Science.gov

Sample records for myosin heavy chains

  1. Heavy chain of Acanthamoeba myosine IB is a fusion of myosin-like and non-myosin-like sequences

    SciTech Connect

    Jung, G.; Korn, E.D.; Hammer, J.A. III

    1987-10-01

    Acanthamoeba castellanii myosins IA and IB demonstrate the catalytic properties of a myosin and can support analogues of contractile and motile activity in vitro, but their single, low molecular weight heavy chains, roughly globular shapes, and inabilities to self-assemble into filaments make them structurally atypical myosins. The authors present the complete amino acid sequence of the 128-kDa myosin IB heavy chain, which they deduced from the nucleotide sequence of the gene and which reveals that the polypeptide is a fusion of myosin-like and non-myosin-like sequences. Specifically, the amino-terminal approx. 76 kDa of amino acid sequence is highly similar to the globular head sequences of conventional myosins. By contrast, the remaining approx. 51 kDa of sequence shows no similarity to any portion of conventional myosin sequences, contains regions that are rich in glycine, proline, and alanine residues, and lacks the distinctive sequence characteristics of an ..cap alpha..-helical, coiled-coil structure. They conclude, therefore, that the protein is composed of a myosin globular head fused not to the typical coiled-coil rod-like myosin tail structure but rather to an unusual carboxyl-terminal domain. These results support the conclusion that filamentous myosin is not required for force generation and provide a further perspective on the structural requirements for myosin function. Finally, they find a striking conservation of intron/exon structure between this gene and a vertebrate muscle myosin gene. They discuss this observation in relation to the evolutionary origin of the myosin IB gene and the antiquity of myosin gene intron/exon structure.

  2. The genes and mRNA coding for the heavy chains of chick embryonic skeletal myosin.

    PubMed

    Patrinou-Georgoulas, M; John, H A

    1977-10-01

    A size class of polysomes was isolated from chick embryonic leg skeletal muscle which synthesized almost exclusively a polypeptide chain with a molecular weight identical to the myosin heavy chain. The mRNA purified from these polysomes was shown to synthesize the 200,000 dalton polypeptide in the wheat germ cell-free translation system. At least 90% of the polypeptide had properties similar to the myosin heavy chain. Isoelectric focusing indicated that the myosin heavy chain synthesized in vitro contained two chains in equal amounts, as did purified embryonic leg skeletal muscle myosin. The kinetics of hybridization of the complementary DNA with an excess of the myosin heavy chain mRNA (MHC mRNA) indicated the presence of two different mRNA sequences. Reassociation of the cDNA to an excess of the DNA of the genome suggest that there is little, if any, reiteration of the myosin heavy chain genes.

  3. Continued Expression of Neonatal Myosin Heavy Chain in Adult Dystrophic Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Bandman, Everett

    1985-02-01

    The expression of myosin heavy chain isoforms was examined in normal and dystrophic chicken muscle with a monoclonal antibody specific for neonatal myosin. Adult dystrophic muscle continued to contain neonatal myosin long after it disappeared from adult normal muscle. A new technique involving western blotting and peptide mapping demonstrated that the immunoreactive myosin in adult dystrophic muscle was identical to that found in neonatal normal muscle. Immunocytochemistry revealed that all fibers in the dystrophic muscle failed to repress neonatal myosin heavy chain. These studies suggest that muscular dystrophy inhibits the myosin gene switching that normally occurs during muscle maturation.

  4. Myosin Heavy Chain Composition of the Human Hyoglossus Muscle*

    PubMed Central

    Sokoloff, Alan J.; Daugherty, Megan; Li, Haiyan

    2013-01-01

    The human tongue muscle hyoglossus (HG) muscle is active in oro-motor behaviors encompassing a wide range of tongue movement speeds. Here we test the hypothesis that the human HG is composed of “uncommon” myosin heavy chain (MHC) isoforms MHCembryonic, MHCneonatal and MHCslow tonic as has been reported for other head and neck muscles active during kinematically diverse behaviors. Following reaction of human HG with antibodies specific for MHCI, MHCIIA, MHCII, MHCembryonic, MHCextraocular, MHCneonatal and MHCslow tonic only antibodies to MHCI, MHCIIA and MHCIIA-X label more than occasional muscle fibers. These antibodies describe five phenotypes with prevalence MHCIIA>MHCI>MHCI-IIX>MHCI-IIA>MHCIIX. In MHC composition, the human HG is thus similar to human appendicular muscles, the human tongue muscle styloglossus and many human head and neck muscles but different from human masseter and extraocular muscles which contain five or more MHC isoforms. PMID:19526266

  5. Adaptations in myosin heavy chain profile in chronically unloaded muscles

    NASA Technical Reports Server (NTRS)

    Talmadge, R. J.; Roy, R. R.; Bodine-Fowler, S. C.; Pierotti, D. J.; Edgerton, V. R.

    1995-01-01

    In this review, myosin heavy chain (MHC) adaptations in response to several models of decreased neuromuscular activity (i.e. electrical activation and loading of a muscle) are evaluated. In each of these "reduced-activity" models it is important to: a) quantify the changes in electrical activation of the muscle as a result of the intervention; b) quantify the forces generated by the muscle; and c) determine whether the neuromuscular junction remains normal. Most of the models, including spaceflight, hindlimb suspension, spinal cord isolation, spinal cord transection, denervation, and limb immobilization in a shortened position, result in increases in the percentage of fast MHCs (or fast MHC mRNA) in normally slow rat muscles. It also can be inferred from histochemical data that increases in fast MHCs occur with TTX application and bed rest. The only "reduced-activity" model to consistently increase slow muscle myosin mRNA, and slow fibers is limb immobilization in a stretched position; however, this model results in at least a temporary increase in tension. It appears that the most common feature of these models that might induce MHC adaptations is the modification in loading rather than a change in the neuromuscular activity.

  6. CARBONYLATION OF MYOSIN HEAVY CHAINS IN RAT HEARTS DURING DIABETES

    PubMed Central

    Shao, Chun-Hong; Rozanski, George J.; Nagai, Ryoji; Stockdale, Frank E.; Patel, Kaushik P.; Wang, Mu; Singh, Jaipaul; Mayhan, William G.; Bidasee, Keshore R.

    2010-01-01

    Cardiac inotropy progressively declines during diabetes mellitus. To date, the molecular mechanisms underlying this defect remain incompletely characterized. This study tests the hypothesis that ventricular myosin heavy chains (MHC) undergo carbonylation by reactive carbonyl species (RCS) during diabetes and these modifications contribute to the inotropic decline. Male Sprague-Dawley rats were injected with streptozotocin (STZ). Fourteen days later animals were divided into two groups: one group was treated with the RCS blocker aminoguanidine for six weeks, while the other group received no treatment. After eight weeks of diabetes, cardiac ejection fraction, fractional shortening, left ventricular pressure development (+dP/dt) and myocyte shortening were decreased by 9%, 16%, 34% and 18%, respectively. Ca2+- and Mg2+-actomyosin ATPase activities and peak actomyosin syneresis were also reduced by 35%, 28%, and 72%. MHC-α to MHC-β ratio was 12:88. Mass spectrometry and Western blots revealed the presence of carbonyl adducts on MHC-α and MHC-β. Aminoguandine treatment did not alter MHC composition, but it blunted formation of carbonyl adducts and decreases in actomyosin Ca2+-sensitive ATPase activity, syneresis, myocyte shortening, cardiac ejection fraction, fractional shortening and +dP/dt induced by diabetes. From these new data it can be concluded that in addition to isozyme switching, modification of MHC by RCS also contributes to the inotropic decline seen during diabetes. PMID:20359464

  7. Carbonylation of myosin heavy chains in rat heart during diabetes.

    PubMed

    Shao, Chun-Hong; Rozanski, George J; Nagai, Ryoji; Stockdale, Frank E; Patel, Kaushik P; Wang, Mu; Singh, Jaipaul; Mayhan, William G; Bidasee, Keshore R

    2010-07-15

    Cardiac inotropy progressively declines during diabetes mellitus. To date, the molecular mechanisms underlying this defect remain incompletely characterized. This study tests the hypothesis that ventricular myosin heavy chains (MHC) undergo carbonylation by reactive carbonyl species (RCS) during diabetes and these modifications contribute to the inotropic decline. Male Sprague-Dawley rats were injected with streptozotocin (STZ). Fourteen days later the animals were divided into two groups: one group was treated with the RCS blocker aminoguanidine for 6 weeks, while the other group received no treatment. After 8 weeks of diabetes, cardiac ejection fraction, fractional shortening, left ventricular pressure development (+dP/dt) and myocyte shortening were decreased by 9%, 16%, 34% and 18%, respectively. Ca(2+)- and Mg(2+)-actomyosin ATPase activities and peak actomyosin syneresis were also reduced by 35%, 28%, and 72%. MHC-alpha to MHC-beta ratio was 12:88. Mass spectrometry and Western blots revealed the presence of carbonyl adducts on MHC-alpha and MHC-beta. Aminoguanidine treatment did not alter MHC composition, but it blunted formation of carbonyl adducts and decreases in actomyosin Ca(2+)-sensitive ATPase activity, syneresis, myocyte shortening, cardiac ejection fraction, fractional shortening and +dP/dt induced by diabetes. From these new data it can be concluded that in addition to isozyme switching, modification of MHC by RCS also contributes to the inotropic decline seen during diabetes.

  8. Improving human skeletal muscle myosin heavy chain fiber typing efficiency.

    PubMed

    Murach, Kevin A; Bagley, James R; McLeland, Kathryn A; Arevalo, Jose A; Ciccone, Anthony B; Malyszek, Kylie K; Wen, Yuan; Galpin, Andrew J

    2016-04-01

    Single muscle fiber sodium dodecyl sulfate polyacrylamide gel-electrophoresis (SDS-PAGE) is a sensitive technique for determining skeletal muscle myosin heavy chain (MHC) composition of human biopsy samples. However, the number of fibers suitable to represent fiber type distribution via this method is undefined. Muscle biopsies were obtained from the vastus lateralis (VL) of nine resistance-trained males (25 ± 1 year, height = 179 ± 5 cm, mass = 82 ± 8 kg). Single fiber MHC composition was determined via SDS-PAGE. VL fiber type distribution [percent MHC I, I/IIa, IIa, IIa/IIx, and total "hybrids" (i.e. I/IIa + IIa/IIx)] was evaluated according to number of fibers analyzed per person (25 vs. 125). VL fiber type distribution did not differ according to number of fibers analyzed (P > 0.05). VL biopsy fiber type distribution of nine subjects is represented by analyzing 25 fibers per person. These data may help minimize cost, personnel-time, and materials associated with this technique, thereby improving fiber typing efficiency in humans. PMID:26842420

  9. Myosin Heavy Chain Composition of the Human Genioglossus Muscle

    PubMed Central

    Daugherty, Megan; Luo, Qingwei; Sokoloff, Alan J.

    2013-01-01

    Background The human tongue muscle genioglossus (GG) is active in speech, swallowing, respiration and oral transport, behaviors encompassing a wide range of tongue shapes and movement speeds. Studies demonstrate substantial diversity in patterns of human GG motor unit activation but whether this is accompanied by complex expression of muscle contractile proteins is not known. Purpose We tested for conventional myosin heavy chain MHCI, MHCIIA, MHCIIX, developmental MHCembryonic and MHCneonatal and unconventional MHCαcardiac, MHCextraocular and MHCslow tonic in antero-superior (GG-A) and posterior (GG-P) adult human GG. Method SDS-PAGE, Western blot and immunohistochemistry were used to describe MHC composition of GG-A and GG-P and the prevalence of muscle fiber MHC phenotypes in GG-A. Results: By SDS-PAGE, only conventional MHC are present with ranking from most to least prevalent MHCIIA>MHCI>MHCIIX in GG-A and MHCI>MHCIIA>MHCIIX in GG-P. By immunohistochemistry many muscle fibers contain MHCI, MHCIIA and MHCIIX but few contain developmental or unconventional MHC. GG-A is composed of five phenotypes (MHCIIA>MHCI-IIX>MHCI>MHCI-IIA>MHCIIX). Phenotypes MHCI, MHCIIA and MHCI-IIX account for 96% of muscle fibers. Conclusions Despite activation of GG during kinematically diverse behaviors and complex patterns of GG motor unit activity, the human GG is composed of conventional MHC isoforms and three primary MHC phenotypes. PMID:22337492

  10. Inhibition of Acanthamoeba myosin I heavy chain kinase by Ca(2+)-calmodulin.

    PubMed

    Brzeska, H; Kulesza-Lipka, D; Korn, E D

    1992-11-25

    The actin-activated Mg(2+)-ATPase activity of Acanthamoeba myosins I depends on phosphorylation of their single heavy chains by myosin I heavy chain kinase. Kinase activity is enhanced > 50-fold by autophosphorylation at multiple sites. The rate of kinase autophosphorylation is increased approximately 20-fold by acidic phospholipids independent of the presence of Ca2+ and diglycerides. We show in this paper that Ca(2+)-calmodulin inhibits phospholipid-stimulated autophosphorylation of myosin I heavy chain kinase and hence also inhibits the catalytic activity of unphosphorylated kinase in the presence of phospholipid. Ca(2+)-calmodulin does not inhibit kinase activity in the absence of phospholipid. Micromolar Ca(2+)-calmodulin also inhibits binding of myosin I heavy chain kinase to phospholipid vesicles and purified plasma membranes. Proteolytic removal of a 7-kDa NH2-terminal segment from the 97-kDa kinase prevents binding of both calmodulin and phospholipid; therefore, we propose that they bind to the same or overlapping sites. These data provide a mechanism by which Ca2+ could inhibit the actin-activated Mg(2+)-ATPase activity of the myosin I isozymes in vivo and thus regulate myosin I-dependent motile activities. PMID:1331103

  11. Quantitative determination of type I myosin heavy chain in bovine muscle with anti myosin monoclonal antibodies.

    PubMed

    Picard, B; Leger, J; Robelin, J

    1994-01-01

    Bovine type I muscle fibers were characterized by enzyme-linked immunosorbent assay (ELISA) with a monoclonal antibody specific for slow myosin heavy chains (MHC 1). Two bovine muscles, the Masseter and Cutaneus trunci, were analyzed by different complementary techniques: electrophoresis, immunoblotting and immunohistiology. The results showed that the two muscles have extreme characteristics. The Masseter contains only slow MHC and the Cutaneus trunci is composed solely of rapid MHC (MHC 2a and 2b). A standard for this ELISA was obtained by mixing the two muscles and was used as a reference in the determination of the percentage of MHC 1 in a given muscle. In this study, the Longissimus thoracis of 27 Charolais cattle were examined. The different conditions under which assays were carried out were described and the accuracy of the measurement was calculated. In view of the results, ELISA was chosen for the analysis of muscle fiber types in large numbers of animal specimens. This technique could be used in several research projects to study the muscle characteristics that determine beef quality. PMID:22061628

  12. Direct photoaffinity labeling by nucleotides of the apparent catalytic site on the heavy chains of smooth muscle and Acanthamoeba myosins

    SciTech Connect

    Maruta, H.; Korn, E.D.

    1981-01-10

    The heavy chains of Acanthamoeba myosins, IA, IB and II, turkey gizzard myosin, and rabbit skeletal muscle myosin subfragment-1 were specifically labeled by radioactive ATP, ADP, and UTP, each of which is a substrate or product of myosin ATPase activity, when irradiated with uv light at 0/sup 0/C. With UTP, as much as 0.45 mol/mol of Acanthamoeba myosin IA heavy chain and 1 mol/mol of turkey gizzard myosin heavy chain was incorporated. Evidence that the ligands were associated with the catalytic site included the observations that reaction occurred only with nucleotides that are substrates or products of the ATPase activity; that the reaction was blocked by pyrophosphate which is an inhibitor of the ATPase activity; that ATP was bound as ADP; and that label was probably restricted to a single peptide following limited subtilisin proteolysis of labeled Acanthamoeba myosin IA heavy chain and extensive cleavage with CNBr and trypsin of labeled turkey gizzard myosin heavy chain.

  13. Myosin heavy chain expression in rabbit masseter muscle during postnatal development.

    PubMed Central

    Bredman, J J; Weijs, W A; Korfage, H A; Brugman, P; Moorman, A F

    1992-01-01

    The expression of isoforms of myosin heavy chain (MHC) during postnatal development was studied in the masseter muscle of the rabbit. Evidence is presented that in addition to adult fast and slow myosin, the rabbit masseter contains neonatal and 'cardiac' alpha-MHC. During postnatal growth myosin transitions take place from neonatal and fast (IIA, IIA/IIB--referring to a fibre containing both IIA and IIB MHCs) MHC to adult 'cardiac' alpha-MHC and I/alpha-MHC. Since there is a temporary population of fibres containing IIA/alpha-MHC during the first 4 wk of development with a peak in the 3rd to 4th wk, the transition from IIA-MHC to alpha-MHC may occur in these IIA/alpha-MHC-containing fibres. The appearance of 'cardiac' alpha-MHC coincides with the timing of weaning, suggesting that the changes in MHC content, that probably result in a transition to a lower speed of contraction, have functional significance related to weaning. The finding of neonatal MHC in adult rabbits indicates that the masseter develops at a rate and in a way that is distinct from most other skeletal muscles. A spatiotemporal variation in expression of myosin isozymes within the masseter was observed, with many fibres containing more than one myosin type, indicating developmentally regulated spatial differences in function. Images Fig. 2 Fig. 3 Fig. 4 Fig. 7 PMID:1387129

  14. Diphosphorylated but not monophosphorylated myosin II regulatory light chain localizes to the midzone without its heavy chain during cytokinesis.

    PubMed

    Kondo, Tomo; Isoda, Rieko; Uchimura, Takashi; Sugiyama, Mutsumi; Hamao, Kozue; Hosoya, Hiroshi

    2012-01-13

    Myosin II is activated by the monophosphorylation of its regulatory light chain (MRLC) at Ser19 (1P-MRLC). Its ATPase activity is further enhanced by MRLC diphosphorylation at Thr18/Ser19 (2P-MRLC). As these phosphorylated MRLCs are colocalized with their heavy chains at the contractile ring in dividing cells, we believe that the phosphorylated MRLC acts as a subunit of the activated myosin II during cytokinesis. However, the distinct role(s) of 1P- and 2P-MRLC during cytokinesis has not been elucidated. In this study, a monoclonal antibody (4F12) specific for 2P-MRLC was raised and used to examine the roles of 2P-MRLC in cultured mammalian cells. Our confocal microscopic observations using 4F12 revealed that 2P-MRLC localized to the contractile ring, and, unexpectedly, to the midzone also. Interestingly, 2P-MRLC did not colocalize with 1P-MRLC, myosin II heavy chain, and F-actin at the midzone. These results suggest that 2P-MRLC has a role different from that of 1P-MRLC at the midzone, and is not a subunit of myosin II. PMID:22166199

  15. Comparison of the variable loop regions of myosin heavy chain genes from Antarctic and temperate isopods.

    PubMed

    Holmes, J M; Whiteley, N M; Magnay, J L; El Haj, A J

    2002-03-01

    The evolutionary adaptations of functional genes to life at low temperatures are not well characterised in marine and fresh water invertebrates. Temperature has been shown to affect the functional characteristics of fish muscles, with changes in the velocity of shortening and ATPase activity being associated with myosin heavy chain (MyHC) isoform composition and the structure of the surface loop regions. Two PCR products spanning loops 1 and 2 of a MyHC gene from an Antarctic isopod (Glyptonotus antarcticus) were sequenced and compared with those of a temperate isopod (Idotea resecata), slow and fast fibres from lobster (Homarus gammarus) and a cold water amphipod (Eulimnogammarus verrucosus), revealing specific differences between the species, possibly related to fibre type and habitat temperature. The loop 2 region from G. antarcticus myosin was cloned and used for Northern analysis of total RNA from the other species. The cloned myosin cDNA hybridised specifically to a 6.6-kb transcript, in G. antarcticus muscle. In contrast, cDNA probes for lobster slow myosin and actin hybridised to muscle RNA from all species, demonstrating that a distinct MyHC isoform is expressed in the Antarctic isopod, as opposed to the temperate species. The inter- and intra-specific sequence differences in loop 2 region suggest that this may be a site for muscle adaptation to enable function at the low temperatures found in the Southern Ocean. PMID:11959017

  16. Muscular tissues of the squid Doryteuthis pealeii express identical myosin heavy chain isoforms: an alternative mechanism for tuning contractile speed.

    PubMed

    Shaffer, Justin F; Kier, William M

    2012-01-15

    The speed of muscle contraction is largely controlled at the sarcomere level by the ATPase activity of the motor protein myosin. Differences in amino acid sequence in catalytically important regions of myosin yield different myosin isoforms with varying ATPase activities and resulting differences in cross-bridge cycling rates and interfilamentary sliding velocities. Modulation of whole-muscle performance by changes in myosin isoform ATPase activity is regarded as a universal mechanism to tune contractile properties, especially in vertebrate muscles. Invertebrates such as squid, however, may exhibit an alternative mechanism to tune contractile properties that is based on differences in muscle ultrastructure, including variable myofilament and sarcomere lengths. To determine definitively whether contractile properties of squid muscles are regulated via different myosin isoforms (i.e. different ATPase activities), the nucleotide and amino acid sequences of the myosin heavy chain from the squid Doryteuthis pealeii were determined from the mantle, arm, tentacle, fin and funnel retractor musculature. We identified three myosin heavy chain isoforms in squid muscular tissues, with differences arising at surface loop 1 and the carboxy terminus. All three isoforms were detected in all five tissues studied. These results suggest that the muscular tissues of D. pealeii express identical myosin isoforms, and it is likely that differences in muscle ultrastructure, not myosin ATPase activity, represent the most important mechanism for tuning contractile speeds.

  17. Myosin, Transgelin, and Myosin Light Chain Kinase

    PubMed Central

    Léguillette, Renaud; Laviolette, Michel; Bergeron, Celine; Zitouni, Nedjma; Kogut, Paul; Solway, Julian; Kachmar, Linda; Hamid, Qutayba; Lauzon, Anne-Marie

    2009-01-01

    Rationale: Airway smooth muscle (SM) of patients with asthma exhibits a greater velocity of shortening (Vmax) than that of normal subjects, and this is thought to contribute to airway hyperresponsiveness. A greater Vmax can result from increased myosin activation. This has been reported in sensitized human airway SM and in models of asthma. A faster Vmax can also result from the expression of specific contractile proteins that promote faster cross-bridge cycling. This possibility has never been addressed in asthma. Objectives: We tested the hypothesis that the expression of genes coding for SM contractile proteins is altered in asthmatic airways and contributes to their increased Vmax. Methods: We quantified the expression of several genes that code for SM contractile proteins in mild allergic asthmatic and control human airway endobronchial biopsies. The function of these contractile proteins was tested using the in vitro motility assay. Measurements and Main Results: We observed an increased expression of the fast myosin heavy chain isoform, transgelin, and myosin light chain kinase in patients with asthma. Immunohistochemistry demonstrated the expression of these genes at the protein level. To address the functional significance of this overexpression, we purified tracheal myosin from the hyperresponsive Fisher rats, which also overexpress the fast myosin heavy chain isoform as compared with the normoresponsive Lewis rats, and found a faster rate of actin filament propulsion. Conversely, transgelin did not alter the rate of actin filament propulsion. Conclusions: Selective overexpression of airway smooth muscle genes in asthmatic airways leads to increased Vmax, thus contributing to the airway hyperresponsiveness observed in asthma. PMID:19011151

  18. Separation of cardiac myosin heavy chains by gradient SDS-PAGE.

    PubMed

    Esser, K A; Boluyt, M O; White, T P

    1988-09-01

    Separation of alpha- and beta-myosin heavy chains (MHCs) in cardiac ventricles of rats by gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was accomplished and compared with the separation of myosin isozymes obtained with pyrophosphate gels. Whole muscle homogenates were electrophoresed on a 4-9% linear gradient SDS polyacrylamide gel for 3-4 h. MHC bands were identified by the migration distance relative to a MHC standard and immunoblot results with a monoclonal antibody to MHC. The MHC bands were further identified as alpha and beta based on the electrophoretic mobility of ventricular homogenates from hypothyroid and hyperthyroid rats and ventricular and slow soleus skeletal muscle homogenates from control rats. The beta-MHC migrated faster than alpha-MHC, and laser densitometry revealed separate peaks when both MHCs were present. With homogenates containing MHC ranging from 0 to 100% alpha, the separation of MHCs with gradient SDS-PAGE correlated highly (r = 0.97) with separation of myosin isozymes by pyrophosphate gel electrophoresis. The SDS-PAGE technique reported herein is a quick, valid, and direct method for the identification and quantification of ventricular MHCs.

  19. Myosin heavy chain composition in the rat diaphragm - Effect of age and exercise training

    NASA Technical Reports Server (NTRS)

    Gosselin, Luc E.; Betlach, Michael; Vailas, Arthur C.; Greaser, Marion L.; Thomas, D. P.

    1992-01-01

    The effects of aging and exercise training on the myosin heavy chain (MHC) composition were determined in both the costal and crural diaphragm regions of female Fischer 344 rats. Treadmill running at 75 percent maximal oxygen consumption resulted in similar increases in plantaris muscle citrate synthase activity in both young (5 mo) and old (23mo) trained animals (P less than 0.05). It was found that the ratio of fast to slow MHC was significantly higher (P less than 0.005) in the crural compared with costal diaphragm region in both age groups. A significant age-related increase in persentage of slow MHC was observed in both diaphragm regions. The relative proportion of slow MHC in either costal or crural region was not changed by exercise training.

  20. Enhanced protein electrophoresis technique for separating human skeletal muscle myosin heavy chain isoforms

    NASA Technical Reports Server (NTRS)

    Bamman, M. M.; Clarke, M. S.; Talmadge, R. J.; Feeback, D. L.

    1999-01-01

    Talmadge and Roy (J. Appl. Physiol. 1993, 75, 2337-2340) previously established a sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) protocol for separating all four rat skeletal muscle myosin heavy chain (MHC) isoforms (MHC I, IIa, IIx, IIb); however, when applied to human muscle, the type II MHC isoforms (Ila, IIx) are not clearly distinguished. In this brief paper we describe a modification of the SDS-PAGE protocol which yields distinct and consistent separation of all three adult human MHC isoforms (MHC I, IIa, IIx) in a minigel system. MHC specificity of each band was confirmed by Western blot using three monoclonal IgG antibodies (mAbs) immunoreactive against MHCI (mAb MHCs, Novacastra Laboratories), MHCI+IIa (mAb BF-35), and MHCIIa+IIx (mAb SC-71). Results provide a valuable SDS-PAGE minigel technique for separating MHC isoforms in human muscle without the difficult task of casting gradient gels.

  1. Protective Effects of Clenbuterol against Dexamethasone-Induced Masseter Muscle Atrophy and Myosin Heavy Chain Transition

    PubMed Central

    Umeki, Daisuke; Ohnuki, Yoshiki; Mototani, Yasumasa; Shiozawa, Kouichi; Suita, Kenji; Fujita, Takayuki; Nakamura, Yoshiki; Saeki, Yasutake; Okumura, Satoshi

    2015-01-01

    Background Glucocorticoid has a direct catabolic effect on skeletal muscle, leading to muscle atrophy, but no effective pharmacotherapy is available. We reported that clenbuterol (CB) induced masseter muscle hypertrophy and slow-to-fast myosin heavy chain (MHC) isoform transition through direct muscle β2-adrenergic receptor stimulation. Thus, we hypothesized that CB would antagonize glucocorticoid (dexamethasone; DEX)-induced muscle atrophy and fast-to-slow MHC isoform transition. Methodology We examined the effect of CB on DEX-induced masseter muscle atrophy by measuring masseter muscle weight, fiber diameter, cross-sectional area, and myosin heavy chain (MHC) composition. To elucidate the mechanisms involved, we used immunoblotting to study the effects of CB on muscle hypertrophic signaling (insulin growth factor 1 (IGF1) expression, Akt/mammalian target of rapamycin (mTOR) pathway, and calcineurin pathway) and atrophic signaling (Akt/Forkhead box-O (FOXO) pathway and myostatin expression) in masseter muscle of rats treated with DEX and/or CB. Results and Conclusion Masseter muscle weight in the DEX-treated group was significantly lower than that in the Control group, as expected, but co-treatment with CB suppressed the DEX-induced masseter muscle atrophy, concomitantly with inhibition of fast-to-slow MHC isoforms transition. Activation of the Akt/mTOR pathway in masseter muscle of the DEX-treated group was significantly inhibited compared to that of the Control group, and CB suppressed this inhibition. DEX also suppressed expression of IGF1 (positive regulator of muscle growth), and CB attenuated this inhibition. Myostatin protein expression was unchanged. CB had no effect on activation of the Akt/FOXO pathway. These results indicate that CB antagonizes DEX-induced muscle atrophy and fast-to-slow MHC isoform transition via modulation of Akt/mTOR activity and IGF1 expression. CB might be a useful pharmacological agent for treatment of glucocorticoid

  2. Dilated Cardiomyopathy Mutation (R134W) in Mouse Cardiac Troponin T Induces Greater Contractile Deficits against α-Myosin Heavy Chain than against β-Myosin Heavy Chain

    PubMed Central

    Gollapudi, Sampath K.; Chandra, Murali

    2016-01-01

    Many studies have demonstrated that depressed myofilament Ca2+ sensitivity is common to dilated cardiomyopathy (DCM) in humans. However, it remains unclear whether a single determinant—such as myofilament Ca2+ sensitivity—is sufficient to characterize all cases of DCM because the severity of disease varies widely with a given mutation. Because dynamic features dominate in the heart muscle, alterations in dynamic contractile parameters may offer better insight on the molecular mechanisms that underlie disparate effects of DCM mutations on cardiac phenotypes. Dynamic features are dominated by myofilament cooperativity that stem from different sources. One such source is the strong tropomyosin binding region in troponin T (TnT), which is known to modulate crossbridge (XB) recruitment dynamics in a myosin heavy chain (MHC)-dependent manner. Therefore, we hypothesized that the effects of DCM-linked mutations in TnT on contractile dynamics would be differently modulated by α- and β-MHC. After reconstitution with the mouse TnT equivalent (TnTR134W) of the human DCM mutation (R131W), we measured dynamic contractile parameters in detergent-skinned cardiac muscle fiber bundles from normal (α-MHC) and transgenic mice (β-MHC). TnTR134W significantly attenuated the rate constants of tension redevelopment, XB recruitment dynamics, XB distortion dynamics, and the magnitude of length-mediated XB recruitment only in α-MHC fiber bundles. TnTR134W decreased myofilament Ca2+ sensitivity to a greater extent in α-MHC (0.14 pCa units) than in β-MHC fiber bundles (0.08 pCa units). Thus, our data demonstrate that TnTR134W induces a more severe DCM-like contractile phenotype against α-MHC than against β-MHC background. PMID:27757084

  3. Temperature-dependent developmental variation in lobster muscle myosin heavy chain isoforms.

    PubMed

    Magnay, J L; Holmes, J M; Neil, D M; El Haj, A J

    2003-10-16

    The temperature- and developmental-regulation of myosin heavy chain (MyHC) expression and primary sequence was investigated in the abdominal musculature of developing Homarus gammarus larvae acclimated to 10, 14 and 19+/-1 degrees C. MyHC loop 1 (ATP binding) and loop 2 (actin binding) regions were sequenced and compared. The deduced amino acid sequence of MyHC loop 1 showed a development-related increase in net charge from +1 to +2 between larval stages 1 and 2, which was not temperature-dependent. In post-settled stage 9 larvae, minor shifts in amino acid sequence occurred at 19 degrees C, and corresponded to a significant up-regulation of fast myosin mRNA expression. However, no temperature-specific loop 1 isoforms were detected. The deduced amino acid sequence of MyHC loop 2 was not affected by temperature, and the net charge remained +4 throughout development. These findings contrast to previous studies using the common carp, in which temperature-specific MyHC isoform genes were expressed in response to disparate thermal regimes. This raises the question as to whether arthropods do not express specific temperature isoforms but instead rely on shifts in fibre type to accommodate alterations in thermal environment. PMID:14563558

  4. Myosin heavy chain composition in normal and atrophic equine laryngeal muscle.

    PubMed

    Adreani, C M; Li, Z B; Lehar, M; Southwood, L L; Habecker, P L; Flint, P W; Parente, E J

    2006-11-01

    The myosin heavy chain (MHC) composition of a given muscle determines the contractile properties and, therefore, the fiber type distribution of the muscle. MHC isoform expression in the laryngeal muscle is modulated by neural input and function, and it represents the cellular level changes that occur with denervation and reinnervation of skeletal muscle. The objective of this study was to evaluate the pattern of MHC isoform expression in laryngeal muscle harvested from normal cadavers and cadavers with naturally occurring left laryngeal hemiplegia secondary to recurrent laryngeal neuropathy. Left and right thyroarytenoideus (TA) and cricoarytenoideus dorsalis (CAD) were obtained from 7 horses affected with left-sided intrinsic laryngeal muscle atrophy and from 2 normal horses. Frozen sections were evaluated histologically for degree of atrophy and fiber type composition. MHC isoform expression was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of muscle protein. Histologic atrophy was seen in all atrophic muscles and some right-sided muscles of 3 affected horses, as well as the left TA of 1 normal horse. Fiber type grouping or loss of type I muscle fibers was observed in the left-sided laryngeal muscles in all but 1 affected horse, as well as in the right muscles of 2 affected horses, and the left TA of 1 normal horse. SDS-PAGE showed 2 bands corresponding to the type I and type IIB myosin isoforms in the CAD and TA of the 2 normal horses. Affected horses demonstrated a trend toward increased expression of the type IIB isoform and decreased expression of the type I isoform in atrophic muscles. This study confirmed the presence of histologic abnormalities in grossly normal equine laryngeal muscle, and it demonstrated an increased expression of type IIB MHC with a concurrent decreased expression of type I MHC in affected muscles. Evaluation of muscle fiber changes at the cellular level under denervated and reinnervated conditions

  5. Shifts in the myosin heavy chain isozymes in the mouse heart result in increased energy efficiency

    PubMed Central

    Hoyer, Kirsten; Krenz, Maike; Robbins, Jeffrey; Ingwall, Joanne S.

    2007-01-01

    Cardiac-specific transgenesis in the mouse is widely used to study the basic biology and chemistry of the heart and to model human cardiovascular disease. A fundamental difference between mouse and human hearts is the background motor protein: mouse hearts contain predominantly the αα-myosin heavy chain (MyHC) isozyme while human hearts contain predominantly the ββ-MyHC isozyme. Although the intrinsic differences in mechanical and enzymatic properties of the αα- and ββ-MyHC molecules are well known, the consequences of isozyme shifts on energetic of the intact beating heart remain unknown. Therefore, we compared the free energy of ATP hydrolysis (|ΔG~ATP|) determined by 31P NMR spectroscopy in isolated perfused littermate mouse hearts containing the same amount of myosin comprised of either >95% αα-MyHC or ~83% ββ-MyHC. |ΔG~ATP| was ~2 kJ mol−1 higher in the ββ-MyHC hearts at all workloads. Furthermore, upon inotropic challenge, hearts containing predominantly ββ-MyHC hearts increased developed pressure more than αα-MyHC hearts whereas heart rate increased more in αα-MyHC hearts. Thus, hearts containing predominantly the ββ-MyHC isozyme are more energy efficient than αα-MyHC hearts. We suggest that these fundamental differences in the motor protein energy efficiency at the whole heart level should be considered when interpreting results using mouse-based cardiovascular modeling of normal and diseased human heart. PMID:17054980

  6. Time course of myosin heavy chain transitions in neonatal rats: importance of innervation and thyroid state

    NASA Technical Reports Server (NTRS)

    Adams, G. R.; McCue, S. A.; Zeng, M.; Baldwin, K. M.

    1999-01-01

    During the postnatal period, rat limb muscles adapt to weight bearing via the replacement of embryonic (Emb) and neonatal (Neo) myosin heavy chains (MHCs) by the adult isoforms. Our aim was to characterize this transition in terms of the six MHC isoforms expressed in skeletal muscle and to determine the importance of innervation and thyroid hormone status on the attainment of the adult MHC phenotype. Neonatal rats were made hypothyroid via propylthiouracil (PTU) injection. In normal and PTU subgroups, leg muscles were unilaterally denervated at 15 days of age. The MHC profiles of plantaris (PLN) and soleus (Sol) muscles were determined at 7, 14, 23, and 30 days postpartum. At day 7, the Sol MHC profile was 55% type I, 30% Emb, and 10% Neo; in the PLN, the pattern was 60% Neo and 25% Emb. By day 30 the Sol and PLN had essentially attained an adult MHC profile in the controls. PTU augmented slow MHC expression in the Sol, whereas in the PLN it markedly repressed IIb MHC by retaining neonatal MHC expression. Denervation blunted the upregulation of IIb in the PLN and of Type I in the Sol and shifted the pattern to greater expression of IIa and IIx MHCs in both muscles. In contrast to previous observations, these findings collectively suggest that both an intact thyroid and innervation state are obligatory for the attainment of the adult MHC phenotype, particularly in fast-twitch muscles.

  7. Interaction of thyroid state and denervation on skeletal myosin heavy chain expression

    NASA Technical Reports Server (NTRS)

    Haddad, F.; Arnold, C.; Zeng, M.; Baldwin, K.

    1997-01-01

    The goal of this study was to examine the effects of altered thyroid state and denervation (Den) on skeletal myosin heavy chain (MHC) expression in the plantaris and soleus muscles. Rats were subjected to unilateral denervation (Den) and randomly assigned to one of three groups: (1) euthyroid; (2) hyperthyroid; (3) and hypothyroid. Denervation caused severe muscle atrophy and muscle-type specific MHC transformation. Denervation transformed the soleus to a faster muscle, and its effects required the presence of circulating thyroid hormone. In contrast, denervation transformed the plantaris to a slower muscle independently of thyroid state. Furthermore, thyroid hormone effects did not depend upon innervation status in the soleus, while they required the presence of the nerve in the plantaris. Collectively, these findings suggest that both thyroid hormone and intact nerve (a) differentially affect MHC transformations in fast and slow muscle; and (b) are important factors in regulating the optimal expression of both type I and IIB MHC genes. This research suggests that for patients with nerve damage and/or paralysis, both muscle mass and biochemical properties can also be affected by the thyroid state.

  8. Nonmuscle myosin heavy chain IIA mediates Epstein–Barr virus infection of nasopharyngeal epithelial cells

    PubMed Central

    Xiong, Dan; Du, Yong; Wang, Hong-Bo; Zhao, Bo; Zhang, Hua; Li, Yan; Hu, Li-Juan; Cao, Jing-Yan; Zhong, Qian; Liu, Wan-Li; Li, Man-Zhi; Zhu, Xiao-Feng; Tsao, Sai Wah; Hutt-Fletcher, Lindsey M.; Song, Erwei; Zeng, Yi-Xin; Kieff, Elliott; Zeng, Mu-Sheng

    2015-01-01

    EBV causes B lymphomas and undifferentiated nasopharyngeal carcinoma (NPC). Although the mechanisms by which EBV infects B lymphocytes have been extensively studied, investigation of the mechanisms by which EBV infects nasopharyngeal epithelial cells (NPECs) has only recently been enabled by the successful growth of B lymphoma Mo-MLV insertion region 1 homolog (BMI1)-immortalized NPECs in vitro and the discovery that neuropilin 1 expression positively affects EBV glycoprotein B (gB)-mediated infection and tyrosine kinase activations in enhancing EBV infection of BMI1-immortalized NPECs. We have now found that even though EBV infected NPECs grown as a monolayer at extremely low efficiency (<3%), close to 30% of NPECs grown as sphere-like cells (SLCs) were infected by EBV. We also identified nonmuscle myosin heavy chain IIA (NMHC-IIA) as another NPEC protein important for efficient EBV infection. EBV gH/gL specifically interacted with NMHC-IIA both in vitro and in vivo. NMHC-IIA densely aggregated on the surface of NPEC SLCs and colocalized with EBV. EBV infection of NPEC SLCs was significantly reduced by NMHC-IIA siRNA knock-down. NMHC-IIA antisera also efficiently blocked EBV infection. These data indicate that NMHC-IIA is an important factor for EBV NPEC infection. PMID:26290577

  9. Myosin heavy chain composition of tiger (Panthera tigris) and cheetah (Acinonyx jubatus) hindlimb muscles.

    PubMed

    Hyatt, Jon-Philippe K; Roy, Roland R; Rugg, Stuart; Talmadge, Robert J

    2010-01-01

    Felids have a wide range of locomotor activity patterns and maximal running speeds, including the very fast cheetah (Acinonyx jubatas), the roaming tiger (Panthera tigris), and the relatively sedentary domestic cat (Felis catus). As previous studies have suggested a relationship between the amount and type of activity and the myosin heavy chain (MHC) isoform composition of a muscle, we assessed the MHC isoform composition of selected hindlimb muscles from these three felid species with differing activity regimens. Using gel electrophoresis, western blotting, histochemistry, and immunohistochemistry with MHC isoform-specific antibodies, we compared the MHC composition in the tibialis anterior, medial gastrocnemius (MG), plantaris (Plt), and soleus muscles of the tiger, cheetah, and domestic cat. The soleus muscle was absent in the cheetah. At least one slow (type I) and three fast (types IIa, IIx, and IIb) MHC isoforms were present in the muscles of each felid. The tiger had a high combined percentage of the characteristically slower isoforms (MHCs I and IIa) in the MG (62%) and the Plt (86%), whereas these percentages were relatively low in the MG (44%) and Plt (55%) of the cheetah. In general, the MHC isoform characteristics of the hindlimb muscles matched the daily activity patterns of these felids: the tiger has daily demands for covering long distances, whereas the cheetah has requirements for speed and power.

  10. Age dependence of myosin heavy chain transitions induced by creatine depletion in rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.; Baldwin, Kenneth M.

    1995-01-01

    This study was designed to test the hypothesis that myosin heavy chain (MHC) plasticity resulting from creatine depletion is an age-dependent process. At weaning (age 28 days), rat pups were placed on either standard rat chow (normal diet juvenile group) or the same chow supplemented with 1% wt/wt of the creatine analogue beta-guanidinopropionic acid (creatine depletion juvenile (CDJ) group). Two groups of adult rats (age approximately 8 wk) were placed on the same diet regimens (normal diet adult and creatine depletion adult (CDA) groups). After 40 days (CDJ and normal diet juvenile groups) and 60 days (CDA and normal diet adult groups), animals were killed and several skeletal muscles were removed for analysis of creatine content or MHC ditribution. In the CDJ group, creatine depletion (78%) was accompanied by significant shifts toward expression of slower MHC isoforms in two slow and three fast skeletal muscles. In contrast, creatine depletion in adult animals did not result in similar shifts toward slow MHC isoform expression in either muscle type. The results of this study indicate that there is a differential effect of creatine depletion on MHC tranitions that appears to be age dependent. These results strongly suggest that investigators contemplating experimental designs involving the use of the creatine analogue beta-guanidinopropionic acid should consider the age of the animals to be used.

  11. Characterization of diverse forms of myosin heavy chain expressed in adult human skeletal muscle.

    PubMed Central

    Saez, L; Leinwand, L A

    1986-01-01

    In an attempt to define myosin heavy chain (MHC) gene organization and expression in adult human skeletal muscle, we have isolated and characterized genomic sequences corresponding to different human sarcomeric MHC genes (1). In this report, we present the complete DNA sequence of two different adult human skeletal muscle MHC cDNA clones, one of which encodes the entire light meromyosin (LMM) segment of MHC and represents the longest described MHC cDNA sequence. Additionally, both clones provide new sequence data from a 228 amino acid segment of the MHC tail for which no protein or DNA sequence has been previously available. One clone encodes a "fast" form of skeletal muscle MHC while the other clone most closely resembles a MHC form described in rat cardiac ventricles. We show that the 3' untranslated region of skeletal MHC cDNAs are homologous from widely separated species as are cardiac MHC cDNAs. However, there is no homology between the 3' untranslated region of cardiac and skeletal muscle MHCs. Isotype-specific preservation of MHC 3' untranslated sequences during evolution suggests a functional role for these regions. Images PMID:2421254

  12. Structural organization of the human cardiac [alpha]-myosin heavy chain gene (MYH6)

    SciTech Connect

    Epp, T.A.; Dixon, I.M.C.; Wang, H.Y.; Sole, M.J.; Liew, C.C. )

    1993-12-01

    The human myocardium expresses two cardiac myosin heavy chain (MyHC) isoforms, [alpha] and [beta], that exist in tandem array on chromosome 14q12. The authors have previously sequenced the entire human cardiac [beta]-MyHC gene and now report the complete nucleotide sequence of the human cardiac [alpha]-MyHC, encompassing 26,159 bp as well as the entire 4484-bp 5'-flanking intergenic region. The gene (MYH6) consists of 39 exons, 37 of which contain coding information. The 5'-untranslated region is split into 3 exons, with the third exon containing the AUG translocation initiation codon. With the exception of the 13th intron of the human cardiac [beta]-MyHC, which is not present within the [alpha]-isogene, all exon/intron boundaries are conserved. Conspicuous sequence motifs contained within the [alpha]-MyHC gene include four Alu repeats, a single (GT)[sub n] element, and a homopurine-homopyrimidine tract containing 23 GAA repeating units followed by 10 GAG repeating units. Comparison of the encoded amino acid sequence with a previously reported human [alpha]-MyHC cDNA sequence reveals several potential polymorphisms. 29 refs., 1 fig., 1 tab.

  13. Effects of inactivity on myosin heavy chain composition and size of rat soleus fibers

    NASA Technical Reports Server (NTRS)

    Grossman, E. J.; Roy, R. R.; Talmadge, R. J.; Zhong, H.; Edgerton, V. R.

    1998-01-01

    Myosin heavy chain (MHC) and fiber size properties of the adult rat soleus were determined after 4-60 days of complete inactivity, i.e., lumbar spinal cord isolation. Soleus atrophy was rapid and progressive, i.e., 25% and 64% decrease in weight and 33% and 75% decrease in fiber size after 4 and 60 days of inactivity, respectively. Changes in MHC occurred at a slower rate than the atrophic response. After 15 days there was de novo expression of type IIx MHC (approximately 10%). By 60 days, type IIx MHC accounted for 33% of the total MHC content, and 7% of the fibers contained only type IIx MHC. The relative amount of type I MHC was reduced from 93% in control to 49% after 60 days of inactivity. Therefore, the effects of 60 days of inactivity suggest that during this time period at least 75% of fiber size and approximately 40% of type I MHC composition of the adult rat soleus can be attributed to activation-related events.

  14. Single-fiber myosin heavy chain polymorphism during postnatal development: modulation by hypothyroidism

    NASA Technical Reports Server (NTRS)

    di Maso, N. A.; Caiozzo, V. J.; Baldwin, K. M.

    2000-01-01

    The primary objective of this study was to follow the developmental time course of myosin heavy chain (MHC) isoform transitions in single fibers of the rodent plantaris muscle. Hypothyroidism was used in conjunction with single-fiber analyses to better describe a possible linkage between the neonatal and fast type IIB MHC isoforms during development. In contrast to the general concept that developmental MHC isoform transitions give rise to muscle fibers that express only a single MHC isoform, the single-fiber analyses revealed a very high degree of MHC polymorphism throughout postnatal development. In the adult state, MHC polymorphism was so pervasive that the rodent plantaris muscles contained approximately 12-15 different pools of fibers (i.e., fiber types). The degree of polymorphism observed at the single-fiber level made it difficult to determine specific developmental schemes analogous to those observed previously for the rodent soleus muscle. However, hypothyroidism was useful in that it confirmed a possible link between the developmental regulation of the neonatal and fast type IIB MHC isoforms.

  15. Nonmuscle myosin heavy chain IIA mediates Epstein-Barr virus infection of nasopharyngeal epithelial cells.

    PubMed

    Xiong, Dan; Du, Yong; Wang, Hong-Bo; Zhao, Bo; Zhang, Hua; Li, Yan; Hu, Li-Juan; Cao, Jing-Yan; Zhong, Qian; Liu, Wan-Li; Li, Man-Zhi; Zhu, Xiao-Feng; Tsao, Sai Wah; Hutt-Fletcher, Lindsey M; Song, Erwei; Zeng, Yi-Xin; Kieff, Elliott; Zeng, Mu-Sheng

    2015-09-01

    EBV causes B lymphomas and undifferentiated nasopharyngeal carcinoma (NPC). Although the mechanisms by which EBV infects B lymphocytes have been extensively studied, investigation of the mechanisms by which EBV infects nasopharyngeal epithelial cells (NPECs) has only recently been enabled by the successful growth of B lymphoma Mo-MLV insertion region 1 homolog (BMI1)-immortalized NPECs in vitro and the discovery that neuropilin 1 expression positively affects EBV glycoprotein B (gB)-mediated infection and tyrosine kinase activations in enhancing EBV infection of BMI1-immortalized NPECs. We have now found that even though EBV infected NPECs grown as a monolayer at extremely low efficiency (<3%), close to 30% of NPECs grown as sphere-like cells (SLCs) were infected by EBV. We also identified nonmuscle myosin heavy chain IIA (NMHC-IIA) as another NPEC protein important for efficient EBV infection. EBV gH/gL specifically interacted with NMHC-IIA both in vitro and in vivo. NMHC-IIA densely aggregated on the surface of NPEC SLCs and colocalized with EBV. EBV infection of NPEC SLCs was significantly reduced by NMHC-IIA siRNA knock-down. NMHC-IIA antisera also efficiently blocked EBV infection. These data indicate that NMHC-IIA is an important factor for EBV NPEC infection. PMID:26290577

  16. Myosin heavy chain-2b transcripts and isoform are expressed in human laryngeal muscles.

    PubMed

    Smerdu, Vika; Cvetko, Erika

    2013-01-01

    Three fast myosin heavy chain (MyHC) isoforms, i.e. MyHC-2a, -2x and -2b, are expressed in skeletal muscles of smaller mammals. In contrast, only MyHC-2a and -2x have been revealed in humans so far. The expression of MyHC isoforms is known to be wider in the functionally more specialized laryngeal muscles. Though mRNA transcripts of the MyHC-2b gene were found to be expressed in certain human skeletal and laryngeal muscles, the corresponding isoform has not been demonstrated in these muscles. To our knowledge, we are the first to demonstrate not only the expression of MyHC-2b transcripts using an in situ hybridization technique but also the corresponding protein, i.e. the MyHC-2b isoform, in some human laryngeal muscles by immunohistochemistry but not by polyacrylamide gel electrophoresis. Using a set of antibodies specific to MyHC isoforms, we demonstrated that MyHC-2b was always co-expressed with the major MyHC isoforms, not only with the fast ones (MyHC-2a and -2x) but with the slow isoform (MyHC-1) as well.

  17. Muscle fiber type characterization and myosin heavy chain (MyHC) isoform expression in Mediterranean buffaloes.

    PubMed

    Francisco, C L; Jorge, A M; Dal-Pai-Silva, M; Carani, F R; Cabeço, L C; Silva, S R

    2011-07-01

    This study aimed to evaluate myosin heavy chain (MyHC) isoform expression and muscle fiber types of Longissimus dorsi (LD) and Semitendinosus (ST) in Mediterranean buffaloes and possible fibers muscles modulation according to different slaughter weights. The presence of MyHC IIb isoforms was not found. Only three isoforms of MyHC (IIa, IIx/d and I) were observed and their percentages did not vary significantly among slaughter weights. The confirmation of the presence of hybrid muscles fibers (IIA/X) in LD and ST muscles necessitated classifying the fiber types into fast and slow according to their contractile activity, by m-ATPase assay. For both muscles, the muscle fiber frequency was higher for fast than for slow fibers in all weight groups. There was a difference (P<0.05) in the frequency of LD and ST muscle fiber types according to slaughter weights, which demonstrate that the slaughter weight influences the profile of muscle fibers from buffaloes. PMID:21371827

  18. Missense mutation of the {beta}-cardiac myosin heavy-chain gene in hypertrophic cardiomyopathy

    SciTech Connect

    Arai, Shoichi; Matsuoka, Rumiko; Hirayama, Kenji; Sakurai, Hisanao

    1995-09-11

    Hypertrophic cardiomyopathy occurs as an autosomal dominant familial disorder or as a sporadic disease without familial involvement. We describe a missense mutation of the {beta}-cardiac myosin heavy chain (MHC) gene, a G to T transversion (741 Gly{r_arrow}Trp) identified by direct sequencing of exon 20 in four individuals affected with familial hypertrophic cardiomyopathy. Three individuals with sporadic hypertrophic cardiomyopathy, whose parents are clinically and genetically unaffected, had sequence variations of exon 34 of the {alpha}-cardiac MHC gene (a C to T transversion, 1658 Asp{r_arrow}Asp, resulting in FokI site polymorphism), of intron 33 of the {alpha}-cardiac MHC gene (a G to A and an A to T transversion), and also of intron 14 of the {beta}-cardiac MHC gene (a C to T transversion in a patient with Noonan syndrome). Including our case, 30 missense mutations of the {beta}-cardiac MHC gene in 49 families have been reported thus far worldwide. Almost all are located in the region of the gene coding for the globular head of the molecule, and only one mutation was found in both Caucasian and Japanese families. Missense mutations of the {Beta}-cardiac MHC gene in hypertrophic cardiomyopathy may therefore differ according to race. 29 refs., 6 figs., 3 tabs.

  19. Absence of Developmental and Unconventional Myosin Heavy Chain in Human Suprahyoid Muscles

    PubMed Central

    Luo, Qingwei; Douglas, Megan; Burkholder, Thomas; Sokoloff, Alan J.

    2014-01-01

    Introduction Contradictory reports of the myosin heavy chain (MHC) composition of adult human suprahyoid muscles leave unresolved the extent to which these muscles express developmental and unconventional MHC. Methods By immunohistochemistry, separation SDS-PAGE-Coomassie, separation SDS-PAGE-Western blot, and mRNA PCR, we tested for conventional MHCI, MHCIIA, MHCIIX, developmental MHC embryonic and MHC neonatal, and unconventional MHC alpha-cardiac, MHC extraocular, and MHC slow tonic in adult human anterior digastric (AD), geniohyoid (GH) and mylohyoid (MH) muscles. Results By separation SDS-PAGE-Coomassie and Western blot only conventional MHC are present. By immunohistochemistry all muscle fibers are positive for MHCI, MHCIIA, or MHCIIX, and fewer than 4 fibers/mm2 are positive for developmental or unconventional MHC. By PCR, mRNA of MHCI and MHCIIA dominate, with sporadically detectable MHC alpha-cardiac and without detectable mRNA of other developmental and unconventional MHC. Discussion We conclude that human suprahyoid muscles AD, GH and MH are composed almost exclusively of conventional MHC isoforms. PMID:23835800

  20. Interferon-γ Causes Cardiac Myocyte Atrophy via Selective Degradation of Myosin Heavy Chain in a Model of Chronic Myocarditis

    PubMed Central

    Cosper, Pippa F.; Harvey, Pamela A.; Leinwand, Leslie A.

    2013-01-01

    Interferon-γ (IFN-γ), a proinflammatory cytokine, has been implicated in the pathogenesis of a number of forms of heart disease including myocarditis and congestive heart failure. In fact, overexpression of IFN-γ in mice causes dilated cardiomyopathy. However, the direct effects of IFN-γ on cardiac myocytes and the mechanism by which it causes cardiac dysfunction have not been described. Here, we present the molecular pathology of IFN-γ exposure and its effect on myofibrillar proteins in isolated neonatal rat ventricular myocytes. Treatment with IFN-γ caused cardiac myocyte atrophy attributable to a specific decrease in myosin heavy chain protein. This selective degradation of myosin heavy chain was not accompanied by a decrease in total protein synthesis or by an increase in total protein degradation. IFN-γ increased both proteasome and immunoproteasome activity in cardiac myocytes and their inhibition blocked myosin heavy chain loss and myocyte atrophy, whereas inhibition of the lysosome or autophagosome did not. Collectively, these results provide a mechanism by which IFN-γ causes cardiac pathology in the setting of chronic inflammatory diseases. PMID:23058369

  1. Myosin heavy chain and physiological adaptation of the rat diaphragm in elastase-induced emphysema

    PubMed Central

    Kim, Dong Kwan; Zhu, Jianliang; Kozyak, Benjamin W; Burkman, James M; Rubinstein, Neal A; Lankford, Edward B; Stedman, Hansell H; Nguyen, Taitan; Levine, Sanford; Shrager, Joseph B

    2003-01-01

    Background Several physiological adaptations occur in the respiratory muscles in rodent models of elastase-induced emphysema. Although the contractile properties of the diaphragm are altered in a way that suggests expression of slower isoforms of myosin heavy chain (MHC), it has been difficult to demonstrate a shift in MHCs in an animal model that corresponds to the shift toward slower MHCs seen in human emphysema. Methods We sought to identify MHC and corresponding physiological changes in the diaphragms of rats with elastase-induced emphysema. Nine rats with emphysema and 11 control rats were studied 10 months after instillation with elastase. MHC isoform composition was determined by both reverse transcriptase polymerase chain reaction (RT-PCR) and immunocytochemistry by using specific probes able to identify all known adult isoforms. Physiological adaptation was studied on diaphragm strips stimulated in vitro. Results In addition to confirming that emphysematous diaphragm has a decreased fatigability, we identified a significantly longer time-to-peak-tension (63.9 ± 2.7 ms versus 53.9 ± 2.4 ms). At both the RNA (RT-PCR) and protein (immunocytochemistry) levels, we found a significant decrease in the fastest, MHC isoform (IIb) in emphysema. Conclusion This is the first demonstration of MHC shifts and corresponding physiological changes in the diaphragm in an animal model of emphysema. It is established that rodent emphysema, like human emphysema, does result in a physiologically significant shift toward slower diaphragmatic MHC isoforms. In the rat, this occurs at the faster end of the MHC spectrum than in humans. PMID:12617755

  2. Analysis of myosin heavy chain mRNA expression by RT-PCR

    NASA Technical Reports Server (NTRS)

    Wright, C.; Haddad, F.; Qin, A. X.; Baldwin, K. M.

    1997-01-01

    An assay was developed for rapid and sensitive analysis of myosin heavy chain (MHC) mRNA expression in rodent skeletal muscle. Only 2 microg of total RNA were necessary for the simultaneous analysis of relative mRNA expression of six different MHC genes. We designed synthetic DNA fragments as internal standards, which contained the relevant primer sequences for the adult MHC mRNAs type I, IIa, IIx, IIb as well as the embryonic and neonatal MHC mRNAs. A known amount of the synthetic fragment was added to each polymerase chain reaction (PCR) and yielded a product of different size than the amplified MHC mRNA fragment. The ratio of amplified MHC fragment to synthetic fragment allowed us to calculate percentages of the gene expression of the different MHC genes in a given muscle sample. Comparison with the traditional Northern blot analysis demonstrated that our reverse transcriptase-PCR-based assay was reliable, fast, and quantitative over a wide range of relative MHC mRNA expression in a spectrum of adult and neonatal rat skeletal muscles. Furthermore, the high sensitivity of the assay made it very useful when only small quantities of tissue were available. Statistical analysis of the signals for each MHC isoform across the analyzed samples showed a highly significant correlation between the PCR and the Northern signals as Pearson correlation coefficients ranged between 0.77 and 0.96 (P < 0.005). This assay has potential use in analyzing small muscle samples such as biopsies and samples from pre- and/or neonatal stages of development.

  3. Transposable element insertions respecify alternative exon splicing in three Drosophila myosin heavy chain mutants.

    PubMed Central

    Davis, M B; Dietz, J; Standiford, D M; Emerson, C P

    1998-01-01

    Insertions of transposable elements into the myosin heavy chain (Mhc) locus disrupt the regulation of alternative pre-mRNA splicing for multi-alternative exons in the Mhc2, Mhc3, and Mhc4 mutants in Drosophila. Sequence and expression analyses show that each inserted element introduces a strong polyadenylation signal that defines novel terminal exons, which are then differentially recognized by the alternative splicing apparatus. Mhc2 and Mhc4 have insertion elements located within intron 7c and exon 9a, respectively, and each expresses a single truncated transcript that contains an aberrant terminal exon defined by the poly(A) signal of the inserted element and the 3' acceptor of the upstream common exon. In Mhc3, a poly(A) signal inserted into Mhc intron 7d defines terminal exons using either the upstream 3' acceptor of common exon 6 or the 7d acceptor, leading to the expression of 4.1- and 1.7-kb transcripts, respectively. Acceptor selection is regulated in Mhc3 transcripts, where the 3' acceptor of common Mhc exon 6 is preferentially selected in larvae, whereas the alternative exon 7d acceptor is favored in adults. These results reflect the adult-specific use of exon 7d and suggest that the normal exon 7 alternative splicing mechanism continues to influence the selection of exon 7d in Mhc3 transcripts. Overall, transposable element-induced disruptions in alternative processing demonstrate a role for the nonconsensus 3' acceptors in Mhc exons 7 and 9 alternative splicing regulation. PMID:9799262

  4. Effect of Fetal Hypothyroidism on Cardiac Myosin Heavy Chain Expression in Male Rats

    PubMed Central

    Yousefzadeh, Nasibeh; Jeddi, Sajad; Alipour, Mohammad Reza

    2016-01-01

    Background: Thyroid hormone deficiency during fetal life could affect the cardiac function in later life. The mechanism underlying this action in fetal hypothyroidism (FH) in rats has not been elucidated thus far. Objective: The aim of this study is to evaluation the effect of FH on cardiac function in male rats and to determine the contribution of α-myosin heavy chain (MHC) and β-MHC isoforms. Methods: Six pregnant female rats were randomly divided into two groups: The hypothyroid group received water containing 6-propyl-2-thiouracil during gestation and the controls consumed tap water. The offspring of the rats were tested in adulthood. Hearts from the FH and control rats were isolated and perfused with langendroff setup for measuring hemodynamic parameters; also, the heart mRNA expressions of α- MHC and β-MHC were measured by qPCR. Results: Baseline LVDP (74.0 ± 3.1 vs. 92.5 ± 3.2 mmHg, p < 0.05) and heart rate (217 ± 11 vs. 273 ± 6 beat/min, p < 0.05) were lower in the FH rats than controls. Also, these results showed the same significance in ±dp/dt. In the FH rats, β-MHC expression was higher (201%) and α- MHC expression was lower (47%) than control. Conclusion: Thyroid hormone deficiency during fetal life could attenuate normal cardiac functions in adult rats, an effect at least in part due to the increased expression of β-MHC to α- MHC ratio in the heart. PMID:27411095

  5. Myosin heavy chain expression in rodent skeletal muscle: effects of exposure to zero gravity

    NASA Technical Reports Server (NTRS)

    Haddad, F.; Herrick, R. E.; Adams, G. R.; Baldwin, K. M.

    1993-01-01

    This study ascertained the effects of 9 days of zero gravity on the relative (percentage of total) and calculated absolute (mg/muscle) content of isomyosin expressed in both antigravity and locomotor skeletal muscle of ground control (CON) and flight-exposed (FL) rats. Results showed that although there were no differences in body weight between FL and CON animals, a significant reduction in muscle mass occurred in the vastus intermedius (VI) (P < 0.05) but not in the vastus lateralis (VL) or the tibialis anterior. Both total muscle protein and myofibril protein content were not different between the muscle regions examined in the FL and CON groups. In the VI, there were trends for reductions in the relative content of type I and IIa myosin heavy chains (MHCs) that were offset by increases in the relative content of both type IIb and possibly type IIx MHC protein (P > 0.05). mRNA levels were consistent with this pattern (P < 0.05). The same pattern held true for the red region of the VL as examined at both the protein and mRNA level (P < 0.05). When the atrophy process was examined, there were net reductions in the absolute content of both type I and IIa MHCs that were offset by calculated increases in type IIb MHC in both VI and red VL. Collectively, these findings suggest that there are both absolute and relative changes occurring in MHC expression in the "red" regions of antigravity skeletal muscle during exposure to zero gravity that could affect muscle function.

  6. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    SciTech Connect

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X.

    2010-04-01

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed to differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-{gamma} co-activator-1 (PGC-1{alpha}) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.

  7. Force-velocity properties of human skeletal muscle fibres: myosin heavy chain isoform and temperature dependence.

    PubMed Central

    Bottinelli, R; Canepari, M; Pellegrino, M A; Reggiani, C

    1996-01-01

    1. A large population (n = 151) of human skinned skeletal muscle fibres has been studied. Force-velocity curves of sixty-seven fibres were obtained by load-clamp manoeuvres at 12 degrees C. In each fibre maximum shortening velocity (Vmax), maximum power output (Wmax), optimal velocity (velocity at which Wmax is developed, Vopt), optimal force (force at which Wmax is developed, Popt), specific tension (Po/CSA, isometric tension/cross-sectional area) were assessed. Unloaded shortening velocity (Vo) was also determined at 12 degrees C in a different group (n = 57) of fibres by slack-test procedure. 2. All fibres used for mechanical experiments were characterized on the basis of the myosin heavy chain (MHC) isoform composition by sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis and divided into five types: type I (or slow), types IIA and IIB (or fast), and types I-IIA and IIA-IIB (or mixed types). 3. Vmax, Wmax, Vopt, Popt, Vopt/Vmax ratio, Po/CSA and Vo were found to depend on MHC isoform composition. All parameters were significantly lower in type I than in the fast (type IIA and IIB) fibres. Among fast fibres, Vmax, Wmax, Vopt and Vo were significantly lower in type IIA and than in IIB fibres, whereas Popt, Po/CSA and Vopt/Vmax were similar. 4. The temperature dependence of Vo and Po/CSA was assessed in a group of twenty-one fibres in the range 12-22 degrees C. In a set of six fibres temperature dependence of Vmax was also studied. The Q10 (5.88) and activation energy E (125 kJ mol-1) values for maximum shortening velocity calculated from Arrhenius plots pointed to a very high temperature sensitivity. Po/CSA was very temperature dependent in the 12-17 degrees C range, but less dependent between 17 and 22 degrees C. Images Figure 1 Figure 3 Figure 6 PMID:8887767

  8. Myosin heavy chain 15 is associated with bovine pulmonary arterial pressure.

    PubMed

    Neary, Marianne T; Neary, Joseph M; Lund, Gretchen K; Holt, Timothy N; Garry, Franklyn B; Mohun, Timothy J; Breckenridge, Ross A

    2014-09-01

    Bovine pulmonary hypertension, brisket disease, causes significant morbidity and mortality at elevations above 2,000 m. Mean pulmonary arterial pressure (mPAP) is moderately heritable, with inheritance estimated to lie within a few major genes. Invasive mPAP measurement is currently the only tool available to identify cattle at risk of hypoxia-induced pulmonary hypertension. A genetic test could allow selection of cattle suitable for high altitude without the need for invasive testing. In this study we evaluated three candidate genes (myosin heavy chain 15 [MYH15], NADH dehydrogenase flavoprotein 2, and FK binding protein 1A) for association with mPAP in 166 yearling Angus bulls grazing at 2,182 m. The T allele (rs29016420) of MYH15 was linked to lower mPAP in a dominant manner (CC 47.2 ± 1.6 mmHg [mean ± standard error of the mean]; CT/TT 42.8 ± 0.7 mmHg; P = 0.02). The proportions of cattle with MYH15 CC, CT, and TT genotypes were 55%, 41%, and 4%, respectively. Given the high frequency of the deleterious allele, it is likely that the relative contribution of MYH15 polymorphisms to pulmonary hypertension is small, supporting previous predictions that the disease is polygenic. We evaluated allelic frequency of MYH15 in the Himalayan yak (Bos grunniens), a closely related species adapted to high altitude, and found 100% prevalence of T allele homozygosity. In summary, we identified a polymorphism in MYH15 significantly associated with mPAP. This finding may aid selection of cattle suitable for high altitude and contribute to understanding human hypoxia-induced pulmonary hypertension.

  9. Myosin heavy-chain isoforms in the flight and leg muscles of hummingbirds and zebra finches.

    PubMed

    Velten, Brandy P; Welch, Kenneth C

    2014-06-01

    Myosin heavy chain (MHC) isoform complement is intimately related to a muscle's contractile properties, yet relatively little is known about avian MHC isoforms or how they may vary with fiber type and/or the contractile properties of a muscle. The rapid shortening of muscles necessary to power flight at the high wingbeat frequencies of ruby-throated hummingbirds and zebra finches (25-60 Hz), along with the varied morphology and use of the hummingbird hindlimb, provides a unique opportunity to understand how contractile and morphological properties of avian muscle may be reflected in MHC expression. Isoforms of the hummingbird and zebra finch flight and hindlimb muscles were electrophoretically separated and compared with those of other avian species representing different contractile properties and fiber types. The flight muscles of the study species operate at drastically different contraction rates and are composed of different histochemically defined fiber types, yet each exhibited the same, single MHC isoform corresponding to the chicken adult fast isoform. Thus, despite quantitative differences in the contractile demands of flight muscles across species, this isoform appears necessary for meeting the performance demands of avian powered flight. Variation in flight muscle contractile performance across species may be due to differences in the structural composition of this conserved isoform and/or variation within other mechanically linked proteins. The leg muscles were more varied in their MHC isoform composition across both muscles and species. The disparity in hindlimb MHC expression between hummingbirds and the other species highlights previously observed differences in fiber type composition and thrust production during take-off.

  10. Myosin heavy chain isoform transitions in canine skeletal muscles during postnatal growth

    PubMed Central

    Štrbenc, Malan; Smerdu, Vika; Pogačnik, Azra; Fazarinc, Gregor

    2006-01-01

    To gain a better understanding of the normal characteristics of developing canine muscles, myosin heavy chain (MHC) isoform expression was analysed in the axial and limb skeletal muscles of 18 young dogs whose ages ranged from the late prenatal stage to 6 months. We compared the results of immunohistochemistry using ten monoclonal antibodies, specific to different MHC isoforms, and enzyme-histochemical reactions, which demonstrate the activity of myofibrillar ATPase, succinate dehydrogenase (SDH) and α-glycerophosphate dehydrogenase (α-GPDH). In the skeletal muscles of fetuses and neonatal dogs the developmental isoforms MHC-emb and MHC-neo were prevalent. In all muscles the primary fibres, located centrally in each muscle fascicle, strongly expressed the slow isoform MHC-I. The adult fast isoform MHC-IIa was first noted in some of the secondary fibres on fetal day 55. During the first 10 days after birth, the expression of MHC-emb declined, as did that of MHC-neo during the second and third weeks. Correspondingly, the expression of MHC-IIa, and later, of MHC-I increased in the secondary fibres. Between the sixth week and second month the expression of MHC-IIx became prominent. The slow rhomboideus muscle exhibited an early expression of the slow isoform in the secondary fibres. Our results indicate that the timing of muscle maturation depends on its activity immediately following birth. The fastest developing muscle was the diaphragm, followed by the fast muscles. A pronounced changeover from developmental to adult isoforms was noted at 4–6 weeks of age, which coincides with the increased physical activity of puppies. PMID:16879596

  11. Expression of myosin heavy-chain mRNA in cultured myoblasts induced by centrifugal force.

    PubMed

    Kurokawa, Katsuhide; Sakiyama, Koji; Abe, Shinichi; Hiroki, Emi; Naito, Kaoru; Nakajima, Kazunori; Takeda, Tomotaka; Inoue, Takashi; Ide, Yoshinobu; Ishigami, Keiichi

    2008-11-01

    Ballistic muscle training leads to hypertrophy of fast type fibers and training for endurance induces that of slow type fibers. Numerous studies have been conducted on electrical, extending and magnetic stimulation of cells, but the effect of centrifugal force on cells remains to be investigated. In this study, we investigated the effect of stimulating cultured myoblasts with centrifugal force at different speeds on cell proliferation and myosin heavy-chain (MyHC) mRNA expression in muscle fiber. Stimulation of myoblasts was carried out at 2 different speeds for 20 min using the Himac CT6D, a desk centrifuge, and cells were observed at 1, 3 and 5 days later. Number of cells 1 and 5 days after centrifugal stimulation was significantly larger in the 62.5 x g and 4,170 x g stimulation groups than in the control group. Expression of MyHC-2b mRNA 1 day after centrifugal stimulation was significantly higher in the 2 stimulation groups than in the control group. Almost no expression of MyHC-2a was observed in any group at 1 and 3 days after centrifugal stimulation. However, 5 days after stimulation, MyHC-2a was strongly expressed in the 2 stimulation groups in comparison to the control group. Three days after centrifugal stimulation, expression of MyHC-1 was significantly higher in the 2 stimulation groups than in the control group. The results of this study clarified the effect of different centrifugal stimulation speeds on muscle fiber characteristics, and suggest that centrifugal stimulation of myoblasts enhances cell proliferation.

  12. Absence of the functional Myosin heavy chain 2b isoform in equine skeletal muscles.

    PubMed

    Chikuni, Koichi; Muroya, Susumu; Nakajima, Ikuyo

    2004-05-01

    Nucleotide sequences which included the full coding region for three types of myosin heavy chain (MyHC) isoforms were determined from equine skeletal muscles. The deduced amino acid sequences were 1937, 1938, and 1935 residues for the MyHC-2a, -2x, and -slow, respectively. No MyHC-2b isoform was amplified from the equine muscle cDNA except for one pseudogene fragment. One nucleotide was inserted in the coding region of the equine pseudogene product, a minute amount of which was expressed in the skeletal muscle. The 596 bp sequence of the equine MyHC pseudogene was categorized into the MyHC-2b genes on the phylogenetic tree of the mammalian MyHC genes. These results suggest that an ancestral MyHC-2b gene had lost its function and changed to a pseudogene during the course of horse history. The MyHC genes in some ungulates were analyzed through the PCR amplifications using the MyHC isoform-specific primers to confirm the presence of the MyHC-2b and -2x genes. The exon coding the 3' untranslated region of the MyHC-2x was successfully amplified from the all ungulates examined; however, that of the MyHC-2b gene was amplified only from horses, pigs and lesser mouse deer. The PCR analyses from rhinoceros, sika deer, moose, giraffes, water buffalo, bovine, Japanese serow and sheep genes implied the absence of the MyHC-2b-specific sequence in their genomes. These results suggest that the MyHC-2b gene independently lost its function in some ungulate species.

  13. HDAC3-dependent reversible lysine acetylation of cardiac myosin heavy chain isoforms modulates their enzymatic and motor activity.

    PubMed

    Samant, Sadhana A; Courson, David S; Sundaresan, Nagalingam R; Pillai, Vinodkumar B; Tan, Minjia; Zhao, Yingming; Shroff, Sanjeev G; Rock, Ronald S; Gupta, Mahesh P

    2011-02-18

    Reversible lysine acetylation is a widespread post-translational modification controlling the activity of proteins in different subcellular compartments. We previously demonstrated that a class II histone deacetylase (HDAC), HDAC4, and a histone acetyltransferase, PCAF, associate with cardiac sarcomeres, and a class I and II HDAC inhibitor, trichostatin A, enhances contractile activity of myofilaments. In this study, we show that a class I HDAC, HDAC3, is also present at cardiac sarcomeres. By immunohistochemical and electron microscopic analyses, we found that HDAC3 was localized to the A band of sarcomeres and was capable of deacetylating myosin heavy chain (MHC) isoforms. The motor domains of both cardiac α- and β-MHC isoforms were found to be reversibly acetylated. Biomechanical studies revealed that lysine acetylation significantly decreased the K(m) for the actin-activated ATPase activity of both α- and β-MHC isoforms. By an in vitro motility assay, we found that lysine acetylation increased the actin sliding velocity of α-myosin by 20% and β-myosin by 36%, compared to their respective non-acetylated isoforms. Moreover, myosin acetylation was found to be sensitive to cardiac stress. During induction of hypertrophy, myosin isoform acetylation increased progressively with duration of stress stimuli, independent of isoform shift, suggesting that lysine acetylation of myosin could be an early response of myofilaments to increase contractile performance of the heart. These studies provide the first evidence for localization of HDAC3 at myofilaments and uncover a novel mechanism modulating the motor activity of cardiac MHC isoforms.

  14. [The disappearance of the dependence of actin-myosin interaction on the phosphorylation of myosin light chains in the "freezing" of the structure of heavy meromyosin by a bifunctional reagent].

    PubMed

    Borovikov, Iu S; Szczesna, D; Khoroshev, M I; Kakol, I

    1990-01-01

    Using glycerinated muscle fibers, free of myosin, tropomyosin and troponin, a study was made of the structural state of F-actin modified by N-(iodoacetyl)-N'-(1-naphthyl-5-sulfo)-ethylendiamine (1.5-IAEDANS) and by rhodaminyl--phalloin at decoration of thin filaments with a proteolytic fragment of myosin--heavy meromyosin containing phosphorylated and dephosphorylated myosin light chains. The heavy meromyosin used has three SH-groups of heavy chain SH1, SH2 and SH chi modified by bifunctional reagent N,N'-n-phenylmaleimide (SH1-SH2, SH2-SH chi). At decoration of thin filaments with heavy meromyosin, some changes in polarized fluorescence of rhodaminyl--phalloin and 1.5-IAEDANS independent of phosphorylation of myosin light chains were found. Fluorescence anisotropy of the fiber was found to depend primarily on the character of heavy chain of SH-group modification. The ability of heavy chains to change their conformations is supposed to play an important role in the mechanism of myosin system modulation of muscle contraction.

  15. Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Haddad, F.

    2001-01-01

    The goal of this mini-review is to summarize findings concerning the role that different models of muscular activity and inactivity play in altering gene expression of the myosin heavy chain (MHC) family of motor proteins in mammalian cardiac and skeletal muscle. This was done in the context of examining parallel findings concerning the role that thyroid hormone (T(3), 3,5,3'-triiodothyronine) plays in MHC expression. Findings show that both cardiac and skeletal muscles of experimental animals are initially undifferentiated at birth and then undergo a marked level of growth and differentiation in attaining the adult MHC phenotype in a T(3)/activity level-dependent fashion. Cardiac MHC expression in small mammals is highly sensitive to thyroid deficiency, diabetes, energy deprivation, and hypertension; each of these interventions induces upregulation of the beta-MHC isoform, which functions to economize circulatory function in the face of altered energy demand. In skeletal muscle, hyperthyroidism, as well as interventions that unload or reduce the weight-bearing activity of the muscle, causes slow to fast MHC conversions. Fast to slow conversions, however, are seen under hypothyroidism or when the muscles either become chronically overloaded or subjected to intermittent loading as occurs during resistance training and endurance exercise. The regulation of MHC gene expression by T(3) or mechanical stimuli appears to be strongly regulated by transcriptional events, based on recent findings on transgenic models and animals transfected with promoter-reporter constructs. However, the mechanisms by which T(3) and mechanical stimuli exert their control on transcriptional processes appear to be different. Additional findings show that individual skeletal muscle fibers have the genetic machinery to express simultaneously all of the adult MHCs, e.g., slow type I and fast IIa, IIx, and IIb, in unique combinations under certain experimental conditions. This degree of

  16. Shared Gene Structures and Clusters of Mutually Exclusive Spliced Exons within the Metazoan Muscle Myosin Heavy Chain Genes

    PubMed Central

    Kollmar, Martin; Hatje, Klas

    2014-01-01

    Multicellular animals possess two to three different types of muscle tissues. Striated muscles have considerable ultrastructural similarity and contain a core set of proteins including the muscle myosin heavy chain (Mhc) protein. The ATPase activity of this myosin motor protein largely dictates muscle performance at the molecular level. Two different solutions to adjusting myosin properties to different muscle subtypes have been identified so far: Vertebrates and nematodes contain many independent differentially expressed Mhc genes while arthropods have single Mhc genes with clusters of mutually exclusive spliced exons (MXEs). The availability of hundreds of metazoan genomes now allowed us to study whether the ancient bilateria already contained MXEs, how MXE complexity subsequently evolved, and whether additional scenarios to control contractile properties in different muscles could be proposed, By reconstructing the Mhc genes from 116 metazoans we showed that all intron positions within the motor domain coding regions are conserved in all bilateria analysed. The last common ancestor of the bilateria already contained a cluster of MXEs coding for part of the loop-2 actin-binding sequence. Subsequently the protostomes and later the arthropods gained many further clusters while MXEs got completely lost independently in several branches (vertebrates and nematodes) and species (for example the annelid Helobdella robusta and the salmon louse Lepeophtheirus salmonis). Several bilateria have been found to encode multiple Mhc genes that might all or in part contain clusters of MXEs. Notable examples are a cluster of six tandemly arrayed Mhc genes, of which two contain MXEs, in the owl limpet Lottia gigantea and four Mhc genes with three encoding MXEs in the predatory mite Metaseiulus occidentalis. Our analysis showed that similar solutions to provide different myosin isoforms (multiple genes or clusters of MXEs or both) have independently been developed several times

  17. [The effect of phosphorylation of myosin light chains on the structural state of tropomyosin in thin filaments, decorated with heavy meromyosin].

    PubMed

    Vorovikov, Iu S; Szczesna, D; Kakol, I

    1989-06-01

    The structural state of tropomyosin (TM) modified by 5-(iodoacetamidoethyl)-aminonaphthalene-1-sulfonate (1.5-IAEDANS) upon F-actin decoration with myosin subfragment 1 (S1) and heavy meromyosin (HMM) in glycerinated myosin- and troponin-free muscle fibers was studied. HMM preparations contained native phosphorylated myosin light chains, while S1 preparations did not. The changes in the polarized fluorescence of 1.5-IAEDANS-TM during the F-actin interaction with S1 were independent of light chains phosphorylation and Ca2+ concentration, but were dependent on these factors during the F-actin interaction with HMM. The binding of myosin heads to F-actin is supposed to initiate conformational changes in TM which are accompanied by changes in the flexibility and molecular arrangement of TM. In the presence of light chains, the structural changes in TM depend on light chains phosphorylation and Ca2+ concentration. The conformational changes in TM seem to be responsible for the mechanisms of coupling of the myosin and tropomyosin modulation system during the actin-myosin interaction in skeletal muscles.

  18. High fat/low carbohydrate diet attenuates left ventricular hypertrophy and prevents myosin heavy chain isoform switching induced by chronic hypertenstion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A switch in the expression of myosin heavy chain isoform (MHC) alpha to beta is observed with left ventricular hypertrophy (LVH) and heart failure. This switch is associated with a defect in myocardial energy production and contractile dysfunction. Similar MHC isoform profile is observed in the fe...

  19. Familial hypertrophic cardiomyopathy. Microsatellite haplotyping and identification of a hot spot for mutations in the beta-myosin heavy chain gene.

    PubMed Central

    Dausse, E; Komajda, M; Fetler, L; Dubourg, O; Dufour, C; Carrier, L; Wisnewsky, C; Bercovici, J; Hengstenberg, C; al-Mahdawi, S

    1993-01-01

    Familial hypertrophic cardiomyopathy (FHC) is a clinically and genetically heterogeneous disease. The first identified disease gene, located on chromosome 14q11-q12, encodes the beta-myosin heavy chain. We have performed linkage analysis of two French FHC pedigrees, 720 and 730, with two microsatellite markers located in the beta-myosin heavy chain gene (MYO I and MYO II) and with four highly informative markers, recently mapped to chromosome 14q11-q12. Significant linkage was found with MYO I and MYO II in pedigree 720, but results were not conclusive for pedigree 730. Haplotype analysis of the six markers allowed identification of affected individuals and of some unaffected subjects carrying the disease gene. Two novel missense mutations were identified in exon 13 by direct sequencing, 403Arg-->Leu and 403Arg-->Trp in families 720 and 730, respectively. The 403Arg-->Leu mutation was associated with incomplete penetrance, a high incidence of sudden deaths and severe cardiac events, whereas the consequences of the 403Arg-->Trp mutation appeared less severe. Haplotyping of polymorphic markers in close linkage to the beta-myosin heavy chain gene can, thus, provide rapid analysis of non informative pedigrees and rapid detection of carrier status. Our results also indicate that codon 403 of the beta-myosin heavy chain gene is a hot spot for mutations causing FHC. Images PMID:8254035

  20. Myosin Heavy Chain Gene Expression in Developing Neonatal Skeletal Muscle: Involvement of the Nerve, Gravity, and Thyroid State

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Adams, G.; Haddad, F.; Zeng, M.; Qin, A.; Qin, L.; McCue, S.; Bodell, P.

    1999-01-01

    The myosin heavy chain (MHC) gene family encodes at least six MHC proteins (herein designated as neonatal, embryonic, slow type I (beta), and fast IIa, IIx, and IIb) that are expressed in skeletal muscle in a muscle-specific and developmentally-regulated fashion. At birth, both antigravity (e.g. soleus) and locomotor (e.g., plantaris) skeletal muscles are undifferentiated relative to the adult MHC phenotype such that the neonatal and embryonic MHC isoforms account for 80 - 90% of the MHC pool in a fast locomotor muscle; whereas, the embryonic and slow, type I isoforms account for approx. 90% of the pool in a typical antigravity muscle. The goal of this study was to investigate the role of an intact nerve, gravity and thyroid hormone (T3), as well as certain interactions of these interventions, on MHC gene expression in developing neonatal skeletal muscles of rodents.

  1. Cardiac and skeletal myopathy in beta myosin heavy-chain simian virus 40 tsA58 transgenic mice.

    PubMed Central

    De Leon, J R; Federoff, H J; Dickson, D W; Vikstrom, K L; Fishman, G I

    1994-01-01

    The mechanisms regulating cardiac muscle differentiation and development are incompletely understood. To examine the relationships between cardiocyte proliferation and differentiation, we tested the ability of a fragment from the rat beta myosin heavy-chain (MHC beta) gene to correctly target expression of a thermolabile simian virus 40 large tumor antigen allele (tsA58) in the developing mouse. Transgene expression in the heart was observed as early as 10 days postconception and was developmentally regulated in parallel with the endogenous MHC beta gene. Expression was also detected in developing skeletal muscle, although at low levels. Despite the temperature sensitivity of the mutant large tumor antigen protein, a subset of transgenic mice in several lineages developed marked cardiac and skeletal myopathies. Images Fig. 2 Fig. 3 Fig. 4 PMID:8290557

  2. Myosin heavy chain 10 (MYH10) is required for centriole migration during the biogenesis of primary cilia.

    PubMed

    Hong, Hyowon; Kim, Jongshin; Kim, Joon

    2015-05-22

    The actin cytoskeleton has been implicated in the assembly of cilia, but roles of actin-dependent motor proteins in ciliogenesis remain unclear. Myosin heavy chain 10 (MYH10), one of the isoforms of non-muscle myosin II, is known to mediate centrosome reorientation during cell migration. Here we show that MYH10 is required for centriole migration to the apical plasma membrane, which occurs at the onset of ciliogenesis. Knockdown of MYH10 in RPE1 cells caused a reduction in the levels of cortical filamentous actin (F-actin) and its binding protein EZRIN. Moreover, both centriole migration and subsequent cilium assembly were defective in MYH10 depleted cells. We further found that MYH10 influences centrosomal recruitment of IFT88, which is required for the transport of building blocks to the ciliary tip. The role of MYH10 in IFT88 recruitment appears to be indirect in that there is a correlation between centriolar IFT88 levels and centriolar positions along the apical-basal axis during ciliogenesis. Our results indicate that MYH10 contributes to ciliogenesis in RPE1 cells by promoting cortical actin-dependent centriole migration.

  3. Cloning of the cDNA encoding a myosin heavy chain B isoform of Xenopus nonmuscle myosin with an insert in the head region.

    PubMed

    Bhatia-Dey, N; Adelstein, R S; Dawid, I B

    1993-04-01

    The complete amino acid sequence of Xenopus laevis nonmuscle myosin heavy chain B (MHC-B) has been deduced from overlapping cDNA clones isolated from an XTC cell library. RNA blots of various developmental stages, adult tissues, and XTC cells detect a single transcript of 7.5 kb which is expressed at similar levels throughout development. MHC-B mRNA was detected in XTC cells, heart, lung, spleen, and brain, at lower levels in ovary, testis, pancreas, stomach, liver, and eye, but not in kidney and skeletal muscle. Protein expression in adult tissues, as detected by immunoblot analysis, correlates well with mRNA expression. In chickens and humans, a fraction of the mRNA encoding the MHC-B isoform was found previously to contain a 10-amino acid insert at amino acid 211 near the ATP-binding site. As reported elsewhere, in the chicken this insert-bearing isoform is nervous system-specific. The Xenopus sequence shows a 16-amino acid insertion at the same position; 7 of 16 residues are identical to those in the chicken and human insertion, and these identical residues include a consensus target sequence for cyclin-p34cdc2 kinase. In contrast to chicken, all frog tissues and embryonic stages tested contained the insert-bearing form, and no evidence for a non-insert-bearing MHC-B isoform was found in Xenopus.

  4. Myosin heavy chain-like localizes at cell contact sites during Drosophila myoblast fusion and interacts in vitro with Rolling pebbles 7

    SciTech Connect

    Bonn, Bettina R.; Rudolf, Anja; Hornbruch-Freitag, Christina; Daum, Gabor; Kuckwa, Jessica; Kastl, Lena; Buttgereit, Detlev; Renkawitz-Pohl, Renate

    2013-02-15

    Besides representing the sarcomeric thick filaments, myosins are involved in many cellular transport and motility processes. Myosin heavy chains are grouped into 18 classes. Here we show that in Drosophila, the unconventional group XVIII myosin heavy chain-like (Mhcl) is transcribed in the mesoderm of embryos, most prominently in founder cells (FCs). An ectopically expressed GFP-tagged Mhcl localizes in the growing muscle at cell–cell contacts towards the attached fusion competent myoblast (FCM). We further show that Mhcl interacts in vitro with the essential fusion protein Rolling pebbles 7 (Rols7), which is part of a protein complex established at cell contact sites (Fusion-restricted Myogenic-Adhesive Structure or FuRMAS). Here, branched F-actin is likely needed to widen the fusion pore and to integrate the myoblast into the growing muscle. We show that the localization of Mhcl is dependent on the presence of Rols7, and we postulate that Mhcl acts at the FuRMAS as an actin motor protein. We further show that Mhcl deficient embryos develop a wild-type musculature. We thus propose that Mhcl functions redundantly to other myosin heavy chains in myoblasts. Lastly, we found that the protein is detectable adjacent to the sarcomeric Z-discs, suggesting an additional function in mature muscles. - Highlights: ► The class XVIII myosin encoding gene Mhcl is transcribed in the mesoderm. ► Mhcl localization at contact sites of fusing myoblasts depends on Rols7. ► Mhcl interacts in vitro with Rols7 which is essential for myogenesis. ► Functional redundancy with other myosins is likely as mutants show no muscle defects. ► Mhcl localizes adjacent to Z-discs of sarcomeres and might support muscle integrity.

  5. Effects of diet consistency on the myosin heavy chain mRNAs of rat masseter muscle during postnatal development.

    PubMed

    Saito, T; Ohnuki, Y; Yamane, A; Saeki, Y

    2002-02-01

    To study the effects of diet consistency on the fiber phenotypes of rat masseter (1-70 days of age), the mRNAs of myosin heavy chain isoforms (MHC embryonic, neonatal, I, IIa, IId/x and IIb) were measured in total RNA preparations from masseters of hard-diet group (HDG) and soft-diet group (SDG) by competitive reverse transcriptase-polymerase chain reaction (RT-PCR). With respect to the time course of the transition of each MHC mRNA expressed as a percentage relative to the maximum mean, the soft diet facilitated early (9 days after weaning) expression of IId/x and IIb isoforms, and also a decline in the expression of neonatal and IIa isoforms. The expression of neonatal, IIa and IId/x isoforms at 70 days of age was significantly (P<0.05, P<0.01, P<0.01, respectively) lower in SDG than in HDG, indicating a higher relative composition of the IIb isoform in the SDG. Embryonic MHC mRNA had disappeared by 14 days of age (i.e. before weaning at 19 days). No MHC I mRNA was observed in any masseter studied. These results suggest that in the rat a soft diet facilitates an even more MHC IIb-rich phenotype in the masseter muscle than a hard diet.

  6. Effects of exercise and creatine on myosin heavy chain isoform composition in patients with Charcot-Marie-Tooth disease.

    PubMed

    Smith, Cheryl A; Chetlin, Robert D; Gutmann, Laurie; Yeater, Rachel A; Alway, Stephen E

    2006-11-01

    It is not known whether myosin heavy chain (MHC) content changes in response to exercise training or creatine supplementation in subjects with Charcot-Marie-Tooth disease (CMT). Based on previous data, we hypothesized that resistance exercise and creatine would increase the percentage of type I MHC composition in the vastus lateralis muscle and that myosin isoform changes would correlate with improved chair rise-time in CMT subjects. To test this hypothesis, 18 CMT subjects were randomly assigned to either a placebo or creatine group. All subjects performed a 12-week, home-based, moderate-intensity resistance training program. Chair rise-time was measured before and after the training program. Muscle biopsies were obtained from the vastus lateralis before and after the 12-week program. Gel electrophoresis showed a significant decrease (approximately 30%) in MHC type I in CMT subjects given creatine supplementation when compared with placebo. There was a nonsignificant increase in both MHC type IIa (approximately 23%) and MHC type IIx (approximately 7%) in CMT subjects given creatine. Reduced MHC type I content and increased MHC type IIa content correlated with faster chair rise-times (i.e., improved muscle performance). The training-induced change in MHC IIa content was inversely correlated with chair rise-time in CMT subjects given creatine. When the two subject groups were combined, there was a linear, negative relationship between the change in MHC type IIa content and chair rise-time after training and a positive relationship between the training-induced change in MHC type I content and chair rise-time. These data suggest that improved function (chair rise-time) was associated with a lower level of MHC type I and increased MHC type IIa composition. Furthermore, the data are consistent with the hypothesis that creatine supplementation alters MHC composition in CMT patients undergoing resistance training and that MHC changes associated with creatine

  7. A Xenopus nonmuscle myosin heavy chain isoform is phosphorylated by cyclin-p34cdc2 kinase during meiosis.

    PubMed

    Kelley, C A; Oberman, F; Yisraeli, J K; Adelstein, R S

    1995-01-20

    There are two vertebrate nonmuscle myosin heavy chain (MHC) genes that encode two separate isoforms of the heavy chain, MHC-A and MHC-B. Recent work has identified additional, alternatively spliced isoforms of MHC-B cDNA with inserted sequences of 30 nucleotides (chicken and human) or 48 nucleotides (Xenopus) at a site corresponding to the ATP binding region in the MHC protein (Takahashi, M., Kawamoto, S., and Adelstein, R.S. (1992) J. Biol. Chem. 267, 17864-17871) and Bhatia-Dey, N., Adelstein, R.S., and Dawid, I.B. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 2856-2859). The deduced amino acid sequence of these inserts contains a consensus sequence for phosphorylation by cyclin-p34cdc2 (cdc2) kinase. In cultured Xenopus XTC cells, we have identified two inserted MHC-B isoforms and a non-inserted MHC-A isoform by immunoblotting of cell extracts. When myosin was immunoprecipitated from XTC cells and phosphorylated in vitro with cdc2 kinase, the kinase catalyzed the phosphorylation of both inserted MHC-B isoforms but not MHC-A. Isoelectric focusing of tryptic peptides generated from MHC-B phosphorylated with cdc2 kinase revealed one major phosphopeptide that was purified by reverse-phase high performance liquid chromatography and sequenced. The phosphorylated residue was Ser-214, the cdc2 kinase consensus site within the insert near the ATP binding region. The same site was phosphorylated in intact XTC cells during log phase of growth and in cell-free lysates of Xenopus eggs stabilized in second meiotic metaphase but not interphase. Moreover, Ser-214 phosphorylation was detected during maturation of Xenopus oocytes when the cdc2 kinase-containing maturation-promoting factor was activated, but not in G2 interphase-arrested oocytes. These results demonstrate that MHC-B phosphorylation is tightly regulated by cdc2 kinase during meiotic cell cycles. Furthermore, MHC-A and MHC-B isoforms are differentially phosphorylated at these stages, suggesting that they may serve

  8. Myosin light chain kinase steady-state kinetics: comparison of smooth muscle myosin II and nonmuscle myosin IIB as substrates

    PubMed Central

    Alcala, Diego B.; Haldeman, Brian D.; Brizendine, Richard K.; Krenc, Agata K.; Baker, Josh E.; Rock, Ronald S.; Cremo, Christine R.

    2016-01-01

    Myosin light chain kinase (MLCK) phosphorylates S19 of the myosin regulatory light chain (RLC), which is required to activate myosin's ATPase activity and contraction. Smooth muscles are known to display plasticity in response to factors such as inflammation, developmental stage, or stress, which lead to differential expression of nonmuscle and smooth muscle isoforms. Here, we compare steady-state kinetics parameters for phosphorylation of different MLCK substrates: (1) nonmuscle RLC, (2) smooth muscle RLC, and heavy meromyosin subfragments of (3) nonmuscle myosin IIB, and (4) smooth muscle myosin II. We show that MLCK has a ~2-fold higher kcat for both smooth muscle myosin II substrates compared with nonmuscle myosin IIB substrates, whereas Km values were very similar. Myosin light chain kinase has a 1.6-fold and 1.5-fold higher specificity (kcat/Km) for smooth versus nonmuscle-free RLC and heavy meromyosin, respectively, suggesting that differences in specificity are dictated by RLC sequences. Of the 10 non-identical RLC residues, we ruled out 7 as possible underlying causes of different MLCK kinetics. The remaining 3 residues were found to be surface exposed in the N-terminal half of the RLC, consistent with their importance in substrate recognition. These data are consistent with prior deletion/chimera studies and significantly add to understanding of MLCK myosin interactions. PMID:27528075

  9. Cold exposure increases slow-type myosin heavy chain 1 (MyHC1) composition of soleus muscle in rats.

    PubMed

    Mizunoya, Wataru; Iwamoto, Yohei; Sato, Yusuke; Tatsumi, Ryuichi; Ikeuchi, Yoshihide

    2014-03-01

    The aim of this study was to examine the effects of cold exposure on rat skeletal muscle fiber type, according to myosin heavy chain (MyHC) isoform and metabolism-related factors. Male Wistar rats (7 weeks old) were housed individually at 4 ± 2°C as a cold-exposed group or at room temperature (22 ± 2°C) as a control group for 4 weeks. We found that cold exposure significantly increased the slow-type MyHC1 content in the soleus muscle (a typical slow-type fiber), while the intermediate-type MyHC2A content was significantly decreased. In contrast to soleus, MyHC composition of extensor digitorum longus (EDL, a typical fast-type fiber) and gastrocnemius (a mix of slow-type and fast-type fibers) muscle did not change from cold exposure. Cold exposure increased mRNA expression of mitochondrial uncoupling protein 3 (UCP3) in both the soleus and EDL. Cold exposure also increased mRNA expression of myoglobin, peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) and forkhead box O1 (FOXO1) in the soleus. Upregulation of UCP3 and PGC1α proteins were observed with Western blotting in the gastrocnemius. Thus, cold exposure increased metabolism-related factors in all muscle types that were tested, but MyHC isoforms changed only in the soleus.

  10. Fiber size, type, and myosin heavy chain content in rhesus hindlimb muscles after 2 weeks at 2 G

    NASA Technical Reports Server (NTRS)

    Tavakol, Morteza; Roy, Roland R.; Kim, Jung A.; Zhong, Hui; Hodgson, John A.; Hoban-Higgins, Tana M.; Fuller, Charles A.; Edgerton, V. Reggie

    2002-01-01

    BACKGROUND: Fiber atrophy and an increase in the percentage of fast fibers have been observed in Rhesus leg muscles after spaceflight. Hypothesis: Hypergravity will result in muscle fiber hypertrophy and an increase in the percentage of slow fibers. METHODS: Open muscle biopsies were obtained from Rhesus soleus, medial gastrocnemius (MG), and tibialis anterior (TA) muscles before and after 14 d of centrifugation (2 G) and in time-matched controls. Cage activity levels were measured by telemetry. RESULTS: Based on monoclonal antibody binding for myosin heavy chains (MHC), the fastest region of soleus contained a higher proportion of type I+II (27 vs. 13%) and had a tendency for a lower proportion of type I (38 vs. 61%, p = 0.10) fibers after than before centrifugation. There was a higher proportion of type I+II fibers in post- vs. pre-2 G (10 vs. 0.6%) MG biopsies. Fiber type distribution and MHC composition were unaffected in the TA. Overall, mean fiber sizes were unaffected by centrifugation. Average cage activity levels were 36% lower during than before 2 G. CONCLUSIONS: Our hypothesis was rejected. The changes in the proportion of fibers expressing type I MHC are the reverse of that expected with chronic loading of extensors and, paradoxically, are similar to changes observed with chronic unloading, such as occurs during spaceflight, in this primate model. The data are consistent with the observed decrease in total daily activity levels.

  11. Dlc1 interaction with non-muscle myosin heavy chain II-A (Myh9) and Rac1 activation

    PubMed Central

    Sabbir, Mohammad G.; Dillon, Rachelle; Mowat, Michael R. A.

    2016-01-01

    ABSTRACT The Deleted in liver cancer 1 (Dlc1) gene codes for a Rho GTPase-activating protein that also acts as a tumour suppressor gene. Several studies have consistently found that overexpression leads to excessive cell elongation, cytoskeleton changes and subsequent cell death. However, none of these studies have been able to satisfactorily explain the Dlc1-induced cell morphological phenotypes and the function of the different Dlc1 isoforms. Therefore, we have studied the interacting proteins associated with the three major Dlc1 transcriptional isoforms using a mass spectrometric approach in Dlc1 overexpressing cells. We have found and validated novel interacting partners in constitutive Dlc1-expressing cells. Our study has shown that Dlc1 interacts with non-muscle myosin heavy chain II-A (Myh9), plectin and spectrin proteins in different multiprotein complexes. Overexpression of Dlc1 led to increased phosphorylation of Myh9 protein and activation of Rac1 GTPase. These data support a role for Dlc1 in induced cell elongation morphology and provide some molecular targets for further analysis of this phenotype. PMID:26977077

  12. Imaging of myocardial infarction in dogs and humans using monoclonal antibodies specific for human myosin heavy chains

    SciTech Connect

    Leger, J.; Chevalier, J.; Larue, C.; Gautier, P.; Planchenault, J.; Aumaitre, E.; Messner, P.; Puech, P.; Saccavini, J.C.; Pau, B. )

    1991-08-01

    The use of three different monoclonal antibodies specific for human ventricular myosin heavy chains in the visualization of the location and extent of necrosis in dogs with experimental acute myocardial infarction and in humans is described. Using a classic immunohistochemical method or ex vivo analysis of heart slices in dogs with acute myocardial infarction subjected to intravenous injection of unlabeled antimyosin antibodies or antimyosin antibodies labeled with indium-111, it was observed that all antibody fragments specifically reached the targeted necrotic zone less than 2 h after antibody injection and remained bound for up to 24 h. In a limited but significant number of cases (5 of the 12 humans and 11 of 43 dogs), it was possible to image the necrotic zone in vivo as early as 2 to 4 h after antibody injection. In other cases, individual blood clearance variations retarded or even prevented in vivo necrosis detection. Higher antimyosin fixation values were obtained in the necrotic zones in dogs with a rapid blood clearance relative to that of the other dogs. It is concluded that antimyosin antibodies always reached necrotic areas within 2 h. If blood clearance was rapid, in vivo imaging of the necrotic area was possible 2 to 6 h after necrosis, even in humans. In some cases, however, uncontrolled individual variations in the timing required for sufficient blood clearance hampered this rapid in vivo detection of myocardial necrosis.

  13. Differential sensitivity of myosin-heavy-chain-typed fibers to distinct aggregates of nerve-mediated activation.

    PubMed

    Dunn, S E; Michel, R N

    1999-02-01

    We studied the regulatory effects of nerve-mediated activity on the early expression of embryonic and adult myosin heavy chains (MHC) within inactive though still innervated rat plantaris and soleus muscle fibers. To this end, we stimulated motor nerves that were quiescent following treatment with tetrodotoxin (TTX) with paradigms designed to partition the influence of neural activation frequency and assessed the selective expression and accumulation of MHCs within muscle fibers using an array of specific antibodies. We show rapid de novo expression of IIx MHC within select soleus fibers in response to high-frequency activation for more than 0.01% of daily time. High-frequency aggregates were also the most effective in preventing the TTX-induced reexpression of embryonic MHCs within specific fibers. Only configurations that included high-frequency trains for more than 0.01% of daily time or combined with 10 Hz stimulation preserved the size of select fibers, used as a measure of the net cellular content of MHC. The effectiveness of this preservation varied according to the muscle type and MHC expressed, and, in a subset of fibers, was influenced by contractile loading status. Our results demonstrate that distinct subsets of MHC-typed fibers are differentially sensitive to the neural activation cues mediating the cellular expression of these proteins.

  14. Synergistic ablation does not affect atrophy or altered myosin heavy chain expression in the non-weight bearing soleus muscle

    NASA Technical Reports Server (NTRS)

    Linderman, J. K.; Talmadge, R. J.; Gosselink, K. L.; Tri, P. N.; Roy, R. R.; Grindeland, R. E.

    1996-01-01

    The purpose of this study was to investigate whether the soleus muscle undergoes atrophy and alterations in myosin heavy chain (MHC) composition during non-weight bearing in the absence of synergists. Thirty-two female rats were randomly assigned to four groups: control (C), synergistic ablation (ABL) of the gastrocnemius and plantaris muscles to overload the soleus muscle, hindlimb suspension (HLS), or a combination of synergistic ablation and hindlimb suspension (HLS-ABL). After 28 days of hindlimb suspension, soleus atrophy was more pronounced in HLS (58%) than in HLS-ABL (43%) rats. Compared to C rats, non-weight bearing decreased mixed and myofibrillar protein contents and Type I MHC 49%, 45%, and 7%, respectively, in HLS animals. In addition, de novo expression of fast Type IIx and Type IIb MHC (5% and 2%, respectively) was observed in HLS animals. Similarly, when compared to C rats, mixed and myofibrillar protein contents and Type I MHC decreased 43%, 46%, and 4%, respectively, in HLS-ABL animals. Also, de novo expression of Type IIx (4%) and IIb (1%) MHC was observed. Collectively, these data indicate that the loss of muscle protein and Type I MHC, and the de novo expression of Type IIx and Type IIb MHC in the rat soleus occur independently of the presence of synergists during non-weight bearing. Furthermore, these results confirm the contention that soleus mass and MHC expression are highly sensitive to alterations in mechanical load.

  15. The inv(16) fusion protein associates with corepressors via a smooth muscle myosin heavy-chain domain.

    PubMed

    Durst, Kristie L; Lutterbach, Bart; Kummalue, Tanawan; Friedman, Alan D; Hiebert, Scott W

    2003-01-01

    Inversion(16) is one of the most frequent chromosomal translocations found in acute myeloid leukemia (AML), occurring in over 8% of AML cases. This translocation results in a protein product that fuses the first 165 amino acids of core binding factor beta to the coiled-coil region of a smooth muscle myosin heavy chain (CBFbeta/SMMHC). CBFbeta interacts with AML1 to form a heterodimer that binds DNA; this interaction increases the affinity of AML1 for DNA. The CBFbeta/SMMHC fusion protein cooperates with AML1 to repress the transcription of AML1-regulated genes. We show that CBFbeta/SMMHC contains a repression domain in the C-terminal 163 amino acids of the SMMHC region that is required for inv(16)-mediated transcriptional repression. This minimal repression domain is sufficient for the association of CBFbeta/SMMHC with the mSin3A corepressor. In addition, the inv(16) fusion protein specifically associates with histone deacetylase 8 (HDAC8). inv(16)-mediated repression is sensitive to HDAC inhibitors. We propose a model whereby the inv(16) fusion protein associates with AML1 to convert AML1 into a constitutive transcriptional repressor. PMID:12509458

  16. The minor myosin heavy chain, mhcA, of Caenorhabditis elegans is necessary for the initiation of thick filament assembly.

    PubMed Central

    Waterston, R H

    1989-01-01

    Caenorhabditis elegans body wall muscle has two distinct myosin heavy chain isoforms, mhcA and mhcB. Mutations eliminating the major isoform, mhcB, have previously been shown to yield paralyzed, viable animals. In this paper we show that the minor isoform, mhcA, is essential for viability. We have utilized the known physical map position of the gene encoding mhcA to obtain two recessive lethal mutations that virtually eliminate accumulation of mhcA. The mutations are allelic, and the interactions of these alleles with mutations affecting other thick filament components are consistent with the hypothesis that the new mutations lie in the structural gene for mhcA. The homozygous mutant animals move very little and morphological analysis shows that thick filament assembly is severely impaired. Together with the location of mhcA in the center of the thick filament (Miller et al., 1983), the results suggest that mhcA has a unique role in initiating filament assembly. The homozygous mutations have an unexpected effect on morphogenesis that indicates an interaction between the muscle cells and the hypodermis during development. The resultant phenotype may be useful in the search for additional essential muscle genes. Images PMID:2583106

  17. Coexistence of mitochondrial DNA and β myosin heavy chain mutations in hypertrophic cardiomyopathy with late congestive heart failure

    PubMed Central

    Arbustini, E; Fasani, R; Morbini, P; Diegoli, M; Grasso, M; Dal, B; Marangoni, E; Banfi, P; Banchieri, N; Bellini, O; Comi, G; Narula, J; Campana, C; Gavazzi, A; Danesino, C; Vigano, M

    1998-01-01

    Objective—To investigate the possible coexistence of mitochondrial DNA (mtDNA) mutations in patients with β myosin heavy chain (βMHC) linked hypertrophic cardiomyopathy (HCM) who develop congestive heart failure.
Design—Molecular analysis of βMHC and mtDNA gene defects in patients with HCM.
Setting—Cardiovascular molecular diagnostic and heart transplantation reference centre in north Italy.
Patients—Four patients with HCM who underwent heart transplantation for end stage heart failure, and after pedigree analysis of 60 relatives, eight additional affected patients and 27 unaffected relatives. A total of 111 unrelated healthy adult volunteers served as controls. Disease controls included an additional 27 patients with HCM and 102 with dilated cardiomyopathy.
Intervention—Molecular analysis of DNA from myocardial and skeletal muscle tissue and from peripheral blood specimens.
Main outcome measures—Screening for mutations in βMHC (exons 3-23) and mtDNA tRNA (n = 22) genes with denaturing gradient gel electrophoresis or single strand conformational polymorphism followed by automated DNA sequencing.
Results—One proband (kindred A) (plus seven affected relatives) had arginine 249 glutamine (Arg249Gln) βMHC and heteroplasmic mtDNA tRNAIle A4300G mutations. Another unrelated patient (kindred B) with sporadic HCM had identical mutations. The remaining two patients (kindred C), a mother and son, had a novel βMHC mutation (lysine 450 glutamic acid) (Lys450Glu) and a heteroplasmic missense (T9957C, phenylalanine (Phe)->leucine (Leu)) mtDNA mutation in subunit III of the cytochrome C oxidase gene. The amount of mutant mtDNA was higher in the myocardium than in skeletal muscle or peripheral blood and in affected patients than in asymptomatic relatives. Mutations were absent in the controls. Pathological and biochemical characteristics of patients with mutations Arg249Gln plus A4300G (kindreds A and B) were identical, but different from

  18. Interspecific sequence comparison of the muscle-myosin heavy-chain genes from Drosophila hydei and Drosophila melanogaster.

    PubMed

    Miedema, K; Harhangi, H; Mentzel, S; Wilbrink, M; Akhmanova, A; Hooiveld, M; Bindels, P; Hennig, W

    1994-10-01

    The muscle-myosin heavy-chain (mMHC) gene of Drosophila hydei has been sequenced completely (size 23.3 kb). The sequence comparison with the D. melanogaster mMHC gene revealed that the exon-intron pattern is identical. The protein coding regions show a high degree of conservation (97%). The alternatively spliced exons (3a-b, 7a-d, 9a-c, 11a-e, and 15a-b) display more variations in the number of nonsynonymous and synonymous substitutions than the common exons (2, 4, 5, 6, 8, 10, 12, 13, 14, 16, 17, and 19). The base composition at synonymous sites of fourfold degenerate codons (third position) is not biased in the alternative exons. In the common exons there exists a bias for C and against A. These findings imply that the alternative exons of the Drosophila mMHC gene evolve at a different, in several cases higher, rate than the common ones. The 5' splice junctions and 5' and 3' untranslated regions show a high level of similarity, indicating a functional constraint on these sequences. The intron regions vary considerably in length within one species, but the corresponding introns are very similar in length between the two species and all contain stretches of sequence similarity. A particular example is the first intron, which contains multiple regions of similarity. In the conserved regions of intron 12 (head-tail border) sequences were found which have the potential to direct another smaller mMHC transcript.

  19. Chronic hypoxia and VEGF differentially modulate abundance and organization of myosin heavy chain isoforms in fetal and adult ovine arteries.

    PubMed

    Hubbell, Margaret C; Semotiuk, Andrew J; Thorpe, Richard B; Adeoye, Olayemi O; Butler, Stacy M; Williams, James M; Khorram, Omid; Pearce, William J

    2012-11-15

    Chronic hypoxia increases vascular endothelial growth factor (VEGF) and thereby promotes angiogenesis. The present study explores the hypothesis that hypoxic increases in VEGF also remodel artery wall structure and contractility through phenotypic transformation of smooth muscle. Pregnant and nonpregnant ewes were maintained at sea level (normoxia) or 3,820 m (hypoxia) for the final 110 days of gestation. Common carotid arteries harvested from term fetal lambs and nonpregnant adults were denuded of endothelium and studied in vitro. Stretch-dependent contractile stresses were 32 and 77% of normoxic values in hypoxic fetal and adult arteries. Hypoxic hypocontractility was coupled with increased abundance of nonmuscle myosin heavy chain (NM-MHC) in fetal (+37%) and adult (+119%) arteries. Conversely, hypoxia decreased smooth muscle MHC (SM-MHC) abundance by 40% in fetal arteries but increased it 123% in adult arteries. Hypoxia decreased colocalization of NM-MHC with smooth muscle α-actin (SM-αA) in fetal arteries and decreased colocalization of SM-MHC with SM-αA in adult arteries. Organ culture with physiological concentrations (3 ng/ml) of VEGF-A(165) similarly depressed stretch-dependent stresses to 37 and 49% of control fetal and adult values. The VEGF receptor antagonist vatalanib ablated VEGF's effects in adult but not fetal arteries, suggesting age-dependent VEGF receptor signaling. VEGF replicated hypoxic decreases in colocalization of NM-MHC with SM-αA in fetal arteries and decreases in colocalization of SM-MHC with SM-αA in adult arteries. These results suggest that hypoxic increases in VEGF not only promote angiogenesis but may also help mediate hypoxic arterial remodeling through age-dependent changes in smooth muscle phenotype and contractility. PMID:22992677

  20. Chronic hypoxia and VEGF differentially modulate abundance and organization of myosin heavy chain isoforms in fetal and adult ovine arteries.

    PubMed

    Hubbell, Margaret C; Semotiuk, Andrew J; Thorpe, Richard B; Adeoye, Olayemi O; Butler, Stacy M; Williams, James M; Khorram, Omid; Pearce, William J

    2012-11-15

    Chronic hypoxia increases vascular endothelial growth factor (VEGF) and thereby promotes angiogenesis. The present study explores the hypothesis that hypoxic increases in VEGF also remodel artery wall structure and contractility through phenotypic transformation of smooth muscle. Pregnant and nonpregnant ewes were maintained at sea level (normoxia) or 3,820 m (hypoxia) for the final 110 days of gestation. Common carotid arteries harvested from term fetal lambs and nonpregnant adults were denuded of endothelium and studied in vitro. Stretch-dependent contractile stresses were 32 and 77% of normoxic values in hypoxic fetal and adult arteries. Hypoxic hypocontractility was coupled with increased abundance of nonmuscle myosin heavy chain (NM-MHC) in fetal (+37%) and adult (+119%) arteries. Conversely, hypoxia decreased smooth muscle MHC (SM-MHC) abundance by 40% in fetal arteries but increased it 123% in adult arteries. Hypoxia decreased colocalization of NM-MHC with smooth muscle α-actin (SM-αA) in fetal arteries and decreased colocalization of SM-MHC with SM-αA in adult arteries. Organ culture with physiological concentrations (3 ng/ml) of VEGF-A(165) similarly depressed stretch-dependent stresses to 37 and 49% of control fetal and adult values. The VEGF receptor antagonist vatalanib ablated VEGF's effects in adult but not fetal arteries, suggesting age-dependent VEGF receptor signaling. VEGF replicated hypoxic decreases in colocalization of NM-MHC with SM-αA in fetal arteries and decreases in colocalization of SM-MHC with SM-αA in adult arteries. These results suggest that hypoxic increases in VEGF not only promote angiogenesis but may also help mediate hypoxic arterial remodeling through age-dependent changes in smooth muscle phenotype and contractility.

  1. Coordinated expression of myosin heavy chains, metabolic enzymes, and morphological features of porcine skeletal muscle fiber types.

    PubMed

    Quiroz-Rothe, Eugenio; Rivero, José-Luis L

    2004-09-01

    Combined methodologies of electrophoresis, immunoblots, immunohistochemistry, histochemistry, and photometric image analysis were applied to characterize porcine skeletal muscle fibers according to their myosin heavy chain (MyHC) composition, and to determine on a fiber-to-fiber basis the correlation between contractile [MyHC (s), myofibrillar ATPase (mATPase), and sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) isoforms], metabolic [succinate dehydrogenase (SDH), and glycerol-3-phosphate dehydrogenase (GPDH) activities, glycogen, and phospholamban (PLB) contents], and morphological [cross-sectional area (CSA), capillary, and nuclear densities] features of individual myofibers. An accurate delineation of MyHC-based fiber types was obtained with the immunohistochemical method developed. This protocol showed a high sensitivity and objectivity to delineate hybrid fibers with overwhelming dominance of one MyHC isoform. The phenotypic differences in contractile, metabolic, and morphological properties seen between fiber types were related with MyHC content. Slow fibers had the lowest mATPase activity (related to shortening velocity), the highest SDH activity (oxidative capacity), the lowest GPDH activity (glycolytic metabolism), and glycogen content, the smallest CSA, the greatest capillary, and nuclear densities, and expressed slow SERCA isoform and PLB, but not the fast SERCA isoform. The reverse pattern was true for pure IIB fibers, whereas type IIA and IIX fibers had intermediate properties. Hybrid fibers had mean values intermediate in-between their respective pure phenotypes. Discrimination of myofibers according to their MyHC content was possible on the basis of their contractile and non-contractile profiles. These intrafiber interrelationships suggest that myofibers of control pigs exhibit a high degree of co-ordination in their physiological, biochemical, and anatomical features. This study may well be a useful baseline for future work on the pig meat

  2. Effects of creatine supplementation during resistance training on myosin heavy chain (MHC) expression in rat skeletal muscle fibers.

    PubMed

    Aguiar, Andreo F; Aguiar, Danilo H; Felisberto, Alan D S; Carani, Fernanda R; Milanezi, Rachel C; Padovani, Carlos R; Dal-Pai-Silva, Maeli

    2010-01-01

    The purpose of this study was to utilize a rodent model to test the hypothesis that creatine (Cr) supplementation during resistance training would influence the pattern of slow-twitch muscle myosin heavy chain (MHC) isoforms expression. Male Wistar rats (2-3 months old, 250-300 g) were divided into 4 groups: Nontrained without creatine supplementation (CO), nontrained with creatine supplementation (CR), trained without creatine supplementation (TR), and trained with creatine supplementation (TRCR). TR and TRCR groups were submitted to a resistance training program for 5 weeks (5 days/week) for morphological and biochemical analysis of the soleus muscle. Weightlifting exercise involved jump sessions into water, carrying progressive overload equivalent to percentage of body weight. CR and TRCR groups were given creatine at 0.5 g/kg(-1)/d(-1). Both Cr supplementation and resistance training alone or associated did not result in significant alterations (p > 0.05) in body weight gain, food intake, and muscle weight in the CR, TR and TRCR groups compared to the CO group. Also compared to the CO group, the CR group showed a significant (p < 0.02) increase in MHCI content and a reduction in MHCII; inversely, the TR group increased the MHCII content and reduced MHCI (p < 0.02). When combined, both creatine and resistance training did not promote significant (p > 0.05) changes in MHC content of the TRCR group compared to the CO group. The data show that Cr supplementation provides a potential action to abolish the exercise-induced MHC isoform transitions from slow to fast in slow-twitch muscle. Thus, Cr supplementation might be a suitable strategy to maintaining a slow phenotype in slow muscle during resistance training, which may be favorable to maintenance of muscle oxidative capacity of endurance athletes.

  3. Identification of myosin heavy chain I, IIa and IIx in canine skeletal muscles by an electrophoretic and immunoblotting study.

    PubMed

    Smerdu, V; Strbenc, M; Meznaric-Petrusa, M; Fazarinc, G

    2005-01-01

    To determine which myosin heavy chain (MHC) isoforms are expressed in canine skeletal muscles, different muscle samples of five mixed-breed dogs were analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The separated MHC isoforms were identified by immunoblotting technique using a set of specific monoclonal antibodies. To compare the results of the electrophoretic and immunoblotting study, the pattern of MHC isoform expression and histochemical profiles of canine fibres were additionally demonstrated on serial muscle sections by immunohistochemistry and myofibrillar adenosine triphosphatase (mATPase) histochemistry. Not more than three MHC isoforms were demonstrated by SDS-PAGE in the analysed canine muscles. By the immunoblotting technique, the fastest migrating MHC band was identified as slow or MHC-I, the intermediate one as MHC-IIx and the slowest migrating band as MHC-IIa isoform. Since none of the three MHC bands and none of the analysed fibres were recognized by the antibody specific to MHC-IIb of rats, we concluded that MHC-IIb is not expressed in large skeletal muscles of dogs. Similarly, only three major fibre types, i.e. I, IIA and IIX, were revealed according to the pattern of MHC immunohistochemistry and mATPase reaction. Type IIA fibres were more alkali- and acid-stable than type IIX fibres after mATPase histochemistry; hence, the latter corresponded to type IIDog fibres. However, beside the three major fibre types, scarce hybrid fibres co-expressing two MHC isoforms (I/IIA and IIA/IIX) were demonstrated by immunohistochemistry.

  4. Dynamic nature of fibre-type specific expression of myosin heavy chain transcripts in 14 different human skeletal muscles.

    PubMed

    Smerdu, V; Erzen, I

    2001-01-01

    The main goal of this study was to find out, whether the appearance of fibres without evident myosin heavy chain (MyHC) transcript expression (negative fibres) implies the existence of additional MyHC transcripts in human muscle fibres. Fourteen different skeletal muscles were analysed also to verify how MyHC transcript expression matches histochemical phenotypes of fibres. For this purpose, the expression of beta-slow, 2a and 2x MyHC transcripts, demonstrated by in situ hybridisation technique, was analysed within type I, IIC, IIA, IIAX and IIX fibres, determined according to the activity of myofibrillar ATPase. Additionally, MyHC isoform expression was immunohistochemically demonstrated and metabolic profiles of negative fibres were estimated. From a total of 4444 muscle fibres analysed, only 0.8% of fibres were negative, among them type I prevailed, the remainder were type IIA and IIX fibres. The majority of fibres expressed only beta, 2a and 2x MyHC transcripts and they mostly matched type I, IIA and IIX fibres respectively, but two minor hybrid fibre groups (beta/2a and 2ax) exhibited variable histochemical phenotype. The infrequency, the prevailing oxidative-glycolytic metabolic profile of negative type I fibres and frequent co-appearance with transitional type IIC fibres imply that the negative fibres rather result from fibre type transition than express an additional slow or even 2b MyHC transcripts. The appearance of hybrid and mismatched fibres additionally indicates that fibre type transition occurs also in presumably normal skeletal muscles, what enables the muscles to tune even with minimal changes in mechanical demands.

  5. Regulation of the filament structure and assembly of Acanthamoeba myosin II by phosphorylation of serines in the heavy-chain nonhelical tailpiece.

    PubMed

    Liu, Xiong; Hong, Myoung-Soon; Shu, Shi; Yu, Shuhua; Korn, Edward D

    2013-01-01

    Acanthamoeba myosin II (AMII) has two heavy chains ending in a 27-residue nonhelical tailpiece and two pairs of light chains. In a companion article, we show that five, and only five, serine residues can be phosphorylated both in vitro and in vivo: Ser639 in surface loop 2 of the motor domain and serines 1489, 1494, 1499, and 1504 in the nonhelical tailpiece of the heavy chains. In that paper, we show that phosphorylation of Ser639 down-regulates the actin-activated MgATPase activity of AMII and that phosphorylation of the serines in the nonhelical tailpiece has no effect on enzymatic activity. Here we show that bipolar tetrameric, hexameric, and octameric minifilaments of AMII with the nonhelical tailpiece serines either phosphorylated or mutated to glutamate have longer bare zones and more tightly clustered heads than minifilaments of unphosphorylated AMII, irrespective of the phosphorylation state of Ser639. Although antiparallel dimers of phosphorylated and unphosphorylated myosins are indistinguishable, phosphorylation inhibits dimerization and filament assembly. Therefore, the different structures of tetramers, hexamers, and octamers of phosphorylated and unphosphorylated AMII must be caused by differences in the longitudinal stagger of phosphorylated and unphosphorylated bipolar dimers and tetramers. Thus, although the actin-activated MgATPase activity of AMII is regulated by phosphorylation of Ser639 in loop 2 of the motor domain, the structure of AMII minifilaments is regulated by phosphorylation of one or more of four serines in the nonhelical tailpiece of the heavy chain. PMID:23248285

  6. Histone Deacetylase 3 (HDAC3)-dependent Reversible Lysine Acetylation of Cardiac Myosin Heavy Chain Isoforms Modulates Their Enzymatic and Motor Activity.

    PubMed

    Samant, Sadhana A; Pillai, Vinodkumar B; Sundaresan, Nagalingam R; Shroff, Sanjeev G; Gupta, Mahesh P

    2015-06-19

    Reversible lysine acetylation is a widespread post-translational modification controlling the activity of proteins in different subcellular compartments. We previously demonstrated that a class II histone deacetylase (HDAC), HDAC4, and a histone acetyltransferase, p300/CREB-binding protein-associated factor, associate with cardiac sarcomeres and that a class I and II HDAC inhibitor, trichostatin A, enhances contractile activity of myofilaments. In this study we show that a class I HDAC, HDAC3, is also present at cardiac sarcomeres. By immunohistochemical and electron microscopic analyses, we found that HDAC3 was localized to A-band of sarcomeres and capable of deacetylating myosin heavy chain (MHC) isoforms. The motor domains of both cardiac α- and β-MHC isoforms were found to be reversibly acetylated. Biomechanical studies revealed that lysine acetylation significantly decreased the Km for the actin-activated ATPase activity of MHC isoforms. By in vitro motility assay, we found that lysine acetylation increased the actin-sliding velocity of α-myosin by 20% and β-myosin by 36% compared with their respective non-acetylated isoforms. Moreover, myosin acetylation was found to be sensitive to cardiac stress. During induction of hypertrophy, myosin isoform acetylation increased progressively with duration of stress stimuli independently of isoform shift, suggesting that lysine acetylation of myosin could be an early response of myofilaments to increase contractile performance of the heart. These studies provide the first evidence for localization of HDAC3 at myofilaments and uncover a novel mechanism modulating the motor activity of cardiac MHC isoforms.

  7. Amino acid sequence of the amino-terminal 24 kDa fragment of the heavy chain of chicken gizzard myosin.

    PubMed

    Maita, T; Onishi, H; Yajima, E; Matsuda, G

    1987-07-01

    Chicken gizzard myosin was modified with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)-ethylenediamine (IAEDANS) in the presence of ATP and in 0.15 M KCl, where the myosin assumed 10S conformation. From the tryptic digest of the modified myosin, a fluorescent fragment (24 kilodaltons) was isolated by gel filtration on a Sephadex G-100 column followed by chromatography on a CM 52 column. The amino acid sequence of the fragment was analyzed by conventional methods, and was: (S,Z)K-P-L-S-D-D-E-K-F-L-F-V-D-K-N-F-V-N-N-P-L-A-Q-A-D-W-S-A-K-K- L-V-W-V-P-S-E-K-H-G-F-E-A-A-S-I-K-E-E-K-G-D-E-V-T-V-E-L-Q-E-N-G-K-K- V-T-L-S-K-D-D-I-Q-K-M-N-P-P-K-F-S-K-V-E-D-M-A-E-L-T-C-L-N-E-A-S-V-L- H-N-L-R-E-R-Y-F-S-G-L-I-Y-T-Y-S-G-L-F-C-V-V-I-N-P-Y-K-Q-L-P-I-Y-S-E-K-I- I-D-M-Y-K-G-K-K-R-H-E-M-P-P-H-I-Y-A-I-A-D-T-A-Y-R-S-M-L-Q-D-R-E-D-Q- S-I-L-C-T-G-E-S-G-A-G-K-T-E-N-T-K-K-V-I-Q-Y-L-A-V-V-A-S-S-H-K-G-K. The amino-terminus was blocked, and the fragment was assigned as an amino-terminal part of the heavy chain of gizzard myosin. Position 127 was occupied by epsilon-N-trimethyllysine. Trp-130 of rabbit skeletal myosin heavy chain, which was reported to cross-link to an azide derivative of ATP by Okamoto and Yount (Proc. Natl. Acad. Sci. U.S. 82, 1575-1579 (1985], was replaced by glutamine in gizzard myosin. Cys-93 of the fragment is the amino acid residue whose reaction with IAEDANS alters the ATPase activity of gizzard myosin (Onishi, H. (1985) J. Biochem. 98, 81-86).

  8. The importance of subfragment 2 and C-terminus of myosin heavy chain for thick filament assembly in skeletal muscle cells.

    PubMed

    Ojima, Koichi; Oe, Mika; Nakajima, Ikuyo; Shibata, Masahiro; Muroya, Susumu; Chikuni, Koichi; Hattori, Akihito; Nishimura, Takanori

    2015-04-01

    In skeletal muscle cells, myofibrillar proteins are highly organized into sarcomeres in which thick filaments interdigitate with thin filaments to generate contractile force. The size of thick filaments, which consist mainly of myosin molecules, is strictly controlled. However, little is known about the mechanisms by which myosin molecules assemble into thick filaments. Here, we assessed the ability of each domain of myosin heavy chain (Myh) to form thick filaments. We showed that exogenously expressed subfragment 2 (S2) + light meromyosin (LMM) of Myh was efficiently incorporated into thick filaments in muscle cells, although neither solely expressed S2 nor LMM targeted to thick filaments properly. In nonmuscle COS7 cells, S2+LMM formed more enlarged filaments/speckles than LMM. These results suggest that Myh filament formation is induced by S2 accompanying LMM. We further examined the effects of Myh C-terminus on thick filament assembly. C-terminal deletion mutants were incorporated not into entire thick filaments but rather into restricted regions of thick filaments. Our findings suggest that the elongation of myosin filaments to form thick filaments is regulated by S2 as well as C-terminus of LMM.

  9. Quantification of Myosin Heavy Chain RNA in Human Laryngeal Muscles: Differential Expression in the Vertical and Horizontal Posterior Cricoarytenoid and Thyroarytenoid

    PubMed Central

    Horton, Michael J.; Rosen, Clark; Close, John M.; Sciote, James J.

    2013-01-01

    Background Human laryngeal muscles are composed of fibers that express type I, IIA, and IIX myosin heavy chains (MyHC), but the presence and quantity of atypical myosins such as perinatal, extraocular, IIB, and α (cardiac) remain in question. These characteristics have been determined by biochemical or immunohistologic tissue sampling but with no complementary evidence of gene expression at the molecular level. The distribution of myosin, the main motor protein, in relation to structure-function relationships in this specialized muscle group will be important for understanding laryngeal function in both health and disease. Objectives We determined the quantity of MyHC genes expressed in human posterior cricoarytenoid (PCA) and thyroarytenoid (TA) muscle using real-time quantitative reverse-transcriptase polymerase chain reaction in a large number of samples taken from laryngectomy subjects. The PCA muscle was divided into vertical (V) and horizontal (H) portions for analysis. Results and Conclusions No extraocular or IIB myosin gene message is present in PCA or TA, but IIB is expressed in human extraocular muscle. Low but detectable amounts of perinatal and α gene message are present in both of the intrinsic laryngeal muscles. In H-and V-PCA, MyHC gene amounts were β greater than IIA greater than IIX, but amounts of fast myosin RNA were greater in V-PCA. In TA, the order was β greater than IIX greater than IIA. The profiles of RNA determined here indicate that, in humans, neither PCA nor TA intrinsic laryngeal muscles express unique very fast-contracting MyHCs but instead may rely on differential synthesis and use of β, IIA, and IIX isoforms to perform their specialized contractile functions. PMID:18091331

  10. Responses of Myosin Heavy Chain Phenotypes and Gene Expressions in Neck Muscle to Micro- an Hyper-Gravity in Mice

    NASA Astrophysics Data System (ADS)

    Ohira, Tomotaka; Ohira, Takashi; Kawano, F.; Shibaguchi, T.; Okabe, H.; Ohno, Y.; Nakai, N.; Ochiai, T.; Goto, K.; Ohira, Y.

    2013-02-01

    Neck muscles are known to play important roles in the maintenance of head posture against gravity. However, it is not known how the properties of neck muscle are influenced by gravity. Therefore, the current study was performed to investigate the responses of neck muscle (rhomboideus capitis) in mice to inhibition of gravity and/or increase to 2-G for 3 months to test the hypothesis that the properties of neck muscles are regulated in response to the level of mechanical load applied by the gravitational load. Three male wild type C57BL/10J mice (8 weeks old) were launched by space shuttle Discovery (STS-128) and housed in Japanese Experimental Module “KIBO” on the International Space Station in mouse drawer system (MDS) project, which was organized by Italian Space Agency. Only 1 mouse returned to the Earth alive after 3 months by space shuttle Atlantis (STS-129). Neck muscles were sampled from both sides within 3 hours after landing. Cage and laboratory control experiments were also performed on the ground. Further, 3-month ground-based control experiments were performed with 6 groups, i.e. pre-experiment, 3-month hindlimb suspension, 2-G exposure by using animal centrifuge, and vivarium control (n=5 each group). Five mice were allowed to recover from hindlimb suspension (including 5 cage control) for 3 months in the cage. Neck muscles were sampled bilaterally before and after 3-month suspension and 2-G exposure, and at the end of 3-month ambulation recovery. Spaceflight-associated shift of myosin heavy chain phenotype from type I to II and atrophy of type I fibers were observed. In response to spaceflight, 17 genes were up-regulated and 13 genes were down-regulated vs. those in the laboratory control. Expression of 6 genes were up-regulated and that of 88 genes were down-regulated by 3-month exposure to 2-G vs. the age-matched cage control. In response to chronic hindlimb suspension, 4 and 20 genes were up- or down-regulated. Further, 98 genes responded

  11. Association between myosin heavy chain protein isoforms and intramuscular anabolic signaling following resistance exercise in trained men.

    PubMed

    Gonzalez, Adam M; Hoffman, Jay R; Townsend, Jeremy R; Jajtner, Adam R; Wells, Adam J; Beyer, Kyle S; Willoughby, Darryn S; Oliveira, Leonardo P; Fukuda, David H; Fragala, Maren S; Stout, Jeffrey R

    2015-01-01

    Resistance exercise stimulates an increase in muscle protein synthesis regulated by intracellular anabolic signaling molecules in a mammalian/mechanistic target of rapamycin (mTOR)-dependent pathway. The purpose of this study was to investigate acute anabolic signaling responses in experienced, resistance-trained men, and to examine the association between myosin heavy chain (MHC) isoform composition and the magnitude of anabolic signaling. Eight resistance-trained men (24.9 ± 4.3 years; 91.2 ± 12.4 kg; 176.7 ± 8.0 cm; 13.3 ± 3.9 body fat %) performed a whole body, high-volume resistance exercise protocol (REX) and a control protocol (CTL) in a balanced, randomized order. Participants were provided a standardized breakfast, recovery drink, and meal during each protocol. Fine needle muscle biopsies were completed at baseline (BL), 2 h (2H) and 6 h post-exercise (6H). BL biopsies were analyzed for MHC isoform composition. Phosphorylation of proteins specific to the Akt/mTOR signaling pathway and MHC mRNA expression was quantified. Phosphorylation of p70S6k was significantly greater in REX compared to CTL at 2H (P = 0.04). MHC mRNA expression and other targets in the Akt/mTOR pathway were not significantly influenced by REX. The percentage of type IIX isoform was inversely correlated (P < 0.05) with type I and type IIA MHC mRNA expression (r = -0.69 to -0.93). Maximal strength was also observed to be inversely correlated (P < 0.05) with Type I and Type IIA MHC mRNA expression (r = -0.75 to -0.77) and p70S6k phosphorylation (r = -0.75). Results indicate that activation of p70S6k occurs within 2-h following REX in experienced, resistance-trained men. Further, results also suggest that highly trained, stronger individuals have an attenuated acute anabolic response. PMID:25626869

  12. Association between myosin heavy chain protein isoforms and intramuscular anabolic signaling following resistance exercise in trained men

    PubMed Central

    Gonzalez, Adam M.; Hoffman, Jay R.; Townsend, Jeremy R.; Jajtner, Adam R.; Wells, Adam J.; Beyer, Kyle S.; Willoughby, Darryn S.; Oliveira, Leonardo P.; Fukuda, David H.; Fragala, Maren S.; Stout, Jeffrey R.

    2015-01-01

    Abstract Resistance exercise stimulates an increase in muscle protein synthesis regulated by intracellular anabolic signaling molecules in a mammalian/mechanistic target of rapamycin (mTOR)‐dependent pathway. The purpose of this study was to investigate acute anabolic signaling responses in experienced, resistance‐trained men, and to examine the association between myosin heavy chain (MHC) isoform composition and the magnitude of anabolic signaling. Eight resistance‐trained men (24.9 ± 4.3 years; 91.2 ± 12.4 kg; 176.7 ± 8.0 cm; 13.3 ± 3.9 body fat %) performed a whole body, high‐volume resistance exercise protocol (REX) and a control protocol (CTL) in a balanced, randomized order. Participants were provided a standardized breakfast, recovery drink, and meal during each protocol. Fine needle muscle biopsies were completed at baseline (BL), 2 h (2H) and 6 h post‐exercise (6H). BL biopsies were analyzed for MHC isoform composition. Phosphorylation of proteins specific to the Akt/mTOR signaling pathway and MHC mRNA expression was quantified. Phosphorylation of p70S6k was significantly greater in REX compared to CTL at 2H (P = 0.04). MHC mRNA expression and other targets in the Akt/mTOR pathway were not significantly influenced by REX. The percentage of type IIX isoform was inversely correlated (P < 0.05) with type I and type IIA MHC mRNA expression (r = −0.69 to −0.93). Maximal strength was also observed to be inversely correlated (P < 0.05) with Type I and Type IIA MHC mRNA expression (r = −0.75 to −0.77) and p70S6k phosphorylation (r = −0.75). Results indicate that activation of p70S6k occurs within 2‐h following REX in experienced, resistance‐trained men. Further, results also suggest that highly trained, stronger individuals have an attenuated acute anabolic response. PMID:25626869

  13. Single Muscle Immobilization Decreases Single-Fibre Myosin Heavy Chain Polymorphism: Possible Involvement of p38 and JNK MAP Kinases

    PubMed Central

    Derbré, Frédéric; Droguet, Mickaël; Léon, Karelle; Troadec, Samuel; Pennec, Jean-Pierre; Giroux-Metges, Marie-Agnès; Rannou, Fabrice

    2016-01-01

    Purpose Muscle contractile phenotype is affected during immobilization. Myosin heavy chain (MHC) isoforms are the major determinant of the muscle contractile phenotype. We therefore sought to evaluate the effects of muscle immobilization on both the MHC composition at single-fibre level and the mitogen-activated protein kinases (MAPK), a family of intracellular signaling pathways involved in the stress-induced muscle plasticity. Methods The distal tendon of female Wistar rat Peroneus Longus (PL) was cut and fixed to the adjacent bone at neutral muscle length. Four weeks after the surgery, immobilized and contralateral PL were dissociated and the isolated fibres were sampled to determine MHC composition. Protein kinase 38 (p38), extracellular signal-regulated kinases (ERK1/2), and c-Jun- NH2-terminal kinase (JNK) phosphorylations were measured in 6- and 15-day immobilized and contralateral PL. Results MHC distribution in immobilized PL was as follows: I = 0%, IIa = 11.8 ± 2.8%, IIx = 53.0 ± 6.1%, IIb = 35.3 ± 7.3% and I = 6.1 ± 3.9%, IIa = 22.1 ± 3.4%, IIx = 46.6 ± 4.5%, IIb = 25.2 ± 6.6% in contralateral muscle. The MHC composition in immobilized muscle is consistent with a faster contractile phenotype according to the Hill’s model of the force-velocity relationship. Immobilized and contralateral muscles displayed a polymorphism index of 31.1% (95% CI 26.1–36.0) and 39.3% (95% CI 37.0–41.5), respectively. Significant increases in p38 and JNK phosphorylation were observed following 6 and 15 days of immobilization. Conclusions Single muscle immobilization at neutral length induces a shift of MHC composition toward a faster contractile phenotype and decreases the polymorphic profile of single fibres. Activation of p38 and JNK could be a potential mechanism involved in these contractile phenotype modifications during muscle immobilization. PMID:27383612

  14. Expression of the myosin heavy chain genes in the tail muscle of thyroid hormone-induced metamorphosing Rana catesbeiana tadpoles.

    PubMed

    Hu, H; Merrifield, P; Atkinson, B G

    1999-01-01

    In tadpoles of the North American bullfrog, Rana catesbeiana, spontaneous and thyroid hormone (T3)-induced metamorphosis is characterized by regression of the tail, which is preceded by a decrease in total protein synthesis in tail tissues. We have demonstrated that thyroid hormone treatment of a tadpole does not affect the synthesis of all proteins equally in the tadpole tail muscle. For example, the synthesis of myosin heavy chains (MHCs) is depressed within 1 day and decreases to 45% of control values after 5 days of T3 treatment, whereas the decreased synthesis of soluble muscle proteins is transient and returns to above control levels by day 5. To determine whether the hormone-induced decrease in MHC synthesis is the result of changes in the transcription of translation of MHC mRNAs, we isolated cDNAs complementary to five different MHC mRNAs from a tail muscle cDNA library and used them to examine the levels of each MHC mRNA in the tail muscle of T3-treated tadpoles. mRNAs that recognize the cDNAs for these five different MHCs are all expressed in the tadpole tail and limb muscles, as well as in the adult leg muscles. MHC mRNAs unique to tadpole tail were not detected. Interestingly, the relative amounts of mRNA for four of the five MHCs increase in tail muscle after T3 treatment of the tadpole, suggesting that repression of MHC gene expression at the protein level does not result from a decrease in the amount of MHC mRNAs. Rather, these results support the contention that the decreased synthesis of MHCs in the tail muscle of T3-treated tadpoles is caused by this hormone, either directly or indirectly, depressing the translation of the MHC mRNAs in this tissue. These results, coupled with the observation that the synthesis of soluble muscle proteins is depressed only in a transient fashion, suggest that T3 may be initiating the expression of a gene(s) that encodes a protein(s) responsible for inhibiting the translation of the MHCs and, perhaps, other

  15. Association between myosin heavy chain protein isoforms and intramuscular anabolic signaling following resistance exercise in trained men.

    PubMed

    Gonzalez, Adam M; Hoffman, Jay R; Townsend, Jeremy R; Jajtner, Adam R; Wells, Adam J; Beyer, Kyle S; Willoughby, Darryn S; Oliveira, Leonardo P; Fukuda, David H; Fragala, Maren S; Stout, Jeffrey R

    2015-01-01

    Resistance exercise stimulates an increase in muscle protein synthesis regulated by intracellular anabolic signaling molecules in a mammalian/mechanistic target of rapamycin (mTOR)-dependent pathway. The purpose of this study was to investigate acute anabolic signaling responses in experienced, resistance-trained men, and to examine the association between myosin heavy chain (MHC) isoform composition and the magnitude of anabolic signaling. Eight resistance-trained men (24.9 ± 4.3 years; 91.2 ± 12.4 kg; 176.7 ± 8.0 cm; 13.3 ± 3.9 body fat %) performed a whole body, high-volume resistance exercise protocol (REX) and a control protocol (CTL) in a balanced, randomized order. Participants were provided a standardized breakfast, recovery drink, and meal during each protocol. Fine needle muscle biopsies were completed at baseline (BL), 2 h (2H) and 6 h post-exercise (6H). BL biopsies were analyzed for MHC isoform composition. Phosphorylation of proteins specific to the Akt/mTOR signaling pathway and MHC mRNA expression was quantified. Phosphorylation of p70S6k was significantly greater in REX compared to CTL at 2H (P = 0.04). MHC mRNA expression and other targets in the Akt/mTOR pathway were not significantly influenced by REX. The percentage of type IIX isoform was inversely correlated (P < 0.05) with type I and type IIA MHC mRNA expression (r = -0.69 to -0.93). Maximal strength was also observed to be inversely correlated (P < 0.05) with Type I and Type IIA MHC mRNA expression (r = -0.75 to -0.77) and p70S6k phosphorylation (r = -0.75). Results indicate that activation of p70S6k occurs within 2-h following REX in experienced, resistance-trained men. Further, results also suggest that highly trained, stronger individuals have an attenuated acute anabolic response.

  16. Expression profiles of myostatin, myogenin, and Myosin heavy chain in skeletal muscles of two rabbit breeds differing in growth rate.

    PubMed

    Kuang, Liangde; Xie, Xiaohong; Zhang, Xiangyu; Lei, Min; Li, Congyan; Ren, Yongjun; Zheng, Jie; Guo, Zhiqiang; Zhang, Cuixia; Yang, Chao; Zheng, Yucai

    2014-01-01

    The purpose of the present study was to compare mRNA levels of myostatin (MSTN), myogenin (MyoG), and fiber type compositions in terms of myosin heavy chain (MyHC) in skeletal muscles of two rabbit breeds with different body sizes and growth rates. Longissimus dorsi and biceps femoris muscles of 16 Californian rabbits (CW) and 16 Germany great line of ZIKA rabbits (GZ) were collected at the ages of 35d and 84d (slaughter age). The results showed that the live weights of GZ rabbits of 35d and 84d old were approximately 36% and 26% greater than those of CW rabbits, respectively. Quantitative real-time PCR analysis revealed that at the age of 84d GZ rabbits contained significantly lower MSTN mRNA level and higher MyoG mRNA level in both longissimus dorsi and biceps femoris muscles than CW rabbits, and mRNA levels of MSTN and MyoG exhibited opposite changes from the age of 35d to 84d, suggesting that GZ rabbits were subjected to less growth inhibition from MSTN at slaughter age, which occurred most possibly in skeletal muscles. Four types of fiber were identified by real-time PCR in rabbit muscles, with MyHC-1 and MyHC-2D, MyHC-2B were the major types in biceps femoris and longissimus dorsi muscles, respectively. At the age of 84d, GZ rabbits contained greater proportion of MyHC-1 and decreased proportion of MyHC-2D and decreased lactate dehydrogenase activity in biceps femoris than CW rabbits, and the results were exactly opposite in longissimus dorsi, suggesting that GZ rabbits show higher oxidative capacity in biceps femoris muscle than CW rabbits. In conclusion, the trends of mRNA levels of MSTN and fiber types in GZ rabbits' skeletal muscles might be consistent with the putative fast growth characteristic of GZ rabbits compared to CW rabbits.

  17. The fraction of strongly bound cross-bridges is increased in mice that carry the myopathy-linked myosin heavy chain mutation MYH4L342Q

    PubMed Central

    Lindqvist, Johan; Iwamoto, Hiroyuki; Blanco, Gonzalo; Ochala, Julien

    2013-01-01

    SUMMARY Myosinopathies have emerged as a new group of diseases and are caused by mutations in genes encoding myosin heavy chain (MyHC) isoforms. One major hallmark of these diseases is skeletal muscle weakness or paralysis, but the underlying molecular mechanisms remain unclear. Here, we have undertaken a detailed functional study of muscle fibers from Myh4arl mice, which carry a mutation that provokes an L342Q change within the catalytic domain of the type IIb skeletal muscle myosin protein MYH4. Because homozygous animals develop rapid muscle-structure disruption and lower-limb paralysis, they must be killed by postnatal day 13, so all experiments were performed using skeletal muscles from adult heterozygous animals (Myh4arl/+). Myh4arl/+ mice contain MYH4L342Q expressed at 7% of the levels of the wild-type (WT) protein, and are overtly and histologically normal. However, mechanical and X-ray diffraction pattern analyses of single membrane-permeabilized fibers revealed, upon maximal Ca2+ activation, higher stiffness as well as altered meridional and equatorial reflections in Myh4arl/+ mice when compared with age-matched WT animals. Under rigor conditions, by contrast, no difference was observed between Myh4arl/+ and WT mice. Altogether, these findings prove that, in adult MYH4L342Q heterozygous mice, the transition from weak to strong myosin cross-bridge binding is facilitated, increasing the number of strongly attached myosin heads, thus enhancing force production. These changes are predictably exacerbated in the type IIb fibers of homozygous mice, in which the embryonic myosin isoform is fully replaced by MYH4L342Q, leading to a hypercontraction, muscle-structure disruption and lower-limb paralysis. Overall, these findings provide important insights into the molecular pathogenesis of skeletal myosinopathies. PMID:23335206

  18. Four things to know about myosin light chains as reporters for non-muscle myosin-2 dynamics in live cells.

    PubMed

    Heissler, Sarah M; Sellers, James R

    2015-02-01

    The interplay between non-muscle myosins-2 and filamentous actin results in cytoplasmic contractility which is essential for eukaryotic life. Concomitantly, there is tremendous interest in elucidating the physiological function and temporal localization of non-muscle myosin-2 in cells. A commonly used method to study the function and localization of non-muscle myosin-2 is to overexpress a fluorescent protein (FP)-tagged version of the regulatory light chain (RLC) which binds to the myosin-2 heavy chain by mass action. Caveats about this approach include findings from recent studies indicating that the RLC does not bind exclusively to the non-muscle myosin-2 heavy chain. Rather, it can also associate with the myosin heavy chains of several other classes as well as other targets than myosin. In addition, the presence of the FP moiety may compromise myosin's enzymatic and mechanical performance. This and other factors to be discussed in this commentary raise questions about the possible complications in using FP-RLC as a marker for the dynamic localization and regulatory aspects of non-muscle myosin-2 motor functions in cell biological experiments.

  19. Characteristics of light chains of Chara myosin revealed by immunological investigation.

    PubMed

    Kakei, Toshihito; Sumiyoshi, Hiroki; Higashi-Fujime, Sugie

    2012-01-01

    Chara myosin is plant myosin responsible for cytoplasmic streaming and moves actin filaments at 60 µm/s, which is the fastest of all myosins examined. The neck of the myosin molecule has usually mechanical and regulatory roles. The neck of Chara myosin is supposed to bind six light chains, but, at present, we have no knowledge about them. We found Ca⁺⁺-calmodulin activated Chara myosin motility and its actin-activated ATPase, and actually bound with the Chara myosin heavy chain, indicating calmodulin might be one of candidates for Chara myosin light chains. Antibody against essential light chain from Physarum myosin, and antibodies against Chara calmodulin and chicken myosin light chain from lens membranes reacted with 20 kDa and 18 kDa polypeptides of Chara myosin preparation, respectively. Correspondingly, column purified Chara myosin had light chains of 20 kDa, and 18 kDa with the molar ratio of 0.7 and 2.5 to the heavy chain, respectively.

  20. Transient and Transgenic Analysis of the Zebrafish Ventricular Myosin Heavy Chain (vmhc) Promoter: An Inhibitory Mechanism of Ventricle-Specific Gene Expression

    PubMed Central

    Zhang, Ruilin; Xu, Xiaolei

    2009-01-01

    The zebrafish ventricular myosin heavy chain (vmhc) gene exhibits restricted expression in the ventricle. However, the molecular mechanism underlying this chamber-specific expression is unclear. Here, we exploited both transient and transgenic technologies to dissect the zebrafish vmhc promoter. We demonstrated that a combination of two transient assays in this animal model quickly identified chamber-specific cis-elements, isolating a 2.2 kb fragment upstream from the vmhc gene that can drive ventricle-specific expression. Furthermore, deletion analysis identified multiple cis-elements that exhibited cardiac-specific expression. To achieve chamber specificity, a distal element was required to coordinate with and suppress a proximal enhancer element. Finally, we discovered that Nkx2.5-binding sites (NKE) were essential for this repressive function. In summary, our study of the zebrafish vmhc promoter suggests that ventricle-specific expression is achieved through an inhibitory mechanism that suppresses expression in the atrium. PMID:19322764

  1. Changes in Mg2+ ion concentration and heavy chain phosphorylation regulate the motor activity of a class I myosin.

    PubMed

    Fujita-Becker, Setsuko; Dürrwang, Ulrike; Erent, Muriel; Clark, Richard J; Geeves, Michael A; Manstein, Dietmar J

    2005-02-18

    Class I myosins are single-headed motor proteins implicated in various motile processes including organelle translocation, ion channel gating, and cytoskeleton reorganization. Dictyostelium discoideum myosin-ID belongs to subclass 1alpha, whose members are thought to be tuned for rapid sliding. The direct analysis of myosin-ID motor activity is made possible by the production of single polypeptide constructs carrying an artificial lever arm. Using these constructs, we show that the motor activity of myosin-ID is activated 80-fold by phosphorylation at the TEDS site. TEDS site phosphorylation acts by stabilizing the actomyosin complex and increasing the coupling between actin binding and the release of hydrolysis products. A surprising effect of Mg(2+) ions on in vitro motility was discovered. Changes in the level of free Mg(2+) ions within the physiological range are shown to modulate motor activity by inhibiting ADP release. Our results indicate that higher concentrations of free Mg(2+) ions stabilize the tension-bearing actin myosin ADP state and shift the system from the production of rapid movement toward the generation of tension.

  2. Structure of the Dictyostelium Myosin-II Heavy Chain Kinase A (MHCK-A) α-kinase domain apoenzyme reveals a novel autoinhibited conformation

    PubMed Central

    Ye, Qilu; Yang, Yidai; van Staalduinen, Laura; Crawley, Scott William; Liu, Linda; Brennan, Stephanie; Côté, Graham P.; Jia, Zongchao

    2016-01-01

    The α-kinases are a family of a typical protein kinases present in organisms ranging from protozoa to mammals. Here we report an autoinhibited conformation for the α-kinase domain of Dictyostelium myosin-II heavy chain kinase A (MHCK-A) in which nucleotide binding to the catalytic cleft, located at the interface between an N-terminal and C-terminal lobe, is sterically blocked by the side chain of a conserved arginine residue (Arg592). Previous α-kinase structures have shown that an invariant catalytic aspartic acid residue (Asp766) is phosphorylated. Unexpectedly, in the autoinhibited conformation the phosphoryl group is transferred to the adjacent Asp663, creating an interaction network that stabilizes the autoinhibited state. The results suggest that Asp766 phosphorylation may play both catalytic and regulatory roles. The autoinhibited structure also provides the first view of a phosphothreonine residue docked into the phospho-specific allosteric binding site (Pi-pocket) in the C-lobe of the α-kinase domain. PMID:27211275

  3. Amino acid sequence of the 203-residue fragment of the heavy chain of chicken gizzard myosin containing the SH1-type cysteine residue.

    PubMed

    Onishi, H; Maita, T; Miyanishi, T; Watanabe, S; Matsuda, G

    1986-12-01

    A fluorescent fragment of Mr = 23,800 was obtained by the papain digestion of N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylene diamine (abbreviated as IAEDANS)-modified chicken gizzard myosin. The fragment was isolated by gel filtration on a Sephadex G-100 column in the presence of 5 M guanidine-HCl followed by anion exchange chromatography on a QAE Sephadex A-50 column. This fragment contained 203 amino acid residues which could be assigned as a COOH-terminal part of the S-1 heavy chain based on the homology with the known sequence of rabbit skeletal myosin fragment. The amino acid sequence was K-G-M-F-R-T-V- G-Q-L-Y-K-E-Q-L-T-K-L-M-T-T-L-R-N-T-N-P-N-F-V-R-C-I-I-P-N-H-E-K-R-A- G-K-L-D-A-H-L-V-L-E-Q-L-R-C-N-G-V-L-E-G-I-R-I-C-R-Q-G-F-P-N-R-I-V-F-Q- E-F-R-Q-R-Y-E-I-L-A-A-N-A-I-P-K-G-F-M-D-G-K-Q-A-C-I-L-M -I-K-A-L-E-L- D-P-N-L-Y-R-I-G-Q-S-K-I-F-F-R-T-G-V-L-A-H-L-E-E-E-R-D-L-K- I-T-D-V-I-I-A- F-Q-A-Q-C-R-G-Y-L-A-R-K-A-F-A-K-R-Q-Q-Q-L-T-A-M-K-V-I-Q-R-N-C-A -A-Y-L-K-L-R-N-W-Q-W-W-R-L-F-T-K-V-K-P-L-L-Q-V-T-R. The cysteine residue which was modified with IAEDANS was of the SH1 type (Cys-65). Pro-197 was suggested to be the NH2-terminal boundary of the alpha-helical coiled-coil rod sequence of gizzard myosin, based on the homology with the nematode sequence reported by MacLachlan and Karn (Proc. Natl. Acad. Sci. U.S. 80, 4253-4257 (1983)). Three different COOH-terminal peptides (Val-Lys-Pro-Leu-Leu-Gln-Val-Thr-Arg, Val-Lys-Pro-Leu-Leu-Gln, and Val-Lys-Pro-Leu-Leu) were isolated from the tryptic digest of this fragment.(ABSTRACT TRUNCATED AT 400 WORDS)

  4. Temporal embryonic transcription of chicken fast skeletal myosin heavy chain isoforms in the single comb white leghorn

    PubMed Central

    Griffin, J.; St-Pierre, N.; Lilburn, M. S.; Wick, M.

    2016-01-01

    There are numerous factors that can significantly influence embryonic development in poultry and thus make simple days of incubation (chronological age) a less than perfect metric for studying embryonic physiology. The developmental fast skeletal muscle myosin (MyHC), the predominant protein in the Pectoralis major (PM), is temporally expressed as a cadre of highly specific developmental isoforms. In the study described herein, a novel molecular technology (NanoString) was used to characterize the myosin isoform transcriptional patterns in the PM of Single Comb White Leghorn (SCWL) embryos. NanoString technology is based on quantitative analysis of the transcriptome through digital detection and quantification of target mRNA transcripts. Total RNA was isolated and gene transcription quantified using NanoString in embryonic muscle samples collected daily from 6 through 19 days of incubation. Data were analyzed using the LOESS smoothing function at a 95% confidence level. The temporal transcription of MyHC isoforms obtained in this study was consistent with the literature at higher specificity and resolution, thus validating NanoString for use in gene transcription analyses. The results support a hypothesis that the transcription patterns of the embryonic MyHC isoforms may be used as molecular clocks to further investigate the developmental relationships underlying embryonic fast skeletal muscle growth and development. PMID:26908894

  5. Immunolabelling, histochemistry and in situ hybridisation in human skeletal muscle fibres to detect myosin heavy chain expression at the protein and mRNA level

    PubMed Central

    SERRANO, A. L.; PÉREZ, MARGARITA; LUCÍA, A.; CHICHARRO, J. L.; QUIROZ-ROTHE, E.; RIVERO, J. L. L.

    2001-01-01

    The distribution of muscle fibres classified on the basis of their content of different myosin heavy chain (MHC) isoforms was analysed in vastus lateralis muscle biopsies of 15 young men (with an average age of 22 y) by correlating immunohistochemistry with specific anti-MHC monoclonal antibodies, myofibrillar ATPase (mATPase) histochemistry and in situ hybridisation with probes specific for MHC β-slow, MHC-IIA and MHC-IIX. The characterisation of a large number of individual fibres was compared and correlated on a fibre-to-fibre basis. The panel of monoclonal antibodies used in the study allowed classification of human skeletal muscle fibres into 5 categories according to the MHC isoform they express at the protein level, types I, I+IIA, IIA, IIAX and IIX. Hybrid fibres coexpressing two isoforms represented a considerable proportion of the fibre composition (about 14%) and were clearly underestimated by mATPase histochemistry. For a very high percentage of fibres there was a precise correspondence between the MHC protein isoforms and mRNA transcripts. The integrated methods used demonstrate a high degree of precision of the immunohistochemical procedure used for the identification and quantification of human skeletal muscle fibre types. The monoclonal antibody S5-8H2 is particularly useful for identifying hybrid IIAX fibres. This protocol offers new prospects for muscle fibre classification in human experimental studies. PMID:11554510

  6. Molecular cloning and mRNA expression analysis of myosin heavy chain (MyHC) from fast skeletal muscle of grass carp, Ctenopharyngodon idella

    NASA Astrophysics Data System (ADS)

    Chu, Wuying; Fu, Guihong; Bing, Shiyu; Meng, Tao; Zhou, Ruixue; Cheng, Jia; Zhao, Falan; Zhang, Hongfang; Zhang, Jianshe

    2010-03-01

    The myosin heavy chain (MyHC) is one of the major structural and contracting proteins of muscle. We have isolated the cDNA clone encoding MyHC of the grass carp, Ctenopharyngodon idella. The sequence comprises 5 934 bp, including a 5 814 bp open reading frame encoding an amino acid sequence of 1 937 residues. The deduced amino acid sequence showed 69% homology to rabbit fast skeletal MyHC and 73%-76% homology to the MyHCs from the mandarin fish, walleye pollack, white croaker, chum salmon, and carp. The putative sequences of subfragment-1 and the light meromyosin region showed 61.4%-80% homology to the corresponding regions of other fish MyHCs. The tissue-specific and developmental stage-specific expressions of the MyHC gene were analyzed by quantitative real-time PCR. The MyHC gene showed the highest expression in the muscles compared with the kidney, spleen and intestine. Developmentally, there was a gradual increase in MyHC mRNA expression from the neural formation stage to the tail bud stage. The highest expression was detected in hatching larva. Our work on the MyHC gene from the grass carp has provided useful information for fish molecular biology and fish genomics.

  7. In vivo regulation of the beta-myosin heavy chain gene in soleus muscle of suspended and weight-bearing rats

    NASA Technical Reports Server (NTRS)

    Giger, J. M.; Haddad, F.; Qin, A. X.; Baldwin, K. M.

    2000-01-01

    In the weight-bearing hindlimb soleus muscle of the rat, approximately 90% of muscle fibers express the beta-myosin heavy chain (beta-MHC) isoform protein. Hindlimb suspension (HS) causes the MHC isoform population to shift from beta toward the fast MHC isoforms. Our aim was to establish a model to test the hypothesis that this shift in expression is transcriptionally regulated through specific cis elements of the beta-MHC promoter. With the use of a direct gene transfer approach, we determined the activity of different length beta-MHC promoter fragments, linked to a firefly luciferase reporter gene, in soleus muscle of control and HS rats. In weight-bearing rats, the relative luciferase activity of the longest beta-promoter fragment (-3500 bp) was threefold higher than the shorter promoter constructs, which suggests that an enhancer sequence is present in the upstream promoter region. After 1 wk of HS, the reporter activities of the -3500-, -914-, and -408-bp promoter constructs were significantly reduced ( approximately 40%), compared with the control muscles. However, using the -215-bp construct, no differences in promoter activity were observed between HS and control muscles, which indicates that the response to HS in the rodent appears to be regulated within the -408 and -215 bp of the promoter.

  8. Association of a single nucleotide polymorphism in the 5' upstream region of the porcine myosin heavy chain 4 gene with meat quality traits in pigs

    PubMed Central

    Cho, Eun‐Seok; Lee, Kyung‐Tai; Kim, Jun‐Mo; Lee, Si‐Woo; Jeon, Hyeon‐Jeong; Lee, Seung‐Hwan; Hong, Ki‐Chang

    2015-01-01

    Abstract We identified a potential molecular marker associated with meat quality traits in the myosin heavy chain 4, MYH4 gene of Landrace pigs. Sequencing revealed a single nucleotide polymorphism (SNP; g.‐1398G>T) in the 5' upstream region of MYH4. It was significantly associated with the number of type IIa muscle fibers and water‐holding capacity based on filter‐paper fluid uptake. The GG genotype groups had a greater number of type IIa fibers and a larger area composed of type IIa fibers than the other genotype group (P = 0.004 and P = 0.061, respectively). Expression level of MYH4 gene in the genotype TT or GT was higher than in genotype of GG (P < 0.0001). The T allele may enhance expression level of MYH4 gene and then the portion of IIb type fiber in the muscle be increased by the T allelle. Therefore, we suggest that the g.‐1398G>T in the 5' upstream region of the porcine MYH4 may be used as a molecular marker for meat quality traits, although its functional effect is not defined yet. PMID:26271027

  9. Muscle-Specific Myosin Heavy Chain Shifts in Response to a Long-Term High Fat/High Sugar Diet and Resveratrol Treatment in Nonhuman Primates

    PubMed Central

    Hyatt, Jon-Philippe K.; Nguyen, Lisa; Hall, Allison E.; Huber, Ashley M.; Kocan, Jessica C.; Mattison, Julie A.; de Cabo, Rafael; LaRocque, Jeannine R.; Talmadge, Robert J.

    2016-01-01

    Shifts in myosin heavy chain (MHC) expression within skeletal muscle can be induced by a host of stimuli including, but not limited to, physical activity, alterations in neural activity, aging, and diet or obesity. Here, we hypothesized that both age and a long-term (2 year) high fat/high sugar diet (HFS) would induce a slow to fast MHC shift within the plantaris, soleus, and extensor digitorum longus (EDL) muscles from rhesus monkeys. Furthermore, we tested whether supplementation with resveratrol, a naturally occurring compound that has been attributed with augmenting aerobic potential through mitochondrial proliferation, would counteract any diet-induced MHC changes by promoting a fast to slow isoform switch. In general, we found that MHC isoforms were not altered by aging during mid-life. The HFS diet had the largest impact within the soleus muscle where the greatest slow to fast isoform shifts were observed in both mRNA and protein indicators. As expected, long-term resveratrol treatment counteracted, or blunted, these diet-induced shifts within the soleus muscle. The plantaris muscle also demonstrated a fast-to-slow phenotypic response to resveratrol treatment. In conclusion, diet or resveratrol treatment impacts skeletal muscle phenotype in a muscle-specific manner and resveratrol supplementation may be one approach for promoting the fatigue-resistant MHC (type I) isoform especially if its expression is blunted as a result of a long-term high fat/sugar diet. PMID:26973542

  10. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    SciTech Connect

    Josephson, Matthew P.; Sikkink, Laura A.; Penheiter, Alan R.; Burghardt, Thomas P.; Ajtai, Katalin

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant

  11. Association Analysis of Myosin Heavy-chain Genes mRNA Transcription with the Corresponding Proteins Expression of Longissimus Muscle in Growing Pigs

    PubMed Central

    Men, X. M.; Deng, B.; Tao, X.; Qi, K. K.; Xu, Z. W.

    2016-01-01

    The goal of this work was to investigate the correlations between MyHC mRNA transcription and their corresponding protein expressions in porcine longissimus muscle (LM) during postnatal growth of pigs. Five DLY (Duroc×Landrace×Yorkshire) crossbred pigs were selected, slaughtered and sampled at postnatal 7, 30, 60, 120, and 180 days, respectively. Each muscle was subjected to quantity MyHCs protein contents through an indirect enzyme-linked immunosorbent assay (ELISA), to quantity myosin heavy-chains (MyHCs) mRNA abundances using real-time polymerase chain reaction. We calculated the proportion (%) of each MyHC to total of four MyHC for two levels, respectively. Moreover, the activities of several key energy metabolism enzymes were determined in LM. The result showed that mRNA transcription and protein expression of MyHC I, IIa, IIx and IIb in LM all presented some obvious changes with postnatal aging of pigs, especially at the early stage after birth, and their mRNA transcriptions were easy to be influenced than their protein expressions. The relative proportion of each MyHC mRNA was significantly positively related to that of its corresponding protein (p<0.01), and MyHC I mRNA proportion was positively correlated with creatine kinase (CK), succinate dehydrogenase (SDH), malate dehydrogenase (MDH) activities (p<0.05). These data suggested that MyHC mRNA transcription can be used to reflect MyHC expression, metabolism property and adaptive plasticity of porcine skeletal muscles, and MyHC mRNA composition could be a molecular index reflecting muscle fiber type characteristics. PMID:26949945

  12. Calcineurin-NFAT Signaling and Neurotrophins Control Transformation of Myosin Heavy Chain Isoforms in Rat Soleus Muscle in Response to Aerobic Treadmill Training

    PubMed Central

    Liu, Wenfeng; Chen, Gan; Li, Fanling; Tang, Changfa; Yin, Dazhong

    2014-01-01

    This study elucidated the role of CaN-NFAT signaling and neurotrophins on the transformation of myosin heavy chain isoforms in the rat soleus muscle fiber following aerobic exercise training. To do so, we examined the content and distribution of myosin heavy chain (MyHC) isoforms in the rat soleus muscle fiber, the activity of CaN and expression of NFATc1 in these fibers, and changes in the expression of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neutrophin-3 (NT-3) in the soleus and striatum following high-and medium-intensity aerobic treadmill training. Specific pathogen-free 2 month old male Sprague-Dawley (SD) rats were randomly divided into three groups: Control group (Con, n = 8), moderate-intensity aerobic exercise group (M-Ex, n = 8) and high-intensity aerobic exercise group (H-Ex, n = 8). We used ATPase staining to identify the muscle fiber type I and II, SDS-PAGE to separate and analyze the isoforms MyHCI, MyHCIIA, MyHCIIB and MyHCIIx, and performed western blots to determine the expression of NFATc1, NGF, BDNF and NT-3. CaN activity was measured using a colorimetric assay. In the soleus muscle, 8 weeks of moderate-intensity exercise can induce transformation of MyHC IIA and MyHC IIB to MyHC IIX and MyHC I (p < 0.01), while high-intensity treadmill exercise can induce transform MyHC IIx to MyHC IIB, MyHC IIA and MyHC I (p < 0.01). In comparison to the control group, CaN activity and NFATcl protein level were significantly increased in both the M-Ex and H-Ex groups (p < 0.05, p < 0.01), with a more pronounced upregulation in the M-Ex group (p < 0.05). Eight weeks of moderate- and high-intensity aerobic exercise induced the expression of NGF, BDNF and NT-3 in the soleus muscle and the striatum (p < 0.01), with the most significant increase in the H-Ex group (p < 0.01). In the rat soleus muscle, (1) CaN–NFATcl signaling contributes to the conversion of MyHC I isoform in response to moderate-intensity exercise; (2) Neurotrophins

  13. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts

    SciTech Connect

    Eom, Young Woo; Lee, Jong Eun; Yang, Mal Sook; Jang, In Keun; Kim, Hyo Eun; Lee, Doo Hoon; Kim, Young Jin; Park, Won Jin; Kong, Jee Hyun; Shim, Kwang Yong; Lee, Jong In; Kim, Hyun Soo

    2011-04-29

    Highlights: {yields} hASCs were differentiated into skeletal muscle cells by treatment with 5-azacytidine, FGF-2, and the supernatant of cultured hASCs. {yields} Dystrophin and MyHC were expressed in late differentiation step by treatment with the supernatant of cultured hASCs. {yields} hASCs expressing dystrophin and MyHC contributed to myotube formation during co-culture with mouse myoblast C2C12 cells. -- Abstract: Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of human adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.

  14. 5'-flanking sequences of zebrafish fast myosin heavy chain genes regulate unique expression in the anterior, medial subsection and posterior tail somites of the skeletal muscle.

    PubMed

    Asaduzzaman, M; Shakur Ahammad, A K; Asakawa, S; Kinoshita, S; Watabe, S

    2016-01-01

    In zebrafish, fast muscle-specific myosin heavy chain genes have their unique expression patterns in a well-defined and restricted region of the skeletal muscle. However, the transcriptional regulatory mechanisms involved have remained unclear. Here, we examined the regulation of spatio-temporal expression patterns of myhz1 (myhz1.1, myhz1.2 and myhz1.3) and myhz2 during their development by using transient gene and stable transgenic techniques. Embryos microinjected with different length 5'-flanking sequences of myhz1 conjugated with the enhanced green fluorescent protein (EGFP) gene showed EGFP expression in the anterior and medial subsections of somites, but not in the tail somite region. In contrast, embryos microinjected with different length 5'-flanking sequences of myhz2 showed EGFP expression exclusively at the posterior tail somite domain. Promoter deletion analyses demonstrated that reduced EGFP fluorescence typically is correlated with smaller 5'-flanking sequences. The immunohistochemical observation revealed that zebrafish larvae provided with the transient gene and those from stable transgenic lines consistently expressed EGFP in the fast muscle fibers. r-VISTA plot identified one common conserved region of about 140°bp among myhz1.1, myhz1.2 and myhz1.3. Deletion of this conserved region from the 5'-flanking sequence of each myhz1 markedly reduced EGFP expression in its unique spatial somite region. Deletion mutation analysis demonstrated that myhz2 expression in the tail somite region might be mediated by Tbx (family of transcription factors having a common DNA-binding sequence known as T-box) binding elements. In summary, 5'-flanking sequences of myhz1 and myhz2 regulate their unique expression patterns in a well-defined and restricted somite region of the skeletal muscle in zebrafish.

  15. Role of cyclic AMP sensor Epac1 in masseter muscle hypertrophy and myosin heavy chain transition induced by β2-adrenoceptor stimulation.

    PubMed

    Ohnuki, Yoshiki; Umeki, Daisuke; Mototani, Yasumasa; Jin, Huiling; Cai, Wenqian; Shiozawa, Kouichi; Suita, Kenji; Saeki, Yasutake; Fujita, Takayuki; Ishikawa, Yoshihiro; Okumura, Satoshi

    2014-12-15

    The predominant isoform of β-adrenoceptor (β-AR) in skeletal muscle is β2-AR and that in the cardiac muscle is β1-AR. We have reported that Epac1 (exchange protein directly activated by cAMP 1), a new protein kinase A-independent cAMP sensor, does not affect cardiac hypertrophy in response to pressure overload or chronic isoproterenol (isoprenaline) infusion. However, the role of Epac1 in skeletal muscle hypertrophy remains poorly understood. We thus examined the effect of disruption of Epac1, the major Epac isoform in skeletal muscle, on masseter muscle hypertrophy induced by chronic β2-AR stimulation with clenbuterol (CB) in Epac1-null mice (Epac1KO). The masseter muscle weight/tibial length ratio was similar in wild-type (WT) and Epac1KO at baseline and was significantly increased in WT after CB infusion, but this increase was suppressed in Epac1KO. CB treatment significantly increased the proportion of myosin heavy chain (MHC) IIb at the expense of that of MHC IId/x in both WT and Epac1KO, indicating that Epac1 did not mediate the CB-induced MHC isoform transition towards the faster isoform. The mechanism of suppression of CB-mediated hypertrophy in Epac1KO is considered to involve decreased activation of Akt signalling. In addition, CB-induced histone deacetylase 4 (HDAC4) phosphorylation on serine 246 mediated by calmodulin kinase II (CaMKII), which plays a role in skeletal muscle hypertrophy, was suppressed in Epac1KO. Our findings suggest that Epac1 plays a role in β2-AR-mediated masseter muscle hypertrophy, probably through activation of both Akt signalling and CaMKII/HDAC4 signalling. PMID:25344550

  16. Myosin heavy chain and parvalbumin expression in swimming and feeding muscles of centrarchid fishes: the molecular basis of the scaling of contractile properties.

    PubMed

    Campion, L A; Choi, S; Mistry, H L; Coughlin, D J

    2012-10-01

    In centrarchid fishes, such as bluegill (Lepomis macrochirus, Rafinesque) and largemouth bass (Micropterus salmoides, Lacepède), the contractile properties of feeding and swimming muscles show different scaling patterns. While the maximum shortening velocity (V(max)) and rate of relaxation from tetanus of swimming or myotomal muscle slow with growth, the feeding muscle shows distinctive scaling patterns. Cranial epaxial muscle, which is used to elevate the head during feeding strikes, retains fast contractile properties across a range of fish sizes in both species. In bass, the sternohyoideous muscle, which depresses the floor of the mouth during feeding strikes, shows faster contractile properties with growth. The objective of this study was to determine the molecular basis of these different scaling patterns. We examined the expression of two muscle proteins, myosin heavy chain (MyHC) and parvalbumin (PV), that affect contractile properties. We hypothesized that the relative contribution of slow and fast MyHC isoforms will modulate V(max) in these fishes, while the presence of PV in muscle will enhance rates of muscle relaxation. Myotomal muscle displays an increase in sMyHC expression with growth, in agreement with its physiological properties. Feeding muscles such as epaxial and sternohyoideus show no change or a decrease in sMyHC expression with growth, again as predicted from contractile properties. PV expression in myotomal muscle decreases with growth in both species, as has been seen in other fishes. The feeding muscles again show no change or an increase in PV expression with growth, contributing to faster contractile properties in these fishes. Both MyHC and PV appear to play important roles in modulating muscle contractile properties of swimming and feeding muscles in centrarchid fishes. PMID:22705556

  17. Differential muscular myosin heavy chain expression of the pectoral and pelvic girdles during early growth in the king penguin (Aptenodytes patagonicus) chick.

    PubMed

    Erbrech, Aude; Robin, Jean-Patrice; Guérin, Nathalie; Groscolas, René; Gilbert, Caroline; Martrette, Jean-Marc

    2011-06-01

    Continuous growth, associated with a steady parental food supply, is a general pattern in offspring development. So that young chicks can acquire their locomotor independence, this period is usually marked by a fast maturation of muscles, during which different myosin heavy chain (MyHC) isoforms are expressed. However, parental food provisioning may fluctuate seasonally, and offspring therefore face a challenge to ensure the necessary maturation of their tissues when energy is limited. To address this trade-off we investigated muscle maturation in both the pectoral and pelvic girdles of king penguin chicks. This species has an exceptionally long rearing period (1 year), which is prolonged when parental food provisioning is drastically reduced during the sub-Antarctic winter. Approximately 1 month post hatching, chicks acquire a functional pedestrian locomotion, which uses pelvic muscles, whereas swimming, which uses the pectoral muscles, only occurs 1 year later. We therefore tested the hypothesis that the MyHC content of the leg muscles reaches a mature state before those of the pectoral muscles. We found that leg muscle MyHC composition changed with the progressive acquisition of pedestrian locomotion, whereas pectoral muscle fibres reached their mature MyHC profile as early as hatching. Contrary to our predictions, the acquisition of the adult profile in pectoral muscles could be related to an early maturation of the contractile muscular proteins, presumably associated with early thermoregulatory capacities of chicks, necessary for survival in their cold environment. This differential maturation appears to reconcile both the locomotor and environmental constraints of king penguin chicks during growth. PMID:21562169

  18. Effects of pseudo-phosphorylated rat cardiac troponin T are differently modulated by α- and β-myosin heavy chain isoforms.

    PubMed

    Michael, John Jeshurun; Gollapudi, Sampath K; Chandra, Murali

    2014-01-01

    Interplay between the protein kinase C (PKC)-mediated phosphorylation of troponin T (TnT)- and myosin heavy chain (MHC)-mediated effects on thin filaments takes on a new significance because: (1) there is significant interaction between the TnT- and MHC-mediated effects on cardiac thin filaments; (2) although the phosphorylation of TnT by PKC isoforms is common to both human and rodent hearts, human hearts predominantly express β-MHC while rodent hearts predominantly express α-MHC. Therefore, we tested how α- and β-MHC isoforms differently affected the functional effects of phosphorylated TnT. Contractile measurements were made on cardiac muscle fibers from normal rats (α-MHC) and propylthiouracil-treated rats (β-MHC), reconstituted with the recombinant phosphomimetic-TnT (T204E; threonine 204 replaced by glutamate). Ca2+ -activated maximal tension decreased differently in α-MHC + T204E (~68%) and β-MHC + T204E (~35%). However, myofilament Ca2+ sensitivity decreased similarly in α-MHC + T204E and β-MHC + T204E, demonstrating that a decrease in Ca2+ sensitivity alone cannot explain the greater attenuation of tension in α-MHC + T204E. Interestingly, dynamic contractile parameters (rates of tension redevelopment, crossbridge (XB) recruitment dynamics, XB distortion dynamics, and XB detachment kinetics) decreased only in α-MHC + T204E. Thus, the transition of thin filaments from the blocked- to closed-state was attenuated in α-MHC + T204E and β-MHC + T204E, but the closed- to open-state transition was attenuated only in α-MHC + T204E. Our study demonstrates that the effects of phosphorylated TnT and MHC isoforms interact to bring about different functional states of cardiac thin filaments. PMID:25301196

  19. Evolution of expression of cardiac phenotypes over a 4-year period in the β-myosin heavy chain-Q403 transgenic rabbit model of human hypertrophic cardiomyopathy

    PubMed Central

    Nagueh, Sherif F.; Chen, Suetnee; Patel, Rajnikant; Tsybouleva, Natalia; Lutucuta, Silvia; Kopelen, Helen A.; Zoghbi, William A.; Quiñones, Miguel A.; Roberts, Robert; Marian, A.J.

    2009-01-01

    Hypertrophic cardiomyopathy (HCM), the most common cause of sudden cardiac death in the young, is characterized by a diverse array of cardiac phenotypes evolving over several decades. We have developed transgenic rabbits that fully recapitulate the phenotype of human HCM and provide for the opportunity to delineate the sequence of evolution of cardiac phenotypes, and thus, the pathogenesis of HCM. We determined evolution of biochemical, molecular, histological, structural and functional phenotypes at 4 age-periods in 47 β-myosin heavy chain-glutamine (MyHC-Q)-403 transgenic rabbits. Ca+2 sensitivity of myofibrillar ATPase activity was reduced very early and in the absence of other discernible phenotypes. Myocyte disarray also occurred early, prior to, and independent of hypertrophy and fibrosis. The latter phenotypes evolved predominantly during puberty in conjunction with activation of stress-related signaling kinases. Myocardial contraction and relaxation velocities were decreased early despite normal global cardiac function and in the absence of histological phenotype. Global cardiac function declined with aging, while left atrial size was increased along with Doppler indices of left ventricular filling pressure. Thus, Ca+2 sensitivity of myofibrillar ATPase activity is a primary phenotype expressed early and independent of the ensuing phenotypes. Pathogenesis of myocyte disarray, which exhibits age-independent penetrance, differs from those of hypertrophy and fibrosis, which show age-dependent expression. Myocardial dysfunction is an early marker that predicts subsequent development of hypertrophy. These findings in an animal model that recapitulates the phenotype of human HCM, implicate involvement of multiple independent mechanisms in the pathogenesis of cardiac phenotypes in HCM. PMID:15135661

  20. Role of cyclic AMP sensor Epac1 in masseter muscle hypertrophy and myosin heavy chain transition induced by β2-adrenoceptor stimulation

    PubMed Central

    Ohnuki, Yoshiki; Umeki, Daisuke; Mototani, Yasumasa; Jin, Huiling; Cai, Wenqian; Shiozawa, Kouichi; Suita, Kenji; Saeki, Yasutake; Fujita, Takayuki; Ishikawa, Yoshihiro; Okumura, Satoshi

    2014-01-01

    The predominant isoform of β-adrenoceptor (β-AR) in skeletal muscle is β2-AR and that in the cardiac muscle is β1-AR. We have reported that Epac1 (exchange protein directly activated by cAMP 1), a new protein kinase A-independent cAMP sensor, does not affect cardiac hypertrophy in response to pressure overload or chronic isoproterenol (isoprenaline) infusion. However, the role of Epac1 in skeletal muscle hypertrophy remains poorly understood. We thus examined the effect of disruption of Epac1, the major Epac isoform in skeletal muscle, on masseter muscle hypertrophy induced by chronic β2-AR stimulation with clenbuterol (CB) in Epac1-null mice (Epac1KO). The masseter muscle weight/tibial length ratio was similar in wild-type (WT) and Epac1KO at baseline and was significantly increased in WT after CB infusion, but this increase was suppressed in Epac1KO. CB treatment significantly increased the proportion of myosin heavy chain (MHC) IIb at the expense of that of MHC IId/x in both WT and Epac1KO, indicating that Epac1 did not mediate the CB-induced MHC isoform transition towards the faster isoform. The mechanism of suppression of CB-mediated hypertrophy in Epac1KO is considered to involve decreased activation of Akt signalling. In addition, CB-induced histone deacetylase 4 (HDAC4) phosphorylation on serine 246 mediated by calmodulin kinase II (CaMKII), which plays a role in skeletal muscle hypertrophy, was suppressed in Epac1KO. Our findings suggest that Epac1 plays a role in β2-AR-mediated masseter muscle hypertrophy, probably through activation of both Akt signalling and CaMKII/HDAC4 signalling. PMID:25344550

  1. Immunohistochemical Characterization of Slow and Fast Myosin Heavy Chain Composition of Muscle Fibres in the Styloglossus Muscle of the Human and Macaque (M. rhesus)

    PubMed Central

    Sokoloff, Alan J.; Yang, Betty; Li, Haiyan; Burkholder, Thomas J.

    2007-01-01

    Objective Muscle fibre contractile diversity is thought to be increased by the hybridization of multiple myosin heavy chain (MHC) isoforms in single muscle fibres. Reports of hybrid fibres composed of MHCI and MHCII isoforms in human, but not macaque, tongue muscles, suggest a human adaptation for increased tongue muscle contractile diversity. Here we test whether hybrid fibres composed of MHCI and MHCII are unique to human tongue muscles or are present as well in the macaque. Methods MHC composition of the macaque and human styloglossus was characterized with antibodies that allowed identification of three muscle fibre phenotypes, a slow phenotype composed of MHCI, a fast phenotype composed of MHCII and a hybrid phenotype composed of MHCI and MHCII. Results The fast phenotype constitutes 68.5% of fibres in the macaque and 43.4% of fibres in the human (P<0001). The slow phenotype constitutes 20.2% of fibres in the macaque and 39.3% of fibres in the human (P<0001). The hybrid phenotype constitutes 11.2% of fibres in the macaque and 17.3% of fibres in the human (P=0002). Macaques and humans do not differ in fiber size (cross-sectional area, diameter). However, measures of fibre size differ by phenotype such that fast > hybrid > slow (P<0.05). Conclusion These data demonstrate differences in the relative percent of muscle fibre phenotypes in the macaque and human styloglossus but also demonstrate that all three phenotypes are present in both species. These data suggest a similar range of mechanical properties in styloglossus muscle fibres of the macaque and human. PMID:17210117

  2. High-intensity resistance training with insufficient recovery time between bouts induce atrophy and alterations in myosin heavy chain content in rat skeletal muscle.

    PubMed

    De Souza, Rodrigo Wagner Alves; Aguiar, Andreo Fernando; Carani, Fernanda Regina; Campos, Gerson Eduardo Rocha; Padovani, Carlos Roberto; Silva, Maeli Dal Pai

    2011-08-01

    The aim of this study was to test whether high-intensity resistance training with insufficient recovery time between bouts, could result in a decrease of muscle fiber cross-sectional area (CSA), alter fiber-type frequencies and myosin heavy chain (MHC) isoform content in rat skeletal muscle. Wistar rats were divided into two groups: trained (Tr) and control (Co). Tr group were subjected to a high-intensity resistance training program (5 days/week) for 12 weeks, involving jump bouts into water, carrying progressive overloads based on percentage body weight. At the end of experiment, animals were sacrificed, superficial white (SW) and deep red (DR) portions of the plantaris muscle were removed and submitted to mATPase histochemical reaction and SDS-PAGE analysis. Throughout the experiment, both groups increased body weight, but Tr was lower than Co. There was a significant reduction in IIA and IID muscle fiber CSA in the DR portion of Tr compared to Co. Muscle fiber-type frequencies showed a reduction in Types I and IIA in the DR portion and IID in the SW portion of Tr compared to Co; there was an increase in Types IIBD frequency in the DR portion. Change in muscle fiber-type frequency was supported by a significant decrease in MHCI and MHCIIa isoforms accompanied by a significant increase in MHCIIb isoform content. MHCIId showed no significant differences between groups. These data show that high-intensity resistance training with insufficient recovery time between bouts promoted muscle atrophy and a transition from slow-to-fast contractile activity in rat plantaris muscle.

  3. Acute Myosin Heavy Chain Isoform mRNA Expression in Response to Two Resistance Exercise Intensities With Equal Volume Load in Resistance-Trained Men.

    PubMed

    Schwarz, Neil A; Spillane, Mike B; McKinley, Sarah K; Andre, Thomas L; Gann, Joshua J; Willoughby, Darryn S

    2015-08-01

    The purpose of this study was to determine if resistance exercise intensity, in the context of equal volume load, differentially affected myosin heavy chain (MHC) isoform messenger RNA (mRNA) expression in resistance-trained men. In a crossover, uniform-balanced design, 10 male participants (23.7 ± 2.8 years, 178.8 ± 5.9 cm, 85.9 ± 9.2 kg) completed 2 lower-body resistance exercise sessions of different intensities with equal volume load. For the higher-intensity exercise session, participants performed 5 sets of 6 repetitions at 80% of 1 repetition maximum (1RM). For the lower-intensity exercise session, participants performed 3 sets of 16 repetitions at 50% of 1RM. Muscle samples from the vastus lateralis were acquired before exercise (PRE), 45 minutes postexercise (45MINPE), 3 hours postexercise (3HRPE), 24 hours postexercise (24HRPE), and 48 hours postexercise (48HRPE). Statistical analyses of mRNA expression were performed using separate 2 × 5 two-way repeated-measures analyses of variance for each criterion variable (p ≤ 0.05). There were no statistically significant interactions between intensity and time. Likewise, there were no significant differences between exercise intensity in MHC expression. Expression of mRNA for all MHC isoforms decreased at all postexercise time points, except 3HRPE (p = 0.051), compared with PRE following both exercise bouts (p ≤ 0.05). The results of this study found no difference in mRNA expression of MHC isoforms as a function of resistance exercise intensity. In addition, in contrast to results found in previous studies of untrained men, MHC mRNA expression seems to decrease in response to acute resistance exercise in previously resistance-trained men.

  4. Nonmuscle Myosin IIA Regulates Platelet Contractile Forces Through Rho Kinase and Myosin Light-Chain Kinase.

    PubMed

    Feghhi, Shirin; Tooley, Wes W; Sniadecki, Nathan J

    2016-10-01

    Platelet contractile forces play a major role in clot retraction and help to hold hemostatic clots against the vessel wall. Platelet forces are produced by its cytoskeleton, which is composed of actin and nonmuscle myosin filaments. In this work, we studied the role of Rho kinase, myosin light-chain kinase, and myosin in the generation of contractile forces by using pharmacological inhibitors and arrays of flexible microposts to measure platelet forces. When platelets were seeded onto microposts, they formed aggregates on the tips of the microposts. Forces produced by the platelets in the aggregates were measured by quantifying the deflection of the microposts, which bent in proportion to the force of the platelets. Platelets were treated with small molecule inhibitors of myosin activity: Y-27632 to inhibit the Rho kinase (ROCK), ML-7 to inhibit myosin light-chain kinase (MLCK), and blebbistatin to inhibit myosin ATPase activity. ROCK inhibition reduced platelet forces, demonstrating the importance of the assembly of actin and myosin phosphorylation in generating contractile forces. Similarly, MLCK inhibition caused weaker platelet forces, which verifies that myosin phosphorylation is needed for force generation in platelets. Platelets treated with blebbistatin also had weaker forces, which indicates that myosin's ATPase activity is necessary for platelet forces. Our studies demonstrate that myosin ATPase activity and the regulation of actin-myosin assembly by ROCK and MLCK are needed for the generation of platelet forces. Our findings illustrate and explain the importance of myosin for clot compaction in hemostasis and thrombosis. PMID:27548633

  5. UV-induced vanadate-dependent modification and cleavage of skeletal myosin subfragment 1 heavy chain. 1. Evidence for active site modification

    SciTech Connect

    Grammer, J.C.; Cremo, C.R.; Yount, R.G.

    1988-11-01

    Ultraviolet irradiation above 300 nm of the stable MgADP-orthovanadate (V/sub i/)-myosin subfragment 1(S1) complex resulted in covalent modification of the S1 and in the rapid release of trapped MgADP and V/sub i/. This photomodified S1 had Ca/sup 2 +/ATPase activity 4-5-fold higher than that of the nonirradiated control S1, while the K/sup +/EDTA-ATPase activity was below 10% of controls. There was a linear correlation between the activation of the Ca/sup 2 +/ATPase and the release of both ADP and V/sub i/ with irradiation time. Analysis of the total number of thiols and the ability of photomodified S1 to retrap MgADP by cross-linking SH1 and SH2 with various bifunctional thiols reagents indicated that the photomodification did not involve these reactive thiols. Irradiation of the S1-MgADP-V/sub i/ complex caused a large increase in absorbance of the enzyme at 270 nm which was correlated with the release of V/sub i/ from the active site, suggesting an aromatic amino acid(s) was (were) involved. However, analysis by three different methods showed no loss of tryptophan. All the irradiation-dependent phenomena could be prevented by replacing Mg/sup 2 +/ with either Co/sup 2 +/, Mn/sup 2 +/, or Ni/sup 2 +/. Unlike previous irradiation studies of V/sub i/-dynein complexes, no peptide bonds were cleaved in photomodified S1. Photomodified S1 was able to retrap MgADP-V/sub i/ at levels similar to unmodified S1. Upon irradiation of the photomodified S1-MgADP-V/sub i/ complex, MgADP and V/sub i/ were again released from the active site, resulting in heavy chain cleavage to form NH/sub 2/-terminal 21-kDa and COOH-terminal 74-kDa peptides. All evidence indicates that this new photomodification and subsequent chain cleavage occur specifically at the active site.

  6. Myosin‑II heavy chain and formin mediate the targeting of myosin essential light chain to the division site before and during cytokinesis

    PubMed Central

    Feng, Zhonghui; Okada, Satoshi; Cai, Guoping; Zhou, Bing; Bi, Erfei

    2015-01-01

    MLC1 is a haploinsufficient gene encoding the essential light chain for Myo1, the sole myosin‑II heavy chain in the budding yeast Saccharomyces cerevisiae. Mlc1 defines an essential hub that coordinates actomyosin ring function, membrane trafficking, and septum formation during cytokinesis by binding to IQGAP, myosin‑II, and myosin‑V. However, the mechanism of how Mlc1 is targeted to the division site during the cell cycle remains unsolved. By constructing a GFP‑tagged MLC1 under its own promoter control and using quantitative live‑cell imaging coupled with yeast mutants, we found that septin ring and actin filaments mediate the targeting of Mlc1 to the division site before and during cytokinesis, respectively. Both mechanisms contribute to and are collectively required for the accumulation of Mlc1 at the division site during cytokinesis. We also found that Myo1 plays a major role in the septin‑dependent Mlc1 localization before cytokinesis, whereas the formin Bni1 plays a major role in the actin filament–dependent Mlc1 localization during cytokinesis. Such a two‑tiered mechanism for Mlc1 localization is presumably required for the ordered assembly and robustness of cytokinesis machinery and is likely conserved across species. PMID:25631819

  7. Immunogenicity and Protective Efficacy of Brugia malayi Heavy Chain Myosin as Homologous DNA, Protein and Heterologous DNA/Protein Prime Boost Vaccine in Rodent Model

    PubMed Central

    Gupta, Jyoti; Pathak, Manisha; Misra, Sweta; Misra-Bhattacharya, Shailja

    2015-01-01

    We earlier demonstrated the immunoprophylactic efficacy of recombinant heavy chain myosin (Bm-Myo) of Brugia malayi (B. malayi) in rodent models. In the current study, further attempts have been made to improve this efficacy by employing alternate approaches such as homologous DNA (pcD-Myo) and heterologous DNA/protein prime boost (pcD-Myo+Bm-Myo) in BALB/c mouse model. The gene bm-myo was cloned in a mammalian expression vector pcDNA 3.1(+) and protein expression was confirmed in mammalian Vero cell line. A significant degree of protection (79.2%±2.32) against L3 challenge in pcD-Myo+Bm-Myo immunized group was observed which was much higher than that exerted by Bm-Myo (66.6%±2.23) and pcD-Myo (41.6%±2.45). In the heterologous immunized group, the percentage of peritoneal leukocytes such as macrophages, neutrophils, B cells and T cells marginally increased and their population augmented further significantly following L3 challenge. pcD-Myo+Bm-Myo immunization elicited robust cellular and humoral immune responses as compared to pcD-Myo and Bm-Myo groups as evidenced by an increased accumulation of CD4+, CD8+ T cells and CD19+ B cells in the mouse spleen and activation of peritoneal macrophages. Though immunized animals produced antigen-specific IgG antibodies and isotypes, sera of mice receiving pcD-Myo+Bm-Myo or Bm-Myo developed much higher antibody levels than other groups and there was profound antibody-dependent cellular adhesion and cytotoxicity (ADCC) to B. malayi infective larvae (L3). pcD-Myo+Bm-Myo as well as Bm-Myo mice generated a mixed T helper cell phenotype as evidenced by the production of both pro-inflammatory (IL-2, IFN-γ) and anti-inflammatory (IL-4, IL-10) cytokines. Mice receiving pcD-Myo on contrary displayed a polarized pro-inflammatory immune response. The findings suggest that the priming of animals with DNA followed by protein booster generates heightened and mixed pro- and anti-inflammatory immune responses that are capable of providing

  8. Immunogenicity and Protective Efficacy of Brugia malayi Heavy Chain Myosin as Homologous DNA, Protein and Heterologous DNA/Protein Prime Boost Vaccine in Rodent Model.

    PubMed

    Gupta, Jyoti; Pathak, Manisha; Misra, Sweta; Misra-Bhattacharya, Shailja

    2015-01-01

    We earlier demonstrated the immunoprophylactic efficacy of recombinant heavy chain myosin (Bm-Myo) of Brugia malayi (B. malayi) in rodent models. In the current study, further attempts have been made to improve this efficacy by employing alternate approaches such as homologous DNA (pcD-Myo) and heterologous DNA/protein prime boost (pcD-Myo+Bm-Myo) in BALB/c mouse model. The gene bm-myo was cloned in a mammalian expression vector pcDNA 3.1(+) and protein expression was confirmed in mammalian Vero cell line. A significant degree of protection (79.2%±2.32) against L3 challenge in pcD-Myo+Bm-Myo immunized group was observed which was much higher than that exerted by Bm-Myo (66.6%±2.23) and pcD-Myo (41.6%±2.45). In the heterologous immunized group, the percentage of peritoneal leukocytes such as macrophages, neutrophils, B cells and T cells marginally increased and their population augmented further significantly following L3 challenge. pcD-Myo+Bm-Myo immunization elicited robust cellular and humoral immune responses as compared to pcD-Myo and Bm-Myo groups as evidenced by an increased accumulation of CD4+, CD8+ T cells and CD19+ B cells in the mouse spleen and activation of peritoneal macrophages. Though immunized animals produced antigen-specific IgG antibodies and isotypes, sera of mice receiving pcD-Myo+Bm-Myo or Bm-Myo developed much higher antibody levels than other groups and there was profound antibody-dependent cellular adhesion and cytotoxicity (ADCC) to B. malayi infective larvae (L3). pcD-Myo+Bm-Myo as well as Bm-Myo mice generated a mixed T helper cell phenotype as evidenced by the production of both pro-inflammatory (IL-2, IFN-γ) and anti-inflammatory (IL-4, IL-10) cytokines. Mice receiving pcD-Myo on contrary displayed a polarized pro-inflammatory immune response. The findings suggest that the priming of animals with DNA followed by protein booster generates heightened and mixed pro- and anti-inflammatory immune responses that are capable of providing

  9. The heavy chain has its day

    PubMed Central

    Dulyaninova, Natalya G; Bresnick, Anne R

    2013-01-01

    Nonmuscle myosin-II is an actin-based motor that converts chemical energy into force and movement, and thus functions as a key regulator of the eukaryotic cytoskeleton. Although it is established that phosphorylation on the regulatory light chain increases the actin-activated MgATPase activity of the motor and promotes myosin-II filament assembly, studies have begun to characterize alternative mechanisms that regulate filament assembly and disassembly. These investigations have revealed that all three nonmuscle myosin-II isoforms are subject to additional regulatory controls, which impact diverse cellular processes. In this review, we discuss current knowledge on mechanisms that regulate the oligomerization state of nonmuscle myosin-II filaments by targeting the myosin heavy chain. PMID:24002531

  10. Overexpression of Smooth Muscle Myosin Heavy Chain Leads to Activation of the Unfolded Protein Response and Autophagic Turnover of Thick Filament-associated Proteins in Vascular Smooth Muscle Cells*

    PubMed Central

    Kwartler, Callie S.; Chen, Jiyuan; Thakur, Dhananjay; Li, Shumin; Baskin, Kedryn; Wang, Shanzhi; Wang, Zhao V.; Walker, Lori; Hill, Joseph A.; Epstein, Henry F.; Taegtmeyer, Heinrich; Milewicz, Dianna M.

    2014-01-01

    Duplications spanning nine genes at the genomic locus 16p13.1 predispose individuals to acute aortic dissections. The most likely candidate gene in this region leading to the predisposition for dissection is MYH11, which encodes smooth muscle myosin heavy chain (SM-MHC). The effects of increased expression of MYH11 on smooth muscle cell (SMC) phenotypes were explored using mouse aortic SMCs with transgenic overexpression of one isoform of SM-MHC. We found that these cells show increased expression of Myh11 and myosin filament-associated contractile genes at the message level when compared with control SMCs, but not at the protein level due to increased protein degradation. Increased expression of Myh11 resulted in endoplasmic reticulum (ER) stress in SMCs, which led to a paradoxical decrease of protein levels through increased autophagic degradation. An additional consequence of ER stress in SMCs was increased intracellular calcium ion concentration, resulting in increased contractile signaling and contraction. The increased signals for contraction further promote transcription of contractile genes, leading to a feedback loop of metabolic abnormalities in these SMCs. We suggest that overexpression of MYH11 can lead to increased ER stress and autophagy, findings that may be globally implicated in disease processes associated with genomic duplications. PMID:24711452

  11. Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains

    PubMed Central

    1992-01-01

    Recent biochemical studies of p190, a calmodulin (CM)-binding protein purified from vertebrate brain, have demonstrated that this protein, purified as a complex with bound CM, shares a number of properties with myosins (Espindola, F. S., E. M. Espreafico, M. V. Coelho, A. R. Martins, F. R. C. Costa, M. S. Mooseker, and R. E. Larson. 1992. J. Cell Biol. 118:359-368). To determine whether or not p190 was a member of the myosin family of proteins, a set of overlapping cDNAs encoding the full-length protein sequence of chicken brain p190 was isolated and sequenced. Verification that the deduced primary structure was that of p190 was demonstrated through microsequence analysis of a cyanogen bromide peptide generated from chick brain p190. The deduced primary structure of chicken brain p190 revealed that this 1,830-amino acid (aa) 212,509-D) protein is a member of a novel structural class of unconventional myosins that includes the gene products encoded by the dilute locus of mouse and the MYO2 gene of Saccharomyces cerevisiae. We have named the p190-CM complex "myosin-V" based on the results of a detailed sequence comparison of the head domains of 29 myosin heavy chains (hc), which has revealed that this myosin, based on head structure, is the fifth of six distinct structural classes of myosin to be described thus far. Like the presumed products of the mouse dilute and yeast MYO2 genes, the head domain of chicken myosin-V hc (aa 1-764) is linked to a "neck" domain (aa 765-909) consisting of six tandem repeats of an approximately 23-aa "IQ-motif." All known myosins contain at least one such motif at their head-tail junctions; these IQ-motifs may function as calmodulin or light chain binding sites. The tail domain of chicken myosin-V consists of an initial 511 aa predicted to form several segments of coiled-coil alpha helix followed by a terminal 410-aa globular domain (aa, 1,421-1,830). Interestingly, a portion of the tail domain (aa, 1,094-1,830) shares 58% amino acid

  12. Myosin regulatory light chain phosphorylation enhances cardiac β-myosin in vitro motility under load.

    PubMed

    Karabina, Anastasia; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta; Moore, Jeffrey R

    2015-08-15

    Familial hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy and myofibrillar disarray, and often results in sudden cardiac death. Two HCM mutations, N47K and R58Q, are located in the myosin regulatory light chain (RLC). The RLC mechanically stabilizes the myosin lever arm, which is crucial to myosin's ability to transmit contractile force. The N47K and R58Q mutations have previously been shown to reduce actin filament velocity under load, stemming from a more compliant lever arm (Greenberg, 2010). In contrast, RLC phosphorylation was shown to impart stiffness to the myosin lever arm (Greenberg, 2009). We hypothesized that phosphorylation of the mutant HCM-RLC may mitigate distinct mutation-induced structural and functional abnormalities. In vitro motility assays were utilized to investigate the effects of RLC phosphorylation on the HCM-RLC mutant phenotype in the presence of an α-actinin frictional load. Porcine cardiac β-myosin was depleted of its native RLC and reconstituted with mutant or wild-type human RLC in phosphorylated or non-phosphorylated form. Consistent with previous findings, in the presence of load, myosin bearing the HCM mutations reduced actin sliding velocity compared to WT resulting in 31-41% reductions in force production. Myosin containing phosphorylated RLC (WT or mutant) increased sliding velocity and also restored mutant myosin force production to near WT unphosphorylated values. These results point to RLC phosphorylation as a general mechanism to increase force production of the individual myosin motor and as a potential target to ameliorate the HCM-induced phenotype at the molecular level. PMID:26116789

  13. Tyrosine phosphorylation/dephosphorylation of myosin II essential light chains of Entamoeba histolytica trophozoites regulates their motility.

    PubMed

    Bonilla-Moreno, Raúl; Pérez-Yépez, Eloy-Andrés; Villegas-Sepúlveda, Nicolás; Morales, Fernando O; Meza, Isaura

    2016-08-01

    Entamoeba histolytica trophozoites dwell in the human intestine as comensals although under still unclear circumstances become invasive and destroy the host tissues. For these activities, trophozoites relay on remarkable motility provided by the cytoskeleton organization. Amebic actin and some of its actin-associated proteins are well known, while components of the myosin II molecule, although predicted from the E. histolytica genome, need biochemical and functional characterization. Recently, an amebic essential light myosin II chain, named EhMLCI, was identified and reported to be phosphorylated in tyrosines. The phosphorylated form of the protein was associated with the soluble assembly incompetent conformation of the heavy myosin chains, while the non-phosphorylated protein was identified with filamentous heavy chains, organized in an assembly competent conformation. It was postulated that EhMLCI tyrosine phosphorylation could act as a negative regulator of myosin II activity by its phosphorylation/dephosphorylation cycles. To test this hypothesis, we constructed an expression vector containing an EhMLCI DNA sequence where two tyrosine residues, with strong probability of phosphorylation and fall within the single EF-hand domain that interacts with the N-terminus of myosin II heavy chains, were replaced by phenylalanines. Transfected trophozoites, expressing the mutant MutEhMLCI protein cannot process it, thereby not incorporated into the phosphorylation/dephosphorylation cycles required for myosin II activity, results in motility defective trophozoites. PMID:27318258

  14. Tyrosine phosphorylation/dephosphorylation of myosin II essential light chains of Entamoeba histolytica trophozoites regulates their motility.

    PubMed

    Bonilla-Moreno, Raúl; Pérez-Yépez, Eloy-Andrés; Villegas-Sepúlveda, Nicolás; Morales, Fernando O; Meza, Isaura

    2016-08-01

    Entamoeba histolytica trophozoites dwell in the human intestine as comensals although under still unclear circumstances become invasive and destroy the host tissues. For these activities, trophozoites relay on remarkable motility provided by the cytoskeleton organization. Amebic actin and some of its actin-associated proteins are well known, while components of the myosin II molecule, although predicted from the E. histolytica genome, need biochemical and functional characterization. Recently, an amebic essential light myosin II chain, named EhMLCI, was identified and reported to be phosphorylated in tyrosines. The phosphorylated form of the protein was associated with the soluble assembly incompetent conformation of the heavy myosin chains, while the non-phosphorylated protein was identified with filamentous heavy chains, organized in an assembly competent conformation. It was postulated that EhMLCI tyrosine phosphorylation could act as a negative regulator of myosin II activity by its phosphorylation/dephosphorylation cycles. To test this hypothesis, we constructed an expression vector containing an EhMLCI DNA sequence where two tyrosine residues, with strong probability of phosphorylation and fall within the single EF-hand domain that interacts with the N-terminus of myosin II heavy chains, were replaced by phenylalanines. Transfected trophozoites, expressing the mutant MutEhMLCI protein cannot process it, thereby not incorporated into the phosphorylation/dephosphorylation cycles required for myosin II activity, results in motility defective trophozoites.

  15. Myosin light chain genes in the turkey (Meleagris gallopavo).

    PubMed

    Chaves, L D; Ostroski, B J; Reed, K M

    2003-01-01

    Myosin light chains associate with the motor protein myosin and are believed to play a role in the regulation of its actin-based ATPase activity. Myosin light chain cDNA clones from the turkey (Meleagris gallopavo) were isolated and sequenced. One sequence corresponded to an alternative transcript, the skeletal muscle essential light chain (MYL1 isoform 1) and a second to the smooth muscle isoform of myosin light chain (MYL6). The DNA and predicted amino acid sequences of both light chain genes were compared to that of the chicken. Based on the cDNA sequence, oligonucleotide primers were designed to amplify genomic DNA from six of the seven introns of the MYL1 gene. Approximately 5 kb of DNA was sequenced (introns and 3' UTR) and evaluated for the presence of single nucleotide polymorphisms (SNPs). SNPs were verified by sequencing common intron regions from multiple individuals and three polymorphisms were used to genotype pedigreed families. MYL1 is assigned to a turkey linkage group that corresponds to a region of chicken chromosome 7 (GGA7). The results of this study provide genomic reagents for comparative studies of avian muscle components and muscle biology.

  16. Role of myosin light chain and myosin light chain kinase in advanced glycation end product-induced endothelial hyperpermeability in vitro and in vivo.

    PubMed

    Wu, Fan; Guo, Xiaohua; Xu, Jing; Wang, Weiju; Li, Bingling; Huang, Qiaobing; Su, Lei; Xu, Qiulin

    2016-03-01

    We have previously reported that advanced glycation end products activated Rho-associated protein kinase and p38 mitogen-activated protein kinase, causing endothelial hyperpermeability. However, the mechanisms involved were not fully clarified. Here, we explored the role of myosin light chain kinase in advanced glycation end product-induced endothelial hyperpermeability. Myosin light chain phosphorylation significantly increased by advanced glycation end products in endothelial cells in a time- and dose-dependent manner, indicating that myosin light chain phosphorylation is involved in the advanced glycation end product pathway. Advanced glycation end products also induced myosin phosphatase-targeting subunit 1 phosphorylation, and small interfering RNA knockdown of the receptor for advanced glycation end products, or blocking myosin light chain kinase with its inhibitor, ML-7, or small interfering RNA abated advanced glycation end product-induced myosin light chain phosphorylation. Advanced glycation end product-induced F-actin rearrangement and endothelial hyperpermeability were also diminished by inhibition of receptor for advanced glycation end product or myosin light chain kinase signalling. Moreover, inhibiting myosin light chain kinase with ML-7 or blocking receptor for advanced glycation end product with its neutralizing antibody attenuated advanced glycation end product-induced microvascular hyperpermeability. Our findings suggest a novel role for myosin light chain and myosin light chain kinase in advanced glycation end product-induced endothelial hyperpermeability.

  17. Antithetical regulation of α-myosin heavy chain between fetal and adult heart failure though shuttling of HDAC5 regulating YY-1 function.

    PubMed

    Fang, Jie; Li, Yifei; Zhou, Kaiyu; Hua, Yimin; Wang, Chuan; Mu, Dezhi

    2015-04-01

    Molecular switches of myosin isoforms are known to occur in various conditions. Here, we demonstrated the result from fetal heart failure and its potential mechanisms. Fetal and adult heart failure rat models were induced by injections of isoproterenol as previously described, and Go6976 was given to heart failing fetuses. Real-time PCR and Western blot were adopted to measure the expressions of α-MHC, β-MHC and YY-1. Co-immunoprecipitation was performed to analysis whether YY-1 interacts with HDAC5. Besides, histological immunofluorescence assessment was carried out to identify the location of HDAC5. α-MHC was recorded elevated in fetal heart failure which was decreased in adult heart failure. Besides, YY-1 was observed elevated both in fetal and adult failing hearts, but YY-1 could co-immunoprecipitation with HDAC5 only in adult hearts. Nuclear localization of HDAC5 was identified in adult cardiomyocytes, while cytoplasmic localization was identified in fetuses. After Go6976 supplied, HDAC5 shuttled into nucleuses interacted with YY-1. The myosin molecular switches were reversed with worsening cardiac functions and higher mortalities. Regulation of MHC in fetal heart failure was different from adult which provided a better compensation with increased α-MHC. This kind of transition was involved with shuttling of HDAC5 regulating YY-1 function.

  18. Real time RT-PCR with a newly designed set of primers confirmed the presence of 2b and 2x/d myosin heavy chain mRNAs in the rat slow soleus muscle.

    PubMed

    Zurmanová, J; Půta, F; Stopková, R; Soukup, T

    2008-01-01

    In order to re-evaluate the presence and relative quantity of 2b and 2x/d myosin heavy chain (MyHC) transcripts in rat slow soleus muscle by using real time RT-PCR we have compared the available relevant cDNA sequences and designed a new set of primers having similar melting temperatures, matching separate MyHC exons in the regions of maximal differences in MyHC coding sequences, and containing G or C at the 3 -end. These also yielded PCR products of corresponding length, which is an important requirement for real time RT-PCR quantification. The experiments were performed on 8-month-old inbred female Lewis strain rats used in our current study of regenerating transplanted muscles. The real time RT-PCR measurement confirmed the expression of all four MyHC mRNAs (type 1, 2a, 2x/d and 2b) in both fast extensor digitorum longus and slow soleus muscles, although in the soleus muscle of adult rats, only type 1 and 2a protein isoforms can be usually detected.

  19. Distal myosin heavy chain-7 myopathy due to the novel transition c.5566G>A (p.E1856K) with high interfamilial cardiac variability and putative anticipation.

    PubMed

    Finsterer, Josef; Brandau, Oliver; Stöllberger, Claudia; Wallefeld, William; Laing, Nigel G; Laccone, Franco

    2014-08-01

    Myosin-heavy-chain 7 (MYH7)-myopathy manifests clinically with a distal, scapuloperoneal, limb-girdle (proximal), or axial distribution and may involve the respiratory muscles. Cardiac involvement is frequent, ranging from relaxation impairment to severe dilative cardiomyopathy. Progression and earlier onset of cardiac disease in successive generations with MYH7-myopathy is unreported. In a five-generation family MYH7-myopathy due to the novel c.5566G > A (p.E1856K) mutation manifested with late-onset, distal > proximal myopathy and variable degree of cardiac involvement. The index patient developed distal myopathy since age 49 y and anginal chest pain. Her mother had distal myopathy and impaired myocardial relaxation. The daughter of the index patient had discrete myopathy but left ventricular hypertrabeculation/noncompaction and ventricular arrhythmias requiring an implantable cardioverter defibrillator. The granddaughter of the index patient had infantile dilated cardiomyopathy without overt myopathy. Cardiac involvement may be present in MYH7-myopathy and may be progressive between the generations, ranging from relaxation abnormality to noncompaction, ventricular arrhythmias, and dilated cardiomyopathy.

  20. Myosin light chain kinase (MLCK) regulates cell migration in a myosin regulatory light chain phosphorylation-independent mechanism.

    PubMed

    Chen, Chen; Tao, Tao; Wen, Cheng; He, Wei-Qi; Qiao, Yan-Ning; Gao, Yun-Qian; Chen, Xin; Wang, Pei; Chen, Cai-Ping; Zhao, Wei; Chen, Hua-Qun; Ye, An-Pei; Peng, Ya-Jing; Zhu, Min-Sheng

    2014-10-10

    Myosin light chain kinase (MLCK) has long been implicated in the myosin phosphorylation and force generation required for cell migration. Here, we surprisingly found that the deletion of MLCK resulted in fast cell migration, enhanced protrusion formation, and no alteration of myosin light chain phosphorylation. The mutant cells showed reduced membrane tether force and fewer membrane F-actin filaments. This phenotype was rescued by either kinase-dead MLCK or five-DFRXXL motif, a MLCK fragment with potent F-actin-binding activity. Pull-down and co-immunoprecipitation assays showed that the absence of MLCK led to attenuated formation of transmembrane complexes, including myosin II, integrins and fibronectin. We suggest that MLCK is not required for myosin phosphorylation in a migrating cell. A critical role of MLCK in cell migration involves regulating the cell membrane tension and protrusion necessary for migration, thereby stabilizing the membrane skeleton through F-actin-binding activity. This finding sheds light on a novel regulatory mechanism of protrusion during cell migration.

  1. Effects of myosin light chain phosphorylation on length-dependent myosin kinetics in skinned rat myocardium.

    PubMed

    Pulcastro, Hannah C; Awinda, Peter O; Breithaupt, Jason J; Tanner, Bertrand C W

    2016-07-01

    Myosin force production is Ca(2+)-regulated by thin-filament proteins and sarcomere length, which together determine the number of cross-bridge interactions throughout a heartbeat. Ventricular myosin regulatory light chain-2 (RLC) binds to the neck of myosin and modulates contraction via its phosphorylation state. Previous studies reported regional variations in RLC phosphorylation across the left ventricle wall, suggesting that RLC phosphorylation could alter myosin behavior throughout the heart. We found that RLC phosphorylation varied across the left ventricle wall and that RLC phosphorylation was greater in the right vs. left ventricle. We also assessed functional consequences of RLC phosphorylation on Ca(2+)-regulated contractility as sarcomere length varied in skinned rat papillary muscle strips. Increases in RLC phosphorylation and sarcomere length both led to increased Ca(2+)-sensitivity of the force-pCa relationship, and both slowed cross-bridge detachment rate. RLC-phosphorylation slowed cross-bridge rates of MgADP release (∼30%) and MgATP binding (∼50%) at 1.9 μm sarcomere length, whereas RLC phosphorylation only slowed cross-bridge MgATP binding rate (∼55%) at 2.2 μm sarcomere length. These findings suggest that RLC phosphorylation influences cross-bridge kinetics differently as sarcomere length varies and support the idea that RLC phosphorylation could vary throughout the heart to meet different contractile demands between the left and right ventricles. PMID:26763941

  2. Constitutive phosphorylation of cardiac myosin regulatory light chain in vivo.

    PubMed

    Chang, Audrey N; Battiprolu, Pavan K; Cowley, Patrick M; Chen, Guohua; Gerard, Robert D; Pinto, Jose R; Hill, Joseph A; Baker, Anthony J; Kamm, Kristine E; Stull, James T

    2015-04-24

    In beating hearts, phosphorylation of myosin regulatory light chain (RLC) at a single site to 0.45 mol of phosphate/mol by cardiac myosin light chain kinase (cMLCK) increases Ca(2+) sensitivity of myofilament contraction necessary for normal cardiac performance. Reduction of RLC phosphorylation in conditional cMLCK knock-out mice caused cardiac dilation and loss of cardiac performance by 1 week, as shown by increased left ventricular internal diameter at end-diastole and decreased fractional shortening. Decreased RLC phosphorylation by conventional or conditional cMLCK gene ablation did not affect troponin-I or myosin-binding protein-C phosphorylation in vivo. The extent of RLC phosphorylation was not changed by prolonged infusion of dobutamine or treatment with a β-adrenergic antagonist, suggesting that RLC is constitutively phosphorylated to maintain cardiac performance. Biochemical studies with myofilaments showed that RLC phosphorylation up to 90% was a random process. RLC is slowly dephosphorylated in both noncontracting hearts and isolated cardiac myocytes from adult mice. Electrically paced ventricular trabeculae restored RLC phosphorylation, which was increased to 0.91 mol of phosphate/mol of RLC with inhibition of myosin light chain phosphatase (MLCP). The two RLCs in each myosin appear to be readily available for phosphorylation by a soluble cMLCK, but MLCP activity limits the amount of constitutive RLC phosphorylation. MLCP with its regulatory subunit MYPT2 bound tightly to myofilaments was constitutively phosphorylated in beating hearts at a site that inhibits MLCP activity. Thus, the constitutive RLC phosphorylation is limited physiologically by low cMLCK activity in balance with low MLCP activity.

  3. Increased cardiac alpha-myosin heavy chain in left atria and decreased myocardial insulin-like growth factor (Igf-I) expression accompany low heart rate in hibernating grizzly bears.

    PubMed

    Barrows, N D; Nelson, O L; Robbins, C T; Rourke, B C

    2011-01-01

    Grizzly bears (Ursus arctos horribilis) tolerate extended periods of extremely low heart rate during hibernation without developing congestive heart failure or cardiac chamber dilation. Left ventricular atrophy and decreased left ventricular compliance have been reported in this species during hibernation. We evaluated the myocardial response to significantly reduced heart rate during hibernation by measuring relative myosin heavy-chain (MyHC) isoform expression and expression of a set of genes important to muscle plasticity and mass regulation in the left atria and left ventricles of active and hibernating bears. We supplemented these data with measurements of systolic and diastolic function via echocardiography in unanesthetized grizzly bears. Atrial strain imaging revealed decreased atrial contractility, decreased expansion/reservoir function (increased atrial stiffness), and decreased passive-filling function (increased ventricular stiffness) in hibernating bears. Relative MyHC-α protein expression increased significantly in the atrium during hibernation. The left ventricle expressed 100% MyHC-β protein in both groups. Insulin-like growth factor (IGF-I) mRNA expression was reduced by ∼50% in both chambers during hibernation, consistent with the ventricular atrophy observed in these bears. Interestingly, mRNA expression of the atrophy-related ubiquitin ligases Muscle Atrophy F-box (MAFBx) and Muscle Ring Finger 1 did not increase, nor did expression of myostatin or hypoxia-inducible factor 1α (HIF-1α). We report atrium-specific decreases of 40% and 50%, respectively, in MAFBx and creatine kinase mRNA expression during hibernation. Decreased creatine kinase expression is consistent with lowered energy requirements and could relate to reduced atrial emptying function during hibernation. Taken together with our hemodynamic assessment, these data suggest a potential downregulation of atrial chamber function during hibernation to prevent fatigue and dilation

  4. Increased cardiac alpha-myosin heavy chain in left atria and decreased myocardial insulin-like growth factor (Igf-I) expression accompany low heart rate in hibernating grizzly bears.

    PubMed

    Barrows, N D; Nelson, O L; Robbins, C T; Rourke, B C

    2011-01-01

    Grizzly bears (Ursus arctos horribilis) tolerate extended periods of extremely low heart rate during hibernation without developing congestive heart failure or cardiac chamber dilation. Left ventricular atrophy and decreased left ventricular compliance have been reported in this species during hibernation. We evaluated the myocardial response to significantly reduced heart rate during hibernation by measuring relative myosin heavy-chain (MyHC) isoform expression and expression of a set of genes important to muscle plasticity and mass regulation in the left atria and left ventricles of active and hibernating bears. We supplemented these data with measurements of systolic and diastolic function via echocardiography in unanesthetized grizzly bears. Atrial strain imaging revealed decreased atrial contractility, decreased expansion/reservoir function (increased atrial stiffness), and decreased passive-filling function (increased ventricular stiffness) in hibernating bears. Relative MyHC-α protein expression increased significantly in the atrium during hibernation. The left ventricle expressed 100% MyHC-β protein in both groups. Insulin-like growth factor (IGF-I) mRNA expression was reduced by ∼50% in both chambers during hibernation, consistent with the ventricular atrophy observed in these bears. Interestingly, mRNA expression of the atrophy-related ubiquitin ligases Muscle Atrophy F-box (MAFBx) and Muscle Ring Finger 1 did not increase, nor did expression of myostatin or hypoxia-inducible factor 1α (HIF-1α). We report atrium-specific decreases of 40% and 50%, respectively, in MAFBx and creatine kinase mRNA expression during hibernation. Decreased creatine kinase expression is consistent with lowered energy requirements and could relate to reduced atrial emptying function during hibernation. Taken together with our hemodynamic assessment, these data suggest a potential downregulation of atrial chamber function during hibernation to prevent fatigue and dilation

  5. Heavy Chain Diseases

    MedlinePlus

    ... cells often prevents proper absorption of nutrients from food (malabsorption), resulting in severe diarrhea and weight loss. A rare form that affects the respiratory tract also exists. Blood tests are done when alpha heavy chain disease is suspected. Serum protein electrophoresis, measurement of ...

  6. Stimulatory and inhibitory mechanisms of slow muscle-specific myosin heavy chain gene expression in fish: Transient and transgenic analysis of torafugu MYH{sub M86-2} promoter in zebrafish embryos

    SciTech Connect

    Asaduzzaman, Md.; Kinoshita, Shigeharu; Bhuiyan, Sharmin Siddique; Asakawa, Shuichi; Watabe, Shugo

    2013-04-01

    The myosin heavy chain gene, MYH{sub M86-2}, exhibited restricted expression in slow muscle fibers of torafugu embryos and larvae, suggesting its functional roles for embryonic and larval muscle development. However, the transcriptional mechanisms involved in its expression are still ambiguous. The present study is the first extensive analysis of slow muscle-specific MYH{sub M86-2} promoter in fish for identifying the cis-elements that are crucial for its expression. Combining both transient transfection and transgenic approaches, we demonstrated that the 2614 bp 5′-flanking sequences of MYH{sub M86-2} contain a sufficient promoter activity to drive gene expression specific to superficial slow muscle fibers. By cyclopamine treatment, we also demonstrated that the differentiation of such superficial slow muscle fibers depends on hedgehog signaling activity. The deletion analyses defined an upstream fragment necessary for repressing ectopic MYH{sub M86-2} expression in the fast muscle fibers. The transcriptional mechanism that prevents MYH{sub M86-2} expression in the fast muscle fibers is mediated through Sox6 binding elements. We also demonstrated that Sox6 may function as a transcriptional repressor of MYH{sub M86-2} expression. We further discovered that nuclear factor of activated T cells (NFAT) binding elements plays a key role and myocyte enhancer factor-2 (MEF2) binding elements participate in the transcriptional regulation of MYH{sub M86-2} expression. - Highlights: ► MYH{sub M86-2} is highly expressed in slow muscle fibers of torafugu embryos and larvae. ► MYH{sub M86-2} promoter activity depends on the hedgehog signaling. ► Sox6 binding elements inhibits MYH{sub M86-2} expression in fast muscle fibers. ► Sox6 elements function as transcriptional repressor of MYH{sub M86-2} promoter activity. ► NFAT and MEF2 binding elements play a key role for directing MYH{sub M86-2} expression.

  7. Dystrophin deficiency in canine X-linked muscular dystrophy in Japan (CXMDJ) alters myosin heavy chain expression profiles in the diaphragm more markedly than in the tibialis cranialis muscle

    PubMed Central

    Yuasa, Katsutoshi; Nakamura, Akinori; Hijikata, Takao; Takeda, Shinichi

    2008-01-01

    Background Skeletal muscles are composed of heterogeneous collections of muscle fiber types, the arrangement of which contributes to a variety of functional capabilities in many muscle types. Furthermore, skeletal muscles can adapt individual myofibers under various circumstances, such as disease and exercise, by changing fiber types. This study was performed to examine the influence of dystrophin deficiency on fiber type composition of skeletal muscles in canine X-linked muscular dystrophy in Japan (CXMDJ), a large animal model for Duchenne muscular dystrophy. Methods We used tibialis cranialis (TC) muscles and diaphragms of normal dogs and those with CXMDJ at various ages from 1 month to 3 years old. For classification of fiber types, muscle sections were immunostained with antibodies against fast, slow, or developmental myosin heavy chain (MHC), and the number and size of these fibers were analyzed. In addition, MHC isoforms were detected by gel electrophoresis. Results In comparison with TC muscles of CXMDJ, the number of fibers expressing slow MHC increased markedly and the number of fibers expressing fast MHC decreased with growth in the affected diaphragm. In populations of muscle fibers expressing fast and/or slow MHC(s) but not developmental MHC of CXMDJ muscles, slow MHC fibers were predominant in number and showed selective enlargement. Especially, in CXMDJ diaphragms, the proportions of slow MHC fibers were significantly larger in populations of myofibers with non-expression of developmental MHC. Analyses of MHC isoforms also indicated a marked increase of type I and decrease of type IIA isoforms in the affected diaphragm at ages over 6 months. In addition, expression of developmental (embryonic and/or neonatal) MHC decreased in the CXMDJ diaphragm in adults, in contrast to continuous high-level expression in affected TC muscle. Conclusion The CXMDJ diaphragm showed marked changes in fiber type composition unlike TC muscles, suggesting that the affected

  8. Thirteen is enough: the myosins of Dictyostelium discoideum and their light chains

    PubMed Central

    Kollmar, Martin

    2006-01-01

    Background Dictyostelium discoideum is one of the most famous model organisms for studying motile processes like cell movement, organelle transport, cytokinesis, and endocytosis. Members of the myosin superfamily, that move on actin filaments and power many of these tasks, are tripartite proteins consisting of a conserved catalytic domain followed by the neck region consisting of a different number of so-called IQ motifs for binding of light chains. The tails contain functional motifs that are responsible for the accomplishment of the different tasks in the cell. Unicellular organisms like yeasts contain three to five myosins while vertebrates express over 40 different myosin genes. Recently, the question has been raised how many myosins a simple multicellular organism like Dictyostelium would need to accomplish all the different motility-related tasks. Results The analysis of the Dictyostelium genome revealed thirteen myosins of which three have not been described before. The phylogenetic analysis of the motor domains of the new myosins placed Myo1F to the class-I myosins and Myo5A to the class-V myosins. The third new myosin, an orphan myosin, has been named MyoG. It contains an N-terminal extension of over 400 residues, and a tail consisting of four IQ motifs and two MyTH4/FERM (myosin tail homology 4/band 4.1, ezrin, radixin, and moesin) tandem domains that are separated by a long region containing an SH3 (src homology 3) domain. In contrast to previous analyses, an extensive comparison with 126 class-VII, class-X, class-XV, and class-XXII myosins now showed that MyoI does not group into any of these classes and should not be used as a model for class-VII myosins. The search for calmodulin related proteins revealed two further potential myosin light chains. One is a close homolog of the two EF-hand motifs containing MlcB, and the other, CBP14, phylogenetically groups to the ELC/RLC/calmodulin (essential light chain/regulatory light chain) branch of the tree

  9. Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle.

    PubMed

    Poetter, K; Jiang, H; Hassanzadeh, S; Master, S R; Chang, A; Dalakas, M C; Rayment, I; Sellers, J R; Fananapazir, L; Epstein, N D

    1996-05-01

    The muscle myosins and hexomeric proteins consisting of two heavy chains and two pairs of light chains, the latter called essential (ELC) and regulatory (RLC). The light chains stabilize the long alpha helical neck of the myosin head. Their function in striated muscle, however, is only partially understood. We report here the identification of distinct missense mutations in a skeletal/ventricular ELC and RLC, each of which are associated with a rare variant of cardiac hypertrophy as well as abnormal skeletal muscle. We show that myosin containing the mutant ELC has abnormal function, map the mutant residues on the three-dimensional structure of myosin and suggest that the mutations disrupt the stretch activation response of the cardiac papillary muscles.

  10. Regulatory and essential light chains of myosin rotate equally during contraction of skeletal muscle.

    PubMed

    Borejdo, Julian; Ushakov, Dmitry S; Akopova, Irina

    2002-06-01

    Myosin head consists of a globular catalytic domain and a long alpha-helical regulatory domain. The catalytic domain is responsible for binding to actin and for setting the stage for the main force-generating event, which is a "swing" of the regulatory domain. The proximal end of the regulatory domain contains the essential light chain 1 (LC1). This light chain can interact through the N and C termini with actin and myosin heavy chain. The interactions may inhibit the motion of the proximal end. In consequence the motion of the distal end (containing regulatory light chain, RLC) may be different from the motion of the proximal end. To test this possibility, the angular motion of LC1 and RLC was measured simultaneously during muscle contraction. Engineered LC1 and RLC were labeled with red and green fluorescent probes, respectively, and exchanged with native light chains of striated muscle. The confocal microscope was modified to measure the anisotropy from 0.3 microm(3) volume containing approximately 600 fluorescent cross-bridges. Static measurements revealed that the magnitude of the angular change associated with transition from rigor to relaxation was less than 5 degrees for both light chains. Cross-bridges were activated by a precise delivery of ATP from a caged precursor. The time course of the angular change consisted of a fast phase followed by a slow phase and was the same for both light chains. These results suggest that the interactions of LC1 do not inhibit the angular motion of the proximal end of the regulatory domain and that the whole domain rotates as a rigid body.

  11. Involvement of myosin light-chain kinase in endothelial cell retraction

    SciTech Connect

    Wysolmerski, R.B.; Lagunoff, D. )

    1990-01-01

    Permeabilized bovine pulmonary artery endothelial cell monolayers were used to investigate the mechanism of endothelial cell retraction. Postconfluent endothelial cells permeabilized with saponin retracted upon exposure to ATP and Ca{sup 2+}. Retraction was accompanied by thiophosphorylation of 19,000-Da myosin light chains when adenosine 5'-(gamma-({sup 35}S)thio)triphosphate was included in the medium. Both retraction and thiophosphorylation of myosin light chains exhibited a graded quantitative dependence on Ca{sup 2+}. When permeabilized monolayers were extracted in buffer D containing 100 mM KCl and 30 mM MgCl2 for 30 min, the cells failed to retract upon exposure to ATP and Ca{sup 2+}, and no thiophosphorylation of myosin light chains occurred. The ability both to retract and to thiophosphorylate myosin light chains was restored by the addition to the permeabilized, extracted cells of myosin light-chain kinase and calmodulin together but not by either alone. These studies indicate that endothelial cell retraction, as does smooth muscle contraction, depends on myosin light-chain kinase phosphorylation of myosin light chains.

  12. Interhead fluorescence energy transfer between probes attached to translationally equivalent sites on the regulatory light chains of scallop myosin.

    PubMed

    Chantler, P D; Tao, T

    1986-11-01

    Interhead fluorescence energy transfer studies between probes located at translationally equivalent sites on the two heads of scallop myosin indicates that the distance between such sites is no less than 50 A. Regulatory light chains, possessing either one (Mercenaria, chicken gizzard) or two (Loligo, rabbit skeletal) sulfhydryl groups, were modified either with 1,5-IAEDANS (N'-iodoacetyl-N'-(1-sulfo-5-n-naphthyl)ethylenediamine), as energy transfer donor, or with IAF (5-(iodoacetamido)fluorescein) or DABMI (4-dimethylaminophenylazophenyl-4'-maleimide), as energy transfer acceptor. The sulfhydryl groups on these light chains are located at different positions within the regulatory light-chain primary sequence; this enables one to probe a variety of locations, with respect to regulatory light-chain topology, on each myosin head. These independently modified regulatory light chains were added back to desensitized scallop myosin under a variety of conditions, including biphasic re-addition, the aim being to maximize the number of interhead energy transfer couples present. The efficiency of energy transfer was determined on the same samples by both steady-state and time-decay techniques. Results obtained by these two techniques were in good agreement with each other and indicated that the efficiency of energy transfer did not exceed 20% in any of the hybrids studied. Transfer efficiencies were invariant, irrespective of the presence or absence of MgATP, calcium or actin, either separately or in combination. Results using heavy meromyosin at low ionic strength were identical. It is shown that these results, in conjunction with the results of recent crosslinking studies performed on comparable myosin hybrids, may place certain restrictions on the configurations of the two heads of myosin.

  13. A Toxoplasma gondii class XIV myosin, expressed in Sf9 cells with a parasite co-chaperone, requires two light chains for fast motility.

    PubMed

    Bookwalter, Carol S; Kelsen, Anne; Leung, Jacqueline M; Ward, Gary E; Trybus, Kathleen M

    2014-10-31

    Many diverse myosin classes can be expressed using the baculovirus/Sf9 insect cell expression system, whereas others have been recalcitrant. We hypothesized that most myosins utilize Sf9 cell chaperones, but others require an organism-specific co-chaperone. TgMyoA, a class XIVa myosin from the parasite Toxoplasma gondii, is required for the parasite to efficiently move and invade host cells. The T. gondii genome contains one UCS family myosin co-chaperone (TgUNC). TgMyoA expressed in Sf9 cells was soluble and functional only if the heavy and light chain(s) were co-expressed with TgUNC. The tetratricopeptide repeat domain of TgUNC was not essential to obtain functional myosin, implying that there are other mechanisms to recruit Hsp90. Purified TgMyoA heavy chain complexed with its regulatory light chain (TgMLC1) moved actin in a motility assay at a speed of ∼1.5 μm/s. When a putative essential light chain (TgELC1) was also bound, TgMyoA moved actin at more than twice that speed (∼3.4 μm/s). This result implies that two light chains bind to and stabilize the lever arm, the domain that amplifies small motions at the active site into the larger motions that propel actin at fast speeds. Our results show that the TgMyoA domain structure is more similar to other myosins than previously appreciated and provide a molecular explanation for how it moves actin at fast speeds. The ability to express milligram quantities of a class XIV myosin in a heterologous system paves the way for detailed structure-function analysis of TgMyoA and identification of small molecule inhibitors.

  14. Regulatory Light Chain Mutations Associated with Cardiomyopathy Affect Myosin Mechanics and Kinetics

    PubMed Central

    Greenberg, Michael J.; Watt, James D.; Jones, Michelle; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta; Moore, Jeffrey R.

    2009-01-01

    The myosin regulatory light chain (RLC) wraps around the alpha helical neck region of myosin. This neck region has been proposed to act as a lever arm, amplifying small conformational changes in the myosin head to generate motion. The RLC serves an important structural role, supporting the myosin neck region and a modulatory role, tuning the kinetics of the actin myosin interaction. Given the importance of the RLC, it is not surprising that mutations of the RLC can lead to familial hypertrophic cardiomyopathy (FHC), the leading cause of sudden cardiac death in people under 30. Population studies identified two FHC mutations located near the cationic binding site of the RLC, R58Q and N47K. Although these mutations are close in sequence, they differ in clinical presentation and prognosis with R58Q showing a more severe phenotype. We examined the molecular based changes in myosin that are responsible for the disease phenotype by purifying myosin from transgenic mouse hearts expressing mutant myosins and examining actin filament sliding using the in vitro motility assay. We found that both R58Q and N47K showed reductions in force compared to the wild type that could result in compensatory hypertrophy. Furthermore, we observed a higher ATPase rate and an increased activation at submaximal calcium levels for the R58Q myosin that could lead to decreased efficiency and incomplete cardiac relaxation, potentially explaining the more severe phenotype for the R58Q mutation. PMID:18929571

  15. Structure of the light chain-binding domain of myosin V

    PubMed Central

    Terrak, Mohammed; Rebowski, Grzegorz; Lu, Renne C.; Grabarek, Zenon; Dominguez, Roberto

    2005-01-01

    Myosin V is a double-headed molecular motor involved in organelle transport. Two distinctive features of this motor, processivity and the ability to take extended linear steps of ≈36 nm along the actin helical track, depend on its unusually long light chain-binding domain (LCBD). The LCBD of myosin V consists of six tandem IQ motifs, which constitute the binding sites for calmodulin (CaM) and CaM-like light chains. Here, we report the 2-Å resolution crystal structure of myosin light chain 1 (Mlc1p) bound to the IQ2–IQ3 fragment of Myo2p, a myosin V from Saccharomyces cerevisiae. This structure, combined with FRET distance measurements between probes in various CaM–IQ complexes, comparative sequence analysis, and the previously determined structures of Mlc1p-IQ2 and Mlc1p-IQ4, allowed building a model of the LCBD of myosin V. The IQs of myosin V are distributed into three pairs. There appear to be specific cooperative interactions between light chains within each IQ pair, but little or no interaction between pairs, providing flexibility at their junctions. The second and third IQ pairs each present a light chain, whether CaM or a CaM-related molecule, bound in a noncanonical extended conformation in which the N-lobe does not interact with the IQ motif. The resulting free N-lobes may engage in protein–protein interactions. The extended conformation is characteristic of the single IQ of myosin VI and is common throughout the myosin superfamily. The model points to a prominent role of the LCBD in the function, regulation, and molecular interactions of myosin V. PMID:16120677

  16. Diffusion of myosin light chain kinase on actin: A mechanism to enhance myosin phosphorylation rates in smooth muscle.

    PubMed

    Hong, Feng; Brizendine, Richard K; Carter, Michael S; Alcala, Diego B; Brown, Avery E; Chattin, Amy M; Haldeman, Brian D; Walsh, Michael P; Facemyer, Kevin C; Baker, Josh E; Cremo, Christine R

    2015-10-01

    Smooth muscle myosin (SMM) light chain kinase (MLCK) phosphorylates SMM, thereby activating the ATPase activity required for muscle contraction. The abundance of active MLCK, which is tightly associated with the contractile apparatus, is low relative to that of SMM. SMM phosphorylation is rapid despite the low ratio of MLCK to SMM, raising the question of how one MLCK rapidly phosphorylates many SMM molecules. We used total internal reflection fluorescence microscopy to monitor single molecules of streptavidin-coated quantum dot-labeled MLCK interacting with purified actin, actin bundles, and stress fibers of smooth muscle cells. Surprisingly, MLCK and the N-terminal 75 residues of MLCK (N75) moved on actin bundles and stress fibers of smooth muscle cell cytoskeletons by a random one-dimensional (1-D) diffusion mechanism. Although diffusion of proteins along microtubules and oligonucleotides has been observed previously, this is the first characterization to our knowledge of a protein diffusing in a sustained manner along actin. By measuring the frequency of motion, we found that MLCK motion is permitted only if acto-myosin and MLCK-myosin interactions are weak. From these data, diffusion coefficients, and other kinetic and geometric considerations relating to the contractile apparatus, we suggest that 1-D diffusion of MLCK along actin (a) ensures that diffusion is not rate limiting for phosphorylation, (b) allows MLCK to locate to areas in which myosin is not yet phosphorylated, and (c) allows MLCK to avoid getting "stuck" on myosins that have already been phosphorylated. Diffusion of MLCK along actin filaments may be an important mechanism for enhancing the rate of SMM phosphorylation in smooth muscle.

  17. Diffusion of myosin light chain kinase on actin: A mechanism to enhance myosin phosphorylation rates in smooth muscle

    PubMed Central

    Hong, Feng; Brizendine, Richard K.; Carter, Michael S.; Alcala, Diego B.; Brown, Avery E.; Chattin, Amy M.; Haldeman, Brian D.; Walsh, Michael P.; Facemyer, Kevin C.; Baker, Josh E.

    2015-01-01

    Smooth muscle myosin (SMM) light chain kinase (MLCK) phosphorylates SMM, thereby activating the ATPase activity required for muscle contraction. The abundance of active MLCK, which is tightly associated with the contractile apparatus, is low relative to that of SMM. SMM phosphorylation is rapid despite the low ratio of MLCK to SMM, raising the question of how one MLCK rapidly phosphorylates many SMM molecules. We used total internal reflection fluorescence microscopy to monitor single molecules of streptavidin-coated quantum dot–labeled MLCK interacting with purified actin, actin bundles, and stress fibers of smooth muscle cells. Surprisingly, MLCK and the N-terminal 75 residues of MLCK (N75) moved on actin bundles and stress fibers of smooth muscle cell cytoskeletons by a random one-dimensional (1-D) diffusion mechanism. Although diffusion of proteins along microtubules and oligonucleotides has been observed previously, this is the first characterization to our knowledge of a protein diffusing in a sustained manner along actin. By measuring the frequency of motion, we found that MLCK motion is permitted only if acto–myosin and MLCK–myosin interactions are weak. From these data, diffusion coefficients, and other kinetic and geometric considerations relating to the contractile apparatus, we suggest that 1-D diffusion of MLCK along actin (a) ensures that diffusion is not rate limiting for phosphorylation, (b) allows MLCK to locate to areas in which myosin is not yet phosphorylated, and (c) allows MLCK to avoid getting “stuck” on myosins that have already been phosphorylated. Diffusion of MLCK along actin filaments may be an important mechanism for enhancing the rate of SMM phosphorylation in smooth muscle. PMID:26415568

  18. Various Themes of Myosin Regulation.

    PubMed

    Heissler, Sarah M; Sellers, James R

    2016-05-01

    Members of the myosin superfamily are actin-based molecular motors that are indispensable for cellular homeostasis. The vast functional and structural diversity of myosins accounts for the variety and complexity of the underlying allosteric regulatory mechanisms that determine the activation or inhibition of myosin motor activity and enable precise timing and spatial aspects of myosin function at the cellular level. This review focuses on the molecular basis of posttranslational regulation of eukaryotic myosins from different classes across species by allosteric intrinsic and extrinsic effectors. First, we highlight the impact of heavy and light chain phosphorylation. Second, we outline intramolecular regulatory mechanisms such as autoinhibition and subsequent activation. Third, we discuss diverse extramolecular allosteric mechanisms ranging from actin-linked regulatory mechanisms to myosin:cargo interactions. At last, we briefly outline the allosteric regulation of myosins with synthetic compounds.

  19. Myosin light-chain phosphatase regulates basal actomyosin oscillations during morphogenesis

    PubMed Central

    Valencia-Expósito, Andrea; Grosheva, Inna; Míguez, David G.; González-Reyes, Acaimo; Martín-Bermudo, María D.

    2016-01-01

    Contractile actomyosin networks generate forces that drive tissue morphogenesis. Actomyosin contractility is controlled primarily by reversible phosphorylation of the myosin-II regulatory light chain through the action of myosin kinases and phosphatases. While the role of myosin light-chain kinase in regulating contractility during morphogenesis has been largely characterized, there is surprisingly little information on myosin light-chain phosphatase (MLCP) function in this context. Here, we use live imaging of Drosophila follicle cells combined with mathematical modelling to demonstrate that the MLCP subunit flapwing (flw) is a key regulator of basal myosin oscillations and cell contractions underlying egg chamber elongation. Flw expression decreases specifically on the basal side of follicle cells at the onset of contraction and flw controls the initiation and periodicity of basal actomyosin oscillations. Contrary to previous reports, basal F-actin pulsates similarly to myosin. Finally, we propose a quantitative model in which periodic basal actomyosin oscillations arise in a cell-autonomous fashion from intrinsic properties of motor assemblies. PMID:26888436

  20. Myosin light-chain phosphatase regulates basal actomyosin oscillations during morphogenesis.

    PubMed

    Valencia-Expósito, Andrea; Grosheva, Inna; Míguez, David G; González-Reyes, Acaimo; Martín-Bermudo, María D

    2016-02-18

    Contractile actomyosin networks generate forces that drive tissue morphogenesis. Actomyosin contractility is controlled primarily by reversible phosphorylation of the myosin-II regulatory light chain through the action of myosin kinases and phosphatases. While the role of myosin light-chain kinase in regulating contractility during morphogenesis has been largely characterized, there is surprisingly little information on myosin light-chain phosphatase (MLCP) function in this context. Here, we use live imaging of Drosophila follicle cells combined with mathematical modelling to demonstrate that the MLCP subunit flapwing (flw) is a key regulator of basal myosin oscillations and cell contractions underlying egg chamber elongation. Flw expression decreases specifically on the basal side of follicle cells at the onset of contraction and flw controls the initiation and periodicity of basal actomyosin oscillations. Contrary to previous reports, basal F-actin pulsates similarly to myosin. Finally, we propose a quantitative model in which periodic basal actomyosin oscillations arise in a cell-autonomous fashion from intrinsic properties of motor assemblies.

  1. Minimum requirements for inhibition of smooth-muscle myosin light-chain kinase by synthetic peptides.

    PubMed Central

    Hunt, J T; Floyd, D M; Lee, V G; Little, D K; Moreland, S

    1989-01-01

    Although the amino acid residues that are important for peptide substrates of myosin light-chain kinase have been reported, those that are important for peptide inhibitors of this enzyme have not previously been investigated. Synthetic peptides based on the sequence Lys11-Lys12-Arg13-Ala-Ala-Arg16-Ala-Thr-Ser19 -Asn-Val21-Phe22-Ala of the chicken gizzard myosin light chain were tested as inhibitors of pig carotid-artery myosin light-chain kinase. The basic amino acid residues of the known myosin light-chain kinase inhibitor Lys-Lys-Arg-Ala-Ala-Arg-Ala-Thr-Ser-NH2 (IC50 = 14 microM) [Pearson, Misconi & Kemp (1986) J. Biol. Chem. 261, 25-27] were shown to be the important residues that contribute to inhibitor potency, as evidence by the finding that the hexapeptide Lys-Lys-Arg-Ala-Ala-Arg-NH2 had an IC50 value of 22 microM. This indicates that binding of the phosphorylatable serine residue to myosin light-chain kinase, which is of obvious importance for a substrate, does not enhance the potency of an inhibitor. With the aim of preparing more potent inhibitors, peptides Lys-Lys-Arg-Ala-Ala-Arg-Ala-Ala-Xaa-NH2 were prepared with a variety of amino acids substituted for the phosphorylatable serine residue. None of these peptides was a more potent inhibitor than the serine peptide. PMID:2920029

  2. Sequence analysis of the myosin regulatory light chain gene of the vestimentiferan Riftia pachyptila.

    PubMed

    Ravaux, J; Hassanin, A; Deutsch, J; Gaill, F; Markmann-Mulisch, U

    2001-01-24

    We have isolated and characterized a cDNA (DNA complementary to RNA) clone (Rf69) from the vestimentiferan Riftia pachyptila. The cDNA insert consists of 1169 base pairs. The aminoacid sequence deduced from the longest reading frame is 193 residues in length, and clearly characterized it as a myosin regulatory light chain (RLC). The RLC primary structure is described in relation to its function in muscle contraction. The comparison with other RLCs suggested that Riftia myosin is probably regulated through its RLC either by phosphorylation like the vertebrate smooth muscle myosins, and/or by Ca2+-binding like the mollusk myosins. Riftia RLC possesses a N-terminal extension lacking in all other species besides the earthworm Lumbricus terrestris. Aminoacid sequence comparisons with a number of RLCs from vertebrates and invertebrates revealed a relatively high identity score (64%) between Riftia RLC and the homologous gene from Lumbricus. The relationships between the members of the myosin RLCs were examined by two phylogenetic methods, i.e. distance matrix and maximum parsimony. The resulting trees depict the grouping of the RLCs according to their role in myosin activity regulation. In all trees, Riftia RLC groups with RLCs that depend on Ca2+-binding for myosin activity regulation. PMID:11223252

  3. Atwood's Heavy Chain

    ERIC Educational Resources Information Center

    Beeken, Paul

    2011-01-01

    While perusing various websites in search of a more challenging lab for my students, I came across a number of ideas where replacing the string in an Atwood's machine with a simple ball chain like the kind found in lamp pulls created an interesting system to investigate. The replacement of the string produced a nice nonuniform acceleration, but…

  4. Crystal Structure of a Phosphorylated Light Chain Domain of Scallop Smooth-Muscle Myosin

    SciTech Connect

    Kumar, V.S.; Robinson, H.; O-Neall-Hennessey, E.; Reshetnikova, L.; Brown, J. H.; Szent-Gyorgyi, A. G.; Cohen, C.

    2011-11-02

    We have determined the crystal structure of a phosphorylated smooth-muscle myosin light chain domain (LCD). This reconstituted LCD is of a sea scallop catch muscle myosin with its phosphorylatable regulatory light chain (RLC SmoA). In the crystal structure, Arg{sup 16}, an arginine residue that is present in this isoform but not in vertebrate smooth-muscle RLC, stabilizes the phosphorylation site. This arginine interacts with the carbonyl group of the phosphorylation-site serine in the unphosphorylated LCD (determined previously), and with the phosphate group when the serine is phosphorylated. However, the overall conformation of the LCD is essentially unchanged upon phosphorylation. This result provides additional evidence that phosphorylation of the RLC is unlikely to act as an on-switch in regulation of scallop catch muscle myosin.

  5. Purification, Characterization and Analysis of the Allergenic Properties of Myosin Light Chain in Procambarus clarkia.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Myosin light chain (MLC) plays a vital role in cell and muscle functions and has been identified as an allergen in close species. In this study, MLC with the molecular mass of 18kDa was purified from crayfish (Procambarus clarkii) muscle fibrils. Its physicochemical characterization showed that the...

  6. Reconstitution of heavy chain and light chain 1 in cardiac subfragment-1 from hyperthyroid and euthyroid rabbit hearts.

    PubMed

    Ueda, S; Yamaoki, K; Nagai, R; Yazaki, Y

    1983-01-01

    It is now established that cardiac myosin from hyperthyroid rabbit hearts (TXM) exhibits high Ca2+ ATPase activity. The high Ca2+ ATPase activity of TXM was completely retained in cardiac myosin subfragment-1 (S-1) (1.33 +/- 0.04 mumol Pi/mg per min; euthyroid, 0.51 +/- 0.04). Cardiac S-1 from hyperthyroid and euthyroid rabbits (TXS-1 and NS-1) had the same pattern in SDS-polyacrylamide gel electrophoresis. The possible influence of heavy and light chains of TXM on increasing the ATPase activity was examined by reconstitution in the S-1 preparation. Crosswise reconstitution was performed using cardiac S-1 heavy chain (90,000 daltons) and light chain 1 (LC1) (27,000 daltons) from hyperthyroid and euthyroid hearts. Reconstitution was verified by using radiolabeled LC1. More than 95% of S-1 was recovered with full ATPase activity. When TXS-1 was reconstituted with LC1 from euthyroid hearts, the reconstituted molecule retained high ATPase activity. On the other hand, NS-1 reconstituted with LC1 from hyperthyroid hearts failed to increase the ATPase activity. The ATPase activity of S-1 was determined by the source of the heavy chain. These results suggest that the high Ca2+ ATPase activity of cardiac myosin and S-1 from hyperthyroid animals arises from the molecular alteration of the heavy chain induced by thyroxine administration. PMID:6304826

  7. [Effect of myosin alkali light chains on myosin subfragment 1 interaction with actin in solution and in ghost muscle fiber].

    PubMed

    Levistkiĭ, D I; Borovikov, Iu S; Nikolaeva, O P; Golitsyna, N L; Poglazov, B F

    1990-09-01

    At low ionic strength (7-25 mM) Mg2(+)-ATPase of myosin subfragment 1 (S1) isoforms containing alkali light chain A1 [S1(A1)] is activated by actin 1.5-2.5 times as strongly as Mg2(+)-ATPase of S1 isoforms containing alkali light chain A2[S1(A2)]. Data from analytical ultracentrifugation suggest that at low ionic strength in the absence of ATP in solution S1(A1) displays a higher affinity for F-actin than S1(A2). Such a higher affinity of S1(A1) for F-actin was also demonstrated by experiments, in which the interaction of S1 isoforms fluorescently labeled by 1.5-IAEDANS with F-actin of ghost fibers (single glycerinated muscle fibers containing F-actin but devoid of myosin) was studied. Using polarization microfluorimetry, it was shown that the interaction of both S1 isoforms with ghost fiber F-actin induces similar changes in the parameters of polarized tryptophan fluorescence. At the same time the mobility of the fluorescent probe, 1.5-IAEDANS, specifically attached to the SH-group of Cys-374 in the C-terminal region of action is markedly decreased by S1(A1) and is only slightly affected by S1(A2). The data obtained suggest that S1(A1) and S1(A2) interact with the C-terminal region of the actin molecule in different ways, i.e. S1(A1) is attached more firmly than S1(A2). This may be due to the existence of contacts between the alkali light chain of A1 of S1(A1) and the C-terminal region of actin as well as to the absence of such contacts in the case of S1(A2).

  8. Tumor Stiffness Is Unrelated to Myosin Light Chain Phosphorylation in Cancer Cells

    PubMed Central

    Fry, Madeline; Greene, Madelyne; Chernaya, Olga; Hu, Wen-Yang; Chew, Teng-Leong; Mahmud, Nadim; Kadkol, Shrihari S.; Glover, Sarah; Prins, Gail; Strakova, Zuzana; de Lanerolle, Primal

    2013-01-01

    Many tumors are stiffer than their surrounding tissue. This increase in stiffness has been attributed, in part, to a Rho-dependent elevation of myosin II light chain phosphorylation. To characterize this mechanism further, we studied myosin light chain kinase (MLCK), the main enzyme that phosphorylates myosin II light chains. We anticipated that increases in MLCK expression and activity would contribute to the increased stiffness of cancer cells. However, we find that MLCK mRNA and protein levels are substantially less in cancer cells and tissues than in normal cells. Consistent with this observation, cancer cells contract 3D collagen matrices much more slowly than normal cells. Interestingly, inhibiting MLCK or Rho kinase did not affect the 3D gel contractions while blebbistatin partially and cytochalasin D maximally inhibited contractions. Live cell imaging of cells in collagen gels showed that cytochalasin D inhibited filopodia-like projections that formed between cells while a MLCK inhibitor had no effect on these projections. These data suggest that myosin II phosphorylation is dispensable in regulating the mechanical properties of tumors. PMID:24224004

  9. A small-molecule inhibitor of T. gondii motility induces the posttranslational modification of myosin light chain-1 and inhibits myosin motor activity.

    PubMed

    Heaslip, Aoife T; Leung, Jacqueline M; Carey, Kimberly L; Catti, Federica; Warshaw, David M; Westwood, Nicholas J; Ballif, Bryan A; Ward, Gary E

    2010-01-15

    Toxoplasma gondii is an obligate intracellular parasite that enters cells by a process of active penetration. Host cell penetration and parasite motility are driven by a myosin motor complex consisting of four known proteins: TgMyoA, an unconventional Class XIV myosin; TgMLC1, a myosin light chain; and two membrane-associated proteins, TgGAP45 and TgGAP50. Little is known about how the activity of the myosin motor complex is regulated. Here, we show that treatment of parasites with a recently identified small-molecule inhibitor of invasion and motility results in a rapid and irreversible change in the electrophoretic mobility of TgMLC1. While the precise nature of the TgMLC1 modification has not yet been established, it was mapped to the peptide Val46-Arg59. To determine if the TgMLC1 modification is responsible for the motility defect observed in parasites after compound treatment, the activity of myosin motor complexes from control and compound-treated parasites was compared in an in vitro motility assay. TgMyoA motor complexes containing the modified TgMLC1 showed significantly decreased motor activity compared to control complexes. This change in motor activity likely accounts for the motility defects seen in the parasites after compound treatment and provides the first evidence, in any species, that the mechanical activity of Class XIV myosins can be modulated by posttranslational modifications to their associated light chains.

  10. Heterogeneity of myofibrillar proteins in lobster fast and slow muscles: variants of troponin, paramyosin, and myosin light chains comprise four distinct protein assemblages

    SciTech Connect

    Mykles, D.L.

    1985-01-01

    Fast and slow muscles from the claws and abdomen of the American lobster Homarus americanus were examined for adenosine triphosphatase (ATPase) activity and for differences in myofibrillar proteins. Both myosin and actomyosin ATPase were correlated with fiber composition and contractile speed. Four distinct patterns of myofibrilla proteins observed in sodium dodecyl sulfate-polyacrylamide gels were distinguished by different assemblages of regulatory and contractile protein variants. A total of three species of troponin-T, five species of troponin-I, and three species of troponin-C were observed. Lobster myosins contained two groups of light chains (LC), termed alpha and beta. There were three ..cap alpha..-LC variants and two ..beta..-LC variants. There were no apparent differences in myosin heavy chain, actin, and tropomyosin. Only paramyosin showed a pattern completely consistent with muscle fiber type: slow fibers contained a species (105 kD) slightly smaller than the principle variant (110 kD) in fast fibers. It is proposed that the type of paramyosin present could provide a biochemical marker to identify the fiber composition of muscles that have not been fully characterized. The diversity of troponin and myosin LC variants suggests that subtle differences in physiological performance exist within the broader categories of fast- and slow-twitch muscles. 31 references, 6 figures, 2 tables.

  11. Two Cases of Heavy Chain MGUS

    PubMed Central

    Meijers, Björn; Delforge, Michel; Verhoef, Gregor; Poesen, Koen

    2016-01-01

    Heavy chain diseases are rare variants of B-cell lymphomas that produce one of three classes of immunoglobulin heavy chains, without corresponding light chains. We describe two patients with asymptomatic heavy chain monoclonal gammopathy. The first patient is a 51-year-old woman with alpha paraprotein on serum immunofixation. The second case is a 46-year-old woman with gamma paraprotein on urine immunofixation. Neither patient had corresponding monoclonal light chains. Workup for multiple myeloma and lymphoma was negative in both patients. These two cases illustrate that heavy chain monoclonal gammopathy can exist in the absence of clinically apparent malignancy. Only a few reports of “heavy chain MGUS” have been described before. In the absence of specialized guidelines, we suggest a similar follow-up as for MGUS, while taking into account the higher probability of progression to lymphoma than to myeloma. PMID:27213064

  12. Two Cases of Heavy Chain MGUS.

    PubMed

    Van Keer, Jan; Meijers, Björn; Delforge, Michel; Verhoef, Gregor; Poesen, Koen

    2016-01-01

    Heavy chain diseases are rare variants of B-cell lymphomas that produce one of three classes of immunoglobulin heavy chains, without corresponding light chains. We describe two patients with asymptomatic heavy chain monoclonal gammopathy. The first patient is a 51-year-old woman with alpha paraprotein on serum immunofixation. The second case is a 46-year-old woman with gamma paraprotein on urine immunofixation. Neither patient had corresponding monoclonal light chains. Workup for multiple myeloma and lymphoma was negative in both patients. These two cases illustrate that heavy chain monoclonal gammopathy can exist in the absence of clinically apparent malignancy. Only a few reports of "heavy chain MGUS" have been described before. In the absence of specialized guidelines, we suggest a similar follow-up as for MGUS, while taking into account the higher probability of progression to lymphoma than to myeloma. PMID:27213064

  13. Structure of the Single-lobe Myosin Light Chain C in Complex with the Light Chain-binding Domains of Myosin-1C Provides Insights into Divergent IQ Motif Recognition.

    PubMed

    Langelaan, David N; Liburd, Janine; Yang, Yidai; Miller, Emily; Chitayat, Seth; Crawley, Scott W; Côté, Graham P; Smith, Steven P

    2016-09-01

    Myosin light chains are key regulators of class 1 myosins and typically comprise two domains, with calmodulin being the archetypal example. They bind IQ motifs within the myosin neck region and amplify conformational changes in the motor domain. A single lobe light chain, myosin light chain C (MlcC), was recently identified and shown to specifically bind to two sequentially divergent IQ motifs of the Dictyostelium myosin-1C. To provide a molecular basis of this interaction, the structures of apo-MlcC and a 2:1 MlcC·myosin-1C neck complex were determined. The two non-functional EF-hand motifs of MlcC pack together to form a globular four-helix bundle that opens up to expose a central hydrophobic groove, which interacts with the N-terminal portion of the divergent IQ1 and IQ2 motifs. The N- and C-terminal regions of MlcC make critical contacts that contribute to its specific interactions with the myosin-1C divergent IQ motifs, which are contacts that deviate from the traditional mode of calmodulin-IQ recognition.

  14. Rapid activation by 3,5,3'-L-triiodothyronine of adenosine 5'-monophosphate-activated protein kinase/acetyl-coenzyme a carboxylase and akt/protein kinase B signaling pathways: relation to changes in fuel metabolism and myosin heavy-chain protein content in rat gastrocnemius muscle in vivo.

    PubMed

    de Lange, Pieter; Senese, Rosalba; Cioffi, Federica; Moreno, Maria; Lombardi, Assunta; Silvestri, Elena; Goglia, Fernando; Lanni, Antonia

    2008-12-01

    T3 stimulates metabolic rate in many tissues and induces changes in fuel use. The pathways by which T3 induces metabolic/structural changes related to altered fuel use in skeletal muscle have not been fully clarified. Gastrocnemius muscle (isolated at different time points after a single injection of T3 into hypothyroid rats), displayed rapid inductions of AMP-activated protein kinase (AMPK) phosphorylation (threonine 172; within 6 h) and acetyl-coenzyme A carboxylase phosphorylation (serine 79; within 12 h). As a consequence, increases occurred in mitochondrial fatty acid oxidation and carnitine palmitoyl transferase activity. Concomitantly, T3 stimulated signaling toward increased glycolysis through a rapid increase in Akt/protein kinase B (serine 473) phosphorylation (within 6 h) and a directly related increase in the activity of phosphofructokinase. The kinase specificity of the above effects was verified by treatment with inhibitors of AMPK and Akt activity (compound C and wortmannin, respectively). In contrast, glucose transporter 4 translocation to the membrane (activated by T3 within 6 h) was maintained when either AMPK or Akt activity was inhibited. The metabolic changes were accompanied by a decline in myosin heavy-chain Ib protein [causing a shift toward the fast-twitch (glycolytic) phenotype]. The increases in AMPK and acetyl-coenzyme A carboxylase phosphorylation were transient events, both levels declining from 12 h after the T3 injection, but Akt phosphorylation remained elevated until at least 48h after the injection. These data show that in skeletal muscle, T3 stimulates both fatty acid and glucose metabolism through rapid activations of the associated signaling pathways involving AMPK and Akt/protein kinase B.

  15. Aurora B but Not Rho/MLCK Signaling Is Required for Localization of Diphosphorylated Myosin II Regulatory Light Chain to the Midzone in Cytokinesis

    PubMed Central

    Kondo, Tomo; Isoda, Rieko; Ookusa, Takayuki; Kamijo, Keiju; Hamao, Kozue; Hosoya, Hiroshi

    2013-01-01

    Non-muscle myosin II is stimulated by monophosphorylation of its regulatory light chain (MRLC) at Ser19 (1P-MRLC). MRLC diphosphorylation at Thr18/Ser19 (2P-MRLC) further enhances the ATPase activity of myosin II. Phosphorylated MRLCs localize to the contractile ring and regulate cytokinesis as subunits of activated myosin II. Recently, we reported that 2P-MRLC, but not 1P-MRLC, localizes to the midzone independently of myosin II heavy chain during cytokinesis in cultured mammalian cells. However, the mechanism underlying the distinct localization of 1P- and 2P-MRLC during cytokinesis is unknown. Here, we showed that depletion of the Rho signaling proteins MKLP1, MgcRacGAP, or ECT2 inhibited the localization of 1P-MRLC to the contractile ring but not the localization of 2P-MRLC to the midzone. In contrast, depleting or inhibiting a midzone-localizing kinase, Aurora B, perturbed the localization of 2P-MRLC to the midzone but not the localization of 1P-MRLC to the contractile ring. We did not observe any change in the localization of phosphorylated MRLC in myosin light-chain kinase (MLCK)-inhibited cells. Furrow regression was observed in Aurora B- and 2P-MRLC-inhibited cells but not in 1P-MRLC-perturbed dividing cells. Furthermore, Aurora B bound to 2P-MRLC in vitro and in vivo. These results suggest that Aurora B, but not Rho/MLCK signaling, is essential for the localization of 2P-MRLC to the midzone in dividing HeLa cells. PMID:23951055

  16. Regulatory light chain mutants linked to heart disease modify the cardiac myosin lever arm.

    PubMed

    Burghardt, Thomas P; Sikkink, Laura A

    2013-02-19

    Myosin is the chemomechanical energy transducer in striated heart muscle. The myosin cross-bridge applies impulsive force to actin while consuming ATP chemical energy to propel myosin thick filaments relative to actin thin filaments in the fiber. Transduction begins with ATP hydrolysis in the cross-bridge driving rotary movement of a lever arm converting torque into linear displacement. Myosin regulatory light chain (RLC) binds to the lever arm and modifies its ability to translate actin. Gene sequencing implicated several RLC mutations in heart disease, and three of them are investigated here using photoactivatable GFP-tagged RLC (RLC-PAGFP) exchanged into permeabilized papillary muscle fibers. A single-lever arm probe orientation is detected in the crowded environment of the muscle fiber by using RLC-PAGFP with dipole orientation deduced from the three-spatial dimension fluorescence emission pattern of the single molecule. Symmetry and selection rules locate dipoles in their half-sarcomere, identify those at the minimal free energy, and specify active dipole contraction intermediates. Experiments were performed in a microfluidic chamber designed for isometric contraction, total internal reflection fluorescence detection, and two-photon excitation second harmonic generation to evaluate sarcomere length. The RLC-PAGFP reports apparently discretized lever arm orientation intermediates in active isometric fibers that on average produce the stall force. Disease-linked mutants introduced into RLC move intermediate occupancy further down the free energy gradient, implying lever arms rotate more to reach stall force because mutant RLC increases lever arm shear strain. A lower free energy intermediate occupancy involves a lower energy conversion efficiency in the fiber relating a specific myosin function modification to the disease-implicated mutant.

  17. PKC-mediated cerebral vasoconstriction: Role of myosin light chain phosphorylation versus actin cytoskeleton reorganization.

    PubMed

    El-Yazbi, Ahmed F; Abd-Elrahman, Khaled S; Moreno-Dominguez, Alejandro

    2015-06-15

    Defective protein kinase C (PKC) signaling has been suggested to contribute to abnormal vascular contraction in disease conditions including hypertension and diabetes. Our previous work on agonist and pressure-induced cerebral vasoconstriction implicated PKC as a major contributor to force production in a myosin light chain (LC20) phosphorylation-independent manner. Here, we used phorbol dibutyrate to selectively induce a PKC-dependent constriction in rat middle cerebral arteries and delineate the relative contribution of different contractile mechanisms involved. Specifically, we employed an ultra-sensitive 3-step western blotting approach to detect changes in the content of phosphoproteins that regulate myosin light chain phosphatase (MLCP) activity, thin filament activation, and actin cytoskeleton reorganization. Data indicate that PKC activation evoked a greater constriction at a similar level of LC20 phosphorylation achieved by 5-HT. PDBu-evoked constriction persisted in the presence of Gö6976, a selective inhibitor of Ca(2+)-dependent PKC, and in the absence of extracellular Ca(2+). Biochemical evidence indicates that either + or - extracellular Ca(2+), PDBu (i) inhibits MLCP activity via the phosphorylation of myosin targeting subunit of myosin phosphatase (MYPT1) and C-kinase potentiated protein phosphatase-1 inhibitor (CPI-17), (ii) increases the phosphorylation of paxillin and heat shock protein 27 (HSP27), and reduces G-actin content, and (iii) does not change the phospho-content of the thin filament proteins, calponin and caldesmon. PDBu-induced constriction was more sensitive to disruption of actin cytoskeleton compared to inhibition of cross-bridge cycling. In conclusion, this study provided evidence for the pivotal contribution of cytoskeletal actin polymerization in force generation following PKC activation in cerebral resistance arteries. PMID:25931148

  18. Myosin light chain kinase-dependent microvascular hyperpermeability in thermal injury.

    PubMed

    Huang, Qiaobing; Xu, Wenjuan; Ustinova, Elena; Wu, Mack; Childs, Ed; Hunter, Felicia; Yuan, Sarah

    2003-10-01

    Although the critical role of systemic inflammatory edema in the development of multiple organ failure in patients with massive burns has been fully recognized, the precise mechanisms responsible for the accumulation of blood fluid and proteins in tissues remote from the burn wound are poorly understood. The aim of this study was to test the hypothesis that circulating factors released during thermal injury cause microvascular leakage by triggering endothelial cell contraction and barrier dysfunction. A third-degree scald burn was induced in rats on the dorsal skin covering 25% total body surface area. The microcirculation and transvascular flux of albumin were observed in the rat mesentery using intravital fluorescence microscopy. The direct effect of circulating factors on microvascular barrier function was assessed by measuring the apparent permeability coefficient of albumin in isolated rat mesenteric venules during perfusion of plasma freshly withdrawn from burned rats. The in vivo study showed that the transvenular flux of albumin was significantly increased over a 6-h period with a maximal response seen at 3 h postburn. Importantly, perfusion of noninjured venules with burn plasma induced a time-dependent increase in albumin permeability. Pharmacological inhibition of protein kinase C, Src tyrosine kinases, or mast cell activation did not significantly affect the hyperpermeability response; however, blockage of myosin light chain phosphorylation with the myosin light chain kinase inhibitor ML-7 greatly attenuated the burn-induced increase in venular permeability in a dose-related pattern. The results support a role for endogenous circulating factors in microvascular leakage during burns. Myosin light chain phosphorylation-dependent endothelial contractile response may serve as an end-point effector leading to microvascular barrier dysfunction. PMID:14501951

  19. EPR and CD spectroscopy of fast myosin light chain conformation during binding of trifluoperazine.

    PubMed

    Huang, W; Wilson, G J; Brown, L J; Lam, H; Hambly, B D

    1998-10-15

    The conformations of isolated rabbit fast myosin light chains (LCs) were modified using trifluoperazine (TFP), the hydrophobic calmodulin inhibitor. CD spectroscopy showed that TFP altered secondary structural content of the LCs, with half-maximal effects at TFP concentrations of approximately 14-50 microM, which is within the range required to alter muscle fiber contraction in both agonistic and antagonistic ways [Kurebayashi, N. & Ogawa, Y. (1988) J. Physiol. 403, 407-424]. EPR spectroscopy provided structural information from paramagnetic probes on C-terminal domain surfaces. In the absence of TFP, tauR (rotational correlation time) was 1.6 ns for both alkali light chains (ALCs) and 1.8 ns for light chain 2 (LC2). This was faster than expected for proteins of this size (approximately 10 ns). TFP progressively recruited the probes into populations with tauR sevenfold to 12-fold slower, with half-maximal effects at a TFP concentration of approximately 370-800 microM. The differences probably indicate that CD spectroscopy detects changes in protein conformation due to 'specific' TFP binding at the LC hydrophobic core, while less specific binding at higher TFP concentrations is required to effect conformational changes on the protein surfaces near the paramagnetic probes. TFP binding was generally not cooperative. Comparative sequence analysis between calmodulin, troponin C, and myosin LCs indicated considerable conservation between residues expected to bind TFP.

  20. Interplay between the effects of a Protein Kinase C phosphomimic (T204E) and a dilated cardiomyopathy mutation (K211Δ or R206W) in rat cardiac troponin T blunts the magnitude of muscle length-mediated crossbridge recruitment against the β-myosin heavy chain background.

    PubMed

    Michael, John Jeshurun; Gollapudi, Sampath K; Chandra, Murali

    2016-06-01

    Failing hearts of dilated cardiomyopathy (DCM)-patients reveal systolic dysfunction and upregulation of several Protein Kinase C (PKC) isoforms. Recently, we demonstrated that the functional effects of T204E, a PKC phosphomimic of cardiac troponin T (TnT), were differently modulated by α- and β-myosin heavy chain (MHC) isoforms. Therefore, we hypothesized that the interplay between the effects of T204E and a DCM-linked mutation (K211Δ or R206W) in TnT would modulate contractile parameters linked-to systolic function in an MHC-dependent manner. To test our hypothesis, five TnT variants (wildtype, K211Δ, K211Δ + T204E, R206W, and R206W + T204E) were generated and individually reconstituted into demembranated cardiac muscle fibers from normal (α-MHC) and propylthiouracil-treated (β-MHC) rats. Steady-state and mechano-dynamic measurements were performed on reconstituted fibers. Myofilament Ca(2+) sensitivity (pCa50) was decreased by both K211Δ and R206W to a greater extent in α-MHC fibers (~0.15 pCa units) than in β-MHC fibers (~0.06 pCa units). However, T204E exacerbated the attenuating influence of both mutants on pCa50 only in β-MHC fibers. Moreover, the magnitude of muscle length (ML)-mediated crossbridge (XB) recruitment was decreased by K211Δ + T204E (~47 %), R206W (~34 %), and R206W + T204E (~36 %) only in β-MHC fibers. In relevance to human hearts, which predominantly express β-MHC, our data suggest that the interplay between the effects of DCM mutations, PKC phosphomimic in TnT, and β-MHC lead to systolic dysfunction by attenuating pCa50 and the magnitude of ML-mediated XB recruitment. PMID:27411801

  1. Myosin Heavy Chain Composition of the Human Genioglossus Muscle

    ERIC Educational Resources Information Center

    Daugherty, Megan; Luo, Qingwei; Sokoloff, Alan J.

    2012-01-01

    Background: The human tongue muscle genioglossus (GG) is active in speech, swallowing, respiration, and oral transport, behaviors encompassing a wide range of tongue shapes and movement speeds. Studies demonstrate substantial diversity in patterns of human GG motor unit activation, but whether this is accompanied by complex expression of muscle…

  2. Calcium-dependent regulation of the motor activity of recombinant full-length Physarum myosin.

    PubMed

    Zhang, Ying; Kawamichi, Hozumi; Tanaka, Hideyuki; Yoshiyama, Shinji; Kohama, Kazuhiro; Nakamura, Akio

    2012-08-01

    We successfully synthesized full-length and the mutant Physarum myosin and heavy meromyosin (HMM) constructs associated with Physarum regulatory light chain and essential light chain (PhELC) using Physarum myosin heavy chain in Sf-9 cells, and examined their Ca(2+)-mediated regulation. Ca(2+) inhibited the motility and ATPase activities of Physarum myosin and HMM. The Ca(2+) effect is also reversible at the in vitro motility of Physarum myosin. We demonstrated that full-length myosin increases the Ca(2+) inhibition more effectively than HMM. Furthermore, Ca(2+) did not affect the motility and ATPase activities of the mutant Physarum myosin with PhELC that lost Ca(2+)-binding ability. Therefore, we conclude that PhELC plays a critical role in Ca(2+)-dependent regulation of Physarum myosin.

  3. Endothelial cell substrate stiffness influences neutrophil transmigration via myosin light chain kinase-dependent cell contraction.

    PubMed

    Stroka, Kimberly M; Aranda-Espinoza, Helim

    2011-08-11

    A vast amount of work has been dedicated to the effects of shear flow and cytokines on leukocyte transmigration. However, no studies have explored the effects of substrate stiffness on transmigration. Here, we investigated important aspects of endothelial cell contraction-mediated neutrophil transmigration using an in vitro model of the vascular endothelium. We modeled blood vessels of varying mechanical properties using fibronectin-coated polyacrylamide gels of varying physiologic stiffness, plated with human umbilical vein endothelial cell (HUVEC) monolayers, which were activated with tumor necrosis factor-α. Interestingly, neutrophil transmigration increased with increasing substrate stiffness below the endothelium. HUVEC intercellular adhesion molecule-1 expression, stiffness, cytoskeletal arrangement, morphology, and cell-substrate adhesion could not account for the dependence of transmigration on HUVEC substrate stiffness. We also explored the role of cell contraction and observed that large holes formed in endothelium on stiff substrates several minutes after neutrophil transmigration reached a maximum. Further, suppression of contraction through inhibition of myosin light chain kinase normalized the effects of substrate stiffness by reducing transmigration and eliminating hole formation in HUVECs on stiff substrates. These results provide strong evidence that neutrophil transmigration is regulated by myosin light chain kinase-mediated endothelial cell contraction and that this event depends on subendothelial cell matrix stiffness. PMID:21652678

  4. The role of the N-terminus of the myosin essential light chain in cardiac muscle contraction

    PubMed Central

    Kazmierczak, Katarzyna; Xu, Yuanyuan; Jones, Michelle; Guzman, Georgianna; Hernandez, Olga M.; Kerrick, W. Glenn L.; Szczesna-Cordary, Danuta

    2011-01-01

    Summary To study the regulation of cardiac muscle contraction by the myosin essential light chain (ELC) and the physiological significance of its N-terminal extension, we generated transgenic (Tg) mice partially replacing the endogenous mouse ventricular ELC with either the human ventricular ELC wild type (Tg-WT) or its 43 amino acid N-terminal truncation mutant (Tg-Δ43) in the murine hearts. The mutant protein is similar in sequence to the short ELC variant present in skeletal muscle and the ELC protein distribution in Tg-Δ43 ventricles resembles that of fast skeletal muscle. Cardiac muscle preparations from Tg-Δ43 mice demonstrate reduced force per cross-sectional area of muscle, which is likely caused by a reduced number of force generating myosin cross-bridges and/or by decreased force per cross-bridge. As the mice grow older, the contractile force per cross-sectional area further decreases in Tg-Δ43 mice and the mutant hearts develop a phenotype of non-pathologic hypertrophy while still maintaining normal cardiac performance. The myocardium of older Tg-Δ43 mice also exhibits reduced myosin content. Our results suggest that the role of the N-terminal ELC extension is to maintain the integrity of myosin and to modulate force generation by decreasing myosin neck region compliance and promoting strong cross-bridge formation and/or by enhancing myosin attachment to actin. PMID:19361417

  5. Functions of Myosin Light Chain-2 (MYL2) In Cardiac Muscle and Disease

    PubMed Central

    Sheikh, Farah; Lyon, Robert C.; Chen, Ju

    2015-01-01

    Myosin light chain-2 (MYL2, also called MLC-2) is an ∼19 kDa sarcomeric protein that belongs to the EF-hand calcium binding protein superfamily and exists as three major isoforms encoded by three distinct genes in mammalian striated muscle. Each of the three different MLC-2 genes (MLC-2f; fast twitch skeletal isoform, MLC-2v; cardiac ventricular and slow twitch skeletal isoform, MLC-2a; cardiac atrial isoform) has a distinct developmental expression pattern in mammals. Genetic loss-of-function studies in mice demonstrated an essential role for cardiac isoforms of MLC-2, MLC-2v and MLC-2a, in cardiac contractile function during early embryogenesis. In the adult heart, MLC-2v function is regulated by phosphorylation, which displays a specific expression pattern (high in epicardium and low in endocardium) across the heart. These data along with new data from computational models, genetic mouse models, and human studies have revealed a direct role for MLC-2v phosphorylation in cross-bridge cycling kinetics, calcium-dependent cardiac muscle contraction, cardiac torsion, cardiac function and various cardiac diseases. This review focuses on the regulatory functions of MLC-2 in the embryonic and adult heart, with an emphasis on phosphorylation-driven actions of MLC-2v in adult cardiac muscle, which provide new insights into mechanisms regulating myosin cycling kinetics and human cardiac diseases. PMID:26074085

  6. Myosin light chain kinase accelerates vesicle endocytosis at the calyx of Held synapse.

    PubMed

    Yue, Hai-Yuan; Xu, Jianhua

    2014-01-01

    Neuronal activity triggers endocytosis at synaptic terminals to retrieve efficiently the exocytosed vesicle membrane, ensuring the membrane homeostasis of active zones and the continuous supply of releasable vesicles. The kinetics of endocytosis depends on Ca(2+) and calmodulin which, as a versatile signal pathway, can activate a broad spectrum of downstream targets, including myosin light chain kinase (MLCK). MLCK is known to regulate vesicle trafficking and synaptic transmission, but whether this kinase regulates vesicle endocytosis at synapses remains elusive. We investigated this issue at the rat calyx of Held synapse, where previous studies using whole-cell membrane capacitance measurement have characterized two common forms of Ca(2+)/calmodulin-dependent endocytosis, i.e., slow clathrin-dependent endocytosis and rapid endocytosis. Acute inhibition of MLCK with pharmacological agents was found to slow down the kinetics of both slow and rapid forms of endocytosis at calyces. Similar impairment of endocytosis occurred when blocking myosin II, a motor protein that can be phosphorylated upon MLCK activation. The inhibition of endocytosis was not accompanied by a change in Ca(2+) channel current. Combined inhibition of MLCK and calmodulin did not induce synergistic inhibition of endocytosis. Together, our results suggest that activation of MLCK accelerates both slow and rapid forms of vesicle endocytosis at nerve terminals, likely by functioning downstream of Ca(2+)/calmodulin.

  7. Dictyostelium discoideum myosin: Isolation and characterization of cDNAs encoding the essential light chain

    SciTech Connect

    Chisholm, R.L.; Rushforth, A.M.; Pollenz, R.S.; Kuczmarski, E.R.; Tafuri, S.R.

    1988-02-01

    The authors used an antibody specific for Dictyostelium discoideum myosin to screen a lambdagt11 cDNA expression library to obtain cDNA clones which encode the Dictyostelium essential myosin light chain (EMLC). The amino acid sequence predicted from the sequence of the cDNA clone showed 31.5% identity with the amino acid sequence of the chicken EMLC. Comparisons of the Dictyostelium EMLC, a nonmuscle cell type, with EMLC sequences from similar MLCs of skeletal- and smooth-muscle origin, showed distinct regions of homology. Much of the observed homology was localized to regions corresponding to consensus Ca/sup 2 +/-binding of E-F hand domains. Southern blot analysis suggested that the Dictyostelium genome contains a single gene encoding the EMLC. Examination of the pattern of EMLC mRNA expression showed that a significant increase in EMLC message levels occurred during the first few hours of development, coinciding with increased actin expression and immediately preceding the period of maximal chemotactic activity.

  8. Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells.

    PubMed

    Chen, Guokai; Hou, Zhonggang; Gulbranson, Daniel R; Thomson, James A

    2010-08-01

    Human ESCs are the pluripotent precursor of the three embryonic germ layers. Human ESCs exhibit basal-apical polarity, junctional complexes, integrin-dependent matrix adhesion, and E-cadherin-dependent cell-cell adhesion, all characteristics shared by the epiblast epithelium of the intact mammalian embryo. After disruption of epithelial structures, programmed cell death is commonly observed. If individualized human ESCs are prevented from reattaching and forming colonies, their viability is significantly reduced. Here, we show that actin-myosin contraction is a critical effector of the cell death response to human ESC dissociation. Inhibition of myosin heavy chain ATPase, downregulation of myosin heavy chain, and downregulation of myosin light chain all increase survival and cloning efficiency of individualized human ESCs. ROCK inhibition decreases phosphorylation of myosin light chain, suggesting that inhibition of actin-myosin contraction is also the mechanism through which ROCK inhibitors increase cloning efficiency of human ESCs.

  9. Purification, Characterization, and Analysis of the Allergenic Properties of Myosin Light Chain in Procambarus clarkii.

    PubMed

    Zhang, Yong-Xia; Chen, Heng-Li; Maleki, Soheila J; Cao, Min-Jie; Zhang, Ling-Jing; Su, Wen-Jin; Liu, Guang-Ming

    2015-07-15

    Myosin light chain (MLC) plays a vital role in cell and muscle functions and has been identified as an allergen in shrimp. In this study, MLC with a molecular mass of 18 kDa was purified from crayfish (Procambarus clarkii) muscle. Its physicochemical characterization showed that the purified MLC is a glycoprotein with 4.3% carbohydrate, highly stable to heat, acid-alkali, and digestion, and weakly retains IgE-binding activity when its secondary structure was altered. Serological assays suggested that conformational epitopes predominate over linear epitopes in the purified MLC. Two isoforms of the MLC gene (MLC1 and MLC2) were cloned, and the purified MLC was identified as MLC1. Analysis of the secondary and tertiary structures of the MLCs indicated that MLC1 has four conformational epitopes and three linear epitopes, whereas MLC2 had a major conformational epitope and three linear epitopes. These results are significant for understanding hypersensitization of humans to crayfish.

  10. Conformational changes of myosin by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Lee, Ju.-Woon; Yook, Hong.-Sun; Lee, Kyong.-Haeng; Kim, Jae.-Hun; Kim, Woo.-Jung; Byun, Myung.-Woo

    2000-05-01

    Conformational and decompositional changes of bovine skeletal muscle myosin caused by gamma irradiation were studied for understanding the effects of irradiation treatment on myofibrillar proteins. Myosin solution and beef cuts were irradiated 0, 1, 3, 5 and 10 kGy. Competitive indirect enzyme linked immunosorbent assay (Ci-ELISA) showed that subunits of myosin were structurally modified with different patterns. Binding abilities of anti-myosin whole molecule and anti heavy meromyosin S-1 IgG, which were produced from rabbits, with irradiated myosin decreased in the same tendency depending upon the dose. Anti-light meromyosin IgG appeared to have the highest binding ability at 3 kGy. Irradiated beef cuts (≥5 kGy) could be identified by Ci-ELISA. Myosin solution became increasingly turbid with increasing dose. Hydrophobicity of myosin solution also increased by irradiation. Electrophoretic patterns showed that the myosin heavy chain disappeared and new bands were generated at higher molecular weight ranges.

  11. Cytoplasmic free calcium, myosin light chain phosphorylation, and force in phasic and tonic smooth muscle

    PubMed Central

    1988-01-01

    The time course of [Ca2+]i, tension, and myosin light chain phosphorylation were determined during prolonged depolarization with high K+ in intact tonic (rabbit pulmonary artery) and phasic (longitudinal layer of guinea pig ileum) smooth muscles. [Ca2+]i was monitored with the 340 nm/380 nm signal ratio of the fluorescent indicator fura-2. The fluorescence ratio had a similar time course in both muscle types during depolarization with 109 mM [K+]o; after a transient peak, there was a decline to 70% of its peak value in tonic smooth muscle, and to 60% in phasic smooth muscle. Tension, however, continued to increase in the pulmonary artery, while in the ileum it declined in parallel with the [Ca2+]i. On changing [K+]o from 109 to 20 mM, tension and [Ca2+]i either remained unchanged or declined in parallel in the pulmonary artery. Phosphorylation of the 20-kD myosin light chain, measured during stimulation of muscle strips with 109 mM [K+]o in another set of experiments, increased from 3% to a peak of 50% in the intact pulmonary artery, and then declined to a steady state value of 23%. In the intact ileum, a very rapid, early transient phosphorylation (up to 50%) at 2-3 s was seen. This transient declined by 30 s to a value that was close to the resting level (7%), while tension remained at 55% of its peak force. A quick release during maintained stimulation induced no detectable change in the [Ca2+]i in either type of smooth muscle. We discuss the possibility that the slowly rising tonic tension in pulmonary artery could be due to cooperativity between phosphorylated and nonphosphorylated crossbridges. PMID:3216188

  12. Myosin Light Chain Kinase (MLCK) Gene Influences Exercise Induced Muscle Damage during a Competitive Marathon.

    PubMed

    Del Coso, Juan; Valero, Marjorie; Lara, Beatriz; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco

    2016-01-01

    Myosin light chain kinase (MLCK) phosphorylates the regulatory light chain (RLC) of myosin producing increases in force development during skeletal muscle contraction. It has been suggested that MLCK gene polymorphisms might alter RLC phosphorylation thereby decreasing the ability to produce force and to resist strain during voluntary muscle contractions. Thus, the genetic variations in the MLCK gene might predispose some individuals to higher values of muscle damage during exercise, especially during endurance competitions. The aim of this investigation was to determine the influence of MLCK genetic variants on exercise-induced muscle damage produced during a marathon. Sixty-seven experienced runners competed in a marathon race. The MLCK genotype (C37885A) of these marathoners was determined. Before and after the race, a sample of venous blood was obtained to assess changes in serum myoglobin concentrations and leg muscle power changes were measured during a countermovement jump. Self-reported leg muscle pain and fatigue were determined by questionnaires. A total of 59 marathoners (88.1%) were CC homozygotes and 8 marathoners (11.9%) were CA heterozygotes. The two groups of participants completed the race with a similar time (228 ± 33 vs 234 ± 39 min; P = 0.30) and similar self-reported values for fatigue (15 ± 2 vs 16 ± 2 A.U.; P = 0.21) and lower-limb muscle pain (6.2 ± 1.7 vs 6.6 ± 1.8 cm; P = 0.29). However, CC marathoners presented higher serum myoglobin concentrations (739 ± 792 vs 348 ± 144 μg·mL-1; P = 0.03) and greater pre-to-post- race leg muscle power reduction (-32.7 ± 15.7 vs -21.2 ± 21.6%; P = 0.05) than CA marathoners. CA heterozygotes for MLCK C37885A might present higher exercise-induced muscle damage after a marathon competition than CC counterparts.

  13. Papaverine Prevents Vasospasm by Regulation of Myosin Light Chain Phosphorylation and Actin Polymerization in Human Saphenous Vein

    PubMed Central

    Hocking, Kyle M.; Putumbaka, Gowthami; Wise, Eric S.; Cheung-Flynn, Joyce; Brophy, Colleen M.; Komalavilas, Padmini

    2016-01-01

    Objective Papaverine is used to prevent vasospasm in human saphenous veins (HSV) during vein graft preparation prior to implantation as a bypass conduit. Papaverine is a nonspecific inhibitor of phosphodiesterases, leading to increases in both intracellular cGMP and cAMP. We hypothesized that papaverine reduces force by decreasing intracellular calcium concentrations ([Ca2+]i) and myosin light chain phosphorylation, and increasing actin depolymerization via regulation of actin regulatory protein phosphorylation. Approach and Results HSV was equilibrated in a muscle bath, pre-treated with 1 mM papaverine followed by 5 μM norepinephrine, and force along with [Ca2+]i levels were concurrently measured. Filamentous actin (F-actin) level was measured by an in vitro actin assay. Tissue was snap frozen to measure myosin light chain and actin regulatory protein phosphorylation. Pre-treatment with papaverine completely inhibited norepinephrine-induced force generation, blocked increases in [Ca2+]i and led to a decrease in the phosphorylation of myosin light chain. Papaverine pre-treatment also led to increased phosphorylation of the heat shock-related protein 20 (HSPB6) and the vasodilator stimulated phosphoprotein (VASP), as well as decreased filamentous actin (F-actin) levels suggesting depolymerization of actin. Conclusions These results suggest that papaverine-induced force inhibition of HSV involves [Ca2+]i-mediated inhibition of myosin light chain phosphorylation and actin regulatory protein phosphorylation-mediated actin depolymerization. Thus, papaverine induces sustained inhibition of contraction of HSV by the modulation of both myosin cross-bridge formation and actin cytoskeletal dynamics and is a pharmacological alternative to high pressure distention to prevent vasospasm. PMID:27136356

  14. Phosphorylation of lymphocyte myosin catalyzed in vitro and in intact cells

    PubMed Central

    1982-01-01

    Myosin has been isolated from guinea pig B-lymphocytic leukemia cells (L2C). The myosin has been enzymatically phosphorylated and dephosphorylated in vitro using both heterologous and lymphocyte- derived enzymes. Both the heavy chain and 20,000-dalton light chain of lymphocyte myosin are phosphorylated in vitro. Phosphorylation of myosin enhances actin-activated ATPase activity. Phosphorylation of myosin in murine lymphocytes was analyzed by use of a novel technique for rapid immunoprecipitation of myosin from cell extracts. Both the heavy chain and 20,000-dalton light chain of myosin are phosphorylated in intact cells. Addition of antibody reactive with cell-surface immunoglobulin to lymphocyte populations enriched for B cells stimulates locomotion of these cells and also increases the quantity of 32P isolated in association with the 20,000-dalton light chain of lymphocyte myosin, when 32Pi was present in the medium. In addition, an unidentified, phosphorylated polypeptides with a molecular mass of 22,000 daltons is co-isolated with myosin from cells by rapid immunoprecipitation. These results are consistent with the hypothesis that phosphorylation of myosin may contribute to regulation of movements performed by lymphocytes which are related to their participation in immunologic reactions. PMID:6212588

  15. Trifluoperazine inhibits the MgATPase activity and in vitro motility of conventional and unconventional myosins.

    PubMed

    Sellers, James R; Wang, Fei; Chantler, Peter D

    2003-01-01

    Trifluoperazine, a calmodulin antagonist, has recently been shown to inhibit the MgATPase activity of scallop myosin in the absence of light chain dissociation (Patel et al. (2000) J Biol Chem 275: 4880-4888). To investigate the generality of this observation and the mechanism by which it occurs, we have examined the ability of trifluoperazine to inhibit the enzymatic properties of other conventional and unconventional myosins. We show that trifluoperazine can inhibit the actin-activated MgATPase activity of rabbit skeletal muscle myosin II heavy meromyosin (HMM), phosphorylated turkey gizzard smooth muscle myosin II HMM, phosphorylated human nonmuscle myosin IIA HMM and myosin V subfragment-1 (S1). In all cases half maximal inhibition occurred at 50-75 microM trifluoperazine while light chains (myosin II) or calmodulin (myosin V) remained associated with the heavy chains. In vitro motility of all myosins tested was completely inhibited by trifluoperazine. Chymotryptic digestion of baculovirus-expressed myosin V HMM possessing only two calmodulin binding sites yielded a minimal motor fragment with no bound calmodulin. The MgATPase of this fragment was inhibited by trifluoperazine over the same range of concentrations as the S1 fragment of myosin.

  16. Secretory vesicle transport velocity in living cells depends on the myosin-V lever arm length.

    PubMed

    Schott, Daniel H; Collins, Ruth N; Bretscher, Anthony

    2002-01-01

    Myosins are molecular motors that exert force against actin filaments. One widely conserved myosin class, the myosin-Vs, recruits organelles to polarized sites in animal and fungal cells. However, it has been unclear whether myosin-Vs actively transport organelles, and whether the recently challenged lever arm model developed for muscle myosin applies to myosin-Vs. Here we demonstrate in living, intact yeast that secretory vesicles move rapidly toward their site of exocytosis. The maximal speed varies linearly over a wide range of lever arm lengths genetically engineered into the myosin-V heavy chain encoded by the MYO2 gene. Thus, secretory vesicle polarization is achieved through active transport by a myosin-V, and the motor mechanism is consistent with the lever arm model.

  17. Myosin Light Chain Kinase (MLCK) Gene Influences Exercise Induced Muscle Damage during a Competitive Marathon

    PubMed Central

    Valero, Marjorie; Lara, Beatriz; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco

    2016-01-01

    Myosin light chain kinase (MLCK) phosphorylates the regulatory light chain (RLC) of myosin producing increases in force development during skeletal muscle contraction. It has been suggested that MLCK gene polymorphisms might alter RLC phosphorylation thereby decreasing the ability to produce force and to resist strain during voluntary muscle contractions. Thus, the genetic variations in the MLCK gene might predispose some individuals to higher values of muscle damage during exercise, especially during endurance competitions. The aim of this investigation was to determine the influence of MLCK genetic variants on exercise-induced muscle damage produced during a marathon. Sixty-seven experienced runners competed in a marathon race. The MLCK genotype (C37885A) of these marathoners was determined. Before and after the race, a sample of venous blood was obtained to assess changes in serum myoglobin concentrations and leg muscle power changes were measured during a countermovement jump. Self-reported leg muscle pain and fatigue were determined by questionnaires. A total of 59 marathoners (88.1%) were CC homozygotes and 8 marathoners (11.9%) were CA heterozygotes. The two groups of participants completed the race with a similar time (228 ± 33 vs 234 ± 39 min; P = 0.30) and similar self-reported values for fatigue (15 ± 2 vs 16 ± 2 A.U.; P = 0.21) and lower-limb muscle pain (6.2 ± 1.7 vs 6.6 ± 1.8 cm; P = 0.29). However, CC marathoners presented higher serum myoglobin concentrations (739 ± 792 vs 348 ± 144 μg·mL-1; P = 0.03) and greater pre-to-post- race leg muscle power reduction (-32.7 ± 15.7 vs -21.2 ± 21.6%; P = 0.05) than CA marathoners. CA heterozygotes for MLCK C37885A might present higher exercise-induced muscle damage after a marathon competition than CC counterparts. PMID:27483374

  18. Myosin Light Chain Kinase (MLCK) Gene Influences Exercise Induced Muscle Damage during a Competitive Marathon.

    PubMed

    Del Coso, Juan; Valero, Marjorie; Lara, Beatriz; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco

    2016-01-01

    Myosin light chain kinase (MLCK) phosphorylates the regulatory light chain (RLC) of myosin producing increases in force development during skeletal muscle contraction. It has been suggested that MLCK gene polymorphisms might alter RLC phosphorylation thereby decreasing the ability to produce force and to resist strain during voluntary muscle contractions. Thus, the genetic variations in the MLCK gene might predispose some individuals to higher values of muscle damage during exercise, especially during endurance competitions. The aim of this investigation was to determine the influence of MLCK genetic variants on exercise-induced muscle damage produced during a marathon. Sixty-seven experienced runners competed in a marathon race. The MLCK genotype (C37885A) of these marathoners was determined. Before and after the race, a sample of venous blood was obtained to assess changes in serum myoglobin concentrations and leg muscle power changes were measured during a countermovement jump. Self-reported leg muscle pain and fatigue were determined by questionnaires. A total of 59 marathoners (88.1%) were CC homozygotes and 8 marathoners (11.9%) were CA heterozygotes. The two groups of participants completed the race with a similar time (228 ± 33 vs 234 ± 39 min; P = 0.30) and similar self-reported values for fatigue (15 ± 2 vs 16 ± 2 A.U.; P = 0.21) and lower-limb muscle pain (6.2 ± 1.7 vs 6.6 ± 1.8 cm; P = 0.29). However, CC marathoners presented higher serum myoglobin concentrations (739 ± 792 vs 348 ± 144 μg·mL-1; P = 0.03) and greater pre-to-post- race leg muscle power reduction (-32.7 ± 15.7 vs -21.2 ± 21.6%; P = 0.05) than CA marathoners. CA heterozygotes for MLCK C37885A might present higher exercise-induced muscle damage after a marathon competition than CC counterparts. PMID:27483374

  19. New insights into myosin evolution and classification.

    PubMed

    Foth, Bernardo J; Goedecke, Marc C; Soldati, Dominique

    2006-03-01

    Myosins are eukaryotic actin-dependent molecular motors important for a broad range of functions like muscle contraction, vision, hearing, cell motility, and host cell invasion of apicomplexan parasites. Myosin heavy chains consist of distinct head, neck, and tail domains and have previously been categorized into 18 different classes based on phylogenetic analysis of their conserved heads. Here we describe a comprehensive phylogenetic examination of many previously unclassified myosins, with particular emphasis on sequences from apicomplexan and other chromalveolate protists including the model organism Toxoplasma, the malaria parasite Plasmodium, and the ciliate Tetrahymena. Using different phylogenetic inference methods and taking protein domain architectures, specific amino acid polymorphisms, and organismal distribution into account, we demonstrate a hitherto unrecognized common origin for ciliate and apicomplexan class XIV myosins. Our data also suggest common origins for some apicomplexan myosins and class VI, for classes II and XVIII, for classes XII and XV, and for some microsporidian myosins and class V, thereby reconciling evolutionary history and myosin structure in several cases and corroborating the common coevolution of myosin head, neck, and tail domains. Six novel myosin classes are established to accommodate sequences from chordate metazoans (class XIX), insects (class XX), kinetoplastids (class XXI), and apicomplexans and diatom algae (classes XXII, XXIII, and XXIV). These myosin (sub)classes include sequences with protein domains (FYVE, WW, UBA, ATS1-like, and WD40) previously unknown to be associated with myosin motors. Regarding the apicomplexan "myosome," we significantly update class XIV classification, propose a systematic naming convention, and discuss possible functions in these parasites.

  20. Myosin light chain phosphorylation in sup 32 P-labeled rabbit aorta stimulated by phorbol 12,13-dibutyrate and phenylephrine

    SciTech Connect

    Singer, H.A.; Oren, J.W.; Benscoter, H.A. )

    1989-12-15

    The mechanism(s) of force development in vascular smooth muscle following pharmacological activation of protein kinase C by phorbol esters are not known. In this study, we examined the myosin light chain phosphorylation response following stimulation by phorbol 12,13-dibutyrate (PDB) or phenylephrine in rabbit aorta which had been incubated with 32PO4 in order to label ATP pools. Through tryptic phosphopeptide mapping of myosin light chain from intact tissue and comparison to controls using purified components, we inferred that Ca2+-dependent force stimulated by PDB was associated with small increases in serine-19 phosphorylation, consistent with a contractile mechanism involving indirect activation of myosin light chain kinase. Additional residues, consistent with the in vitro substrate specificity of protein kinase C, were also observed to be phosphorylated in response to PDB and represented proportionately a larger fraction of the total phosphorylated myosin light chain in Ca2+-depleted tissues. Stimulation by an alpha 1-adrenergic agonist (phenylephrine) resulted in phosphorylation of residues which were consistent with an activation mechanism involving myosin light chain kinase only. These results indicate that in rabbit aorta the contractile effects of PDB may be partially mediated by Ca2+-dependent activation of myosin light chain kinase. However, the data do not rule out a component of the PDB-stimulated contractile response which is independent of myosin light chain phosphorylation on the serine-19 residue. In addition, activation by a more physiological stimulus, phenylephrine, does not result in protein kinase C-mediated myosin light chain phosphorylation.

  1. Irreversible heavy chain transfer to chondroitin.

    PubMed

    Lauer, Mark E; Hascall, Vincent C; Green, Dixy E; DeAngelis, Paul L; Calabro, Anthony

    2014-10-17

    We have recently demonstrated that the transfer of heavy chains (HCs) from inter-α-inhibitor, via the enzyme TSG-6 (tumor necrosis factor-stimulated gene 6), to hyaluronan (HA) oligosaccharides is an irreversible event in which subsequent swapping of HCs between HA molecules does not occur. We now describe our results of HC transfer experiments to chondroitin sulfate A, chemically desulfated chondroitin, chemoenzymatically synthesized chondroitin, unsulfated heparosan, heparan sulfate, and alginate. Of these potential HC acceptors, only chemically desulfated chondroitin and chemoenzymatically synthesized chondroitin were HC acceptors. The kinetics of HC transfer to chondroitin was similar to HA. At earlier time points, HCs were more widely distributed among the different sizes of chondroitin chains. As time progressed, the HCs migrated to lower molecular weight chains of chondroitin. Our interpretation is that TSG-6 swaps the HCs from the larger, reversible sites on chondroitin chains, which function as HC acceptors, onto smaller chondroitin chains, which function as irreversible HC acceptors. HCs transferred to smaller chondroitin chains were unable to be swapped off the smaller chondroitin chains and transferred to HA. HCs transferred to high molecular weight HA were unable to be swapped onto chondroitin. We also present data that although chondroitin was a HC acceptor, HA was the preferred acceptor when chondroitin and HA were in the same reaction mixture.

  2. Effects of a Fluorescent Myosin Light Chain Phosphatase Inhibitor on Prostate Cancer Cells

    PubMed Central

    Grindrod, Scott; Suy, Simeng; Fallen, Shannon; Eto, Masumi; Toretsky, Jeffrey; Brown, Milton L.

    2011-01-01

    Myosin light chain phosphatase (MLCP) is an enzyme important to regulation of cell cycle and motility that is shown to be upregulated in aggressive prostate cancer cells and tissue. We developed a fluorescent small molecule inhibitor of MLCP using structure based design in recombinant protein phosphatase 1C. Several best fit compounds were synthesized and evaluated by their inhibition of MLCP/32P-MLC dephosphorylation, which resulted in the identification of novel MLCP inhibitors. Androgen dependent (AD) and castration resistant prostate cancer cell (CRPC) lines were treated with the lead inhibitor resulting in decreased growth rate, reduced DNA synthesis, and G2/M cell cycle arrest. Moreover, CRPC cell lines showed an increased sensitivity to drug treatment having GI50 values four times lower than the AD prostate cancer cell line. This was reinforced by reduced BrdU DNA incorporation into CRPC cells compared to AD cells. β-actin disruption was also seen at much lower drug concentrations in CR cells which caused a dose dependent reduction in cellular chemotaxis of PC-3 cells. Since there are currently few clinical therapeutics targeting CR prostate cancer, MLCP represents a new target for preclinical and clinical development of new potential therapeutics which inhibit this disease phenotype. PMID:22655237

  3. Regulatory and structural motifs of chicken gizzard myosin light chain kinase.

    PubMed Central

    Olson, N J; Pearson, R B; Needleman, D S; Hurwitz, M Y; Kemp, B E; Means, A R

    1990-01-01

    The amino acid sequence for chicken smooth muscle myosin light chain kinase (smMLCK) was deduced from a full-length cDNA. This has allowed definition of both the complete sequence of the inactive 64-kDa proteolytic fragment, which contains the pseudosubstrate autoregulatory sequence, and of the active 61-kDa Ca2+/calmodulin-independent fragment, which lacks the autoregulatory domain. Comparison of the two sequences shows that the autoregulatory domain extends from Asn-780 to Arg-808. The peptide Leu-774 to Ser-787 does not inhibit smMLCK, whereas peptides of similar or shorter length from the pseudosubstrate region (Ser-787 to Val-807) are potent inhibitors. These data define the autoregulatory region as being contained within and probably identical to the pseudosubstrate domain. The catalytic and regulatory regions are flanked by several copies of 100-amino acid segments containing one of two consensus motifs. These motifs are absent from mammalian skeletal muscle MLCK or from Dictyostelium discoideum MLCK but are present in the Caenorhabditis elegans unc-22 gene product and the titin molecule of skeletal muscle myofibrils. These results indicate that the amino acid sequence of smMLCK encodes multiple functional motifs in addition to the catalytic domain. PMID:2315320

  4. Mn2+ activates skinned smooth muscle cells in the absence of myosin light chain phosphorylation.

    PubMed

    Hoar, P E; Kerrick, W G

    1988-08-01

    Two effects of Mn2+ on skinned fibers from chicken gizzard smooth muscle were observed, dependent on the presence or absence of dithiothreitol (DTT) reducing agent. One involves protein oxidation (in the absence of DTT) with production of a "latch"-like state, and the other involves direct Mn2+ activation of contractile proteins. Cells activated by Mn2+ in the presence of ATP and the absence of Ca2+, Mg2+ and DTT did not relax when transferred to normal relaxing solutions. In contrast, when 5 mM DTT was included in the Mn2+ contracting solution to prevent protein oxidation by Mn2+, the cells still contracted when exposed to Mn2+, but relaxed rapidly when the Mn2+ was removed. In the presence of DTT both the Mn2+ activation and the relaxation following removal of Mn2+ were more rapid than normal Ca2+-activated contractions and relaxations. The skinned fibers activated by Mn2+ in the absence of DTT showed little active shortening unless DTT was added. This rigor-like state is probably due to oxidation of contractile proteins since the cells relaxed when exposed to a relaxing solution containing DTT (50 mM) and then contracted again in response to Ca2+ and relaxed normally. The Mn2+ activation was not associated with myosin light chain phosphorylation, in contrast to Ca2+-activated contractions. PMID:3186428

  5. AMPK regulates mitotic spindle orientation through phosphorylation of myosin regulatory light chain.

    PubMed

    Thaiparambil, Jose T; Eggers, Carrie M; Marcus, Adam I

    2012-08-01

    The proper orientation of the mitotic spindle is essential for mitosis; however, how these events unfold at the molecular level is not well understood. AMP-activated protein kinase (AMPK) regulates energy homeostasis in eukaryotes, and AMPK-null Drosophila mutants have spindle defects. We show that threonine(172) phosphorylated AMPK localizes to the mitotic spindle poles and increases when cells enter mitosis. AMPK depletion causes a mitotic delay with misoriented spindles relative to the normal division plane and a reduced number and length of astral microtubules. AMPK-depleted cells contain mitotic actin bundles, which prevent astral microtubule-actin cortex attachments. Since myosin regulatory light chain (MRLC) is an AMPK downstream target and mediates actin function, we investigated whether AMPK signals through MRLC to control spindle orientation. Mitotic levels of serine(19) phosphorylated MRLC (pMRLC(ser19)) and spindle pole-associated pMRLC(ser19) are abolished when AMPK function is compromised, indicating that AMPK is essential for pMRLC(ser19) spindle pole activity. Phosphorylation of AMPK and MRLC in the mitotic spindle is dependent upon calcium/calmodulin-dependent protein kinase kinase (CamKK) activity in LKB1-deficient cells, suggesting that CamKK regulates this pathway when LKB1 function is compromised. Taken together, these data indicate that AMPK mediates spindle pole-associated pMRLC(ser19) to control spindle orientation via regulation of actin cortex-astral microtubule attachments.

  6. Kinetic and Motor Functions Mediated by Distinct Regions of the Regulatory Light Chain of Smooth Muscle Myosin1,2

    PubMed Central

    Ni, Shaowei; Hong, Feng; Brewer, Paul D.; Ikebe, Mitsuo; Onishi, Hirofumi; Baker, Jonathan E.; Facemyer, Kevin C.; Cremo, Christine R.

    2009-01-01

    To understand the importance of selected regions of the regulatory light chain (RLC) for phosphorylation-dependent regulation of smooth muscle myosin (SMM), we expressed three heavy meromyosins (HMMs) containing the following RLC mutants; K12E in a critical region of the phosphorylation domain, GTDP95-98/AAAA in the central hinge, and R160C a putative binding residue for phosphorylated S19. Single-turnover actin-activated Mg2+-ATPase (Vmax and Katpase) and in vitro actin sliding velocities were examined for both unphosphorylated (up-) and phosphorylated (p-) states. Turnover rates for the upstate (0.007-0.030 s-1) and velocities (no motion) for all constructs were not significantly different from the up-wild type (WT) indicating that they were completely turned off. The apparent binding constants for actin in the presence of ATP (Katpase) were too weak to measure as expected for fully regulated constructs. For p-HMM containing GTDP/AAAA, we found that both ATPase and motility were normal. The data suggest that the native sequence in the central hinge between the two lobes of the RLC is not required for turning the HMM off and on both kinetically and mechanically. For p-HMM containing R160C, all parameters were normal, suggesting that R160C is not involved in coordination of the phosphorylated S19. For p-HMM containing K12E, the Vmax was 64% and actin sliding velocity was ∼50% of WT, suggesting that K12 is an important residue for the ability to sense or to promote the conformational changes required for kinetic and mechanical activation. PMID:19635597

  7. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments.

    PubMed

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-05-24

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease.

  8. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments

    PubMed Central

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-01-01

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease. PMID:27162358

  9. Myosins 1 and 6, myosin light chain kinase, actin and microtubules cooperate during antibody-mediated internalisation and trafficking of membrane-expressed viral antigens in feline infectious peritonitis virus infected monocytes.

    PubMed

    Dewerchin, Hannah L; Desmarets, Lowiese M; Noppe, Ytse; Nauwynck, Hans J

    2014-02-12

    Monocytes infected with feline infectious peritonitis virus, a coronavirus, express viral proteins in their plasma membranes. Upon binding of antibodies, these proteins are quickly internalised through a new clathrin- and caveolae-independent internalisation pathway. By doing so, the infected monocytes can escape antibody-dependent cell lysis. In the present study, we investigated which kinases and cytoskeletal proteins are of importance during internalisation and subsequent intracellular transport. The experiments showed that myosin light chain kinase (MLCK) and myosin 1 are crucial for the initiation of the internalisation. With co-localisation stainings, it was found that MLCK and myosin 1 co-localise with antigens even before internalisation started. Myosin 6 co-localised with the internalising complexes during passage through the cortical actin, were it might play a role in moving or disintegrating actin filaments, to overcome the actin barrier. One minute after internalisation started, vesicles had passed the cortical actin, co-localised with microtubules and association with myosin 6 was lost. The vesicles were further transported over the microtubules and accumulated at the microtubule organising centre after 10 to 30 min. Intracellular trafficking over microtubules was mediated by MLCK, myosin 1 and a small actin tail. Since inhibiting MLCK with ML-7 was so efficient in blocking the internalisation pathway, this target can be used for the development of a new treatment for FIPV.

  10. Structural and functional aspects of the myosin essential light chain in cardiac muscle contraction

    SciTech Connect

    Muthu, Priya; Wang, Li; Yuan, Chen-Ching; Kazmierczak, Katarzyna; Huang, Wenrui; Hernandez, Olga M.; Kawai, Masataka; Irving, Thomas C.; Szczesna-Cordary, Danuta

    2012-04-02

    The myosin essential light chain (ELC) is a structural component of the actomyosin cross-bridge, but its function is poorly understood, especially the role of the cardiac specific N-terminal extension in modulating actomyosin interaction. Here, we generated transgenic (Tg) mice expressing the A57G (alanine to glycine) mutation in the cardiac ELC known to cause familial hypertrophic cardiomyopathy (FHC). The function of the ELC N-terminal extension was investigated with the Tg-{Delta}43 mouse model, whose myocardium expresses a truncated ELC. Low-angle X-ray diffraction studies on papillary muscle fibers in rigor revealed a decreased interfilament spacing ({approx} 1.5 nm) and no alterations in cross-bridge mass distribution in Tg-A57G mice compared to Tg-WT, expressing the full-length nonmutated ELC. The truncation mutation showed a 1.3-fold increase in I{sub 1,1}/I{sub 1,0}, indicating a shift of cross-bridge mass from the thick filament backbone toward the thin filaments. Mechanical studies demonstrated increased stiffness in Tg-A57G muscle fibers compared to Tg-WT or Tg-{Delta}43. The equilibrium constant for the cross-bridge force generation step was smallest in Tg-{Delta}43. These results support an important role for the N-terminal ELC extension in prepositioning the cross-bridge for optimal force production. Subtle changes in the ELC sequence were sufficient to alter cross-bridge properties and lead to pathological phenotypes.

  11. Constraints on intron evolution in the gene encoding the myosin alkali light chain in Drosophila

    SciTech Connect

    Leicht, B.G.; Muse, S.V.; Hanczyc, M.

    1995-01-01

    Interspecific comparisons of intron sequences reveal conserved blocks of invariant nucleotides and several other departures from the strictly neutral model of molecular evolution. To distinguish the past action of evolutionary forces in introns known to have regulatory information, we examined nucleotide sequence variation at 991 sites in a random sample of 16 Drosophila melanogaster alleles of the gene encoding the myosin alkali light chain (Mlc1). The Mlc1 gene of D. melanogaster encodes two Mlc1 isoforms via developmentally regulated alternative pre-mRNA splicing. Analyses of these data reveal that introns 4 and 5, which flank the alternatively spliced exon 5, have reduced levels of both intraspecific polymorphism and interspecific divergence relative to intron 3. No polymorphism was observed in any of the exons examined in D. melanogaster. A genealogical analysis clearly demonstrates the occurrence of intragenic recombination in the ancestral history of Mlc1. Recombination events are estimated to be 13 times more likely than mutation events over the span of the sequenced region. Although there is little evidence for pairwise linkage disequilibrium in the Mlc1 region, higher order disequilibrium. does seem to be present in the 5{prime} half of the portion of the gene that was examined. Predictions of the folding free energy of the pre-mRNA reveal that sampled alleles have a significantly higher (less stable) free energy than do randomly permuted sequences. These results are consistent with the hypothesis that introns surrounding an alternatively spliced exon are subjected to additional constraints, perhaps due to specific aspects of secondary structure required for appropriate splicing of the pre-mRNA molecule. 48 refs., 5 figs., 3 tabs.

  12. [Role of phosphatidylinositol 3-kinase and myosin light chain kinase during the activation of thrombin receptors].

    PubMed

    Han, Yue; Gao, Hai-Li; Zhang, Wei; Bai, Xia; Dai, Lan; Sheng, Wen-Hong; Sun, Ai-Ning; Wu, De-Pei; Wang, Zhao-Yue; Ruan, Chang-Geng

    2009-06-01

    The objective of study was to compare the influences of wortmannin on platelet aggregation and platelet membrane surface glycoproteins GPIb expression after thrombin receptor activation, and to investigate the role of phosphatidylinositol 3-kinase (PI3-K) and myosin light chain kinase (MLCK) in the course of thrombin receptor activation. Peptide SFLLRN (PAR1-AP) and AYPGKF (PAR4-AP) were used for stimulating platelet, and the changes of platelet aggregation and GPIb were analyzed with 100 nmol/L wortmannin (inhibitor of PI3-K) and 10 micromol/L wortmannin (inhibitor of MLCK). The results indicated that the platelet activation was influenced by either concentration of wortmannin in response to PAR stimulation. Platelet aggregation was apparently inhibited by 10 micromol/L wortmannin through both PAR peptides, and was slightly inhibited by 100 nmol/L wortmannin only under PAR1-AP activation. In addition, GPIbalpha internalization was partly inhibited by 100 nmol/L wortmannin in response to PAR1 (p < 0.05 at 1, 2, 5 min) and PAR4 (p < 0.05 at 2, 5, 10 min) activation. Meanwhile, 10 micromol/L wortmannin induced little change for GPIbalpha centralisation in the course of PAR activation, with a delayed restoration of surface GPIbalpha observed under PAR1-AP activation, and no change of GPIbalpha redistribution existed under PAR4-AP activation. It is concluded that the different roles of PI3-K and MLCK exist in the course of thrombin receptor activation. PI3-K accelerates the short course of GPIb centralisation for two PAR signal pathways, while MLCK inhibits the restoration of GPIbalpha in PAR1 pathway. PMID:19549383

  13. Myosin light chain kinase controls voltage-dependent calcium channels in vascular smooth muscle.

    PubMed

    Martinsen, A; Schakman, O; Yerna, X; Dessy, C; Morel, N

    2014-07-01

    The Ca(2+)-dependent kinase myosin light chain kinase (MLCK) is the activator of smooth muscle contraction. In addition, it has been reported to be involved in Ca(2+) channel regulation in cultured cells, and we previously showed that the MLCK inhibitor ML-7 decreases arginine vasopressin (AVP)-induced Ca(2+) influx in rat aorta. This study was designed to investigate whether MLCK is involved in Ca(2+) regulation in resistance artery smooth muscle cell, which plays a major role in the control of blood pressure. As ML compounds were shown to have off-target effects, MLCK was downregulated by transfection with a small interfering RNA targeting MLCK (MLCK-siRNA) in rat small resistance mesenteric artery (RMA) and in the rat embryonic aortic cell line A7r5. Noradrenaline-induced contraction and Ca(2+) signal were significantly depressed in MLCK-siRNA compared to scramble-siRNA-transfected RMA. Contraction and Ca(2+) signal induced by high KCl and voltage-activated Ca(2+) current were also significantly decreased in MLCK-siRNA-transfected RMA, suggesting that MLCK depletion modifies voltage-operated Ca(2+) channels. KCl- and AVP-induced Ca(2+) signals and voltage-activated Ca(2+) current were decreased in MLCK-depleted A7r5 cells. Eventually, real-time quantitative PCR analysis indicated that in A7r5, MLCK controlled mRNA expression of CaV1.2 (L-type) and CaV3.1 (T-type) voltage-dependent Ca(2+) channels. Our results suggest that MLCK controls the transcription of voltage-dependent Ca(2+) channels in vascular smooth muscle cells. PMID:24162233

  14. Vascular O-GlcNAcylation augments reactivity to constrictor stimuli by prolonging phosphorylated levels of the myosin light chain.

    PubMed

    Lima, V V; Lobato, N S; Filgueira, F P; Webb, R C; Tostes, R C; Giachini, F R

    2014-10-01

    O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2 ± 2 vs 7.9 ± 1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4 ± 2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3 ± 2 vs 7.5 ± 2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1 ± 2 vs 7.4 ± 2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca(2+)/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction. PMID:25140811

  15. Vascular O-GlcNAcylation augments reactivity to constrictor stimuli by prolonging phosphorylated levels of the myosin light chain.

    PubMed

    Lima, V V; Lobato, N S; Filgueira, F P; Webb, R C; Tostes, R C; Giachini, F R

    2014-10-01

    O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2 ± 2 vs 7.9 ± 1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4 ± 2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3 ± 2 vs 7.5 ± 2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1 ± 2 vs 7.4 ± 2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca(2+)/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction.

  16. Vascular O-GlcNAcylation augments reactivity to constrictor stimuli by prolonging phosphorylated levels of the myosin light chain

    PubMed Central

    Lima, V.V.; Lobato, N.S.; Filgueira, F.P.; Webb, R.C.; Tostes, R.C.; Giachini, F.R.

    2014-01-01

    O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2±2 vs 7.9±1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4±2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3±2 vs 7.5±2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1±2 vs 7.4±2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca2+/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction. PMID:25140811

  17. Amplitude of the actomyosin power stroke depends strongly on the isoform of the myosin essential light chain

    PubMed Central

    Guhathakurta, Piyali; Prochniewicz, Ewa; Thomas, David D.

    2015-01-01

    We have used time-resolved fluorescence resonance energy transfer (TR-FRET) to determine the role of myosin essential light chains (ELCs) in structural transitions within the actomyosin complex. Skeletal muscle myosins have two ELC isoforms, A1 and A2, which differ by an additional 40–45 residues at the N terminus of A1, and subfragment 1 (S1) containing A1 (S1A1) has higher catalytic efficiency and higher affinity for actin than S1A2. ELC’s location at the junction between the catalytic and light-chain domains gives it the potential to play a central role in the force-generating power stroke. Therefore, we measured site-directed TR-FRET between a donor on actin and an acceptor near the C terminus of ELC, detecting directly the rotation of the light-chain domain (lever arm) relative to actin (power stroke), induced by the interaction of ATP-bound myosin with actin. TR-FRET resolved the weakly bound (W) and strongly bound (S) states of actomyosin during the W-to-S transition (power stroke). We found that the W states are essentially the same for the two isoenzymes, but the S states are quite different, indicating a much larger movement of S1A1. FRET from actin to a probe on the N-terminal extension of A1 showed close proximity to actin. We conclude that the N-terminal extension of A1-ELC modulates the W-to-S structural transition of acto-S1, so that the light-chain domain undergoes a much larger power stroke in S1A1 than in S1A2. These results have profound implications for understanding the contractile function of actomyosin, as needed in therapeutic design for muscle disorders. PMID:25825773

  18. Amplitude of the actomyosin power stroke depends strongly on the isoform of the myosin essential light chain.

    PubMed

    Guhathakurta, Piyali; Prochniewicz, Ewa; Thomas, David D

    2015-04-14

    We have used time-resolved fluorescence resonance energy transfer (TR-FRET) to determine the role of myosin essential light chains (ELCs) in structural transitions within the actomyosin complex. Skeletal muscle myosins have two ELC isoforms, A1 and A2, which differ by an additional 40-45 residues at the N terminus of A1, and subfragment 1 (S1) containing A1 (S1A1) has higher catalytic efficiency and higher affinity for actin than S1A2. ELC's location at the junction between the catalytic and light-chain domains gives it the potential to play a central role in the force-generating power stroke. Therefore, we measured site-directed TR-FRET between a donor on actin and an acceptor near the C terminus of ELC, detecting directly the rotation of the light-chain domain (lever arm) relative to actin (power stroke), induced by the interaction of ATP-bound myosin with actin. TR-FRET resolved the weakly bound (W) and strongly bound (S) states of actomyosin during the W-to-S transition (power stroke). We found that the W states are essentially the same for the two isoenzymes, but the S states are quite different, indicating a much larger movement of S1A1. FRET from actin to a probe on the N-terminal extension of A1 showed close proximity to actin. We conclude that the N-terminal extension of A1-ELC modulates the W-to-S structural transition of acto-S1, so that the light-chain domain undergoes a much larger power stroke in S1A1 than in S1A2. These results have profound implications for understanding the contractile function of actomyosin, as needed in therapeutic design for muscle disorders. PMID:25825773

  19. Tarantula Myosin Free Head Regulatory Light Chain Phosphorylation Stiffens N-terminal Extension Releasing it and Blocking its Docking Back

    PubMed Central

    Alamo, Lorenzo; Li, Xiaochuan (Edward); Espinoza-Fonseca, L. Michel; Pinto, Antonio; Thomas, David D.; Lehman, William; Padrón, Raúl

    2015-01-01

    Molecular dynamics simulations of smooth and striated muscle myosin regulatory light chain (RLC) N-terminal extension (NTE) showed that diphosphorylation induces a disorder-to-order transition. Our goal here was to further explore the effects of mono- and diphosphorylation on the straightening and rigidification of the tarantula myosin RLC NTE. For that we used MD simulations followed by persistence length analysis to explore the consequences of secondary and tertiary structure changes occurring on RLC NTE following phosphorylation. Static and dynamic persistence lengths analysis of tarantula RLC NTE peptides suggest that diphosphorylation produces an important 24-fold straightening and a 16-fold rigidification of the RLC NTE, while monophosphorylation has a less profound effect. This new information on myosin structural mechanics, not fully revealed by previous EM and MD studies, add support to a cooperative phosphorylation-dependent activation mechanism as proposed for the tarantula thick filament. Our results suggest that the RLC NTE straightening and rigidification after Ser45 phosphorylation leads to a release of the constitutively Ser35 monophosphorylated free head swaying away from the thick filament shaft in the relaxed state. This is so because the stiffened diphosphorylated RLC NTE would hinder the docking back of the free head after swaying away, becoming released and mobile and unable to recover its original interacting position on activation. PMID:26038302

  20. Tarantula myosin free head regulatory light chain phosphorylation stiffens N-terminal extension, releasing it and blocking its docking back.

    PubMed

    Alamo, Lorenzo; Li, Xiaochuan Edward; Espinoza-Fonseca, L Michel; Pinto, Antonio; Thomas, David D; Lehman, William; Padrón, Raúl

    2015-08-01

    Molecular dynamics simulations of smooth and striated muscle myosin regulatory light chain (RLC) N-terminal extension (NTE) showed that diphosphorylation induces a disorder-to-order transition. Our goal here was to further explore the effects of mono- and diphosphorylation on the straightening and rigidification of the tarantula myosin RLC NTE. For that we used MD simulations followed by persistence length analysis to explore the consequences of secondary and tertiary structure changes occurring on RLC NTE following phosphorylation. Static and dynamic persistence length analysis of tarantula RLC NTE peptides suggest that diphosphorylation produces an important 24-fold straightening and a 16-fold rigidification of the RLC NTE, while monophosphorylation has a less profound effect. This new information on myosin structural mechanics, not fully revealed by previous EM and MD studies, add support to a cooperative phosphorylation-dependent activation mechanism as proposed for the tarantula thick filament. Our results suggest that the RLC NTE straightening and rigidification after Ser45 phosphorylation leads to a release of the constitutively Ser35 monophosphorylated free head swaying away from the thick filament shaft. This is so because the stiffened diphosphorylated RLC NTE would hinder the docking back of the free head after swaying away, becoming released and mobile and unable to recover its original interacting position on activation. PMID:26038302

  1. New Isoform of Cardiac Myosin Light Chain Kinase and the Role of Cardiac Myosin Phosphorylation in α1-Adrenoceptor Mediated Inotropic Response

    PubMed Central

    Taniguchi, Masaya; Okamoto, Ryuji; Ito, Masaaki; Goto, Itaru; Fujita, Satoshi; Konishi, Katsuhisa; Mizutani, Hideo; Dohi, Kaoru; Hartshorne, David J.; Itoh, Takeo

    2015-01-01

    Background & Aims Cardiac myosin light chain kinase (cMLCK) plays an obligatory role in maintaining the phosphorylation levels of regulatory myosin light chain (MLC2), which is thought to be crucial for regulation of cardiac function. To test this hypothesis, the role played by ventricular MLC2 (MLC2v) phosphorylation was investigated in the phenylephrine-induced increase in twitch tension using the naturally-occurring mouse strain, C57BL/6N, in which cMLCK is down regulated. Methods and Results By Western blot and nanoLC-MS/MS analysis, cMLCKs with molecular mass of 61-kDa (cMLCK-2) and/or 86-kDa were identified in mice heart. Among various mouse strains, C57BL/6N expressed cMLCK-2 alone and the closest relative strain C57BL/6J expressed both cMLCKs. The levels of MLC2v phosphorylation was significantly lower in C57BL/6N than in C57BL/6J. The papillary muscle twitch tension induced by electrical field stimulation was smaller in C57BL/6N than C57BL/6J. Phenylephrine had no effect on MLC2v phosphorylation in either strains but increased the twitch tension more potently in C57BL/6J than in C57BL/6N. Calyculin A increased papillary muscle MLC2v phosphorylation to a similar extent in both strains but increased the phenylephrine-induced inotropic response only in C57BL/6N. There was a significant positive correlation between the phenylephrine-induced inotropic response and the levels of MLC2v phosphorylation within ranges of 15–30%. Conclusions We identified a new isoform of cMLCK with a molecular mass of 61kDa(cMLCK-2) in mouse heart. In the C57BL/6N strain, only cMLCK-2 was expressed and the basal MLC2v phosphorylation levels and the phenylephrine-induced inotropic response were both smaller. We suggest that a lower phenylephrine-induced inotropic response may be caused by the lower basal MLC2v phosphorylation levels in this strain. PMID:26512720

  2. Quantitative analysis of the free energy coupling in the system calmodulin, calcium, smooth muscle myosin light chain kinase.

    PubMed

    Mamar-Bachi, A; Cox, J A

    1987-12-01

    Interactions between Ca2+, calmodulin and turkey gizzard myosin light chain kinase have been studied by equilibrium gel filtration and analyzed in terms of the theory of free energy coupling as formulated by Huang and King for calmodulin-regulated systems (Current Topics in Cellular Regulation 27, 1966-1971, 1985). Direct binding studies revealed that upon interaction with the enzyme, calmodulin acquires strong positive cooperativity in Ca2+-binding. The determination of the Ca2+-binding constants is inherently approximative due to the apparent homotropic cooperativity; therefore a statistical chi 2 analysis was carried out to delimit the formation-, and subsequently the stoichiometric Ca2+-binding constants. Whereas the first two stoichiometric Ca2+-binding constants of enzyme-bound CaM do not differ or are at the upmost 10-fold higher than those in free calmodulin, the third Ca2+ ion binds with an at least 70-fold and more likely 3000-fold higher affinity constant. The binding constant for the fourth Ca2+ is only 5-fold higher than the corresponding one in free calmodulin, thus creating a plateau at 3 bound Ca2+ in the isotherm. Direct binding of Ca2+-free calmodulin to myosin light chain kinase at 10(-7) M free Ca2+ yielded a l/l stoichiometry and an affinity constant of 2.2 x 10(5) M-1. It is thus anticipated that in resting smooth muscle ([Ca2+] less than or equal to 10(-7) M) more than half of the enzyme is bound to metal-free calmodulin. Analysis of the enzymatic activation of myosin light chain kinase at different concentrations of calmodulin and Ca2+ revealed that this Ca2+-free complex is inactive and that activation is concomitant with the formation of the enzyme.calmodulin.Ca3 complex.

  3. β-Arrestin Regulation of Myosin Light Chain Phosphorylation Promotes AT1aR-mediated Cell Contraction and Migration

    PubMed Central

    Simard, Elie; Kovacs, Jeffrey J.; Miller, William E.; Kim, Jihee; Grandbois, Michel; Lefkowitz, Robert J.

    2013-01-01

    Over the last decade, it has been established that G-protein-coupled receptors (GPCRs) signal not only through canonical G-protein-mediated mechanisms, but also through the ubiquitous cellular scaffolds β-arrestin-1 and β-arrestin-2. Previous studies have implicated β-arrestins as regulators of actin reorganization in response to GPCR stimulation while also being required for membrane protrusion events that accompany cellular motility. One of the most critical events in the active movement of cells is the cyclic phosphorylation and activation of myosin light chain (MLC), which is required for cellular contraction and movement. We have identified the myosin light chain phosphatase Targeting Subunit (MYPT-1) as a binding partner of the β-arrestins and found that β-arrestins play a role in regulating the turnover of phosphorylated myosin light chain. In response to stimulation of the angiotensin Type 1a Receptor (AT1aR), MLC phosphorylation is induced quickly and potently. We have found that β-arrestin-2 facilitates dephosphorylation of MLC, while, in a reciprocal fashion, β-arrestin 1 limits dephosphorylation of MLC. Intriguingly, loss of either β-arrestin-1 or 2 blocks phospho-MLC turnover and causes a decrease in the contraction of cells as monitored by atomic force microscopy (AFM). Furthermore, by employing the β-arrestin biased ligand [Sar1,Ile4,Ile8]-Ang, we demonstrate that AT1aR-mediated cellular motility involves a β-arrestin dependent component. This suggests that the reciprocal regulation of MLC phosphorylation status by β-arrestins-1 and 2 causes turnover in the phosphorylation status of MLC that is required for cell contractility and subsequent chemotaxic motility. PMID:24255721

  4. A new method to specifically label thiophosphorylatable proteins with extrinsic probes. Labeling of serine-19 of the regulatory light chain of smooth muscle myosin.

    PubMed

    Facemyer, K C; Cremo, C R

    1992-01-01

    We present a new method to specifically and stably label proteins by attaching extrinsic probes to amino acids that are thiophosphorylated by protein kinases and ATP gamma S. The method was demonstrated for labeling of a thiophosphorylatable serine of the isolated regulatory light chain of smooth muscle myosin. We stoichiometrically blocked the single thiol (Cys-108) either by forming a reversible intermolecular disulfide bond or by reacting with iodoacetic acid. The protein was stoichiometrically thiophosphorylated at Ser-19 by myosin light chain kinase and ATP gamma S. The nucleophilic sulfur of the protein phosphorothioate was coupled at pH 7.9 and 25 degrees C to the fluorescent haloacetate [3H]-5-[[2-[(iodoacetyl)-amino]ethyl]amino]naphthalene-1- sulfonic acid ([3H]IAEDANS) by displacement of the iodide. Typical labeling efficiencies were 70-100%. The labeling was specific for the thiophosphorylated Ser-19, as determined from the sequences of two labeled peptides isolated from a tryptic digest of the labeled protein. [3H]IAEDANS attached to the thiophosphorylated Ser-19 was stable at pH 3-10 at 25 degrees C, and to boiling in high concentrations of reductant. The labeled light chains were efficiently exchanged for unlabeled regulatory light chains of the whole myosin molecule. The resulting labeled myosin had normal ATPase activities in the absence of actin, indicating that the modification of Ser-19 and the exchange of the labeled light chain into myosin did not significantly disrupt the protein. The labeled myosin partially retained the elevated actin-activated Mg(2+)-ATPase activity which is characteristic of thiophosphorylated myosin. This indicates that labeling of the thiophosphate group with [3H]IAEDANS did not completely disrupt the functional properties of the thiophosphorylated protein in the presence of actin.

  5. Enhanced paracellular transport of insulin can be achieved via transient induction of myosin light chain phosphorylation.

    PubMed

    Taverner, Alistair; Dondi, Ruggero; Almansour, Khaled; Laurent, Floriane; Owens, Siân-Eleri; Eggleston, Ian M; Fotaki, Nikoletta; Mrsny, Randall J

    2015-07-28

    The intestinal epithelium functions to effectively restrict the causal uptake of luminal contents but has been demonstrated to transiently increase paracellular permeability properties to provide an additional entry route for dietary macromolecules. We have examined a method to emulate this endogenous mechanism as a means of enhancing the oral uptake of insulin. Two sets of stable Permeant Inhibitor of Phosphatase (PIP) peptides were rationally designed to stimulate phosphorylation of intracellular epithelial myosin light chain (MLC) and screened using Caco-2 monolayers in vitro. Apical application of PIP peptide 640, designed to disrupt protein-protein interactions between protein phosphatase 1 (PP1) and its regulator CPI-17, resulted in a reversible and non-toxic transient reduction in Caco-2 monolayer trans-epithelial electric resistance (TEER) and opening of the paracellular route to 4kDa fluorescent dextran but not 70kDa dextran in vitro. Apical application of PIP peptide 250, designed to impede MYPT1-mediated regulation of PP1, also decreased TEER in a reversible and non-toxic manner but transiently opened the paracellular route to both 4 and 70kDa fluorescent dextrans. Direct injection of PIP peptides 640 or 250 with human insulin into the lumen of rat jejunum caused a decrease in blood glucose levels that was PIP peptide and insulin dose-dependent and correlated with increased pMLC levels. Systemic levels of insulin suggested approximately 3-4% of the dose injected into the intestinal lumen was absorbed, relative to a subcutaneous injection. Measurement of insulin levels in the portal vein showed a time window of absorption that was consistent with systemic concentration-time profiles and approximately 50% first-pass clearance by the liver. Monitoring the uptake of a fluorescent form of insulin suggested its uptake occurred via the paracellular route. Together, these studies add validation to the presence of an endogenous mechanism used by the intestinal

  6. Myosin localization during meiosis I of crane-fly spermatocytes gives indications about its role in division.

    PubMed

    Silverman-Gavrila, Rosalind V; Forer, Arthur

    2003-06-01

    We showed previously that in crane-fly spermatocytes myosin is required for tubulin flux [Silverman-Gavrila and Forer, 2000a: J Cell Sci 113:597-609], and for normal anaphase chromosome movement and contractile ring contraction [Silverman-Gavrila and Forer, 2001: Cell Motil Cytoskeleton 50:180-197]. Neither the identity nor the distribution of myosin(s) were known. In the present work, we used immunofluorescence and confocal microscopy to study myosin during meiosis-I of crane-fly spermatocytes compared to tubulin, actin, and skeletor, a spindle matrix protein, in order to further understand how myosin might function during cell division. Antibodies to myosin II regulatory light chain and myosin II heavy chain gave similar staining patterns, both dependent on stage: myosin is associated with nuclei, asters, centrosomes, chromosomes, spindle microtubules, midbody microtubules, and contractile rings. Myosin and actin colocalization along kinetochore fibers from prometaphase to anaphase are consistent with suggestions that acto-myosin forces in these stages propel kinetochore fibres poleward and trigger tubulin flux in kinetochore fibres, contributing in this way to poleward chromosome movement. Myosin and actin colocalization at the cell equator in cytokinesis, similar to studies in other cells [e.g., Fujiwara and Pollard, 1978: J Cell Biol 77:182-195], supports a role of actin-myosin interactions in contractile ring function. Myosin and skeletor colocalization in prometaphase spindles is consistent with a role of these proteins in spindle formation. After microtubules or actin were disrupted, myosin remained in spindles and contractile rings, suggesting that the presence of myosin in these structures does not require the continued presence of microtubules or actin. BDM (2,3 butanedione, 2 monoxime) treatment that inhibits chromosome movement and cytokinesis also altered myosin distributions in anaphase spindles and contractile rings, consistent with the

  7. Phospholipase C and myosin light chain kinase inhibition define a common step in actin regulation during cytokinesis

    PubMed Central

    Wong, Raymond; Fabian, Lacramioara; Forer, Arthur; Brill, Julie A

    2007-01-01

    Background Phosphatidylinositol 4,5-bisphosphate (PIP2) is required for successful completion of cytokinesis. In addition, both PIP2 and phosphoinositide-specific phospholipase C (PLC) have been localized to the cleavage furrow of dividing mammalian cells. PLC hydrolyzes PIP2 to yield diacylglycerol (DAG) and inositol trisphosphate (IP3), which in turn induces calcium (Ca2+) release from the ER. Several studies suggest PIP2 must be hydrolyzed continuously for continued cleavage furrow ingression. The majority of these studies employ the N-substituted maleimide U73122 as an inhibitor of PLC. However, the specificity of U73122 is unclear, as its active group closely resembles the non-specific alkylating agent N-ethylmaleimide (NEM). In addition, the pathway by which PIP2 regulates cytokinesis remains to be elucidated. Results Here we compared the effects of U73122 and the structurally unrelated PLC inhibitor ET-18-OCH3 (edelfosine) on cytokinesis in crane-fly and Drosophila spermatocytes. Our data show that the effects of U73122 are indeed via PLC because U73122 and ET-18-OCH3 produced similar effects on cell morphology and actin cytoskeleton organization that were distinct from those caused by NEM. Furthermore, treatment with the myosin light chain kinase (MLCK) inhibitor ML-7 caused cleavage furrow regression and loss of both F-actin and phosphorylated myosin regulatory light chain from the contractile ring in a manner similar to treatment with U73122 and ET-18-OCH3. Conclusion We have used multiple inhibitors to examine the roles of PLC and MLCK, a predicted downstream target of PLC regulation, in cytokinesis. Our results are consistent with a model in which PIP2 hydrolysis acts via Ca2+ to activate myosin via MLCK and thereby control actin dynamics during constriction of the contractile ring. PMID:17509155

  8. TNF causes changes in glomerular endothelial permeability and morphology through a Rho and myosin light chain kinase-dependent mechanism.

    PubMed

    Xu, Chang; Wu, Xiaoyan; Hack, Bradley K; Bao, Lihua; Cunningham, Patrick N

    2015-12-01

    A key function of the endothelium is to serve as a regulated barrier between tissue compartments. We have previously shown that tumor necrosis factor (TNF) plays a crucial role in lipopolysaccharide (LPS)-induced acute kidney injury, in part by causing injury to the renal endothelium through its receptor TNFR1. Here, we report that TNF increased permeability to albumin in primary culture mouse renal endothelial cells, as well as human glomerular endothelial cells. This process occurred in association with changes in the actin cytoskeleton and was associated with gaps between previously confluent cells in culture and decreases in the tight junction protein occludin. This process was dependent on myosin light chain activation, as seen by its prevention with Rho-associated kinase and myosin light chain kinase (MLCK) inhibitors. Surprisingly, permeability was not blocked by inhibition of apoptosis with caspase inhibitors. Additionally, we found that the renal glycocalyx, which plays an important role in barrier function, was also degraded by TNF in a Rho and MLCK dependent fashion. TNF treatment caused a decrease in the size of endothelial fenestrae, dependent on Rho and MLCK, although the relevance of this to changes in permeability is uncertain. In summary, TNF-induced barrier dysfunction in renal endothelial cells is crucially dependent upon the Rho/MLCK signaling pathway.

  9. TNF causes changes in glomerular endothelial permeability and morphology through a Rho and myosin light chain kinase-dependent mechanism.

    PubMed

    Xu, Chang; Wu, Xiaoyan; Hack, Bradley K; Bao, Lihua; Cunningham, Patrick N

    2015-12-01

    A key function of the endothelium is to serve as a regulated barrier between tissue compartments. We have previously shown that tumor necrosis factor (TNF) plays a crucial role in lipopolysaccharide (LPS)-induced acute kidney injury, in part by causing injury to the renal endothelium through its receptor TNFR1. Here, we report that TNF increased permeability to albumin in primary culture mouse renal endothelial cells, as well as human glomerular endothelial cells. This process occurred in association with changes in the actin cytoskeleton and was associated with gaps between previously confluent cells in culture and decreases in the tight junction protein occludin. This process was dependent on myosin light chain activation, as seen by its prevention with Rho-associated kinase and myosin light chain kinase (MLCK) inhibitors. Surprisingly, permeability was not blocked by inhibition of apoptosis with caspase inhibitors. Additionally, we found that the renal glycocalyx, which plays an important role in barrier function, was also degraded by TNF in a Rho and MLCK dependent fashion. TNF treatment caused a decrease in the size of endothelial fenestrae, dependent on Rho and MLCK, although the relevance of this to changes in permeability is uncertain. In summary, TNF-induced barrier dysfunction in renal endothelial cells is crucially dependent upon the Rho/MLCK signaling pathway. PMID:26634902

  10. Differential roles of regulatory light chain and myosin binding protein-C phosphorylations in the modulation of cardiac force development

    SciTech Connect

    Colson, Brett A.; Locher, Matthew R.; Bekyarova, Tanya; Patel, Jitandrakumar R.; Fitzsimons, Daniel P.; Irving, Thomas C.; Moss, Richard L.

    2010-05-25

    Phosphorylation of myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) and myosin binding protein-C (cMyBP-C) by protein kinase A (PKA) independently accelerate the kinetics of force development in ventricular myocardium. However, while MLCK treatment has been shown to increase the Ca{sup 2+} sensitivity of force (pCa{sub 50}), PKA treatment has been shown to decrease pCa{sub 50}, presumably due to cardiac troponin I phosphorylation. Further, MLCK treatment increases Ca{sup 2+}-independent force and maximum Ca{sup 2+}-activated force, whereas PKA treatment has no effect on either force. To investigate the structural basis underlying the kinase-specific differential effects on steady-state force, we used synchrotron low-angle X-ray diffraction to compare equatorial intensity ratios (I{sub 1,1}/I{sub 1,0}) to assess the proximity of myosin cross-bridge mass relative to actin and to compare lattice spacings (d{sub 1,0}) to assess the inter-thick filament spacing in skinned myocardium following treatment with either MLCK or PKA. As we showed previously, PKA phosphorylation of cMyBP-C increases I{sub 1,1}/I{sub 1,0} and, as hypothesized, treatment with MLCK also increased I{sub 1,1}/I{sub 1,0}, which can explain the accelerated rates of force development during activation. Importantly, interfilament spacing was reduced by {approx}2 nm ({Delta} 3.5%) with MLCK treatment, but did not change with PKA treatment. Thus, RLC or cMyBP-C phosphorylation increases the proximity of cross-bridges to actin, but only RLC phosphorylation affects lattice spacing, which suggests that RLC and cMyBP-C modulate the kinetics of force development by similar structural mechanisms; however, the effect of RLC phosphorylation to increase the Ca{sup 2+} sensitivity of force is mediated by a distinct mechanism, most probably involving changes in interfilament spacing.

  11. In vivo definition of cardiac myosin-binding protein C's critical interactions with myosin.

    PubMed

    Bhuiyan, Md Shenuarin; McLendon, Patrick; James, Jeanne; Osinska, Hanna; Gulick, James; Bhandary, Bidur; Lorenz, John N; Robbins, Jeffrey

    2016-10-01

    Cardiac myosin-binding protein C (cMyBP-C) is an integral part of the sarcomeric machinery in cardiac muscle that enables normal function. cMyBP-C regulates normal cardiac contraction by functioning as a brake through interactions with the sarcomere's thick, thin, and titin filaments. cMyBP-C's precise effects as it binds to the different filament systems remain obscure, particularly as it impacts on the myosin heavy chain's head domain, contained within the subfragment 2 (S2) region. This portion of the myosin heavy chain also contains the ATPase activity critical for myosin's function. Mutations in myosin's head, as well as in cMyBP-C, are a frequent cause of familial hypertrophic cardiomyopathy (FHC). We generated transgenic lines in which endogenous cMyBP-C was replaced by protein lacking the residues necessary for binding to S2 (cMyBP-C(S2-)). We found, surprisingly, that cMyBP-C lacking the S2 binding site is incorporated normally into the sarcomere, although systolic function is compromised. We show for the first time the acute and chronic in vivo consequences of ablating a filament-specific interaction of cMyBP-C. This work probes the functional consequences, in the whole animal, of modifying a critical structure-function relationship, the protein's ability to bind to a region of the critical enzyme responsible for muscle contraction, the subfragment 2 domain of the myosin heavy chain. We show that the binding is not critical for the protein's correct insertion into the sarcomere's architecture, but is essential for long-term, normal function in the physiological context of the heart.

  12. In vivo definition of cardiac myosin-binding protein C's critical interactions with myosin.

    PubMed

    Bhuiyan, Md Shenuarin; McLendon, Patrick; James, Jeanne; Osinska, Hanna; Gulick, James; Bhandary, Bidur; Lorenz, John N; Robbins, Jeffrey

    2016-10-01

    Cardiac myosin-binding protein C (cMyBP-C) is an integral part of the sarcomeric machinery in cardiac muscle that enables normal function. cMyBP-C regulates normal cardiac contraction by functioning as a brake through interactions with the sarcomere's thick, thin, and titin filaments. cMyBP-C's precise effects as it binds to the different filament systems remain obscure, particularly as it impacts on the myosin heavy chain's head domain, contained within the subfragment 2 (S2) region. This portion of the myosin heavy chain also contains the ATPase activity critical for myosin's function. Mutations in myosin's head, as well as in cMyBP-C, are a frequent cause of familial hypertrophic cardiomyopathy (FHC). We generated transgenic lines in which endogenous cMyBP-C was replaced by protein lacking the residues necessary for binding to S2 (cMyBP-C(S2-)). We found, surprisingly, that cMyBP-C lacking the S2 binding site is incorporated normally into the sarcomere, although systolic function is compromised. We show for the first time the acute and chronic in vivo consequences of ablating a filament-specific interaction of cMyBP-C. This work probes the functional consequences, in the whole animal, of modifying a critical structure-function relationship, the protein's ability to bind to a region of the critical enzyme responsible for muscle contraction, the subfragment 2 domain of the myosin heavy chain. We show that the binding is not critical for the protein's correct insertion into the sarcomere's architecture, but is essential for long-term, normal function in the physiological context of the heart. PMID:27568194

  13. Neuregulin1-β decreases interleukin-1β-induced RhoA activation, myosin light chain phosphorylation, and endothelial hyperpermeability.

    PubMed

    Wu, Limin; Ramirez, Servio H; Andrews, Allison M; Leung, Wendy; Itoh, Kanako; Wu, Jiang; Arai, Ken; Lo, Eng H; Lok, Josephine

    2016-01-01

    Neuregulin-1 (NRG1) is an endogenous growth factor with multiple functions in the embryonic and postnatal brain. The NRG1 gene is large and complex, transcribing more than twenty transmembrane proteins and generating a large number of isoforms in tissue and cell type-specific patterns. Within the brain, NRG1 functions have been studied most extensively in neurons and glia, as well as in the peripheral vasculature. Recently, NRG1 signaling has been found to be important in the function of brain microvascular endothelial cells, decreasing IL-1β-induced increases in endothelial permeability. In the current experiments, we have investigated the pathways through which the NRG1-β isoform acts on IL-1β-induced endothelial permeability. Our data show that NRG1-β increases barrier function, measured by transendothelial electrical resistance, and decreases IL-1β-induced hyperpermeability, measured by dextran-40 extravasation through a monolayer of brain microvascular endothelial cells plated on transwells. An investigation of key signaling proteins suggests that the effect of NRG1-β on endothelial permeability is mediated through RhoA activation and myosin light chain phosphorylation, events which affect filamentous actin morphology. In addition, AG825, an inhibitor of the erbB2-associated tyrosine kinase, reduces the effect of NRG1-β on IL-1β-induced RhoA activation and myosin light chain phosphorylation. These data add to the evidence that NRG1-β signaling affects changes in the brain microvasculature in the setting of neuroinflammation. We propose the following events for neuregulin-1-mediated effects on Interleukin-1 β (IL-1β)-induced endothelial hyperpermeability: IL-1β leads to RhoA activation, resulting in an increase in phosphorylation of myosin light chain (MLC). Phosphorylation of MLC is known to result in actin contraction and alterations in the f-actin cytoskeletal structure. These changes are associated with increased endothelial permeability

  14. Phosphorylation and actin activation of brain myosin.

    PubMed Central

    Barylko, B; Sobieszek, A

    1983-01-01

    A method is described for obtaining brain myosin that shows significant actin activation, after phosphorylation with chicken gizzard myosin light chain kinase. Myosin with this activity could be obtained only via the initial purification of brain actomyosin. The latter complex, isolated by a method similar to that used for smooth muscle, contained actin, myosin, tropomyosin of the non-muscle type and another actin-binding protein of approximately 100,000 daltons. From the presence of a specific myosin light chain kinase and phosphatase in brain tissue it is suggested that the regulation of actin-myosin interaction operates via phosphorylation and dephosphorylation of myosin. Images Fig. 1. Fig. 3. PMID:11894951

  15. Evolution of the Dynein Heavy Chain Family in Ciliates.

    PubMed

    Rajagopalan, Vidyalakshmi; Wilkes, David E

    2016-01-01

    Dynein heavy chains are motor proteins that comprise a large gene family found across eukaryotes. We have investigated this gene family in four ciliate species: Ichthyophthirius, Oxytricha, Paramecium, and Tetrahymena. Ciliates appear to encode more dynein heavy chain genes than most eukaryotes. Phylogenetic comparisons demonstrated that the last common ancestor of the ciliates that were examined expressed at least 14 types of dynein heavy chains with most of the expansion coming from the single-headed inner arm dyneins. Each of the dyneins most likely performed different functions within the cell. PMID:26084401

  16. Cardiac myosin light chain phosphorylation and inotropic effects of a biased ligand, TRV120023, in a dilated cardiomyopathy model

    PubMed Central

    Tarigopula, Madhusudhan; Davis, Robert T.; Mungai, Paul T.; Ryba, David M.; Wieczorek, David F.; Cowan, Conrad L.; Violin, Jonathan D.; Wolska, Beata M.; Solaro, R. John

    2015-01-01

    Aims Therapeutic approaches to treat familial dilated cardiomyopathy (DCM), which is characterized by depressed sarcomeric tension and susceptibility to Ca2+-related arrhythmias, have been generally unsuccessful. Our objective in the present work was to determine the effect of the angiotensin II type 1 receptor (AT1R) biased ligand, TRV120023, on contractility of hearts of a transgenic mouse model of familial DCM with mutation in tropomyosin at position 54 (TG-E54K). Our rationale is based on previous studies, which have supported the hypothesis that biased G-protein-coupled receptor ligands, signalling via β-arrestin, increase cardiac contractility with no effect on Ca2+ transients. Our previous work demonstrated that the biased ligand TRV120023 is able to block angiotensin-induced hypertrophy, while promoting an increase in sarcomere Ca2+ response. Methods and results We tested the hypothesis that the depression in cardiac function associated with DCM can be offset by infusion of the AT1R biased ligand, TRV120023. We intravenously infused saline, TRV120023, or the unbiased ligand, losartan, for 15 min in TG-E54K and non-transgenic mice to obtain left ventricular pressure–volume relations. Hearts were analysed for sarcomeric protein phosphorylation. Results showed that the AT1R biased ligand increases cardiac performance in TG-E54K mice in association with increased myosin light chain-2 phosphorylation. Conclusion Treatment of mice with an AT1R biased ligand, acting via β-arrestin signalling, is able to induce an increase in cardiac contractility associated with an increase in ventricular myosin light chain-2 phosphorylation. AT1R biased ligands may prove to be a novel inotropic approach in familial DCM. PMID:26045475

  17. Phosphorylation and the N-terminal extension of the regulatory light chain help orient and align the myosin heads in Drosophila flight muscle

    SciTech Connect

    Farman, Gerrie P.; Miller, Mark S.; Reedy, Mary C.; Soto-Adames, Felipe N.; Vigoreaux, Jim O.; Maughan, David W.; Irving, Thomas C.

    2010-02-02

    X-ray diffraction of the indirect flight muscle (IFM) in living Drosophila at rest and electron microscopy of intact and glycerinated IFM was used to compare the effects of mutations in the regulatory light chain (RLC) on sarcomeric structure. Truncation of the RLC N-terminal extension (Dmlc2{sup {Delta}2-46}) or disruption of the phosphorylation sites by substituting alanines (Dmlc2{sup S66A, S67A}) decreased the equatorial intensity ratio (I{sub 20}/I{sub 10}), indicating decreased myosin mass associated with the thin filaments. Phosphorylation site disruption (Dmlc2{sup S66A, S67A}), but not N-terminal extension truncation (Dmlc2{sup {Delta}2-46}), decreased the 14.5 nm reflection intensity, indicating a spread of the axial distribution of the myosin heads. The arrangement of thick filaments and myosin heads in electron micrographs of the phosphorylation mutant (Dmlc2{sup S66A, S67A}) appeared normal in the relaxed and rigor states, but when calcium activated, fewer myosin heads formed cross-bridges. In transgenic flies with both alterations to the RLC (Dmlc2{sup {Delta}2-46; S66A, S67A}), the effects of the dual mutation were additive. The results suggest that the RLC N-terminal extension serves as a 'tether' to help pre-position the myosin heads for attachment to actin, while phosphorylation of the RLC promotes head orientations that allow optimal interactions with the thin filament.

  18. The importance of complete tissue homogenization for accurate stoichiometric measurement of myosin light chain phosphorylation in airway smooth muscle.

    PubMed

    Wang, Lu; Paré, Peter D; Seow, Chun Y

    2015-02-01

    The standard method for measuring the phosphorylation of the regulatory myosin light chain (MLC20) in smooth muscle is extraction of the light chain using a urea extraction buffer, urea-glycerol gel electrophoresis of the soluble portion of the extract (supernatant) and Western blot analysis. The undissolved portion of the tissue during extraction (the pellet) is usually discarded. Because the pellet contains a finite amount of MLC20, omission of the pellet could result in inaccurate measurement of MLC20 phosphorylation. In this study we compared the level of tracheal smooth muscle MLC20 phosphorylation in the supernatant alone, with that in the complete tissue homogenate (supernatant and pellet) using the standard method. The supernatant fraction showed the well-known double bands representing phosphorylated and un-phosphorylated MLC20. The dissolved pellet fraction showed varying amounts of un-phosphorylated and phosphorylated MLC20. There was a small but statistically significant overestimation of the percent MLC20 phosphorylation if the pellet was not taken into consideration. The overestimation was 7% ± 2% (mean ± SEM) (p < 0.05) in unstimulated muscle and 2% ± 1% (p < 0.05) in acetylcholine (10(-6) mol/L) stimulated muscle. This finding suggests that for accurate estimation of the stoichiometry of MLC20 phosphorylation it is necessary to consider the contribution from the pellet portion of the muscle tissue homogenate.

  19. Two distinct myosin II populations coordinate ovulatory contraction of the myoepithelial sheath in the Caenorhabditis elegans somatic gonad

    PubMed Central

    Ono, Kanako; Ono, Shoichiro

    2016-01-01

    The myoepithelial sheath in the somatic gonad of the nematode Caenorhabditis elegans has nonstriated contractile actomyosin networks that produce highly coordinated contractility for ovulation of mature oocytes. Two myosin heavy chains are expressed in the myoepithelial sheath, which are also expressed in the body-wall striated muscle. The troponin/tropomyosin system is also present and essential for ovulation. Therefore, although the myoepithelial sheath has smooth muscle–like contractile apparatuses, it has a striated muscle–like regulatory mechanism through troponin/tropomyosin. Here we report that the myoepithelial sheath has a distinct myosin population containing nonmuscle myosin II isoforms, which is regulated by phosphorylation and essential for ovulation. MLC-4, a nonmuscle myosin regulatory light chain, localizes to small punctate structures and does not colocalize with large, needle-like myosin filaments containing MYO-3, a striated-muscle myosin isoform. RNA interference of MLC-4, as well as of its upstream regulators, LET-502 (Rho-associated coiled-coil forming kinase) and MEL-11 (a myosin-binding subunit of myosin phosphatase), impairs ovulation. Expression of a phosphomimetic MLC-4 mutant mimicking a constitutively active state also impairs ovulation. A striated-muscle myosin (UNC-54) appears to provide partially compensatory contractility. Thus the results indicate that the two spatially distinct myosin II populations coordinately regulate ovulatory contraction of the myoepithelial sheath. PMID:26864628

  20. The neck region of the myosin motor domain acts as a lever arm to generate movement.

    PubMed Central

    Uyeda, T Q; Abramson, P D; Spudich, J A

    1996-01-01

    The myosin head consists of a globular catalytic domain that binds actin and hydrolyzes ATP and a neck domain that consists of essential and regulatory light chains bound to a long alpha-helical portion of the heavy chain. The swinging neck-level model assumes that a swinging motion of the neck relative to the catalytic domain is the origin of movement. This model predicts that the step size, and consequently the sliding velocity, are linearly related to the length of the neck. We have tested this point by characterizing a series of mutant Dictyostelium myosins that have different neck lengths. The 2xELCBS mutant has an extra binding site for essential light chain. The delta RLCBS mutant myosin has an internal deletion that removes the regulatory light chain binding site. The delta BLCBS mutant lacks both light chain binding sites. Wild-type myosin and these mutant myosins were subjected to the sliding filament in vitro motility assay. As expected, mutants with shorter necks move slower than wild-type myosin in vitro. Most significantly, a mutant with a longer neck moves faster than the wild type, and the sliding velocities of these myosins are linearly related to the neck length, as predicted by the swinging neck-lever model. A simple extrapolation to zero speed predicts that the fulcrum point is in the vicinity of the SH1-SH2 region in the catalytic domain. Images Fig. 1 Fig. 2 Fig. 3 PMID:8633089

  1. Photoaffinity labelling of smooth-muscle myosin by methylanthraniloyl-8-azido-ATP.

    PubMed

    Maruta, S; Ikebe, M

    1993-06-01

    Methylanthraniloyl-8-azido-ATP (Mant-8-N3-ATP), which binds to the 20 kDa C-terminal tryptic fragment of skeletal-muscle myosin subfragment-1 [Maruta, Miyanishi and Matsuda (1989) Eur. J. Biochem. 184, 213-221], was synthesized and used as a probe of the conformational change of smooth-muscle myosin. Mant-8-N3-ATP, like ATP, induced the formation of the 10 S conformation at low ionic strength. In the presence of vanadate, smooth-muscle myosin formed a stable complex with Mant-8-N3-ADP, and this complex showed the 10 S-->6 S transition of myosin. ATP-binding sites for 6 S (extended state) and 10 S (folded state) myosin were studied by photolabelling of myosin with Mant-8-N3-ADP. For both 6 S and 10 S myosin, Mant-8-N3-ATP was incorporated into the 29 kDa N-terminal tryptic fragment of myosin heavy chain. This is unlike the labelling of skeletal-muscle myosin, in which the 20 kDa C-terminal fragment is labelled. The labelling of 29 kDa fragment was diminished significantly by addition of ATP. These results suggest that the conformation of the ATP-binding site of smooth-muscle myosin is different from that of skeletal-muscle myosin. To examine further the possible differences in the labelling site between 6 S and 10 S myosin, the affinity-labelled 29 kDa fragment was subjected to complete proteolysis by lysylendo-peptidase. The fluorescent-labelled-peptide map suggested that the Mant-8-N3-ADP-binding sites for 6 S and 10 S myosin were identical.

  2. [Seasonal changes in phosphorylation of myosin regulatory light chains and C-protein in myocardium of hibernating ground squirrel Citellus undulatus].

    PubMed

    Malyshev, S L; Osipova, D A; Vikhliantsev, I M; Podlubnaia, Z A

    2006-01-01

    A comparative study concerning the extent of phosphorylation of myosin regulatory light chains and C-protein from the left ventricle of hibernating ground squirrel Citellus undulatus during the periods of hibernation and activity was carried out. During hibernation, regulatory light chains of ground squirrel were found to be completely dephosphorylated. In active animals, the share of phosphorylated light chains averages 40-45% of their total amount. The extent of phosphorylation of the cardiac C-protein during hibernation is about two times higher than that in the active state. Seasonal differences in phosphorylation of the two proteins of ground squirrel myocardium are discussed in the context of adaptation to hibernation.

  3. The expression of myosin genes in developing skeletal muscle in the mouse embryo

    SciTech Connect

    Lyons, G.E.; Ontell, M.; Cox, R.; Sassoon, D.; Buckingham, M. )

    1990-10-01

    Using in situ hybridization, we have investigated the temporal sequence of myosin gene expression in the developing skeletal muscle masses of mouse embryos. The probes used were isoform-specific, 35S-labeled antisense cRNAs to the known sarcomeric myosin heavy chain and myosin alkali light chain gene transcripts. Results showed that both cardiac and skeletal myosin heavy chain and myosin light chain mRNAs were first detected between 9 and 10 d post coitum (p.c.) in the myotomes of the most rostral somites. Myosin transcripts appeared in more caudal somites at later stages in a developmental gradient. The earliest myosin heavy chain transcripts detected code for the embryonic skeletal (MHCemb) and beta-cardiac (MHC beta) isoforms. Perinatal myosin heavy chain (MHCpn) transcripts begin to accumulate at 10.5 d p.c., which is much earlier than previously reported. At this stage, MHCemb is the major MHC transcript. By 12.5 d p.c., MHCpn and MHCemb mRNAs are present to an equal extent, and by 15.5 d p.c. the MHCpn transcript is the major MHC mRNA detected. Cardiac MHC beta transcripts are always present as a minor component. In contrast, the cardiac MLC1A mRNA is initially more abundant than that encoding the skeletal MLC1F isoform. By 12.5 d p.c. the two MLC mRNAs are present at similar levels, and by 15.5 d p.c., MLC1F is the predominant MLC transcript detected. Transcripts for the ventricular/slow (MLC1V) and another fast skeletal myosin light chain (MLC3F) are not detected in skeletal muscle before 15 d p.c., which marks the beginning of the fetal stage of muscle development. This is the first stage at which we can detect differences in expression of myosin genes between developing muscle fibers. We conclude that, during the development of the myotome and body wall muscles, different myosin genes follow independent patterns of activation and acculumation.

  4. Immobilization of the Type XIV Myosin Complex in Toxoplasma gondii

    PubMed Central

    Johnson, Terezina M.; Rajfur, Zenon; Jacobson, Ken

    2007-01-01

    The substrate-dependent movement of apicomplexan parasites such as Toxoplasma gondii and Plasmodium sp. is driven by the interaction of a type XIV myosin with F-actin. A complex containing the myosin-A heavy chain, a myosin light chain, and the accessory protein GAP45 is attached to the membranes of the inner membrane complex (IMC) through its tight interaction with the integral membrane glycoprotein GAP50. For the interaction of this complex with F-actin to result in net parasite movement, it is necessary that the myosin be immobilized with respect to the parasite and the actin with respect to the substrate the parasite is moving on. We report here that the myosin motor complex of Toxoplasma is firmly immobilized in the plane of the IMC. This does not seem to be accomplished by direct interactions with cytoskeletal elements. Immobilization of the motor complex, however, does seem to require cholesterol. Both the motor complex and the cholesterol are found in detergent-resistant membrane domains that encompass a large fraction of the inner membrane complex surface. The observation that the myosin XIV motor complex of Toxoplasma is immobilized within this cholesterol-rich membrane likely extends to closely related pathogens such as Plasmodium and possibly to other eukaryotes. PMID:17538016

  5. The nondigestible disaccharide epilactose increases paracellular Ca absorption via rho-associated kinase- and myosin light chain kinase-dependent mechanisms in rat small intestines.

    PubMed

    Suzuki, Takuya; Nishimukai, Megumi; Takechi, Maki; Taguchi, Hidenori; Hamada, Shigeki; Yokota, Atsushi; Ito, Susumu; Hara, Hiroshi; Matsui, Hirokazu

    2010-02-10

    We previously showed that epilactose, a nondigestible disaccharide, increased calcium (Ca) absorption in the small intestines of rats. Here, we explored the mechanism(s) underlying the epilactose-mediated promotion of Ca absorption in a ligated intestinal segment of anesthetized rats. The addition of epilactose to the luminal solution increased Ca absorption and chromium (Cr)-EDTA permeability, a paracellular indicator, with a strong correlation (R = 0.93) between these changes. Epilactose induced the phosphorylation of myosin regulatory light chains (MLCs), which is known to activate the paracellular route, without any change in the association of tight junction proteins with the actin cytoskeleton. The epilactose-mediated promotion of the Ca absorption was suppressed by specific inhibitors of myosin light chain kinase (MLCK) and Rho-associated kinase (ROCK). These results indicate that epilactose increases paracellular Ca absorption in the small intestine of rats through the induction of MLC phosphorylation via MLCK- and ROCK-dependent mechanisms.

  6. Evidence for an Interaction between the SH3 Domain and the N-terminal Extension of the Essential Light Chain in Class II Myosins

    PubMed Central

    Lowey, Susan; Saraswat, Lakshmi D.; Liu, HongJun; Volkmann, Niels; Hanein, Dorit

    2009-01-01

    SUMMARY The function of the src-homology 3 (SH3) domain in class II myosins, a distinct β-barrel structure, remains unknown. Here we provide evidence, using electron cryomicroscopy, in conjunction with light scattering, fluorescence and kinetic analyses, that the SH3 domain facilitates the binding of the N-terminal extension of the essential light chain isoform (ELC-1) to actin. The 41-residue extension contains four conserved lysines followed by a repeating sequence of seven Pro/Ala residues. It is widely believed that the highly charged region interacts with actin, while the Pro/Ala-rich sequence forms a rigid tether that bridges the ~9 nm distance between the myosin lever arm and the thin filament. In order to localize the N-terminus of ELC in the actomyosin complex, an engineered Cys was reacted with undecagold-maleimide, and the labeled ELC was exchanged into myosin subfragment-1 (S1). Electron cryomicroscopy of S1-bound actin filaments, together with computer-based docking of the skeletal S1 crystal structure into 3D reconstructions, showed a well-defined peak for the gold cluster near the SH3 domain. Given that SH3 domains are known to bind proline-rich ligands, we suggest that the N-terminal extension of ELC interacts with actin and modulates myosin kinetics by binding to the SH3 domain during the ATPase cycle. PMID:17597155

  7. A Differentiation-dependent Splice Variant of Myosin Light Chain Kinase, MLCK1, Regulates Epithelial Tight Junction Permeability*

    PubMed Central

    Clayburgh, Daniel R.; Rosen, Shari; Witkowski, Edwina D.; Wang, Fengjun; Blair, Stephanie; Dudek, Steven; Garcia, Joe G. N.; Alverdy, John C.; Turner, Jerrold R.

    2005-01-01

    Activation of Na+-nutrient cotransport leads to increased tight junction permeability in intestinal absorptive (villus) enterocytes. This regulation requires myosin II regulatory light chain (MLC) phosphorylation mediated by MLC kinase (MLCK). We examined the spatiotemporal segregation of MLCK isoform function and expression along the crypt-villus axis and found that long MLCK, which is expressed as two alternatively spliced isoforms, accounts for 97 ± 4% of MLC kinase activity in interphase intestinal epithelial cells. Expression of the MLCK1 isoform is limited to well differentiated enterocytes, both in vitro and in vivo, and this expression correlates closely with development of Na+-nutrient cotransport-dependent tight junction regulation. Consistent with this role, MLCK1 is localized to the perijunctional actomyosin ring. Furthermore, specific knockdown of MLCK1 using siRNA reduced tight junction permeability in monolayers with active Na+-glucose cotransport, confirming a functional role for MLCK1. These results demonstrate unique physiologically relevant patterns of expression and subcellular localization for long MLCK isoforms and show that MLCK1 is the isoform responsible for tight junction regulation in absorptive enterocytes. PMID:15507455

  8. A differentiation-dependent splice variant of myosin light chain kinase, MLCK1, regulates epithelial tight junction permeability.

    PubMed

    Clayburgh, Daniel R; Rosen, Shari; Witkowski, Edwina D; Wang, Fengjun; Blair, Stephanie; Dudek, Steven; Garcia, Joe G N; Alverdy, John C; Turner, Jerrold R

    2004-12-31

    Activation of Na(+)-nutrient cotransport leads to increased tight junction permeability in intestinal absorptive (villus) enterocytes. This regulation requires myosin II regulatory light chain (MLC) phosphorylation mediated by MLC kinase (MLCK). We examined the spatiotemporal segregation of MLCK isoform function and expression along the crypt-villus axis and found that long MLCK, which is expressed as two alternatively spliced isoforms, accounts for 97 +/- 4% of MLC kinase activity in interphase intestinal epithelial cells. Expression of the MLCK1 isoform is limited to well differentiated enterocytes, both in vitro and in vivo, and this expression correlates closely with development of Na(+)-nutrient cotransport-dependent tight junction regulation. Consistent with this role, MLCK1 is localized to the perijunctional actomyosin ring. Furthermore, specific knockdown of MLCK1 using siRNA reduced tight junction permeability in monolayers with active Na(+)-glucose cotransport, confirming a functional role for MLCK1. These results demonstrate unique physiologically relevant patterns of expression and subcellular localization for long MLCK isoforms and show that MLCK1 is the isoform responsible for tight junction regulation in absorptive enterocytes.

  9. Top-Down Targeted Proteomics Reveals Decrease in Myosin Regulatory Light-Chain Phosphorylation That Contributes to Sarcopenic Muscle Dysfunction.

    PubMed

    Gregorich, Zachery R; Peng, Ying; Cai, Wenxuan; Jin, Yutong; Wei, Liming; Chen, Albert J; McKiernan, Susan H; Aiken, Judd M; Moss, Richard L; Diffee, Gary M; Ge, Ying

    2016-08-01

    Sarcopenia, the loss of skeletal muscle mass and function with advancing age, is a significant cause of disability and loss of independence in the elderly and thus, represents a formidable challenge for the aging population. Nevertheless, the molecular mechanism(s) underlying sarcopenia-associated muscle dysfunction remain poorly understood. In this study, we employed an integrated approach combining top-down targeted proteomics with mechanical measurements to dissect the molecular mechanism(s) in age-related muscle dysfunction. Top-down targeted proteomic analysis uncovered a progressive age-related decline in the phosphorylation of myosin regulatory light chain (RLC), a critical protein involved in the modulation of muscle contractility, in the skeletal muscle of aging rats. Top-down tandem mass spectrometry analysis identified a previously unreported bis-phosphorylated proteoform of fast skeletal RLC and localized the sites of decreasing phosphorylation to Ser14/15. Of these sites, Ser14 phosphorylation represents a previously unidentified site of phosphorylation in RLC from fast-twitch skeletal muscle. Subsequent mechanical analysis of single fast-twitch fibers isolated from the muscles of rats of different ages revealed that the observed decline in RLC phosphorylation can account for age-related decreases in the contractile properties of sarcopenic fast-twitch muscles. These results strongly support a role for decreasing RLC phosphorylation in sarcopenia-associated muscle dysfunction and suggest that therapeutic modulation of RLC phosphorylation may represent a new avenue for the treatment of sarcopenia. PMID:27362462

  10. A mutation in the atrial-specific myosin light chain gene (MYL4) causes familial atrial fibrillation

    PubMed Central

    Orr, Nathan; Arnaout, Rima; Gula, Lorne J.; Spears, Danna A.; Leong-Sit, Peter; Li, Qiuju; Tarhuni, Wadea; Reischauer, Sven; Chauhan, Vijay S.; Borkovich, Matthew; Uppal, Shaheen; Adler, Arnon; Coughlin, Shaun R.; Stainier, Didier Y. R.; Gollob, Michael H.

    2016-01-01

    Atrial fibrillation (AF), the most common arrhythmia, is a growing epidemic with substantial morbidity and economic burden. Mechanisms underlying vulnerability to AF remain poorly understood, which contributes to the current lack of highly effective therapies. Recognizing mechanistic subtypes of AF may guide an individualized approach to patient management. Here, we describe a family with a previously unreported syndrome characterized by early-onset AF (age <35 years), conduction disease and signs of a primary atrial myopathy. Phenotypic penetrance was complete in all mutation carriers, although complete disease expressivity appears to be age-dependent. We show that this syndrome is caused by a novel, heterozygous p.Glu11Lys mutation in the atrial-specific myosin light chain gene MYL4. In zebrafish, mutant MYL4 leads to disruption of sarcomeric structure, atrial enlargement and electrical abnormalities associated with human AF. These findings describe the cause of a rare subtype of AF due to a primary, atrial-specific sarcomeric defect. PMID:27066836

  11. Slow motility in hair cells of the frog amphibian papilla: Myosin light chain-mediated shape change

    PubMed Central

    Farahbakhsh, Nasser A.; Narins, Peter M.

    2008-01-01

    Using video, fluorescence and confocal microscopy, quantitative analysis and modeling, we investigated intracellular processes mediating the calcium/calmodulin (Ca2+/CaM)-dependent slow motility in hair cells dissociated from the rostral region of amphibian papilla, one of the two auditory organs in frogs. The time course of shape changes in these hair cells during the period of pretreatment with several specific inhibitors, as well as their response to the calcium ionophore, ionomycin, were recorded and compared. These cells respond to ionomycin with a tri-phasic shape change: an initial phase of iso-volumetric length decrease; a period of concurrent shortening and swelling; and the final phase of increase in both length and volume. We found that both the myosin light chain kinase inhibitor, ML-7, and antagonists of the multifunctional Ca2+/CaM-dependent kinases, KN-62 and KN-93, inhibit the iso-volumetric shortening phase of the response to ionomycin. The type 1 protein phosphatase inhibitors, calyculin A and okadaic acid induce minor shortening on their own, but do not significantly alter the phase 1 response. However, they appear to counter effects of the inhibitors of Ca2+/CaM-dependent kinases. We hypothesize that an active actomyosin-based process mediates the iso-volumetric shortening in the frog rostral amphibian papillar hair cells. PMID:18534795

  12. Slow motility in hair cells of the frog amphibian papilla: myosin light chain-mediated shape change.

    PubMed

    Farahbakhsh, Nasser A; Narins, Peter M

    2008-07-01

    Using video, fluorescence and confocal microscopy, quantitative analysis and modeling, we investigated intracellular processes mediating the calcium/calmodulin (Ca(2+)/CaM)-dependent slow motility in hair cells dissociated from the rostral region of amphibian papilla, one of the two auditory organs in frogs. The time course of shape changes in these hair cells during the period of pretreatment with several specific inhibitors, as well as their response to the calcium ionophore, ionomycin, were recorded and compared. These cells respond to ionomycin with a tri-phasic shape change: an initial phase of iso-volumetric length decrease; a period of concurrent shortening and swelling; and the final phase of increase in both length and volume. We found that both the myosin light chain kinase inhibitor, ML-7, and antagonists of the multifunctional Ca(2+)/CaM-dependent kinases, KN-62 and KN-93, inhibit the iso-volumetric shortening phase of the response to ionomycin. The type 1 protein phosphatase inhibitors, calyculin A and okadaic acid induce minor shortening on their own, but do not significantly alter phase 1 response. However, they appear to counter effects of the inhibitors of Ca(2+)/CaM-dependent kinases. We hypothesize that an active actomyosin-based process mediates the iso-volumetric shortening in the frog rostral amphibian papillar hair cells.

  13. Transgenic expression and purification of myosin isoforms using the Drosophila melanogaster indirect flight muscle system.

    PubMed

    Caldwell, James T; Melkani, Girish C; Huxford, Tom; Bernstein, Sanford I

    2012-01-01

    Biophysical and structural studies on muscle myosin rely upon milligram quantities of extremely pure material. However, many biologically interesting myosin isoforms are expressed at levels that are too low for direct purification from primary tissues. Efforts aimed at recombinant expression of functional striated muscle myosin isoforms in bacterial or insect cell culture have largely met with failure, although high level expression in muscle cell culture has recently been achieved at significant expense. We report a novel method for the use of strains of the fruit fly Drosophila melanogaster genetically engineered to produce histidine-tagged recombinant muscle myosin isoforms. This method takes advantage of the single muscle myosin heavy chain gene within the Drosophila genome, the high level of expression of accessible myosin in the thoracic indirect flight muscles, the ability to knock out endogenous expression of myosin in this tissue and the relatively low cost of fruit fly colony production and maintenance. We illustrate this method by expressing and purifying a recombinant histidine-tagged variant of embryonic body wall skeletal muscle myosin II from an engineered fly strain. The recombinant protein shows the expected ATPase activity and is of sufficient purity and homogeneity for crystallization. This system may prove useful for the expression and isolation of mutant myosins associated with skeletal muscle diseases and cardiomyopathies for their biochemical and structural characterization.

  14. Calreticulin recognizes misfolded HLA-A2 heavy chains.

    PubMed

    Mancino, Laura; Rizvi, Syed Monem; Lapinski, Philip Edward; Raghavan, Malini

    2002-04-30

    Our studies investigated functional interactions between calreticulin, an endoplasmic reticulum chaperone, and major histocompatibility complex (MHC) class I molecules. Using in vitro thermal aggregation assays, we established that calreticulin can inhibit heat-induced aggregation of soluble, peptide-deficient HLA-A2 purified from supernatants of insect cells. The presence of HLA-A2-specific peptides also inhibits heat-induced aggregation. Inhibition of heat-induced aggregation of peptide-deficient HLA-A2 by calreticulin correlates with a rescue of the HLA-A2 heavy chain from precipitation, by forming high-molecular-weight complexes with calreticulin. Complex formation between HLA-A2 heavy chains and calreticulin occurs at 50 degrees C but not 37 degrees C, suggesting polypeptide-based interactions between the HLA-A2 heavy chain and calreticulin. Once complexes are formed, the addition of peptide is not sufficient to trigger efficient assembly of heavy chain/beta2m/peptide complexes. Using a fluorescent peptide-based binding assay, we show that calreticulin does not enhance peptide binding by HLA-A2 at 37 degrees C. We also show that calreticulin itself is converted to oligomeric species on exposure to 37 degrees C or higher temperatures, and that oligomeric forms of calreticulin are active in inhibiting thermal aggregation of peptide-deficient HLA-A2. Taken together, these results suggest that calreticulin functions in the recognition of misfolded MHC class I heavy chains in the endoplasmic reticulum. However, in the absence of other endoplasmic reticulum components, calreticulin by itself does not enhance the assembly of misfolded MHC class I heavy chains with beta2m and peptides. PMID:11983893

  15. Effects of limited tryptic cleavage on the physical and enzymatic properties of myosin II from Acanthamoeba castellanii.

    PubMed

    Kuznicki, J; Atkinson, M A; Korn, E D

    1984-07-25

    Limited digestion of Acanthamoeba myosin II by trypsin selectively cleaved the 185,000-Da heavy chains into a 73,000-Da peptide containing the catalytic and actin-binding sites and a 112,000-Da peptide containing the regulatory phosphorylatable sites. The light chains were unaffected. The proteolytic products remained associated and formed bipolar filaments that were very similar in appearance to filaments of native myosin by negative staining electron microscopy. Filaments of trypsin-cleaved, dephosphorylated myosin, however, had a smaller sedimentation coefficient than filaments of native dephosphorylated myosin. Trypsin-cleaved dephosphorylated myosin retained complete Ca2+-ATPase activity but had no actin-activated ATPase activity under conditions that are optimal for native, dephosphorylated myosin (pH 7.0, 4 mM MgCl2, 30 degrees C or pH 6.4, 1 mM MgCl2, 30 degrees C). Trypsin-cleaved dephosphorylated myosin had higher actin-activated ATPase activity at pH 6.0 and 1 mM MgCl2 than undigested dephosphorylated myosin which is appreciably inhibited under these conditions. Trypsin-cleaved, dephosphorylated myosin inhibited the actin-activated ATPase activity of native, dephosphorylated myosin when both were present in the same co-polymers, when enzymatic activity was assayed at pH 7.0, 4 mM MgCl2, and 30 degrees C, but this inhibition was overcome by raising the MgCl2 to 6 mM. These results provide additional evidence that regulation of acanthamoeba myosin II occurs at the filament level and that, under most conditions of assay, the heavy chains must be intact and the regulatory serines unphosphorylated for actin-activated ATPase activity to be maximally expressed. PMID:6235225

  16. Sliding velocity of isolated rabbit cardiac myosin correlates with isozyme distribution.

    PubMed

    Yamashita, H; Sugiura, S; Serizawa, T; Sugimoto, T; Iizuka, M; Katayama, E; Shimmen, T

    1992-08-01

    To investigate the relationship between the mechanical and biochemical properties of cardiac myosin, the sliding velocity of isolated cardiac myosin obtained from both euthyroid and hyperthyroid rabbits on actin cables was measured with an in vitro motility assay system. Ten rabbits (T) were treated with L-thyroxine to induce hyperthyroidism, and eight nontreated animals (N) were used as controls. Myosin was purified from the left ventricles of anesthetized animals. Myosin isozyme content was analyzed by the pyrophosphate gel electrophoresis method, and myosin adenosinetriphosphatase (ATPase) activity was determined on the same sample. Long well-organized actin cables of green algae, Nitellopsis, were used in the in vitro motility assay. Small latex beads were coated with purified cardiac myosin and introduced onto the Nitellopsis actin cables. Active unidirectional movement of the beads on the actin cables was observed under a photomicroscope, and the velocity was measured. The velocity was dependent on ATP concentrations, and the optimal pH for bead movement was approximately 7.0-7.5. The mean velocity was higher in T than in N (0.66 +/- 0.12 vs. 0.32 +/- 0.09 micron/s, P less than 0.01). Both Ca(2+)-activated ATPase activity and the percentage of alpha-myosin heavy chain were also higher in T than in N (0.691 +/- 0.072 vs. 0.335 +/- 0.072 microM Pi.mg-1.min-1, P less than 0.01, and 79 +/- 12 vs. 26 +/- 7%, P less than 0.01, respectively). The velocity of myosin closely correlated with both Ca(+2)-activated myosin ATPase activity (r = 0.87, P less than 0.01) and the percentage of alpha-myosin heavy chain (r = 0.87, P less than 0.01).

  17. Regulatory and Catalytic Domain Dynamics of Smooth Muscle Myosin Filaments†

    PubMed Central

    Li, Hui-Chun; Song, Likai; Salzameda, Bridget; Cremo, Christine R.; Fajer, Piotr G.

    2016-01-01

    Domain dynamics of the chicken gizzard smooth muscle myosin catalytic domain (heavy chain Cys-717) and regulatory domain (regulatory light chain Cys-108) were determined in the absence of nucleotides using saturation-transfer electron paramagnetic resonance. In unphosphorylated synthetic filaments, the effective rotational correlation times, τr, were 24 ± 6 μs and 441 ± 79 μs for the catalytic and regulatory domains, respectively. The corresponding amplitudes of motion were 42 ± 4° and 24 ± 9° as determined from steady-state phosphorescence anisotropy. These results suggest that the two domains have independent mobility due to a hinge between the two domains. Although a similar hinge was observed for skeletal myosin (Adhikari and Fajer (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 9643–9647. Brown et al. (2001) Biochemistry 40, 8283–8291), the latter displayed higher regulatory domain mobility, τr = 40 ± 3 μs, suggesting a smooth muscle specific mechanism of constraining regulatory domain dynamics. In the myosin monomers the correlation times for both domains were the same (~4 μs) for both smooth and skeletal myosin, suggesting that the motional difference between the two isoforms in the filaments was not due to intrinsic variation of hinge stiffness. Heavy chain/regulatory light chain chimeras of smooth and skeletal myosin pinpointed the origin of the restriction to the heavy chain and established correlation between the regulatory domain dynamics with the ability of myosin to switch off but not to switch on the ATPase and the actin sliding velocity. Phosphorylation of smooth muscle myosin filaments caused a small increase in the amplitude of motion of the regulatory domain (from 24 ± 4° to 36 ± 7°) but did not significantly affect the rotational correlation time of the regulatory domain (441 to 408 μs) or the catalytic domain (24 to 17 μs). These data are not consistent with a stable interaction between the two catalytic domains in

  18. Effect of nucleotides and actin on the orientation of the light chain-binding domain in myosin subfragment 1.

    PubMed

    Smyczynski, C; Kasprzak, A A

    1997-10-28

    The X-ray structure of myosin head (S1) reveals the presence of a long alpha-helical structure that supports both the essential and the regulatory light chains. It has been proposed that small structural changes in the catalytic domain of S1 are amplified by swinging the long alpha-helix (the "lever arm") to produce approximately 11 nm steps. To probe the spatial position of the putative lever in various S1 states, we have measured, by fluorescence resonance energy transfer (FRET), the effect of nucleotides and actin on the distances between Cys-177 of the essential light chain A1 (which is attached to the alpha-helix) and three loci in the catalytic domain. Cys-177 (donor) was labeled with 1,5-IAEDANS. The trinitrophenylated ADP analog (TNP-ADP, acceptor) was used to measure the distance to the active site. Lys-553 at the actin-binding site, labeled with a fluorescein derivative, and Lys-83 modified with trinitrobenzenesulfonic acid served as two other acceptors. FRET measurements were performed for S1 alone, for its complexes with MgADP and MgATP, for the analogs of the transition state of the ATPase reaction, S1.ADP.BeFx, S1.ADP.AlF4, and S1.ADP.VO4, and for acto-S1 in the absence and in the presence of ADP. When the transition state and acto-S1 complexes were formed, the change in the Cys-177 --> Lys-83 distance was <1.1 A, for the distance Cys-177 --> Lys-553, the change was +/-2.5 A. These distance changes correspond to rotations by <10 degrees and approximately 25 degrees, respectively. For the Cys-177 --> TNP-ADP the interprobe separation decreased by approximately 6 A in the presence of BeFx and AlF4- but only 1.9 A in the presence of vanadate; we do not interpret the 6 A change as resulting from the lever rotation. Using the coordinates of the acto-S1 complex, we have computed the expected changes in these distances resulting from rotation of the lever. These changes were much greater than the ones observed. The above results are inconsistent with models

  19. An invertebrate smooth muscle with striated muscle myosin filaments

    PubMed Central

    Sulbarán, Guidenn; Alamo, Lorenzo; Pinto, Antonio; Márquez, Gustavo; Méndez, Franklin; Padrón, Raúl; Craig, Roger

    2015-01-01

    Muscle tissues are classically divided into two major types, depending on the presence or absence of striations. In striated muscles, the actin filaments are anchored at Z-lines and the myosin and actin filaments are in register, whereas in smooth muscles, the actin filaments are attached to dense bodies and the myosin and actin filaments are out of register. The structure of the filaments in smooth muscles is also different from that in striated muscles. Here we have studied the structure of myosin filaments from the smooth muscles of the human parasite Schistosoma mansoni. We find, surprisingly, that they are indistinguishable from those in an arthropod striated muscle. This structural similarity is supported by sequence comparison between the schistosome myosin II heavy chain and known striated muscle myosins. In contrast, the actin filaments of schistosomes are similar to those of smooth muscles, lacking troponin-dependent regulation. We conclude that schistosome muscles are hybrids, containing striated muscle-like myosin filaments and smooth muscle-like actin filaments in a smooth muscle architecture. This surprising finding has broad significance for understanding how muscles are built and how they evolved, and challenges the paradigm that smooth and striated muscles always have distinctly different components. PMID:26443857

  20. Phosphorylated Myosin Light Chain 2 (p-MLC2) as a Molecular Marker of Antemortem Coronary Artery Spasm

    PubMed Central

    Li, Liliang; Li, Yuhua; Lin, Junyi; Jiang, Jieqing; He, Meng; Sun, Daming; Zhao, Ziqin; Shen, Yiwen; Xue, Aimin

    2016-01-01

    Background It is not uncommon that only mild coronary artery stenosis is grossly revealed after a system autopsy. While coronary artery spasm (CAS) is the suspected mechanism of these deaths, no specific biomarker has been identified to suggest antemortem CAS. Material/Methods To evaluate the potential of using phosphorylated myosin light chain 2 (p-MLC2) as a diagnostic marker of antemortem CAS, human vascular smooth muscle cells (VSMCs) were cultured and treated with common vasoconstrictors, including prostaglandins F2α (PGF2α), acetylcholine (ACh), and 5-hydroxy tryptamine (5-HT). The p-MLC2 level was examined in the cultured cells using Western blot analysis and in a rat model of spasm provocation tests using immunohistochemistry (IHC). Effects of increased p-MLC2 level on VSMCs contractile activities were assessed in vitro using confocal immunofluorescence assay. Four fatal cases with known antemortem CAS were collected and subject to p-MLC2 detection. Results The p-MLC2 was significantly increased in VSMCs after treatments with vasoconstrictors and in the spasm provocation tests. Myofilament was well-organized and densely stained in VSMCs with high p-MLC2 level, but disarrayed in VSMCs with low p-MLC2 level. Three of the 4 autopsied cases showed strongly positive staining of p-MLC2 at the stenosed coronary segment and the adjacent interstitial small arteries. The fourth case was autopsied at the 6th day after death and showed negative-to-mild positive staining of p-MLC2. Conclusions p-MLC2 might be a useful marker for diagnosis of antemortem CAS. Autopsy should be performed as soon as possible to collect coronary arteries for detection of p-MLC2. PMID:27643564

  1. Interleukin-18 facilitates neutrophil transmigration via myosin light chain kinase-dependent disruption of occludin, without altering epithelial permeability.

    PubMed

    Lapointe, Tamia K; Buret, Andre G

    2012-02-01

    Compromised epithelial barrier function and tight junction alterations are hallmarks of a number of gastrointestinal disorders, including inflammatory bowel disease (IBD). Increased levels of IL-18 have been observed in mucosal samples from Crohn's disease and ulcerative colitis patients. Remarkably, several reports have demonstrated that immunological or genetic blockage of IL-18 ameliorates the severity of colitis in multiple in vivo models of IBD. Nevertheless, the effects of IL-18 on intestinal epithelial barrier function remain unclear. We hypothesized that IL-18 could disrupt intestinal epithelial barrier structure and function, thus contributing to tissue damage in the context of IBD. The aims of the present study were to determine the effects of IL-18 on epithelial barrier structure and function and to characterize the mechanisms involved in these modulatory properties. Human colonic epithelial Caco-2 monolayers were coincubated with IL-18 for 24 h and processed for immunocytochemistry, immunoblotting, quantitative PCR, and permeability measurements (transepithelial resistance, FITC-dextran fluxes, and bacterial translocation). Our findings indicate that IL-18 selectively disrupts tight junctional occludin, without affecting the distribution pattern of claudin-4, claudin-5, zonula occludens-1, or E-cadherin. This effect coincided with a significant increase in myosin light chain kinase (MLCK) protein levels and activity. Pharmacological inhibition of MLCK and NF-κB prevented IL-18-induced loss of occludin. Although too subtle to alter paracellular permeability, these fine changes correlated with an MLCK-dependent increase in neutrophil transepithelial migration. In conclusion, our data suggest that IL-18 may potentiate inflammation in the context of IBD by facilitating neutrophil transepithelial migration via MLCK-dependent disruption of tight junctional occludin.

  2. Non–Muscle Myosin Light Chain Kinase Isoform Is a Viable Molecular Target in Acute Inflammatory Lung Injury

    PubMed Central

    Mirzapoiazova, Tamara; Moitra, Jaideep; Moreno-Vinasco, Liliana; Sammani, Saad; Turner, Jerry R.; Chiang, Eddie T.; Evenoski, Carrie; Wang, Ting; Singleton, Patrick A.; Huang, Yong; Lussier, Yves A.; Watterson, D. Martin; Dudek, Steven M.; Garcia, Joe G. N.

    2011-01-01

    Acute lung injury (ALI) and mechanical ventilator-induced lung injury (VILI), major causes of acute respiratory failure with elevated morbidity and mortality, are characterized by significant pulmonary inflammation and alveolar/vascular barrier dysfunction. Previous studies highlighted the role of the non–muscle myosin light chain kinase isoform (nmMLCK) as an essential element of the inflammatory response, with variants in the MYLK gene that contribute to ALI susceptibility. To define nmMLCK involvement further in acute inflammatory syndromes, we used two murine models of inflammatory lung injury, induced by either an intratracheal administration of lipopolysaccharide (LPS model) or mechanical ventilation with increased tidal volumes (the VILI model). Intravenous delivery of the membrane-permeant MLC kinase peptide inhibitor, PIK, produced a dose-dependent attenuation of both LPS-induced lung inflammation and VILI (∼50% reductions in alveolar/vascular permeability and leukocyte influx). Intravenous injections of nmMLCK silencing RNA, either directly or as cargo within angiotensin-converting enzyme (ACE) antibody–conjugated liposomes (to target the pulmonary vasculature selectively), decreased nmMLCK lung expression (∼70% reduction) and significantly attenuated LPS-induced and VILI-induced lung inflammation (∼40% reduction in bronchoalveolar lavage protein). Compared with wild-type mice, nmMLCK knockout mice were significantly protected from VILI, with significant reductions in VILI-induced gene expression in biological pathways such as nrf2-mediated oxidative stress, coagulation, p53-signaling, leukocyte extravasation, and IL-6–signaling. These studies validate nmMLCK as an attractive target for ameliorating the adverse effects of dysregulated lung inflammation. PMID:20139351

  3. Molecular cloning, characterisation and mRNA expression analysis of the sheep myosin light chain 1 gene.

    PubMed

    Zhang, Chunlan; Wang, Guizhi; Ji, Zhibin; Liu, Zhaohua; Hou, Lei; Liu, Guanqing; Wang, Jianmin

    2015-09-10

    The complete cDNA sequence of the sheep MYL1 (Myosin light chain 1) gene was cloned using RT-PCR, 5' RACE and 3' RACE. We obtained two alternatively spliced isoforms of the MYL1 gene, MYL1a and MYL1b, which are 849 and 1046bp in length and encode proteins composed of 150 and 192 amino acid residues, respectively. And the GenBank accession numbers of MYL1a and MYL1b full-length cDNA sequences that we cloned are KJ700419 and KJ710701, respectively. Neither protein was predicted to have a signal peptide, but both were predicted to have several N-glycosylation and phosphorylation sites. More than half of the secondary structure of these proteins was predicted to be α-helical. The human MYL2 protein (1m8q.1.C) is the most similar in tertiary structure. Sequence alignment showed that the sheep MYL1a protein shares more than 92% amino acid sequence similar with Mus musculus, Homo sapiens, Rattus norvegicus, Sus scrofa and Gallus gallus and that the MYL1b protein shares more than 93% amino acid sequence similar with M. musculus, H. sapiens, R. norvegicus, Bos taurus and Oryctolagus cuniculus. Transcription profile analyses of various tissues indicated that the sheep MYL1a and MYL1b mRNAs were highly but differentially expressed in the longissimus dorsi. Moreover, the expression levels of these genes in the longissimus dorsi differed between Dorper and Small-tailed Han sheep. These results serve as a foundation for further investigations of the function of the sheep MYL1 gene. PMID:25911560

  4. Phosphorylated Myosin Light Chain 2 (p-MLC2) as a Molecular Marker of Antemortem Coronary Artery Spasm.

    PubMed

    Li, Liliang; Li, Yuhua; Lin, Junyi; Jiang, Jieqing; He, Meng; Sun, Daming; Zhao, Ziqin; Shen, Yiwen; Xue, Aimin

    2016-01-01

    BACKGROUND It is not uncommon that only mild coronary artery stenosis is grossly revealed after a system autopsy. While coronary artery spasm (CAS) is the suspected mechanism of these deaths, no specific biomarker has been identified to suggest antemortem CAS. MATERIAL AND METHODS To evaluate the potential of using phosphorylated myosin light chain 2 (p-MLC2) as a diagnostic marker of antemortem CAS, human vascular smooth muscle cells (VSMCs) were cultured and treated with common vasoconstrictors, including prostaglandins F2α (PGF2α), acetylcholine (ACh), and 5-hydroxy tryptamine (5-HT). The p-MLC2 level was examined in the cultured cells using Western blot analysis and in a rat model of spasm provocation tests using immunohistochemistry (IHC). Effects of increased p-MLC2 level on VSMCs contractile activities were assessed in vitro using confocal immunofluorescence assay. Four fatal cases with known antemortem CAS were collected and subject to p-MLC2 detection. RESULTS The p-MLC2 was significantly increased in VSMCs after treatments with vasoconstrictors and in the spasm provocation tests. Myofilament was well-organized and densely stained in VSMCs with high p-MLC2 level, but disarrayed in VSMCs with low p-MLC2 level. Three of the 4 autopsied cases showed strongly positive staining of p-MLC2 at the stenosed coronary segment and the adjacent interstitial small arteries. The fourth case was autopsied at the 6th day after death and showed negative-to-mild positive staining of p-MLC2. CONCLUSIONS p-MLC2 might be a useful marker for diagnosis of antemortem CAS. Autopsy should be performed as soon as possible to collect coronary arteries for detection of p-MLC2. PMID:27643564

  5. Berberine ameliorates severe acute pancreatitis‑induced intestinal barrier dysfunction via a myosin light chain phosphorylation‑dependent pathway.

    PubMed

    Liang, Hong-Yin; Chen, Tao; Yan, Hong-Tao; Huang, Zhu; Tang, Li-Jun

    2014-05-01

    Berberine is a traditional drug used to treat gastrointestinal disorders in China and has been demonstrated to attenuate intestinal barrier dysfunction in certain animal models. However, the effects of berberine on pancreatitis-induced intestinal barrier dysfunction are yet to be fully elucidated. This study aimed to investigate the effect of berberine pretreatment on the attenuation of intestinal barrier dysfunction induced by severe acute pancreatitis (SAP). A total of 36 rats were randomly divided into Sham, SAP and SAP plus berberine groups. Pancreatitis was induced using retrograde injection of 3% Na-taurocholate into the pancreatic duct. Histological examinations of the pancreas were performed and intestinal barrier dysfunction was characterized by histological measurements and the assessment of serum diamine oxidase activity and endotoxin levels. Zonula occludens-1 and occludin mRNA and protein expression, as well as myosin light chain (MLC) phosphorylation, were assessed. SAP rat models were successfully established. Berberine treatment was found to have no significant effect on the histological changes in the pancreas, but was observed to ameliorate the intestinal mucosal barrier damage and membrane permeability associated with SAP. Although berberine exerted minimal effects on tight junction proteins in the ilea of SAP rats, it was observed to significantly inhibit SAP-induced MLC phosphorylation. To the best of our knowledge, this is the first study to demonstrate that berberine attenuates SAP‑induced intestinal barrier dysfunction in vivo. In addition, this study shows that the effect of berberine on intestinal barrier function may be associated with the inhibition of SAP‑induced upregulation of MLC phosphorylation.

  6. Proline-rich region of non-muscle myosin light chain kinase modulates kinase activity and endothelial cytoskeletal dynamics.

    PubMed

    Belvitch, Patrick; Adyshev, Djanybek; Elangovan, Venkateswaran R; Brown, Mary E; Naureckas, Caitlin; Rizzo, Alicia N; Siegler, Jessica H; Garcia, Joe G N; Dudek, Steven M

    2014-09-01

    Disruption of the pulmonary endothelial barrier and subsequent vascular leak is a hallmark of acute lung injury. Dynamic rearrangements in the endothelial cell (EC) peripheral membrane and underlying cytoskeleton are critical determinants of barrier function. The cytoskeletal effector protein non-muscle myosin light chain kinase (nmMLCK) and the actin-binding regulatory protein cortactin are important regulators of the endothelial barrier. In the present study we functionally characterize a proline-rich region of nmMLCK previously identified as the possible site of interaction between nmMLCK and cortactin. A mutant nmMLCK construct deficient in proline residues at the putative sites of cortactin binding (amino acids 973, 976, 1019, 1022) was generated. Co-immunoprecipitation studies in human lung EC transfected with wild-type or mutant nmMLCK demonstrated similar levels of cortactin interaction at baseline and after stimulation with the barrier-enhancing agonist, sphingosine 1-phosphate (S1P). In contrast, binding studies utilizing recombinant nmMLCK fragments containing the wild-type or proline-deficient sequence demonstrated a two-fold increase in cortactin binding (p<0.01) to the mutant construct. Immunofluorescent microscopy revealed an increased stress fiber density in ECs expressing GFP-labeled mutant nmMLCK at baseline (p=0.02) and after thrombin (p=0.01) or S1P (p=0.02) when compared to wild-type. Mutant nmMLCK demonstrated an increase in kinase activity in response to thrombin (p<0.01). Kymographic analysis demonstrated an increased EC membrane retraction distance and velocity (p<0.01) in response to the barrier disrupting agent thrombin in cells expressing the mutant vs. the wild-type nmMLCK construct. These results provide evidence that critical prolines within nmMLCK (amino acids 973, 976, 1019, 1022) regulate cytoskeletal and membrane events associated with pulmonary endothelial barrier function. PMID:25072537

  7. Multiple mechanisms for accumulation of myosin II filaments at the equator during cytokinesis.

    PubMed

    Yumura, Shigehiko; Ueda, Masahiro; Sako, Yasushi; Kitanishi-Yumura, Toshiko; Yanagida, Toshio

    2008-12-01

    Total internal reflection fluorescence microscopy revealed how individual bipolar myosin II filaments accumulate at the equatorial region in dividing Dictyostelium cells. Direct observation of individual filaments in live cells provided us with much convincing information. Myosin II filaments accumulated at the equatorial region by at least two independent mechanisms: (i) cortical flow, which is driven by myosin II motor activities and (ii) de novo association to the equatorial cortex. These two mechanisms were mutually redundant. At the same time, myosin II filaments underwent rapid turnover, repeating their association and dissociation with the actin cortex. Examination of the lifetime of mutant myosin filaments in the cortex revealed that the turnover mainly depended on heavy chain phosphorylation and that myosin motor activity accelerated the turnover. Double mutant myosin II deficient in both motor and phosphorylation still accumulated at the equatorial region, although they displayed no cortical flow and considerably slow turnover. Under this condition, the filaments stayed for a significantly longer time at the equatorial region than at the polar regions, indicating that there are still other mechanisms for myosin II accumulation such as binding partners or stabilizing activity of filaments in the equatorial cortex.

  8. Compressive stress induces dephosphorylation of the myosin regulatory light chain via RhoA phosphorylation by the adenylyl cyclase/protein kinase A signaling pathway.

    PubMed

    Takemoto, Kenji; Ishihara, Seiichiro; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi

    2015-01-01

    Mechanical stress that arises due to deformation of the extracellular matrix (ECM) either stretches or compresses cells. The cellular response to stretching has been actively studied. For example, stretching induces phosphorylation of the myosin regulatory light chain (MRLC) via the RhoA/RhoA-associated protein kinase (ROCK) pathway, resulting in increased cellular tension. In contrast, the effects of compressive stress on cellular functions are not fully resolved. The mechanisms for sensing and differentially responding to stretching and compressive stress are not known. To address these questions, we investigated whether phosphorylation levels of MRLC were affected by compressive stress. Contrary to the response in stretching cells, MRLC was dephosphorylated 5 min after cells were subjected to compressive stress. Compressive loading induced activation of myosin phosphatase mediated via the dephosphorylation of myosin phosphatase targeting subunit 1 (Thr853). Because myosin phosphatase targeting subunit 1 (Thr853) is phosphorylated only by ROCK, compressive loading may have induced inactivation of ROCK. However, GTP-bound RhoA (active form) increased in response to compressive stress. The compression-induced activation of RhoA and inactivation of its effector ROCK are contradictory. This inconsistency was due to phosphorylation of RhoA (Ser188) that reduced affinity of RhoA to ROCK. Treatment with the inhibitor of protein kinase A that phosphorylates RhoA (Ser188) induced suppression of compression-stimulated MRLC dephosphorylation. Incidentally, stretching induced phosphorylation of MRLC, but did not affect phosphorylation levels of RhoA (Ser188). Together, our results suggest that RhoA phosphorylation is an important process for MRLC dephosphorylation by compressive loading, and for distinguishing between stretching and compressing cells.

  9. Is myosin light-chain phosphorylation a regulatory signal for the osmotic activation of the Na+-K+-2Cl- cotransporter?

    PubMed

    Di Ciano-Oliveira, Caterina; Lodyga, Monika; Fan, Lingzhi; Szászi, Katalin; Hosoya, Hiroshi; Rotstein, Ori D; Kapus, András

    2005-07-01

    Myosin light-chain (MLC) kinase (MLCK)-dependent increase in MLC phosphorylation has been proposed to be a key mediator of the hyperosmotic activation of the Na+-K+-2Cl- cotransporter (NKCC). To address this hypothesis and to assess whether MLC phosphorylation plays a signaling or permissive role in NKCC regulation, we used pharmacological and genetic means to manipulate MLCK, MLC phosphorylation, or myosin ATPase activity and followed the impact of these alterations on the hypertonic stimulation of NKCC in porcine kidney tubular LLC-PK1 epithelial cells. We found that the MLCK inhibitor ML-7 suppressed NKCC activity independently of MLC phosphorylation. Notably, ML-7 reduced both basal and hypertonically stimulated NKCC activity without influencing MLC phosphorylation under these conditions, and it inhibited NKCC activation by Cl- depletion, a treatment that did not increase MLC phosphorylation. Furthermore, prevention of the osmotically induced increase in MLC phosphorylation by viral induction of cells with a nonphosphorylatable, dominant negative MLC mutant (AA-MLC) did not affect the hypertonic activation of NKCC. Conversely, a constitutively active MLC mutant (DD-MLC) that mimics the diphosphorylated form neither stimulated isotonic nor potentiated hypertonic NKCC activity. Furthermore, a depolarization-induced increase in endogenous MLC phosphorylation failed to activate NKCC. However, complete abolition of basal MLC phosphorylation by K252a or the inhibition of myosin ATPase by blebbistatin significantly reduced the osmotic stimulation of NKCC without suppressing its basal or Cl- depletion-triggered activity. These results indicate that an increase in MLC phosphorylation is neither a sufficient nor a necessary signal to stimulate NKCC in tubular cells. However, basal myosin activity plays a permissive role in the optimal osmotic responsiveness of NKCC. PMID:15728707

  10. [Tropomyosin and myosin subfragment 1 induce in thin muscle fiber filaments differing conformational changes in the C-terminal portion of the polypeptide chain of actin].

    PubMed

    Borovikov, Iu S; Dobrowolski, Z; Dabrowska, R

    1988-08-01

    Muscle fibres, free of myosin, troponin and tropomyosin, containing thin filaments reconstructed from G-actin and modified by fluorescent label 1,5-IAEDANS were used for polarized microfluorimetric studies of the effect of tropomyosin (TM) from smooth muscles, and of subfragment 1 (S1) from skeletal muscles on the structural state of F-actin. TM and S1 were shown to initiate different changes in polarized fluorescence of 1,5-IAEDANS of F-actin: TM increases, whereas S1 decreases fluorescent anisotropy. It was suggested that the structural state of F-actin may differ in the C-terminal of polypeptide chain of actin.

  11. Activation of smooth muscle myosin light chain kinase by calmodulin. Role of LYS(30) and GLY(40).

    PubMed

    Van Lierop, Jacquelyn E; Wilson, David P; Davis, Jonathan P; Tikunova, Svetlana; Sutherland, Cindy; Walsh, Michael P; Johnson, J David

    2002-02-22

    Calmodulin (CaM)-dependent myosin light chain kinase (MLCK) plays a key role in activation of smooth muscle contraction. A soybean isoform of CaM, SCaM-4 (77% identical to human CaM) fails to activate MLCK, whereas SCaM-1 (90.5% identical to human CaM) is as effective as CaM. We exploited this difference to gain insights into the structural requirements in CaM for activation of MLCK. A chimera (domain I of SCaM-4 and domains II-IV of SCaM-1) behaved like SCaM4, and analysis of site-specific mutants of SCaM-1 indicated that K30E and G40D mutations were responsible for the reduction in activation of MLCK. Competition experiments showed that SCaM-4 binds to the CaM-binding site of MLCK with high affinity. Replacement of CaM in skinned smooth muscle by exogenous CaM or SCaM-1, but not SCaM-4, restored Ca(2+)-dependent contraction. K30E/M36I/G40D SCaM-1 was a poor activator of contraction, but site-specific mutants, K30E, M36I and G40D, each restored Ca(2+)-induced contraction to CaM-depleted skinned smooth muscle, consistent with their capacity to activate MLCK. Interpretation of these results in light of the high-resolution structures of (Ca(2+))(4)-CaM, free and complexed with the CaM-binding domain of MLCK, indicates that a surface domain containing Lys(30) and Gly(40) and residues from the C-terminal domain is created upon binding to MLCK, formation of which is required for activation of MLCK. Interactions between this activation domain and a region of MLCK distinct from the known CaM-binding domain are required for removal of the autoinhibitory domain from the active site, i.e., activation of MLCK, or this domain may be required to stabilize the conformation of (Ca(2+))(4)-CaM necessary for MLCK activation.

  12. Neuromuscular Development and Regulation of Myosin Expression

    NASA Technical Reports Server (NTRS)

    Bodine, Sue

    1997-01-01

    The proposed experiments were designed to determine whether the absence of gravity during embryogenesis influences the postnatal development of the neuromuscular system. Further, we examined the effects of reduced gravity on hindlimb muscles of the pregnant rats. Microgravity may have short and long-term effects on the development of muscle fiber type differentiation and force producing capabilities. Microgravity will reduce muscle fiber size and cause a shift in myosin heavy chain expression from slow to fast in hindlimb muscles of the adult pregnant rats.

  13. Interaction of various mechanical activity models in regulation of myosin heavy chain isoform expression

    NASA Technical Reports Server (NTRS)

    Diffee, Gary M.; Mccue, Samuel; Larosa, Angela; Herrick, Robert E.; Baldwin, Kenneth M.

    1993-01-01

    The purpose of this study was to determine the effects of a novel combination of mechanical activity paradigms on the isomyosin distribution in rat hindlimb muscles. Thirty female Sprague-Dawley rats were divided into five experimental groups as follows: normal control, functional overload (OV) of the plantaris, OV in conjunction with hindlimb suspension (OV-S), and a combination of OV-S and either static standing weight-bearing activity (OV-SS) or high-incline treadmill exercise (OV-SE). OV of the plantaris resulted in significant hypertrophy and significant fast-to-slow isomyosin shifts. These changes were completely inhibited by the addition of hindlimb suspension (OV-S). Also, neither of the two weight-bearing regimes (OV-SS and OV-SE) was able to attenuate the suspension-induced atrophy. In the vastus intermedius and vastus lateralis, however, OV-SS was able to partially retard the atrophy associated with suspension. In both the plantaris and vastus intermedius, only OV-SS was able to partially reverse the slow-to-fast isomyosin transitions associated with suspension. These results suggest that the type of mechanical activity is important in determining adaptation to altered loading conditions, with OV-SS appearing more effective than OV-SE in reversing the effects of unweighting.

  14. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NF-{kappa}{beta} and myosin light-chain kinase pathways

    SciTech Connect

    Zhang, Ying; Li, Jianguo

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Carbachol reduced the lipopolysaccharide-induced intestinal barrier breakdown. Black-Right-Pointing-Pointer Carbachol ameliorated the lipopolysaccharide-induced ileal tight junction damage. Black-Right-Pointing-Pointer Carbachol prevented the LPS-induced NF-{kappa}{beta} and myosin light-chain kinase activation. Black-Right-Pointing-Pointer Carbachol exerted its beneficial effects in an {alpha}7 nicotinic receptor-dependent manner. -- Abstract: Carbachol is a cholinergic agonist that protects the intestines after trauma or burn injury. The present study determines the beneficial effects of carbachol and the mechanisms by which it ameliorates the lipopolysaccharide (LPS)-induced intestinal barrier breakdown. Rats were injected intraperitoneally with 10 mg/kg LPS. Results showed that the gut barrier permeability was reduced, the ultrastructural disruption of tight junctions (TJs) was prevented, the redistribution of zonula occludens-1 and claudin-2 proteins was partially reversed, and the nuclear factor-kappa beta (NF-{kappa}{beta}) and myosin light-chain kinase (MLCK) activation in the intestinal epithelium were suppressed after carbachol administration in LPS-exposed rats. Pretreatment with the {alpha}7 nicotinic acetylcholine receptor ({alpha}7nAchR) antagonist {alpha}-bungarotoxin blocked the protective action of carbachol. These results suggested that carbachol treatment can protect LPS-induced intestinal barrier dysfunction. Carbachol exerts its beneficial effect on the amelioration of the TJ damage by inhibiting the NF-{kappa}{beta} and MLCK pathways in an {alpha}7nAchR-dependent manner.

  15. Crystal structure of the rigor-like human non-muscle myosin-2 motor domain.

    PubMed

    Münnich, Stefan; Pathan-Chhatbar, Salma; Manstein, Dietmar J

    2014-12-20

    We determined the crystal structure of the motor domain of human non-muscle myosin 2B (NM-2B) in a nucleotide-free state and at a resolution of 2.8 Å. The structure shows the motor domain with an open active site and the large cleft that divides the 50 kDa domain in a closed state. Compared to other rigor-like myosin motor domain structures, our structure shows subtle but significant conformational changes in regions important for actin binding and mechanochemical coupling. Moreover, our crystal structure helps to rationalize the impact of myosin, heavy chain 9 (MYH9)-related disease mutations Arg709Cys and Arg709His on the kinetic and functional properties of NM-2B and of the closely related non-muscle myosin 2A (NM-2A). PMID:25451231

  16. Expression of heavy chain-only antibodies can support B-cell development in light chain knockout chickens.

    PubMed

    Schusser, Benjamin; Collarini, Ellen J; Pedersen, Darlene; Yi, Henry; Ching, Kathryn; Izquierdo, Shelley; Thoma, Theresa; Lettmann, Sarah; Kaspers, Bernd; Etches, Robert J; van de Lavoir, Marie-Cecile; Harriman, William; Leighton, Philip A

    2016-09-01

    Since the discovery of antibody-producing B cells in chickens six decades ago, chickens have been a model for B-cell development in gut-associated lymphoid tissue species. Here we describe targeting of the immunoglobulin light chain locus by homologous recombination in chicken primordial germ cells (PGCs) and generation of VJCL knockout chickens. In contrast to immunoglobulin heavy chain knockout chickens, which completely lack mature B cells, homozygous light chain knockout (IgL(-/-) ) chickens have a small population of B lineage cells that develop in the bursa and migrate to the periphery. This population of B cells expresses the immunoglobulin heavy chain molecule on the cell surface. Soluble heavy-chain-only IgM and IgY proteins of reduced molecular weight were detectable in plasma in 4-week-old IgL(-/-) chickens, and antigen-specific IgM and IgY heavy chain proteins were produced in response to immunization. Circulating heavy-chain-only IgM showed a deletion of the CH1 domain of the constant region enabling the immunoglobulin heavy chain to be secreted in the absence of the light chain. Our data suggest that the heavy chain by itself is enough to support all the important steps in B-cell development in a gut-associated lymphoid tissue species.

  17. Phosphorylation by protein kinase C of the 20,000-dalton light chain of myosin in intact and chemically skinned vascular smooth muscle.

    PubMed

    Sutton, T A; Haeberle, J R

    1990-02-15

    In the present study we tested the hypothesis that phosphorylation of the 20,000-dalton light chain subunit of smooth muscle myosin (LC20) by the calcium-activated and phospholipid-dependent protein kinase C regulates contraction of chemically-permeabilized (glycerinated) porcine carotid artery smooth muscle. Purified protein kinase C and oleic acid were used to phosphorylate LC20 in glycerinated muscles in the presence of a CaEGTA/EGTA buffer system (pCa 8) to prevent activation of myosin light chain kinase. Phosphorylation of the light chain to 1.3 mol of PO4/mol of LC20 did not stimulate contraction. Tryptic digests of glycerinated carotid artery LC20 contained two major phosphopeptides which contained phosphoserine but not phosphothreonine. Incubation of glycerinated muscles with calcium (20 microM) and calmodulin (10 microM) resulted in contraction and LC20 phosphorylation to 1.1 mol of PO4/mol of LC20; tryptic digests of LC20 from these muscles contained a single phosphopeptide which could be distinguished by phosphopeptide mapping from the two phosphopeptides derived from muscles phosphorylated with protein kinase C. Further phosphorylation of Ca2+/calmodulin-activated muscles to 2.0 mol of PO4/mol of LC20, by incubation with protein kinase C, had no effect on either the level of isometric force or the lightly-loaded shortening velocity (after-load = 0.1 peak active force); removal of Ca2+ and calmodulin, but not protein kinase C and oleic acid, resulted in normal relaxation in spite of maintained phosphorylation to 1.2 mol of PO4/mol of LC20. Comparison of LC20 phosphopeptide maps from glycerinated muscles incubated with protein kinase C plus Ca2+/calmodulin (2.0 mol of PO4/mol of LC20) to maps from intact muscles stimulated with 10(-6) M phorbol 12,13-dibutyrate (0.05 mol of PO4/mol of LC20) showed that the same three phosphopeptides were present in both the intact and glycerinated muscles. These findings show that phosphorylation of LC20 by protein kinase

  18. Regulation of Melanosome Movement in the Cell Cycle by Reversible Association with Myosin V

    PubMed Central

    Rogers, Stephen L.; Karcher, Ryan L.; Roland, Joseph T.; Minin, Alexander A.; Steffen, Walter; Gelfand, Vladimir I.

    1999-01-01

    Previously, we have shown that melanosomes of Xenopus laevis melanophores are transported along both microtubules and actin filaments in a coordinated manner, and that myosin V is bound to purified melanosomes (Rogers, S., and V.I. Gelfand. 1998. Curr. Biol. 8:161–164). In the present study, we have demonstrated that myosin V is the actin-based motor responsible for melanosome transport. To examine whether myosin V was regulated in a cell cycle-dependent manner, purified melanosomes were treated with interphase- or metaphase-arrested Xenopus egg extracts and assayed for in vitro motility along Nitella actin filaments. Motility of organelles treated with mitotic extract was found to decrease dramatically, as compared with untreated or interphase extract-treated melanosomes. This mitotic inhibition of motility correlated with the dissociation of myosin V from melanosomes, but the activity of soluble motor remained unaffected. Furthermore, we find that myosin V heavy chain is highly phosphorylated in metaphase extracts versus interphase extracts. We conclude that organelle transport by myosin V is controlled by a cell cycle-regulated association of this motor to organelles, and that this binding is likely regulated by phosphorylation of myosin V during mitosis. PMID:10491390

  19. Cysteine Racemization on IgG Heavy and Light Chains

    PubMed Central

    Zhang, Qingchun; Flynn, Gregory C.

    2013-01-01

    Under basic pH conditions, the heavy chain 220-light chain 214 (H220-L214) disulfide bond, found in the flexible hinge region of an IgG1, can convert to a thioether. Similar conditions also result in racemization of the H220 cysteine. Here, we report that racemization occurs on both H220 and L214 on an IgG1 with a λ light chain (IgG1λ) but almost entirely on H220 of an IgGl with a κ light chain (IgG1κ) under similar conditions. Likewise, racemization was detected at significant levels on H220 and L214 on endogenous human IgG1λ but only at the H220 position on IgG1κ. Low but measurable levels of d-cysteines were found on IgG2 cysteines in the hinge region, both with monoclonal antibodies incubated under basic pH conditions and on antibodies isolated from human serum. A simplified reaction mechanism involving reversible β-elimination on the cysteine is presented that accounts for both base-catalyzed racemization and thioether formation at the hinge disulfide. PMID:24142697

  20. Rho-kinase/myosin light chain kinase pathway plays a key role in the impairment of bile canaliculi dynamics induced by cholestatic drugs

    PubMed Central

    Sharanek, Ahmad; Burban, Audrey; Burbank, Matthew; Le Guevel, Rémy; Li, Ruoya; Guillouzo, André; Guguen-Guillouzo, Christiane

    2016-01-01

    Intrahepatic cholestasis represents a frequent manifestation of drug-induced liver injury; however, the mechanisms underlying such injuries are poorly understood. In this study of human HepaRG and primary hepatocytes, we found that bile canaliculi (BC) underwent spontaneous contractions, which are essential for bile acid (BA) efflux and require alternations in myosin light chain (MLC2) phosphorylation/dephosphorylation. Short exposure to 6 cholestatic compounds revealed that BC constriction and dilation were associated with disruptions in the ROCK/MLCK/myosin pathway. At the studied concentrations, cyclosporine A and chlorpromazine induced early ROCK activity, resulting in permanent MLC2 phosphorylation and BC constriction. However, fasudil reduced ROCK activity and caused rapid, substantial and permanent MLC2 dephosphorylation, leading to BC dilation. The remaining compounds (1-naphthyl isothiocyanate, deoxycholic acid and bosentan) caused BC dilation without modulating ROCK activity, although they were associated with a steady decrease in MLC2 phosphorylation via MLCK. These changes were associated with a common loss of BC contractions and failure of BA clearance. These results provide the first demonstration that cholestatic drugs alter BC dynamics by targeting the ROCK/MLCK pathway; in addition, they highlight new insights into the mechanisms underlying bile flow failure and can be used to identify new predictive biomarkers of drug-induced cholestasis. PMID:27169750

  1. Regulation of platelet myosin light chain (MYL9) by RUNX1: implications for thrombocytopenia and platelet dysfunction in RUNX1 haplodeficiency

    PubMed Central

    Jalagadugula, Gauthami; Mao, Guangfen; Kaur, Gurpreet; Goldfinger, Lawrence E.; Dhanasekaran, Danny N.

    2010-01-01

    Mutations in transcription factor RUNX1 are associated with familial platelet disorder, thrombocytopenia, and predisposition to leukemia. We have described a patient with thrombocytopenia and impaired agonist-induced platelet aggregation, secretion, and glycoprotein (GP) IIb-IIIa activation, associated with a RUNX1 mutation. Platelet myosin light chain (MLC) phosphorylation and transcript levels of its gene MYL9 were decreased. Myosin IIA and MLC phosphorylation are important in platelet responses to activation and regulate thrombopoiesis by a negative regulatory effect on premature proplatelet formation. We addressed the hypothesis that MYL9 is a transcriptional target of RUNX1. Chromatin immunoprecipitation (ChIP) using megakaryocytic cells revealed RUNX1 binding to MYL9 promoter region −729/−542 basepairs (bp), which contains 4 RUNX1 sites. Electrophoretic mobility shift assay showed RUNX1 binding to each site. In transient ChIP assay, mutation of these sites abolished binding of RUNX1 to MYL9 promoter construct. In reporter gene assays, deletion of each RUNX1 site reduced activity. MYL9 expression was inhibited by RUNX1 short interfering RNA (siRNA) and enhanced by RUNX1 overexpression. RUNX1 siRNA decreased cell spreading on collagen and fibrinogen. Our results constitute the first evidence that the MYL9 gene is a direct target of RUNX1 and provide a mechanism for decreased platelet MYL9 expression, MLC phosphorylation, thrombocytopenia, and platelet dysfunction associated with RUNX1 mutations. PMID:20876458

  2. Identification of T. gondii Myosin Light Chain-1 as a Direct Target of TachypleginA-2, a Small-Molecule Inhibitor of Parasite Motility and Invasion

    PubMed Central

    Leung, Jacqueline M.; Tran, Fanny; Pathak, Ravindra B.; Poupart, Séverine; Heaslip, Aoife T.; Ballif, Bryan A.; Westwood, Nicholas J.; Ward, Gary E.

    2014-01-01

    Motility of the protozoan parasite Toxoplasma gondii plays an important role in the parasite’s life cycle and virulence within animal and human hosts. Motility is driven by a myosin motor complex that is highly conserved across the Phylum Apicomplexa. Two key components of this complex are the class XIV unconventional myosin, TgMyoA, and its associated light chain, TgMLC1. We previously showed that treatment of parasites with a small-molecule inhibitor of T. gondii invasion and motility, tachypleginA, induces an electrophoretic mobility shift of TgMLC1 that is associated with decreased myosin motor activity. However, the direct target(s) of tachypleginA and the molecular basis of the compound-induced TgMLC1 modification were unknown. We show here by “click” chemistry labelling that TgMLC1 is a direct and covalent target of an alkyne-derivatized analogue of tachypleginA. We also show that this analogue can covalently bind to model thiol substrates. The electrophoretic mobility shift induced by another structural analogue, tachypleginA-2, was associated with the formation of a 225.118 Da adduct on S57 and/or C58, and treatment with deuterated tachypleginA-2 confirmed that the adduct was derived from the compound itself. Recombinant TgMLC1 containing a C58S mutation (but not S57A) was refractory to click labelling and no longer exhibited a mobility shift in response to compound treatment, identifying C58 as the site of compound binding on TgMLC1. Finally, a knock-in parasite line expressing the C58S mutation showed decreased sensitivity to compound treatment in a quantitative 3D motility assay. These data strongly support a model in which tachypleginA and its analogues inhibit the motility of T. gondii by binding directly and covalently to C58 of TgMLC1, thereby causing a decrease in the activity of the parasite’s myosin motor. PMID:24892871

  3. Supervillin binding to myosin II and synergism with anillin are required for cytokinesis.

    PubMed

    Smith, Tara C; Fridy, Peter C; Li, Yinyin; Basil, Shruti; Arjun, Sneha; Friesen, Ryan M; Leszyk, John; Chait, Brian T; Rout, Michael P; Luna, Elizabeth J

    2013-12-01

    Cytokinesis, the process by which cytoplasm is apportioned between dividing daughter cells, requires coordination of myosin II function, membrane trafficking, and central spindle organization. Most known regulators act during late cytokinesis; a few, including the myosin II-binding proteins anillin and supervillin, act earlier. Anillin's role in scaffolding the membrane cortex with the central spindle is well established, but the mechanism of supervillin action is relatively uncharacterized. We show here that two regions within supervillin affect cell division: residues 831-1281, which bind central spindle proteins, and residues 1-170, which bind the myosin II heavy chain (MHC) and the long form of myosin light-chain kinase. MHC binding is required to rescue supervillin deficiency, and mutagenesis of this site creates a dominant-negative phenotype. Supervillin concentrates activated and total myosin II at the furrow, and simultaneous knockdown of supervillin and anillin additively increases cell division failure. Knockdown of either protein causes mislocalization of the other, and endogenous anillin increases upon supervillin knockdown. Proteomic identification of interaction partners recovered using a high-affinity green fluorescent protein nanobody suggests that supervillin and anillin regulate the myosin II and actin cortical cytoskeletons through separate pathways. We conclude that supervillin and anillin play complementary roles during vertebrate cytokinesis. PMID:24088567

  4. Myosin II phosphorylation and the dynamics of stress fibers in serum-deprived and stimulated fibroblasts.

    PubMed Central

    Giuliano, K A; Kolega, J; DeBiasio, R L; Taylor, D L

    1992-01-01

    The actin-based cytomatrix generates stress fibers containing a host of proteins including actin and myosin II and whose dynamics are easily observable in living cells. We developed a dual-radioisotope-based assay of myosin II phosphorylation and applied it to serum-deprived fibroblasts treated with agents that modified the dynamic distribution of stress fibers and/or altered the phosphorylation state of myosin II. Serum-stimulation induced an immediate and sustained increase in the level of myosin II heavy chain (MHC) and 20-kDa light chain (LC20) phosphorylation over the same time course that it caused stress fiber contraction. Cytochalasin D, shown to cause stress fiber fragmentation and contraction, had little effect on myosin II phosphorylation. Okadaic acid, a protein phosphatase inhibitor, induced a delayed but massive cell shortening preceded by a large increase in MHC and LC20 phosphorylation. Staurosporine, a kinase inhibitor known to effect dissolution but not contraction of stress fibers, immediately caused an increase in MHC and LC20 phosphorylation followed within minutes by the dephosphorylation of LC20 to a level below that of untreated cells. We therefore propose that the contractility of the actin-based cytomatrix is regulated by both modulating the activity of molecular motors such as myosin II and by altering the gel structure in such a manner as to either resist or yield to the tension applied by the motors. Images PMID:1421576

  5. Immunoglobulin heavy chain/light chain pairs (HLC, Hevylite™) assays for diagnosing and monitoring monoclonal gammopathies.

    PubMed

    Kraj, Maria

    2014-01-01

    Immunofixation (IFE) is a standard method for detecting monoclonal immunoglobulins and characterizing its isotype. Recently clonality can also be determined by using immunoglobulin (Ig) heavy chain/light chain immunoassays - HLC, HevyliteTM. HLC separately measures in pairs light chain types of each intact Ig class generating ratios of monoclonal Ig/uninvolved polyclonal Ig concentrations. Studies have shown that HLC and IFE are complementary methods. HLC assays quantify monoclonal proteins and identify monoclonality. It is possible to predict prognosis in multiple myeloma and to monitor response to treatment using HLC ratio. HLC ratio may serve as a parameter for myeloma induced immunoparesis and serve as a new marker for validating remission depth and relapse probabilities.

  6. Accumulation and translation of ferritin heavy chain transcripts following anoxia exposure in a marine invertebrate.

    PubMed

    Larade, Kevin; Storey, Kenneth B

    2004-03-01

    Differential screening of a Littorina littorea (the common periwinkle) cDNA library identified ferritin heavy chain as an anoxia-induced gene in hepatopancreas. Northern blots showed that ferritin heavy chain transcript levels were elevated twofold during anoxia exposure, although nuclear run-off assays demonstrated that ferritin heavy chain mRNAs were not transcriptionally upregulated during anoxia. Polysome analysis indicated that existing ferritin transcripts were actively translated during the anoxic period. This result was confirmed via western blotting, which demonstrated a twofold increase in ferritin heavy chain protein levels during anoxia, with a subsequent decrease to control levels during normoxic recovery. Organ culture experiments using hepatopancreas slices demonstrated a >50% increase in ferritin heavy chain transcript levels in vitro under conditions of anoxia and freezing, as well as after incubation with the second messenger cGMP. Taken together, these results suggest that ferritin heavy chain is actively regulated during anoxia exposure in the marine snail, L. littorea. PMID:15010486

  7. Block the function of nonmuscle myosin II by blebbistatin induces zebrafish embryo cardia bifida.

    PubMed

    Wang, Xueqian; Chong, Mei; Wang, Xin; Wang, Hongkui; Zhang, Jie; Xu, Hui; Zhang, Jingjing; Liu, Dong

    2015-03-01

    Nonmuscle myosin II (NM II) is the name given to the multi-subunit protein product of three genes encoding different nonmuscle myosin heavy chains including NM II-A, NM II-B, and NM II-C. Blebbistatin is a small molecule that has been shown to be a relatively specific inhibitor of NM II. Blocking the function of NM II by blebbistatin induces zebrafish embryo cardia bifida at a dose-dependent manner. In situ hybridization analysis with ventricular marker ventricular myosin heavy chain (vmhc) and atrial marker atrial myosin heavy chain (amhc) showed each of the heart contained both distinct atria and ventricle. However, the cardia bifida embryos had highly variable distance between two separate ventricles. We also provided evidence that time window from 12 to 20 h post fertilization (hpf) is necessary and sufficient for cardia bifida formation caused by blebbistatin treatment. Expression of spinster homolog 2 (spns2) was decreased in blebbistatin-treated embryos, suggesting the cardia bifida phenotype caused by NM II inhibition was relevant to precardiac mesoderm migration defects. Through in situ hybridization analysis, we showed that foxa1 was expressed in endoderm of blebbistatin-treated embryos at 24-hpf stage, suggesting the endoderm formation is normal in cardia bifida embryos caused by blebbistatin treatment. In addition, we demonstrated that blebbistatin treatment resulted in morphology alteration of zebrafish cardiomyocytes in vivo and neonatal mouse cardiomyocytes in vitro.

  8. Block the function of nonmuscle myosin II by blebbistatin induces zebrafish embryo cardia bifida.

    PubMed

    Wang, Xueqian; Chong, Mei; Wang, Xin; Wang, Hongkui; Zhang, Jie; Xu, Hui; Zhang, Jingjing; Liu, Dong

    2015-03-01

    Nonmuscle myosin II (NM II) is the name given to the multi-subunit protein product of three genes encoding different nonmuscle myosin heavy chains including NM II-A, NM II-B, and NM II-C. Blebbistatin is a small molecule that has been shown to be a relatively specific inhibitor of NM II. Blocking the function of NM II by blebbistatin induces zebrafish embryo cardia bifida at a dose-dependent manner. In situ hybridization analysis with ventricular marker ventricular myosin heavy chain (vmhc) and atrial marker atrial myosin heavy chain (amhc) showed each of the heart contained both distinct atria and ventricle. However, the cardia bifida embryos had highly variable distance between two separate ventricles. We also provided evidence that time window from 12 to 20 h post fertilization (hpf) is necessary and sufficient for cardia bifida formation caused by blebbistatin treatment. Expression of spinster homolog 2 (spns2) was decreased in blebbistatin-treated embryos, suggesting the cardia bifida phenotype caused by NM II inhibition was relevant to precardiac mesoderm migration defects. Through in situ hybridization analysis, we showed that foxa1 was expressed in endoderm of blebbistatin-treated embryos at 24-hpf stage, suggesting the endoderm formation is normal in cardia bifida embryos caused by blebbistatin treatment. In addition, we demonstrated that blebbistatin treatment resulted in morphology alteration of zebrafish cardiomyocytes in vivo and neonatal mouse cardiomyocytes in vitro. PMID:25403653

  9. Kinesin- and Myosin-driven Steps of Vesicle Recruitment for Ca2+-regulated Exocytosis

    PubMed Central

    Bi, Guo-Qiang; Morris, Robert L.; Liao, Guochun; Alderton, Janet M.; Scholey, Jonathan M.; Steinhardt, Richard A.

    1997-01-01

    Kinesin and myosin have been proposed to transport intracellular organelles and vesicles to the cell periphery in several cell systems. However, there has been little direct observation of the role of these motor proteins in the delivery of vesicles during regulated exocytosis in intact cells. Using a confocal microscope, we triggered local bursts of Ca2+-regulated exocytosis by wounding the cell membrane and visualized the resulting individual exocytotic events in real time. Different temporal phases of the exocytosis burst were distinguished by their sensitivities to reagents targeting different motor proteins. The function blocking antikinesin antibody SUK4 as well as the stalk-tail fragment of kinesin heavy chain specifically inhibited a slow phase, while butanedione monoxime, a myosin ATPase inhibitor, inhibited both the slow and fast phases. The blockage of Ca2+/calmodulin-dependent protein kinase II with autoinhibitory peptide also inhibited the slow and fast phases, consistent with disruption of a myosin-actin– dependent step of vesicle recruitment. Membrane resealing after wounding was also inhibited by these reagents. Our direct observations provide evidence that in intact living cells, kinesin and myosin motors may mediate two sequential transport steps that recruit vesicles to the release sites of Ca2+-regulated exocytosis, although the identity of the responsible myosin isoform is not yet known. They also indicate the existence of three semistable vesicular pools along this regulated membrane trafficking pathway. In addition, our results provide in vivo evidence for the cargo-binding function of the kinesin heavy chain tail domain. PMID:9281579

  10. L-type calcium channels play a critical role in maintaining lens transparency by regulating phosphorylation of aquaporin-0 and myosin light chain and expression of connexins.

    PubMed

    Maddala, Rupalatha; Nagendran, Tharkika; de Ridder, Gustaaf G; Schey, Kevin L; Rao, Ponugoti Vasantha

    2013-01-01

    Homeostasis of intracellular calcium is crucial for lens cytoarchitecture and transparency, however, the identity of specific channel proteins regulating calcium influx within the lens is not completely understood. Here we examined the expression and distribution profiles of L-type calcium channels (LTCCs) and explored their role in morphological integrity and transparency of the mouse lens, using cDNA microarray, RT-PCR, immunoblot, pharmacological inhibitors and immunofluorescence analyses. The results revealed that Ca (V) 1.2 and 1.3 channels are expressed and distributed in both the epithelium and cortical fiber cells in mouse lens. Inhibition of LTCCs with felodipine or nifedipine induces progressive cortical cataract formation with time, in association with decreased lens weight in ex-vivo mouse lenses. Histological analyses of felodipine treated lenses revealed extensive disorganization and swelling of cortical fiber cells resembling the phenotype reported for altered aquaporin-0 activity without detectable cytotoxic effects. Analysis of both soluble and membrane rich fractions from felodipine treated lenses by SDS-PAGE in conjunction with mass spectrometry and immunoblot analyses revealed decreases in β-B1-crystallin, Hsp-90, spectrin and filensin. Significantly, loss of transparency in the felodipine treated lenses was preceded by an increase in aquaporin-0 serine-235 phosphorylation and levels of connexin-50, together with decreases in myosin light chain phosphorylation and the levels of 14-3-3ε, a phosphoprotein-binding regulatory protein. Felodipine treatment led to a significant increase in gene expression of connexin-50 and 46 in the mouse lens. Additionally, felodipine inhibition of LTCCs in primary cultures of mouse lens epithelial cells resulted in decreased intracellular calcium, and decreased actin stress fibers and myosin light chain phosphorylation, without detectable cytotoxic response. Taken together, these observations reveal a crucial

  11. Ca2+ sensitization due to myosin light chain phosphatase inhibition and cytoskeletal reorganization in the myogenic response of skeletal muscle resistance arteries

    PubMed Central

    Moreno-Domínguez, Alejandro; Colinas, Olaia; El-Yazbi, Ahmed; Walsh, Emma J; Hill, Michael A; Walsh, Michael P; Cole, William C

    2013-01-01

    The myogenic response of resistance arteries to intravascular pressure elevation is a fundamental physiological mechanism of crucial importance for blood pressure regulation and organ-specific control of blood flow. The importance of Ca2+ entry via voltage-gated Ca2+ channels leading to phosphorylation of the 20 kDa myosin regulatory light chains (LC20) in the myogenic response is well established. Recent studies, however, have suggested a role for Ca2+ sensitization via activation of the RhoA/Rho-associated kinase (ROK) pathway in the myogenic response. The possibility that enhanced actin polymerization is also involved in myogenic vasoconstriction has been suggested. Here, we have used pressurized resistance arteries from rat gracilis and cremaster skeletal muscles to assess the contribution to myogenic constriction of Ca2+ sensitization due to: (1) phosphorylation of the myosin targeting subunit of myosin light chain phosphatase (MYPT1) by ROK; (2) phosphorylation of the 17 kDa protein kinase C (PKC)-potentiated protein phosphatase 1 inhibitor protein (CPI-17) by PKC; and (3) dynamic reorganization of the actin cytoskeleton evoked by ROK and PKC. Arterial diameter, MYPT1, CPI-17 and LC20 phosphorylation, and G-actin content were determined at varied intraluminal pressures ± H1152, GF109203X or latrunculin B to suppress ROK, PKC and actin polymerization, respectively. The myogenic response was associated with an increase in MYPT1 and LC20 phosphorylation that was blocked by H1152. No change in phospho-CPI-17 content was detected although the PKC inhibitor, GF109203X, suppressed myogenic constriction. Basal LC20 phosphorylation at 10 mmHg was high at ∼40%, increased to a maximal level of ∼55% at 80 mmHg, and exhibited no additional change on further pressurization to 120 and 140 mmHg. Myogenic constriction at 80 mmHg was associated with a decline in G-actin content by ∼65% that was blocked by inhibition of ROK or PKC. Taken together, our findings indicate

  12. Ca2+ sensitization due to myosin light chain phosphatase inhibition and cytoskeletal reorganization in the myogenic response of skeletal muscle resistance arteries.

    PubMed

    Moreno-Domínguez, Alejandro; Colinas, Olaia; El-Yazbi, Ahmed; Walsh, Emma J; Hill, Michael A; Walsh, Michael P; Cole, William C

    2013-03-01

    Abstract  The myogenic response of resistance arteries to intravascular pressure elevation is a fundamental physiological mechanism of crucial importance for blood pressure regulation and organ-specific control of blood flow. The importance of Ca(2+) entry via voltage-gated Ca(2+) channels leading to phosphorylation of the 20 kDa myosin regulatory light chains (LC20) in the myogenic response is well established. Recent studies, however, have suggested a role for Ca(2+) sensitization via activation of the RhoA/Rho-associated kinase (ROK) pathway in the myogenic response. The possibility that enhanced actin polymerization is also involved in myogenic vasoconstriction has been suggested. Here, we have used pressurized resistance arteries from rat gracilis and cremaster skeletal muscles to assess the contribution to myogenic constriction of Ca(2+) sensitization due to: (1) phosphorylation of the myosin targeting subunit of myosin light chain phosphatase (MYPT1) by ROK; (2) phosphorylation of the 17 kDa protein kinase C (PKC)-potentiated protein phosphatase 1 inhibitor protein (CPI-17) by PKC; and (3) dynamic reorganization of the actin cytoskeleton evoked by ROK and PKC. Arterial diameter, MYPT1, CPI-17 and LC20 phosphorylation, and G-actin content were determined at varied intraluminal pressures ± H1152, GF109203X or latrunculin B to suppress ROK, PKC and actin polymerization, respectively. The myogenic response was associated with an increase in MYPT1 and LC20 phosphorylation that was blocked by H1152. No change in phospho-CPI-17 content was detected although the PKC inhibitor, GF109203X, suppressed myogenic constriction. Basal LC20 phosphorylation at 10 mmHg was high at ∼40%, increased to a maximal level of ∼55% at 80 mmHg, and exhibited no additional change on further pressurization to 120 and 140 mmHg. Myogenic constriction at 80 mmHg was associated with a decline in G-actin content by ∼65% that was blocked by inhibition of ROK or PKC. Taken together, our

  13. Switch recombination and somatic hypermutation are controlled by the heavy chain 3' enhancer region.

    PubMed

    Dunnick, Wesley A; Collins, John T; Shi, Jian; Westfield, Gerwin; Fontaine, Clinton; Hakimpour, Paul; Papavasiliou, F Nina

    2009-11-23

    Both class switch recombination (CSR) and somatic hypermutation (SHM) require transcription and the trans-acting factor activation-induced cytidine deaminase (AID), and must be up-regulated during antigen-dependent differentiation of B lymphocytes. To test the role of the heavy chain 3' enhancers in both CSR and SHM, we used a BAC transgene of the entire heavy chain constant region locus. Using Cre-loxP recombination to delete a 28-kb region that contains the four known 3' heavy chain enhancers, we isolated lines of BAC transgenic mice with an intact heavy chain locus and paired lines in the same chromosomal insertion site lacking the 3' enhancers. Intact heavy chain transgenes undergo CSR to all heavy chain genes and mutate their transgenic VDJ exon. In paired transgenes lacking the 3' enhancer region, CSR to most heavy chain genes is reduced to approximately 1% of the levels for intact heavy chain loci; SHM is also reduced. Finally, we find that in B cells with a transgene lacking the 3' enhancers, interchromosomal recombination between the transgenic VDJ exon and the endogenous heavy chain C genes is more easily detected than CSR within the transgene.

  14. Visualizing Key Hinges and a Potential Major Source of Compliance in the Lever Arm of Myosin

    SciTech Connect

    J Brown; V Senthil Kumar; E ONeall-Hennessey; L Reshetnikova; H Robinson; M Nguyen-McCarty; A Szent-Gyorgyi; C Cohen

    2011-12-31

    We have determined the 2.3-{angstrom}-resolution crystal structure of a myosin light chain domain, corresponding to one type found in sea scallop catch ('smooth') muscle. This structure reveals hinges that may function in the 'on' and 'off' states of myosin. The molecule adopts two different conformations about the heavy chain 'hook' and regulatory light chain (RLC) helix D. This conformational change results in extended and compressed forms of the lever arm whose lengths differ by 10 {angstrom}. The heavy chain hook and RLC helix D hinges could thus serve as a potential major and localized source of cross-bridge compliance during the contractile cycle. In addition, in one of the molecules of the crystal, part of the RLC N-terminal extension is seen in atomic detail and forms a one-turn alpha-helix that interacts with RLC helix D. This extension, whose sequence is highly variable in different myosins, may thus modulate the flexibility of the lever arm. Moreover, the relative proximity of the phosphorylation site to the helix D hinge suggests a potential role for conformational changes about this hinge in the transition between the on and off states of regulated myosins.

  15. Visualizing key hinges and a potential major source of compliance in the lever arm of myosin

    SciTech Connect

    Brown, J.H.; Robinson, H.; Senthil Kumar, V. S.; O'Neall-Hennessey, E.; Reshetnikova, L.; Nguyen-McCarty, M.; Szent-Gyorgyi, A. G.; Cohen, C.

    2011-01-04

    We have determined the 2.3-{angstrom}-resolution crystal structure of a myosin light chain domain, corresponding to one type found in sea scallop catch ('smooth') muscle. This structure reveals hinges that may function in the 'on' and 'off' states of myosin. The molecule adopts two different conformations about the heavy chain 'hook' and regulatory light chain (RLC) helix D. This conformational change results in extended and compressed forms of the lever arm whose lengths differ by 10 {angstrom}. The heavy chain hook and RLC helix D hinges could thus serve as a potential major and localized source of cross-bridge compliance during the contractile cycle. In addition, in one of the molecules of the crystal, part of the RLC N-terminal extension is seen in atomic detail and forms a one-turn alpha-helix that interacts with RLC helix D. This extension, whose sequence is highly variable in different myosins, may thus modulate the flexibility of the lever arm. Moreover, the relative proximity of the phosphorylation site to the helix D hinge suggests a potential role for conformational changes about this hinge in the transition between the on and off states of regulated myosins.

  16. Myosin-I moves actin filaments on a phospholipid substrate: implications for membrane targeting

    PubMed Central

    1992-01-01

    Acanthamoeba myosin-I bound to substrates of nitrocellulose or planar lipid membranes on glass moved actin filaments at an average velocity of 0.2 micron/s. This movement required ATP and phosphorylation of the myosin-I heavy chain. We prepared planar lipid membranes on a glass support by passive fusion of lipid vesicles (Brian, A. A., and H. M. McConnell. 1984. Proc. Natl. Acad. Sci. USA. 81:6159-6163) composed of phosphatidylcholine and containing 0-40% phosphatidylserine. The mass of lipid that bound to the glass was the same for membranes of 2 and 20% phosphatidylserine in phosphatidylcholine and was sufficient to form a single bilayer. Myosin-I moved actin filaments on planar membranes of 5-40% but not 0-2% phosphatidylserine. At the low concentrations of phosphatidylserine, actin filaments tended to detach suggesting that less myosin-I was bound. We used the cooperative activation of Acanthamoeba myosin-I ATPase by low concentrations of actin to assess the association of phospholipids with myosin-I. Under conditions where activity depends on the binding of actin to the tail of myosin-I (Albanesi, J. P., H. Fujisaki, and E. D. Korn. 1985. J. Biol. Chem. 260:11174-11179), phospholipid vesicles with 5-40% phosphatidylserine inhibited ATPase activity. The motility and ATPase results demonstrate a specific interaction of the tail of myosin-I with physiological concentrations of phosphatidylserine. This interaction is sufficient to support motility and may provide a mechanism to target myosin-I to biological membranes. PMID:1530945

  17. Myosins in protists.

    PubMed

    Gavin, R H

    2001-01-01

    This review focuses on selected papers that illustrate an historical perspective and the current knowledge of myosin structure and function in protists. The review contains a general description of myosin structure, a phylogenetic tree of the myosin classes, and descriptions of myosin isoforms identified in protists. Each myosin is discussed within the context of the taxonomic group of the organism in which the myosin has been identified. Domain structure, cellular location, function, and regulation are described for each myosin.

  18. Tyrosine phosphorylation of clathrin heavy chain under oxidative stress.

    PubMed

    Ihara, Yoshito; Yasuoka, Chie; Kageyama, Kan; Wada, Yoshinao; Kondo, Takahito

    2002-09-20

    In mouse pancreatic insulin-producing betaTC cells, oxidative stress due to H(2)O(2) causes tyrosine phosphorylation in various proteins. To identify proteins bearing phosphotyrosine under stress, the proteins were affinity purified using an anti-phosphotyrosine antibody-conjugated agarose column. A protein of 180kDa was identified as clathrin heavy chain (CHC) by electrophoresis and mass spectrometry. Immunoprecipitated CHC showed tyrosine phosphorylation upon H(2)O(2) treatment and the phosphorylation was suppressed by the Src kinase inhibitor, PP2. The phosphorylation status of CHC affected the intracellular localization of CHC and the clathrin-dependent endocytosis of transferrin under oxidative stress. In conclusion, CHC is a protein that is phosphorylated at tyrosine by H(2)O(2) and this phosphorylation status is implicated in the intracellular localization and functions of CHC under oxidative stress. The present study demonstrates that oxidative stress affects intracellular vesicular trafficking via the alteration of clathrin-dependent vesicular trafficking.

  19. Molecular cloning and nucleotide sequences of the complementary DNAs to chicken skeletal muscle myosin two alkali light chain mRNAs.

    PubMed Central

    Nabeshima, Y; Fujii-Kuriyama, Y; Muramatsu, M; Ogata, K

    1982-01-01

    We report here the molecular cloning and sequence analysis of DNAs complementary to mRNAs for myosin alkali light chain of chicken embryo and adult leg skeletal muscle. pSMA2-1 contained an 818 base-pair insert that includes the entire coding region and 5' and 3' untranslated regions of A2 mRNA. pSMA1-1 contained a 848 base-pair insert that included the 3' untranslated region and almost all of the coding region except for the N-terminal 13 amino acid residues of the A1 light chain. The 741 nucleotide sequences of A1 and A2 mRNAs corresponding to C-terminal 141 amino acid residues and 3' untranslated regions were identical. The 5' terminal nucleotide sequences corresponding to N-terminal 35 amino acid residues of A1 chain were quite different from the sequences corresponding to N-terminal 8 amino acid residues and of the 5' untranslated region of A2 mRNA. These findings are discussed in relation to the structures of the genes for A1 and A2 mRNA. PMID:6128725

  20. Transport of ER vesicles on actin filaments in neurons by myosin V.

    PubMed

    Tabb, J S; Molyneaux, B J; Cohen, D L; Kuznetsov, S A; Langford, G M

    1998-11-01

    Axoplasmic organelles in the giant axon of the squid have been shown to move on both actin filaments and microtubules and to switch between actin filaments and microtubules during fast axonal transport. The objectives of this investigation were to identify the specific classes of axoplasmic organelles that move on actin filaments and the myosin motors involved. We developed a procedure to isolate endoplasmic reticulum (ER) from extruded axoplasm and to reconstitute its movement in vitro. The isolated ER vesicles moved on exogenous actin filaments adsorbed to coverslips in an ATP-dependent manner without the addition of soluble factors. Therefore myosin was tightly bound and not extracted during isolation. These vesicles were identified as smooth ER by use of an antibody to an ER-resident protein, ERcalcistorin/protein disulfide isomerase (EcaSt/PDI). Furthermore, an antibody to squid myosin V was used in immunogold EM studies to show that myosin V localized to these vesicles. The antibody was generated to a squid brain myosin (p196) that was classified as myosin V based on comparisons of amino acid sequences of tryptic peptides of this myosin with those of other known members of the myosin V family. Dual labeling with the squid myosin V antibody and a kinesin heavy chain antibody showed that the two motors colocalized on the same vesicles. Finally, antibody inhibition experiments were performed with two myosin V-specific antibodies to show that myosin V motor activity is required for transport of vesicles on actin filaments in axoplasm. One antibody was made to a peptide in the globular tail domain and the other to the globular head fragment of myosin V. Both antibodies inhibited vesicle transport on actin filaments by greater than 90% compared to controls. These studies provide the first direct evidence that ER vesicles are transported on actin filaments by myosin V. These data confirm the role of actin filaments in fast axonal transport and provide support for

  1. Cross-linking of myosin subfragment 1 and heavy meromyosin by use of vanadate and a bis(adenosine 5'-triphosphate) analogue.

    PubMed

    Munson, K B; Smerdon, M J; Yount, R G

    1986-11-18

    The synthesis of a divalent ATP analogue [3,3'-dithiobis[3'(2')-O-[6-(propionylamino)hexanoyl]adenosine 5'-triphosphate] (bis22ATP)] is described in which two molecules of ATP are linked via esterification of their 3'(2')-hydroxyls to the linear dicarboxylic acid 3,3'-dithiobis[N-(5-carboxypentyl)-propionamide] [[HO2C(CH2)5NHC(O)(CH2)2S-]2]. This linkage introduces 22 atoms (a maximum of approximately 2.8 nm) between the ribose oxygens of two ATP molecules. Myosin subfragment 1 (SF1) or heavy meromyosin (HMM) readily cleave bis22ATP to bis22ADP. Upon subsequent addition of excess vanadate ion, both enzymes are rapidly inactivated by formation of a stable vanadate-bis22ADP complex at the active site. By adjustment of the reaction conditions, dimers of SF1 or HMM, both cross-linked with bis22ADP-vanadate, could be prepared. Dimers of SF1 could be separated from monomers by sucrose gradient centrifugation but not by gel filtration. These observations imply that the average Stokes radius of the dimer approximates that of the monomer, a result predicted only for monomers linked approximately side by side. Conversely, dimers of HMM were separated from HMM monomers by gel filtration, reflecting an increase in their Stokes radii. This increase, however, prevented resolution of HMM dimers from monomers by sucrose gradient centrifugation. These results and the molecular dimensions of bis22ATP suggest that the 3'-(2')-hydroxyl of ATP is no more than 1.3 nm from the surface of myosin and suggest further in the simplest interpretation that the active site is most likely located near the middle of the heads of myosin. Analytical sedimentation velocity experiments were performed in order to compare the sedimentation coefficient (s0(20),w) of the SF1 dimer formed by cross-linking to values predicted from ellipsoidal models of the dimer. The observed s0(20),w of the dimer was much closer to the range predicted for a side-to-side arrangement of SF1 monomers than the range predicted

  2. Smooth muscle actin and myosin expression in cultured airway smooth muscle cells.

    PubMed

    Wong, J Z; Woodcock-Mitchell, J; Mitchell, J; Rippetoe, P; White, S; Absher, M; Baldor, L; Evans, J; McHugh, K M; Low, R B

    1998-05-01

    In this study, the expression of smooth muscle actin and myosin was examined in cultures of rat tracheal smooth muscle cells. Protein and mRNA analyses demonstrated that these cells express alpha- and gamma-smooth muscle actin and smooth muscle myosin and nonmuscle myosin-B heavy chains. The expression of the smooth muscle specific actin and myosin isoforms was regulated in the same direction when growth conditions were changed. Thus, at confluency in 1 or 10% serum-containing medium as well as for low-density cells (50-60% confluent) deprived of serum, the expression of the smooth muscle forms of actin and myosin was relatively high. Conversely, in rapidly proliferating cultures at low density in 10% serum, smooth muscle contractile protein expression was low. The expression of nonmuscle myosin-B mRNA and protein was more stable and was upregulated only to a small degree in growing cells. Our results provide new insight into the molecular basis of differentiation and contractile function in airway smooth muscle cells.

  3. Importance of the converter region for the motility of myosin as revealed by the studies on chimeric Chara myosins.

    PubMed

    Seki, Masaya; Kashiyama, Taku; Hachikubo, You; Ito, Kohji; Yamamoto, Keiichi

    2004-11-19

    A long alpha-helix in myosin head constitutes a lever arm together with light chains. It is known from X-ray crystallographic studies that the first three turns of this lever arm alpha-helix are inserted into the converter region of myosin. We previously showed that chimeric Chara myosin in which the motor domain of Chara myosin was connected to the lever arm alpha-helix of Dictyostelium myosin had motility far less than that expected for the motor domain of Chara myosin. Here, we replaced the inserted three turns of alpha-helix of Dictyostelium myosin with that of the Chara myosin and found that the replacement enhanced the motility 2.6-fold without changing the ATPase activity so much. The result clearly showed the importance of interaction between the converter region and the lever arm alpha-helix for the efficient motility of myosin.

  4. Light and heavy chain deposition disease associated with CH1 deletion

    PubMed Central

    Cohen, Camille; El-Karoui, Khalil; Alyanakian, Marie-Alexandra; Noel, Laure-Hélène; Bridoux, Franck; Knebelmann, Bertrand

    2015-01-01

    Light and heavy chain deposition disease (LHCDD) is a rare complication of monoclonal gammopathy. In all documented cases, LHCDD is the association of deposits of a monoclonal light chain with a normal heavy chain, especially in the kidneys. We describe here a 78-year-old woman whose renal biopsy showed nodular glomerulosclerosis, initially diagnosed as diabetic nephropathy. Detailed kidney biopsy immunofluorescence study corrected the diagnosis to γ1-κ-LHCDD. Advanced immunoblot analysis showed deletion of CH1 in the both blood and kidney heavy chain. We report here, to our knowledge, the first case of γ1 LHCDD associated with a deletion of CH1. PMID:25815184

  5. Role of the N-terminal region of the skeletal muscle myosin light chain kinase target sequence in its interaction with calmodulin.

    PubMed Central

    Findlay, W. A.; Gradwell, M. J.; Bayley, P. M.

    1995-01-01

    The binding of calmodulin (CaM) to four synthetic peptide analogues of the skeletal muscle myosin light chain kinase (sk-MLCK) target sequence has been studied using 1H-NMR. The 18-residue peptide WFF is anchored to CaM via the interaction of the Trp 4 side chain with the C-domain and the Phe 17 side chain with the N-domain of the protein. A peptide corresponding to the first 10 residues (WF10) does not provide the second anchoring residue and is not long enough to span both domains of CaM. 1H-NMR spectroscopy indicates that the WF10 peptide interacts specifically with the C-domain of CaM, and the chemical shifts of the bound Trp side chain are very similar in the CaM:WF10 and CaM:WFF complexes. Binding of the C-domain of CaM to the strongly basic region around Trp 4 of this MLCK sequence may be an important step in target recognition. Comparison of 1H-NMR spectra of CaM bound to WFF, a Trp 4-->Phe analogue (FFF), or a Trp 4-->Phe/Phe 17-->Trp analogue (FFW) suggests that all three peptides bind to CaM in the same orientation, i.e., with the peptide side chain in position 4 interacting with the C-domain and the side chain in position 17 interacting with the N-domain. This indicates that a Trp residue in position 4 is not an absolute requirement for binding this target sequence and that interchanging the Trp 4 and Phe 17 residues does not reverse the orientation of the bound peptide, in confirmation of the deduction from previous indirect studies using circular dichroism (Findlay WA, Martin SR, Beckingham K, Bayley PM, 1995, Biochemistry 34:2087-2094). Molecular modeling/energy minimization studies indicate that only minor local changes in the protein structure are required to accommodate binding of the bulkier Trp 17 side chain of the FFW peptide to the N-domain of CaM. PMID:8563635

  6. Tyrosine phosphorylation of clathrin heavy chain under oxidative stress.

    PubMed

    Ihara, Yoshito; Yasuoka, Chie; Kageyama, Kan; Wada, Yoshinao; Kondo, Takahito

    2002-09-20

    In mouse pancreatic insulin-producing betaTC cells, oxidative stress due to H(2)O(2) causes tyrosine phosphorylation in various proteins. To identify proteins bearing phosphotyrosine under stress, the proteins were affinity purified using an anti-phosphotyrosine antibody-conjugated agarose column. A protein of 180kDa was identified as clathrin heavy chain (CHC) by electrophoresis and mass spectrometry. Immunoprecipitated CHC showed tyrosine phosphorylation upon H(2)O(2) treatment and the phosphorylation was suppressed by the Src kinase inhibitor, PP2. The phosphorylation status of CHC affected the intracellular localization of CHC and the clathrin-dependent endocytosis of transferrin under oxidative stress. In conclusion, CHC is a protein that is phosphorylated at tyrosine by H(2)O(2) and this phosphorylation status is implicated in the intracellular localization and functions of CHC under oxidative stress. The present study demonstrates that oxidative stress affects intracellular vesicular trafficking via the alteration of clathrin-dependent vesicular trafficking. PMID:12237126

  7. Aberrant glycosylation of Igg heavy chain in multiple myeloma.

    PubMed

    Aurer, Igor; Lauc, Gordan; Dumić, Jerka; Rendić, Dubravko; Matisić, Danica; Milos, Marija; Heffer-Lauc, Marija; Flogel, Mirna; Labar, Boris

    2007-03-01

    Although the majority of eukaryotic proteins are glycosylated, there is a dearth of knowledge regarding protein sugar moieties and their changes in disease. Most multiple myeloma cases are characterized by production of monoclonal immunoglobulins (Ig). We studied galactosylation and sialylation of IgG heavy chains in 16 patients with IgG myeloma using lectin blotting and densitometry. In comparison to age and sex matched controls, galactosylation was reduced in multiple myeloma (median 317 vs. 362, range 153-410 vs. 309-447 relative units, p = 0.015, Student's t-test). Sialylation was stage dependent; samples from patients with stage IIA had lowest amounts of sialic acid, IIIA intermediate and IIIB highest (142.6 vs. 185.9 vs. 248.5 relative units, correlation coefficient r = 0.55). Both galactosylation and sialylation levels were independent of age, sex, treatment type, response to treatment, disease duration and IgG and b2 microglobulin concentration. These data indicate that multiple myeloma is characterized by aberrant immunoglobulin glycosylation. PMID:17598409

  8. Alpha heavy chain disease (report of 18 cases from Iraq).

    PubMed Central

    Al-Bahrani, Z; Al-Saleem, T; Al-Mondhiry, H; Bakir, F; Yahia, H; Taha, I; King, J

    1978-01-01

    The clinical and pathological features of 18 new patients with alpha heavy chain disease seen at two referral centres in Baghdad, Iraq, are described. The series included 14 males and four females ranging in age from 14 to 47 years. Almost all patients presented because of long-standing abdominal pain and diarrhoea. The tissue diagnosis and extent of the disease were established at laparotomy in most patients. Peroral jejunal biospy was used in a number of patients, mainly for follow-up. The serological abnormality was confirmed by immunoselection technique. Most of the patients had extensive thickening of the bowel wall and/or tumour masses of the small intestine and mesenteric nodes. Histopathological sections showed muscularis. Preliminary results of the treatment, including two long remissions, are reported. In general, our observations agree with those made by other authors, mostly from the Middle East and Africa. We believe that a high index of clinical suspicion, routine use of the immunoselection, and recognition of the early pathological changes may hopefully lead to the detection of more cases before the frank neoplastic phase of the disease. Images Figure PMID:98395

  9. Aberrant glycosylation of Igg heavy chain in multiple myeloma.

    PubMed

    Aurer, Igor; Lauc, Gordan; Dumić, Jerka; Rendić, Dubravko; Matisić, Danica; Milos, Marija; Heffer-Lauc, Marija; Flogel, Mirna; Labar, Boris

    2007-03-01

    Although the majority of eukaryotic proteins are glycosylated, there is a dearth of knowledge regarding protein sugar moieties and their changes in disease. Most multiple myeloma cases are characterized by production of monoclonal immunoglobulins (Ig). We studied galactosylation and sialylation of IgG heavy chains in 16 patients with IgG myeloma using lectin blotting and densitometry. In comparison to age and sex matched controls, galactosylation was reduced in multiple myeloma (median 317 vs. 362, range 153-410 vs. 309-447 relative units, p = 0.015, Student's t-test). Sialylation was stage dependent; samples from patients with stage IIA had lowest amounts of sialic acid, IIIA intermediate and IIIB highest (142.6 vs. 185.9 vs. 248.5 relative units, correlation coefficient r = 0.55). Both galactosylation and sialylation levels were independent of age, sex, treatment type, response to treatment, disease duration and IgG and b2 microglobulin concentration. These data indicate that multiple myeloma is characterized by aberrant immunoglobulin glycosylation.

  10. Affinity chromatography of immobilized actin and myosin.

    PubMed Central

    Bottomley, R C; Trayer, I P

    1975-01-01

    Actin and myosin were immobilized by coupling them to agarose matrices. Both immobilized G-actin and immobilized myosin retain most of the properties of the proteins in free solution and are reliable over long periods of time. Sepharose-F-actin, under the conditions used in this study, has proved unstable and variable in its properties. Sepharose-G-actin columns were used to bind heavy meromyosin and myosin subfragment 1 specifically and reversibly. The interaction involved is sensitive to variation in ionic strength, such that myosin itself is not retained by the columns at the high salt concentration required for its complete solubilization. Myosin, rendered soluble at low ionic strength by polyalanylation, will interact successfully with the immobilized actin. The latter can distinguish between active and inactive fractions of the proteolytic and polyalanyl myosin derivatives, and was used in the preparation of these molecules. The complexes formed between the myosin derivatives and Sepharose-G-actin can be dissociated by low concentrations of ATP, ADP and pyrophosphate in both the presence and the absence of Mg2+. The G-actin columns were used to evaluate the results of chemical modifications of myosin subfragments on their interactions with actin. F-Actin in free solution is bound specifically and reversibly to columns of insolubilized myosin. Thus, with elution by either ATP or pyrophosphate, actin has been purified in one step from extracts of acetone-dried muscle powder. PMID:241335

  11. Ankyrin domain of myosin 16 influences motor function and decreases protein phosphatase catalytic activity.

    PubMed

    Kengyel, András; Bécsi, Bálint; Kónya, Zoltán; Sellers, James R; Erdődi, Ferenc; Nyitrai, Miklós

    2015-05-01

    The unconventional myosin 16 (Myo16), which may have a role in regulation of cell cycle and cell proliferation, can be found in both the nucleus and the cytoplasm. It has a unique, eight ankyrin repeat containing pre-motor domain, the so-called ankyrin domain (My16Ank). Ankyrin repeats are present in several other proteins, e.g., in the regulatory subunit (MYPT1) of the myosin phosphatase holoenzyme, which binds to the protein phosphatase-1 catalytic subunit (PP1c). My16Ank shows sequence similarity to MYPT1. In this work, the interactions of recombinant and isolated My16Ank were examined in vitro. To test the effects of My16Ank on myosin motor function, we used skeletal muscle myosin or nonmuscle myosin 2B. The results showed that My16Ank bound to skeletal muscle myosin (K D ≈ 2.4 µM) and the actin-activated ATPase activity of heavy meromyosin (HMM) was increased in the presence of My16Ank, suggesting that the ankyrin domain can modulate myosin motor activity. My16Ank showed no direct interaction with either globular or filamentous actin. We found, using a surface plasmon resonance-based binding technique, that My16Ank bound to PP1cα (K D ≈ 540 nM) and also to PP1cδ (K D ≈ 600 nM) and decreased its phosphatase activity towards the phosphorylated myosin regulatory light chain. Our results suggest that one function of the ankyrin domain is probably to regulate the function of Myo16. It may influence the motor activity, and in complex with the PP1c isoforms, it can play an important role in the targeted dephosphorylation of certain, as yet unidentified, intracellular proteins.

  12. Slow myosin in developing rat skeletal muscle

    PubMed Central

    1987-01-01

    Through S1 nuclease mapping using a specific cDNA probe, we demonstrate that the slow myosin heavy-chain (MHC) gene, characteristic of adult soleus, is expressed in bulk hind limb muscle obtained from the 18-d rat fetus. We support these results by use of a monoclonal antibody (mAb) which is highly specific to the adult slow MHC. Immunoblots of MHC peptide maps show the same peptides, uniquely recognized by this antibody in adult soleus, are also identified in 18-d fetal limb muscle. Thus synthesis of slow myosin is an early event in skeletal myogenesis and is expressed concurrently with embryonic myosin. By immunofluorescence we demonstrate that in the 16-d fetus all primary myotubes in future fast and future slow muscles homogeneously express slow as well as embryonic myosin. Fiber heterogeneity arises owing to a developmentally regulated inhibition of slow MHC accumulation as muscles are progressively assembled from successive orders of cells. Assembly involves addition of new, superficial areas of the anterior tibial muscle (AT) and extensor digitorum longus muscle (EDL) in which primary cells initially stain weakly or are unstained with the slow mAb. In the developing AT and EDL, expression of slow myosin is unstable and is progressively restricted as these muscles specialize more and more towards the fast phenotype. Slow fibers persisting in deep portions of the adult EDL and AT are interpreted as vestiges of the original muscle primordium. A comparable inhibition of slow MHC accumulation occurs in the developing soleus but involves secondary, not primary, cells. Our results show that the fate of secondary cells is flexible and is spatially determined. By RIA we show that the relative proportions of slow MHC are fivefold greater in the soleus than in the EDL or AT at birth. After neonatal denervation, concentrations of slow MHC in the soleus rapidly decline, and we hypothesize that, in this muscle, the nerve protects and amplifies initial programs of slow MHC

  13. Novel Exons and Splice Variants in the Human Antibody Heavy Chain Identified by Single Cell and Single Molecule Sequencing

    PubMed Central

    Vollmers, Christopher; Penland, Lolita; Kanbar, Jad N.; Quake, Stephen R.

    2015-01-01

    Antibody heavy chains contain a variable and a constant region. The constant region of the antibody heavy chain is encoded by multiple groups of exons which define the isotype and therefore many functional characteristics of the antibody. We performed both single B cell RNAseq and long read single molecule sequencing of antibody heavy chain transcripts and were able to identify novel exons for IGHA1 and IGHA2 as well as novel isoforms for IGHM antibody heavy chain. PMID:25611855

  14. The On-off Switch in Regulated Myosins: Different Triggers but Related Mechanisms

    SciTech Connect

    Himmel, D.; Mui, S; O' Neall-Hennessey, E; Szent-Györgyi, A; Cohen, C

    2009-01-01

    In regulated myosin, motor and enzymatic activities are toggled between the on-state and off-state by a switch located on its lever arm domain, here called the regulatory domain (RD). This region consists of a long {alpha}-helical 'heavy chain' stabilized by a 'regulatory' light chain (RLC) and an 'essential' light chain (ELC). The on-state is activated by phosphorylation of the RLC of vertebrate smooth muscle RD or by direct binding of Ca{sup 2+} to the ELC of molluscan RD. Crystal structures are available only for the molluscan RD. To understand in more detail the pathway between the on-state and the off-state, we have now also determined the crystal structure of a molluscan (scallop) RD in the absence of Ca{sup 2+}. Our results indicate that loss of Ca{sup 2+} abolishes most of the interactions between the light chains and may increase the flexibility of the RD heavy chain. We propose that disruption of critical links with the C-lobe of the RLC is the key event initiating the off-state in both smooth muscle myosins and molluscan myosins.

  15. The on-off switch in regulated myosins: different triggers but related mechanisms.

    PubMed

    Himmel, Daniel M; Mui, Suet; O'Neall-Hennessey, Elizabeth; Szent-Györgyi, Andrew G; Cohen, Carolyn

    2009-12-01

    In regulated myosin, motor and enzymatic activities are toggled between the on-state and off-state by a switch located on its lever arm domain, here called the regulatory domain (RD). This region consists of a long alpha-helical "heavy chain" stabilized by a "regulatory" light chain (RLC) and an "essential" light chain (ELC). The on-state is activated by phosphorylation of the RLC of vertebrate smooth muscle RD or by direct binding of Ca(2+) to the ELC of molluscan RD. Crystal structures are available only for the molluscan RD. To understand in more detail the pathway between the on-state and the off-state, we have now also determined the crystal structure of a molluscan (scallop) RD in the absence of Ca(2+). Our results indicate that loss of Ca(2+) abolishes most of the interactions between the light chains and may increase the flexibility of the RD heavy chain. We propose that disruption of critical links with the C-lobe of the RLC is the key event initiating the off-state in both smooth muscle myosins and molluscan myosins. PMID:19769984

  16. Structure–Function Analysis of the Non-Muscle Myosin Light Chain Kinase (nmMLCK) Isoform by NMR Spectroscopy and Molecular Modeling: Influence of MYLK Variants

    PubMed Central

    Shen, Kui; Ramirez, Benjamin; Mapes, Brandon; Shen, Grace R.; Gokhale, Vijay; Brown, Mary E.; Santarsiero, Bernard; Ishii, Yoshitaka; Dudek, Steven M.; Wang, Ting; Garcia, Joe G. N.

    2015-01-01

    The MYLK gene encodes the multifunctional enzyme, myosin light chain kinase (MLCK), involved in isoform-specific non-muscle and smooth muscle contraction and regulation of vascular permeability during inflammation. Three MYLK SNPs (P21H, S147P, V261A) alter the N-terminal amino acid sequence of the non-muscle isoform of MLCK (nmMLCK) and are highly associated with susceptibility to acute lung injury (ALI) and asthma, especially in individuals of African descent. To understand the functional effects of SNP associations, we examined the N-terminal segments of nmMLCK by 1H-15N heteronuclear single quantum correlation (HSQC) spectroscopy, a 2-D NMR technique, and by in silico molecular modeling. Both NMR analysis and molecular modeling indicated SNP localization to loops that connect the immunoglobulin-like domains of nmMLCK, consistent with minimal structural changes evoked by these SNPs. Molecular modeling analysis identified protein-protein interaction motifs adversely affected by these MYLK SNPs including binding by the scaffold protein 14-3-3, results confirmed by immunoprecipitation and western blot studies. These structure-function studies suggest novel mechanisms for nmMLCK regulation, which may confirm MYLK as a candidate gene in inflammatory lung disease and advance knowledge of the genetic underpinning of lung-related health disparities. PMID:26111161

  17. Translation termination factors function outside of translation: yeast eRF1 interacts with myosin light chain, Mlc1p, to effect cytokinesis.

    PubMed

    Valouev, I A; Urakov, V N; Kochneva-Pervukhova, N V; Smirnov, V N; Ter-Avanesyan, M D

    2004-07-01

    The translation termination factor eRF1 recognizes stop codons at the A site of the ribosome and induces peptidyl-tRNA hydrolysis at the peptidyl transferase centre. Recent data show that, besides translation, yeast eRF1 is also involved in cell cycle regulation. To clarify the mechanisms of non-translational functions of eRF1, we performed a genetic screen for its novel partner proteins. This screen revealed the gene for myosin light chain, Mlc1p, acting as a dosage suppressor of a temperature-sensitive mutation in the SUP45 gene encoding eRF1. eRF1 and Mlc1p are able to interact with each other and, similarly to depletion of Mlc1p, mutations in the SUP45 gene may affect cytokinesis. Immunofluorescent staining performed to determine localization of Mlc1p has shown that the sup45 mutation, which arrests cytokinesis, redistributed Mlc1p, causing its disappearance from the bud tip and the bud neck. The data obtained demonstrate that yeast eRF1 has an important non-translational function effecting cytokinesis via interaction with Mlc1p.

  18. All-Trans Retinoic Acid Inhibits Human Colorectal Cancer Cells RKO Migration via Downregulating Myosin Light Chain Kinase Expression through MAPK Signaling Pathway.

    PubMed

    Zuo, Li; Yang, Xiaoping; Lu, Man; Hu, Ruolei; Zhu, Huaqing; Zhang, Sumei; Zhou, Qing; Chen, Feihu; Gui, Shuyu; Wang, Yuan

    2016-10-01

    All-trans-retinoic acid (ATRA) inhibits the invasive and metastatic potentials of various cancer cells. However, the underlying mechanism is unclear. Here, we demonstrate that ATRA inhibited colorectal cancer cells RKO (human colon adenocarcinoma cell) migration by downregulating cell movement and increasing cell adhesion. ATRA inhibited the expression and activation of myosin light chain kinase (MLCK) in RKO cells, while the expression level of MLC phosphatase (MLCP) had no change in RKO cells treated with or without ATRA. The expression and activity of MLC was also inhibited in RKO cells exposed to ATRA. Intriguingly, ATRA increased the expression of occludin messenger RNA (mRNA) and protein and its localization on cell membrane. However, ATRA did not change the expression of zonula occludens 1 (ZO-1), but increased the accumulation of ZO-1 on RKO cells membrane. ML-7, an inhibitor of MLCK, significantly inhibited RKO cell migration. Furthermore, knockdown of endogenous MLCK expression inhibited RKO migration. Mechanistically, we showed that MAPK-specific inhibitor PD98059 enhanced the inhibitory effect of ATRA on RKO migration. In contrast, phorbol 12-myristate 13-acetate (PMA) attenuated the effects of ATRA in RKO cells. Moreover, knocking down endogenous extracellular signal-regulated kinase (ERK) expression inhibited MLCK expression in the RKO cells. In conclusion, ATRA inhibits RKO migration by reducing MLCK expression via extracellular signal-regulated kinase 1/Mitogen-activated protein kinase (ERK1/MAPK) signaling pathway. PMID:27564600

  19. The Rho-GTPase effector ROCK regulates meiotic maturation of the bovine oocyte via myosin light chain phosphorylation and cofilin phosphorylation.

    PubMed

    Lee, So-Rim; Xu, Yong-Nan; Jo, Yu-Jin; Namgoong, Suk; Kim, Nam-Hyung

    2015-11-01

    Oocyte meiosis involves a unique asymmetric division involving spindle movement from the central cytoplasm to the cortex, followed by polar body extrusion. ROCK is a Rho-GTPase effector involved in various cellular functions in somatic cells as well as oocyte meiosis. ROCK was previously shown to promote actin organization by phosphorylating several downstream targets, including LIM domain kinase (LIMK), phosphorylated cofilin (p-cofilin), and myosin light chain (MLC). In this study, we investigated the roles of ROCK and MLC during bovine oocyte meiosis. We found that ROCK was localized around the nucleus at the oocyte's germinal-vesicle (GV) stage, but spreads to the rest of the cytoplasm in later developmental stages. On the other hand, phosphorylated MLC (p-MLC) localized at the cortex, and its abundance decreased by the metaphase-II stage. Disrupting ROCK activity, via RNAi or the chemical inhibitor Y-27632, blocked both cell cycle progression and polar body extrusion. ROCK inhibition also resulted in decreased cortical actin, p-cofilin, and p-MLC levels. Similar to the phenotype associated with inhibition of ROCK activity, inhibition of MLC kinase by the chemical inhibitor ML-7 caused defects in polar body extrusion. Collectively, our results suggest that the ROCK/MLC/actomyosin as well as ROCK/LIMK/cofilin pathways regulate meiotic spindle migration and cytokinesis during bovine oocyte maturation. PMID:26175189

  20. Activation of Endothelial Pro-resolving Anti-Inflammatory Pathways by Circulating Microvesicles from Non-muscular Myosin Light Chain Kinase-Deficient Mice

    PubMed Central

    Gaceb, Abderahim; Vergori, Luisa; Martinez, M. C.; Andriantsitohaina, Ramaroson

    2016-01-01

    Microvesicles, small membrane vesicles released from cells, have beneficial and/or deleterious effects in sepsis. We previously reported that non-muscle myosin light chain kinase (nmMLCK) deletion protects mice against endotoxic shock by reducing inflammation. Here, we have evaluated the consequences of nmMLCK deletion on microvesicle phenotypes and their effects on mouse aortic endothelial cells in association with vascular inflammation and endothelial dysfunction during endotoxic shock induced by lipopolysaccharide in mice. Treatment with lipopolysaccharide induced an increase in levels of circulating microvesicles in wild type but not in nmMLCK-deficient mice. Microvesicles from nmMLCK-deficient mice (MVsnmMLCK-/-) prevented the inflammatory effects of lipopolysaccharide with concomitant increase of anti- inflammatory and reduction of pro-inflammatory secretome in mouse aortic endothelial cells. In addition, MVsnmMLCK-/- reduced the efficacy of lipopolysaccharide to increase aortic oxidative and nitrosative stresses as well as macrophage infiltration in the aorta. Moreover, MVsnmMLCK-/- prevented ex vivo endothelial dysfunction, vascular hyporeactivity, and in vivo overproduction of nitric oxide in heart and liver in response to lipopolysaccharide. Altogether, these findings provide evidence that nmMLCK deletion generates circulating microvesicles displaying protective effects by activating endothelial pro-resolving anti-inflammatory pathways allowing the effective down-regulation of oxidative and nitrative stresses associated with endotoxic shock. Thus, nmMLCK plays a pivotal role in susceptibility to sepsis via the control of cellular activation and release of circulating microvesicles. PMID:27708581

  1. The Rho-GTPase effector ROCK regulates meiotic maturation of the bovine oocyte via myosin light chain phosphorylation and cofilin phosphorylation.

    PubMed

    Lee, So-Rim; Xu, Yong-Nan; Jo, Yu-Jin; Namgoong, Suk; Kim, Nam-Hyung

    2015-11-01

    Oocyte meiosis involves a unique asymmetric division involving spindle movement from the central cytoplasm to the cortex, followed by polar body extrusion. ROCK is a Rho-GTPase effector involved in various cellular functions in somatic cells as well as oocyte meiosis. ROCK was previously shown to promote actin organization by phosphorylating several downstream targets, including LIM domain kinase (LIMK), phosphorylated cofilin (p-cofilin), and myosin light chain (MLC). In this study, we investigated the roles of ROCK and MLC during bovine oocyte meiosis. We found that ROCK was localized around the nucleus at the oocyte's germinal-vesicle (GV) stage, but spreads to the rest of the cytoplasm in later developmental stages. On the other hand, phosphorylated MLC (p-MLC) localized at the cortex, and its abundance decreased by the metaphase-II stage. Disrupting ROCK activity, via RNAi or the chemical inhibitor Y-27632, blocked both cell cycle progression and polar body extrusion. ROCK inhibition also resulted in decreased cortical actin, p-cofilin, and p-MLC levels. Similar to the phenotype associated with inhibition of ROCK activity, inhibition of MLC kinase by the chemical inhibitor ML-7 caused defects in polar body extrusion. Collectively, our results suggest that the ROCK/MLC/actomyosin as well as ROCK/LIMK/cofilin pathways regulate meiotic spindle migration and cytokinesis during bovine oocyte maturation.

  2. Structure-Function Analysis of the Non-Muscle Myosin Light Chain Kinase (nmMLCK) Isoform by NMR Spectroscopy and Molecular Modeling: Influence of MYLK Variants.

    PubMed

    Shen, Kui; Ramirez, Benjamin; Mapes, Brandon; Shen, Grace R; Gokhale, Vijay; Brown, Mary E; Santarsiero, Bernard; Ishii, Yoshitaka; Dudek, Steven M; Wang, Ting; Garcia, Joe G N

    2015-01-01

    The MYLK gene encodes the multifunctional enzyme, myosin light chain kinase (MLCK), involved in isoform-specific non-muscle and smooth muscle contraction and regulation of vascular permeability during inflammation. Three MYLK SNPs (P21H, S147P, V261A) alter the N-terminal amino acid sequence of the non-muscle isoform of MLCK (nmMLCK) and are highly associated with susceptibility to acute lung injury (ALI) and asthma, especially in individuals of African descent. To understand the functional effects of SNP associations, we examined the N-terminal segments of nmMLCK by 1H-15N heteronuclear single quantum correlation (HSQC) spectroscopy, a 2-D NMR technique, and by in silico molecular modeling. Both NMR analysis and molecular modeling indicated SNP localization to loops that connect the immunoglobulin-like domains of nmMLCK, consistent with minimal structural changes evoked by these SNPs. Molecular modeling analysis identified protein-protein interaction motifs adversely affected by these MYLK SNPs including binding by the scaffold protein 14-3-3, results confirmed by immunoprecipitation and western blot studies. These structure-function studies suggest novel mechanisms for nmMLCK regulation, which may confirm MYLK as a candidate gene in inflammatory lung disease and advance knowledge of the genetic underpinning of lung-related health disparities.

  3. Vasoactivity of rucaparib, a PARP-1 inhibitor, is a complex process that involves myosin light chain kinase, P2 receptors, and PARP itself.

    PubMed

    McCrudden, Cian M; O'Rourke, Martin G; Cherry, Kim E; Yuen, Hiu-Fung; O'Rourke, Declan; Babur, Muhammad; Telfer, Brian A; Thomas, Huw D; Keane, Patrick; Nambirajan, Thiagarajan; Hagan, Chris; O'Sullivan, Joe M; Shaw, Chris; Williams, Kaye J; Curtin, Nicola J; Hirst, David G; Robson, Tracy

    2015-01-01

    Therapeutic inhibition of poly(ADP-ribose) polymerase (PARP), as monotherapy or to supplement the potencies of other agents, is a promising strategy in cancer treatment. We previously reported that the first PARP inhibitor to enter clinical trial, rucaparib (AG014699), induced vasodilation in vivo in xenografts, potentiating response to temozolomide. We now report that rucaparib inhibits the activity of the muscle contraction mediator myosin light chain kinase (MLCK) 10-fold more potently than its commercially available inhibitor ML-9. Moreover, rucaparib produces additive relaxation above the maximal degree achievable with ML-9, suggesting that MLCK inhibition is not solely responsible for dilation. Inhibition of nitric oxide synthesis using L-NMMA also failed to impact rucaparib's activity. Rucaparib contains the nicotinamide pharmacophore, suggesting it may inhibit other NAD+-dependent processes. NAD+ exerts P2 purinergic receptor-dependent inhibition of smooth muscle contraction. Indiscriminate blockade of the P2 purinergic receptors with suramin abrogated rucaparib-induced vasodilation in rat arterial tissue without affecting ML-9-evoked dilation, although the specific receptor subtypes responsible have not been unequivocally identified. Furthermore, dorsal window chamber and real time tumor vessel perfusion analyses in PARP-1-/- mice indicate a potential role for PARP in dilation of tumor-recruited vessels. Finally, rucaparib provoked relaxation in 70% of patient-derived tumor-associated vessels. These data provide tantalising evidence of the complexity of the mechanism underlying rucaparib-mediated vasodilation. PMID:25689628

  4. Alterations in rat cardiac myosin isozymes induced by whole-body irradiation are prevented by 3,5,3'-L-triiodothyronine

    SciTech Connect

    Litten, R.Z.; Fein, H.G.; Gainey, G.T.; Walden, T.L.; Smallridge, R.C. )

    1990-01-01

    Changes in cardiac myosin isozymes and serum thyroid hormone levels were investigated in rats following 10 Gy whole-body gamma irradiation. The percent beta-myosin heavy chain increased from 21.3 {plus minus} 1.8 to 28.1 {plus minus} 6.8 (NS) at 3-day postirradiation, 37.7 {plus minus} 1.9 (P less than .001) at 6-day postirradiation, and 43.8 {plus minus} 3.3 (P less than .001) at 9-day postirradiation. Along with the change in myosin isozymes was a significant 53% decrease (P less than .001) in the serum thyroxine (T4) level by day 3 postirradiation, remaining depressed through day 9 postirradiation. The serum 3,5,3'-triiodothyronine (T3) level, however, was normal until day 9, when significant depression was also observed. In contrast, the thyroid-stimulating hormone (TSH) level was significantly increased by fourfold at day 3, returning to near normal values by day 9 postirradiation. Daily injections of physiological doses of T3 (0.3 microgram/100 g body weight) prevented the change in the myosin isozymes following whole-body irradiation. Daily pharmacological injections of T3 (3.0 micrograms/100 g body weight) to the irradiated rats produced a further decrease in the percent beta-myosin heavy chain (below control values) indicating tissue hyperthyroidism. Thus, this study suggests that the change in myosin isozymes following whole-body irradiation is caused by an alteration in thyroid hormone activity.

  5. A Millennial Myosin Census

    PubMed Central

    Berg, Jonathan S.; Powell, Bradford C.; Cheney, Richard E.

    2001-01-01

    The past decade has seen a remarkable explosion in our knowledge of the size and diversity of the myosin superfamily. Since these actin-based motors are candidates to provide the molecular basis for many cellular movements, it is essential that motility researchers be aware of the complete set of myosins in a given organism. The availability of cDNA and/or draft genomic sequences from humans, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Dictyostelium discoideum has allowed us to tentatively define and compare the sets of myosin genes in these organisms. This analysis has also led to the identification of several putative myosin genes that may be of general interest. In humans, for example, we find a total of 40 known or predicted myosin genes including two new myosins-I, three new class II (conventional) myosins, a second member of the class III/ninaC myosins, a gene similar to the class XV deafness myosin, and a novel myosin sharing at most 33% identity with other members of the superfamily. These myosins are in addition to the recently discovered class XVI myosin with N-terminal ankyrin repeats and two human genes with similarity to the class XVIII PDZ-myosin from mouse. We briefly describe these newly recognized myosins and extend our previous phylogenetic analysis of the myosin superfamily to include a comparison of the complete or nearly complete inventories of myosin genes from several experimentally important organisms. PMID:11294886

  6. Multidimensional structure-function relationships in human β-cardiac myosin from population-scale genetic variation.

    PubMed

    Homburger, Julian R; Green, Eric M; Caleshu, Colleen; Sunitha, Margaret S; Taylor, Rebecca E; Ruppel, Kathleen M; Metpally, Raghu Prasad Rao; Colan, Steven D; Michels, Michelle; Day, Sharlene M; Olivotto, Iacopo; Bustamante, Carlos D; Dewey, Frederick E; Ho, Carolyn Y; Spudich, James A; Ashley, Euan A

    2016-06-14

    Myosin motors are the fundamental force-generating elements of muscle contraction. Variation in the human β-cardiac myosin heavy chain gene (MYH7) can lead to hypertrophic cardiomyopathy (HCM), a heritable disease characterized by cardiac hypertrophy, heart failure, and sudden cardiac death. How specific myosin variants alter motor function or clinical expression of disease remains incompletely understood. Here, we combine structural models of myosin from multiple stages of its chemomechanical cycle, exome sequencing data from two population cohorts of 60,706 and 42,930 individuals, and genetic and phenotypic data from 2,913 patients with HCM to identify regions of disease enrichment within β-cardiac myosin. We first developed computational models of the human β-cardiac myosin protein before and after the myosin power stroke. Then, using a spatial scan statistic modified to analyze genetic variation in protein 3D space, we found significant enrichment of disease-associated variants in the converter, a kinetic domain that transduces force from the catalytic domain to the lever arm to accomplish the power stroke. Focusing our analysis on surface-exposed residues, we identified a larger region significantly enriched for disease-associated variants that contains both the converter domain and residues on a single flat surface on the myosin head described as the myosin mesa. Notably, patients with HCM with variants in the enriched regions have earlier disease onset than patients who have HCM with variants elsewhere. Our study provides a model for integrating protein structure, large-scale genetic sequencing, and detailed phenotypic data to reveal insight into time-shifted protein structures and genetic disease. PMID:27247418

  7. Multidimensional structure-function relationships in human β-cardiac myosin from population-scale genetic variation

    PubMed Central

    Homburger, Julian R.; Green, Eric M.; Caleshu, Colleen; Sunitha, Margaret S.; Taylor, Rebecca E.; Ruppel, Kathleen M.; Metpally, Raghu Prasad Rao; Colan, Steven D.; Michels, Michelle; Day, Sharlene M.; Olivotto, Iacopo; Bustamante, Carlos D.; Dewey, Frederick E.; Ho, Carolyn Y.; Spudich, James A.; Ashley, Euan A.

    2016-01-01

    Myosin motors are the fundamental force-generating elements of muscle contraction. Variation in the human β-cardiac myosin heavy chain gene (MYH7) can lead to hypertrophic cardiomyopathy (HCM), a heritable disease characterized by cardiac hypertrophy, heart failure, and sudden cardiac death. How specific myosin variants alter motor function or clinical expression of disease remains incompletely understood. Here, we combine structural models of myosin from multiple stages of its chemomechanical cycle, exome sequencing data from two population cohorts of 60,706 and 42,930 individuals, and genetic and phenotypic data from 2,913 patients with HCM to identify regions of disease enrichment within β-cardiac myosin. We first developed computational models of the human β-cardiac myosin protein before and after the myosin power stroke. Then, using a spatial scan statistic modified to analyze genetic variation in protein 3D space, we found significant enrichment of disease-associated variants in the converter, a kinetic domain that transduces force from the catalytic domain to the lever arm to accomplish the power stroke. Focusing our analysis on surface-exposed residues, we identified a larger region significantly enriched for disease-associated variants that contains both the converter domain and residues on a single flat surface on the myosin head described as the myosin mesa. Notably, patients with HCM with variants in the enriched regions have earlier disease onset than patients who have HCM with variants elsewhere. Our study provides a model for integrating protein structure, large-scale genetic sequencing, and detailed phenotypic data to reveal insight into time-shifted protein structures and genetic disease. PMID:27247418

  8. Renal AH Amyloidosis Associated With a Truncated Immunoglobulin Heavy Chain Undetectable by Immunostaining.

    PubMed

    Manabe, Shun; Hatano, Michiyasu; Yazaki, Masahide; Nitta, Kosaku; Nagata, Michio

    2015-12-01

    AH amyloidosis is a rare type of amyloidosis caused by deposition of monoclonal immunoglobulin heavy chain. The key diagnostic feature is positive immunostaining for a single class of immunoglobulin heavy chain. We report a case of AH amyloidosis with immunoglobulin G (IgG) λ monoclonal gammopathy that was diagnosed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) after immunostaining of renal tissue for immunoglobulin heavy chain gave negative results. The molecular weight of the purified renal amyloid protein was ∼11kDa, which was determined by LC-MS/MS analysis to correspond to an amino acid sequence comprising the variable region and a truncated portion of the constant region of IgG heavy chain. The exact same truncated heavy chain was detected by LC-MS/MS of a protein isolated from the patient's serum, suggesting that the truncated serum protein was the precursor of the amyloid protein. Because antibodies to immunoglobulin heavy chain recognize the Fc portion, the large deletion in the constant region could explain the negative results upon immunostaining. Direct protein detection by LC-MS/MS is a powerful aid to diagnose renal AH amyloidosis, particularly when the findings of immunoglobulin staining are inconsistent with the background monoclonal gammopathy.

  9. Interactions of actin, myosin, and an actin-binding protein of chronic myelogenous leukemia leukocytes.

    PubMed Central

    Boxer, L A; Stossel, T P

    1976-01-01

    Actin, myosin, and a high molecular weight actin-binding protein were purified from chronic myelogenous leukemia (CML) leukocytes. CML leukocyte actin resembled skeletal muscle and other cytoplasmic actins by its subunit molecular weight, by its ability to polymerize in the presence of salts, and to activate the Mg2+-ATPase activity of rabbit skeletal muscle myosin. CML leukocyte myosin was similar to other vertebrate cytoplasmic myosins in having heavy chains and two light subunits. However, its apparent heavy-chain molecular weight and Stokes radius suggested that it was variably degraded during purification. Purified CML leukocyte myosin had average specific EDTA- AND Ca2+-activated ATPase activities of 125 and 151 nmol Pi released/mg protein per min, respectively and low specific Mg2+-ATPase activity. The Mg2+-ATPase activity of CML myosin was increased 200-fold by rabbit skeletal muscle F-actin, but the specific activity relative to that of actin-activated rabbit skeletal muscle myosin was low. CML leukocyte myosin, like other vertebrate cytoplasmic myosins, formed filaments in 0.1 M KCl solutions. Reduced and denatured CML leukocyte-actin-binding protein had a single high molecular weight subunit like a recently described actin-binding protein of rabbit pulmonary macrophages which promotes the polymerization and gelation of actin. Cytoplasmic extracts of CML leukocytes prepared with ice-cold 0.34-M sucrose solutions containing Mg2+-ATP, dithiothreitol, and EDTA at pH 7.0 underwent rapid gelation when warmed to 25 degrees C. Initially, the gel could be liquified by cooling to ice-bath temperature. With time, warmed cytoplasmic extract gels shrunk ("contracted") into aggregates. The following findings indicated that CML leukocyte actin-binding protein promoted the temperature-dependent gelation of actin in the cytoplasmic extracts and that CML leukocyte myosin was involved in the contraction of the actin gels: (a) Cytoplasmic extract gels initially contained

  10. Response of slow and fast muscle to hypothyroidism: maximal shortening velocity and myosin isoforms

    NASA Technical Reports Server (NTRS)

    Caiozzo, V. J.; Herrick, R. E.; Baldwin, K. M.

    1992-01-01

    This study examined both the shortening velocity and myosin isoform distribution of slow- (soleus) and fast-twitch (plantaris) skeletal muscles under hypothyroid conditions. Adult female Sprague-Dawley rats were randomly assigned to one of two groups: control (n = 7) or hypothyroid (n = 7). In both muscles, the relative contents of native slow myosin (SM) and type I myosin heavy chain (MHC) increased in response to the hypothyroid treatment. The effects were such that the hypothyroid soleus muscle expressed only the native SM and type I MHC isoforms while repressing native intermediate myosin and type IIA MHC. In the plantaris, the relative content of native SM and type I MHC isoforms increased from 5 to 13% and from 4 to 10% of the total myosin pool, respectively. Maximal shortening velocity of the soleus and plantaris as measured by the slack test decreased by 32 and 19%, respectively, in response to hypothyroidism. In contrast, maximal shortening velocity as estimated by force-velocity data decreased only in the soleus (-19%). No significant change was observed for the plantaris.

  11. An embryonic myosin converter domain influences Drosophila indirect flight muscle stretch activation, power generation and flight.

    PubMed

    Wang, Qian; Newhard, Christopher S; Ramanath, Seemanti; Sheppard, Debra; Swank, Douglas M

    2014-01-15

    Stretch activation (SA) is critical to the flight ability of insects powered by asynchronous, indirect flight muscles (IFMs). An essential muscle protein component for SA and power generation is myosin. Which structural domains of myosin are significant for setting SA properties and power generation levels is poorly understood. We made use of the transgenic techniques and unique single muscle myosin heavy chain gene of Drosophila to test the influence of the myosin converter domain on IFM SA and power generation. Replacing the endogenous converter with an embryonic version decreased SA tension and the rate of SA tension generation. The alterations in SA properties and myosin kinetics from the converter exchange caused power generation to drop to 10% of control fiber power when the optimal conditions for control fibers - 1% muscle length (ML) amplitude and 150 Hz oscillation frequency - were applied to fibers expressing the embryonic converter (IFI-EC). Optimizing conditions for IFI-EC fiber power production, by doubling ML amplitude and decreasing oscillation frequency by 60%, improved power output to 60% of optimized control fiber power. IFI-EC flies altered their aerodynamic flight characteristics to better match optimal fiber power generation conditions as wing beat frequency decreased and wing stroke amplitude increased. This enabled flight in spite of the drastic changes to fiber mechanical performance.

  12. An embryonic myosin converter domain influences Drosophila indirect flight muscle stretch activation, power generation and flight

    PubMed Central

    Wang, Qian; Newhard, Christopher S.; Ramanath, Seemanti; Sheppard, Debra; Swank, Douglas M.

    2014-01-01

    Stretch activation (SA) is critical to the flight ability of insects powered by asynchronous, indirect flight muscles (IFMs). An essential muscle protein component for SA and power generation is myosin. Which structural domains of myosin are significant for setting SA properties and power generation levels is poorly understood. We made use of the transgenic techniques and unique single muscle myosin heavy chain gene of Drosophila to test the influence of the myosin converter domain on IFM SA and power generation. Replacing the endogenous converter with an embryonic version decreased SA tension and the rate of SA tension generation. The alterations in SA properties and myosin kinetics from the converter exchange caused power generation to drop to 10% of control fiber power when the optimal conditions for control fibers – 1% muscle length (ML) amplitude and 150 Hz oscillation frequency – were applied to fibers expressing the embryonic converter (IFI-EC). Optimizing conditions for IFI-EC fiber power production, by doubling ML amplitude and decreasing oscillation frequency by 60%, improved power output to 60% of optimized control fiber power. IFI-EC flies altered their aerodynamic flight characteristics to better match optimal fiber power generation conditions as wing beat frequency decreased and wing stroke amplitude increased. This enabled flight in spite of the drastic changes to fiber mechanical performance. PMID:24115062

  13. Native myosin from adult rabbit skeletal muscle: isoenzymes and states of aggregation.

    PubMed

    Morel, J E; D'hahan, N; Taouil, K; Francin, M; Aguilar, A; Dalbiez, J P; Merah, Z; Grussaute, H; Hilbert, B; Ollagnon, F; Selva, G; Piot, F

    1998-04-21

    The globular heads of skeletal muscle myosin have been shown to exist as isoenzymes S1 (A1) and S1 (A2), and there are also isoforms of the heavy chains. Using capillary electrophoresis, we found two dominant isoenzymes of the whole native myosin molecule, in agreement with what has previously been found by various techniques for native and nondenatured myosin from adult rabbits. Findings about possible states of aggregation of myosin and its heads are contradictory. By analytical ultracentrifugation, we confirmed the existence of a tail-tail dimer. By laser light scattering, we found a head-head dimer in the presence of MgATP. Capillary electrophoresis coupled with analytical ultracentrifugation and laser light scattering led us to refine these results. We found tail-tail dimers in a conventional buffer. We found tail-tail and head-head dimers in the presence of 0.5 mM MgATP and pure head-head dimers in the presence of 6 mM MgATP. All the dimers were homodimers. Naming the dominant isoenzymes of myosin a and b, we observed tail-tail dimers with isoenzyme a (TaTa) and with isoenzyme b (TbTb) and also head-head dimers with isoenzyme a (HaHa) and with isoenzyme b (HbHb).

  14. Phosphorylated peptides occur in a non-helical portion of the tail of a catch muscle myosin

    SciTech Connect

    Castellani, L.; Elliott, B.W. Jr.; Cohen, C.

    1987-05-01

    Myosin from a molluscan catch muscle (the Anterior Byssus Retractor (ABRM) of Mytilus edulis) is unusual in being phosphorylated in the rod by an endogenous heavy-chain kinase. This phosphorylation enhances myosin solubility at low ionic strength and induces molecular folding of the myosin tail. Papain and chymotryptic cleavage of this myosin, phosphorylated with (..gamma..-/sup 32/P)ATP, indicates that the phosphorylated residues are associated with the carboxy-terminal end of the light meromyosin. Ion-exchange and reverse-phase HPLC of radiolabeled chymotryptic peptides allow the isolation of two different peptides with high specific activity. One of these peptides is rich in lysine and arginine residues, a finding consistent with the observation that basic residues often determine the substrate specificity of protein kinases. The second peptide contains proline residues. Taken together, these results suggest that, as in the case of Acanthamoeba myosin, phosphorylation occurs in a nonhelical portion of the rod that may also control solubility. Identification of the residues that are phosphorylated and their location in the rod may reveal how the phosphorylation-dependent changes observed in the myosin in vitro are related to changes in intermolecular interactions in the thick filaments in vivo.

  15. TNF induces caspase-dependent inflammation in renal endothelial cells through a Rho- and myosin light chain kinase-dependent mechanism.

    PubMed

    Wu, Xiaoyan; Guo, Rongqing; Chen, Peili; Wang, Quan; Cunningham, Patrick N

    2009-08-01

    The pathogenesis of LPS-induced acute kidney injury (AKI) requires signaling through tumor necrosis factor-alpha (TNF) receptor 1 (TNFR1), which within the kidney is primarily located in the endothelium. We showed previously that caspase inhibition protected mice against LPS-induced AKI and in parallel significantly inhibited LPS-induced renal inflammation. Therefore we hypothesized that caspase activation amplifies TNF-induced inflammation in renal endothelial cells (ECs). In cultured renal ECs, TNF induced apoptosis through a caspase-8-dependent pathway. TNF caused translocation of the p65 subunit of NF-kappaB to the nucleus, resulting in upregulation of inflammatory markers such as adhesion molecules ICAM-1 and VCAM-1. However, the broad-spectrum caspase inhibitor Boc-d-fmk reduced NF-kB activation as assessed by gel shift assay, reduced phosphorylation of subunit IkappaBalpha, and significantly inhibited TNF-induced expression of ICAM-1 and VCAM-1 as assessed by both real-time PCR and flow cytometry. Broad-spectrum caspase inhibition markedly inhibited neutrophil adherence to the TNF-activated endothelial monolayer, supporting the functional significance of this effect. Specific inhibitors of caspases-8 and -3, but not of caspase-1, reduced TNF-induced NF-kappaB activation. Caspase inhibition also reduced TNF-induced myosin light chain (MLC)-2 phosphorylation, and activation of upstream regulator RhoA. Consistent with this, MLC kinase (MLCK) inhibitor ML-7 reduced TNF-induced NF-kappaB activation. Thus caspase activation influences NF-kappaB signaling via its affect on cytoskeletal changes occurring through RhoA and MLCK pathways. These cell culture experiments support a role for caspase activation in TNF-induced inflammation in the renal endothelium, a key event in LPS-induced AKI. PMID:19420112

  16. Use of DNA sequence and mutant analyses and antisense oligodeoxynucleotides to examine the molecular basis of nonmuscle myosin light chain kinase autoinhibition, calmodulin recognition, and activity

    PubMed Central

    1990-01-01

    The first primary structure for a nonmuscle myosin light chain kinase (nmMLCK) has been determined by elucidation of the cDNA sequence encoding the protein kinase from chicken embryo fibroblasts, and insight into the molecular mechanism of calmodulin (CaM) recognition and activation has been obtained by the use of site-specific mutagenesis and suppressor mutant analysis. Treatment of chicken and mouse fibroblasts with antisense oligodeoxynucleotides based on the cDNA sequence results in an apparent decrease in MLCK levels, an altered morphology reminiscent of that seen in v-src-transformed cells, and a possible effect on cell proliferation. nmMLCK is distinct from and larger than smooth muscle MLCK (smMLCK), although their extended DNA sequence identity is suggestive of a close genetic relationship not found with skeletal muscle MLCK. The analysis of 20 mutant MLCKs indicates that the autoinhibitory and CaM recognition activities are centered in distinct but functionally coupled amino acid sequences (residues 1,068-1,080 and 1,082-1,101, respectively). Analysis of enzyme chimeras, random mutations, inverted sequences, and point mutations in the 1,082-1,101 region demonstrates its functional importance for CaM recognition but not autoinhibition. In contrast, certain mutations in the 1,068-1,080 region result in a constitutively active MLCK that still binds CaM. These results suggest that CaM/protein kinase complexes use similar structural themes to transduce calcium signals into selective biological responses, demonstrate a direct link between nmMLCK and non-muscle cell function, and provide a firm basis for genetic studies and analyses of how nmMLCK is involved in development and cell proliferation. PMID:2202734

  17. Three-dimensional Patterns and Redistribution of Myosin II and Actin in Mitotic Dictyostelium Cells

    PubMed Central

    Neujahr, Ralph; Heizer, Christina; Albrecht, Richard; Ecke, Maria; Schwartz, Jean-Marc; Weber, Igor; Gerisch, Günther

    1997-01-01

    Myosin II is not essential for cytokinesis in cells of Dictyostelium discoideum that are anchored on a substrate (Neujahr, R., C. Heizer, and G. Gerisch. 1997. J. Cell Sci. 110:123–137), in contrast to its importance for cell division in suspension (DeLozanne, A., and J.A. Spudich. 1987. Science. 236:1086–1091; Knecht, D.A., and W.F. Loomis. 1987. Science. 236: 1081–1085.). These differences have prompted us to investigate the three-dimensional distribution of myosin II in cells dividing under one of three conditions: (a) in shaken suspension, (b) in a fluid layer on a solid substrate surface, and (c) under mechanical stress applied by compressing the cells. Under the first and second conditions outlined above, myosin II does not form patterns that suggest a contractile ring is established in the furrow. Most of the myosin II is concentrated in the regions that flank the furrow on both sides towards the poles of the dividing cell. It is only when cells are compressed that myosin II extensively accumulates in the cleavage furrow, as has been previously described (Fukui, Y., T.J. Lynch, H. Brzeska, and E.D. Korn. 1989. Nature. 341:328–331), i.e., this massive accumulation is a response to the mechanical stress. Evidence is provided that the stress-associated translocation of myosin II to the cell cortex is a result of the dephosphorylation of its heavy chains. F-actin is localized in the dividing cells in a distinctly different pattern from that of myosin II. The F-actin is shown to accumulate primarily in protrusions at the two poles that ultimately form the leading edges of the daughter cells. This distribution changes dynamically as visualized in living cells with a green fluorescent protein–actin fusion. PMID:9412473

  18. T cell receptor rearrangements in a patient with γ-heavy chain disease: A case report

    PubMed Central

    ZHOU, HEBING; CHEN, WENMING; ZHANG, JUAN; ZENG, HUI; JIAN, YUAN; FU, CHENXIAO

    2016-01-01

    Heavy chain diseases (HCDs) are rare B cell lymphoplasma cell proliferative disorders that are characterized by the production of incomplete monoclonal immunoglobulin (Ig) heavy chains without the associated light chains. γ-HCD (IgG subtype) is a rare subtype, with ~150 cases reported in the literature to date; however, to the best of our knowledge, no reports of T cell receptor (TCR) gene rearrangement in γ-HCD exist in the literature. The present study reports the case of an 81-year-old man with γ-heavy chain disease associated with TCR gene rearrangement, identified in lymph node biopsy and bone marrow aspirate specimens. The present case revealed an alternative manifestation of γ-HCD, which may provide additional biological insights into this rare B cell disorder. PMID:27313757

  19. Proper expression of myosin genes in transgenic nematodes.

    PubMed Central

    Fire, A; Waterston, R H

    1989-01-01

    Caenorhabditis elegans has four genes which encode skeletal myosin heavy chain isoforms. We have re-introduced clones of two of these genes, myo-3 and unc-54 at low copy number into the germline of C. elegans. The resulting loci behave as functional copies of the genes by two genetic criteria: (i) they can result in phenotypic rescue of strains carrying inactivating myo-3 or unc-54 mutations, and (ii) their presence in strains with wild-type copies of the endogenous myosin loci has genetic consequences similar to duplicating the endogenous loci. The re-introduced genes function at a level close to that of the endogenous loci. Monoclonal antibodies specific for the different isoforms have been used to localize the expressed proteins. The re-introduced genes express in precisely the same cell types as the endogenous genes, and the myosin products produced assemble into filament structures as in wild-type. Unexpectedly, we have found in the course of this work that very high copy numbers of the unc-54 gene lead to a disruption of muscle structure which may result from overexpression of the protein product. Images PMID:2583105

  20. A comparison of rat myosin from fast and slow skeletal muscle and the effect of disuse

    NASA Technical Reports Server (NTRS)

    Unsworth, B. R.; Witzmann, F. A.; Fitts, R. H.

    1981-01-01

    Certain enzymatic and structural features of myosin, purified from rat skeletal muscles representative of the fast twitch glycolytic (type IIb), the fast twitch oxidative (type IIa), and the slow twitch oxidative (type I) fiber, were determined and the results were compared with the measured contractile properties. Good correlation was found between the shortening velocities and Ca(2+)-activated ATPase activity for each fiber type. Short term hind limb immobilization caused prolongation of contraction time and one-half relaxation time in the fast twitch muscles and a reduction of these contractile properties in slow twitch soleus. Furthermore, the increased maximum shortening velocity in the immobilized soleus could be correlated with increased Ca(2+)-ATPase, but no change was observed in the enzymatic activity of the fast twitch muscles. No alteration in light chain distribution with disuse was observed in any of the fiber types. The myosin from slow twitch soleus could be distinguished from fast twitch myosins on the basis of the pattern of peptides generated by proteolysis of the heavy chains. Six weeks of hind limb immobilization resulted in both an increased ATPase activity and an altered heavy chain primary structure in the slow twitch soleus muscle.

  1. Marsupial cardiac myosins are similar to those of eutherians in subunit composition and in the correlation of their expression with body size.

    PubMed

    Hoh, Joseph F Y; Kim, Yoonah; Lim, Jacqueline H Y; Sieber, Louise G; Lucas, Christine A; Zhong, Wendy W H

    2007-02-01

    Cardiac myosins and their subunit compositions were studied in ten species of marsupial mammals. Using native gel electrophoresis, ventricular myosin in macropodoids showed three isoforms, V(1), V(2) and V(3), and western blots using specific anti-alpha- and anti-beta-cardiac myosin heavy chain (MyHC) antibodies showed their MyHC compositions to be alphaalpha, alphabeta and betabeta, respectively. Atrial myosin showed alphaalpha MyHC composition but differed from V(1) in light chain composition. Small marsupials (Sminthopsis crassicaudata, Antechinus stuartii, Antechinus flavipes) showed virtually pure V(1), while the larger (1-3 kg) Pseudocheirus peregrinus and Trichosurus vulpecula showed virtually pure V(3). The five macropodoids (Bettongia penicillata, Macropus eugenii, Wallabia bicolour, M. rufus and M. giganteus), ranging in body mass from 2 to 66 kg, expressed considerably more alpha-MyHC (22.8%) than expected for their body size. These results show that cardiac myosins in marsupial mammals are substantially the same as their eutherian counterparts in subunit composition and in the correlation of their expression with body size, the latter feature underlies the scaling of resting heart rate and cardiac cross-bridge kinetics with specific metabolic rate. The data from macropodoids further suggest that expression of cardiac myosins in mammals may also be influenced by their metabolic scope.

  2. Phosphorylation of human skeletal muscle myosin

    SciTech Connect

    Houston, M.E.; Lingley, M.D.; Stuart, D.S.; Hoffman-Goetz, L.

    1986-03-01

    Phosphorylation of the P-light chains (phosphorylatable light chains) in human skeletal muscle myosin was studied in vitro and in vivo under resting an d contracted conditions. biopsy samples from rested vastus lateralis muscle of male and female subjects were incubated in oxygenated physiological solution at 30/sup 0/C. Samples frozen following a quiescent period showed the presence of only unphosphorylated P-light chains designated LC2f (light chain two of fast myosin) CL2s and LC2s'(light chains two of slow myosin). Treatment with caffeine (10 mM) or direct electrical stimulation resulted in the appearance of three additional bands which were identified as the phosphorylated forms of the P-light chains i.e. LC2f-P, LC2s-P and LC2s'-P. The presence of phosphate was confirmed by prior incubation with (/sup 30/P) orthophosphate. Muscle samples rapidly frozen from resting vastus lateralis muscle revealed the presence of unphosphorylated and phosphorylated P-light chains in approximately equal ratios. Muscle samples rapidly frozen following a maximal 10 second isometric contraction showed virtually only phosphorylated fast and slow P-light chains. These results reveal that the P-light chains in human fast and slow myosin may be rapidly phosphorylated, but the basal level of phosphorylation in rested human muscle considerably exceeds that observed in animal muscles studied in vitro or in situ.

  3. Regenerating tail muscles in lizard contain Fast but not Slow Myosin indicating that most myofibers belong to the fast twitch type for rapid contraction.

    PubMed

    Alibardi, L

    2015-10-01

    During tail regeneration in lizards a large mass of muscle tissue is formed in form of segmental myomeres of similar size located under the dermis of the new tail. These muscles accumulate glycogen and a fast form of myosin typical for twitch myofibers as it is shown by light and ultrastructural immunocytochemistry using an antibody directed against a Fast Myosin Heavy Chain. High resolution immunogold labeling shows that an intense labeling for fast myosin is localized over the thick filaments of the numerous myofibrils in about 70% of the regenerated myofibers while the labeling becomes less intense in the remaining muscle fibers. The present observations indicate that at least two subtypes of Fast Myosin containing muscle fibers are regenerated, the prevalent type was of the fast twitch containing few mitochondria, sparse glycogen, numerous smooth endoplasmic reticulum vesicles. The second, and less frequent type was a Fast-Oxidative-Glycolitic twitch fiber containing more mitochondria, a denser cytoplasm and myofibrils. Since their initial differentiation, myoblasts, myotubes and especially the regenerated myofibers do not accumulate any immuno-detectable Slow Myosin Heavy Chain. The study indicates that most of the segmental muscles of the regenerated tail serve for the limited bending of the tail during locomotion and trashing after amputation of the regenerated tail, a phenomenon that facilitates predator escape.

  4. Myosin light chain kinase inhibitor ML7 improves vascular endothelial dysfunction via tight junction regulation in a rabbit model of atherosclerosis.

    PubMed

    Cheng, Xiaowen; Wang, Xiaobian; Wan, Yufeng; Zhou, Qing; Zhu, Huaqing; Wang, Yuan

    2015-09-01

    Vascular endothelial dysfunction (VED) is an important factor in the initiation and development of atherosclerosis (AS). Previous studies have demonstrated that endothelial permeability is increased in diet‑induced AS. However, the precise underlying mechanisms remain poorly understood. The present study aimed to analyze whether the myosin light chain kinase (MLCK) inhibitor ML7 is able to improve VED and AS by regulating the expression of the tight junction (TJ) proteins zona occludens (ZO)‑1 and occludin via mechanisms involving MLCK and MLC phosphorylation in high‑fat diet‑fed rabbits. New Zealand white rabbits were randomly divided into three groups: Control group, AS group and ML7 group. The rabbits were fed a standard diet (control group), a high‑fat diet (AS group) or a high‑fat diet supplemented with 1 mg/kg/day ML7 (ML7 group). After 12 weeks, endothelium‑dependent relaxation and endothelium‑independent relaxation were measured using high-frequency ultrasound. Administration of a high‑fat diet significantly increased the levels of serum lipids and inflammatory markers in the rabbits in the AS group, as compared with those in the rabbits in the control group. Furthermore, a high‑fat diet contributed to the formation of a typical atherosclerotic plaque, as well as an increase in endothelial permeability and VED. These symptoms of AS were significantly improved following treatment with ML7, as demonstrated in the ML7 group. Hematoxylin & eosin and immunohistochemical staining indicated that ML7 was able to decrease the expression of MLCK and MLC phosphorylation in the arterial wall of rabbits fed a high‑fat diet. A similar change was observed for the TJ proteins ZO‑1 and occludin. In addition, western blot analysis demonstrated that ML7 increased the expression levels of occludin in the precipitate, but reduced its expression in the supernatant of lysed aortas. These results indicated that occludin, which is a dynamic protein at the TJ

  5. Myosin light chain kinase inhibitor ML7 improves vascular endothelial dysfunction via tight junction regulation in a rabbit model of atherosclerosis

    PubMed Central

    CHENG, XIAOWEN; WANG, XIAOBIAN; WAN, YUFENG; ZHOU, QING; ZHU, HUAQING; WANG, YUAN

    2015-01-01

    Vascular endothelial dysfunction (VED) is an important factor in the initiation and development of atherosclerosis (AS). Previous studies have demonstrated that endothelial permeability is increased in diet-induced AS. However, the precise underlying mechanisms remain poorly understood. The present study aimed to analyze whether the myosin light chain kinase (MLCK) inhibitor ML7 is able to improve VED and AS by regulating the expression of the tight junction (TJ) proteins zona occludens (ZO)-1 and occludin via mechanisms involving MLCK and MLC phosphorylation in high-fat diet-fed rabbits. New Zealand white rabbits were randomly divided into three groups: Control group, AS group and ML7 group. The rabbits were fed a standard diet (control group), a high-fat diet (AS group) or a high-fat diet supplemented with 1 mg/kg/day ML7 (ML7 group). After 12 weeks, endothelium-dependent relaxation and endothelium-independent relaxation were measured using high-frequency ultrasound. Administration of a high-fat diet significantly increased the levels of serum lipids and inflammatory markers in the rabbits in the AS group, as compared with those in the rabbits in the control group. Furthermore, a high-fat diet contributed to the formation of a typical atherosclerotic plaque, as well as an increase in endothelial permeability and VED. These symptoms of AS were significantly improved following treatment with ML7, as demonstrated in the ML7 group. Hematoxylin & eosin and immunohistochemical staining indicated that ML7 was able to decrease the expression of MLCK and MLC phosphorylation in the arterial wall of rabbits fed a high-fat diet. A similar change was observed for the TJ proteins ZO-1 and occludin. In addition, western blot analysis demonstrated that ML7 increased the expression levels of occludin in the precipitate, but reduced its expression in the supernatant of lysed aortas. These results indicated that occludin, which is a dynamic protein at the TJ, is associated with

  6. Quantification of Rapid Myosin Regulatory Light Chain Phosphorylation Using High-Throughput In-Cell Western Assays: Comparison to Western Immunoblots

    PubMed Central

    Aguilar, Hector N.; Zielnik, Barbara; Tracey, Curtis N.; Mitchell, Bryan F.

    2010-01-01

    Background Quantification of phospho-proteins (PPs) is crucial when studying cellular signaling pathways. Western immunoblotting (WB) is commonly used for the measurement of relative levels of signaling intermediates in experimental samples. However, WB is in general a labour-intensive and low-throughput technique. Because of variability in protein yield and phospho-signal preservation during protein harvesting, and potential loss of antigen during protein transfer, WB provides only semi-quantitative data. By comparison, the “in-cell western” (ICW) technique has high-throughput capacity and requires less extensive sample preparation. Thus, we compared the ICW technique to WB for measuring phosphorylated myosin regulatory light chain (PMLC20) in primary cultures of uterine myocytes to assess their relative specificity, sensitivity, precision, and quantification of biologically relevant responses. Methodology/Principal Findings ICWs are cell-based microplate assays for quantification of protein targets in their cellular context. ICWs utilize a two-channel infrared (IR) scanner (Odyssey®) to quantify signals arising from near-infrared (NIR) fluorophores conjugated to secondary antibodies. One channel is dedicated to measuring the protein of interest and the second is used for data normalization of the signal in each well of the microplate. Using uterine myocytes, we assessed oxytocin (OT)-stimulated MLC20 phosphorylation measured by ICW and WB, both using NIR fluorescence. ICW and WB data were comparable regarding signal linearity, signal specificity, and time course of phosphorylation response to OT. Conclusion/Significance ICW and WB yield comparable biological data. The advantages of ICW over WB are its high-throughput capacity, improved precision, and reduced sample preparation requirements. ICW might provide better sensitivity and precision with low-quantity samples or for protocols requiring large numbers of samples. These features make the ICW technique an

  7. Cellular and molecular mechanisms that mediate basal and tumour necrosis factor-α-induced regulation of myosin light chain kinase gene activity

    PubMed Central

    Ye, Dongmei; Ma, Thomas Y

    2008-01-01

    The patients with Crohn's disease (CD) have a ‘leaky gut’ manifested by an increase in intestinal epithelial tight junction (TJ) permeability. Tumour necrosis factor-α (TNF-α) is a proto-typical pro-inflammatory cytokine that plays a central role in intestinal inflammation of CD. An important pro-inflammatory action of TNF-α is to cause a functional opening of intestinal TJ barrier. Previous studies have shown that TNF-α increase in TJ permeability was regulated by an increase in myosin light chain kinase (MLCK) gene activity and protein expression. The major aim of this study was to elucidate the cellular and molecular mechanisms that mediate basal and TNF-α-induced increase in MLCK gene activity. By progressive 5′ deletion, minimal MLCK promoter was localized between −313 to +118 on MLCK promoter. A p53 binding site located within minimal promoter region was identified as an essential determinant for basal promoter activity. A 4 bp start site and a 5 bp downstream promoter element were required for MLCK gene activity. TNF-α-induced increase in MLCK promoter activity was mediated by NF-κB activation. There were eight κB binding sites on MLCK promoter. The NF-κB1 site at +48 to +57 mediated TNF-α-induced increase in MLCK promoter activity. The NF-κB2 site at −325 to −316 had a repressive role on promoter activity. The opposite effects on promoter activity were due to differences in the NF-κB dimer type binding to the κB sites. p50/p65 dimer preferentially binds to the NF-κB1 site and up-regulates promoter activity; while p50/p50 dimer preferentially binds to the NF-κB2 site and down-regulates promoter activity. In conclusion, we have identified the minimal MLCK promoter region, essential molecular determinants and molecular mechanisms that mediate basal and TNF-α-induced modulation of MLCK promoter activity in Caco-2 intestinal epithelial cells. These studies provide novel insight into the cellular and molecular mechanisms that regulate

  8. Shared idiotypes and restricted immunoglobulin variable region heavy chain genes characterize murine autoantibodies of various specificities.

    PubMed Central

    Monestier, M; Manheimer-Lory, A; Bellon, B; Painter, C; Dang, H; Talal, N; Zanetti, M; Schwartz, R; Pisetsky, D; Kuppers, R

    1986-01-01

    The study of the Ig variable region heavy chain (VH) genes used to encode antibodies specific for self-epitopes from murine hybridomas showed that three VH families are primarily utilized: VH J558, the largest family, and VH QPC52 and VH 7183, the families most proximal to the Ig joining region heavy chain genes. These monoclonal autoantibodies express cross-reactive idiotopes shared by rheumatoid factors and antibodies specific for Sm. The expression of these idiotypes is independent of major histocompatibility complex and Ig constant region heavy chain haplotypes, self-antigen specificity, and even the VH gene family utilized. Though the experiments described here are limited to murine autoantibodies, similarities exist between murine and human autoimmune diseases. Studies that aim to investigate the relationship between VH gene expression and the presence of cross-reactive idiotypes among human autoantibodies should enable us to better understand the mechanisms of autoimmunity and self-tolerance. Images PMID:2427543

  9. Thyroid hormone partially corrects the effect of diabetes on mysoin heavy chain RNAs in the rat ventricle

    SciTech Connect

    Barrieux, A.; Dillmann, W.H.

    1986-05-01

    The relative abundance of the 2 cardiac myosin heavy chains (MHH-..cap alpha.. and MHC-..beta..) and their corresponding RNAs is similarly affected by hypothyroidism and diabetes in the rat ventricle. Since circulating levels of thyroid hormone (T/sub 3/) are significantly decreased in diabetes the decreased RNA-..cap alpha.. and increased RNA-..beta.. associated with diabetes may be related to T/sub 3/ deficiency. Chronically diabetic rats were injected with T/sub 3/, insulin (I), or both and sacrificed between 1 and 12 hrs after injection, MHC RNA was quantified by hybridization of total RNA to a (/sup 32/P)-cDNA MHC-..cap alpha.. probe. Total MHC RNA was measured by retention of S1-resistant label on DE-81 while RNA-..cap alpha.. and RNA-..beta.. were quantified by separation of intact (..cap alpha..) and partially digested (..beta..) probe by gel electrophoresis. Total MHC RNA was not changed by T/sub 3/ or I (.9-1.2 ng/..mu..g of cellular RNA). T/sub 3/ and I elicited a very rapid increase in RNA-..cap alpha.. (18% in untreated to 38% (I) and 47% (T/sub 3/ within 1 hr). I administered either 7 hr before or 1 hr after T/sub 3/ did not modify the RNA-..cap alpha.. increase observed after T/sub 3/ alone. However, the response of diabetic rats to T/sub 3/ was markedly different from that of hypothyroid rats. Conclusions: 1) T/sub 3/ in diabetic rats does not mimick the effect of T/sub 3/ in hypothyroid rats; it may simply impose a hyperthyroid state on the existing diabetes and 2) since neither T/sub 3/ nor I are able to increase RNA-..cap alpha.. to control levels within 12 hrs, neither hormone is sufficient to regulate the expression of MHC RNAs.

  10. Functional Material Features of Bombyx mori Silk Light vs. Heavy Chain Proteins

    PubMed Central

    Zafar, Muhammad S.; Belton, David J.; Hanby, Benjamin; Kaplan, David L.; Perry, Carole C.

    2016-01-01

    Bombyx mori (BM) silk fibroin is composed of two different subunits; heavy chain and light chain fibroin linked by a covalent disulphide bond. Current methods of separating the two silk fractions is complicated and produces inadequate quantities of the isolated components for the study of the individual light and heavy chain silks with respect to new materials. We report a simple method of separating silk fractions using formic acid. The formic acid treatment partially releases predominately the light chain fragment (soluble fraction) and then the soluble fraction and insoluble fractions can be converted into new materials. The regenerated original (total) silk fibroin and the separated fractions (soluble vs. insoluble) had different molecular weights and showed distinctive pH stabilities against aggregation/precipitation based on particle charging. All silk fractions could be electrospun to give fibre mats with viscosity of the regenerated fractions being the controlling factor for successful electrospinning. The silk fractions could be mixed to give blends with different proportions of the two fractions to modify the diameter and uniformity of the electrospun fibres formed. The soluble fraction containing the light chain was able to modify the viscosity by thinning the insoluble fraction containing heavy chain fragments, perhaps analogous to its role in natural fibre formation where the light chain provides increased mobility and the heavy chain producing shear thickening effects. The simplicity of this new separation method should enable access to these different silk protein fractions and accelerate the identification of methods, modifications and potential applications of these materials in biomedical and industrial applications. PMID:25565556

  11. Celluar immunoglobulins in human gamma- and alpha-heavy chain diseases.

    PubMed Central

    Preud'homme, J L; Brouet, J C; Seligmann, M

    1979-01-01

    Proliferating cells from twenty-four patients with alpha- or gamma-heavy chain disease (HCD) were studied by direct immunofluorescence and in several cases by biosynthesis experiments with 14C-amino acid incorporation. In twenty-two patients, the cells contained the HCD proteins only and no light chain synthesis could be detected. Conversely, apparently non-secreted monotypic light chains were found in one case of gamma-HCD and one case of alpha-HCD. The proportion of proliferating cells containing cytoplasmic heavy chains, their appearance and the presence or not of surface heavy chains showed great variation from patient to patient. In some cases, the proliferation predominantly affected either plasma cells or lymphocytes whereas in others the disease seemed to correspond to a proliferation of HCD protein-bearing lymphocytes with persistent maturation into plasma cells. Large cell lymphomas supervening on alpha-HCD belonged to the same proliferating clone as the clone secreting the HCD protein, as shown by surface markers and biosynthesis experiments which demonstrated synthesis but no secretion of HCD proteins. In one patient with gamma-HCD, the cells carried surface gamma and delta chains. PMID:115628

  12. Aberrant post-translational modifications compromise human myosin motor function in old age.

    PubMed

    Li, Meishan; Ogilvie, Hannah; Ochala, Julien; Artemenko, Konstantin; Iwamoto, Hiroyuki; Yagi, Naoto; Bergquist, Jonas; Larsson, Lars

    2015-04-01

    Novel experimental methods, including a modified single fiber in vitro motility assay, X-ray diffraction experiments, and mass spectrometry analyses, have been performed to unravel the molecular events underlying the aging-related impairment in human skeletal muscle function at the motor protein level. The effects of old age on the function of specific myosin isoforms extracted from single human muscle fiber segments, demonstrated a significant slowing of motility speed (P < 0.001) in old age in both type I and IIa myosin heavy chain (MyHC) isoforms. The force-generating capacity of the type I and IIa MyHC isoforms was, on the other hand, not affected by old age. Similar effects were also observed when the myosin molecules extracted from muscle fibers were exposed to oxidative stress. X-ray diffraction experiments did not show any myofilament lattice spacing changes, but unraveled a more disordered filament organization in old age as shown by the greater widths of the 1, 0 equatorial reflections. Mass spectrometry (MS) analyses revealed eight age-specific myosin post-translational modifications (PTMs), in which two were located in the motor domain (carbonylation of Pro79 and Asn81) and six in the tail region (carbonylation of Asp900, Asp904, and Arg908; methylation of Glu1166; deamidation of Gln1164 and Asn1168). However, PTMs in the motor domain were only observed in the IIx MyHC isoform, suggesting PTMs in the rod region contributed to the observed disordering of myosin filaments and the slowing of motility speed. Hence, interventions that would specifically target these PTMs are warranted to reverse myosin dysfunction in old age.

  13. The primary structure of rat brain (cytoplasmic) dynein heavy chain, a cytoplasmic motor enzyme.

    PubMed Central

    Zhang, Z; Tanaka, Y; Nonaka, S; Aizawa, H; Kawasaki, H; Nakata, T; Hirokawa, N

    1993-01-01

    Overlapping cDNA clones encoding the heavy chain of rat brain cytoplasmic dynein have been isolated. The isolated cDNA clones contain an open reading frame of 13,932 bp encoding 4644 aa (M(r), 532,213). The deduced protein sequence of the heavy chain of rat brain dynein shows significant similarity to sea urchin flagellar beta-dynein (27.0% identical) and to Dictyostelium cytoplasmic dynein (53.5% identical) throughout the entire sequence. The heavy chain of rat brain (cytoplasmic) dynein contains four putative nucleotide-binding consensus sequences [GX4GK(T/S)] in the central one-third region that are highly similar to those of sea urchin and Dictyostelium dyneins. The N-terminal one-third of the heavy chain of rat brain (cytoplasmic) dynein shows high similarity (43.8% identical) to that of Dictyostelium cytoplasmic dynein but poor similarity (19.4% identical) to that of sea urchin flagellar dynein. These results suggested that the C-terminal two-thirds of the dynein molecule is conserved and plays an essential role in microtubule-dependent motility activity, whereas the N-terminal regions are different between cytoplasmic and flagellar dyneins. Images Fig. 1 PMID:7690137

  14. Gravity changes during animal development affect IgM heavy-chain transcription and probably lymphopoiesis.

    PubMed

    Huin-Schohn, Cécile; Guéguinou, Nathan; Schenten, Véronique; Bascove, Matthieu; Koch, Guillemette Gauquelin; Baatout, Sarah; Tschirhart, Eric; Frippiat, Jean-Pol

    2013-01-01

    Our previous research demonstrated that spaceflight conditions affect antibody production in response to an antigenic stimulation in adult amphibians. Here, we investigated whether antibody synthesis is affected when animal development occurs onboard a space station. To answer this question, embryos of the Iberian ribbed newt, Pleurodeles waltl, were sent to the International Space Station (ISS) before the initiation of immunoglobulin heavy-chain expression. Thus, antibody synthesis began in space. On landing, we determined the effects of spaceflight on P. waltl development and IgM heavy-chain transcription. Results were compared with those obtained using embryos that developed on Earth. We find that IgM heavy-chain transcription is doubled at landing and that spaceflight does not affect P. waltl development and does not induce inflammation. We also recreated the environmental modifications encountered by the embryos during their development onboard the ISS. This strategy allowed us to demonstrate that gravity change is the factor responsible for antibody heavy-chain transcription modifications that are associated with NF-κB mRNA level variations. Taken together, and given that the larvae were not immunized, these data suggest a modification of lymphopoiesis when gravity changes occur during ontogeny.

  15. Roles of heavy and light chains in IgM polymerization.

    PubMed Central

    Bornemann, K D; Brewer, J W; Beck-Engeser, G B; Corley, R B; Haas, I G; Jäck, H M

    1995-01-01

    IgM antibodies are secreted as multisubunit polymers that consist of as many as three discrete polypeptides: mu heavy chains, light (L) chains, and joining (J) chains. We wished to determine whether L chains that are required to confer secretory competence on immunoglobulin molecules must be present for IgM to polymerize--that is, for intersubunit disulfide bonds to form between mu chains. Using a L-chain-loss variant of an IgM-secreting hybridoma, we demonstrated that mu chains were efficiently polymerized independent of L chains, in a manner similar to that observed for conventional microL complexes, and that the mu polymers incorporated J chain. These mu polymers were not secreted but remained associated with the endoplasmic reticulum-resident chaperone BiP (GRP78). This finding is consistent with the endoplasmic reticulum being the subcellular site of IgM polymerization. We conclude that mu chain alone has the potential to direct the polymerization of secreted IgM, a process necessary but not sufficient for IgM to attain secretory competence. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7761423

  16. Cynomolgus macaque (Macaca fascicularis) immunoglobulin heavy chain locus description.

    PubMed

    Yu, Guo-Yun; Mate, Suzanne; Garcia, Karla; Ward, Michael D; Brueggemann, Ernst; Hall, Matthew; Kenny, Tara; Sanchez-Lockhart, Mariano; Lefranc, Marie-Paule; Palacios, Gustavo

    2016-07-01

    Cynomolgus macaques (Macaca fascicularis) have become an important animal model for biomedical research. In particular, it is the animal model of choice for the development of vaccine candidates associated with emerging dangerous pathogens. Despite their increasing importance as animal models, the cynomolgus macaque genome is not fully characterized, hindering molecular studies for this model. More importantly, the lack of knowledge about the immunoglobulin (IG) locus organization directly impacts the analysis of the humoral response in cynomolgus macaques. Recent advances in next generation sequencing (NGS) technologies to analyze IG repertoires open the opportunity to deeply characterize the humoral immune response. However, the IG locus organization for the animal is required to completely dissect IG repertoires. Here, we describe the localization and organization of the rearranging IG heavy (IGH) genes on chromosome 7 of the cynomolgus macaque draft genome. Our annotation comprises 108 functional genes which include 63 variable (IGHV), 38 diversity (IGHD), and 7 joining (IGHJ) genes. For validation, we provide RNA transcript data for most of the IGHV genes and all of the annotated IGHJ genes, as well as proteomic data to validate IGH constant genes. The description and annotation of the rearranging IGH genes for the cynomolgus macaques will significantly facilitate scientific research. This is particularly relevant to dissect the immune response during vaccination or infection with dangerous pathogens such as Ebola, Marburg and other emerging pathogens where non-human primate models play a significant role for countermeasure development.

  17. Ca2+ sensitivity of regulated cardiac thin filament sliding does not depend on myosin isoform

    PubMed Central

    Schoffstall, Brenda; Brunet, Nicolas M; Williams, Shanedah; Miller, Victor F; Barnes, Alyson T; Wang, Fang; Compton, Lisa A; McFadden, Lori A; Taylor, Dianne W; Seavy, Margaret; Dhanarajan, Rani; Chase, P Bryant

    2006-01-01

    Myosin heavy chain (MHC) isoforms in vertebrate striated muscles are distinguished functionally by differences in chemomechanical kinetics. These kinetic differences may influence the cross-bridge-dependent co-operativity of thin filament Ca2+ activation. To determine whether Ca2+ sensitivity of unloaded thin filament sliding depends upon MHC isoform kinetics, we performed in vitro motility assays with rabbit skeletal heavy meromyosin (rsHMM) or porcine cardiac myosin (pcMyosin). Regulated thin filaments were reconstituted with recombinant human cardiac troponin (rhcTn) and α-tropomyosin (rhcTm) expressed in Escherichia coli. All three subunits of rhcTn were coexpressed as a functional complex using a novel construct with a glutathione S-transferase (GST) affinity tag at the N-terminus of human cardiac troponin T (hcTnT) and an intervening tobacco etch virus (TEV) protease site that allows purification of rhcTn without denaturation, and removal of the GST tag without proteolysis of rhcTn subunits. Use of this highly purified rhcTn in our motility studies resulted in a clear definition of the regulated motility profile for both fast and slow MHC isoforms. Maximum sliding speed (pCa 5) of regulated thin filaments was roughly fivefold faster with rsHMM compared with pcMyosin, although speed was increased by 1.6- to 1.9-fold for regulated over unregulated actin with both MHC isoforms. The Ca2+ sensitivity of regulated thin filament sliding speed was unaffected by MHC isoform. Our motility results suggest that the cellular changes in isoform expression that result in regulation of myosin kinetics can occur independently of changes that influence thin filament Ca2+ sensitivity. PMID:17008370

  18. Regulation of cardiac myosin synthesis: Studies of RNA content in cultured heart cells

    SciTech Connect

    McDermott, P.; Whitaker-Dowling, P.; Klein, I. Cornell Univ., New York, NY )

    1987-11-01

    Contraction regulates the myosin content and the rate of myosin synthesis in cultured neonatal rat heart cells. To further explore the mechanism for this regulation the authors examined various parameters of RNA content and RNA synthesis in contracting versus noncontracting myocytes. While contraction stimulated myosin heavy chain (MHC) synthesis by 72% compared to that of KCl-arrested cells, simultaneous analyses of polysome profiles were no different under the two culture conditions. Incorporation of ({sup 3}H) uridine monophosphate into cellular RNA revealed no change in the rate of total RNA or ribosomal subunits synthesis. In vitro translation of cellular RNA yielded similar incorporation of ({sup 35}S) methionine not trichloroacetic acid precipitable protein. Specific transcription of the MHC gene was examined by dot-blot analysis and was unaltered by contraction. Northern blot analysis of the MHC sequences detected by a cDNA probe revealed an mRNA sequence corresponding to a molecular weight of approximately 30 S. These data suggest that RNA synthesis and RNA content are unaltered by contraction in cultured heart cells and therefore the changes in myosin synthesis may be mediated at a post-transcriptional control level.

  19. Structural changes accompanying phosphorylation of tarantula muscle myosin filaments

    PubMed Central

    1987-01-01

    Electron microscopy has been used to study the structural changes that occur in the myosin filaments of tarantula striated muscle when they are phosphorylated. Myosin filaments in muscle homogenates maintained in relaxing conditions (ATP, EGTA) are found to have nonphosphorylated regulatory light chains as shown by urea/glycerol gel electrophoresis and [32P]phosphate autoradiography. Negative staining reveals an ordered, helical arrangement of crossbridges in these filaments, in which the heads from axially neighboring myosin molecules appear to interact with each other. When the free Ca2+ concentration in a homogenate is raised to 10(-4) M, or when a Ca2+-insensitive myosin light chain kinase is added at low Ca2+ (10(-8) M), the regulatory light chains of myosin become rapidly phosphorylated. Phosphorylation is accompanied by potentiation of the actin activation of the myosin Mg- ATPase activity and by loss of order of the helical crossbridge arrangement characteristic of the relaxed filament. We suggest that in the relaxed state, when the regulatory light chains are not phosphorylated, the myosin heads are held down on the filament backbone by head-head interactions or by interactions of the heads with the filament backbone. Phosphorylation of the light chains may alter these interactions so that the crossbridges become more loosely associated with the filament backbone giving rise to the observed changes and facilitating crossbridge interaction with actin. PMID:2958483

  20. An evolutionary conserved motif is responsible for immunoglobulin heavy chain packing in the B cell membrane.

    PubMed

    Varriale, Sonia; Merlino, Antonello; Coscia, Maria Rosaria; Mazzarella, Lelio; Oreste, Umberto

    2010-12-01

    All species of vertebrates synthesize immunoglobulin molecules, which differ in an number of aspects but also share a few common features responsible for their function, such as the presence of a transmembrane domain in the membrane bound form of the immunoglobulin heavy chain (IgTMD) that ensures communication with the signal transducing Igα-Igβ peptides. We have analyzed the gene sequence encoding the IgTMD of different heavy chain isotypes of very distant species, from shark to mammals. The IgTMD sequences show a high degree of sequence identity and their encoding nucleotide sequences were shown to be subject to purifying selection at most sites. We have built molecular models of seven IgTMDs from different vertebrate species and have investigated the formation of homodimer in a palmitoyl oleoyl phosphatidylcholine (POPC) lipid bilayer by molecular dynamics simulations. We found that the conserved FXXXFXXS/TXXXS motif, never observed to date in protein transmembrane chains, is responsible for the two heavy chains association through two pairs of Phe-Phe hydrophobic interactions and two pairs of Ser/Thr-Ser/Ser hydrogen bonds. This interaction pattern, which stabilizes the dimer conformation in the lipid bilayer, was unique, being different from any other pattern identified in transmembrane helices to date. PMID:20937398

  1. Analysis of heavy and light chain pairings indicates that receptor editing shapes the human antibody repertoire.

    PubMed

    de Wildt, R M; Hoet, R M; van Venrooij, W J; Tomlinson, I M; Winter, G

    1999-01-22

    In the bone marrow, diversity in the primary antibody repertoire is created by the combinatorial rearrangement of different gene segments and by the association of different heavy and light chains. During the secondary response in the germinal centres, antibodies are diversified by somatic mutation and possibly by further rearrangements, or "receptor editing". Here, we have analysed the pairings of heavy and light chain variable domains (VH and VL) in 365 human IgG+ B cells from peripheral blood, and established that these pairings are largely random. The repertoire is dominated by a limited number of pairings of segments and folds. Among these pairings we identified two identical mutated heavy chains in combination with two different mutated light chains (one kappa and one lambda). This shows that receptor editing occurs in the human periphery and that the same antibody lineage can be subjected to both receptor editing and somatic hypermutation. This suggests that receptor editing may be used together with somatic mutation for the affinity maturation of antibodies. We also propose that receptor editing has shaped variable gene segment use and the evolution of V gene families.

  2. Abnormal chromosomal marker (D14 q+) in a patient with alpha heavy chain disease.

    PubMed Central

    Gafter, U; Kessler, E; Shabtay, F; Shaked, P; Djaldetti, M

    1980-01-01

    A patient with alpha heavy chain disease (alphaHCD), who showed an abnormal chromosomal marker (D14 q+) in 10% of the bone marrow cells, is described. The mesenteric lymph nodes, which showed reactive hyperplasia in the first biopsy, transformed later to a malignant lymphoma and finally to a plasma cell tumour. The small intestine revealed villous atrophy, diminished crypts, and intact surface epithelium. The ultrastructure of the goblet and epithelial cells appeared to be normal, and the microvilli were preserved except for circumscribed areas of destruction. The lamina propria was heavily infiltrated with mononuclear cells, mainly mature plasma cells. Alpha heavy chains (alphaHC) were found in the patient's saliva. Images Fig. 6 Fig. 7 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 PMID:6767755

  3. Porous silicon biosensor for detection of variable domain of heavy-chain of HCAb antibody

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-yan; Lü, Xiao-yi; Jia, Zhen-hong; Li, Jiang-wei; Zhang, Fu-chun

    2012-03-01

    In this paper, we produce porous silicon (PSi) by electrochemical etching, and it is the first time to evaluate the performance of label-free porous silicon biosensor for detection of variable domain of heavy chain of heavy-chain antibody (VHH). The binding of hen egg white lysozyme (HEWL) and VHH causes a red shift in the reflection spectrum of the biosensor. The red shift is proportional to the VHH concentration in the range from 14 g·ml-1 to 30 g·ml-1 with a detection limit of 0.648 ng·ml-1. The research is useful for the development of label-free biosensor applied in the rapid and sensitive determination of small molecules.

  4. Mammalian cells express three distinct dynein heavy chains that are localized to different cytoplasmic organelles.

    PubMed

    Vaisberg, E A; Grissom, P M; McIntosh, J R

    1996-05-01

    We describe two dynein heavy chain (DHC)-like polypeptides (DHCs 2 and 3) that are distinct from the heavy chain of conventional cytoplasmic dynein (DHC1) but are expressed in a variety of mammalian cells that lack axonemes. DHC2 is a distant member of the "cytoplasmic" branch of the dynein phylogenetic tree, while DHC3 shares more sequence similarity with dynein-like polypeptides that have been thought to be axonemal. Each cytoplasmic dynein is associated with distinct cellular organelles. DHC2 is localized predominantly to the Golgi apparatus. Moreover, the Golgi disperses upon microinjection of antibodies to DHC2, suggesting that this motor is involved in establishing proper Golgi organization. DCH3 is associated with as yet unidentified structures that may represent transport intermediates between two or more cytoplasmic compartments. Apparently, specific cytoplasmic dyneins, like individual members of the kinesin superfamily, play unique roles in the traffic of cytomembranes.

  5. Construction of recombinant plasmids containing Xenopus immunoglobulin heavy chain DNA sequences.

    PubMed Central

    Brown, R D; Armentrout, R W; Cochran, M D; Cappello, J; Langemeier, S O

    1981-01-01

    A recombinant cDNA plasmid containing Xenopus immunoglobulin heavy chain sequence has been constructed from Xenopus spleen poly(A)-containing RNA. The plasmid was identified by colony hybridization and a hybridization-translation assay and its identity was confirmed by DNA sequence analysis. The portion of the heavy chain sequence contained in the plasmid is 35% homologous to mammalian mu and gamma sequences. The mRNA corresponding to this plasmid is 2.5 kilobases, in close agreement with the size of mouse mu mRNA. RNA sequences complementary to the cloned sequence appear in embryos about 24 hr after fertilization, which corresponds to 24 hr before the first detectable immunoglobulin. Images PMID:6112748

  6. A new immunoglobulin variant: gamma3 heavy chain disease protein CHI.

    PubMed Central

    Frangione, B

    1976-01-01

    Protein CHI is a defective human gamma3 heavy chain immunoglobulin with a deletion encompassing a portion of the variable and constant regions. Joining of the two pieces takes place at the beginning of an extra fragment (Fh) in the constant region where repetitive sequences are found, apparently as the result of gene duplications and/or unequal crossover between gamma genes. It is postulated that a 45 nucleotide fragment is the repetitive unit coding for the extra fragment. PMID:818639

  7. Non-muscle myosin II takes centre stage in cell adhesion and migration

    PubMed Central

    Vicente-Manzanares, Miguel; Ma, Xuefei; Adelstein, Robert S.; Horwitz, Alan Rick

    2010-01-01

    Non-muscle myosin II (NM II) is an actin-binding protein that has actin cross-linking and contractile properties and is regulated by the phosphorylation of its light and heavy chains. The three mammalian NM II isoforms have both overlapping and unique properties. Owing to its position downstream of convergent signalling pathways, NM II is central in the control of cell adhesion, cell migration and tissue architecture. Recent insight into the role of NM II in these processes has been gained from loss-of-function and mutant approaches, methods that quantitatively measure actin and adhesion dynamics and the discovery of NM II mutations that cause monogenic diseases. PMID:19851336

  8. Ets proteins: new factors that regulate immunoglobulin heavy-chain gene expression.

    PubMed

    Rivera, R R; Stuiver, M H; Steenbergen, R; Murre, C

    1993-11-01

    We used a DNA-protein interaction screening method to isolate a cDNA, Erg-3, whose product binds to a site, designated pi, present in the immunoglobulin (Ig) heavy-chain gene enhancer. Erg-3 is an alternatively spliced product of the erg gene and contains an Ets DNA-binding domain. Fli-1 and PU.1, related Ets proteins, also bind to the same site. In addition, PU.1 binds to a second site, designated microB, in the Ig heavy-chain enhancer. We demonstrate that the pi binding site is crucial for Ig heavy-chain gene enhancer function. In addition, we show that Erg-3 and Fli.1, but not PU.1, can activate a reporter construct containing a multimer of protein-binding sites, synergistically with helix-loop-helix protein E12. We discuss how combinatorial interactions between members of the helix-loop-helix and Ets families may account for the tissue specificity of these proteins.

  9. In vivo myosin step-size from zebrafish skeletal muscle

    PubMed Central

    Ajtai, Katalin; Sun, Xiaojing; Takubo, Naoko; Wang, Yihua

    2016-01-01

    Muscle myosins transduce ATP free energy into actin displacement to power contraction. In vivo, myosin side chains are modified post-translationally under native conditions, potentially impacting function. Single myosin detection provides the ‘bottom-up’ myosin characterization probing basic mechanisms without ambiguities inherent to ensemble observation. Macroscopic muscle physiological experimentation provides the definitive ‘top-down’ phenotype characterizations that are the concerns in translational medicine. In vivo single myosin detection in muscle from zebrafish embryo models for human muscle fulfils ambitions for both bottom-up and top-down experimentation. A photoactivatable green fluorescent protein (GFP)-tagged myosin light chain expressed in transgenic zebrafish skeletal muscle specifically modifies the myosin lever-arm. Strychnine induces the simultaneous contraction of the bilateral tail muscles in a live embryo, causing them to be isometric while active. Highly inclined thin illumination excites the GFP tag of single lever-arms and its super-resolution orientation is measured from an active isometric muscle over a time sequence covering many transduction cycles. Consecutive frame lever-arm angular displacement converts to step-size by its product with the estimated lever-arm length. About 17% of the active myosin steps that fall between 2 and 7 nm are implicated as powerstrokes because they are beyond displacements detected from either relaxed or ATP-depleted (rigor) muscle. PMID:27249818

  10. In vivo myosin step-size from zebrafish skeletal muscle.

    PubMed

    Burghardt, Thomas P; Ajtai, Katalin; Sun, Xiaojing; Takubo, Naoko; Wang, Yihua

    2016-05-01

    Muscle myosins transduce ATP free energy into actin displacement to power contraction. In vivo, myosin side chains are modified post-translationally under native conditions, potentially impacting function. Single myosin detection provides the 'bottom-up' myosin characterization probing basic mechanisms without ambiguities inherent to ensemble observation. Macroscopic muscle physiological experimentation provides the definitive 'top-down' phenotype characterizations that are the concerns in translational medicine. In vivo single myosin detection in muscle from zebrafish embryo models for human muscle fulfils ambitions for both bottom-up and top-down experimentation. A photoactivatable green fluorescent protein (GFP)-tagged myosin light chain expressed in transgenic zebrafish skeletal muscle specifically modifies the myosin lever-arm. Strychnine induces the simultaneous contraction of the bilateral tail muscles in a live embryo, causing them to be isometric while active. Highly inclined thin illumination excites the GFP tag of single lever-arms and its super-resolution orientation is measured from an active isometric muscle over a time sequence covering many transduction cycles. Consecutive frame lever-arm angular displacement converts to step-size by its product with the estimated lever-arm length. About 17% of the active myosin steps that fall between 2 and 7 nm are implicated as powerstrokes because they are beyond displacements detected from either relaxed or ATP-depleted (rigor) muscle. PMID:27249818

  11. SH1 (cysteine 717) of smooth muscle myosin: its role in motor function.

    PubMed

    Kojima, S; Fujiwara, K; Onishi, H

    1999-09-01

    To determine if a thiol group called SH1 has an important role in myosin's motor function, we made a mutant heavy meromyosin (HMM) without the thiol group and analyzed its properties. In chicken gizzard myosin, SH1 is located on the cysteine residue at position 717. By using genetic engineering techniques, this cysteine was substituted with threonine in chicken gizzard HMM, and that mutant HMM and unmutated HMM were expressed in biochemical quantities using a baculovirus system. The basal EDTA-, Ca(2+)-, and Mg(2+)-ATPase activities of the mutant were similar to those of HMM whose SH1 was modified by N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS). However, while the chemically modified HMM lost the function of the light chain phosphorylation-dependent regulation of the actin-activated ATPase activity, the mutant HMM exhibited the normal light chain-regulated actin-activated ATPase activity. Using an in vitro motility assay system, we found that the IAEDANS-modified HMM was unable to propel actin filaments but that the mutant HMM was able to move actin filaments in a manner indistinguishable from filament sliding generated by unmutated HMM. These results indicate that SH1 itself is not essential for the motor function of myosin and suggest that various effects observed with HMM modified by thiol reagents such as IAEDANS are caused by the bulkiness of the attached probes, which interferes with the swinging motion generated during ATP hydrolysis.

  12. The dynein genes of Paramecium tetraurelia: the structure and expression of the ciliary beta and cytoplasmic heavy chains.

    PubMed Central

    Kandl, K A; Forney, J D; Asai, D J

    1995-01-01

    The genes encoding two Paramecium dynein heavy chains, DHC-6 and DHC-8, have been cloned and sequenced. Sequence-specific antibodies demonstrate that DHC-6 encodes ciliary outer arm beta-chain and DHC-8 encodes a cytoplasmic dynein heavy chain. Therefore, this study is the first opportunity to compare the primary structures and expression of two heavy chains representing the two functional classes of dynein expressed in the same cell. Deciliation of paramecia results in the accumulation of mRNA from DHC-6, but not DHC-8. Nuclear run-on transcription experiments demonstrate that this increase in the steady state concentration of DHC-6 mRNA is a consequence of a rapid induction of transcription in response to deciliation. This is the first demonstration that dynein, like other axonemal components, is transcriptionally regulated during reciliation. Analyses of the sequences of the two Paramecium dyneins and the dynein heavy chains from other organisms indicate that the heavy chain can be divided into three regions: 1) the sequence of the central catalytic domain is conserved among all dyneins; 2) the tail domain sequence, consisting of the N-terminal 1200 residues, differentiates between axonemal and cytoplasmic dyneins; and 3) the N-terminal 200 residues are the most divergent and appear to classify the isoforms. The organization of the heavy chain predicts that the variable tail domain may be sufficient to target the dynein to the appropriate place in the cell. Images PMID:8589455

  13. Isolated beta-heavy chain subunit of dynein translocates microtubules in vitro

    PubMed Central

    1988-01-01

    Our goal was to assess the microtubule translocating ability of individual ATPase subunits of outer arm dynein. Solubilized outer arm dynein from sea urchin sperm (Stronglocentrotus purpuratus) was dissociated into subunits by low ionic strength buffer and fractionated by zonal centrifugation. Fractions were assessed by an in vitro functional assay wherein microtubules move across a glass surface to which isolated dynein fractions had been absorbed. Microtubule gliding activity was coincident with the 12-S beta-heavy chain-intermediate chain 1 ATPase fractions (beta/IC1). Neither the alpha-heavy chain nor the intermediate chains 2 and 3 fractions coincided with microtubule gliding activity. The beta/IC1 ATPase induced very rapid gliding velocities (9.7 +/- 0.88 micron/s, range 7-11.5 micron/s) in 1 mM ATP- containing motility buffers. In direct comparison, isolated intact 21-S outer arm dynein, from which the beta/IC1 fraction was derived, induced slower microtubule gliding rates (21-S dynein, 5.6 +/- 0.7 micron/s; beta/IC1, 8.7 +/- 1.2 micron/s). These results demonstrate that a single subdomain in dynein, the beta/IC1 ATPase, is sufficient for microtubule sliding activity. PMID:2972730

  14. Myosin VI: a multifunctional motor.

    PubMed

    Lister, I; Roberts, R; Schmitz, S; Walker, M; Trinick, J; Veigel, C; Buss, F; Kendrick-Jones, J

    2004-11-01

    Myosin VI moves towards the minus end of actin filaments unlike all the other myosins so far studied, suggesting that it has unique properties and functions. Myosin VI is present in clathrin-coated pits and vesicles, in membrane ruffles and in the Golgi complex, indicating that it has a wide variety of functions in the cell. To investigate the cellular roles of myosin VI, we have identified a variety of myosin VI-binding partners and characterized their interactions. As an alternative approach, we have studied the in vitro properties of intact myosin VI. Previous studies assumed that myosin VI existed as a dimer but our biochemical characterization and electron microscopy studies reveal that myosin VI is a monomer. Using an optical tweezers force transducer, we showed that monomeric myosin VI is a non-processive motor with a large working stroke of 18 nm. Potential roles for myosin VI in cells are discussed. PMID:15493988

  15. Myosin translocation in retinal pericytes during free-radical induced apoptosis.

    PubMed

    Shojaee, N; Patton, W F; Hechtman, H B; Shepro, D

    1999-10-01

    Vascular pathologies induced by ischemia/reperfusion involve the production of reactive oxygen species (ROS) that in part cause tissue injury. The production of ROS that occurs upon reperfusion activates specific second messenger pathways. In diabetic retinopathy there is a characteristic loss of the microvascular pericyte. Pericytes are more sensitive than endothelial cells to low concentrations of ROS, such as hydrogen peroxide (H(2)O(2)) when tested in vitro. Whether the pericyte loss is due to toxic cell death triggered by the noxious H(2)O(2) or apoptosis, due to activation of specific second messenger pathways, is unknown. During apoptosis, a cell's nucleus and cytoplasm condense, the cell becomes fragmented, and ultimately forms apoptotic bodies. It is generally assumed that apoptosis depends on nuclear signaling, but cytoplasmic morphological processes are not well described. We find that exposing cultured retinal pericytes to 100 microM H(2)O(2) for 30 min leads to myosin heavy chain translocation from the cytosol to the cytoskeleton and a significant decrease in cell surface area. Pericyte death follows within 60-120 min. Exposing cells to 150 mJ/cm(2) ultraviolet radiation, an alternate free radical generating system, also causes pericyte myosin translocation and apoptosis. Proteolytic cleavage of actin is not observed in pericyte apoptosis. 3-aminobenzamide, a pharmacological inhibitor of the cleavage and activation of the DNA-repairing enzyme poly (ADP-ribose) polymerase (PARP) inhibits pericyte apoptosis, and prevents myosin translocation. Deferoxamine, an iron chelator known to interfere with free radical generation, also inhibits pericyte myosin translocation, contractility, and cell death. Myosin translocation to the cytoskeleton may be an early step in assembly of a competent contractile apparatus, which is involved in apoptotic cell condensation. These results suggest that pericyte loss associated with increased free radical production in

  16. Myosin flexibility: structural domains and collective vibrations.

    PubMed

    Navizet, Isabelle; Lavery, Richard; Jernigan, Robert L

    2004-02-15

    The movement of the myosin motor along an actin filament involves a directed conformational change within the cross-bridge formed between the protein and the filament. Despite the structural data that has been obtained on this system, little is known of the mechanics of this conformational change. We have used existing crystallographic structures of three conformations of the myosin head, containing the motor domain and the lever arm, for structural comparisons and mechanical studies with a coarse-grained elastic network model. The results enable us to define structurally conserved domains within the protein and to better understand myosin flexibility. Notably they point to the role of the light chains in rigidifying the lever arm and to changes in flexibility as a consequence of nucleotide binding.

  17. Molt cycle-associated changes in calcium-dependent proteinase activity that degrades actin and myosin in crustacean muscle

    SciTech Connect

    Mykles, D.L.; Skinner, D.M.

    1982-01-01

    The role of calcium-dependent proteinase (CDP) in the proecdysial atrophy of crustacean claw muscle has been investigated. During atrophy the molar ratio of actin to myosin heavy chain decreased 31%, confirming earlier ultrastructural observations that the ratio of thin:thick myofilaments declined from 9:1 to 6:1 (D.L. Mykles and D.M. Skinner, 1981, J. Ultrastruct. Res. 75, 314 to 325). The release of TCA-soluble material in muscle homogenates at neutral pH was stimulated by Ca/sup 2 +/ and completely inhibited by EGTA. The specific degradation of the major myofibrillar proteins (actin, myosin heavy and light chains, paramyosin, tropomyosin, troponin-T, and troponin-I) was demonstrated by SDS-polyacrylamide gel electrophoresis. Proteolytic activity was more than twofold greater in proecdysial muscle homogenates. Degradation of myofibrillar proteins was inhibited by EGTA, and the two inhibitors of crysteine proteinases, leupeptin, and antipain, but not pepstatin, an inhibitor of aspartic proteinases. Unlike CDPs from vertebrate muscle, the CDP(s) in crab claw muscle degrades actin and myosin in addition to other myofibrillar proteins.

  18. Effects of a long-term spaceflight on immunoglobulin heavy chains of the urodele amphibian Pleurodeles waltl.

    PubMed

    Boxio, Rachel; Dournon, Christian; Frippiat, Jean-Pol

    2005-03-01

    A variety of immune parameters are modified during and after a spaceflight. The effects of spaceflights on cellular immunity are well documented; however, little is known about the effects of these flights on humoral immunity. During the Genesis space experiment, two adult Pleurodeles waltl (urodele amphibian) stayed 5 mo onboard Mir and were subjected to oral immunization. Animals were killed 10 days after their return to earth. IgM and IgY heavy-chain transcripts in their spleens were quantified by Northern blotting. The use of the different VH families (coding for antibody heavy-chain variable domains) in IgM heavy chain transcripts was also analyzed. Results were compared with those obtained with ground control animals and animals reared in classical conditions in our animal facilities. We observed that, 10 days after the return on earth, the level of IgM heavy-chain transcription was normal but the level of IgY heavy-chain transcription was at least three times higher than in control animals. We also observed that the use of the different VH families in IgM heavy-chain transcripts was modified by the flight. These data suggest that the spaceflight affected the antibody response against the antigens contained in the food.

  19. Axonemal dynein light chain-1 locates at the microtubule-binding domain of the γ heavy chain

    PubMed Central

    Ichikawa, Muneyoshi; Saito, Kei; Yanagisawa, Haru-aki; Yagi, Toshiki; Kamiya, Ritsu; Yamaguchi, Shin; Yajima, Junichiro; Kushida, Yasuharu; Nakano, Kentaro; Numata, Osamu; Toyoshima, Yoko Y.

    2015-01-01

    The outer arm dynein (OAD) complex is the main propulsive force generator for ciliary/flagellar beating. In Chlamydomonas and Tetrahymena, the OAD complex comprises three heavy chains (α, β, and γ HCs) and >10 smaller subunits. Dynein light chain-1 (LC1) is an essential component of OAD. It is known to associate with the Chlamydomonas γ head domain, but its precise localization within the γ head and regulatory mechanism of the OAD complex remain unclear. Here Ni-NTA-nanogold labeling electron microscopy localized LC1 to the stalk tip of the γ head. Single-particle analysis detected an additional structure, most likely corresponding to LC1, near the microtubule-binding domain (MTBD), located at the stalk tip. Pull-down assays confirmed that LC1 bound specifically to the γ MTBD region. Together with observations that LC1 decreased the affinity of the γ MTBD for microtubules, we present a new model in which LC1 regulates OAD activity by modulating γ MTBD's affinity for the doublet microtubule. PMID:26399296

  20. Myosin V motor proteins

    PubMed Central

    Vale, Ronald D.

    2003-01-01

    Mammalian myosin V motors transport cargo processively along actin filaments. Recent biophysical and structural studies have led to a detailed understanding of the mechanism of myosin V, making it perhaps the best understood cytoskeletal motor. In addition to describing the mechanism, this review will illustrate how “dynamic” single molecule measurements can synergize with “static” protein structural studies to produce amazingly clear information on the workings of a nanometer-scale machine. PMID:14610051

  1. Three-dimensional in vivo analysis of Dictyostelium mounds reveals directional sorting of prestalk cells and defines a role for the myosin II regulatory light chain in prestalk cell sorting and tip protrusion.

    PubMed

    Clow, P A; Chen, T; Chisholm, R L; McNally, J G

    2000-06-01

    During cell sorting in Dictyostelium, we observed that GFP-tagged prestalk cells (ecmAO-expressing cells) moved independently and directionally to form a cluster. This is consistent with a chemotaxis model for cell sorting (and not differential adhesion) in which a long-range signal attracts many of the prestalk cells to the site of cluster formation. Surprisingly, the ecmAO prestalk cluster that we observed was initially found at a random location within the mound of this Ax3 strain, defining an intermediate sorting stage not widely reported in Dictyostelium. The cluster then moved en masse to the top of the mound to produce the classic, apical pattern of ecmAO prestalk cells. Migration of the cluster was also directional, suggesting the presence of another long-range guidance cue. Once at the mound apex, the cluster continued moving upward leading to protrusion of the mound's tip. To investigate the role of the cluster in tip protrusion, we examined ecmAO prestalk-cell sorting in a myosin II regulatory light chain (RLC) null in which tips fail to form. In RLC-null mounds, ecmAO prestalk cells formed an initial cluster that began to move to the mound apex, but then arrested as a vertical column that extended from the mound's apex to its base. Mixing experiments with wild-type cells demonstrated that the RLC-null ecmAO prestalk-cell defect is cell autonomous. These observations define a specific mechanism for myosin's function in tip formation, namely a mechanical role in the upward movement of the ecmAO prestalk cluster. The wild-type data demonstrate that cell sorting can occur in two steps, suggesting that, in this Ax3 strain, spatially and temporally distinct cues may guide prestalk cells first to an initial cluster and then later to the tip.

  2. Reversible and irreversible cross-linking of immunoglobulin heavy chains through their carbohydrate residues.

    PubMed Central

    Heimgartner, U; Kozulić, B; Mosbach, K

    1990-01-01

    After periodate oxidation and incubation with a dihydrazide, cross-linking of the two heavy chains of immunoglobulins G from several species proceeds specifically through their oligosaccharides. We have used malonic acid dihydrazide, adipic acid dihydrazide and dithiodipropionic acid dihydrazide. The last compound is introduced in this work as a cleavable-carbohydrate-specific cross-linker. It was found that in rabbit and human immunoglobulins the degree of cross-linking was strongly dependent on the oxidation conditions but only very weakly dependent on the concentration and size of the dihydrazides. Papain cleavage of the cross-linked rabbit IgG indicated that the cross-linking occurred predominantly, if not exclusively, in the Fc region, probably through the two glycans linked to Asn-297 in the CH2 domain of each of the two heavy chains. The immunoglobulins from sheep, pig, goat and guinea pig show a comparable cross-linking pattern, indicating that the sugar chains from these immunoglobulins have a spatial structure closely related to that of rabbit and human IgG. When dithiodipropionic acid dihydrazide was used as the cross-linker, the cross-link could be cleaved by mercaptoethanol. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:2111130

  3. Breather-like protonic tunneling in a discrete hydrogen bonded chain with heavy-ionic interactions

    NASA Astrophysics Data System (ADS)

    Kavitha, L.; Parasuraman, E.; Venkatesh, M.; Mohamadou, A.; Gopi, D.

    2013-03-01

    We consider the tunneling motion of protons within a hydrogen bonded (HB) chain. Each proton is subjected to a coulomb interaction from the nearest heavy ions, as well as from the two neighboring protons. We investigate the nonlinear proton dynamics of a HB chain in the semiclassical limit using the coherent state method combined with the Holstein-Primakoff bosonic representation. The protonic transport mechanism has arisen due to the neighboring proton-proton interaction and coherent tunneling of protons along hydrogen bonds and/or around heavy atoms. We construct the exact periodic solutions in terms of elliptic functions by invoking a discrete Jacobian elliptic function method. We present a detailed analysis of the effect of the interaction strength of neighboring protons in the process of bioenergy localization in the form of coherent localized breather modes in a discrete HB chain. A linear stability analysis is performed and the eigenvalues are strictly lying in the imaginary axis, confirming the stable nature of the obtained solutions.

  4. Locking regulatory myosin in the off-state with trifluoperazine.

    PubMed

    Patel, H; Margossian, S S; Chantler, P D

    2000-02-18

    Scallop striated adductor muscle myosin is a regulatory myosin, its activity being controlled directly through calcium binding. Here, we show that millimolar concentrations of trifluoperazine were effective at removal of all regulatory light chains from scallop myosin or myofibrils. More important, 200 microM trifluoperazine, a concentration 10-fold less than that required for light-chain removal, resulted in the reversible elimination of actin-activated and intrinsic ATPase activities. Unlike desensitization induced by metal ion chelation, which leads to an elevation of activity in the absence of calcium concurrent with regulatory light-chain removal, trifluoperazine caused a decline in actin-activated MgATPase activity both in the presence and absence of calcium. Procedures were equally effective with respect to scallop myosin, myofibrils, subfragment-1, or desensitized myofibrils. Increased alpha-helicity could be induced in the isolated essential light chain through addition of 100-200 microM trifluoperazine. We propose that micromolar concentrations of trifluoperazine disrupt regulation by binding to a single high-affinity site located in the C-terminal domain of the essential light chain, which locks scallop myosin in a conformation resembling the off-state. At millimolar trifluoperazine concentrations, additional binding sites on both light chains would be filled, leading to regulatory light-chain displacement.

  5. Graded effects of unregulated smooth muscle myosin on intestinal architecture, intestinal motility and vascular function in zebrafish.

    PubMed

    Abrams, Joshua; Einhorn, Zev; Seiler, Christoph; Zong, Alan B; Sweeney, H Lee; Pack, Michael

    2016-05-01

    Smooth muscle contraction is controlled by the regulated activity of the myosin heavy chain ATPase (Myh11). Myh11 mutations have diverse effects in the cardiovascular, digestive and genitourinary systems in humans and animal models. We previously reported a recessive missense mutation, meltdown (mlt), which converts a highly conserved tryptophan to arginine (W512R) in the rigid relay loop of zebrafish Myh11. The mlt mutation disrupts myosin regulation and non-autonomously induces invasive expansion of the intestinal epithelium. Here, we report two newly identified missense mutations in the switch-1 (S237Y) and coil-coiled (L1287M) domains of Myh11 that fail to complement mlt Cell invasion was not detected in either homozygous mutant but could be induced by oxidative stress and activation of oncogenic signaling pathways. The smooth muscle defect imparted by the mlt and S237Y mutations also delayed intestinal transit, and altered vascular function, as measured by blood flow in the dorsal aorta. The cell-invasion phenotype induced by the three myh11 mutants correlated with the degree of myosin deregulation. These findings suggest that the vertebrate intestinal epithelium is tuned to the physical state of the surrounding stroma, which, in turn, governs its response to physiologic and pathologic stimuli. Genetic variants that alter the regulation of smooth muscle myosin might be risk factors for diseases affecting the intestine, vasculature, and other tissues that contain smooth muscle or contractile cells that express smooth muscle proteins, particularly in the setting of redox stress. PMID:26893369

  6. Calyculin A, an enhancer of myosin, speeds up anaphase chromosome movement

    PubMed Central

    Fabian, Lacramioara; Troscianczuk, Joanna; Forer, Arthur

    2007-01-01

    Actin and myosin inhibitors often blocked anaphase movements in insect spermatocytes in previous experiments. Here we treat cells with an enhancer of myosin, Calyculin A, which inhibits myosin-light-chain phosphatase from dephosphorylating myosin; myosin thus is hyperactivated. Calyculin A causes anaphase crane-fly spermatocyte chromosomes to accelerate poleward; after they reach the poles they often move back toward the equator. When added during metaphase, chromosomes at anaphase move faster than normal. Calyculin A causes prometaphase chromosomes to move rapidly up and back along the spindle axis, and to rotate. Immunofluorescence staining with an antibody against phosphorylated myosin regulatory light chain (p-squash) indicated increased phosphorylation of cleavage furrow myosin compared to control cells, indicating that calyculin A indeed increased myosin phosphorylation. To test whether the Calyculin A effects are due to myosin phosphatase or to type 2 phosphatases, we treated cells with okadaic acid, which inhibits protein phosphatase 2A at concentrations similar to Calyculin A but requires much higher concentrations to inhibit myosin phosphatase. Okadaic acid had no effect on chromosome movement. Backward movements did not require myosin or actin since they were not affected by 2,3-butanedione monoxime or LatruculinB. Calyculin A affects the distribution and organization of spindle microtubules, spindle actin, cortical actin and putative spindle matrix proteins skeletor and titin, as visualized using immunofluorescence. We discuss how accelerated and backwards movements might arise. PMID:17381845

  7. Calyculin A, an enhancer of myosin, speeds up anaphase chromosome movement.

    PubMed

    Fabian, Lacramioara; Troscianczuk, Joanna; Forer, Arthur

    2007-01-01

    Actin and myosin inhibitors often blocked anaphase movements in insect spermatocytes in previous experiments. Here we treat cells with an enhancer of myosin, Calyculin A, which inhibits myosin-light-chain phosphatase from dephosphorylating myosin; myosin thus is hyperactivated. Calyculin A causes anaphase crane-fly spermatocyte chromosomes to accelerate poleward; after they reach the poles they often move back toward the equator. When added during metaphase, chromosomes at anaphase move faster than normal. Calyculin A causes prometaphase chromosomes to move rapidly up and back along the spindle axis, and to rotate. Immunofluorescence staining with an antibody against phosphorylated myosin regulatory light chain (p-squash) indicated increased phosphorylation of cleavage furrow myosin compared to control cells, indicating that calyculin A indeed increased myosin phosphorylation. To test whether the Calyculin A effects are due to myosin phosphatase or to type 2 phosphatases, we treated cells with okadaic acid, which inhibits protein phosphatase 2A at concentrations similar to Calyculin A but requires much higher concentrations to inhibit myosin phosphatase. Okadaic acid had no effect on chromosome movement. Backward movements did not require myosin or actin since they were not affected by 2,3-butanedione monoxime or LatruculinB. Calyculin A affects the distribution and organization of spindle microtubules, spindle actin, cortical actin and putative spindle matrix proteins skeletor and titin, as visualized using immunofluorescence. We discuss how accelerated and backwards movements might arise. PMID:17381845

  8. Mapping of Heavy Chain Genes for Mouse Immunoglobulins M and D

    NASA Astrophysics Data System (ADS)

    Liu, Chih-Ping; Tucker, Philip W.; Mushinski, J. Frederic; Blattner, Frederick R.

    1980-09-01

    A single DNA fragment containing both μ and δ immunoglobulin heavy chain genes has been cloned from normal BALB/c mouse liver DNA with a new λ phage vector Charon 28. The physical distance between the membrane terminal exon of μ and the first domain of δ is 2466 base pairs, with δ on the 3' side of μ . A single transcript could contain a variable region and both μ and δ constant regions. The dual expression of immunoglobulins M and D on spleen B cells may be due to alternate splicing of this transcript.

  9. Heavy Chain Only Antibodies: A New Paradigm in Personalized HER2+ Breast Cancer Therapy

    PubMed Central

    Moghimi, Seyed Moein; Rahbarizadeh, Fatemeh; Ahmadvand, Davoud; Parhamifar, Ladan

    2013-01-01

    Unlike conventional antibodies, heavy chain only antibodies derived from camel contain a single variable domain (VHH) and two constant domains (CH2 and CH3). Cloned and isolated VHHs possess unique properties that enable them to excel conventional therapeutic antibodies and their smaller antigen-binding fragments in cancer targeting and therapy. VHHs express low immunogenicity, are highly robust and easy to manufacture and have the ability to recognize hidden or uncommon epitopes. We highlight the utility of VHH in design of new molecular, multifunctional particulate and immune cell-based systems for combating HER2+ breast cancer. PMID:23678463

  10. Modulation of acto-myosin contractility in skeletal muscle myoblasts uncouples growth arrest from differentiation.

    PubMed

    Dhawan, Jyotsna; Helfman, David M

    2004-08-01

    Cell-substratum interactions trigger key signaling pathways that modulate growth control and tissue-specific gene expression. We have previously shown that abolishing adhesive interactions by suspension culture results in G(0) arrest of myoblasts. We report that blocking intracellular transmission of adhesion-dependent signals in adherent cells mimics the absence of adhesive contacts. We investigated the effects of pharmacological inhibitors of acto-myosin contractility on growth and differentiation of C2C12 myogenic cells. ML7 (5-iodonaphthalene-1-sulfonyl homopiperazine) and BDM (2,3, butanedione monoxime) are specific inhibitors of myosin light chain kinase, and myosin heavy chain ATPase, respectively. ML7 and BDM affected cell shape by reducing focal adhesions and stress fibers. Both inhibitors rapidly blocked DNA synthesis in a dose-dependent, reversible fashion. Furthermore, both ML7 and BDM suppressed expression of MyoD and myogenin, induced p27(kip1) but not p21(cip1), and inhibited differentiation. Thus, as with suspension-arrest, inhibition of acto-myosin contractility in adherent cells led to arrest uncoupled from differentiation. Over-expression of inhibitors of the small GTPase RhoA (dominant negative RhoA and C3 transferase) mimicked the effects of myosin inhibitors. By contrast, wild-type RhoA induced arrest, maintained MyoD and activated myogenin and p21 expression. The Rho effector kinase ROCK did not appear to mediate Rho's effects on MyoD. Thus, ROCK and MLCK play different roles in the myogenic program. Signals regulated by MLCK are critical, since inhibition of MLCK suppressed MyoD expression but inhibition of ROCK did not. Inhibition of contractility suppressed MyoD but did not reduce actin polymer levels. However, actin depolymerization with latrunculin B inhibited MyoD expression. Taken together, our observations indicate that actin polymer status and contractility regulate MyoD expression. We suggest that in myoblasts, the Rho pathway and

  11. Heavy metal and selenium levels in birds at Agassiz National Wildlife Refuge, Minnesota: Food chain differences.

    PubMed

    Burger, J; Gochfeld, M

    1996-12-01

    The levels of heavy metals and selenium in the eggs and in breast feathers of adult doublecrested cormorant (Phalacrocorax auritus), black-crowned night heron (Nycticorax nycticorax), and franklin's gull (Larus pipixcan) nesting at Agassiz National Wildlife Refuge in Marshall County, northwestern Minnesota were examined. Also examined were metal levels in the feathers of fledgling night herons and gulls, in the feathers of adult and fledgling American bittern (Botaurus lentiginosus), in eggs of American coot (Fulica americana) and eared grebe (Podiceps caspicus), and in feathers of adult Canada geese (Branta canadensis). These species represent different levels on the food chain from primarily vegetation-eating species (geese, coot) to species that eat primarily fish (cormorant). A clear, positive relationship between level on the food chain and levels of heavy metals occurred only for mercury in feathers and eggs. Otherwise, eared grebes had the highest levels of all other metals in their eggs compared to the other species. No clear food chain pattern existed for feathers for the other metals. For eggs at Agassiz: 1) lead, selenium, and manganese levels were similar to those reported in the literature, 2) mercury levels were slightly higher for cormorants and night herons, 3) all species had higher chromium and cadmium levels than generally reported, and 4) eared grebes had significantly higher levels of cadmium than reported for any species from elsewhere. For adult feathers: 1) gulls had higher levels of lead than the other species, 2) cadmium levels were elevated in gulls and adult herons and cormorants, 3) mercury levels showed an increase with position on the food chain, 4) selenium and chromium levels of all birds at Agassiz were generally low and 5) manganese levels in adults were generally higher than in the literature for other species. Adults had significantly higher mercury levels than fledgling gulls, night herons, and bitterns.

  12. T-Cell-Dependent Antibody Response to the Dominant Epitope of Streptococcal Polysaccharide, N-Acetyl-Glucosamine, Is Cross-Reactive with Cardiac Myosin

    PubMed Central

    Malkiel, Susan; Liao, Li; Cunningham, Madeleine W.; Diamond, Betty

    2000-01-01

    Autoantibodies against myosin are associated with myocarditis and rheumatic heart disease. In this study, the antigenic cross-reactivity of myosin and N-acetyl-glucosamine (GlcNAc), the dominant epitope of Group A streptococcal polysaccharide, was examined. Six antimyosin monoclonal antibodies (MAbs) derived from mice with cardiac myosin-induced myocarditis were characterized. All MAbs cross-reacted with GlcNAc, mimicking a subset of MAbs derived from rheumatic carditis patients that bind both myosin and streptococcal polysaccharide. Variable (V) region gene usage was diverse, with five of six MAb heavy-chain V regions encoded by distinct members of the J558 family and the sixth encoded by a member of the VGAM3.8 family. Light-chain V-region segments were derived from the Vk1, Vk4/5, Vk10, and Vk21 families. These antimyosin, anti-GlcNac MAbs demonstrated several T-cell-dependent features: they were predominantly immunoglobulin G, were encoded by V-region genes expressed late in development, and displayed somatic mutation. A direct correlation between the extent of somatic mutation and the affinity for myosin was observed. Affinity for GlcNAc also increased with the frequency of mutation, demonstrating that affinity maturation can occur simultaneously for both self antigen and foreign antigen. Based on these observations, we immunized mice with GlcNAc coupled to bovine serum albumin and demonstrated that a T-cell-dependent response to GlcNAc leads to antimyosin reactivity. We speculate that the pathogenic antibody response in rheumatic carditis may reflect the conversion of a T-cell-independent response to GlcNAc to a T-cell-dependent cross-reactive response to GlcNAc and myosin. PMID:10992488

  13. Characterization and localization of the cytoplasmic dynein heavy chain in Aspergillus nidulans.

    PubMed

    Xiang, X; Roghi, C; Morris, N R

    1995-10-10

    Migration of nuclei throughout the mycelium is essential for the growth and differentiation of filamentous fungi. In Aspergillus nidulans, the nudA gene, which is involved in nuclear migration, encodes a cytoplasmic dynein heavy chain. In this paper we use antibodies to characterize the Aspergillus cytoplasmic dynein heavy chain (ACDHC) and to show that the ACDHC is concentrated at the growing tip of the fungal mycelium. We demonstrate that four temperature-sensitive mutations in the nudA gene result in a striking decrease in ACDHC protein. Cytoplasmic dynein has been implicated in nuclear division in animal cells. Because the temperature-sensitive nudA mutants are able to grow slowly with occasional nuclei found in the mycelium and are able to undergo nuclear division, we have created a deletion/disruption nudA mutation and a tightly downregulated nudA mutation. These mutants exhibit a phenotype very similar to that of the temperature-sensitive nudA mutants with respect to growth, nuclear distribution, and nuclear division. This suggests that there are redundant backup motor proteins for both nuclear migration and nuclear division.

  14. Fast axonal transport of kinesin in the rat visual system: functionality of kinesin heavy chain isoforms.

    PubMed Central

    Elluru, R G; Bloom, G S; Brady, S T

    1995-01-01

    The mechanochemical ATPase kinesin is thought to move membrane-bounded organelles along microtubules in fast axonal transport. However, fast transport includes several classes of organelles moving at rates that differ by an order of magnitude. Further, the fact that cytoplasmic forms of kinesin exist suggests that kinesins might move cytoplasmic structures such as the cytoskeleton. To define cellular roles for kinesin, the axonal transport of kinesin was characterized. Retinal proteins were pulse-labeled, and movement of radiolabeled kinesin through optic nerve and tract into the terminals was monitored by immunoprecipitation. Heavy and light chains of kinesin appeared in nerve and tract at times consistent with fast transport. Little or no kinesin moved with slow axonal transport indicating that effectively all axonal kinesin is associated with membranous organelles. Both kinesin heavy chain molecular weight variants of 130,000 and 124,000 M(r) (KHC-A and KHC-B) moved in fast anterograde transport, but KHC-A moved at 5-6 times the rate of KHC-B. KHC-A cotransported with the synaptic vesicle marker synaptophysin, while a portion of KHC-B cotransported with the mitochondrial marker hexokinase. These results suggest that KHC-A is enriched on small tubulovesicular structures like synaptic vesicles and that at least one form of KHC-B is predominantly on mitochondria. Biochemical specialization may target kinesins to appropriate organelles and facilitate differential regulation of transport. Images PMID:7538359

  15. Susceptibility to multiple sclerosis is associated with the proximal immunoglobulin heavy chain variable region.

    PubMed Central

    Walter, M A; Gibson, W T; Ebers, G C; Cox, D W

    1991-01-01

    15 immunoglobulin heavy chain constant (CH) and variable region (VH) polymorphisms were selected to span the entire length of the heavy chain cluster. These polymorphisms were examined in 34 sib pairs concordant for multiple sclerosis (MS) and in 23 sporadic MS patients. Allele frequencies were calculated for the 2 MS patient groups and compared with those found in a control population from the same geographical location and of similar ethnic background. No significant association was found between MS and the 7 CH region polymorphisms examined. However, a significant correlation between the MS phenotype and a VH2 family polymorphism was observed in both MS patient populations (familial MS patients chi 2 = 8.16, P less than 0.005; sporadic MS patients chi 2 = 8.90, P less than 0.005). One allele of the VH2-5 gene segment was found to be over-represented in both MS groups. VH2-5 has recently been physically mapped close to the CH region, between 180 and 360 kb away. These results indicate that a locus near or within the CH-proximal VH region is associated with increased susceptibility to MS. Images PMID:1672695

  16. Enhancing the Magnetic Anisotropy of Linear Cr(II) Chain Compounds Using Heavy Metal Substitutions.

    PubMed

    Christian, Jonathan H; Brogden, David W; Bindra, Jasleen K; Kinyon, Jared S; van Tol, Johan; Wang, Jingfang; Berry, John F; Dalal, Naresh S

    2016-07-01

    Magnetic properties of the series of three linear, trimetallic chain compounds Cr2Cr(dpa)4Cl2, 1, Mo2Cr(dpa)4Cl2, 2, and W2Cr(dpa)4Cl2, 3 (dpa = 2,2'-dipyridylamido), have been studied using variable-temperature dc and ac magnetometry and high-frequency EPR spectroscopy. All three compounds possess an S = 2 electronic ground state arising from the terminal Cr(2+) ion, which exhibits slow magnetic relaxation under an applied magnetic field, as evidenced by ac magnetic susceptibility and magnetization measurements. The slow relaxation stems from the existence of an easy-axis magnetic anisotropy, which is bolstered by the axial symmetry of the compounds and has been quantified through rigorous high-frequency EPR measurements. The magnitude of D in these compounds increases when heavier ions are substituted into the trimetallic chain; thus D = -1.640, -2.187, and -3.617 cm(-1) for Cr2Cr(dpa)4Cl2, Mo2Cr(dpa)4Cl2, and W2Cr(dpa)4Cl2, respectively. Additionally, the D value measured for W2Cr(dpa)4Cl2 is the largest yet reported for a high-spin Cr(2+) system. While earlier studies have demonstrated that ligands containing heavy atoms can enhance magnetic anisotropy, this is the first report of this phenomenon using heavy metal atoms as "ligands". PMID:26881994

  17. Organization, structure, and assembly of immunoglobulin heavy chain diversity DNA segments.

    PubMed

    Kurosawa, Y; Tonegawa, S

    1982-01-01

    We have identified, cloned, and sequenced eight different DNA segments encoding the diversity (D) regions of mouse immunoglobulin heavy-chain genes. Like the two D segments previously characterized (16, 17), all eight D segments are flanked by characteristic heptamers and nonamers separated by 12-bp spacers. These 10 D segments, and several more D segments identified but not yet sequenced, can be classified into three families based on the extent of sequence homology. The SP2 family consists of nine highly homologous D segments that are all 17-bp long and clustered in a chromosomal region of approximately 60 kb. The FL16 family consists of up to four D segments, two of which were mapped in the 5' end region of the SP2-D cluster. The two FL16D segments are 23 and 17 bp long. The third, the Q52 family, is a single-member family of the 10-bp-long DQ52, located 700 bp 5' to the JH cluster. We argue that the D-region sequences of the majority of heavy chain genes arise from these germline D segments by various somatic mechanisms, including joining of multiple D segments. We present a specific model of D-D joining that does not violate the 12/23-bp spacer rule.

  18. Complete physical map of the human immunoglobulin heavy chain constant region gene complex

    SciTech Connect

    Hofker, M.H.; Walter, M.A.; Cox, D.W. )

    1989-07-01

    The authors have found by pulsed-field gel electrophoresis that the human immunoglobulin heavy chain constant region gene complex maps entirely to a 350-kilobase (kb) Mlu I fragment. The enzyme Eag I was used with pulsed-field gel electrophoresis alone and in double digests with Spe I to map the region. C{sub {gamma}}3 maps 60 kb to the 3{prime} side of C{sub {delta}}; C{gamma}2 maps 80 kb to the 3{prime} side of C{sub {alpha}}1. C{sub {psi}{gamma}} maps 35 kb to the 3{prime} side of C{sub {alpha}}1 and is in the same transcriptional orientation as the other genes. Although in the cloned DNA many CpG-containing restriction sites were identified, most of these were methylated in peripheral blood leukocytes. The sites that were not methylated were predominantly found in three clusters, or Hpa I tiny fragment islands. A region showing strong linkage disequilibrium between all C{sub {gamma}} genes spans at least 160 kb. The 70-kb C{sub {mu}}-C{sub {gamma}}3 region, however, shows no linkage disequilibrium, possibly indicating a recombination hot spot. The immunoglobulin heavy chain constant region has been almost entirely cloned and mapped, and thus most rearrangements occurring in this region should be detectable.

  19. Human heavy chain disease protein WIS: implications for the organization of immunoglobulin genes.

    PubMed Central

    Franklin, E C; Prelli, F; Frangione, B

    1979-01-01

    Protein WIS is a human gamma3 heavy (H) chain disease immunoglobulin variant whose amino acid sequence is most readily interpreted by postulating that three residues of the amino terminus are followed by a deletion of most of the variable (VH) domain, which ends at the variable-constant (VC) joining region. Then there is a stretch of eight residues, three of which are unusual, while the other five have striking homology to the VC junction sequence. This is followed by a second deletion, which ends at the beginning of the quadruplicated hinge region. These findings are consistent with mutations resulting in deletions of most of the gene coding for the V region and CH1 domain followed by splicing at the VC joining region and at the hinge. These structural features fit well the notion of genetic discontinuity between V and C genes and also suggest similar mechanisms of excision and splicing in the interdomain regions of the C gene of the heavy chain. PMID:106391

  20. Comparative Analysis of Immune Repertoires between Bactrian Camel's Conventional and Heavy-Chain Antibodies

    PubMed Central

    Yang, Kai; Zhang, Wei; Zhang, Changjiang; Fu, Longfei; Ren, Zhe; Wang, Changxi; Wu, Jinghua; Lu, Ruxue; Ye, Yanrui; He, Mengying; Nie, Chao; Yang, Naibo; Wang, Jian; Yang, Huanming; Liu, Xiao

    2016-01-01

    Compared to classical antibodies, camel heavy chain antibodies (HCAbs) are smaller in size due to lack of the light chain and the first constant domain of the heavy chain (CH1 region). The variable regions of HCAbs (VHHs) are more soluble and stable than that of conventional antibodies (VHs). Even with such simple structure, they are still functional in antigen binding. Although HCAbs have been extensively investigated over the past two decades, most efforts have been based upon low throughput sequence analysis, and there are only limited reports trying to analyze and describe the complete immune repertoire (IR) of camel HCAbs. Here we leveraged the high-throughput data generated by Next Generation Sequencing (NGS) of the variable domains of the antibody heavy chains from three Bactrian camels to conduct in-depth comparative analyses of the immunoglobulin repertoire. These include analyses of the complementary determining region 3 (CDR3) length and distribution, mutation rate, antibody characteristic amino acids, the distribution of the cysteine (Cys) codons, and the non-classical VHHs. We found that there is higher diversity in the CDR2 than in the other sub-regions, and there is a higher mutation rate in the VHHs than in the VHs (P < 0.05). In addition to substitutions at amino acid (AA) residue positions NO.49/50/52 between VH and VHH clones, we also observed other substitutions at the positions NO.40/54/57/96/101 that could lead to additional structural alterations. We also found that VH-derived VHH clones, referred to as non-classical VHH clones in this study, accounted for about 8% of all clones. Further, only 5%-10% clones had the Trp > Arg AA substitution at the first position of framework 4 for all types of clones. We present, for the first time, a relatively complete picture of the Bactrian camel antibody immune repertoire, including conventional antibody (Ab) and HCAbs, using PCR and in silico analysis based on high-throughput NGS data. PMID:27588755

  1. Comparative Analysis of Immune Repertoires between Bactrian Camel's Conventional and Heavy-Chain Antibodies.

    PubMed

    Li, Xinyang; Duan, Xiaobo; Yang, Kai; Zhang, Wei; Zhang, Changjiang; Fu, Longfei; Ren, Zhe; Wang, Changxi; Wu, Jinghua; Lu, Ruxue; Ye, Yanrui; He, Mengying; Nie, Chao; Yang, Naibo; Wang, Jian; Yang, Huanming; Liu, Xiao; Tan, Wen

    2016-01-01

    Compared to classical antibodies, camel heavy chain antibodies (HCAbs) are smaller in size due to lack of the light chain and the first constant domain of the heavy chain (CH1 region). The variable regions of HCAbs (VHHs) are more soluble and stable than that of conventional antibodies (VHs). Even with such simple structure, they are still functional in antigen binding. Although HCAbs have been extensively investigated over the past two decades, most efforts have been based upon low throughput sequence analysis, and there are only limited reports trying to analyze and describe the complete immune repertoire (IR) of camel HCAbs. Here we leveraged the high-throughput data generated by Next Generation Sequencing (NGS) of the variable domains of the antibody heavy chains from three Bactrian camels to conduct in-depth comparative analyses of the immunoglobulin repertoire. These include analyses of the complementary determining region 3 (CDR3) length and distribution, mutation rate, antibody characteristic amino acids, the distribution of the cysteine (Cys) codons, and the non-classical VHHs. We found that there is higher diversity in the CDR2 than in the other sub-regions, and there is a higher mutation rate in the VHHs than in the VHs (P < 0.05). In addition to substitutions at amino acid (AA) residue positions NO.49/50/52 between VH and VHH clones, we also observed other substitutions at the positions NO.40/54/57/96/101 that could lead to additional structural alterations. We also found that VH-derived VHH clones, referred to as non-classical VHH clones in this study, accounted for about 8% of all clones. Further, only 5%-10% clones had the Trp > Arg AA substitution at the first position of framework 4 for all types of clones. We present, for the first time, a relatively complete picture of the Bactrian camel antibody immune repertoire, including conventional antibody (Ab) and HCAbs, using PCR and in silico analysis based on high-throughput NGS data. PMID:27588755

  2. Comparative Analysis of Immune Repertoires between Bactrian Camel's Conventional and Heavy-Chain Antibodies.

    PubMed

    Li, Xinyang; Duan, Xiaobo; Yang, Kai; Zhang, Wei; Zhang, Changjiang; Fu, Longfei; Ren, Zhe; Wang, Changxi; Wu, Jinghua; Lu, Ruxue; Ye, Yanrui; He, Mengying; Nie, Chao; Yang, Naibo; Wang, Jian; Yang, Huanming; Liu, Xiao; Tan, Wen

    2016-01-01

    Compared to classical antibodies, camel heavy chain antibodies (HCAbs) are smaller in size due to lack of the light chain and the first constant domain of the heavy chain (CH1 region). The variable regions of HCAbs (VHHs) are more soluble and stable than that of conventional antibodies (VHs). Even with such simple structure, they are still functional in antigen binding. Although HCAbs have been extensively investigated over the past two decades, most efforts have been based upon low throughput sequence analysis, and there are only limited reports trying to analyze and describe the complete immune repertoire (IR) of camel HCAbs. Here we leveraged the high-throughput data generated by Next Generation Sequencing (NGS) of the variable domains of the antibody heavy chains from three Bactrian camels to conduct in-depth comparative analyses of the immunoglobulin repertoire. These include analyses of the complementary determining region 3 (CDR3) length and distribution, mutation rate, antibody characteristic amino acids, the distribution of the cysteine (Cys) codons, and the non-classical VHHs. We found that there is higher diversity in the CDR2 than in the other sub-regions, and there is a higher mutation rate in the VHHs than in the VHs (P < 0.05). In addition to substitutions at amino acid (AA) residue positions NO.49/50/52 between VH and VHH clones, we also observed other substitutions at the positions NO.40/54/57/96/101 that could lead to additional structural alterations. We also found that VH-derived VHH clones, referred to as non-classical VHH clones in this study, accounted for about 8% of all clones. Further, only 5%-10% clones had the Trp > Arg AA substitution at the first position of framework 4 for all types of clones. We present, for the first time, a relatively complete picture of the Bactrian camel antibody immune repertoire, including conventional antibody (Ab) and HCAbs, using PCR and in silico analysis based on high-throughput NGS data.

  3. Directed evolution of human heavy chain variable domain (VH) using in vivo protein fitness filter.

    PubMed

    Kim, Dong-Sik; Song, Hyung-Nam; Nam, Hyo Jung; Kim, Sung-Geun; Park, Young-Seoub; Park, Jae-Chan; Woo, Eui-Jeon; Lim, Hyung-Kwon

    2014-01-01

    Human immunoglobulin heavy chain variable domains (VH) are promising scaffolds for antigen binding. However, VH is an unstable and aggregation-prone protein, hindering its use for therapeutic purposes. To evolve the VH domain, we performed in vivo protein solubility selection that linked antibiotic resistance to the protein folding quality control mechanism of the twin-arginine translocation pathway of E. coli. After screening a human germ-line VH library, 95% of the VH proteins obtained were identified as VH3 family members; one VH protein, MG2x1, stood out among separate clones expressing individual VH variants. With further screening of combinatorial framework mutation library of MG2x1, we found a consistent bias toward substitution with tryptophan at the position of 50 and 58 in VH. Comparison of the crystal structures of the VH variants revealed that those substitutions with bulky side chain amino acids filled the cavity in the VH interface between heavy and light chains of the Fab arrangement along with the increased number of hydrogen bonds, decreased solvation energy, and increased negative charge. Accordingly, the engineered VH acquires an increased level of thermodynamic stability, reversible folding, and soluble expression. The library built with the VH variant as a scaffold was qualified as most of VH clones selected randomly were expressed as soluble form in E. coli regardless length of the combinatorial CDR. Furthermore, a non-aggregation feature of the selected VH conferred a free of humoral response in mice, even when administered together with adjuvant. As a result, this selection provides an alternative directed evolution pathway for unstable proteins, which are distinct from conventional methods based on the phage display.

  4. Neurotensinergic Augmentation of Glutamate Release at the Perforant Path-Granule Cell Synapse in Rat Dentate Gyrus: Roles of L-Type Ca2+ Channels, Calmodulin and Myosin Light-Chain Kinase

    PubMed Central

    Zhang, Haopeng; Dong, Hailong; Lei, Saobo

    2015-01-01

    Neurotensin (NT) serves as a neuromodulator in the brain where it is involved in modulating a variety of physiological functions including nociception, temperature, blood pressure and cognition, and many neurological diseases such as Alzheimer’s disease, schizophrenia and Parkinson’s disease. Whereas there is compelling evidence demonstrating that NT facilitates cognitive processes, the underlying cellular and molecular mechanisms have not been fully determined. Because the dentate gyrus expresses high densities of NT and NT receptors, we examined the effects of NT on the synaptic transmission at the synapse formed between the perforant path (PP) and granule cells (GC) in the rats. Our results demonstrate that NT persistently increased the amplitude of the AMPA receptor-mediated EPSCs at the PP-GC synapse. NT-induced increases in AMPA EPSCs were mediated by presynaptic NTS1 receptors. NT reduced the coefficient of variation and paired-pulse ratio of AMPA EPSCs suggesting that NT facilitates presynaptic glutamate release. NT increased the release probability and the number of readily releasable vesicles with no effects on the rate of recovery from vesicle depletion. NT-mediated augmentation of glutamate release required the influx of Ca2+ via L-type Ca2+ channels and the functions of calmodulin and myosin light chain kinase. Our results provide a cellular and molecular mechanism to explain the roles of NT in the hippocampus. PMID:25842242

  5. The intraflagellar transport dynein complex of trypanosomes is made of a heterodimer of dynein heavy chains and of light and intermediate chains of distinct functions

    PubMed Central

    Blisnick, Thierry; Buisson, Johanna; Absalon, Sabrina; Marie, Alexandra; Cayet, Nadège; Bastin, Philippe

    2014-01-01

    Cilia and flagella are assembled by intraflagellar transport (IFT) of protein complexes that bring tubulin and other precursors to the incorporation site at their distal tip. Anterograde transport is driven by kinesin, whereas retrograde transport is ensured by a specific dynein. In the protist Trypanosoma brucei, two distinct genes encode fairly different dynein heavy chains (DHCs; ∼40% identity) termed DHC2.1 and DHC2.2, which form a heterodimer and are both essential for retrograde IFT. The stability of each heavy chain relies on the presence of a dynein light intermediate chain (DLI1; also known as XBX-1/D1bLIC). The presence of both heavy chains and of DLI1 at the base of the flagellum depends on the intermediate dynein chain DIC5 (FAP133/WDR34). In the IFT140RNAi mutant, an IFT-A protein essential for retrograde transport, the IFT dynein components are found at high concentration at the flagellar base but fail to penetrate the flagellar compartment. We propose a model by which the IFT dynein particle is assembled in the cytoplasm, reaches the base of the flagellum, and associates with the IFT machinery in a manner dependent on the IFT-A complex. PMID:24989795

  6. The intraflagellar transport dynein complex of trypanosomes is made of a heterodimer of dynein heavy chains and of light and intermediate chains of distinct functions.

    PubMed

    Blisnick, Thierry; Buisson, Johanna; Absalon, Sabrina; Marie, Alexandra; Cayet, Nadège; Bastin, Philippe

    2014-09-01

    Cilia and flagella are assembled by intraflagellar transport (IFT) of protein complexes that bring tubulin and other precursors to the incorporation site at their distal tip. Anterograde transport is driven by kinesin, whereas retrograde transport is ensured by a specific dynein. In the protist Trypanosoma brucei, two distinct genes encode fairly different dynein heavy chains (DHCs; ∼40% identity) termed DHC2.1 and DHC2.2, which form a heterodimer and are both essential for retrograde IFT. The stability of each heavy chain relies on the presence of a dynein light intermediate chain (DLI1; also known as XBX-1/D1bLIC). The presence of both heavy chains and of DLI1 at the base of the flagellum depends on the intermediate dynein chain DIC5 (FAP133/WDR34). In the IFT140(RNAi) mutant, an IFT-A protein essential for retrograde transport, the IFT dynein components are found at high concentration at the flagellar base but fail to penetrate the flagellar compartment. We propose a model by which the IFT dynein particle is assembled in the cytoplasm, reaches the base of the flagellum, and associates with the IFT machinery in a manner dependent on the IFT-A complex.

  7. N-Iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine modification of myosin from chicken gizzard.

    PubMed

    Onishi, H

    1985-07-01

    Previously, we (Suzuki et al. (1978) J. Biochem. 84, 1529) reported that the sedimentation constant of chicken gizzard myosin in the presence of ATP was approximately 10S in 0.15 M or 0.2 M KCl and approximately 6S in 0.3 M or higher concentrations of KCl. The 10S-myosin and 6S-myosin were considerably different in conformation from each other. I now report the finding that the transformation of 6S-myosin to the 10S conformation results in a drastic change in the reactivity of thiol groups of gizzard myosin with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (abbreviated as IAEDANS). The so-called SH1-type thiol groups (Sekine et al. (1962) J. Biol. Chem. 237, 2769) were present on 68 kilodalton fragments (produced by tryptic digestion) of gizzard myosin. The reactivity of the thiol groups with IAEDANS was greatly decreased by the 6S to 10S transformation of gizzard myosin molecules. Two other findings were obtained. Blocking the SH1-type thiol groups made the Mg-ATPase activities (in the presence of gizzard native tropomyosin) of gizzard myosin and of acto-gizzard myosin insensitive to calcium and to phosphorylation of regulatory light chains, although calcium-dependent phosphorylation of the IAEDANS-modified myosin could still occur. It also made gizzard myosin filaments resistant to the disassembly action of ATP.

  8. The role of myosin phosphorylation in anaphase chromosome movement.

    PubMed

    Sheykhani, Rozhan; Shirodkar, Purnata V; Forer, Arthur

    2013-01-01

    This work deals with the role of myosin phosphorylation in anaphase chromosome movement. Y27632 and ML7 block two different pathways for phosphorylation of the myosin regulatory light chain (MRLC). Both stopped or slowed chromosome movement when added to anaphase crane-fly spermatocytes. To confirm that the effects of the pharmacological agents were on the presumed targets, we studied cells stained with antibodies against mono- or bi-phosphorylated myosin. For all chromosomes whose movements were affected by a drug, the corresponding spindle fibres of the affected chromosomes had reduced levels of 1P- and 2P-myosin. Thus the drugs acted on the presumed target and myosin phosphorylation is involved in anaphase force production. Calyculin A, an inhibitor of MRLC dephosphorylation, reversed and accelerated the altered movements caused by Y27632 and ML-7, suggesting that another phosphorylation pathway is involved in phosphorylation of spindle myosin. Staurosporine, a more general phosphorylation inhibitor, also reduced the levels of MRLC phosphorylation and caused anaphase chromosomes to stop or slow. The effects of staurosporine on chromosome movements were not reversed by Calyculin A, confirming that another phosphorylation pathway is involved in phosphorylation of spindle myosin. PMID:23566798

  9. Bioaccumulative and conchological assessment of heavy metal transfer in a soil-plant-snail food chain

    PubMed Central

    2012-01-01

    Background Copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) can pose serious threats to environmental health because they tend to bioaccumulate in terrestrial ecosystems. We investigated under field conditions the transfer of these heavy metals in a soil-plant-snail food chain in Banat area, Romania. The main goal of this paper was to assess the Roman snail (Helix pomatia) usefulness in environmental monitoring as bioindicator of heavy metal accumulation. Eight sampling sites, selected by different history of heavy metal (HM) exposure, were chosen to be sampled for soil, nettle leaves, and newly matured snails. This study also aimed to identify the putative effects of HM accumulation in the environment on phenotypic variability in selected shell features, which included shell height (SH), relative shell height (RSH), and whorl number (WN). Results Significantly higher amounts of HMs were accumulated in snail hepatopancreas and not in foot. Cu, Zn, and Cd have biomagnified in the snail body, particularly in the hepatopancreas. In contrast, Pb decreased when going up into the food chain. Zn, Cd, and Pb correlated highly with each other at all levels of the investigated food chain. Zn and Pb exhibited an effective soil–plant transfer, whereas in the snail body only foot Cu concentration was correlated with that in soil. There were significant differences among sampling sites for WN, SH, and RSH when compared with reference snails. WN was strongly correlated with Cd and Pb concentrations in nettle leaves but not with Cu and Zn. SH was independent of HM concentrations in soil, snail hepatopancreas, and foot. However, SH correlated negatively with nettle leaves concentrations for each HM except Cu. In contrast, RSH correlated significantly only with Pb concentration in hepatopancreas. Conclusions The snail hepatopancreas accumulates high amounts of HMs, and therefore, this organ can function as a reliable biomarker for tracking HM bioavailability in soil. Long

  10. Laing early onset distal myopathy: slow myosin defect with variable abnormalities on muscle biopsy

    PubMed Central

    Lamont, P J; Udd, B; Mastaglia, F L; de Visser, M; Hedera, P; Voit, T; Bridges, L R; Fabian, V; Rozemuller, A; Laing, N G

    2006-01-01

    Background Laing early onset distal myopathy (MPD1) is an autosomal dominant myopathy caused by mutations within the slow skeletal muscle fibre myosin heavy chain gene, MYH7. It is allelic with myosin storage myopathy, with the commonest form of familial hypertrophic cardiomyopathy, and with one form of dilated cardiomyopathy. However, the clinical picture of MPD1 is distinct from these three conditions. Objective To collate and discuss the histological features reported in the muscle biopsies of MPD1 patients and to outline the clinical features. Results The phenotype of MPD1 was consistent, with initial weakness of great toe/ankle dorsiflexion, and later development of weakness of finger extension and neck flexion. Age of onset was the only variable, being from birth up to the 20s, but progression was always very slow. The pathological features were variable. In this retrospective series, there were no pathognomonic diagnostic features, although atrophic type I fibres were found in half the families. Rimmed vacuoles are consistently seen in all other distal myopathies with the exception of Myoshi distal myopathy. However, they were found in a minority of patients with MPD1, and were not prominent when present. Immunohistochemical staining for slow and fast myosin showed co‐expression of slow and fast myosin in some type I fibres, possibly indicating a switch to type II status. This may be a useful aid to diagnosis. Conclusions The pathological findings in MPD1 are variable and appear to be affected by factors such as the specific muscle biopsied, the age of the patient at biopsy, and the duration of disease manifestations. PMID:16103042

  11. Porcine circovirus type 2 ORF4 protein binds heavy chain ferritin.

    PubMed

    Lv, Qizhuang; Guo, Kangkang; Wang, Tao; Zhang, Chengcheng; Zhang, Yanming

    2015-09-01

    Porcine circovirus type 2 (PCV2) is the primary infectious agent of PCV-associated disease (PCVAD) in swine. ORF4 protein is a newly identified viral protein of PCV2 and is involved in virus-induced apoptosis. However, the molecular mechanisms of ORF4 protein regulation of apoptosis remain unclear, especially given there is no information regarding any cellular partners of the ORF4 protein. Here, we have utilized the yeast two-hybrid assay and identified four host proteins (FHC, SNRPN, COX8A and Lamin C) interacting with the ORF4 protein. Specially, FHC was chosen for further characterization due to its important role in apoptosis. GST pull-down, subcellular co-location and co-immunoprecipitation assays confirmed that the PCV2 ORF4 protein indeed interacted with the heavy-chain ferritin, which is an interesting clue that will allow us to determine the role of the ORF4 protein in apoptosis. PMID:26333394

  12. Localized DNA Demethylation at Recombination Intermediates during Immunoglobulin Heavy Chain Gene Assembly

    PubMed Central

    Selimyan, Roza; Gerstein, Rachel M.; Ivanova, Irina; Precht, Patricia; Subrahmanyam, Ramesh; Perlot, Thomas; Alt, Frederick W.; Sen, Ranjan

    2013-01-01

    Multiple epigenetic marks have been proposed to contribute to the regulation of antigen receptor gene assembly via V(D)J recombination. Here we provide a comprehensive view of DNA methylation at the immunoglobulin heavy chain (IgH) gene locus prior to and during V(D)J recombination. DNA methylation did not correlate with the histone modification state on unrearranged alleles, indicating that these epigenetic marks were regulated independently. Instead, pockets of tissue-specific demethylation were restricted to DNase I hypersensitive sites within this locus. Though unrearranged diversity (DH) and joining (JH) gene segments were methylated, DJH junctions created after the first recombination step were largely demethylated in pro-, pre-, and mature B cells. Junctional demethylation was highly localized, B-lineage-specific, and required an intact tissue-specific enhancer, Eμ. We propose that demethylation occurs after the first recombination step and may mark the junction for secondary recombination. PMID:23382652

  13. Localized DNA demethylation at recombination intermediates during immunoglobulin heavy chain gene assembly.

    PubMed

    Selimyan, Roza; Gerstein, Rachel M; Ivanova, Irina; Precht, Patricia; Subrahmanyam, Ramesh; Perlot, Thomas; Alt, Frederick W; Sen, Ranjan

    2013-01-01

    Multiple epigenetic marks have been proposed to contribute to the regulation of antigen receptor gene assembly via V(D)J recombination. Here we provide a comprehensive view of DNA methylation at the immunoglobulin heavy chain (IgH) gene locus prior to and during V(D)J recombination. DNA methylation did not correlate with the histone modification state on unrearranged alleles, indicating that these epigenetic marks were regulated independently. Instead, pockets of tissue-specific demethylation were restricted to DNase I hypersensitive sites within this locus. Though unrearranged diversity (D(H)) and joining (J(H)) gene segments were methylated, DJ(H) junctions created after the first recombination step were largely demethylated in pro-, pre-, and mature B cells. Junctional demethylation was highly localized, B-lineage-specific, and required an intact tissue-specific enhancer, Eμ. We propose that demethylation occurs after the first recombination step and may mark the junction for secondary recombination.

  14. Evolution of the Iga Heavy Chain Gene in the Genus Mus

    PubMed Central

    Osborne, B. A.; Golde, T. E.; Schwartz, R. L.; Rudikoff, S.

    1988-01-01

    To examine questions of immunoglobulin gene evolution, the IgA α heavy chain gene from Mus pahari, an evolutionarily distant relative to Mus musculus domesticus, was cloned and sequenced. The sequence, when compared to the IgA gene of BALB/c or human, demonstrated that the IgA gene is evolving in a mosaic fashion with the hinge region accumulating mutations most rapidly and the third domain at a considerably lower frequency. In spite of this pronounced accumulation of mutations, the hinge region appears to maintain the conformation of a random coil. A marked propensity to accumulate replacement over silent site changes in the coding regions was noted, as was a definite codon bias. The possibility that these two phenomena are interrelated is discussed. PMID:2842228

  15. Recombinant botulinum neurotoxin A heavy chain-based delivery vehicles for neuronal cell targeting

    PubMed Central

    Ho, Mengfei; Chang, Li-Hsin; Pires-Alves, Melissa; Thyagarajan, Baskaran; Bloom, Jordan E.; Gu, Zhengrong; Aberle, Karla K.; Teymorian, Sasha A.; Bannai, Yuka; Johnson, Steven C.; McArdle, Joseph J.; Wilson, Brenda A.

    2011-01-01

    The long half-life of botulinum neurotoxin serotype A (BoNT/A) in cells poses a challenge in developing post-exposure therapeutics complementary to existing antitoxin strategies. Delivery vehicles consisting of the toxin heavy chain (HC), including the receptor-binding domain and translocation domain, connected to an inhibitory cargo offer a possible solution for rescuing intoxicated neurons in victims paralyzed from botulism. Here, we report the expression and purification of soluble recombinant prototype green fluorescent protein (GFP) cargo proteins fused to the entire BoNT/A-HC (residues 544–1295) in Escherichia coli with up to a 40 amino acid linker inserted between the cargo and BoNT/A-HC vehicle. We show that these GFP-HC fusion proteins are functionally active and readily taken up by cultured neuronal cells as well as by neuronal cells in mouse motor nerve endings. PMID:21051321

  16. Class Switching in B Cells Lacking 3′ Immunoglobulin Heavy Chain Enhancers

    PubMed Central

    Manis, John P.; van der Stoep, Nienke; Tian, Ming; Ferrini, Roger; Davidson, Laurie; Bottaro, Andrea; Alt, Frederick W.

    1998-01-01

    The 40-kb region downstream of the most 3′ immunoglobulin (Ig) heavy chain constant region gene (Cα) contains a series of transcriptional enhancers speculated to play a role in Ig heavy chain class switch recombination (CSR). To elucidate the function of this putative CSR regulatory region, we generated mice with germline mutations in which one or the other of the two most 5′ enhancers in this cluster (respectively referred to as HS3a and HS1,2) were replaced either with a pgk-neor cassette (referred to as HS3aN and HS1,2N mutations) or with a loxP sequence (referred to as HS3aΔ and HS1,2Δ, respectively). B cells homozygous for the HS3aN or HS1,2N mutations had severe defects in CSR to several isotypes. The phenotypic similarity of the two insertion mutations, both of which were cis-acting, suggested that inhibition might result from pgk-neor cassette gene insertion rather than enhancer deletion. Accordingly, CSR returned to normal in B cells homozygous for the HS3aΔ or HS1,2Δ mutations. In addition, induced expression of the specifically targeted pgk-neor genes was regulated similarly to that of germline CH genes. Our findings implicate a 3′ CSR regulatory locus that appears remarkably similar in organization and function to the β-globin gene 5′ LCR and which we propose may regulate differential CSR via a promoter competition mechanism. PMID:9782119

  17. Class switching in B cells lacking 3' immunoglobulin heavy chain enhancers.

    PubMed

    Manis, J P; van der Stoep, N; Tian, M; Ferrini, R; Davidson, L; Bottaro, A; Alt, F W

    1998-10-19

    The 40-kb region downstream of the most 3' immunoglobulin (Ig) heavy chain constant region gene (Calpha) contains a series of transcriptional enhancers speculated to play a role in Ig heavy chain class switch recombination (CSR). To elucidate the function of this putative CSR regulatory region, we generated mice with germline mutations in which one or the other of the two most 5' enhancers in this cluster (respectively referred to as HS3a and HS1,2) were replaced either with a pgk-neor cassette (referred to as HS3aN and HS1,2N mutations) or with a loxP sequence (referred to as HS3aDelta and HS1,2Delta, respectively). B cells homozygous for the HS3aN or HS1,2N mutations had severe defects in CSR to several isotypes. The phenotypic similarity of the two insertion mutations, both of which were cis-acting, suggested that inhibition might result from pgk-neor cassette gene insertion rather than enhancer deletion. Accordingly, CSR returned to normal in B cells homozygous for the HS3aDelta or HS1,2Delta mutations. In addition, induced expression of the specifically targeted pgk-neor genes was regulated similarly to that of germline CH genes. Our findings implicate a 3' CSR regulatory locus that appears remarkably similar in organization and function to the beta-globin gene 5' LCR and which we propose may regulate differential CSR via a promoter competition mechanism.

  18. Plasmodium falciparum myosins: transcription and translation during asexual parasite development.

    PubMed

    Chaparro-Olaya, Jacqueline; Margos, Gabriele; Coles, Deborah J; Dluzewski, Anton R; Mitchell, Graham H; Wasserman, Moisés M; Pinder, Jennifer C

    2005-04-01

    Six myosins genes are now annotated in the Plasmodium falciparum Genome Project. Malaria myosins have been named alphabetically; accordingly, we refer to the two latest additions as Pfmyo-E and Pfmyo-F. Both new myosins contain regions characteristic of the functional motor domain of "true" myosins and, unusually for P. falciparum myosins, Pfmyo-F encodes two consensus IQ light chain-binding motifs. Phylogenetic analysis of the 17 currently known apicomplexan myosins together with one representative of each myosin class clusters all but one of the apicomplexan sequences together in Class XIV. This refines the earlier definition of the Class XIV Subclasses XIVa and XIVb. RT-PCR on blood stage parasite mRNA amplifies a specific product for all six myosins and each shows developmentally regulated transcription. Thus: Pfmyo-A and Pfmyo-B genes are transcribed throughout development; Pfmyo-C is predominant in trophozoites; Pfmyo-D occurs in trophozoites and schizonts; Pfmyo-E though barely present in earlier stages is abundant in schizonts; Pfmyo-F increases steadily throughout development and maturation. It is known that Pfmyo-A and Pfmyo-B are synthesised during late schizogony and we now show that Pfmyo-D expression is also temporally regulated to late trophozoites and schizonts where it distributes close to segregating nuclei. Thus, in asexual stages myosin synthesis does not always parallel transcript accumulation, showing that translation is also regulated. The implication is that the mRNAs are either subjected to turnover, synthesised and degraded, or that they are sequestered in an inactivate form until required for protein synthesis.

  19. Cleavage of human and mouse cytoskeletal and sarcomeric proteins by human immunodeficiency virus type 1 protease. Actin, desmin, myosin, and tropomyosin.

    PubMed Central

    Shoeman, R. L.; Sachse, C.; Höner, B.; Mothes, E.; Kaufmann, M.; Traub, P.

    1993-01-01

    HeLa cell actin was cleaved by human immunodeficiency virus type 1 protease when in its soluble, globular form (G-actin). No cleavage of the polymerized, filamentous form of actin (F-actin) was observed when examined by denaturing gel electrophoresis; however, electron microscopy revealed a low level of cleavage of F-actin. Immunoblotting of mouse skeletal and human pectoral muscle myofibrils treated in vitro with human immunodeficiency virus type 1 protease showed that myosin heavy chain, desmin, tropomyosin, and a fraction of the actin were all cleaved. Electron microscopy of these myofibrils demonstrated changes consistent with cleavage of these proteins: Z-lines were rapidly lost, the length of the A bands was shortened, and the thick filaments (myosin filaments) were often laterally frayed such that the structures disintegrated. Nonmuscle myosin heavy chains were also cleaved by this enzyme in vitro. These data demonstrate that this protease can cause alterations in muscle cell ultrastructure in vitro that may be of clinical relevance in infected individuals. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8424456

  20. Conventional Kinesin Holoenzymes Are Composed of Heavy and Light Chain Homodimers†

    PubMed Central

    DeBoer, Scott R.; You, YiMei; Szodorai, Anita; Kaminska, Agnieszka; Pigino, Gustavo; Nwabuisi, Evelyn; Wang, Bin; Estrada-Hernandez, Tatiana; Kins, Stefan; Brady, Scott T.; Morfini, Gerardo

    2009-01-01

    Conventional kinesin is a major microtubule-based motor protein responsible for anterograde transport of various membrane-bounded organelles (MBO) along axons. Structurally, this molecular motor protein is a tetrameric complex composed of two heavy (kinesin-1) chains and two light chain (KLC) subunits. The products of three kinesin-1 (kinesin-1A, -1B, and -1C, formerly KIF5A, -B, and -C) and two KLC (KLC1, KLC2) genes are expressed in mammalian nervous tissue, but the functional significance of this subunit heterogeneity remains unknown. In this work, we examine all possible combinations among conventional kinesin subunits in brain tissue. In sharp contrast with previous reports, immunoprecipitation experiments here demonstrate that conventional kinesin holoenzymes are formed of kinesin-1 homodimers. Similar experiments confirmed previous findings of KLC homodimerization. Additionally, no specificity was found in the interaction between kinesin-1s and KLCs, suggesting the existence of six variant forms of conventional kinesin, as defined by their gene product composition. Subcellular fractionation studies indicate that such variants associate with biochemically different MBOs and further suggest a role of kinesin-1s in the targeting of conventional kinesin holoenzymes to specific MBO cargoes. Taken together, our data address the combination of subunits that characterize endogenous conventional kinesin. Findings on the composition and subunit organization of conventional kinesin as described here provide a molecular basis for the regulation of axonal transport and delivery of selected MBOs to discrete subcellular locations. PMID:18361505

  1. Neurofilament heavy chain expression and neuroplasticity in rat auditory cortex after unilateral and bilateral deafness.

    PubMed

    Park, Min-Hyun; Jang, Jeong Hun; Song, Jae-Jin; Lee, Ho Sun; Oh, Seung Ha

    2016-09-01

    Deafness induces many plastic changes in the auditory neural system. For instance, dendritic changes cause synaptic changes in neural cells. SMI-32, a monoclonal antibody reveals auditory areas and recognizes non-phosphorylated epitopes on medium- and high-molecular-weight subunits of neurofilament proteins in cortical pyramidal neuron dendrites. We investigated SMI-32-immunoreactive (-ir) protein levels in the auditory cortices of rats with induced unilateral and bilateral deafness. Adult male Sprague-Dawley rats were divided into unilateral deafness (UD), bilateral deafness (BD), and control groups. Deafness was induced by cochlear ablation. All rats were sacrificed, and the auditory cortices were harvested for real-time quantitative polymerase chain reaction (RT-qPCR) and western blot analyses at 2, 4, 6, and 12 weeks after deafness was induced. Immunohistochemical staining was performed to evaluate the location of SMI-32-ir neurons. Neurofilament heavy chain (NEFH) mRNA expression and SMI-32-ir protein levels were increased in the BD group. In particular, SMI-32-ir protein levels increased significantly 6 and 12 weeks after deafness was induced. In contrast, no significant changes in protein level were detected in the right or left auditory cortices at any time point in the UD group. NEFH mRNA level decreased at 4 weeks after deafness was induced in the UD group, but recovered thereafter. Taken together, BD induced plastic changes in the auditory cortex, whereas UD did not affect the auditory neural system sufficiently to show plastic changes, as measured by neurofilament protein level.

  2. Heterologous Antigen Selection of Camelid Heavy Chain Single Domain Antibodies against Tetrabromobisphenol A

    PubMed Central

    2015-01-01

    Tetrabromobisphenol A (TBBPA) is a ubiquitous flame retardant. A high-throughput immunoassay would allow for monitoring of human and environmental exposures as a part of risk assessment. Naturally occurring antibodies in camelids that are devoid of light chain, show great promise as an efficient tool in monitoring environmental contaminants, but they have been rarely used for small molecules. An alpaca was immunized with a TBBPA hapten coupled to thyroglobulin and a variable domain of heavy chain antibody (VHH) T3–15 highly selective for TBBPA was isolated from a phage displayed VHH library using heterologous coating antigens. Compared to the VHHs isolated using homologous antigens, VHH T3–15 had about a 10-fold improvement in sensitivity in an immunoassay. This assay, under the optimized conditions of 10% methanol in the assay buffer (pH 7.4), had an IC50 for TBBPA of 0.40 ng mL–1 and negligible cross reactivity (<0.1%) with other tested analogues. After heating the VHH at 90 °C for 90 min about 20% of the affinity for coating antigen T3-BSA remained. The recoveries of TBBPA from spiked soil and fetal bovine serum samples ranged from 90.3% to 110.7% by ELISA and agreed well with a liquid chromatography–tandem mass spectrometry method. We conclude the many advantages of VHH make them attractive for the development of immunoassays to small molecules. PMID:25068372

  3. Electron microscopic evidence for the myosin head lever arm mechanism in hydrated myosin filaments using the gas environmental chamber

    SciTech Connect

    Minoda, Hiroki; Okabe, Tatsuhiro; Inayoshi, Yuhri; Miyakawa, Takuya; Miyauchi, Yumiko; Tanokura, Masaru; Katayama, Eisaku; Wakabayashi, Takeyuki; Akimoto, Tsuyoshi; Sugi, Haruo

    2011-02-25

    Research highlights: {yields} We succeeded in recording structural changes of hydrated myosin cross-bridges. {yields} We succeeded in position-marking the cross-bridges with site-directed antibodies. {yields} We recorded cross-bridge movement at different regions in individual cross-bridge. {yields} The movement was smallest at the cross-bridge-subfragment two boundary. {yields} The results provide evidence for the cross-bridge lever arm mechanism. -- Abstract: Muscle contraction results from an attachment-detachment cycle between the myosin heads extending from myosin filaments and the sites on actin filaments. The myosin head first attaches to actin together with the products of ATP hydrolysis, performs a power stroke associated with release of hydrolysis products, and detaches from actin upon binding with new ATP. The detached myosin head then hydrolyses ATP, and performs a recovery stroke to restore its initial position. The strokes have been suggested to result from rotation of the lever arm domain around the converter domain, while the catalytic domain remains rigid. To ascertain the validity of the lever arm hypothesis in muscle, we recorded ATP-induced movement at different regions within individual myosin heads in hydrated myosin filaments, using the gas environmental chamber attached to the electron microscope. The myosin head were position-marked with gold particles using three different site-directed antibodies. The amplitude of ATP-induced movement at the actin binding site in the catalytic domain was similar to that at the boundary between the catalytic and converter domains, but was definitely larger than that at the regulatory light chain in the lever arm domain. These results are consistent with the myosin head lever arm mechanism in muscle contraction if some assumptions are made.

  4. Biosynthesis and characterization of a non-repetitive polypeptide derived from silk fibroin heavy chain.

    PubMed

    Yang, Gaoqiang; Wu, Mingyang; Yi, Honggen; Wang, Jiannan

    2016-02-01

    Silk fibroin heavy chain is the major protein component of Bombyx mori silk fibroin and is composed of 12 repetitive and 11 non-repetitive regions, with the non-repetitive domain consisting of a hydrophilic polypeptide chain. In order to determine the biomedical function of the non-repetitive domain or potentially use it to modify hydrophobic biomaterials, high-purity isolation is necessary. Previously, we cloned and extended a gene motif (f(1)) encoding the non-repetitive domain. Here, this motif and its multimers are inserted into a glutathione S-transferase (GST)-tagged fusion-protein expression vector. Motif f(1) and multimers f(4) and f(8) were expressed in Escherichia coli BL21 cells following isopropyl β-D-1-thiogalactopyranoside induction, purified by GST-affinity chromatography, and single bands of purified fusion proteins GST-F(1), GST-F(4), and GST-F(8), were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Target polypeptides F(1), F(4), and F(8), were cleaved clearly from the GST-fusion tag following thrombin digestion. Mass spectrometry results indicate that the molecular weights associated with fusion proteins GST-F(1), GST-F(4), and GST-F(8) are 31.5, 43.8, and 59.0kDa, respectively, and with the cleaved polypeptides F(1), F(4), and F(8) are 4.8, 16.8, and 32.8kDa, respectively. The F(1), F(4), and F(8) polypeptide chains are negatively charged with isoelectric points (pI) of 3.3, 3.2, and 3.0, respectively. The molecular weight and pI values of the polypeptide chains are consistent with the predicted values and the amino acid compositions similar to predicted sequences. FTIR and CD results show the molecular conformation of F(1) was mainly random coil, and more stable α-helix structure formed in longer molecular chain. PMID:26652374

  5. Biosynthesis and characterization of a non-repetitive polypeptide derived from silk fibroin heavy chain.

    PubMed

    Yang, Gaoqiang; Wu, Mingyang; Yi, Honggen; Wang, Jiannan

    2016-02-01

    Silk fibroin heavy chain is the major protein component of Bombyx mori silk fibroin and is composed of 12 repetitive and 11 non-repetitive regions, with the non-repetitive domain consisting of a hydrophilic polypeptide chain. In order to determine the biomedical function of the non-repetitive domain or potentially use it to modify hydrophobic biomaterials, high-purity isolation is necessary. Previously, we cloned and extended a gene motif (f(1)) encoding the non-repetitive domain. Here, this motif and its multimers are inserted into a glutathione S-transferase (GST)-tagged fusion-protein expression vector. Motif f(1) and multimers f(4) and f(8) were expressed in Escherichia coli BL21 cells following isopropyl β-D-1-thiogalactopyranoside induction, purified by GST-affinity chromatography, and single bands of purified fusion proteins GST-F(1), GST-F(4), and GST-F(8), were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Target polypeptides F(1), F(4), and F(8), were cleaved clearly from the GST-fusion tag following thrombin digestion. Mass spectrometry results indicate that the molecular weights associated with fusion proteins GST-F(1), GST-F(4), and GST-F(8) are 31.5, 43.8, and 59.0kDa, respectively, and with the cleaved polypeptides F(1), F(4), and F(8) are 4.8, 16.8, and 32.8kDa, respectively. The F(1), F(4), and F(8) polypeptide chains are negatively charged with isoelectric points (pI) of 3.3, 3.2, and 3.0, respectively. The molecular weight and pI values of the polypeptide chains are consistent with the predicted values and the amino acid compositions similar to predicted sequences. FTIR and CD results show the molecular conformation of F(1) was mainly random coil, and more stable α-helix structure formed in longer molecular chain.

  6. The Drosophila Clathrin Heavy Chain Gene: Clathrin Function Is Essential in a Multicellular Organism

    PubMed Central

    Bazinet, C.; Katzen, A. L.; Morgan, M.; Mahowald, A. P.; Lemmon, S. K.

    1993-01-01

    The clathrin heavy chain (HC) is the major structural polypeptide of the cytoplasmic surface lattice of clathrin-coated pits and vesicles. As a genetic approach to understanding the role of clathrin in cellular morphogenesis and developmental signal transduction, a clathrin heavy chain (Chc) gene of Drosophila melanogaster has been identified by a combination of molecular and classical genetic approaches. Using degenerate primers based on mammalian and yeast clathrin HC sequences, a small fragment of the HC gene was amplified from genomic Drosophila DNA by the polymerase chain reaction. Genomic and cDNA clones from phage libraries were isolated and analyzed using this fragment as a probe. The amino acid sequence of the Drosophila clathrin HC deduced from cDNA sequences is 80%, 57% and 49% identical, respectively, with the mammalian, Dictyostelium and yeast HCs. Hybridization in situ to larval polytene chromosomes revealed a single Chc locus at position 13F2 on the X chromosome. A 13-kb genomic Drosophila fragment including the Chc transcription unit was reintroduced into the Drosophila genome via P element-mediated germline transformation. This DNA complemented a group of EMS-induced lethal mutations mapping to the same region of the X chromosome, thus identifying the Chc complementation group. Mutant individuals homozygous or hemizygous for the Chc(1), Chc(2) or Chc(3) alleles developed to a late stage of embryogenesis, but failed to hatch to the first larval stage. A fourth allele, Chc(4), exhibited polyphasic lethality, with a significant number of homozygous and hemizygous offspring surviving to adulthood. Germline clonal analysis of Chc mutant alleles indicated that the three tight lethal alleles were autonomous cell-lethal mutations in the female germline. In contrast, Chc(4) germline clones were viable at a rate comparable to wild type, giving rise to viable adult progeny. However, hemizygous Chc(4) males were invariably sterile. The sterility was

  7. A Novel Intronic Single Nucleotide Polymorphism in the Myosin heavy polypeptide 4 Gene Is Responsible for the Mini-Muscle Phenotype Characterized by Major Reduction in Hind-Limb Muscle Mass in Mice

    PubMed Central

    Kelly, Scott A.; Bell, Timothy A.; Selitsky, Sara R.; Buus, Ryan J.; Hua, Kunjie; Weinstock, George M.; Garland, Theodore; Pardo-Manuel de Villena, Fernando; Pomp, Daniel

    2013-01-01

    Replicated artificial selection for high levels of voluntary wheel running in an outbred strain of mice favored an autosomal recessive allele whose primary phenotypic effect is a 50% reduction in hind-limb muscle mass. Within the High Runner (HR) lines of mice, the numerous pleiotropic effects (e.g., larger hearts, reduced total body mass and fat mass, longer hind-limb bones) of this hypothesized adaptive allele include functional characteristics that facilitate high levels of voluntary wheel running (e.g., doubling of mass-specific muscle aerobic capacity, increased fatigue resistance of isolated muscles, longer hind-limb bones). Previously, we created a backcross population suitable for mapping the responsible locus. We phenotypically characterized the population and mapped the Minimsc locus to a 2.6-Mb interval on MMU11, a region containing ∼100 known or predicted genes. Here, we present a novel strategy to identify the genetic variant causing the mini-muscle phenotype. Using high-density genotyping and whole-genome sequencing of key backcross individuals and HR mice with and without the mini-muscle mutation, from both recent and historical generations of the HR lines, we show that a SNP representing a C-to-T transition located in a 709-bp intron between exons 11 and 12 of the Myosin heavy polypeptide 4 (Myh4) skeletal muscle gene (position 67,244,850 on MMU11; assembly, December 2011, GRCm38/mm10; ENSMUSG00000057003) is responsible for the mini-muscle phenotype, Myh4Minimsc. Using next-generation sequencing, our approach can be extended to identify causative mutations arising in mouse inbred lines and thus offers a great avenue to overcome one of the most challenging steps in quantitative genetics. PMID:24056412

  8. Actin Age Orchestrates Myosin-5 and Myosin-6 Runlengths

    PubMed Central

    Zimmermann, Dennis; Santos, Alicja; Kovar, David R.; Rock, Ronald S.

    2015-01-01

    Summary Unlike a static and immobile skeleton, the actin cytoskeleton is a highly dynamic network of filamentous actin (F-actin) polymers that continuously turn over. In addition to generating mechanical forces and sensing mechanical deformation, dynamic F-actin networks serve as cellular tracks for myosin motor traffic. However, much of our mechanistic understanding of processive myosins comes from in vitro studies where motility was studied on pre-assembled and artificially stabilized, static F-actin tracks. In this work, we examine the role of actin dynamics in single-molecule myosin motility using assembling F-actin and the two highly processive motors, myosin-5 and myosin-6. These two myosins have distinct functions in the cell and travel in opposite directions along actin filaments [1–3]. Myosin-5 walks towards the barbed ends of F-actin, traveling to sites of actin polymerization at the cell periphery [4]. Myosin-6 walks towards the pointed end of F-actin [5], traveling towards the cell center along older segments of the actin filament. We find that myosin-5 takes 1.3 to 1.5-fold longer runs on ADP•Pi (young) F-actin, while myosin-6 takes 1.7 to 3.6-fold longer runs along ADP (old) F-actin. These results suggest that conformational differences between ADP•Pi and ADP F-actin tailor these myosins to walk farther toward their preferred actin filament end. Taken together, these experiments define a new mechanism by which myosin traffic may sort to different F-actin networks depending on filament age. PMID:26190073

  9. Lineage-restricted retention of a primitive immunoglobulin heavy chain isotype within the Dipnoi reveals an evolutionary paradox.

    PubMed

    Ota, Tatsuya; Rast, Jonathan P; Litman, Gary W; Amemiya, Chris T

    2003-03-01

    The lineage leading to lungfishes is one of the few major jawed vertebrate groups in which Ig heavy chain isotype structure has not been investigated at the genetic level. In this study, we have characterized three different Ig heavy chain isotypes of the African lungfish, Protopterus aethiopicus, including an IgM-type heavy chain and short and long forms of non-IgM heavy chains. Northern blot analysis as well as patterns of V(H) utilization suggest that the IgM and non-IgM isotypes are likely encoded in separate loci. The two non-IgM isotypes identified in Protopterus share structural features with the short and long forms of IgX/W/NARC (referred to hereafter as IgW), which were previously considered to be restricted to the cartilaginous fish. It seems that the IgW isotype has a far broader phylogenetic distribution than considered originally and raises questions with regard to the origin and evolutionary divergence of IgM and IgW. Moreover, its absence in other gnathostome lineages implies paradoxically that the IgW-type genes were lost from teleost and tetrapod lineages. PMID:12606718

  10. Conserved Intramolecular Interactions Maintain Myosin Interacting-Heads Motifs Explaining Tarantula Muscle Super-Relaxed State Structural Basis.

    PubMed

    Alamo, Lorenzo; Qi, Dan; Wriggers, Willy; Pinto, Antonio; Zhu, Jingui; Bilbao, Aivett; Gillilan, Richard E; Hu, Songnian; Padrón, Raúl

    2016-03-27

    Tarantula striated muscle is an outstanding system for understanding the molecular organization of myosin filaments. Three-dimensional reconstruction based on cryo-electron microscopy images and single-particle image processing revealed that, in a relaxed state, myosin molecules undergo intramolecular head-head interactions, explaining why head activity switches off. The filament model obtained by rigidly docking a chicken smooth muscle myosin structure to the reconstruction was improved by flexibly fitting an atomic model built by mixing structures from different species to a tilt-corrected 2-nm three-dimensional map of frozen-hydrated tarantula thick filament. We used heavy and light chain sequences from tarantula myosin to build a single-species homology model of two heavy meromyosin interacting-heads motifs (IHMs). The flexibly fitted model includes previously missing loops and shows five intramolecular and five intermolecular interactions that keep the IHM in a compact off structure, forming four helical tracks of IHMs around the backbone. The residues involved in these interactions are oppositely charged, and their sequence conservation suggests that IHM is present across animal species. The new model, PDB 3JBH, explains the structural origin of the ATP turnover rates detected in relaxed tarantula muscle by ascribing the very slow rate to docked unphosphorylated heads, the slow rate to phosphorylated docked heads, and the fast rate to phosphorylated undocked heads. The conservation of intramolecular interactions across animal species and the presence of IHM in bilaterians suggest that a super-relaxed state should be maintained, as it plays a role in saving ATP in skeletal, cardiac, and smooth muscles. PMID:26851071

  11. Myosin VI: an innovative motor that challenged the swinging lever arm hypothesis

    PubMed Central

    Spudich, James A.; Sivaramakrishnan, Sivaraj

    2010-01-01

    The swinging crossbridge hypothesis states that energy from ATP hydrolysis is transduced to mechanical movement of the myosin head while bound to actin. The light chain-binding region of myosin is thought to act as a lever arm that amplifies movements near the catalytic site. This model has been challenged by findings that myosin VI takes larger steps along actin filaments than early interpretations of its structure seem to allow. We now know that myosin VI does indeed operate by an unusual ~ 180° lever arm swing and achieves its large step size using special structural features in its tail domain. PMID:20094053

  12. Autoantibody germ-line gene segment encodes V{sub H} and V{sub L} regions of a human anti-streptococcal monoclonal antibody recognizing streptococcal M protein and human cardiac myosin epitopes

    SciTech Connect

    Quinn, A.; Cunningham, M.W.; Adderson, E.E.

    1995-04-15

    Cross-reactivity of anti-streptococcal Abs with human cardiac myosin may result in sequelae following group A streptococcal infections. Molecular mimicry between group A streptococcal M protein and cardiac myosin may be the basis for the immunologic cross-reactivity. In this study, a cross-reactive human anti-streptococcal/antimyosin mAb (10.2.3) was characterized, and the myosin epitopes were recognized by the Ab identified. mAb 10.2.3 reacted with four peptides from the light meromyosin (LMM) tail fragment of human cardiac myosin, including LMM-10 (1411-1428), LMM-23 (1580-1597), LMM-27 (1632-1649), and LMM-30 (1671-1687). Only LMM-30 inhibited binding of mAb 10.2.3 to streptococcal M protein and human cardiac myosin. Human mAb 10.2.3 labeled cytoskeletal structures within rat heart cells in indirect immunofluorescence, and reacted with group A streptococci expressing various M protein serotypes, PepM5, and recombinant M protein. The nucleotide sequence of gene segments encoding the Ig heavy and light chain V region of mAb 10.2.3 was determined. The light chain V segment was encoded by a VK1 gene segment that was 98.5% identical with germ-line gene humig{sub K}Vi5. The V segment of the heavy chain was encoded by a V{sub H}3a gene segment that differed from the V{sub H}26 germ-line gene by a single base change. V{sub H}26 is expressed preferentially in early development and encodes autoantibodies with anti-DNA and rheumatoid factor specificities. Anti-streptococcal mAb 10.2.3 is an autoantibody encoded by V{sub H} and V{sub L} genes, with little or no somatic mutation. 63 refs., 11 figs.

  13. Pregnane X Receptor Activation Attenuates Inflammation-Associated Intestinal Epithelial Barrier Dysfunction by Inhibiting Cytokine-Induced Myosin Light-Chain Kinase Expression and c-Jun N-Terminal Kinase 1/2 Activation.

    PubMed

    Garg, Aditya; Zhao, Angela; Erickson, Sarah L; Mukherjee, Subhajit; Lau, Aik Jiang; Alston, Laurie; Chang, Thomas K H; Mani, Sridhar; Hirota, Simon A

    2016-10-01

    The inflammatory bowel diseases (IBDs) are chronic inflammatory disorders with a complex etiology. IBD is thought to arise in genetically susceptible individuals in the context of aberrant interactions with the intestinal microbiota and other environmental risk factors. Recently, the pregnane X receptor (PXR) was identified as a sensor for microbial metabolites, whose activation can regulate the intestinal epithelial barrier. Mutations in NR1I2, the gene that encodes the PXR, have been linked to IBD, and in animal models, PXR deletion leads to barrier dysfunction. In the current study, we sought to assess the mechanism(s) through which the PXR regulates barrier function during inflammation. In Caco-2 intestinal epithelial cell monolayers, tumor necrosis factor-α/interferon-γ exposure disrupted the barrier and triggered zonula occludens-1 relocalization, increased expression of myosin light-chain kinase (MLCK), and activation of c-Jun N-terminal kinase 1/2 (JNK1/2). Activation of the PXR [rifaximin and [[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethenylidene]bis-phosphonic acid tetraethyl ester (SR12813); 10 μM] protected the barrier, an effect that was associated with attenuated MLCK expression and JNK1/2 activation. In vivo, activation of the PXR [pregnenolone 16α-carbonitrile (PCN)] attenuated barrier disruption induced by toll-like receptor 4 activation in wild-type, but not Pxr-/-, mice. Furthermore, PCN treatment protected the barrier in the dextran-sulfate sodium model of experimental colitis, an effect that was associated with reduced expression of mucosal MLCK and phosphorylated JNK1/2. Together, our data suggest that the PXR regulates the intestinal epithelial barrier during inflammation by modulating cytokine-induced MLCK expression and JNK1/2 activation. Thus, targeting the PXR may prove beneficial for the treatment of inflammation-associated barrier disruption in the context of IBD. PMID:27440420

  14. Recombinant bovine somatotropin (rbST) administration to creep-fed beef calves increases muscle mass but does not affect satellite cell number or concentration of myosin light chain-1f mRNA.

    PubMed

    Vann, R C; Althen, T G; Smith, W K; Veenhuizen, J J; Smith, S B

    1998-05-01

    Our objective in this study was to determine the effect of recombinant bovine somatotropin (rbST) on indices of muscle development in creep-fed beef calves. Crossbred steer calves were assigned to one of two treatment groups: control (sham-injected; n = 12) or rbST-treated (.09 mg x kg(-1) x d(-1); n = 12). Calves were injected every 14 d starting at d 28 of age and were weaned at 205 d of age. Supplemental creep feed was supplied free access to all calves to compensate for an expected increased protein and energy requirement in calves given rbST. Biopsy (d 100) and slaughter (d 206) samples of semitendinosus muscle were evaluated for satellite cell, myofiber nuclei numbers, and myosin light chain (MLC-1f) mRNA quantification. Myofiber nuclei and satellite cell numbers per 100 myofibers and MLC-1f mRNA:rRNA ratios at 100 and 206 d of age were not different (P > .10) between control and rbST-treated calves. Total gain, ADG, quality grade, femur length, percentage kidney, pelvic, and heart fat, dressing percentage, plasma IGF-I, and plasma urea nitrogen concentrations did not differ (P > .10) between control and rbST-treated calves. However, rbST-treated calves had larger longissimus muscle areas (P < .03), less marbling (P < .001), higher carcass conformation scores (P < .04), greater mass of separated muscle (P < .03), more ground meat (P < .01), and heavier carcass weights (P < .05) than control calves. Thus, rbST treatment increased muscle characteristics while nuclei number and MLC-1f mRNA concentrations remained the same, implying that the additional muscle growth was in a normal fashion. PMID:9621943

  15. Pregnane X Receptor Activation Attenuates Inflammation-Associated Intestinal Epithelial Barrier Dysfunction by Inhibiting Cytokine-Induced Myosin Light-Chain Kinase Expression and c-Jun N-Terminal Kinase 1/2 Activation.

    PubMed

    Garg, Aditya; Zhao, Angela; Erickson, Sarah L; Mukherjee, Subhajit; Lau, Aik Jiang; Alston, Laurie; Chang, Thomas K H; Mani, Sridhar; Hirota, Simon A

    2016-10-01

    The inflammatory bowel diseases (IBDs) are chronic inflammatory disorders with a complex etiology. IBD is thought to arise in genetically susceptible individuals in the context of aberrant interactions with the intestinal microbiota and other environmental risk factors. Recently, the pregnane X receptor (PXR) was identified as a sensor for microbial metabolites, whose activation can regulate the intestinal epithelial barrier. Mutations in NR1I2, the gene that encodes the PXR, have been linked to IBD, and in animal models, PXR deletion leads to barrier dysfunction. In the current study, we sought to assess the mechanism(s) through which the PXR regulates barrier function during inflammation. In Caco-2 intestinal epithelial cell monolayers, tumor necrosis factor-α/interferon-γ exposure disrupted the barrier and triggered zonula occludens-1 relocalization, increased expression of myosin light-chain kinase (MLCK), and activation of c-Jun N-terminal kinase 1/2 (JNK1/2). Activation of the PXR [rifaximin and [[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethenylidene]bis-phosphonic acid tetraethyl ester (SR12813); 10 μM] protected the barrier, an effect that was associated with attenuated MLCK expression and JNK1/2 activation. In vivo, activation of the PXR [pregnenolone 16α-carbonitrile (PCN)] attenuated barrier disruption induced by toll-like receptor 4 activation in wild-type, but not Pxr-/-, mice. Furthermore, PCN treatment protected the barrier in the dextran-sulfate sodium model of experimental colitis, an effect that was associated with reduced expression of mucosal MLCK and phosphorylated JNK1/2. Together, our data suggest that the PXR regulates the intestinal epithelial barrier during inflammation by modulating cytokine-induced MLCK expression and JNK1/2 activation. Thus, targeting the PXR may prove beneficial for the treatment of inflammation-associated barrier disruption in the context of IBD.

  16. Species differences in the effects of prostaglandins on inositol trisphosphate accumulation, phosphatidic acid formation, myosin light chain phosphorylation and contraction in iris sphincter of the mammalian eye: interaction with the cyclic AMP system.

    PubMed

    Yousufzai, S Y; Chen, A L; Abdel-Latif, A A

    1988-12-01

    Comparative studies on the effects of prostaglandins (PGs) on 1,2-diacylglycerol, measured as phosphatidic acid (PA), and inositol trisphosphate (IP3) production, cyclic AMP (cAMP) formation, myosin light chain (MLC) phosphorylation and contraction in the iris sphincter smooth muscle of rabbit, bovine and other mammalian species were undertaken and functional and biochemical relationships between the IP3-Ca++ and cAMP second messenger systems were demonstrated. The findings obtained from these studies can be summarized as follows: 1) all PGs investigated, including PGE2, PGF2 alpha, PGF2 alpha-ester, PGE1 and PGA2 increased IP3 accumulation and PA formation, and the extent of stimulation was dependent on the animal species. Thus, PGF2 alpha-ester (1 microM), the most potent of the PGs, increased IP3 accumulation in rabbit and bovine sphincters by 33 and 58%, respectively, and increased PA formation by 67 and 56%, respectively. The PG increased IP3 accumulation in both rabbit and bovine sphincters very rapidly (T1/2 values about 26 sec) and in a dose-dependent manner. 2) The PG had no effect on MLC phosphorylation in the rabbit sphincter, but it increased that of the bovine by 36%. 3) The PG increased cAMP formation by 75% in the rabbit sphincter but it had no effect on that of the bovine. 4) The PG induced a maximal contractile response in the bovine sphincter but it had no effect on that of the rabbit. 5) In the bovine, PGA2 induced IP3 accumulation and contraction, without an effect on cAMP formation; however, in the rabbit, cat and dog it increased cAMP formation and had no effect on IP3 accumulation and contraction.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Arv1 promotes cell division by recruiting IQGAP1 and myosin to the cleavage furrow.

    PubMed

    Sundvold, Hilde; Sundvold-Gjerstad, Vibeke; Malerød-Fjeld, Helle; Haglund, Kaisa; Stenmark, Harald; Malerød, Lene

    2016-01-01

    Cell division is strictly regulated by a diversity of proteins and lipids to ensure proper duplication and segregation of genetic material and organelles. Here we report a novel role of the putative lipid transporter ACAT-related protein required for viability 1 (Arv1) during telophase. We observed that the subcellular localization of Arv1 changes according to cell cycle progression and that Arv1 is recruited to the cleavage furrow in early telophase by epithelial protein lost in neoplasm (EPLIN). At the cleavage furrow Arv1 recruits myosin heavy chain 9 (MYH9) and myosin light chain 9 (MYL9) by interacting with IQ-motif-containing GTPase-activating protein (IQGAP1). Consequently the lack of Arv1 delayed telophase-progression, and a strongly increased incidence of furrow regression and formation of multinuclear cells was observed both in human cells in culture and in follicle epithelial cells of egg chambers of Drosophila melanogaster in vivo. Interestingly, the cholesterol-status at the cleavage furrow did not affect the recruitment of either IQGAP1, MYH9 or MYL. These results identify a novel function for Arv1 in regulation of cell division through promotion of the contractile actomyosin ring, which is independent of its lipid transporter activity.

  18. Molecular engineering of myosin.

    PubMed Central

    Manstein, Dietmar J

    2004-01-01

    Protein engineering and design provide excellent tools to investigate the principles by which particular structural features relate to the mechanisms that underlie the biological function of a protein. In addition to studies aimed at dissecting the communication pathways within enzymes, recent advances in protein engineering approaches make it possible to generate enzymes with increased catalytic efficiency and specifically altered or newly introduced functions. Here, two approaches using state-of-the-art protein design and engineering are described in detail to demonstrate how key features of the myosin motor can be changed in a specific and predictable manner. First, it is shown how replacement of an actin-binding surface loop with synthetic sequences, whose flexibility and charge density is varied, can be employed to manipulate the actin affinity, the catalytic activity and the efficiency of coupling between actin- and nucleotide-binding sites of myosin motor constructs. Then the use of pre-existing molecular building blocks, which are derived from unrelated proteins, is described for manipulating the velocity and even the direction of movement of recombinant myosins. PMID:15647166

  19. A quasi-elastic light scattering study of smooth muscle myosin in the presence of ATP.

    PubMed Central

    Wu, X; Blank, P S; Carlson, F D

    1992-01-01

    We have investigated the hydrodynamic properties of turkey gizzard smooth muscle myosin in solution using quasi-elastic light scattering (QELS). The effects of ionic strength (0.05-0.5 M KCl) and light chain phosphorylation on the conformational transition of myosin were examined in the presence of ATP at 20 degrees C. Cumulant analysis and light scattering models were used to describe the myosin system in solution. A nonlinear least squares fitting procedure was used to determine the model that best fits the data. The conformational transition of the myosin monomer from a folded form to an extended form was clearly demonstrated in a salt concentration range of 0.15-0.3 M KCl. Light chain phosphorylation regulates the transition and promotes unfolding of the myosin. These results agree with the findings obtained using sedimentation velocity and electron microscopy (Onishi and Wakabayashi, 1982; Trybus et al., 1982; Trybus and Lowey, 1984). In addition, we present evidence for polymeric myosin coexisting with the two monomeric myosin species over a salt concentration range from 0.05 to 0.5 M KCl. The size of the polymeric myosin varied with salt concentration. This observation supports the hypothesis that, in solution, a dynamic equilibrium exists between the two conformations of myosin monomer and filaments. PMID:1420864

  20. Induction of assembly of MHC class I heavy chains with beta 2microglobulin by interferon-gamma.

    PubMed Central

    Klar, D; Hämmerling, G J

    1989-01-01

    Assembly of histocompatibility class I heavy chains with beta 2microglobulin (beta 2m) is known to be necessary for cell surface expression. Studies on the H-2 class I deficient but interferon-gamma (IFN-gamma) inducible fibrosarcoma BC2 and the lung carcinoma CMT 64.5 showed that after transfection with allogeneic H-2 class I genes the class I proteins are expressed, but only intracellularly and not on the cell surface. In spite of the presence of beta 2m in the cells no association of the transfected class I chain with beta 2m was observed. However, stimulation with IFN-gamma induced assembly and subsequent surface expression. These findings show that the assembly of class I heavy chains with beta 2m is not a spontaneous event but appears to be regulated by cellular mechanisms the nature of which is still unknown. Images PMID:2498080

  1. Characteristics of myosin profile in human vastus lateralis muscle in relation to training background.

    PubMed

    Zawadowska, B; Majerczak, J; Semik, D; Karasinski, J; Kolodziejski, L; Kilarski, W M; Duda, K; Zoladz, J A

    2004-01-01

    Twenty-four male volunteers (mean +/- SD: age 25.4+/-5.8 years, height 178.6+/-5.5 cm, body mass 72.1+/-7.7 kg) of different training background were investigated and classified into three groups according to their physical activity and sport discipline: untrained students (group A), national and sub-national level endurance athletes (group B, 7.8+/-2.9 years of specialised training) and sprint-power athletes (group C, 12.8+/-8.7 years of specialised training). Muscle biopsies of vastus lateralis were analysed histochemically for mATPase and SDH activities, immunohistochemically for fast and slow myosin, and electrophoretically followed by Western immunoblotting for myosin heavy chain (MyHC) composition. Significant differences (P<0.05) regarding composition of muscle fibre types and myosin heavy chains were found only between groups A (41.7+/-1.6% of MyHCI, 40.8+/-4.0% of MyHCIIA and 17.5+/-4.0% of MyHCIIX) and B (64.3+/-0.8% of MyHCI, 34.0+/-1.4% of MyHCIIA and 1.7+/-1.4% of MyHCIIX) and groups A and C (59.6+/-1.6% of MyHCI, 37.2+/-1.3% of MyHCIIA and 3.2+/-1.3% of MyHCIIX). Unexpectedly, endurance athletes (group B) such as long-distance runners, cyclists and cross country skiers, did not differ from the athletes representing short term, high power output sports (group C) such as ice hockey, karate, ski-jumping, volleyball, soccer and modern dance. Furthermore, the relative amount of the fastest MyHCIIX isoform in vastus lateralis muscle was significantly lower in the athletes from group C than in students (group A). We conclude that the myosin profile in the athletes belonging to group C was unfavourable for their sport disciplines. This could be the reason why those athletes did not reach international level despite of several years of training. PMID:15493580

  2. [Isolation of a gamma heavy chain fragment from normal human serum].

    PubMed

    Irurzun, P L; Miranda, M P

    1976-01-01

    Several components of catodic electrophoretic migration in serum and urine are present in normal individuals and in rabbit serum. There also exists in man and in some animals, serum fractions of low molecular weight. These types of serum components may be or may not be related with the IgG. In a previous study we have isolated two components in the slow catodic electrophoretic area of the normal human serum (NHS). One of them was identified as an IgG subclass and the other component presented a clear line of precipitation to gamma heavy chain specific immuno-serum. This latter component was found in the post gamma-globulin area crossing the IgG arc in the I.E. analysis. Its molecular weight was variable from 3700 to 9500. In this paper a differential analysis of the gamma fragment isolated for us, is made and its relationship with Fc subfragments of pepsin-digested IgG is studied. In order to obtain this comparative study, the electrophoresis, gel diffusion immunoelectrophoresis gel chromat