using electron paramagnetic resonance spectroscopy. Specific force (peak force per cross-sectional area) in MHC type IIB and IIXB fibers from NWB was significantly reduced by 38% and 18%, respectively. MHC content per half-sarcomere was significantly reduced by 21%. Two weeks of hindlimb unloading resulted in a reduced force per half-sarcomere of 52% and fraction of myosin strong-binding during contraction of 34%. The results suggest that reduced myosin and actin content (quantity) and myosin quality concomitantly contribute to non-weight bearing-related muscle weakness. Copyright © 2014 the American Physiological Society.
14-3-3 proteins tune non-muscle myosin II assembly.
West-Foyle, Hoku; Kothari, Priyanka; Osborne, Jonathan; Robinson, Douglas N
2018-05-04
The 14-3-3 family comprises a group of small proteins that are essential, ubiquitous, and highly conserved across eukaryotes. Overexpression of the 14-3-3 proteins σ, ϵ, ζ, and η correlates with high metastatic potential in multiple cancer types. In Dictyostelium , 14-3-3 promotes myosin II turnover in the cell cortex and modulates cortical tension, cell shape, and cytokinesis. In light of the important roles of 14-3-3 proteins across a broad range of eukaryotic species, we sought to determine how 14-3-3 proteins interact with myosin II. Here, conducting in vitro and in vivo studies of both Dictyostelium (one 14-3-3 and one myosin II) and human proteins (seven 14-3-3s and three nonmuscle myosin IIs), we investigated the mechanism by which 14-3-3 proteins regulate myosin II assembly. Using in vitro assembly assays with purified myosin II tail fragments and 14-3-3, we demonstrate that this interaction is direct and phosphorylation-independent. All seven human 14-3-3 proteins also altered assembly of at least one paralog of myosin II. Our findings indicate a mechanism of myosin II assembly regulation that is mechanistically conserved across a billion years of evolution from amebas to humans. We predict that altered 14-3-3 expression in humans inhibits the tumor suppressor myosin II, contributing to the changes in cell mechanics observed in many metastatic cancers. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Kim, Kyoungtae; Keller, Thomas C S
2002-01-07
Smooth muscle cells use an actin-myosin II-based contractile apparatus to produce force for a variety of physiological functions, including blood pressure regulation and gut peristalsis. The organization of the smooth muscle contractile apparatus resembles that of striated skeletal and cardiac muscle, but remains much more poorly understood. We have found that avian vascular and visceral smooth muscles contain a novel, megadalton protein, smitin, that is similar to striated muscle titin in molecular morphology, localization in a contractile apparatus, and ability to interact with myosin filaments. Smitin, like titin, is a long fibrous molecule with a globular domain on one end. Specific reactivities of an anti-smitin polyclonal antibody and an anti-titin monoclonal antibody suggest that smitin and titin are distinct proteins rather than differentially spliced isoforms encoded by the same gene. Smitin immunofluorescently colocalizes with myosin in chicken gizzard smooth muscle, and interacts with two configurations of smooth muscle myosin filaments in vitro. In physiological ionic strength conditions, smitin and smooth muscle myosin coassemble into irregular aggregates containing large sidepolar myosin filaments. In low ionic strength conditions, smitin and smooth muscle myosin form highly ordered structures containing linear and polygonal end-to-end and side-by-side arrays of small bipolar myosin filaments. We have used immunogold localization and sucrose density gradient cosedimentation analyses to confirm association of smitin with both the sidepolar and bipolar smooth muscle myosin filaments. These findings suggest that the titin-like protein smitin may play a central role in organizing myosin filaments in the contractile apparatus and perhaps in other structures in smooth muscle cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minoda, Hiroki; CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012; Okabe, Tatsuhiro
2011-02-25
Research highlights: {yields} We succeeded in recording structural changes of hydrated myosin cross-bridges. {yields} We succeeded in position-marking the cross-bridges with site-directed antibodies. {yields} We recorded cross-bridge movement at different regions in individual cross-bridge. {yields} The movement was smallest at the cross-bridge-subfragment two boundary. {yields} The results provide evidence for the cross-bridge lever arm mechanism. -- Abstract: Muscle contraction results from an attachment-detachment cycle between the myosin heads extending from myosin filaments and the sites on actin filaments. The myosin head first attaches to actin together with the products of ATP hydrolysis, performs a power stroke associated with release ofmore » hydrolysis products, and detaches from actin upon binding with new ATP. The detached myosin head then hydrolyses ATP, and performs a recovery stroke to restore its initial position. The strokes have been suggested to result from rotation of the lever arm domain around the converter domain, while the catalytic domain remains rigid. To ascertain the validity of the lever arm hypothesis in muscle, we recorded ATP-induced movement at different regions within individual myosin heads in hydrated myosin filaments, using the gas environmental chamber attached to the electron microscope. The myosin head were position-marked with gold particles using three different site-directed antibodies. The amplitude of ATP-induced movement at the actin binding site in the catalytic domain was similar to that at the boundary between the catalytic and converter domains, but was definitely larger than that at the regulatory light chain in the lever arm domain. These results are consistent with the myosin head lever arm mechanism in muscle contraction if some assumptions are made.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, S.; Galperin, M; Melvin, G
Pompe disease, a deficiency of lysosomal acid {alpha}-glucosidase, is a disorder of glycogen metabolism that can affect infants, children, or adults. In all forms of the disease, there is progressive muscle pathology leading to premature death. The pathology is characterized by accumulation of glycogen in lysosomes, autophagic buildup, and muscle atrophy. The purpose of the present investigation was to determine if myofibrillar dysfunction in Pompe disease contributes to muscle weakness beyond that attributed to atrophy. The study was performed on isolated myofibers dissected from severely affected fast glycolytic muscle in the {alpha}-glucosidase knockout mouse model. Psoas muscle fibers were firstmore » permeabilized, so that the contractile proteins could be directly relaxed or activated by control of the composition of the bathing solution. When normalized by cross-sectional area, single fibers from knockout mice produced 6.3 N/cm{sup 2} of maximum Ca{sup 2+}-activated tension compared with 12.0 N/cm{sup 2} produced by wild-type fibers. The total protein concentration was slightly higher in the knockout mice, but concentrations of the contractile proteins myosin and actin remained unchanged. Structurally, X-ray diffraction showed that the actin and myosin filaments, normally arranged in hexagonal arrays, were disordered in the knockout muscle, and a lower fraction of myosin cross bridges was near the actin filaments in the relaxed muscle. The results are consistent with a disruption of actin and myosin interactions in the knockout muscles, demonstrating that impaired myofibrillar function contributes to weakness in the diseased muscle fibers.« less
Jiao, Meng; Wu, Di; Wei, Qize
2018-03-01
Blebs are involved in various biological processes such as cell migration, cytokinesis, and apoptosis. While the expansion of blebs is largely an intracellular pressure-driven process, the retraction of blebs is believed to be driven by RhoA activation that leads to the reassembly of the actomyosin cortex at the bleb membrane. However, it is still poorly understood how RhoA is activated at the bleb membrane. Here, we provide evidence demonstrating that myosin II-interacting guanine nucleotide exchange factor (MYOGEF) is implicated in bleb retraction via stimulating RhoA activation and the reassembly of an actomyosin network at the bleb membrane during bleb retraction. Interaction of MYOGEF with ezrin, a well-known regulator of bleb retraction, is required for MYOGEF localization to retracting blebs. Notably, knockout of MYOGEF or ezrin not only disrupts RhoA activation at the bleb membrane, but also interferes with nonmuscle myosin II localization and activation, as well as actin polymerization in retracting blebs. Importantly, MYOGEF knockout slows down bleb retraction. We propose that ezrin interacts with MYOGEF and recruits it to retracting blebs, where MYOGEF activates RhoA and promotes the reassembly of the cortical actomyosin network at the bleb membrane, thus contributing to the regulation of bleb retraction. © 2018 Jiao et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Space exploration by dendritic cells requires maintenance of myosin II activity by IP3 receptor 1
Solanes, Paola; Heuzé, Mélina L; Maurin, Mathieu; Bretou, Marine; Lautenschlaeger, Franziska; Maiuri, Paolo; Terriac, Emmanuel; Thoulouze, Maria-Isabel; Launay, Pierre; Piel, Matthieu; Vargas, Pablo; Lennon-Duménil, Ana-Maria
2015-01-01
Dendritic cells (DCs) patrol the interstitial space of peripheral tissues. The mechanisms that regulate their migration in such constrained environment remain unknown. We here investigated the role of calcium in immature DCs migrating in confinement. We found that they displayed calcium oscillations that were independent of extracellular calcium and more frequently observed in DCs undergoing strong speed fluctuations. In these cells, calcium spikes were associated with fast motility phases. IP3 receptors (IP3Rs) channels, which allow calcium release from the endoplasmic reticulum, were identified as required for immature DCs to migrate at fast speed. The IP3R1 isoform was further shown to specifically regulate the locomotion persistence of immature DCs, that is, their capacity to maintain directional migration. This function of IP3R1 results from its ability to control the phosphorylation levels of myosin II regulatory light chain (MLC) and the back/front polarization of the motor protein. We propose that by upholding myosin II activity, constitutive calcium release from the ER through IP3R1 maintains DC polarity during migration in confinement, facilitating the exploration of their environment. PMID:25637353
Space exploration by dendritic cells requires maintenance of myosin II activity by IP3 receptor 1.
Solanes, Paola; Heuzé, Mélina L; Maurin, Mathieu; Bretou, Marine; Lautenschlaeger, Franziska; Maiuri, Paolo; Terriac, Emmanuel; Thoulouze, Maria-Isabel; Launay, Pierre; Piel, Matthieu; Vargas, Pablo; Lennon-Duménil, Ana-Maria
2015-03-12
Dendritic cells (DCs) patrol the interstitial space of peripheral tissues. The mechanisms that regulate their migration in such constrained environment remain unknown. We here investigated the role of calcium in immature DCs migrating in confinement. We found that they displayed calcium oscillations that were independent of extracellular calcium and more frequently observed in DCs undergoing strong speed fluctuations. In these cells, calcium spikes were associated with fast motility phases. IP₃ receptors (IP₃Rs) channels, which allow calcium release from the endoplasmic reticulum, were identified as required for immature DCs to migrate at fast speed. The IP₃R1 isoform was further shown to specifically regulate the locomotion persistence of immature DCs, that is, their capacity to maintain directional migration. This function of IP₃R1 results from its ability to control the phosphorylation levels of myosin II regulatory light chain (MLC) and the back/front polarization of the motor protein. We propose that by upholding myosin II activity, constitutive calcium release from the ER through IP₃R1 maintains DC polarity during migration in confinement, facilitating the exploration of their environment. © 2015 Institut Curie/Inserm. Published under the terms of the CC BY NC ND 4.0 license.
Baird, Michelle A.; Billington, Neil; Wang, Aibing; Adelstein, Robert S.; Sellers, James R.; Fischer, Robert S.; Waterman, Clare M.
2017-01-01
The role of nonmuscle myosin 2 (NM2) pulsatile dynamics in generating contractile forces required for developmental morphogenesis has been characterized, but whether these pulsatile contractions are an intrinsic property of all actomyosin networks is not known. Here we used live-cell fluorescence imaging to show that transient, local assembly of NM2A “pulses” occurs in the cortical cytoskeleton of single adherent cells of mesenchymal, epithelial, and sarcoma origin, independent of developmental signaling cues and cell–cell or cell–ECM interactions. We show that pulses in the cortical cytoskeleton require Rho-associated kinase– or myosin light chain kinase (MLCK) activity, increases in cytosolic calcium, and NM2 ATPase activity. Surprisingly, we find that cortical cytoskeleton pulses specifically require the head domain of NM2A, as they do not occur with either NM2B or a 2B-head-2A-tail chimera. Our results thus suggest that pulsatile contractions in the cortical cytoskeleton are an intrinsic property of the NM2A motor that may mediate its role in homeostatic maintenance of tension in the cortical cytoskeleton of adherent cells. PMID:27881665
Unregulated smooth-muscle myosin in human intestinal neoplasia.
Alhopuro, Pia; Phichith, Denis; Tuupanen, Sari; Sammalkorpi, Heli; Nybondas, Miranda; Saharinen, Juha; Robinson, James P; Yang, Zhaohui; Chen, Li-Qiong; Orntoft, Torben; Mecklin, Jukka-Pekka; Järvinen, Heikki; Eng, Charis; Moeslein, Gabriela; Shibata, Darryl; Houlston, Richard S; Lucassen, Anneke; Tomlinson, Ian P M; Launonen, Virpi; Ristimäki, Ari; Arango, Diego; Karhu, Auli; Sweeney, H Lee; Aaltonen, Lauri A
2008-04-08
A recent study described a recessive ATPase activating germ-line mutation in smooth-muscle myosin (smmhc/myh11) underlying the zebrafish meltdown (mlt) phenotype. The mlt zebrafish develops intestinal abnormalities reminiscent of human Peutz-Jeghers syndrome (PJS) and juvenile polyposis (JP). To examine the role of MYH11 in human intestinal neoplasia, we searched for MYH11 mutations in patients with colorectal cancer (CRC), PJS and JP. We found somatic protein-elongating frameshift mutations in 55% of CRCs displaying microsatellite instability and in the germ-line of one individual with PJS. Additionally, two somatic missense mutations were found in one microsatellite stable CRC. These two missense mutations, R501L and K1044N, and the frameshift mutations were functionally evaluated. All mutations resulted in unregulated molecules displaying constitutive motor activity, similar to the mutant myosin underlying mlt. Thus, MYH11 mutations appear to contribute also to human intestinal neoplasia. Unregulated MYH11 may affect the cellular energy balance or disturb cell lineage decisions in tumor progenitor cells. These data challenge our view on MYH11 as a passive differentiation marker functioning in muscle contraction and add to our understanding of intestinal neoplasia.
Measuring the Kinetic and Mechanical Properties of Non-Processive Myosins using Optical Tweezers
Greenberg, Michael J.; Shuman, Henry; Ostap, E. Michael
2017-01-01
The myosin superfamily of molecular motors utilizes energy from ATP hydrolysis to generate force and motility along actin filaments in a diverse array of cellular processes. These motors are structurally, kinetically, and mechanically tuned to their specific molecular roles in the cell. Optical trapping techniques have played a central role in elucidating the mechanisms by which myosins generate force and in exposing the remarkable diversity of myosin functions. Here, we present thorough methods for measuring and analyzing interactions between actin and non-processive myosins using optical trapping techniques. PMID:27844441
Smith, Ian C.; Gittings, William; Huang, Jian; McMillan, Elliott M.; Quadrilatero, Joe; Tupling, A. Russell
2013-01-01
The increase in isometric twitch force observed in fast-twitch rodent muscles during or after activity, known universally as potentiation, is normally associated with myosin regulatory light chain (RLC) phosphorylation. Interestingly, fast muscles from mice devoid of detectable skeletal myosin light chain kinase (skMLCK) retain a reduced ability to potentiate twitch force, indicating the presence of a secondary origin for this characteristic feature of the fast muscle phenotype. The purpose of this study was to assess changes in intracellular cytosolic free Ca2+ concentration ([Ca2+]i) after a potentiating stimulus in mouse lumbrical muscle (37°C). Lumbricals were loaded with the Ca2+-sensitive fluorescent indicators fura-2 or furaptra to detect changes in resting and peak, respectively, intracellular Ca2+ levels caused by 2.5 s of 20-Hz stimulation. Although this protocol produced an immediate increase in twitch force of 17 ± 3% (all data are n = 10) (P < 0.01), this potentiation dissipated quickly and was absent 30 s afterward. Fura-2 fluorescence signals at rest were increased by 11.1 ± 1.3% (P < 0.01) during potentiation, indicating a significant increase in resting [Ca2+]i. Interestingly, furaptra signals showed no change to either the amplitude or the duration of the intracellular Ca2+ transients (ICTs) that triggered potentiated twitches during this time (P < 0.50). Immunofluorescence work showed that 77% of lumbrical fibers expressed myosin heavy chain isoform IIx and/or IIb, but with low expression of skMLCK and high expression of myosin phosphatase targeting subunit 2. As a result, lumbrical muscles displayed no detectable RLC phosphorylation either at rest or after stimulation. We conclude that stimulation-induced elevations in resting [Ca2+]i, in the absence of change in the ICT, are responsible for a small-magnitude, short-lived potentiation of isometric twitch force. If operative in other fast-twitch muscles, this mechanism may complement the potentiating influence of myosin RLC phosphorylation. PMID:23401574
Palmer, Bradley M; Schmitt, Joachim P; Seidman, Christine E; Seidman, J G; Wang, Yuan; Bell, Stephen P; Lewinter, Martin M; Maughan, David W
2013-04-01
Dilated cardiomyopathy (DCM) is a disease characterized by dilation of the ventricular chambers and reduced contractile function. We examined the contractile performance of chemically-skinned ventricular strips from two heterozygous murine models of DCM-causing missense mutations of myosin, F764L/+ and S532P/+, in an α-myosin heavy chain (MyHC) background. In Ca(2+)-activated skinned myocardial strips, the maximum developed tension in F764L/+ was only ~50% that of litter-mate controls (+/+). The F764L/+ also exhibited significantly reduced rigor stiffness, loaded shortening velocity and power output. Corresponding indices for S532P/+ strips were not different from controls. Manipulation of MgATP concentration in conjunction with measures of viscoelasticity, which provides estimates of myosin detachment rate 2πc, allowed us to probe the molecular basis of changes in crossbridge kinetics that occur with the myosin mutations. By examining the response of detachment rate to varying MgATP we found the rate of MgADP release was unaffected by the myosin mutations. However, MgATP binding rate was higher in the DCM groups compared to controls (422±109mM(-1)·s(-1) in F764L/+, 483±74mM(-1)·s(-1) in S532P/+ and 303±18mM(-1)·s(-1) in +/+). In addition, the rate constant of force development, 2πb, was significantly higher in DCM groups compared to controls (at 5mM MgATP: 36.9±4.9s(-1) in F764L/+, 32.9±4.5s(-1) in S532P/+ and 18.2±1.7s(-1) in +/+). These results suggest that elevated rates of force development and MgATP binding are features of cardiac myofilament function that underlie the development of DCM. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Intensity Of The 2.7nm Reflection As A Constraint For Models Of Myosin Docking To Actin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reconditi, Massimo; Irving, Tom C.; IIT)
2009-03-16
Previous workers have proposed high resolution models for the docking of the myosin heads on actin on the basis of combined crystallographic and electron microscopy data (Mendelson and Morris, 1997 PNAS 94:8533; Holmes et al. 2003 Nature 425:423). We have used data from small angle X-ray fiber diffraction from living muscle to check the predictions of these models. Whole sartorius muscles from Rana pipiens were mounted in a chamber containing Ringer's solution at 10 C and at rest length at the BioCAT beamline (18 ID, Advanced Photon Source, Argonne, IL-U.S.A.). The muscles were activated by electrical stimulation and the forcemore » was recorded with a muscle lever system type 300B (Aurora Scientific). X-ray patterns were collected with 1s total exposures at rest and during isometric contraction out to 0.5 nm{sup -1} in reciprocal space, as the higher angle reflections are expected to be more sensitive to the arrangement of myosin heads on actin. We observed that during isometric contraction the meridional reflection originating from the 2.73nm repeat of the actin monomers along the actin filament increases its intensity by a factor 2.1 {+-} 0.2 relative to rest. Among the models tested, Holmes et al. fits the data when the actin filament is decorated with 30-40% the total available myosin heads, a fraction similar to that estimated with fast single fiber mechanics by Piazzesi et al. (2007, Cell 131:784). However, when the mismatch between the periodicities of actin and myosin filaments is taken into account, none of the models can reproduce the fiber diffraction data. We suggest that the fiber diffraction data should be used as a further constraint on new high resolution models for the docking of the myosin heads on actin.« less
Homburger, Julian R.; Green, Eric M.; Caleshu, Colleen; Sunitha, Margaret S.; Taylor, Rebecca E.; Ruppel, Kathleen M.; Metpally, Raghu Prasad Rao; Colan, Steven D.; Michels, Michelle; Day, Sharlene M.; Olivotto, Iacopo; Bustamante, Carlos D.; Dewey, Frederick E.; Ho, Carolyn Y.; Spudich, James A.; Ashley, Euan A.
2016-01-01
Myosin motors are the fundamental force-generating elements of muscle contraction. Variation in the human β-cardiac myosin heavy chain gene (MYH7) can lead to hypertrophic cardiomyopathy (HCM), a heritable disease characterized by cardiac hypertrophy, heart failure, and sudden cardiac death. How specific myosin variants alter motor function or clinical expression of disease remains incompletely understood. Here, we combine structural models of myosin from multiple stages of its chemomechanical cycle, exome sequencing data from two population cohorts of 60,706 and 42,930 individuals, and genetic and phenotypic data from 2,913 patients with HCM to identify regions of disease enrichment within β-cardiac myosin. We first developed computational models of the human β-cardiac myosin protein before and after the myosin power stroke. Then, using a spatial scan statistic modified to analyze genetic variation in protein 3D space, we found significant enrichment of disease-associated variants in the converter, a kinetic domain that transduces force from the catalytic domain to the lever arm to accomplish the power stroke. Focusing our analysis on surface-exposed residues, we identified a larger region significantly enriched for disease-associated variants that contains both the converter domain and residues on a single flat surface on the myosin head described as the myosin mesa. Notably, patients with HCM with variants in the enriched regions have earlier disease onset than patients who have HCM with variants elsewhere. Our study provides a model for integrating protein structure, large-scale genetic sequencing, and detailed phenotypic data to reveal insight into time-shifted protein structures and genetic disease. PMID:27247418
DUNCAN, LUKE J.; MANGIARDI, DOMINIC A.; MATSUI, JONATHAN I.; ANDERSON, JULIA K.; McLAUGHLIN-WILLIAMSON, KATE; COTANCHE, DOUGLAS A.
2008-01-01
Hair cells of the inner ear are damaged by intense noise, aging, and aminoglycoside antibiotics. Gentamicin causes oxidative damage to hair cells, inducing apoptosis. In mammals, hair cell loss results in a permanent deficit in hearing and balance. In contrast, avians can regenerate lost hair cells to restore auditory and vestibular function. This study examined the changes of myosin VI and myosin VIIa, two unconventional myosins that are critical for normal hair cell formation and function, during hair cell death and regeneration. During the late stages of apoptosis, damaged hair cells are ejected from the sensory epithelium. There was a 4–5-fold increase in the labeling intensity of both myosins and a redistribution of myosin VI into the stereocilia bundle, concurrent with ejection. Two separate mechanisms were observed during hair cell regeneration. Proliferating supporting cells began DNA synthesis 60 hours after gentamicin treatment and peaked at 72 hours postgentamicin treatment. Some of these mitotically produced cells began to differentiate into hair cells at 108 hours after gentamicin (36 hours after bromodeoxyuridine (BrdU) administration), as demonstrated by the colabeling of myosin VI and BrdU. Myosin VIIa was not expressed in the new hair cells until 120 hours after gentamicin. Moreover, a population of supporting cells expressed myosin VI at 78 hours after gentamicin treatment and myosin VIIa at 90 hours. These cells did not label for BrdU and differentiated far too early to be of mitotic origin, suggesting they arose by direct transdifferentiation of supporting cells into hair cells. PMID:17048225
Zhu, Jie; Burakov, Anton; Rodionov, Vladimir
2010-01-01
The centrosome position in many types of interphase cells is actively maintained in the cell center. Our previous work indicated that the centrosome is kept at the center by pulling force generated by dynein and actin flow produced by myosin contraction and that an unidentified factor that depends on microtubule dynamics destabilizes position of the centrosome. Here, we use modeling to simulate the centrosome positioning based on the idea that the balance of three forces—dyneins pulling along microtubule length, myosin-powered centripetal drag, and microtubules pushing on organelles—is responsible for the centrosome displacement. By comparing numerical predictions with centrosome behavior in wild-type and perturbed interphase cells, we rule out several plausible hypotheses about the nature of the microtubule-based force. We conclude that strong dynein- and weaker myosin-generated forces pull the microtubules inward competing with microtubule plus-ends pushing the microtubule aster outward and that the balance of these forces positions the centrosome at the cell center. The model also predicts that kinesin action could be another outward-pushing force. Simulations demonstrate that the force-balance centering mechanism is robust yet versatile. We use the experimental observations to reverse engineer the characteristic forces and centrosome mobility. PMID:20980619
Fission yeast tropomyosin specifies directed transport of myosin-V along actin cables
Clayton, Joseph E.; Pollard, Luther W.; Sckolnick, Maria; Bookwalter, Carol S.; Hodges, Alex R.; Trybus, Kathleen M.; Lord, Matthew
2014-01-01
A hallmark of class-V myosins is their processivity—the ability to take multiple steps along actin filaments without dissociating. Our previous work suggested, however, that the fission yeast myosin-V (Myo52p) is a nonprocessive motor whose activity is enhanced by tropomyosin (Cdc8p). Here we investigate the molecular mechanism and physiological relevance of tropomyosin-mediated regulation of Myo52p transport, using a combination of in vitro and in vivo approaches. Single molecules of Myo52p, visualized by total internal reflection fluorescence microscopy, moved processively only when Cdc8p was present on actin filaments. Small ensembles of Myo52p bound to a quantum dot, mimicking the number of motors bound to physiological cargo, also required Cdc8p for continuous motion. Although a truncated form of Myo52p that lacked a cargo-binding domain failed to support function in vivo, it still underwent actin-dependent movement to polarized growth sites. This result suggests that truncated Myo52p lacking cargo, or single molecules of wild-type Myo52p with small cargoes, can undergo processive movement along actin-Cdc8p cables in vivo. Our findings outline a mechanism by which tropomyosin facilitates sorting of transport to specific actin tracks within the cell by switching on myosin processivity. PMID:24196839
An increase or a decrease in myosin II phosphorylation inhibits macrophage motility
1991-01-01
Myosin II purified from mammalian non-muscle cells is phosphorylated on the 20-kD light chain subunit (MLC20) by the Ca2+/calmodulin-dependent enzyme myosin light chain kinase (MLCK). The importance of MLC20 phosphorylation in regulating cell motility was investigated by introducing either antibodies to MLCK (MK-Ab) or a Ca2+/calmodulin- independent, constitutively active form of MLCK (MK-) into macrophages. The effects of these proteins on cell motility were then determined using a quantitative chemotaxis assay. Chemotaxis is significantly diminished in macrophages containing MK-Ab compared to macrophages containing control antibodies. Moreover, there is an inverse relationship between the number of cells that migrate and the amount of MK-Ab introduced into cells. Interestingly, there is also an inverse relationship between the number of cells that migrate and the amount of MK- introduced into cells. Other experiments demonstrated that MK-Ab decreased intracellular MLC20 phosphorylation while MK- increased MLC20 phosphorylation. MK- also increased the amount of myosin associated with the cytoskeleton. These data demonstrate that the regulation of MLCK is an important aspect of cell motility and suggest that MLC20 phosphorylation must be maintained within narrow limits during translational motility by mammalian cells. PMID:2071674
Myosin Vs organize actin cables in fission yeast
Lo Presti, Libera; Chang, Fred; Martin, Sophie G.
2012-01-01
Myosin V motors are believed to contribute to cell polarization by carrying cargoes along actin tracks. In Schizosaccharomyces pombe, Myosin Vs transport secretory vesicles along actin cables, which are dynamic actin bundles assembled by the formin For3 at cell poles. How these flexible structures are able to extend longitudinally in the cell through the dense cytoplasm is unknown. Here we show that in myosin V (myo52 myo51) null cells, actin cables are curled, bundled, and fail to extend into the cell interior. They also exhibit reduced retrograde flow, suggesting that formin-mediated actin assembly is impaired. Myo52 may contribute to actin cable organization by delivering actin regulators to cell poles, as myoV∆ defects are partially suppressed by diverting cargoes toward cell tips onto microtubules with a kinesin 7–Myo52 tail chimera. In addition, Myo52 motor activity may pull on cables to provide the tension necessary for their extension and efficient assembly, as artificially tethering actin cables to the nuclear envelope via a Myo52 motor domain restores actin cable extension and retrograde flow in myoV mutants. Together these in vivo data reveal elements of a self-organizing system in which the motors shape their own tracks by transporting cargoes and exerting physical pulling forces. PMID:23051734
Myosin Vs organize actin cables in fission yeast.
Lo Presti, Libera; Chang, Fred; Martin, Sophie G
2012-12-01
Myosin V motors are believed to contribute to cell polarization by carrying cargoes along actin tracks. In Schizosaccharomyces pombe, Myosin Vs transport secretory vesicles along actin cables, which are dynamic actin bundles assembled by the formin For3 at cell poles. How these flexible structures are able to extend longitudinally in the cell through the dense cytoplasm is unknown. Here we show that in myosin V (myo52 myo51) null cells, actin cables are curled, bundled, and fail to extend into the cell interior. They also exhibit reduced retrograde flow, suggesting that formin-mediated actin assembly is impaired. Myo52 may contribute to actin cable organization by delivering actin regulators to cell poles, as myoV defects are partially suppressed by diverting cargoes toward cell tips onto microtubules with a kinesin 7-Myo52 tail chimera. In addition, Myo52 motor activity may pull on cables to provide the tension necessary for their extension and efficient assembly, as artificially tethering actin cables to the nuclear envelope via a Myo52 motor domain restores actin cable extension and retrograde flow in myoV mutants. Together these in vivo data reveal elements of a self-organizing system in which the motors shape their own tracks by transporting cargoes and exerting physical pulling forces.
Zhu, Jie; Burakov, Anton; Rodionov, Vladimir; Mogilner, Alex
2010-12-01
The centrosome position in many types of interphase cells is actively maintained in the cell center. Our previous work indicated that the centrosome is kept at the center by pulling force generated by dynein and actin flow produced by myosin contraction and that an unidentified factor that depends on microtubule dynamics destabilizes position of the centrosome. Here, we use modeling to simulate the centrosome positioning based on the idea that the balance of three forces-dyneins pulling along microtubule length, myosin-powered centripetal drag, and microtubules pushing on organelles-is responsible for the centrosome displacement. By comparing numerical predictions with centrosome behavior in wild-type and perturbed interphase cells, we rule out several plausible hypotheses about the nature of the microtubule-based force. We conclude that strong dynein- and weaker myosin-generated forces pull the microtubules inward competing with microtubule plus-ends pushing the microtubule aster outward and that the balance of these forces positions the centrosome at the cell center. The model also predicts that kinesin action could be another outward-pushing force. Simulations demonstrate that the force-balance centering mechanism is robust yet versatile. We use the experimental observations to reverse engineer the characteristic forces and centrosome mobility.
Characterization of myosin light chain in shrimp hemocytic phagocytosis.
Han, Fang; Wang, Zhiyong; Wang, Xiaoqing
2010-11-01
Myosin light chain, a well-known cytoskeleton gene, regulates multiple processes that are involved in material transport, muscle shrink and cell division. However, its function in phagocytosis against invading pathogens in crustacean remains unknown. In this investigation, a myosin light chain gene was obtained from Marsupenaeus japonicus shrimp. The full-length cDNA of this gene was of 766 bp and an open reading frame (ORF) of 462 bp encoding a polypeptide of 153 amino acids. The myosin light chain protein was expressed in Escherichia coli and purified. Subsequently the specific antibody was raised using the purified GST fusion protein. As revealed by immuno-electron microscopy, the myosin light chain protein was only expressed in the dark bands of muscle. In the present study, the myosin light chain gene was up-regulated in the WSSV-resistant shrimp as revealed by real-time PCR and western blot. And the phagocytic percentage and phagocytic index using FITC-labeled Vibrio parahemolyticus were remarkably increased in the WSSV-resistant shrimp, suggesting that the myosin light chain protein was essential in hemocytic phagocytosis. On the other hand, RNAi assays indicated that the phagocytic percentage and phagocytic index were significantly decreased when the myosin light chain gene was silenced by sequence-specific siRNA. These findings suggested that myosin light chain protein was involved in the regulation of hemocytic phagocytosis of shrimp. Copyright 2010 Elsevier Ltd. All rights reserved.
Participation of Myosin Va and Pka Type I in the Regeneration of Neuromuscular Junctions
Röder, Ira Verena; Strack, Siegfried; Reischl, Markus; Dahley, Oliver; Khan, Muzamil Majid; Kassel, Olivier; Zaccolo, Manuela; Rudolf, Rüdiger
2012-01-01
Background The unconventional motor protein, myosin Va, is crucial for the development of the mouse neuromuscular junction (NMJ) in the early postnatal phase. Furthermore, the cooperative action of protein kinase A (PKA) and myosin Va is essential to maintain the adult NMJ. We here assessed the involvement of myosin Va and PKA in NMJ recovery during muscle regeneration. Methodology/Principal Findings To address a putative role of myosin Va and PKA in the process of muscle regeneration, we used two experimental models the dystrophic mdx mouse and Notexin-induced muscle degeneration/regeneration. We found that in both systems myosin Va and PKA type I accumulate beneath the NMJs in a fiber maturation-dependent manner. Morphologically intact NMJs were found to express stable nicotinic acetylcholine receptors and to accumulate myosin Va and PKA type I in the subsynaptic region. Subsynaptic cAMP signaling was strongly altered in dystrophic muscle, particularly in fibers with severely subverted NMJ morphology. Conclusions/Significance Our data show a correlation between the subsynaptic accumulation of myosin Va and PKA type I on the one hand and NMJ regeneration status and morphology, AChR stability and specificity of subsynaptic cAMP handling on the other hand. This suggests an important role of myosin Va and PKA type I for the maturation of NMJs in regenerating muscle. PMID:22815846
NASA Astrophysics Data System (ADS)
Walcott, Sam
2013-03-01
Interactions between the proteins actin and myosin drive muscle contraction. Properties of a single myosin interacting with an actin filament are largely known, but a trillion myosins work together in muscle. We are interested in how single-molecule properties relate to ensemble function. Myosin's reaction rates depend on force, so ensemble models keep track of both molecular state and force on each molecule. These models make subtle predictions, e.g. that myosin, when part of an ensemble, moves actin faster than when isolated. This acceleration arises because forces between molecules speed reaction kinetics. Experiments support this prediction and allow parameter estimates. A model based on this analysis describes experiments from single molecule to ensemble. In vivo, actin is regulated by proteins that, when present, cause the binding of one myosin to speed the binding of its neighbors; binding becomes cooperative. Although such interactions preclude the mean field approximation, a set of linear ODEs describes these ensembles under simplified experimental conditions. In these experiments cooperativity is strong, with the binding of one molecule affecting ten neighbors on either side. We progress toward a description of myosin ensembles under physiological conditions.
Chen, Guokai; Hou, Zhonggang; Gulbranson, Daniel R; Thomson, James A
2010-08-06
Human ESCs are the pluripotent precursor of the three embryonic germ layers. Human ESCs exhibit basal-apical polarity, junctional complexes, integrin-dependent matrix adhesion, and E-cadherin-dependent cell-cell adhesion, all characteristics shared by the epiblast epithelium of the intact mammalian embryo. After disruption of epithelial structures, programmed cell death is commonly observed. If individualized human ESCs are prevented from reattaching and forming colonies, their viability is significantly reduced. Here, we show that actin-myosin contraction is a critical effector of the cell death response to human ESC dissociation. Inhibition of myosin heavy chain ATPase, downregulation of myosin heavy chain, and downregulation of myosin light chain all increase survival and cloning efficiency of individualized human ESCs. ROCK inhibition decreases phosphorylation of myosin light chain, suggesting that inhibition of actin-myosin contraction is also the mechanism through which ROCK inhibitors increase cloning efficiency of human ESCs. Copyright 2010 Elsevier Inc. All rights reserved.
Arabidopsis Myosins XI1, XI2, and XIK Are Crucial for Gravity-Induced Bending of Inflorescence Stems
Talts, Kristiina; Ilau, Birger; Ojangu, Eve-Ly; Tanner, Krista; Peremyslov, Valera V.; Dolja, Valerian V.; Truve, Erkki; Paves, Heiti
2016-01-01
Myosins and actin filaments in the actomyosin system act in concert in regulating cell structure and dynamics and are also assumed to contribute to plant gravitropic response. To investigate the role of the actomyosin system in the inflorescence stem gravitropism, we used single and multiple mutants affecting each of the 17 Arabidopsis myosins of class VIII and XI. We show that class XI but not class VIII myosins are required for stem gravitropism. Simultaneous loss of function of myosins XI1, XI2, and XIK leads to impaired gravitropic bending that is correlated with altered growth, stiffness, and insufficient sedimentation of gravity sensing amyloplasts in stem endodermal cells. The gravitropic defect of the corresponding triple mutant xi1 xi2 xik could be rescued by stable expression of the functional XIK:YFP in the mutant background, indicating a role of class XI myosins in this process. Altogether, our results emphasize the critical contributions of myosins XI in stem gravitropism of Arabidopsis. PMID:28066484
The post-rigor structure of myosin VI and implications for the recovery stroke
Ménétrey, Julie; Llinas, Paola; Cicolari, Jérome; Squires, Gaëlle; Liu, Xiaoyan; Li, Anna; Sweeney, H Lee; Houdusse, Anne
2008-01-01
Myosin VI has an unexpectedly large swing of its lever arm (powerstroke) that optimizes its unique reverse direction movement. The basis for this is an unprecedented rearrangement of the subdomain to which the lever arm is attached, referred to as the converter. It is unclear at what point(s) in the myosin VI ATPase cycle rearrangements in the converter occur, and how this would effect lever arm position. We solved the structure of myosin VI with an ATP analogue (ADP.BeF3) bound in its nucleotide-binding pocket. The structure reveals that no rearrangement in the converter occur upon ATP binding. Based on previously solved myosin structures, our structure suggests that no reversal of the powerstroke occurs during detachment of myosin VI from actin. The structure also reveals novel features of the myosin VI motor that may be important in maintaining the converter conformation during detachment from actin, and other features that may promote rapid rearrangements in the structure following actin detachment that enable hydrolysis of ATP. PMID:18046460
Arasada, Rajesh; Sayyad, Wasim A.; Berro, Julien; Pollard, Thomas D.
2018-01-01
To internalize nutrients and cell surface receptors via clathrin-mediated endocytosis, cells assemble at least 50 proteins, including clathrin, clathrin-interacting proteins, actin filaments, and actin binding proteins, in a highly ordered and regulated manner. The molecular mechanism by which actin filament polymerization deforms the cell membrane is unknown, largely due to lack of knowledge about the organization of the regulatory proteins and actin filaments. We used high-speed superresolution localization microscopy of live fission yeast cells to improve the spatial resolution to ∼35 nm with 1-s temporal resolution. The nucleation promoting factors Wsp1p (WASp) and Myo1p (myosin-I) define two independent pathways that recruit Arp2/3 complex, which assembles two zones of actin filaments. Myo1p concentrates at the site of endocytosis and initiates a zone of actin filaments assembled by Arp2/3 complex. Wsp1p appears simultaneously at this site but subsequently moves away from the cell surface as it stimulates Arp2/3 complex to assemble a second zone of actin filaments. Cells lacking either nucleation-promoting factor assemble only one, stationary, zone of actin filaments. These observations support our two-zone hypothesis to explain endocytic tubule elongation and vesicle scission in fission yeast. PMID:29212877
Force Dynamics During T Cell Activation
NASA Astrophysics Data System (ADS)
Garcia, David A.; Upadhyaya, Arpita
T cell activation is an essential step in the adaptive immune response. The binding of the T cell receptor (TCR) with antigen triggers signaling cascades and cell spreading. Physical forces exerted on the TCR by the cytoskeleton have been shown to induce signaling events. While cellular forces are known to depend on the mechanical properties of the cytoskeleton, the biophysical mechanisms underlying force induced activation of TCR-antigen interactions unknown. Here, we use traction force microscopy to measure the force dynamics of activated Jurkat T cells. The movements of beads embedded in an elastic gel serve as a non-invasive reporter of cytoskeletal and molecular motor dynamics. We examined the statistical structure of the force profiles throughout the cell during signaling activation. We found two spatially distinct active regimes of force generation characterized by different time scales. Typically, the interior of the cells was found to be more active than the periphery. Inhibition of myosin motor activity altered the correlation time of the bead displacements indicating additional sources of stochastic force generation. Our results indicate a complex interaction between myosin activity and actin polymerization dynamics in producing cellular forces in immune cells.
Kopylova, G V; Shchepkin, D V; Bershitsky, S Y
2018-05-01
The molecular mechanism of the failure of contractile function of skeletal muscles caused by oxidative damage to myosin in hyperthyroidism is not fully understood. Using an in vitro motility assay, we studied the effect of myosin damage caused by oxidative stress in experimental hyperthyroidism on the actin-myosin interaction and its regulation by calcium. We found that hyperthyroidism-induced oxidation of myosin is accompanied by a decrease in the sliding velocity of the regulated thin filaments in the in vitro motility assay, and this effect is increased with the duration of the pathological process.
1992-01-01
Recent biochemical studies of p190, a calmodulin (CM)-binding protein purified from vertebrate brain, have demonstrated that this protein, purified as a complex with bound CM, shares a number of properties with myosins (Espindola, F. S., E. M. Espreafico, M. V. Coelho, A. R. Martins, F. R. C. Costa, M. S. Mooseker, and R. E. Larson. 1992. J. Cell Biol. 118:359-368). To determine whether or not p190 was a member of the myosin family of proteins, a set of overlapping cDNAs encoding the full-length protein sequence of chicken brain p190 was isolated and sequenced. Verification that the deduced primary structure was that of p190 was demonstrated through microsequence analysis of a cyanogen bromide peptide generated from chick brain p190. The deduced primary structure of chicken brain p190 revealed that this 1,830-amino acid (aa) 212,509-D) protein is a member of a novel structural class of unconventional myosins that includes the gene products encoded by the dilute locus of mouse and the MYO2 gene of Saccharomyces cerevisiae. We have named the p190-CM complex "myosin-V" based on the results of a detailed sequence comparison of the head domains of 29 myosin heavy chains (hc), which has revealed that this myosin, based on head structure, is the fifth of six distinct structural classes of myosin to be described thus far. Like the presumed products of the mouse dilute and yeast MYO2 genes, the head domain of chicken myosin-V hc (aa 1-764) is linked to a "neck" domain (aa 765-909) consisting of six tandem repeats of an approximately 23-aa "IQ-motif." All known myosins contain at least one such motif at their head-tail junctions; these IQ-motifs may function as calmodulin or light chain binding sites. The tail domain of chicken myosin-V consists of an initial 511 aa predicted to form several segments of coiled-coil alpha helix followed by a terminal 410-aa globular domain (aa, 1,421-1,830). Interestingly, a portion of the tail domain (aa, 1,094-1,830) shares 58% amino acid sequence identity with a 723-aa protein from mouse brain reported to be a glutamic acid decarboxylase. The neck region of chicken myosin-V, which contains the IQ-motifs, was demonstrated to contain the binding sites for CM by analyzing CM binding to bacterially expressed fusion proteins containing the head, neck, and tail domains. Immunolocalization of myosin-V in brain and in cultured cells revealed an unusual distribution for this myosin in both neurons and nonneuronal cells.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1469047
STEF/TIAM2-mediated Rac1 activity at the nuclear envelope regulates the perinuclear actin cap.
Woroniuk, Anna; Porter, Andrew; White, Gavin; Newman, Daniel T; Diamantopoulou, Zoi; Waring, Thomas; Rooney, Claire; Strathdee, Douglas; Marston, Daniel J; Hahn, Klaus M; Sansom, Owen J; Zech, Tobias; Malliri, Angeliki
2018-05-29
The perinuclear actin cap is an important cytoskeletal structure that regulates nuclear morphology and re-orientation during front-rear polarisation. The mechanisms regulating the actin cap are currently poorly understood. Here, we demonstrate that STEF/TIAM2, a Rac1 selective guanine nucleotide exchange factor, localises at the nuclear envelope, co-localising with the key perinuclear proteins Nesprin-2G and Non-muscle myosin IIB (NMMIIB), where it regulates perinuclear Rac1 activity. We show that STEF depletion reduces apical perinuclear actin cables (a phenotype rescued by targeting active Rac1 to the nuclear envelope), increases nuclear height and impairs nuclear re-orientation. STEF down-regulation also reduces perinuclear pMLC and decreases myosin-generated tension at the nuclear envelope, suggesting that STEF-mediated Rac1 activity regulates NMMIIB activity to promote stabilisation of the perinuclear actin cap. Finally, STEF depletion decreases nuclear stiffness and reduces expression of TAZ-regulated genes, indicating an alteration in mechanosensing pathways as a consequence of disruption of the actin cap.
Boettner, Benjamin; Van Aelst, Linda
2007-01-01
Epithelial morphogenesis is characterized by an exquisite control of cell shape and position. Progression through dorsal closure in Drosophila gastrulation depends on the ability of Rap1 GTPase to signal through the adherens junctional multidomain protein Canoe. Here, we provide genetic evidence that epithelial Rap activation and Canoe effector usage are conferred by the Drosophila PDZ-GEF (dPDZ-GEF) exchange factor. We demonstrate that dPDZ-GEF/Rap/Canoe signaling modulates cell shape and apicolateral cell constriction in embryonic and wing disc epithelia. In dPDZ-GEF mutant embryos with strong dorsal closure defects, cells in the lateral ectoderm fail to properly elongate. Postembryonic dPDZ-GEF mutant cells generated in mosaic tissue display a striking extension of lateral cell perimeters in the proximity of junctional complexes, suggesting a loss of normal cell contractility. Furthermore, our data indicate that dPDZ-GEF signaling is linked to myosin II function. Both dPDZ-GEF and cno show strong genetic interactions with the myosin II-encoding gene, and myosin II distribution is severely perturbed in epithelia of both mutants. These findings provide the first insight into the molecular machinery targeted by Rap signaling to modulate epithelial plasticity. We propose that dPDZ-GEF-dependent signaling functions as a rheostat linking Rap activity to the regulation of cell shape in epithelial morphogenesis at different developmental stages. PMID:17846121
Different Head Environments in Tarantula Thick Filaments Support a Cooperative Activation Process
Sulbarán, Guidenn; Biasutto, Antonio; Alamo, Lorenzo; Riggs, Claire; Pinto, Antonio; Méndez, Franklin; Craig, Roger; Padrón, Raúl
2013-01-01
Myosin filaments from many muscles are activated by phosphorylation of their regulatory light chains (RLCs). Structural analysis of relaxed tarantula thick filaments shows that the RLCs of the interacting free and blocked myosin heads are in different environments. This and other data suggested a phosphorylation mechanism in which Ser-35 of the free head is exposed and constitutively phosphorylated by protein kinase C, whereas the blocked head is hidden and unphosphorylated; on activation, myosin light chain kinase phosphorylates the monophosphorylated free head followed by the unphosphorylated blocked head, both at Ser-45. Our goal was to test this model of phosphorylation. Mass spectrometry of quickly frozen, intact muscles showed that only Ser-35 was phosphorylated in the relaxed state. The location of this constitutively phosphorylated Ser-35 was analyzed by immunofluorescence, using antibodies specific for unphosphorylated or phosphorylated Ser-35. In the relaxed state, myofibrils were labeled by anti-pSer-35 but not by anti-Ser-35, whereas in rigor, labeling was similar with both. This suggests that only pSer-35 is exposed in the relaxed state, while in rigor, Ser-35 is also exposed. In the interacting-head motif of relaxed filaments, only the free head RLCs are exposed, suggesting that the constitutive pSer-35 is on the free heads, consistent with the proposed mechanism. PMID:24209856
Baxley, Tamatha; Johnson, Dylan; Pinto, Jose R; Chalovich, Joseph M
2017-06-13
Striated muscle contraction is regulated by the actin-associated proteins tropomyosin and troponin. The extent of activation of myosin ATPase activity is lowest in the absence of both Ca 2+ and activating cross-bridges (i.e., S1-ADP or rigor S1). Binding of activating species of myosin to actin at a saturating Ca 2+ concentration stabilizes the most active state (M state) of the actin-tropomyosin-troponin complex (regulated actin). Ca 2+ binding alone produces partial stabilization of the active state. The extent of stabilization at a saturating Ca 2+ concentration depends on the isoform of the troponin subunits, the phosphorylation state of troponin, and, in the case of cardiac muscle, the presence of hypertrophic cardiomyopathy-producing mutants of troponin T and troponin I. Cardiac dysfunction is also associated with mutations of troponin C (TnC). Troponin C mutants A8V, C84Y, and D145E increase the Ca 2+ sensitivity of ATPase activity. We show that these mutants change the distribution of regulated actin states. The A8V and C84Y TnC mutants decreased the inactive B state distribution slightly at low Ca 2+ concentrations, but the D145E mutants had no effect on that state. All TnC mutants increased the level of the active M state compared to that of the wild type, at a saturating Ca 2+ concentration. Troponin complexes that contained two mutations that stabilize the active M state, A8V TnC and Δ14 TnT, appeared to be completely in the active state in the presence of only Ca 2+ . Because Ca 2+ gives full activation, in this situation, troponin must be capable of positioning tropomyosin in the active M state without the need for rigor myosin binding.
Riveline, D; Zamir, E; Balaban, N Q; Schwarz, U S; Ishizaki, T; Narumiya, S; Kam, Z; Geiger, B; Bershadsky, A D
2001-06-11
The transition of cell-matrix adhesions from the initial punctate focal complexes into the mature elongated form, known as focal contacts, requires GTPase Rho activity. In particular, activation of myosin II-driven contractility by a Rho target known as Rho-associated kinase (ROCK) was shown to be essential for focal contact formation. To dissect the mechanism of Rho-dependent induction of focal contacts and to elucidate the role of cell contractility, we applied mechanical force to vinculin-containing dot-like adhesions at the cell edge using a micropipette. Local centripetal pulling led to local assembly and elongation of these structures and to their development into streak-like focal contacts, as revealed by the dynamics of green fluorescent protein-tagged vinculin or paxillin and interference reflection microscopy. Inhibition of Rho activity by C3 transferase suppressed this force-induced focal contact formation. However, constitutively active mutants of another Rho target, the formin homology protein mDia1 (Watanabe, N., T. Kato, A. Fujita, T. Ishizaki, and S. Narumiya. 1999. Nat. Cell Biol. 1:136-143), were sufficient to restore force-induced focal contact formation in C3 transferase-treated cells. Force-induced formation of the focal contacts still occurred in cells subjected to myosin II and ROCK inhibition. Thus, as long as mDia1 is active, external tension force bypasses the requirement for ROCK-mediated myosin II contractility in the induction of focal contacts. Our experiments show that integrin-containing focal complexes behave as individual mechanosensors exhibiting directional assembly in response to local force.
Watching single molecules dance
NASA Astrophysics Data System (ADS)
Mehta, Amit Dinesh
Molecular motors convert chemical energy, from ATP hydrolysis or ion flow, into mechanical motion. A variety of increasingly precise mechanical probes have been developed to monitor and perturb these motors at the single molecule level. Several outstanding questions can be best approached at the single molecule level. These include: how far does a motor progress per energy quanta consumed? how does its reaction cycle respond to load? how many productive catalytic cycles can it undergo per diffusional encounter with its track? and what is the mechanical stiffness of a single molecule connection? A dual beam optical trap, in conjunction with in vitro ensemble motility assays, has been used to characterize two members of the myosin superfamily: muscle myosin II and chick brain myosin V. Both move the helical polymer actin, but myosin II acts in large ensembles to drive muscle contraction or cytokinesis, while myosin V acts in small numbers to transport vesicles. An optical trapping apparatus was rendered sufficiently precise to identify a myosin working stroke with 1nm or so, barring systematic errors such as those perhaps due to random protein orientations. This and other light microscopic motility assays were used to characterize myosin V: unlike myosin II this vesicle transport protein moves through many increments of travel while remaining strongly bound to a single actin filament. The step size, stall force, and travel distance of myosin V reveal a remarkably efficient motor capable of moving along a helical track for over a micrometer without significantly spiraling around it. Such properties are fully consistent with the putative role of an organelle transport motor, present in small numbers to maintain movement over long ranges relative to cellular size scales. The contrast between myosin II and myosin V resembles that between a human running on the moon and one walking on earth, where the former allows for faster motion when in larger ensembles but for less travel distance when in smaller ones.
Motility assays using myosin attached to surfaces through specific binding to monoclonal antibodies.
Winkelmann, D. A.; Bourdieu, L.; Kinose, F.; Libchaber, A.
1995-01-01
We have analyzed the dependence of actin filament movement on the mode of myosin attachment to surfaces. Monoclonal antibodies that bind to three distinct sites were used to tether myosin to nitrocellulose-coated glass. One antibody reacts with an epitope on the regulatory light chain located at the head-rod junction. The other two react with sites in the rod domain, one in the S2 region near the S2-LMM hinge, and the other at the C terminus of the myosin rod. These monoclonal antibodies were used to provide increasing flexibility in the mode of attachment. Fast skeletal muscle myosin monomers were bound to the surfaces through the specific interaction with these monoclonal antibodies and the sliding movement of fluorescently labeled actin filaments analyzed by video microscopy. Each of these antibodies produced stable, myosin-coated surfaces that supported uniform movement of actin over the course of several hours. Attachment of myosin through the anti-S2 and anti-LMM monoclonal antibodies yielded a maximum velocity of 10 microns/s at 30 degrees C, whereas attachment through anti-LC2 produced a lower velocity of 4-5 microns/s. Each antibody showed a characteristic minimum myosin density below which sliding movement was no longer supported and an exponential dependence of actin filament velocity on myosin surface density below Vmax. Maximum sliding velocity was achieved over a range of myosin surface densities. Thus, the specific mode of attachment can influence the characteristic velocity of actin filament movement and the surface density needed to support movement. These data are being used to analyze the dynamics of sliding filament assays and evaluate estimates of the average number of motor molecules per unit length of actin required to support movement. PMID:7787107
2012-01-01
Background The positioning and dynamics of vesicles and organelles, and thus the growth of plant cells, is mediated by the acto-myosin system. In Arabidopsis there are 13 class XI myosins which mediate vesicle and organelle transport in different cell types. So far the involvement of five class XI myosins in cell expansion during the shoot and root development has been shown, three of which, XI-1, XI-2, and XI-K, are essential for organelle transport. Results Simultaneous depletion of Arabidopsis class XI myosins XI-K, XI-1, and XI-2 in double and triple mutant plants affected the growth of several types of epidermal cells. The size and shape of trichomes, leaf pavement cells and the elongation of the stigmatic papillae of double and triple mutant plants were affected to different extent. Reduced cell size led to significant size reduction of shoot organs in the case of triple mutant, affecting bolt formation, flowering time and fertility. Phenotype analysis revealed that the reduced fertility of triple mutant plants was caused by delayed or insufficient development of pistils. Conclusions We conclude that the class XI myosins XI-K, XI-1 and XI-2 have partially redundant roles in the growth of shoot epidermis. Myosin XI-K plays more important role whereas myosins XI-1 and XI-2 have minor roles in the determination of size and shape of epidermal cells, because the absence of these two myosins is compensated by XI-K. Co-operation between myosins XI-K and XI-2 appears to play an important role in these processes. PMID:22672737
Myosin content of individual human muscle fibers isolated by laser capture microdissection.
Stuart, Charles A; Stone, William L; Howell, Mary E A; Brannon, Marianne F; Hall, H Kenton; Gibson, Andrew L; Stone, Michael H
2016-03-01
Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle. Copyright © 2016 the American Physiological Society.
Myosin content of individual human muscle fibers isolated by laser capture microdissection
Stone, William L.; Howell, Mary E. A.; Brannon, Marianne F.; Hall, H. Kenton; Gibson, Andrew L.; Stone, Michael H.
2015-01-01
Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle. PMID:26676053
Thermodynamic evidence of non-muscle myosin II-lipid-membrane interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schewkunow, Vitali; Sharma, Karan P.; Diez, Gerold
2008-02-08
A unique feature of protein networks in living cells is that they can generate their own force. Proteins such as non-muscle myosin II are an integral part of the cytoskeleton and have the capacity to convert the energy of ATP hydrolysis into directional movement. Non-muscle myosin II can move actin filaments against each other, and depending on the orientation of the filaments and the way in which they are linked together, it can produce contraction, bending, extension, and stiffening. Our measurements with differential scanning calorimetry showed that non-muscle myosin II inserts into negatively charged phospholipid membranes. Using lipid vesicles mademore » of DMPG/DMPC at a molar ratio of 1:1 at 10 mg/ml in the presence of different non-muscle myosin II concentrations showed a variation of the main phase transition of the lipid vesicle at around 23 deg. C. With increasing concentrations of non-muscle myosin II the thermotropic properties of the lipid vesicle changed, which is indicative of protein-lipid interaction/insertion. We hypothesize that myosin tail binds to acidic phospholipids through an electrostatic interaction using the basic side groups of positive residues; the flexible, amphipathic helix then may partially penetrate into the bilayer to form an anchor. Using the stopped-flow method, we determined the binding affinity of non-muscle myosin II when anchored to lipid vesicles with actin, which was similar to a pure actin-non-muscle myosin II system. Insertion of myosin tail into the hydrophobic region of lipid membranes, a model known as the lever arm mechanism, might explain how its interaction with actin generates cellular movement.« less
The Role of Structural Dynamics of Actin in Class-Specific Myosin Motility
Noguchi, Taro Q. P.; Morimatsu, Masatoshi; Iwane, Atsuko H.; Yanagida, Toshio; Uyeda, Taro Q. P.
2015-01-01
The structural dynamics of actin, including the tilting motion between the small and large domains, are essential for proper interactions with actin-binding proteins. Gly146 is situated at the hinge between the two domains, and we previously showed that a G146V mutation leads to severe motility defects in skeletal myosin but has no effect on motility of myosin V. The present study tested the hypothesis that G146V mutation impaired rotation between the two domains, leading to such functional defects. First, our study showed that depolymerization of G146V filaments was slower than that of wild-type filaments. This result is consistent with the distinction of structural states of G146V filaments from those of the wild type, considering the recent report that stabilization of actin filaments involves rotation of the two domains. Next, we measured intramolecular FRET efficiencies between two fluorophores in the two domains with or without skeletal muscle heavy meromyosin or the heavy meromyosin equivalent of myosin V in the presence of ATP. Single-molecule FRET measurements showed that the conformations of actin subunits of control and G146V actin filaments were different in the presence of skeletal muscle heavy meromyosin. This altered conformation of G146V subunits may lead to motility defects in myosin II. In contrast, distributions of FRET efficiencies of control and G146V subunits were similar in the presence of myosin V, consistent with the lack of motility defects in G146V actin with myosin V. The distribution of FRET efficiencies in the presence of myosin V was different from that in the presence of skeletal muscle heavy meromyosin, implying that the roles of actin conformation in myosin motility depend on the type of myosin. PMID:25945499
Fetal myosin immunoreactivity in human dystrophic muscle.
Schiaffino, S; Gorza, L; Dones, I; Cornelio, F; Sartore, S
1986-01-01
We report immunofluorescence observations on normal and dystrophic human muscle using an antibody (anti-bF) raised against bovine fetal myosin and specific for fetal myosin heavy chains. In rat skeletal muscle, anti-bF was previously found to react selectively with myosin isoforms expressed during fetal and early postnatal development and in regenerating muscles. Anti-bF stained most fibers in human fetal and neonatal muscle, whereas only nuclear chain fibers of muscle spindles were labeled in normal adult muscle. In muscle biopsies from patients with Duchenne's muscular dystrophy, numerous extrafusal fibers were stained: some were small regenerating fibers, others were larger fibers presumably resulting from previous regenerative events. Fetal myosin immunoreactivity in Duchenne's dystrophy appears to reflect the reexpression of fetal-specific myosin isoforms and provides a new valuable tool for identifying regenerating fibers and following their destiny in dystrophic muscle.
Kagawa, Maiko; Sato, Naruki; Obinata, Takashi
2006-11-01
Actin filaments align around myosin filaments in the correct polarity and in a hexagonal arrangement to form cross-striated structures. It has been postulated that this myosin-actin interaction is important in the initial phase of myofibrillogenesis. It was previously demonstrated that an inhibitor of actin-myosin interaction, BDM (2,3-butanedione monoxime), suppresses myofibril formation in muscle cells in culture. However, further study showed that BDM also exerts several additional effects on living cells. In this study, we further examined the role of actin-myosin interaction in myofibril assembly in primary cultures of chick embryonic skeletal muscle by applying a more specific inhibitor, BTS (N-benzyl-p-toluene sulphonamide), of myosin ATPase and actin-myosin interaction. The assembly of sarcomeric structures from myofibrillar proteins was examined by immunocytochemical methods with the application of BTS to myotubes just after fusion. Addition of BTS (10-50 microM) significantly suppressed the organization of actin and myosin into cross-striated structures. BTS also interfered in the organization of alpha-actinin, C-protein (or MyBP-C), and connectin (or titin) into ordered striated structures, though the sensitivity was less. Moreover, when myotubes cultured in the presence of BTS were transferred to a control medium, sarcomeric structures were formed in 2-3 days, indicating that the inhibitory effect of BTS on myotubes is reversible. These results show that actin-myosin interaction plays a critical role in the process of myofibrillogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwab, Ryan S.; Ihnatovych, Ivanna; Yunus, Sharifah Z.S.A.
Myosin IC is a single headed member of the myosin superfamily that localizes to the cytoplasm and the nucleus, where it is involved in transcription by RNA polymerases I and II, intranuclear transport, and nuclear export. In mammalian cells, three isoforms of myosin IC are expressed that differ only in the addition of short isoform-specific N-terminal peptides. Despite the high sequence homology, the isoforms show differences in cellular distribution, in localization to nuclear substructures, and in their interaction with nuclear proteins through yet unknown mechanisms. In this study, we used EGFP-fusion constructs that express truncated or mutated versions of myosinmore » IC isoforms to detect regions that are involved in isoform-specific localization. We identified two nucleolar localization signals (NoLS). One NoLS is located in the myosin IC isoform B specific N-terminal peptide, the second NoLS is located upstream of the neck region within the head domain. We demonstrate that both NoLS are functional and necessary for nucleolar localization of specifically myosin IC isoform B. Our data provide a first mechanistic explanation for the observed functional differences between the myosin IC isoforms and are an important step toward our understanding of the underlying mechanisms that regulate the various and distinct functions of myosin IC isoforms. - Highlights: ► Two NoLS have been identified in the myosin IC isoform B sequence. ► Both NoLS are necessary for myosin IC isoform B specific nucleolar localization. ► First mechanistic explanation of functional differences between the isoforms.« less
Magnolol Inhibits Human Glioblastoma Cell Migration by Regulating N-Cadherin.
Cheng, Yu-Chen; Tsao, Min-Jen; Chiu, Chen-Yang; Kan, Po-Chieh; Chen, Ying
2018-06-01
Glioblastoma is a primary malignant brain tumor with a poor prognosis. An effective treatment for glioblastoma is needed. Magnolol is a natural compound from Magnolia officinalis suggested to have antiproliferative activity. The aim of this research was to investigate the anticancer effects of magnolol in glioma, with an emphasis on migration and the underlying mechanism. Magnolol decreased the expression of focal adhesion-related proteins and inhibited LN229 and U87MG glioma cell migration. The levels of phosphorylated myosin light chain (p-MLC), phosphorylated myosin light chain kinase and myosin phosphatase target subunit 1 were reduced in response to magnolol treatment. In addition, immunostaining and membrane fractionation showed that the distribution of N-cadherin at the glioma cell membrane was decreased by magnolol. In an orthotropic xenograft animal model, magnolol treatment not only inhibited tumor progression but also reduced p-MLC and N-cadherin protein expression. In conclusion, magnolol reduces cell migration, potentially through regulating focal adhesions and N-cadherin in glioma cells. Magnolol is a potential candidate for glioma treatment.
SKELETAL MUSCLE ULTRASTRUCTURE AND FUNCTION IN STATIN-TOLERANT INDIVIDUALS
Rengo, Jason L.; Callahan, Damien M.; Savage, Patrick D.; Ades, Philip A.; Toth, Michael J.
2015-01-01
Skeletal Muscle Ultrastructure and Function in Statin-Tolerant Individuals: Introduction Statins have well-known benefits on cardiovascular mortality, though up to 15% of patients experience side effects. With guidelines from the American Heart Association, American College of Cardiology, and American Diabetics Association expected to double the number of statin users, the overall incidence of myalgia and myopathy will increase. Methods We evaluated skeletal muscle structure and contractile function at the molecular, cellular, and whole tissue levels in 12 statin tolerant and 12 control subjects. Results Myosin isoform expression, fiber type distributions, single fiber maximal Ca2+-activated tension, and whole muscle contractile force were similar between groups. No differences were observed in myosin-actin cross-bridge kinetics in myosin heavy chain (MHC) I or IIA fibers. Discussion We found no evidence for statin-induced changes in muscle morphology at the molecular, cellular, or whole tissue levels. Collectively, our data show that chronic statin therapy in healthy asymptomatic individuals does not promote deleterious myofilament structural or functional adaptations. PMID:26059690
NASA Astrophysics Data System (ADS)
Reverey, Julia F.; Jeon, Jae-Hyung; Bao, Han; Leippe, Matthias; Metzler, Ralf; Selhuber-Unkel, Christine
2015-06-01
Acanthamoebae are free-living protists and human pathogens, whose cellular functions and pathogenicity strongly depend on the transport of intracellular vesicles and granules through the cytosol. Using high-speed live cell imaging in combination with single-particle tracking analysis, we show here that the motion of endogenous intracellular particles in the size range from a few hundred nanometers to several micrometers in Acanthamoeba castellanii is strongly superdiffusive and influenced by cell locomotion, cytoskeletal elements, and myosin II. We demonstrate that cell locomotion significantly contributes to intracellular particle motion, but is clearly not the only origin of superdiffusivity. By analyzing the contribution of microtubules, actin, and myosin II motors we show that myosin II is a major driving force of intracellular motion in A. castellanii. The cytoplasm of A. castellanii is supercrowded with intracellular vesicles and granules, such that significant intracellular motion can only be achieved by actively driven motion, while purely thermally driven diffusion is negligible.
Isotropic actomyosin dynamics promote organization of the apical cell cortex in epithelial cells.
Klingner, Christoph; Cherian, Anoop V; Fels, Johannes; Diesinger, Philipp M; Aufschnaiter, Roland; Maghelli, Nicola; Keil, Thomas; Beck, Gisela; Tolić-Nørrelykke, Iva M; Bathe, Mark; Wedlich-Soldner, Roland
2014-10-13
Although cortical actin plays an important role in cellular mechanics and morphogenesis, there is surprisingly little information on cortex organization at the apical surface of cells. In this paper, we characterize organization and dynamics of microvilli (MV) and a previously unappreciated actomyosin network at the apical surface of Madin-Darby canine kidney cells. In contrast to short and static MV in confluent cells, the apical surfaces of nonconfluent epithelial cells (ECs) form highly dynamic protrusions, which are often oriented along the plane of the membrane. These dynamic MV exhibit complex and spatially correlated reorganization, which is dependent on myosin II activity. Surprisingly, myosin II is organized into an extensive network of filaments spanning the entire apical membrane in nonconfluent ECs. Dynamic MV, myosin filaments, and their associated actin filaments form an interconnected, prestressed network. Interestingly, this network regulates lateral mobility of apical membrane probes such as integrins or epidermal growth factor receptors, suggesting that coordinated actomyosin dynamics contributes to apical cell membrane organization. © 2014 Klingner et al.
Actin Waves Do Not Boost Neurite Outgrowth in the Early Stages of Neuron Maturation
Mortal, Simone; Iseppon, Federico; Perissinotto, Andrea; D'Este, Elisa; Cojoc, Dan; Napolitano, Luisa M. R.; Torre, Vincent
2017-01-01
During neurite development, Actin Waves (AWs) emerge at the neurite base and move up to its tip, causing a transient retraction of the Growth Cone (GC). Many studies have shown that AWs are linked to outbursts of neurite growth and, therefore, contribute to the fast elongation of the nascent axon. Using long term live cell-imaging, we show that AWs do not boost neurite outgrowth and that neurites without AWs can elongate for several hundred microns. Inhibition of Myosin II abolishes the transient GC retraction and strongly modifies the AWs morphology. Super-resolution nanoscopy shows that Myosin IIB shapes the growth cone-like AWs structure and is differently distributed in AWs and GCs. Interestingly, depletion of membrane cholesterol and inhibition of Rho GTPases decrease AWs frequency and velocity. Our results indicate that Myosin IIB, membrane tension, and small Rho GTPases are important players in the regulation of the AW dynamics. Finally, we suggest a role for AWs in maintaining the GCs active during environmental exploration. PMID:29326552
MacDonald, Justin A; Sutherland, Cindy; Carlson, David A; Bhaidani, Sabreena; Al-Ghabkari, Abdulhameed; Swärd, Karl; Haystead, Timothy A J; Walsh, Michael P
2016-01-01
A novel inhibitor of zipper-interacting protein kinase (ZIPK) was used to examine the involvement of ZIPK in the regulation of smooth muscle contraction. Pretreatment of de-endothelialized rat caudal arterial smooth muscle strips with the pyrazolo[3,4-d]pyrimidinone inhibitor 2-((1-(3-chlorophenyl)-4-oxo-4,5-dihydro-1H-pyrazolo [3,4-d]-pyrimidin-6-yl)thio)propanamide (HS38) decreased the velocity of contraction (time to reach half-maximal force) induced by the phosphatase inhibitor calyculin A in the presence of Ca(2+) without affecting maximal force development. This effect was reversed following washout of HS38 and correlated with a reduction in the rate of phosphorylation of myosin 20-kDa regulatory light chains (LC20) but not of protein kinase C-potentiated inhibitory protein for myosin phosphatase of 17 kDa (CPI-17), prostate apoptosis response-4, or myosin phosphatase-targeting subunit 1 (MYPT1), all of which have been implicated in the regulation of vascular contractility. A structural analog of HS38, with inhibitory activity toward proviral integrations of Moloney (PIM) virus 3 kinase but not ZIPK, had no effect on calyculin A-induced contraction or protein phosphorylations. We conclude that a pool of constitutively active ZIPK is involved in regulation of vascular smooth muscle contraction through direct phosphorylation of LC20 upon inhibition of myosin light chain phosphatase activity. HS38 also significantly attenuated both phasic and tonic contractile responses elicited by phenylephrine, angiotensin II, endothelin-1, U46619, and K(+)-induced membrane depolarization in the presence of Ca(2+), which correlated with inhibition of phosphorylation of LC20, MYPT1, and CPI-17. These effects of HS38 suggest that ZIPK also lies downstream from G protein-coupled receptors that signal through both Gα12/13 and Gαq/11. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Myosin 3A Kinase Activity Is Regulated by Phosphorylation of the Kinase Domain Activation Loop*
Quintero, Omar A.; Unrath, William C.; Stevens, Stanley M.; Manor, Uri; Kachar, Bechara; Yengo, Christopher M.
2013-01-01
Class III myosins are unique members of the myosin superfamily in that they contain both a motor and kinase domain. We have found that motor activity is decreased by autophosphorylation, although little is known about the regulation of the kinase domain. We demonstrate by mass spectrometry that Thr-178 and Thr-184 in the kinase domain activation loop and two threonines in the loop 2 region of the motor domain are autophosphorylated (Thr-908 and Thr-919). The kinase activity of MYO3A 2IQ with the phosphomimic (T184E) or phosphoblock (T184A) mutations demonstrates that kinase activity is reduced 30-fold as a result of the T184A mutation, although the Thr-178 site only had a minor impact on kinase activity. Interestingly, the actin-activated ATPase activity of MYO3A 2IQ is slightly reduced as a result of the T178A and T184A mutations suggesting coupling between motor and kinase domains. Full-length GFP-tagged T184A and T184E MYO3A constructs transfected into COS7 cells do not disrupt the ability of MYO3A to localize to filopodia structures. In addition, we demonstrate that T184E MYO3A reduces filopodia elongation in the presence of espin-1, whereas T184A enhances filopodia elongation in a similar fashion to kinase-dead MYO3A. Our results suggest that as MYO3A accumulates at the tips of actin protrusions, autophosphorylation of Thr-184 enhances kinase activity resulting in phosphorylation of the MYO3A motor and reducing motor activity. The differential regulation of the kinase and motor activities allows for MYO3A to precisely self-regulate its concentration in the actin bundle-based structures of cells. PMID:24214986
Myosin 3A kinase activity is regulated by phosphorylation of the kinase domain activation loop.
Quintero, Omar A; Unrath, William C; Stevens, Stanley M; Manor, Uri; Kachar, Bechara; Yengo, Christopher M
2013-12-27
Class III myosins are unique members of the myosin superfamily in that they contain both a motor and kinase domain. We have found that motor activity is decreased by autophosphorylation, although little is known about the regulation of the kinase domain. We demonstrate by mass spectrometry that Thr-178 and Thr-184 in the kinase domain activation loop and two threonines in the loop 2 region of the motor domain are autophosphorylated (Thr-908 and Thr-919). The kinase activity of MYO3A 2IQ with the phosphomimic (T184E) or phosphoblock (T184A) mutations demonstrates that kinase activity is reduced 30-fold as a result of the T184A mutation, although the Thr-178 site only had a minor impact on kinase activity. Interestingly, the actin-activated ATPase activity of MYO3A 2IQ is slightly reduced as a result of the T178A and T184A mutations suggesting coupling between motor and kinase domains. Full-length GFP-tagged T184A and T184E MYO3A constructs transfected into COS7 cells do not disrupt the ability of MYO3A to localize to filopodia structures. In addition, we demonstrate that T184E MYO3A reduces filopodia elongation in the presence of espin-1, whereas T184A enhances filopodia elongation in a similar fashion to kinase-dead MYO3A. Our results suggest that as MYO3A accumulates at the tips of actin protrusions, autophosphorylation of Thr-184 enhances kinase activity resulting in phosphorylation of the MYO3A motor and reducing motor activity. The differential regulation of the kinase and motor activities allows for MYO3A to precisely self-regulate its concentration in the actin bundle-based structures of cells.
Duggal, Divya; Requena, S.; Nagwekar, Janhavi; Raut, Sangram; Rich, Ryan; Das, Hriday; Patel, Vipul; Gryczynski, Ignacy; Fudala, Rafal; Gryczynski, Zygmunt; Blair, Cheavar; Campbell, Kenneth S.; Borejdo, Julian
2017-01-01
The systemic circulation offers larger resistance to the blood flow than the pulmonary system. Consequently, the left ventricle (LV) must pump blood with more force than the right ventricle (RV). The question arises whether the stronger pumping action of the LV is due to a more efficient action of left ventricular myosin, or whether it is due to the morphological differences between ventricles. Such a question cannot be answered by studying the entire ventricles or myocytes because any observed differences would be wiped out by averaging the information obtained from trillions of myosin molecules present in a ventricle or myocyte. We therefore searched for the differences between single myosin molecules of the LV and RV of failing hearts In-situ. We show that the parameters that define the mechanical characteristics of working myosin (kinetic rates and the distribution of spatial orientation of myosin lever arm) were the same in both ventricles. These results suggest that there is no difference in the way myosin interacts with thin filaments in myocytes of failing hearts, and suggests that the difference in pumping efficiencies are caused by interactions between muscle proteins other than myosin or that they are purely morphological. PMID:29081749
Stochastic dynamics and mechanosensitivity of myosin II minifilaments
NASA Astrophysics Data System (ADS)
Albert, Philipp J.; Erdmann, Thorsten; Schwarz, Ulrich S.
2014-09-01
Tissue cells are in a state of permanent mechanical tension that is maintained mainly by myosin II minifilaments, which are bipolar assemblies of tens of myosin II molecular motors contracting actin networks and bundles. Here we introduce a stochastic model for myosin II minifilaments as two small myosin II motor ensembles engaging in a stochastic tug-of-war. Each of the two ensembles is described by the parallel cluster model that allows us to use exact stochastic simulations and at the same time to keep important molecular details of the myosin II cross-bridge cycle. Our simulation and analytical results reveal a strong dependence of myosin II minifilament dynamics on environmental stiffness that is reminiscent of the cellular response to substrate stiffness. For small stiffness, minifilaments form transient crosslinks exerting short spikes of force with negligible mean. For large stiffness, minifilaments form near permanent crosslinks exerting a mean force which hardly depends on environmental elasticity. This functional switch arises because dissociation after the power stroke is suppressed by force (catch bonding) and because ensembles can no longer perform the power stroke at large forces. Symmetric myosin II minifilaments perform a random walk with an effective diffusion constant which decreases with increasing ensemble size, as demonstrated for rigid substrates with an analytical treatment.
Paone, Christoph; Rudeck, Steven; Etard, Christelle; Strähle, Uwe; Rottbauer, Wolfgang; Just, Steffen
2018-02-05
Sarcomeric protein turnover needs to be tightly balanced to assure proper assembly and renewal of sarcomeric units within muscle tissues. The mechanisms regulating these fundamental processes are only poorly understood, but of great clinical importance since many cardiac and skeletal muscle diseases are associated with defective sarcomeric organization. The SET- and MYND domain containing protein 1b (Smyd1b) is known to play a crucial role in myofibrillogenesis by functionally interacting with the myosin chaperones Unc45b and Hsp90α1. In zebrafish, Smyd1b, Unc45b and Hsp90α1 are part of the misfolded myosin response (MMR), a regulatory transcriptional response that is activated by disturbed myosin homeostasis. Genome duplication in zebrafish led to a second smyd1 gene, termed smyd1a. Morpholino- and CRISPR/Cas9-mediated knockdown of smyd1a led to significant perturbations in sarcomere structure resulting in decreased cardiac as well as skeletal muscle function. Similar to Smyd1b, we found Smyd1a to localize to the sarcomeric M-band in skeletal and cardiac muscles. Overexpression of smyd1a efficiently compensated for the loss of Smyd1b in flatline (fla) mutant zebrafish embryos, rescued the myopathic phenotype and suppressed the MMR in Smyd1b-deficient embryos, suggesting overlapping functions of both Smyd1 paralogs. Interestingly, Smyd1a is not transcriptionally activated in Smyd1b-deficient fla mutants, demonstrating lack of genetic compensation despite the functional redundancy of both zebrafish Smyd1 paralogs. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Phosphorylation and calcium antagonistically tune myosin-binding protein C’s structure and function
Previs, Michael J.; Mun, Ji Young; Michalek, Arthur J.; Previs, Samantha Beck; Gulick, James; Robbins, Jeffrey; Warshaw, David M.; Craig, Roger
2016-01-01
During each heartbeat, cardiac contractility results from calcium-activated sliding of actin thin filaments toward the centers of myosin thick filaments to shorten cellular length. Cardiac myosin-binding protein C (cMyBP-C) is a component of the thick filament that appears to tune these mechanochemical interactions by its N-terminal domains transiently interacting with actin and/or the myosin S2 domain, sensitizing thin filaments to calcium and governing maximal sliding velocity. Both functional mechanisms are potentially further tunable by phosphorylation of an intrinsically disordered, extensible region of cMyBP-C’s N terminus, the M-domain. Using atomic force spectroscopy, electron microscopy, and mutant protein expression, we demonstrate that phosphorylation reduced the M-domain’s extensibility and shifted the conformation of the N-terminal domain from an extended structure to a compact configuration. In combination with motility assay data, these structural effects of M-domain phosphorylation suggest a mechanism for diminishing the functional potency of individual cMyBP-C molecules. Interestingly, we found that calcium levels necessary to maximally activate the thin filament mitigated the structural effects of phosphorylation by increasing M-domain extensibility and shifting the phosphorylated N-terminal fragments back to the extended state, as if unphosphorylated. Functionally, the addition of calcium to the motility assays ablated the impact of phosphorylation on maximal sliding velocities, fully restoring cMyBP-C’s inhibitory capacity. We conclude that M-domain phosphorylation may have its greatest effect on tuning cMyBP-C’s calcium-sensitization of thin filaments at the low calcium levels between contractions. Importantly, calcium levels at the peak of contraction would allow cMyBP-C to remain a potent contractile modulator, regardless of cMyBP-C’s phosphorylation state. PMID:26908872
Active mechanics in living oocytes reveal molecular-scale force kinetics
NASA Astrophysics Data System (ADS)
Ahmed, Wylie; Fodor, Etienne; Almonacid, Maria; Bussonnier, Matthias; Verlhac, Marie-Helene; Gov, Nir; Visco, Paolo; van Wijland, Frederic; Betz, Timo
Unlike traditional materials, living cells actively generate forces at the molecular scale that change their structure and mechanical properties. This nonequilibrium activity is essential for cellular function, and drives processes such as cell division. Single molecule studies have uncovered the detailed force kinetics of isolated motor proteins in-vitro, however their behavior in-vivo has been elusive due to the complex environment inside the cell. Here, we quantify active forces and intracellular mechanics in living oocytes using in-vivo optical trapping and laser interferometry of endogenous vesicles. We integrate an experimental and theoretical framework to connect mesoscopic measurements of nonequilibrium properties to the underlying molecular- scale force kinetics. Our results show that force generation by myosin-V drives the cytoplasmic-skeleton out-of-equilibrium (at frequencies below 300 Hz) and actively softens the environment. In vivo myosin-V activity generates a force of F ~ 0 . 4 pN, with a power-stroke of length Δx ~ 20 nm and duration τ ~ 300 μs, that drives vesicle motion at vv ~ 320 nm/s. This framework is widely applicable to characterize living cells and other soft active materials.
Actin-myosin network is required for proper assembly of influenza virus particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumakura, Michiko; Kawaguchi, Atsushi, E-mail: ats-kawaguchi@md.tsukuba.ac.jp; Nagata, Kyosuke, E-mail: knagata@md.tsukuba.ac.jp
Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregatedmore » on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network.« less
NASA Astrophysics Data System (ADS)
Stam, Samantha; Alberts, Jonathan; Gardel, Margaret; Munro, Edwin
2013-03-01
The interactions of bipolar myosin II filaments with actin arrays are a predominate means of generating forces in numerous physiological processes including muscle contraction and cell migration. However, how the spatiotemporal regulation of these forces depends on motor mechanochemistry, bipolar filament size, and local actin mechanics is unknown. Here, we simulate myosin II motors with an agent-based model in which the motors have been benchmarked against experimental measurements. Force generation occurs in two distinct regimes characterized either by stable tension maintenance or by stochastic buildup and release; transitions between these regimes occur by changes to duty ratio and myosin filament size. The time required for building force to stall scales inversely with the stiffness of a network and the actin gliding speed of a motor. Finally, myosin motors are predicted to contract a network toward stiffer regions, which is consistent with experimental observations. Our representation of myosin motors can be used to understand how their mechanical and biochemical properties influence their observed behavior in a variety of in vitro and in vivo contexts.
Dynamics of myosin-driven skeletal muscle contraction: I. Steady-state force generation.
Lan, Ganhui; Sun, Sean X
2005-06-01
Skeletal muscle contraction is a canonical example of motor-driven force generation. Despite the long history of research in this topic, a mechanistic explanation of the collective myosin force generation is lacking. We present a theoretical model of muscle contraction based on the conformational movements of individual myosins and experimentally measured chemical rate constants. Detailed mechanics of the myosin motor and the geometry of the sarcomere are taken into account. Two possible scenarios of force generation are examined. We find only one of the scenarios can give rise to a plausible contraction mechanism. We propose that the synchrony in muscle contraction is due to a force-dependent ADP release step. Computational results of a half sarcomere with 150 myosin heads can explain the experimentally measured force-velocity relationship and efficiency data. We predict that the number of working myosin motors increases as the load force is increased, thus showing synchrony among myosin motors during muscle contraction. We also find that titin molecules anchoring the thick filament are passive force generators in assisting muscle contraction.
Dynamics of Myosin-Driven Skeletal Muscle Contraction: I. Steady-State Force Generation
Lan, Ganhui; Sun, Sean X.
2005-01-01
Skeletal muscle contraction is a canonical example of motor-driven force generation. Despite the long history of research in this topic, a mechanistic explanation of the collective myosin force generation is lacking. We present a theoretical model of muscle contraction based on the conformational movements of individual myosins and experimentally measured chemical rate constants. Detailed mechanics of the myosin motor and the geometry of the sarcomere are taken into account. Two possible scenarios of force generation are examined. We find only one of the scenarios can give rise to a plausible contraction mechanism. We propose that the synchrony in muscle contraction is due to a force-dependent ADP release step. Computational results of a half sarcomere with 150 myosin heads can explain the experimentally measured force-velocity relationship and efficiency data. We predict that the number of working myosin motors increases as the load force is increased, thus showing synchrony among myosin motors during muscle contraction. We also find that titin molecules anchoring the thick filament are passive force generators in assisting muscle contraction. PMID:15778440
Leung, Jacqueline M.; Tran, Fanny; Pathak, Ravindra B.; Poupart, Séverine; Heaslip, Aoife T.; Ballif, Bryan A.; Westwood, Nicholas J.; Ward, Gary E.
2014-01-01
Motility of the protozoan parasite Toxoplasma gondii plays an important role in the parasite’s life cycle and virulence within animal and human hosts. Motility is driven by a myosin motor complex that is highly conserved across the Phylum Apicomplexa. Two key components of this complex are the class XIV unconventional myosin, TgMyoA, and its associated light chain, TgMLC1. We previously showed that treatment of parasites with a small-molecule inhibitor of T. gondii invasion and motility, tachypleginA, induces an electrophoretic mobility shift of TgMLC1 that is associated with decreased myosin motor activity. However, the direct target(s) of tachypleginA and the molecular basis of the compound-induced TgMLC1 modification were unknown. We show here by “click” chemistry labelling that TgMLC1 is a direct and covalent target of an alkyne-derivatized analogue of tachypleginA. We also show that this analogue can covalently bind to model thiol substrates. The electrophoretic mobility shift induced by another structural analogue, tachypleginA-2, was associated with the formation of a 225.118 Da adduct on S57 and/or C58, and treatment with deuterated tachypleginA-2 confirmed that the adduct was derived from the compound itself. Recombinant TgMLC1 containing a C58S mutation (but not S57A) was refractory to click labelling and no longer exhibited a mobility shift in response to compound treatment, identifying C58 as the site of compound binding on TgMLC1. Finally, a knock-in parasite line expressing the C58S mutation showed decreased sensitivity to compound treatment in a quantitative 3D motility assay. These data strongly support a model in which tachypleginA and its analogues inhibit the motility of T. gondii by binding directly and covalently to C58 of TgMLC1, thereby causing a decrease in the activity of the parasite’s myosin motor. PMID:24892871
Tripolyphosphate hydrolysis by bovine fast and slow myosin subfragment 1 isoforms
Yamazaki, Marie; Shen, Qingwu W.; Swartz, Darl R.
2010-01-01
Polyphosphates are used in the meat industry to increase the water holding capacity of meat products. Tripolyphosphate (TPP) is a commonly used polyphosphate and it is metabolized into pyrophosphate and monophosphate in meat. The enzymes responsible for its metabolism have not been fully characterized. The motor domain of myosin (subfragment 1 or S1) is a likely candidate. The objectives of this study were to determine if bovine S1 hydrolyzes TPP, to characterize the TPPase activity of the fast (cutaneous trunci) and slow (masseter) isoforms, and to determine the influence of pH on S1 TPPase activity. S1 hydrolyzed TPP and in comparison with ATP as substrate, it hydrolyzed TPP 16 – 32% more slowly. Fast S1 hydrolyzed both substrates faster compared to slow S1 and the difference between the isoforms was greater with TPP as the substrate. The Vmax was 0.94 and 5.0 nmole Pi/mg S1 protein/min while the Km was 0.38 and 0.90 mM TPP for slow and fast S1, respectively. Pyrophosphate was a strong inhibitor of TPPase activity with a Ki of 88 and 8.3 μM PPi for fast and slow S1 isoforms, respectively. Both ATPase and TPPase activities were influenced by pH with the activity being higher at low pH for both fast and slow S1 isoforms. The activity at pH 5.4 was 1.5 to 4 fold higher than that at pH 7.6 for the different isoforms and substrates. These data show that myosin S1 readily hydrolyzes TPP and suggest that it is a major TPPase in meat. PMID:20416813
The principal motions involved in the coupling mechanism of the recovery stroke of the myosin motor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mesentean, Sidonia; Koppole, Sampath; Smith, Jeremy C
2007-03-01
Muscle contraction is driven by a cycle of conformational changes in the myosin II head. After myosin binds ATP and releases from the actin fibril, myosin prepares for the next power stroke by rotating back the converter domain that carries the lever arm by 60{sup o}. This recovery stroke is coupled to the activation of myosin ATPase by a mechanism that is essential for an efficient motor cycle. The mechanics of this coupling have been proposed to occur via two distinct and successive motions of the two helices that hold the converter domain: in a first phase a seesaw motionmore » of the relay helix, followed by a piston-like motion of the SH1 helix in a second phase. To test this model, we have determined the principal motions of these structural elements during equilibrium molecular dynamics simulations of the crystallographic end states of the recovery-stroke by using principal component analysis. This reveals that the only principal motions of these two helices that make a large-amplitude contribution towards the conformational change of the recovery stroke are indeed the predicted seesaw and piston motions. Moreover, the results demonstrate that the seesaw motion of the relay helix dominates in the dynamics of the pre-recovery stroke structure, but not in the dynamics of the post-recovery stroke structure, and vice versa for the piston motion of the SH1 helix. This is consistent with the order of the proposed two-phase model for the coupling mechanism of the recovery stroke. Molecular movies of these principal motions are available at http://www.iwr.uni-heidelberg.de/groups/biocomp/fischer.« less
Myocardial short-range force responses increase with age in F344 rats
Mitov, Mihail I.; Holbrook, Anastasia M.; Campbell, Kenneth S.
2009-01-01
The mechanical properties of triton-permeabilized ventricular preparations isolated from 4, 18 and 24-month-old F344 rats were analyzed to provide information about the molecular mechanisms that lead to age-related increases in diastolic myocardial stiffness in these animals. Passive stiffness (measured in solutions with minimal free Ca2+) did not change with age. This implies that the aging-associated dysfunction is not due to changes in titin or collagen molecules. Ca2+-activated preparations exhibited a characteristic short-range force response: force rose rapidly until the muscle reached its elastic limit and less rapidly thereafter. The elastic limit increased from 0.43 ± 0.01 % l0 (where l0 is the initial muscle length) in preparations from 4-month-old animals to 0.49 ± 0.01 % l0 in preparations from 24-month-old rats (p<0.001, ANOVA). Relative short-range force was defined as the maximum force produced during the short-range response normalized to the prevailing tension. This parameter increased from 0.110 ± 0.002 to 0.142 ± 0.002 over the same age-span (p<0.001, ANOVA). Analytical gel electrophoresis showed that the maximum stiffness of the preparations during the short-range response and the relative short-range force increased (p=0.031 and p=0.005 respectively) with the relative content of slow β myosin heavy chain molecules. Elastic limit values did not correlate with myosin isoform content. Simulations based on these results suggest that attached β myosin heavy chain cross-bridges are stiffer than links formed by α myosin heads. In conclusion, elevated content of stiffer β myosin heavy chain molecules may contribute to aging-associated increases in myocardial stiffness. PMID:19007786
Oiwa, K; Chaen, S; Kamitsubo, E; Shimmen, T; Sugi, H
1990-01-01
To eliminate the gap between the biochemistry of actomyosin in solution and the physiology of contracting muscle, we developed an in vitro force-movement assay system in which the steady-state force-velocity relation in the actin-myosin interaction can be studied. The assay system consists of the internodal cells of an alga, Nitellopsis obtusa, containing well-organized actin filament arrays (actin cables); tosyl-activated polystyrene beads (diameter, 2.8 microns; specific gravity, 1.3) coated with skeletal muscle myosin; and a centrifuge microscope equipped with a stroboscopic light source and a video system. The internodal cell preparation was mounted on the rotor of the centrifuge microscope, so that centrifugal forces were applied to the myosin-coated beads moving along the actin cables in the presence of ATP. Under constant centrifugal forces directed opposite to the bead movement ("positive" loads), the beads continued to move with constant velocities, which decreased with increasing centrifugal forces. The steady-state force-velocity curve thus obtained was analogous to the double-hyperbolic force-velocity curve of single muscle fibers. The unloaded velocity of bead movement was 1.6-3.6 microns/s (20-23 degrees C), while the maximum "isometric" force generated by the myosin molecules on the bead was 1.9-39 pN. If, on the other hand, the beads were subjected to constant centrifugal forces in the direction of bead movement ("negative" loads), the bead also moved with constant velocities. Unexpectedly, the velocity of bead movement did not increase with increasing negative loads but first decreased by 20-60% and then increased towards the initial unloaded velocity until the beads were eventually detached from the actin cables. Images PMID:2236007
Oiwa, K; Chaen, S; Kamitsubo, E; Shimmen, T; Sugi, H
1990-10-01
To eliminate the gap between the biochemistry of actomyosin in solution and the physiology of contracting muscle, we developed an in vitro force-movement assay system in which the steady-state force-velocity relation in the actin-myosin interaction can be studied. The assay system consists of the internodal cells of an alga, Nitellopsis obtusa, containing well-organized actin filament arrays (actin cables); tosyl-activated polystyrene beads (diameter, 2.8 microns; specific gravity, 1.3) coated with skeletal muscle myosin; and a centrifuge microscope equipped with a stroboscopic light source and a video system. The internodal cell preparation was mounted on the rotor of the centrifuge microscope, so that centrifugal forces were applied to the myosin-coated beads moving along the actin cables in the presence of ATP. Under constant centrifugal forces directed opposite to the bead movement ("positive" loads), the beads continued to move with constant velocities, which decreased with increasing centrifugal forces. The steady-state force-velocity curve thus obtained was analogous to the double-hyperbolic force-velocity curve of single muscle fibers. The unloaded velocity of bead movement was 1.6-3.6 microns/s (20-23 degrees C), while the maximum "isometric" force generated by the myosin molecules on the bead was 1.9-39 pN. If, on the other hand, the beads were subjected to constant centrifugal forces in the direction of bead movement ("negative" loads), the bead also moved with constant velocities. Unexpectedly, the velocity of bead movement did not increase with increasing negative loads but first decreased by 20-60% and then increased towards the initial unloaded velocity until the beads were eventually detached from the actin cables.
Coughlin, David J; Shiels, Lisa P; Nuthakki, Seshuvardhan; Shuman, Jacie L
2016-06-01
Rainbow smelt (Osmerus mordax), a eurythermal fish, live in environments from -1.8 to 20°C, with some populations facing substantial annual variation in environmental temperature. These different temperature regimes pose distinct challenges to locomotion by smelt. Steady swimming performance, red muscle function and muscle myosin content were examined to assess the prediction that cold acclimation by smelt will lead to improved steady swimming performance and that any performance shift will be associated with changes in red muscle function and in its myosin heavy chain composition. Cold acclimated (4°C) smelt had a faster maximum steady swimming speed and swam with a higher tailbeat frequency than warm acclimated (10°C) smelt when tested at the same temperature (10°C). Muscle mechanics experiments demonstrated faster contractile properties in the cold acclimated fish when tested at 10°C. The red muscle of cold acclimated smelt had a shorter twitch times, a shorter relaxation times and a higher maximum shortening velocity. In addition, red muscle from cold acclimated fish displayed reduced thermal sensitivity to cold, maintaining higher force levels at 4°C compared to red muscle from warm acclimated fish. Immunohistochemistry suggests shifts in muscle myosin composition and a decrease in muscle cross-sectional area with cold acclimation. Dot blot analysis confirmed a shift in myosin content. Rainbow smelt do show a significant thermal acclimation response to cold. An examination of published values of maximum muscle shortening velocity in fishes suggests that smelt are particularly well suited to high levels of activity in very cold water. Copyright © 2016 Elsevier Inc. All rights reserved.
Cell Blebbing in Confined Microfluidic Environments
Ibo, Markela; Srivastava, Vasudha; Robinson, Douglas N.; Gagnon, Zachary R.
2016-01-01
Migrating cells can extend their leading edge by forming myosin-driven blebs and F-actin-driven pseudopods. When coerced to migrate in resistive environments, Dictyostelium cells switch from using predominately pseudopods to blebs. Bleb formation has been shown to be chemotactic and can be influenced by the direction of the chemotactic gradient. In this study, we determine the blebbing responses of developed cells of Dictyostelium discoideum to cAMP gradients of varying steepness produced in microfluidic channels with different confining heights, ranging between 1.7 μm and 3.8 μm. We show that microfluidic confinement height, gradient steepness, buffer osmolarity and Myosin II activity are important factors in determining whether cells migrate with blebs or with pseudopods. Dictyostelium cells were observed migrating within the confines of microfluidic gradient channels. When the cAMP gradient steepness is increased from 0.7 nM/μm to 20 nM/μm, cells switch from moving with a mixture of blebs and pseudopods to moving only using blebs when chemotaxing in channels with confinement heights less than 2.4 μm. Furthermore, the size of the blebs increases with gradient steepness and correlates with increases in myosin-II localization at the cell cortex. Reduction of intracellular pressure by high osmolarity buffer or inhibition of myosin-II by blebbistatin leads to a decrease in bleb formation and bleb size. Together, our data reveal that the protrusion type formed by migrating cells can be influenced by the channel height and the steepness of the cAMP gradient, and suggests that a combination of confinement-induced myosin-II localization and cAMP-regulated cortical contraction leads to increased intracellular fluid pressure and bleb formation. PMID:27706201
Fotopoulos, N; Wernike, D; Chen, Y; Makil, N; Marte, A; Piekny, A
2013-11-01
The formation of tissues is essential for metazoan development. During Caenorhabditis elegans embryogenesis, ventral epidermal cells migrate to encase the ventral surface of the embryo in a layer of epidermis by a process known as ventral enclosure. This process is regulated by guidance cues secreted by the underlying neuroblasts. However, since the cues and their receptors are differentially expressed in multiple cell types, the role of the neuroblasts in ventral enclosure is not fully understood. Furthermore, although F-actin is required for epidermal cell migration, it is not known if nonmuscle myosin is also required. Anillin (ANI-1) is an actin and myosin-binding protein that coordinates actin-myosin contractility in the early embryo. Here, we show that ANI-1 localizes to the cleavage furrows of dividing neuroblasts during mid-embryogenesis and is required for their division. Embryos depleted of ani-1 display a range of ventral enclosure phenotypes, where ventral epidermal cells migrate with similar speeds to control embryos, but contralateral neighbors often fail to meet and are misaligned. The ventral enclosure phenotypes in ani-1 RNAi embryos suggest that the position or shape of neuroblasts is important for directing ventral epidermal cell migration, although does not rule out an autonomous requirement for ani-1 in the epidermal cells. Furthermore, we show that rho-1 and other regulators of nonmuscle myosin activity are required for ventral epidermal cell migration. Interestingly, altering nonmuscle myosin contractility alleviates or strengthens ani-1's ventral enclosure phenotypes. Our findings suggest that ventral enclosure is a complex process that likely relies on inputs from multiple tissues. © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Mini-thin filaments regulated by troponin–tropomyosin
Gong, Huiyu; Hatch, Victoria; Ali, Laith; Lehman, William; Craig, Roger; Tobacman, Larry S.
2005-01-01
Striated muscle thin filaments contain hundreds of actin monomers and scores of troponins and tropomyosins. To study the cooperative mechanism of thin filaments, “mini-thin filaments” were generated by isolating particles nearly matching the minimal structural repeat of thin filaments: a double helix of actin subunits with each strand approximately seven actins long and spanned by a troponin–tropomyosin complex. One end of the particles was capped by a gelsolin (segment 1–3)–TnT fusion protein (substituting for normal TnT), and the other end was capped by tropomodulin. EM showed that the particles were 46 ± 9 nm long, with a knob-like mass attributable to gelsolin at one end. Average actin, tropomyosin, and gelsolin–troponin composition indicated one troponin–tropomyosin attached to each strand of the two-stranded actin filament. The minifilaments thus nearly represent single regulatory units of thin filaments. The myosin S1 MgATPase rate stimulated by the minifilaments was Ca2+-sensitive, indicating that single regulatory length particles are sufficient for regulation. Ca2+ bound cooperatively to cardiac TnC in conventional thin filaments but noncooperatively to cardiac TnC in minifilaments in the absence of myosin. This suggests that thin filament Ca2+-binding cooperativity reflects indirect troponin–troponin interactions along the long axis of conventional filaments, which do not occur in minifilaments. Despite noncooperative Ca2+ binding to minifilaments in the absence of myosin, Ca2+ cooperatively activated the myosin S1-particle ATPase rate. Two-stranded single regulatory units therefore may be sufficient for myosin-mediated Ca2+-binding cooperativity. Functional mini-thin filaments are well suited for biochemical and structural analysis of thin-filament regulation. PMID:15644437
DOE Office of Scientific and Technical Information (OSTI.GOV)
H Shi; G Blobel
2011-12-31
UNC-45/CRO1/She4p (UCS) proteins have variously been proposed to affect the folding, stability, and ATPase activity of myosins. They are the only proteins known to interact directly with the motor domain. To gain more insight into UCS function, we determined the atomic structure of the yeast UCS protein, She4p, at 2.9 {angstrom} resolution. We found that 16 helical repeats are organized into an L-shaped superhelix with an amphipathic N-terminal helix dangling off the short arm of the L-shaped molecule. In the crystal, She4p forms a 193-{angstrom}-long, zigzag-shaped dimer through three distinct and evolutionary conserved interfaces. We have identified She4p's C-terminal regionmore » as a ligand for a 27-residue-long epitope on the myosin motor domain. Remarkably, this region consists of two adjacent, but distinct, binding epitopes localized at the nucleotide-responsive cleft between the nucleotide- and actin-filament-binding sites. One epitope is situated inside the cleft, the other outside the cleft. After ATP hydrolysis and Pi ejection, the cleft narrows at its base from 20 to 12 {angstrom} thereby occluding the inside the cleft epitope, while leaving the adjacent, outside the cleft binding epitope accessible to UCS binding. Hence, one cycle of higher and lower binding affinity would accompany one ATP hydrolysis cycle and a single step in the walk on an actin filament rope. We propose that a UCS dimer links two myosins at their motor domains and thereby functions as one of the determinants for step size of myosin on actin filaments.« less
The myosin converter domain modulates muscle performance.
Swank, Douglas M; Knowles, Aileen F; Suggs, Jennifer A; Sarsoza, Floyd; Lee, Annie; Maughan, David W; Bernstein, Sanford I
2002-04-01
Myosin is the molecular motor that powers muscle contraction as a result of conformational changes during its mechanochemical cycle. We demonstrate that the converter, a compact structural domain that differs in sequence between Drosophila melanogaster myosin isoforms, dramatically influences the kinetic properties of myosin and muscle fibres. Transgenic replacement of the converter in the fast indirect flight muscle with the converter from an embryonic muscle slowed muscle kinetics, forcing a compensatory reduction in wing beat frequency to sustain flight. Conversely, replacing the embryonic converter with the flight muscle converter sped up muscle kinetics and increased maximum power twofold, compared to flight muscles expressing the embryonic myosin isoform. The substitutions also dramatically influenced in vitro actin sliding velocity, suggesting that the converter modulates a rate-limiting step preceding cross-bridge detachment. Our integrative analysis demonstrates that isoform-specific differences in the myosin converter allow different muscle types to meet their specific locomotion demands.
Flexibility of myosin attachment to surfaces influences F-actin motion.
Winkelmann, D A; Bourdieu, L; Ott, A; Kinose, F; Libchaber, A
1995-01-01
We have analyzed the dependence of actin filament sliding movement on the mode of myosin attachment to surfaces. Monoclonal antibodies (mAbs) that bind to three distinct sites were used to tether myosin to nitrocellulose-coated glass. One antibody reacts with an epitope on the regulatory light chain (LC2) located at the head-rod junction. The other two react with sites in the rod domain, one in the S2 region near the S2-LMM hinge, and the other at the C terminus of the myosin rod. This method of attachment provides a means of controlling the flexibility and density of myosin on the surface. Fast skeletal muscle myosin monomers were bound to the surfaces through the specific interaction with these mAbs, and the sliding movement of fluorescently labeled actin filaments was analyzed by video microscopy. Each of these antibodies produced stable myosin-coated surfaces that supported uniform motion of actin over the course of several hours. Attachment of myosin through the anti-S2 and anti-LMM mAbs yielded significantly higher velocities (10 microns/s at 30 degrees C) than attachment through anti-LC2 (4-5 microns/s at 30 degrees C). For each antibody, we observed a characteristic value of the myosin density for the onset of F-actin motion and a second critical density for velocity saturation. The specific mode of attachment influences the velocity of actin filaments and the characteristic surface density needed to support movement. Images FIGURE 1 FIGURE 4 FIGURE 8 PMID:7544167
Prochniewicz, Ewa; Chin, Harvey F.; Henn, Arnon; Hannemann, Diane E.; Olivares, Adrian O.; Thomas, David D.; De La Cruz, Enrique M.
2010-01-01
SUMMARY We have used transient phosphorescence anisotropy (TPA) to detect the microsecond rotational dynamics of erythrosin iodoacetamide (ErIA)-labeled actin strongly bound to single-headed fragments of muscle myosin (muscle S1) and non-muscle myosin V (MV). The conformational dynamics of actin filaments in solution are markedly influenced by the isoform of bound myosin. Both myosins increase the final anisotropy of actin at sub-stoichiometric binding densities, indicating long-range, non-nearest neighbor cooperative restriction of filament rotational dynamics amplitude, but the cooperative unit is larger with MV than muscle S1. Both myosin isoforms also cooperatively affect the actin filament rotational correlation time, but with opposite effects; muscle S1 decreases rates of intrafilament torsional motion, while binding of MV increases the rates of motion. The cooperative effects on the rates of intrafilament motions correlate with the kinetics of myosin binding to actin filaments such that MV binds more rapidly, and muscle myosin more slowly, to partially decorated filaments than to bare filaments. The two isoforms also differ in their effects on the phosphorescence lifetime of the actin-bound ErIA; while muscle S1 increases the lifetime, suggesting decreased aqueous exposure of the probe, MV does not induce a significant change. We conclude that the dynamics and structure of actin in the strongly bound actomyosin complex is determined by the isoform of the bound myosin, in a manner likely to accommodate the diverse functional roles of actomyosin in muscle and non-muscle cells. PMID:19962990
Characterization of Amoeba proteus myosin VI immunoanalog.
Dominik, Magdalena; Kłopocka, Wanda; Pomorski, Paweł; Kocik, Elzbieta; Redowicz, Maria Jolanta
2005-07-01
Amoeba proteus, the highly motile free-living unicellular organism, has been widely used as a model to study cell motility. However, molecular mechanisms underlying its unique locomotion and intracellular actin-based-only trafficking remain poorly understood. A search for myosin motors responsible for vesicular transport in these giant cells resulted in detection of 130-kDa protein interacting with several polyclonal antibodies against different tail regions of human and chicken myosin VI. This protein was binding to actin in the ATP-dependent manner, and immunoprecipitated with anti-myosin VI antibodies. In order to characterize its possible functions in vivo, its cellular distribution and colocalization with actin filaments and dynamin II during migration and pinocytosis were examined. In migrating amoebae, myosin VI immunoanalog localized to vesicular structures, particularly within the perinuclear and sub-plasma membrane areas, and colocalized with dynamin II immunoanalog and actin filaments. The colocalization was even more evident in pinocytotic cells as proteins concentrated within pinocytotic pseudopodia. Moreover, dynamin II and myosin VI immunoanalogs cosedimented with actin filaments, and were found on the same isolated vesicles. Blocking endogenous myosin VI immunoanalog with anti-myosin VI antibodies inhibited the rate of pseudopodia protrusion (about 19% decrease) and uroidal retraction (about 28% decrease) but did not affect cell morphology and the manner of cell migration. Treatment with anti-human dynamin II antibodies led to changes in directionality of amebae migration and affected the rate of only uroidal translocation (about 30% inhibition). These results indicate that myosin VI immunoanalog is expressed in protist Amoeba proteus and may be involved in vesicle translocation and cell locomotion.
Topology of interaction between titin and myosin thick filaments.
Kellermayer, Miklós; Sziklai, Dominik; Papp, Zsombor; Decker, Brennan; Lakatos, Eszter; Mártonfalvi, Zsolt
2018-05-05
Titin is a giant protein spanning between the Z- and M-lines of the sarcomere. In the A-band titin is associated with the myosin thick filament. It has been speculated that titin may serve as a blueprint for thick-filament formation due to the super-repeat structure of its A-band domains. Accordingly, titin might provide a template that determines the length and structural periodicity of the thick filament. Here we tested the titin ruler hypothesis by mixing titin and myosin at in situ stoichiometric ratios (300 myosins per 12 titins) in buffers of different ionic strength (KCl concentration range 100-300 mM). The topology of the filamentous complexes was investigated with atomic force microscopy. We found that the samples contained distinct, segregated populations of titin molecules and myosin thick filaments. We were unable to identify complexes in which myosin molecules were regularly associated to either mono- or oligomeric titin in either relaxed or stretched states of the titin filaments. Thus, the electrostatically driven self-association is stronger in both myosin and titin than their binding to each other, and it is unlikely that titin functions as a geometrical template for thick-filament formation. However, when allowed to equilibrate configurationally, long myosin thick filaments appeared with titin oligomers attached to their surface. The titin meshwork formed on the thick-filament surface may play a role in controlling thick-filament length by regulating the structural dynamics of myosin molecules and placing a mechanical limit on the filament length. Copyright © 2018 Elsevier Inc. All rights reserved.
Estrogen Modulation of MgATPase Activity of Nonmuscle Myosin-II-B Filaments
Gorodeski, George I.
2008-01-01
The study tested the hypothesis that estrogen controls epithelial paracellular resistance through modulation of myosin. The objective was to understand how estrogen modulates non-muscle myosin-II-B (NMM-II-B), the main component of the cortical actomyosin in human epithelial cervical cells. Experiments used human cervical epithelial cells CaSki as a model, and end points were NMM-II-B phosphorylation, filamentation, and MgATPase activity. The results were as follows: 1) treatment with estrogen increased phosphorylation and MgATPase activity and decreased NMM-II-B filamentation; 2) estrogen effects could be blocked by antisense nucleotides for the estrogen receptor-α and by ICI-182,780, tamoxifen, and the casein kinase-II (CK2) inhibitor, 5,6-dichloro-1-β-(D)-ribofuranosylbenzimidazole and attenuated by AG1478 and PD98059 (inhibitors of epithelial growth factor receptor and ERK/MAPK) but not staurosporine [blocker of protein kinase C (PKC)]; 3) treatments with the PKC activator sn-1,2-di-octanoyl diglyceride induced biphasic effect on NMM-II-B MgATPase activity: an increase at 1 nM to 1 μM and a decrease in activity at more than 1 μM; 4) sn-1,2-dioctanoyl diglyceride also decreased NMM-II-B filamentation in a monophasic and saturable dose dependence (EC50 1–10 μM); 5) when coincubated directly with purified NMM-II-B filaments, both CK2 and PKC decreased filamentation and increased MgATPase activity; 6) assays done on disassembled NMM-II-B filaments showed MgATPase activity in filaments obtained from estrogen-treated cells but not estrogen-depleted cells; and 7) incubations in vitro with CK2, but not PKC, facilitated MgATPase activity, even in disassembled NMM-II-B filaments. The results suggest that estrogen, in an effect mediated by estrogen receptor-α and CK2 and involving the epithelial growth factor receptor and ERK/MAPK cascades, increases NMM-II-B MgATPase activity independent of NMM-II-B filamentation status. PMID:17023528
The conformation of myosin head domains in rigor muscle determined by X-ray interference.
Reconditi, M; Koubassova, N; Linari, M; Dobbie, I; Narayanan, T; Diat, O; Piazzesi, G; Lombardi, V; Irving, M
2003-08-01
In the absence of adenosine triphosphate, the head domains of myosin cross-bridges in muscle bind to actin filaments in a rigor conformation that is expected to mimic that following the working stroke during active contraction. We used x-ray interference between the two head arrays in opposite halves of each myosin filament to determine the rigor head conformation in single fibers from frog skeletal muscle. During isometric contraction (force T(0)), the interference effect splits the M3 x-ray reflection from the axial repeat of the heads into two peaks with relative intensity (higher angle/lower angle peak) 0.76. In demembranated fibers in rigor at low force (<0.05 T(0)), the relative intensity was 4.0, showing that the center of mass of the heads had moved 4.5 nm closer to the midpoint of the myosin filament. When rigor fibers were stretched, increasing the force to 0.55 T(0), the heads' center of mass moved back by 1.1-1.6 nm. These motions can be explained by tilting of the light chain domain of the head so that the mean angle between the Cys(707)-Lys(843) vector and the filament axis increases by approximately 36 degrees between isometric contraction and low-force rigor, and decreases by 7-10 degrees when the rigor fiber is stretched to 0.55 T(0).
Human Nonsyndromic Hereditary Deafness DFNA17 Is Due to a Mutation in Nonmuscle Myosin MYH9
Lalwani, Anil K.; Goldstein, Jayne A.; Kelley, Michael J.; Luxford, William; Castelein, Caley M.; Mhatre, Anand N.
2000-01-01
The authors had previously mapped a new locus—DFNA17, for nonsyndromic hereditary hearing impairment—to chromosome 22q12.2-q13.3. DFNA17 spans a 17- to 23-cM region, and MYH9, a nonmuscle–myosin heavy-chain gene, is located within the linked region. Because of the importance of myosins in hearing, MYH9 was tested as a candidate gene for DFNA17. Expression of MYH9 in the rat cochlea was confirmed using reverse transcriptase–PCR and immunohistochemistry. MYH9 was immunolocalized in the organ of Corti, the subcentral region of the spiral ligament, and the Reissner membrane. Sequence analysis of MYH9 in a family with DFNA17 identified, at nucleotide 2114, a G→A transposition that cosegregated with the inherited autosomal dominant hearing impairment. This missense mutation changes codon 705 from an invariant arginine (R) to histidine (H), R705H, within a highly conserved SH1 linker region. Previous studies have shown that modification of amino acid residues within the SH1 helix causes dysfunction of the ATPase activity of the motor domain in myosin II. Both the precise role of MYH9 in the cochlea and the mechanism by which the R705H mutation leads to the DFNA17 phenotype (progressive hearing impairment and cochleosaccular degeneration) remain to be elucidated. PMID:11023810
Force Exertion and Transmission in Cross-Linked Actin Networks
NASA Astrophysics Data System (ADS)
Stam, Samantha
Cells are responsive to external cues in their environment telling them to proliferate or migrate within their surrounding tissue. Sensing of cues that are mechanical in nature, such stiffness of a tissue or forces transmitted from other cells, is believed to involve the cytoskeleton of a cell. The cytoskeleton is a complex network of proteins consisting of polymers that provide structural support, motor proteins that remodel these structures, and many others. We do not yet have a complete understanding of how cytoskeletal components respond to either internal or external mechanical force and stiffness. Such an understanding should involve mechanisms by which constituent molecules, such as motor proteins, are responsive to mechanics. Additionally, physical models of how forces are transmitted through biopolymer networks are necessary. My research has focused on networks formed by the cytoskeletal filament actin and the molecular motor protein myosin II. Actin filaments form networks and bundles that form a structural framework of the cell, and myosin II slides actin filaments. In this thesis, we show that stiffness of an elastic load that opposes myosin-generated actin sliding has a very sharp effect on the myosin force output in simulations. Secondly, we show that the stiffness and connectivity of cytoskeletal filaments regulates the contractility and anisotropy of network deformations that transmit force on material length scales. Together, these results have implications for predicting and interpreting the deformations and forces in biopolymeric active materials.
Unconstrained steps of myosin VI appear longest among known molecular motors.
Ali, M Yusuf; Homma, Kazuaki; Iwane, Atsuko Hikikoshi; Adachi, Kengo; Itoh, Hiroyasu; Kinosita, Kazuhiko; Yanagida, Toshio; Ikebe, Mitsuo
2004-06-01
Myosin VI is a two-headed molecular motor that moves along an actin filament in the direction opposite to most other myosins. Previously, a single myosin VI molecule has been shown to proceed with steps that are large compared to its neck size: either it walks by somehow extending its neck or one head slides along actin for a long distance before the other head lands. To inquire into these and other possible mechanism of motility, we suspended an actin filament between two plastic beads, and let a single myosin VI molecule carrying a bead duplex move along the actin. This configuration, unlike previous studies, allows unconstrained rotation of myosin VI around the right-handed double helix of actin. Myosin VI moved almost straight or as a right-handed spiral with a pitch of several micrometers, indicating that the molecule walks with strides slightly longer than the actin helical repeat of 36 nm. The large steps without much rotation suggest kinesin-type walking with extended and flexible necks, but how to move forward with flexible necks, even under a backward load, is not clear. As an answer, we propose that a conformational change in the lifted head would facilitate landing on a forward, rather than backward, site. This mechanism may underlie stepping of all two-headed molecular motors including kinesin and myosin V.
Iwamoto, Hiroyuki; Trombitás, Károly; Yagi, Naoto; Suggs, Jennifer A.; Bernstein, Sanford I.
2014-01-01
Fruit fly (Drosophila melanogaster) is one of the most useful animal models to study the causes and effects of hereditary diseases because of its rich genetic resources. It is especially suitable for studying myopathies caused by myosin mutations, because specific mutations can be induced to the flight muscle-specific myosin isoform, while leaving other isoforms intact. Here we describe an X-ray-diffraction-based method to evaluate the structural effects of mutations in contractile proteins in Drosophila indirect flight muscle. Specifically, we describe the effect of the headless myosin mutation, Mhc10-Y97, in which the motor domain of the myosin head is deleted, on the X-ray diffraction pattern. The loss of general integrity of the filament lattice is evident from the pattern. A striking observation, however, is the prominent meridional reflection at d = 14.5 nm, a hallmark for the regularity of the myosin-containing thick filament. This reflection has long been considered to arise mainly from the myosin head, but taking the 6th actin layer line reflection as an internal control, the 14.5-nm reflection is even stronger than that of wild-type muscle. We confirmed these results via electron microscopy, wherein image analysis revealed structures with a similar periodicity. These observations have major implications on the interpretation of myosin-based reflections. PMID:25400584
Three Hierarchies in Skeletal Muscle Fibre Classification Allotype, Isotype and Phenotype
NASA Technical Reports Server (NTRS)
Hoh, Joseph F. Y.; Hughes, Suzanne; Hugh, Gregory; Pozgaj, Irene
1991-01-01
Immunocytochemical analyses using specific anti-myosin antibodies of mammalian muscle fibers during regeneration, development, and after denervation have revealed two distinct myogenic components determining fiber phenotype. The jaw-closing muscles of the cat contain superfast fibers which express a unique myosin not found in limb muscles. When superfast muscle is transplanted into a limb muscle bed, regenerating myotubes synthesize superfast myosin independent of innervation. Reinnervation by the nerve to a fast muscle leads to the expression of superfast and not fast myosin, while reinnervation by the nerve to a slow muscle leads to the expression of a slow myosin. When limb muscle is transplanted into the jaw muscle bed, only limb myosins are synthesized. Thus jaw and limb muscles belong to distinct allotypes, each with a unique range of phenotype options, the expressions of which may be modulated by the nerve. Primary and secondary myotubes in developing jaw and limb muscles are observed to belong to different categories characterized by different patterns of myosin gene expression. By taking into consideration the pattern of myosins synthesized and the changes in fiber size after denervation, 3 types of primary (fast, slow, and intermediate) fibers can be distinguished in rat fast limb muscles. All primaries synthesize slow myosin soon after their formation, but this is withdrawn in fast and intermediate primaries at different times. After neonatal denervation, slow and intermediate primaries express slow primaries hypertrophy with other fibers atrophy. In the mature rat, the number of slow fibers in the EDL is less than the number of slow primaries. Upon denervation, hypertrophic slow fibers matching the number and topographic distribution of slow primaries appear, suggesting that a subpopulation of the slow primaries acquire the fast phenotype during adult life, but reveal their original identity as slow primaries in response to denervation by hypertrophying and synthesizing slow myosin. It is proposed that within each muscle allotype, the various isotypes of primary and secondary fibers are myogenically determined, and are derived from different lineage of myoblasts.
Three-dimensional stochastic model of actin–myosin binding in the sarcomere lattice
Kayser-Herold, Oliver; Stojanovic, Boban; Nedic, Djordje; Irving, Thomas C.; Geeves, Michael A.
2016-01-01
The effect of molecule tethering in three-dimensional (3-D) space on bimolecular binding kinetics is rarely addressed and only occasionally incorporated into models of cell motility. The simplest system that can quantitatively determine this effect is the 3-D sarcomere lattice of the striated muscle, where tethered myosin in thick filaments can only bind to a relatively small number of available sites on the actin filament, positioned within a limited range of thermal movement of the myosin head. Here we implement spatially explicit actomyosin interactions into the multiscale Monte Carlo platform MUSICO, specifically defining how geometrical constraints on tethered myosins can modulate state transition rates in the actomyosin cycle. The simulations provide the distribution of myosin bound to sites on actin, ensure conservation of the number of interacting myosins and actin monomers, and most importantly, the departure in behavior of tethered myosin molecules from unconstrained myosin interactions with actin. In addition, MUSICO determines the number of cross-bridges in each actomyosin cycle state, the force and number of attached cross-bridges per myosin filament, the range of cross-bridge forces and accounts for energy consumption. At the macroscopic scale, MUSICO simulations show large differences in predicted force-velocity curves and in the response during early force recovery phase after a step change in length comparing to the two simplest mass action kinetic models. The origin of these differences is rooted in the different fluxes of myosin binding and corresponding instantaneous cross-bridge distributions and quantitatively reflects a major flaw of the mathematical description in all mass action kinetic models. Consequently, this new approach shows that accurate recapitulation of experimental data requires significantly different binding rates, number of actomyosin states, and cross-bridge elasticity than typically used in mass action kinetic models to correctly describe the biochemical reactions of tethered molecules and their interaction energetics. PMID:27864330
Coupling of Lever Arm Swing and Biased Brownian Motion in Actomyosin
Nie, Qing-Miao; Togashi, Akio; Sasaki, Takeshi N.; Takano, Mitsunori; Sasai, Masaki; Terada, Tomoki P.
2014-01-01
An important unresolved problem associated with actomyosin motors is the role of Brownian motion in the process of force generation. On the basis of structural observations of myosins and actins, the widely held lever-arm hypothesis has been proposed, in which proteins are assumed to show sequential structural changes among observed and hypothesized structures to exert mechanical force. An alternative hypothesis, the Brownian motion hypothesis, has been supported by single-molecule experiments and emphasizes more on the roles of fluctuating protein movement. In this study, we address the long-standing controversy between the lever-arm hypothesis and the Brownian motion hypothesis through in silico observations of an actomyosin system. We study a system composed of myosin II and actin filament by calculating free-energy landscapes of actin-myosin interactions using the molecular dynamics method and by simulating transitions among dynamically changing free-energy landscapes using the Monte Carlo method. The results obtained by this combined multi-scale calculation show that myosin with inorganic phosphate (Pi) and ADP weakly binds to actin and that after releasing Pi and ADP, myosin moves along the actin filament toward the strong-binding site by exhibiting the biased Brownian motion, a behavior consistent with the observed single-molecular behavior of myosin. Conformational flexibility of loops at the actin-interface of myosin and the N-terminus of actin subunit is necessary for the distinct bias in the Brownian motion. Both the 5.5–11 nm displacement due to the biased Brownian motion and the 3–5 nm displacement due to lever-arm swing contribute to the net displacement of myosin. The calculated results further suggest that the recovery stroke of the lever arm plays an important role in enhancing the displacement of myosin through multiple cycles of ATP hydrolysis, suggesting a unified movement mechanism for various members of the myosin family. PMID:24762409
Coupling of lever arm swing and biased Brownian motion in actomyosin.
Nie, Qing-Miao; Togashi, Akio; Sasaki, Takeshi N; Takano, Mitsunori; Sasai, Masaki; Terada, Tomoki P
2014-04-01
An important unresolved problem associated with actomyosin motors is the role of Brownian motion in the process of force generation. On the basis of structural observations of myosins and actins, the widely held lever-arm hypothesis has been proposed, in which proteins are assumed to show sequential structural changes among observed and hypothesized structures to exert mechanical force. An alternative hypothesis, the Brownian motion hypothesis, has been supported by single-molecule experiments and emphasizes more on the roles of fluctuating protein movement. In this study, we address the long-standing controversy between the lever-arm hypothesis and the Brownian motion hypothesis through in silico observations of an actomyosin system. We study a system composed of myosin II and actin filament by calculating free-energy landscapes of actin-myosin interactions using the molecular dynamics method and by simulating transitions among dynamically changing free-energy landscapes using the Monte Carlo method. The results obtained by this combined multi-scale calculation show that myosin with inorganic phosphate (Pi) and ADP weakly binds to actin and that after releasing Pi and ADP, myosin moves along the actin filament toward the strong-binding site by exhibiting the biased Brownian motion, a behavior consistent with the observed single-molecular behavior of myosin. Conformational flexibility of loops at the actin-interface of myosin and the N-terminus of actin subunit is necessary for the distinct bias in the Brownian motion. Both the 5.5-11 nm displacement due to the biased Brownian motion and the 3-5 nm displacement due to lever-arm swing contribute to the net displacement of myosin. The calculated results further suggest that the recovery stroke of the lever arm plays an important role in enhancing the displacement of myosin through multiple cycles of ATP hydrolysis, suggesting a unified movement mechanism for various members of the myosin family.
Melkani, Girish C.; Bodmer, Rolf; Ocorr, Karen; Bernstein, Sanford I.
2011-01-01
UNC-45 is a UCS (UNC-45/CRO1/She4P) class chaperone necessary for myosin folding and/or accumulation, but its requirement for maintaining cardiac contractility has not been explored. Given the prevalence of myosin mutations in eliciting cardiomyopathy, chaperones like UNC-45 are likely to be equally critical in provoking or modulating myosin-associated cardiomyopathy. Here, we used the Drosophila heart model to examine its role in cardiac physiology, in conjunction with RNAi-mediated gene silencing specifically in the heart in vivo. Analysis of cardiac physiology was carried out using high-speed video recording in conjunction with movement analysis algorithms. unc-45 knockdown resulted in severely compromised cardiac function in adults as evidenced by prolonged diastolic and systolic intervals, and increased incidence of arrhythmias and extreme dilation; the latter was accompanied by a significant reduction in muscle contractility. Structural analysis showed reduced myofibrils, myofibrillar disarray, and greatly decreased cardiac myosin accumulation. Cardiac unc-45 silencing also dramatically reduced life-span. In contrast, third instar larval and young pupal hearts showed mild cardiac abnormalities, as severe cardiac defects only developed during metamorphosis. Furthermore, cardiac unc-45 silencing in the adult heart (after metamorphosis) led to less severe phenotypes. This suggests that UNC-45 is mostly required for myosin accumulation/folding during remodeling of the forming adult heart. The cardiac defects, myosin deficit and decreased life-span in flies upon heart-specific unc-45 knockdown were significantly rescued by UNC-45 over-expression. Our results are the first to demonstrate a cardiac-specific requirement of a chaperone in Drosophila, suggestive of a critical role of UNC-45 in cardiomyopathies, including those associated with unfolded proteins in the failing human heart. The dilated cardiomyopathy phenotype associated with UNC-45 deficiency is mimicked by myosin knockdown suggesting that UNC-45 plays a crucial role in stabilizing myosin and possibly preventing human cardiomyopathies associated with functional deficiencies of myosin. PMID:21799905
Three-dimensional stochastic model of actin–myosin binding in the sarcomere lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mijailovich, Srboljub M.; Kayser-Herold, Oliver; Stojanovic, Boban
2016-11-18
The effect of molecule tethering in three-dimensional (3-D) space on bimolecular binding kinetics is rarely addressed and only occasionally incorporated into models of cell motility. The simplest system that can quantitatively determine this effect is the 3-D sarcomere lattice of the striated muscle, where tethered myosin in thick filaments can only bind to a relatively small number of available sites on the actin filament, positioned within a limited range of thermal movement of the myosin head. Here we implement spatially explicit actomyosin interactions into the multiscale Monte Carlo platform MUSICO, specifically defining how geometrical constraints on tethered myosins can modulatemore » state transition rates in the actomyosin cycle. The simulations provide the distribution of myosin bound to sites on actin, ensure conservation of the number of interacting myosins and actin monomers, and most importantly, the departure in behavior of tethered myosin molecules from unconstrained myosin interactions with actin. In addition, MUSICO determines the number of cross-bridges in each actomyosin cycle state, the force and number of attached cross-bridges per myosin filament, the range of cross-bridge forces and accounts for energy consumption. At the macroscopic scale, MUSICO simulations show large differences in predicted force-velocity curves and in the response during early force recovery phase after a step change in length comparing to the two simplest mass action kinetic models. The origin of these differences is rooted in the different fluxes of myosin binding and corresponding instantaneous cross-bridge distributions and quantitatively reflects a major flaw of the mathematical description in all mass action kinetic models. Consequently, this new approach shows that accurate recapitulation of experimental data requires significantly different binding rates, number of actomyosin states, and cross-bridge elasticity than typically used in mass action kinetic models to correctly describe the biochemical reactions of tethered molecules and their interaction energetics.« less
Fusi, Luca; Percario, Valentina; Brunello, Elisabetta; Caremani, Marco; Bianco, Pasquale; Powers, Joseph D; Reconditi, Massimo; Lombardi, Vincenzo; Piazzesi, Gabriella
2017-02-15
Myosin filament mechanosensing determines the efficiency of the contraction by adapting the number of switched ON motors to the load. Accordingly, the unloaded shortening velocity (V 0 ) is already set at the end of latency relaxation (LR), ∼10 ms after the start of stimulation, when the myosin filament is still in the OFF state. Here the number of actin-attached motors per half-myosin filament (n) during V 0 shortening imposed either at the end of LR or at the plateau of the isometric contraction is estimated from the relation between half-sarcomere compliance and force during the force redevelopment after shortening. The value of n decreases progressively with shortening and, during V 0 shortening starting at the end of LR, is 1-4. Reduction of n is accounted for by a constant duty ratio of 0.05 and a parallel switching OFF of motors, explaining the very low rate of ATP utilization found during unloaded shortening. The maximum velocity at which a skeletal muscle can shorten (i.e. the velocity of sliding between the myosin filament and the actin filament under zero load, V 0 ) is already set at the end of the latency relaxation (LR) preceding isometric force generation, ∼10 ms after the start of electrical stimulation in frog muscle fibres at 4°C. At this time, Ca 2+ -induced activation of the actin filament is maximal, while the myosin filament is in the OFF state characterized by most of the myosin motors lying on helical tracks on the filament surface, making them unavailable for actin binding and ATP hydrolysis. Here, the number of actin-attached motors per half-thick filament during V 0 shortening (n) is estimated by imposing, on tetanized single fibres from Rana esculenta (at 4°C and sarcomere length 2.15 μm), small 4 kHz oscillations and determining the relation between half-sarcomere (hs) compliance and force during the force development following V 0 shortening. When V 0 shortening is superimposed on the maximum isometric force T 0 , n decreases progressively with the increase of shortening (range 30-80 nm per hs) and, when V 0 shortening is imposed at the end of LR, n can be as low as 1-4. Reduction of n is accounted for by a constant duty ratio of the myosin motor of ∼0.05 and a parallel switching OFF of the thick filament, providing an explanation for the very low rate of ATP utilization during extended V 0 shortening. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Class III myosins shape the auditory hair bundles by limiting microvilli and stereocilia growth
Lelli, Andrea; Michel, Vincent; Boutet de Monvel, Jacques; Cortese, Matteo; Bosch-Grau, Montserrat; Aghaie, Asadollah; Perfettini, Isabelle; Dupont, Typhaine; Avan, Paul
2016-01-01
The precise architecture of hair bundles, the arrays of mechanosensitive microvilli-like stereocilia crowning the auditory hair cells, is essential to hearing. Myosin IIIa, defective in the late-onset deafness form DFNB30, has been proposed to transport espin-1 to the tips of stereocilia, thereby promoting their elongation. We show that Myo3a−/−Myo3b−/− mice lacking myosin IIIa and myosin IIIb are profoundly deaf, whereas Myo3a-cKO Myo3b−/− mice lacking myosin IIIb and losing myosin IIIa postnatally have normal hearing. Myo3a−/−Myo3b−/− cochlear hair bundles display robust mechanoelectrical transduction currents with normal kinetics but show severe embryonic abnormalities whose features rapidly change. These include abnormally tall and numerous microvilli or stereocilia, ungraded stereocilia bundles, and bundle rounding and closure. Surprisingly, espin-1 is properly targeted to Myo3a−/−Myo3b−/− stereocilia tips. Our results uncover the critical role that class III myosins play redundantly in hair-bundle morphogenesis; they unexpectedly limit the elongation of stereocilia and of subsequently regressing microvilli, thus contributing to the early hair bundle shaping. PMID:26754646
A chemical kinetic theory on muscle contraction and spontaneous oscillation
NASA Astrophysics Data System (ADS)
Guo, Wei-Sheng; Luo, Liao-Fu; Li, Qian-Zhong
2002-09-01
From a set of chemical kinetic equations describing the actin-activated myosin ATPase cycle, we show that, in active muscle, the fraction of myosin heads in any given biochemical state is independent of both [ADP] and [P i]. Combining muscle mechanics data of Pate and Cooke, we deduce the muscle state equation in which muscle force is a state variable of the muscle system. The theoretical results are consistent with Baker's experimental data but somewhat different from conventional muscle theory. Based on the muscle state equation with the knowledge of special structure of muscle, we present a physical mechanism which can lead to both contraction and oscillation of sarcomeres. It explains the muscle spontaneous oscillatory contraction in a natural way and agrees well with experimental data. The model will be helpful in studying the oscillatory behavior of cilia and flagella.
[Myosin storage myopathy: a rare subtype of protein aggregate myopathies].
Kiphuth, I C; Neuen-Jacob, E; Struffert, T; Wehner, M; Wallefeld, W; Laing, N; Schröder, R
2010-04-01
Myopathies with pathological protein aggregates comprise a numerically significant group of sporadic and hereditary muscle disorders. A rare disease entity within the group of protein aggregate myopathies is the myosin storage myopathy, which is caused by heterozygous mutations in the MYH7 gene which encodes the slow/beta-myosin heavy chain. We report the clinical, myopathological and MRI findings in the first German patient suffering from a myosin storage myopathy due to a heterozygous R 1845W missense mutation.
Knupp, Carlo; Offer, Gerald; Ranatunga, K W; Squire, John M
2009-07-10
The key question in understanding how force and movement are produced in muscle concerns the nature of the cyclic interaction of myosin molecules with actin filaments. The lever arm of the globular head of each myosin molecule is thought in some way to swing axially on the actin-attached motor domain, thus propelling the actin filament past the myosin filament. Recent X-ray diffraction studies of vertebrate muscle, especially those involving the analysis of interference effects between myosin head arrays in the two halves of the thick filaments, have been claimed to prove that the lever arm moves at the same time as the sliding of actin and myosin filaments in response to muscle length or force steps. It was suggested that the sliding of myosin and actin filaments, the level of force produced and the lever arm angle are all directly coupled and that other models of lever arm movement will not fit the X-ray data. Here, we show that, in addition to interference across the A-band, which must be occurring, the observed meridional M3 and M6 X-ray intensity changes can all be explained very well by the changing diffraction effects during filament sliding caused by heads stereospecifically attached to actin moving axially relative to a population of detached or non-stereospecifically attached heads that remain fixed in position relative to the myosin filament backbone. Crucially, and contrary to previous interpretations, the X-ray interference results provide little direct information about the position of the myosin head lever arm; they are, in fact, reporting relative motor domain movements. The implications of the new interpretation are briefly assessed.
2013-01-01
Background The evolution of land plants is characterized by whole genome duplications (WGD), which drove species diversification and evolutionary novelties. Detecting these events is especially difficult if they date back to the origin of the plant kingdom. Established methods for reconstructing WGDs include intra- and inter-genome comparisons, KS age distribution analyses, and phylogenetic tree constructions. Results By analysing 67 completely sequenced plant genomes 775 myosins were identified and manually assembled. Phylogenetic trees of the myosin motor domains revealed orthologous and paralogous relationships and were consistent with recent species trees. Based on the myosin inventories and the phylogenetic trees, we have identified duplications of the entire myosin motor protein family at timings consistent with 23 WGDs, that had been reported before. We also predict 6 WGDs based on further protein family duplications. Notably, the myosin data support the two recently reported WGDs in the common ancestor of all extant angiosperms. We predict single WGDs in the Manihot esculenta and Nicotiana benthamiana lineages, two WGDs for Linum usitatissimum and Phoenix dactylifera, and a triplication or two WGDs for Gossypium raimondii. Our data show another myosin duplication in the ancestor of the angiosperms that could be either the result of a single gene duplication or a remnant of a WGD. Conclusions We have shown that the myosin inventories in angiosperms retain evidence of numerous WGDs that happened throughout plant evolution. In contrast to other protein families, many myosins are still present in extant species. They are closely related and have similar domain architectures, and their phylogenetic grouping follows the genome duplications. Because of its broad taxonomic sampling the dataset provides the basis for reliable future identification of further whole genome duplications. PMID:24053117
Mühlhausen, Stefanie; Kollmar, Martin
2013-09-22
The evolution of land plants is characterized by whole genome duplications (WGD), which drove species diversification and evolutionary novelties. Detecting these events is especially difficult if they date back to the origin of the plant kingdom. Established methods for reconstructing WGDs include intra- and inter-genome comparisons, KS age distribution analyses, and phylogenetic tree constructions. By analysing 67 completely sequenced plant genomes 775 myosins were identified and manually assembled. Phylogenetic trees of the myosin motor domains revealed orthologous and paralogous relationships and were consistent with recent species trees. Based on the myosin inventories and the phylogenetic trees, we have identified duplications of the entire myosin motor protein family at timings consistent with 23 WGDs, that had been reported before. We also predict 6 WGDs based on further protein family duplications. Notably, the myosin data support the two recently reported WGDs in the common ancestor of all extant angiosperms. We predict single WGDs in the Manihot esculenta and Nicotiana benthamiana lineages, two WGDs for Linum usitatissimum and Phoenix dactylifera, and a triplication or two WGDs for Gossypium raimondii. Our data show another myosin duplication in the ancestor of the angiosperms that could be either the result of a single gene duplication or a remnant of a WGD. We have shown that the myosin inventories in angiosperms retain evidence of numerous WGDs that happened throughout plant evolution. In contrast to other protein families, many myosins are still present in extant species. They are closely related and have similar domain architectures, and their phylogenetic grouping follows the genome duplications. Because of its broad taxonomic sampling the dataset provides the basis for reliable future identification of further whole genome duplications.
Spudich, James A.
2015-01-01
No matter how many times one explores the structure of the myosin molecule, there is always something new to discover. Here, I describe the myosin mesa, a structural feature of the motor domain that has the characteristics of a binding domain for another protein, possibly myosin-binding protein C (MyBP-C). Interestingly, many well-known hypertrophic cardiomyopathy (HCM) mutations lie along this surface and may affect the putative interactions proposed here. A potential unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy is discussed here. It involves increased power output of the cardiac muscle as a result of HCM mutations causing the release of inhibition by myosin binding protein C. PMID:25619247
Yang, Yuting; Gourinath, S; Kovács, Mihály; Nyitray, László; Reutzel, Robbie; Himmel, Daniel M; O'Neall-Hennessey, Elizabeth; Reshetnikova, Ludmilla; Szent-Györgyi, Andrew G; Brown, Jerry H; Cohen, Carolyn
2007-05-01
Unlike processive cellular motors such as myosin V, whose structure has recently been determined in a "rigor-like" conformation, myosin II from contracting muscle filaments necessarily spends most of its time detached from actin. By using squid and sea scallop sources, however, we have now obtained similar rigor-like atomic structures for muscle myosin heads (S1). The significance of the hallmark closed actin-binding cleft in these crystal structures is supported here by actin/S1-binding studies. These structures reveal how different duty ratios, and hence cellular functions, of the myosin isoforms may be accounted for, in part, on the basis of detailed differences in interdomain contacts. Moreover, the rigor-like position of switch II turns out to be unique for myosin V. The overall arrangements of subdomains in the motor are relatively conserved in each of the known contractile states, and we explore qualitatively the energetics of these states.
Erdmann, Thorsten; Bartelheimer, Kathrin; Schwarz, Ulrich S
2016-11-01
Based on a detailed crossbridge model for individual myosin II motors, we systematically study the influence of mechanical load and adenosine triphosphate (ATP) concentration on small myosin II ensembles made from different isoforms. For skeletal and smooth muscle myosin II, which are often used in actomyosin gels that reconstitute cell contractility, fast forward movement is restricted to a small region of phase space with low mechanical load and high ATP concentration, which is also characterized by frequent ensemble detachment. At high load, these ensembles are stalled or move backwards, but forward motion can be restored by decreasing ATP concentration. In contrast, small ensembles of nonmuscle myosin II isoforms, which are found in the cytoskeleton of nonmuscle cells, are hardly affected by ATP concentration due to the slow kinetics of the bound states. For all isoforms, the thermodynamic efficiency of ensemble movement increases with decreasing ATP concentration, but this effect is weaker for the nonmuscle myosin II isoforms.
Elliott, Hunter; Fischer, Robert A.; Myers, Kenneth A.; Desai, Ravi A.; Gao, Lin; Chen, Christopher S.; Adelstein, Robert; Waterman, Clare M.; Danuser, Gaudenz
2014-01-01
In many cases cell function is intimately linked to cell shape control. We utilized endothelial cell branching morphogenesis as a model to understand the role of myosin-II in shape control of invasive cells migrating in 3D collagen gels. We applied principles of differential geometry and mathematical morphology to 3D image sets to parameterize cell branch structure and local cell surface curvature. We find that Rho/ROCK-stimulated myosin-II contractility minimizes cell-scale branching by recognizing and minimizing local cell surface curvature. Utilizing micro-fabrication to constrain cell shape identifies a positive feedback mechanism in which low curvature stabilizes myosin-II cortical association, where it acts to maintain minimal curvature. The feedback between myosin-II regulation by and control of curvature drives cycles of localized cortical myosin-II assembly and disassembly. These cycles in turn mediate alternating phases of directionally biased branch initiation and retraction to guide 3D cell migration. PMID:25621949
A novel MYH7 mutation links congenital fiber type disproportion and myosin storage myopathy.
Ortolano, Saida; Tarrío, Rosa; Blanco-Arias, Patricia; Teijeira, Susana; Rodríguez-Trelles, Francisco; García-Murias, María; Delague, Valerie; Lévy, Nicolas; Fernández, José M; Quintáns, Beatriz; Millán, Beatriz San; Carracedo, Angel; Navarro, Carmen; Sobrido, María-Jesús
2011-04-01
This study aimed to identify the genetic defect in a multigenerational family presenting an autosomal dominant myopathy with histological features of congenital fiber type disproportion. Linkage analysis and genetic sequencing identified, in all affected members of the family, the c.5807A>G heterozygous mutation in MYH7, which encodes the slow/β-cardiac myosin heavy chain. This mutation causes skeletal but not cardiac involvement. Myosin heavy chain expression pattern was also characterized by immunohistochemistry, western blot and q-PCR in muscle biopsies from two patients aged 25 and 62, respectively. While only congenital fiber type disproportion was observed in the younger patient, older patient's biopsy presented aggregates of slow myosin heavy chains, in fiber sub-sarcolemmal region. These clinico-pathologic findings suggest a novel phenotype within the emerging group of hereditary myosin myopathies, which in this family presents typical characteristics of congenital fiber type disproportion in early stages and later evolves to myosin storage myopathy. Copyright © 2011 Elsevier B.V. All rights reserved.
Heat-induced formation of myosin oligomer-soluble filament complex in high-salt solution.
Shimada, Masato; Takai, Eisuke; Ejima, Daisuke; Arakawa, Tsutomu; Shiraki, Kentaro
2015-02-01
Heat-induced aggregation of myosin into an elastic gel plays an important role in the water-holding capacity and texture of meat products. Here, we investigated thermal aggregation of porcine myosin in high-salt solution over a wide temperature range by dynamic light scattering experiments. The myosin samples were readily dissolved in 1.0 M NaCl at 25 °C followed by dilution into various salt concentrations. The diluted solutions consistently contained both myosin monomers and soluble filaments. The filament size decreased with increasing salt concentration and temperature. High temperatures above Tm led to at least partial dissociation of soluble filaments and thermal unfolding, resulting in the formation of soluble oligomers and binding to the persistently present soluble filaments. Such a complex formation between the oligomers and filaments has never been observed. Our results provide new insight into the heat-induced myosin gelation in high-salt solution. Copyright © 2014 Elsevier B.V. All rights reserved.
Localization and diffusion of tracer particles in viscoelastic media with active force dipoles
NASA Astrophysics Data System (ADS)
Yasuda, Kento; Okamoto, Ryuichi; Komura, Shigeyuki; Mikhailov, Alexander S.
2017-02-01
Optical tracking in vivo experiments reveal that diffusion of particles in biological cells is strongly enhanced in the presence of ATP and the experimental data for animal cells could previously be reproduced within a phenomenological model of a gel with myosin motors acting within it (Fodor É. et al., EPL, 110 (2015) 48005). Here, the two-fluid model of a gel is considered where active macromolecules, described as force dipoles, cyclically operate both in the elastic and the fluid components. Through coarse-graining, effective equations of motions for idealized tracer particles displaying local deformations and local fluid flows are derived. The equation for deformation tracers coincides with the earlier phenomenological model and thus confirms it. For flow tracers, diffusion enhancement caused by active force dipoles in the fluid component, and thus due to metabolic activity, is found. The latter effect may explain why ATP-dependent diffusion enhancement could also be observed in bacteria that lack molecular motors in their skeleton or when the activity of myosin motors was chemically inhibited in eukaryotic cells.
Myosin Heavy Chain Composition of the Human Genioglossus Muscle
ERIC Educational Resources Information Center
Daugherty, Megan; Luo, Qingwei; Sokoloff, Alan J.
2012-01-01
Background: The human tongue muscle genioglossus (GG) is active in speech, swallowing, respiration, and oral transport, behaviors encompassing a wide range of tongue shapes and movement speeds. Studies demonstrate substantial diversity in patterns of human GG motor unit activation, but whether this is accompanied by complex expression of muscle…
CYK-4 regulates Rac, but not Rho, during cytokinesis
Zhuravlev, Yelena; Hirsch, Sophia M.; Jordan, Shawn N.; Dumont, Julien; Shirasu-Hiza, Mimi; Canman, Julie C.
2017-01-01
Cytokinesis is driven by constriction of an actomyosin contractile ring that is controlled by Rho-family small GTPases. Rho, activated by the guanine-nucleotide exchange factor ECT-2, is upstream of both myosin-II activation and diaphanous formin-mediated filamentous actin (f-actin) assembly, which drive ring constriction. The role for Rac and its regulators is more controversial, but, based on the finding that Rac inactivation can rescue cytokinesis failure when the GTPase-activating protein (GAP) CYK-4 is disrupted, Rac activity was proposed to be inhibitory to contractile ring constriction and thus specifically inactivated by CYK-4 at the division plane. An alternative model proposes that Rac inactivation generally rescues cytokinesis failure by reducing cortical tension, thus making it easier for the cell to divide when ring constriction is compromised. In this alternative model, CYK-4 was instead proposed to activate Rho by binding ECT-2. Using a combination of time-lapse in vivo single-cell analysis and Caenorhabditis elegans genetics, our evidence does not support this alternative model. First, we found that Rac disruption does not generally rescue cytokinesis failure: inhibition of Rac specifically rescues cytokinesis failure due to disruption of CYK-4 or ECT-2 but does not rescue cytokinesis failure due to disruption of two other contractile ring components, the Rho effectors diaphanous formin and myosin-II. Second, if CYK-4 regulates cytokinesis through Rho rather than Rac, then CYK-4 inhibition should decrease levels of downstream targets of Rho. Inconsistent with this, we found no change in the levels of f-actin or myosin-II at the division plane when CYK-4 GAP activity was reduced, suggesting that CYK-4 is not upstream of ECT-2/Rho activation. Instead, we found that the rescue of cytokinesis in CYK-4 mutants by Rac inactivation was Cdc42 dependent. Together our data suggest that CYK-4 GAP activity opposes Rac (and perhaps Cdc42) during cytokinesis. PMID:28298491
Rab7b at the intersection of intracellular trafficking and cell migration.
Distefano, Marita Borg; Kjos, Ingrid; Bakke, Oddmund; Progida, Cinzia
2015-01-01
Rab proteins are small GTPases essential for controlling and coordinating intracellular traffic. The small GTPase Rab7b regulates the retrograde transport from late endosomes toward the Trans-Golgi Network (TGN), and is important for the proper trafficking of several receptors such as Toll-like receptors (TLRs) and sorting receptors. We recently identified the actin motor protein myosin II as a new interaction partner for Rab7b, and found that Rab7b transport is dependent on myosin II. Interestingly, we also discovered that Rab7b influences the phosphorylation state of myosin II by controlling the activation status of the small GTPase RhoA. Consequently, Rab7b is important for the remodeling of actin filaments in processes such as stress fiber formation, cell adhesion, polarization and cell migration. Our finding that Rab7b can control actomyosin reorganization reveals yet another important role for Rab proteins, in addition to their already established role as master regulators of intracellular transport. Here we discuss our findings and speculate how they can explain the importance of Rab7b in dendritic cells (DCs).
O'Loughlin, Thomas; Masters, Thomas A; Buss, Folma
2018-04-01
The intracellular functions of myosin motors requires a number of adaptor molecules, which control cargo attachment, but also fine-tune motor activity in time and space. These motor-adaptor-cargo interactions are often weak, transient or highly regulated. To overcome these problems, we use a proximity labelling-based proteomics strategy to map the interactome of the unique minus end-directed actin motor MYO6. Detailed biochemical and functional analysis identified several distinct MYO6-adaptor modules including two complexes containing RhoGEFs: the LIFT (LARG-Induced F-actin for Tethering) complex that controls endosome positioning and motility through RHO-driven actin polymerisation; and the DISP (DOCK7-Induced Septin disPlacement) complex, a novel regulator of the septin cytoskeleton. These complexes emphasise the role of MYO6 in coordinating endosome dynamics and cytoskeletal architecture. This study provides the first in vivo interactome of a myosin motor protein and highlights the power of this approach in uncovering dynamic and functionally diverse myosin motor complexes. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.
Development and regeneration of the electric organ.
Zakon, H H; Unguez, G A
1999-05-01
The electric organ has evolved independently from muscle in at least six lineages of fish. How does a differentiated muscle cell change its fate to become an electrocyte? Is the process by which this occurs similar in different lineages? We have begun to answer these questions by studying the formation and maintenance of electrocytes in the genus Sternopygus, a weakly electric teleost. Electrocytes arise from the fusion of fully differentiated muscle fibers, mainly those expressing fast isoforms of myosin. Electrocytes briefly co-express sarcomeric proteins, such as myosin and tropomyosin, and keratin, a protein not found in mature muscle. The sarcomeric proteins are subsequently down-regulated, but keratin expression persists. We investigated whether the maintenance of the electrocyte phenotype depends on innervation. We found that, after spinal cord transection, which silences the electromotor neurons that innervate the electrocytes, or destruction of the spinal cord, which denervates the electrocytes, mature electrocytes re-express sarcomeric myosin and tropomyosin, although keratin expression persists. Ultrastructural examination of denervated electrocytes revealed nascent sarcomeres. Thus, the maintenance of the electrocyte phenotype depends on neural activity.
Left-Right Asymmetry: Myosin 1D at the Center.
Yuan, Shiaulou; Brueckner, Martina
2018-05-07
While a ciliated organizer generates vertebrate left-right asymmetry, most invertebrates lack an organizer and instead utilize a myosin-based mechanism. A recent study now reveals that this myosin mechanism is conserved in the vertebrate organizer and functions to regulate cilia. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tropomyosins as discriminators of myosin function.
Ostap, E Michael
2008-01-01
Vertebrate nonmuscle cells express multiple tropomyosin isoforms that are sorted to subcellular compartments that have distinct morphological and dynamic properties. The creation of these compartments has a role in controlling cell morphology, cell migration and polarization of cellular components. There is increasing evidence that nonmuscle myosins are regulated by tropomyosin in these compartments via the regulation of actin attachment, ATPase kinetics, or by stabilization of cytoskeletal tracks for myosin-based transport. In this chapter, I review the literature describing the regulation of various myosins by tropomyosins and consider the mechanisms for this regulation.
Theoretical studies of the ATP hydrolysis mechanism of myosin.
Okimoto, N; Yamanaka, K; Ueno, J; Hata, M; Hoshino, T; Tsuda, M
2001-11-01
The ATP hydrolysis mechanism of myosin was studied using quantum chemical (QM) and molecular dynamics calculations. The initial model compound for QM calculations was constructed on the basis of the energy-minimized structure of the myosin(S1dc)-ATP complex, which was determined by molecular mechanics calculations. The result of QM calculations suggested that the ATP hydrolysis mechanism of myosin consists of a single elementary reaction in which a water molecule nucleophilically attacked gamma-phosphorus of ATP. In addition, we performed molecular dynamics simulations of the initial and final states of the ATP hydrolysis reaction, that is, the myosin-ATP and myosin-ADP.Pi complexes. These calculations revealed roles of several amino acid residues (Lys185, Thr186, Ser237, Arg238, and Glu459) in the ATPase pocket. Lys185 maintains the conformation of beta- and gamma-phosphate groups of ATP by forming the hydrogen bonds. Thr186 and Ser237 are coordinated to a Mg(2+) ion, which interacts with the phosphates of ATP and therefore contributes to the stabilization of the ATP structure. Arg238 and Glu459, which consisted of the gate of the ATPase pocket, retain the water molecule acting on the hydrolysis at the appropriate position for initiating the hydrolysis.
Myosin Va Bound to Phagosomes Binds to F-Actin and Delays Microtubule-dependent Motility
Al-Haddad, Ahmed; Shonn, Marion A.; Redlich, Bärbel; Blocker, Ariel; Burkhardt, Janis K.; Yu, Hanry; Hammer, John A.; Weiss, Dieter G.; Steffen, Walter; Griffiths, Gareth; Kuznetsov, Sergei A.
2001-01-01
We established a light microscopy-based assay that reconstitutes the binding of phagosomes purified from mouse macrophages to preassembled F-actin in vitro. Both endogenous myosin Va from mouse macrophages and exogenous myosin Va from chicken brain stimulated the phagosome–F-actin interaction. Myosin Va association with phagosomes correlated with their ability to bind F-actin in an ATP-regulated manner and antibodies to myosin Va specifically blocked the ATP-sensitive phagosome binding to F-actin. The uptake and retrograde transport of phagosomes from the periphery to the center of cells in bone marrow macrophages was observed in both normal mice and mice homozygous for the dilute-lethal spontaneous mutation (myosin Va null). However, in dilute-lethal macrophages the accumulation of phagosomes in the perinuclear region occurred twofold faster than in normal macrophages. Motion analysis revealed saltatory phagosome movement with temporarily reversed direction in normal macrophages, whereas almost no reversals in direction were observed in dilute-lethal macrophages. These observations demonstrate that myosin Va mediates phagosome binding to F-actin, resulting in a delay in microtubule-dependent retrograde phagosome movement toward the cell center. We propose an “antagonistic/cooperative mechanism” to explain the saltatory phagosome movement toward the cell center in normal macrophages. PMID:11553713
Resting myosin cross-bridge configuration in frog muscle thick filaments.
Cantino, M; Squire, J
1986-02-01
Clear images of myosin filaments have been seen in shadowed freeze-fracture replicas of single fibers of relaxed frog semitendinosus muscles rapidly frozen using a dual propane jet freezing device. These images have been analyzed by optical diffraction and computer averaging and have been modelled to reveal details of the myosin head configuration on the right-handed, three-stranded helix of cross-bridges. Both the characteristic 430-A and 140-150-A repeats of the myosin cross-bridge array could be seen. The measured filament backbone diameter was 140-160 A, and the outer diameter of the cross-bridge array was 300 A. Evidence is presented that suggests that the observed images are consistent with a model in which both of the heads of one myosin molecule tilt in the same direction at an angle of approximately 50-70 degrees to the normal to the filament long axis and are slewed so that they lie alongside each other and their radially projected density lies along the three right-handed helical tracks. Any perturbation of the myosin heads away from their ideal lattice sites needed to account for x-ray reflections not predicted for a perfect helix must be essentially along the three helical tracks of cross-bridges. Little trace of the presence of non-myosin proteins could be seen.
Brownstein, Zippora; Abu-Rayyan, Amal; Karfunkel-Doron, Daphne; Sirigu, Serena; Davidov, Bella; Shohat, Mordechai; Frydman, Moshe; Houdusse, Anne; Kanaan, Moien; Avraham, Karen B
2014-01-01
Hereditary hearing loss is genetically heterogeneous, with a large number of genes and mutations contributing to this sensory, often monogenic, disease. This number, as well as large size, precludes comprehensive genetic diagnosis of all known deafness genes. A combination of targeted genomic capture and massively parallel sequencing (MPS), also referred to as next-generation sequencing, was applied to determine the deafness-causing genes in hearing-impaired individuals from Israeli Jewish and Palestinian Arab families. Among the mutations detected, we identified nine novel mutations in the genes encoding myosin VI, myosin VIIA and myosin XVA, doubling the number of myosin mutations in the Middle East. Myosin VI mutations were identified in this population for the first time. Modeling of the mutations provided predicted mechanisms for the damage they inflict in the molecular motors, leading to impaired function and thus deafness. The myosin mutations span all regions of these molecular motors, leading to a wide range of hearing phenotypes, reinforcing the key role of this family of proteins in auditory function. This study demonstrates that multiple mutations responsible for hearing loss can be identified in a relatively straightforward manner by targeted-gene MPS technology and concludes that this is the optimal genetic diagnostic approach for identification of mutations responsible for hearing loss. PMID:24105371
A model of stereocilia adaptation based on single molecule mechanical studies of myosin I.
Batters, Christopher; Wallace, Mark I; Coluccio, Lynne M; Molloy, Justin E
2004-01-01
We have used an optical tweezers-based apparatus to perform single molecule mechanical experiments using the unconventional myosins, Myo1b and Myo1c. The single-headed nature and slow ATPase kinetics of these myosins make them ideal for detailed studies of the molecular mechanism of force generation by acto-myosin. Myo1c exhibits several features that have not been seen using fast skeletal muscle myosin II. (i) The working stroke occurs in two, distinct phases, producing an initial 3 nm and then a further 1.5 nm of movement. (ii) Two types of binding interaction were observed: short-lived ATP-independent binding events that produced no movement and longer-lived, ATP-dependent events that produced a full working stroke. The stiffness of both types of interaction was similar. (iii) In a new type of experiment, using feedback to apply controlled displacements to a single acto-myosin cross-bridge, we found abrupt changes in force during attachment of the acto-Myo1b cross-bridge, a result that is consistent with the classical 'T2' behaviour of single muscle fibres. Given that these myosins might exhibit the classical T2 behaviour, we propose a new model to explain the slow phase of sensory adaptation of the hair cells of the inner ear. PMID:15647165
Marcotti, Walter; Corns, Laura F; Goodyear, Richard J; Rzadzinska, Agnieszka K; Avraham, Karen B; Steel, Karen P; Richardson, Guy P; Kros, Corné J
2016-07-01
The transduction of sound into electrical signals occurs at the hair bundles atop sensory hair cells in the cochlea, by means of mechanosensitive ion channels, the mechano-electrical transducer (MET) channels. The MET currents decline during steady stimuli; this is termed adaptation and ensures they always work within the most sensitive part of their operating range, responding best to rapidly changing (sound) stimuli. In this study we used a mouse model (Snell's waltzer) for hereditary deafness in humans that has a mutation in the gene encoding an unconventional myosin, myosin VI, which is present in the hair bundles. We found that in the absence of myosin VI the MET current fails to acquire its characteristic adaptation as the hair bundles develop. We propose that myosin VI supports the acquisition of adaptation by removing key molecules from the hair bundle that serve a temporary, developmental role. Mutations in Myo6, the gene encoding the (F-actin) minus end-directed unconventional myosin, myosin VI, cause hereditary deafness in mice (Snell's waltzer) and humans. In the sensory hair cells of the cochlea, myosin VI is expressed in the cell bodies and along the stereocilia that project from the cells' apical surface. It is required for maintaining the structural integrity of the mechanosensitive hair bundles formed by the stereocilia. In this study we investigate whether myosin VI contributes to mechano-electrical transduction. We report that Ca(2+) -dependent adaptation of the mechano-electrical transducer (MET) current, which serves to keep the transduction apparatus operating within its most sensitive range, is absent in outer and inner hair cells from homozygous Snell's waltzer mutant mice, which fail to express myosin VI. The operating range of the MET channels is also abnormal in the mutants, resulting in the absence of a resting MET current. We found that cadherin 23, a component of the hair bundle's transient lateral links, fails to be downregulated along the length of the stereocilia in maturing Myo6 mutant mice. MET currents of heterozygous littermates appear normal. We propose that myosin VI, by removing key molecules from developing hair bundles, is required for the development of the MET apparatus and its Ca(2+) -dependent adaptation. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Unfair competition governs the interaction of pCPI-17 with myosin phosphatase (PP1-MYPT1)
Filter, Joshua J; Williams, Byron C; Eto, Masumi; Shalloway, David; Goldberg, Michael L
2017-01-01
The small phosphoprotein pCPI-17 inhibits myosin light-chain phosphatase (MLCP). Current models postulate that during muscle relaxation, phosphatases other than MLCP dephosphorylate and inactivate pCPI-17 to restore MLCP activity. We show here that such hypotheses are insufficient to account for the observed rapidity of pCPI-17 inactivation in mammalian smooth muscles. Instead, MLCP itself is the critical enzyme for pCPI-17 dephosphorylation. We call the mutual sequestration mechanism through which pCPI-17 and MLCP interact inhibition by unfair competition: MLCP protects pCPI-17 from other phosphatases, while pCPI-17 blocks other substrates from MLCP’s active site. MLCP dephosphorylates pCPI-17 at a slow rate that is, nonetheless, both sufficient and necessary to explain the speed of pCPI-17 dephosphorylation and the consequent MLCP activation during muscle relaxation. DOI: http://dx.doi.org/10.7554/eLife.24665.001 PMID:28387646
Zebrafish Cardiac Muscle Thick Filaments: Isolation Technique and Three-Dimensional Structure
González-Solá, Maryví; AL-Khayat, Hind A.; Behra, Martine; Kensler, Robert W.
2014-01-01
To understand how mutations in thick filament proteins such as cardiac myosin binding protein-C or titin, cause familial hypertrophic cardiomyopathies, it is important to determine the structure of the cardiac thick filament. Techniques for the genetic manipulation of the zebrafish are well established and it has become a major model for the study of the cardiovascular system. Our goal is to develop zebrafish as an alternative system to the mammalian heart model for the study of the structure of the cardiac thick filaments and the proteins that form it. We have successfully isolated thick filaments from zebrafish cardiac muscle, using a procedure similar to those for mammalian heart, and analyzed their structure by negative-staining and electron microscopy. The isolated filaments appear well ordered with the characteristic 42.9 nm quasi-helical repeat of the myosin heads expected from x-ray diffraction. We have performed single particle image analysis on the collected electron microscopy images for the C-zone region of these filaments and obtained a three-dimensional reconstruction at 3.5 nm resolution. This reconstruction reveals structure similar to the mammalian thick filament, and demonstrates that zebrafish may provide a useful model for the study of the changes in the cardiac thick filament associated with disease processes. PMID:24739166
Treatment and prevention of experimental autoimmune myocarditis with CD28 superagonists.
Wang, Shu; Liu, Jing; Wang, Min; Zhang, Jinghui; Wang, Zhaohui
2010-01-01
Experimental autoimmune myocarditis (EAM), a rodent model of human dilated cardiomyopathy (DCM), is mediated by an autoimmune mechanism. We investigated whether a CD28 superagonistic antibody selectively targeting CD4+CD25+ regulatory T cells (T(regs)) provides effective therapy for EAM. Four groups of 5 rats were used. The normal control group was immunized with PBS. The EAM group was immunized with porcine myosin. The experimental group was immunized with myosin and superagonistic CD28 antibody JJ316. The final group was immunized with myosin and an unrelated rat IgG. Autoantibody and IL-10 production, CD4+CD25+ cell levels, Foxp3 expression and cardiac histology were analyzed. Anti-myosin autoantibody levels were higher in the EAM and isotype control groups than the normal control group (p < 0.05), and reduced in the CD28-JJ316 group (p < 0.05). The levels of CD25+CD4+ cells, IL-10 and splenocyte Foxp3 expression were significantly lower in the EAM and isotype control groups versus the CD28-JJ316 group (p < 0.05). Infiltration of inflammatory cells was observed in the EAM and isotype control groups, whereas CD28-JJ316 ameliorated myocarditis. CD28 superagonists could be effective in EAM treatment by up-regulating Foxp3 expression and contributing to CD4+CD25+ T(reg) activation and expansion. The enhancement in IL-10 by CD28 superagonists also ameliorated the disease.
Blankenburg, Robert; Hackert, Katarzyna; Wurster, Sebastian; Deenen, René; Seidman, J G; Seidman, Christine E; Lohse, Martin J; Schmitt, Joachim P
2014-07-07
Approximately 40% of hypertrophic cardiomyopathy (HCM) is caused by heterozygous missense mutations in β-cardiac myosin heavy chain (β-MHC). Associating disease phenotype with mutation is confounded by extensive background genetic and lifestyle/environmental differences between subjects even from the same family. To characterize disease caused by β-cardiac myosin heavy chain Val606Met substitution (VM) that has been identified in several HCM families with wide variation of clinical outcomes, in mice. Unlike 2 mouse lines bearing the malignant myosin mutations Arg453Cys (RC/+) or Arg719Trp (RW/+), VM/+ mice with an identical inbred genetic background lacked hallmarks of HCM such as left ventricular hypertrophy, disarray of myofibers, and interstitial fibrosis. Even homozygous VM/VM mice were indistinguishable from wild-type animals, whereas RC/RC- and RW/RW-mutant mice died within 9 days after birth. However, hypertrophic effects of the VM mutation were observed both in mice treated with cyclosporine, a known stimulator of the HCM response, and compound VM/RC heterozygous mice, which developed a severe HCM phenotype. In contrast to all heterozygous mutants, both systolic and diastolic function of VM/RC hearts was severely impaired already before the onset of cardiac remodeling. The VM mutation per se causes mild HCM-related phenotypes; however, in combination with other HCM activators it exacerbates the HCM phenotype. Double-mutant mice are suitable for assessing the severity of benign mutations. © 2014 American Heart Association, Inc.
Shinohara, Mayuka; Sumino, Yasuhiro; Sato, Fuminori; Kiyono, Tohru; Hashimoto, Naohiro; Mimata, Hiromitsu
2017-06-01
To examine the inhibitory effects of tumor necrosis factor-α on myogenic differentiation of human urethral rhabdosphincter cells. A rhabdosphincter sample was obtained from a patient who underwent total cystectomy. To expand the lifespan of the primary cultured cells, rhabdosphincter myogenic cells were immortalized with mutated cyclin-dependent kinase 4, cyclin D1 and telomerase. The differential potential of the cells was investigated. The transfected human rhabdosphincter cells were induced for myogenic differentiation with recombinant human tumor necrosis factor-α and/or the tumor necrosis factor-α antagonist etanercept at different concentrations, and activation of signaling pathways was monitored. Human rhabdosphincter cells were selectively cultured for at least 40 passages. Molecular analysis confirmed the expression of myosin heavy chain, which is a specific marker of differentiated muscle cells, significantly increased after differentiation induction. Although tumor necrosis factor-α treatment reduced the myosin heavy chain expression in a concentration-dependent manner, etanercept inhibited this suppression. Tumor necrosis factor-α suppressed phosphorylation of protein kinase B and p38, whereas etanercept pretreatment promoted phosphorylation and myosin heavy chain expression in a concentration-dependent manner. Tumor necrosis factor-α inhibits differentiation of urethral rhabdosphincter cells in part through the p38 mitogen-activated protein kinase and phosphoinositide 3-kinase pathways. Inhibition of tumor necrosis factor-α might be a useful strategy to treat stress urinary incontinence. © 2017 The Japanese Urological Association.
Ranatunga, K W
2018-05-22
Observations made in temperature studies on mammalian muscle during force development, shortening, and lengthening, are re-examined. The isometric force in active muscle goes up substantially on warming from less than 10 °C to temperatures closer to physiological (>30 °C), and the sigmoidal temperature dependence of this force has a half-maximum at ~10 °C. During steady shortening, when force is decreased to a steady level, the sigmoidal curve is more pronounced and shifted to higher temperatures, whereas, in lengthening muscle, the curve is shifted to lower temperatures, and there is a less marked increase with temperature. Even with a small rapid temperature-jump (T-jump), force in active muscle rises in a definitive way. The rate of tension rise is slower with adenosine diphosphate (ADP) and faster with increased phosphate. Analysis showed that a T-jump enhances an early, pre-phosphate release step in the acto-myosin (crossbridge) ATPase cycle, thus inducing a force-rise. The sigmoidal dependence of steady force on temperature is due to this endothermic nature of crossbridge force generation. During shortening, the force-generating step and the ATPase cycle are accelerated, whereas during lengthening, they are inhibited. The endothermic force generation is seen in different muscle types (fast, slow, and cardiac). The underlying mechanism may involve a structural change in attached myosin heads and/or their attachments on heat absorption.
Ranatunga, K. W.
2018-01-01
Observations made in temperature studies on mammalian muscle during force development, shortening, and lengthening, are re-examined. The isometric force in active muscle goes up substantially on warming from less than 10 °C to temperatures closer to physiological (>30 °C), and the sigmoidal temperature dependence of this force has a half-maximum at ~10 °C. During steady shortening, when force is decreased to a steady level, the sigmoidal curve is more pronounced and shifted to higher temperatures, whereas, in lengthening muscle, the curve is shifted to lower temperatures, and there is a less marked increase with temperature. Even with a small rapid temperature-jump (T-jump), force in active muscle rises in a definitive way. The rate of tension rise is slower with adenosine diphosphate (ADP) and faster with increased phosphate. Analysis showed that a T-jump enhances an early, pre-phosphate release step in the acto-myosin (crossbridge) ATPase cycle, thus inducing a force-rise. The sigmoidal dependence of steady force on temperature is due to this endothermic nature of crossbridge force generation. During shortening, the force-generating step and the ATPase cycle are accelerated, whereas during lengthening, they are inhibited. The endothermic force generation is seen in different muscle types (fast, slow, and cardiac). The underlying mechanism may involve a structural change in attached myosin heads and/or their attachments on heat absorption. PMID:29786656
Iwadate, Yoshiaki; Okimura, Chika; Sato, Katsuya; Nakashima, Yuta; Tsujioka, Masatsune; Minami, Kazuyuki
2013-01-01
Living cells are constantly subjected to various mechanical stimulations, such as shear flow, osmotic pressure, and hardness of substratum. They must sense the mechanical aspects of their environment and respond appropriately for proper cell function. Cells adhering to substrata must receive and respond to mechanical stimuli from the substrata to decide their shape and/or migrating direction. In response to cyclic stretching of the elastic substratum, intracellular stress fibers in fibroblasts and endothelial, osteosarcoma, and smooth muscle cells are rearranged perpendicular to the stretching direction, and the shape of those cells becomes extended in this new direction. In the case of migrating Dictyostelium cells, cyclic stretching regulates the direction of migration, and not the shape, of the cell. The cells migrate in a direction perpendicular to that of the stretching. However, the molecular mechanisms that induce the directional migration remain unknown. Here, using a microstretching device, we recorded green fluorescent protein (GFP)-myosin-II dynamics in Dictyostelium cells on an elastic substratum under cyclic stretching. Repeated stretching induced myosin II localization equally on both stretching sides in the cells. Although myosin-II-null cells migrated randomly, myosin-II-null cells expressing a variant of myosin II that cannot hydrolyze ATP migrated perpendicular to the stretching. These results indicate that Dictyostelium cells accumulate myosin II at the portion of the cell where a large strain is received and migrate in a direction other than that of the portion where myosin II accumulated. This polarity generation for migration does not require the contraction of actomyosin. PMID:23442953
Chaen, S; Oiwa, K; Shimmen, T; Iwamoto, H; Sugi, H
1989-03-01
To elucidate the molecular mechanism of muscle contraction resulting from the ATP-dependent actin-myosin interaction, we constructed an assay system with which both the force and the movement produced by the actin-myosin interaction in vitro can be simultaneously recorded and analyzed. The assay system consisted of the giant internodal cells of an alga, Nitellopsis obtusa, which contain well-organized arrays of actin filaments (actin cables) running along the cell long axis, and a glass microneedle (tip diameter, approximately 7 microns; elastic coefficient, approximately 40 pN/microns), which was coated with skeletal muscle myosin at the tip and extended from a micromanipulator at right angles with the actin cables. When the myosin-coated tip of the microneedle was brought into contact with the exposed surface of the actin cables, it exhibited ATP-dependent movement along the actin cables over a distance of 20-150 microns in 20-200 s (20-23 degrees C) and eventually stopped due to a balance between forces generated by the actin-myosin interaction (800-6000 pN) and by the bent microneedle. Since the load on the force-generating myosin molecules increased with the bending displacement of the microneedle (auxotonic condition), the relation between the load and the sliding velocity of the myosin heads past the actin cables was determined from the time course of the microneedle movement recorded with a video system. The shape of the force-velocity curve thus obtained was convex upwards, similar to that of the force-velocity curve of intact frog muscle fibers obtained under the auxotonic condition.
Mutations in the β-myosin rod cause myosin storage myopathy via multiple mechanisms
Armel, Thomas Z.; Leinwand, Leslie A.
2009-01-01
Myosin storage myopathy (MSM) is a congenital myopathy characterized by the presence of subsarcolemmal inclusions of myosin in the majority of type I muscle fibers, and has been linked to 4 mutations in the slow/cardiac muscle myosin, β-MyHC (MYH7). Although the majority of the >230 disease causing mutations in MYH7 are located in the globular head region of the molecule, those responsible for MSM are part of a subset of MYH7 mutations that are located in the α-helical coiled-coil tail. Mutations in the myosin head are thought to affect the ATPase and actin-binding properties of the molecule. To date, however, there are no reports of the molecular mechanism of pathogenesis for mutations in the rod region of muscle myosins. Here, we present analysis of 4 mutations responsible for MSM: L1793P, R1845W, E1886K, and H1901L. We show that each MSM mutation has a different molecular phenotype, suggesting that there are multiple mechanisms by which MSM can be caused. These mechanisms range from thermodynamic and functional irregularities of individual proteins (L1793P), to varying defects in the assembly and stability of filaments formed from the proteins (R1845W, E1886K, and H1901L). In addition to furthering our understanding of MSM, these observations provide the first insight into how mutations affect the rod region of muscle myosins, and provide a framework for future studies of disease-causing mutations in this region of the molecule. PMID:19336582
Myosin MyTH4-FERM structures highlight important principles of convergent evolution.
Planelles-Herrero, Vicente José; Blanc, Florian; Sirigu, Serena; Sirkia, Helena; Clause, Jeffrey; Sourigues, Yannick; Johnsrud, Daniel O; Amigues, Beatrice; Cecchini, Marco; Gilbert, Susan P; Houdusse, Anne; Titus, Margaret A
2016-05-24
Myosins containing MyTH4-FERM (myosin tail homology 4-band 4.1, ezrin, radixin, moesin, or MF) domains in their tails are found in a wide range of phylogenetically divergent organisms, such as humans and the social amoeba Dictyostelium (Dd). Interestingly, evolutionarily distant MF myosins have similar roles in the extension of actin-filled membrane protrusions such as filopodia and bind to microtubules (MT), suggesting that the core functions of these MF myosins have been highly conserved over evolution. The structures of two DdMyo7 signature MF domains have been determined and comparison with mammalian MF structures reveals that characteristic features of MF domains are conserved. However, across millions of years of evolution conserved class-specific insertions are seen to alter the surfaces and the orientation of subdomains with respect to each other, likely resulting in new sites for binding partners. The MyTH4 domains of Myo10 and DdMyo7 bind to MT with micromolar affinity but, surprisingly, their MT binding sites are on opposite surfaces of the MyTH4 domain. The structural analysis in combination with comparison of diverse MF myosin sequences provides evidence that myosin tail domain features can be maintained without strict conservation of motifs. The results illustrate how tuning of existing features can give rise to new structures while preserving the general properties necessary for myosin tails. Thus, tinkering with the MF domain enables it to serve as a multifunctional platform for cooperative recruitment of various partners, allowing common properties such as autoinhibition of the motor and microtubule binding to arise through convergent evolution.
The sarcomeric cytoskeleton: from molecules to motion.
Gautel, Mathias; Djinović-Carugo, Kristina
2016-01-01
Highly ordered organisation of striated muscle is the prerequisite for the fast and unidirectional development of force and motion during heart and skeletal muscle contraction. A group of proteins, summarised as the sarcomeric cytoskeleton, is essential for the ordered assembly of actin and myosin filaments into sarcomeres, by combining architectural, mechanical and signalling functions. This review discusses recent cell biological, biophysical and structural insight into the regulated assembly of sarcomeric cytoskeleton proteins and their roles in dissipating mechanical forces in order to maintain sarcomere integrity during passive extension and active contraction. α-Actinin crosslinks in the Z-disk show a pivot-and-rod structure that anchors both titin and actin filaments. In contrast, the myosin crosslinks formed by myomesin in the M-band are of a ball-and-spring type and may be crucial in providing stable yet elastic connections during active contractions, especially eccentric exercise. © 2016. Published by The Company of Biologists Ltd.
[Thin filament elasticity and its role in the muscle contraction].
Skubiszak, L
2006-01-01
The available experimental methods do not allow one to establish unambiguously the molecular structural events during muscle contraction. To resolve the existing controversies, I have devised an unconventional original computer program. The new approach allows the reconstruction of the hexagonal lattice of the sarcomere for different muscle states and verification of the structure by comparison of the calculated Fourier spectra with the real diffraction patterns. Previously, by the use of this approach, the real structure of a myosin filament from vertebrate striated muscle has been reconstructed (http://zope.ibib.waw.pl/pspk). In this work, a reconstruction for the thin filament is presented for three states: relaxed, after activation, and during contraction. Good consistency of the calculated Fourier spectra with the real diffraction patterns available in the literature suggests that the thin filament, due to flexibility, plays an active part in muscle contraction, as myosin cross-bridges do.
Response of slow and fast muscle to hypothyroidism: maximal shortening velocity and myosin isoforms
NASA Technical Reports Server (NTRS)
Caiozzo, V. J.; Herrick, R. E.; Baldwin, K. M.
1992-01-01
This study examined both the shortening velocity and myosin isoform distribution of slow- (soleus) and fast-twitch (plantaris) skeletal muscles under hypothyroid conditions. Adult female Sprague-Dawley rats were randomly assigned to one of two groups: control (n = 7) or hypothyroid (n = 7). In both muscles, the relative contents of native slow myosin (SM) and type I myosin heavy chain (MHC) increased in response to the hypothyroid treatment. The effects were such that the hypothyroid soleus muscle expressed only the native SM and type I MHC isoforms while repressing native intermediate myosin and type IIA MHC. In the plantaris, the relative content of native SM and type I MHC isoforms increased from 5 to 13% and from 4 to 10% of the total myosin pool, respectively. Maximal shortening velocity of the soleus and plantaris as measured by the slack test decreased by 32 and 19%, respectively, in response to hypothyroidism. In contrast, maximal shortening velocity as estimated by force-velocity data decreased only in the soleus (-19%). No significant change was observed for the plantaris.
An electromechanical model of myosin molecular motors.
Masuda, Tadashi
2003-12-21
There is a long-running debate on the working mechanism of myosin molecular motors, which, by interacting with actin filaments, convert the chemical energy of ATP into a variety of mechanical work. After the development of technologies for observing and manipulating individual working molecules, experimental results negating the widely accepted 'lever-arm hypothesis' have been reported. In this paper, based on the experimental results so far accumulated, an alternative hypothesis is proposed, in which motor molecules are modelled as electromechanical components that interact with each other through electrostatic force. Electrostatic attractive force between myosin and actin is assumed to cause a conformational change in the myosin head during the attachment process. An elastic energy resulting from the conformational change then produces the power stroke. The energy released at the ATP hydrolysis is mainly used to detach the myosin head from actin filaments. The mechanism presented in this paper is compatible with the experimental results contradictory to the previous theories. It also explains the behavior of myosins V and VI, which are engaged in cellular transport and move processively along actin filaments.
Guo, Minghui; Liu, Shucheng; Ismail, Marliya; Farid, Mohammed M; Ji, Hongwu; Mao, Weijie; Gao, Jing; Li, Chengyong
2017-07-15
Dense phase carbon dioxide (DPCD) could induce protein conformation changes. Myosin and shrimp surimi from Litopenaeus vannamei were treated with DPCD at 5-25MPa and 40-60°C for 20min. Myosin secondary structure was investigated by circular dichroism and shrimp surimi gel strength was determined using textural analysis to develop correlations between them. DPCD had a greater effect on secondary structure and gel strength than heating. With increasing pressure and temperature, the α-helix content of DPCD-treated myosin decreased, while the β-sheet, β-turn and random coil contents increased, and the shrimp surimi gel strength increased. The α-helix content was negatively correlated with gel strength, while the β-sheet, β-turn and random coil contents were positively correlated with gel strength. Therefore, when DPCD induced myosin to form a gel, the α-helix of myosin was unfolded and gradually converted to a β-sheet. Such transformations led to protein-protein interactions and cross-linking, which formed a three-dimensional network to enhance the gel strength. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yumoto, Masatoshi; Watanabe, Masaru
2013-01-01
Blebbistatin, a potent inhibitor of myosin II, has inhibiting effects on Ca(2+)-induced contraction and contractile filament organization without affecting the Ca(2+)-sensitivity to the force and phosphorylation level of myosin regulatory light chain (MLC20) in skinned (cell membrane permeabilized) taenia cecum from the guinea pig (Watanabe et al., Am J Physiol Cell Physiol. 2010; 298: C1118-26). In the present study, we investigated blebbistatin effects on the contractile force of skinned tracheal muscle, in which myosin filaments organization is more labile than that in the taenia cecum. Blebbistatin at 10 μM or higher suppressed Ca(2+)-induced tension development at any given Ca(2+) concentration, but had little effects on the Ca(2+)- induced myosin light chain phosphorylation. Also blebbistatin at 10 μM and higher significantly suppressed GTP-γS-induced "sensitized" force development. Since the force inhibiting effects of blebbistatin on the skinned trachea were much stronger than those in skinned taenia cecum, blebbistatin might directly affect myosin filaments organization.
Mapping Interactions between Myosin Relay and Converter Domains That Power Muscle Function*
Kronert, William A.; Melkani, Girish C.; Melkani, Anju; Bernstein, Sanford I.
2014-01-01
Intramolecular communication within myosin is essential for its function as motor, but the specific amino acid residue interactions required are unexplored within muscle cells. Using Drosophila melanogaster skeletal muscle myosin, we performed a novel in vivo molecular suppression analysis to define the importance of three relay loop amino acid residues (Ile508, Asn509, and Asp511) in communicating with converter domain residue Arg759. We found that the N509K relay mutation suppressed defects in myosin ATPase, in vitro motility, myofibril stability, and muscle function associated with the R759E converter mutation. Through molecular modeling, we define a mechanism for this interaction and suggest why the I508K and D511K relay mutations fail to suppress R759E. Interestingly, I508K disabled motor function and myofibril assembly, suggesting that productive relay-converter interaction is essential for both processes. We conclude that the putative relay-converter interaction mediated by myosin residues 509 and 759 is critical for the biochemical and biophysical function of skeletal muscle myosin and the normal ultrastructural and mechanical properties of muscle. PMID:24627474
Roles of an Unconventional Protein Kinase and Myosin II in Amoeba Osmotic Shock Responses
Betapudi, Venkaiah; Egelhoff, Thomas T.
2009-01-01
The contractile vacuole (CV) is a dynamic organelle that enables Dictyostelium amoeba and other protist to maintain osmotic homeostasis by expelling excess water. In the present study, we have uncovered a mechanism that coordinates the mechanics of the CV with myosin II, regulated by VwkA, an unconventional protein kinase that is conserved in an array of protozoa. GFP-VwkA fusion proteins localize persistently to the CV during both filling and expulsion phases of water. In vwkA null cells, the established CV marker dajumin still localizes to the CV, but these structures are large, spherical, and severely impaired for discharge. Furthermore, myosin II cortical localization and assembly are abnormal in vwkA null cells. Parallel analysis of wild type cells treated with myosin II inhibitors or of myosin II null cells also results in enlarged CVs with impaired dynamics. We suggest that the myosin II cortical cytoskeleton, regulated by VwkA, serves a critical conserved role in the periodic contractions of the CV, as part of the osmotic protective mechanism of protozoa. PMID:19843280
Alamo, Lorenzo; Ware, James S; Pinto, Antonio; Gillilan, Richard E; Seidman, Jonathan G; Seidman, Christine E; Padrón, Raúl
2017-01-01
Cardiac β-myosin variants cause hypertrophic (HCM) or dilated (DCM) cardiomyopathy by disrupting sarcomere contraction and relaxation. The locations of variants on isolated myosin head structures predict contractility effects but not the prominent relaxation and energetic deficits that characterize HCM. During relaxation, pairs of myosins form interacting-heads motif (IHM) structures that with other sarcomere proteins establish an energy-saving, super-relaxed (SRX) state. Using a human β-cardiac myosin IHM quasi-atomic model, we defined interactions sites between adjacent myosin heads and associated protein partners, and then analyzed rare variants from 6112 HCM and 1315 DCM patients and 33,370 ExAC controls. HCM variants, 72% that changed electrostatic charges, disproportionately altered IHM interaction residues (expected 23%; HCM 54%, p=2.6×10−19; DCM 26%, p=0.66; controls 20%, p=0.23). HCM variant locations predict impaired IHM formation and stability, and attenuation of the SRX state - accounting for altered contractility, reduced diastolic relaxation, and increased energy consumption, that fully characterizes HCM pathogenesis. DOI: http://dx.doi.org/10.7554/eLife.24634.001 PMID:28606303
Boëda, Batiste; El-Amraoui, Aziz; Bahloul, Amel; Goodyear, Richard; Daviet, Laurent; Blanchard, Stéphane; Perfettini, Isabelle; Fath, Karl R.; Shorte, Spencer; Reiners, Jan; Houdusse, Anne; Legrain, Pierre; Wolfrum, Uwe; Richardson, Guy; Petit, Christine
2002-01-01
Deaf-blindness in three distinct genetic forms of Usher type I syndrome (USH1) is caused by defects in myosin VIIa, harmonin and cadherin 23. Despite being critical for hearing, the functions of these proteins in the inner ear remain elusive. Here we show that harmonin, a PDZ domain-containing protein, and cadherin 23 are both present in the growing stereocilia and that they bind to each other. Moreover, we demonstrate that harmonin b is an F-actin-bundling protein, which is thus likely to anchor cadherin 23 to the stereocilia microfilaments, thereby identifying a novel anchorage mode of the cadherins to the actin cytoskeleton. Moreover, harmonin b interacts directly with myosin VIIa, and is absent from the disorganized hair bundles of myosin VIIa mutant mice, suggesting that myosin VIIa conveys harmonin b along the actin core of the developing stereocilia. We propose that the shaping of the hair bundle relies on a functional unit composed of myosin VIIa, harmonin b and cadherin 23 that is essential to ensure the cohesion of the stereocilia. PMID:12485990
Di Leva, Francesca; D'Adamo, Pio; Cubellis, Maria Vittoria; D'Eustacchio, Angela; Errichiello, Monica; Saulino, Claudio; Auletta, Gennaro; Giannini, Pasquale; Donaudy, Francesca; Ciccodicola, Alfredo; Gasparini, Paolo; Franzè, Annamaria; Marciano, Elio
2006-01-01
We ascertained a large Italian family with an autosomal dominant form of non-syndromic sensorineural hearing loss with vestibular involvement. A genome-wide scan found linkage to locus DFNA11. Sequencing of the MYO7A gene in the linked region identified a new missense mutation resulting in an Ala230Val change in the motor domain of the myosin VIIA. Myosin VIIA has already been implicated in several forms of deafness, but this is the third mutation causing a dominant form of deafness, located in the myosin VIIA motor domain in a region never involved in hearing loss until now. A modelled protein structure of myosin VII motor domain provides evidence for a significant functional effect of this missense mutation. Copyright (c) 2006 S. Karger AG, Basel.
Human myosin VIIa is a very slow processive motor protein on various cellular actin structures.
Sato, Osamu; Komatsu, Satoshi; Sakai, Tsuyoshi; Tsukasaki, Yoshikazu; Tanaka, Ryosuke; Mizutani, Takeomi; Watanabe, Tomonobu M; Ikebe, Reiko; Ikebe, Mitsuo
2017-06-30
Human myosin VIIa (MYO7A) is an actin-linked motor protein associated with human Usher syndrome (USH) type 1B, which causes human congenital hearing and visual loss. Although it has been thought that the role of human myosin VIIa is critical for USH1 protein tethering with actin and transportation along actin bundles in inner-ear hair cells, myosin VIIa's motor function remains unclear. Here, we studied the motor function of the tail-truncated human myosin VIIa dimer (HM7AΔTail/LZ) at the single-molecule level. We found that the HM7AΔTail/LZ moves processively on single actin filaments with a step size of 35 nm. Dwell-time distribution analysis indicated an average waiting time of 3.4 s, yielding ∼0.3 s -1 for the mechanical turnover rate; hence, the velocity of HM7AΔTail/LZ was extremely slow, at 11 nm·s -1 We also examined HM7AΔTail/LZ movement on various actin structures in demembranated cells. HM7AΔTail/LZ showed unidirectional movement on actin structures at cell edges, such as lamellipodia and filopodia. However, HM7AΔTail/LZ frequently missed steps on actin tracks and exhibited bidirectional movement at stress fibers, which was not observed with tail-truncated myosin Va. These results suggest that the movement of the human myosin VIIa motor protein is more efficient on lamellipodial and filopodial actin tracks than on stress fibers, which are composed of actin filaments with different polarity, and that the actin structures influence the characteristics of cargo transportation by human myosin VIIa. In conclusion, myosin VIIa movement appears to be suitable for translocating USH1 proteins on stereocilia actin bundles in inner-ear hair cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Schiller, NaTasha R.; Duchesneau, Christopher D.; Lane, Latrisha S.; Reedy, April R.; Manzon, Emily R.; Hoppe, Pamela E.
2017-01-01
We study the mechanisms that guide the formation and maintenance of the highly ordered actin-myosin cytoskeleton in striated muscle. The UNC-82 kinase of Caenorhabditis elegans is orthologous to mammalian kinases ARK5/NUAK1 and SNARK/NUAK2. UNC-82 localizes to the M-line, and is required for proper organization of thick filaments, but its substrate and mechanism of action are unknown. Antibody staining of three mutants with missense mutations in the UNC-82 catalytic domain revealed muscle structure that is less disorganized than in the null unc-82(0), but contained distinctive ectopic accumulations not found in unc-82(0). These accumulations contain paramyosin and myosin B, but lack myosin A and myosin A-associated proteins, as well as proteins of the integrin-associated complex. Fluorescently tagged missense mutant protein UNC-82 E424K localized normally in wild type; however, in unc-82(0), the tagged protein was found in the ectopic accumulations, which we also show to label with recently synthesized paramyosin. Recruitment of wild-type UNC-82::GFP to aggregates of differing protein composition in five muscle-affecting mutants revealed that colocalization of UNC-82 and paramyosin does not require UNC-96, UNC-98/ZnF, UNC-89/obscurin, CSN-5, myosin A, or myosin B individually. Dosage effects in paramyosin mutants suggest that UNC-82 acts as part of a complex, in which its stoichiometric relationship with paramyosin is critical. UNC-82 dosage affects muscle organization in the absence of paramyosin, perhaps through myosin B. We present evidence that the interaction of UNC-98/ZnF with myosin A is independent of UNC-82, and that UNC-82 acts upstream of UNC-98/ZnF in a pathway that organizes paramyosin during thick filament assembly. PMID:28040740
Schiller, NaTasha R; Duchesneau, Christopher D; Lane, Latrisha S; Reedy, April R; Manzon, Emily R; Hoppe, Pamela E
2017-03-01
We study the mechanisms that guide the formation and maintenance of the highly ordered actin-myosin cytoskeleton in striated muscle. The UNC-82 kinase of Caenorhabditis elegans is orthologous to mammalian kinases ARK5/NUAK1 and SNARK/NUAK2. UNC-82 localizes to the M-line, and is required for proper organization of thick filaments, but its substrate and mechanism of action are unknown. Antibody staining of three mutants with missense mutations in the UNC-82 catalytic domain revealed muscle structure that is less disorganized than in the null unc-82(0) , but contained distinctive ectopic accumulations not found in unc-82(0) These accumulations contain paramyosin and myosin B, but lack myosin A and myosin A-associated proteins, as well as proteins of the integrin-associated complex. Fluorescently tagged missense mutant protein UNC-82 E424K localized normally in wild type; however, in unc-82(0) , the tagged protein was found in the ectopic accumulations, which we also show to label with recently synthesized paramyosin. Recruitment of wild-type UNC-82::GFP to aggregates of differing protein composition in five muscle-affecting mutants revealed that colocalization of UNC-82 and paramyosin does not require UNC-96, UNC-98/ZnF, UNC-89/obscurin, CSN-5, myosin A, or myosin B individually. Dosage effects in paramyosin mutants suggest that UNC-82 acts as part of a complex, in which its stoichiometric relationship with paramyosin is critical. UNC-82 dosage affects muscle organization in the absence of paramyosin, perhaps through myosin B. We present evidence that the interaction of UNC-98/ZnF with myosin A is independent of UNC-82, and that UNC-82 acts upstream of UNC-98/ZnF in a pathway that organizes paramyosin during thick filament assembly. Copyright © 2017 by the Genetics Society of America.
Manes, Thomas D.; Pober, Jordan S.
2013-01-01
Human effector memory (EM) CD4 T cells may be recruited from the blood into a site of inflammation in response either to inflammatory chemokines displayed on or specific antigen presented by venular endothelial cells (ECs), designated as chemokine-driven or TCR-driven transendothelial migration (TEM), respectively. We have previously described differences in the morphological appearance of transmigrating T cells as well as in the molecules that mediate T cell-EC interactions distinguishing these two pathways. Here we report that TCR-driven TEM requires ZAP-70-dependent activation of a pathway involving Vav, Rac and myosin IIA. Chemokine-driven TEM also utilizes ZAP-70, albeit in a quantitatively and spatially different manner of activation, and is independent of Vav, Rac and mysosin IIA, depending instead on an as yet unidentified GTP exchange factor that activates Cdc42. The differential use of small Rho family GTPases to activate the cytoskeleton is consistent with the morphological differences observed in T cells that undergo TEM in response to these distinct recruitment signals. PMID:23420881
NASA Technical Reports Server (NTRS)
Miu, B.; Martin, T. P.; Roy, R. R.; Oganov, V.; Ilyina-Kakueva, E.; Marini, J. F.; Leger, J. J.; Bodine-Fowler, S. C.; Edgerton, V. R.
1990-01-01
The adaptation of a slow (soleus, Sol) and a fast (medial gastrocnemius, MG) skeletal muscle to spaceflight was studied in five young male rats. The flight period was 12.5 days and the rats were killed approximately 48 h after returning to 1 g. Five other rats that were housed in cages similar to those used by the flight rats were maintained at 1 g for the same period of time to serve as ground-based controls. Fibers were classified as dark or light staining for myosin adenosine triphosphatase (ATPase). On the average, the fibers in the Sol of the flight rats atrophied twice as much as those in the MG. Further, the fibers located in the deep (close to the bone and having the highest percentage of light ATPase and high oxidative fibers in the muscle cross section) region of the MG atrophied more than the fibers located in the superficial (away from the bone and having the lowest percentage of light ATPase and high oxidative fibers in the muscle cross-section) region of the muscle. Based on quantitative histochemical assays of single muscle fibers, succinate dehydrogenase (SDH) activity per unit volume was unchanged in fibers of the Sol and MG. However, in the Sol, but not the MG, the total amount of SDH activity in a 10-microns-thick section of a fiber decreased significantly in response to spaceflight. Based on population distributions, it appears that the alpha-glycerophosphate dehydrogenase (GPD) activities were elevated in the dark ATPase fibers in the Sol, whereas the light fibers in the Sol and both fiber types in the MG did not appear to change. The ratio of GPD to SDH activities increased in the dark (but not light) fibers of the Sol and was unaffected in the MG. Immunohistochemical analyses indicate that approximately 40% of the fibers in the Sol of flight rats expressed a fast myosin heavy chain compared with 22% in control rats. Further, 31% of the fibers in the Sol of flight rats expressed both fast and slow myosin heavy chains compared with 8% in control rats. Immunohistochemical changes in the MG were minimal. These data suggest that the magnitude and direction of enzymatic activity and cell volume changes are dependent on the muscle, the region of the muscle, and the type of myosin expressed in the fibers. Further, the ability of fibers to maintain normal or even elevated activities per unit volume of some metabolic enzymes is remarkable considering the marked and rapid decrease in fiber volume.
Fast and slow myosins as markers of muscle injury.
Guerrero, M; Guiu-Comadevall, M; Cadefau, J A; Parra, J; Balius, R; Estruch, A; Rodas, G; Bedini, J L; Cussó, R
2008-07-01
The diagnosis of muscular lesions suffered by athletes is usually made by clinical criteria combined with imaging of the lesion (ultrasonography and/or magnetic resonance) and blood tests to detect the presence of non-specific muscle markers. This study was undertaken to evaluate injury to fast and slow-twitch fibres using specific muscle markers for these fibres. Blood samples were obtained from 51 non-sports people and 38 sportsmen with skeletal muscle injury. Western blood analysis was performed to determine fast and slow myosin and creatine kinase (CK) levels. Skeletal muscle damage was diagnosed by physical examination, ultrasonography and magnetic resonance and biochemical markers. The imaging tests were found to be excellent for detecting and confirming grade II and III lesions. However, grade I lesions were often unconfirmed by these techniques. Grade I lesions have higher levels of fast myosin than slow myosin with a very small increase in CK levels. Grade II and III lesions have high values of both fast and slow myosin. The evaluation of fast and slow myosin in the blood 48 h after the lesion occurs is a useful aid for the detection of type I lesions in particular, since fast myosin is an exclusive skeletal muscle marker. The correct diagnosis of grade I lesions can prevent progression of the injury in athletes undergoing continual training sessions and competitions, thus aiding sports physicians in their decision making.
The Relay/Converter Interface Influences Hydrolysis of ATP by Skeletal Muscle Myosin II*
Bloemink, Marieke J.; Melkani, Girish C.; Bernstein, Sanford I.; Geeves, Michael A.
2016-01-01
The interface between relay and converter domain of muscle myosin is critical for optimal myosin performance. Using Drosophila melanogaster indirect flight muscle S1, we performed a kinetic analysis of the effect of mutations in the converter and relay domain. Introduction of a mutation (R759E) in the converter domain inhibits the steady-state ATPase of myosin S1, whereas an additional mutation in the relay domain (N509K) is able to restore the ATPase toward wild-type values. The R759E S1 construct showed little effect on most steps of the actomyosin ATPase cycle. The exception was a 25–30% reduction in the rate constant of the hydrolysis step, the step coupled to the cross-bridge recovery stroke that involves a change in conformation at the relay/converter domain interface. Significantly, the double mutant restored the hydrolysis step to values similar to the wild-type myosin. Modeling the relay/converter interface suggests a possible interaction between converter residue 759 and relay residue 509 in the actin-detached conformation, which is lost in R759E but is restored in N509K/R759E. This detailed kinetic analysis of Drosophila myosin carrying the R759E mutation shows that the interface between the relay loop and converter domain is important for fine-tuning myosin kinetics, in particular ATP binding and hydrolysis. PMID:26586917
Grana, Theresa M.; Cox, Elisabeth A.; Lynch, Allison M.; Hardin, Jeff
2010-01-01
Gastrulation is the first major morphogenetic movement in development, and requires dynamic regulation of cell adhesion and the cytoskeleton. C. elegans gastrulation begins with the migration of the two endodermal precursors, Ea and Ep, from the surface of the embryo into the interior. Ea/Ep migration provides a relatively simple system to examine the intersection of cell adhesion, cell signaling, and cell movement. Ea/Ep ingression depends on correct cell fate specification and polarization, apical myosin accumulation, and Wnt activated actomyosin contraction that drives apical constriction and ingression (Lee et al., 2006; Nance et al., 2005). Here, we show that Ea/Ep ingression also requires the function of either HMR-1/cadherin or SAX-7/L1CAM. Both cadherin complex components and L1CAM are localized at all sites of cell-cell contact during gastrulation. Either system is sufficient for Ea/Ep ingression, but loss of both together leads to a failure of apical constriction and ingression. Similar results are seen with isolated blastomeres. Ea/Ep are properly specified and appear to display correct apical-basal polarity in sax-7(eq1); hmr-1(RNAi) embryos. Significantly, in sax-7(eq1); hmr-1(RNAi) embryos Ea and Ep fail to accumulate myosin (NMY-2::GFP) at their apical surfaces, but in either sax-7(eq1) or hmr-1(RNAi) embryos, apical myosin accumulation is comparable to wildtype. Thus, the cadherin and L1CAM adhesion systems are redundantly required for localized myosin accumulation, and hence for actomyosin contractility during gastrulation. We also show that sax-7 and hmr-1 function are redundantly required for Wnt-dependent spindle polarization during division of the ABar blastomere, indicating that these cell surface proteins redundantly regulate multiple developmental events in early embryos. PMID:20515680
NASA Technical Reports Server (NTRS)
Baldwin, K.; Herrick, R.; Oganov, V.
1990-01-01
The purpose of this experiment was to investigate the effects of 12 days of zero gravity (0G) exposure (Cosmos 1887 Biosputnik) on the enzymatic properties, protein content, and isomyosin distribution of the myofibril fraction of the slow-twitch vastus intermedius (VI) and the fast-twitch vastus lateralis (VL) muscles of adult male rats. Measurements were obtained on three experimental groups (n=5 each group) designated as flight-group (FG), vivarium-control (VC), and synchronous-control (SC). Body weight of the FG was significantly lower than the two control groups (p less than 0.05). Compared to the two control groups, VI weight was lower by 23 percent (p less than 0.10); whereas no such reduction was observed for the VL muscle. Myofibril yields (mg protein/g of muscle) in the VI were 35 percent lower in the FG compared to the controls (p less than 0.05); whereas, no such pattern was apparent for the VL muscle. When myofibril yields were expressed on a muscle basis (mg/g x muscle weight), the loss of myofibril protein was more exaggerated and suggests that myofibril protein degradation is an early event in the muscle atrophy response to 0G. Analysis of myosin isoforms indicated that slow-myosin was the primary isoform lost in the calculated degradation of total myosin. No evidence of loss of the fast isomyosins was apparent for either muscle following space flight. Myofibril ATPase activity of the VI was increased in the FG compared to controls, which is consistent with the observation of preferential slow-myosin degradation. These data suggest that muscles containing a high percent of slow-twitch fibers undergo greater degrees of myofibril protein degradation than do muscles containing predominantly fast-twitch fibers in response to a relatively short period of 0G exposure, and the primary target appears to be the slow-myosin molecule.
Assembly and mechanosensory function of focal adhesions: experiments and models.
Bershadsky, Alexander D; Ballestrem, Christoph; Carramusa, Letizia; Zilberman, Yuliya; Gilquin, Benoit; Khochbin, Saadi; Alexandrova, Antonina Y; Verkhovsky, Alexander B; Shemesh, Tom; Kozlov, Michael M
2006-04-01
Initial integrin-mediated cell-matrix adhesions (focal complexes) appear underneath the lamellipodia, in the regions of the "fast" centripetal flow driven by actin polymerization. Once formed, these adhesions convert the flow behind them into a "slow", myosin II-driven mode. Some focal complexes then turn into elongated focal adhesions (FAs) associated with contractile actomyosin bundles (stress fibers). Myosin II inhibition does not suppress formation of focal complexes but blocks their conversion into mature FAs and further FA growth. Application of external pulling force promotes FA growth even under conditions when myosin II activity is blocked. Thus, individual FAs behave as mechanosensors responding to the application of force by directional assembly. We proposed a thermodynamic model for the mechanosensitivity of FAs, taking into account that an elastic molecular aggregate subject to pulling forces tends to grow in the direction of force application by incorporating additional subunits. This simple model can explain a variety of processes typical of FA behavior. Assembly of FAs is triggered by the small G-protein Rho via activation of two major targets, Rho-associated kinase (ROCK) and the formin homology protein, Dia1. ROCK controls creation of myosin II-driven forces, while Dia1 is involved in the response of FAs to these forces. Expression of the active form of Dia1, allows the external force-induced assembly of mature FAs, even in conditions when Rho is inhibited. Conversely, downregulation of Dia1 by siRNA prevents FA maturation even if Rho is activated. Dia1 and other formins cap barbed (fast growing) ends of actin filaments, allowing insertion of the new actin monomers. We suggested a novel mechanism of such "leaky" capping based on an assumption of elasticity of the formin/barbed end complex. Our model predicts that formin-mediated actin polymerization should be greatly enhanced by application of external pulling force. Thus, the formin-actin complex might represent an elementary mechanosensing device responding to force by enhancement of actin assembly. In addition to its role in actin polymerization, Dia1 seems to be involved in formation of links between actin filaments and microtubules affecting microtubule dynamics. Alpha-tubulin deacetylase HDAC6 cooperates with Dia1 in formation of such links. Since microtubules are known to promote FA disassembly, the Dia1-mediated effect on microtubule dynamics may possibly play a role in the negative feedback loop controlling size and turnover of FAs.
Thromboxane A2-induced bi-directional regulation of cerebral arterial tone.
Neppl, Ronald L; Lubomirov, Lubomir T; Momotani, Ko; Pfitzer, Gabriele; Eto, Masumi; Somlyo, Avril V
2009-03-06
Myosin light chain phosphatase plays a critical role in modulating smooth muscle contraction in response to a variety of physiologic stimuli. A downstream target of the RhoA/Rho-kinase and nitric oxide (NO)/cGMP/cyclic GMP-dependent kinase (cGKI) pathways, myosin light chain phosphatase activity reflects the sum of both calcium sensitization and desensitization pathways through phosphorylation and dephosphorylation of the myosin phosphatase targeting subunit (MYPT1). As cerebral blood flow is highly spatio-temporally modulated under normal physiologic conditions, severe perturbations in normal cerebral blood flow, such as in cerebral vasospasm, can induce neurological deficits. In nonpermeabilized cerebral vessels stimulated with U-46619, a stable mimetic of endogenous thromboxane A2 implicated in the etiology of cerebral vasospasm, we observed significant increases in contractile force, RhoA activation, regulatory light chain phosphorylation, as well as phosphorylation of MYPT1 at Thr-696, Thr-853, and surprisingly Ser-695. Inhibition of nitric oxide signaling completely abrogated basal MYPT1 Ser-695 phosphorylation and significantly increased and potentiated U-46619-induced MYPT1 Thr-853 phosphorylation and contractile force, indicating that NO/cGMP/cGKI signaling maintains basal vascular tone through active inhibition of calcium sensitization. Surprisingly, a fall in Ser-695 phosphorylation did not result in an increase in phosphorylation of the Thr-696 site. Although activation of cGKI with exogenous cyclic nucleotides inhibited thromboxane A2-induced MYPT1 membrane association, RhoA activation, contractile force, and regulatory light chain phosphorylation, the anticipated decreases in MYPT1 phosphorylation at Thr-696/Thr-853 were not observed, indicating that the vasorelaxant effects of cGKI are not through dephosphorylation of MYPT1. Thus, thromboxane A2 signaling within the intact cerebral vasculature induces "buffered" vasoconstrictions, in which both the RhoA/Rho-kinase calcium-sensitizing and the NO/cGMP/cGKI calcium-desensitizing pathways are activated.
A Role for Myosin Va in Human Cytomegalovirus Nuclear Egress.
Wilkie, Adrian R; Sharma, Mayuri; Pesola, Jean M; Ericsson, Maria; Fernandez, Rosio; Coen, Donald M
2018-03-15
Herpesviruses replicate and package their genomes into capsids in replication compartments within the nuclear interior. Capsids then move to the inner nuclear membrane for envelopment and release into the cytoplasm in a process called nuclear egress. We previously found that nuclear F-actin is induced upon infection with the betaherpesvirus human cytomegalovirus (HCMV) and is important for nuclear egress and capsid localization away from replication compartment-like inclusions toward the nuclear rim. Despite these and related findings, it has not been shown that any specific motor protein is involved in herpesvirus nuclear egress. In this study, we have investigated whether the host motor protein, myosin Va, could be fulfilling this role. Using immunofluorescence microscopy and coimmunoprecipitation, we observed associations between a nuclear population of myosin Va and the viral major capsid protein, with both concentrating at the periphery of replication compartments. Immunoelectron microscopy showed that nearly 40% of assembled nuclear capsids associate with myosin Va. We also found that myosin Va and major capsid protein colocalize with nuclear F-actin. Importantly, antagonism of myosin Va with RNA interference or a dominant negative mutant revealed that myosin Va is important for the efficient production of infectious virus, capsid accumulation in the cytoplasm, and capsid localization away from replication compartment-like inclusions toward the nuclear rim. Our results lead us to suggest a working model whereby human cytomegalovirus capsids associate with myosin Va for movement from replication compartments to the nuclear periphery during nuclear egress. IMPORTANCE Little is known regarding how newly assembled and packaged herpesvirus capsids move from the nuclear interior to the periphery during nuclear egress. While it has been proposed that an actomyosin-based mechanism facilitates intranuclear movement of alphaherpesvirus capsids, a functional role for any specific myosin in nuclear egress has not been reported. Furthermore, the notion that an actomyosin-based mechanism facilitates intranuclear capsid movement is controversial. Here we show that human cytomegalovirus capsids associate with nuclear myosin Va and F-actin and that antagonism of myosin Va impairs capsid localization toward the nuclear rim and nuclear egress. Together with our previous results showing that nuclear F-actin is induced upon HCMV infection and is also important for these processes, our results lend support to the hypothesis that nascent human cytomegalovirus capsids migrate to the nuclear periphery via actomyosin-based movement. These results shed light on a poorly understood viral process and the cellular machinery involved. Copyright © 2018 American Society for Microbiology.
Chaen, S; Oiwa, K; Shimmen, T; Iwamoto, H; Sugi, H
1989-01-01
To elucidate the molecular mechanism of muscle contraction resulting from the ATP-dependent actin-myosin interaction, we constructed an assay system with which both the force and the movement produced by the actin-myosin interaction in vitro can be simultaneously recorded and analyzed. The assay system consisted of the giant internodal cells of an alga, Nitellopsis obtusa, which contain well-organized arrays of actin filaments (actin cables) running along the cell long axis, and a glass microneedle (tip diameter, approximately 7 microns; elastic coefficient, approximately 40 pN/microns), which was coated with skeletal muscle myosin at the tip and extended from a micromanipulator at right angles with the actin cables. When the myosin-coated tip of the microneedle was brought into contact with the exposed surface of the actin cables, it exhibited ATP-dependent movement along the actin cables over a distance of 20-150 microns in 20-200 s (20-23 degrees C) and eventually stopped due to a balance between forces generated by the actin-myosin interaction (800-6000 pN) and by the bent microneedle. Since the load on the force-generating myosin molecules increased with the bending displacement of the microneedle (auxotonic condition), the relation between the load and the sliding velocity of the myosin heads past the actin cables was determined from the time course of the microneedle movement recorded with a video system. The shape of the force-velocity curve thus obtained was convex upwards, similar to that of the force-velocity curve of intact frog muscle fibers obtained under the auxotonic condition. Images PMID:2922395
Qdot Labeled Actin Super Resolution Motility Assay Measures Low Duty Cycle Muscle Myosin Step-Size
Wang, Yihua; Ajtai, Katalin; Burghardt, Thomas P.
2013-01-01
Myosin powers contraction in heart and skeletal muscle and is a leading target for mutations implicated in inheritable muscle diseases. During contraction, myosin transduces ATP free energy into the work of muscle shortening against resisting force. Muscle shortening involves relative sliding of myosin and actin filaments. Skeletal actin filaments were fluorescence labeled with a streptavidin conjugate quantum dot (Qdot) binding biotin-phalloidin on actin. Single Qdot’s were imaged in time with total internal reflection fluorescence microscopy then spatially localized to 1-3 nanometers using a super-resolution algorithm as they translated with actin over a surface coated with skeletal heavy meromyosin (sHMM) or full length β-cardiac myosin (MYH7). Average Qdot-actin velocity matches measurements with rhodamine-phalloidin labeled actin. The sHMM Qdot-actin velocity histogram contains low velocity events corresponding to actin translation in quantized steps of ~5 nm. The MYH7 velocity histogram has quantized steps at 3 and 8 nm in addition to 5 nm, and, larger compliance than sHMM depending on MYH7 surface concentration. Low duty cycle skeletal and cardiac myosin present challenges for a single molecule assay because actomyosin dissociates quickly and the freely moving element diffuses away. The in vitro motility assay has modestly more actomyosin interactions and methylcellulose inhibited diffusion to sustain the complex while preserving a subset of encounters that do not overlap in time on a single actin filament. A single myosin step is isolated in time and space then characterized using super-resolution. The approach provides quick, quantitative, and inexpensive step-size measurement for low duty cycle muscle myosin. PMID:23383646
Yokota, Etsuo; Ueda, Haruko; Hashimoto, Kohsuke; Orii, Hidefumi; Shimada, Tomoo; Hara-Nishimura, Ikuko; Shimmen, Teruo
2011-05-01
The reticular network of the endoplasmic reticulum (ER) consists of tubular and lamellar elements and is arranged in the cortical region of plant cells. This network constantly shows shape change and remodeling motion. Tubular ER structures were formed when GTP was added to the ER vesicles isolated from tobacco (Nicotiana tabacum) cultured BY-2 cells expressing ER-localized green fluorescent protein. The hydrolysis of GTP during ER tubule formation was higher than that under conditions in which ER tubule formation was not induced. Furthermore, a shearing force, such as the flow of liquid, was needed for the elongation/extension of the ER tubule. The shearing force was assumed to correspond to the force generated by the actomyosin system in vivo. To confirm this hypothesis, the S12 fraction was prepared, which contained both cytosol and microsome fractions, including two classes of myosins, XI (175-kD myosin) and VIII (BY-2 myosin VIII-1), and ER-localized green fluorescent protein vesicles. The ER tubules and their mesh-like structures were arranged in the S12 fraction efficiently by the addition of ATP, GTP, and exogenous filamentous actin. The tubule formation was significantly inhibited by the depletion of 175-kD myosin from the S12 fraction but not BY-2 myosin VIII-1. Furthermore, a recombinant carboxyl-terminal tail region of 175-kD myosin also suppressed ER tubule formation. The tips of tubules moved along filamentous actin during tubule elongation. These results indicated that the motive force generated by the actomyosin system contributes to the formation of ER tubules, suggesting that myosin XI is responsible not only for the transport of ER in cytoplasm but also for the reticular organization of cortical ER.
Yokota, Etsuo; Ueda, Haruko; Hashimoto, Kohsuke; Orii, Hidefumi; Shimada, Tomoo; Hara-Nishimura, Ikuko; Shimmen, Teruo
2011-01-01
The reticular network of the endoplasmic reticulum (ER) consists of tubular and lamellar elements and is arranged in the cortical region of plant cells. This network constantly shows shape change and remodeling motion. Tubular ER structures were formed when GTP was added to the ER vesicles isolated from tobacco (Nicotiana tabacum) cultured BY-2 cells expressing ER-localized green fluorescent protein. The hydrolysis of GTP during ER tubule formation was higher than that under conditions in which ER tubule formation was not induced. Furthermore, a shearing force, such as the flow of liquid, was needed for the elongation/extension of the ER tubule. The shearing force was assumed to correspond to the force generated by the actomyosin system in vivo. To confirm this hypothesis, the S12 fraction was prepared, which contained both cytosol and microsome fractions, including two classes of myosins, XI (175-kD myosin) and VIII (BY-2 myosin VIII-1), and ER-localized green fluorescent protein vesicles. The ER tubules and their mesh-like structures were arranged in the S12 fraction efficiently by the addition of ATP, GTP, and exogenous filamentous actin. The tubule formation was significantly inhibited by the depletion of 175-kD myosin from the S12 fraction but not BY-2 myosin VIII-1. Furthermore, a recombinant carboxyl-terminal tail region of 175-kD myosin also suppressed ER tubule formation. The tips of tubules moved along filamentous actin during tubule elongation. These results indicated that the motive force generated by the actomyosin system contributes to the formation of ER tubules, suggesting that myosin XI is responsible not only for the transport of ER in cytoplasm but also for the reticular organization of cortical ER. PMID:21427277
el-Amraoui, A; Sahly, I; Picaud, S; Sahel, J; Abitbol, M; Petit, C
1996-08-01
Usher syndrome type 1 (USH1) associates severe congenital deafness, vestibular dysfunction and progressive retinitis pigmentosa leading to blindness. The gene encoding myosin VIIA is responsible for USH1B. Mutations in the murine orthologous gene lead to the shaker-1 phenotype, which manifests cochlear and vestibular dysfunction, without any retinal defect. To address this phenotypic discrepancy, the expression of myosin VIIA in retinal cells was analyzed in human and mouse during embryonic development and adult life. In the human embryo, myosin VIIA was present first in the pigment epithelium cells, and later in these cells as well as in the photoreceptor cells. In the adult human retina, myosin VIIA was present in both cell types. In contrast, in mouse, only pigment epithelium cells expressed the protein throughout development and adult life. Myosin VIIA was also found to be absent in the photoreceptor cells of other rodents (rat and guinea-pig), whereas these cells expressed the protein in amphibians, avians and primates. These observations suggest that retinitis pigmentosa of USH1B results from a primary rod and cone defect. The USH1B/shaker-1 paradigm illustrates a species-specific cell pattern of gene expression as a possible cause for the discrepancy between phenotypes involving defective orthologous genes in man and mouse. Interestingly, in the photoreceptor cells, myosin VIIA is mainly localized in the inner and base of outer segments as well as in the synaptic ending region where it is co-localized with the synaptic vesicles. Therefore, we suggest that myosin VIIA might play a role in the trafficking of ribbon-synaptic vesicle complexes and the renewal processes of the outer photoreceptor disks.
A new yeast gene with a myosin-like heptad repeat structure.
Kölling, R; Nguyen, T; Chen, E Y; Botstein, D
1993-03-01
We isolated a gene encoding a 218 kDa myosin-like protein from Saccharomyces cerevisiae using a monoclonal antibody directed against human platelet myosin as a probe. The protein sequence encoded by the MLP1 gene (for myosin-like protein) contains extensive stretches of a heptad-repeat pattern suggesting that the protein can form coiled coils typical of myosins. Immunolocalization experiments using affinity-purified antibodies raised against a TrpE-MLP1 fusion protein showed a dot-like structure adjacent to the nucleus in yeast cells bearing the MLP1 gene on a multicopy plasmid. In mouse epithelial cells the yeast anti-MLP1 antibodies stained the nucleus. Mutants bearing disruptions of the MLP1 gene were viable, but more sensitive to ultraviolet light than wild-type strains, suggesting an involvement of MLP1 in DNA repair. The MLP1 gene was mapped to chromosome 11, 25 cM from met1.
Involvement of myosin VI immunoanalog in pinocytosis and phagocytosis in Amoeba proteus.
Sobczak, Magdalena; Wasik, Anna; Kłopocka, Wanda; Redowicz, Maria Jolanta
2008-12-01
Recently, we found a 130-kDa myosin VI immunoanalog in amoeba, which bound to actin in an ATP-sensitive manner and in migrating amoebae colocalized to filamentous actin and dynamin II-containing vesicular structures. To further characterize this protein, we assessed its involvement in amoeba pinocytosis and phagocytosis. Confocal immunofluorescence microscopy and electron microscopy of immunogold-stained cells revealed that, in pinocytotic and phagocytotic amoebae, the myosin VI immunoanalog was visible throughout the cells, including pinocytotic channels and pinocytotic vesicles as well as phagosomes and emerging phagocytic cups. Blocking endogenous protein with anti-porcine myosin VI antibody (introduced into cells by means of microinjection) caused severe defects in pinocytosis and phagocytosis. In comparison with control cells, the treated amoebae formed ~75% less pinocytotic channels and phagocytosed ~65% less Tetrahymena cells. These data indicate that the myosin VI immunoanalog has an important role in pinocytosis and phagocytosis in Amoeba proteus (Pal.).
Richardson, G P; Forge, A; Kros, C J; Marcotti, W; Becker, D; Williams, D S; Thorpe, J; Fleming, J; Brown, S D; Steel, K P
1999-11-28
Myosin VIIA is expressed by sensory hair cells in the inner ear and proximal tubule cells in the kidney, the two primary targets of aminoglycoside antibiotics. Using cochlear cultures prepared from early postnatal Myo7a6J mice with a missense mutation in the head region of the myosin VIIA molecule we show that this myosin is required for aminoglycoside accumulation in cochlear hair cells. Hair cells in homozygous mutant Myo7a6J cochlear cultures have disorganized hair bundles, but are otherwise morphologically normal and transduce. However, and in contrast to hair cells from heterozygous Myo7a6J cultures, the homozygous Myo7a6J hair cells do not accumulate [3H]gentamicin and do not exhibit an ototoxic response on exposure to aminoglycoside. Possible roles for myosin VIIA in the process of aminoglycoside accumulation are discussed.
Wang, S; Duan, H; Zhang, Y; Sun, F Q
2016-03-01
Adenomyosis (ADS) is a common estrogen-dependent gynecological disease with unknown etiology. The RhoA/Rho-kinase (ROCK) signaling pathway is involved in various cellular functions, including migration, proliferation, and smooth muscle contraction. Here we examined the potential role of this pathway in junctional zone (JZ) contraction in women with and without ADS. We demonstrated that in the normal JZ, RhoA and ROCK-I messenger RNA (mRNA) and protein expression was significantly higher in the proliferative phase of the menstrual cycle than in the secretory phase. Expression of RhoA and ROCK-I in the JZ from women with ADS was significantly higher than in the control women and showed no significant differences across the menstrual cycle. Treatment of JZ smooth muscle cells (JZSMCs) with estrogen at 0, 1, 10, or 100 nmol/L for 24 hours resulted in increased expression of RhoA, ROCK-I, and myosin light-chain (MLC) phosphorylation (p-MLC) in a dose-dependent manner. In parallel to its effects on p-MLC, estrogen-mediated, dose-dependent contraction responses in JZSMCs. Estrogen-mediated contraction in the ADS group was significantly higher than in the controls and also showed no significant differences across the menstrual cycle. These effects were suppressed in the presence of ICI 182780 or Y27632, supporting an estrogen receptor-dependent and RhoA activation-dependent mechanism. Our results indicate that the level of RhoA and ROCK-I increases in patients with ADS and the cyclic change is lost. Estrogen may affect uterine JZ contraction of ADS by enhancing RhoA/ ROCK-I signaling. © The Author(s) 2015.
Jung, Goeh; Remmert, Kirsten; Wu, Xufeng; Volosky, Joanne M.; III, John A. Hammer
2001-01-01
Fusion proteins containing the Src homology (SH)3 domains of Dictyostelium myosin IB (myoB) and IC (myoC) bind a 116-kD protein (p116), plus nine other proteins identified as the seven member Arp2/3 complex, and the α and β subunits of capping protein. Immunoprecipitation reactions indicate that myoB and myoC form a complex with p116, Arp2/3, and capping protein in vivo, that the myosins bind to p116 through their SH3 domains, and that capping protein and the Arp2/3 complex in turn bind to p116. Cloning of p116 reveals a protein dominated by leucine-rich repeats and proline-rich sequences, and indicates that it is a homologue of Acan 125. Studies using p116 fusion proteins confirm the location of the myosin I SH3 domain binding site, implicate NH2-terminal sequences in binding capping protein, and show that a region containing a short sequence found in several G-actin binding proteins, as well as an acidic stretch, can activate Arp2/3-dependent actin nucleation. p116 localizes along with the Arp2/3 complex, myoB, and myoC in dynamic actin-rich cellular extensions, including the leading edge of cells undergoing chemotactic migration, and dorsal, cup-like, macropinocytic extensions. Cells lacking p116 exhibit a striking defect in the formation of these macropinocytic structures, a concomitant reduction in the rate of fluid phase pinocytosis, a significant decrease in the efficiency of chemotactic aggregation, and a decrease in cellular F-actin content. These results identify a complex that links key players in the nucleation and termination of actin filament assembly with a ubiquitous barbed end–directed motor, indicate that the protein responsible for the formation of this complex is physiologically important, and suggest that previously reported myosin I mutant phenotypes in Dictyostelium may be due, at least in part, to defects in the assembly state of actin. We propose that p116 and Acan 125, along with homologues identified in Caenorhabditis elegans, Drosophila, mouse, and man, be named CARMIL proteins, for capping protein, Arp2/3, and myosin I linker. PMID:11425877
NASA Technical Reports Server (NTRS)
Diffee, Gary M.; Caiozzo, Vince J.; Mccue, Samuel A.; Herrick, Robert E.; Baldwin, Kenneth M.
1993-01-01
This study examined the role of specific types of contractile activity in regulating myosin heavy chain (MHC) isoform expression in rodent soleus. A combination of hindlimb suspension (SN) and two programmed contractile training activity paradigms, either isometric contractile activity (ST-IM) or high-load slowly shortening isovelocity activity, were utilized. Both training paradigms increased muscle mass compared with SN alone. However, only ST-IM resulted in a partial prevention of the suspension-induced decrease in type I MHC. With the use of a fluorescently labeled antibody to type IIa MHC, the distribution of MHCs among fibers was examined immunohistochemically. In SN, the percentage of cells staining positive for type IIa MHC was increased but the staining intensity of the positively staining cells was unchanged compared with control cells. In the ST-IM soleus, the percentage of positively staining fibers was unchanged but the intensity of the positively staining cells was decreased compared with SN values. These results suggest that 1) isometric contractile activity is more effective than isovelocity activity in preventing suspension-induced shifts in soleus MHC distribution and 2) changes associated with both suspension and training occur in only a small number of fibers, with the majority of fibers apparently unresponsive to these interventions.
Detection of a ventricular-specific myosin heavy chain in adult and developing chicken heart
1986-01-01
In the present study, a monoclonal antibody (McAb), ALD19, generated against myosin of slow tonic muscle, was shown to react with the heavy chain of ventricular myosin in the adult chicken heart. With this antibody, it was possible to detect a ventricular-specific myosin during myocardial differentiation and to show that the epitope recognized by ALD19 was present from the earliest stages of ventricular differentiation and maintained throughout development only in the ventricle. A second McAb, specific for atrial myosin heavy chain (MHC) (Gonzalez-Sanchez, A., and D. Bader, 1984, Dev. Biol., 103:151-158), was used as a control to detect an atrial-specific myosin in the caudal portion of the developing heart at Hamburger-Hamilton stage 15. It was found that the appearance of ventricular MHC predated the expression of atrial MHC by approximately 1 d in ovo and that specific MHCs were always differentially distributed. While a common primordial MHC may be present in the early heart, this study showed the tissue-specific expression of a ventricular MHC during the initial stages of heart development and its differential accumulation throughout development. PMID:3514633
Axial rotation of sliding actin filaments revealed by single-fluorophore imaging
Sase, Ichiro; Miyata, Hidetake; Ishiwata, Shin’ichi; Kinosita, Kazuhiko
1997-01-01
In the actomyosin motor, myosin slides along an actin filament that has a helical structure with a pitch of ≈72 nm. Whether myosin precisely follows this helical track is an unanswered question bearing directly on the motor mechanism. Here, axial rotation of actin filaments sliding over myosin molecules fixed on a glass surface was visualized through fluorescence polarization imaging of individual tetramethylrhodamine fluorophores sparsely bound to the filaments. The filaments underwent one revolution per sliding distance of ≈1 μm, which is much greater than the 72 nm pitch. Thus, myosin does not “walk” on the helical array of actin protomers; rather it “runs,” skipping many protomers. Possible mechanisms involving sequential interaction of myosin with successive actin protomers are ruled out at least for the preparation described here in which the actin filaments ran rather slowly compared with other in vitro systems. The result also indicates that each “kick” of myosin is primarily along the axis of the actin filament. The successful, real-time observation of the changes in the orientation of a single fluorophore opens the possibility of detecting a conformational change(s) of a single protein molecule at the moment it functions. PMID:9159126
Axial rotation of sliding actin filaments revealed by single-fluorophore imaging.
Sase, I; Miyata, H; Ishiwata, S; Kinosita, K
1997-05-27
In the actomyosin motor, myosin slides along an actin filament that has a helical structure with a pitch of approximately 72 nm. Whether myosin precisely follows this helical track is an unanswered question bearing directly on the motor mechanism. Here, axial rotation of actin filaments sliding over myosin molecules fixed on a glass surface was visualized through fluorescence polarization imaging of individual tetramethylrhodamine fluorophores sparsely bound to the filaments. The filaments underwent one revolution per sliding distance of approximately 1 microm, which is much greater than the 72 nm pitch. Thus, myosin does not "walk" on the helical array of actin protomers; rather it "runs," skipping many protomers. Possible mechanisms involving sequential interaction of myosin with successive actin protomers are ruled out at least for the preparation described here in which the actin filaments ran rather slowly compared with other in vitro systems. The result also indicates that each "kick" of myosin is primarily along the axis of the actin filament. The successful, real-time observation of the changes in the orientation of a single fluorophore opens the possibility of detecting a conformational change(s) of a single protein molecule at the moment it functions.
Neonatal myosin in bovine and pig tensor tympani muscle fibres.
Scapolo, P A; Rowlerson, A; Mascarello, F; Veggetti, A
1991-01-01
In previous studies of middle ear muscles, the classification of fibre types by histochemical methods was particularly difficult in the bovine and porcine tensor tympani muscle, suggesting the presence of immature fibres. We therefore reexamined the tensor tympani from pigs and cattle of various ages immunohistochemically, using a panel of antimyosin antibodies, including one (anti-NE) specific for neonatal and embryonic myosins. Fibres positive to anti-NE were found in tensor tympani in both species in all ages examined; only a few of these fibres reacted exclusively with this antibody; some also contained slow myosin and the majority also contained adult fast (type IIA) myosin. Furthermore, although the remaining fibres included some of the classical types I and IIA, the majority of them showed a mismatch between their histochemical and immunohistochemical profiles. The morphological appearance of the muscle, the widespread presence of neonatal myosin (often together with another myosin in the same fibre) and the persistence of this composition from birth to adulthood, could be explained by an incomplete development of the muscle fibres, resulting in a 'muscle' much better suited to the role of a ligament. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:1810932
Perflurooctanoic Acid Induces Developmental Cardiotoxicity in ...
Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxisome proliferator activated receptor alpha (PPAR_). As the cardiovascular system is crucial for embryonic survival, PFOA-induced effects on the heart may partially explain embryonic mortality. To assess impacts of PFOA exposure on the developing heart in an avian model, we used histopathology and immunohistochemical staining for myosin to assess morphological alterations in 19-day-old chicken embryo hearts after PFOA exposure. Additionally, echocardiography and cardiac myofibril ATPase activity assays were used to assess functional alterations in 1-day-old hatchling chickens following developmental PFOA exposure. Overall thinning and thinning of a dense layer of myosin in the right ventricular wall were observed in PFOA-exposed chicken embryo hearts. Alteration of multiple cardiac structural and functional parameters, including left ventricular wall thickness, left ventricular volume, heart rate, stroke volume, and ejection fraction were detected with echocardiography in the exposed hatchling chickens. Assessment of ATPase activity indicated that the ratio of cardiac myofibril calcium-independent ATPase activity to calcium-dependent ATPase activity was not affected, which suggests that d