Science.gov

Sample records for myostatin inhibition exert

  1. Postnatal PPARδ Activation and Myostatin Inhibition Exert Distinct yet Complimentary Effects on the Metabolic Profile of Obese Insulin-Resistant Mice

    PubMed Central

    Bernardo, Barbara L.; Wachtmann, Timothy S.; Cosgrove, Patricia G.; Kuhn, Max; Opsahl, Alan C.; Judkins, Kyle M.; Freeman, Thomas B.; Hadcock, John R.; LeBrasseur, Nathan K.

    2010-01-01

    Background Interventions for T2DM have in part aimed to mimic exercise. Here, we have compared the independent and combined effects of a PPARδ agonist and endurance training mimetic (GW501516) and a myostatin antibody and resistance training mimetic (PF-879) on metabolic and performance outcomes in obese insulin resistant mice. Methodology/Principal Findings Male ob/ob mice were treated for 6 weeks with vehicle, GW501516, PF-879, or GW501516 in combination with PF-879. The effects of the interventions on body composition, glucose homeostasis, glucose tolerance, energy expenditure, exercise capacity and metabolic gene expression were compared at the end of study. GW501516 attenuated body weight and fat mass accumulation and increased the expression of genes of oxidative metabolism. In contrast, PF-879 increased body weight by driving muscle growth and altered the expression of genes involved in insulin signaling and glucose metabolism. Despite their differences, both interventions alone improved glucose homeostasis. Moreover, GW501516 more effectively improved serum lipids, and PF-879 uniquely increased energy expenditure, exercise capacity and adiponectin levels. When combined the robust effects of GW501516 and/or PF-879 on body weight, adiposity, muscle mass, glycemia, serum lipids, energy expenditure and exercise capacity were highly conserved. Conclusions/Significance The data, for the first time, demonstrate postnatal inhibition of myostatin not only promotes gains in muscle mass similar to resistance training,but improves metabolic homeostasis. In several instances, these effects were either distinct from or complimentary to those of GW501516. The data further suggest that strategies to increase muscle mass, and not necessarily oxidative capacity, may effectively counter insulin resistance and T2DM. PMID:20593012

  2. Myostatin inhibition therapy for insulin-deficient type 1 diabetes

    PubMed Central

    Coleman, Samantha K.; Rebalka, Irena A.; D’Souza, Donna M.; Deodhare, Namita; Desjardins, Eric M.; Hawke, Thomas J.

    2016-01-01

    While Type 1 Diabetes Mellitus (T1DM) is characterized by hypoinsulinemia and hyperglycemia, persons with T1DM also develop insulin resistance. Recent studies have demonstrated that insulin resistance in T1DM is a primary mediator of the micro and macrovascular complications that invariably develop in this chronic disease. Myostatin acts to attenuate muscle growth and has been demonstrated to be elevated in streptozotocin-induced diabetic models. We hypothesized that a reduction in mRNA expression of myostatin within a genetic T1DM mouse model would improve skeletal muscle health, resulting in a larger, more insulin sensitive muscle mass. To that end, Akita diabetic mice were crossed with MyostatinLn/Ln mice to ultimately generate a novel mouse line. Our data support the hypothesis that decreased skeletal muscle expression of myostatin mRNA prevented the loss of muscle mass observed in T1DM. Furthermore, reductions in myostatin mRNA increased Glut1 and Glut4 protein expression and glucose uptake in response to an insulin tolerance test (ITT). These positive changes lead to significant reductions in resting blood glucose levels as well as pronounced reductions in associated diabetic symptoms, even in the absence of exogenous insulin. Taken together, this study provides a foundation for considering myostatin inhibition as an adjuvant therapy in T1DM as a means to improve insulin sensitivity and blood glucose management. PMID:27581061

  3. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression.

    PubMed

    Langley, Brett; Thomas, Mark; Bishop, Amy; Sharma, Mridula; Gilmour, Stewart; Kambadur, Ravi

    2002-12-20

    Myostatin, a negative regulator of myogenesis, is shown to function by controlling the proliferation of myoblasts. In this study we show that myostatin is an inhibitor of myoblast differentiation and that this inhibition is mediated through Smad 3. In vitro, increasing concentrations of recombinant mature myostatin reversibly blocked the myogenic differentiation of myoblasts, cultured in low serum media. Western and Northern blot analysis indicated that addition of myostatin to the low serum culture media repressed the levels of MyoD, Myf5, myogenin, and p21 leading to the inhibition of myogenic differentiation. The transient transfection of C(2)C(12) myoblasts with MyoD expressing constructs did not rescue myostatin-inhibited myogenic differentiation. Myostatin signaling specifically induced Smad 3 phosphorylation and increased Smad 3.MyoD association, suggesting that Smad 3 may mediate the myostatin signal by interfering with MyoD activity and expression. Consistent with this, the expression of dominant-negative Smad3 rescued the activity of a MyoD promoter-reporter in C(2)C(12) myoblasts treated with myostatin. Taken together, these results suggest that myostatin inhibits MyoD activity and expression via Smad 3 resulting in the failure of the myoblasts to differentiate into myotubes. Thus we propose that myostatin plays a critical role in myogenic differentiation and that the muscular hyperplasia and hypertrophy seen in animals that lack functional myostatin is because of deregulated proliferation and differentiation of myoblasts.

  4. Muscle hypertrophy induced by myostatin inhibition accelerates degeneration in dysferlinopathy.

    PubMed

    Lee, Yun-Sil; Lehar, Adam; Sebald, Suzanne; Liu, Min; Swaggart, Kayleigh A; Talbot, C Conover; Pytel, Peter; Barton, Elisabeth R; McNally, Elizabeth M; Lee, Se-Jin

    2015-10-15

    Myostatin is a secreted signaling molecule that normally acts to limit muscle growth. As a result, there is extensive effort directed at developing drugs capable of targeting myostatin to treat patients with muscle loss. One potential concern with this therapeutic approach in patients with muscle degenerative diseases like muscular dystrophy is that inducing hypertrophy may increase stress on dystrophic fibers, thereby accelerating disease progression. To investigate this possibility, we examined the effect of blocking the myostatin pathway in dysferlin-deficient (Dysf(-/-)) mice, in which membrane repair is compromised, either by transgenic expression of follistatin in skeletal muscle or by systemic administration of the soluble form of the activin type IIB receptor (ACVR2B/Fc). Here, we show that myostatin inhibition by follistatin transgene expression in Dysf(-/-) mice results in early improvement in histopathology but ultimately exacerbates muscle degeneration; this effect was not observed in dystrophin-deficient (mdx) mice, suggesting that accelerated degeneration induced by follistatin transgene expression is specific to mice lacking dysferlin. Dysf(-/-) mice injected with ACVR2B/Fc showed significant increases in muscle mass and amelioration of fibrotic changes normally seen in 8-month-old Dysf(-/-) mice. Despite these potentially beneficial effects, ACVR2B/Fc treatment caused increases in serum CK levels in some Dysf(-/-) mice, indicating possible muscle damage induced by hypertrophy. These findings suggest that depending on the disease context, inducing muscle hypertrophy by myostatin blockade may have detrimental effects, which need to be weighed against the potential gains in muscle growth and decreased fibrosis.

  5. Muscle hypertrophy induced by myostatin inhibition accelerates degeneration in dysferlinopathy

    PubMed Central

    Lee, Yun-Sil; Lehar, Adam; Sebald, Suzanne; Liu, Min; Swaggart, Kayleigh A.; Talbot, C. Conover; Pytel, Peter; Barton, Elisabeth R.; McNally, Elizabeth M.; Lee, Se-Jin

    2015-01-01

    Myostatin is a secreted signaling molecule that normally acts to limit muscle growth. As a result, there is extensive effort directed at developing drugs capable of targeting myostatin to treat patients with muscle loss. One potential concern with this therapeutic approach in patients with muscle degenerative diseases like muscular dystrophy is that inducing hypertrophy may increase stress on dystrophic fibers, thereby accelerating disease progression. To investigate this possibility, we examined the effect of blocking the myostatin pathway in dysferlin-deficient (Dysf−/−) mice, in which membrane repair is compromised, either by transgenic expression of follistatin in skeletal muscle or by systemic administration of the soluble form of the activin type IIB receptor (ACVR2B/Fc). Here, we show that myostatin inhibition by follistatin transgene expression in Dysf−/− mice results in early improvement in histopathology but ultimately exacerbates muscle degeneration; this effect was not observed in dystrophin-deficient (mdx) mice, suggesting that accelerated degeneration induced by follistatin transgene expression is specific to mice lacking dysferlin. Dysf−/− mice injected with ACVR2B/Fc showed significant increases in muscle mass and amelioration of fibrotic changes normally seen in 8-month-old Dysf−/− mice. Despite these potentially beneficial effects, ACVR2B/Fc treatment caused increases in serum CK levels in some Dysf−/− mice, indicating possible muscle damage induced by hypertrophy. These findings suggest that depending on the disease context, inducing muscle hypertrophy by myostatin blockade may have detrimental effects, which need to be weighed against the potential gains in muscle growth and decreased fibrosis. PMID:26206886

  6. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia

    SciTech Connect

    Benny Klimek, Margaret E.; Aydogdu, Tufan; Link, Majik J.; Pons, Marianne; Koniaris, Leonidas G.; Zimmers, Teresa A.

    2010-01-15

    Cachexia, progressive loss of fat and muscle mass despite adequate nutrition, is a devastating complication of cancer associated with poor quality of life and increased mortality. Myostatin is a potent tonic muscle growth inhibitor. We tested how myostatin inhibition might influence cancer cachexia using genetic and pharmacological approaches. First, hypermuscular myostatin null mice were injected with Lewis lung carcinoma or B16F10 melanoma cells. Myostatin null mice were more sensitive to tumor-induced cachexia, losing more absolute mass and proportionately more muscle mass than wild-type mice. Because myostatin null mice lack expression from development, however, we also sought to manipulate myostatin acutely. The histone deacetylase inhibitor Trichostatin A has been shown to increase muscle mass in normal and dystrophic mice by inducing the myostatin inhibitor, follistatin. Although Trichostatin A administration induced muscle growth in normal mice, it failed to preserve muscle in colon-26 cancer cachexia. Finally we sought to inhibit myostatin and related ligands by administration of the Activin receptor extracellular domain/Fc fusion protein, ACVR2B-Fc. Systemic administration of ACVR2B-Fc potently inhibited muscle wasting and protected adipose stores in both colon-26 and Lewis lung carcinoma cachexia, without affecting tumor growth. Enhanced cachexia in myostatin knockouts indicates that host-derived myostatin is not the sole mediator of muscle wasting in cancer. More importantly, skeletal muscle preservation with ACVR2B-Fc establishes that targeting myostatin-family ligands using ACVR2B-Fc or related molecules is an important and potent therapeutic avenue in cancer cachexia.

  7. Myostatin inhibition by a follistatin-derived peptide ameliorates the pathophysiology of muscular dystrophy model mice.

    PubMed

    Tsuchida, K

    2008-07-01

    Gene-targeted therapies, such as adeno-associated viral vector (AAV)-mediated gene therapy and cell-mediated therapy using myogenic stem cells, are hopeful molecular strategies for muscular dystrophy. In addition, drug therapies based on the pathophysiology of muscular dystrophy patients are desirable. Multidisciplinary approaches to drug design would offer promising therapeutic strategies. Myostatin, a member of the transforming growth factor-beta superfamily, is predominantly produced by skeletal muscle and negatively regulates the growth and differentiation of cells of the skeletal muscle lineage. Myostatin inhibition would increase the skeletal muscle mass and prevent muscle degeneration, regardless of the type of muscular dystrophy. Myostatin inhibitors include myostatin antibodies, myostatin propeptide, follistatin and follistatin-related protein. Although follistatin possesses potent myostatin-inhibiting activity, it works as an efficient inhibitor of activins. Unlike myostatin, activins regulate the growth and differentiation of nearly all cell types, including cells of the gonads, pituitary gland and skeletal muscle. We have developed a myostatin-specific inhibitor derived from follistatin, designated FS I-I. Transgenic mice expressing this myostatin-inhibiting peptide under the control of a skeletal muscle-specific promoter showed increased skeletal muscle mass and strength. mdx mice were crossed with FS I-I transgenic mice and any improvement of the pathological signs was investigated. The resulting mdx/FS I-I mice exhibited increased skeletal muscle mass and reduced cell infiltration in muscles. Muscle strength was also recovered in mdx/FS I-I mice. Our data indicate that myostatin inhibition by this follistatin-derived peptide has therapeutic potential for muscular dystrophy.

  8. Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells.

    PubMed

    Taylor, W E; Bhasin, S; Artaza, J; Byhower, F; Azam, M; Willard, D H; Kull, F C; Gonzalez-Cadavid, N

    2001-02-01

    Myostatin mutations in mice and cattle are associated with increased muscularity, suggesting that myostatin is a negative regulator of skeletal muscle mass. To test the hypothesis that myostatin inhibits muscle cell growth, we examined the effects of recombinant myostatin in mouse skeletal muscle C2C12 cells. After verification of the expression of cDNA constructs in a cell-free system and in transfected Chinese hamster ovary cells, the human recombinant protein was expressed as the full-length (375-amino acid) myostatin in Drosophila cells (Mst375D), or the 110-amino acid carboxy-terminal protein in Escherichia coli (Mst110EC). These proteins were identified by immunoblotting and were purified. Both Mst375D and Mst110EC dose dependently inhibited cell proliferation (cell count and Formazan assay), DNA synthesis ([3H]thymidine incorporation), and protein synthesis ([1-14C]leucine incorporation) in C2C12 cells. The inhibitory effects of both proteins were greater in myotubes than in myoblasts. Neither protein had any significant effects on protein degradation or apoptosis. In conclusion, recombinant myostatin proteins inhibit cell proliferation, DNA synthesis, and protein synthesis in C2C12 muscle cells, suggesting that myostatin may control muscle mass by inhibiting muscle growth or regeneration.

  9. Myostatin: expanding horizons.

    PubMed

    Sharma, Mridula; McFarlane, Craig; Kambadur, Ravi; Kukreti, Himani; Bonala, Sabeera; Srinivasan, Shruti

    2015-08-01

    Myostatin is a secreted growth and differentiation factor that belongs to the TGF-β superfamily. Myostatin is predominantly synthesized and expressed in skeletal muscle and thus exerts a huge impact on muscle growth and function. In keeping with its negative role in myogenesis, myostatin expression is tightly regulated at several levels including epigenetic, transcriptional, post-transcriptional, and post-translational. New revelations regarding myostatin regulation also offer mechanisms that could be exploited for developing myostatin antagonists. Increasingly, it is becoming clearer that besides its conventional role in muscle, myostatin plays a critical role in metabolism. Hence, molecular mechanisms by which myostatin regulates several key metabolic processes need to be further explored.

  10. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity.

    PubMed

    Guo, Tingqing; Jou, William; Chanturiya, Tatyana; Portas, Jennifer; Gavrilova, Oksana; McPherron, Alexandra C

    2009-01-01

    Myostatin (Mstn) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Mstn(-/-) mice have a dramatic increase in muscle mass, reduction in fat mass, and resistance to diet-induced and genetic obesity. To determine how Mstn deletion causes reduced adiposity and resistance to obesity, we analyzed substrate utilization and insulin sensitivity in Mstn(-/-) mice fed a standard chow. Despite reduced lipid oxidation in skeletal muscle, Mstn(-/-) mice had no change in the rate of whole body lipid oxidation. In contrast, Mstn(-/-) mice had increased glucose utilization and insulin sensitivity as measured by indirect calorimetry, glucose and insulin tolerance tests, and hyperinsulinemic-euglycemic clamp. To determine whether these metabolic effects were due primarily to the loss of myostatin signaling in muscle or adipose tissue, we compared two transgenic mouse lines carrying a dominant negative activin IIB receptor expressed specifically in adipocytes or skeletal muscle. We found that inhibition of myostatin signaling in adipose tissue had no effect on body composition, weight gain, or glucose and insulin tolerance in mice fed a standard diet or a high-fat diet. In contrast, inhibition of myostatin signaling in skeletal muscle, like Mstn deletion, resulted in increased lean mass, decreased fat mass, improved glucose metabolism on standard and high-fat diets, and resistance to diet-induced obesity. Our results demonstrate that Mstn(-/-) mice have an increase in insulin sensitivity and glucose uptake, and that the reduction in adipose tissue mass in Mstn(-/-) mice is an indirect result of metabolic changes in skeletal muscle. These data suggest that increasing muscle mass by administration of myostatin antagonists may be a promising therapeutic target for treating patients with obesity or diabetes.

  11. Myostatin - From the Mighty Mouse to cardiovascular disease and cachexia.

    PubMed

    Dschietzig, Thomas Bernd

    2014-06-10

    In 1997, McPherron et al. created the so-called Mighty Mouse: owing to the knock-out of a new member of the TGF-β superfamily of peptides, this mouse line was extremely hypermuscular and also characterized by very low body fat. The new peptide, a powerful negative muscle regulator, was named myostatin. Apart from regulating skeletal muscle growth, myostatin has recently been reported to be significantly involved in different cardio-vascular and metabolic pathologies. This review is focused on these non-muscular myostatin actions. First, myostatin is intricately involved in regulating metabolism: it causes insulin resistance, and the advantageous metabolic profile achieved by myostatin inhibition is mainly attributable to its effects on skeletal muscle. Myostatin is further expressed in myocardium where it exerts anti-hypertrophic, but pro-fibrotic effects. Circulating and local myostatin is elevated in chronic heart failure and poses a major player in cardiac cachexia. Eventually, the current body of evidence regarding myostatin's significant involvement in different entities of the cachexia syndrome is summarized. Activin type-2 receptor antagonism and/or inhibitory myostatin antibodies have emerged as a promising therapeutic approach to treat the cachexia syndrome although the general applicability of this therapeutic approach to the human clinical situation has still to be demonstrated.

  12. Long-Term Systemic Myostatin Inhibition via Liver-Targeted Gene Transfer in Golden Retriever Muscular Dystrophy

    PubMed Central

    Sleeper, Meg M.; Forbes, Sean C.; Morine, Kevin J.; Reynolds, Caryn; Singletary, Gretchen E.; Trafny, Dennis; Pham, Jennifer; Bogan, Janet; Kornegay, Joe N.; Vandenborne, Krista; Walter, Glenn A.; Sweeney, H. Lee

    2011-01-01

    Abstract Duchenne muscular dystrophy (DMD) is a lethal, X-linked recessive disease affecting 1 in 3,500 newborn boys for which there is no effective treatment or cure. One novel strategy that has therapeutic potential for DMD is inhibition of myostatin, a negative regulator of skeletal muscle mass that may also promote fibrosis. Therefore, our goal in this study was to evaluate systemic myostatin inhibition in the golden retriever model of DMD (GRMD). GRMD canines underwent liver-directed gene transfer of a self-complementary adeno-associated virus type 8 vector designed to express a secreted dominant-negative myostatin peptide (n=4) and were compared with age-matched, untreated GRMD controls (n=3). Dogs were followed with serial magnetic resonance imaging (MRI) for 13 months to assess cross-sectional area and volume of skeletal muscle, then euthanized so that tissue could be harvested for morphological and histological analysis. We found that systemic myostatin inhibition resulted in increased muscle mass in GRMD dogs as assessed by MRI and confirmed at tissue harvest. We also found that hypertrophy of type IIA fibers was largely responsible for the increased muscle mass and that reductions in serum creatine kinase and muscle fibrosis were associated with long-term myostatin inhibition in GRMD. This is the first report describing the effects of long-term, systemic myostatin inhibition in a large-animal model of DMD, and we believe that the simple and effective nature of our liver-directed gene-transfer strategy makes it an ideal candidate for evaluation as a novel therapeutic approach for DMD patients. PMID:21787232

  13. Combinatory effects of siRNA‐induced myostatin inhibition and exercise on skeletal muscle homeostasis and body composition

    PubMed Central

    Mosler, Stephanie; Relizani, Karima; Mouisel, Etienne; Amthor, Helge; Diel, Patrick

    2014-01-01

    Abstract Inhibition of myostatin (Mstn) stimulates skeletal muscle growth, reduces body fat, and induces a number of metabolic changes. However, it remains unexplored how exercise training modulates the response to Mstn inhibition. The aim of this study was to investigate how siRNA‐mediated Mstn inhibition alone but also in combination with physical activity affects body composition and skeletal muscle homeostasis. Adult mice were treated with Mstn‐targeting siRNA and subjected to a treadmill‐based exercise protocol for 4 weeks. Effects on skeletal muscle and fat tissue, expression of genes, and serum concentration of proteins involved in myostatin signaling, skeletal muscle homeostasis, and lipid metabolism were investigated and compared with Mstn−/− mice. The combination of siRNA‐mediated Mstn knockdown and exercise induced skeletal muscle hypertrophy, which was associated with an upregulation of markers for satellite cell activity. SiRNA‐mediated Mstn knockdown decreased visceral fat and modulated lipid metabolism similar to effects observed in Mstn−/− mice. Myostatin did not regulate its own expression via an autoregulatory loop, however, Mstn knockdown resulted in a decrease in the serum concentrations of myostatin propeptide, leptin, and follistatin. The ratio of these three parameters was distinct between Mstn knockdown, exercise, and their combination. Taken together, siRNA‐mediated Mstn knockdown in combination with exercise stimulated skeletal muscle hypertrophy. Each intervention or their combination induced a specific set of adaptive responses in the skeletal muscle and fat metabolism which could be identified by marker proteins in serum. PMID:24760516

  14. Inhibition of myostatin signaling through Notch activation following acute resistance exercise.

    PubMed

    MacKenzie, Matthew G; Hamilton, David Lee; Pepin, Mark; Patton, Amy; Baar, Keith

    2013-01-01

    Myostatin is a TGFβ family member and negative regulator of muscle size. Due to the complexity of the molecular pathway between myostatin mRNA/protein and changes in transcription, it has been difficult to understand whether myostatin plays a role in resistance exercise-induced skeletal muscle hypertrophy. To circumvent this problem, we determined the expression of a unique myostatin target gene, Mighty, following resistance exercise. Mighty mRNA increased by 6 h (82.9 ± 24.21%) and remained high out to 48 h (56.5 ± 19.67%) after resistance exercise. Further examination of the soleus, plantaris and tibialis anterior muscles showed that the change in Mighty mRNA at 6 h correlated with the increase in muscle size associated with this protocol (R(2) = 0.9996). The increase in Mighty mRNA occurred both independent of Smad2 phosphorylation and in spite of an increase in myostatin mRNA (341.8 ± 147.14% at 3 h). The myostatin inhibitor SKI remained unchanged. However, activated Notch, another potential inhibitor of TGFβ signaling, increased immediately following resistance exercise (83 ± 11.2%) and stayed elevated out to 6 h (78 ± 16.6%). Electroportion of the Notch intracellular domain into the tibialis anterior resulted in an increase in Mighty mRNA (63 ± 13.4%) that was equivalent to the canonical Notch target HES-1 (94.4 ± 7.32%). These data suggest that acute resistance exercise decreases myostatin signaling through the activation of the TGFβ inhibitor Notch resulting in a decrease in myostatin transcriptional activity that correlates well with muscle hypertrophy.

  15. Muscle regeneration in the prolonged absence of myostatin.

    PubMed

    Wagner, Kathryn R; Liu, Xiaosong; Chang, Xiaoli; Allen, Ronald E

    2005-02-15

    Myostatin is an endogenous inhibitor of muscle conserved across diverse species. In the absence of myostatin, there is massive muscle growth in mice, cattle, and humans. Previous studies in the mdx mouse model of muscular dystrophy demonstrate that inhibiting myostatin attenuates several features of dystrophic muscle. These findings have encouraged the development of human therapies to block myostatin. However, little is known of the long-term effects on muscle of myostatin blockade. To evaluate potential sequelae from the prolonged absence of myostatin, senescent myostatin null (mstn-/-) mice were studied. Senescent mstn-/- mice continue to have normal muscle with increased mass and strength relative to controls. Muscles of senescent mstn-/- mice regenerate robustly from both chronic and acute injury. Early markers of regeneration are enhanced in the absence of myostatin, suggesting a mechanism for the attenuation of dystrophic features found in mdx mice lacking myostatin.

  16. Dominant negative myostatin produces hypertrophy without hyperplasia in muscle.

    PubMed

    Zhu, X; Hadhazy, M; Wehling, M; Tidball, J G; McNally, E M

    2000-05-26

    Myostatin, a TGF-beta family member, is a negative regulator of muscle growth. Here, we generated transgenic mice that expressed myostatin mutated at its cleavage site under the control of a muscle specific promoter creating a dominant negative myostatin. These mice exhibited a significant (20-35%) increase in muscle mass that resulted from myofiber hypertrophy and not from myofiber hyperplasia. We also evaluated the role of myostatin in muscle degenerative states, such as muscular dystrophy, and found significant downregulation of myostatin. Thus, further inhibition of myostatin may permit increased muscle growth in muscle degenerative disorders.

  17. Small molecules dorsomorphin and LDN-193189 inhibit myostatin/GDF8 signaling and promote functional myoblast differentiation.

    PubMed

    Horbelt, Daniel; Boergermann, Jan H; Chaikuad, Apirat; Alfano, Ivan; Williams, Eleanor; Lukonin, Ilya; Timmel, Tobias; Bullock, Alex N; Knaus, Petra

    2015-02-06

    GDF8, or myostatin, is a member of the TGF-β superfamily of secreted polypeptide growth factors. GDF8 is a potent negative regulator of myogenesis both in vivo and in vitro. We found that GDF8 signaling was inhibited by the small molecule ATP competitive inhibitors dorsomorphin and LDN-193189. These compounds were previously shown to be potent inhibitors of BMP signaling by binding to the BMP type I receptors ALK1/2/3/6. We present the crystal structure of the type II receptor ActRIIA with dorsomorphin and demonstrate that dorsomorphin or LDN-193189 target GDF8 induced Smad2/3 signaling and repression of myogenic transcription factors. As a result, both inhibitors rescued myogenesis in myoblasts treated with GDF8. As revealed by quantitative live cell microscopy, treatment with dorsomorphin or LDN-193189 promoted the contractile activity of myotubular networks in vitro. We therefore suggest these inhibitors as suitable tools to promote functional myogenesis.

  18. Analysis of myostatin gene structure, expression and function in zebrafish.

    PubMed

    Xu, Cheng; Wu, Gang; Zohar, Yonathan; Du, Shao-Jun

    2003-11-01

    Myostatin is a member of the TGF-beta family that functions as a negative regulator of skeletal muscle development and growth in mammals. Recently, Myostatin has also been identified in fish; however, its role in fish muscle development and growth remains unknown. We have reported here the isolation and characterization of myostatin genomic gene from zebrafish and analysis of its expression in zebrafish embryos, larvae and adult skeletal muscles. Our data showed that myostatin was weakly expressed in early stage zebrafish embryos, and strongly expressed in swimming larvae, juvenile and skeletal muscles of adult zebrafish. Transient expression analysis revealed that the 1.2 kb zebrafish myostatin 5' flanking sequence could direct green fluorescent protein (GFP) expression predominantly in muscle cells, suggesting that the myostatin 5' flanking sequence contained regulatory elements required for muscle expression. To determine the biological function of Myostatin in fish, we generated a transgenic line that overexpresses the Myostatin prodomain in zebrafish skeletal muscles using a muscle-specific promoter. The Myostatin prodomain could act as a dominant negative and inhibit Myostatin function in skeletal muscles. Transgenic zebrafish expressing the Myostatin prodomain exhibited no significant change in myogenic gene expression and differentiation of slow and fast muscle cells at their embryonic stage. The transgenic fish, however, exhibited an increased number of myofibers in skeletal muscles, but no significant difference in fiber size. Together, these data demonstrate that Myostatin plays an inhibitory role in hyperplastic muscle growth in zebrafish.

  19. Small Molecules Dorsomorphin and LDN-193189 Inhibit Myostatin/GDF8 Signaling and Promote Functional Myoblast Differentiation*

    PubMed Central

    Horbelt, Daniel; Boergermann, Jan H.; Chaikuad, Apirat; Alfano, Ivan; Williams, Eleanor; Lukonin, Ilya; Timmel, Tobias; Bullock, Alex N.; Knaus, Petra

    2015-01-01

    GDF8, or myostatin, is a member of the TGF-β superfamily of secreted polypeptide growth factors. GDF8 is a potent negative regulator of myogenesis both in vivo and in vitro. We found that GDF8 signaling was inhibited by the small molecule ATP competitive inhibitors dorsomorphin and LDN-193189. These compounds were previously shown to be potent inhibitors of BMP signaling by binding to the BMP type I receptors ALK1/2/3/6. We present the crystal structure of the type II receptor ActRIIA with dorsomorphin and demonstrate that dorsomorphin or LDN-193189 target GDF8 induced Smad2/3 signaling and repression of myogenic transcription factors. As a result, both inhibitors rescued myogenesis in myoblasts treated with GDF8. As revealed by quantitative live cell microscopy, treatment with dorsomorphin or LDN-193189 promoted the contractile activity of myotubular networks in vitro. We therefore suggest these inhibitors as suitable tools to promote functional myogenesis. PMID:25368322

  20. Regulation of myostatin activity and muscle growth.

    PubMed

    Lee, S J; McPherron, A C

    2001-07-31

    Myostatin is a transforming growth factor-beta family member that acts as a negative regulator of skeletal muscle mass. To identify possible myostatin inhibitors that may have applications for promoting muscle growth, we investigated the regulation of myostatin signaling. Myostatin protein purified from mammalian cells consisted of a noncovalently held complex of the N-terminal propeptide and a disulfide-linked dimer of C-terminal fragments. The purified C-terminal myostatin dimer was capable of binding the activin type II receptors, Act RIIB and, to a lesser extent, Act RIIA. Binding of myostatin to Act RIIB could be inhibited by the activin-binding protein follistatin and, at higher concentrations, by the myostatin propeptide. To determine the functional significance of these interactions in vivo, we generated transgenic mice expressing high levels of the propeptide, follistatin, or a dominant-negative form of Act RIIB by using a skeletal muscle-specific promoter. Independent transgenic mouse lines for each construct exhibited dramatic increases in muscle mass comparable to those seen in myostatin knockout mice. Our findings suggest that the propeptide, follistatin, or other molecules that block signaling through this pathway may be useful agents for enhancing muscle growth for both human therapeutic and agricultural applications.

  1. Evaluation of Electrical Impedance as a Biomarker of Myostatin Inhibition in Wild Type and Muscular Dystrophy Mice

    PubMed Central

    Sanchez, Benjamin; Li, Jia; Yim, Sung; Pacheck, Adam; Widrick, Jeffrey J.; Rutkove, Seward B.

    2015-01-01

    Objectives Non-invasive and effort independent biomarkers are needed to better assess the effects of drug therapy on healthy muscle and that affected by muscular dystrophy (mdx). Here we evaluated the use of multi-frequency electrical impedance for this purpose with comparison to force and histological parameters. Methods Eight wild-type (wt) and 10 mdx mice were treated weekly with RAP-031 activin type IIB receptor at a dose of 10 mg kg−1 twice weekly for 16 weeks; the investigators were blinded to treatment and disease status. At the completion of treatment, impedance measurements, in situ force measurements, and histology analyses were performed. Results As compared to untreated animals, RAP-031 wt and mdx treated mice had greater body mass (18% and 17%, p < 0.001 respectively) and muscle mass (25% p < 0.05 and 22% p < 0.001, respectively). The Cole impedance parameters in treated wt mice, showed a 24% lower central frequency (p < 0.05) and 19% higher resistance ratio (p < 0.05); no significant differences were observed in the mdx mice. These differences were consistent with those seen in maximum isometric force, which was greater in the wt animals (p < 0.05 at > 70 Hz), but not in the mdx animals. In contrast, maximum force normalized by muscle mass was unchanged in the wt animals and lower in the mdx animals by 21% (p < 0.01). Similarly, myofiber size was only non-significantly higher in treated versus untreated animals (8% p = 0.44 and 12% p = 0.31 for wt and mdx animals, respectively). Conclusions Our findings demonstrate electrical impedance of muscle reproduce the functional and histological changes associated with myostatin pathway inhibition and do not reflect differences in muscle size or volume. This technique deserves further study in both animal and human therapeutic trials. PMID:26485280

  2. Myostatin: a modulator of skeletal-muscle stem cells.

    PubMed

    Walsh, F S; Celeste, A J

    2005-12-01

    Myostatin, or GDF-8 (growth and differentiation factor-8), was first identified through sequence identity with members of the BMP (bone morphogenetic protein)/TGF-beta (transforming growth factor-beta) superfamily. The skeletal-muscle-specific expression pattern of myostatin suggested a role in muscle development. Mice with a targeted deletion of the myostatin gene exhibit a hypermuscular phenotype. In addition, inactivating mutations in the myostatin gene have been identified in 'double muscled' cattle breeds, such as the Belgian Blue and Piedmontese, as well as in a hypermuscular child. These findings define myostatin as a negative regulator of skeletal-muscle development. Myostatin binds with high affinity to the receptor serine threonine kinase ActRIIB (activin type IIB receptor), which initiates signalling through a smad2/3-dependent pathway. In an effort to validate myostatin as a therapeutic target in a post-embryonic setting, a neutralizing antibody was developed by screening for inhibition of myostatin binding to ActRIIB. Administration of this antimyostatin antibody to adult mice resulted in a significant increase in both muscle mass and functional strength. Importantly, similar results were obtained in a murine model of muscular dystrophy, the mdx mouse. Unlike the myostatin-deficient animals, which exhibit both muscle hypertrophy and hyperplasia, the antibody-treated mice demonstrate increased musculature through a hypertrophic mechanism. These results validate myostatin inhibition as a therapeutic approach to muscle wasting diseases such as muscular dystrophy, sarcopenic frailty of the elderly and amylotrophic lateral sclerosis.

  3. Naturally occurring isothiocyanates exert anticancer effects by inhibiting deubiquitinating enzymes

    PubMed Central

    Coffey, Rory T.; Qian, Yu; Weerapana, Eranthie; El Oualid, Farid; Hedstrom, Lizbeth

    2015-01-01

    The anticancer properties of cruciferous vegetables are well known and attributed to an abundance of isothiocyanates (ITCs) such as benzyl ITC (BITC) and phenethyl ITC (PEITC). While many potential targets of ITCs have been proposed, a full understanding of the mechanisms underlying their anticancer activity has remained elusive. Here we report that BITC and PEITC effectively inhibit deubiquitinating enzymes (DUBs), including the enzymes USP9x and UCH37, which are associated with tumorigenesis, at physiologically relevant concentrations and time scales. USP9x protects the anti-apoptotic protein Mcl-1 from degradation, and cells dependent on Mcl-1 were especially sensitive to BITC and PEITC. These ITCs increased Mcl-1 ubiquitination and either ITC treatment or RNAi-mediated silencing of USP9x decreased Mcl-1 levels, consistent with the notion that USP9x is a primary target of ITC activity. These ITCs also increased ubiquitination of the oncogenic fusion protein Bcr-Abl, resulting in degradation under low ITC concentrations and aggregation under high ITC concentrations. USP9x inhibition paralleled the decrease in Bcr-Abl levels induced by ITC treatment, and USP9x silencing was sufficient to decrease Bcr-Abl levels, further suggesting that Bcr-Abl is a USP9x substrate. Overall, our findings suggest that USP9x targeting is critical to the mechanism underpinning the well established anticancer activity of ITC. We propose that the ITC-induced inhibition of DUB may also explain how ITCs affect inflammatory and DNA repair processes, thus offering a unifying theme in understanding the function and useful application of ITCs to treat cancer as well as a variety of other pathological conditions. PMID:26542215

  4. [Functional characterization of recombinant myostatin and its inhibitory role to chicken muscle development].

    PubMed

    Yang, Wei; Wang, Kun; Chen, Yan; Zhang, Yong; Huang, Bo; Zhu, Da-Hai

    2003-11-01

    Myostatin is a recently discovered member of transforming growth factor beta (TGFbeta) superfamily and shares similar structure features with other members of TGFbeta superfamily. For a better understanding of molecular mechanism of myostatin function, the production of C-terminal truncated form of recombinant myostatin protein (rMSTN) in E. coli was previously reported. Herein, the functional role of the recombinant myostatin in regulating myogenesis in a chicken embryonic myoblasts (CEMs) system was determined. By using flow cytometric analysis, the myostatin was found to inhibit cell cycle transition from G1 to S phase and result in a cell cycle arrest at G1. In addition, myostatin blocked the multi-nucleus myotube formation and caused a decreased expression of the muscle cell differentiation markers (myogenin and MHC) in CEMs. In this study, a rabbit polyclonal antibody against myostatin was produced and high affinity and specificity of this anti-myostatin antibody to recombinant and endogenous myostatin were assayed by Western blot analysis. Further studies showed that the antibody could also recognize the tissue endogenous myostatin of human, mouse and rat. A specific 40 kD band was detected in chicken muscle, which suggested that chicken myostatin might have different splicing pattern. Immunofluorescence assay indicated that myostatin predominantly existed in the cytosol in C2C12 cells. Taken together, the results show that myostatin inhibits chicken muscle cells proliferation and differentiation and down-regulates expression of two differentiation marker gene in CEMs. Remarkably, production of functional recombinant myostatin protein and its specific antibody provides important reagents for unraveling molecular mechanisms underlying myostatin action during myogenesis.

  5. Functional analysis of the Myostatin gene promoter in sheep.

    PubMed

    Du, Rong; An, XiaoRong; Chen, YongFu; Qin, Jian

    2007-10-01

    Compared with the understanding for the functional mechanism of the myostatin gene, little is known about the regulatory mechanism of the myostatin gene transcription and expression. To better understand the function of the myostatin gene promoter (MSTNpro) in the transcriptional regulation of the myostatin gene and to further investigate the transcriptional regulation mechanism of the myostatin gene, the promoter region of the myostatin gene in sheep has been cloned in our recent study (AY918121). In this study, the wild (W) type MSTNPro(W)-EGFP vectors and E-box (E) (CANNTG) mutant (M) type MSTNPro(E(3+5+7)M)-EGFP vectors were constructed and the transcriptional regulation activities were compared by detecting the fluorescent strength of EGFP (enhanced green fluorescent protein) in C2C12 myoblasts (or myotubes) and sheep fibroblasts transfected with the vectors. Results showed that the 0.3-1.2 kb sheep myostatin promoter could activate the transcription and expression of EGFP gene in C2C12 myoblasts to different extent and the 1.2 kb promoter was the strongest. However, fluorescence was not observed in the sheep fibroblasts transfected with the 1.2 kb sheep myostatin promoter. These results suggested that the specific nature of the myostatin gene expression in skeletal muscle was attributed to the specific nature of the myostatin promoter activity. The increasing growth density of C2C12 myoblasts inhibited the transcriptional regulation activity of the wild type sheep myostatin promoter by a mechanism of feedback. The transcriptional regulation activity of the 1.2 kb wild type sheep myostatin promoter increased significantly after C2C12 myoblasts were differentiated, while the activity of 1.2 kb E(3+5+7)-mutant type myostatin promoter had no obvious change. This result suggested that MyoD may be responsible for the difference of the myostatin gene transcription and expression between growing and differentiating conditions by binding to E-box of the myostatin

  6. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    SciTech Connect

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A.; Gallardo-Escarate, C.; Molina, A.; Valdés, J.A.

    2015-08-21

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast.

  7. Myostatin up-regulation is associated with the skeletal muscle response to hypoxic stimuli.

    PubMed

    Hayot, Maurice; Rodriguez, Julie; Vernus, Barbara; Carnac, Gilles; Jean, Elise; Allen, David; Goret, Lucie; Obert, Philippe; Candau, Robin; Bonnieu, Anne

    2011-01-30

    Myostatin and hypoxia signalling pathways are able to induce skeletal muscle atrophy, but whether a relationship between these two pathways exists is currently unknown. Here, we tested the hypothesis that a potential mechanism for hypoxia effect on skeletal muscle may be through regulation of myostatin. We reported an induction of myostatin expression in muscles of rats exposed to chronic hypoxia. Interestingly, we also demonstrated increased skeletal muscle myostatin protein expression in skeletal muscle of hypoxemic patients with severe chronic obstructive pulmonary disease (COPD). Parallel studies in human skeletal muscle cell cultures showed that induction of myostatin expression in myotubes treated with hypoxia-mimicking agent such as cobalt chloride (CoCl(2)) is associated with myotube atrophy. Furthermore, we demonstrated that inhibition of myostatin by means of genetic deletion of myostatin or treatment with blocking antimyostatin antibodies inhibits the CoCl(2)-induced atrophy in muscle cells. Finally, addition of recombinant myostatin restored the CoCl(2)-induced atrophy in myostatin deficient myotubes. These results strongly suggest that myostatin can play an essential role in the adaptation of skeletal muscle to hypoxic environment.

  8. Ursodeoxycholic Acid (UDCA) Exerts Anti-Atherogenic Effects by Inhibiting RAGE Signaling in Diabetic Atherosclerosis

    PubMed Central

    Chung, Jihwa; An, Shung Hyun; Kang, Sang Won; Kwon, Kihwan

    2016-01-01

    A naturally occurring bile acid, ursodeoxycholic acid (UDCA), is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, the detailed action mechanisms of UDCA in atherosclerosis are not fully understood. In this study, we demonstrated whether UDCA exerts anti-atherogenic activity in diabetic atherosclerosis by targeting ER stress and “receptor for advanced glycation endproduct” (RAGE) signaling. UDCA markedly reduced ER stress, RAGE expression, and pro-inflammatory responses [including NF-κB activation and reactive oxygen species (ROS) production] induced in endothelial cells (ECs) by high glucose (HG). In particular, UDCA inhibited HG-induced ROS production by increasing the Nrf2 level. In macrophages, UDCA also blocked HG-induced RAGE and pro-inflammatory cytokine expression and inhibited foam cell formation via upregulation of the ATP-binding cassette (ABC) transporters, ABCA1 and ABCG1. In the diabetic mouse model, UDCA inhibited atheromatous plaque formation by decreasing ER stress, and the levels of RAGE and adhesion molecules. In conclusion, UDCA exerts an anti-atherogenic activity in diabetic atherosclerosis by targeting both ER stress and RAGE signaling. Our work implicates UDCA as a potential therapeutic agent for prevention or treatment of diabetic atherosclerosis. PMID:26807573

  9. Ursodeoxycholic Acid (UDCA) Exerts Anti-Atherogenic Effects by Inhibiting RAGE Signaling in Diabetic Atherosclerosis.

    PubMed

    Chung, Jihwa; An, Shung Hyun; Kang, Sang Won; Kwon, Kihwan

    2016-01-01

    A naturally occurring bile acid, ursodeoxycholic acid (UDCA), is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, the detailed action mechanisms of UDCA in atherosclerosis are not fully understood. In this study, we demonstrated whether UDCA exerts anti-atherogenic activity in diabetic atherosclerosis by targeting ER stress and "receptor for advanced glycation endproduct" (RAGE) signaling. UDCA markedly reduced ER stress, RAGE expression, and pro-inflammatory responses [including NF-κB activation and reactive oxygen species (ROS) production] induced in endothelial cells (ECs) by high glucose (HG). In particular, UDCA inhibited HG-induced ROS production by increasing the Nrf2 level. In macrophages, UDCA also blocked HG-induced RAGE and pro-inflammatory cytokine expression and inhibited foam cell formation via upregulation of the ATP-binding cassette (ABC) transporters, ABCA1 and ABCG1. In the diabetic mouse model, UDCA inhibited atheromatous plaque formation by decreasing ER stress, and the levels of RAGE and adhesion molecules. In conclusion, UDCA exerts an anti-atherogenic activity in diabetic atherosclerosis by targeting both ER stress and RAGE signaling. Our work implicates UDCA as a potential therapeutic agent for prevention or treatment of diabetic atherosclerosis.

  10. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    SciTech Connect

    Gao, Fei; Kishida, Tsunao; Ejima, Akika; Gojo, Satoshi; Mazda, Osam

    2013-02-08

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.

  11. [Altered expression of myostatin gene in the progressive muscular dystrophy patients].

    PubMed

    Zhang, Yong; Chen, Yan; Chen, Jia-Wei; Zhu, Da-Hai

    2005-08-01

    Progressive muscular dystrophy is a group of inherited disorders characterized by progressive skeletal muscle wasting and weakness, which is not of neurogenic origin. Myostatin, a new member of the TGF-beta super-family, is a negative regulator of skeletal muscle growth. To investigate the possible involvement of myostatin in the development of progressive muscular dystrophy, we cloned and sequenced myostatin cDNAs from the progressive muscular dystrophy patients by RT-PCR. Levels of myostatin mRNA and protein in the patients were analyzed by semi-quantitative RT-PCR and Western blot,respectively. We did not find any mutations in the myostatin cDNA sequences from the progressive muscular dystrophy patients in this study. However, we found that the levels of myostatin transcripts were reduced in some patients and the processing and maturation of myostatin protein were inhibited in some patients. Our data demonstrated that the pathogenesis of some types or subtypes of progressive muscular dystrophy is probably associated with the altered myostatin expression and the processing inhibition of myostatin protein.

  12. Myostatin regulates cardiomyocyte growth through modulation of Akt signaling.

    PubMed

    Morissette, Michael R; Cook, Stuart A; Foo, ShiYin; McKoy, Godfrina; Ashida, Noboru; Novikov, Mikhail; Scherrer-Crosbie, Marielle; Li, Ling; Matsui, Takashi; Brooks, Gavin; Rosenzweig, Anthony

    2006-07-07

    Myostatin is a highly conserved, potent negative regulator of skeletal muscle hypertrophy in many species, from rodents to humans, although its mechanisms of action are incompletely understood. Transcript profiling of hearts from a genetic model of cardiac hypertrophy revealed dramatic upregulation of myostatin, not previously recognized to play a role in the heart. Here we show that myostatin abrogates the cardiomyocyte growth response to phenylephrine in vitro through inhibition of p38 and the serine-threonine kinase Akt, a critical determinant of cell size in many species from drosophila to mammals. Evaluation of male myostatin-null mice revealed that their cardiomyocytes and hearts overall were slightly smaller at baseline than littermate controls but exhibited more exuberant growth in response to chronic phenylephrine infusion. The increased cardiac growth in myostatin-null mice corresponded with increased p38 phosphorylation and Akt activation in vivo after phenylephrine treatment. Together, these data demonstrate that myostatin is dynamically regulated in the heart and acts more broadly than previously appreciated to regulate growth of multiple types of striated muscle.

  13. Tetrandrine Exerts a Radiosensitization Effect on Human Glioma through Inhibiting Proliferation by Attenuating ERK Phosphorylation

    PubMed Central

    Ma, Ji-wei; Zhang, Yong; Ye, Ji-cheng; Li, Ru; Wen, Yu-Lin; Huang, Jian-xian; Zhong, Xue-yun

    2017-01-01

    Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid, has been reported to have a radiosensitization effect on tumors. However, its effects on human glioma and the specific molecular mechanisms of these effects remain unknown. In this study, we demonstrated that Tet has a radiosensitization effect on human glioma cells. It has been hypothesized that Tet has a radiosensitization effect on glioma cells by affecting the glioma cell cycle and DNA repair mechanism and that ERK mediates these activities. Therefore, we conducted detailed analyses of the effects of Tet on the cell cycle by performing flow cytometric analysis and on DNA repair by detecting the expression of phosphorylated H2AX by immunofluorescence. We used western blot analysis to investigate the role of ERK in the effect of Tet on the cell cycle and DNA repair. The results revealed that Tet exerts its radiosensitization effect on glioma cells by inhibiting proliferation and decreasing the expression of phosphorylated ERK and its downstream proteins. In summary, our data indicate that ERK is involved in Tet-induced radiosensitization of glioma cells via inhibition of glioma cell proliferation or of the cell cycle at G0/G1 phase. PMID:27829269

  14. Dipeptidyl Peptidase IV Inhibition Exerts Renoprotective Effects in Rats with Established Heart Failure

    PubMed Central

    Arruda-Junior, Daniel F.; Martins, Flavia L.; Dariolli, Rafael; Jensen, Leonardo; Antonio, Ednei L.; dos Santos, Leonardo; Tucci, Paulo J. F.; Girardi, Adriana C. C.

    2016-01-01

    Circulating dipeptidyl peptidase IV (DPPIV) activity is associated with worse cardiovascular outcomes in humans and experimental heart failure (HF) models, suggesting that DPPIV may play a role in the pathophysiology of this syndrome. Renal dysfunction is one of the key features of HF, but it remains to be determined whether DPPIV inhibitors are capable of improving cardiorenal function after the onset of HF. Therefore, the present study aimed to test the hypothesis that DPPIV inhibition by vildagliptin improves renal water and salt handling and exerts anti-proteinuric effects in rats with established HF. To this end, male Wistar rats were subjected to left ventricle (LV) radiofrequency ablation or sham operation. Six weeks after surgery, radiofrequency-ablated rats who developed HF were randomly divided into two groups and treated for 4 weeks with vildagliptin (120 mg/kg/day) or vehicle by oral gavage. Echocardiography was performed before (pretreatment) and at the end of treatment (post-treatment) to evaluate cardiac function. The fractional area change (FAC) increased (34 ± 5 vs. 45 ± 3%, p < 0.05), and the isovolumic relaxation time decreased (33 ± 2 vs. 27 ± 1 ms; p < 0.05) in HF rats treated with vildagliptin (post-treatment vs. pretreatment). On the other hand, cardiac dysfunction deteriorated further in vehicle-treated HF rats. Renal function was impaired in vehicle-treated HF rats as evidenced by fluid retention, low glomerular filtration rate (GFR) and high levels of urinary protein excretion. Vildagliptin treatment restored urinary flow, GFR, urinary sodium and urinary protein excretion to sham levels. Restoration of renal function in HF rats by DPPIV inhibition was associated with increased active glucagon-like peptide-1 (GLP-1) serum concentration, reduced DPPIV activity and increased activity of protein kinase A in the renal cortex. Furthermore, the anti-proteinuric effect of vildagliptin treatment in rats with established HF was associated with

  15. High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: a possible mechanism for reestablishing satellite cell quiescence in vivo.

    PubMed

    Yamada, Michiko; Tatsumi, Ryuichi; Yamanouchi, Keitaro; Hosoyama, Tohru; Shiratsuchi, Sei-ichi; Sato, Akiko; Mizunoya, Wataru; Ikeuchi, Yoshihide; Furuse, Mitsuhiro; Allen, Ronald E

    2010-03-01

    Skeletal muscle regeneration and work-induced hypertrophy rely on molecular events responsible for activation and quiescence of resident myogenic stem cells, satellite cells. Recent studies demonstrated that hepatocyte growth factor (HGF) triggers activation and entry into the cell cycle in response to mechanical perturbation, and that subsequent expression of myostatin may signal a return to cell quiescence. However, mechanisms responsible for coordinating expression of myostatin after an appropriate time lag following activation and proliferation are not clear. Here we address the possible role of HGF in quiescence through its concentration-dependent negative-feedback mechanism following satellite cell activation and proliferation. When activated/proliferating satellite cell cultures were treated for 24 h beginning 48-h postplating with 10-500 ng/ml HGF, the percentage of bromodeoxyuridine-incorporating cells decreased down to a baseline level comparable to 24-h control cultures in a HGF dose-dependent manner. The high level HGF treatment did not impair the cell viability and differentiation levels, and cells could be reactivated by lowering HGF concentrations to 2.5 ng/ml, a concentration that has been shown to optimally stimulate activation of satellite cells in culture. Coaddition of antimyostatin neutralizing antibody could prevent deactivation and abolish upregulation of cyclin-dependent kinase (Cdk) inhibitor p21. Myostatin mRNA expression was upregulated with high concentrations of HGF, as demonstrated by RT-PCR, and enhanced myostatin protein expression and secretion were revealed by Western blots of the cell lysates and conditioned media. These results indicate that HGF could induce satellite cell quiescence by stimulating myostatin expression. The HGF concentration required (over 10-50 ng/ml), however, is much higher than that for activation, which is initiated by rapid release of HGF from its extracellular association. Considering that HGF is produced

  16. Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting

    PubMed Central

    Breitbart, Astrid; Auger-Messier, Mannix; Molkentin, Jeffery D.

    2011-01-01

    A significant proportion of heart failure patients develop skeletal muscle wasting and cardiac cachexia, which is associated with a very poor prognosis. Recently, myostatin, a cytokine from the transforming growth factor-β (TGF-β) family and a known strong inhibitor of skeletal muscle growth, has been identified as a direct mediator of skeletal muscle atrophy in mice with heart failure. Myostatin is mainly expressed in skeletal muscle, although basal expression is also detectable in heart and adipose tissue. During pathological loading of the heart, the myocardium produces and secretes myostatin into the circulation where it inhibits skeletal muscle growth. Thus, genetic elimination of myostatin from the heart reduces skeletal muscle atrophy in mice with heart failure, whereas transgenic overexpression of myostatin in the heart is capable of inducing muscle wasting. In addition to its endocrine action on skeletal muscle, cardiac myostatin production also modestly inhibits cardiomyocyte growth under certain circumstances, as well as induces cardiac fibrosis and alterations in ventricular function. Interestingly, heart failure patients show elevated myostatin levels in their serum. To therapeutically influence skeletal muscle wasting, direct inhibition of myostatin was shown to positively impact skeletal muscle mass in heart failure, suggesting a promising strategy for the treatment of cardiac cachexia in the future. PMID:21421824

  17. Myostatin-deficiency in mice increases global gene expression at the Dlk1-Dio3 locus in the skeletal muscle

    PubMed Central

    Hitachi, Keisuke; Tsuchida, Kunihiro

    2017-01-01

    Myostatin, a member of the transforming growth factor-beta superfamily, is a negative regulator of skeletal muscle growth and development. Myostatin inhibition leads to increased skeletal muscle mass in mammals; hence, myostatin is considered a potential therapeutic target for skeletal muscle wasting. However, downstream molecules of myostatin in the skeletal muscle have not been fully elucidated. Here, we identified the Dlk1-Dio3 locus at the mouse chromosome 12qF1, also called as the callipyge locus in sheep, as a novel downstream target of myostatin. In skeletal muscle of myostatin knockout mice, the expression of mature miRNAs at the Dlk1-Dio3 locus was significantly increased. The increased miRNA levels are caused by the transcriptional activation of the Dlk1-Dio3 locus, because a significant increase in the primary miRNA transcript was observed in myostatin knockout mice. In addition, we found increased expression of coding and non-coding genes (Dlk1, Gtl2, Rtl1/Rtl1as, and Rian) at the Dlk1-Dio3 locus in myostatin-deficient skeletal muscle. Moreover, epigenetic changes, associated with the regulation of the Dlk1-Dio3 locus, were observed in myostatin knockout mice. Taken together, this is the first report demonstrating the role of myostatin in regulating the Dlk1-Dio3 (the callipyge) locus in the skeletal muscle. PMID:27992376

  18. Functional improvement of dystrophic muscle by myostatin blockade.

    PubMed

    Bogdanovich, Sasha; Krag, Thomas O B; Barton, Elisabeth R; Morris, Linda D; Whittemore, Lisa-Anne; Ahima, Rexford S; Khurana, Tejvir S

    2002-11-28

    Mice and cattle with mutations in the myostatin (GDF8) gene show a marked increase in body weight and muscle mass, indicating that this new member of the TGF-beta superfamily is a negative regulator of skeletal muscle growth. Inhibition of the myostatin gene product is predicted to increase muscle mass and improve the disease phenotype in a variety of primary and secondary myopathies. We tested the ability of inhibition of myostatin in vivo to ameliorate the dystrophic phenotype in the mdx mouse model of Duchenne muscular dystrophy (DMD). Blockade of endogenous myostatin by using intraperitoneal injections of blocking antibodies for three months resulted in an increase in body weight, muscle mass, muscle size and absolute muscle strength in mdx mouse muscle along with a significant decrease in muscle degeneration and concentrations of serum creatine kinase. The functional improvement of dystrophic muscle by myostatin blockade provides a novel, pharmacological strategy for treatment of diseases associated with muscle wasting such as DMD, and circumvents the major problems associated with conventional gene therapy in these disorders.

  19. Pharmacological inhibition of myostatin/TGF-β receptor/pSmad3 signaling rescues muscle regenerative responses in mouse model of type 1 diabetes

    PubMed Central

    Jeong, Jaemin; Conboy, Michael J; Conboy, Irina M

    2013-01-01

    Aim: To study the influence of acute experimental diabetes on the regenerative potential of muscle stem (satellite) cells in mice. Methods: Male C57BL/6 young mice were injected with a single dose of streptozotocin (STZ, 180 mg/kg, ip) to induce diabetes. The diabetic mice were treated with insulin (0.75 U/kg, ip), follistatin (12 μg/kg, im) or Alk5 inhibitor (5 μmol/L per kg, sc) once a day. On the first day when high glucose levels were found, cardiotoxin (CTX) was focally injected into tibialis anterior and gastronemius muscles of the mice. The muscles were harvested 3 d and 5 d after CTX injection, and myofibers and satellite cells were isolated. Quantitative ex-vivo and in-vivo assays of myogenic potential were used to evaluate the muscle regenerative responses. Results: The satellite cells from the diabetic mice 3 d after CTX injection fail to activate, and the repair of muscle deteriorates, resembling that observed in old control mice. Furthermore, the satellite cells have excessive levels of myostatin, TGF-β receptor 1, pSmad3 and the cell cycle inhibitor p15, while the level of TGF-β1 remain unchanged. Treatment of the diabetic mice with insulin rescued muscle regenerative responses, and restored the expression levels of myostatin, TGF-β receptor 1, pSmad3, and p15 to those similar of healthy controls. Treatment of the diabetic mice with the myostatin antagonist follistatin, or with the Alk5 inhibitor of TGF-β receptor 1 (which did not diminish the blood glucose levels) rescued muscle regenerative responses and attenuated the myostatin/TGFβ receptor/pSmad3 signaling. Conclusion: The muscle regenerative responses are incapacitated and repair of the tissue fails within hours after the initiation of hyperglycemia in a mouse model of type 1 diabetes, but stem cell function is rescued by insulin, as well as follistatin or an Alk5 inhibitor that blocks TGF-β receptor signaling. PMID:23770987

  20. Myostatin signaling through Smad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by a negative feedback mechanism.

    PubMed

    Zhu, Xiangyang; Topouzis, Stavros; Liang, Li-Fang; Stotish, Ronald L

    2004-06-21

    As a member of the TGF-beta superfamily, myostatin is a specific negative regulator of skeletal muscle mass. To identify the downstream components in the myostatin signal transduction pathway, we used a luciferase reporter assay to elucidate myostatin-induced activity. The myostatin-induced transcription requires the participation of regulatory Smads (Smad2/3) and Co-Smads (Smad4). Conversely, inhibitory Smad7, but not Smad6, dramatically reduces the myostatin-induced transcription. This Smad7 inhibition is enhanced by co-expression of Smurf1. We have also shown that Smad7 expression is stimulated by myostatin via the interaction between Smad2, Smad3, Smad4 and the SBE (Smad binding element) in the Smad7 promoter. These results suggest that the myostatin signal transduction pathway is regulated by Smad7 through a negative feedback mechanism.

  1. Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Myostatin inhibits skeletal muscle growth. The humanised monoclonal antibody LY2495655 (LY) binds and neutralises myostatin. We aimed to test whether LY increases appendicular lean body mass (aLBM) and improves physical performance in older individuals who have had recent falls and low m...

  2. Myostatin signaling regulates Akt activity via the regulation of miR-486 expression.

    PubMed

    Hitachi, Keisuke; Nakatani, Masashi; Tsuchida, Kunihiro

    2014-02-01

    Myostatin, also known as growth and differentiation factor-8, is a pivotal negative regulator of skeletal muscle mass and reduces muscle protein synthesis by inhibiting the insulin-like growth factor-1 (IGF-1)/Akt/mammalian target of rapamycin (mTOR) pathway. However, the precise mechanism by which myostatin inhibits the IGF-1/Akt/mTOR pathway remains unclear. In this study, we investigated the global microRNA expression profile in myostatin knockout mice and identified miR-486, a positive regulator of the IGF-1/Akt pathway, as a novel target of myostatin signaling. In myostatin knockout mice, the expression level of miR-486 in skeletal muscle was significantly increased. In addition, we observed increased expression of the primary transcript of miR-486 (pri-miR-486) and Ankyrin 1.5 (Ank1.5), the host gene of miR-486, in myostatin knockout mice. In C2C12 cells, myostatin negatively regulated the expression of Ank1.5. Moreover, canonical myostatin signaling repressed the skeletal muscle-specific promoter activity of miR-486/Ank1.5. This repression was partially mediated by the E-box elements in the proximal region of the promoter. We also show that overexpression of miR-486 induced myotube hypertrophy in vitro and that miR-486 was essential to maintain skeletal muscle size both in vitro and in vivo. In addition, inhibition of miR-486 led to a decrease in Akt activity in C2C12 myotubes. Our findings indicate that miR-486 is one of the intermediary molecules connecting myostatin signaling and the IGF-1/Akt/mTOR pathway in the regulation of skeletal muscle size.

  3. Viscum album Exerts Anti-Inflammatory Effect by Selectively Inhibiting Cytokine-Induced Expression of Cyclooxygenase-2

    PubMed Central

    Hegde, Pushpa; Maddur, Mohan S.; Friboulet, Alain; Bayry, Jagadeesh; Kaveri, Srini V.

    2011-01-01

    Viscum album (VA) preparations are extensively used as complementary therapy in cancer and are shown to exert anti-tumor activities which involve the cytotoxic properties, induction of apoptosis, inhibition of angiogenesis and several other immunomodulatory mechanisms. In addition to their application in cancer therapy, VA preparations have also been successfully utilized in the treatment of several inflammatory pathologies. Owing to the intricate association of inflammation and cancer and in view of the fact that several anti-tumor phytotherapeutics also exert a potent anti-inflammatory effect, we hypothesized that VA exerts an anti-inflammatory effect that is responsible for its therapeutic benefit. Since, inflammatory cytokine-induced cyclo-oxygenase-2 (COX-2) and prostaglandin E2 (PGE2) play a critical role in the pathogenesis of inflammatory diseases, we investigated the anti-inflammatory effect of VA on regulation of cyclo-oxygenase expression and PGE2 biosynthesis by using human lung adenocarcinoma cells (A549 cells) as a model. A549 cells were stimulated with IL-1β and treated with VA preparation (VA Qu Spez) for 18 hours. PGE2 was analysed in the culture supernatants by enzyme immunoassay. Expression of COX-2 and COX-1 proteins was analyzed by immunoblotting and the expression of COX-2 mRNA was assessed by semi-quantitative RT-PCR. We found that VA Qu Spez inhibit the secretion of IL-1β-induced PGE2 in a dose-dependent manner. Further, we also show that this inhibitory action was associated with a reduced expression of COX-2 without modulating the COX-1 expression. Together these results demonstrate a novel anti-inflammatory mechanism of action of VA preparations wherein VA exerts an anti-inflammatory effect by inhibiting cytokine-induced PGE2 via selective inhibition of COX-2. PMID:22028854

  4. The function of myostatin in the regulation of fat mass in mammals.

    PubMed

    Deng, Bing; Zhang, Feng; Wen, Jianghui; Ye, Shengqiang; Wang, Lixia; Yang, Yu; Gong, Ping; Jiang, Siwen

    2017-01-01

    Myostatin (MSTN), also referred to as growth and differentiation factor-8, is a protein secreted in muscle tissues. Researchers believe that its primary function is in negatively regulating muscle because a mutation in its coding region can lead to the famous double muscle trait in cattle. Muscle and adipose tissue develop from the same mesenchymal stem cells, and researchers have found that MSTN is expressed in fat tissues and plays a key role in adipogenesis. Interestingly, MSTN can exert a dual function, either inhibiting or promoting adipogenesis, according to the situation. Due to its potential function in controlling body fat mass, MSTN has attracted the interest of researchers. In this review, we explore its function in regulating adipogenesis in mammals, including preadipocytes, multipotent stem cells and fat mass.

  5. Transgenic expression of a myostatin inhibitor derived from follistatin increases skeletal muscle mass and ameliorates dystrophic pathology in mdx mice.

    PubMed

    Nakatani, Masashi; Takehara, Yuka; Sugino, Hiromu; Matsumoto, Mitsuru; Hashimoto, Osamu; Hasegawa, Yoshihisa; Murakami, Tatsuya; Uezumi, Akiyoshi; Takeda, Shin'ichi; Noji, Sumihare; Sunada, Yoshihide; Tsuchida, Kunihiro

    2008-02-01

    Myostatin is a potent negative regulator of skeletal muscle growth. Therefore, myostatin inhibition offers a novel therapeutic strategy for muscular dystrophy by restoring skeletal muscle mass and suppressing the progression of muscle degeneration. The known myostatin inhibitors include myostatin propeptide, follistatin, follistatin-related proteins, and myostatin antibodies. Although follistatin shows potent myostatin-inhibiting activities, it also acts as an efficient inhibitor of activins. Because activins are involved in multiple functions in various organs, their blockade by follistatin would affect multiple tissues other than skeletal muscles. In the present study, we report the characterization of a myostatin inhibitor derived from follistatin, which does not affect activin signaling. The dissociation constants (K(d)) of follistatin to activin and myostatin are 1.72 nM and 12.3 nM, respectively. By contrast, the dissociation constants (K(d)) of a follistatin-derived myostatin inhibitor, designated FS I-I, to activin and myostatin are 64.3 microM and 46.8 nM, respectively. Transgenic mice expressing FS I-I, under the control of a skeletal muscle-specific promoter showed increased skeletal muscle mass and strength. Hyperplasia and hypertrophy were both observed. We crossed FS I-I transgenic mice with mdx mice, a model for Duchenne muscular dystrophy. Notably, the skeletal muscles in the mdx/FS I-I mice showed enlargement and reduced cell infiltration. Muscle strength is also recovered in the mdx/FS I-I mice. These results indicate that myostatin blockade by FS I-I has a therapeutic potential for muscular dystrophy.

  6. Myostatin signals through Pax7 to regulate satellite cell self-renewal

    SciTech Connect

    McFarlane, Craig; Hennebry, Alex; Thomas, Mark; Plummer, Erin; Ling, Nicholas; Sharma, Mridula; Kambadur, Ravi

    2008-01-15

    Myostatin, a Transforming Growth Factor-beta (TGF-{beta}) super-family member, has previously been shown to negatively regulate satellite cell activation and self-renewal. However, to date the mechanism behind Myostatin function in satellite cell biology is not known. Here we show that Myostatin signals via a Pax7-dependent mechanism to regulate satellite cell self-renewal. While excess Myostatin inhibited Pax7 expression via ERK1/2 signaling, an increase in Pax7 expression was observed following both genetic inactivation and functional antagonism of Myostatin. As a result, we show that either blocking or inactivating Myostatin enhances the partitioning of the fusion-incompetent self-renewed satellite cell lineage (high Pax7 expression, low MyoD expression) from the pool of actively proliferating myogenic precursor cells. Consistent with this result, over-expression of Pax7 in C2C12 myogenic cells resulted in increased self-renewal through a mechanism which slowed both myogenic proliferation and differentiation. Taken together, these results suggest that increased expression of Pax7 promotes satellite cell self-renewal, and furthermore Myostatin may control the process of satellite cell self-renewal through regulation of Pax7. Thus we speculate that, in addition to the intrinsic factors (such as Pax7), extrinsic factors both positive and negative in nature, will play a major role in determining the stemness of skeletal muscle satellite cells.

  7. Possible role of TIEG1 as a feedback regulator of myostatin and TGF-{beta} in myoblasts

    SciTech Connect

    Miyake, Masato; Hayashi, Shinichiro; Iwasaki, Shunsuke; Chao, Guozheng; Takahashi, Hideyuki; Watanabe, Kouichi; Ohwada, Shyuichi; Aso, Hisashi; Yamaguchi, Takahiro

    2010-03-19

    Myostatin and TGF-{beta} negatively regulate skeletal muscle development and growth. Both factors signal through the Smad2/3 pathway. However, the regulatory mechanism of myostatin and TGF-{beta} signaling remains unclear. TGF-{beta} inducible early gene (TIEG) 1 is highly expressed in skeletal muscle and has been implicated in the modulation of TGF-{beta} signaling. These findings prompted us to investigate the effect of TIEG1 on myostatin and TGF-{beta} signaling using C2C12 myoblasts. Myostatin and TGF-{beta} induced the expression of TIEG1 and Smad7 mRNAs, but not TIEG2 mRNA, in proliferating C2C12 cells. When differentiating C2C12 myoblasts were stimulated by myostatin, TIEG1 mRNA was up-regulated at a late stage of differentiation. In contrast, TGF-{beta} enhanced TIEG1 expression at an early stage. Overexpression of TIEG1 prevented the transcriptional activation of Smad by myostatin and TGF-{beta} in both proliferating or differentiating C2C12 cells, but the expression of Smad2 and Smad7 mRNAs was not affected. Forced expression of TIEG1 inhibited myogenic differentiation but did not cause more inhibition than the empty vector in the presence of myostatin or TGF-{beta}. These results demonstrate that TIEG1 is one possible feedback regulator of myostatin and TGF-{beta} that prevents excess action in myoblasts.

  8. Thienoquinolins exert diuresis by strongly inhibiting UT-A urea transporters.

    PubMed

    Ren, Huiwen; Wang, Yanhua; Xing, Yongning; Ran, Jianhua; Liu, Ming; Lei, Tianluo; Zhou, Hong; Li, Runtao; Sands, Jeff M; Yang, Baoxue

    2014-12-15

    Urea transporters (UT) play an important role in the urine concentration mechanism by mediating intrarenal urea recycling, suggesting that UT inhibitors could have therapeutic use as a novel class of diuretic. Recently, we found a thienoquinolin UT inhibitor, PU-14, that exhibited diuretic activity. The purpose of this study was to identify more potent UT inhibitors that strongly inhibit UT-A isoforms in the inner medullary collecting duct (IMCD). Efficient thienoquinolin UT inhibitors were identified by structure-activity relationship analysis. Urea transport inhibition activity was assayed in perfused rat terminal IMCDs. Diuretic activity of the compound was determined in rats and mice using metabolic cages. The results show that the compound PU-48 exhibited potent UT-A inhibition activity. The inhibition was 69.5% with an IC50 of 0.32 μM. PU-48 significantly inhibited urea transport in perfused rat terminal IMCDs. PU-48 caused significant diuresis in UT-B null mice, which indicates that UT-A is the target of PU-48. The diuresis caused by PU-48 did not change blood Na(+), K(+), or Cl(-) levels or nonurea solute excretion in rats and mice. No toxicity was detected in cells or animals treated with PU-48. The results indicate that thienoquinolin UT inhibitors induce a diuresis by inhibiting UT-A in the IMCD. This suggests that they may have the potential to be developed as a novel class of diuretics with fewer side effects than classical diuretics.

  9. Labdanolic acid methyl ester (LAME) exerts anti-inflammatory effects through inhibition of TAK-1 activation

    SciTech Connect

    Cuadrado, Irene; Estevez-Braun, Ana; Heras, Beatriz de las

    2012-01-01

    Labdane derivatives obtained from the diterpenoid labdanediol suppressed NO and PGE{sub 2} production in LPS-stimulated RAW 264.7 macrophages. However, mechanisms involved in these inhibitory effects are not elucidated. In this study, we investigated the signaling pathways involved in the anti-inflammatory effects of labdanolic acid methyl ester (LAME) in peritoneal macrophages and examined its therapeutic effect in a mouse endotoxic shock model. LAME reduced the production of NO and PGE{sub 2} in LPS-activated macrophages. This effect involved the inhibition of NOS-2 and COX-2 gene expression, acting at the transcription level. Examination of the effects of the diterpene on NF-κB signaling showed that LAME inhibits the phosphorylation of IκBα and IκBβ, preventing their degradation and the nuclear translocation of the NF-κB p65 subunit. Moreover, inhibition of MAPK signaling was also observed. A further experiment revealed that LAME inhibited the phosphorylation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), an upstream signaling molecule required for IKK and mitogen-activated protein kinases (MAPKs) activation. Inflammatory cytokines such as IL-6, TNF-α and IP-10 were downregulated in the presence of this compound after stimulation with LPS. Additionally, LAME also improved survival in a mouse model of endotoxemia and reduced the circulatory levels of cytokines (IL-6, TNF-α). In conclusion, these results indicate that labdane diterpene LAME significantly attenuates the pro-inflammatory response induced by LPS both in vivo and in vitro. Highlights: ► LAME reduced the production of NO and PGE{sub 2} in LPS-activated macrophages. ► IL-6, TNF-α and IP-10 were also inhibited by LAME. ► Inhibition of TAK-1 activation is the mechanism involved in this process. ► LAME improved survival in a mouse model of endotoxemia. ► LAME reduced the circulatory levels of cytokines (IL-6, TNF-α).

  10. Genetics Home Reference: myostatin-related muscle hypertrophy

    MedlinePlus

    ... Conditions myostatin-related muscle hypertrophy myostatin-related muscle hypertrophy Enable Javascript to view the expand/collapse boxes. ... Open All Close All Description Myostatin-related muscle hypertrophy is a rare condition characterized by reduced body ...

  11. Rottlerin exerts its anti-tumor activity through inhibition of Skp2 in breast cancer cells

    PubMed Central

    Hou, Yingying; Wang, Lixia; Ye, Xiantao; Zhao, Zhe; Zhou, Xiuxia; Li, Yali; Wang, Zhiwei

    2016-01-01

    Studies have investigated the tumor suppressive role of rottlerin in carcinogenesis. However, the molecular mechanisms of rottlerin-induced anti-tumor activity are largely unclear. Skp2 (S-phase kinase associated protein 2) has been validated to play an oncogenic role in a variety of human malignancies. Therefore, inactivation of Skp2 could be helpful for the treatment of human cancers. In the current study, we explore whether rottlerin could inhibit Skp2 expression, leading to inhibition of cell growth, migration and invasion in breast cancer cells. We found that rottlerin treatment inhibited cell growth, induced apoptosis and cell cycle arrest. We also revealed that rottlerin suppressed cell migration and invasion in breast cancer cells. Mechanically, we observed that rottlerin significantly down-regulated the expression of Skp2 in breast cancer cells. Importantly, overexpression of Skp2 abrogated rottlerin-mediated tumor suppressive activity, whereas down-regulation of Skp2 enhanced rottlerin-triggered anti-tumor function. Strikingly, we identified that rottlerin exhibited its anti-tumor potential partly through inactivation of Skp2 in breast cancer. Our findings indicate that rottlerin could be a potential safe agent for the treatment of breast cancer. PMID:27582552

  12. Sodium Methyldithiocarbamate Exerts Broad Inhibition of Cellular Signaling and Expression of Effector Molecules of Inflammation

    PubMed Central

    Pruett, Stephen B.

    2013-01-01

    Sodium methyldithiocarbamate (SMD) is one of the most abundantly used conventional pesticides in the United States. At dosages relevant to occupational exposure, it causes major effects on the immune system in mice, including a decreased resistance to sepsis. This lab has identified some of the mechanisms of action of this compound and some of the immunological parameters affected, but the global effects have not previously been assessed. The purpose of the present study was to conduct transcriptomic analysis of the effects of SMD on lipopolysaccharide-induced expression of mediators important in innate immunity and inflammation. The results revealed broad effects on expression of transcription factors in both branches of Toll-like receptor 4 (TLR4) signaling (MyD88 and TRIF). However, TLR3 and interferon signaling pathways were decreased to a greater extent, and assessment of the effects of SMD on polyinosinic polycytidylic acid–induced cytokine and chemokine production revealed that these responses mediated by TLR3 were indeed sensitive to the effects of SMD, with inhibition occurring at lower dosages than required to inhibit responses to other immunological stimuli tested in our previous studies. In the downstream signaling pathways of these TLRs, functional analysis also revealed that NF-κB activation was inhibited by SMD, as indicated by gene expression analysis and a reporter construct in mice. A previously unreported effect on luteinizing hormone and follicle-stimulating hormone pathways was also observed. PMID:24056979

  13. Ursodeoxycholic Acid (UDCA) Exerts Anti-Atherogenic Effects by Inhibiting Endoplasmic Reticulum (ER) Stress Induced by Disturbed Flow.

    PubMed

    Chung, Jihwa; Kim, Kyoung Hwa; Lee, Seok Cheol; An, Shung Hyun; Kwon, Kihwan

    2015-10-01

    Disturbed blood flow with low-oscillatory shear stress (OSS) is a predominant atherogenic factor leading to dysfunctional endothelial cells (ECs). Recently, it was found that disturbed flow can directly induce endoplasmic reticulum (ER) stress in ECs, thereby playing a critical role in the development and progression of atherosclerosis. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid, has long been used to treat chronic cholestatic liver disease and is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, its role in atherosclerosis remains unexplored. In this study, we demonstrated the anti-atherogenic activity of UDCA via inhibition of disturbed flow-induced ER stress in atherosclerosis. UDCA effectively reduced ER stress, resulting in a reduction in expression of X-box binding protein-1 (XBP-1) and CEBP-homologous protein (CHOP) in ECs. UDCA also inhibits the disturbed flow-induced inflammatory responses such as increases in adhesion molecules, monocyte adhesion to ECs, and apoptosis of ECs. In a mouse model of disturbed flow-induced atherosclerosis, UDCA inhibits atheromatous plaque formation through the alleviation of ER stress and a decrease in adhesion molecules. Taken together, our results revealed that UDCA exerts anti-atherogenic activity in disturbed flow-induced atherosclerosis by inhibiting ER stress and the inflammatory response. This study suggests that UDCA may be a therapeutic agent for prevention or treatment of atherosclerosis.

  14. Physalis angulata extract exerts anti-inflammatory effects in rats by inhibiting different pathways.

    PubMed

    Bastos, G N T; Silveira, A J A; Salgado, C G; Picanço-Diniz, D L W; do Nascimento, J L M

    2008-07-23

    Physalis angulata is a popular medicine used in Brazil due to its anti-inflammatory effects, but the pharmacological mechanisms underlying these actions remain to be better understood. In the present work, lyophilized aqueous extract from the roots of Physalis angulata Linneu (AEPa) was used to control the inflammatory response induced by the injection of 1% carrageenan into subcutaneous rat's air pouches. Adenosine deaminase (ADA) activity, nitrite level, and prostaglandin E(2) (PGE(2)) level were used to evaluate the action of inflammatory mediators. Tumor growth factor-beta (TGF-beta) level was used as a bioindicator of immunomodulatory response. Rats were injected with vehicle, indomethacin, or AEPa (0.5 mg/kg, 1 mg/kg, and 5 mg/kg i.p.), 1h before carrageenan administration. AEPa at 0.5 mg/kg had no effect. However, 1mg/kg of AEPa showed significant anti-inflammatory effects, decreasing exudate volume, total number of inflammatory cells, ADA activity, nitrite level, and PGE(2) level in 50%, 41%, 20%, 60%, and 41%, respectively. The anti-inflammatory effects of 5 mg/kg AEPa appeared to be more effective than those of 1 mg/kg AEPa (84%, 80%, 43%, 70%, and 75%, respectively). In addition, TGF-beta level was upregulated to 9700 pg/ml after 5mg/kg AEPa, in comparison with 160 pg/ml in the vehicle-treated group, and 137 pg/ml in the indomethacin-treated group. The results indicate that AEPa exerts powerful anti-inflammatory and immunomodulatory activities, interfering with the cyclooxygenase pathway, lymphocyte proliferation, NO, and TGF-beta production.

  15. Myostatin Attenuation In Vivo Reduces Adiposity, but Activates Adipogenesis

    PubMed Central

    Li, Naisi; Yang, Qiyuan; Walker, Ryan G.; Thompson, Thomas B.; Du, Min

    2016-01-01

    A potentially novel approach for treating obesity includes attenuating myostatin as this increases muscle mass and decreases fat mass. Notwithstanding, conflicting studies report that myostatin stimulates or inhibits adipogenesis and it is unknown whether reduced adiposity with myostatin attenuation results from changes in fat deposition or adipogenesis. We therefore quantified changes in the stem, transit amplifying and progenitor cell pool in white adipose tissue (WAT) and brown adipose tissue (BAT) using label-retaining wild-type and mstn−/− (Jekyll) mice. Muscle mass was larger in Jekyll mice, WAT and BAT mass was smaller and label induction was equal in all tissues from both wild-type and Jekyll mice. The number of label-retaining cells, however, dissipated quicker in WAT and BAT of Jekyll mice and was only 25% and 17%, respectively, of wild-type cell counts 1 month after induction. Adipose cell density was significantly higher in Jekyll mice and increased over time concomitant with label-retaining cell disappearance, which is consistent with enhanced expansion and differentiation of the stem, transit amplifying and progenitor pool. Stromal vascular cells from Jekyll WAT and BAT differentiated into mature adipocytes at a faster rate than wild-type cells and although Jekyll WAT cells also proliferated quicker in vitro, those from BAT did not. Differentiation marker expression in vitro, however, suggests that mstn−/− BAT preadipocytes are far more sensitive to the suppressive effects of myostatin. These results suggest that myostatin attenuation stimulates adipogenesis in vivo and that the reduced adiposity in mstn−/− animals results from nutrient partitioning away from fat and in support of muscle. PMID:26580671

  16. Glucocorticoids Enhance Muscle Proteolysis through a Myostatin-Dependent Pathway at the Early Stage

    PubMed Central

    Wang, Ruxia; Jiao, Hongchao; Zhao, Jingpeng; Wang, Xiaojuan; Lin, Hai

    2016-01-01

    Myostatin, a member of the TGF-β superfamily of secreted proteins, is expressed primarily in skeletal muscle. It negatively regulates muscle mass and is associated with glucocorticoid-induced muscle atrophy. However, it remains unclear whether myostatin is involved in glucocorticoid-induced muscle protein turnover. The aim of the present study was to investigate the role of myostatin in protein metabolism during dexamethasone (DEX) treatment. Protein synthesis rates and the expression of the genes for myostatin, ubiquitin-proteasome atrogin-1, MuRF1, FoxO1/3a and mTOR/p70S6K were determined. The results show that DEX decreased (P<0.05) protein synthesis rates while increasing the abundance of myostatin. DEX increased (P<0.05) the level of phospho-FoxO1/3a (Thr 24/32) and the expression of MuRF1. In contrast, DEX treatment had no detectable effect on atrogin-1 protein levels (P>0.05). The phosphorylation levels of mTOR and p70S6K were decreased by DEX treatment (P<0.05). Follistatin treatment inhibited the DEX-induced increase in myostatin (P<0.05) and the activation of phosphor-FoxO1/3a (Thr 24/32) (P< 0.05) and MuRF1 (P<0.05). Follistatin treatment had no influence on the protein synthesis rate or on the phosphorylation levels of mTOR (Ser 2448) and p70S6K (Thr 389) (P> 0.05). In conclusion, the present study suggests that the myostatin signalling pathway is associated with glucocorticoid-induced muscle protein catabolism at the beginning of exposure. Myostatin is not a main pathway associated with the suppression of muscle protein synthesis by glucocorticoids. PMID:27227776

  17. Myostatin inhibitors as therapies for muscle wasting associated with cancer and other disorders

    PubMed Central

    Smith, Rosamund C.; Lin, Boris K.

    2013-01-01

    Purpose of review This review summarizes recent progress in the development of myostatin inhibitors for the treatment of muscle wasting disorders. It also focuses on findings in myostatin biology that may have implications for the development of antimyostatin therapies. Recent findings There has been progress in evaluating antimyostatin therapies in animal models of muscle wasting disorders. Some programs have progressed into clinical development with initial results showing positive impact on muscle volume. In normal mice myostatin deficiency results in enlarged muscles with increased total force but decreased specific force (total force/total mass). An increase in myofibrillar protein synthesis without concomitant satellite cell proliferation and fusion leads to muscle hypertrophy with unchanged myonuclear number. A specific force reduction is not observed when atrophied muscle, the predominant therapeutic target of myostatin inhibitor therapy, is made myostatindeficient. Myostatin has been shown to be expressed by a number of tumor cell lines in mice and man. Summary Myostatin inhibition remains a promising therapeutic strategy for a range of muscle wasting disorders. PMID:24157714

  18. Cholecystokinin exerts an effect via the endocannabinoid system to inhibit GABAergic transmission in midbrain periaqueductal gray.

    PubMed

    Mitchell, Vanessa A; Jeong, Hyo-Jin; Drew, Geoffrey M; Vaughan, Christopher W

    2011-08-01

    Cholecystokinin modulates pain and anxiety via its functions within brain regions such as the midbrain periaqueductal gray (PAG). The aim of this study was to examine the cellular actions of cholecystokinin on PAG neurons. Whole-cell patch clamp recordings were made from rat midbrain PAG slices in vitro to examine the postsynaptic effects of cholecystokinin and its effects on synaptic transmission. Sulfated cholecystokinin-(26-33) (CCK-S, 100-300 nM), but not non-sulfated cholecystokinin-(26-33) (CCK-NS, 100-300 nM) produced an inward current in a sub-population of opioid sensitive and insensitive PAG neurons, which did not reverse over a range of membrane potentials. The CCK-S-induced current was abolished by the CCK1 selective antagonist devazepide (100 nM), but not by the CCK2 selective antagonists CI988 (100 nM, 1 μM) and LY225910 (1 μM). CCK-S, but not CCK-NS produced a reduction in the amplitude of evoked GABA(A)-mediated inhibitory postsynaptic currents (IPSCs) and an increase in the evoked IPSC paired-pulse ratio. By contrast, CCK-S had little effect on the rate and amplitude of TTX-resistant miniature IPSCs under basal conditions and when external K(+) was elevated. The CCK-S-induced inhibition of evoked IPSCs was abolished by the cannabinoid CB1 receptor antagonist AM251 (3 μM), the mGluR5 antagonist MPEP (10 μM) and the 1, 2-diacylglycerol lipase (DAGLα) inhibitor tetrahydrolipstatin (10 μM). In addition, CCK-S produced an increase in the rate of spontaneous non-NMDA-mediated, TTX-dependent excitatory postsynaptic currents (EPSCs). These results suggest that cholecystokinin produces direct neuronal depolarisation via CCK1 receptors and inhibits GABAergic synaptic transmission via action potential-dependent release of glutamate and mGluR5-induced endocannabinoid signaling. Thus, cholecystokinin has cellular actions within the PAG that can both oppose and reinforce opioid and cannabinoid modulation of pain and anxiety within this

  19. Inhibition of mitotic clonal expansion mediates fisetin-exerted prevention of adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Lee, Youngyi; Bae, Eun Ju

    2013-11-01

    Adipocytes are the key player in adipose tissue inflammation and subsequent systemic insulin resistance and its development involves complex process of proliferation and differentiation of preadipocytes. Fistein, a polyphenol flavonoid, is known to exert anti-inflammatory, anti-carcinogenic and anti-diabetic effects. In this study, we aimed to investigate the effect of fisetin on adipocyte proliferation and differentiation in 3T3-L1 preadipocyte cell line and its mechanism of action. We found that fisetin inhibits adipocyte differentiation in a concentration dependent manner, which were evidenced by Oil Red O staining and the protein expression of mature adipocyte marker genes fatty acid synthase and peroxisome proliferator-activated receptor γ. Moreover, the proliferation of preadipocytes was also markedly suppressed by treatment of fisetin for 24 and 48 h in the differentiation medium. We also found that fisetin inhibition of adipocyte differentiation was largely due to the effect on mitotic clonal expansion. Fisetin suppression of preadipocyte proliferation at early stage of differentiation was accompanied by the changes of expression of a series of cell cycle regulatory proteins. Altogether, our results suggest that the inhibition of adipocyte differentiation by fisetin may be at least in part mediated by cell cycle arrest during adipogenesis.

  20. Prodigiosin inhibits Wnt/β-catenin signaling and exerts anticancer activity in breast cancer cells

    PubMed Central

    Wang, Zhongyuan; Li, Bo; Zhou, Liang; Yu, Shubin; Su, Zijie; Song, Jiaxing; Sun, Qi; Sha, Ou; Wang, Xiaomei; Jiang, Wenqi; Willert, Karl; Wei, Lei; Carson, Dennis A.; Lu, Desheng

    2016-01-01

    Prodigiosin, a natural red pigment produced by numerous bacterial species, has exhibited promising anticancer activity; however, the molecular mechanisms of action of prodigiosin on malignant cells remain unclear. Aberrant activation of the Wnt/β-catenin signaling cascade is associated with numerous human cancers. In this study, we identified prodigiosin as a potent inhibitor of the Wnt/β-catenin pathway. Prodigiosin blocked Wnt/β-catenin signaling by targeting multiple sites of this pathway, including the low-density lipoprotein-receptor-related protein (LRP) 6, Dishevelled (DVL), and glycogen synthase kinase-3β (GSK3β). In breast cancer MDA-MB-231 and MDA-MB-468 cells, nanomolar concentrations of prodigiosin decreased phosphorylation of LRP6, DVL2, and GSK3β and suppressed β-catenin–stimulated Wnt target gene expression, including expression of cyclin D1. In MDA-MB-231 breast cancer xenografts and MMTV-Wnt1 transgenic mice, administration of prodigiosin slowed tumor progression and reduced the expression of phosphorylated LRP6, phosphorylated and unphosphorylated DVL2, Ser9 phosphorylated GSK3β, active β-catenin, and cyclin D1. Through its ability to inhibit Wnt/β-catenin signaling and reduce cyclin D1 levels, prodigiosin could have therapeutic activity in advanced breast cancers. PMID:27799526

  1. Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism.

    PubMed

    McFarlane, Craig; Plummer, Erin; Thomas, Mark; Hennebry, Alex; Ashby, Murray; Ling, Nicholas; Smith, Heather; Sharma, Mridula; Kambadur, Ravi

    2006-11-01

    Myostatin, a transforming growth factor-beta (TGF-beta) super-family member, has been well characterized as a negative regulator of muscle growth and development. Myostatin has been implicated in several forms of muscle wasting including the severe cachexia observed as a result of conditions such as AIDS and liver cirrhosis. Here we show that Myostatin induces cachexia by a mechanism independent of NF-kappaB. Myostatin treatment resulted in a reduction in both myotube number and size in vitro, as well as a loss in body mass in vivo. Furthermore, the expression of the myogenic genes myoD and pax3 was reduced, while NF-kappaB (the p65 subunit) localization and expression remained unchanged. In addition, promoter analysis has confirmed Myostatin inhibition of myoD and pax3. An increase in the expression of genes involved in ubiquitin-mediated proteolysis is observed during many forms of muscle wasting. Hence we analyzed the effect of Myostatin treatment on proteolytic gene expression. The ubiquitin associated genes atrogin-1, MuRF-1, and E214k were upregulated following Myostatin treatment. We analyzed how Myostatin may be signaling to induce cachexia. Myostatin signaling reversed the IGF-1/PI3K/AKT hypertrophy pathway by inhibiting AKT phosphorylation thereby increasing the levels of active FoxO1, allowing for increased expression of atrophy-related genes. Therefore, our results suggest that Myostatin induces cachexia through an NF-kappaB-independent mechanism. Furthermore, increased Myostatin levels appear to antagonize hypertrophy signaling through regulation of the AKT-FoxO1 pathway.

  2. Essential Oil of Pinus koraiensis Exerts Antiobesic and Hypolipidemic Activity via Inhibition of Peroxisome Proliferator-Activated Receptors Gamma Signaling

    PubMed Central

    Ko, Hyun-Suk; Lee, Hyo-Jeong; Lee, Hyo-Jung; Sohn, Eun Jung; Yun, Miyong; Lee, Min-Ho; Kim, Sung-Hoon

    2013-01-01

    Our group previously reported that essential oil of Pinus koraiensis (EOPK) exerts antihyperlipidemic effects via upregulation of low-density lipoprotein receptor and inhibition of acyl-coenzyme A. In the present study, we investigated the antiobesity and hypolipidemic mechanism of EOPK using in vitro 3T3-L1 cells and in vivo HFD-fed rats. EOPK markedly suppressed fat accumulation and intracellular triglyceride associated with downregulation of adipogenic transcription factor expression, including PPARγ and CEBPα in the differentiated 3T3-L1 adipocytes. Additionally, EOPK attenuated the expression levels of FABP and GPDH as target genes of PPARγ during adipocyte differentiation. Furthermore, PPARγ inhibitor GW9662 enhanced the decreased expression of FABP and PPARγ and fat accumulation induced by EOPK. To confirm the in vitro activity of EOPK, animal study was performed by administering normal diet, HFD, and/or EOPK at the dose of 100 or 200 mg/kg for 6 weeks. Consistently, EOPK significantly suppressed body weight gain, serum triglyceride, total cholesterol, LDL cholesterol, and AI value and increased HDL cholesterol in a dose-dependent manner. Immunohistochemistry revealed that EOPK treatment abrogated the expression of PPARγ in the liver tissue sections of EOPK-treated rats. Taken together, our findings suggest that EOPK has the antiobesic and hypolipidemic potential via inhibition of PPARγ-related signaling. PMID:23997801

  3. Forsythoside A exerts antipyretic effect on yeast-induced pyrexia mice via inhibiting transient receptor potential vanilloid 1 function

    PubMed Central

    Liu, Cuiling; Su, Hongchang; Wan, Hongye; Qin, Qingxia; Wu, Xuan; Kong, Xiangying; Lin, Na

    2017-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel gated by noxious heat, playing major roles in thermoregulation. Forsythoside A (FT-A) is the most abundant phenylethanoid glycosides in Fructus Forsythiae, which has been prescribed as a medicinal herb for treating fever in China for a long history. However, how FT-A affects pyrexia and what is the underlying molecular mechanism remain largely unknown. Here we found that FT-A exerted apparent antipyretic effect through decreasing the levels of prostaglandin E2 (PGE2) and interleukin 8 (IL-8) in a dose-dependent fashion on the yeast induced pyrexia mice. Interestingly, FT-A significantly downregulated TRPV1 expression in the hypothalamus and dorsal root ganglion (DRG) of the yeast induced pyrexia mice. Moreover, FT-A inhibited IL-8 and PGE2 secretions, and calcium influx in the HEK 293T-TRPV1 cells after stimulated with capsaicin, the specific TRPV1 agonist. Further investigation of the molecular mechanisms revealed that FT-A treatment rapidly inhibited phosphorylation of extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38 in both yeast induced pyrexia mice and HEK 293T-TRPV1 cells. These results suggest that FT-A may serve as a potential antipyretic agent and the therapeutic action of Fructus Forsythiae on pyretic related disease is, in part, due to the FT-A activities. PMID:28123347

  4. Myostatin Activates the Ubiquitin-Proteasome and Autophagy-Lysosome Systems Contributing to Muscle Wasting in Chronic Kidney Disease

    PubMed Central

    Wang, Dong-Tao; Yang, Ya-Jun; Huang, Ren-Hua; Zhang, Zhi-Hua; Lin, Xin

    2015-01-01

    Our evidence demonstrated that CKD upregulated the expression of myostatin, TNF-α, and p-IkBa and downregulated the phosphorylation of PI3K, Akt, and FoxO3a, which were also associated with protein degradation and muscle atrophy. The autophagosome formation and protein expression of autophagy-related genes were increased in muscle of CKD rats. The mRNA level and protein expression of MAFbx and MuRF-1 were also upregulated in CKD rats, as well as proteasome activity of 26S. Moreover, activation of myostatin elicited by TNF-α induces C2C12 myotube atrophy via upregulating the expression of autophagy-related genes, including MAFbx and MuRF1 and proteasome subunits. Inactivation of FoxO3a triggered by PI3K inhibitor LY294002 prevented the myostatin-induced increase of expression of MuRF1, MAFbx, and LC3-II protein in C2C12 myotubes. The findings were further consolidated by using siRNA interference and overexpression of myostatin. Additionally, expression of myostatin was activated by TNF-α via a NF-κB dependent pathway in C2C12 myotubes, while inhibition of NF-κB activity suppressed myostatin and improved myotube atrophy. Collectively, myostatin mediated CKD-induced muscle catabolism via coordinate activation of the autophagy and the ubiquitin-proteasome systems. PMID:26448817

  5. The effect of hyperammonemia on myostatin and myogenic regulatory factor gene expression in broiler embryos

    PubMed Central

    Stern, R.A.; Ashwell, C.M.; Dasarathy, S.; Mozdziak, P.E.

    2015-01-01

    Myogenesis is facilitated by four myogenic regulatory factors and is significantly inhibited by myostatin. The objective of the current study was to examine embryonic gene regulation of myostatin/myogenic regulatory factors, and subsequent manipulations of protein synthesis, in broiler embryos under induced hyperammonemia. Broiler eggs were injected with ammonium acetate solution four times over 48 hours beginning on either embryonic day (ED) 15 or 17. Serum ammonia concentration was significantly higher (P < 0.05) in ammonium acetate injected embryos for both ED17 and ED19 collected samples when compared to sham-injected controls. Expression of mRNA, extracted from pectoralis major of experimental and control embryos, was measured using real-time quantitative PCR for myostatin, myogenic regulatory factors myogenic factor 5, myogenic determination factor 1, myogenin, myogenic regulatory factor 4, and paired box 7. A significantly lower (P < 0.01) myostatin expression was accompanied by a higher serum ammonia concentration in both ED17 and ED19 collected samples. Myogenic factor 5 expression was higher (P < 0.05) in ED17 collected samples administered ammonium acetate. In both ED17 and ED19 collected samples, myogenic regulatory factor 4 was lower (P ≤ 0.05) in ammonium acetate injected embryos. No significant difference was seen in myogenic determination factor 1, myogenin, or paired box 7 expression between treatment groups for either age of sample collection. Additionally, there was no significant difference in BrdU staining of histological samples taken from treated and control embryos. Myostatin protein levels were evaluated by Western blot analysis, and also showed lower myostatin expression (P < 0.05). Overall, it appears possible to inhibit myostatin expression through hyperammonemia, which is expected to have a positive effect on embryonic myogenesis and postnatal muscle growth. PMID:25689990

  6. Methylene blue exerts a neuroprotective effect against traumatic brain injury by promoting autophagy and inhibiting microglial activation

    PubMed Central

    ZHAO, MINGFEI; LIANG, FENG; XU, HANGDI; YAN, WEI; ZHANG, JIANMIN

    2016-01-01

    Traumatic brain injury (TBI) leads to permanent neurological impairment, and methylene blue (MB) exerts central nervous system neuroprotective effects. However, only one previous study has investigated the effectiveness of MB in a controlled cortical impact injury model of TBI. In addition, the specific mechanisms underlying the effect of MB against TBI remain to be elucidated. Therefore, the present study investigated the neuroprotective effect of MB on TBI and the possible mechanisms involved. In a mouse model of TBI, the animals were randomly divided into sham, vehicle (normal saline) or MB groups. The treatment time-points were 24 and 72 h (acute phase of TBI), and 14 days (chronic phase of TBI) post-TBI. The brain water content (BWC), and levels of neuronal death, and autophagy were determined during the acute phase, and neurological deficit, injury volume and microglial activation were assessed at all time-points. The injured hemisphere BWC was significantly increased 24 h post-TBI, and this was attenuated following treatment with MB. There was a significantly higher number of surviving neurons in the MB group, compared with the Vehicle group at 24 and 72 h post-TBI. In the acute phase, the MB-treated animals exhibited significantly upregulated expression of Beclin 1 and increased LC3-II to LC3-I ratios, compared with the vehicle group, indicating an increased rate of autophagy. Neurological functional deficits, measured using the modified neurological severity score, were significantly lower in the acute phase in the MB-treated animals and cerebral lesion volumes in the MB-treated animals were significantly lower, compared with the other groups at all time-points. Microglia were activated 24 h after TBI, peaked at 72 h and persisted until 14 days after TBI. Although the number of Iba-1-positive cells in the vehicle and MB groups 24 h post-TBI were not significantly different, marked microglial inhibition was observed in the MB group 72 h and 14 days after

  7. Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin.

    PubMed

    Reisz-Porszasz, Suzanne; Bhasin, Shalender; Artaza, Jorge N; Shen, Ruoqing; Sinha-Hikim, Indrani; Hogue, Aimee; Fielder, Thomas J; Gonzalez-Cadavid, Nestor F

    2003-10-01

    Mutations in the myostatin gene are associated with hypermuscularity, suggesting that myostatin inhibits skeletal muscle growth. We postulated that increased tissue-specific expression of myostatin protein in skeletal muscle would induce muscle loss. To investigate this hypothesis, we generated transgenic mice that overexpress myostatin protein selectively in the skeletal muscle, with or without ancillary expression in the heart, utilizing cDNA constructs in which a wild-type (MCK/Mst) or mutated muscle creatine kinase (MCK-3E/Mst) promoter was placed upstream of mouse myostatin cDNA. Transgenic mice harboring these MCK promoters linked to enhanced green fluorescent protein (EGFP) expressed the reporter protein only in skeletal and cardiac muscles (MCK) or in skeletal muscle alone (MCK-3E). Seven-week-old animals were genotyped by PCR of tail DNA or by Southern blot analysis of liver DNA. Myostatin mRNA and protein, measured by RT-PCR and Western blot, respectively, were significantly higher in gastrocnemius, quadriceps, and tibialis anterior of MCK/Mst-transgenic mice compared with wild-type mice. Male MCK/Mst-transgenic mice had 18-24% lower hind- and forelimb muscle weight and 18% reduction in quadriceps and gastrocnemius fiber cross-sectional area and myonuclear number (immunohistochemistry) than wild-type male mice. Male transgenic mice with mutated MCK-3E promoter showed similar effects on muscle mass. However, female transgenic mice with either type of MCK promoter did not differ from wild-type controls in either body weight or skeletal muscle mass. In conclusion, increased expression of myostatin in skeletal muscle is associated with lower muscle mass and decreased fiber size and myonuclear number, decreased cardiac muscle mass, and increased fat mass in male mice, consistent with its role as an inhibitor of skeletal muscle mass. The mechanism of gender specificity remains to be clarified.

  8. INVITED REVIEW: Inhibitors of myostatin as methods of enhancing muscle growth and development.

    PubMed

    Chen, P R; Lee, K

    2016-08-01

    With the increasing demand for affordable, high-quality meat, livestock and poultry producers must continually find ways to maximize muscle growth in their animals without compromising palatability of the meat products. Muscle mass relies on myoblast proliferation during prenatal or prehatch stages and fiber hypertrophy through protein synthesis and nuclei donation by satellite cells after birth or hatch. Therefore, understanding the cellular and molecular mechanisms of myogenesis and muscle development is of great interest. Myostatin is a well-known negative regulator of muscle growth and development that inhibits proliferation and differentiation in myogenic cells as well as protein synthesis in existing muscle fibers. In this review, various inhibitors of myostatin activity or signaling are examined that may be used in animal agriculture for enhancing muscle growth. Myostatin inhibitors are relevant as potential therapies for muscle-wasting diseases and muscle weakness in humans and animals. Currently, there are no commercial myostatin inhibitors for agriculture or biomedical purposes because the safest and most effective option has yet to be identified. Further investigation of myostatin inhibitors and administration strategies may revolutionize animal production and the medical field.

  9. Vitexin exerts cardioprotective effect on chronic myocardial ischemia/reperfusion injury in rats via inhibiting myocardial apoptosis and lipid peroxidation

    PubMed Central

    Che, Xia; Wang, Xin; Zhang, Junyan; Peng, Chengfeng; Zhen, Yilan; Shao, Xu; Zhang, Gongliang; Dong, Liuyi

    2016-01-01

    Purpose: The aim of this study was to explore the cardioprotective effect of vitexin on chronic myocardial ischemia/reperfusion injury in rats and potential mechanisms. Methods: A chronic myocardial ischemia/reperfusion injury model was established by ligating left anterior descending coronary for 60 minutes, and followed by reperfusion for 14 days. After 2 weeks ischemia/reperfusion, cardiac function was measured to assess myocardial injury. The level of ST segment was recorded in different periods by electrocardiograph. The change of left ventricular function and myocardial reaction degree of fibrosis of heart was investigated by hematoxylin and eosin (HE) staining and Sirius red staining. Endothelium-dependent relaxations due to acetylcholine were observed in isolated rat thoracic aortic ring preparation. The blood samples were collected to measure the levels of MDA, the activities of SOD and NADPH in serum. Epac1, Rap1, Bax and Bcl-2 were examined by using Western Blotting. Results: Vitexin exerted significant protective effect on chronic myocardial ischemia/reperfusion injury, improved obviously left ventricular diastolic function and reduced myocardial reactive fibrosis degree in rats of myocardial ischemia. Medium and high-dose vitexin groups presented a significant decrease in Bax, Epac1 and Rap1 production and increase in Bcl-2 compared to the I/R group. It may be related to preventing myocardial cells from apoptosis, improving myocardial diastolic function and inhibiting lipid peroxidation. Conclusions: Vitexin is a cardioprotective herb, which may be a promising useful complementary and alternative medicine for patients with coronary heart disease. PMID:27648122

  10. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice

    PubMed Central

    Camporez, João-Paulo G.; Petersen, Max C.; Abudukadier, Abulizi; Moreira, Gabriela V.; Jurczak, Michael J.; Friedman, Glenn; Haqq, Christopher M.; Petersen, Kitt Falk; Shulman, Gerald I.

    2016-01-01

    Sarcopenia, or skeletal muscle atrophy, is a debilitating comorbidity of many physiological and pathophysiological processes, including normal aging. There are no approved therapies for sarcopenia, but the antihypertrophic myokine myostatin is a potential therapeutic target. Here, we show that treatment of young and old mice with an anti-myostatin antibody (ATA 842) for 4 wk increased muscle mass and muscle strength in both groups. Furthermore, ATA 842 treatment also increased insulin-stimulated whole body glucose metabolism in old mice, which could be attributed to increased insulin-stimulated skeletal muscle glucose uptake as measured by a hyperinsulinemic-euglycemic clamp. Taken together, these studies provide support for pharmacological inhibition of myostatin as a potential therapeutic approach for age-related sarcopenia and metabolic disease. PMID:26858428

  11. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice.

    PubMed

    Camporez, João-Paulo G; Petersen, Max C; Abudukadier, Abulizi; Moreira, Gabriela V; Jurczak, Michael J; Friedman, Glenn; Haqq, Christopher M; Petersen, Kitt Falk; Shulman, Gerald I

    2016-02-23

    Sarcopenia, or skeletal muscle atrophy, is a debilitating comorbidity of many physiological and pathophysiological processes, including normal aging. There are no approved therapies for sarcopenia, but the antihypertrophic myokine myostatin is a potential therapeutic target. Here, we show that treatment of young and old mice with an anti-myostatin antibody (ATA 842) for 4 wk increased muscle mass and muscle strength in both groups. Furthermore, ATA 842 treatment also increased insulin-stimulated whole body glucose metabolism in old mice, which could be attributed to increased insulin-stimulated skeletal muscle glucose uptake as measured by a hyperinsulinemic-euglycemic clamp. Taken together, these studies provide support for pharmacological inhibition of myostatin as a potential therapeutic approach for age-related sarcopenia and metabolic disease.

  12. Laminin binds to myostatin and attenuates its signaling.

    PubMed

    Yasaka, Naofumi; Suzuki, Keisuke; Kishioka, Yasuhiro; Wakamatsu, Jun-ichi; Nishimura, Takanori

    2013-09-01

    Myostatin is a growth and differentiation factor and acts as a negative regulator of skeletal muscle mass. Although the mechanism whereby myostatin controls muscle cell growth is mostly clarified, the regulation of myostatin activity after its secretion into the extracellular matrix (ECM) is still unclear. In the present study, we investigated the interaction between laminin and myostatin and the effect of laminin on myostatin signaling in vitro. The surface plasmon resonance assay showed that laminin bound to mature myostatin and activin receptor type IIB (ActRIIB), but did not bind to latency-associated protein, which remains non-covalently linked to mature myostatin. Furthermore, kinetic analysis demonstrated that the affinity of mature myostatin for laminin was similar to that for ActRIIB. Next, we examined the action of laminin on the myostatin signaling pathway using a conventional reporter assay. The luciferase activity of myostatin-treated cells was repressed significantly (P < 0.05) by coincubation of laminin. These results suggest that laminin has a potential to regulate myostatin activity through binding to mature myostatin and/or its receptor ActRIIB.

  13. Proteolytic processing of myostatin is auto-regulated during myogenesis.

    PubMed

    McFarlane, Craig; Langley, Brett; Thomas, Mark; Hennebry, Alex; Plummer, Erin; Nicholas, Gina; McMahon, Chris; Sharma, Mridula; Kambadur, Ravi

    2005-07-01

    Myostatin, a potent negative regulator of myogenesis, is proteolytically processed by furin proteases into active mature myostatin before secretion from myoblasts. Here, we show that mature myostatin auto-regulates its processing during myogenesis. In a cell culture model of myogenesis, Northern blot analysis revealed no appreciable change in myostatin mRNA levels between proliferating myoblasts and differentiated myotubes. However, Western blot analysis confirmed a relative reduction in myostatin processing and secretion by differentiated myotubes as compared to proliferating myoblasts. Furthermore, in vivo results demonstrate a lower level of myostatin processing during fetal muscle development when compared to postnatal adult muscle. Consequently, high levels of circulatory mature myostatin were detected in postnatal serum, while fetal circulatory myostatin levels were undetectable. Since Furin proteases are important for proteolytically processing members of the TGF-beta superfamily, we therefore investigated the ability of myostatin to control the transcription of furin and auto-regulate the extent of its processing. Transfection experiments indicate that mature myostatin indeed regulates furin protease promoter activity. Based on these results, we propose a mechanism whereby myostatin negatively regulates its proteolytic processing during fetal development, ultimately facilitating the differentiation of myoblasts by controlling both furin protease gene expression and subsequent active concentrations of mature myostatin peptide.

  14. Reduced serum myostatin concentrations associated with genetic muscle disease progression.

    PubMed

    Burch, Peter M; Pogoryelova, Oksana; Palandra, Joe; Goldstein, Richard; Bennett, Donald; Fitz, Lori; Guglieri, Michela; Bettolo, Chiara Marini; Straub, Volker; Evangelista, Teresinha; Neubert, Hendrik; Lochmüller, Hanns; Morris, Carl

    2017-01-10

    Myostatin is a highly conserved protein secreted primarily from skeletal muscle that can potently suppress muscle growth. This ability to regulate skeletal muscle mass has sparked intense interest in the development of anti-myostatin therapies for a wide array of muscle disorders including sarcopenia, cachexia and genetic neuromuscular diseases. While a number of studies have examined the circulating myostatin concentrations in healthy and sarcopenic populations, very little data are available from inherited muscle disease patients. Here, we have measured the myostatin concentration in serum from seven genetic neuromuscular disorder patient populations using immunoaffinity LC-MS/MS. Average serum concentrations of myostatin in all seven muscle disease patient groups were significantly less than those measured in healthy controls. Furthermore, circulating myostatin concentrations correlated with clinical measures of disease progression for five of the muscle disease patient populations. These findings greatly expand the understanding of myostatin in neuromuscular disease and suggest its potential utility as a biomarker of disease progression.

  15. Fucoxanthin exerts differing effects on 3T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes

    SciTech Connect

    Kang, Seong-Il; Ko, Hee-Chul; Shin, Hye-Sun; Kim, Hyo-Min; Hong, Youn-Suk; Lee, Nam-Ho; Kim, Se-Jae

    2011-06-17

    Highlights: {yields} Fucoxanthin enhances 3T3-L1 adipocyte differentiation at an early stage. {yields} Fucoxanthin inhibits 3T3-L1 adipocyte differentiation at intermediate and late stages. {yields} Fucoxanthin attenuates glucose uptake by inhibiting the phosphorylation of IRS in mature 3T3-L1 adipocytes. {yields} Fucoxanthin exerts its anti-obesity effect by inhibiting the differentiation of adipocytes at both intermediate and late stages, as well as glucose uptake in mature adipocytes. -- Abstract: Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0-2, D0-D2), intermediate (days 2-4, D2-D4), and late stages (day 4 onwards, D4-). In this study, we investigated the effects of fucoxanthin, isolated from the edible brown seaweed Petalonia binghamiae, on adipogenesis during the three differentiation stages of 3T3-L1 preadipocytes. When fucoxanthin was applied during the early stage of differentiation (D0-D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), CCAAT/enhancer-binding protein {alpha} (C/EBP{alpha}), sterol regulatory element-binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPAR{gamma}, C/EBP{alpha}, and SREBP1c during the intermediate (D2-D4) and late stages (D4-D7) of differentiation. It also inhibited the uptake of glucose in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1). These results suggest that fucoxanthin exerts differing effects on 3T3-L1 cells of different differentiation stages and inhibits glucose uptake in mature adipocytes.

  16. Role of Activin-A and Myostatin and Their Signaling Pathway in Human Myometrial and Leiomyoma Cell Function

    PubMed Central

    Islam, Md Soriful; Catherino, William H.; Protic, Olga; Janjusevic, Milijana; Gray, Peter Clarke; Giannubilo, Stefano Raffaele; Ciavattini, Andrea; Lamanna, Pasquale; Tranquilli, Andrea Luigi; Petraglia, Felice

    2014-01-01

    Context: Uterine leiomyomas are highly prevalent benign tumors of premenopausal women and the most common indication for hysterectomy. However, the exact etiology of this tumor is not fully understood. Objective: The objective of the study was to evaluate the role of activin-A and myostatin and their signaling pathways in human myometrial and leiomyoma cells. Design: This was a laboratory study. Setting: Myometrial and leiomyoma cells (primary and cell lines) were cultured in vitro. Patients: The study included premenopausal women who were admitted to the hospital for myomectomy or hysterectomy. Interventions: Primary myometrial and leiomyoma cells and/or cell lines were treated with activin-A (4 nM) and myostatin (4 nM) for different days of interval (to measure proliferation rate) or 30 minutes (to measure signaling molecules) or 48 hours to measure proliferating markers, extracellular matrix mRNA, and/or protein expression by real-time PCR, Western blot, and/or immunocytochemistry. Results: We found that activin-A and myostatin significantly reduce cell proliferation in primary myometrial cells but not in leiomyoma cells as measured by a CyQUANT cell proliferation assay kit. Reduced expression of proliferating cell nuclear antigen and Ki-67 were also observed in myometrial cells in response to activin-A and myostatin treatment. Activin-A also significantly increased mRNA expression of fibronectin, collagen1A1, and versican in primary leiomyoma cells. Finally, we found that activin-A and myostatin activate Smad-2/3 signaling but do not affect ERK or p38 signaling in both myometrial and leiomyoma cells. Conclusions: This study results suggest that activin-A and myostatin can exert antiproliferative and/or fibrotic effects on these cell types via Smad-2/3 signaling. PMID:24606069

  17. Chemical or genetic Pin1 inhibition exerts potent anticancer activity against hepatocellular carcinoma by blocking multiple cancer-driving pathways

    PubMed Central

    Liao, Xin-Hua; Zhang, Arina Li; Zheng, Min; Li, Mei-Qing; Chen, Champ Peng; Xu, Huijuan; Chu, Qing-Song; Yang, Dayun; Lu, Wenxian; Tsai, Ting-Fen; Liu, Hekun; Zhou, Xiao Zhen; Lu, Kun Ping

    2017-01-01

    Hepatocellular carcinoma (HCC) is one of the most prevalent and malignant cancers with high inter- and intra-tumor heterogeneity. A central common signaling mechanism in cancer is proline-directed phosphorylation, which is further regulated by the unique proline isomerase Pin1. Pin1 is prevalently overexpressed in human cancers including ~70% of HCC, and promotes tumorigenesis by activating multiple cancer-driving pathways. However, it was challenging to evaluate the significance of targeting Pin1 in cancer treatment until the recent identification of all-trans retinoic acid (ATRA) as a Pin1 inhibitor. Here we systematically investigate functions of Pin1 and its inhibitor ATRA in the development and treatment of HCC. Pin1 knockdown potently inhibited HCC cell proliferation and tumor growth in mice. ATRA-induced Pin1 degradation inhibited the growth of HCC cells, although at a higher IC50 as compared with breast cancer cells, likely due to more active ATRA metabolism in liver cells. Indeed, inhibition of ATRA metabolism enhanced the sensitivity of HCC cells to ATRA. Moreover, slow-releasing ATRA potently and dose-dependently inhibited HCC growth in mice. Finally, chemical or genetic Pin1 ablation blocked multiple cancer-driving pathways simultaneously in HCC cells. Thus, targeting Pin1 offers a promising therapeutic approach to simultaneously stop multiple cancer-driving pathways in HCC. PMID:28262728

  18. The growth factor myostatin, a key regulator in skeletal muscle growth and homeostasis.

    PubMed

    Matsakas, A; Diel, P

    2005-03-01

    Skeletal muscle possesses the ability to both respond and adapt to changing environmental stimuli, leading to a set of metabolic and morphological adaptations, which allow it to better meet the energy demands of sustained physical activity. Great progress has been achieved over the past years by means of innovative molecular techniques, which has led to the discovery of new growth factors and the identification of molecular mechanisms involved in the regulation of muscle development. These findings provide new starting points to understand the molecular mechanisms involved in the adaptation of skeletal muscle to exercise training. One of these new identified growth factors is myostatin, a member of the transforming growth factor-beta family of proteins that has been demonstrated to play a fundamental role in the regulation of skeletal muscle growth during embryogenesis. Blocking of the myostatin signalling transduction pathway by specific inhibitors and genetic manipulations has been shown to result in a dramatic increase of skeletal muscle mass. This review focuses on the importance of myostatin in mediating skeletal muscle homeostasis in response to training as well as during the progress of myogenic disease, like atrophy or dystrophy. Manipulations of myostatin signalling may be useful for agriculture applications, treatment of muscle diseases, inhibition of muscle atrophy and last but not least as life style drugs in antiaging therapies or manipulations of the muscle to fat ratio. Drugs with the ability to modulate myostatin signalling may have the potential to enhance physical performance in athletes and therefore they probably represent a new class of doping substances.

  19. Topoisomerase inhibition, nucleolytic and electrolytic contribution on DNA binding activity exerted by biological active analogue of coordination compounds.

    PubMed

    Patel, Mohan N; Bhatt, Bhupesh S; Dosi, Promise A

    2012-04-01

    The neutral mononuclear copper complexes with the quinolone antibacterial drug ciprofloxacin and bipyridine derivatives have been synthesized and characterized. Complexes were screened for their antibacterial activity against three Gram((-)) and two Gram((+)) bacteria, and study suggests inhibition of gyrase activity by metal complexes as the possible mechanism. The nucleolytic activity of adducts was carried out on double stranded pUC19 DNA using gel electrophoresis in the presence of radical scavenging agents that suggest hydrolytic cleavage mechanism for plasmid DNA.

  20. BRAF kinase inhibitor exerts anti-tumor activity against breast cancer cells via inhibition of FGFR2

    PubMed Central

    Zhang, Zong Xin; Jin, Wen Jun; Yang, Sheng; Ji, Cun Li

    2016-01-01

    Most anti-angiogenic therapies currently being evaluated in clinical trials targetvascular endothelial growth factor (VEGF) pathway; however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified BRAF kinase inhibitor, vemurafenibas an agent with potential anti-angiogenic and anti-breast cancer activities. Vemurafenib demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor (bFGF). In ex vivo and in vivo angiogenesis assays, vemurafenib suppressed bFGF-induced microvessel sprouting of rat aortic rings and angiogenesis in vivo. To understand the underlying molecular basis, we examined the effects of vemurafenib on different molecular components in treated endothelial cell, and found that vemurafenib suppressed bFGF-triggered activation of FGFR2 and protein kinase B (AKT). Moreover, vemurafenib directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer cells MDA-MB-231, vemurafenib showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Taken together, our results indicate that vemurafenib targets the FGFR2-mediated AKT signaling pathway in endothelial cells, leading to the suppression of tumor growth and angiogenesis. PMID:27293997

  1. Vaccinium bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells

    PubMed Central

    Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon

    2016-01-01

    This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells. PMID:27169820

  2. Artesunate exerts an anti-immunosuppressive effect on cervical cancer by inhibiting PGE2 production and Foxp3 expression.

    PubMed

    Zhang, Li-Xin; Liu, Zhi-Neng; Ye, Jun; Sha, Min; Qian, Hua; Bu, Xin-Hua; Luan, Zheng-Yun; Xu, Xin-Lan; Huang, Ai-Hua; Yuan, Dong-Lan; Wu, Yi-Qun; Wang, Xiao-Xiang; Wang, Jia; Huang, Jun-Xing; Ye, Li-Hua

    2014-05-01

    Artesunate (ART), derived from a common traditional Chinese medicine, has beeen used an antimalarial for several years. In this study, the effect and mechanism of ART on anti-human cervical cancer cells was examined. The level of prostaglandin E2 (PGE2 ) and the population of CD4+CD25+Foxp3 regulatory T cells (Treg) in peripheral blood were detected by flow cytometry. In vivo antitumor activity was investigated in mice with cervical cancer by the subcutaneous injection of various concentrations of ART. The concentrations of PGE2 in the supernatants of CaSki cells were measured using an ELISA kit. Cyclooxygenase-2 (COX-2) and Foxp3 expression were determined using quantitative polymerase chain reaction (qPCR) and western blot analysis. The effect of ART on the viability of CaSki and Hela cells was evaluated with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. It was identified that the level of PGE2 and the population of CD4+CD25+Foxp3 Treg cells in the peripheral blood were significantly higher in cervical cancer patients and mice with cervical cancer. ART was capable of inhibiting orthotopic tumor growth, which correlated with a decrease in the level of PGE2 and the percentage of Treg cells in mice with cervical cancer. Furthermore, ART decreased COX-2 expression and the production of PGE2 in CaSki and Hela cells. Notably, the supernatants of CaSki cells treated with ART lowered the expression of Foxp3 in Jurkat T cells, which was capable of being reversed by exogenous PGE2 . Our data revealed that ART may elicit an anti-tumor effect against cervical cancer by inhibition of PGE2 production in CaSki and Hela cells, which resulted in the decrease of Foxp3 expression in T cells. Therefore, ART may be an effective drug for immunotherapy of cervical cancer.

  3. The role of myostatin and activin receptor IIB in the regulation of unloading-induced myofiber type-specific skeletal muscle atrophy.

    PubMed

    Babcock, Lyle W; Knoblauch, Mark; Clarke, Mark S F

    2015-09-15

    Chronic unloading induces decrements in muscle size and strength. This adaptation is governed by a number of molecular factors including myostatin, a potent negative regulator of muscle mass. Myostatin must first be secreted into the circulation and then bind to the membrane-bound activin receptor IIB (actRIIB) to exert its atrophic action. Therefore, we hypothesized that myofiber type-specific atrophy observed after hindlimb suspension (HLS) would be related to myofiber type-specific expression of myostatin and/or actRIIB. Wistar rats underwent HLS for 10 days, after which the tibialis anterior was harvested for frozen cross sectioning. Simultaneous multichannel immunofluorescent staining combined with differential interference contrast imaging was employed to analyze myofiber type-specific expression of myostatin and actRIIB and myofiber type cross-sectional area (CSA) across fiber types, myonuclei, and satellite cells. Hindlimb suspension (HLS) induced significant myofiber type-specific atrophy in myosin heavy chain (MHC) IIx (P < 0.05) and MHC IIb myofibers (P < 0.05). Myostatin staining associated with myonuclei was less in HLS rats compared with controls, while satellite cell staining for myostatin remained unchanged. In contrast, the total number myonuclei and satellite cells per myofiber was reduced in HLS compared with ambulatory control rats (P < 0.01). Sarcoplasmic actRIIB staining differed between myofiber types (I < IIa < IIx < IIb) independent of loading conditions. Myofiber types exhibiting the greatest cytoplasmic staining of actRIIB corresponded to those exhibiting the greatest degree of atrophy following HLS. Our data suggest that differential expression of actRIIB may be responsible for myostatin-induced myofiber type-selective atrophy observed during chronic unloading.

  4. Decorin binds myostatin and modulates its activity to muscle cells

    SciTech Connect

    Miura, Takayuki; Kishioka, Yasuhiro; Wakamatsu, Jun-ichi; Hattori, Akihito; Hennebry, Alex; Berry, Carole J.; Sharma, Mridula; Kambadur, Ravi; Nishimura, Takanori . E-mail: nishi@anim.agr.hokudai.ac.jp

    2006-02-10

    Myostatin, a member of TGF-{beta} superfamily of growth factors, acts as a negative regulator of skeletal muscle mass. The mechanism whereby myostatin controls the proliferation and differentiation of myogenic cells is mostly clarified. However, the regulation of myostatin activity to myogenic cells after its secretion in the extracellular matrix (ECM) is still unknown. Decorin, a small leucine-rich proteoglycan, binds TGF-{beta} and regulates its activity in the ECM. Thus, we hypothesized that decorin could also bind to myostatin and participate in modulation of its activity to myogenic cells. In order to test the hypothesis, we investigated the interaction between myostatin and decorin by surface plasmon assay. Decorin interacted with mature myostatin in the presence of concentrations of Zn{sup 2+} greater than 10 {mu}M, but not in the absence of Zn{sup 2+}. Kinetic analysis with a 1:1 binding model resulted in dissociation constants (K {sub D}) of 2.02 x 10{sup -8} M and 9.36 x 10{sup -9} M for decorin and the core protein of decorin, respectively. Removal of the glycosaminoglycan chain by chondroitinase ABC digestion did not affect binding, suggesting that decorin could bind to myostatin with its core protein. Furthermore, we demonstrated that immobilized decorin could rescue the inhibitory effect of myostatin on myoblast proliferation in vitro. These results suggest that decorin could trap myostatin and modulate its activity to myogenic cells in the ECM.

  5. Pioglitazone, a PPAR-gamma ligand, exerts cytostatic/cytotoxic effects against cancer cells, that do not result from inhibition of proteasome.

    PubMed

    Mrówka, Piotr; Głodkowska, Eliza; Młynarczuk-Biały, Izabela; Biały, Lukasz; Kuckelkorn, Ulrike; Nowis, Dominika; Makowski, Marcin; Legat, Magdalena; Gołab, Jakub

    2008-01-01

    Thiazolidinediones are oral antidiabetic agents that activate peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and exert potent antioxidant and anti-inflammatory properties. It has also been shown that PPAR-gamma agonists induce G0/G1 arrest and apoptosis of malignant cells. Some of these effects have been suggested to result from inhibition of proteasome activity in target cells. The aim of our studies was to critically evaluate the cytostatic/cytotoxic effects of one of thiazolidinediones (pioglitazone) and its influence on proteasome activity. Pioglitazone exerted dose-dependent cytostatic/cytotoxic effects in MIA PaCa-2 cells. Incubation of tumor cells with pioglitazone resulted in increased levels of p53 and p27 and decreased levels of cyclin D1. Accumulation of polyubiquitinated proteins within cells incubated with pioglitazone suggested dysfunction of proteasome activity. However, we did not observe any influence of pioglitazone on the activity of isolated proteasome and on the proteolytic activity in lysates of pioglitazone-treated MIA PaCa-2 cells. Further, treatment with pioglitazone did not cause an accumulation of fluorescent proteasome substrates in transfected HeLa cells expressing unstable GFP variants. Our results indicate that pioglitazone does not act as a direct or indirect proteasome inhibitor.

  6. Terminalia catappa Exerts Antimetastatic Effects on Hepatocellular Carcinoma through Transcriptional Inhibition of Matrix Metalloproteinase-9 by Modulating NF-κB and AP-1 Activity.

    PubMed

    Yeh, Chao-Bin; Hsieh, Ming-Ju; Hsieh, Yih-Shou; Chien, Ming-Hsien; Lin, Pen-Yuan; Chiou, Hui-Ling; Yang, Shun-Fa

    2012-01-01

    High mortality and morbidity rates for hepatocellular carcinoma (HCC) in Taiwan primarily result from uncontrolled tumor metastasis. Previous studies have identified that Terminalia catappa leaf extracts (TCE) exert hepatoprotective, antioxidative, antiinflammatory, anticancer, and antimetastatic activities. However, the effects of TCE on HCC and the underlying molecular mechanisms of its activities have yet to be fully elucidated. The present study's findings demonstrate that TCE concentration dependently inhibits human HCC migration/invasion. Zymographic and western blot analyses revealed that TCE inhibited the activities and expression of matrix metalloproteinase-9 (MMP-9). Assessment of mRNA levels, using reverse transcriptase polymerase chain reaction (PCR) and real-time PCR, and promoter assays confirmed the inhibitory effects of TCE on MMP-9 expression in HCC cells. The inhibitory effects of TCE on MMP-9 proceeded by upregulating tissue inhibitor of metalloproteinase-1 (TIMP-1), as well as suppressing nuclear translocation and DNA binding activity of nuclear factor-kappa B (NF-κB) and activating protein-1 (AP-1) on the MMP-9 promoter in Huh7 cells. In conclusion, TCE inhibits MMP-9 expression and HCC cell metastasis and, thus, has potential use as a chemopreventive agent. Its inhibitory effects are associated with downregulation of the binding activities of the transcription factors NF-κB and AP-1.

  7. The Angiotensin-converting enzyme inhibitor captopril inhibits poly(adp-ribose) polymerase activation and exerts beneficial effects in an ovine model of burn and smoke injury.

    PubMed

    Asmussen, Sven; Bartha, Eva; Olah, Gabor; Sbrana, Elena; Rehberg, Sebastian W; Yamamoto, Yusuke; Enkhbaatar, Perenlei; Hawkins, Hal K; Ito, Hiroshi; Cox, Robert A; Traber, Lillian D; Traber, Daniel L; Szabo, Csaba

    2011-10-01

    We investigated the effect of the angiotensin-converting enzyme (ACE) inhibitor captopril in a clinically relevant ovine model of smoke and burn injury, with special reference to oxidative stress and activation of poly(ADP-ribose) polymerase, in the lung and in circulating leukocytes. Female, adult sheep (28-40 kg) were divided into three groups. After tracheostomy and under deep anesthesia, both vehicle-control-treated (n = 5) and captopril-treated (20 mg/kg per day, i.v., starting 0.5 h before the injury) (n = 5) groups were subjected to 2 × 20%, third-degree burn injury and were insufflated with 48 breaths of cotton smoke. A sham group not receiving burn/smoke was also studied (n = 5). Animals were mechanically ventilated and fluid resuscitated for 24 h in the awake state. Burn and smoke injury resulted in an upregulation of ACE in the lung, evidenced by immunohistochemical determination and Western blotting. Burn and smoke injury resulted in pulmonary dysfunction, as well as systemic hemodynamic alterations. Captopril treatment of burn and smoke animals improved PaO2/FiO2 ratio and pulmonary shunt fraction and reduced the degree of lung edema. There was a marked increase in PAR levels in circulating leukocytes after burn/smoke injury, which was significantly decreased by captopril. The pulmonary level of ACE and the elevated pulmonary levels of transforming growth factor β in response to burn and smoke injury were significantly decreased by captopril treatment. Our results suggest that the ACE inhibitor captopril exerts beneficial effects on the pulmonary function in burn/smoke injury. The effects of the ACE inhibitor may be related to the prevention of reactive oxygen species-induced poly(ADP-ribose)polymerase overactivation. Angiotensin-converting enzyme inhibition may also exert additional beneficial effects by inhibiting the expression of the profibrotic mediator transforming growth factor β.

  8. XuefuZhuyu Tang exerts antitumor effects by inhibiting glioma cell metastasis and invasion via regulating tumor microenvironment

    PubMed Central

    Liu, Jianmin; Zhang, Ji; Huang, Liangwen; Zhu, Xuhong; Chen, Wei; Hu, Peng

    2016-01-01

    Background XuefuZhuyu Tang (XZT) is a traditional Chinese herb used for destagnation and is currently being used for oncotherapy. This study was intended to assess the effects of XZT on glioma along with its anticancer mechanism. Materials and methods U251 cells were divided into five groups: CNC (cells were cultured with normal saline), TSC (cells were treated with TaohongSiwu Tang [TST]), XSC (cells were treated with XZT), THC (cells were treated with homogenate of TST), and XHC (cells were treated with homogenate of XZT). The mRNA and protein expression of VEGF/VEGFR, CXCR4/CXCL12, and TIMP1/MMP9/MMP2 were measured by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, respectively. Moreover, MTT assay, transwell assay, wound-healing assay, and flow cytometry were conducted to assess the cell viability, cell migration and invasion, cell motility, and cell apoptosis of U251 cells, respectively. In vivo, three mice models (group CNM, gavaging saline; group TSM, gavaging TST; group XZM, gavaging XZT) were constructed after establishing xenograft mice models. Then, models were examined using hematoxylin and eosin staining, RT-PCR, and Western blotting. Results In vitro, XZT significantly upregulated TIMP1 expression and downregulated the expression of VEGF, VEGFR, CXCR4, CXCL12, MMP9, and MMP2 in U251 cells (all P<0.05). In addition, XZT inhibited cell proliferation, invasion, and migration and induced cell apoptosis. In vivo, the average expression level of VEGF, CXCL12, MMP9, and MMP2 was downregulated in the XZM group compared with the control and TSM groups (all P<0.05). Tumor volumes in the XZM group were significantly lower than those in the CNM and TSM groups (all P<0.05). Conclusion XZT may suppress glioma growth and decrease expression levels of VEGF, CXCL12, MMP9, and MMP2. We speculate that XZT may be a potential therapeutic herb for curing glioma. PMID:27382298

  9. Arctigenin exerts anti-colitis efficacy through inhibiting the differentiation of Th1 and Th17 cells via an mTORC1-dependent pathway.

    PubMed

    Wu, Xin; Dou, Yannong; Yang, Yan; Bian, Difei; Luo, Jinque; Tong, Bei; Xia, Yufeng; Dai, Yue

    2015-08-15

    Arctigenin, the main effective constituent of Arctium lappa L. fruit, has previously been proven to dramatically attenuate dextran sulfate sodium (DSS)-induced colitis in mice, a frequently used animal model of inflammatory bowel disease (IBD). As Th1 and Th17 cells play a crucial role in the pathogenesis of IBD, the present study addressed whether and how arctigenin exerted anti-colitis efficacy by interfering with the differentiation and activation of Th1/Th17 cells. In vitro, arctigenin was shown to markedly inhibit the differentiation of Th17 cells from naïve T cells, and moderately inhibit the differentiation of Th1 cells, which was accompanied by lowered phosphorylation of STAT3 and STAT4, respectively. In contrast, arctigenin was lack of marked effect on the differentiation of either Th2 or regulatory T cells. Furthermore, arctigenin was shown to suppress the mammalian target of rapamycin complex 1 (mTORC1) pathway in T cells as demonstrated by down-regulated phosphorylation of the downstream target genes p70S6K and RPS6, and it functioned independent of two well-known upstream kinases PI3K/AKT and ERK. Arctigenin was also able to inhibit the activity of mTORC1 by dissociating raptor from mTOR. Interestingly, the inhibitory effect of arctigenin on T cell differentiation disappeared under a status of mTORC1 overactivation via knockdown of tuberous sclerosis complex 2 (TSC2, a negative regulator of mTORC1) or pretreatment of leucine (an agonist of mTOR). In DSS-induced mice, the inhibition of Th1/Th17 responses and anti-colitis effect of arctigenin were abrogated by leucine treatment. In conclusion, arctigenin ameliorates colitis through down-regulating the differentiation of Th1 and Th17 cells via mTORC1 pathway.

  10. Sequence analysis of myostatin promoter in cattle.

    PubMed

    Crisà, A; Marchitelli, C; Savarese, M C; Valentini, A

    2003-01-01

    Myostatin (GDF8) acts as a negative regulator of muscle growth. Mutations in the gene are responsible for the double muscling phenotype in several European cattle breeds. Here we describe the sequence of the upstream 5' region of the myostatin gene. The sequence analysis was carried out on three animals of nine European cattle breeds, with the aim to search for polymorphisms. A T/A polymorphism at -371 and a G/C polymorphism at -805 (relative to ATG) were found. PCR- RFLP was used to further screen 353 animals of the nine breeds studied and to assess the frequencies of the SNPs. The promoter region of the gene contains several binding sites for transcription factors found also in other myogenic genes. This may play an important role in the regulation of the protein and consequently on muscular development.

  11. Combination of Myostatin Pathway Interference and Dystrophin Rescue Enhances Tetanic and Specific Force in Dystrophic mdx Mice

    PubMed Central

    Dumonceaux, Julie; Marie, Solenne; Beley, Cyriaque; Trollet, Capucine; Vignaud, Alban; Ferry, Arnaud; Butler-Browne, Gillian; Garcia, Luis

    2010-01-01

    Duchenne muscular dystrophy is characterized by muscular atrophy, fibrosis, and fat accumulation. Several groups have demonstrated that in the mdx mouse, the exon-skipping strategy can restore a quasi-dystrophin in almost 100% of the muscle fibers. On the other hand, inhibition of the myostatin pathway in adult mice has been described to enhance muscle growth and improve muscle force. Our aim was to combine these two strategies to evaluate a possible additive effect. We have chosen to inhibit the myostatin pathway using the technique of RNA interference directed against the myostatin receptor AcvRIIb mRNA (sh-AcvRIIb). The restoration of a quasi-dystrophin was mediated by the vectorized U7 exon-skipping technique (U7-DYS). Adeno-associated vectors carrying either the sh-AcvrIIb construct alone, the U7-DYS construct alone, or a combination of both constructs were injected in the tibialis anterior (TA) muscle of dystrophic mdx mice. We show that even if each separate approach has some effects on muscle physiology, the combination of the dystrophin rescue and the downregulation of the myostatin receptor is required to massively improve both the tetanic force and the specific force. This study provides a novel pharmacogenetic strategy for treatment of certain neuromuscular diseases associated with muscle wasting. PMID:20104211

  12. MicroRNA-208b progressively declines after spinal cord injury in humans and is inversely related to myostatin expression

    PubMed Central

    Boon, Hanneke; Sjögren, Rasmus J O; Massart, Julie; Egan, Brendan; Kostovski, Emil; Iversen, Per O; Hjeltnes, Nils; Chibalin, Alexander V; Widegren, Ulrika; Zierath, Juleen R

    2015-01-01

    The effects of long-term physical inactivity on the expression of microRNAs involved in the regulation of skeletal muscle mass in humans are largely unknown. MicroRNAs are short, noncoding RNAs that fine-tune target expression through mRNA degradation or by inhibiting protein translation. Intronic to the slow, type I, muscle fiber type genes MYH7 and MYH7b, microRNA-208b and microRNA-499-5p are thought to fine-tune the expression of genes important for muscle growth, such as myostatin. Spinal cord injured humans are characterized by both skeletal muscle atrophy and transformation toward fast-twitch, type II fibers. We determined the expression of microRNA-208b, microRNA-499-5p, and myostatin in human skeletal muscle after complete cervical spinal cord injury. We also determined whether these microRNAs altered myostatin expression in rodent skeletal muscle. A progressive decline in skeletal muscle microRNA-208b and microRNA-499-5p expression occurred in humans during the first year after spinal cord injury and with long-standing spinal cord injury. Expression of myostatin was inversely correlated with microRNA-208b and microRNA-499-5p in human skeletal muscle after spinal cord injury. Overexpression of microRNA-208b in intact mouse skeletal muscle decreased myostatin expression, whereas microRNA-499-5p was without effect. In conclusion, we provide evidence for an inverse relationship between expression of microRNA-208b and its previously validated target myostatin in humans with severe skeletal muscle atrophy. Moreover, we provide direct evidence that microRNA-208b overexpression decreases myostatin gene expression in intact rodent muscle. Our results implicate that microRNA-208b modulates myostatin expression and this may play a role in the regulation of skeletal muscle mass following spinal cord injury. PMID:26603456

  13. Generation of myostatin B knockout yellow catfish (Tachysurus fulvidraco) using transcription activator-like effector nucleases.

    PubMed

    Dong, Zhangji; Ge, Jiachun; Xu, Zhiqiang; Dong, Xiaohua; Cao, Shasha; Pan, Jianlin; Zhao, Qingshun

    2014-06-01

    Myostatin (Mstn), a member of the transforming growth factor β superfamily, plays an inhibiting role in mammalian muscle growth. Mammals like human, cattle, mouse, sheep, and dog carrying null alleles of Mstn display a double-muscle phenotype. Mstn is conserved in fish; however, little is known whether the fish with mutated mstn display a similar phenotype to mammals because of the lack of mutant fish with mstn null alleles. Previously, we knocked out one of the duplicated copies of myostatin gene (mstna) in yellow catfish using zinc-finger nucleases. In this study, we report the identification of the second myostatin gene (mstnb) and knockout of mstnb in yellow catfish. The gene comprises three exons. It is predicted to encode 373 amino acid residues. The predicted protein exhibits 59.3% identity with yellow catfish Mstna and 57.3% identity with human MSTN. Employing TALEN (transcription activator-like effector nucleases) technology, we obtained two founders (from four randomly selected founders) of yellow catfish carrying the mutated mstnb gene in their germ cells. Totally, six mutated alleles of mstnb were obtained from the founders. Among the six alleles, four are nonframeshift and two are frameshift mutation. The frameshift mutated alleles include mstnb(nju22), an 8 bp deletion, and mstnb(nju24), a complex type of mutation comprising a 7 bp deletion and a 12 bp insertion. They are predicted to encode function null Mstnb. Our results will help to understand the roles of mstn genes in fish growth.

  14. Muscle expressions of MGF, IGF-IEa, and myostatin in intact and hypophysectomized rats: effects of rhGH and testosterone alone or combined.

    PubMed

    Rigamonti, A E; Locatelli, L; Cella, S G; Bonomo, S M; Giunta, M; Molinari, F; Sartorio, A; Müller, E E

    2009-01-01

    Myostatin and mechano-growth factor (MGF), an isoform of insulin-like growth factor-I (IGF-I), are two important regulators of muscle hypertrophy. The aim of the present study was to investigate the effects of recombinant human growth hormone (rhGH) and/or testosterone on muscle MGF/IGF-IEa/myostatin expression in intact and hypophysectomized rats treated for 15 d with 1) saline or rhGH, 2) sesame oil or testosterone, 3) saline+sesame oil, or rhGH+testosterone (first experiment) or for 7 d with saline or rhGH (second experiment). Animals were killed by decapitation 24 h or 4 d after the last injection (first or second experiment, respectively). Muscle expressions of MGF, IGF-IEa, and myostatin were determined by RT-PCR. A significant increase in the weight of gastrocnemius muscle was observed only in hypophysectomized rats treated with rhGH alone or in combination with testosterone. Administration of rhGH to hypophysectomized rats caused a marked increase in both MGF and IGF-IEa muscle mRNA levels (without any change in the muscle expression of myostatin), an effect that was abolished when testosterone was combined with rhGH. Conversely, in intact rats rhGH increased myostatin muscle mRNA levels without affecting those of MGF and IGF-IEa. Testosterone, alone or combined with rhGH, induced an inhibition of myostatin expression in the muscle of intact rats, but did not change muscle paradigms of hypophysectomized rats. In conclusion, rhGH and/or testosterone anabolic effects in the muscle are mediated by a different expression of MGF/IGF-IEa/myostatin, which is related to the pituitary function.

  15. Peroxisome proliferator-activated receptor β/δ induces myogenesis by modulating myostatin activity.

    PubMed

    Bonala, Sabeera; Lokireddy, Sudarsanareddy; Arigela, Harikumar; Teng, Serena; Wahli, Walter; Sharma, Mridula; McFarlane, Craig; Kambadur, Ravi

    2012-04-13

    Classically, peroxisome proliferator-activated receptor β/δ (PPARβ/δ) function was thought to be restricted to enhancing adipocyte differentiation and development of adipose-like cells from other lineages. However, recent studies have revealed a critical role for PPARβ/δ during skeletal muscle growth and regeneration. Although PPARβ/δ has been implicated in regulating myogenesis, little is presently known about the role and, for that matter, the mechanism(s) of action of PPARβ/δ in regulating postnatal myogenesis. Here we report for the first time, using a PPARβ/δ-specific ligand (L165041) and the PPARβ/δ-null mouse model, that PPARβ/δ enhances postnatal myogenesis through increasing both myoblast proliferation and differentiation. In addition, we have identified Gasp-1 (growth and differentiation factor-associated serum protein-1) as a novel downstream target of PPARβ/δ in skeletal muscle. In agreement, reduced Gasp-1 expression was detected in PPARβ/δ-null mice muscle tissue. We further report that a functional PPAR-responsive element within the 1.5-kb proximal Gasp-1 promoter region is critical for PPARβ/δ regulation of Gasp-1. Gasp-1 has been reported to bind to and inhibit the activity of myostatin; consistent with this, we found that enhanced secretion of Gasp-1, increased Gasp-1 myostatin interaction and significantly reduced myostatin activity upon L165041-mediated activation of PPARβ/δ. Moreover, we analyzed the ability of hGASP-1 to regulate myogenesis independently of PPARβ/δ activation. The results revealed that hGASP-1 protein treatment enhances myoblast proliferation and differentiation, whereas silencing of hGASP-1 results in defective myogenesis. Taken together these data revealed that PPARβ/δ is a positive regulator of skeletal muscle myogenesis, which functions through negatively modulating myostatin activity via a mechanism involving Gasp-1.

  16. Combination Antisense Treatment for Destructive Exon Skipping of Myostatin and Open Reading Frame Rescue of Dystrophin in Neonatal mdx Mice

    PubMed Central

    Lu-Nguyen, Ngoc B; Jarmin, Susan A; Saleh, Amer F; Popplewell, Linda; Gait, Michael J; Dickson, George

    2015-01-01

    The fatal X-linked Duchenne muscular dystrophy (DMD), characterized by progressive muscle wasting and muscle weakness, is caused by mutations within the DMD gene. The use of antisense oligonucleotides (AOs) modulating pre-mRNA splicing to restore the disrupted dystrophin reading frame, subsequently generating a shortened but functional protein has emerged as a potential strategy in DMD treatment. AO therapy has recently been applied to induce out-of-frame exon skipping of myostatin pre-mRNA, knocking-down expression of myostatin protein, and such an approach is suggested to enhance muscle hypertrophy/hyperplasia and to reduce muscle necrosis. Within this study, we investigated dual exon skipping of dystrophin and myostatin pre-mRNAs using phosphorodiamidate morpholino oligomers conjugated with an arginine-rich peptide (B-PMOs). Intraperitoneal administration of B-PMOs was performed in neonatal mdx males on the day of birth, and at weeks 3 and 6. At week 9, we observed in treated mice (as compared to age-matched, saline-injected controls) normalization of muscle mass, a recovery in dystrophin expression, and a decrease in muscle necrosis, particularly in the diaphragm. Our data provide a proof of concept for antisense therapy combining dystrophin restoration and myostatin inhibition for the treatment of DMD. PMID:25959011

  17. Compounds isolated from the aerial part of Crataegus azarolus inhibit growth of B16F10 melanoma cells and exert a potent inhibition of the melanin synthesis.

    PubMed

    Mustapha, Nadia; Bzéouich, Imèn Mokdad; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2015-02-01

    Poor therapeutic results have been reported for treatment of malignant melanoma; therefore in this study, we have investigated inhibitory capacity of vitexin-2''-O-rhamnoside as well as the extract from which it was isolated, i.e. the ethyl acetate extract obtained from the leaves of Crataegus azarolus, on mouse melanoma (B16F10) proliferation. Cell viability was determined using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In addition, amounts of melanin and tyrosinase were measured spectrophotometrically at 475nm. Ethyl acetate extract and vitexin-2''-O-rhamnoside exhibited significant anti-proliferative activity against B16F10 melanoma cells after incubation for 48hours with IC50s of 50μg/mL and 20μM, respectively. Furthermore, these two compounds have the ability to reduce the melanin content by inhibiting the tyrosinase activity of B16F10 cells. Thus, further investigations are merited to ascertain their potential application in treating hyperpigmentation disorders.

  18. An exogenous hydrogen sulphide donor, NaHS, inhibits the apoptosis signaling pathway to exert cardio-protective effects in a rat hemorrhagic shock model

    PubMed Central

    Xu, Yanjie; Dai, Xiongwei; Zhu, Danxia; Xu, Xiaoli; Gao, Cao; Wu, Changping

    2015-01-01

    Hydrogen sulfide (H2S) has been reported to be interwined in multiple systems, specifically in the cardiovascular system. However, the mechanisms underlying remain controversial. In the present study, we assessed the cardio-protective effects of H2S in the rat hemorrhagic shock model. Hemorrhagic shock was induced in adult male Sprague-Dawley rats by drawing blood from the femoral artery to maintain the mean arterial pressure at 35-40 mmHg for 1.5 h. The rats were assigned to four groups and the H2S donor, NaHS (28 μmol/kg, i.p.), was injected before the resuscitation in certain groups. After resuscitation the animals were observed and then killed to harvest the hearts. The morphological investigation and ultrastructural analyses were done and apoptotic cells were detected. The levels of relevant proteins were examined using Western blotting and immunohistochemical analyses. Resuscitated hemorrhagic shock induced heart injury and significantly increased the levels of serum myocardial enzymes, creatine kinase (CK) and lactate dehydrogenase (LDH) levels. Furthermore, it caused marked increase of apoptotic cells in heart tissue. Moreover, the expression of death receptor Fas and Fas-ligand, as well as the expression of apoptosis-relevant proteins active-caspase 3 and active-caspase 8 were markedly increased. Administration of NaHS significantly ameliorated hemorrhagic shock caused hemodynamic deterioration, decreased myocardial enzymes elevation, protected myocardial ultrastructure, and inhibited the expression of apoptosis-relevant proteins. It suggested that H2S might exert its cardio-protective roles via both the extrinsic Fas/FasL/caspase-8/caspase-3 pathway and the intrinsic mitochondria-involved pathways. PMID:26261501

  19. An exogenous hydrogen sulphide donor, NaHS, inhibits the apoptosis signaling pathway to exert cardio-protective effects in a rat hemorrhagic shock model.

    PubMed

    Xu, Yanjie; Dai, Xiongwei; Zhu, Danxia; Xu, Xiaoli; Gao, Cao; Wu, Changping

    2015-01-01

    Hydrogen sulfide (H2S) has been reported to be interwined in multiple systems, specifically in the cardiovascular system. However, the mechanisms underlying remain controversial. In the present study, we assessed the cardio-protective effects of H2S in the rat hemorrhagic shock model. Hemorrhagic shock was induced in adult male Sprague-Dawley rats by drawing blood from the femoral artery to maintain the mean arterial pressure at 35-40 mmHg for 1.5 h. The rats were assigned to four groups and the H2S donor, NaHS (28 μmol/kg, i.p.), was injected before the resuscitation in certain groups. After resuscitation the animals were observed and then killed to harvest the hearts. The morphological investigation and ultrastructural analyses were done and apoptotic cells were detected. The levels of relevant proteins were examined using Western blotting and immunohistochemical analyses. Resuscitated hemorrhagic shock induced heart injury and significantly increased the levels of serum myocardial enzymes, creatine kinase (CK) and lactate dehydrogenase (LDH) levels. Furthermore, it caused marked increase of apoptotic cells in heart tissue. Moreover, the expression of death receptor Fas and Fas-ligand, as well as the expression of apoptosis-relevant proteins active-caspase 3 and active-caspase 8 were markedly increased. Administration of NaHS significantly ameliorated hemorrhagic shock caused hemodynamic deterioration, decreased myocardial enzymes elevation, protected myocardial ultrastructure, and inhibited the expression of apoptosis-relevant proteins. It suggested that H2S might exert its cardio-protective roles via both the extrinsic Fas/FasL/caspase-8/caspase-3 pathway and the intrinsic mitochondria-involved pathways.

  20. Axon and muscle spindle hyperplasia in the myostatin null mouse.

    PubMed

    Elashry, Mohamed I; Otto, Anthony; Matsakas, Antonios; El-Morsy, Salah E; Jones, Lisa; Anderson, Bethan; Patel, Ketan

    2011-02-01

    Germline deletion of the myostatin gene results in hyperplasia and hypertrophy of the tension-generating (extrafusal) fibres in skeletal muscle. As this gene is expressed predominantly in myogenic tissues it offers an excellent model with which to investigate the quantitative relationship between muscle and axonal development. Here we show that skeletal muscle hyperplasia in myostatin null mouse is accompanied by an increase in nerve fibres in major nerves of both the fore- and hindlimbs. We show that axons within these nerves undergo hypertrophy. Furthermore, we provide evidence that the age-related neural atrophic process is delayed in the absence of myostatin. Finally, we show that skeletal muscle hyperplasia in the myostatin null mouse is accompanied by an increase in the number of muscle spindles (also called stretch receptors or proprioceptors). However, our work demonstrates that the mechanisms regulating intrafusal fibre hyperplasia and hypertrophy differ from those that control the aetiology of extrafusal fibres.

  1. Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women.

    PubMed

    Kim, Jeong-su; Cross, James M; Bamman, Marcas M

    2005-06-01

    Myostatin inhibits myoblast proliferation and differentiation in developing muscle. Mounting evidence suggests that myostatin also plays a limiting role in growth/repair/regeneration of differentiated adult muscle by inhibiting satellite cell activation. We tested the hypothesis that myostatin mRNA expression would decrease after resistance loading (RL) with a blunted response in older (O) females (F) who have shown minimal hypertrophy [vs. males (M)] after long-term RL. As myostatin is thought to modulate cell cycle activity, we also studied the response of gene transcripts key to stimulation (cyclin B1 and D1) and inhibition (p21cip and p27kip) of the cell cycle, along with the muscle-specific load-sensitive mitogen mechano-growth factor (MGF). Twenty young (Y; 20-35 yr, 10 YF, 10 YM) and 18 O (60-75 yr, 9 OF, 9 OM) consented to vastus lateralis biopsy before and 24 h after a bout of RL (3 sets x 8-12 repetitions to volitional fatigue of squat, leg press, knee extension). Gene expression levels were determined by relative RT-PCR with 18S as an internal standard and analyzed by age x gender x load repeated-measures ANOVA. A load effect was found for four transcripts (P < 0.005) including myostatin, cyclin D1, p27kip, and MGF as mRNA levels decreased for myostatin (-44%) and p27kip (-16%) and increased for cyclin D1 (34%) and MGF (49%). For myostatin, age x load and gender x load interactions (P < 0.05) were driven by a lack of change in OF, while marked declines were noted in YM (-56%), YF (-48%), and OM (-40%). Higher cyclin D1 levels in OF led to a main age effect (36%, O > Y) and an age x gender interaction (66%, OF > YF vs. 10%, OM > YM; P < 0.05). An age x gender x load interaction (P < 0.05) for cyclin D1 resulted from a 48% increase in OF. Post hoc testing within groups revealed a significant increase in MGF after RL in YM only (91%, P < 0.05). Higher levels of cyclin B1 in O (27%, O > Y) led to a main age effect (P < 0.05). An age x load interaction for

  2. FHL1 activates myostatin signalling in skeletal muscle and promotes atrophy

    PubMed Central

    Lee, Jen Y.; Lori, Dede; Wells, Dominic J.; Kemp, Paul R.

    2015-01-01

    Myostatin is a TGFβ family ligand that reduces muscle mass. In cancer cells, TGFβ signalling is increased by the protein FHL1. Consequently, FHL1 may promote signalling by myostatin. We therefore tested the ability of FHL1 to regulate myostatin function. FHL1 increased the myostatin activity on a SMAD reporter and increased myostatin dependent myotube wasting. In mice, independent expression of myostatin reduced fibre diameter whereas FHL1 increased fibre diameter, both consistent with previously identified effects of these proteins. However, co-expression of FHL1 and myostatin reduced fibre diameter to a greater extent than myostatin alone. Together, these data suggest that the expression of FHL1 may exacerbate muscle wasting under the appropriate conditions. PMID:26504741

  3. Characterization of follistatin-type domains and their contribution to myostatin and activin A antagonism.

    PubMed

    Cash, Jennifer N; Angerman, Elizabeth B; Keutmann, Henry T; Thompson, Thomas B

    2012-07-01

    Follistatin (FST)-type proteins are important antagonists of some members of the large TGF-β family of cytokines. These include myostatin, an important negative regulator of muscle growth, and the closely related activin A, which is involved in many physiological functions, including maintenance of a normal reproductive axis. FST-type proteins, including FST and FST-like 3 (FSTL3), differentially inhibit various TGF-β family ligands by binding each ligand with two FST-type molecules. In this study, we sought to examine features that are important for ligand antagonism by FST-type proteins. Previous work has shown that a modified construct consisting of the FST N-terminal domain (ND) followed by two repeating follistatin domains (FSD), herein called FST ND-FSD1-FSD1, exhibits strong specificity for myostatin over activin A. Using cell-based assays, we show that FST ND-FSD1-FSD1 is unique in its specificity for myostatin as compared with similar constructs containing domains from FSTL3 and that the ND is critical to its activity. Furthermore, we demonstrate that FSD3 of FST provides affinity to ligand inhibition and confers resistance to perturbations in the ND and FSD2, likely through the interaction of FSD3 of one FST molecule with the ND of the other FST molecule. Additionally, our data suggest that this contact provides cooperativity to ligand antagonism. Cross-linking studies show that this interaction also potentiates formation of 1:2 ligand-FST complexes, whereas lack of FSD3 allows formation of 1:1 complexes. Altogether, these studies support that domain differences generate FST-type molecules that are each uniquely suited ligand antagonists.

  4. Myostatin gene mutated mice induced with tale nucleases.

    PubMed

    Zhou, Fangfang; Sun, Ruilin; Chen, Hongyan; Fei, Jian; Lu, Daru

    2015-01-01

    Myostain gene (MSTN) is expressed primarily in skeletal muscle, and negatively regulates skeletal muscle mass; it has been suggested that mice with MSTN inhibition have reduced adiposity and improved insulin sensitivity. Therefore, it is important to establish a fast and effective gene editing method. In this report, we established the myostatin mutated-mouse model by microinjection of Transcription Activator-Like Effector Nucleases (TALENs) mRNA within the mouse fertilized oocytes and achieved high rates of mutagenesis of the mouse MSTN in C57BL/6J. Six of 45 born mice carried target mutations and we appointed one as the parental mating with wild mouse to produce the F1 and backcross to produce the F2 generation. All the mutations of the mice were examined quickly and efficiently by high-resolution melting curve analysis (HRMA) and then verified by direct sequencing. We obtained the homozygous of the F2 generation which transmitted the mutant alleles to the progeny with 100% efficiency. Mutant mice exhibited increases in muscle mass comparable to those observed in wild-type mice. Therefore, combining TALEN-mediated gene targeting with HRMA technology is a superior method of constructing genetically modified mice through microinjection in the mouse fertilized oocytes with high efficiency and short time of selection.

  5. Small RNA-Mediated Epigenetic Myostatin Silencing.

    PubMed

    Roberts, Thomas C; Andaloussi, Samir El; Morris, Kevin V; McClorey, Graham; Wood, Matthew Ja

    2012-05-15

    Myostatin (Mstn) is a secreted growth factor that negatively regulates muscle mass and is therefore a potential pharmacological target for the treatment of muscle wasting disorders such as Duchenne muscular dystrophy. Here we describe a novel Mstn blockade approach in which small interfering RNAs (siRNAs) complementary to a promoter-associated transcript induce transcriptional gene silencing (TGS) in two differentiated mouse muscle cell lines. Silencing is sensitive to treatment with the histone deacetylase inhibitor trichostatin A, and the silent state chromatin mark H3K9me2 is enriched at the Mstn promoter following siRNA transfection, suggesting epigenetic remodeling underlies the silencing effect. These observations suggest that long-term epigenetic silencing may be feasible for Mstn and that TGS is a promising novel therapeutic strategy for the treatment of muscle wasting disorders.

  6. PPARγ and MyoD are differentially regulated by myostatin in adipose-derived stem cells and muscle satellite cells

    SciTech Connect

    Zhang, Feng; Deng, Bing; Wen, Jianghui; Chen, Kun; Liu, Wu; Ye, Shengqiang; Huang, Haijun; Jiang, Siwen; Xiong, Yuanzhu

    2015-03-06

    Myostatin (MSTN) is a secreted protein belonging to the transforming growth factor-β (TGF-β) family that is primarily expressed in skeletal muscle and also functions in adipocyte maturation. Studies have shown that MSTN can inhibit adipogenesis in muscle satellite cells (MSCs) but not in adipose-derived stem cells (ADSCs). However, the mechanism by which MSTN differently regulates adipogenesis in these two cell types remains unknown. Peroxisome proliferator-activated receptor-γ (PPARγ) and myogenic differentiation factor (MyoD) are two key transcription factors in fat and muscle cell development that influence adipogenesis. To investigate whether MSTN differentially regulates PPARγ and MyoD, we analyzed PPARγ and MyoD expression by assessing mRNA, protein and methylation levels in ADSCs and MSCs after treatment with 100 ng/mL MSTN for 0, 24, and 48 h. PPARγ mRNA levels were downregulated after 24 h and upregulated after 48 h of treatment in ADSCs, whereas in MSCs, PPARγ levels were downregulated at both time points. MyoD expression was significantly increased in ADSCs and decreased in MSCs. PPARγ and MyoD protein levels were upregulated in ADSCs and downregulated in MSCs. The CpG methylation levels of the PPARγ and MyoD promoters were decreased in ADSCs and increased in MSCs. Therefore, this study demonstrated that the different regulatory adipogenic roles of MSTN in ADSCs and MSCs act by differentially regulating PPARγ and MyoD expression. - Highlights: • PPARγ and MyoD mRNA and protein levels are upregulated by myostatin in ADSCs. • PPARγ and MyoD mRNA and protein levels are downregulated by myostatin in MSCs. • PPARγ exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • MyoD exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • PPARγ and MyoD are differentially regulated by myostatin in ADSCs and MSCs.

  7. Glycoproteomics Reveals Decorin Peptides with Anti-Myostatin Activity in Human Atrial Fibrillation

    PubMed Central

    Barallobre-Barreiro, Javier; Gupta, Shashi K.; Zoccarato, Anna; Kitazume-Taneike, Rika; Fava, Marika; Yin, Xiaoke; Werner, Tessa; Hirt, Marc N; Zampetaki, Anna; Viviano, Alessandro; Chong, Mei; Bern, Marshall; Kourliouros, Antonios; Domenech, Nieves; Willeit, Peter; Shah, Ajay M; Jahangiri, Marjan; Schaefer, Liliana; Fischer, Jens W.; Iozzo, Renato V.; Viner, Rosa; Thum, Thomas; Heineke, Joerg; Kichler, Antoine; Otsu, Kinya; Mayr, Manuel

    2016-01-01

    Background Myocardial fibrosis is a feature of many cardiac diseases. We used proteomics to profile glycoproteins in the human cardiac extracellular matrix (ECM). Methods Atrial specimens were analyzed by mass spectrometry after extraction of ECM proteins and enrichment for glycoproteins or glycopeptides. Results ECM-related glycoproteins were identified in left and right atrial appendages from the same patients. Several known glycosylation sites were confirmed. In addition, putative and novel glycosylation sites were detected. Upon enrichment for glycoproteins, peptides of the small leucine-rich proteoglycan decorin were consistently identified in the flow through. Out of all ECM proteins identified, decorin was found to be most fragmented. Within its protein core, eighteen different cleavage sites were identified. In contrast, no cleavage was observed for biglycan, the most closely related proteoglycan. Decorin processing differed between human ventricles and atria and was altered in disease. The C-terminus of decorin, important for the interaction with connective tissue growth factor, was predominantly detected in ventricles compared to atria. In contrast, atrial appendages from patients in persistent atrial fibrillation had higher levels of full-length decorin but also harbored a cleavage site that was not found in atrial appendages from patients in sinus rhythm. This cleavage site preceded the N-terminal domain of decorin that controls muscle growth by altering the binding capacity for myostatin. Myostatin expression was decreased in atrial appendages of patients with persistent atrial fibrillation and hearts of decorin null mice. A synthetic peptide corresponding to this decorin region dose-dependently inhibited the response to myostatin in cardiomyocytes and in perfused mouse hearts. Conclusions This proteomics study is the first to analyse the human cardiac ECM. Novel processed forms of decorin protein core, uncovered in human atrial appendages can regulate

  8. MicroRNA-Mediated Myostatin Silencing in Caprine Fetal Fibroblasts

    PubMed Central

    Zhong, Bushuai; Zhang, Yanli; Yan, Yibo; Wang, Ziyu; Ying, Shijia; Huang, Mingrui; Wang, Feng

    2014-01-01

    Myostatin functions as a negative regulator of skeletal muscle growth by suppressing proliferation and differentiation of myoblasts. Dysfunction of the myostatin gene, either due to natural mutation or genetic manipulations such as knockout or knockdown, has been reported to increase muscle mass in mammalian species. RNA interference (RNAi) mediated by microRNAs (miRNAs) is a promising method for gene knockdown studies. In the present study, transient and stable silencing of the myostatin gene in caprine fetal fibroblasts (CFF) was evaluated using the two most effective constructs selected from four different miRNA expression constructs screened in 293FT cells. Using these two miRNA constructs, we achieved up to 84% silencing of myostatin mRNA in transiently transfected CFF cells and up to 31% silencing in stably transfected CFF cells. Moreover, off-target effects due to induction of interferon (IFN) response genes, such as interferon beta (IFN-β) and 2′-5′-oligoadenylate synthetase 2 (OAS2), were markedly fewer in stably transfected CFF cells than in transiently transfected cells. Stable expression of anti-myostatin miRNA with minimal induction of interferon shows great promise for increasing muscle mass in transgenic goats. PMID:25244645

  9. Molecular analysis of fiber type-specific expression of murine myostatin promoter.

    PubMed

    Salerno, Mônica Senna; Thomas, Mark; Forbes, Davanea; Watson, Trevor; Kambadur, Ravi; Sharma, Mridula

    2004-10-01

    Myostatin is a negative regulator of muscle growth, and absence of the functional myostatin protein leads to the heavy muscle phenotype in both mouse and cattle. Although the role of myostatin in controlling muscle mass is established, little is known of the mechanisms regulating the expression of the myostatin gene. In this study, we have characterized the murine myostatin promoter in vivo. Various constructs of the murine myostatin promoter were injected into the quadriceps muscle of mice, and the reporter luciferase activity was analyzed. The results indicate that of the seven E-boxes present in the 2.5-kb fragment of the murine myostatin promoter, the E5 E-box plays an important role in the regulation of promoter activity in vivo. Furthermore, the in vitro studies demonstrated that MyoD preferentially binds and upregulates the murine myostatin promoter activity. We also analyzed the activity of the bovine and murine promoters in murine skeletal muscle and showed that, despite displaying comparable levels of activity in murine myoblast cultures, bovine myostatin promoter activity is much weaker than murine myostatin promoter in mice. Finally, we demonstrate that in vivo, the 2.5-kb region of the murine myostatin promoter is sufficient to drive the activity of the reporter gene in a fiber type-specific manner.

  10. Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1

    PubMed Central

    Enoki, Yuki; Watanabe, Hiroshi; Arake, Riho; Sugimoto, Ryusei; Imafuku, Tadashi; Tominaga, Yuna; Ishima, Yu; Kotani, Shunsuke; Nakajima, Makoto; Tanaka, Motoko; Matsushita, Kazutaka; Fukagawa, Masafumi; Otagiri, Masaki; Maruyama, Toru

    2016-01-01

    Skeletal muscle atrophy, referred to as sarcopenia, is often observed in chronic kidney disease (CKD) patients, especially in patients who are undergoing hemodialysis. The purpose of this study was to determine whether uremic toxins are involved in CKD-related skeletal muscle atrophy. Among six protein-bound uremic toxins, indole containing compounds, indoxyl sulfate (IS) significantly inhibited proliferation and myotube formation in C2C12 myoblast cells. IS increased the factors related to skeletal muscle breakdown, such as reactive oxygen species (ROS) and inflammatory cytokines (TNF-α, IL-6 and TGF-β1) in C2C12 cells. IS also enhanced the production of muscle atrophy-related genes, myostatin and atrogin-1. These effects induced by IS were suppressed in the presence of an antioxidant or inhibitors of the organic anion transporter and aryl hydrocarbon receptor. The administered IS was distributed to skeletal muscle and induced superoxide production in half-nephrectomized (1/2 Nx) mice. The chronic administration of IS significantly reduced the body weights accompanied by skeletal muscle weight loss. Similar to the in vitro data, IS induced the expression of myostatin and atrogin-1 in addition to increasing the production of inflammatory cytokines by enhancing oxidative stress in skeletal muscle. These data suggest that IS has the potential to accelerate skeletal muscle atrophy by inducing oxidative stress-mediated myostatin and atrogin-1 expression. PMID:27549031

  11. Myostatin as a therapeutic target in Amyotrophic lateral sclerosis.

    PubMed

    Walsh, Frank S; Rutkowski, Julia Lynn

    2012-11-01

    Amyotrophic Lateral Sclerosis is a devastating neurological disease that is inevitably fatal after 3-5years duration. Treatment options are minimal and as such new therapeutic modalities are required. In this review, we discuss the role of the myostatin pathway as a modulator of skeletal muscle mass and therapeutic approaches using biological based therapies. Both monoclonal antibodies to myostatin and a soluble receptor decoy to its high affinity receptor have been used in clinical trials of neuromuscular diseases and while there have been efficacy signals with the latter approach there have also been safety issues. Our approach is to target the high affinity receptor-binding site on myostatin and to develop a next generation set of therapeutic reagents built on a novel protein scaffold. This is the natural single domain VNAR found in sharks which is extremely versatile and has the ability to develop products with superior properties compared to existing therapeutics.

  12. Cloning and sequence analysis of myostatin promoter in sheep.

    PubMed

    Du, Rong; Chen, Yong-Fu; An, Xiao-Rong; Yang, Xing-Yuan; Ma, Yi; Zhang, Lei; Yuan, Xiao-Li; Chen, Li-Mei; Qin, Jian

    2005-12-01

    To better understand the structure and function of the myostatin's gene promoter region in sheep, we cloned and sequenced a 1.517 kb fragment containing the 5'-regulatory region of the sheep myostatin gene (GenBank accession number is AY918121). The promoter sequence consists of three TATA boxes, one CAAT box, and eight putative E-boxes. Some putative muscle growth response elements for Octamer-binding factor 1(Octamer), Activator protein 1(AP1), Growth factor independence 1 zinc finger protein (Gfi-1B), Myocyte enhancer factor 2 (MEF2), Muscle-specific Mt binding site (MTBF), Glucocorticoid response elements (GRE) and Progesterone receptor binding site (PRE) were detected. Some of the motifs are conserved as compared to with that in the goat, bovine and porcine myostatin promoters. However, some differences were also found.

  13. Decreased specific force and power production of muscle fibers from myostatin-deficient mice are associated with a suppression of protein degradation

    PubMed Central

    Kayupov, Erdan; Bradley, Joshua R.; Brooks, Susan V.; Claflin, Dennis R.

    2011-01-01

    Myostatin (MSTN) is a member of the transforming growth factor-β superfamily of cytokines and is a negative regulator of skeletal muscle mass. Compared with MSTN+/+ mice, the extensor digitorum longus muscles of MSTN−/− mice exhibit hypertrophy, hyperplasia, and greater maximum isometric force production (Fo), but decreased specific maximum isometric force (sFo; Fo normalized by muscle cross-sectional area). The reason for the reduction in sFo was not known. Studies in myotubes indicate that inhibiting myostatin may increase muscle mass by decreasing the expression of the E3 ubiquitin ligase atrogin-1, which could impact the force-generating capacity and size of muscle fibers. To gain a greater understanding of the influence of myostatin on muscle contractility, we determined the impact of myostatin deficiency on the contractility of permeabilized muscle fibers and on the levels of atrogin-1 and ubiquitinated myosin heavy chain in whole muscle. We hypothesized that single fibers from MSTN−/− mice have a greater Fo, but no difference in sFo, and a decrease in atrogin-1 and ubiquitin-tagged myosin heavy chain levels. The results indicated that fibers from MSTN−/− mice have a greater cross-sectional area, but do not have a greater Fo and have a sFo that is significantly lower than fibers from MSTN+/+ mice. The extensor digitorum longus muscles from MSTN−/− mice also have reduced levels of atrogin-1 and ubiquitinated myosin heavy chain. These findings suggest that myostatin inhibition in otherwise healthy muscle increases the size of muscle fibers and decreases atrogin-1 levels, but does not increase the force production of individual muscle fibers. PMID:21565991

  14. Grip force, EDL contractile properties, and voluntary wheel running after postdevelopmental myostatin depletion in mice.

    PubMed

    Personius, Kirkwood E; Jayaram, Aditi; Krull, David; Brown, Roger; Xu, Tianshun; Han, Bajin; Burgess, Kerri; Storey, Christopher; Shah, Bharati; Tawil, Rabi; Welle, Stephen

    2010-09-01

    There is no consensus about whether making muscles abnormally large by reducing myostatin activity affects force-generating capacity or the ability to perform activities requiring muscular endurance. We therefore examined grip force, contractile properties of extensor digitorum longus (EDL) muscles, and voluntary wheel running in mice in which myostatin was depleted after normal muscle development. Cre recombinase activity was induced to knock out exon 3 of the myostatin gene in 4-mo-old mice in which this exon was flanked by loxP sequences (Mstn[f/f]). Control mice with normal myostatin genes (Mstn[w/w]) received the same Cre-activating treatment. Myostatin depletion increased the mass of all muscles that were examined (gastrocnemius, quadriceps, tibialis anterior, EDL, soleus, triceps) by approximately 20-40%. Grip force, measured multiple times 2-22 wk after myostatin knockout, was not consistently greater in the myostatin-deficient mice. EDL contractile properties were determined 7-13 mo after myostatin knockout. Twitch force tended to be greater in myostatin-deficient muscles (+24%; P=0.09), whereas tetanic force was not consistently elevated (mean +11%; P=0.36), even though EDL mass was greater than normal in all myostatin-deficient mice (mean +36%; P<0.001). The force deficit induced by eccentric contractions was approximately twofold greater in myostatin-deficient than in normal EDL muscles (31% vs. 16% after five eccentric contractions; P=0.02). Myostatin-deficient mice ran 19% less distance (P<0.01) than control mice during the 12 wk following myostatin depletion, primarily because of fewer running bouts per night rather than diminished running speed or bout duration. Reduced specific tension (ratio of force to mass) and reduced running have been observed after muscle hypertrophy was induced by other means, suggesting that they are characteristics generally associated with abnormally large muscles rather than unique effects of myostatin deficiency.

  15. The critical role of myostatin in differentiation of sheep myoblasts

    SciTech Connect

    Liu, Chenxi; Li, Wenrong; Zhang, Xuemei; Zhang, Ning; He, Sangang; Huang, Juncheng; Ge, Yubin; Liu, Mingjun

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer Identification of the effective and specific shRNA to knockdown MSTN. Black-Right-Pointing-Pointer Overexpression of MSTN reversibly suppressed myogenic differentiation. Black-Right-Pointing-Pointer shRNA knockdown of endogenous MSTN promoted ovine myoblast differentiation. Black-Right-Pointing-Pointer MSTN inhibits myogenic differentiation through down-regulation of MyoD and Myogenin and up-regulation of Smad3. Black-Right-Pointing-Pointer Provides a promise for the generation of transgenic sheep to improve meat productivity. -- Abstract: Myostatin [MSTN, also known as growth differentiation factor 8 (GDF8)], is an inhibitor of skeletal muscle growth. Blockade of MSTN function has been reported to result in increased muscle mass in mice. However, its role in myoblast differentiation in farm animals has not been determined. In the present study, we sought to determine the role of MSTN in the differentiation of primary sheep myoblasts. We found that ectopic overexpression of MSTN resulted in lower fusion index in sheep myoblasts, which indicated the repression of myoblast differentiation. This phenotypic change was reversed by shRNA knockdown of the ectopically expressed MSTN in the cells. In contrast, shRNA knockdown of the endogenous MSTN resulted in induction of myogenic differentiation. Additional studies revealed that the induction of differentiation by knocking down the ectopically or endogenously expressed MSTN was accompanied by up-regulation of MyoD and myogenin, and down-regulation of Smad3. Our results demonstrate that MSTN plays critical role in myoblast differentiation in sheep, analogous to that in mice. This study also suggests that shRNA knockdown of MSTN could be a potentially promising approach to improve sheep muscle growth, so as to increase meat productivity.

  16. Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors.

    PubMed

    Allen, David L; Unterman, Terry G

    2007-01-01

    Myostatin, a member of the transforming growth factor (TGF)-beta family, plays an important role in regulating skeletal muscle growth and differentiation. Here we examined the role of FoxO1 and SMAD transcription factors in regulating myostatin gene expression and myoblast differentiation in C(2)C(12) myotubes in vitro. Both myostatin and FoxO1 mRNA expression were greater in fast- vs. slow-twitch skeletal muscles in vivo. Moreover, expression of a constitutively active form of FoxO1 increased myostatin mRNA and increased activity of a myostatin promoter reporter construct in differentiated C(2)C(12) myotubes. Mutagenesis of highly conserved FoxO or SMAD binding sites significantly decreased myostatin promoter activity, and binding assays showed that both FoxO1 and SMADs bind to their respective sites in the myostatin promoter. Treatment with TGF-beta and/or overexpression of SMAD2, -3, or -4 also resulted in a significant increase in myostatin promoter activity. Treatment with TGF-beta along with overexpression of SMAD2 and FoxO1 resulted in the largest increase in myostatin promoter activity. Finally, TGF-beta treatment and SMAD2 overexpression greatly potentiated FoxO1-mediated suppression of myoblast differentiation. Together these data demonstrate that FoxO1 and SMAD transcription factors regulate the expression of myostatin and contribute to the control of muscle cell growth and differentiation.

  17. Identification, characterization, and quantitative expression analysis of rainbow trout myostatin-1a and myostatin-1b genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Myostatin is a potent negative regulator of skeletal muscle growth. Although several cDNA clones have been characterized in different vertebrates, the genomic organization and bioactivity of non-mammalian homologs have not. The intron/exon organization and promoter subsequence analysis of two rainbo...

  18. Oleoylethanolamide exerts anti-inflammatory effects on LPS-induced THP-1 cells by enhancing PPARα signaling and inhibiting the NF-κB and ERK1/2/AP-1/STAT3 pathways

    PubMed Central

    Yang, Lichao; Guo, Han; Li, Ying; Meng, Xianglan; Yan, Lu; Dan Zhang; Wu, Sangang; Zhou, Hao; Peng, Lu; Xie, Qiang; Jin, Xin

    2016-01-01

    The present study aimed to examine the anti-inflammatory actions of oleoylethanolamide (OEA) in lipopolysaccharide (LPS)-induced THP-1 cells. The cells were stimulated with LPS (1 μg/ml) in the presence or absence of OEA (10, 20 and 40 μM). The pro-inflammatory cytokines were evaluated by qRT-PCR and ELISA. The THP-1 cells were transiently transfected with PPARα small-interfering RNA, and TLR4 activity was determined with a blocking test using anti-TLR4 antibody. Additionally, a special inhibitor was used to analyse the intracellular signaling pathway. OEA exerted a potent anti-inflammatory effect by reducing the production of pro-inflammatory cytokines and TLR4 expression, and by enhancing PPARα expression. The modulatory effects of OEA on LPS-induced inflammation depended on PPARα and TLR4. Importantly, OEA inhibited LPS-induced NF-κB activation, IκBα degradation, expression of AP-1, and the phosphorylation of ERK1/2 and STAT3. In summary, our results demonstrated that OEA exerts anti-inflammatory effects by enhancing PPARα signaling, inhibiting the TLR4-mediated NF-κB signaling pathway, and interfering with the ERK1/2-dependent signaling cascade (TLR4/ERK1/2/AP-1/STAT3), which suggests that OEA may be a therapeutic agent for inflammatory diseases. PMID:27721381

  19. A missense mutant myostatin causes hyperplasia without hypertrophy in the mouse muscle.

    PubMed

    Nishi, Masumi; Yasue, Akihiro; Nishimatu, Shinichirou; Nohno, Tsutomu; Yamaoka, Takashi; Itakura, Mitsuo; Moriyama, Keiji; Ohuchi, Hideyo; Noji, Sumihare

    2002-04-26

    Myostatin, which is a member of the TGF-beta superfamily, is a negative regulator of skeletal muscle formation. Double-muscled Piedmontese cattle have a C313Y mutation in myostatin and show increased skeletal muscle mass which resulted from an increase of myofiber number (hyperplasia) without that of myofiber size (hypertrophy). To examine whether this mutation in myostatin gene affects muscle development in a dominant negative manner, we generated transgenic mice overexpressing the mutated gene. The transgenic mice exhibited dramatic increases in the skeletal muscle mass resulting from hyperplasia without hypertrophy. In contrast, it has been reported that a myostatin mutated at its cleavage site produces hypertrophy without hyperplasia in the muscle. Thus, these results suggest that (1) the myostatin containing the missense mutation exhibits a dominant negative activity and that (2) there are two types in the dominant negative form of myostatin, causing either hypertrophy or hyperplasia.

  20. Myostatin DNA vaccine increases skeletal muscle mass and endurance in mice.

    PubMed

    Tang, Liang; Yan, Zhen; Wan, Yi; Han, Wei; Zhang, Yingqi

    2007-09-01

    Myostatin is a transforming growth factor-beta family member that acts as a negative regulator of skeletal muscle growth. In mice, genetic disruption of the myostatin gene leads to a marked increase in body weight and muscle mass. Similarly, pharmacological interference with myostatin in vivo in mdx knockout mice results in a functional improvement of the dystrophic phenotype. Consequently, myostatin is an important therapeutic target for treatment of diseases associated with muscle wasting. To construct a therapeutic DNA vaccine against myostatin, we coupled the foreign, immunodominant T-helper epitope of tetanus toxin to the N terminus of myostatin, and BALB/c mice were immunized with the recombinant vector. Sera from vaccinated mice showed the presence of specific antibodies against the recombinant protein. In addition, body weight, muscle mass, and grip endurance of vaccinated mice were significantly increased. Our study provides a novel, pharmacological strategy for treatment of diseases associated with muscle wasting.

  1. Arsenic trioxide and all-trans-retinoic acid selectively exert synergistic cytotoxicity against FLT3-ITD AML cells via co-inhibition of FLT3 signaling pathways.

    PubMed

    Wang, Li-Na; Tang, Yan-Lai; Zhang, Yin-Chuan; Zhang, Zu-Han; Liu, Xiao-Jian; Ke, Zhi-Yong; Li, Yu; Tan, Hui-Zhen; Huang, Li-Bin; Luo, Xue-Qun

    2017-03-09

    FLT3-ITD mutations occur in approximately 30% of acute myeloid leukemia (AML) and are associated with a poor outcome. Currently available FLT3 inhibitors have in vitro but limited clinical activity in FLT3-ITD AML. Reports have shown that an arsenic trioxide (ATO)/all-trans-retinoic acid (ATRA) combination improves prognosis in acute promyelocytic leukemia, especially with FLT3-ITD, and ATO or ATRA alone enhances apoptosis in FLT3-ITD AML cells treated with FLT3 inhibitors, providing a rationale to investigate the role of ATO/ATRA in FLT3-ITD AML. Here, we demonstrate that an ATO/ATRA combination selectively exerts synergistic cytotoxicity against FLT3-ITD AML cell lines (MV4;11/MOLM-13). The signaling pathways affected by ATO/ATRA include FLT3/STAT5/MYC, FLT3/STAT5/E2F1, FLT3/ERK/ATF5 and FLT3/AKT/ATF5.ATF5 may function as an oncogene in FLT3-ITD AML. Our findings provide experimental evidence that supports further exploration of ATO/ATRA in FLT3-ITD AML in vivo and warrants a clinical evaluation of regimens comprising an ATO/ATRA combination.

  2. Ketanserin, an antidepressant, exerts its antileishmanial action via inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) enzyme of Leishmania donovani.

    PubMed

    Singh, Sushma; Dinesh, Neeradi; Kaur, Preet Kamal; Shamiulla, Baigadda

    2014-06-01

    Leishmaniasis is one of the major health problems existing globally. The current chemotherapy for leishmaniasis presents several drawbacks like toxicity and increased resistance to existing drugs, and hence, there is a necessity to look out for the novel drug targets and new chemical entities. Current trend in drug discovery arena is the "repurposing" of old drugs for the treatment of diseases. In the present study, an antidepressant, ketanserin, was found lethal to both Leishmania donovani promastigotes and intracellular amastigotes with no apparent toxicity to the cells. Ketanserin killed promastigotes and amastigotes with an IC50 value of 37 μM and 28 μM respectively, in a dose-dependent manner. Ketanserin was found to inhibit L. donovani recombinant 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) enzyme with an IC50 value of 43 μM. Ketanserin treated promastigotes were exogenously supplemented with sterols like ergosterol and cholesterol to rescue cell death. Ergosterol could recover the inhibition partially, whereas cholesterol supplementation completely failed to rescue the inhibited parasites. Further, HMGR-overexpressing parasites were generated by transfecting Leishmania promastigotes with an episomal pspα hygroα-HMGR construct. Wild-type and HMGR overexpressors of L. donovani were used to study the effect and mode of action of this inhibitor. The HMGR overexpressors showed twofold resistance to ketanserin. These observations suggest that the lethal effect of ketanserin is due to inhibition of HMGR, the rate-limiting enzyme of the ergosterol biosynthetic pathway. Since targeting of the sterol biosynthetic pathway enzymes may be useful therapeutically, the present study may have implications in treatment of leishmaniasis.

  3. Berberine inhibits mouse insulin gene promoter through activation of AMP activated protein kinase and may exert beneficial effect on pancreatic β-cell.

    PubMed

    Shen, Ning; Huan, Yi; Shen, Zhu-fang

    2012-11-05

    Berberine is one of the main alkaloids of Rhizoma coptidis, proven to have anti-diabetic potentials through activation of AMP activated protein kinase (AMPK) in liver and muscle. However, the role of berberine on the insulin gene is unknown. Therefore, the effect of berberine on insulin gene transcription was investigated in the present study. Reporter gene assays were used in the mouse β-cell line NIT-1 to test the effect of berberine on the promoter of mouse insulin gene Ins2. The mRNA and protein levels of insulin were also detected. Diet induced glucose intolerant mice were used to explore the effect of berberine on blood glucose homeostasis and insulin resistance in vivo. The insulin content in islet was semi-quantified by an image analysis software in the immunohistochemistry sections. The results revealed that berberine caused a reversible concentration-dependent inhibition of insulin gene transcription in NIT-1 cells which showed a significant difference from the long term used AMPK activator metformin. Such inhibition on insulin promoter resulted in the reduction of mRNA and protein of insulin. Furthermore, the inhibition of insulin promoter was totally abolished by AMPK inhibitor Compound C. Berberine significantly improved insulin resistance and glucose intolerance of mice. Likewise, insulin content in islets of berberine treated mice was also decreased. Thus, the insulin gene represents a novel target of AMPK that may contribute to the action of berberine in type 2 diabetes mellitus.

  4. Inhibition of p85, the non-catalytic subunit of phosphatidylinositol 3-kinase, exerts potent antitumor activity in human breast cancer cells

    PubMed Central

    Folgiero, V; Di Carlo, S E; Bon, G; Spugnini, E P; Di Benedetto, A; Germoni, S; Pia Gentileschi, M; Accardo, A; Milella, M; Morelli, G; Bossi, G; Mottolese, M; Falcioni, R

    2012-01-01

    The phosphoinositide 3-kinases (PI3Ks) are heterodimers consisting of the catalytic subunit p110 and the regulatory subunit p85. The PI3K/Akt pathway is strongly deregulated in breast cancer (BC) representing one of the mechanisms of resistance to therapies. Therefore, the identification of inhibitors of PI3K components represents one of the main goals to produce therapeutic agents. Here, we evaluated the efficacy of a phosphopeptide 1257 (P-1257) that targeting p85 strongly inhibits PI3K activity. We tested the effects of P-1257 administration in vitro and in vivo using BC cells expressing different levels of ErbB-2 and resistant or responsive to Trastuzumab. We demonstrated that inhibition of p85 activity by P-1257 induces cell death and sensitizes JIMT-1 and KPL-4 ErbB-2-overexpressing BC cells to Trastuzumab treatment. It is noteworthy that P-1257 delivery in vivo by electroporation or liposomes significantly inhibits the proliferation of tumor cells engrafted at subcutaneous and visceral sites. Overall, our data indicate that the p85 subunit is a valid target for therapeutic approaches and suggest that the structure of the peptide used in our study could be utilized for the development of novel drugs to apply in combination with therapies that fail to cure BCs with high PI3K activity. PMID:23222510

  5. Pseudoginsenoside-F11 (PF11) exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-κB, MAPKs and Akt signaling pathways.

    PubMed

    Wang, Xiaoxiao; Wang, Chunming; Wang, Jiming; Zhao, Siqi; Zhang, Kuo; Wang, Jingmin; Zhang, Wei; Wu, Chunfu; Yang, Jingyu

    2014-04-01

    Pseudoginsenoside-F11 (PF11), an ocotillol-type ginsenoside, has been shown to possess significant neuroprotective activity. Since microglia-mediated inflammation is critical for induction of neurodegeneration, this study was designed to investigate the effect of PF11 on activated microglia. PF11 significantly suppressed the release of ROS and proinflammatory mediators induced by LPS in a microglial cell line N9 including NO, PGE2, IL-1β, IL-6 and TNF-α. Moreover, PF11 inhibited interaction and expression of TLR4 and MyD88 in LPS-activated N9 cells, resulting in an inhibition of the TAK1/IKK/NF-κB signaling pathway. PF11 also inhibited the phosphorylation of Akt and MAPKs induced by LPS in N9 cells. Importantly, PF11 significantly alleviated the death of SH-SY5Y neuroblastoma cells and primary cortical neurons induced by the conditioned-medium from activated microglia. At last, the effect of PF11 on neuroinflammation was confirmed in vivo: PF11 mitigated the microglial activation and proinflammatory factors expression obviously in both cortex and hippocampus in mice injected intrahippocampally with LPS. These findings indicate that PF11 exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-κB, MAPKs and Akt signaling pathways, suggesting its therapeutic implication for neurodegenerative disease associated with neuroinflammation.

  6. ALCAR Exerts Neuroprotective and Pro-Neurogenic Effects by Inhibition of Glial Activation and Oxidative Stress via Activation of the Wnt/β-Catenin Signaling in Parkinsonian Rats.

    PubMed

    Singh, Sonu; Mishra, Akanksha; Shukla, Shubha

    2016-09-01

    Oxidative stress and neuroinflammation are known causative factors in progressive degeneration of dopaminergic (DAergic) neurons in Parkinson's disease (PD). Neural stem cells (NSCs) contribute in maintaining brain plasticity; therefore, survival of NSCs and neuroblasts during neurodegenerative process becomes important in replenishing the pool of mature neuronal population. Acetyl-L-carnitine (ALCAR), present in almost all body cells, increases endogenous antioxidants and regulates bioenergetics. Currently, no information is available about the putative mechanism and neuroprotective effects of ALCAR in 6-hydroxydopamine (6-OHDA)-induced rat model of PD-like phenotypes. Herein, we investigated the effect of ALCAR on death/survival of DAergic neurons, neuroblasts and NSCs and associates mechanism of neuroprotection in 6-OHDA-induced rat model of PD-like phenotypes. ALCAR (100 mg/kg/day, intraperitoneal (i.p.)) treatment started 3 days prior to 6-OHDA lesioning and continued for another 14 day post-lesioning. We found that ALCAR pretreatment in 6-OHDA-lesioned rats increased expression of neurogenic and the Wnt pathway genes in the striatum and substantia nigra pars compacta (SNpc) region. It suppressed the glial cell activation, improved antioxidant status, increased NSC/neuroblast population and rescued the DAergic neurons in nigrostriatal pathway. ALCAR pretreatment in 6-OHDA-lesioned rats decreased GSK-3β activation and increased nuclear translocation of β-catenin. Functional deficits were restored following ALCAR pretreatment in 6-OHDA-lesioned rats as demonstrated by improved motor coordination and rotational behaviour, confirming protection of DAergic innervations in lesioned striatum. These results indicate that ALCAR exerts neuroprotective effects through the activation of Wnt/β-catenin pathway, suggesting its therapeutic use to treat neurodegenerative diseases by enhancing regenerative capacity.

  7. Knockout of Myostatin by Zinc-finger Nuclease in Sheep Fibroblasts and Embryos

    PubMed Central

    Zhang, Xuemei; Wang, Liqin; Wu, Yangsheng; Li, Wenrong; An, Jing; Zhang, Fuchun; Liu, Mingjun

    2016-01-01

    Myostatin (MSTN) can negatively regulate the growth and development of skeletal muscle, and natural mutations can cause “double-muscling” trait in animals. In order to block the inhibiting effect of MSTN on muscle growth, we transferred zinc-finger nucleases (ZFN) which targeted sheep MSTN gene into cultured fibroblasts. Gene targeted colonies were isolated from transfected fibroblasts by serial dilution culture and screened by sequencing. Two colonies were identified with mono-allele mutation and one colony with bi-allelic deletion. Further, we introduced the MSTN-ZFN mRNA into sheep embryos by microinjection. Thirteen of thirty-seven parthenogenetic embryos were targeted by ZFN, with the efficiency of 35%. Our work established the technical foundation for generation of MSTN gene editing sheep by somatic cloning and microinjection ZFN into embryos. PMID:27189642

  8. Myostatin is a key mediator between energy metabolism and endurance capacity of skeletal muscle.

    PubMed

    Mouisel, Etienne; Relizani, Karima; Mille-Hamard, Laurence; Denis, Raphaël; Hourdé, Christophe; Agbulut, Onnik; Patel, Ketan; Arandel, Ludovic; Morales-Gonzalez, Susanne; Vignaud, Alban; Garcia, Luis; Ferry, Arnaud; Luquet, Serge; Billat, Véronique; Ventura-Clapier, Renée; Schuelke, Markus; Amthor, Helge

    2014-08-15

    Myostatin (Mstn) participates in the regulation of skeletal muscle size and has emerged as a regulator of muscle metabolism. Here, we hypothesized that lack of myostatin profoundly depresses oxidative phosphorylation-dependent muscle function. Toward this end, we explored Mstn(-/-) mice as a model for the constitutive absence of myostatin and AAV-mediated overexpression of myostatin propeptide as a model of myostatin blockade in adult wild-type mice. We show that muscles from Mstn(-/-) mice, although larger and stronger, fatigue extremely rapidly. Myostatin deficiency shifts muscle from aerobic toward anaerobic energy metabolism, as evidenced by decreased mitochondrial respiration, reduced expression of PPAR transcriptional regulators, increased enolase activity, and exercise-induced lactic acidosis. As a consequence, constitutively reduced myostatin signaling diminishes exercise capacity, while the hypermuscular state of Mstn(-/-) mice increases oxygen consumption and the energy cost of running. We wondered whether these results are the mere consequence of the congenital fiber-type switch toward a glycolytic phenotype of constitutive Mstn(-/-) mice. Hence, we overexpressed myostatin propeptide in adult mice, which did not affect fiber-type distribution, while nonetheless causing increased muscle fatigability, diminished exercise capacity, and decreased Pparb/d and Pgc1a expression. In conclusion, our results suggest that myostatin endows skeletal muscle with high oxidative capacity and low fatigability, thus regulating the delicate balance between muscle mass, muscle force, energy metabolism, and endurance capacity.

  9. N-terminal polypeptide derived from vMIP-II exerts its antitumor activity by inhibiting the CXCR4 pathway in human glioma

    PubMed Central

    Yang, Qingling; Wu, Haihua; Wang, Haifeng; Li, Yu; Zhang, Lingyu; Zhu, Lihua; Wang, Wenrui; Zhou, Jihong; Fu, Yingxiao; Chen, Sulian; Wu, Qiong; Chen, Changjie; Zhou, Congzhao

    2017-01-01

    Emerging evidence demonstrates that the stromal derived factor-1 (SDF-1α)/CXCR4 axis is associated with tumor aggressiveness and metastasis, including glioma, the most common brain cancer. In the present study, we demonstrated that a novel designed peptide NT21MP of viral macrophage inflammatory protein II, targeting CXCR4 inhibits SDF-1α-induced activation in glioma. The effects of NT21MP on CXCR4 expression, cell survival and migration were assessed on the human glioma cell line U251 and SHG-44 exposed to SDF-1α, by western blotting, MTT assay, flow cytometry and Transwell migration assay. Our results illustrated that NT21MP inhibited SDF-1α induced proliferation, migration and invasion by upregulated pro-apoptotic genes (Bak1 and caspase-3) and downregulated Bcl-2/Bax as well as cell cycle regulators (cyclin D1 and CDK4) to arrest cell cycle in G0/G1 phase and promote apoptosis. By RT-qPCR and immunofluorescence we found that CXCR4 was highly expressed in SHG-44 cells. Our results from wound healing and Transwell invasion assays indicated silencing of CXCR4 significantly inhibited the SDF-1α-induced migration and invasion; similarly, flow cytometry showed that treatment with si-CXCR4 affected cell cycle and induced cell apoptosis in SHG-44. However, these effects were significantly weakened by NT21MP. In conclusion, the present study indicates that NT21MP plays a regulatory role in the SDF-1α/CXCR4 axis and further manages the invasion, migration, apoptosis and cell cycle of glioma cells. Thus, NT21MP might represent a novel therapeutic approach against glioma. PMID:28350074

  10. Clitocypin, a fungal cysteine protease inhibitor, exerts its insecticidal effect on Colorado potato beetle larvae by inhibiting their digestive cysteine proteases.

    PubMed

    Šmid, Ida; Rotter, Ana; Gruden, Kristina; Brzin, Jože; Buh Gašparič, Meti; Kos, Janko; Žel, Jana; Sabotič, Jerica

    2015-07-01

    Colorado potato beetle (Leptinotarsa decemlineata Say, CPB) is a major potato pest that adapts readily to insecticides. Several types of protease inhibitors have previously been investigated as potential control agents, but with limited success. Recently, cysteine protease inhibitors from parasol mushroom, the macrocypins, were reported to inhibit growth of CPB larvae. To further investigate the insecticidal potential and mode of action of cysteine protease inhibitors of fungal origin, clitocypin, a cysteine protease inhibitor from clouded agaric (Clitocybe nebularis), was evaluated for its lethal effects on CPB larvae. Clitocypin isolated from fruiting bodies and recombinant clitocypin produced in Escherichia coli slowed growth and reduced survival of CPB larvae in a concentration dependent manner. Clitocypin was also expressed by transgenic potato, but only at low levels. Nevertheless, it reduced larval weight gain and delayed development. We have additionally shown that younger larvae are more susceptible to the action of clitocypin. The inhibition of digestive cysteine proteases, intestains, by clitocypin was shown to be the underlying mode of action. Protease inhibitors from mushrooms are confirmed as promising candidates for biopesticides.

  11. Age-dependent effect of myostatin blockade on disease severity in a murine model of limb-girdle muscular dystrophy.

    PubMed

    Parsons, Stephanie A; Millay, Douglas P; Sargent, Michelle A; McNally, Elizabeth M; Molkentin, Jeffery D

    2006-06-01

    Myostatin (MSTN) is a muscle-specific secreted peptide that functions to limit muscle growth through an autocrine regulatory feedback loop. Loss of MSTN activity in cattle, mice, and humans leads to a profound phenotype of muscle overgrowth, associated with more and larger fibers and enhanced regenerative capacity. Deletion of MSTN in the mdx mouse model of Duchenne muscular dystrophy enhances muscle mass and reduces disease severity. In contrast, loss of MSTN activity in the dyW/dyW mouse model of laminin-deficient congenital muscular dystrophy, a much more severe and lethal disease model, does not improve all aspects of muscle pathology. Here we examined disease severity associated with myostatin (mstn-/-) deletion in mice nullizygous for delta-sarcoglycan (scgd-/-), a model of limb-girdle muscular dystrophy. Early loss of MSTN activity achieved either by monoclonal antibody administration or by gene deletion each improved muscle mass, regeneration, and reduced fibrosis in scgd-/- mice. However, antibody-mediated inhibition of MSTN in late-stage dystrophic scgd-/- mice did not improve disease. These findings suggest that MSTN inhibition may benefit muscular dystrophy when instituted early or if disease is relatively mild but that MSTN inhibition in severely affected or late-stage disease may be ineffective.

  12. Compound Radix Sophorae Flavescentis exerts antitumor effects by inhibiting the proliferation and inducing the apoptosis of esophageal carcinoma TE-8 cells.

    PubMed

    Yang, Xiaoyu; Cai, Weimei; Yang, Qinghui; Lu, Zhihong; Li, Jinsong; Yu, Jian

    2015-10-01

    The aim of this study was to examine the effects of compound Radix Sophorae Flavescentis on the proliferation of esophageal carcinoma TE-8 cells and to elucidate the mechanisms involved. For this purpose, we incubated TE-8 cells in medium containing various concentrations (0, 0.0125, 0.025, 0.05, 0.1, 0.2, 0.4 and 0.8 mg/ml) of the compound Radix Sophorae Flavescentis injection and its effects on the proliferation of TE-8 cells were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, we observed the morphological changes and measured the expression levels of apoptosis-related genes (caspase-3, Bcl-2 and Bax) in the cells treated with different doses of the compound (low-dose group, 0.05 mg/ml; medium-dose group, 0.2 mg/ml; and high-dose group, 0.8 ng/ml) by reverse transcription-quantitative PCR (RT-qPCR). The apoptotic index of the cancer cells treated with different doses of the compound was determined by TUNEL assay. Our results revealed that compared with the control group (untreated cells), the proliferation of the cancer cells treated with the compound was significantly inhibited (P≤0.05); the inhibition of the proliferation of the cancer cells occured in a dose-dependent manner. Compared with the control group, the apoptotic rate of the cells in the low-dose, medium-dose and high-dose groups increased significantly (P<0.05) in a dose-dependent manner. In addition, compared with the control group, the mRNA expression of caspase-3 and Bax increased significantly in the cells treated with the compound. However, the mRNA expression of Bcl-2 markedly decreased (P<0.05). With the gradual increase in the drug concentration, the mRNA expression levels of caspase-3, Bcl-2 and Bax in the cancer cells were altered in a dose-dependent manner. In conclusion, our data demonstrate that compound Radix Sophorae Flavescentis injection significantly enhances the expression of pro-apoptotic genes in esophageal carcinoma TE-8

  13. Volatile oil from Saussurea lappa exerts antitumor efficacy by inhibiting epithelial growth factor receptor tyrosine kinase-mediated signaling pathway in hepatocellular carcinoma.

    PubMed

    Lin, Xuejing; Peng, Zhangxiao; Fu, Xiaohui; Liu, Chunying; Xu, Yang; Ji, Weidan; Fan, Jianhui; Chen, Lei; Fang, Lin; Huang, Yao; Su, Changqing

    2016-11-29

    Hepatocellular carcinoma (HCC) treatment remains lack of effective chemotherapeutic drugs, therefore, discovering novel anti-HCC drugs is a very attractive and urgent task. In this study, we reported VOSL (volatile oil from Saussurea lappa root) exhibits potent therapeutic effect on SMMC-7721 xenografts without obvious side effects. In the in vitro experiments, VOSL inhibited HCC cell proliferation by arresting cell cycle at S and G2/M phases, and induced HCC cell apoptosis by activating the Caspase3 pathway. VOSL also decreased the capability of HCC cell migration and invasion through MMP-9 depression. Moreover, mechanistic study indicated that VOSL can act as an epithelial growth factor receptor (EGFR) inhibitor to suppress EGFR activation and then to suppress its downstream MEK/P38 and PI3-K/Akt pathways. These results suggested that VOSL may be a novel anti-HCC drug candidate.

  14. Volatile oil from Saussurea lappa exerts antitumor efficacy by inhibiting epithelial growth factor receptor tyrosine kinase-mediated signaling pathway in hepatocellular carcinoma

    PubMed Central

    Liu, Chunying; Xu, Yang; Ji, Weidan; Fan, Jianhui; Chen, Lei; Fang, Lin; Huang, Yao; Su, Changqing

    2016-01-01

    Hepatocellular carcinoma (HCC) treatment remains lack of effective chemotherapeutic drugs, therefore, discovering novel anti-HCC drugs is a very attractive and urgent task. In this study, we reported VOSL (volatile oil from Saussurea lappa root) exhibits potent therapeutic effect on SMMC-7721 xenografts without obvious side effects. In the in vitro experiments, VOSL inhibited HCC cell proliferation by arresting cell cycle at S and G2/M phases, and induced HCC cell apoptosis by activating the Caspase3 pathway. VOSL also decreased the capability of HCC cell migration and invasion through MMP-9 depression. Moreover, mechanistic study indicated that VOSL can act as an epithelial growth factor receptor (EGFR) inhibitor to suppress EGFR activation and then to suppress its downstream MEK/P38 and PI3-K/Akt pathways. These results suggested that VOSL may be a novel anti-HCC drug candidate. PMID:27806329

  15. The Arabidopsis AtPP2CA Protein Phosphatase Inhibits the GORK K+ Efflux Channel and Exerts a Dominant Suppressive Effect on Phosphomimetic-activating Mutations*

    PubMed Central

    Lefoulon, Cécile; Boeglin, Martin; Moreau, Bertrand; Véry, Anne-Aliénor; Szponarski, Wojciech; Dauzat, Myriam; Michard, Erwan; Gaillard, Isabelle; Chérel, Isabelle

    2016-01-01

    The regulation of the GORK (Guard Cell Outward Rectifying) Shaker channel mediating a massive K+ efflux in Arabidopsis guard cells by the phosphatase AtPP2CA was investigated. Unlike the gork mutant, the atpp2ca mutants displayed a phenotype of reduced transpiration. We found that AtPP2CA interacts physically with GORK and inhibits GORK activity in Xenopus oocytes. Several amino acid substitutions in the AtPP2CA active site, including the dominant interfering G145D mutation, disrupted the GORK-AtPP2CA interaction, meaning that the native conformation of the AtPP2CA active site is required for the GORK-AtPP2CA interaction. Furthermore, two serines in the GORK ankyrin domain that mimic phosphorylation (Ser to Glu) or dephosphorylation (Ser to Ala) were mutated. Mutations mimicking phosphorylation led to a significant increase in GORK activity, whereas mutations mimicking dephosphorylation had no effect on GORK. In Xenopus oocytes, the interaction of AtPP2CA with “phosphorylated” or “dephosphorylated” GORK systematically led to inhibition of the channel to the same baseline level. Single-channel recordings indicated that the GORK S722E mutation increases the open probability of the channel in the absence, but not in the presence, of AtPP2CA. The dephosphorylation-independent inactivation mechanism of GORK by AtPP2CA is discussed in relation with well known conformational changes in animal Shaker-like channels that lead to channel opening and closing. In plants, PP2C activity would control the stomatal aperture by regulating both GORK and SLAC1, the two main channels required for stomatal closure. PMID:26801610

  16. CWF-145, a novel synthetic quinolone derivative exerts potent antimitotic activity against human prostate cancer: Rapamycin enhances antimitotic drug-induced apoptosis through the inhibition of Akt/mTOR pathway.

    PubMed

    Hung, Chao-Ming; Lin, Ying-Chao; Liu, Liang-Chih; Kuo, Sheng-Chu; Ho, Chi-Tang; Way, Tzong-Der

    2016-12-25

    CWF-145, a synthetic 2-phenyl-4-quinolone derivative exerted potent cytotoxicity against prostate cancer. CWF-145 inhibited prostate cancer cell lines PC-3, DU-145 and LNCap. It had a very low IC50 about 200 nM against castrate-resistant prostate cancer (CRPC) PC-3. We found that CWF-145 had a similar effect to clinical trial antimitotic agents in cancer cells and normal cells. CWF-145 arrested cell cycle at G2/M phase by binding to the β-tubulin at the colchicine-binding site then disrupted microtubule polymerization. Furthermore, the damaged microtubule affected the Akt/mammalian target of rapamycin (mTOR) signaling pathway. Our data showed that CWF-145 activated Akt and mTOR expression to increase emi1 accumulation and inhibit APC. The increased cyclin B1 and securin arrested cell cycle at G2/M phase. Moreover, we showed that Akt activation markedly increased resistance to microtubule-directed agents, including CWF-145, colchicine, and paclitaxel. Interestingly, rapamycin inhibited Akt-mediated therapeutic resistance, indicating that these effects were dependent on mTOR. Taken together, these observations suggest that activation of the Akt/mTOR signaling pathway can promote resistance to chemotherapeutic agents that do not directly target metabolic regulation. These data may provide insight into potentially synergistic combinations of anticancer therapies.

  17. Possible Involvement of the Inhibition of NF-κB Factor in Anti-Inflammatory Actions That Melatonin Exerts on Mast Cells.

    PubMed

    Maldonado, M D; García-Moreno, H; González-Yanes, C; Calvo, J R

    2016-08-01

    Melatonin is a molecule endogenously produced in a wide variety of immune cells, including mast cells (RBL-2H3). It exhibits immunomodulatory, anti-inflammatory and anti-apoptotic properties. The physiologic mechanisms underlying these activities of melatonin have not been clarified in mast cells. This work is designed to determine the anti-inflammatory effect and mechanism of action of melatonin on activated mast cells. RBL-2H3 were pre-treated with exogenous melatonin (MELx) at physiological (100nM) and pharmacological (1 mM) doses for 30 min, washed and activated with PMACI (phorbol 12-myristate 13-acetate plus calcium ionophore A23187) for 2 h and 12 h. The data shows that pre-treatment of MELx in stimulated mast cells, significantly reduced the levels of endogenous melatonin production (MELn), TNF-α and IL-6. These effects are directly related with the MELx concentration used. MELx also inhibited IKK/NF-κB signal transduction pathway in stimulated mast cells. These results indicate a molecular basis for the ability of melatonin to prevent inflammation and for the treatment of allergic inflammatory diseases through the down-regulation of mast cell activation. J. Cell. Biochem. 117: 1926-1933, 2016. © 2016 Wiley Periodicals, Inc.

  18. Qing Hua Chang Yin exerts therapeutic effects against ulcerative colitis through the inhibition of the TLR4/NF-κB pathway.

    PubMed

    Ke, Xiao; Zhou, Fan; Gao, Youliang; Xie, Bingying; Hu, Guanghong; Fang, Wenyi; Peng, Jun; Chen, Youqin; Sferra, Thomas J

    2013-10-01

    The activation of the Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway has been implicated as a key mediator in the pathogenesis of ulcerative colitis (UC); therefore, it has become an attractive target for the treatment of UC. Qing Hua Chang Yin (QHCY) is a traditional Chinese formula, which has been used for many years to clinically treat conditions associated with inflammatory bowel diseases, such as UC. However, the precise mechanisms behind its anti-inflammatory effects remain largely unknown. In this study, using the dextran sulfate sodium (DSS)-induced colitis mouse model, we evaluated the therapeutic effects of QHCY against UC and elucidated the possible underlying molecular mechanisms. We found that the administration of QHCY profoundly ameliorated DSS-induced clinical manifestations, colon shortening and histological damage in the mice with colitis. In addition, treatment with QHCY significantly decreased the DSS-induced secretion of serum amylase. Moreover, QHCY significantly inhibited the DSS-induced expression of TLR4 and myeloid differentiation primary response gene 88 (MyD88), the phosphorylation of IκB and the nuclear translocation of NF-κB. Taken together, our findings suggest that the suppression of the TLR4/NF-κB signaling pathway may be one of the mechanisms involved in the therapeutic effects of QHCY against UC.

  19. Essential oil of Pinus koraiensis leaves exerts antihyperlipidemic effects via up-regulation of low-density lipoprotein receptor and inhibition of acyl-coenzyme A: cholesterol acyltransferase.

    PubMed

    Kim, Ji-Hyun; Lee, Hyo-Jung; Jeong, Soo-Jin; Lee, Min-Ho; Kim, Sung-Hoon

    2012-09-01

    Hyperlipidemia is an important factor to induce metabolic syndrome such as obesity, diabetes and cardiovascular diseases. Recently, some antihyperlipidemic agents from herbal medicines have been in the spotlight in the medical science field. Thus, the present study evaluated the antihyperlipidemic activities of the essential oil from the leaves of Pinus koraiensis SIEB (EOPK) that has been used as a folk remedy for heart disease. The reverse transcription polymerase chain reaction (RT-PCR) revealed that EOPK up-regulated low density lipoprotein receptor (LDLR) at the mRNA level as well as negatively suppressed the expression of sterol regulatory element-binding protein (SREBP)-1c, SREBP-2, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR), fatty acid synthase (FAS) and glycerol-3-phosphate acyltransferase (GPAT) involved in lipid metabolism in HepG2 cells. Also, western blotting showed that EOPK activated LDLR and attenuated the expression of FAS at the protein level in the cells. Consistently, EOPK significantly inhibited the level of human acylcoenzyme A: cholesterol acyltransferase (hACAT)1 and 2 and reduced the low-density lipoprotein (LDL) oxidation activity. Furthermore, chromatography-mass spectrometry (GC-MS) analysis showed that EOPK, an essential oil mixture, contained camphene (21.11%), d-limonene (21.01%), α-pinene (16.74%) and borneol (11.52%). Overall, the findings suggest that EOPK can be a potent pharmaceutical agent for the prevention and treatment of hyperlipidemia.

  20. [Positional clonage and characterization of the bovine myostatin gene].

    PubMed

    Grobet, L

    2000-01-01

    The double-muscled condition has been intensively selected for in the Belgian Blue cattle breed, where segregation studies have demonstrated the monogenic, autosomal and recessive determinism. This has been confirmed by genetic linkage which located the gene to the centromeric tip of chromosome 2. Our positional cloning strategy, and the discovery of a positional candidate in the mouse, led us to the identification of the causative gene now referred to as the Myostatin gene, since its product downregulates skeletal muscle mass. Disruptive mutations of the gene in cattle have been shown to be responsible for the muscular hypertrophy found in eight european beef breeds. A 15 Kilobases genomic region, including the myostatin gene, has been sequenced and compared in cattle and mice. The murine gene has undergone a complex genetic engineering in order to test different allelic variants in vivo after gene targeting transgenesis.

  1. C-5-Modified Tetrahydropyrano-Tetrahydofuran-Derived Protease Inhibitors (PIs) Exert Potent Inhibition of the Replication of HIV-1 Variants Highly Resistant to Various PIs, including Darunavir

    PubMed Central

    Aoki, Manabu; Hayashi, Hironori; Yedidi, Ravikiran S.; Martyr, Cuthbert D.; Takamatsu, Yuki; Aoki-Ogata, Hiromi; Nakamura, Teruya; Nakata, Hirotomo; Das, Debananda; Yamagata, Yuriko; Ghosh, Arun K.

    2015-01-01

    ABSTRACT We identified three nonpeptidic HIV-1 protease inhibitors (PIs), GRL-015, -085, and -097, containing tetrahydropyrano-tetrahydrofuran (Tp-THF) with a C-5 hydroxyl. The three compounds were potent against a wild-type laboratory HIV-1 strain (HIV-1WT), with 50% effective concentrations (EC50s) of 3.0 to 49 nM, and exhibited minimal cytotoxicity, with 50% cytotoxic concentrations (CC50) for GRL-015, -085, and -097 of 80, >100, and >100 μM, respectively. All the three compounds potently inhibited the replication of highly PI-resistant HIV-1 variants selected with each of the currently available PIs and recombinant clinical HIV-1 isolates obtained from patients harboring multidrug-resistant HIV-1 variants (HIVMDR). Importantly, darunavir (DRV) was >1,000 times less active against a highly DRV-resistant HIV-1 variant (HIV-1DRVRP51); the three compounds remained active against HIV-1DRVRP51 with only a 6.8- to 68-fold reduction. Moreover, the emergence of HIV-1 variants resistant to the three compounds was considerably delayed compared to the case of DRV. In particular, HIV-1 variants resistant to GRL-085 and -097 did not emerge even when two different highly DRV-resistant HIV-1 variants were used as a starting population. In the structural analyses, Tp-THF of GRL-015, -085, and -097 showed strong hydrogen bond interactions with the backbone atoms of active-site amino acid residues (Asp29 and Asp30) of HIV-1 protease. A strong hydrogen bonding formation between the hydroxyl moiety of Tp-THF and a carbonyl oxygen atom of Gly48 was newly identified. The present findings indicate that the three compounds warrant further study as possible therapeutic agents for treating individuals harboring wild-type HIV and/or HIVMDR. IMPORTANCE Darunavir (DRV) inhibits the replication of most existing multidrug-resistant HIV-1 strains and has a high genetic barrier. However, the emergence of highly DRV-resistant HIV-1 strains (HIVDRVR) has recently been observed in vivo and in

  2. [Estrogen exerts anti-inflammatory effects by inhibiting NF-κB pathway through binding with estrogen receptor β on synovicytes of osteoarthritis].

    PubMed

    Zhang, Enwei; Zhang, Hongtao; Liu, Fengzhou; Dong, Chuan; Yao, Yun; Yun, Zhe; Jian, Weiming; Ma, Bao'an

    2016-12-01

    Objective To investigate the mechanism of estrogen's anti-inflammatory effects on synovial cells during the pathogenic process of osteoarthritis. Methods We isolated synovicytes from synovium tissues and identified the cells with flow cytometry. Then we detected the expression level of estrogen receptor β (ERβ) in synovicytes with immunofluorescence staining. The synovicytes were divided into control group, group pretreated with 10 ng/mL IL-1β, group pretreated with 10 ng/mL IL-1β and 10(-7) mol/L estrogen, group pretreated with 10 ng/mL IL-1β, 10(-7) mol/L estrogen and specific antagonist of ERβ, 10(-5) mol/L tetrahydrocannabinol (THC). Thirty-six hours later, we observed the mRNA and protein levels of IκBα, phospho-IκBα (p-IκBα) and IL-6. Results Immunofluorescence staining showed the high expression level of ERβ in synovicytes. In IL-1β treated cells, IL-6 mRNA and protein level, IκBα mRNA and p-IκBα protein levels were elevated compared with the control group, while IκBα protein level declined. In the cells pretreated with IL-1β and estrogen, the mRNA and protein levels of IL-6, IκBα and p-IκBα were inhibited compared with IL-1β treated cells. THC blocked the effects of estrogen on the IL-1β and estrogen treated cells, and the mRNA and protein levels of IL-6, IκBα and p-IκBα had no significant difference compared with IL-1β treated cells. Conclusion The estrogen can restrain the activation of NF-κB pathway in synovicytes via ERβ, thus playing a vital role in anti-inflammation.

  3. Soshiho-Tang Aqueous Extract Exerts Antiobesity Effects in High Fat Diet-Fed Mice and Inhibits Adipogenesis in 3T3-L1 Adipocytes

    PubMed Central

    Lee, Mee-young; Kang, Byoung-Kab

    2016-01-01

    Soshiho-tang (SST; sho-saiko-to in Japanese; xiaochaihu-tang in Chinese) has generally been used to improve liver fibrosis- and cirrhosis-related symptoms in traditional Korean medicine. Although many studies have investigated the pharmacological properties of SST, its antiobesity effect has not been elucidated. Thus, our present study was carried out to evaluate the antiobesity effect of SST using a high fat diet- (HFD) induced obese mouse model and 3T3-L1 adipose cells. C57BL/6J mice were randomly divided into four groups (n = 6/group), normal diet (ND), HFD-fed group, and HFD- and SST-fed groups (S200: 200 mg/kg of SST; S600: 600 mg/kg of SST) and given HFD with or without SST extract for 8 weeks. 3T3-L1 preadipocytes were differentiated into adipocytes for 8 days with or without SST. In the HFD-fed obese mice, body weight and fat accumulation in adipose tissue were significantly reduced by SST administration. Compared with control-differentiated adipocytes, SST significantly inhibited lipid accumulation by decreasing the triglyceride (TG) content and leptin concentration in 3T3-L1 adipocytes. SST also decreased the expression of adipogenesis-related genes including lipoprotein lipase (LPL), fatty acid binding protein 4 (FABP4), CCAAT/enhancer-binding protein-alpha (C/EBP-α), and peroxisome proliferator-activated receptor-gamma (PPAR-γ). Our findings suggest that SST has potential as a nontoxic antiobesity medication. PMID:27777595

  4. The structure of myostatin:follistatin 288: insights into receptor utilization and heparin binding

    SciTech Connect

    Cash, Jennifer N.; Rejon, Carlis A.; McPherron, Alexandra C.; Bernard, Daniel J.; Thompson, Thomas B.

    2009-09-29

    Myostatin is a member of the transforming growth factor-{beta} (TGF-{beta}) family and a strong negative regulator of muscle growth. Here, we present the crystal structure of myostatin in complex with the antagonist follistatin 288 (Fst288). We find that the prehelix region of myostatin very closely resembles that of TGF-{beta} class members and that this region alone can be swapped into activin A to confer signalling through the non-canonical type I receptor Alk5. Furthermore, the N-terminal domain of Fst288 undergoes conformational rearrangements to bind myostatin and likely acts as a site of specificity for the antagonist. In addition, a unique continuous electropositive surface is created when myostatin binds Fst288, which significantly increases the affinity for heparin. This translates into stronger interactions with the cell surface and enhanced myostatin degradation in the presence of either Fst288 or Fst315. Overall, we have identified several characteristics unique to myostatin that will be paramount to the rational design of myostatin inhibitors that could be used in the treatment of muscle-wasting disorders.

  5. Enhanced Myogenesis in adult skeletal muscle by transgenic expression of Myostatin Propeptide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Skeletal muscle growth and maintenance are essential for human health. One of the muscle regulatory genes, namely myostatin, a member of transforming growth factor-ß, plays a dominant role in the genetic control of muscle mass. Transgenic expression of myostatin propeptide in skeletal muscle showed ...

  6. Modulation of follistatin and myostatin propeptide by anabolic steroids and gender.

    PubMed

    Mosler, S; Geisler, S; Hengevoss, J; Schiffer, T; Piechotta, M; Adler, M; Diel, P

    2013-07-01

    The purpose of this pilot study was to investigate the impact of training, anabolic steroids and endogenous hormones on myostatin-interacting proteins in order to identify manipulations of myostatin signalling. To identify whether analysis of the myostatin interacting proteins follistatin and myostatin propeptide is suitable to detect the abuse of anabolic steroids, their serum concentrations were monitored in untrained males, bodybuilders using anabolic steroids and natural bodybuilders. In addition, we analysed follistatin and myostatin propeptide serum proteins in females during menstrual cycle. Our results showed increased follistatin concentrations in response to anabolic steroids. Furthermore, variations of sex steroid levels during the menstrual cycle had no impact on the expression of follistatin and myostatin propetide. In addition, we identified gender differences in the basal expression of the investigated proteins. In general, follistatin and myostatin propeptide concentrations were relatively stable within the same individual both in males and females. In conclusion, the current findings provide an insight into gender differences in myostatin-interacting proteins and their regulation in response to anabolic steroids and endogenous hormones. Therefore our data provide new aspects for the development of doping prevention strategies.

  7. Biochemistry and Biology of GDF11 and Myostatin: Similarities, Differences, and Questions for Future Investigation.

    PubMed

    Walker, Ryan G; Poggioli, Tommaso; Katsimpardi, Lida; Buchanan, Sean M; Oh, Juhyun; Wattrus, Sam; Heidecker, Bettina; Fong, Yick W; Rubin, Lee L; Ganz, Peter; Thompson, Thomas B; Wagers, Amy J; Lee, Richard T

    2016-04-01

    Growth differentiation factor 11 (GDF11) and myostatin (or GDF8) are closely related members of the transforming growth factor β superfamily and are often perceived to serve similar or overlapping roles. Yet, despite commonalities in protein sequence, receptor utilization and signaling, accumulating evidence suggests that these 2 ligands can have distinct functions in many situations. GDF11 is essential for mammalian development and has been suggested to regulate aging of multiple tissues, whereas myostatin is a well-described negative regulator of postnatal skeletal and cardiac muscle mass and modulates metabolic processes. In this review, we discuss the biochemical regulation of GDF11 and myostatin and their functions in the heart, skeletal muscle, and brain. We also highlight recent clinical findings with respect to a potential role for GDF11 and/or myostatin in humans with heart disease. Finally, we address key outstanding questions related to GDF11 and myostatin dynamics and signaling during development, growth, and aging.

  8. Disruption of the myostatin gene in porcine primary fibroblasts and embryos using zinc-finger nucleases.

    PubMed

    Huang, Xian-Ju; Zhang, Hong-Xiao; Wang, Huili; Xiong, Kai; Qin, Ling; Liu, Honglin

    2014-04-01

    Myostatin represses muscle growth by negatively regulating the number and size of muscle fibers. Myostatin lossof- function can result in the double-muscling phenotype and increased muscle mass. Thus, knockout of myostatin gene could improve the quality of meat from mammals. In the present study, zinc finger nucleases, a useful tool for generating gene knockout animals, were designed to target exon 1 of the myostatin gene. The designed ZFNs were introduced into porcine primary fibroblasts and early implantation embryos via electroporation and microinjection, respectively. Mutations around the ZFNs target site were detected in both primary fibroblasts and blastocysts. The proportion of mutant fibroblast cells and blastocyst was 4.81% and 5.31%, respectively. Thus, ZFNs can be used to knockout myostatin in porcine primary fibroblasts and early implantation embryos.

  9. Disruption of the Myostatin Gene in Porcine Primary Fibroblasts and Embryos Using Zinc-Finger Nucleases

    PubMed Central

    Huang, Xian-Ju; Zhang, Hong-Xiao; Wang, Huili; Xiong, Kai; Qin, Ling; Liu, Honglin

    2014-01-01

    Myostatin represses muscle growth by negatively regulating the number and size of muscle fibers. Myostatin loss-of-function can result in the double-muscling phenotype and increased muscle mass. Thus, knockout of myostatin gene could improve the quality of meat from mammals. In the present study, zinc finger nucleases, a useful tool for generating gene knockout animals, were designed to target exon 1 of the myostatin gene. The designed ZFNs were introduced into porcine primary fibroblasts and early implantation embryos via electroporation and microinjection, respectively. Mutations around the ZFNs target site were detected in both primary fibroblasts and blastocysts. The proportion of mutant fibroblast cells and blastocyst was 4.81% and 5.31%, respectively. Thus, ZFNs can be used to knockout myostatin in porcine primary fibroblasts and early implantation embryos. PMID:24802055

  10. Identification, characterization, and quantitative expression analysis of rainbow trout myostatin-1a and myostatin-1b genes.

    PubMed

    Garikipati, Dilip K; Gahr, Scott A; Rodgers, Buel D

    2006-09-01

    Myostatin is a potent negative regulator of skeletal muscle growth. Although several cDNA clones have been characterized in different vertebrates, the genomic organization and bioactivity of non-mammalian homologs have not. The intron/exon organization and promoter subsequence analysis of two rainbow trout myostatin genes, rtMSTN-1a and rtMSTN-1b (formerly 1 and 2 respectively), as well as a quantitative assessment of their embryonic, larval, and adult tissue expression profiles are reported herein. Each gene was similarly organized into three exons of 490, 368, and 1600 bp for MSTN-1a and 486, 386, and 1419 bp for MSTN-1b. Comparative mapping of coding regions from several vertebrate myostatin genes revealed a common organization between species, including conserved pre-mRNA splice sites; the first among the fishes and the second across all vertebrate species. In silico subsequence analysis of the promoter regions identified E-boxes and other putative myogenic response elements. However, the number and diversity of elements were considerably less than those found in mammalian promoters or in the recently characterized zebrafish MSTN-2 gene. A quantitative analysis of the embryonic expression profile for both genes indicates that rtMSTN-1a expression is consistently greater than that of rtMSTN-1b and neither gene is significantly expressed throughout gastrulation. Expression of both steadily increases fourfold during somitogenesis and subsides as this period ends. After eyeing, however, rtMSTN-1a mRNA levels ultimately rise 20-fold by day 49 and peak before hatching and yolk sac absorption (YSA). Levels of rtMSTN-1b rise similarly, but do not peak before YSA. An analysis of adult (2-year-old fish) tissue expression indicates that both transcripts are present in most tissues although levels are highest in brain, testes, eyes, muscle, and surprisingly spleen. These studies suggest that strong selective pressures have preserved the genomic organization of myostatin

  11. Expression of myostatin, myostatin receptors and follistatin in diabetic rats submitted to exercise.

    PubMed

    Dutra, Daniela B; Bueno, Patrícia G; Silva, Rafaella N; Nakahara, Natália H; Selistre-Araújo, Heloísa S; Nonaka, Keico O; Leal, Angela Mo

    2012-05-01

    Myostatin (MSTN) has been implicated in metabolic adaptation to physiological stimuli, such as physical exercise, which is linked to improved glucose homeostasis. The aim of the present study was to evaluate the influence of exercise on the expression of MSTN, MSTN receptors (ActRIIB and ALK4) and follistatin (FS) in the muscle and fat of streptozotocin-induced diabetic rats. Control and diabetic rats were randomly assigned to a swimming training group (EC and ED, respectively) and a sedentary group (SC and SD, respectively). Exercising animals swam for 45 min at 0900 and 1700 hours, 5 day/week, for 4 weeks. The mRNA expression of MSTN, ActRIIB, ALK4 and FS mRNA was quantified by real-time reverse transcription-polymerase chain reaction. Expression of MSTN and FS mRNA increased in the muscle and subcutaneous fat of SD compared with SC rats. Expression of ActRIIB mRNA was increased in the muscle, mesenteric fat and brown adipose tissue (BAT) of SD compared with SC rats, whereas ALK4 mRNA expression was only increased in the BAT of SD compared with SC rats. After training, MSTN and ActRIIB expression was lower in the BAT of EC compared with SC rats. Expression of MSTN mRNA increased in the mesenteric fat of ED compared with SD rats, whereas FS mRNA expression decreased in the muscle, mesenteric and subcutaneous fat and BAT. Lower ALK4 mRNA expression was noted in the BAT of ED compared with SD rats. These results indicate that MSTN, its receptors and FS expression change in both the muscle and fat of diabetic rats and that the expression of these factors can be modulated by exercise in diabetes.

  12. Hydrodynamic Limb Vein Injection of Adeno-Associated Virus Serotype 8 Vector Carrying Canine Myostatin Propeptide Gene into Normal Dogs Enhances Muscle Growth

    PubMed Central

    Qiao, Chunping; Li, Juan; Zheng, Hui; Bogan, Janet; Li, Jianbin; Yuan, Zhenhua; Zhang, Cheng; Bogan, Dan; Kornegay, Joe

    2009-01-01

    Abstract Inhibition or blockade of myostatin, a negative growth factor of skeletal muscle, enhances muscle growth and therefore is considered a promising strategy for the treatment of muscle-wasting diseases such as the muscular dystrophies. Previously, we showed that myostatin blockade in both normal and dystrophin-deficient mdx mice by systemic delivery of the myostatin propeptide (MPRO) gene by an adeno-associated virus serotype 8 (AAV8) vector could enhance muscle growth and ameliorate dystrophic lesions. Here, we further investigate whether the muscle growth effect of myostatin blockade can be achieved in dogs by gene transfer. First, we cloned the canine MPRO gene, packaged it in the AAV8 vector, and showed robust muscle-enhancing effects after systemic delivery into neonatal mice. This vector was then further tested in two 3-month-old normal dogs (weighing 9.7 and 6.3 kg). The vector was delivered to one limb by hydrodynamic vein injection, and the contralateral limb served as a control. The delivery procedure was safe, without discernible adverse effects. AAV vector DNA and MPRO gene expression were detected by quantitative polymerase chain reaction, Western blotting, and immunofluorescence staining of muscle biopsies. Overexpression of MPRO resulted in enhanced muscle growth without a cytotoxic T lymphocytic immune response, as evidenced by larger myofibers in multiple muscles, increased muscle volume determined by magnetic resonance imaging, and the lack of CD4+ and CD8+ T cell infiltration in the vector-injected limbs. Our preliminary study thus supports further investigation of this therapeutic strategy in the dystrophin-deficient golden retriever muscular dystrophy dog model. PMID:18828709

  13. Syndecan-2 Exerts Antifibrotic Effects by Promoting Caveolin-1–mediated Transforming Growth Factor-β Receptor I Internalization and Inhibiting Transforming Growth Factor-β1 Signaling

    PubMed Central

    Shi, Yuanyuan; Gochuico, Bernadette R.; Yu, Guoying; Tang, Xiaomeng; Osorio, Juan C.; Fernandez, Isis E.; Risquez, Cristobal F.; Patel, Avignat S.; Shi, Ying; Wathelet, Marc G.; Goodwin, Andrew J.; Haspel, Jeffrey A.; Ryter, Stefan W.; Billings, Eric M.; Kaminski, Naftali; Morse, Danielle

    2013-01-01

    Rationale: Alveolar transforming growth factor (TGF)-β1 signaling and expression of TGF-β1 target genes are increased in patients with idiopathic pulmonary fibrosis (IPF) and in animal models of pulmonary fibrosis. Internalization and degradation of TGF-β receptor TβRI inhibits TGF-β signaling and could attenuate development of experimental lung fibrosis. Objectives: To demonstrate that after experimental lung injury, human syndecan-2 confers antifibrotic effects by inhibiting TGF-β1 signaling in alveolar epithelial cells. Methods: Microarray assays were performed to identify genes differentially expressed in alveolar macrophages of patients with IPF versus control subjects. Transgenic mice that constitutively overexpress human syndecan-2 in macrophages were developed to test the antifibrotic properties of syndecan-2. In vitro assays were performed to determine syndecan-2–dependent changes in epithelial cell TGF-β1 signaling, TGF-β1, and TβRI internalization and apoptosis. Wild-type mice were treated with recombinant human syndecan-2 during the fibrotic phase of bleomycin-induced lung injury. Measurements and Main Results: We observed significant increases in alveolar macrophage syndecan-2 levels in patients with IPF. Macrophage-specific overexpression of human syndecan-2 in transgenic mice conferred antifibrotic effects after lung injury by inhibiting TGF-β1 signaling and downstream expression of TGF-β1 target genes, reducing extracellular matrix production and alveolar epithelial cell apoptosis. In vitro, syndecan-2 promoted caveolin-1–dependent internalization of TGF-β1 and TβRI in alveolar epithelial cells, which inhibited TGF-β1 signaling and epithelial cell apoptosis. Therapeutic administration of human syndecan-2 abrogated lung fibrosis in mice. Conclusions: Alveolar macrophage syndecan-2 exerts antifibrotic effects by promoting caveolin-1–dependent TGF-β1 and TβRI internalization and inhibiting TGF-β1 signaling in alveolar epithelial

  14. Exertional Rhabdomyolysis after Spinning

    PubMed Central

    Jeong, Youjin; Oh, Eun-Jung; Ahn, Ah-Leum; Choi, Jae-Kyung; Cho, Dong-Yung

    2016-01-01

    Any strenuous muscular exercise may trigger rhabdomyolysis. We report an episode of clinically manifested exertional rhabdomyolysis due to stationary cycling, commonly known as spinning. Reports of spinning-related rhabdomyolysis are rare in the English literature, and the current case appears to be the first such case reported in South Korea. A previously healthy 21-year-old Asian woman presented with severe thigh pain and reddish-brown urinary discoloration 24–48 hours after attending a spinning class at a local gymnasium. Paired with key laboratory findings, her symptoms were suggestive of rhabdomyolysis. She required hospital admission to sustain renal function through fluid resuscitation therapy and fluid balance monitoring. Because exertional rhabdomyolysis may occur in any unfit but otherwise healthy individual who indulges in stationary cycling, the potential health risks of this activity must be considered. PMID:27900075

  15. Skeletal muscle-derived progenitors capable of differentiating into cardiomyocytes proliferate through myostatin-independent TGF-{beta} family signaling

    SciTech Connect

    Nomura, Tetsuya; Ueyama, Tomomi; Ashihara, Eishi; Tateishi, Kento; Asada, Satoshi; Nakajima, Norio; Isodono, Koji; Takahashi, Tomosaburo; Matsubara, Hiroaki Oh, Hidemasa

    2008-01-25

    The existence of skeletal muscle-derived stem cells (MDSCs) has been suggested in mammals; however, the signaling pathways controlling MDSC proliferation remain largely unknown. Here we report the isolation of myosphere-derived progenitor cells (MDPCs) that can give rise to beating cardiomyocytes from adult skeletal muscle. We identified that follistatin, an antagonist of TGF-{beta} family members, was predominantly expressed in MDPCs, whereas myostatin was mainly expressed in myogenic cells and mature skeletal muscle. Although follistatin enhanced the replicative growth of MDPCs through Smad2/3 inactivation and cell cycle progression, disruption of myostatin did not increase the MDPC proliferation. By contrast, inhibition of activin A (ActA) or growth differentiation factor 11 (GDF11) signaling dramatically increased MDPC proliferation via down-regulation of p21 and increases in the levels of cdk2/4 and cyclin D1. Thus, follistatin may be an effective progenitor-enhancing agent neutralizing ActA and GDF11 signaling to regulate the growth of MDPCs in skeletal muscle.

  16. Myostatin from the American lobster, Homarus americanus: Cloning and effects of molting on expression in skeletal muscles.

    PubMed

    MacLea, Kyle S; Covi, Joseph A; Kim, Hyun-Woo; Chao, Erica; Medler, Scott; Chang, Ernest S; Mykles, Donald L

    2010-12-01

    A cDNA encoding a myostatin (Mstn)-like gene from an astacuran crustacean, Homarus americanus, was cloned and characterized. Mstn inhibits skeletal muscle growth in vertebrates and may play a role in crustacean muscle as a suppressor of protein synthesis. Sequence analysis and three-dimensional modeling of the Ha-Mstn protein predicted a high degree of conservation with vertebrate and other invertebrate myostatins. Qualitative polymerase chain reaction (PCR) demonstrated ubiquitous expression of transcript in all tissues, including skeletal muscles. Quantitative PCR analysis was used to determine the effects of natural molting and eyestalk ablation (ESA) on Ha-Mstn expression in the cutter claw (CT) and crusher claw (CR) closer muscles and deep abdominal (DA) muscle. In intermolt lobsters, the Ha-Mstn mRNA level in the DA muscle was significantly lower than the mRNA levels in the CT and CR muscles. Spontaneous molting decreased Ha-Mstn mRNA during premolt, with the CR muscle, which is composed of slow-twitch (S₁) fibers, responding preferentially (82% decrease) to the atrophic signal compared to fast fibers in CT (51% decrease) and DA (69% decrease) muscles. However, acute increases in circulating ecdysteroids caused by ESA had no effect on Ha-Mstn mRNA levels in the three muscles. These data indicate that the transcription of Ha-Mstn is differentially regulated during the natural molt cycle and it is an important regulator of protein turnover in molt-induced claw muscle atrophy.

  17. Bone architecture and disc degeneration in the lumbar spine of mice lacking GDF-8 (myostatin).

    PubMed

    Hamrick, Mark W; Pennington, Catherine; Byron, Craig D

    2003-11-01

    GDF-8, also known as myostatin, is a member of the transforming growth factor-beta superfamily of secreted growth and differentiation factors that is expressed in vertebrate skeletal muscle. Myostatin functions as a negative regulator of skeletal muscle growth and myostatin null mice show a doubling of muscle mass compared to normal mice. We describe here morphology of the lumbar spine in myostatin knockout (Mstn(-/-)) mice using histological and densitometric techniques. The Mstn(-/-) mice examined in this study weigh approximately 10% more than controls (p<0.001) but the iliopsoas muscle is over 50% larger in the knockout mice than in wild-type mice (p<0.001). Peripheral quantitative computed tomography (pQCT) data from the fifth lumbar vertebra show that mice lacking myostatin have approximately 50% greater trabecular bone mineral density (p=0.001) and significantly greater cortical bone mineral content than normal mice. Toluidine blue staining of the intervertebral disc between L4-L5 reveals loss of proteoglycan staining in the hyaline end plates and inner annulus fibrosus of the knockout mice. Loss of cartilage staining in the caudal end plate of L4 is due to ossification of the end plate in the myostatin-deficient animals. Results from this study suggest that increased muscle mass in mice lacking myostatin is associated with increased bone mass as well as degenerative changes in the intervertebral disc.

  18. MicroRNA-27a promotes myoblast proliferation by targeting myostatin

    SciTech Connect

    Huang, Zhiqing; Chen, Xiaoling; Yu, Bing; He, Jun; Chen, Daiwen

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer We identified a myogenic role for miR-27a and a new target, myostatin. Black-Right-Pointing-Pointer The miR-27a was confirmed to target myostatin 3 Prime UTR. Black-Right-Pointing-Pointer miR-27a is upregulated and myostatin is downregulated during myoblast proliferation. Black-Right-Pointing-Pointer miR-27a promotes myoblast proliferation by reducing the expression of myostatin. -- Abstract: MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs that play critical roles in skeletal muscle development as well as in regulation of muscle cell proliferation and differentiation. However, the role of miRNAs in myoblast proliferation remains poorly understood. Here we found that the expression of miR-27a was increased during proliferation of C2C12 myoblasts. Moreover, overexpression of miR-27a in C2C12 cells promoted myoblast proliferation by reducing the expression of myostatin, a critical inhibitor of skeletal myogenesis. In addition, the miR-27a was confirmed to target myostatin 3 Prime UTR by a luciferase reporter analysis. Together, these results suggest that miR-27a promotes myoblast proliferation through targeting myostatin.

  19. Prolonged fasting and cortisol reduce myostatin mRNA levels in tilapia larvae; short-term fasting elevates.

    PubMed

    Rodgers, Buel D; Weber, Gregory M; Kelley, Kevin M; Levine, Michael A

    2003-05-01

    Myostatin negatively regulates muscle growth and development and has recently been characterized in several fishes. We measured fasting myostatin mRNA levels in adult tilapia skeletal muscle and in whole larvae. Although fasting reduced some growth indexes in adults, skeletal muscle myostatin mRNA levels were unaffected. By contrast, larval myostatin mRNA levels were sometimes elevated after a short-term fast and were consistently reduced with prolonged fasting. These effects were specific for myostatin, as mRNA levels of glyceraldehyde-3-phosphate dehydrogenase and glucose-6-phosphatase were unchanged. Cortisol levels were elevated in fasted larvae with reduced myostatin mRNA, whereas in addition immersion of larvae in 1 ppm (2.8 microM) cortisol reduced myostatin mRNA in a time-dependent fashion. These results suggest that larval myostatin mRNA levels may initially rise but ultimately fall during a prolonged fast. The reduction is likely mediated by fasting-induced hypercortisolemia, indicating divergent evolutionary mechanisms of glucocorticoid regulation of myostatin mRNA, since these steroids upregulate myostatin gene expression in mammals.

  20. The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD.

    PubMed

    Spiller, Michael P; Kambadur, Ravi; Jeanplong, Ferenc; Thomas, Mark; Martyn, Julie K; Bass, John J; Sharma, Mridula

    2002-10-01

    Myostatin is a negative regulator of myogenesis, and inactivation of myostatin leads to heavy muscle growth. Here we have cloned and characterized the bovine myostatin gene promoter. Alignment of the upstream sequences shows that the myostatin promoter is highly conserved during evolution. Sequence analysis of 1.6 kb of the bovine myostatin gene upstream region revealed that it contains 10 E-box motifs (E1 to E10), arranged in three clusters, and a single MEF2 site. Deletion and mutation analysis of the myostatin gene promoter showed that out of three important E boxes (E3, E4, and E6) of the proximal cluster, E6 plays a significant role in the regulation of a reporter gene in C(2)C(12) cells. We also demonstrate by band shift and chromatin immunoprecipitation assay that the E6 E-box motif binds to MyoD in vitro and in vivo. Furthermore, cotransfection experiments indicate that among the myogenic regulatory factors, MyoD preferentially up-regulates myostatin promoter activity. Since MyoD expression varies during the myoblast cell cycle, we analyzed the myostatin promoter activity in synchronized myoblasts and quiescent "reserve" cells. Our results suggest that myostatin promoter activity is relatively higher during the G(1) phase of the cell cycle, when MyoD expression levels are maximal. However, in the reserve cells, which lack MyoD expression, a significant reduction in the myostatin promoter activity is observed. Taken together, these results suggest that the myostatin gene is a downstream target gene of MyoD. Since the myostatin gene is implicated in controlling G(1)-to-S progression of myoblasts, MyoD could be triggering myoblast withdrawal from the cell cycle by regulating myostatin gene expression.

  1. [Regulation of myostatin promoter activity by myocyte enhancer factor 2].

    PubMed

    Li, Jia; Deng, Jie; Zhang, Junlin; Cheng, De; Wang, Huayan

    2012-08-01

    Myostatin (Mstn) is a member of the transforming growth factor-beta superfamily that functions as a negative regulator of skeletal muscle growth and differentiation in mammals. The transcriptional regulation of Mstn is controlled by multiple genes including MEF2, which raise the importance of identifying the binding sites of MEF2 on myostatin promoter region and mechanisms underlying. In this study, we investigated the transcriptional regulation of MEF2 on porcine Mstn promoter activity in C2C12 cells. Sequence analysis of the 1 969 bp porcine Mstn promoter region revealed that it contained three potential MEF2 motifs. Using a serial deletion strategy, we tested the activity of several promoter fragments by luciferase assay. Overexpression of MEF2C, but not MEF2A increased Mstn promoter activity in all the promoter fragments with MEF2 motifs by two to six folds, in both C2C12 myoblasts and myotubes. When we transfected exogenous MEF2C, Mstn mRNA level was also upregulated in C2C12 cells, but the protein level was only significantly increased in myotubes. Thus, we propose that MEF2C could modulate and restrain myogenesis by Mstn activation and Mstn-dependent gene processing in porcine. Our research also provided potential targets and an effective molecule to regulate Mstn expression and gave a new way to explore the functional performance of Mstn.

  2. Myostatin induces p300 degradation to silence cyclin D1 expression through the PI3K/PTEN/Akt pathway.

    PubMed

    Ji, Ming; Zhang, Qiang; Ye, Jianwei; Wang, Xueyan; Yang, Wei; Zhu, Dahai

    2008-08-01

    Myostatin is a negative regulator of skeletal muscle growth and affects numerous genes expression involved in cell proliferation, differentiation and metabolism. However, the molecular mechanisms underlying myostatin-regulated genes expression remain to be elucidated. In this study, we showed that myostatin blocked the recruitment of p300 to the cyclin D1 promoter, resulting in the silence of cyclin D1 expression. Our data further demonstrated that myostatin decreased the protein level of p300 by inducing p300 degradation via the ubiquitin-proteasome system. In addition, we provided experimental evidence to show that myostatin-induced p300 degradation was mediated by the phosphatidylinositol 3-kinase/PTEN/Akt signaling pathway and this could be antagonized by IGF-1 or insulin. Results presented in this study uncovered an epigenetic control of genes expression in response to myostatin.

  3. Discovery of a Mammalian Splice Variant of Myostatin That Stimulates Myogenesis

    PubMed Central

    Jeanplong, Ferenc; Falconer, Shelley J.; Oldham, Jenny M.; Thomas, Mark; Gray, Tarra S.; Hennebry, Alex; Matthews, Kenneth G.; Kemp, Frederick C.; Patel, Ketan; Berry, Carole; Nicholas, Gina; McMahon, Christopher D.

    2013-01-01

    Myostatin plays a fundamental role in regulating the size of skeletal muscles. To date, only a single myostatin gene and no splice variants have been identified in mammals. Here we describe the splicing of a cryptic intron that removes the coding sequence for the receptor binding moiety of sheep myostatin. The deduced polypeptide sequence of the myostatin splice variant (MSV) contains a 256 amino acid N-terminal domain, which is common to myostatin, and a unique C-terminus of 65 amino acids. Western immunoblotting demonstrated that MSV mRNA is translated into protein, which is present in skeletal muscles. To determine the biological role of MSV, we developed an MSV over-expressing C2C12 myoblast line and showed that it proliferated faster than that of the control line in association with an increased abundance of the CDK2/Cyclin E complex in the nucleus. Recombinant protein made for the novel C-terminus of MSV also stimulated myoblast proliferation and bound to myostatin with high affinity as determined by surface plasmon resonance assay. Therefore, we postulated that MSV functions as a binding protein and antagonist of myostatin. Consistent with our postulate, myostatin protein was co-immunoprecipitated from skeletal muscle extracts with an MSV-specific antibody. MSV over-expression in C2C12 myoblasts blocked myostatin-induced Smad2/3-dependent signaling, thereby confirming that MSV antagonizes the canonical myostatin pathway. Furthermore, MSV over-expression increased the abundance of MyoD, Myogenin and MRF4 proteins (P<0.05), which indicates that MSV stimulates myogenesis through the induction of myogenic regulatory factors. To help elucidate a possible role in vivo, we observed that MSV protein was more abundant during early post-natal muscle development, while myostatin remained unchanged, which suggests that MSV may promote the growth of skeletal muscles. We conclude that MSV represents a unique example of intra-genic regulation in which a splice variant

  4. Discovery of a mammalian splice variant of myostatin that stimulates myogenesis.

    PubMed

    Jeanplong, Ferenc; Falconer, Shelley J; Oldham, Jenny M; Thomas, Mark; Gray, Tarra S; Hennebry, Alex; Matthews, Kenneth G; Kemp, Frederick C; Patel, Ketan; Berry, Carole; Nicholas, Gina; McMahon, Christopher D

    2013-01-01

    Myostatin plays a fundamental role in regulating the size of skeletal muscles. To date, only a single myostatin gene and no splice variants have been identified in mammals. Here we describe the splicing of a cryptic intron that removes the coding sequence for the receptor binding moiety of sheep myostatin. The deduced polypeptide sequence of the myostatin splice variant (MSV) contains a 256 amino acid N-terminal domain, which is common to myostatin, and a unique C-terminus of 65 amino acids. Western immunoblotting demonstrated that MSV mRNA is translated into protein, which is present in skeletal muscles. To determine the biological role of MSV, we developed an MSV over-expressing C2C12 myoblast line and showed that it proliferated faster than that of the control line in association with an increased abundance of the CDK2/Cyclin E complex in the nucleus. Recombinant protein made for the novel C-terminus of MSV also stimulated myoblast proliferation and bound to myostatin with high affinity as determined by surface plasmon resonance assay. Therefore, we postulated that MSV functions as a binding protein and antagonist of myostatin. Consistent with our postulate, myostatin protein was co-immunoprecipitated from skeletal muscle extracts with an MSV-specific antibody. MSV over-expression in C2C12 myoblasts blocked myostatin-induced Smad2/3-dependent signaling, thereby confirming that MSV antagonizes the canonical myostatin pathway. Furthermore, MSV over-expression increased the abundance of MyoD, Myogenin and MRF4 proteins (P<0.05), which indicates that MSV stimulates myogenesis through the induction of myogenic regulatory factors. To help elucidate a possible role in vivo, we observed that MSV protein was more abundant during early post-natal muscle development, while myostatin remained unchanged, which suggests that MSV may promote the growth of skeletal muscles. We conclude that MSV represents a unique example of intra-genic regulation in which a splice variant

  5. Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats

    PubMed Central

    Mendias, Christopher L; Lynch, Evan B; Gumucio, Jonathan P; Flood, Michael D; Rittman, Danielle S; Van Pelt, Douglas W; Roche, Stuart M; Davis, Carol S

    2015-01-01

    Myostatin is a negative regulator of skeletal muscle and tendon mass. Myostatin deficiency has been well studied in mice, but limited data are available on how myostatin regulates the structure and function of muscles and tendons of larger animals. We hypothesized that, in comparison to wild-type (MSTN+/+) rats, rats in which zinc finger nucleases were used to genetically inactivate myostatin (MSTNΔ/Δ) would exhibit an increase in muscle mass and total force production, a reduction in specific force, an accumulation of type II fibres and a decrease and stiffening of connective tissue. Overall, the muscle and tendon phenotype of myostatin-deficient rats was markedly different from that of myostatin-deficient mice, which have impaired contractility and pathological changes to fibres and their extracellular matrix. Extensor digitorum longus and soleus muscles of MSTNΔ/Δ rats demonstrated 20–33% increases in mass, 35–45% increases in fibre number, 20–57% increases in isometric force and no differences in specific force. The insulin-like growth factor-1 pathway was activated to a greater extent in MSTNΔ/Δ muscles, but no substantial differences in atrophy-related genes were observed. Tendons of MSTNΔ/Δ rats had a 20% reduction in peak strain, with no differences in mass, peak stress or stiffness. The general morphology and gene expression patterns were similar between tendons of both genotypes. This large rodent model of myostatin deficiency did not have the negative consequences to muscle fibres and extracellular matrix observed in mouse models, and suggests that the greatest impact of myostatin in the regulation of muscle mass may not be to induce atrophy directly, but rather to block hypertrophy signalling. PMID:25640143

  6. Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats.

    PubMed

    Mendias, Christopher L; Lynch, Evan B; Gumucio, Jonathan P; Flood, Michael D; Rittman, Danielle S; Van Pelt, Douglas W; Roche, Stuart M; Davis, Carol S

    2015-04-15

    Myostatin is a negative regulator of skeletal muscle and tendon mass. Myostatin deficiency has been well studied in mice, but limited data are available on how myostatin regulates the structure and function of muscles and tendons of larger animals. We hypothesized that, in comparison to wild-type (MSTN(+/+) ) rats, rats in which zinc finger nucleases were used to genetically inactivate myostatin (MSTN(Δ/Δ) ) would exhibit an increase in muscle mass and total force production, a reduction in specific force, an accumulation of type II fibres and a decrease and stiffening of connective tissue. Overall, the muscle and tendon phenotype of myostatin-deficient rats was markedly different from that of myostatin-deficient mice, which have impaired contractility and pathological changes to fibres and their extracellular matrix. Extensor digitorum longus and soleus muscles of MSTN(Δ/Δ) rats demonstrated 20-33% increases in mass, 35-45% increases in fibre number, 20-57% increases in isometric force and no differences in specific force. The insulin-like growth factor-1 pathway was activated to a greater extent in MSTN(Δ/Δ) muscles, but no substantial differences in atrophy-related genes were observed. Tendons of MSTN(Δ/Δ) rats had a 20% reduction in peak strain, with no differences in mass, peak stress or stiffness. The general morphology and gene expression patterns were similar between tendons of both genotypes. This large rodent model of myostatin deficiency did not have the negative consequences to muscle fibres and extracellular matrix observed in mouse models, and suggests that the greatest impact of myostatin in the regulation of muscle mass may not be to induce atrophy directly, but rather to block hypertrophy signalling.

  7. 14-Deoxy-11,12-dehydroandrographolide exerts anti-influenza A virus activity and inhibits replication of H5N1 virus by restraining nuclear export of viral ribonucleoprotein complexes.

    PubMed

    Cai, Wentao; Li, Yongtao; Chen, Sunrui; Wang, Mengli; Zhang, Anding; Zhou, Hongbo; Chen, Huanchun; Jin, Meilin

    2015-06-01

    The highly pathogenic avian influenza H5N1 virus has become a worldwide public health threat, and current antiviral therapies have limited activity against the emerging, resistant influenza viruses. Therefore, effective drugs with novel targets against influenza A viruses, H5N1 strains in particular, should be developed. In the present study, 14-deoxy-11,12-dehydroandrographolide (DAP), a major component of the traditional Chinese medicine Andrographis paniculata, exerted potent anti-influenza A virus activity against A/chicken/Hubei/327/2004 (H5N1), A/duck/Hubei/XN/2007 (H5N1), A/PR/8/34 (H1N1), A/NanChang/08/2010 (H1N1) and A/HuNan/01/2014 (H3N2) in vitro. To elucidate the underlying mechanisms, a series of experiments was conducted using A/chicken/Hubei/327/2004 (H5N1) as an example. Our results demonstrated that DAP strongly inhibited H5N1 replication by reducing the production of viral nucleoprotein (NP) mRNA, NP and NS1proteins, whereas DAP had no effect on the absorption and release of H5N1 towards/from A549 cells. DAP also effectively restrained the nuclear export of viral ribonucleoprotein (vRNP) complexes. This inhibitory effect ought to be an important anti-H5N1 mechanism of DAP. Meanwhile, DAP significantly reduced the upregulated expression of all the tested proinflammatory cytokines (TNF-α, IL-6, IL-8, IFN-α, IL-1β and IFN-β) and chemokines (CXCL-10 and CCL-2) stimulated by H5N1. Overall results suggest that DAP impairs H5N1 replication at least in part by restraining nuclear export of vRNP complexes, and the inhibition of viral replication leads to a subsequent decrease of the intense proinflammatory cytokine/chemokine expression. In turn, the effect of modification of the host excessive immune response may contribute to overcoming H5N1. To our knowledge, this study is the first to reveal the antiviral and anti-inflammatory activities of DAP in vitro against H5N1 influenza A virus infection.

  8. Cloning and characterization of largemouth bass ( Micropterus salmoides) myostatin encoding gene and its promoter

    NASA Astrophysics Data System (ADS)

    Li, Shengjie; Bai, Junjie; Wang, Lin

    2008-08-01

    Myostatin or GDF-8, a member of the transforming growth factor-β (TGF-β) superfamily, has been demonstrated to be a negative regulator of skeletal muscle mass in mammals. In the present study, we obtained a 5.64 kb sequence of myostatin encoding gene and its promoter from largemouth bass ( Micropterus salmoides). The myostatin encoding gene consisted of three exons (488 bp, 371 bp and 1779 bp, respectively) and two introns (390 bp and 855 bp, respectively). The intron-exon boundaries were conservative in comparison with those of mammalian myostatin encoding genes, whereas the size of introns was smaller than that of mammals. Sequence analysis of 1.569 kb of the largemouth bass myostatin gene promoter region revealed that it contained two TATA boxes, one CAAT box and nine putative E-boxes. Putative muscle growth response elements for myocyte enhancer factor 2 (MEF2), serum response factor (SRF), activator protein 1 (AP1), etc., and muscle-specific Mt binding site (MTBF) were also detected. Some of the transcription factor binding sites were conserved among five teleost species. This information will be useful for studying the transcriptional regulation of myostatin in fish.

  9. Characterization of 5'-regulatory region of human myostatin gene: regulation by dexamethasone in vitro.

    PubMed

    Ma, K; Mallidis, C; Artaza, J; Taylor, W; Gonzalez-Cadavid, N; Bhasin, S

    2001-12-01

    We cloned and characterized a 3.3-kb fragment containing the 5'-regulatory region of the human myostatin gene. The promoter sequence contains putative muscle growth response elements for glucocorticoid, androgen, thyroid hormone, myogenic differentiation factor 1, myocyte enhancer factor 2, peroxisome proliferator-activated receptor, and nuclear factor-kappaB. To identify sites important for myostatin's gene transcription and regulation, eight deletion constructs were placed in C(2)C(12) and L6 skeletal muscle cells. Transcriptional activity of the constructs was found to be significantly higher in myotubes compared with that of myoblasts. To investigate whether glucocorticoids regulate myostatin gene expression, we incubated both cell lines with dexamethasone. On both occasions, dexamethasone dose dependently increased both the promoter's transcriptional activity and the endogenous myostatin expression. The effects of dexamethasone were blocked when the cells were coincubated with the glucocorticoid receptor antagonist RU-486. These findings suggest that glucocorticoids upregulate myostatin expression by inducing gene transcription, possibly through a glucocorticoid receptor-mediated pathway. We speculate that glucocorticoid-associated muscle atrophy might be due in part to the upregulation of myostatin expression.

  10. Comparative analysis of the pig BAC sequence involved in the regulation of myostatin gene.

    PubMed

    Yu, Zhengquan; Li, Yan; Meng, Qingyong; Yuan, Jing; Zhao, Zhihui; Li, Wei; Hu, Xiaoxiang; Yan, Bingxue; Fan, Baoliang; Yu, Shuyang; Li, Ning

    2005-04-01

    Myostatin (GDF8, MSTN) is a member of the transforming growth factor beta superfamily that is essential for proper regulation of skeletal muscle mass. In order to study its expression and regulatory mechanism deeply, we have presented a comparative analysis of about 170-kb pig BAC sequence containing the myostatin gene among pig, human and mouse. The genomic region is characterized by high interspersed repeats and low G+C content. As for the myostatin gene, a higher sequence similarity is found between human and pig than between these species and the mouse. One striking feature is that the structure of two TATA-boxes in the nearby downstream of CCAAT-box is identified in the promoter. Further analysis reveals that the TATA-box1 is responsible for the transcription in pig and human, but the TATA-box2 acts on the transcription in mouse. The other interesting feature is that two polyadenylation signal sequences (AATAAA) exist in 3'UTR of the pig myostatin gene. Moreover, a large number of potential transcription factor-binding sites are also identified in evolutionary conserved regions (ECRs), which may be associated with the regulation of myostatin. Many putative transcription factors play an important role in the muscle development, and the complex interaction between myostatin and these factors may be required for proper muscle development.

  11. Adeno-associated virus-mediated expression of myostatin propeptide improves the growth of skeletal muscle and attenuates hyperglycemia in db/db mice.

    PubMed

    Jiang, J G; Shen, G F; Li, J; Qiao, C; Xiao, B; Yan, H; Wang, D W; Xiao, X

    2017-03-01

    Inhibition of myostatin, a negative growth modulator for muscle, can functionally enhance muscle mass and improve glucose and fat metabolism in myostatin propeptide (MPRO) transgenic mice. This study was to investigate whether myostatin inhibition by adeno-associated virus (AAV)-mediated gene delivery of MPRO could improve muscle mass and achieve therapeutic effects on glucose regulation and lipid metabolism in the db/db mice and the mechanisms involved in that process. Eight-week-old male db/db mice were administered saline, AAV-GFP and AAV-MPRO/Fc vectors and monitored random blood glucose levels and body weight for 36 weeks. Body weight gain was not different during follow-up among the groups, but AAV-MPRO/Fc vectors resulted high level of MPRO in the blood companied by an increase in skeletal muscle mass and muscle hypertrophy. In addition, AAV-MPRO/Fc-treated db/db mice showed significantly lower blood glucose and insulin levels and significantly increased glucose tolerance and insulin sensitivity compared with the control groups (P<0.05). Moreover, these mice exhibited lower triglyceride (TG) and free fatty acid (FFA) content in the skeletal muscle, although no difference was observed in fat pad weights and serum TG and FFA levels. Finally, AAV-MPRO/Fc-treated mice had enhanced insulin signaling in the skeletal muscle. These data suggest that AAV-mediated MPRO therapy may provide an important clue for potential clinical applications to prevent type II diabetes, and these studies confirm that MPRO is a therapeutic target for type II diabetes.

  12. Regulation of GDF-11 and myostatin activity by GASP-1 and GASP-2

    PubMed Central

    Lee, Yun-Sil; Lee, Se-Jin

    2013-01-01

    Myostatin (MSTN) and growth and differentiation factor-11 (GDF-11) are highly related TGF-β family members that have distinct biological functions. MSTN is expressed primarily in skeletal muscle and acts to limit muscle growth. GDF-11 is expressed more widely and plays multiple roles, including regulating axial skeletal patterning during development. Several MSTN and GDF-11 binding proteins have been identified, including GDF-associated serum protein-1 (GASP-1) and GASP-2, which are capable of inhibiting the activities of these ligands. Here, we show that GASP-1 and GASP-2 act by blocking the initial signaling event (namely, the binding of the ligand to the type II receptor). Moreover, we show that mice lacking Gasp1 and Gasp2 have phenotypes consistent with overactivity of MSTN and GDF-11. Specifically, we show that Gasp2−/− mice have posteriorly directed transformations of the axial skeleton, which contrast with the anteriorly directed transformations seen in Gdf11−/− mice. We also show that both Gasp1−/− and Gasp2−/− mice have reductions in muscle weights, a shift in fiber type from fast glycolytic type IIb fibers to fast oxidative type IIa fibers, and impaired muscle regeneration ability, which are the reverse of what are seen in Mstn−/− mice. All of these findings suggest that both GASP-1 and GASP-2 are important modulators of GDF-11 and MSTN activity in vivo. PMID:24019467

  13. Myostatin gene targeting in cultured China Han ovine myoblast cells.

    PubMed

    Zhang, L; Yang, X; An, X; Chen, Y

    2007-11-01

    Myostatin (MSTN), a member of the transforming growth factor-β superfamily, has been shown to be a negative regulator of myogenesis. Natural mutation in beef cattle causes double-muscling phenotypes. We report an investigation designed to knockout the MSTN gene by gene targeting in ovine myoblast cells. Two promoter-trap targeting vectors MSTN-green fluorescent protein (GFP) and MSTN-neo were constructed and used to transfect foetal and neonatal ovine primary myoblast cells. Both GFP-expressing cells and drug-resistant cells were obtained. Targeted cells expressing GFP were confirmed by polymerase chain reaction (PCR) assay and drug-resistant cells were characterised by PCR and Southern blot after growing into cell clones.

  14. Oral administration of myostatin-specific whole recombinant yeast Saccharomyces cerevisiae vaccine increases body weight and muscle composition in mice.

    PubMed

    Zhang, Tingting; Yang, Hanjiang; Wang, Rui; Xu, Kun; Xin, Ying; Ren, Gang; Zhou, Gang; Zhang, Cunfang; Wang, Ling; Zhang, Zhiying

    2011-10-26

    Myostatin negatively regulates skeletal muscle growth. It was found that active immunization with myostatin-specific vaccine blocked myostatin function in vivo, which resulted in increase of body weight and muscle composition in mice. However, traditional vaccine and its administration method are expensive and laborious. In this study, we investigated the possibility of using heat-killed whole recombinant yeast Saccharomyces cerevisiae vaccine to modulate myostatin function in mice. The CDS of myostatin was obtained from a pig genome by PCR and subcloned into a yeast expression vector, which was driven by a copper-inducible promoter. Expression of recombinant myostatin was induced by CuSO(4) and confirmed by western blot. We vaccinated mice by oral feeding and subcutaneous injection as comparison. We found that oral feeding resulted in the similar effective immune response than injection, which was measured by the presence of myostatin-specific antibodies in mouse serum. Interestingly, animals vaccinated by both methods demonstrated enhanced growth performance compared to control. All animals were healthy looking throughout the course of experiment, suggesting that whole recombinant yeast vaccine is nontoxic and therefore safe to use. Given the simplicity of its nature, heat-killed myostatin-specific whole recombinant yeast vaccine holds a promise to treat human muscle-wasting diseases in the future.

  15. IGF-1 induces IP3 -dependent calcium signal involved in the regulation of myostatin gene expression mediated by NFAT during myoblast differentiation.

    PubMed

    Valdés, Juan A; Flores, Sylvia; Fuentes, Eduardo N; Osorio-Fuentealba, Cesar; Jaimovich, Enrique; Molina, Alfredo

    2013-07-01

    Skeletal muscle differentiation is a complex and highly regulated process characterized by cell cycle arrest, which is associated with morphological changes including myoblast alignment, elongation, and fusion into multinucleated myotubes. This is a balanced process dynamically coordinated by positive and negative signals such as the insulin-like growth factor I (IGF-1) and myostatin (MSTN), respectively. In this study, we report that the stimulation of skeletal myoblasts during differentiation with IGF-1 induces a rapid and transient calcium increase from intracellular stores, which are principally mediated through the phospholipase C gamma (PLC γ)/inositol 1,4,5-triphosphate (IP3 )-dependent signaling pathways. This response was completely blocked when myoblasts were incubated with LY294002 or transfected with the dominant-negative p110 gamma, suggesting a fundamental role of phosphatidylinositol 3-kinase (PI3K) in PLCγ activation. Additionally, we show that calcium released via IP3 and induced by IGF-1 stimulates NFAT-dependent gene transcription and nuclear translocation of the GFP-labeled NFATc3 isoform. This activation was independent of extracellular calcium influx and calcium release mediated by ryanodine receptor (RyR). Finally, we examined mstn mRNA levels and mstn promoter activity in myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents and in reporter activity, which was inhibited by cyclosporin A, 11R-VIVIT, and by inhibitors of the PI3Kγ, PLCγ, and IP3 receptor. Our results strongly suggest that IGF-1 regulates myostatin transcription through the activation of the NFAT transcription factor in an IP3 /calcium-dependent manner. This is the first study to demonstrate a role of calcium-dependent signaling pathways in the mRNA expression of myostatin.

  16. Targeted Myostatin Gene Editing in Multiple Mammalian Species Directed by a Single Pair of TALE Nucleases.

    PubMed

    Xu, Li; Zhao, Piming; Mariano, Andrew; Han, Renzhi

    2013-07-30

    Myostatin (MSTN) is a negative regulator of skeletal muscle mass. Strategies to block myostatin signaling pathway have been extensively pursued to increase muscle mass in various disease settings including muscular dystrophy. Here, we report a new class of reagents based on transcription activator-like effector nucleases (TALENs) to disrupt myostatin expression at the genome level. We designed a pair of MSTN TALENs to target a highly conserved sequence in the coding region of the myostatin gene. We demonstrate that codelivery of these MSTN TALENs induce highly specific and efficient gene disruption in a variety of human, cattle, and mouse cells. Based upon sequence analysis, this pair of TALENs is expected to be functional in many other mammalian species. Moreover, we demonstrate that these MSTN TALENs can facilitate targeted integration of a mCherry expression cassette or a larger muscular dystrophy gene (dysferlin) expression cassette into the MSTN locus in mouse or human cells. Therefore, targeted editing of the myostatin gene using our highly specific and efficient TALEN pair would facilitate cell engineering, allowing potential use in translational research for cell-based therapy.Molecular Therapy-Nucleic Acids (2013) 2, e112; doi:10.1038/mtna.2013.39; published online 30 July 2013.

  17. Short bouts of stretching increase myo-D, myostatin and atrogin-1 in rat soleus muscle.

    PubMed

    Peviani, Sabrina Messa; Gomes, Anna Raquel Silveira; Moreira, Roberta Fátima Carreira; Moriscot, Anselmo Sigari; Salvini, Tania Fátima

    2007-03-01

    Stretching is widely used in rehabilitation and sports activities to improve joint range-of-motion and flexibility in humans, but the effect of stretching on the gene expression of skeletal muscle is poorly understood. We evaluated the effect of short bouts of passive stretching of rat soleus muscle on myo-D, myostatin, and atrogin-1 gene expressions. Six groups of animals were submitted to a single session of stretching (10 stretches of 1 minute with 30 seconds of rest between them, performed manually) and were evaluated immediately (I), and 8, 24, 48, 72, and 168 hours after the session. To evaluate the effect of repetitive sessions of stretching on the soleus muscle over 1 week, three groups of animals received a single session per day of stretching and the muscle was evaluated immediately after 2, 3, and 7 sessions. The mRNA levels of myo-D, myostatin, and atrogin-1 were determined by real-time polymerase chain reaction. A single session of stretching increased the mRNA levels of myo-D (after 24 h), myostatin (I, and 168 h later), and atrogin-1 (after 48 h). Repeated daily session of stretching over 1 week increased myostatin (after 7 sessions) and atrogin-1 expression (after 2, 3, and 7 sessions). Thus, short bouts of passive stretching are able to increase the gene expression of factors associated with muscle growth (myo-D), negative regulation of muscle mass (myostatin), and atrophy (atrogin-1), indicating muscle remodeling through different pathways.

  18. Relationship between myostatin and irisin in type 2 diabetes mellitus: a compensatory mechanism to an unfavourable metabolic state?

    PubMed

    García-Fontana, Beatriz; Reyes-García, Rebeca; Morales-Santana, Sonia; Ávila-Rubio, Verónica; Muñoz-Garach, Araceli; Rozas-Moreno, Pedro; Muñoz-Torres, Manuel

    2016-04-01

    Myostatin and irisin are two myokines related to energy metabolism, acting on skeletal muscle and recently suggested on adipose tissue in mice. However, the exact role of these myokines in humans has not been fully established. Our aim was to evaluate the relationship between serum levels of myostatin and irisin in type 2 diabetes mellitus patients and non-diabetic controls and to explore its links with metabolic parameters. Case-control study including 73 type 2 diabetes mellitus patients and 55 non-diabetic subjects as control group. Circulating myostatin and irisin levels were measured by enzyme-linked immunosorbent assays. Type 2 diabetes mellitus patients showed significantly lower myostatin levels (p = 0.001) and higher irisin levels (p = 0.036) than controls. An inverse relationship was observed between myostatin and irisin levels (p = 0.002). Moreover, in type 2 diabetes mellitus patients, after adjusting by confounder factors, myostatin was negatively related to fasting plasma glucose (p = 0.005) and to triglyceride levels (p = 0.028) while irisin showed a positive association with these variables (p = 0.017 and p = 0.006 respectively). A linear regression analysis showed that irisin and fasting plasma glucose levels were independently associated to myostatin levels and that myostatin and triglyceride levels were independently associated to irisin concentrations in type 2 diabetes mellitus patients. Our results suggest that serum levels of myostatin and irisin are related in patients with type 2 diabetes. Triglyceride and glucose levels could modulate myostatin and irisin concentrations as a compensatory mechanism to improve the metabolic state in these patients although further studies are needed to elucidate whether the action of these myokines represents an adaptative response.

  19. Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases.

    PubMed

    Zhao, Xinxia; Ni, Wei; Chen, Chuangfu; Sai, Wujiafu; Qiao, Jun; Sheng, Jingliang; Zhang, Hui; Li, Guozhong; Wang, Dawei; Hu, Shengwei

    2016-03-01

    Myostatin (MSTN) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs) in tandem with single-stranded DNA oligonucleotides (ssODNs). We designed a pair of TALENs to target a highly conserved sequence in the coding region of the sheep MSTN gene. The activity of the TALENs was verified by using luciferase single-strand annealing reporter assay in HEK 293T cell line. Co-transfection of TALENs and ssODNs oligonucleotides induced precise gene editing of myostatin gene in sheep primary fibroblasts. MSTN gene-edited cells were successfully used as nuclear donors for generating cloned embryos. TALENs combined with ssDNA oligonucleotides provide a useful approach for precise gene modification in livestock animals.

  20. Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases

    PubMed Central

    Zhao, Xinxia; Ni, Wei; Chen, Chuangfu; Sai, Wujiafu; Qiao, Jun; Sheng, Jingliang; Zhang, Hui; Li, Guozhong; Wang, Dawei; Hu, Shengwei

    2016-01-01

    Myostatin (MSTN) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs) in tandem with single-stranded DNA oligonucleotides (ssODNs). We designed a pair of TALENs to target a highly conserved sequence in the coding region of the sheep MSTN gene. The activity of the TALENs was verified by using luciferase single-strand annealing reporter assay in HEK 293T cell line. Co-transfection of TALENs and ssODNs oligonucleotides induced precise gene editing of myostatin gene in sheep primary fibroblasts. MSTN gene-edited cells were successfully used as nuclear donors for generating cloned embryos. TALENs combined with ssDNA oligonucleotides provide a useful approach for precise gene modification in livestock animals. PMID:26950874

  1. Knock down of the myostatin gene by RNA interference increased body weight in chicken.

    PubMed

    Bhattacharya, T K; Shukla, R; Chatterjee, R N; Dushyanth, K

    2017-01-10

    Myostatin is a negative regulator of muscular growth in poultry and other animals. Of several approaches, knocking down the negative regulator is an important aspect to augment muscular growth in chicken. Knock down of myostatin gene has been performed by shRNA acting against the expression of gene in animals. Two methods of knock down of gene in chicken such as embryo manipulation and sperm mediated method have been performed. The hatching percentage in embryo manipulation and sperm mediated method of knock down was 58.0 and 41.5%, respectively. The shRNA in knock down chicken enhanced body weight at 6 weeks by 26.9%. The dressing percentage and serum biochemical parameters such as SGPT and alkaline phosphatase differed significantly (P<0.05) between knock down and control birds. It is concluded that knocking down the myostatin gene successfully augmented growth in chicken.

  2. Nfix Regulates Temporal Progression of Muscle Regeneration through Modulation of Myostatin Expression.

    PubMed

    Rossi, Giuliana; Antonini, Stefania; Bonfanti, Chiara; Monteverde, Stefania; Vezzali, Chiara; Tajbakhsh, Shahragim; Cossu, Giulio; Messina, Graziella

    2016-03-08

    Nfix belongs to a family of four highly conserved proteins that act as transcriptional activators and/or repressors of cellular and viral genes. We previously showed a pivotal role for Nfix in regulating the transcriptional switch from embryonic to fetal myogenesis. Here, we show that Nfix directly represses the Myostatin promoter, thus controlling the proper timing of satellite cell differentiation and muscle regeneration. Nfix-null mice display delayed regeneration after injury, and this deficit is reversed upon in vivo Myostatin silencing. Conditional deletion of Nfix in satellite cells results in a similar delay in regeneration, confirming the functional requirement for Nfix in satellite cells. Moreover, mice lacking Nfix show reduced myofiber cross sectional area and a predominant slow twitching phenotype. These data define a role for Nfix in postnatal skeletal muscle and unveil a mechanism for Myostatin regulation, thus providing insights into the modulation of its complex signaling pathway.

  3. Nfix Regulates Temporal Progression of Muscle Regeneration through Modulation of Myostatin Expression

    PubMed Central

    Rossi, Giuliana; Antonini, Stefania; Bonfanti, Chiara; Monteverde, Stefania; Vezzali, Chiara; Tajbakhsh, Shahragim; Cossu, Giulio; Messina, Graziella

    2016-01-01

    Summary Nfix belongs to a family of four highly conserved proteins that act as transcriptional activators and/or repressors of cellular and viral genes. We previously showed a pivotal role for Nfix in regulating the transcriptional switch from embryonic to fetal myogenesis. Here, we show that Nfix directly represses the Myostatin promoter, thus controlling the proper timing of satellite cell differentiation and muscle regeneration. Nfix-null mice display delayed regeneration after injury, and this deficit is reversed upon in vivo Myostatin silencing. Conditional deletion of Nfix in satellite cells results in a similar delay in regeneration, confirming the functional requirement for Nfix in satellite cells. Moreover, mice lacking Nfix show reduced myofiber cross sectional area and a predominant slow twitching phenotype. These data define a role for Nfix in postnatal skeletal muscle and unveil a mechanism for Myostatin regulation, thus providing insights into the modulation of its complex signaling pathway. PMID:26923583

  4. The K153R variant in the myostatin gene and sarcopenia at the end of the human lifespan

    PubMed Central

    González-Freire, Marta; Rodríguez-Romo, Gabriel; Santiago, Catalina; Bustamante-Ara, Natalia; Yvert, Thomas; Gómez-Gallego, Félix; Serra Rexach, José A.; Ruiz, Jonatan R.

    2010-01-01

    We studied the A55T, E164K, I225T, K153R and P198A variants in the myostatin (GDF8) gene, muscle strength and mass, and physical function during daily living in 41 nonagenarians [33 women, age range, 90, 97]. No participant carried a mutant allele of the aforementioned variants, except three participants (all women), who carried the R allele of the K153R polymorphism, with one of them (woman aged 96 years) being homozygous. Overall, in KR women muscle phenotype values (1RM leg press and estimated muscle mass) were low-to-normal compared to the whole group (∼25th–50th percentile), and their functional capacity (Barthel and Tinetti tests) was normal. In the woman bearing the RR genotype, values of muscle mass and functional capacity were below the 25th percentile. She is the first RR Caucasian whose phenotype has been characterised specifically. In summary, heterozygosity for the GDF8 K153R polymorphism does not seem to exert a negative influence on the muscle phenotypes of women who are at the end of the human lifespan, yet homozygosity might do so. More research on larger cohorts of nonagenarians is needed to corroborate the present findings. PMID:20640547

  5. Placental expression of myostatin and follistatin-like-3 protein in a model of developmental programming.

    PubMed

    Peiris, Hassendrini N; Ponnampalam, Anna P; Osepchook, Claire C; Mitchell, Murray D; Green, Mark P

    2010-04-01

    Maternal undernutrition during gestation is known to be detrimental to fetal development, leading to a propensity for metabolic disorders later in the adult lives of the offspring. Identifying possible mediators and physiological processes involved in modulating nutrient transport within the placenta is essential to prevent and/or develop treatments for the effects of aberrant nutrition, nutrient transfer, and detrimental changes to fetal development. A potential role for myostatin as a mediator of nutrient uptake and transport from the mother to the fetus was shown through the recent finding that myostatin acts within the human placenta to modulate glucose uptake and therefore homeostasis. The mRNA and protein expression of myostatin and its inhibitor, follistatin-like-3 (FSTL3), was studied in the placenta and skeletal muscle of a transgenerational Wistar rat model of gestational maternal undernutrition in which the F2 offspring postweaning consumed a high-fat (HF) diet. Alterations in placental characteristics and offspring phenotype, specifically glucose homeostasis, were evident in the transgenerationally undernourished (UNAD) group. Myostatin and FSTL3 protein expression were also higher (P < 0.05) in the placentae of the UNAD compared with the control group. At maturity, UNAD HF-fed animals had higher (P < 0.05) skeletal muscle expression of FSTL3 than control animals. In summary, maternal undernutrition during gestation results in the aberrant regulation of myostatin and FSTL3 in the placenta and skeletal muscle of subsequent generations. Myostatin, through the disruption of maternal nutrient supply to the fetus, may thus be a potential mediator of offspring phenotype.

  6. Single nucleotide polymorphisms of myostatin gene in Chinese domestic horses.

    PubMed

    Li, Ran; Liu, Dong-Hua; Cao, Chun-Na; Wang, Shao-Qiang; Dang, Rui-Hua; Lan, Xian-Yong; Chen, Hong; Zhang, Tao; Liu, Wu-Jun; Lei, Chu-Zhao

    2014-03-15

    The myostatin gene (MSTN) is a genetic determinant of skeletal muscle growth. Single nucleotide polymorphisms (SNP) in MSTN are of importance due to their strong associations with horse racing performances. In this study, we screened the SNPs in MSTN gene in 514 horses from 15 Chinese horse breeds. Six SNPs (g.26T>C, g.156T>C, g.587A>G, g.598C>T, g.1485C>T, g.2115A>G) in MSTN gene were detected by sequencing and genotyped using PCR-RFLP method. The g.587A>G and g.598C>T residing in the 5'UTR region were novel SNPs identified by this study. The g.2115A>G which have previously been associated with racing performances were present in Chinese horse breeds, providing valuable genetic information for evaluating the potential racing performances in Chinese domestic breeds. The six SNPs together defined thirteen haplotypes, demonstrating abundant haplotype diversities in Chinese horses. Most of the haplotypes were shared among different breeds with no haplotype restricted to a specific region or a single horse breed. AMOVA analysis indicated that most of the genetic variance was attributable to differences among individuals without any significant contribution by the four geographical groups. This study will provide fundamental and instrumental genetic information for evaluating the potential racing performances of Chinese horse breeds.

  7. When exercise causes exertional rhabdomyolysis.

    PubMed

    Furman, Janet

    2015-04-01

    Exertional rhabdomyolysis is a clinical condition caused by intense, repetitive exercise or a sudden increase in exercise in an untrained person, although rhabdomyolysis can occur in trained athletes. In many cases, the presentation of early, uncomplicated rhabdomyolysis is subtle, but serious complications such as renal failure, compartment syndrome, and dysrhythmias may arise if severe exertional rhabdomyolysis is undiagnosed or untreated. Management is further complicated by the lack of concrete management guidelines for treating rhabdomyolysis and returning patients to activity.

  8. cDNA cloning and expression analysis of myostatin/GDF11 in shrimp, Litopenaeus vannamei.

    PubMed

    Qian, Zhaoying; Mi, Xiao; Wang, Xianzong; He, Shulin; Liu, Yongjie; Hou, Fujun; Liu, Qiao; Liu, Xiaolin

    2013-05-01

    Myostatin (MSTN) and growth differentiation factor-11 (GDF11) are closely related proteins belonging to the transforming growth factor-β (TGF-β) superfamily. In vertebrates, MSTN is known to negatively regulate skeletal muscle growth, and GDF11 is found to inhibit neurogenesis. In invertebrates, only one ortholog of vertebrate MSTN and GDF11 (MSTN/GDF11) existed. Little attention has been paid on its role to date. In this study, the cDNA that encodes a 422-amino-acid MSTN/GDF11 protein (LvMSTN/GDF11) was characterized from a crustacean species, the Pacific white shrimp (Litopenaeus vannamei). Sequence analysis revealed that the overall protein sequence and specific functional sites of LvMSTN/GDF11 were highly conserved with those in other crustacean species. Expression analysis by quantitative real-time reverse transcription polymerase chain reaction technique demonstrated its tissue-specific, larval developmental stage-specific, and molt stage-specific expression pattern, respectively. After in vivo injections of 20 hydroxyecdysone (20E), LvMSTN/GDF11 transcripts were declined in the abdominal (A) and pleopod (P1) muscles, increased in the pereiopod (P2) muscle, and not affected in the thoracic (T) muscle. The observed expression profiles suggest multiple functions of LvMSTN/GDF11 in L. vannamei and its role differs during the larval development and natural molt cycle. The different responses of LvMSTN/GDF11 to acute increases of 20E in the A, P1, P2 and T muscles may indicate that LvMSTN/GDF11 is transcriptionally regulated via ecdysteroids to coincide with its specific roles in the former three muscles, while its role may be independent of 20E regulation in the T muscle.

  9. High-fat diet reduces local myostatin-1 paralog expression and alters skeletal muscle lipid content in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Galt, Nicholas J; Froehlich, Jacob Michael; Meyer, Ben M; Barrows, Frederic T; Biga, Peggy R

    2014-06-01

    Muscle growth is an energetically demanding process that is reliant on intramuscular fatty acid depots in most fishes. The complex mechanisms regulating this growth and lipid metabolism are of great interest for human health and aquaculture applications. It is well established that the skeletal muscle chalone, myostatin, plays a role in lipid metabolism and adipogenesis in mammals; however, this function has not been fully assessed in fishes. We therefore examined the interaction between dietary lipid levels and myostatin expression in rainbow trout (Oncorhynchus mykiss). Five weeks of high-fat diet (HFD; 25 % lipid) intake increased white muscle lipid content and decreased circulating glucose levels and hepatosomatic index when compared to low-fat diet (LFD; 10 % lipid) intake. In addition, HFD intake reduced myostatin-1a and myostatin-1b expression in white muscle and myostatin-1b expression in brain tissue. Characterization of the myostatin-1a, myostatin-1b, and myostatin-2a promoters revealed putative binding sites for a subset of transcription factors associated with lipid metabolism. Taken together, these data suggest that HFD may regulate myostatin expression through cis-regulatory elements sensitive to increased lipid intake. Further, these findings provide a framework for future investigations of mechanisms describing the relationships between myostatin and lipid metabolism in fish.

  10. Highly Specific Detection of Myostatin Prodomain by an Immunoradiometric Sandwich Assay in Serum of Healthy Individuals and Patients

    PubMed Central

    Widera, Christian; Gottlieb, Jens; Vogel, Arndt; Schmidt, Sebastian; Brandes, Gudrun; Heuft, Hans-Gert; Lichtinghagen, Ralf; Kempf, Tibor; Wollert, Kai C.; Bauersachs, Johann; Heineke, Joerg

    2013-01-01

    Background Myostatin is a muscle derived factor that functions as a negative regulator of skeletal muscle growth. Induction of myostatin expression was observed in rodent models of muscle wasting and in cachectic patients with cancer or pulmonary disease. Therefore, there is an increasing interest to use serum myostatin as a biomarker. Methods We established an immunoradiometric sandwich assay (IRMA), which uses a commercially available chicken polyclonal, affinity purified antibody directed against human myostatin prodomain. We determined the serum concentrations of myostatin prodomain in 249 healthy individuals as well as 169 patients with heart failure, 53 patients with cancer and 44 patients with chronic pulmonary disease. Results The IRMA had a detection limit of 0.7ng/ml, an intraassay imprecision of ≤14.1% and an interassay imprecision of ≤ 18.9%. The specificity of our assay was demonstrated by size exclusion chromatography, detection of myostatin by Western-blotting and a SMAD-dependent transcriptional-reporter assay in the signal-rich serum fractions, as well as lack of interference by unspecific substances like albumin, hemoglobin or lipids. Myostatin prodomain was stable at room temperature and resistant to freeze-thaw cycles. Apparently healthy individuals over the age of 55 had a median myostatin prodomain serum concentration of 3.9ng/ml (25th-75th percentiles, 2-7ng/ml) and we could not detect increased levels in patients with stable chronic heart failure or cancer related weight loss. In contrast, we found strongly elevated concentrations of myostatin prodomain (median 26.9ng/ml, 25th-75th percentiles, 7-100ng/ml) in the serum of underweight patients with chronic pulmonary disease. Conclusions We established a highly specific IRMA for the quantification of myostatin prodomain concentration in human serum. Our assay could be useful to study myostatin as a biomarker for example in patients with chronic pulmonary disease, as we detected highly

  11. Genome walk of an unknown upstream region of myostatin gene in Spanish goats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Myostatin (MSTN) gene product also known as growth differentiation factor (GDF8) is a member of the TGF-ß family of secreted proteins. It is shown to be a negative regulator of muscle mass development. Mutations in the MSTN gene have been reported in mice, cattle and humans that lead to muscular hyp...

  12. Extreme muscle development in sheep heterozygous for both myostatin and callipyge mutations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two mutations causing increased muscle size and decreased fat content in sheep have been described. The callipyge (CLPG) syndrome is only exhibited after 4 to 6 weeks of age in animals inheriting the mutation solely from their sire. In contrast, a mutation of the myostatin gene (MSTN) in the Texel...

  13. Exercise does not influence myostatin and follistatin messenger RNA expression in young women.

    PubMed

    Jensky, Nicole E; Sims, Jennifer K; Dieli-Conwright, Christina M; Sattler, Fred R; Rice, Judd C; Schroeder, E Todd

    2010-02-01

    We evaluated changes in myostatin, follistatin, and MyoD messenger RNA (mRNA) gene expression using eccentric exercise (EE) and concentric exercise (CE) as probes to better understand the mechanisms of muscle hypertrophy in young women. Twelve women performed single-leg maximal eccentric (n = 6, 25 +/- 1 years, 59 +/- 7 kg) or concentric (n = 6, 24 +/- 1 years, 65 +/- 7 kg) isokinetic knee extension exercise for 7 sessions. Muscle biopsies were taken from the vastus lateralis at baseline, 8 hours after the first exercise session, and 8 hours after the seventh exercise session. In the EE group, there were no changes in myostatin and follistatin (p > or = 0.17); however, MyoD expression increased after 1 exercise bout (p = 0.02). In the CE group, there were no changes in myostatin, follistatin, or MyoD mRNA gene expression (p > or = 0.07). Differences between the EE and CE groups were not significant (p > or = 0.05). These data suggest that a single bout or multiple bouts of maximal EE or CE may not significantly alter myostatin or follistatin mRNA gene expression in young women. However, MyoD mRNA expression seems to increase only after EE.

  14. Joint dysfunction and functional decline in middle age myostatin null mice.

    PubMed

    Guo, Wen; Miller, Andrew D; Pencina, Karol; Wong, Siu; Lee, Amanda; Yee, Michael; Toraldo, Gianluca; Jasuja, Ravi; Bhasin, Shalender

    2016-02-01

    Since its discovery as a potent inhibitor for muscle development, myostatin has been actively pursued as a drug target for age- and disease-related muscle loss. However, potential adverse effects of long-term myostatin deficiency have not been thoroughly investigated. We report herein that male myostatin null mice (mstn(-/-)), in spite of their greater muscle mass compared to wild-type (wt) mice, displayed more significant functional decline from young (3-6months) to middle age (12-15months) than age-matched wt mice, measured as gripping strength and treadmill endurance. Mstn(-/-) mice displayed markedly restricted ankle mobility and degenerative changes of the ankle joints, including disorganization of bone, tendon and peri-articular connective tissue, as well as synovial thickening with inflammatory cell infiltration. Messenger RNA expression of several pro-osteogenic genes was higher in the Achilles tendon-bone insertion in mstn(-/-) mice than wt mice, even at the neonatal age. At middle age, higher plasma concentrations of growth factors characteristic of excessive bone remodeling were found in mstn(-/-) mice than wt controls. These data collectively indicate that myostatin may play an important role in maintaining ankle and wrist joint health, possibly through negative regulation of the pro-osteogenic WNT/BMP pathway.

  15. Some motifs were important for myostatin transcriptional regulation in sheep (Ovis aries).

    PubMed

    Du, Rong; An, Xiao-Rong; Chen, Yong-Fu; Qin, Jian

    2007-07-31

    Many motifs along the 1.2 kb myostatin promoter (MSTNpro) in sheep have been found by the MatInspecter program in our recent study. To further verify the role of the motifs and better understand the transcriptional regulation mechanism of the myostatin gene in sheep, the reporter gene EGFP (enhanced green fluorescent protein) was selected and the wild-type (W) vector MSTNPro(W)-EGFP or motif-mutational (M) vector MSTNPro(M)-EGFP were constructed. The transcriptional regulation activities were analyzed by detecting the fluorescence strength of EGFP in C2C12 myoblasts transfected with the vectors. The results showed that E-box (E) 3, E4, E5 and E7, particularly E3, E5 and E7, had important effects on the activity of the 1.2 kb sheep myostatin promoter. In addition, we also detected several other important motifs such as MTBF (muscle-specific Mt binding factor), MEF2 (myocyte enhancer factor 2), GRE (glucocorticoid response elements) and PRE (progesterone response elements) along the sheep myostatin promoter by the mutational analysis.

  16. Single nucleotide polymorphisms in the upstream regulatory region alter the expression of myostatin.

    PubMed

    Hu, Wei; Chen, Songyu; Zhang, Ran; Lin, Yushuang

    2013-06-01

    The expression of the gene encoding myostatin (MSTN), the product of which is a negative regulator of skeletal muscle growth and development in mammals, is regulated by many cis-regulatory elements, including enhancer box (E-box) motifs. While E-box motif mutants of MSTN exhibit altered expression of myostatin in many animal models, the phenotypes of these mutations in chicken are not investigated. In this study, we cloned and sequenced the full encoded DNA sequence of MSTN gene and its upstream promoter region in Wenshang Luhua chicken breed. After analysis of the sequence, 13 E-box motifs were identified in the MSTN promoter region, which were denoted by E1 to E13 according to their positions in the region. Although many single nucleotide polymorphisms (SNPs) were revealed in the MSTN promoter region, only two SNPs were in the E-boxes, i.e., the first nucleotide of the E3 and the fifth nucleotide of E4. The effects of these two polymorphisms on the expression of MSTN gene were explored both with MSTN-GFP reporter constructs in vitro and real-time PCR in vivo. The results suggested that the E-boxes in the chicken MSTN promoter region are involved in the regulation of myostatin expression and the polymorphisms in E3 and E4 altered the expression of myostatin.

  17. A comparative examination of cortisol effects on muscle myostatin and HSP90 gene expression in salmonids.

    PubMed

    Galt, Nicholas J; McCormick, Stephen D; Froehlich, Jacob Michael; Biga, Peggy R

    2016-10-01

    Cortisol, the primary corticosteroid in teleost fishes, is released in response to stressors to elicit local functions, however little is understood regarding muscle-specific responses to cortisol in these fishes. In mammals, glucocorticoids strongly regulate the muscle growth inhibitor, myostatin, via glucocorticoid response elements (GREs) leading to muscle atrophy. Bioinformatics methods suggest that this regulatory mechanism is conserved among vertebrates, however recent evidence suggests some fishes exhibit divergent regulation. Therefore, the aim of this study was to evaluate the conserved actions of cortisol on myostatin and hsp90 expression to determine if variations in cortisol interactions have emerged in salmonid species. Representative salmonids; Chinook salmon (Oncorhynchus tshawytscha), cutthroat trout (Oncorhynchus clarki), brook trout (Salvelinus fontinalis), and Atlantic salmon (Salmo salar); were injected intraperitoneally with a cortisol implant (50μg/g body weight) and muscle gene expression was quantified after 48h. Plasma glucose and cortisol levels were significantly elevated by cortisol in all species, demonstrating physiological effectiveness of the treatment. HSP90 mRNA levels were elevated by cortisol in brook trout, Chinook salmon, and Atlantic salmon, but were decreased in cutthroat trout. Myostatin mRNA levels were affected in a species, tissue (muscle type), and paralog specific manner. Cortisol treatment increased myostatin expression in brook trout (Salvelinus) and Atlantic salmon (Salmo), but not in Chinook salmon (Oncorhynchus) or cutthroat trout (Oncorhynchus). Interestingly, the VC alone increased myostatin mRNA expression in Chinook and Atlantic salmon, while the addition of cortisol blocked the response. Taken together, these results suggest that cortisol affects muscle-specific gene expression in species-specific manners, with unique Oncorhynchus-specific divergence observed, that are not predictive solely based upon

  18. miRNA Transcriptome of Hypertrophic Skeletal Muscle with Overexpressed Myostatin Propeptide

    PubMed Central

    Jing, Lu; Li, Xinyun; Cao, Jianhua; Zhao, Shuhong

    2014-01-01

    MicroRNAs (miRNAs) play an imperative role in cell proliferation, differentiation, and cell metabolism through regulation of gene expression. Skeletal muscle hypertrophy that results from myostatin depression by its propeptide provides an interesting model to understand how miRNA transcriptome is involved in myostatin-based fiber hypertrophy. This study employed Solexa deep sequencing followed by Q-PCR methods to analyze miRNA transcriptome of skeletal muscle of myostatin propeptide transgenic mice in comparison with their littermate controls. A total of 461 mature known and 69 novel miRNAs were reported from this study. Fifty-seven miRNAs were expressed differentially between transgenic and littermate controls, of which most abundant miRNAs, miR-133a and 378a, were significantly differentially expressed. Expression profiling was validated on 8 known and 2 novel miRNAs. The miRNA targets prediction and pathway analysis showed that FST, SMAD3, TGFBR1, and AcvR1a genes play a vital role in skeletal muscle hypertrophy in the myostatin propeptide transgenic mice. It is predicted that miR-101 targeted to TGFBR1 and SMAD3, miR-425 to TGFBR2 and FST, and miR-199a to AcvR2a and TGF-β genes. In conclusion, the study offers initial miRNA profiling and methodology of miRNA targets prediction for myostatin-based hypertrophy. These differentially expressed miRNAs are proposed as candidate miRNAs for skeletal muscle hypertrophy. PMID:25147795

  19. Exertional Rhabdomyolysis in the Athlete

    PubMed Central

    Tietze, David C.; Borchers, James

    2014-01-01

    Context: Exertional rhabdomyolysis is a relatively uncommon but potentially fatal condition affecting athletes that requires prompt recognition and appropriate management. Evidence Acquisition: A search of the PubMed database from 2003 to 2013 using the term exertional rhabdomyolysis was performed. Further evaluation of the bibliographies of articles expanded the evidence. Study Design: Clinical review. Level of Evidence: Level 3. Results: Exertional rhabdomyolysis (ER) is a relatively uncommon condition with an incidence of approximately 29.9 per 100,000 patient years but can have very serious consequences of muscle ischemia, cardiac arrhythmia, and death. The athlete will have pain, weakness, and swelling in the muscles affected as well as significantly elevated levels of creatine kinase (CK). Hydration is the foundation for any athlete with ER; management can also include dialysis or surgery. Stratifying the athlete into high- or low-risk categories can determine if further workup is warranted. Conclusion: Exertional rhabdomyolysis evaluation requires a history, physical examination, and serology for definitive diagnosis. Treatment modalities should include rest and hydration. Return to play and future workup should be determined by the risk stratification of the athlete. Strength-of-Recommendation Taxonomy (SORT): C. PMID:24982707

  20. Modulation of Stem Cell Differentiation and Myostatin as an Approach to Counteract Fibrosis in Muscle Dystrophy and Regeneration after Injury

    DTIC Science & Technology

    2011-03-01

    07-1-0181 TITLE: Modulation of Stem Cell Differentiation and Myostatin as an Approach to Counteract Fibrosis in Muscle Dystrophy and...views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army...Myostatin as an Approach to Counteract Fibrosis in Muscle Dystrophy and Regeneration after Injury Dr. Nestor Gonzalez-Cadavid Charles R. Drew

  1. Modulation of Stem Cells Differentiation and Myostatin as an Approach to Counteract Fibrosis in Muscle Dystrophy and Regeneration after Injury

    DTIC Science & Technology

    2008-03-01

    Renal fibrosis and glomerulosclerosis in a new mouse model of diabetic nephropathy and its regression by bone morphogenic protein-7 and advanced...whether long-term treatment with pioglitazone reduces vascular and renal fibrosis in an animal model of type 2 diabetes 8. Pilot grant (Bathia/Ho...1), will be subjected to anti-myostatin treatments and tested for differentiation as in Task 1: a) anti-myostatin antibody; b) follistatin; c

  2. Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes.

    PubMed

    Crispo, M; Mulet, A P; Tesson, L; Barrera, N; Cuadro, F; dos Santos-Neto, P C; Nguyen, T H; Crénéguy, A; Brusselle, L; Anegón, I; Menchaca, A

    2015-01-01

    While CRISPR/Cas9 technology has proven to be a valuable system to generate gene-targeted modified animals in several species, this tool has been scarcely reported in farm animals. Myostatin is encoded by MSTN gene involved in the inhibition of muscle differentiation and growth. We determined the efficiency of the CRISPR/Cas9 system to edit MSTN in sheep and generate knock-out (KO) animals with the aim to promote muscle development and body growth. We generated CRISPR/Cas9 mRNAs specific for ovine MSTN and microinjected them into the cytoplasm of ovine zygotes. When embryo development of CRISPR/Cas9 microinjected zygotes (n = 216) was compared with buffer injected embryos (n = 183) and non microinjected embryos (n = 173), cleavage rate was lower for both microinjected groups (P<0.05) and neither was affected by CRISPR/Cas9 content in the injected medium. Embryo development to blastocyst was not affected by microinjection and was similar among the experimental groups. From 20 embryos analyzed by Sanger sequencing, ten were mutant (heterozygous or mosaic; 50% efficiency). To obtain live MSTN KO lambs, 53 blastocysts produced after zygote CRISPR/Cas9 microinjection were transferred to 29 recipient females resulting in 65.5% (19/29) of pregnant ewes and 41.5% (22/53) of newborns. From 22 born lambs analyzed by T7EI and Sanger sequencing, ten showed indel mutations at MSTN gene. Eight showed mutations in both alleles and five of them were homozygous for indels generating out-of frame mutations that resulted in premature stop codons. Western blot analysis of homozygous KO founders confirmed the absence of myostatin, showing heavier body weight than wild type counterparts. In conclusion, our results demonstrate that CRISPR/Cas9 system was a very efficient tool to generate gene KO sheep. This technology is quick and easy to perform and less expensive than previous techniques, and can be applied to obtain genetically modified animal models of interest for biomedicine and

  3. Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes

    PubMed Central

    Crispo, M.; Mulet, A. P.; Tesson, L.; Barrera, N.; Cuadro, F.; dos Santos-Neto, P. C.; Nguyen, T. H.; Crénéguy, A.; Brusselle, L.; Anegón, I.; Menchaca, A.

    2015-01-01

    While CRISPR/Cas9 technology has proven to be a valuable system to generate gene-targeted modified animals in several species, this tool has been scarcely reported in farm animals. Myostatin is encoded by MSTN gene involved in the inhibition of muscle differentiation and growth. We determined the efficiency of the CRISPR/Cas9 system to edit MSTN in sheep and generate knock-out (KO) animals with the aim to promote muscle development and body growth. We generated CRISPR/Cas9 mRNAs specific for ovine MSTN and microinjected them into the cytoplasm of ovine zygotes. When embryo development of CRISPR/Cas9 microinjected zygotes (n = 216) was compared with buffer injected embryos (n = 183) and non microinjected embryos (n = 173), cleavage rate was lower for both microinjected groups (P<0.05) and neither was affected by CRISPR/Cas9 content in the injected medium. Embryo development to blastocyst was not affected by microinjection and was similar among the experimental groups. From 20 embryos analyzed by Sanger sequencing, ten were mutant (heterozygous or mosaic; 50% efficiency). To obtain live MSTN KO lambs, 53 blastocysts produced after zygote CRISPR/Cas9 microinjection were transferred to 29 recipient females resulting in 65.5% (19/29) of pregnant ewes and 41.5% (22/53) of newborns. From 22 born lambs analyzed by T7EI and Sanger sequencing, ten showed indel mutations at MSTN gene. Eight showed mutations in both alleles and five of them were homozygous for indels generating out-of frame mutations that resulted in premature stop codons. Western blot analysis of homozygous KO founders confirmed the absence of myostatin, showing heavier body weight than wild type counterparts. In conclusion, our results demonstrate that CRISPR/Cas9 system was a very efficient tool to generate gene KO sheep. This technology is quick and easy to perform and less expensive than previous techniques, and can be applied to obtain genetically modified animal models of interest for biomedicine and

  4. Functional effect of mir-27b on myostatin expression: a relationship in piedmontese cattle with double-muscled phenotype

    PubMed Central

    2013-01-01

    Background In Piedmontese cattle the double-muscled phenotype is an inherited condition associated to a point mutation in the myostatin (MSTN) gene. The Piedmontese MSTN missense mutation G938A is translated to C313Y myostatin protein. This mutation alters MSTN function as a negative regulator of muscle growth, thereby inducing muscle hypertrophy. MiRNAs could play a role in skeletal muscle hypertrophy modulation by down-regulating gene expression. Results After identifying a 3′-UTR consensus sequence of several negative and positive modulator genes involved in the skeletal muscle hypertrophy pathway, such as IGF1, IGF1R, PPP3CA, NFATc1, MEF2C, GSK3b, TEAD1 and MSTN, we screened miRNAs matching to it. This analysis led to the identification of miR-27b, miR-132, miR-186 and miR-199b-5p as possible candidates. We collected samples of longissimus thoracis from twenty Piedmontese and twenty Friesian male bovines. In Piedmontese group miR-27b was up-regulated 7.4-fold (p < 0.05). Further, we report that the level of MSTN mRNA was about 5-fold lower in Piedmontese cattle vs Friesian cattle (p < 0.0001) and that less mature MSTN protein was detected in the Piedmontese one (p < 0.0001). Cotransfection of miR-27b and psi-check2 vector with the luciferase reporter gene linked to the bovine wild-type 3′-UTR of MSTN strongly inhibited the luciferase activity (79%, p < 0.0001). Conclusions These data demonstrate that bovine MSTN is a specific target of miR-27b and that miRNAs contribute to explain additive phenotypic hypertrophy in Piedmontese cattle selected for the MSTN gene mutation, possibly outlining a more precise genetic signature able to elucidate differences in muscle conformation. PMID:23510267

  5. Genistein exerts anti-leukemic effects on genetically different acute myeloid leukemia cell lines by inhibiting protein synthesis and cell proliferation while inducing apoptosis – molecular insights from an iTRAQ™ quantitative proteomics study

    PubMed Central

    Lim, Teck Kwang; Port, Sarah Alexandra; Han, Jin-Hua; Chen, Chien-Shing; Lin, Qingsong

    2015-01-01

    Acute myeloid leukemia (AML) is a form of cancer that affects the hematopoietic precursor cells with lethal effects. We investigated the prospect of using genistein as an effective alternate therapy for AML. A two-cell line model, one possessing the FLT3 gene with the ITD mutation (MV4−11) and the other with the wildtype FLT3 gene (HL−60) has been employed. Our 8−plexed iTRAQ™−based quantitative proteomics analysis together with various functional studies demonstrated that genistein exerts anti-leukemic effects on both the AML cell lines. Genistein treatment on the AML cells showed that the drug arrested the mTOR pathway leading to down−regulation of protein synthesis. Additionally, genistein treatment is found to induce cell death via apoptosis. Contrasting regulatory effects of genistein on the cell cycle of the two cell lines were also identified, with the induction of G2/M phase arrest in HL-60 cells but not in MV4−11 cells. Hence, our study highlights the potent anti-leukemic effect of genistein on AML cells irrespective of their genetic status. This suggests the potential use of genistein as an effective general drug therapy for AML patients. PMID:25859554

  6. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration

    PubMed Central

    Pasteuning-Vuhman, Svitlana; Boertje-van der Meulen, Johanna W.; van Putten, Maaike; Overzier, Maurice; ten Dijke, Peter; Kiełbasa, Szymon M.; Arindrarto, Wibowo; Wolterbeek, Ron; Lezhnina, Ksenia V.; Ozerov, Ivan V.; Aliper, Aleksandr M.; Hoogaars, Willem M.; Aartsma-Rus, Annemieke; Loomans, Cindy J. M.

    2017-01-01

    Skeletal muscle fibrosis and impaired muscle regeneration are major contributors to muscle wasting in Duchenne muscular dystrophy (DMD). Muscle growth is negatively regulated by myostatin (MSTN) and activins. Blockage of these pathways may improve muscle quality and function in DMD. Antisense oligonucleotides (AONs) were designed specifically to block the function of ALK4, a key receptor for the MSTN/activin pathway in skeletal muscle. AON-induced exon skipping resulted in specific Alk4 down-regulation, inhibition of MSTN activity, and increased myoblast differentiation in vitro. Unexpectedly, a marked decrease in muscle mass (10%) was found after Alk4 AON treatment in mdx mice. In line with in vitro results, muscle regeneration was stimulated, and muscle fiber size decreased markedly. Notably, when Alk4 was down-regulated in adult wild-type mice, muscle mass decreased even more. RNAseq analysis revealed dysregulated metabolic functions and signs of muscle atrophy. We conclude that ALK4 inhibition increases myogenesis but also regulates the tight balance of protein synthesis and degradation. Therefore, caution must be used when developing therapies that interfere with MSTN/activin pathways.—Pasteuning-Vuhman, S., Boertje-van der Meulen, J. W., van Putten, M., Overzier, M., ten Dijke, P., Kiełbasa, S. M., Arindrarto, W., Wolterbeek, R., Lezhnina, K. V., Ozerov, I. V., Aliper, A. M., Hoogaars, W. M., Aartsma-Rus, A., Loomans, C. J. M. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration. PMID:27733450

  7. Transient inactivation of myostatin induces muscle hypertrophy and overcompensatory growth in zebrafish via inactivation of the SMAD signaling pathway.

    PubMed

    Fuentes, Eduardo N; Pino, Katherine; Navarro, Cristina; Delgado, Iselys; Valdés, Juan Antonio; Molina, Alfredo

    2013-12-01

    Myostatin (MSTN) is the main negative regulator of muscle growth and development in vertebrates. In fish, little is known about the molecular mechanisms behind how MSTN inactivation triggers skeletal muscle enhancement, particularly regarding the signaling pathways involved in this process. Moreover, there have not been reports on the biotechnological applications of MSTN and its signal transduction. In this context, zebrafish underwent compensatory growth using fasting and refeeding trials, and MSTN activity was inactivated with dominant negative LAPD76A recombinant proteins during the refeeding period, when a rapid, compensatory muscle growth was observed. Treated fish displayed an overcompensation of growth characterized by higher muscle hypertrophy and growth performance than constantly fed, control fish. Treatment with LAPD76A recombinant proteins triggered inactivation of the SMAD signaling pathway in skeletal muscle, the main signal transduction used by MSTN to achieve its biological actions. Therefore, transient inactivation of MSTN during the compensatory growth of zebrafish led to a decrease in the SMAD signaling pathway in muscle, triggering muscle hypertrophy and finally improving growth performance, thus, zebrafish achieved an overcompensation of growth. The present study shows an attractive strategy for improving muscle growth in a fish species by mixing a classical strategy, such as compensatory growth, and a biotechnological approach, such as the use of recombinant proteins for inhibiting the biological actions of MSTN. The mix of both strategies may represent a method that could be applied in order to improve growth in commercial fish of interest for aquaculture.

  8. Target genes of myostatin loss-of-function in muscles of late bovine fetuses

    PubMed Central

    Cassar-Malek, Isabelle; Passelaigue, Florent; Bernard, Carine; Léger, Jean; Hocquette, Jean-François

    2007-01-01

    Background Myostatin, a muscle-specific member of the Transforming Growth Factor beta family, negatively regulates muscle development. Double-muscled (DM) cattle have a loss-of-function mutation in their myostatin gene responsible for the hypermuscular phenotype. Thus, these animals are a good model for understanding the mechanisms underpinning muscular hypertrophy. In order to identify individual genes or networks that may be myostatin targets, we looked for genes that were differentially expressed between DM and normal (NM) animals (n = 3 per group) in the semitendinosus muscle (hypertrophied in DM animals) at 260 days of fetal development (when the biochemical differentiation of muscle is intensive). A heterologous microarray (human and murine oligonucleotide sequences) of around 6,000 genes expressed in muscle was used. Results Many genes were found to be differentially expressed according to genetic type (some with a more than 5-fold change), and according to the presence of one or two functional myostatin allele(s). They belonged to various functional categories. The genes down-regulated in DM fetuses were mainly those encoding extracellular matrix proteins, slow contractile proteins and ribosomal proteins. The genes up-regulated in DM fetuses were mainly involved in the regulation of transcription, cell cycle/apoptosis, translation or DNA metabolism. These data highlight features indicating that DM muscle is shifted towards a more glycolytic metabolism, and has an altered extracellular matrix composition (e.g. down-regulation of COL1A1 and COL1A2, and up-regulation of COL4A2) and decreased adipocyte differentiation (down-regulation of C1QTNF3). The altered gene expression in the three major muscle compartments (fibers, connective tissue and intramuscular adipose tissue) is consistent with the well-known characteristics of DM cattle. In addition, novel potential targets of the myostatin gene were identified (MB, PLN, troponins, ZFHX1B). Conclusion Thus, the

  9. Bisphenol A and Related Alkylphenols Exert Nongenomic Estrogenic Actions Through a G Protein-Coupled Estrogen Receptor 1 (Gper)/Epidermal Growth Factor Receptor (Egfr) Pathway to Inhibit Meiotic Maturation of Zebrafish Oocytes1

    PubMed Central

    Fitzgerald, Amanda C.; Peyton, Candace; Dong, Jing; Thomas, Peter

    2015-01-01

    Xenobiotic estrogens, such as bisphenol A (BPA), disrupt a wide variety of genomic estrogen actions, but their nongenomic estrogen actions remain poorly understood. We investigated nongenomic estrogenic effects of low concentrations of BPA and three related alkylphenols on the inhibition of zebrafish oocye maturation (OM) mediated through a G protein-coupled estrogen receptor 1 (Gper)-dependent epidermal growth factor receptor (Egfr) pathway. BPA (10–100 nM) treatment for 3 h mimicked the effects of estradiol-17beta (E2) and EGF, decreasing spontaneous maturation of defolliculated zebrafish oocytes, an effect not blocked by coincubation with actinomycin D, but blocked by coincubation with a Gper antibody. BPA displayed relatively high binding affinity (15.8% that of E2) for recombinant zebrafish Gper. The inhibitory effects of BPA were attenuated by inhibition of upstream regulators of Egfr, intracellular tyrosine kinase (Src) with PP2, and matrix metalloproteinase with ilomastat. Treatment with an inhibitor of Egfr transactivation, AG1478, and an inhibitor of the mitogen-activated protein kinase (MAPK) 3/1 pathway, U0126, increased spontaneous OM and blocked the inhibitory effects of BPA, E2, and the selective GPER agonist, G-1. Western blot analysis showed that BPA (10–200 nM) mimicked the stimulatory effects of E2 and EGF on Mapk3/1 phosphorylation. Tetrabromobisphenol A, 4-nonylphenol, and tetrachlorobisphenol A (5–100 nM) also inhibited OM, an effect blocked by cotreatment with AG1478, as well as with the GPER antagonist, G-15, and displayed similar binding affinities as BPA to zebrafish Gper. The results suggest that BPA and related alkylphenols disrupt zebrafish OM by a novel nongenomic estrogenic mechanism involving activation of the Gper/Egfr/Mapk3/1 pathway. PMID:26490843

  10. Overexpression of Latent TGFβ Binding Protein 4 in Muscle Ameliorates Muscular Dystrophy through Myostatin and TGFβ

    PubMed Central

    Gardner, Brandon B.; Gao, Quan Q.; Hadhazy, Michele; Vo, Andy H.; Wren, Lisa; Molkentin, Jeffery D.; McNally, Elizabeth M.

    2016-01-01

    Latent TGFβ binding proteins (LTBPs) regulate the extracellular availability of latent TGFβ. LTBP4 was identified as a genetic modifier of muscular dystrophy in mice and humans. An in-frame insertion polymorphism in the murine Ltbp4 gene associates with partial protection against muscular dystrophy. In humans, nonsynonymous single nucleotide polymorphisms in LTBP4 associate with prolonged ambulation in Duchenne muscular dystrophy. To better understand LTBP4 and its role in modifying muscular dystrophy, we created transgenic mice overexpressing the protective murine allele of LTBP4 specifically in mature myofibers using the human skeletal actin promoter. Overexpression of LTBP4 protein was associated with increased muscle mass and proportionally increased strength compared to age-matched controls. In order to assess the effects of LTBP4 in muscular dystrophy, LTBP4 overexpressing mice were bred to mdx mice, a model of Duchenne muscular dystrophy. In this model, increased LTBP4 led to greater muscle mass with proportionally increased strength, and decreased fibrosis. The increase in muscle mass and reduction in fibrosis were similar to what occurs when myostatin, a related TGFβ family member and negative regulator of muscle mass, was deleted in mdx mice. Supporting this, we found that myostatin forms a complex with LTBP4 and that overexpression of LTBP4 led to a decrease in myostatin levels. LTBP4 also interacted with TGFβ and GDF11, a protein highly related to myostatin. These data identify LTBP4 as a multi-TGFβ family ligand binding protein with the capacity to modify muscle disease through overexpression. PMID:27148972

  11. Palmitoylethanolamide Exerts Antiproliferative Effect and Downregulates VEGF Signaling in Caco-2 Human Colon Carcinoma Cell Line Through a Selective PPAR-α-Dependent Inhibition of Akt/mTOR Pathway.

    PubMed

    Sarnelli, Giovanni; Gigli, Stefano; Capoccia, Elena; Iuvone, Teresa; Cirillo, Carla; Seguella, Luisa; Nobile, Nicola; D'Alessandro, Alessandra; Pesce, Marcella; Steardo, Luca; Cuomo, Rosario; Esposito, Giuseppe

    2016-06-01

    Palmitoylethanolamide (PEA) is a nutraceutical compound that has been demonstrated to improve intestinal inflammation. We aimed at evaluating its antiproliferative and antiangiogenic effects in human colon adenocarcinoma Caco-2 cell line. Caco-2 cells were treated with increasing concentrations of PEA (0.001, 0.01 and 0.1 μM) in the presence of peroxisome proliferator-activated receptor-a (PPAR-α) or PPAR-γ antagonists. Cell proliferation was evaluated by performing a MTT assay. Vascular endothelial growth factor (VEGF) release was estimated by ELISA, while the expression of VEGF receptor and the activation of the Akt/mammalian target of rapamycin (mTOR) pathway were evaluated by western blot analysis. PEA caused a significant and concentration-dependent decrease of Caco-2 cell proliferation at 48 h. PEA administration significantly reduced in a concentration-dependent manner VEGF secretion and VEGF receptor expression. Inhibition of Akt phosphorylation and a downstream decrease of phospho-mTOR and of p-p70S6K were observed as compared with untreated cells. PPAR-α, but not PPAR-γ antagonist, reverted all effects of PEA. PEA is able to decrease cell proliferation and angiogenesis. The antiangiogenic effect of PEA depends on the specific inhibition of the AkT/mTOR axis, through the activation of PPAR-α pathway. If supported by in vivo models, our data pave the way to PEA co-administration to the current chemotherapeutic regimens for colon carcinoma. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Inbred strains of zebrafish exhibit variation in growth performance and myostatin expression following fasting.

    PubMed

    Meyer, Ben M; Froehlich, Jacob M; Galt, Nicholas J; Biga, Peggy R

    2013-01-01

    Although the zebrafish (Danio rerio) has been widely utilized as a model organism for several decades, there is little information available on physiological variation underlying genetic variation among the most commonly used inbred strains. This study evaluated growth performance using physiological and molecular markers of growth in response to fasting in six commonly used zebrafish strains [AB, TU, TL, SJA, WIK, and petstore (PET) zebrafish]. Fasting resulted in a standard decrease in whole blood glucose levels, a typical vertebrate glucose metabolism pattern, in AB, PET, TL, and TU zebrafish strains. Alternatively, fasting did not affect glucose levels in SJA and WIK zebrafish strains. Similarly, fasting had no effect on myostatin mRNA levels in AB, PET, TU, and WIK zebrafish strains, but decreased myostatin-1 and -2 mRNA levels in SJA zebrafish. Consistent with previous work, fasting increased myostatin-2 mRNA levels in TL zebrafish. These data demonstrate that variation is present in growth performance between commonly used inbred strains of zebrafish. These data can help future research endeavors by highlighting the attributes of each strain with regard to growth performance so that the most fitting strain may be utilized.

  13. AgRP Neurons Control Systemic Insulin Sensitivity via Myostatin Expression in Brown Adipose Tissue.

    PubMed

    Steculorum, Sophie M; Ruud, Johan; Karakasilioti, Ismene; Backes, Heiko; Engström Ruud, Linda; Timper, Katharina; Hess, Martin E; Tsaousidou, Eva; Mauer, Jan; Vogt, Merly C; Paeger, Lars; Bremser, Stephan; Klein, Andreas C; Morgan, Donald A; Frommolt, Peter; Brinkkötter, Paul T; Hammerschmidt, Philipp; Benzing, Thomas; Rahmouni, Kamal; Wunderlich, F Thomas; Kloppenburg, Peter; Brüning, Jens C

    2016-03-24

    Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP → LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP → anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP → aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis.

  14. Inbred strains of zebrafish exhibit variation in growth performance and myostatin expression following fasting

    PubMed Central

    Meyer, Ben M.; Froehlich, Jacob M.; Galt, Nicholas J.; Biga, Peggy R.

    2012-01-01

    Although the zebrafish (Danio rerio) has been widely utilized as a model organism for several decades, there is little information available on physiological variation underlying genetic variation among the most commonly used inbred strains. This study evaluated growth performance using physiological and molecular markers of growth in response to fasting in six commonly used zebrafish strains [AB, TU, TL, SJA, WIK, and petstore (PET) zebrafish]. Fasting resulted in a standard decrease in whole blood glucose levels, typical vertebrate glucose metabolism pattern, in AB, PET, TL, and TU zebrafish strains. Alternatively, fasting did not affect glucose levels in SJA and WIK zebrafish strains. Similarly, fasting had no effect on myostatin mRNA levels in AB, PET, TU, and WIK zebrafish strains, but decreased myostatin-1 and -2 mRNA levels in SJA zebrafish. Consistent with previous work, fasting increased myostatin-2 mRNA levels in TL zebrafish. These data demonstrate that variation is present in growth performance between commonly used inbred strains of zebrafish. These data can help future research endeavors by highlighting the attributes of each strain with regard to growth performance so that the most fitting strain may be utilized. PMID:23047051

  15. Expression of porcine myostatin prodomain genomic sequence leads to a decrease in muscle growth, but significant intramuscular fat accretion in transgenic pigs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Myostatin, a member of TGF-beta superfamily, is a dominant inhibitor of skeletal muscle development and growth. Previously, skeletal muscle-specific over-expression of myostatin prodomain cDNA (5’-region 886 nucleotide) dramatically increased growth performance and muscle mass in transgenic mice. I...

  16. Cyanidin-3-O-glucoside inhibits NF-kB signalling in intestinal epithelial cells exposed to TNF-α and exerts protective effects via Nrf2 pathway activation.

    PubMed

    Ferrari, Daniela; Speciale, Antonio; Cristani, Mariateresa; Fratantonio, Deborah; Molonia, Maria Sofia; Ranaldi, Giulia; Saija, Antonella; Cimino, Francesco

    2016-12-15

    Chronic intestinal inflammatory disorders, such as Inflammatory Bowel Diseases (IBDs), are characterized by excessive release of proinflammatory mediators, intestinal barrier dysfunction and excessive activation of NF-kB cascade. Previous studies shown that TNF-α plays a central role in intestinal inflammation of IBDs and supported beneficial effects of flavonoids against chronic inflammatory diseases. In this study, we employed an in vitro model of acute intestinal inflammation using intestinal Caco-2 cells exposed to TNF-α. The protective effects of cyanidin-3-glucoside (C3G), an anthocyanin widely distributed in mediterranean diet, were then evaluated. Caco-2 cells exposure to TNF-α activated NF-kB proinflammatory pathway and induced IL6 and COX-2 expression. Cells pretreatment for 24h with C3G (20-40μM) prevented TNF-α-induced changes, and improved intracellular redox status. Our results demonstrated that C3G, also without any kind of stimulus, increased the translocation of the transcription factor Nrf2 into the nucleus so activating antioxidant and detoxifying genes. In conclusion, C3G exhibited protective effects through the inhibition of NF-kB signalling in Caco-2 cells and these beneficial effects appear to be due to its ability to activate cellular protective responses modulated by Nrf2. These data suggest that anthocyanins could contribute, as complementary or preventive approaches, to the management of chronic inflammatory diseases.

  17. Alterations in myostatin expression are associated with changes in cardiac left ventricular mass but not ejection fraction in the mouse.

    PubMed

    Artaza, Jorge N; Reisz-Porszasz, Suzanne; Dow, Joan S; Kloner, Robert A; Tsao, James; Bhasin, Shalender; Gonzalez-Cadavid, Nestor F

    2007-07-01

    Myostatin (Mst) is a negative regulator of skeletal muscle in humans and animals. It is moderately expressed in the heart of sheep and cattle, increasing considerably after infarction. Genetic blockade of Mst expression increases cardiomyocyte growth. We determined whether Mst overexpression in the heart of transgenic mice reduces left ventricular size and function, and inhibits in vitro cardiomyocyte proliferation. Young transgenic mice overexpressing Mst in the heart (Mst transgenic mice (TG) under a muscle creatine kinase (MCK) promoter active in cardiac and skeletal muscle, and Mst knockout (Mst (-/-)) mice were used. Xiscan angiography revealed that the left ventricular ejection fraction did not differ between the Mst TG and the Mst (-/-) mice, when compared with their respective wild-type strains, despite the decrease in whole heart and left ventricular size in Mst TG mice, and their increase in Mst (-/-) animals. The expected changes in cardiac Mst were measured by RT-PCR and western blot. Mst and its receptor (ActRIIb) were detected by RT-PCR in rat H9c2 cardiomyocytes. Transfection of H9c2 with plasmids expressing Mst under muscle-specific creatine kinase promoter, or cytomegalovirus promoter, enhanced p21 and reduced cdk2 expression, when assessed by western blot. A decrease in cell number occurred by incubation with recombinant Mst (formazan assay), without affecting apoptosis or cardiomyocyte size. Anti-Mst antibody increased cardiomyocyte replication, whereas transfection with the Mst-expressing plasmids inhibited it. In conclusion, Mst does not affect cardiac systolic function in mice overexpressing or lacking the active protein, but it reduces cardiac mass and cardiomyocyte proliferation.

  18. Growth hormone differentially regulates muscle myostatin1 and -2 and increases circulating cortisol in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Biga, Peggy R; Cain, Kenneth D; Hardy, Ronald W; Schelling, Gerald T; Overturf, Kenneth; Roberts, Steven B; Goetz, Frederick W; Ott, Troy L

    2004-08-01

    Myostatin (MSTN) negatively regulates muscle growth in vertebrates. Salmonids produce two myostatin transcripts from separate genes. Surprisingly, quantitative analyses indicate different regulatory mechanisms for the two myostatin genes in rainbow trout. MSTN1 mRNA levels were elevated 26% following recombinant bovine growth hormone (rbGH) treatment, while MSTN2 mRNA levels were reduced 74% compared to controls. MSTN precursor protein (42kDa) levels were elevated in rbGH treated fish compared to controls. In addition, circulating cortisol levels were elevated 71% following rbGH treatment compared to controls. In treated and control fish, cortisol levels were elevated 245% at day 0 compared to subsequent days. Treated fish exhibited cortisol levels 207% higher than controls at 0.5 day, and remained at least 50% higher for 7 days following treatment. This pattern of change was positively correlated to MSTN1 mRNA levels. This is the first time a direct relationship has been reported between GH, cortisol, and myostatin. In addition, following rbGH administration, myosin protein concentrations in skeletal muscle samples increased, suggesting that GH regulates expression of the most abundant muscle protein. These results indicate the two myostatin genes are differentially regulated and may possess different functions in rainbow trout muscle, and suggests a possible interaction between GH, cortisol, and muscle growth.

  19. Myostatin dysfunction impairs force generation in extensor digitorum longus muscle and increases exercise-induced protein efflux from extensor digitorum longus and soleus muscles.

    PubMed

    Baltusnikas, Juozas; Kilikevicius, Audrius; Venckunas, Tomas; Fokin, Andrej; Bünger, Lutz; Lionikas, Arimantas; Ratkevicius, Aivaras

    2015-08-01

    Myostatin dysfunction promotes muscle hypertrophy, which can complicate assessment of muscle properties. We examined force generating capacity and creatine kinase (CK) efflux from skeletal muscles of young mice before they reach adult body and muscle size. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of Berlin high (BEH) mice with dysfunctional myostatin, i.e., homozygous for inactivating myostatin mutation, and with a wild-type myostatin (BEH+/+) were studied. The muscles of BEH mice showed faster (P < 0.01) twitch and tetanus contraction times compared with BEH+/+ mice, but only EDL displayed lower (P < 0.05) specific force. SOL and EDL of age-matched but not younger BEH mice showed greater exercise-induced CK efflux compared with BEH+/+ mice. In summary, myostatin dysfunction leads to impairment in muscle force generating capacity in EDL and increases susceptibility of SOL and EDL to protein loss after exercise.

  20. Over-Expression of Porcine Myostatin Missense Mutant Leads to A Gender Difference in Skeletal Muscle Growth between Transgenic Male and Female Mice.

    PubMed

    Ma, Dezun; Gao, Pengfei; Qian, Lili; Wang, Qingqing; Cai, Chunbo; Jiang, Shengwang; Xiao, Gaojun; Cui, Wentao

    2015-08-24

    Myostatin, a transforming growth factor-β family member, is a negative regulator of skeletal muscle development and growth. Piedmontese cattle breeds have a missense mutation, which results in a cysteine to tyrosine substitution in the mature myostatin protein (C313Y). This loss-of-function mutation in myostatin results in a double-muscled phenotype in cattle. Myostatin propeptide is an inhibitor of myostatin activity and is considered a potential agent to stimulate muscle growth in livestock. In this study, we generated transgenic mice overexpressing porcine myostatin missense mutant (pmMS), C313Y, and wild-type porcine myostatin propeptide (ppMS), respectively, to examine their effects on muscle growth in mice. Enhanced muscle growth was observed in both pmMS and ppMS transgenic female mice and also in ppMS transgenic male mice. However, there was no enhanced muscle growth observed in pmMS transgenic male mice. To explore why there is such a big difference in muscle growth between pmMS and ppMS transgenic male mice, the expression level of androgen receptor (AR) mutant AR45 was measured by Western blot. Results indicated that AR45 expression significantly increased in pmMS transgenic male mice while it decreased dramatically in ppMS transgenic male mice. Our data demonstrate that both pmMS and ppMS act as myostatin inhibitors in the regulation of muscle growth, but the effect of pmMS in male mice is reversed by an increased AR45 expression. These results provide useful insight and basic theory to future studies on improving pork quality by genetically manipulating myostatin expression or by regulating myostatin activity.

  1. The cAMP Response Element Binding protein (CREB) is activated by Insulin-like Growth Factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast

    SciTech Connect

    Zuloaga, R.; Fuentes, E.N.; Molina, A.; Valdés, J.A.

    2013-10-18

    Highlights: •IGF-1 induces the activation of CREB via IGF-1R/PI3K/PLC signaling pathway. •Calcium dependent signaling pathways regulate myostatin gene expression. •IGF-1 regulates myostatin gene expression via CREB transcription in skeletal myoblast. -- Abstract: Myostatin, a member of the Transforming Growth Factor beta (TGF-β) superfamily, plays an important role as a negative regulator of skeletal muscle growth and differentiation. We have previously reported that IGF-1 induces a transient myostatin mRNA expression, through the activation of the Nuclear Factor of Activated T cells (NFAT) in an IP{sub 3}/calcium-dependent manner. Here we examined the activation of CREB transcription factor as downstream targets of IGF-1 during myoblast differentiation and its role as a regulator of myostatin gene expression. In cultured skeletal myoblast, IGF-1 induced the phosphorylation and transcriptional activation of CREB via IGF-1 Receptor/Phosphatidylinositol 3-Kinase (PI3K)/Phospholipase C gamma (PLC γ), signaling pathways. Also, IGF-1 induced calcium-dependent molecules such as Calmodulin Kinase II (CaMK II), Extracellular signal-regulated Kinases (ERK), Protein Kinase C (PKC). Additionally, we examined myostatin mRNA levels and myostatin promoter activity in differentiated myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents of myostatin and its reporter activity after treatment with IGF-1. The expression of myostatin in differentiated myoblast was downregulated by the transfection of siRNA–CREB and by pharmacological inhibitors of the signaling pathways involved in CREB activation. By using pharmacological and genetic approaches together these data demonstrate that IGF-1 regulates the myostatin gene expression via CREB transcription factor during muscle cell differentiation.

  2. Myostatin signals through miR-34a to regulate Fndc5 expression and browning of white adipocytes

    PubMed Central

    Ge, X; Sathiakumar, D; Lua, B J G; Kukreti, H; Lee, M; McFarlane, C

    2017-01-01

    Background/Objectives: Myostatin (Mstn) has a pivotal role in glucose and lipid metabolism. Mstn deficiency leads to the increased browning of white adipose tissue (WAT), which results in the increased energy expenditure and protection against diet-induced obesity and insulin resistance. In this study, we investigated the molecular mechanism(s) through which Mstn regulates browning of white adipocytes. Methods: Quantitative molecular analyses were performed to assess Mstn regulation of miR-34a and Fndc5 expression. miR-34a was overexpressed and repressed to investigate miR-34a regulation of Fndc5. Luciferase reporter analysis verified direct binding between miR-34a and the Fndc5 3′-untranslated region (UTR). The browning phenotype of Mstn−/− adipocytes was assessed through the analysis of brown fat marker gene expression, mitochondrial function and infrared thermography. The role of miR-34a and Fndc5 in this browning phenotype was verified through antibody-mediated neutralization of FNDC5, knockdown of Fndc5 by small interfering RNA and through miR-34a gain-of-function and loss-of-function experiments. Results: Mstn treatment of myoblasts inhibited Fndc5 expression, whereas the loss of Mstn increased Fndc5 levels in muscles and in circulation. Mstn inhibition of Fndc5 is miR-34a dependent. Mstn treatment of C2C12 myoblasts upregulated miR-34a expression, whereas reduced miR-34a expression was noted in Mstn−/− muscle and WAT. Subsequent overexpression of miR-34a inhibited Fndc5 expression, whereas blockade of miR-34a increased Fndc5 expression in myoblasts. Reporter analysis revealed that miR-34a directly suppresses Fndc5 expression through a miR-34a-specific binding site within the Fndc5 3′UTR. Importantly, Mstn-mediated inhibition of Fndc5 was blocked upon miR-34a inhibition. Mstn−/− adipocytes showed reduced miR-34a, enhanced Fndc5 expression and increased thermogenic gene expression, which was reversed upon either neutralization of Fndc5 or Fndc5

  3. Activin Receptor Type IIB Inhibition Improves Muscle Phenotype and Function in a Mouse Model of Spinal Muscular Atrophy

    PubMed Central

    Barton, Elisabeth R.; Sweeney, H. Lee

    2016-01-01

    Spinal muscular atrophy (SMA) is a devastating neurodegenerative disorder that causes progressive muscle atrophy and weakness. Using adeno-associated virus-mediated gene transfer, we evaluated the potential to improve skeletal muscle weakness via systemic, postnatal inhibition of either myostatin or all signaling via the activin receptor type IIB (ActRIIB). After demonstrating elevated p-SMAD3 content and differential content of ActRIIB ligands, 4-week-old male C/C SMA model mice were treated intraperitoneally with 1x1012 genome copies of pseudotype 2/8 virus encoding a soluble form of the ActRIIB extracellular domain (sActRIIB) or protease-resistant myostatin propeptide (dnMstn) driven by a liver specific promoter. At 12 weeks of age, muscle mass and function were improved in treated C/C mice by both treatments, compared to controls. The fast fiber type muscles had a greater response to treatment than did slow muscles, and the greatest therapeutic effects were found with sActRIIB treatment. Myostatin/activin inhibition, however, did not rescue C/C mice from the reduction in motor unit numbers of the tibialis anterior muscle. Collectively, this study indicates that myostatin/activin inhibition represents a potential therapeutic strategy to increase muscle mass and strength, but not neuromuscular junction defects, in less severe forms of SMA. PMID:27870893

  4. High-fat diet reduces local myostatin-1 paralog expression and alters skeletal muscle lipid content in rainbow trout, Oncorhynchus mykiss

    PubMed Central

    Galt, Nicholas J.; Froehlich, Jacob Michael; Meyer, Ben M.; Barrows, Frederic T.; Biga, Peggy R.

    2014-01-01

    Muscle growth is an energetically demanding process that is reliant on intramuscular fatty acid depots in most fishes. The complex mechanisms regulating this growth and lipid metabolism are of great interest for human health and aquaculture applications. It is well established that the skeletal muscle chalone, myostatin, plays a role in lipid metabolism and adipogenesis in mammals; however, this function has not been fully assessed in fishes. We therefore examined the interaction between dietary lipid levels and myostatin expression in rainbow trout (Oncorhynchus mykiss). Five-weeks of high-fat (HFD; 25% lipid) dietary intake increased white muscle lipid content, and decreased circulating glucose levels and hepatosomatic index when compared to low-fat diet (LFD; 10% lipid) intake. In addition HFD intake reduced myostatin-1a and -1b expression in white muscle and myostatin-1b expression in brain tissue. Characterization of the myostatin-1a, -1b, and -2a promoters revealed putative binding sites for a subset of transcription factors associated with lipid metabolism. Taken together, these data suggest that HFD may regulate myostatin expression through cis-regulatory elements sensitive to increased lipid intake. Further, these findings provide a framework for future investigations of mechanisms describing the relationships between myostatin and lipid metabolism in fish. PMID:24264425

  5. IGF and myostatin pathways are respectively induced during the earlier and the later stages of skeletal muscle hypertrophy induced by clenbuterol, a β₂-adrenergic agonist.

    PubMed

    Abo, Tokuhisa; Iida, Ryo-Hei; Kaneko, Syuhei; Suga, Takeo; Yamada, Hiroyuki; Hamada, Yoshiki; Yamane, Akira

    2012-12-01

    Clenbuterol, a β₂-adrenergic agonist, increases the hypertrophy of skeletal muscle. Insulin-like growth factor (IGF) is reported to work as a potent positive regulator in the clenbuterol-induced hypertrophy of skeletal muscles. However, the precise regulatory mechanism for the hypertrophy of skeletal muscle induced by clenbuterol is unknown. Myostatin, a member of the TGFβ super family, is a negative regulator of muscle growth. The aim of the present study is to elucidate the function of myostatin and IGF in the hypertrophy of rat masseter muscle induced by clenbuterol. To investigate the function of myostatin and IGF in regulatory mechanism for the clenbuterol-induced hypertrophy of skeletal muscles, we analysed the expression of myostatin and phosphorylation levels of myostatin and IGF signaling components in the masseter muscle of rat to which clenbuterol was orally administered for 21 days. Hypertrophy of the rat masseter muscle was induced between 3 and 14 days of oral administration of clenbuterol and was terminated at 21 days. The expression of myostatin and the phosphorylation of smad2/3 were elevated at 21 days. The phosphorylation of IGF receptor 1 (IGFR1) and akt1 was elevated at 3 and 7 days. These results suggest that myostatin functions as a negative regulator in the later stages in the hypertrophy of rat masseter muscle induced by clenbuterol, whereas IGF works as a positive regulator in the earlier stages.

  6. Within-Winter Flexibility in Muscle Masses, Myostatin, and Cellular Aerobic Metabolic Intensity in Passerine Birds.

    PubMed

    Swanson, David L; King, Marisa O; Culver, William; Zhang, Yufeng

    Metabolic rates of passerine birds are flexible traits that vary both seasonally and among and within winters. Seasonal variation in summit metabolic rates (Msum = maximum thermoregulatory metabolism) in birds is consistently correlated with changes in pectoralis muscle and heart masses and sometimes with variation in cellular aerobic metabolic intensity, so these traits might also be associated with shorter-term, within-winter variation in metabolic rates. To determine whether these mechanisms are associated with within-winter variation in Msum, we examined the effects of short-term (ST; 0-7 d), medium-term (MT; 14-30 d), and long-term (LT; 30-yr means) temperature variables on pectoralis muscle and heart masses, pectoralis expression of the muscle-growth inhibitor myostatin and its metalloproteinase activators TLL-1 and TLL-2, and pectoralis and heart citrate synthase (CS; an indicator of cellular aerobic metabolic intensity) activities for two temperate-zone resident passerines, house sparrows (Passer domesticus) and dark-eyed juncos (Junco hyemalis). For both species, pectoralis mass residuals were positively correlated with ST temperature variables, suggesting that cold temperatures resulted in increased turnover of pectoralis muscle, but heart mass showed little within-winter variation for either species. Pectoralis mRNA and protein expression of myostatin and the TLLs were only weakly correlated with ST and MT temperature variables, which is largely consistent with trends in muscle masses for both species. Pectoralis and heart CS activities showed weak and variable trends with ST temperature variables in both species, suggesting only minor effects of temperature variation on cellular aerobic metabolic intensity. Thus, neither muscle or heart masses, regulation by the myostatin system, nor cellular aerobic metabolic intensity varied consistently with winter temperature, suggesting that other factors regulate within-winter metabolic variation in these birds.

  7. RNA sequencing identifies upregulated kyphoscoliosis peptidase and phosphatidic acid signaling pathways in muscle hypertrophy generated by transgenic expression of myostatin propeptide.

    PubMed

    Miao, Yuanxin; Yang, Jinzeng; Xu, Zhong; Jing, Lu; Zhao, Shuhong; Li, Xinyun

    2015-04-09

    Myostatin (MSTN), a member of the transforming growth factor-β superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph), and zinc metallopeptidase STE24 (Zmpste24). In addition, kyphoscoliosis peptidase (Ky), which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA) pathways (Dgki, Dgkz, Plcd4) were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition.

  8. RNA Sequencing Identifies Upregulated Kyphoscoliosis Peptidase and Phosphatidic Acid Signaling Pathways in Muscle Hypertrophy Generated by Transgenic Expression of Myostatin Propeptide

    PubMed Central

    Miao, Yuanxin; Yang, Jinzeng; Xu, Zhong; Jing, Lu; Zhao, Shuhong; Li, Xinyun

    2015-01-01

    Myostatin (MSTN), a member of the transforming growth factor-β superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph), and zinc metallopeptidase STE24 (Zmpste24). In addition, kyphoscoliosis peptidase (Ky), which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA) pathways (Dgki, Dgkz, Plcd4) were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition. PMID:25860951

  9. TALENs-mediated gene disruption of myostatin produces a larger phenotype of medaka with an apparently compromised immune system.

    PubMed

    Chiang, Yi-An; Kinoshita, Masato; Maekawa, Shun; Kulkarni, Amod; Lo, Chu-Fang; Yoshiura, Yasutoshi; Wang, Han-Ching; Aoki, Takashi

    2016-01-01

    Although myostatin, a suppressor of skeletal muscle development and growth, has been well studied in mammals, its function in fish remains unclear. In this study, we used a popular genome editing tool with high efficiency and target specificity (TALENs; transcription activator-like effector nucleases) to mutate the genome sequence of myostatin (MSTN) in medaka (Oryzias latipes). After the TALEN pair targeting OlMyostatin was injected into fertilized medaka eggs, mutant G0 fish carrying different TALENs-induced frameshifts in the OlMSTN coding sequence were mated together in order to transmit the mutant sequences to the F1 generation. Two F1 mutants with frameshifted myostatin alleles were then mated to produce the F2 generation, and these F2 OlMSTN null (MSTN(-/-)) medaka were evaluated for growth performance. The F2 fish showed significantly increased body length and weight compared to the wild type fish at the juvenile and post-juvenile stages. At the post-juvenile stage, the average body weight of the MSTN(-/-) medaka was ∼25% greater than the wild type. However, we also found that when the F3 generation were challenged with red spotted grouper nervous necrosis virus (RGNNV), the expression levels of the interferon-stimulated genes were lower than in the wild type, and the virus copy number was maintained at a high level. We therefore conclude that although the MSTN(-/-) medaka had a larger phenotype, their immune system appeared to be at least partially suppressed or undeveloped.

  10. The effects of selecting for the myostatin F94L polymorphism on reproductive traits in pubertal heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The myostatin F94L polymorphism influences carcass traits in steers; however, the influence of this polymorphism on female reproductive performance should be characterized as part of using it for marker assisted selection. Results from USMARC indicate that heifers that are homozygous for the L allel...

  11. The myostatin gene of Mytilus chilensis evidences a high level of polymorphism and ubiquitous transcript expression.

    PubMed

    Núñez-Acuña, Gustavo; Gallardo-Escárate, Cristian

    2014-02-15

    Myostatin (MSTN) is a protein of the Transforming Growth Factor-β (TGF-β) superfamily and plays a crucial role in muscular development for higher vertebrates. However, its biological function in marine invertebrates remains undiscovered. This study characterizes the full-length sequence of the Mytilus chilensis myostatin gene (Mc-MSTN). Furthermore, tissue transcription patterns and putative single nucleotide polymorphisms (SNPs) were also identified. The Mc-MSTN cDNA sequence showed 3528 base pairs (bp), consisting of 161 bp of 5' UTR, 2,110 bp of 3' UTR, and an open reading frame of 1,257 bp encoding for 418 amino acids and with an RXXR proteolytic site and nine cysteine-conserved residues. Gene transcription analysis revealed that the Mc-MSTN has ubiquitous expression among several tissues, with higher expression in the gonads and mantle than in the digestive gland, gills, and hemolymph. Furthermore, high levels of polymorphisms were detected (28 SNPs in 3'-UTR and 9 SNPs in the coding region). Two SNPs were non-synonymous and involved amino acid changes between Glu/Asp and Thr/Ile. Until now, the MSTN gene has been mainly related to muscle growth in marine bivalves. However, the present study suggests a putative biological function not entirely associated to muscle tissue and contributes molecular evidence to the current debate about the function of the MSTN gene in marine invertebrates.

  12. Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program.

    PubMed

    Lee, Eun Ju; Jan, Arif Tasleem; Baig, Mohammad Hassan; Ashraf, Jalaluddin Mohammad; Nahm, Sang-Soep; Kim, Yong-Woon; Park, So-Young; Choi, Inho

    2016-08-01

    Differentiation of muscle satellite cells (MSCs) involves interaction of the proteins present in the extracellular matrix (ECM) with MSCs to regulate their activity, and therefore phenotype. Herein, we report fibromodulin (FMOD), a member of the proteoglycan family participating in the assembly of ECM, as a novel regulator of myostatin (MSTN) during myoblast differentiation. In addition to having a pronounced effect on the expression of myogenic marker genes [myogenin (MYOG) and myosin light chain 2 (MYL2)], FMOD was found to maintain the transcriptional activity of MSTN Moreover, coimmunoprecipitation and in silico studies performed to investigate the interaction of FMOD helped confirm that it antagonizes MSTN function by distorting its folding and preventing its binding to activin receptor type IIB. Furthermore, in vivo studies revealed that FMOD plays an active role in healing by increasing satellite cell recruitment to sites of injury. Together, these findings disclose a hitherto unrecognized regulatory role for FMOD in MSCs and highlight new mechanisms whereby FMOD circumvents the inhibitory effects of MSTN and triggers myoblast differentiation. These findings offer a basis for the design of novel MSTN inhibitors that promote muscle regeneration after injury or for the development of pharmaceutical agents for the treatment of different muscle atrophies.-Lee, E. J., Jan, A. T., Baig, M. H., Ashraf, J. M., Nahm, S.-S., Kim, Y.-W., Park, S.-Y., Choi, I. Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program.

  13. Polymorphisms in the Myostatin - 1 gene and their association with growth traits in Ancherythroculter nigrocauda

    NASA Astrophysics Data System (ADS)

    Sun, Yanhong; Li, Qing; Wang, Guiying; Zhu, Dongmei; Chen, Jian; Li, Pei; Tong, Jingou

    2016-05-01

    Myostatin (MSTN) is a member of the transforming growth factor-β gene superfamily that negatively regulates skeletal muscle development and growth. In the present study, partial genomic fragments of Myostatin-1 (MSTN-1) in two commercial hatchery populations of Ancherythroculter nigrocauda, an economically important freshwater fish, were screened for single nucleotide polymorphisms (SNPs) and then genotyped by direct sequencing of PCR products. Five SNPs were identified in intron 1 and exon 2, including a non-synonymous mutation causing an amino acid change (Val to Ile) at position 180. Association analyses based on 300 individuals revealed that the g.1129T>C SNP locus was significantly associated with total length (TL), body length (BL), body height (BH) and body weight (BW) in 6- and 18-month-old populations, while the g.1289G>A locus was significantly associated with BH and BW in the 6-month-old population. Haplotype analyses revealed that fish with the genotype combinations TC/TC or TC/GA showed better growth performance. Our results suggest that g.1129T>C and g.1289G>A have positive effects on growth traits and may be candidate gene markers for marker-assisted selection in A. nigrocauda.

  14. Genetic variations in the myostatin gene (MSTN) in New Zealand sheep breeds.

    PubMed

    Han, J; Forrest, R H; Hickford, J G H

    2013-11-01

    Myostatin, which is also known as growth and differentiation factor 8 (GDF8), acts as a negative regulator of skeletal muscle growth. Variation in the myostatin gene (MSTN) has been associated with variation in muscularity in many animals including sheep. Polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) analysis was used to investigate MSTN in a diverse range of sheep breeds including the New Zealand (NZ) Romney, Coopworth, Corriedale, Dorper, Perendale, Suffolk, Merino, Dorset Down, Poll Dorset, Texel and other NZ cross-bred sheep. A total of 28 nucleotide substitutions were identified from nucleotide c.-1199 in the promoter region to c.*1813 (based on NCBI GenBank accession number DQ530260) and including the well-described substitution c.*1232G>A (MSTN g+6223G>A). Of these 28 substitutions, 3 were located in the promoter region, 3 in the 5'UTR, 11 in intron 1, 5 in intron 2 and 5 in the 3'UTR. One substitution in exon 1 (c.101G>A) potentially results in an amino acid substitution of glutamic acid (Glu) with glycine (Gly) at codon 34. Ten of these substitutions have not been reported previously. The genetic variation revealed in this study suggests this gene is more variable than hitherto reported and provides a foundation for future research into how this variation affects muscle and growth traits.

  15. Reflections on the Design of Exertion Games.

    PubMed

    Mueller, Florian Floyd; Altimira, David; Khot, Rohit Ashot

    2015-02-01

    The design of exertion games (i.e., digital games that require physical effort from players) is a difficult intertwined challenge of combining digital games and physical effort. To aid designers in facing this challenge, we describe our experiences of designing exertion games. We outline personal reflections on our design processes and articulate analyses of players' experiences. These reflections and analyses serve to highlight the unique opportunities of combining digital games and physical effort. The insights we seek aim to enhance the understanding of exertion game design, contributing to the advancement of the field, and ultimately resulting in better games and associated player experiences.

  16. The effect of myostatin genotype on body temperature during extreme temperature events.

    PubMed

    Howard, J T; Kachman, S D; Nielsen, M K; Mader, T L; Spangler, M L

    2013-07-01

    Extreme heat and cold events can create deleterious physiological changes in cattle as they attempt to cope. The genetic background of animals can influence their response to these events. The objective of the current study was to determine the impact of myostatin genotype (MG) on body temperature during periods of heat and cold stress. Two groups of crossbred steers and heifers of unknown pedigree and breed fraction with varying percentages of Angus, Simmental, and Piedmontese were placed in a feedlot over 2 summers and 2 winters. Before arrival, animals were genotyped for the Piedmontese-derived myostatin mutation (C313Y) to determine their MG as either homozygous normal (0 copy; n = 84), heterozygous (1 copy; n = 96), or homozygous for inactive myostatin (2 copy; n = 59). Hourly tympanic and vaginal temperature measurements were collected for steers and heifers, respectively, for 5 d during times of anticipated heat and cold stress. Mean (±SD) ambient temperature for summer and winter stress events were 24.4 (±4.64) and -1.80 (±11.71), respectively. A trigonometric function (sine + cosine) with periods of 12 and 24 h was used to describe the diurnal cyclical pattern. Hourly body temperature was analyzed within a season, and fixed effects included MG, group, trigonometric functions nested within group, and interaction of MG with trigonometric functions nested within group; random effects were animal and residual (Model [I]). A combined analysis of season and group was also investigated with the inclusion of season as a main effect and the nesting of effects within both group and season (Model [C]). In both models, the residual was fitted using an autoregressive covariance structure. A 3-way interaction of MG, season, and trigonometric function periodicities of 24 h (P < 0.001) and 12 h (P < 0.02) for Model [C] indicate that a genotype × environment interaction exists for MG. For MG during summer stress events the additive estimate was 0.10°C (P < 0.01) and

  17. Cripto regulates skeletal muscle regeneration and modulates satellite cell determination by antagonizing myostatin.

    PubMed

    Guardiola, Ombretta; Lafuste, Peggy; Brunelli, Silvia; Iaconis, Salvatore; Touvier, Thierry; Mourikis, Philippos; De Bock, Katrien; Lonardo, Enza; Andolfi, Gennaro; Bouché, Ann; Liguori, Giovanna L; Shen, Michael M; Tajbakhsh, Shahragim; Cossu, Giulio; Carmeliet, Peter; Minchiotti, Gabriella

    2012-11-20

    Skeletal muscle regeneration mainly depends on satellite cells, a population of resident muscle stem cells. However, our understanding of the molecular mechanisms underlying satellite cell activation is still largely undefined. Here, we show that Cripto, a regulator of early embryogenesis, is a novel regulator of muscle regeneration and satellite cell progression toward the myogenic lineage. Conditional inactivation of cripto in adult satellite cells compromises skeletal muscle regeneration, whereas gain of function of Cripto accelerates regeneration, leading to muscle hypertrophy. Moreover, we provide evidence that Cripto modulates myogenic cell determination and promotes proliferation by antagonizing the TGF-β ligand myostatin. Our data provide unique insights into the molecular and cellular basis of Cripto activity in skeletal muscle regeneration and raise previously undescribed implications for stem cell biology and regenerative medicine.

  18. Synergistic and Antagonistic Interplay between Myostatin Gene Expression and Physical Activity Levels on Gene Expression Patterns in Triceps Brachii Muscles of C57/BL6 Mice

    PubMed Central

    Caetano-Anollés, Kelsey; Mishra, Sanjibita; Rodriguez-Zas, Sandra L.

    2015-01-01

    Levels of myostatin expression and physical activity have both been associated with transcriptome dysregulation and skeletal muscle hypertrophy. The transcriptome of triceps brachii muscles from male C57/BL6 mice corresponding to two genotypes (wild-type and myostatin-reduced) under two conditions (high and low physical activity) was characterized using RNA-Seq. Synergistic and antagonistic interaction and ortholog modes of action of myostatin genotype and activity level on genes and gene pathways in this skeletal muscle were uncovered; 1,836, 238, and 399 genes exhibited significant (FDR-adjusted P-value < 0.005) activity-by-genotype interaction, genotype and activity effects, respectively. The most common differentially expressed profiles were (i) inactive myostatin-reduced relative to active and inactive wild-type, (ii) inactive myostatin-reduced and active wild-type, and (iii) inactive myostatin-reduced and inactive wild-type. Several remarkable genes and gene pathways were identified. The expression profile of nascent polypeptide-associated complex alpha subunit (Naca) supports a synergistic interaction between activity level and myostatin genotype, while Gremlin 2 (Grem2) displayed an antagonistic interaction. Comparison between activity levels revealed expression changes in genes encoding for structural proteins important for muscle function (including troponin, tropomyosin and myoglobin) and for fatty acid metabolism (some linked to diabetes and obesity, DNA-repair, stem cell renewal, and various forms of cancer). Conversely, comparison between genotype groups revealed changes in genes associated with G1-to-S-phase transition of the cell cycle of myoblasts and the expression of Grem2 proteins that modulate the cleavage of the myostatin propeptide. A number of myostatin-feedback regulated gene products that are primarily regulatory were uncovered, including microRNA impacting central functions and Piezo proteins that make cationic current

  19. Expression profiles of myostatin, myogenin, and Myosin heavy chain in skeletal muscles of two rabbit breeds differing in growth rate.

    PubMed

    Kuang, Liangde; Xie, Xiaohong; Zhang, Xiangyu; Lei, Min; Li, Congyan; Ren, Yongjun; Zheng, Jie; Guo, Zhiqiang; Zhang, Cuixia; Yang, Chao; Zheng, Yucai

    2014-01-01

    The purpose of the present study was to compare mRNA levels of myostatin (MSTN), myogenin (MyoG), and fiber type compositions in terms of myosin heavy chain (MyHC) in skeletal muscles of two rabbit breeds with different body sizes and growth rates. Longissimus dorsi and biceps femoris muscles of 16 Californian rabbits (CW) and 16 Germany great line of ZIKA rabbits (GZ) were collected at the ages of 35d and 84d (slaughter age). The results showed that the live weights of GZ rabbits of 35d and 84d old were approximately 36% and 26% greater than those of CW rabbits, respectively. Quantitative real-time PCR analysis revealed that at the age of 84d GZ rabbits contained significantly lower MSTN mRNA level and higher MyoG mRNA level in both longissimus dorsi and biceps femoris muscles than CW rabbits, and mRNA levels of MSTN and MyoG exhibited opposite changes from the age of 35d to 84d, suggesting that GZ rabbits were subjected to less growth inhibition from MSTN at slaughter age, which occurred most possibly in skeletal muscles. Four types of fiber were identified by real-time PCR in rabbit muscles, with MyHC-1 and MyHC-2D, MyHC-2B were the major types in biceps femoris and longissimus dorsi muscles, respectively. At the age of 84d, GZ rabbits contained greater proportion of MyHC-1 and decreased proportion of MyHC-2D and decreased lactate dehydrogenase activity in biceps femoris than CW rabbits, and the results were exactly opposite in longissimus dorsi, suggesting that GZ rabbits show higher oxidative capacity in biceps femoris muscle than CW rabbits. In conclusion, the trends of mRNA levels of MSTN and fiber types in GZ rabbits' skeletal muscles might be consistent with the putative fast growth characteristic of GZ rabbits compared to CW rabbits.

  20. Maltose binding protein-fusion enhances the bioactivity of truncated forms of pig myostatin propeptide produced in E. coli

    PubMed Central

    Lee, Sang Beum; Park, Sung Kwon

    2017-01-01

    Myostatin (MSTN) is a potent negative regulator of skeletal muscle growth. MSTN propeptide (MSTNpro) inhibits MSTN binding to its receptor through complex formation with MSTN, implying that MSTNpro can be a useful agent to improve skeletal muscle growth in meat-producing animals. Four different truncated forms of pig MSTNpro containing N-terminal maltose binding protein (MBP) as a fusion partner were expressed in E. coli, and purified by the combination of affinity chromatography and gel filtration. The MSTN-inhibitory capacities of these proteins were examined in an in vitro gene reporter assay. A MBP-fused, truncated MSTNpro containing residues 42–175 (MBP-Pro42-175) exhibited the same MSTN-inhibitory potency as the full sequence MSTNpro. Truncated MSTNpro proteins containing either residues 42–115 (MBP-Pro42-115) or 42–98 (MBP-Pro42-98) also exhibited MSTN-inhibitory capacity even though the potencies were significantly lower than that of full sequence MSTNpro. In pull-down assays, MBP-Pro42-175, MBP-Pro42-115, and MBP-Pro42-98 demonstrated their binding to MSTN. MBP was removed from the truncated MSTNpro proteins by incubation with factor Xa to examine the potential role of MBP on MSTN-inhibitory capacity of those proteins. Removal of MBP from MBP-Pro42-175 and MBP-Pro42-98 resulted in 20-fold decrease in MSTN-inhibitory capacity of Pro42-175 and abolition of MSTN-inhibitory capacity of Pro42-98, indicating that MBP as fusion partner enhanced the MSTN-inhibitory capacity of those truncated MSTNpro proteins. In summary, this study shows that MBP is a very useful fusion partner in enhancing MSTN-inhibitory potency of truncated forms of MSTNpro proteins, and MBP-fused pig MSTNpro consisting of amino acid residues 42–175 is sufficient to maintain the full MSTN-inhibitory capacity. PMID:28369115

  1. Smoking impairs muscle protein synthesis and increases the expression of myostatin and MAFbx in muscle.

    PubMed

    Petersen, Anne Marie Winther; Magkos, Faidon; Atherton, Philip; Selby, Anna; Smith, Kenneth; Rennie, Michael J; Pedersen, Bente Klarlund; Mittendorfer, Bettina

    2007-09-01

    Smoking causes multiple organ dysfunction. The effect of smoking on skeletal muscle protein metabolism is unknown. We hypothesized that the rate of skeletal muscle protein synthesis is depressed in smokers compared with non-smokers. We studied eight smokers (> or =20 cigarettes/day for > or =20 years) and eight non-smokers matched for sex (4 men and 4 women per group), age (65 +/- 3 and 63 +/- 3 yr, respectively; means +/- SEM) and body mass index (25.9 +/- 0.9 and 25.1 +/- 1.2 kg/m(2), respectively). Each subject underwent an intravenous infusion of stable isotope-labeled leucine in conjunction with blood and muscle tissue sampling to measure the mixed muscle protein fractional synthesis rate (FSR) and whole body leucine rate of appearance (Ra) in plasma (an index of whole body proteolysis), the expression of genes involved in the regulation of muscle mass (myostatin, a muscle growth inhibitor, and MAFBx and MuRF-1, which encode E3 ubiquitin ligases in the proteasome proteolytic pathway) and that for the inflammatory cytokine TNF-alpha in muscle, and the concentration of inflammatory markers in plasma (C-reactive protein, TNF-alpha, interleukin-6) which are associated with muscle wasting in other conditions. There were no differences between nonsmokers and smokers in plasma leucine concentration, leucine rate of appearance, and plasma concentrations of inflammatory markers, or TNF-alpha mRNA in muscle, but muscle protein FSR was much less (0.037 +/- 0.005 vs. 0.059 +/- 0.005%/h, respectively, P = 0.004), and myostatin and MAFBx (but not MuRF-1) expression were much greater (by approximately 33 and 45%, respectivley, P < 0.05) in the muscle of smokers than of nonsmokers. We conclude that smoking impairs the muscle protein synthesis process and increases the expression of genes associated with impaired muscle maintenance; smoking therefore likely increases the risk of sarcopenia.

  2. Production of Transgenic Calves Expressing an shRNA Targeting Myostatin

    PubMed Central

    Tessanne, K; Golding, MC; Long, CR; Peoples, MD; Hannon, G; Westhusin, ME

    2012-01-01

    Myostatin (MSTN) is a well-known negative regulator of muscle growth. Animals that possess mutations within this gene display an enhanced muscling phenotype, a desirable agricultural trait. Increased neonatal morbidity is common, however, resulting from complications arising from the birth of offspring with increased fetal muscle mass. The objective of the current research was to generate an attenuated MSTN-null phenotype in a large-animal model using RNA interference to enhance muscle development without the detrimental consequences of an inactivating mutation. To this end, we identified a series of short interfering RNAs that demonstrated effective suppression of MSTN mRNA and protein levels. To produce transgenic offspring capable of stable MSTN suppression in vivo, a recombinant lentiviral vector expressing a short hairpin RNA (shRNA) targeting MSTN for silencing was introduced into bovine fetal fibroblasts. These cells were used as nucleus donors for somatic cell nuclear transfer (SCNT). Twenty blastocysts were transferred into seven recipient cows resulting in five pregnancies. One transgenic calf developed to term, but died following delivery by Caesarean-section. As an alternative strategy, microinjection of recombinant lentiviral particles into the perivitelline space of in vitro-produced bovine zygotes was utilized to produce 40 transgenic blastocysts that were transferred into 14 recipient cows, resulting in 7 pregnancies. Five transgenic calves were produced, of which three expressed the transgene. This is the first report of transgenic livestock produced by direct injection of a recombinant lentivirus, and expressing transgenes encoding shRNAs targeting an endogenous gene (myostatin) for silencing. PMID:22139943

  3. Migration- and exercise-induced changes to flight muscle size in migratory birds and association with IGF1 and myostatin mRNA expression.

    PubMed

    Price, Edwin R; Bauchinger, Ulf; Zajac, Daria M; Cerasale, David J; McFarlan, Jay T; Gerson, Alexander R; McWilliams, Scott R; Guglielmo, Christopher G

    2011-09-01

    Seasonal adjustments to muscle size in migratory birds may result from preparatory physiological changes or responses to changed workloads. The mechanisms controlling these changes in size are poorly understood. We investigated some potential mediators of flight muscle size (myostatin and insulin-like growth factor, IGF1) in pectoralis muscles of wild wintering or migrating white-throated sparrows (Zonotrichia albicollis), captive white-throated sparrows that were photoperiod manipulated to be in a `wintering' or `migratory' (Zugunruhe) state, and captive European starlings (Sturnus vulgaris) that were either exercised for 2 weeks in a wind tunnel or untrained. Flight muscle size increased in photo-stimulated `migrants' and in exercised starlings. Acute exercise but not long-term training caused increased expression of IGF1, but neither caused a change in expression of myostatin or its metalloprotease activator TLL1. Photo-stimulated `migrant' sparrows demonstrated increased expression of both myostatin and IGF1, but wild sparrows exhibited no significant seasonal changes in expression of either myostatin or IGF1. Additionally, in both study species we describe several splice variants of myostatin that are shared with distantly related bird species. We demonstrate that their expression patterns are not different from those of the typical myostatin, suggesting that they have no functional importance and may be mistakes of the splicing machinery. We conclude that IGF1 is likely to be an important mediator of muscle phenotypic flexibility during acute exercise and during endogenous, seasonal preparation for migration. The role of myostatin is less clear, but its paradoxical increase in photo-stimulated `migrants' may indicate a role in seasonal adjustments of protein turnover.

  4. Identification of Deleterious Mutations in Myostatin Gene of Rohu Carp (Labeo rohita) Using Modeling and Molecular Dynamic Simulation Approaches.

    PubMed

    Rasal, Kiran Dashrath; Chakrapani, Vemulawada; Patra, Swagat Kumar; Mohapatra, Shibani D; Nayak, Swapnarani; Jena, Sasmita; Sundaray, Jitendra Kumar; Jayasankar, Pallipuram; Barman, Hirak Kumar

    2016-01-01

    The myostatin (MSTN) is a known negative growth regulator of skeletal muscle. The mutated myostatin showed a double-muscular phenotype having a positive significance for the farmed animals. Consequently, adequate information is not available in the teleosts, including farmed rohu carp, Labeo rohita. In the absence of experimental evidence, computational algorithms were utilized in predicting the impact of point mutation of rohu myostatin, especially its structural and functional relationships. The four mutations were generated at different positions (p.D76A, p.Q204P, p.C312Y, and p.D313A) of MSTN protein of rohu. The impacts of each mutant were analyzed using SIFT, I-Mutant 2.0, PANTHER, and PROVEAN, wherein two substitutions (p.D76A and p.Q204P) were predicted as deleterious. The comparative structural analysis of each mutant protein with the native was explored using 3D modeling as well as molecular-dynamic simulation techniques. The simulation showed altered dynamic behaviors concerning RMSD and RMSF, for either p.D76A or p.Q204P substitution, when compared with the native counterpart. Interestingly, incorporated two mutations imposed a significant negative impact on protein structure and stability. The present study provided the first-hand information in identifying possible amino acids, where mutations could be incorporated into MSTN gene of rohu carp including other carps for undertaking further in vivo studies.

  5. Identification of Deleterious Mutations in Myostatin Gene of Rohu Carp (Labeo rohita) Using Modeling and Molecular Dynamic Simulation Approaches

    PubMed Central

    Rasal, Kiran Dashrath; Chakrapani, Vemulawada; Patra, Swagat Kumar; Mohapatra, Shibani D.; Nayak, Swapnarani; Jena, Sasmita; Sundaray, Jitendra Kumar; Jayasankar, Pallipuram; Barman, Hirak Kumar

    2016-01-01

    The myostatin (MSTN) is a known negative growth regulator of skeletal muscle. The mutated myostatin showed a double-muscular phenotype having a positive significance for the farmed animals. Consequently, adequate information is not available in the teleosts, including farmed rohu carp, Labeo rohita. In the absence of experimental evidence, computational algorithms were utilized in predicting the impact of point mutation of rohu myostatin, especially its structural and functional relationships. The four mutations were generated at different positions (p.D76A, p.Q204P, p.C312Y, and p.D313A) of MSTN protein of rohu. The impacts of each mutant were analyzed using SIFT, I-Mutant 2.0, PANTHER, and PROVEAN, wherein two substitutions (p.D76A and p.Q204P) were predicted as deleterious. The comparative structural analysis of each mutant protein with the native was explored using 3D modeling as well as molecular-dynamic simulation techniques. The simulation showed altered dynamic behaviors concerning RMSD and RMSF, for either p.D76A or p.Q204P substitution, when compared with the native counterpart. Interestingly, incorporated two mutations imposed a significant negative impact on protein structure and stability. The present study provided the first-hand information in identifying possible amino acids, where mutations could be incorporated into MSTN gene of rohu carp including other carps for undertaking further in vivo studies. PMID:27019850

  6. Mechanisms stimulating muscle wasting in chronic kidney disease: the roles of the ubiquitin-proteasome system and myostatin.

    PubMed

    Thomas, Sandhya S; Mitch, William E

    2013-04-01

    Catabolic conditions including chronic kidney disease (CKD), cancer, and diabetes cause muscle atrophy. The loss of muscle mass worsens the burden of disease because it is associated with increased morbidity and mortality. To avoid these problems or to develop treatment strategies, the mechanisms leading to muscle wasting must be identified. Specific mechanisms uncovered in CKD generally occur in other catabolic conditions. These include stimulation of protein degradation in muscle arising from activation of caspase-3 and the ubiquitin-proteasome system (UPS). These proteases act in a coordinated fashion with caspase-3 initially cleaving the complex structure of proteins in muscle, yielding fragments that are substrates that are degraded by the UPS. Fortunately, the UPS exhibits remarkable specificity for proteins to be degraded because it is the major intracellular proteolytic system. Without a high level of specificity cellular functions would be disrupted. The specificity is accomplished by complex reactions that depend on recognition of a protein substrate by specific E3 ubiquitin ligases. In muscle, the specific ligases are Atrogin-1 and MuRF-1, and their expression has characteristics of a biomarker of accelerated muscle proteolysis. Specific complications of CKD (metabolic acidosis, insulin resistance, inflammation, and angiotensin II) activate caspase-3 and the UPS through mechanisms that include glucocorticoids and impaired insulin or IGF-1 signaling. Mediators activate myostatin, which functions as a negative growth factor in muscle. In models of cancer or CKD, strategies that block myostatin prevent muscle wasting, suggesting that therapies that block myostatin could prevent muscle wasting in catabolic conditions.

  7. Frequent sequence variation in the human myostatin (GDF8) gene as a marker for analysis of muscle-related phenotypes.

    PubMed

    Ferrell, R E; Conte, V; Lawrence, E C; Roth, S M; Hagberg, J M; Hurley, B F

    1999-12-01

    Myostatin is a recently identified member of the transforming growth factor-beta family of regulatory factors, also known as growth and differentiation factor 8 (GDF8). The nucleotide sequence of human myostatin was determined in 40 individuals. The invariant promoter contains a consensus MyoD binding site, and the coding sequence contains five missense substitutions in conserved amino acid residues (A55T, K153R, E164K, P198A, and I225T). Two of these, A55T in exon 1 and K153R in exon 2, are polymorphic in the general population with significantly different allele frequencies in Caucasians and African Americans (P < 0.001). Neither of the common polymorphisms had a significant impact on muscle mass response to strength training in either Caucasians or African Americans, although skewed allele frequencies preclude detection of small effects. These allelic variants provide markers for examining association between the myostatin gene and interindividual variation in muscle mass and differences in loss of muscle mass with aging.

  8. The effect of eight weeks resistance and aerobic training on myostatin and follistatin expression in cardiac muscle of rats

    PubMed Central

    Rashidlamir, Amir; Attarzadeh Hosseini, Seyyed Reza; Hejazi, Keyvan; Motevalli Anberani, Seyyed Mohamad

    2016-01-01

    Introduction: The clinical studies have shown that the myostatin gene expression and its serum density occur more frequently in heart patients than in healthy individuals. The purpose of this study is to investigate the influence of 8-week resistance and aerobic exercise on the myostatin and follistatin gene expression of myocardium muscle of healthy male Wistar rats. Methods: In this experimental study, 20 five-week-old adult Wistar rats (250 ± 26.5 g) were divided into three groups: healthy control group (n = 6), resistance exercise group (n = 7), and aerobic exercise group (n = 7). The resistance and aerobic exercise plan consisted of 8 weeks and 3 sessions per week. The resistance exercise group performed climbing a one-meter 26-stair ladder with a slope of 85 degrees for 3 sets of 5 repetitions per session. The aerobic exercise group performed running at a speed of 12 meters per minute for 30 minutes during the first sessions gradually increasing up to a speed of 30 meters per minute for 60 minutes during the final sessions (equivalent to 70% to 80% of maximum oxygen consumption). The differences between the groups were evaluated using a one-way analysis of variance (ANOVA) test. When appropriate, LSD post-hoc test was used. The significance level for the study was less than 0.05. Results: The results of this study shows that after 8 weeks of exercise, there is no significant difference between myostatin mRNA gene expression levels of the heart muscle among the three groups of control, resistance exercise, and aerobic exercise (P = 0.172, F = 1.953). However, the mean differences between follistatin mRNA levels of the heart muscle among the three groups of control, resistance exercise, and aerobic exercise are statistically significant (F = 38.022, P = 0.001). Furthermore, the ratio of follistatin to myostatin mRNA gene expression of the heart muscle (P = 0.001, F = 10.288) shows significant difference among the three groups. Conclusion: Our results indicate

  9. The effect of eight weeks resistance and aerobic training on myostatin and follistatin expression in cardiac muscle of rats.

    PubMed

    Rashidlamir, Amir; Attarzadeh Hosseini, Seyyed Reza; Hejazi, Keyvan; Motevalli Anberani, Seyyed Mohamad

    2016-01-01

    Introduction: The clinical studies have shown that the myostatin gene expression and its serum density occur more frequently in heart patients than in healthy individuals. The purpose of this study is to investigate the influence of 8-week resistance and aerobic exercise on the myostatin and follistatin gene expression of myocardium muscle of healthy male Wistar rats. Methods: In this experimental study, 20 five-week-old adult Wistar rats (250 ± 26.5 g) were divided into three groups: healthy control group (n = 6), resistance exercise group (n = 7), and aerobic exercise group (n = 7). The resistance and aerobic exercise plan consisted of 8 weeks and 3 sessions per week. The resistance exercise group performed climbing a one-meter 26-stair ladder with a slope of 85 degrees for 3 sets of 5 repetitions per session. The aerobic exercise group performed running at a speed of 12 meters per minute for 30 minutes during the first sessions gradually increasing up to a speed of 30 meters per minute for 60 minutes during the final sessions (equivalent to 70% to 80% of maximum oxygen consumption). The differences between the groups were evaluated using a one-way analysis of variance (ANOVA) test. When appropriate, LSD post-hoc test was used. The significance level for the study was less than 0.05. Results: The results of this study shows that after 8 weeks of exercise, there is no significant difference between myostatin mRNA gene expression levels of the heart muscle among the three groups of control, resistance exercise, and aerobic exercise (P = 0.172, F = 1.953). However, the mean differences between follistatin mRNA levels of the heart muscle among the three groups of control, resistance exercise, and aerobic exercise are statistically significant (F = 38.022, P = 0.001). Furthermore, the ratio of follistatin to myostatin mRNA gene expression of the heart muscle (P = 0.001, F = 10.288) shows significant difference among the three groups. Conclusion: Our results indicate

  10. Cross-training in birds: cold and exercise training produce similar changes in maximal metabolic output, muscle masses and myostatin expression in house sparrows (Passer domesticus)

    PubMed Central

    Zhang, Yufeng; Eyster, Kathleen; Liu, Jin-Song; Swanson, David L.

    2015-01-01

    ABSTRACT Maximal metabolic outputs for exercise and thermogenesis in birds presumably influence fitness through effects on flight and shivering performance. Because both summit (Msum, maximum thermoregulatory metabolic rate) and maximum (MMR, maximum exercise metabolic rate) metabolic rates are functions of skeletal muscle activity, correlations between these measurements and their mechanistic underpinnings might occur. To examine whether such correlations occur, we measured the effects of experimental cold and exercise training protocols for 3 weeks on body (Mb) and muscle (Mpec) masses, basal metabolic rate (BMR), Msum, MMR, pectoralis mRNA and protein expression for myostatin, and mRNA expression of TLL-1 and TLL-2 (metalloproteinase activators of myostatin) in house sparrows (Passer domesticus). Both training protocols increased Msum, MMR, Mb and Mpec, but BMR increased with cold training and decreased with exercise training. No significant differences occurred for pectoralis myostatin mRNA expression, but cold and exercise increased the expression of TLL-1 and TLL-2. Pectoralis myostatin protein levels were generally reduced for both training groups. These data clearly demonstrate cross-training effects of cold and exercise in birds, and are consistent with a role for myostatin in increasing pectoralis muscle mass and driving organismal increases in metabolic capacities. PMID:25987736

  11. The force exerted by a fireball

    SciTech Connect

    Makrinich, G.; Fruchtman, A.

    2014-02-15

    The force exerted by a fireball was deduced both from the change of the equilibrium position of a pendulum and from the change in the pendulum oscillation period. That measured force was found to be several times larger than the force exerted by the ions accelerated across the double layer that is assumed to surround the fireball. The force enhancement that is expected by ion-neutral collisions in the fireball is evaluated to be too small to explain the measured enhanced force. Gas pressure increase, due to gas heating through electron-neutral collisions, as recently suggested [Stenzel et al., J. Appl. Phys. 109, 113305 (2011)], is examined as the source for the force enhancement.

  12. Exertional leg pain: teasing out arterial entrapments.

    PubMed

    Pham, Thomas T; Kapur, Rahul; Harwood, Marc I

    2007-12-01

    Vascular causes of exertional lower extremity pain are relatively rare, but may be the answer in athletes refractory to treatment for the more common overuse syndromes of the lower extremities. It is important to differentiate these vascular causes from chronic exertional compartment syndrome (CECS), medial tibial stress syndrome (MTSS), and stress fractures in order to develop appropriate treatment plans, avoid complications, and return athletes to play expeditiously. Important vascular etiologies to be considered are popliteal artery entrapment syndrome (PAES), endofibrotic disease, popliteal artery aneurysm, cystic adventitial disease, and peripheral arterial dissections. The diagnostic workup involves angiography or noninvasive vascular studies such as Doppler ultrasound or magnetic resonance angiography in both the neutral and provocative positions. Treatment of these vascular abnormalities typically involves surgical correction of the vascular anomaly.

  13. Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types.

    PubMed

    Heinemeier, K M; Olesen, J L; Schjerling, P; Haddad, F; Langberg, H; Baldwin, K M; Kjaer, M

    2007-02-01

    In skeletal muscle, an increased expression of insulin like growth factor-I isoforms IGF-IEa and mechano-growth factor (MGF) combined with downregulation of myostatin is thought to be essential for training-induced hypertrophy. However, the specific effects of different contraction types on regulation of these factors in muscle are still unclear, and in tendon the functions of myostatin, IGF-IEa, and MGF in relation to training are unknown. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric, or isometric training (n = 7-9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve during general anesthesia. mRNA levels for myostatin, IGF-IEa, and MGF in muscle and Achilles' tendon were measured by real-time RT-PCR. Muscle myostatin mRNA decreased in response to all types of training (2- to 8-fold) (P < 0.05), but the effect of eccentric training was greater than concentric and isometric training (P < 0.05). In tendon, myostatin mRNA was detected, but no changes were seen after exercise. IGF-IEa and MGF increased in muscle (up to 15-fold) and tendon (up to 4-fold) in response to training (P < 0.01). In tendon no difference was seen between training types, but in muscle the effect of eccentric training was greater than concentric training for both IGF-IEa and MGF (P < 0.05), and for IGF-IEa isometric training had greater effect than concentric (P < 0.05). The results indicate a possible role for IGF-IEa and MGF in adaptation of tendon to training, and the combined changes in myostatin and IGF-IEa/MGF expression could explain the important effect of eccentric actions for muscle hypertrophy.

  14. Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes

    PubMed Central

    Oláh, Attila; Tóth, Balázs I.; Borbíró, István; Sugawara, Koji; Szöllõsi, Attila G.; Czifra, Gabriella; Pál, Balázs; Ambrus, Lídia; Kloepper, Jennifer; Camera, Emanuela; Ludovici, Matteo; Picardo, Mauro; Voets, Thomas; Zouboulis, Christos C.; Paus, Ralf; Bíró, Tamás

    2014-01-01

    The endocannabinoid system (ECS) regulates multiple physiological processes, including cutaneous cell growth and differentiation. Here, we explored the effects of the major nonpsychotropic phytocannabinoid of Cannabis sativa, (-)-cannabidiol (CBD), on human sebaceous gland function and determined that CBD behaves as a highly effective sebostatic agent. Administration of CBD to cultured human sebocytes and human skin organ culture inhibited the lipogenic actions of various compounds, including arachidonic acid and a combination of linoleic acid and testosterone, and suppressed sebocyte proliferation via the activation of transient receptor potential vanilloid-4 (TRPV4) ion channels. Activation of TRPV4 interfered with the prolipogenic ERK1/2 MAPK pathway and resulted in the downregulation of nuclear receptor interacting protein-1 (NRIP1), which influences glucose and lipid metabolism, thereby inhibiting sebocyte lipogenesis. CBD also exerted complex antiinflammatory actions that were coupled to A2a adenosine receptor-dependent upregulation of tribbles homolog 3 (TRIB3) and inhibition of the NF-κB signaling. Collectively, our findings suggest that, due to the combined lipostatic, antiproliferative, and antiinflammatory effects, CBD has potential as a promising therapeutic agent for the treatment of acne vulgaris. PMID:25061872

  15. Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes.

    PubMed

    Oláh, Attila; Tóth, Balázs I; Borbíró, István; Sugawara, Koji; Szöllõsi, Attila G; Czifra, Gabriella; Pál, Balázs; Ambrus, Lídia; Kloepper, Jennifer; Camera, Emanuela; Ludovici, Matteo; Picardo, Mauro; Voets, Thomas; Zouboulis, Christos C; Paus, Ralf; Bíró, Tamás

    2014-09-01

    The endocannabinoid system (ECS) regulates multiple physiological processes, including cutaneous cell growth and differentiation. Here, we explored the effects of the major nonpsychotropic phytocannabinoid of Cannabis sativa, (-)-cannabidiol (CBD), on human sebaceous gland function and determined that CBD behaves as a highly effective sebostatic agent. Administration of CBD to cultured human sebocytes and human skin organ culture inhibited the lipogenic actions of various compounds, including arachidonic acid and a combination of linoleic acid and testosterone, and suppressed sebocyte proliferation via the activation of transient receptor potential vanilloid-4 (TRPV4) ion channels. Activation of TRPV4 interfered with the prolipogenic ERK1/2 MAPK pathway and resulted in the downregulation of nuclear receptor interacting protein-1 (NRIP1), which influences glucose and lipid metabolism, thereby inhibiting sebocyte lipogenesis. CBD also exerted complex antiinflammatory actions that were coupled to A2a adenosine receptor-dependent upregulation of tribbles homolog 3 (TRIB3) and inhibition of the NF-κB signaling. Collectively, our findings suggest that, due to the combined lipostatic, antiproliferative, and antiinflammatory effects, CBD has potential as a promising therapeutic agent for the treatment of acne vulgaris.

  16. Efficient Generation of Myostatin Mutations in Pigs Using the CRISPR/Cas9 System

    PubMed Central

    Wang, Kankan; Ouyang, Hongsheng; Xie, Zicong; Yao, Chaogang; Guo, Nannan; Li, Mengjing; Jiao, Huping; Pang, Daxin

    2015-01-01

    Genetically modified pigs are increasingly used for biomedical and agricultural applications. The efficient CRISPR/Cas9 gene editing system holds great promise for the generation of gene-targeting pigs without selection marker genes. In this study, we aimed to disrupt the porcine myostatin (MSTN) gene, which functions as a negative regulator of muscle growth. The transfection efficiency of porcine fetal fibroblasts (PFFs) was improved to facilitate the targeting of Cas9/gRNA. We also demonstrated that Cas9/gRNA can induce non-homologous end-joining (NHEJ), long fragment deletions/inversions and homology-directed repair (HDR) at the MSTN locus of PFFs. Single-cell MSTN knockout colonies were used to generate cloned pigs via somatic cell nuclear transfer (SCNT), which resulted in 8 marker-gene-free cloned pigs with biallelic mutations. Some of the piglets showed obvious intermuscular grooves and enlarged tongues, which are characteristic of the double muscling (DM) phenotype. The protein level of MSTN was decreased in the mutant cloned pigs compared with the wild-type controls, and the mRNA levels of MSTN and related signaling pathway factors were also analyzed. Finally, we carefully assessed off-target mutations in the cloned pigs. The gene editing platform used in this study can efficiently generate genetically modified pigs with biological safety. PMID:26564781

  17. Depletion of Myostatin b Promotes Somatic Growth and Lipid Metabolism in Zebrafish

    PubMed Central

    Gao, Yanping; Dai, Ziru; Shi, Chuang; Zhai, Gang; Jin, Xia; He, Jiangyan; Lou, Qiyong; Yin, Zhan

    2016-01-01

    Myostatin (MSTN) is a negative regulator of myogenesis in vertebrates. Depletion of mstn resulted in elevated muscle growth in several animal species. However, the report on the complete ablation of mstn in teleost fish has not yet become available. In this study, two independent mstnb-deficient mutant lines in zebrafish were generated with the TALENs technique. In the mstnb-deficient zebrafish, enhanced muscle growth with muscle fiber hyperplasia was achieved. Beginning at the adult stage (80 days postfertilization), the mstnb-deficient zebrafish exhibited increased circumferences and body weights compared with the wild-type sibling control fish. Although the overall total lipid/body weight ratios remained similar between the mstnb-deficient zebrafish and the control fish, the distribution of lipids was altered. The size of the visceral adipose tissues became smaller while more lipids accumulated in skeletal muscle in the mstnb-deficient zebrafish than in the wild-type control fish. Based on the transcriptional expression profiles, our results revealed that lipid metabolism, including lipolysis and lipogenesis processes, was highly activated in the mstnb-deficient zebrafish, which indicated the transition of energy metabolism from protein-dependent to lipid-dependent in mstnb-deficient zebrafish. Our mstnb-deficient model could be valuable in understanding not only the growth trait regulation in teleosts but also the mechanisms of teleost energy metabolism. PMID:27458428

  18. Efficient generation of myostatin (MSTN) biallelic mutations in cattle using zinc finger nucleases.

    PubMed

    Luo, Junjie; Song, Zhiyuan; Yu, Shengli; Cui, Dan; Wang, Benli; Ding, Fangrong; Li, Song; Dai, Yunping; Li, Ning

    2014-01-01

    Genetically engineered zinc-finger nucleases (ZFNs) are useful for marker-free gene targeting using a one-step approach. We used ZFNs to efficiently disrupt bovine myostatin (MSTN), which was identified previously as the gene responsible for double muscling in cattle. The mutation efficiency of bovine somatic cells was approximately 20%, and the biallelic mutation efficiency was 8.3%. To evaluate the function of the mutated MSTN locus before somatic cell nuclear transfer, MSTN mRNA and protein expression was examined in four mutant cell colonies. We generated marker-gene-free cloned cattle, in which the MSTN biallelic mutations consisted of a 6-bp deletion in one of the alleles and a 117-bp deletion and 9-bp insertion in the other allele, resulting in at least four distinct mRNA splice variants. In the MSTN mutant cattle, the total amount of MSTN protein with the C-terminal domain was reduced by approximately 50%, and hypertrophied muscle fibers of the quadriceps and the double-muscled phenotype appeared at one month of age. Our proof-of-concept study is the first to produce MSTN mutations in cattle, and may allow the development of genetically modified strains of double-muscled cattle.

  19. Characterization of two paralogous myostatin genes and evidence for positive selection in Tibet fish: Gymnocypris przewalskii.

    PubMed

    Tong, Chao; Zhang, Cunfang; Shi, Jianquan; Qi, Hongfang; Zhang, Renyi; Tang, Yongtao; Li, Guogang; Feng, Chenguang; Zhao, Kai

    2015-07-10

    Myostatin (mstn) is an important member of TGF-β superfamily, a muscle growth inhibitor. Though mstn has been identified in many organisms, little is known about this gene in highland fish, Gymnocypris przewalskii endemic to the Qinghai-Tibetan Plateau. In this study, we first cloned two paralogous mstn genes (mstn1 and mstn2) from G. przewalskii through homologue cloning. The 3D structures of both Mstn proteins varied in the numbers of β-sheets and conformations of α-helices. The branch-site model showed that mstn1 has undergone positive selection, and two positively selected sites (107M and 181T) were located on the random coils of the 3D protein structure. Expression patterns indicated that the mstn1 expressed widely, while the mstn2 only expressed in the muscle and brain. During the early stage of embryo development, the expression levels of both mstn paralogous genes showed different increasing trends. These results suggest that it is diverging in two mstn paralogues of G. przewalskii via specific differences in gene structure, protein structure, selection pressure and gene expression patterns. Taken together, this study provides novel contribution on the research topics of growth related gene function and mechanism of highland fish in extreme aquatic environment on the Qinghai-Tibetan Plateau.

  20. Silencing Myostatin Using Cholesterol-conjugated siRNAs Induces Muscle Growth

    PubMed Central

    Khan, Tayeba; Weber, Hans; DiMuzio, Jillian; Matter, Andrea; Dogdas, Belma; Shah, Tosha; Thankappan, Anil; Disa, Jyoti; Jadhav, Vasant; Lubbers, Laura; Sepp-Lorenzino, Laura; Strapps, Walter R; Tadin-Strapps, Marija

    2016-01-01

    Short interfering RNAs (siRNAs) are a valuable tool for gene silencing with applications in both target validation and therapeutics. Many advances have recently been made to improve potency and specificity, and reduce toxicity and immunostimulation. However, siRNA delivery to a variety of tissues remains an obstacle for this technology. To date, siRNA delivery to muscle has only been achieved by local administration or by methods with limited potential use in the clinic. We report systemic delivery of a highly chemically modified cholesterol-conjugated siRNA targeting muscle-specific gene myostatin (Mstn) to a full range of muscles in mice. Following a single intravenous injection, we observe 85–95% knockdown of Mstn mRNA in skeletal muscle and >65% reduction in circulating Mstn protein sustained for >21 days. This level of Mstn knockdown is also accompanied by a functional effect on skeletal muscle, with animals showing an increase in muscle mass, size, and strength. The cholesterol-conjugated siRNA platform described here could have major implications for treatment of a variety of muscle disorders, including muscular atrophic diseases, muscular dystrophy, and type II diabetes. PMID:27483025

  1. Association of myostatin variants with growth traits of Zhikong scallop ( Chlamys farreri)

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Guo, Huihui; Feng, Liying; Li, Xue; Zhang, Lingling; Wang, Shi; Hu, Xiaoli; Bao, Zhenmin

    2016-02-01

    Scallop is a popular sea food and an important aquaculture shellfish. Identification of genes and genetic variants relating to scallop growth could benefit high-yielding scallop breeding. Myostatin ( MSTN) is a conservative regulator of muscle growth, and has become one of the most important target genes for genetic improvement of the production of farmed animals. In this study, four single nucleotide polymorphisms (SNPs) were identified in the 5' flanking region of MSTN gene ( CfMSTN) in Zhikong scallop ( Chlamys farreri). The association of these SNPs with scallop growth traits, including shell length, shell height, body weight and striated muscle weight was analyzed. The SNP g-1162G

  2. Purification and Crystallization of Murine Myostatin: A Negative Regulator of Muscle Mass

    NASA Technical Reports Server (NTRS)

    Hong, Young S.; Adamek, Daniel; Bridge, Kristi; Malone, Christine C.; Young, Ronald B.; Miller, Teresa; Karr, Laurel

    2004-01-01

    Myostatin (MSTN) has been crystallized and its preliminary X-ray diffraction data were collected. MSTN is a negative regulator of muscle growt/differentiation and suppressor of fat accumulation. It is a member of TGF-b family of proteins. Like other members of this family, the regulation of MSTN is critically tied to its process of maturation. This process involves the formation of a homodimer followed by two proteolytic steps. The first proteolytic cleavage produces a species where the n-terminal portion of the dimer is covalently separated from, but remains non-covalently bound to, the c-terminal, functional, portion of the protein. The protein is activated upon removal of the n-terminal "pro-segment" by a second n-terminal proteolytic cut by BMP-1 in vivo, or by acid treatment in vitro. Understanding the structural nature and physical interactions involved in these regulatory processes is the objective of our studies. Murine MSTN was purified from culture media of genetically engineered Chinese Hamster Ovary cells by multicolumn purification process and crystallized using the vapor diffusion method.

  3. Heritable Targeted Inactivation of Myostatin Gene in Yellow Catfish (Pelteobagrus fulvidraco) Using Engineered Zinc Finger Nucleases

    PubMed Central

    Li, Kui; Xu, Zhiqiang; Liang, Dong; Li, Jingyun; Li, Junbo; Jia, Wenshuang; Li, Yuehua; Dong, Xiaohua; Cao, Shasha; Wang, Xiaoxiao; Pan, Jianlin; Zhao, Qingshun

    2011-01-01

    Yellow catfish (Pelteobagrus fulvidraco) is one of the most important freshwater aquaculture species in China. However, its small size and lower meat yield limit its edible value. Myostatin (MSTN) is a negative regulator of mammalian muscle growth. But, the function of Mstn in fish remains elusive. To explore roles of mstn gene in fish growth and create a strain of yellow catfish with high amount of muscle mass, we performed targeted disruption of mstn in yellow catfish using engineered zinc-finger nucleases (ZFNs). Employing zebrafish embryos as a screening system to identify ZFN activity, we obtained one pair of ZFNs that can edit mstn in yellow catfish genome. Using the ZFNs, we successfully obtained two founders (Founder July29-7 and Founder July29-8) carrying mutated mstn gene in their germ cells. The mutated mstn allele inherited from Founder July29-7 was a null allele (mstnnju6) containing a 4 bp insertion, predicted to encode function null Mstn. The mutated mstn inherited from Founder July29-8 was a complex type of mutation (mstnnju7), predicted to encode a protein lacking two amino acids in the N-terminal secretory signal of Mstn. Totally, we obtained 6 mstnnju6/+ and 14 mstnnju7/+ yellow catfish. To our best knowledge, this is the first endogenous gene knockout in aquaculture fish. Our result will help in understanding the roles of mstn gene in fish. PMID:22194943

  4. Efficient Generation of Myostatin (MSTN) Biallelic Mutations in Cattle Using Zinc Finger Nucleases

    PubMed Central

    Yu, Shengli; Cui, Dan; Wang, Benli; Ding, Fangrong; Li, Song; Dai, Yunping; Li, Ning

    2014-01-01

    Genetically engineered zinc-finger nucleases (ZFNs) are useful for marker-free gene targeting using a one-step approach. We used ZFNs to efficiently disrupt bovine myostatin (MSTN), which was identified previously as the gene responsible for double muscling in cattle. The mutation efficiency of bovine somatic cells was approximately 20%, and the biallelic mutation efficiency was 8.3%. To evaluate the function of the mutated MSTN locus before somatic cell nuclear transfer, MSTN mRNA and protein expression was examined in four mutant cell colonies. We generated marker-gene-free cloned cattle, in which the MSTN biallelic mutations consisted of a 6-bp deletion in one of the alleles and a 117-bp deletion and 9-bp insertion in the other allele, resulting in at least four distinct mRNA splice variants. In the MSTN mutant cattle, the total amount of MSTN protein with the C-terminal domain was reduced by approximately 50%, and hypertrophied muscle fibers of the quadriceps and the double-muscled phenotype appeared at one month of age. Our proof-of-concept study is the first to produce MSTN mutations in cattle, and may allow the development of genetically modified strains of double-muscled cattle. PMID:24743319

  5. Myostatin protein and RNA transcript levels in adult and developing brook trout.

    PubMed

    Roberts, Steven B; Goetz, Frederick W

    2003-11-28

    Quantitative real-time RT-PCR and Western analysis were used to measure RNA expression of the two brook trout myostatin (MSTN) genes ("ovarian", ov and "brain/muscle", b/m), and levels of MSTN immunoreactive protein (MIP) in developing embryos and muscle of brook trout adults. In developing brook trout embryos, ov and b/m MSTN RNAs and MIP significantly increased 45 days post-fertilization. In adult brook trout, the b/m MSTN form was expressed at higher levels in red versus white muscle regardless of gender or time of year. While few changes were observed in MSTN transcripts in fish sampled throughout the year, a significant increase in the processed 14 kDa MIP was observed at spawning in a tissue specific manner, and differences were observed between males and females. These data, along with promoter sequence analysis of the of b/m and ov genes, support a role for MSTN in muscle growth and development in fish.

  6. Characterization and functional analysis of the 5' flanking region of Sparus aurata myostatin-1 gene.

    PubMed

    Funkenstein, Bruria; Balas, Viki; Rebhan, Yanai; Pliatner, Anna

    2009-05-01

    Myostatin (MSTN) is a member of the transforming growth factor-beta superfamily that functions as a negative regulator of skeletal muscle development and growth in mammals. Although several MSTN promoters were described in fish, no functional analysis was reported so far. Here, the 5' flanking region (1372 bp) of the MSTN-1 gene of the marine fish Sparus aurata (saMSTN-1) was cloned, sequenced and characterized. It contains two consensus sequences for TATA box (TATAA), a CAAT box, ten putative E-boxes known as binding sites to myogenic basic helix-loop-helix transcription factors (TFs) and two putative binding sites to TF Myocyte enhancing factor-2 (MEF2). In addition, it has several putative binding sites to TF Pit-1a and several response elements to nuclear receptors (GRE, ERE, PRE, ARE, TRE, RARE and PPARRE) and cAMP-response elements. Transcriptional activity of five genomic fragments (truncated at their upstream region) of 372, 941, 972, 1113 and 1355 bp was studied in vitro, using transient transfection in A204 cells. All constructs directed luciferase activity, with the highest activity obtained by the 1113 bp fragment. These experiments show that all five genomic fragments are functional MSTN promoters and differences in promoter activity might be due to presence of enhancers and/or repressor sequences, regulating MSTN promoter activity.

  7. [Analysis on single nucleotide polymorphisms of porcine myostatin gene in different breeds].

    PubMed

    Jiang, Y L; Li, N; Wu, C X; Du, L X

    2001-01-01

    By PCR-RFLPs and PCR-SSCP approach, three single nucleotide polymorphisms (SNPs) of porcine myostatin gene (MSTN) were analyzed in different breeds including "doubled-muscled" Yorkshire, Yorkshire, Landrace, Hamshire, Duroc, Piteran, Erhualian, Min, Hubei White and some hybrids. The three SNPs were located in the 3' encoding region, 5' promoter region and intronl region respectively. For the SNP in the 3' encoding region, which was caused by C-->T transition, the mutation frequency was relatively low: no TT genotype was detected in 274 individuals of different breeds. For the SNP in the 5' promoter region, 560 pigs were investigated. The allele T dominates in the imported lean-type pig breeds such as Yorkshire, Landrace, Duroc, Hampshire, Piteran and hybrid, however, in Erhualian and Hubei White pigs, the allele A was in majority. Polymorphism showed the similar pattern for the SNP in intron 1 region. G was the dominant allele in Yorkshire, Landrace and their hybrids, while in Erhualian and Hubei White pigs the frequency of A was much higher. Obviously they were not in Hardy-Weinberg equilibrium state. For Min and Yorshire x Erhualian pigs, they were in Hardy-Weinberg equilibrium state for the SNPs in the 5' promoter region and (or) intron 1 region. The frequency for the A alleles of SNPs in the 5' promoter region and intron 1 region was higher for "double-muscled" Yorkshire than for Yorkshire and linkage for these two mutation sites was also observed.

  8. Brief Communication: Sexual dimorphic expression of myostatin and follistatin like-3 in a rat trans-generational under-nutrition model

    PubMed Central

    2010-01-01

    The detrimental effects of maternal under-nutrition during gestation on fetal development are well known with an increased propensity of metabolic disorders identified in the adult offspring. Understanding exactly how and by which molecular pathways inadequate nutrition can impact upon offspring phenotype is critical and necessary for the development of treatment methods and ultimately prevention of any negative health effects. Myostatin, a negative regulator of muscle development, has recently been shown to effect glucose homeostasis and fat deposition. The involvement of myostatin in glucose metabolism and adipogenesis thus supports its ability to act in the continued alterations to the postnatal phenotype of the offspring. This hypothesis was examined in the current study using a trans-generational gestationally under-nourished rat model exposed to a high-fat (HF) diet post-weaning. The body weight, body fat, plasma glucose and insulin concentrations of the offspring, both male and female, were investigated in relation to the protein expression of myostatin and its main inhibitor; follistatin like-3 (FSTL-3), in skeletal muscle of mature offspring. Sexual dimorphism was clearly evident in the majority of these measures, including myostatin and FSTL-3 expression. Generally males displayed higher (P < 0.05) myostatin precursor and dimer expression than females, which was especially apparent (P < 0.01) in both chow and HF trans-generationally undernourished (UNAD) groups. In females only, myostatin precursor and dimer expression was altered by both trans-generational under-nutrition and postnatal diet. Overall FSTL-3 expression did not differ between sexes, although difference between sexes within certain treatments and diets were evident. Most notably, HF fed UNAD females had higher (P < 0.05) FSTL-3 expression than HF fed UNAD males. The former group also displayed higher (P < 0.01) FSTL-3 expression compared to all other female groups. In summary, myostatin may

  9. Brief Communication: Sexual dimorphic expression of myostatin and follistatin like-3 in a rat trans-generational under-nutrition model.

    PubMed

    Peiris, Hassendrini N; Ponnampalam, Anna P; Mitchell, Murray D; Green, Mark P

    2010-05-20

    The detrimental effects of maternal under-nutrition during gestation on fetal development are well known with an increased propensity of metabolic disorders identified in the adult offspring. Understanding exactly how and by which molecular pathways inadequate nutrition can impact upon offspring phenotype is critical and necessary for the development of treatment methods and ultimately prevention of any negative health effects. Myostatin, a negative regulator of muscle development, has recently been shown to effect glucose homeostasis and fat deposition. The involvement of myostatin in glucose metabolism and adipogenesis thus supports its ability to act in the continued alterations to the postnatal phenotype of the offspring. This hypothesis was examined in the current study using a trans-generational gestationally under-nourished rat model exposed to a high-fat (HF) diet post-weaning. The body weight, body fat, plasma glucose and insulin concentrations of the offspring, both male and female, were investigated in relation to the protein expression of myostatin and its main inhibitor; follistatin like-3 (FSTL-3), in skeletal muscle of mature offspring. Sexual dimorphism was clearly evident in the majority of these measures, including myostatin and FSTL-3 expression. Generally males displayed higher (P < 0.05) myostatin precursor and dimer expression than females, which was especially apparent (P < 0.01) in both chow and HF trans-generationally undernourished (UNAD) groups. In females only, myostatin precursor and dimer expression was altered by both trans-generational under-nutrition and postnatal diet. Overall FSTL-3 expression did not differ between sexes, although difference between sexes within certain treatments and diets were evident. Most notably, HF fed UNAD females had higher (P < 0.05) FSTL-3 expression than HF fed UNAD males. The former group also displayed higher (P < 0.01) FSTL-3 expression compared to all other female groups. In summary, myostatin may

  10. Mechanisms Stimulating Muscle Wasting in Chronic Kidney Disease: The Roles of the Ubiquitin-Proteasome System and Myostatin

    PubMed Central

    Thomas, Sandhya S.; Mitch, William E.

    2013-01-01

    Catabolic conditions including chronic kidney disease (CKD), cancer, and diabetes cause muscle atrophy. The loss of muscle mass worsens the burden of disease because it is associated with increased morbidity and mortality. To avoid these problems or to develop treatment strategies, the mechanisms leading to muscle wasting must be identified. Specific mechanisms uncovered in CKD generally occur in other catabolic conditions. These include stimulation of protein degradation in muscle arising from activation of caspase-3 and the ubiquitin-proteasome system (UPS). These proteases act in a coordinated fashion with caspase-3 initially cleaving the complex structure of proteins in muscle yielding fragments that are substrates which are degraded by the UPS. Fortunately, the UPS exhibits remarkable specificity for proteins to be degraded because it is the major intracellular proteolytic system. Without a high level of specificity cellular functions would be disrupted. The specificity is accomplished by complex reactions that depend on recognition of a protein substrate by specific E3 ubiquitin ligases. In muscle, the specific ligases are Atrogin-1 and MuRF1 and their expression has characteristics of a biomarker of accelerated muscle proteolysis. Specific complications of CKD (metabolic acidosis, insulin resistance, inflammation, and angiotensin II) activate caspase-3 and the UPS through mechanisms that include glucocorticoids and impaired insulin or IGF-1 signaling. Mediators activate myostatin which functions as a negative growth factor in muscle. In models of cancer or CKD, strategies that block myostatin prevent muscle wasting suggesting that therapies which block myostatin could prevent muscle wasting in catabolic conditions. PMID:23292175

  11. Functional analysis of pig myostatin gene promoter with some adipogenesis- and myogenesis-related factors.

    PubMed

    Deng, Bing; Wen, Jianghui; Ding, Yi; Gao, Qishuang; Huang, Haijun; Ran, Zhiping; Qian, Yunguo; Peng, Jian; Jiang, Siwen

    2012-04-01

    Myostatin (MSTN) is primarily expressed in muscle and plays an important role in muscle and fat development in pigs. However, there is little information about the regulation of pig MSTN. In order to elucidate whether pig MSTN could be regulated by muscle- and fat-related factors, the porcine MSTN promoter was amplified and cloned into pGL3-basic vector, and transfected into cells to analyze the transcriptional activity of promoter with muscle- and fat-related factors through dual-luciferase reporter assays. 5'-deletion expression showed that there was a negative-regulatory region located between nucleotides -1519 and -1236 bp, and there were some positive-regulatory regions located between -1236 and -568 bp. The longest fragment (1.7 kb) was cotransfected with muscle-related transcription factor myogenic differentiation 1 (MyoD), resulting in promoter transcriptional activity upregulation. The fragment was treated by the adipogenic agents (DIM) including dexamethasone, insulin, and isobutyl-1-methylxanthine (IBMX). We found that MSTN promoter transcriptional activity can be regulated by IBMX, but not by DIM. CCAAT/enhancer binding protein (C/EBP) α and C/EBPβ, two proteins which are induced by DIM during adipogenesis were cotransfected with the 1.7-kb fragment, respectively, resulting in promoter transcriptional activity downregulation. Treating the fragment with rosiglitazone which induce the expression of peroxisome proliferator-activated receptor γ (PPARγ), resulting in promoter transcriptional activity upregulation. Cotransfection experiments confirmed this result. Taken together, we showed that porcine MSTN could be upregulated by IBMX, MyoD, and PPARγ but downregulated by C/EBPα and C/EBPβ.

  12. Sulforaphane causes a major epigenetic repression of myostatin in porcine satellite cells.

    PubMed

    Fan, Huitao; Zhang, Rui; Tesfaye, Dawit; Tholen, Ernst; Looft, Christian; Hölker, Michael; Schellander, Karl; Cinar, Mehmet Ulas

    2012-12-01

    Satellite cells function as skeletal muscle stem cells to support postnatal muscle growth and regeneration following injury or disease. There is great promise for the improvement of muscle performance in livestock and for the therapy of muscle pathologies in humans by the targeting of myostatin (MSTN) in this cell population. Human diet contains many histone deacetylase (HDAC) inhibitors, such as the bioactive component sulforaphane (SFN), whose epigenetic effects on MSTN gene in satellite cells are unknown. Therefore, we aimed to investigate the epigenetic influences of SFN on the MSTN gene in satellite cells. The present work provides the first evidence, which is distinct from the effects of trichostatin A (TSA), that SFN supplementation in vitro not only acts as a HDAC inhibitor but also as a DNA methyltransferase (DNMT) inhibitor in porcine satellite cells. Compared with TSA and 5-aza-2'-deoxycytidine (5-aza-dC), SFN treatment significantly represses MSTN expression, accompanied by strongly attenuated expression of negative feedback inhibitors of the MSTN signaling pathway. miRNAs targeting MSTN are not implicated in posttranscriptional regulation of MSTN. Nevertheless, a weakly enriched myoblast determination (MyoD) protein associated with diminished histone acetylation in the MyoD binding site located in the MSTN promoter region may contribute to the transcriptional repression of MSTN by SFN. These findings reveal a new mode of epigenetic repression of MSTN by the bioactive compound SFN. This novel pharmacological, biological activity of SFN in satellite cells may thus allow for the development of novel approaches to weaken the MSTN signaling pathway, both for therapies of human skeletal muscle disorders and for livestock production improvement.

  13. Molecular characterization of Myostatin gene from Zhikong scallop Chlamys farreri (Jones et Preston 1904).

    PubMed

    Hu, Xiaoli; Guo, Huihui; He, Yan; Wang, Shan; Zhang, Lingling; Wang, Shi; Huang, Xiaoting; Roy, Scott William; Lu, Wei; Hu, Jingjie; Bao, Zhenmin

    2010-01-01

    The scallop is an economically important sea food prized for its large and delicious adductor muscle. Studying the molecular basis of scallop muscle growth is important for both scallop breeding and our understanding of muscle mass regulation in bivalve. Myostatin (MSTN) is a conserved negative regulator of muscle growth and development. Here we report the MSTN gene from Zhikong scallop (Chlamys farreri Jones et Preston 1904). The C. farreri MSTN consists of 11651 nucleotides encoding 457 amino acids. The gene has a 3-exon/2-intron structure that is conserved with vertebrate homologs. The exons are 586, 380 and 408 bp in length, respectively, and separated by introns of 5086 and 1518 bp. The protein sequence contains characteristic conserved residues including a cleavage motif of proteolysis (RXXR) and nine cysteines. Three transcription initiation sites were found at 62, 146, and 296 bp upstream of the translation start codon ATG. In silico analysis of the promoter region identified a TATA-box and several muscle-specific regulatory elements including COMP, MEF2s, MTBFs and E-boxes. Minisatellite DNA was found in intron 1. By fluorescence in situ hybridization (FISH), the gene was mapped to the long arm of a pair of middle subtelocentric chromosome. Quantitative analysis of MSTN transcripts in embryos/larvae indicated high expression level in gastrulae and limited expression at other stages. In adult scallops, MSTN is predominantly expressed in striated muscle, with different expression levels in other tissues. Our data provide valuable genomic and expression information which will aid the further study on scallop MSTN function and MSTN evolution.

  14. Cold thermoregulatory responses following exertional fatigue.

    PubMed

    Castellani, John W; Sawka, Michael N; DeGroot, David W; Young, Andrew J

    2010-06-01

    Participants in prolonged, physically demanding cold-weather activities are at risk for a condition called "thermoregulatory fatigue". During cold exposure, the increased gradient favoring body heat loss to the environment is opposed by physiological responses and clothing and behavioral strategies that conserve body heat stores to defend body temperature. The primary human physiological responses elicited by cold exposure are shivering and peripheral vasoconstriction. Shivering increases thermogenesis and replaces body heat losses, while peripheral vasoconstriction improves thermal insulation of the body and retards the rate of heat loss. A body of scientific literature supports the concept that prolonged and/or repeated cold exposure, fatigue induced by sustained physical exertion, or both together, can impair the shivering and vasoconstrictor responses to cold ("thermoregulatory fatigue"). The mechanisms accounting for this thermoregulatory impairment are not clear, but there is evidence to suggest that changes in central thermoregulatory control or peripheral sympathetic responsiveness to cold lead to thermoregulatory fatigue and increased susceptibility to hypothermia.

  15. Morphological abnormalities, impaired fetal development and decrease in myostatin expression following somatic cell nuclear transfer in dogs.

    PubMed

    Hong, Il-Hwa; Jeong, Yeon-Woo; Shin, Taeyoung; Hyun, Sang-Hwan; Park, Jin-Kyu; Ki, Mi-Ran; Han, Seon-Young; Park, Se-Il; Lee, Ji-Hyun; Lee, Eun-Mi; Kim, Ah-Young; You, Sang-Young; Hwang, Woo-Suk; Jeong, Kyu-Shik

    2011-05-01

    Several mammals, including dogs, have been successfully cloned using somatic cell nuclear transfer (SCNT), but the efficiency of generating normal, live offspring is relatively low. Although the high failure rate has been attributed to incomplete reprogramming of the somatic nuclei during the cloning process, the exact cause is not fully known. To elucidate the cause of death in cloned offspring, 12 deceased offspring cloned by SCNT were necropsied. The clones were either stillborn just prior to delivery or died with dyspnea shortly after birth. On gross examination, defects in the anterior abdominal wall and increased heart and liver sizes were found. Notably, a significant increase in muscle mass and macroglossia lesions were observed in deceased SCNT-cloned dogs. Interestingly, the expression of myostatin, a negative regulator of muscle growth during embryogenesis, was down-regulated at the mRNA level in tongues and skeletal muscles of SCNT-cloned dogs compared with a normal dog. Results of the present study suggest that decreased expression of myostatin in SCNT-cloned dogs may be involved in morphological abnormalities such as increased muscle mass and macroglossia, which may contribute to impaired fetal development and poor survival rates.

  16. A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle.

    PubMed

    Dubois, Vanessa; Laurent, Michaël R; Sinnesael, Mieke; Cielen, Nele; Helsen, Christine; Clinckemalie, Liesbeth; Spans, Lien; Gayan-Ramirez, Ghislaine; Deldicque, Louise; Hespel, Peter; Carmeliet, Geert; Vanderschueren, Dirk; Claessens, Frank

    2014-07-01

    Androgens have well-established anabolic actions on skeletal muscle, although the direct effects of the androgen receptor (AR) in muscle remain unclear. We generated satellite cell-specific AR-knockout (satARKO) mice in which the AR is selectively ablated in satellite cells, the muscle precursor cells. Total-limb maximal grip strength is decreased by 7% in satARKO mice, with soleus muscles containing ∼10% more type I fibers and 10% less type IIa fibers than the corresponding control littermates. The weight of the perineal levator ani muscle is markedly reduced (-52%). Thus, muscle AR is involved in fiber-type distribution and force production of the limb muscles, while it is a major determinant of the perineal muscle mass. Surprisingly, myostatin (Mstn), a strong inhibitor of skeletal muscle growth, is one of the most androgen-responsive genes (6-fold reduction in satARKO) through direct transcription activation by the AR. Consequently, muscle hypertrophy in response to androgens is augmented in Mstn-knockout mice. Our finding that androgens induce Mstn signaling to restrain their own anabolic actions has implications for the treatment of muscle wasting disorders.-Dubois, V., Laurent, M. R., Sinnesael, M., Cielen, N., Helsen, C., Clinckemalie, L., Spans, L., Gayan-Ramirez, G., Deldicque, L., Hespel, P., Carmeliet, G., Vanderschueren, D., and Claessens, F. A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle.

  17. An evolutionarily conserved Myostatin proximal promoter/enhancer confers basal levels of transcription and spatial specificity in vivo.

    PubMed

    Grade, Carla Vermeulen Carvalho; Salerno, Mônica Senna; Schubert, Frank R; Dietrich, Susanne; Alvares, Lúcia Elvira

    2009-10-01

    Myostatin (Mstn) is a negative regulator of skeletal muscle mass, and Mstn mutations are responsible for the double muscling phenotype observed in many animal species. Moreover, Mstn is a positive regulator of adult muscle stem cell (satellite cell) quiescence, and hence, Mstn is being targeted in therapeutic approaches to muscle diseases. In order to better understand the mechanisms underlying Mstn regulation, we searched for the gene's proximal enhancer and promoter elements, using an evolutionary approach. We identified a 260-bp-long, evolutionary conserved region upstream of tetrapod Mstn and teleost mstn b genes. This region contains binding sites for TATA binding protein, Meis1, NF-Y, and for CREB family members, suggesting the involvement of cAMP in Myostatin regulation. The conserved fragment was able to drive reporter gene expression in C2C12 cells in vitro and in chicken somites in vivo; both normally express Mstn. In contrast, the reporter construct remained silent in the avian neural tube that normally does not express Mstn. This suggests that the identified element serves as a minimal promoter, harboring some spatial specificity. Finally, using bioinformatic approaches, we identified additional genes in the human genome associated with sequences similar to the Mstn proximal promoter/enhancer. Among them are genes important for myogenesis. This suggests that Mstn and these genes may form a synexpression group, regulated by a common signaling pathway.

  18. [Relationship of T-->A mutation in the promoter region of myostatin gene with growth traits in swine].

    PubMed

    Jiang, Yun-Liang; Li, Ning; Du, Li-Xin; Wu, Chang-Xin

    2002-05-01

    A T-->A mutation in the promoter region of porcine myostatin (MSTN) gene has been identified in previous work. Associations of the myostatin genotypes with growth traits are unknown in swine. The present study attempts to analyze the relationship of the mutation with the growth traits which included body weight at 60 d (BW60), average daily gain from 25 kg to 60 kg(ADG1), average daily gain from 60 kg to 100 kg (ADG2) and average daily gain from 25 kg to 100 kg (ADG). Data from 165, 275, 276 and 276 unrelated individuals respectively were collected from three different swine breeding companies. Detections of the mutation were carried out by PCR-RFLP approach. The effect of MSTN genotypes (TT and TA) on growth traits was estimated by GLM procedure. The results showed that for ADG2, individuals with TA genotype were higher than those of TT genotype (P = 0.052), indicating a positive effect for A allele. For BW60, ADG1 and ADG, the effect of porcine MSTN genotype was non-significant (P > 0.1). Studies are still necessary for examining the effects in "double-muscled" pigs.

  19. Differentiated Ratings of Perceived Exertion during Physical Exercise

    DTIC Science & Technology

    1982-01-01

    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE VOl 14, No 5. Pp 397-405. 1982 -1982 Differentiated ratings of perceived exertion during physical ...that PANDOLF, KENT B. Differentiated ratings of perceived exertion utilizes differentiated ratings of perceived exertion (RPE) during physical exercise ...in the eval- Specific instructions and procedures for the utilization uation of effort sensations during physical exercise . Ekblom and Goldbarg (17

  20. Exercise Device Would Exert Selectable Constant Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Damon C.

    2003-01-01

    An apparatus called the resistive exercise device (RED) has been proposed to satisfy a requirement for exercise equipment aboard the International Space Station (ISS) that could passively exert a selectable constant load on both the outward and return strokes. The RED could be used alone; alternatively, the RED could be used in combination with another apparatus called the treadmill with vibration isolation and stabilization (TVIS), in which case the combination would be called the subject load device (SLD). The basic RED would be a passive device, but it could incorporate an electric motor to provide eccentric augmentation (augmentation to make the load during inward movement greater than the load during outward movement). The RED concept represents a unique approach to providing a constant but selectable resistive load for exercise for the maintenance and development of muscles. Going beyond the original ISS application, the RED could be used on Earth as resistive weight training equipment. The advantage of the RED over conventional weight-lifting equipment is that it could be made portable and lightweight.

  1. Negative radiation pressure exerted on kinks

    SciTech Connect

    Forgacs, Peter; Lukacs, Arpad; Romanczukiewicz, Tomasz

    2008-06-15

    The interaction of a kink and a monochromatic plane wave in one dimensional scalar field theories is studied. It is shown that in a large class of models the radiation pressure exerted on the kink is negative, i.e. the kink is pulled towards the source of the radiation. This effect has been observed by numerical simulations in the {phi}{sup 4} model, and it is explained by a perturbative calculation assuming that the amplitude of the incoming wave is small. Quite importantly the effect is shown to be robust against small perturbations of the {phi}{sup 4} model. In the sine-Gordon (SG) model the time-averaged radiation pressure acting on the kink turns out to be zero. The results of the perturbative computations in the SG model are shown to be in full agreement with an analytical solution corresponding to the superposition of a SG kink with a cnoidal wave. It is also demonstrated that the acceleration of the kink satisfies Newton's law.

  2. Polymorphisms in the promoter region of myostatin gene are associated with carcass traits in pigs.

    PubMed

    Tu, P-A; Lo, L-L; Chen, Y-C; Hsu, C-C; Shiau, J-W; Lin, E-C; Lin, R-S; Wang, P-H

    2014-04-01

    Higher average daily gain, more lean meat yield and less fat yield of porcine carcass increase selling profits for animal producers. Myostatin (MSTN), previously called GDF8, is a member of transforming growth factor-β (TGF-β) superfamily. It is a negative regulator for both embryonic development and adult homeostasis of skeletal muscle. In this study, the genotypes of the previously described SNPs MSTN g.435G>A and g.447A>G SNPs in 66 Duroc pigs, 33 Landrace pigs, 180 Duroc × Landrace (DL) pigs and 155 Duroc × Yorkshire × Landrace (DYL) pigs were determined by Taqman SNP Genotyping Assays. For Duroc and Landrace pigs, MSTN g.435GG/g.447AA individual had greater backfat thickness (p < 0.05) than g.435AA/g.447GG individual, whereas MSTN g.435AA/g.447GG had greater meat (p < 0.05) and meat percentage (p < 0.05) than g.435GA/g.447AG individual. For DL and DYL pigs, the MSTN g.435GG/g.447AA animals were greater in backfat at ultrasound 10th rib (p < 0.05) and carcass 10th rib (p < 0.01) than g.435AA/g.447GG individual. The MSTN g.435AA/g.447GG individual also had higher values than g.435GG/g.447AA for anterior-end meat (p < 0.05), posterior-end meat (p < 0.01), total meat weight (p < 0.01) and meat percentage (p < 0.01). This study confirmed evidence that MSTN g.435G>A and g.447A>G affected carcass traits in pigs. The effects of the mutated alleles were additive with the maximal effects resulting from two copies of the mutated allele. Selection for MSTN g.435A/g.447G allele is expected to increase muscle of limb and total meat production and decrease backfat thickness.

  3. 207 EFFICIENT GENERATION OF MYOSTATIN PROMOTER MUTATIONS IN BOVINE EMBRYOS USING THE CRISPR/Cas9 SYSTEM.

    PubMed

    Pinzon, C A; Snyder, M; Pryor, J; Thompson, B; Golding, M; Long, C

    2016-01-01

    The myostatin gene or growth differentiation factor 8 is a member of the transforming growth factor-β superfamily that acts as a negative regulator of muscle growth. Mutations inactivating this gene occur naturally in Piedmontese and Belgian Blue cattle breeds, resulting in a dramatic increase in muscle mass, albeit with unwanted consequences of increased dystocia and decreased fertility. Modulation of muscle mass increase without the unwanted effects would be of great value for improving livestock growth and economic value of livestock. The objective of our work was to use the CRISPR-Cas9 genetic engineering tool to generate deletions of different elements in the myostatin promoter in order to decrease the level of expression and obtain an attenuated phenotype without the detrimental consequences of an inactivating mutation. To achieve this objective 4 different small guide RNA (sgRNA) targeting the promoter near the mutation were designed with PAM positions from transcription starting site of -1577, -689, -555, and -116. These sgRNA were cloned individually into the Cas9 plasmids (px461, and px462; Addgene®). These plasmids allow for a dual puromycin resistance (px462) and green fluorescent protein (px461) selection. We first tested the functionality of these sgRNA in vitro by co-transfecting bovine fetal fibroblasts with a combination of both plasmids (Set 1=sgRNA 1-4; Set 2=sgRNA 2-3). Cells were exposed to puromycin (0.2µgmL(-1)) for 72h, then single and mixed colonies positive for green fluorescent protein expression were separated for propagation. The DNA was extracted for PCR amplification of the targeted region. Multiple deletions and a few insertion events were observed after PCR, bands were cloned into TOPO® vector (Thermo Fisher Scientific, Waltham, MA, USA) and sequenced. Sequencing results confirmed the PCR products as insertions or deletions in the myostatin promoter region. We proceeded to modify the myostatin promoter directly in bovine zygotes

  4. The Effect of Exertion on Heart Rate and Rating of Perceived Exertion in Acutely Concussed Individuals

    PubMed Central

    Hinds, Andrea; Leddy, John; Freitas, Michael; Czuczman, Natalie; Willer, Barry

    2016-01-01

    Objective Research suggests that one physiological effect of concussion is a disruption in regulation of autonomic nervous system control that affects the balance between parasympathetic and sympathetic output. While changes in heart rate after concussion have been observed, the nature of the heart rate change during progressive exercise has not been well evaluated in acutely symptomatic patients. Additionally, little is known about the relationship between HR and RPE in this population. Methods We compared changes in heart rate and perceived effort during graded treadmill exertion in recently concussed patients to elucidate the effect of brain injury on cardiovascular response to exercise. Resting HR, HR on exercise initiation, and changes in HR and RPE during the Buffalo Concussion Treadmill Test (BCTT) were compared on two test visits: When patients were symptomatic (acute) and after recovery. Results were compared with the test-retest results obtained from a control group consisting of healthy, non-concussed individuals. Results Patients had a significantly lower HR at onset of exercise when acutely concussed as compared to when recovered and reported greater perceived exertion at every exercise intensity level when symptomatic, despite exercising at lower workloads, than when recovered. Sympathetic response to increased exertion was not affected by concussion - HR increased in response to exercise at a comparable rate in both tests. These differences observed in response to exercise between the first BCTT and follow-up evaluation in initially concussed patients were not present in non-concussed individuals. Conclusion Our results suggest that during the acute phase after concussion, acutely concussed patients demonstrated an impaired ability to shift from parasympathetic to sympathetic control over heart rate at the onset of exercise. Changes in the autonomic nervous system after concussion may be more complex than previously reported. Continued evaluation of

  5. Genetic Disruption of Myostatin Reduces the Development of Proatherogenic Dyslipidemia and Atherogenic Lesions In Ldlr Null Mice

    PubMed Central

    Tu, Powen; Bhasin, Shalender; Hruz, Paul W.; Herbst, Karen L.; Castellani, Lawrence W.; Hua, Ning; Hamilton, James A.; Guo, Wen

    2009-01-01

    OBJECTIVE Insulin-resistant states, such as obesity and type 2 diabetes, contribute substantially to accelerated atherogenesis. Null mutations of myostatin (Mstn) are associated with increased muscle mass and decreased fat mass. In this study, we determined whether Mstn disruption could prevent the development of insulin resistance, proatherogenic dyslipidemia, and atherogenesis. RESEARCH DESIGN AND METHODS C57BL/6 Ldlr−/− mice were cross-bred with C57BL/6 Mstn−/− mice for >10 generations to generate Mstn−/−/Ldlr−/− double-knockout mice. The effects of high-fat/high-cholesterol diet on body composition, plasma lipids, systemic and tissue-specific insulin sensitivity, hepatic steatosis, as well as aortic atheromatous lesion were characterized in Mstn−/−/Ldlr−/− mice in comparison with control Mstn+/+/Ldlr−/− mice. RESULTS Compared with Mstn+/+/Ldlr−/− controls, Mstn−/−/ Ldlr−/− mice were resistant to diet-induced obesity, and had greatly improved insulin sensitivity, as indicated by 42% higher glucose infusion rate and 90% greater muscle [3H]-2-deoxyglucose uptake during hyperinsulinemic-euglycemic clamp. Mstn−/−/Ldlr−/− mice were protected against diet-induced hepatic steatosis and had 56% higher rate of hepatic fatty acid β-oxidation than controls. Mstn−/−/Ldlr−/− mice also had 36% lower VLDL secretion rate and were protected against diet-induced dyslipidemia, as indicated by 30–60% lower VLDL and LDL cholesterol, free fatty acids, and triglycerides. Magnetic resonance angiography and en face analyses demonstrated 41% reduction in aortic atheromatous lesions in Ldlr−/− mice with Mstn deletion. CONCLUSIONS Inactivation of Mstn protects against the development of insulin resistance, proatherogenic dyslipidemia, and aortic atherogenesis in Ldlr−/− mice. Myostatin may be a useful target for drug development for prevention and treatment of obesity and its associated type 2 diabetes and atherosclerosis

  6. Elevation of myostatin and FOXOs in prolonged muscular impairment induced by eccentric contractions in rat medial gastrocnemius muscle.

    PubMed

    Ochi, Eisuke; Hirose, Tatsuro; Hiranuma, Kenji; Min, Seok-Ki; Ishii, Naokata; Nakazato, Koichi

    2010-02-01

    This study aimed to investigate torque deficit and activation of protein synthesis and/or protein degradation signaling pathways during the early and recovery phase after high- and low-velocity eccentric contractions (ECs). Male Wistar rats (n = 36) were randomly divided into fast angular velocity ECs group (FAST; 180 degrees/s; n = 12), slow ECs group (SLOW; 30 degrees/s; n = 12), and control group (control; n = 12). ECs comprised four sets of five forced dorsiflexions combined with electrical stimulation of the plantar flexors. Isometric tetanic torque was measured before and after ECs. Tissue contents of Akt(P) (P, phosphorylated), mammalian target of rapamycin (mTOR)(P), 70-kDa ribosomal protein S6 kinase (P70S6k), P70S6k(P), forkhead transcription factor 1 of the O class (FOXO1), FOXO1(P), FOXO3, FOXO3(P), myostatin, and activin receptor type IIB (ActRIIB) were measured. The isometric tetanic torque after ECs was significantly lower in FAST than in SLOW (days 1, 3, and 5, P < 0.05; day 2, P < 0.01). The ratio of P70S6k(P) against total P70S6k on days 2 and 7 was significantly higher in SLOW than in the control. The ratio of FOXO1 against total FOXO1, the ratio of FOXO3a against total FOXO3a, and myostatin on days 2 and 7 were significantly higher in FAST than in the control, while that of ActRIIB on day 7 was significantly lower in SLOW than in the other two groups. These results suggest that EC intensity plays a key role in impairment of muscular function and activation of protein synthesis and/or protein degradation signaling pathways.

  7. Insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 mediate TGF-{beta}- and myostatin-induced suppression of proliferation in porcine embryonic myogenic cell cultures

    SciTech Connect

    Kamanga-Sollo, E.; Pampusch, M.S.; White, M.E.; Hathaway, M.R.; Dayton, W.R. . E-mail: wdayton@umn.edu

    2005-11-15

    We have previously shown that cultured porcine embryonic myogenic cells (PEMC) produce both insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 and secrete these proteins into their media. Exogenously added recombinant porcine (rp) IGFBP-3 and rpIGFBP-5 act via IGF-dependent and IGF-independent mechanisms to suppress proliferation of PEMC cultures. Furthermore, immunoneutralization of endogenous IGFBP-3 and IGFBP-5 in the PEMC culture medium results in increased DNA synthesis rate suggesting that endogenous IGFBP-3 and IGFBP-5 suppress PEMC proliferation. TGF-{beta} superfamily members myostatin and TGF-{beta}{sub 1} have also been shown to suppress proliferation of myogenic cells, and treatment of cultured PEMC with either TGF-{beta}{sub 1} or myostatin significantly (P < 0.01) increases levels of IGFBP-3 and -5 mRNA. We have previously shown that immunoneutralization of IGFBP-3 decreases the proliferation-suppressing activity of TGF-{beta}{sub 1} and myostatin. Here, we show that immunoneutralization of IGFBP-5 also significantly (P < 0.05) decreases the DNA synthesis-suppressing activity of these molecules. Simultaneous immunoneutralization of both IGFBP-3 and IGFBP-5 in TGF-{beta}{sub 1} or myostatin-treated PEMC cultures restores Long-R3-IGF-I-stimulated DNA synthesis rates to 90% of the levels observed in control cultures receiving no TGF-{beta}{sub 1} or myostatin treatment (P < 0.05). Even though immunoneutralization of IGFBP-3 and -5 increased DNA synthesis rates in TGF-{beta}{sub 1} or myostatin-treated PEMC cultures, phosphosmad2 levels in these cultures were not affected. These findings strongly suggest that IGFBP-3 and IGFBP-5 affect processes downstream from receptor-mediated Smad phosphorylation that facilitate the ability of TGF-{beta} and myostatin to suppress proliferation of PEMC.

  8. A Limousin specific myostatin allele affects longissimus muscle area and fatty acid profiles in a Wagyu-Limousin F2 population.

    PubMed

    Alexander, L J; Kuehn, L A; Smith, T P L; Matukumalli, L K; Mote, B; Koltes, J E; Reecy, J; Geary, T W; Rule, D C; Macneil, M D

    2009-05-01

    A microsatellite-based genome scan of a Wagyu x Limousin F(2) cross population previously demonstrated QTL affecting LM area and fatty acid composition were present in regions near the centromere of BTA2. In this study, we used 70 SNP markers to examine the centromeric 24 megabases (Mb) of BTA2, including the Limousin-specific F94L myostatin allele (AB076403.1; 415C > A) located at approximately 6 Mb on the draft genome sequence of BTA2. A significant effect of the F94L marker was observed (F = 60.17) for LM area, which indicated that myostatin is most likely responsible for the effect. This is consistent with previous reports that the substitution of Leu for Phe at AA 94 of myostatin (caused by the 415C > A transversion) is associated with increased muscle growth. Surprisingly, several fatty acid trait QTL, which affected the amount of unsaturated fats, also mapped to or very near the myostatin marker, including the ratio of C16:1 MUFA to C16:0 saturated fat (F = 16.72), C18:1 to C18:0 (F = 18.88), and total content of MUFA (F = 17.12). In addition, QTL for extent of marbling (F = 14.73) approached significance (P = 0.05), and CLA concentration (F = 9.22) was marginally significant (P = 0.18). We also observed associations of SNP located at 16.3 Mb with KPH (F = 15.00) and for the amount of SFA (F = 12.01). These results provide insight into genetic differences between the Wagyu and Limousin breeds and may lead to a better tasting and healthier product for consumers through improved selection for lipid content of beef.

  9. Insulin-like growth factor-1 and myostatin mRNA expression in muscle: comparison between 62-77 and 21-31 yr old men.

    PubMed

    Welle, Stephen; Bhatt, Kirti; Shah, Bharati; Thornton, Charles

    2002-06-01

    The present study was done to determine the effect of age on muscle concentrations of mRNAs encoding two growth factors that are thought to be important regulators of muscle mass: insulin-like growth factor-1 (IGF-1) and myostatin. Quantitative RT-PCR assays indicated that the mean IGF-1 mRNA concentration in older muscle (62-77 yr, n=15 men) was approximately 25% less, per ng total RNA (P<0.005), than in young adult muscle (21-31 yr, n=12 men). One third of the older men had IGF-1 mRNA levels below the lowest concentration observed in young muscle. Myostatin mRNA concentrations were similar in young and old muscle. Muscle mass and myofibrillar protein synthesis rates among eight older men did not correlate with either IGF-1 or myostatin mRNA levels. We conclude that IGF-1 gene expression in muscle tends to decline with normal aging. The functional significance is uncertain.

  10. Using Ratings of Perceived Exertion in Physical Education

    ERIC Educational Resources Information Center

    Lagally, Kristen M.

    2013-01-01

    Ratings of perceived exertion have been shown to be a valid method of monitoring physical activity intensity for both adults and children. As such, this subjective method may serve as an alternative to objective measurements for assessing students' performance on national standards 2 and 4. The OMNI-Child perceived exertion scales were…

  11. Exertional Rhabdomyolysis: What Is It and Why Should We Care?

    ERIC Educational Resources Information Center

    Thomas, David Q.; Carlson, Kelli A.; Marzano, Amy; Garrahy, Deborah

    2012-01-01

    Exertional rhabdomyolysis gained increased attention recently when 13 football players from the University of Iowa developed this condition after an especially demanding practice session and were hospitalized. Exertional rhabdomyolysis may lead to severe kidney stress, kidney failure, and even sudden death. Anyone who does physical exercise at a…

  12. 20 CFR 220.135 - Exertional and nonexertional limitations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... limitations. (a) General. The claimant's impairment(s) and related symptoms, such as pain, may cause... as pain, are exertional, nonexertional, or a combination of both. (b) Exertional limitations. When... pain, affect only the claimant's ability to meet the strength demands of jobs (sitting,...

  13. 20 CFR 220.135 - Exertional and nonexertional limitations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... limitations. (a) General. The claimant's impairment(s) and related symptoms, such as pain, may cause... as pain, are exertional, nonexertional, or a combination of both. (b) Exertional limitations. When... pain, affect only the claimant's ability to meet the strength demands of jobs (sitting,...

  14. 20 CFR 220.135 - Exertional and nonexertional limitations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... limitations. (a) General. The claimant's impairment(s) and related symptoms, such as pain, may cause... as pain, are exertional, nonexertional, or a combination of both. (b) Exertional limitations. When... pain, affect only the claimant's ability to meet the strength demands of jobs (sitting,...

  15. 20 CFR 220.135 - Exertional and nonexertional limitations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... limitations. (a) General. The claimant's impairment(s) and related symptoms, such as pain, may cause... as pain, are exertional, nonexertional, or a combination of both. (b) Exertional limitations. When... pain, affect only the claimant's ability to meet the strength demands of jobs (sitting,...

  16. Force Exertion Capacity Measurements in Haptic Virtual Environments

    ERIC Educational Resources Information Center

    Munih, Marko; Bardorfer, Ales; Ceru, Bojan; Bajd, Tadej; Zupan, Anton

    2010-01-01

    An objective test for evaluating functional status of the upper limbs (ULs) in patients with muscular distrophy (MD) is presented. The method allows for quantitative assessment of the UL functional state with an emphasis on force exertion capacity. The experimental measurement setup and the methodology for the assessment of maximal exertable force…

  17. The arylpiperazine derivatives N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide and N-benzyl-4-(2-diphenyl)-1-piperazinehexanamide exert a long-lasting inhibition of human serotonin 5-HT7 receptor binding and cAMP signaling.

    PubMed

    Atanes, Patricio; Lacivita, Enza; Rodríguez, Javier; Brea, José; Burgueño, Javier; Vela, José Miguel; Cadavid, María Isabel; Loza, María Isabel; Leopoldo, Marcello; Castro, Marián

    2013-12-01

    We performed a detailed in vitro pharmacological characterization of two arylpiperazine derivatives, compound N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide (LP-211) previously identified as a high-affinity brain penetrant ligand for 5-hydroxytryptamine (serotonin) type 7 (5-HT7) receptors, and its analog N-benzyl-4-(2-diphenyl)-1-piperazinehexanamide (MEL-9). Both ligands exhibited competitive displacement of [(3)H]-(2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine ([(3)H]-SB-269970) radioligand binding and insurmountable antagonism of 5-carboxamidotryptamine (5-CT)-stimulated cyclic adenosine monophosphate (cAMP) signaling in human embryonic kidney (HEK293) cells stably expressing human 5-HT7 receptors. They also inhibited forskolin-stimulated adenylate cyclase activity in 5-HT7-expressing HEK293 cells but not in the parental cell line. The compounds elicited long-lasting (at least 24 h) concentration-dependent inhibition of radioligand binding at 5-HT7-binding sites in whole-cell radioligand binding assays, after pretreatment of the cells with the compounds and subsequent compound removal. In cAMP assays, pretreatment of cells with the compounds rendered 5-HT7 receptors unresponsive to 5-CT and also rendered 5-HT7-expressing HEK293 cells unresponsive to forskolin. Compound 1-(2-biphenyl)piperazine (RA-7), a known active metabolite of LP-211 present in vivo, was able to partially inhibit 5-HT7 radioligand binding in a long-lasting irreversible manner. Hence, LP-211 and MEL-9 were identified as high-affinity long-acting inhibitors of human 5-HT7 receptor binding and function in cell lines. The detailed in vitro characterization of these two pharmacological tools targeting 5-HT7 receptors may benefit the study of 5-HT7 receptor function and it may lead to the development of novel selective pharmacological tools with defined functional properties at 5-HT7 receptors.

  18. Exertional myopathy in whooping cranes (Grus americana) with prognostic guidelines.

    PubMed

    Hanley, Christopher S; Thomas, Nancy J; Paul-Murphy, Joanne; Hartup, Barry K

    2005-09-01

    Exertional myopathy developed in three whooping cranes (Grus americana) secondary to routine capture, handling, and trauma. Presumptive diagnosis of exertional myopathy was based on history of recent capture or trauma, clinical signs, and elevation of aspartate aminotransferase, alanine aminotransferase, creatine kinase, lactate dehydrogenase, and serum potassium. Treatments were attempted in each case, but ultimately were not successful. Gross and microscopic lesions at necropsy confirmed the diagnosis in each case, with the leg musculature most severely affected. Guidelines for determining prognosis of exertional myopathy in cranes have been included based on the analysis of these cases and others in the literature. As treatment is largely unrewarding, prevention remains the key in controlling exertional myopathy. Identification of predisposing factors and proper handling, immobilization, and transportation techniques can help prevent development of exertional myopathy in cranes.

  19. Exertional myopathy in whooping cranes (Grus americana) with prognostic guidlelines

    USGS Publications Warehouse

    Hanley, C.S.; Thomas, N.J.; Paul-Murphy, P.; Hartup, B.K.

    2005-01-01

    Exertional myopathy developed in three whooping cranes (Grus americana) secondary to routine capture, handling, and trauma. Presumptive diagnosis of exertional myopathy was based on history of recent capture or trauma, clinical signs, and elevation of aspartate aminotransferase, alanine aminotransferase, creatine kinase, lactate dehydrogenase, and serum potassium. Treatments were attempted in each case, but ultimately were not successful. Gross and microscopic lesions at necropsy confirmed the diagnosis in each case, with the leg musculature most severely affected. Guidelines for determining prognosis of exertional myopathy in cranes have been included based on the analysis of these cases and others in the literature. As treatment is largely unrewarding, prevention remains the key in controlling exertional myopathy. Identification of predisposing factors and proper handling, immobilization, and transportation techniques can help prevent development of exertional myopathy in cranes.

  20. Acute exertional anterior compartment syndrome in an adolescent female.

    PubMed

    Fehlandt, A; Micheli, L

    1995-01-01

    Acute compartment syndromes usually occur as a complication of major trauma. While the chronic exertional anterior tibial compartment syndrome is well described in the sports medicine literature, reports of acute tibial compartment syndromes due to physical exertion, or repetitive microtrauma, are rare. The case of an adolescent female who developed an acute anterior compartment syndrome from running in a soccer game is described in this report. Failure to recognize the onset of an acute exertional compartment syndrome may lead to treatment delay and serious complications. Whereas the chronic exertional anterior compartment syndrome is characterized by pain that diminishes with the cessation of exercise, the onset of the acute exertional anterior compartment syndrome is heralded by pain that continues, or increases, after exercise has stopped. Compartment pressure measurement confirms the clinical diagnosis and helps guide treatment. True compartment syndromes require urgent fasciotomy.

  1. [Antimicrobial activity exerted by sodium dichloroisocyanurate].

    PubMed

    D'Auria, F D; Simonetti, G; Strippoli, V

    1989-01-01

    for its activity. It is interesting to note that well known bacteria, that are resistant to the common antimicrobial agents, such as Pseudomonas aeruginosa, were inhibited by sodium dichloroisocyanurate in a rapid bactericidal action. Our data demonstrates that no significant adverse influence on the activity of sodium dichloroisocyanurate was shown by pH and by temperature even if in some experimental conditions increased activity was noticed at pH = 6.6. The sodium dichloroisocyanurate has demonstrated good activity against Trichomonas vaginalis. This fact extends the broad-spectrum activity of sodium dichloroisocyanurate to the protozoa. In conclusion, sodium dichloroisocyanurate has demonstrated a good activity against all tested strains, furthermore its activity did not decrease in the presence of 1% of organic substance (serum etc.).(ABSTRACT TRUNCATED AT 400 WORDS)

  2. Activation of AMP-activated protein kinase induce expression of FoxO1, FoxO3a, and myostatin after exercise-induced muscle damage.

    PubMed

    Lee, Kihyuk; Ochi, Eisuke; Song, Hongsun; Nakazato, Koichi

    2015-10-23

    AMP-activated protein kinase (AMPK) has been shown to regulate protein metabolism in skeletal muscle. We previously found that levels of Forkhead box proteins, FoxO1 and FoxO3a, and myostatin in rat gastrocnemius increased after exercise-induced muscle damage (EIMD). Eccentric muscle contractions (ECs), defined as elongation of muscle under tension, were used for inducing EIMD. The objective of this study was to clarify whether AMPK participates in activation and expression of FoxO proteins and myostatin in rat gastrocnemius muscle after EIMD. Wistar rats were randomly assigned into the following three groups; CON (n = 6), 180ECs group (ankle angular velocity, 180°/s; n = 6), and 30ECs group (ankle angular velocity, 30°/s; n = 6). 20 ECs were conducted with percutaneous electrical stimulation of gastrocnemius and simultaneous forced dorsiflexion of ankle joint (from 0° to 45°). To evaluate activation of AMPK, we measured the phosphorylated states of AMPK and acetyl CoA carboxylase. For evaluation of the direct relationships of AMPK and other proteins, we also examined contents of FoxOs and myostatin with stimulation of L6 myotube with AMPK agonist, 5 -aminoimidazole -4 -carboxamide -1-β-d-ribofuranoside (AICAR) (0.1, 0.5, 1, 1.5, and 2 mM). Western blotting was employed for protein analysis. Significant torque deficit was only observed in the 180ECs, suggesting EIMD. We also observed that phosphorylated AMPKα was induced in response to 180ECs (p < 0.01 vs. CON). Additionally, the level of phosphorylated acetyl CoA carboxylase was significantly higher in response to 180ECs and 30ECs. The phosphorylated states of FoxO1, FoxO3a, and myostatin expression were increased significantly in response to 180ECs. Furthermore, treatment of L6 myotubes with AICAR showed similar tendencies to that observed in in vivo gastrocnemius muscle treated with 180ECs. Therefore, we conclude that activation of AMPK plays a key role in increasing the level of FoxO1, FoxO3a

  3. Prior Acute Mental Exertion in Exercise and Sport

    PubMed Central

    Silva-Júnior, Fernando Lopes e; Emanuel, Patrick; Sousa, Jordan; Silva, Matheus; Teixeira, Silmar; Pires, Flávio; Machado, Sérgio; Arias-Carrion, Oscar

    2016-01-01

    Introduction: Mental exertion is a psychophysiological state caused by sustained and prolonged cognitive activity. The understanding of the possible effects of acute mental exertion on physical performance, and their physiological and psychological responses are of great importance for the performance of different occupations, such as military, construction workers, athletes (professional or recreational) or simply practicing regular exercise, since these occupations often combine physical and mental tasks while performing their activities. However, the effects of implementation of a cognitive task on responses to aerobic exercise and sports are poorly understood. Our narrative review aims to provide information on the current research related to the effects of prior acute mental fatigue on physical performance and their physiological and psychological responses associated with exercise and sports. Methods: The literature search was conducted using the databases PubMed, ISI Web of Knowledge and PsycInfo using the following terms and their combinations: “mental exertion”, “mental fatigue”, “mental fatigue and performance”, “mental exertion and sports” “mental exertion and exercise”. Results: We concluded that prior acute mental exertion affects effectively the physiological and psychophysiological responses during the cognitive task, and performance in exercise. Conclusion: Additional studies involving prior acute mental exertion, exercise/sports and physical performance still need to be carried out in order to analyze the physiological, psychophysiological and neurophysiological responses subsequently to acute mental exertion in order to identify cardiovascular factors, psychological, neuropsychological associates. PMID:27867415

  4. Characterization of a molt-related myostatin gene (FmMstn) from the banana shrimp Fenneropenaeus merguiensis.

    PubMed

    Zhuo, Rui Qun; Zhou, Ting Ting; Yang, Shi Ping; Chan, Siuming Francis

    2017-03-17

    Myostatin is an important member of the Transforming Growth Factor (TGF) family that functions to regulate muscle growth in animals. In this study, the myostatin gene (FmMstn) and two slightly different (short and long forms) cDNAs of the banana shrimp Fenneropenaeus merguiensis were cloned and characterized. Similar to Mstn gene of the scallop, fish and mammal, FmMstn gene consists of 3 exons and 2 introns. The 2 kb upstream promoter region of the FmMstn gene consists of putative response elements for myocyte enhancing factor (MEF2) and E-box factors. The longest open reading frame of the short Mstn consists of 1260 bp encoding for a protein with 420 amino acid residues. The long FmMstn is almost identical to the short FmMstn with the exception of 8 amino acid insertions. FmMstn is most similar to the Mstn of Litopenaeus vannamei and Penaeus monodon sharing >92-98% amino acid sequence identity. Multiple sequence alignment results revealed high degree of amino acid conservation of the cysteine residues and mature peptide of the FmMstn with Mstn from other animals. FmMstn transcript was detected in the heart, muscle, optic nerve and thoracic ganglion. FmMstn transcript level in muscle is higher in early postmolt, decreases in intermolt and increases again towards ecdysis. Higher expression level of FmMstn is also observed in smaller shrimp of the same age. Knock-down of FmMstn gene by RNAi can cause a significant increase in molt cycle duration and failure of some shrimp to undergo ecdysis. Direct DNA sequencing results revealed that FmMstn gene is highly polymorphic and several potential SNPs have been identified. Some SNPs are associated with the size difference of the shrimp. In summary, the result of this study indicates that shrimp FmMstn gene is molt/growth-related and the presence of SNP suggests that it could be a candidate gene for shrimp genetic improvement research.

  5. Musical agency reduces perceived exertion during strenuous physical performance

    PubMed Central

    Fritz, Thomas Hans; Hardikar, Samyogita; Demoucron, Matthias; Niessen, Margot; Demey, Michiel; Giot, Olivier; Li, Yongming; Haynes, John-Dylan; Villringer, Arno; Leman, Marc

    2013-01-01

    Music is known to be capable of reducing perceived exertion during strenuous physical activity. The current interpretation of this modulating effect of music is that music may be perceived as a diversion from unpleasant proprioceptive sensations that go along with exhaustion. Here we investigated the effects of music on perceived exertion during a physically strenuous task, varying musical agency, a task that relies on the experience of body proprioception, rather than simply diverting from it. For this we measured psychologically indicated exertion during physical workout with and without musical agency while simultaneously acquiring metabolic values with spirometry. Results showed that musical agency significantly decreased perceived exertion during workout, indicating that musical agency may actually facilitate physically strenuous activities. This indicates that the positive effect of music on perceived exertion cannot always be explained by an effect of diversion from proprioceptive feedback. Furthermore, this finding suggests that the down-modulating effect of musical agency on perceived exertion may be a previously unacknowledged driving force for the development of music in humans: making music makes strenuous physical activities less exhausting. PMID:24127588

  6. Lack of myostatin impairs mechanical performance and ATP cost of contraction in exercising mouse gastrocnemius muscle in vivo.

    PubMed

    Giannesini, Benoît; Vilmen, Christophe; Amthor, Helge; Bernard, Monique; Bendahan, David

    2013-07-01

    Although it is well established that the lack of myostatin (Mstn) promotes skeletal muscle hypertrophy, the corresponding changes regarding force generation have been studied mainly in vitro and remain conflicting. Furthermore, the metabolic underpinnings of these changes are very poorly documented. To clarify this issue, we have investigated strictly noninvasively in vivo the impact of the lack of Mstn on gastrocnemius muscle function and energetics in Mstn-targeted knockout (Mstn-/-) mice using ¹H-magnetic resonance (MR) imaging and ³¹P-MR spectroscopy during maximal repeated isometric contractions induced by transcutaneous electrostimulation. In Mstn-/- animals, although body weight, gastrocnemius muscle volume, and absolute force were larger (+38, +118, and +34%, respectively) compared with wild-type (Mstn+/+) mice, specific force (calculated from MR imaging measurements) was significantly lower (-36%), and resistance to fatigue was decreased. Besides, Mstn deficiency did not affect phosphorylated compound concentrations and intracellular pH at rest but caused a large increase in ATP cost of contraction (up to +206% compared with Mstn+/+) throughout the stimulation period. Further, Mstn deficiency limits the shift toward oxidative metabolism during muscle activity despite the fact that oxidative ATP synthesis capacity was not altered. Our data demonstrate in vivo that the absence of Mstn impairs both mechanical performance and energy cost of contraction in hypertrophic muscle. These findings must be kept in mind when considering Mstn as a potential therapeutic target for increasing muscle mass in patients suffering from muscle-wasting disorders.

  7. Effect of Co-transfection of Anti-myostatin shRNA Constructs in Caprine Fetal Fibroblast Cells.

    PubMed

    Hati Boruah, Jyoti Lakshmi; Ranjan, Rakesh; Gogoi, Hamen; Pandey, Saurabh Kumar; Kumar, Dharmendra; Phukan, Amlan Jyoti; Bori, Joygeswar; Sarkhel, Bikash Chandra

    2016-01-01

    Knockdown of myostatin gene (MSTN), transforming growth factor-β superfamily, and a negative regulator of the skeletal muscle growth, by RNA interference (RNAi), has been reported to increase muscle mass in mammals. The current study was aimed to cotransfect two anti-MSTN short hairpin RNA (shRNA) constructs in caprine fetal fibroblast cells for transient silencing of MSTN gene. In the present investigation, approximately 89% MSTN silencing was achieved in transiently transfected caprine fetal fibroblast cells by cotransfection of two best out of four anti-MSTN shRNA constructs. Simultaneously, we also monitored the induction of IFN responsive genes (IFN), pro-apoptotic gene (caspase3) and anti-apoptotic gene (MCL-1) due to cotransfection of different anti-MSTN shRNA constructs. We observed induction of 0.66-19.12, 1.04-4.14, 0.50-3.43, and 0.42-1.98 for folds IFN-β, OAS1, caspase3, and MCL-1 genes, respectively (p < 0.05). This RNAi based cotransfection method could provide an alternative strategy of gene knockout and develop stable caprine fetal fibroblast cells. Furthermore, these stable cells can be used as a cell donor for the development of transgenic cloned embryos by somatic cell nuclear transfer (SCNT) technique.

  8. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs.

    PubMed

    Qian, Lili; Tang, Maoxue; Yang, Jinzeng; Wang, Qingqing; Cai, Chunbo; Jiang, Shengwang; Li, Hegang; Jiang, Ke; Gao, Pengfei; Ma, Dezun; Chen, Yaoxing; An, Xiaorong; Li, Kui; Cui, Wentao

    2015-09-24

    Myostatin (MSTN) is a dominant inhibitor of skeletal muscle development and growth. Mutations in MSTN gene can lead to muscle hypertrophy or double-muscled (DM) phenotype in cattle, sheep, dog and human. However, there has not been reported significant muscle phenotypes in pigs in association with MSTN mutations. Pigs are an important source of meat production, as well as serve as a preferred animal model for the studies of human disease. To study the impacts of MSTN mutations on skeletal muscle growth in pigs, we generated MSTN-mutant Meishan pigs with no marker gene via zinc finger nucleases (ZFN) technology. The MSTN-mutant pigs developed and grew normally, had increased muscle mass with decreased fat accumulation compared with wild type pigs, and homozygote MSTN mutant (MSTN(-/-)) pigs had apparent DM phenotype, and individual muscle mass increased by 100% over their wild-type controls (MSTN(+/+)) at eight months of age as a result of myofiber hyperplasia. Interestingly, 20% MSTN-mutant pigs had one extra thoracic vertebra. The MSTN-mutant pigs will not only offer a way of fast genetic improvement of lean meat for local fat-type indigenous pig breeds, but also serve as an important large animal model for biomedical studies of musculoskeletal formation, development and diseases.

  9. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs

    PubMed Central

    Qian, Lili; Tang, Maoxue; Yang, Jinzeng; Wang, Qingqing; Cai, Chunbo; Jiang, Shengwang; Li, Hegang; Jiang, Ke; Gao, Pengfei; Ma, Dezun; Chen, Yaoxing; An, Xiaorong; Li, Kui; Cui, Wentao

    2015-01-01

    Myostatin (MSTN) is a dominant inhibitor of skeletal muscle development and growth. Mutations in MSTN gene can lead to muscle hypertrophy or double-muscled (DM) phenotype in cattle, sheep, dog and human. However, there has not been reported significant muscle phenotypes in pigs in association with MSTN mutations. Pigs are an important source of meat production, as well as serve as a preferred animal model for the studies of human disease. To study the impacts of MSTN mutations on skeletal muscle growth in pigs, we generated MSTN-mutant Meishan pigs with no marker gene via zinc finger nucleases (ZFN) technology. The MSTN-mutant pigs developed and grew normally, had increased muscle mass with decreased fat accumulation compared with wild type pigs, and homozygote MSTN mutant (MSTN−/−) pigs had apparent DM phenotype, and individual muscle mass increased by 100% over their wild-type controls (MSTN+/+) at eight months of age as a result of myofiber hyperplasia. Interestingly, 20% MSTN-mutant pigs had one extra thoracic vertebra. The MSTN-mutant pigs will not only offer a way of fast genetic improvement of lean meat for local fat-type indigenous pig breeds, but also serve as an important large animal model for biomedical studies of musculoskeletal formation, development and diseases. PMID:26400270

  10. Generation and evaluation of Myostatin knock-out rabbits and goats using CRISPR/Cas9 system.

    PubMed

    Guo, Rihong; Wan, Yongjie; Xu, Dan; Cui, Libin; Deng, Mingtian; Zhang, Guomin; Jia, Ruoxin; Zhou, Wenjun; Wang, Zhen; Deng, Kaiping; Huang, Mingrui; Wang, Feng; Zhang, Yanli

    2016-07-15

    Myostatin (Mstn) is a conserved negative regulator of skeletal muscle mass in mammals. However, whether precise disruption of Mstn in livestock can be achieved and safely used to improve meat productivity has not been proven. We applied CRISPR/Cas9 system to generate Mstn knock-out (KO) rabbits and goats and then analyzed the changes in their phenotypes to answer this question. We efficiently generated 24 Mstn KO rabbits out of 32 newborn infants after embryo injection with two sgRNAs targeting rabbit Mstn, and found that the Mstn KO rabbits exhibited increased birthweight and a significantly increase in the weight ratios of the quadriceps and biceps muscles to the whole body. Mstn KO also caused high probability of enlarged tongue phenomenon and severe health problems such as stillbirth and early stage death. Using the same method, one out of four goats was generated with edition at Mstn locus. The early stage growth rate of this goat outperformed the control goats. In conclusion, we efficiently generated Mstn KO rabbits and goats using CRISPR/Cas9 technology. However, Mstn KO causes severe health problems and may also have the same effects on other species. This safety issue must be studied further before applied to animal reproduction processes.

  11. Generation and evaluation of Myostatin knock-out rabbits and goats using CRISPR/Cas9 system

    PubMed Central

    Guo, Rihong; Wan, Yongjie; Xu, Dan; Cui, Libin; Deng, Mingtian; Zhang, Guomin; Jia, Ruoxin; Zhou, Wenjun; Wang, Zhen; Deng, Kaiping; Huang, Mingrui; Wang, Feng; Zhang, Yanli

    2016-01-01

    Myostatin (Mstn) is a conserved negative regulator of skeletal muscle mass in mammals. However, whether precise disruption of Mstn in livestock can be achieved and safely used to improve meat productivity has not been proven. We applied CRISPR/Cas9 system to generate Mstn knock-out (KO) rabbits and goats and then analyzed the changes in their phenotypes to answer this question. We efficiently generated 24 Mstn KO rabbits out of 32 newborn infants after embryo injection with two sgRNAs targeting rabbit Mstn, and found that the Mstn KO rabbits exhibited increased birthweight and a significantly increase in the weight ratios of the quadriceps and biceps muscles to the whole body. Mstn KO also caused high probability of enlarged tongue phenomenon and severe health problems such as stillbirth and early stage death. Using the same method, one out of four goats was generated with edition at Mstn locus. The early stage growth rate of this goat outperformed the control goats. In conclusion, we efficiently generated Mstn KO rabbits and goats using CRISPR/Cas9 technology. However, Mstn KO causes severe health problems and may also have the same effects on other species. This safety issue must be studied further before applied to animal reproduction processes. PMID:27417210

  12. Analysis of horse myostatin gene and identification of single nucleotide polymorphisms in breeds of different morphological types.

    PubMed

    Dall'Olio, Stefania; Fontanesi, Luca; Nanni Costa, Leonardo; Tassinari, Marco; Minieri, Laura; Falaschini, Adalberto

    2010-01-01

    Myostatin (MSTN) is a negative modulator of muscle mass. We characterized the horse (Equus caballus) MSTN gene and identified and analysed single nucleotide polymorphisms (SNPs) in breeds of different morphological types. Sequencing of coding, untranslated, intronic, and regulatory regions of MSTN gene in 12 horses from 10 breeds revealed seven SNPs: two in the promoter, four in intron 1, and one in intron 2. The SNPs of the promoter (GQ183900:g.26T>C and GQ183900:g.156T>C, the latter located within a conserved TATA-box like motif) were screened in 396 horses from 16 breeds. The g.26C and the g.156C alleles presented higher frequency in heavy (brachymorphic type) than in light breeds (dolichomorphic type such as Italian Trotter breed). The significant difference of allele frequencies for the SNPs at the promoter and analysis of molecular variance (AMOVA) on haplotypes indicates that these polymorphisms could be associated with variability of morphology traits in horse breeds.

  13. Organization and functional analysis of the 5' flanking regions of myostatin-1 and 2 genes from Larimichthys crocea.

    PubMed

    Xue, Liangyi; Dong, Xiaojing; Zhang, Xiaoju; Diallo, Amadou

    2012-05-01

    Myostatin (MSTN) is a negative regulator of skeletal muscle growth and development. There are two types of MSTNs in fish, but little is known about their gene regulation. Here, the 5' flanking fragments of 1029 bp from MSTN-1 and 643 bp from MSTN-2 were cloned, sequenced, and analyzed in Larimichthys crocea. Both fragments contained CAAT box and several putative cis-regulatory elements. However, putative TATA box, MyoD, MEF3, SP1, USF, and GH-CSE sites were identified only in the L. crocea MSTN-1 (lcMSTN-1) promoter. Transcriptional activities of four fragments (1013, 841, 514, and 261 bp) truncated from lcMSTN-1 upstream region and two fragments (643 and 296 bp) from lcMSTN-2 upstream region were examined in vitro, using transient transfection in CIK and L6 cells. In CIK cells, the promoter activity correlated positively with the length of truncated fragments in both MSTN-1 and 2. The lcMSTN-2 promoter showed a higher activity than lcMSTN-1 in the corresponding region, which was consistent with MSTN gene expression in vivo. In L6 cells, lcMSTN-2 upstream showed an extremely high luciferase activity. These data indicated that both cloned 5' flanking sequences contained functional promoters, and that transcription regulation of lcMSTN-1 and 2 promoters was significantly different between mammalian and fish cells.

  14. A new single nucleotide polymorphism in the rabbit (Oryctolagus cuniculus) myostatin (MSTN) gene is associated with carcass composition traits.

    PubMed

    Sternstein, Ina; Reissmann, Monika; Maj, Dorota; Bieniek, Josef; Brockmann, Gudrun A

    2014-08-01

    This study aimed at the identification of genetic variations in the myostatin (MSTN) gene and testing their effects on carcass quality traits. We comparatively sequenced Giant Grey (GG) and New Zealand White (NZW) rabbits that were founders of a cross-bred population. Alignment of our sequence data with the GenBank sequence of the rabbit MSTN gene (Ensembl Gene ID ENSOCUG00000012663) identified three single nucleotide polymorphisms (SNPs). The two novel SNPs (c.-125T>C, c.373+234G>A) and one known SNP (c.747+34C>T) were subsequently analysed for linkage with carcass composition traits in 363 F2 animals of the cross GG × NZW. Significant linkage was found between c.373+234G>A and nine carcass composition traits (P < 0.05). No significant effects were found for c.-125T>C and c.747+34C>T. Because the linked SNP is located in intron 1 and no genetic variation was found in the coding region, further investigations are necessary to understand the functional effect of the c.373+234G>A variant on the variability of the traits.

  15. Exertional rhabdomyolysis: physiological response or manifestation of an underlying myopathy?

    PubMed Central

    Scalco, Renata S; Snoeck, Marc; Quinlivan, Ros; Treves, Susan; Laforét, Pascal; Jungbluth, Heinz; Voermans, Nicol C

    2016-01-01

    Exertional rhabdomyolysis is characterised by muscle breakdown associated with strenuous exercise or normal exercise under extreme circumstances. Key features are severe muscle pain and sudden transient elevation of serum creatine kinase (CK) levels with or without associated myoglobinuria. Mild cases may remain unnoticed or undiagnosed. Exertional rhabdomyolysis is well described among athletes and military personnel, but may occur in anybody exposed to unaccustomed exercise. In contrast, exertional rhabdomyolysis may be the first manifestation of a genetic muscle disease that lowers the exercise threshold for developing muscle breakdown. Repeated episodes of exertional rhabdomyolysis should raise the suspicion of such an underlying disorder, in particular in individuals in whom the severity of the rhabdomyolysis episodes exceeds the expected response to the exercise performed. The present review aims to provide a practical guideline for the acute management and postepisode counselling of patients with exertional rhabdomyolysis, with a particular emphasis on when to suspect an underlying genetic disorder. The pathophysiology and its clinical features are reviewed, emphasising four main stepwise approaches: (1) the clinical significance of an acute episode, (2) risks of renal impairment, (3) clinical indicators of an underlying genetic disorders and (4) when and how to recommence sport activity following an acute episode of rhabdomyolysis. Genetic backgrounds that appear to be associated with both enhanced athletic performance and increased rhabdomyolysis risk are briefly reviewed. PMID:27900193

  16. Vitamin D Receptor Ablation and Vitamin D Deficiency Result in Reduced Grip Strength, Altered Muscle Fibers, and Increased Myostatin in Mice.

    PubMed

    Girgis, Christian M; Cha, Kuan Minn; Houweling, Peter J; Rao, Renuka; Mokbel, Nancy; Lin, Mike; Clifton-Bligh, Roderick J; Gunton, Jenny E

    2015-12-01

    Vitamin D deficiency is associated with muscle weakness, pain, and atrophy. Serum vitamin D predicts muscle strength and age-related muscle changes. However, precise mechanisms by which vitamin D affects skeletal muscle are unclear. To address this question, this study characterizes the muscle phenotype and gene expression of mice with deletion of vitamin D receptor (VDRKO) or diet-induced vitamin D deficiency. VDRKO and vitamin D-deficient mice had significantly weaker grip strength than their controls. Weakness progressed with age and duration of vitamin D deficiency, respectively. Histological assessment showed that VDRKO mice had muscle fibers that were significantly smaller in size and displayed hyper-nuclearity. Real-time PCR also indicated muscle developmental changes in VDRKO mice with dysregulation of myogenic regulatory factors (MRFs) and increased myostatin in quadriceps muscle (>2-fold). Vitamin D-deficient mice also showed increases in myostatin and the atrophy marker E3-ubiqutin ligase MuRF1. As a potential explanation for grip strength weakness, both groups of mice had down-regulation of genes encoding calcium-handling and sarco-endoplasmic reticulum calcium transport ATPase (Serca) channels. This is the first report of reduced strength, morphological, and gene expression changes in VDRKO and vitamin D-deficient mice where confounding by calcium, magnesium, and phosphate have been excluded by direct testing. Although suggested in earlier in vitro work, this study is the first to report an in vivo association between vitamin D, myostatin, and the regulation of muscle mass. These findings support a direct role for vitamin D in muscle function and corroborate earlier work on the presence of VDR in this tissue.

  17. Leptin treatment reduces body fat but does not affect lean body mass or the myostatin-follistatin-activin axis in lean hypoleptinemic women.

    PubMed

    Brinkoetter, Mary; Magkos, Faidon; Vamvini, Maria; Mantzoros, Christos S

    2011-07-01

    Animal studies in vivo indicate that leptin treatment in extremely leptin-sensitive ob/ob mice reduces body weight exclusively by reducing fat mass and that it increases muscle mass by downregulating myostatin expression. Data from human trials are limited. Therefore, we aimed at characterizing the effects of leptin administration on fat mass, lean body mass, and circulating regulators of muscle growth in hypoleptinemic and presumably leptin-sensitive human subjects. In an open-label, single-arm trial, seven lean, strenuously exercising, amenorrheic women with low leptin concentrations (≤5 ng/ml) were given recombinant methionyl human leptin (metreleptin; 0.08 mg·kg(-1)·day(-1)) for 10 wk. In a separate randomized, double-blind, placebo-controlled trial, seven women were given metreleptin (initial dose: 0.08 mg·kg(-1)·day(-1) for 3 mo, increased thereafter to 0.12 mg·kg(-1)·day(-1) if menstruation did not occur), and six were given placebo for 9 mo. Metreleptin significantly reduced total body fat by an average of 18.6% after 10 wk (P < 0.001) in the single-arm trial and by 19.5% after 9 mo (placebo subtracted; P for interaction = 0.025, P for metreleptin = 0.004) in the placebo-controlled trial. There were no significant changes in lean body mass (P ≥ 0.33) or in serum concentrations of myostatin (P ≥ 0.35), follistatin (P ≥ 0.30), and activin A (P ≥ 0.20) whether in the 10-wk trial or the 9-mo trial. We conclude that metreleptin administration in lean hypoleptinemic women reduces fat mass exclusively and does not affect lean body mass or the myostatin-follistatin-activin axis.

  18. Chronic activity-based therapy does not improve body composition, insulin-like growth factor-I, adiponectin, or myostatin in persons with spinal cord injury

    PubMed Central

    Harness, Eric T.; Witzke, Kara A.

    2015-01-01

    Spinal cord injury (SCI) induces dramatic changes in body composition including reductions in fat-free mass (FFM) and increases in fat mass (FM). Objective To examine changes in body composition in response to chronic activity-based therapy (ABT) in persons with SCI. Design Longitudinal exercise intervention. Methods Seventeen men and women with SCI (mean age = 36.1 ± 11.5 years) completed 6 months of supervised ABT consisting of load bearing, resistance training, locomotor training, and functional electrical stimulation. At baseline and after 3 and 6 months of ABT, body weight, body fat, and FFM were assessed using dual-energy X-ray absorptiometry, and fasting blood samples were obtained to assess changes in insulin-like growth factor-I (IGF-I), adiponectin, and myostatin. Results Across all subjects, there was no change (P > 0.05) in body weight, percent body fat, or FFM of the leg, arm, or trunk, whereas whole-body FFM declined (P = 0.02, 50.4 ± 8.4 to 49.2 ± 7.4 kg). No changes (P = 0.21–0.41) were demonstrated in IGF-I, adiponectin, or myostatin during the study. Conclusions Chronic ABT focusing on the lower extremity does not slow muscle atrophy or alter body fat, body mass, or regional depots of FFM in persons with SCI. Further, it does not induce beneficial changes in adiponectin, myostatin, or IGF-I. Alternative exercise-based therapies are needed in SCI to reverse muscle atrophy and minimize the onset of related health risks. PMID:25130192

  19. A case of mitochondrial cytopathy with exertion induced dystonia

    PubMed Central

    Chandra, Sadanandavalli Retnaswami; Issac, Thomas Gregor

    2015-01-01

    Paroxysmal dystonias are a group of relatively benign hyperkinetic childhood movement disorders of varied etiology. Mitochondrial diseases are well known to produce persistent dystonias as sequelae, but paroxysmal exertion induced dystonia has been reported in only one case to the best of our knowledge. Two siblings born to consanguineous parents presented with early-onset exertion induced dystonia, which was unresponsive to diphenylhydantoin and carbamazepine. A trial with valproate in one of the siblings turned fatal within 24 h. Based on this clue, the second child was investigated and found to suffer from complex I deficiency with a paternally inherited dominant nuclear DNA mutation, which is responsive to the mitochondrial cocktail. Exertion induced dystonia can be a rare manifestation of complex I deficiency. PMID:26557169

  20. A Technique for Establishing True Levels of Muscle Strength Exertion

    DTIC Science & Technology

    1980-01-01

    performed -"aximal or submaximal isometric strength exertions. The exertions tested were elbow flexion, finger flexion, knee flexion and knee...190.1 167.11 17.3350 Buttock-Knee Length (cm) 54.1 66.7 59.29 3.2106 Knee Height, sitting (cm) 46.5 58.7 52.91 2.8737 Shoulder- Elbow Length (cm) 29.3...propped the elbow of the right arm on the arm rest, extended the fore- arm directly forward so that the cuff was exactly above the load cell, with

  1. 20 CFR 404.1567 - Physical exertion requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Physical exertion requirements. 404.1567 Section 404.1567 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND DISABILITY INSURANCE (1950- ) Determining Disability and Blindness Vocational Considerations §...

  2. 20 CFR 404.1567 - Physical exertion requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Physical exertion requirements. 404.1567 Section 404.1567 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND DISABILITY INSURANCE (1950- ) Determining Disability and Blindness Vocational Considerations §...

  3. 20 CFR 404.1569a - Exertional and nonexertional limitations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Exertional and nonexertional limitations. 404.1569a Section 404.1569a Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND DISABILITY INSURANCE (1950- ) Determining Disability and Blindness Vocational Considerations §...

  4. 20 CFR 404.1567 - Physical exertion requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Physical exertion requirements. 404.1567 Section 404.1567 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND DISABILITY INSURANCE (1950- ) Determining Disability and Blindness Vocational Considerations §...

  5. 20 CFR 404.1569a - Exertional and nonexertional limitations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Exertional and nonexertional limitations. 404.1569a Section 404.1569a Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND DISABILITY INSURANCE (1950- ) Determining Disability and Blindness Vocational Considerations §...

  6. 20 CFR 404.1567 - Physical exertion requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Physical exertion requirements. 404.1567 Section 404.1567 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND DISABILITY INSURANCE (1950- ) Determining Disability and Blindness Vocational Considerations §...

  7. Perceived Exertion: An Old Exercise Tool Finds New Applications.

    ERIC Educational Resources Information Center

    Monahan, Terry

    1988-01-01

    Perceived exertion scales, based on subjective perception of energy output, are gaining respect as prescribing and monitoring tools for individual exercise programs. A review of recent literature indicates growing research interest in applications for individuals who are elderly, inactive, or subject to medical conditions such as angina. (IAH)

  8. 20 CFR 416.969a - Exertional and nonexertional limitations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., such as pain, may cause limitations of function or restrictions which limit your ability to meet... or restrictions imposed by your impairment(s) and related symptoms, such as pain, are exertional... imposed by your impairment(s) and related symptoms, such as pain, affect only your ability to meet...

  9. 20 CFR 404.1569a - Exertional and nonexertional limitations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., such as pain, may cause limitations of function or restrictions which limit your ability to meet... impairment(s) and related symptoms, such as pain, are exertional, nonexertional, or a combination of both. (b... symptoms, such as pain, affect only your ability to meet the strength demands of jobs (sitting,...

  10. 20 CFR 416.969a - Exertional and nonexertional limitations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., such as pain, may cause limitations of function or restrictions which limit your ability to meet... or restrictions imposed by your impairment(s) and related symptoms, such as pain, are exertional... imposed by your impairment(s) and related symptoms, such as pain, affect only your ability to meet...

  11. 20 CFR 404.1569a - Exertional and nonexertional limitations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., such as pain, may cause limitations of function or restrictions which limit your ability to meet... impairment(s) and related symptoms, such as pain, are exertional, nonexertional, or a combination of both. (b... symptoms, such as pain, affect only your ability to meet the strength demands of jobs (sitting,...

  12. 20 CFR 416.969a - Exertional and nonexertional limitations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., such as pain, may cause limitations of function or restrictions which limit your ability to meet... or restrictions imposed by your impairment(s) and related symptoms, such as pain, are exertional... imposed by your impairment(s) and related symptoms, such as pain, affect only your ability to meet...

  13. 20 CFR 404.1569a - Exertional and nonexertional limitations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., such as pain, may cause limitations of function or restrictions which limit your ability to meet... impairment(s) and related symptoms, such as pain, are exertional, nonexertional, or a combination of both. (b... symptoms, such as pain, affect only your ability to meet the strength demands of jobs (sitting,...

  14. Are the Measurements of Attention Allocation and Perceived Exertion Trustworthy?

    ERIC Educational Resources Information Center

    Meir, Gily; Hutchinson, Jasmin C.; Habeeb, Christine M.; Boiangin, Nataniel M.; Shaffer, Cory; Basevitch, Itay; Tenenbaum, Gershon

    2015-01-01

    Two studies examined the trustworthiness of commonly used measurement scales for ratings of perceived exertion (RPE) and state attentional focus (SAF) during exercise. In Study 1, participants (N = 24, 14 female) performed a treadmill graded-exercise test. The order of scale presentation during the task was manipulated (i.e., RPE followed by SAF…

  15. Perception of Forces Exerted by Objects in Collision Events

    ERIC Educational Resources Information Center

    White, Peter A.

    2009-01-01

    Impressions of force are commonplace in the visual perception of objects interacting. It is proposed that these impressions have their source in haptically mediated experiences of exertion of force in actions on objects. Visual impressions of force in interactions between objects occur by a kind of generalization of the proprioceptive impression…

  16. The K153R Polymorphism in the Myostatin Gene and Muscle Power Phenotypes in Young, Non-Athletic Men

    PubMed Central

    Rodríguez-Romo, Gabriel; Fiuza-Luces, Carmen; Yvert, Thomas; Gonzalez-Freire, Marta; Gómez-Gallego, Félix; Morán, María; Lucia, Alejandro

    2011-01-01

    The Lys(K)153Arg(R) polymorphism in exon 2 (rs1805086, 2379 A>G replacement) of the myostatin (MSTN) gene is a candidate to influence skeletal muscle phenotypes. We examined the association between the MSTN K153R polymorphism and ‘explosive’ leg power, assessed during sprint (30 m) and stationary jumping tests [squat (SJ) and counter-movement jumps (CMJ)] in non-athletic young adults (University students) [n = 281 (214 men); age: 21–32 years]. We also genotyped the MSTN exonic variants E164K (rs35781413), I225T, and P198A, yet no subject carried any of these variant MSTN alleles. As for the K153R polymorphism, we found only one woman with the KR genotype; thus, we presented the results only for men. The results of a one-way ANCOVA (with age, weight and height entered as covariates) showed that men with the KR genotype (n = 15) had a worse performance in vertical jumps compared with those with the KK genotype [SJ: vertical displacement of center of gravity (CG) of 35.17±1.42 vs. 39.06±0.39 cm, respectively, P = 0.009; CMJ: vertical displacement of CG of 36.44±1.50 vs. 40.63±0.41 cm, respectively, P = 0.008]. The results persisted after adjusting for multiple comparisons according to Bonferroni. Performance in 30 m sprint tests did however not differ by K153R genotypes. In summary, the MSTN K153R polymorphism is associated with the ability to produce ‘peak’ power during muscle contractions, as assessed with vertical jump tests, in young non-athletic men. Although more research is still needed, this genetic variation is among the numerous candidates to explain, alone or in combination with other polymorphisms, individual variations in muscle phenotypes. PMID:21283721

  17. Molecular characterization, expression analysis of the myostatin gene and its association with growth traits in sea cucumber (Apostichopus japonicus).

    PubMed

    Li, Shilei; Zhou, Zunchun; Dong, Ying; Sun, Hongjuan; Gao, Shan; Chen, Zhong; Yang, Aifu; Liu, Weidong; Wang, Qingzhi

    2016-11-01

    Myostatin (MSTN), also referred to as growth and differentiation factor-8 (GDF-8), is a member of the transforming growth factor-β superfamily (TGF-β) and an important negative regulator for skeletal muscle development and growth in vertebrates. However, its function is not clear in invertebrates. In this study, we cloned and analyzed the MSTN gene (Aj-MSTN) from sea cucumber (Apostichopus japonicus). The full-length cDNA sequence of Aj-MSTN gene was composed of 2912bp, which contained a 5' UTR of 487bp, an ORF of 1356bp encoding 452 amino acids and a 3' UTR of 1069bp. The structure of Aj-MSTN included a putative signal peptide, a TGF-β propeptide domain and a conserved TGF-β domain. Phylogenetic analysis showed that the Aj-MSTN gene was clustered in the same subgroup with the MSTN-like gene found in Strongylocentrotus purpuratus. Quantitative real-time PCR detection results indicated that the Aj-MSTN gene expressed widely in adult tissues and the highest expression level was observed in the body wall. At different developmental stages, the expression levels were increased significantly at early auricularia and doliolaria stages, and reached the peak at juvenile stage. Six SNPs were identified in 5' flanking region and exons of the Aj-MSTN gene. Association analysis showed that SNP-1, SNP-2 and SNP-4 had significant effects on dry body weight. The results suggested that Aj-MSTN gene could be used as a candidate gene for the selective breeding of A. japonicus.

  18. Activin-A and Myostatin Response and Steroid Regulation in Human Myometrium: Disruption of Their Signalling in Uterine Fibroid

    PubMed Central

    Bloise, Enrrico; Gray, Peter C.; Carrarelli, Patrizia; Islam, Md. Soriful; De Pascalis, Flavio; Severi, Filiberto Maria; Vale, Wylie; Castellucci, Mario; Petraglia, Felice

    2011-01-01

    Context: Investigation of activin-A (A) and myostatin (M) in human myometrium (HM) and leiomyoma (HL) will explain their involvement in human myometrial pathophysiology. Objective: We aimed to investigate A and M response and steroid regulation in HM. We also evaluated A and M expression and response in HL. Design: Tissues were analyzed and cultured. Patients: Patients included fertile (in proliferative phase) and menopausal women undergoing hysterectomy. Interventions: HM explant cultures were treated with A and M (for Smad-7 mRNA quantification) or estrogen and progesterone (for A and M mRNA quantification). A and M expression levels were also evaluated in menopausal (physiological absence of steroids) HM specimens. A and M and their receptors were evaluated in HL (n = 8, diameter 5–8 cm) compared with their matched HM. HL explants cultures were treated with A and M (for Smad7 mRNA quantification), and, to explain the absence of response, the levels of follistatin, follistatin-related gene (FLRG), and Cripto were evaluated. Results: A and M increased Smad7 expression in HM explants. A and M mRNAs were both reduced after estradiol treatment, unchanged after progesterone treatment, but were higher in menopausal than fertile (in proliferative phase) specimens. A, M, and FLRG were expressed at higher levels in HL compared with adjacent HM, whereas the receptors, follistatin, and Smad7 mRNAs resulted unchanged. Cripto mRNA was expressed only in HL. Conclusions: A and M act on human HM and are regulated by steroids. In HL there is an increase of A, M, FLRG, and Cripto expression. PMID:21177794

  19. The anabolic steroid methandienone targets the hypothalamic-pituitary-testicular axis and myostatin signaling in a rat training model.

    PubMed

    Mosler, Stephanie; Pankratz, Carlos; Seyfried, Alexis; Piechotta, Marion; Diel, Patrick

    2012-01-01

    There is increasing evidence that the biological activity of myostatin (MSTN), a negative regulator of muscle growth, is affected by training but also anabolic steroids. In this study, we analyzed the effects of the frequently abused anabolic steroid methandienone (Md) on the hypothalamic-pituitary-testicular axis and androgen-sensitive tissues in intact rats performing a treadmill training to simulate the situation of abusing athletes. The anabolic effects were correlated with the expression of members of the MSTN signaling cascade. Md treatment resulted in a significant stimulation of anabolic activity of the levator ani muscle, which was further increased by training, while prostate and seminal vesicle weights decreased in conformance with hormone concentrations of LH and testosterone. In gastrocnemius muscle, mRNA expression of genes of the MSTN signaling cascade (MSTN, Smad7 and MyoD) was reduced by training but not after Md treatment, in soleus muscle MSTN and its inhibitors, follistatin (FLST) and Smad-7 were only affected after training in combination with Md treatment. In summary, our data demonstrate that Md treatment of intact rats results in anabolic effects which are enhanced in combination with physical activity. Interestingly, the anabolic activity on the levator ani was increased in combination with training, although the levator ani muscle was not specifically stimulated by our training protocol. In the m. gastrocnemius and soleus, the anabolic effects correlate with changes in the expression patterns of genes involved in MSTN signaling. Our data provide evidence that the decrease in the weight of androgen-sensitive sexual glands, observed after Md treatment, is caused by a suppression of endogenous testosterone synthesis. These observations provide new insights into the molecular mechanisms of the interaction between anabolic steroids, training and MSTN signaling during skeletal muscle adaptation.

  20. Sex- and age-dependent expression of Pax7, Myf 5, MyoG, and Myostatin in yak skeletal muscles.

    PubMed

    Wu, G; Zhang, J; Wang, L; Xu, S; Zhou, J; Xiang, A; Yang, C

    2016-06-24

    The aim of this study was to investigate the myogenic factor mRNA expression pattern of Pax7, Myf5, MyoG, and Myostatin mRNA at different ages, sexes, and muscle tissues of Datong yaks. The expression patterns in semimembranosus (SM), quadriceps femoris (QF), and triceps muscle of arm (TM) were detected by quantitative real-time polymerase chain reaction and compared using biostatistics. The results showed that the Pax7 gene expression levels were higher in the hindquarters (SM and QF) than in the forequarters, and was higher in male compared to in female muscle (P ≤ 0.05). The Myf5 gene expression levels of male yaks were highest in QF (P ≤ 0.05), whereas the expression levels of female yaks were highest in TM (P ≤ 0.05). Female MyoG gene expression levels were higher in QF and TM compared to in male yaks. The MyoG expression was higher in all muscles at 6 months old compared to in 3-year-old muscle. The highest MSTN gene expression was found in 6-month-old TM muscle and in QF muscle of 3 years (P ≥ 0.05). In conclusion, yak muscles showed different growth patterns depending on position. At 6 months of age, the satellite cells in the male hindquarter muscles and the female forequarter muscle showed a strong proliferative ability, at the same time the satellite cells in all female muscles had a powerful differentiation ability. Hindquarter muscles appear to mainly grow at younger ages and forequarters mainly grow at older ages.

  1. Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading

    NASA Technical Reports Server (NTRS)

    Carlson, C. J.; Booth, F. W.; Gordon, S. E.

    1999-01-01

    Transgenic mice lacking a functional myostatin (MSTN) gene demonstrate greater skeletal muscle mass resulting from muscle fiber hypertrophy and hyperplasia (McPherron, A. C., A. M. Lawler, and S. -J. Lee. Nature 387: 83-90, 1997). Therefore, we hypothesized that, in normal mice, MSTN may act as a negative regulator of muscle mass. Specifically, we hypothesized that the predominately slow (type I) soleus muscle, which demonstrates greater atrophy than the fast (type II) gastrocnemius-plantaris complex (Gast/PLT), would show more elevation in MSTN mRNA abundance during hindlimb unloading (HU). Surprisingly, MSTN mRNA was not detectable in weight-bearing or HU soleus muscle, which atrophied 42% by the 7th day of HU in female ICR mice. In contrast, MSTN mRNA was present in weight-bearing Gast/PLT muscle and was significantly elevated (67%) at 1 day but not at 3 or 7 days of HU. However, the Gast/PLT muscle had only atrophied 17% by the 7th day of HU. Because the soleus is composed only of type I and IIa fibers, whereas the Gast/PLT expresses type IId/x and IIb in addition to type I and IIa, it was necessary to perform a more careful analysis of the relationship between MSTN mRNA levels and myosin heavy-chain (MHC) isoform expression (as a marker of fiber type). A significant correlation (r = 0.725, P < 0. 0005) was noted between the percentage of MHC isoform IIb expression and MSTN mRNA abundance in several muscles of the mouse hindlimb. These results indicate that MSTN expression is not strongly associated with muscle atrophy induced by HU; however, it is strongly associated with MHC isoform IIb expression in normal muscle.

  2. Phylogenetic analysis of the myostatin gene sub-family and the differential expression of a novel member in zebrafish.

    PubMed

    Kerr, Tovah; Roalson, Eric H; Rodgers, Buel D

    2005-01-01

    The myostatin (MSTN)-null phenotype in mammals is characterized by extreme gains in skeletal muscle mass or "double muscling" as the cytokine negatively regulates skeletal muscle growth. Recent attempts, however, to reproduce a comparable phenotype in zebrafish have failed. Several aspects of MSTN biology in the fishes differ significantly from those in mammals and at least two distinct paralogs have been identified in some species, which possibly suggests functional divergence between the different vertebrate classes or between fish paralogs. We therefore conducted a phylogenetic analysis of the entire MSTN gene sub-family. Maximum likelihood, Bayesian inference, and bootstrap analyses indicated a monophyletic distribution of all MSTN genes with two distinct fish clades: MSTN-1 and -2. These analyses further indicated that all Salmonid genes described are actually MSTN-1 orthologs and that additional MSTN-2 paralogs may be present in most, if not all, teleosts. An additional zebrafish homolog was identified by BLAST searches of the zebrafish Hierarchical Tets Generation System database and was subsequently cloned. Comparative sequence analysis of both genes (zebrafish MSTN (zfMSTN)-1 and -2) revealed many differences, primarily within the latency-associated peptide regions, but also within the bioactive domains. The 2-kb promoter region of zfMSTN-2 contained many putative cis regulatory elements that are active during myogenesis, but are lacking in the zfMSTN-1 promoter. In fact, zfMSTN-2 expression was limited to the early stages of somitogenesis, whereas zfMSTN-1 was expressed throughout embryogenesis. These data suggest that zfMSTN-2 may be more closely associated with skeletal muscle growth and development. They also resolve the previous ambiguity in classification of fish MSTN genes.

  3. The association of genetic variations in the promoter region of myostatin gene with growth traits in Duroc pigs.

    PubMed

    Tu, Po-An; Shiau, Jen-Wen; Ding, Shih-Torng; Lin, En-Chung; Wu, Ming-Che; Wang, Pei-Hwa

    2012-01-01

    Average daily gain (ADG) and feed efficiency (FE) are important factors for assessing productivity in farm animals. Myostatin (MSTN), previously called GDF8, is a member of transforming growth factor β (TGFβ) superfamily. It is a negative regulator for both embryonic development and adult homeostasis of skeletal muscle. In this study, the genotypes of MSTN g.435G > A and g.447A > G SNPs in Duroc pigs were determined. The 435GG/447AA individually had significantly higher ADG (P < 0.01), body weight at 70 d (P < 0.05) and 150 d (P < 0.01), and a lower age at 110 kg (P < 0.01) than 435AA/447GG individuals. Dose dependent genetic additive effects were found for the negative effects of the 435A/447 G allele for ADG and body weight on 70 d and 150 d. The 435A/447 G allele also increased the age at 110 kg about 1.47 and 4.53% for 1 and 2 copies, respectively. The MSTN 435 G/447A allele increased the age at 110 kg about 1.41 and 4.47% for 1 and 2 copies, respectively. Overall, the two mutated MSTN 435A/447G allele had negative effects on ADG (P < 0.01), body weight at 70 d (P < 0.05), and 150 d (P < 0.001) and increased the age at 110 kg (P < 0.001). The present study provided evidence that MSTN g.435G > A and g.447A > G affected growth in Duroc pigs. The effects of the mutated alleles were additive with the maximal effects resulting from two copies of the wild-type allele. Selection for the 435 G/447A allele is expected to increase ADG, body weight and decrease the age at 110 kg in Duroc pigs and might be used in porcine breeding programs.

  4. Gene Co-Expression Network Analysis Provides Novel Insights into Myostatin Regulation at Three Different Mouse Developmental Timepoints

    PubMed Central

    Yang, Xuerong; Koltes, James E.; Park, Carissa A.; Chen, Daiwen; Reecy, James M.

    2015-01-01

    Myostatin (Mstn) knockout mice exhibit large increases in skeletal muscle mass. However, relatively few of the genes that mediate or modify MSTN effects are known. In this study, we performed co-expression network analysis using whole transcriptome microarray data from MSTN-null and wild-type mice to identify genes involved in important biological processes and pathways related to skeletal muscle and adipose development. Genes differentially expressed between wild-type and MSTN-null mice were further analyzed for shared DNA motifs using DREME. Differentially expressed genes were identified at 13.5 d.p.c. during primary myogenesis and at d35 during postnatal muscle development, but not at 17.5 d.p.c. during secondary myogenesis. In total, 283 and 2034 genes were differentially expressed at 13.5 d.p.c. and d35, respectively. Over-represented transcription factor binding sites in differentially expressed genes included SMAD3, SP1, ZFP187, and PLAGL1. The use of regulatory (RIF) and phenotypic (PIF) impact factor and differential hubbing co-expression analyses identified both known and potentially novel regulators of skeletal muscle growth, including Apobec2, Atp2a2, and Mmp13 at d35 and Sox2, Tmsb4x, and Vdac1 at 13.5 d.p.c. Among the genes with the highest PIF scores were many fiber type specifying genes. The use of RIF, PIF, and differential hubbing analyses identified both known and potentially novel regulators of muscle development. These results provide new details of how MSTN may mediate transcriptional regulation as well as insight into novel regulators of MSTN signal transduction that merit further study regarding their physiological roles in muscle and adipose development. PMID:25695797

  5. Myostatin regulates fiber-type composition of skeletal muscle by regulating MEF2 and MyoD gene expression.

    PubMed

    Hennebry, Alex; Berry, Carole; Siriett, Victoria; O'Callaghan, Paul; Chau, Linda; Watson, Trevor; Sharma, Mridula; Kambadur, Ravi

    2009-03-01

    Myostatin (Mstn) is a secreted growth factor belonging to the tranforming growth factor (TGF)-beta superfamily. Inactivation of murine Mstn by gene targeting, or natural mutation of bovine or human Mstn, induces the double muscling (DM) phenotype. In DM cattle, Mstn deficiency increases fast glycolytic (type IIB) fiber formation in the biceps femoris (BF) muscle. Using Mstn null ((-/-)) mice, we suggest a possible mechanism behind Mstn-mediated fiber-type diversity. Histological analysis revealed increased type IIB fibers with a concomitant decrease in type IIA and type I fibers in the Mstn(-/-) tibialis anterior and BF muscle. Functional electrical stimulation of Mstn(-/-) BF revealed increased fatigue susceptibility, supporting increased type IIB fiber content. Given the role of myocyte enhancer factor 2 (MEF2) in oxidative type I fiber formation, MEF2 levels in Mstn(-/-) tissue were quantified. Results revealed reduced MEF2C protein in Mstn(-/-) muscle and myoblast nuclear extracts. Reduced MEF2-DNA complex was also observed in electrophoretic mobility-shift assay using Mstn(-/-) nuclear extracts. Furthermore, reduced expression of MEF2 downstream target genes MLC1F and calcineurin were found in Mstn(-/-) muscle. Conversely, Mstn addition was sufficient to directly upregulate MLC promoter-enhancer activity in cultured myoblasts. Since high MyoD levels are seen in fast fibers, we analyzed MyoD levels in the muscle. In contrast to MEF2C, MyoD levels were increased in Mstn(-/-) muscle. Together, these results suggest that while Mstn positively regulates MEF2C levels, it negatively regulates MyoD expression in muscle. We propose that Mstn could regulate fiber-type composition by regulating the expression of MEF2C and MyoD during myogenesis.

  6. Autophagy inhibits oxidative stress and tumor suppressors to exert its dual effect on hepatocarcinogenesis.

    PubMed

    Tian, Y; Kuo, C-F; Sir, D; Wang, L; Govindarajan, S; Petrovic, L M; Ou, J-H J

    2015-06-01

    The role of autophagy in carcinogenesis is controversial and apparently complex. By using mice with hepatocyte-specific knockout of Atg5, a gene essential for autophagy, we longitudinally studied the role of autophagy in hepatocarcinogenesis. We found that impairing autophagy in hepatocytes would induce oxidative stress and DNA damage, followed by the initiation of hepatocarcinogenesis, which could be suppressed by the antioxidant N-acetylcysteine. Interestingly, these mice developed only benign tumors with no hepatocellular carcinoma (HCC), even after the treatment with diethylnitrosamine, which induced HCC in wild-type mice. The inability of mice to develop HCC when autophagy was impaired was associated with the induction of multiple tumor suppressors including p53. Further analysis indicated that the induction of p53 was associated with the DNA-damage response. Tumorigenesis studies using an established liver tumor cell line confirmed a positive role of autophagy in tumorigenesis and a negative role of p53 in this process when autophagy was impaired. Our studies thus demonstrate that autophagy is required to maintain healthy mitochondria and to reduce oxidative stress and DNA damage to prevent the initiation of hepatocarcinogenesis. However, once hepatocarcinogenesis has been initiated, its presence is also required to suppress the expression of tumor suppressors to promote the development of HCC.

  7. Identification of the myostatin locus (MSTN) as having a major effect on optimum racing distance in the Thoroughbred horse in the USA.

    PubMed

    Binns, M M; Boehler, D A; Lambert, D H

    2010-12-01

    One hundred and eighty-nine Thoroughbred horses that had won Graded Stakes races in North America were genotyped with the Illumina Equine SNP50 bead chip. Association tests using PLINK to determine whether any SNPs were associated with optimum racing distance (7 furlongs and under compared to 8-10 furlongs) identified a locus on ECA18 that was statistically significant (-log 10 EMP2=1.63) at the genome-wide level following permutation analysis (10,000 permutations). Bioinformatic analysis revealed that the two ECA18 SNPs with the highest statistical significance spanned the MSTN (myostatin) locus. Mutations in myostatin in several mammalian species have been associated with increased muscling, with a preferential increase in fast glycolytic type IIB fibres, which would increase power potential. Thoroughbred horses that race over sprint distances, which are 5-7 furlongs, are often characterized by impressive hind quarter musculature, strongly suggesting that the association observed between the ECA18 SNPs and optimum race distance is mediated through MSTN.

  8. Characterization of rainbow trout myostatin-2 genes (rtMSTN-2a and -2b): genomic organization, differential expression, and pseudogenization.

    PubMed

    Garikipati, Dilip K; Gahr, Scott A; Roalson, Eric H; Rodgers, Buel D

    2007-05-01

    Myostatin is an extremely potent negative regulator of vertebrate skeletal muscle development. A phylogenetic analysis suggests that salmonids should possess four distinct genes, although only MSTN-1 orthologs have been characterized. Described herein are the rainbow trout (rt) MSTN-2a and -2b genes and subsequence analysis of their promoters and their quantitative expression profiles. Both genes are similarly organized, contain several putative myogenic response elements, and are legitimate MSTN-2 orthologs based on Bayesian analyses. However, rtMSTN-2b contains two in-frame stop codons within the first exon and unspliced variants of both transcripts were expressed in a tissue-specific manner. Complete splicing of rtMSTN-2a occurred only in brain, where expression is highest, whereas rtMSTN-2b transcripts were mostly present in unspliced forms. The presence of stop codons in the rtMSTN-2b open reading frame and the expression of mostly unspliced transcripts indicate that this particular homolog is a pseudogene. These results confirm our previous phylogenetic analysis and suggest that all salmonids likely possess four distinct myostatin genes. The tissue-specific expression and differential processing of both rtMSTN-2 transcripts as well the pseudogenization of rtMSTN-2b may reflect compensatory and adaptive responses to tetraploidization and may help limit rtMSTN-2a's influences primarily to neural tissue.

  9. Camphene, a Plant Derived Monoterpene, Exerts Its Hypolipidemic Action by Affecting SREBP-1 and MTP Expression

    PubMed Central

    Vallianou, Ioanna; Hadzopoulou-Cladaras, Margarita

    2016-01-01

    The control of hyperlipidemia plays a central role in cardiovascular disease. Previously, we have shown that camphene, a constituent of mastic gum oil, lowers cholesterol and triglycerides (TG) in the plasma of hyperlipidemic rats without affecting HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. In the present study, we examine the mechanism by which camphene exerts its hypolipidemic action. We evaluated the effect of camphene on the de novo synthesis of cholesterol and TG from [14C]-acetate in HepG2 cells, along with the statin mevinolin. Camphene inhibited the biosynthesis of cholesterol in a concentration-dependent manner, and a maximal inhibition of 39% was observed at 100 μM while mevinolin nearly abolished cholesterol biosynthesis. Moreover, treatment with camphene reduced TG by 34% and increased apolipoprotein AI expression. In contrast, mevinolin increased TG by 26% and had a modest effect on apolipoprotein AI expression. To evaluate the mode of action of camphene, we examined its effects on the expression of SREBP-1, which affects TG biosynthesis and SREBP-2, which mostly affects sterol synthesis. Interestingly, camphene increased the nuclear translocation of the mature form of SREBP-1 while mevinolin was found to increase the amount of the mature form of SREBP-2. The effect of camphene is most likely regulated through SREBP-1 by affecting MTP levels in response to a decrease in the intracellular cholesterol. We propose that camphene upregulates SREBP-1 expression and MTP inhibition is likely to be a probable mechanism whereby camphene exerts its hypolipidemic effect. PMID:26784701

  10. Camphene, a Plant Derived Monoterpene, Exerts Its Hypolipidemic Action by Affecting SREBP-1 and MTP Expression.

    PubMed

    Vallianou, Ioanna; Hadzopoulou-Cladaras, Margarita

    2016-01-01

    The control of hyperlipidemia plays a central role in cardiovascular disease. Previously, we have shown that camphene, a constituent of mastic gum oil, lowers cholesterol and triglycerides (TG) in the plasma of hyperlipidemic rats without affecting HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. In the present study, we examine the mechanism by which camphene exerts its hypolipidemic action. We evaluated the effect of camphene on the de novo synthesis of cholesterol and TG from [14C]-acetate in HepG2 cells, along with the statin mevinolin. Camphene inhibited the biosynthesis of cholesterol in a concentration-dependent manner, and a maximal inhibition of 39% was observed at 100 μM while mevinolin nearly abolished cholesterol biosynthesis. Moreover, treatment with camphene reduced TG by 34% and increased apolipoprotein AI expression. In contrast, mevinolin increased TG by 26% and had a modest effect on apolipoprotein AI expression. To evaluate the mode of action of camphene, we examined its effects on the expression of SREBP-1, which affects TG biosynthesis and SREBP-2, which mostly affects sterol synthesis. Interestingly, camphene increased the nuclear translocation of the mature form of SREBP-1 while mevinolin was found to increase the amount of the mature form of SREBP-2. The effect of camphene is most likely regulated through SREBP-1 by affecting MTP levels in response to a decrease in the intracellular cholesterol. We propose that camphene upregulates SREBP-1 expression and MTP inhibition is likely to be a probable mechanism whereby camphene exerts its hypolipidemic effect.

  11. Dehydroepiandrosterone exerts antiglucocorticoid action on human preadipocyte proliferation, differentiation, and glucose uptake

    PubMed Central

    McNelis, Joanne C.; Manolopoulos, Konstantinos N.; Gathercole, Laura L.; Bujalska, Iwona J.; Stewart, Paul M.; Tomlinson, Jeremy W.

    2013-01-01

    Glucocorticoids increase adipocyte proliferation and differentiation, a process underpinned by the local reactivation of inactive cortisone to active cortisol within adipocytes catalyzed by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). The adrenal sex steroid precursor dehydroepiandrosterone (DHEA) has been shown to inhibit 11β-HSD1 in murine adipocytes; however, rodent adrenals do not produce DHEA physiologically. Here, we aimed to determine the effects and underlying mechanisms of the potential antiglucocorticoid action of DHEA and its sulfate ester DHEAS in human preadipocytes. Utilizing a human subcutaneous preadipocyte cell line, Chub-S7, we examined the metabolism and effects of DHEA in human adipocytes, including adipocyte proliferation, differentiation, 11β-HSD1 expression, and activity and glucose uptake. DHEA, but not DHEAS, significantly inhibited preadipocyte proliferation via cell cycle arrest in the G1 phase independent of sex steroid and glucocorticoid receptor activation. 11β-HSD1 oxoreductase activity in differentiated adipocytes was inhibited by DHEA. DHEA coincubated with cortisone significantly inhibited preadipocyte differentiation, which was assessed by the expression of markers of early (LPL) and terminal (G3PDH) adipocyte differentiation. Coincubation with cortisol, negating the requirement for 11β-HSD1 oxoreductase activity, diminished the inhibitory effect of DHEA. Further consistent with glucocorticoid-opposing effects of DHEA, insulin-independent glucose uptake was significantly enhanced by DHEA treatment. DHEA increases basal glucose uptake and inhibits human preadipocyte proliferation and differentiation, thereby exerting an antiglucocorticoid action. DHEA inhibition of the amplification of glucocorticoid action mediated by 11β-HSD1 contributes to the inhibitory effect of DHEA on human preadipocyte differentiation. PMID:24022868

  12. Riluzole exerts central and peripheral modulating effects in amyotrophic lateral sclerosis.

    PubMed

    Vucic, Steve; Lin, Cindy Shin-Yi; Cheah, Benjamin C; Murray, Jenna; Menon, Parvathi; Krishnan, Arun V; Kiernan, Matthew C

    2013-05-01

    Riluzole, a benzothiazole derivative, has been shown to be effective in prolonging survival in amyotrophic lateral sclerosis. The mechanisms by which riluzole exerts neuroprotective effects in amyotrophic lateral sclerosis remains to be fully elucidated, although inhibition of glutamatergic transmission and modulation of Na+ channel function have been proposed. In an attempt to determine the mechanisms by which riluzole exerts neuroprotective effects, in particular to dissect the relative contributions of inhibition of glutamatergic transmission and Na+ channel modulation, the present study utilized a combination of cortical and peripheral axonal excitability approaches to monitor changes in excitability and function in patients with amyotrophic lateral sclerosis. Cortical assessment was undertaken by utilising the threshold tracking transcranial magnetic stimulation (TMS) technique and combined with peripheral axonal excitability studies in 25 patients with amyotrophic lateral sclerosis. Studies were performed at baseline and repeated when patients were receiving riluzole 100 mg/day. At the time of second testing all patients were tolerating the medication well. Motor evoked potential and compound muscle action potential responses were recorded over the abductor pollicis brevis muscle. At baseline, features of cortical hyperexcitability were evident in patients with amyotrophic lateral sclerosis, indicated by marked reduction in short interval intracortical inhibition (P < 0.001) and cortical silent period duration (P < 0.001), as well as an increase in the motor evoked potential amplitude (P < 0.01). Riluzole therapy partially normalized cortical excitability by significantly increasing short interval intracortical inhibition (short interval intracortical inhibitionbaseline 0.5 ± 1.8%; short interval intracortical inhibitionON riluzole 7.9 ± 1.7%, P < 0.01). In contrast, riluzole did not exert any modulating effect on cortical silent period duration (P = 0

  13. Endoscopic Thermal Fasciotomy for Chronic Exertional Compartment Syndrome

    PubMed Central

    Voleti, Pramod B.; Lebrun, Drake G.; Roth, Cameron A.; Kelly, John D.

    2015-01-01

    Chronic exertional compartment syndrome is an activity-induced condition that occurs when intracompartmental pressures within an osteofascial envelope increase during exercise, leading to reversible ischemic symptoms such as pain, cramping, numbness, or weakness. Nonoperative treatment options for this condition have shown limited success and are often undesirable for the patient given the requirement for activity modification. Traditional surgical treatment options involving open or subcutaneous fasciotomies have more favorable results, but these techniques are associated with significant morbidity. Endoscopically assisted fasciotomy techniques afford the advantages of being minimally invasive, providing excellent visualization, and allowing accelerated rehabilitation. The purpose of this article is to describe a technique for performing endoscopically assisted fasciotomies for chronic exertional compartment syndrome of the lower leg using an entirely endoscopic thermal ablating device. The endoscopic thermal fasciotomy technique is associated with minimal morbidity, ensures excellent hemostasis, and affords an early return to sports. PMID:26900549

  14. Exertional dyspnea as a symptom of infrarenal aortic occlusive disease.

    PubMed

    Schott, Stacey L; Carreiro, Fernanda Porto; Harkness, James R; Malas, Mahmoud B; Sozio, Stephen M; Zakaria, Sammy

    2014-06-01

    Advanced atherosclerosis of the aorta can cause severe ischemia in the kidneys, refractory hypertension, and claudication. However, no previous reports have clearly associated infrarenal aortic stenosis with shortness of breath. A 77-year-old woman with hypertension and hyperlipidemia presented with exertional dyspnea. Despite extensive testing and observation, no apparent cause for this patient's dyspnea was found. Images revealed severe infrarenal aortic stenosis. After the patient underwent stenting of the aortic occlusion, she had immediate symptomatic improvement and complete resolution of her dyspnea within one month. Twelve months after vascular intervention, the patient remained asymptomatic. In view of the distinct and lasting elimination of dyspnea after angioplasty and stenting of a nearly occluded infrarenal aortic lesion, we hypothesize that infrarenal aortic stenosis might be a treatable cause of exertional dyspnea. Clinicians should consider infrarenal aortic stenosis as a possible cause of dyspnea. Treatment of the stenosis might relieve symptoms.

  15. Wall pressure exerted by hydrogenation of sodium aluminum hydride.

    SciTech Connect

    Perras, Yon E.; Dedrick, Daniel E.; Zimmerman, Mark D.

    2009-06-01

    Wall pressure exerted by the bulk expansion of a sodium aluminum hydride bed was measured as a function of hydrogen content. A custom apparatus was designed and loaded with sodium alanates at densities of 1.0, 1.1, and 1.16 g/cc. Four complete cycles were performed to identify variations in measured pressure. Results indicated poor correlation between exerted pressure and hydrogen capacity of the sodium alanate beds. Mechanical pressure due to the hydrogenation of sodium alanates does not influence full-scale system designs as it falls within common design factors of safety. Gas pressure gradients within the porous solid were identified and may limit reaction rates, especially for high aspect ratio beds.

  16. A Virtual Rat for Simulating Environmental and Exertional Heat Stress

    DTIC Science & Technology

    2014-10-02

    A virtual rat for simulating environmental and exertional heat stress Vineet Rakesh,1 X Jonathan D. Stallings,2 and Jaques Reifman1 1Department of...Health Research, Fort Detrick, Maryland Submitted 8 July 2014; accepted in final form 18 September 2014 Rakesh V, Stallings JD, Reifman J. A virtual rat ...different heat-stress conditions. To this end, we used our previously published virtual rat , which is capable of computing the spatiotemporal

  17. Failing phrenics: an obscure cause of exertional dyspnea

    PubMed Central

    Rafiq, Arsalan; Ijaz, Mohsin; Tariq, Hassan; Vakde, Trupti; Duncalf, Richard

    2016-01-01

    Abstract Introduction: Idiopathic phrenic nerve palsy is a rare cause of exertional dyspnea. We present a case of a patient presenting with worsening dyspnea of an unknown etiology found to be related to bilateral phrenic nerve palsy. Discussion: Forty-two-year-old man presented to our emergency department with exertional dyspnea, orthopnea, and a left lower lobe consolidation treated initially as bronchitis by his primary physician as an outpatient, then subsequently as pneumonia at another institution, with no improvement in symptomatology. After admission to our hospital, CT chest demonstrated only supradiaphragmatic atelectatic changes. Echocardiography was normal. Bronchoscopy was contemplated however the patient could not lie flat. A fluoroscopic sniff test demonstrated diaphragmatic dysfunction and pulmonary function tests revealed restrictive pulmonary disease with evidence of neuromuscular etiology. Nerve conduction studies confirmed bilateral phrenic neuropathy. He was referred to a specialized neuromuscular disease center where subsequent workup did not demonstrate any specific etiology. A sleep study confirmed sleep disordered breathing suggestive of diaphragmatic paralysis and he was discharged on bi-level positive pressure ventilation. Conclusion: This is a unique case of exertional dyspnea and orthopnea from diaphragmatic paresis caused by bilateral phrenic nerve palsy where the initial workup for pulmonary and cardiovascular etiologies was essentially unremarkable. Shortness of breath and orthopnea caused by phrenic neuropathy is a rare condition, yet has a variety of etiologies. Our case suggests a template to the diagnostic approach, management, and follow up of bilateral phrenic nerve palsy. PMID:27442657

  18. Exercise, physical activity, and exertion over the business cycle.

    PubMed

    Colman, Gregory; Dave, Dhaval

    2013-09-01

    Shifts in time and income constraints over economic expansions and contractions would be expected to affect individuals' behaviors. We explore the impact of the business cycle on individuals' exercise, time use, and total physical exertion, utilizing information on 112,000 individual records from the 2003-2010 American Time Use Surveys. In doing so, we test a key causal link that has been hypothesized in the relation between unemployment and health, but not heretofore assessed. Using more precise measures of exercise (and other activities) than previous studies, we find that as work-time decreases during a recession, recreational exercise, TV-watching, sleeping, childcare, and housework increase. This, however, does not compensate for the decrease in work-related exertion due to job-loss, and total physical exertion declines. These effects are strongest among low-educated men, which is validating given that employment in the Great Recession has declined most within manufacturing, mining, and construction. We also find evidence of intra-household spillover effects, wherein individuals respond to shifts in spousal employment conditional on their own labor supply. The decrease in total physical activity during recessions is especially problematic for vulnerable populations concentrated in boom-and-bust industries, and may have longer-term effects on obesity and related health outcomes.

  19. Activity Exerted by a Testosterone Derivative on Myocardial Injury Using an Ischemia/Reperfusion Model

    PubMed Central

    Lauro, Figueroa-Valverde; Francisco, Díaz-Cedillo; Elodia, García-Cervera; Eduardo, Pool-Gómez; Maria, López-Ramos; Marcela, Rosas-Nexticapa; Lenin, Hau-Heredia; Betty, Sarabia-Alcocer; Monica, Velázquez-Sarabia Betty

    2014-01-01

    Some reports indicate that several steroid derivatives have activity at cardiovascular level; nevertheless, there is scarce information about the activity exerted by the testosterone derivatives on cardiac injury caused by ischemia/reperfusion (I/R). Analyzing these data, in this study, a new testosterone derivative was synthetized with the objective of evaluating its effect on myocardial injury using an ischemia/reperfusion model. In addition, perfusion pressure and coronary resistance were evaluated in isolated rat hearts using the Langendorff technique. Additionally, molecular mechanism involved in the activity exerted by the testosterone derivative on perfusion pressure and coronary resistance was evaluated by measuring left ventricular pressure in the absence or presence of the following compounds: flutamide, prazosin, metoprolol, nifedipine, indomethacin, and PINANE TXA2. The results showed that the testosterone derivative significantly increases (P = 0.05) the perfusion pressure and coronary resistance in isolated heart. Other data indicate that the testosterone derivative increases left ventricular pressure in a dose-dependent manner (0.001–100 nM); however, this phenomenon was significantly inhibited (P = 0.06) by indomethacin and PINANE-TXA2  (P = 0.05) at a dose of 1 nM. In conclusion, these data suggest that testosterone derivative induces changes in the left ventricular pressure levels through thromboxane receptor activation. PMID:24839599

  20. Activity exerted by a testosterone derivative on myocardial injury using an ischemia/reperfusion model.

    PubMed

    Lauro, Figueroa-Valverde; Francisco, Díaz-Cedillo; Elodia, García-Cervera; Eduardo, Pool-Gómez; Maria, López-Ramos; Marcela, Rosas-Nexticapa; Lenin, Hau-Heredia; Betty, Sarabia-Alcocer; Monica, Velázquez-Sarabia Betty

    2014-01-01

    Some reports indicate that several steroid derivatives have activity at cardiovascular level; nevertheless, there is scarce information about the activity exerted by the testosterone derivatives on cardiac injury caused by ischemia/reperfusion (I/R). Analyzing these data, in this study, a new testosterone derivative was synthetized with the objective of evaluating its effect on myocardial injury using an ischemia/reperfusion model. In addition, perfusion pressure and coronary resistance were evaluated in isolated rat hearts using the Langendorff technique. Additionally, molecular mechanism involved in the activity exerted by the testosterone derivative on perfusion pressure and coronary resistance was evaluated by measuring left ventricular pressure in the absence or presence of the following compounds: flutamide, prazosin, metoprolol, nifedipine, indomethacin, and PINANE TXA2. The results showed that the testosterone derivative significantly increases (P = 0.05) the perfusion pressure and coronary resistance in isolated heart. Other data indicate that the testosterone derivative increases left ventricular pressure in a dose-dependent manner (0.001-100 nM); however, this phenomenon was significantly inhibited (P = 0.06) by indomethacin and PINANE-TXA2  (P = 0.05) at a dose of 1 nM. In conclusion, these data suggest that testosterone derivative induces changes in the left ventricular pressure levels through thromboxane receptor activation.

  1. Carvacrol Exerts Neuroprotective Effects Via Suppression of the Inflammatory Response in Middle Cerebral Artery Occlusion Rats.

    PubMed

    Li, Zhenlan; Hua, Cong; Pan, Xiaoqiang; Fu, Xijia; Wu, Wei

    2016-08-01

    Increasing evidence demonstrates that inflammation plays an important role in cerebral ischemia. Carvacrol, a monoterpenic phenol, is naturally occurring in various plants belonging to the family Lamiaceae and exerts protective effects in a mice model of focal cerebral ischemia/reperfusion injury by reducing infarct volume and decreasing the expression of cleaved caspase-3. However, the anti-inflammatory mechanisms by which carvacrol protect the brain have yet to be fully elucidated. We investigated the effects of carvacrol on inflammatory reaction and inflammatory mediators in middle cerebral artery occlusion rats. The results of the present study showed that carvacrol inhibited the levels of inflammatory cytokines and myeloperoxidase (MPO) activity, as well as the expression of iNOS and COX-2. It also increased SOD activity and decreased MDA level in ischemic cortical tissues. In addition, carvacrol treatment suppressed the ischemia/reperfusion-induced increase in the protein expression of nuclear NF-kB p65. In conclusion, we have shown that carvacrol inhibits the inflammatory response via inhibition of the NF-kB signaling pathway in a rat model of focal cerebral ischemia. Therefore, carvacrol may be a potential therapeutic agent for the treatment of cerebral ischemia injury.

  2. The novel combination of chlorpromazine and pentamidine exerts synergistic antiproliferative effects through dual mitotic action.

    PubMed

    Lee, Margaret S; Johansen, Lisa; Zhang, Yanzhen; Wilson, Amy; Keegan, Mitchell; Avery, William; Elliott, Peter; Borisy, Alexis A; Keith, Curtis T

    2007-12-01

    Combination therapy has proven successful in treating a wide variety of aggressive human cancers. Historically, combination treatments have been discovered through serendipity or lengthy trials using known anticancer agents with similar indications. We have used combination high-throughput screening to discover the unexpected synergistic combination of an antiparasitic agent, pentamidine, and a phenothiazine antipsychotic, chlorpromazine. This combination, CRx-026, inhibits the growth of tumor cell lines in vivo more effectively than either pentamidine or chlorpromazine alone. Here, we report that CRx-026 exerts its antiproliferative effect through synergistic dual mitotic action. Chlorpromazine is a potent and specific inhibitor of the mitotic kinesin KSP/Eg5 and inhibits tumor cell proliferation through mitotic arrest and accumulation of monopolar spindles. Pentamidine treatment results in chromosomal segregation defects and delayed progression through mitosis, consistent with inhibition of the phosphatase of regenerating liver family of phosphatases. We also show that CRx-026 synergizes in vitro and in vivo with the microtubule-binding agents paclitaxel and vinorelbine. These data support a model where dual action of pentamidine and chlorpromazine in mitosis results in synergistic antitumor effects and show the importance of systematic screening for combinations of targeted agents.

  3. Myostatin (MSTN) gene duplications in Atlantic salmon (Salmo salar): evidence for different selective pressure on teleost MSTN-1 and -2.

    PubMed

    Ostbye, Tone-Kari K; Wetten, Ola F; Tooming-Klunderud, Ave; Jakobsen, Kjetill S; Yafe, Anat; Etzioni, Shulamit; Moen, Thomas; Andersen, Oivind

    2007-11-15

    Whereas the negative muscle regulator myostatin (MSTN) in mammals is almost exclusively expressed in the muscle by a single encoding gene, teleost fish possess at least two MSTN genes which are differentially expressed in both muscular and non-muscular tissues. Duplicated MSTN-1 genes have previously been identified in the tetraploid salmonid genome. From Atlantic salmon we succeeded in isolating the paralogous genes of MSTN-2, which shared about 70% identity with MSTN-1a and -1b. The salmon MSTN-2a cDNA encoded a predicted protein of 363 residues and included the conserved C-terminal bioactive domain. MSTN-2a seemed to be primarily expressed in the brain, and a functional role of teleost MSTN-2 in the neurogenesis similar to the inhibitory action of the closely related GDF-11 in the mammalian brain was proposed. In contrast, a frame-shift mutation in exon 1 of salmon MSTN-2b would lead to the synthesis of a putatively non-functional truncated protein. The absence of processed MSTN-2b mRNA in the examined tissues indicated that this gene has become a non-functional pseudogene. The differential, but partially overlapping, expression patterns of salmon MSTN-2a, -1a and -1b in muscular and non-muscular tissues are probably due to the different arrangement of the potential cis-acting regulatory elements identified in their putative promoter regions. Single and paired E-boxes in the MSTN-1b promoter were shown to bind both homo-and hetero-dimers of the myogenic regulatory factor MyoD and E47 in vitro of importance for initiating the myogenic program. Analyses of nucleotide substitution patterns indicated that the teleost MSTNs essentially have evolved under purifying selection, but a subset of amino acid sites under positive selective pressure were identified within the MSTN1 branch. The results may reflect the evolutionary forces related to adoption of the different functional roles proposed for the teleost MSTN isoforms. The phylogenetic analysis of multiple

  4. Icaritin, a novel FASN inhibitor, exerts anti-melanoma activities through IGF-1R/STAT3 signaling

    PubMed Central

    Wu, Jinfeng; Du, Juan; Fu, Xiuqiong; Liu, Bin; Cao, Huihui; Li, Ting; Su, Tao; Xu, Jinhua; Tse, Anfernee Kai-Wing; Yu, Zhi-Ling

    2016-01-01

    Icaritin (IT) is a flavonoid isolated from Herba Epimedii. In this study, we evaluated the anti-melanoma activities of IT, and determined its cytotoxic mechanism. We found that IT exerted cytotoxicity to melanoma cells. Furthermore, IT induced melanoma cell apoptosis, which was accompanied with PARP cleavage. Mechanistically, IT suppressed p-STAT3 (tyr705) level in parallel with increases of p-STAT3 (ser727), p-ERK and p-AKT. IT significantly inhibited STAT3 nuclear translocation and reduced the levels of STAT3 -targeted genes. IT also inhibited IGF-1-induced STAT3 activation through down-regulation of total IGF-1R level. No dramatic changes in IGF-1R mRNA levels were observed in IT-treated cells, suggesting that IT acted primarily at a post-transcriptional level. Using molecular docking analysis, IT was identified as a novel fatty acid synthase (FASN) inhibitor. We found that IT reduced the level of total IGF-1R via FASN inhibition. In summary, we reported that IT exerted anti-melanoma activities, and these effects were partially due to inhibition of FASN/IGF-1R/STAT3 signaling. PMID:27323414

  5. Analysis of stimuli triggering attacks of paroxysmal dystonia induced by exertion

    PubMed Central

    Meyer, B; Irlbacher, K; Meierkord, H

    2001-01-01

    In a patient with a familial form of paroxysmal exertion induced dyskinesia (PED), the efficacy of different stimuli and manoeuvres in triggering dystonic attacks in the arm was studied. As a new approach, transcranial magnetic stimulation (TMS) of the motor cortex was used to trigger motor paroxysms and to monitor cortical excitability during attacks. Motor paroxysms could be provoked by muscle vibration, passive movements, TMS, magnetic stimulation of the brachial plexus, and electrical nerve stimulation. Sham stimulation over the motor cortex and thermal and tactile cutaneous stimuli were ineffective in triggering attacks. It is concluded that dystonic attacks are triggered by proprioceptive afferents rather than cutaneous stimuli or the descending motor command itself. Outside the attacks, motor cortical excitatory and inhibitory neuronal mechanisms as assessed by TMS (response threshold and amplitudes, duration of the contralateral and ipsilateral silent period, corticocortical inhibition, and facilitation) were normal, which underlines the paroxysmal character of the disorder.

 PMID:11160479

  6. A virtual rat for simulating environmental and exertional heat stress.

    PubMed

    Rakesh, Vineet; Stallings, Jonathan D; Reifman, Jaques

    2014-12-01

    Severe cases of environmental or exertional heat stress can lead to varying degrees of organ dysfunction. To understand heat-injury progression and develop efficient management and mitigation strategies, it is critical to determine the thermal response in susceptible organs under different heat-stress conditions. To this end, we used our previously published virtual rat, which is capable of computing the spatiotemporal temperature distribution in the animal, and extended it to simulate various heat-stress scenarios, including 1) different environmental conditions, 2) exertional heat stress, 3) circadian rhythm effect on the thermal response, and 4) whole body cooling. Our predictions were consistent with published in vivo temperature measurements for all cases, validating our simulations. We observed a differential thermal response in the organs, with the liver experiencing the highest temperatures for all environmental and exertional heat-stress cases. For every 3°C rise in the external temperature from 40 to 46°C, core and organ temperatures increased by ∼0.8°C. Core temperatures increased by 2.6 and 4.1°C for increases in exercise intensity from rest to 75 and 100% of maximal O2 consumption, respectively. We also found differences as large as 0.8°C in organ temperatures for the same heat stress induced at different times during the day. Even after whole body cooling at a relatively low external temperature (1°C for 20 min), average organ temperatures were still elevated by 2.3 to 2.5°C compared with normothermia. These results can be used to optimize experimental protocol designs, reduce the amount of animal experimentation, and design and test improved heat-stress prevention and management strategies.

  7. Pressure garment design tool to monitor exerted pressures.

    PubMed

    Macintyre, Lisa; Ferguson, Rhona

    2013-09-01

    Pressure garments are used in the treatment of hypertrophic scarring following serious burns. The use of pressure garments is believed to hasten the maturation process, reduce pruritus associated with immature hypertrophic scars and prevent the formation of contractures over flexor joints. Pressure garments are normally made to measure for individual patients from elastic fabrics and are worn continuously for up to 2 years or until scar maturation. There are 2 methods of constructing pressure garments. The most common method, called the Reduction Factor method, involves reducing the patient's circumferential measurements by a certain percentage. The second method uses the Laplace Law to calculate the dimensions of pressure garments based on the circumferential measurements of the patient and the tension profile of the fabric. The Laplace Law method is complicated to utilise manually and no design tool is currently available to aid this process. This paper presents the development and suggested use of 2 new pressure garment design tools that will aid pressure garment design using the Reduction Factor and Laplace Law methods. Both tools calculate the pressure garment dimensions and the mean pressure that will be exerted around the body at each measurement point. Monitoring the pressures exerted by pressure garments and noting the clinical outcome would enable clinicians to build an understanding of the implications of particular pressures on scar outcome, maturation times and patient compliance rates. Once the optimum pressure for particular treatments is known, the Laplace Law method described in this paper can be used to deliver those average pressures to all patients. This paper also presents the results of a small scale audit of measurements taken for the fabrication of pressure garments in two UK hospitals. This audit highlights the wide range of pressures that are exerted using the Reduction Factor method and that manual pattern 'smoothing' can dramatically

  8. [Exertion syncope disclosing supravalvular mitral stenosis in an infant].

    PubMed

    Buyse, G; Kuchler, H; Crittin, J; Sekarski, N; Hurni, M; Cotting, J; Payot, M

    1993-05-01

    An infant with frequent upper airways infections presented syncopes during meals and weeping since the age of eleven months. Cardiac examination was always normal. At 14 months of age, an echocardiogram with colour Doppler demonstrated a severely stenotic isolated supramitral membrane with severe pulmonary hypertension. The membrane was immediately excised curing the malformation and suppressing definitively the syncopes, probably due to decreased cerebral blood flow during exertion. An echocardiogram should always be performed when syncopes remain unexplained in small children. It allows early diagnosis and treatment of congenital heart defects which do not have auscultatory findings especially those resulting in severe pulmonary venous obstruction.

  9. Functional identification of an exon 1 substitution in the myostatin gene and its expression in breast and leg muscle of the Bian chicken.

    PubMed

    Zhang, G X; Zhang, T; Wei, Y; Ding, F X; Zhang, L; Wang, J Y

    2015-01-01

    1. The objective of this study was to verify the functional effects of the c.234G>A substitution in the myostatin (MSTN) gene and ascertain the mechanism by which the variant affects growth traits in the Bian chicken. 2. The c.234G>A substitution was detected by PCR-RFLP analysis in the 7th-generation Bian chickens and three genotypes (AA, AG and GG) were identified. Results showed that the substitution was significantly associated with all studied growth traits, except first-d-weight, in female Bian chickens. 3. Based on these results, the substitution was used in gene-assisted selection for growth traits and thus fast-growth (AA genotype) and slow-growth (GG genotype) lines were successfully established. Significant differences in growth traits were detected between the fast-growth and slow-growth lines from 6 to 16 weeks of age. Furthermore, all slaughter traits, except leg muscle rate, were significantly different between the fast-growth and slow-growth lines. 4. Expression analysis showed that the relative expression level of MSTN in chickens with GG and AG genotypes were significantly higher than that in chickens with an AA genotype, both in breast and leg muscle. Chickens in the slow-growth line had significantly higher relative expression level of MSTN compared to chickens in the fast-growth line, both in breast and leg muscle. 5. The results suggest that the c.234G>A substitution in the myostatin (MSTN) gene negatively regulates the expression of MSTN in the Bian chicken and that it may be used in marker-assisted selection to accelerate the chicken breeding process.

  10. Testosterone and trenbolone enanthate increase mature myostatin protein expression despite increasing skeletal muscle hypertrophy and satellite cell number in rodent muscle.

    PubMed

    Dalbo, V J; Roberts, M D; Mobley, C B; Ballmann, C; Kephart, W C; Fox, C D; Santucci, V A; Conover, C F; Beggs, L A; Balaez, A; Hoerr, F J; Yarrow, J F; Borst, S E; Beck, D T

    2017-04-01

    The androgen-induced alterations in adult rodent skeletal muscle fibre cross-sectional area (fCSA), satellite cell content and myostatin (Mstn) were examined in 10-month-old Fisher 344 rats (n = 41) assigned to Sham surgery, orchiectomy (ORX), ORX + testosterone (TEST; 7.0 mg week(-1) ) or ORX + trenbolone (TREN; 1.0 mg week(-1) ). After 29 days, animals were euthanised and the levator ani/bulbocavernosus (LABC) muscle complex was harvested for analyses. LABC muscle fCSA was 102% and 94% higher in ORX + TEST and ORX + TREN compared to ORX (p < .001). ORX + TEST and ORX + TREN increased satellite cell numbers by 181% and 178% compared to ORX, respectively (p < .01), with no differences between conditions for myonuclear number per muscle fibre (p = .948). Mstn protein was increased 159% and 169% in the ORX + TEST and ORX + TREN compared to ORX (p < .01). pan-SMAD2/3 protein was ~30-50% greater in ORX compared to SHAM (p = .006), ORX + TEST (p = .037) and ORX + TREN (p = .043), although there were no between-treatment effects regarding phosphorylated SMAD2/3. Mstn, ActrIIb and Mighty mRNAs were lower in ORX, ORX + TEST and ORX + TREN compared to SHAM (p < .05). Testosterone and trenbolone administration increased muscle fCSA and satellite cell number without increasing myonuclei number, and increased Mstn protein levels. Several genes and signalling proteins related to myostatin signalling were differentially regulated by ORX or androgen therapy.

  11. Maternal dietary protein affects transcriptional regulation of myostatin gene distinctively at weaning and finishing stages in skeletal muscle of Meishan pigs.

    PubMed

    Liu, Xiujuan; Wang, Jinquan; Li, Runsheng; Yang, Xiaojing; Sun, Qinwei; Albrecht, Elke; Zhao, Ruqian

    2011-07-01

    Myostatin (MSTN) is suggested to mediate the effect of maternal nutrition on offspring phenotype, yet the mechanisms underlying such adaptive gene regulation is elusive. In this study, we determined the effects of maternal dietary protein on transcriptional regulation of MSTN in skeletal muscle of pig offspring. Fourteen Meishan sows were fed either low-protein (LP) or standard-protein (SP) diets throughout gestation and lactation. MSTN expression in the longissimus dorsi muscle was determined both at weaning and finishing stages. Myostatin mRNA abundance was downregulated at weaning, but upregulated at finishing in LP pigs, indicating stage-specific transcriptional regulation. At weaning, CCAAT/enhancer-binding protein beta (C/EBPβ) in muscle nuclear lysate was decreased in LP piglets, associated with diminished binding of C/EBPβ to all the 3 putative binding sites in MSTN promoter. None of the four histone modification marks investigated showed differences between SP and LP piglets. Among 12 microRNAs predicted to target MSTN, none was differently expressed. At finishing stage, C/EBPβ content remained unchanged, but the binding of C/EBPβ to two of the 3 putative binding sites increased in LP pigs. Histone H3 acetylation and histone H3 lysine 27 trimethylation on MSTN promoter were increased, while histone H3 lysine 9 monomethylation was decreased in LP pigs. Moreover, expression of ssc-miR-136 and ssc-miR-500 was significantly reduced. These results indicate that maternal dietary protein affects MSTN expression through distinct regulatory mechanisms at different stages. The immediate effect at weaning is mediated by C/EBPβ binding without epigenetic modifications, whereas the long-term effect at finishing stage involves both C/EBPβ binding and epigenetic regulations, including histone modification and microRNA expression.

  12. Two single nucleotide polymorphisms in the promoter of the ovine myostatin gene (MSTN) and their effect on growth and carcass muscle traits in New Zealand Romney sheep.

    PubMed

    Wang, J; Zhou, H; Hu, J; Li, S; Luo, Y; Hickford, J G H

    2016-06-01

    Myostatin is a negative regulator of muscle growth and development in mammals, and variation in ovine myostatin gene (MSTN) has been demonstrated to be associated with variation in the muscularity of sheep. Polymerase chain reaction-single-stranded conformational polymorphism (PCR-SSCP) was used to look for single nucleotide polymorphisms (SNPs) in a 304-bp amplicon from the promoter region of ovine MSTN. Sequence analyses revealed two previously identified SNPs (c.-2449G/C and c. -2379T/C) that resulted in three haplotypes (H1 (c.[-2449G; -2379C]), H2 (c.[-2449C; -2379C]) and H3 (c.[-2449G; -2379T]). The effect of these SNPs on growth and carcass traits was investigated in 357 NZ Romney lambs. General linear mixed-effect models revealed that sheep with the genotype c.-2449GC had a higher loin meat yield (p = 0.032) and proportion loin yield (p = 0.028), than those with the genotype c.-2449GG. The genotype c.-2379CC was associated with an increase in three weight traits: birthweight (p = 0.003), tailing weight (p = 0.009) and weaning weight (p = 0.028), when compared with the genotype c.-2379TC, but it was not found to have an association with growth rate. This suggests that c.-2379T/C has an effect that originates at, or before birth. Haplotype H3 was associated with a decrease in birthweight (p = 0.002), tailing weight (p = 0.003) and weaning weight (p = 0.011). Haplotype H2 was associated with increased loin yield (p = 0.012) and proportion loin yield (p = 0.002). The SNPs may have value as genetic markers for improved Romney breeding.

  13. Endoplasmic reticulum stress induces myostatin precursor protein and NF-kappaB in cultured human muscle fibers: relevance to inclusion body myositis.

    PubMed

    Nogalska, Anna; Wojcik, Slawomir; Engel, W King; McFerrin, Janis; Askanas, Valerie

    2007-04-01

    Sporadic-inclusion body myositis (s-IBM) is the most common progressive muscle disease of older persons. It leads to pronounced muscle fiber atrophy and weakness, and there is no successful treatment. We have previously shown that myostatin precursor protein (MstnPP) and myostatin (Mstn) dimer are increased in biopsied s-IBM muscle fibers, and proposed that MstnPP/Mstn increase may contribute to muscle fiber atrophy and weakness in s-IBM patients. Mstn is known to be a negative regulator of muscle fiber mass. It is synthesized as MstnPP, which undergoes posttranslational processing in the muscle fiber to produce mature, active Mstn. To explore possible mechanisms involved in Mstn abnormalities in s-IBM, in the present study we utilized primary cultures of normal human muscle fibers and experimentally modified the intracellular micro-environment to induce endoplasmic-reticulum (ER)-stress, thereby mimicking an important aspect of the s-IBM muscle fiber milieu. ER stress was induced by treating well-differentiated cultured muscle fibers with either tunicamycin or thapsigargin, both well-established ER stress inducers. Our results indicate for the first time that the ER stress significantly increased MstnPP mRNA and protein. The results also suggest that in our system ER stress activates NF-kappaB, and we suggest that MstnPP increase occurred through the ER-stress-activated NF-kappaB. We therefore propose a novel mechanism leading to the Mstn increase in s-IBM. Accordingly, interfering with pathways inducing ER stress, NF-kappaB activation or its action on the MstnPP gene promoter might prevent Mstn increase and provide a new therapeutic approach for s-IBM and, possibly, for muscle atrophy in other neuromuscular diseases.

  14. Caffeine ingestion, affect and perceived exertion during prolonged cycling.

    PubMed

    Backhouse, Susan H; Biddle, Stuart J H; Bishop, Nicolette C; Williams, Clyde

    2011-08-01

    Caffeine's metabolic and performance effects have been widely reported. However, caffeine's effects on affective states during prolonged exercise are unknown. Therefore, this was examined in the present study. Following an overnight fast and in a randomised, double-blind, counterbalanced design, twelve endurance trained male cyclists performed 90 min of exercise at 70% VO(₂ max) 1h after ingesting 6 mg kg⁻¹ BM of caffeine (CAF) or placebo (PLA). Dimensions of affect and perceived exertion were assessed at regular intervals. During exercise, pleasure ratings were better maintained (F(₃,₃₈)=4.99, P < 0.05) in the CAF trial compared to the PLA trial with significantly higher ratings at 15, 30 and 75 min (all P < 0.05). Perceived exertion increased (F(₃,₃₈) = 19.86, P < 0.01) throughout exercise and values, overall, were significantly lower (F(₁,₁₁) = 9.26, P < 0.05) in the CAF trial compared to the PLA trial. Perceived arousal was elevated during exercise but did not differ between trials. Overall, the results suggest that a moderate dose of CAF ingested 1h prior to exercise maintains a more positive subjective experience during prolonged cycling. This observation may partially explain caffeine's ergogenic effects.

  15. National Athletic Trainers' Association Position Statement: Exertional Heat Illnesses

    PubMed Central

    Casa, Douglas J.; DeMartini, Julie K.; Bergeron, Michael F.; Csillan, Dave; Eichner, E. Randy; Lopez, Rebecca M.; Ferrara, Michael S.; Miller, Kevin C.; O'Connor, Francis; Sawka, Michael N.; Yeargin, Susan W.

    2015-01-01

    Objective  To present best-practice recommendations for the prevention, recognition, and treatment of exertional heat illnesses (EHIs) and to describe the relevant physiology of thermoregulation. Background  Certified athletic trainers recognize and treat athletes with EHIs, often in high-risk environments. Although the proper recognition and successful treatment strategies are well documented, EHIs continue to plague athletes, and exertional heat stroke remains one of the leading causes of sudden death during sport. The recommendations presented in this document provide athletic trainers and allied health providers with an integrated scientific and clinically applicable approach to the prevention, recognition, treatment of, and return-to-activity guidelines for EHIs. These recommendations are given so that proper recognition and treatment can be accomplished in order to maximize the safety and performance of athletes. Recommendations  Athletic trainers and other allied health care professionals should use these recommendations to establish onsite emergency action plans for their venues and athletes. The primary goal of athlete safety is addressed through the appropriate prevention strategies, proper recognition tactics, and effective treatment plans for EHIs. Athletic trainers and other allied health care professionals must be properly educated and prepared to respond in an expedient manner to alleviate symptoms and minimize the morbidity and mortality associated with these illnesses. PMID:26381473

  16. Designing pressure garments capable of exerting specific pressures on limbs.

    PubMed

    Macintyre, Lisa

    2007-08-01

    Pressure garments have been used prophylactically and to treat hypertrophic scars, resulting from serious burns, since the early 1970s. They are custom-made from elastic fabrics by commercial producers and hospital staff. However, no clear scientifically established method has ever been published for their design and manufacture. Previous work [2] identified the most commonly used fabrics and construction methods for the production of pressure garments by hospital staff in UK burn units. These methods were evaluated by measuring pressures delivered to both cylinder models and to human limbs using I-scan pressure sensors. A new calibration method was developed for the I-scan system to enable measurement of low interface pressures to an accuracy of +/-2.5 mmHg. The effects of cylinder/limb circumference and pressure garment design on the pressures exerted were established. These measurements confirm the limitations of current pressure garment construction methods used in UK hospitals. A new method for designing pressure garments that will exert specific known pressures is proposed and evaluated for human thighs. Evaluation of the proposed design method is ongoing for other body parts.

  17. Development of the color scale of perceived exertion: preliminary validation.

    PubMed

    Serafim, Thais H S; Tognato, Andrea C; Nakamura, Priscila M; Queiroga, Marcos R; Nakamura, Fábio Y; Pereira, Gleber; Kokubun, Eduardo

    2014-12-01

    This study developed a Color Scale of Perceived Exertion (RPE-color scale) and assessed its concurrent and construct validity in adult women. One hundred participants (18-77 years), who were habitual exercisers, associated colors with verbal anchors of the Borg RPE scale (RPE-Borg scale) for RPE-color scale development. For RPE-color scale validation, 12 Young (M = 21.7 yr., SD = 1.5) and 10 Older (M = 60.3 yr., SD = 3.5) adult women performed a maximal graded exercise test on a treadmill and reported perceived exertion in both RPE-color and RPE-Borg scales. In the Young group, the RPE-color scale was significantly associated with heart rate and oxygen consumption, having strong correlations with the RPE-Borg scale. In the Older group, the RPE-color scale was significantly associated with heart rate, having moderate to high correlations with the RPE-Borg scale. The RPE-color scale demonstrated concurrent and construct validity in the Young women, as well as construct validity in Older adults.

  18. Electrophoretically pure mouse interferon exerts multiple biologic effects.

    PubMed Central

    Gresser, I; De Maeyer-Guignard, J; Tovey, M G; De Maeyer, E

    1979-01-01

    Electrophoretically pure mouse interferon was examined for a number of biologic effects previously ascribed to crude or partially purified interferon preparations. These effects include: inhibition of the growth of a transplantable tumor in mice; inhibition of cell multiplication of mouse tumor cells in vitro; enhancement of the expression of histocompatibility antigens on mouse tumor cells in vitro; inhibition of antibody formation in vitro; inhibition of sensitization to sheep erythrocytes and the expression of delayed type hypersensitivity in mice; enhancement of natural killer cell activity in vivo and in vitro; enhancement of cell sensitivity to the toxicity of poly(I)-poly(C); and enhanced production ("priming") of interferon production in vitro. Our results establish that the molecules responsible for the antiviral action of interferon are also responsible for these varied biologic effects. PMID:291948

  19. Optimum polygenic profile to resist exertional rhabdomyolysis during a marathon

    PubMed Central

    Valero, Marjorie; Salinero, Juan José; Lara, Beatriz; Gallo-Salazar, César; Areces, Francisco

    2017-01-01

    Purpose Exertional rhabdomyolysis can occur in individuals performing various types of exercise but it is unclear why some individuals develop this condition while others do not. Previous investigations have determined the role of several single nucleotide polymorphisms (SNPs) to explain inter-individual variability of serum creatine kinase (CK) concentrations after exertional muscle damage. However, there has been no research about the interrelationship among these SNPs. The purpose of this investigation was to analyze seven SNPs that are candidates for explaining individual variations of CK response after a marathon competition (ACE = 287bp Ins/Del, ACTN3 = p.R577X, CKMM = NcoI, IGF2 = C13790G, IL6 = 174G>C, MLCK = C37885A, TNFα = 308G>A). Methods Using Williams and Folland’s model, we determined the total genotype score from the accumulated combination of these seven SNPs for marathoners with a low CK response (n = 36; serum CK <400 U·L-1) vs. marathoners with a high CK response (n = 31; serum CK ≥400 U·L-1). Results At the end of the race, low CK responders had lower serum CK (290±65 vs. 733±405 U·L-1; P<0.01) and myoglobin concentrations (443±328 vs. 1009±971 ng·mL-1, P<0.01) than high CK responders. Although the groups were similar in age, anthropometric characteristics, running experience and training habits, total genotype score was higher in low CK responders than in high CK responders (5.2±1.4 vs. 4.4±1.7 point, P = 0.02). Conclusion Marathoners with a lower CK response after the race had a more favorable polygenic profile than runners with high serum CK concentrations. This might suggest a significant role of genetic polymorphisms in the levels of exertional muscle damage and rhabdomyolysis. Yet other SNPs, in addition to exercise training, might also play a role in the values of CK after damaging exercise. PMID:28257486

  20. Plumbagin exerts an immunosuppressive effect on human T-cell acute lymphoblastic leukemia MOLT-4 cells.

    PubMed

    Bae, Kyoung Jun; Lee, Yura; Kim, Soon Ae; Kim, Jiyeon

    2016-04-22

    Of the hematological disorders typified by poor prognoses and survival rates, T-cell acute lymphoblastic leukemia (T-ALL) is one of the most commonly diagnosed. Despite the development of new therapeutic agents, the treatment options for this cancer remain limited. In this manuscript, we investigated the anti-proliferative effects of plumbagin, mediated by the activation of mitogen-activated protein kinase (MAPK) pathways, and inhibition of NF-κB signaling; the human T-ALL MOLT-4 cell line was used as our experimental system. Plumbagin is a natural, plant derived compound, which exerts an anti-proliferative activity against many types of human cancer. Our experiments confirm that plumbagin induces a caspase-dependent apoptosis of MOLT-4 cells, with no significant cytotoxicity seen for normal peripheral blood mononuclear cells (PBMCs). Plumbagin also inhibited LPS-induced phosphorylation of p65, and the transcription of NF-κB target genes. Our results now show that plumbagin is a potent inhibitor of the NF-κB signaling pathway, and suppressor of T-ALL cell proliferation.

  1. Exertional rhabdomyolysis and heat stroke: Beware of volatile anesthetic sedation

    PubMed Central

    Heytens, Karel; De Bleecker, Jan; Verbrugghe, Walter; Baets, Jonathan; Heytens, Luc

    2017-01-01

    In view of the enormous popularity of mass sporting events such as half-marathons, the number of patients with exertional rhabdomyolysis or exercise-induced heat stroke admitted to intensive care units (ICUs) has increased over the last decade. Because these patients have been reported to be at risk for malignant hyperthermia during general anesthesia, the intensive care community should bear in mind that the same risk of life-threatening rhabdomyolysis is present when these patients are admitted to an ICU, and volatile anesthetic sedation is chosen as the sedative technique. As illustrated by the three case studies we elaborate upon, a thorough diagnostic work-up is needed to clarify the subsequent risk of strenuous exercise, and the anesthetic exposure to volatile agents in these patients and their families. Other contraindications for the use of volatile intensive care sedation consist of known malignant hyperthermia susceptibility, congenital myopathies, Duchenne muscular dystrophy, and intracranial hypertension. PMID:28224104

  2. Reflections on the Institute of Medicine's systemic exertion intolerance disease.

    PubMed

    Jason, Leonard A; Sunnquist, Madison; Brown, Abigail; McManimen, Stephanie; Furst, Jacob

    2015-01-01

    The Institute of Medicine (IOM) in the United States has recently proposed that the term systemic exertion intolerance disease (SEID) replace chronic fatigue syndrome. In addition, the IOM proposed a new case definition for SEID, which includes substantial reductions or impairments in the ability to engage in pre‑illness activities, unrefreshing sleep, postexertional malaise, and either cognitive impairment or orthostatic intolerance. Unfortunately, these recommendations for a name change were not vetted with patient and professional audiences, and the new criteria were not evaluated with data sets of patients and controls. A recent poll suggests that the majority of patients reject this new name. In addition, studies have found that prevalence rates will dramatically increase with the new criteria, particularly due to the ambiguity revolving around exclusionary illnesses. Findings suggest that the new criteria select more patients who have less impairment and fewer symptoms than several other criteria. The implications of these findings are discussed in the current review.

  3. Physiological responses and perceived exertion during cycling with superimposed electromyostimulation.

    PubMed

    Wahl, Patrick; Schaerk, Jonas; Achtzehn, Silvia; Kleinöder, Heinz; Bloch, Wilhelm; Mester, Joachim

    2012-09-01

    The goal of the study was to evaluate and to quantify the effects of local electromyostimulation (EMS) during cycling on the cardiorespiratory system, muscle metabolism, and perceived exertion compared with cycling with no EMS. Ten healthy men (age: 24.6 ± 3.2 years, V[Combining Dot Above]O2max: 54.1 ± 6.0 ml·min·kg) performed 3 incremental cycle ergometer step tests, 1 without and 2 with EMS (30 and 85 Hz) until volitional exhaustion. Lactate values and respiratory exchange ratio were significantly higher at intensities ≥75% peak power output (PPO) when EMS was applied. Bicarbonate concentration, base excess (BE), and Pco2 were significantly lower when EMS was applied compared with the control at intensities ≥75% PPO. Saliva cortisol levels increased because of the exercise but were unaffected by EMS. Furthermore, EMS showed greater effects on CK levels 24 hours postexercise than normal cycling did. Rating of perceived exertion was significantly higher at 100% PPO with EMS. No statistical differences were found for heart rate, pH, and Po2 between the tested cycling modes. The main findings of this study are greater metabolic changes (lactate, respiratory exchange ratio, BE, (Equation is included in full-text article.), Pco2) during cycling with EMS compared with normal cycling independent of frequency, mainly visible at higher work rates. Because metabolic alterations are important for the induction of cellular signaling cascades and adaptations, these results lead to the hypothesis that applied EMS stimulations during cycling exercise might be an enhancing stimulus for skeletal muscle metabolism and related adaptations. Thus, superimposed EMS application during cycling could be beneficial to aerobic performance enhancements in athletes and in patients who cannot perform high workloads. However, the higher demand on skeletal muscles involved must be considered.

  4. The use of subjective rating of exertion in Ergonomics.

    PubMed

    Capodaglio, P

    2002-01-01

    In Ergonomics, the use of psychophysical methods for subjectively evaluating work tasks and determining acceptable loads has become more common. Daily activities at the work site are studied not only with physiological methods but also with perceptual estimation and production methods. The psychophysical methods are of special interest in field studies of short-term work tasks for which valid physiological measurements are difficult to obtain. The perceived exertion, difficulty and fatigue that a person experiences in a certain work situation is an important sign of a real or objective load. Measurement of the physical load with physiological parameters is not sufficient since it does not take into consideration the particular difficulty of the performance or the capacity of the individual. It is often difficult from technical and biomechanical analyses to understand the seriousness of a difficulty that a person experiences. Physiological determinations give important information, but they may be insufficient due to the technical problems in obtaining relevant but simple measurements for short-term activities or activities involving special movement patterns. Perceptual estimations using Borg's scales give important information because the severity of a task's difficulty depends on the individual doing the work. Observation is the most simple and used means to assess job demands. Other evaluations integrating observation are the followings: indirect estimation of energy expenditure based on prediction equations or direct measurement of oxygen consumption; measurements of forces, angles and biomechanical parameters; measurements of physiological and neurophysiological parameters during tasks. It is recommended that determinations of performances of occupational activities assess rating of perceived exertion and integrate these measurements of intensity levels with those of activity's type, duration and frequency. A better estimate of the degree of physical activity

  5. Simultaneous Multiple Control Force Exertion Capabilities of Males and Females versus Helicopter Control Force Design Limits,

    DTIC Science & Technology

    1987-09-01

    percent) than for collective inputs ( typically 20-35 percent). Substantial proportions of the subjects (approximately 50 percent of the males and more ...nearly 86 percent of the females performed one or more exertions below the design limit. The exertions of 28.6 percent of the females were below the pedal...design limit for more than one-half of the 16 exertions they performed; 75 percent of the exertions by 6 of the 63 females were below design-limit

  6. MiRNA regulation of TRAIL expression exerts selective cytotoxicity to prostate carcinoma cells.

    PubMed

    Huo, Wei; Jin, Ning; Fan, Li; Wang, Weihua

    2014-03-01

    Prostate carcinoma is the most common cancer for men and among the leading cancer-related causes. Many evidences have shown that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) potently induces apoptosis in cancer cells, and thus, is a promising biologic agent for prostate carcinoma therapy. However, TRAIL expression mediated by the current vectors lacks tumor specificity, thereby exerting cytotoxicity to normal cells. To solve this problem, we inserted miRNA response elements (MREs), miR-143 and miR-145, expression levels of which were reduced in prostate carcinoma, as well as that of miR-122, which is specifically expressed in hepatic cells, into adenoviral vectors to control TRAIL expression (Ad-TRAIL-M3). qPCR data confirmed that miR-143, miR-145, and miR-122 levels were all decreased in prostate carcinoma cell lines and prostate cancer samples from patients. Luciferase assays showed that MREs-regulated luciferase expression was potently suppressed in normal cells, but not in prostate cancer cells. Ad-TRAIL-M3, which expresses TRAIL in a MREs-regulated manner, produced high level of TRAIL and suppressed the survival of prostate cancer cells by inducing apoptosis, while Ad-TRAIL-M3 had no TRAIL expression in normal cells and thus exerted no cytotoxicity to them. The studies on PC-3 tumor xenograft in mice further confirmed that Ad-TRAIL-M3 was able to inhibit the growth of tumors and possessed high biosafety. In conclusion, we successfully generated an adenoviral vector that expresses TRAIL in miRNA-regulated mechanism. This miRNA-based gene therapy may be promising for prostate carcinoma treatment.

  7. Self-regulation, ego depletion, and inhibition.

    PubMed

    Baumeister, Roy F

    2014-12-01

    Inhibition is a major form of self-regulation. As such, it depends on self-awareness and comparing oneself to standards and is also susceptible to fluctuations in willpower resources. Ego depletion is the state of reduced willpower caused by prior exertion of self-control. Ego depletion undermines inhibition both because restraints are weaker and because urges are felt more intensely than usual. Conscious inhibition of desires is a pervasive feature of everyday life and may be a requirement of life in civilized, cultural society, and in that sense it goes to the evolved core of human nature. Intentional inhibition not only restrains antisocial impulses but can also facilitate optimal performance, such as during test taking. Self-regulation and ego depletion- may also affect less intentional forms of inhibition, even chronic tendencies to inhibit. Broadly stated, inhibition is necessary for human social life and nearly all societies encourage and enforce it.

  8. Substrate inhibition competes with halide inhibition in polyphenol oxidase.

    PubMed

    Lim, Giselle Grace Fernando; Imura, Yuki; Yoshimura, Etsuro

    2012-10-01

    Polyphenol oxidase (PPO) is a ubiquitous enzyme important in the food industry. Although PPO activity followed Michaelis-Menten kinetics at catechol concentrations of up to 1 mM, it slowly decreased at catechol concentrations above 2 mM. This result indicated that in addition to the active site (site A), the enzyme possesses a second catechol-binding site (site B) that exerts an inhibitory effect on PPO activity. Halides inhibit PPO activity in such a way that substrate inhibition is lessened when halide concentration is increased. Furthermore, elevated concentrations of catechol diminished the degree of inhibition by halides. These findings suggest that halides also bind to site B to inhibit PPO activity. A steady-state kinetic analysis demonstrated that the dissociation constant between catechol and PPO depended on the binding of halides to site B. The dissociation constants were greatest when chloride bound to the site. Bromide and iodide yielded lower dissociation constants, in that order. These data indicate that the binding of halide to site B modulated the structure of site A, thereby exerting an inhibitory effect.

  9. National Athletic Trainers' Association Position Statement: Exertional Heat Illnesses

    PubMed Central

    Binkley, Helen M.; Beckett, Joseph; Casa, Douglas J.; Kleiner, Douglas M.; Plummer, Paul E.

    2002-01-01

    Objective: To present recommendations for the prevention, recognition, and treatment of exertional heat illnesses and to describe the relevant physiology of thermoregulation. Background: Certified athletic trainers evaluate and treat heat-related injuries during athletic activity in “safe” and high-risk environments. While the recognition of heat illness has improved, the subtle signs and symptoms associated with heat illness are often overlooked, resulting in more serious problems for affected athletes. The recommendations presented here provide athletic trainers and allied health providers with an integrated scientific and practical approach to the prevention, recognition, and treatment of heat illnesses. These recommendations can be modified based on the environmental conditions of the site, the specific sport, and individual considerations to maximize safety and performance. Recommendations: Certified athletic trainers and other allied health providers should use these recommendations to establish on-site emergency plans for their venues and athletes. The primary goal of athlete safety is addressed through the prevention and recognition of heat-related illnesses and a well-developed plan to evaluate and treat affected athletes. Even with a heat-illness prevention plan that includes medical screening, acclimatization, conditioning, environmental monitoring, and suitable practice adjustments, heat illness can and does occur. Athletic trainers and other allied health providers must be prepared to respond in an expedient manner to alleviate symptoms and minimize morbidity and mortality. PMID:12937591

  10. Multiple Mechanisms of Anti-Cancer Effects Exerted by Astaxanthin

    PubMed Central

    Zhang, Li; Wang, Handong

    2015-01-01

    Astaxanthin (ATX) is a xanthophyll carotenoid which has been approved by the United States Food and Drug Administration (USFDA) as food colorant in animal and fish feed. It is widely found in algae and aquatic animals and has powerful anti-oxidative activity. Previous studies have revealed that ATX, with its anti-oxidative property, is beneficial as a therapeutic agent for various diseases without any side effects or toxicity. In addition, ATX also shows preclinical anti-tumor efficacy both in vivo and in vitro in various cancer models. Several researches have deciphered that ATX exerts its anti-proliferative, anti-apoptosis and anti-invasion influence via different molecules and pathways including signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and peroxisome proliferator-activated receptor gamma (PPARγ). Hence, ATX shows great promise as chemotherapeutic agents in cancer. Here, we review the rapidly advancing field of ATX in cancer therapy as well as some molecular targets of ATX. PMID:26184238

  11. Respiratory and leg muscles perceived exertion during exercise at altitude.

    PubMed

    Aliverti, A; Kayser, B; Lo Mauro, A; Quaranta, M; Pompilio, P; Dellacà, R L; Ora, J; Biasco, L; Cavalleri, L; Pomidori, L; Cogo, A; Pellegrino, R; Miserocchi, G

    2011-07-31

    We compared the rate of perceived exertion for respiratory (RPE,resp) and leg (RPE,legs) muscles, using a 10-point Borg scale, to their specific power outputs in 10 healthy male subjects during incremental cycle exercise at sea level (SL) and high altitude (HA, 4559 m). Respiratory power output was calculated from breath-by-breath esophageal pressure and chest wall volume changes. At HA ventilation was increased at any leg power output by ∼ 54%. However, for any given ventilation, breathing pattern was unchanged in terms of tidal volume, respiratory rate and operational volumes of the different chest wall compartments. RPE,resp scaled uniquely with total respiratory power output, irrespectively of SL or HA, while RPE,legs for any leg power output was exacerbated at HA. With increasing respective power outputs, the rate of change of RPE,resp exponentially decreased, while that of RPE,legs increased. We conclude that RPE,resp uniquely relates to respiratory power output, while RPE,legs varies depending on muscle metabolic conditions.

  12. Resveratrol exerts pharmacological preconditioning by activating PGC-1alpha.

    PubMed

    Tan, Lan; Yu, Jin-Tai; Guan, Hua-Shi

    2008-11-01

    Resveratrol (RSV), a polyphenol phytoalexin abundantly found in grape skins and in wines, is currently the focus of intense research as a pharmacological preconditioning agent in kidney, heart, and brain from ischemic injury. However, the exact molecular mechanism of RSV preconditioning remains obscure. The data from current studies indicate that pharmacological preconditioning with RSV were attributed to its role as intracellular antioxidant, anti-inflammatory agent, its ability to induce nitric oxide synthase (NOS) expression, its ability to induce angiogenesis, and its ability to increases sirtuin 1 (SIRT1) activity. Peroxisome proliferators-activated receptor (PPAR) gamma co-activator-1alpha (PGC-1alpha) is a member of a family of transcription coactivators that owns mitochondrial biogenesis, antioxidation, growth factor signaling regulation, and angiogenesis activities. And, almost all the signaling pathways activated by RVS involve in PGC-1alpha activity. Moreover, it has been proofed that RVS could mediate an increase PGC-1alpha activity. These significant conditions support the hypothesis that RSV exerts pharmacological preconditioning by activating PGC-1alpha. Attempts to confirm this hypothesis will provide new directions in the study of pharmaceutical preconditioning and the development of new treatment approaches for reducing the extent of ischemia/reperfusion injury.

  13. Matrix Metalloproteinase 9 Exerts Antiviral Activity against Respiratory Syncytial Virus

    PubMed Central

    Dabo, Abdoulaye J.; Cummins, Neville; Eden, Edward; Geraghty, Patrick

    2015-01-01

    Increased lung levels of matrix metalloproteinase 9 (MMP9) are frequently observed during respiratory syncytial virus (RSV) infection and elevated MMP9 concentrations are associated with severe disease. However little is known of the functional role of MMP9 during lung infection with RSV. To determine whether MMP9 exerted direct antiviral potential, active MMP9 was incubated with RSV, which showed that MMP9 directly prevented RSV infectivity to airway epithelial cells. Using knockout mice the effect of the loss of Mmp9 expression was examined during RSV infection to demonstrate MMP9’s role in viral clearance and disease progression. Seven days following RSV infection, Mmp9-/- mice displayed substantial weight loss, increased RSV-induced airway hyperresponsiveness (AHR) and reduced clearance of RSV from the lungs compared to wild type mice. Although total bronchoalveolar lavage fluid (BALF) cell counts were similar in both groups, neutrophil recruitment to the lungs during RSV infection was significantly reduced in Mmp9-/- mice. Reduced neutrophil recruitment coincided with diminished RANTES, IL-1β, SCF, G-CSF expression and p38 phosphorylation. Induction of p38 signaling was required for RANTES and G-CSF expression during RSV infection in airway epithelial cells. Therefore, MMP9 in RSV lung infection significantly enhances neutrophil recruitment, cytokine production and viral clearance while reducing AHR. PMID:26284919

  14. Pharmacological inhibition of poly(ADP-ribose) polymerase inhibits angiogenesis

    SciTech Connect

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Batkai, Sandor; Godlewski, Grzegorz; Hasko, Gyoergy; Liaudet, Lucas; Pacher, Pal . E-mail: pacher@mail.nih.gov

    2006-11-17

    Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme which plays an important role in regulating cell death and cellular responses to DNA repair. Pharmacological inhibitors of PARP are being considered as treatment for cancer both in monotherapy as well as in combination with chemotherapeutic agents and radiation, and were also reported to be protective against untoward effects exerted by certain anticancer drugs. Here we show that pharmacological inhibition of PARP with 3-aminobenzamide or PJ-34 dose-dependently reduces VEGF-induced proliferation, migration, and tube formation of human umbilical vein endothelial cells in vitro. These results suggest that treatment with PARP inhibitors may exert additional benefits in various cancers and retinopathies by decreasing angiogenesis.

  15. Environmental Conditions and the Occurrence of Exertional Heat Illnesses and Exertional Heat Stroke at the Falmouth Road Race

    PubMed Central

    DeMartini, Julie K.; Casa, Douglas J.; Belval, Luke N.; Crago, Arthur; Davis, Rob J.; Jardine, John J.; Stearns, Rebecca L.

    2014-01-01

    Context: The Falmouth Road Race is unique because of the environmental conditions and relatively short distance, which allow runners to maintain a high intensity for the duration of the event. Therefore, the occurrence of exertional heat illnesses (EHIs), especially exertional heat stroke (EHS), is 10 times higher than in other races. Objective: To summarize the occurrence and relationship of EHI and environmental conditions at the Falmouth Road Race. Design: Descriptive epidemiologic study. Setting: An 11.3-km (7-mile) road race in Falmouth, Massachusetts. Patients or Other Participants: Runners who sustained an EHI while participating in the Falmouth Road Race. Main Outcome Measure(s): We obtained 18 years of medical records and environmental conditions from the Falmouth Road Race and documented the incidence of EHI, specifically EHS, as related to ambient temperature (Tamb), relative humidity, and heat index (HI). Results: Average Tamb, relative humidity, and HI were 23.3 ± 2.5°C, 70 ± 16%, and 24 ± 3.5°C, respectively. Of the 393 total EHI cases observed, EHS accounted for 274 (70%). An average of 15.2 ± 13.0 EHS cases occurred each year; the incidence was 2.13 ± 1.62 cases per 1000 runners. Regression analysis revealed a relationship between the occurrence of both EHI and EHS and Tamb (R2 = 0.71, P = .001, and R2 = 0.65, P = .001, respectively) and HI (R2 = 0.76, P < .001, and R2 = 0.74, P < .001, respectively). Occurrences of EHS (24.2 ± 15.5 cases versus 9.3 ± 4.3 cases) and EHI (32.3 ± 16.3 versus 13.0 ± 4.9 cases) were higher when Tamb and HI were high compared with when Tamb and HI were low. Conclusions: Because of the environmental conditions and race duration, the Falmouth Road Race provides a unique setting for a high incidence of EHS. A clear relationship exists between environmental stress, especially as measured by Tamb and HI, and the occurrence of EHS or other EHI. Proper prevention and treatment strategies should be used during periods

  16. Posttranscriptional mechanisms involving microRNA-27a and b contribute to fast-specific and glucocorticoid-mediated myostatin expression in skeletal muscle.

    PubMed

    Allen, David L; Loh, Amanda S

    2011-01-01

    Expression of the antigrowth factor myostatin (MSTN) differs between fast and slow skeletal muscles and is increased in nearly every form of muscle atrophy, but the contribution of transcriptional vs. posttranscriptional mechanisms to its differing expression in these states has not been defined. We show here that levels of mature MSTN mRNA were sixfold greater in fast vs. slow muscle and were increased twofold in fast muscle in response to dexamethasone (Dex) injection in vivo and in C₂C₁₂ myotubes following Dex treatment in vitro, but that levels of MSTN pre-mRNA, a readout of transcription, only minimally and nonsignificantly differed in these states. Moreover, Dex treatment with or without cotransfection with a glucocorticoid receptor expression construct had only modest effects on mouse MSTN promoter activity in C₂C₁₂ myotubes. We therefore explored the potential contribution of posttranscriptional mechanisms, and the role of the microRNAs miR-27a and b in particular, on MSTN expression. The MSTN 3'-untranslated region (UTR) contains a putative recognition sequence for miR-27a and b that is conserved across a wide range of vertebrate species. Cotransfection of a MSTN 3'-UTR-luciferase construct with a miR-27b expression construct significantly attenuated by approximately half while mutation of the miR-27 recognition sequence significantly increased by approximately twofold the activity of a MSTN 3'-UTR construct and decreased mRNA degradation of a luciferase reporter construct in C₂C₁₂ myotubes. Expression of miR-27a and b was almost sixfold greater in slow-twitch than in fast-twitch muscle in vivo, and miR-27a expression was significantly decreased by nearly half by glucocorticoid treatment in vitro. Finally, the miR-27a and b promoters were activated by cotransfection with the slow-specific signaling molecules calcineurin and peroxisome proliferator-activated receptor-γ coactivator-1α. The present data represent the first demonstration

  17. Effects of caffeine on session ratings of perceived exertion.

    PubMed

    Killen, L G; Green, J M; O'Neal, E K; McIntosh, J R; Hornsby, J; Coates, T E

    2013-03-01

    This study examined effects of caffeine on session ratings of perceived exertion (RPE) following 30 min constant-load cycling. Individuals (n = 15) of varying aerobic fitness completed a [Formula: see text] max trial and two 30 min cycling bouts (double-blind, counterbalanced) following ingestion of 6 mL/kg of caffeine or matched placebo. RPE overall, legs and breathing were estimated every 5 min and session RPE was estimated 30 min post-exercise using the OMNI pictorial scale. Session RPE for caffeine and placebo trails were compared using paired t test. Between-trial comparisons of HR, RPE overall, RPE legs and RPE breathing were analyzed using an independent 2 (trial) × 6 (time point) repeated measures analysis of variance (ANOVA) for each dependent variable. Caffeine resulted in a significantly lower session RPE (p < 0.05) for caffeine (6.1 ± 2.2) versus placebo (6.8 ± 2.1). Acute perceptual responses were significantly lower for caffeine for RPE overall (15, 20, 25, and 30 min), RPE breathing (15, 20, 25, and 30 min) and RPE legs (20 and 30 min). Survey responses post-exercise revealed greater feelings of nervousness, tremors, restlessness and stomach distress following caffeine versus placebo. Blunted acute RPE and survey responses suggest participants responded to caffeine ingestion. Caffeine decreased acute RPE during exercise which could partially account for lower session RPE responses. However, decreased session RPE could also reveal a latent analgesic affect of caffeine extending into recovery. Extending the understanding of session RPE could benefit coaches in avoiding overtraining when adjusting training programs.

  18. Perceived exertion responses to changing resistance training programming variables.

    PubMed

    Hiscock, Daniel J; Dawson, Brian; Peeling, Peter

    2015-06-01

    This study examined the influence of intensity (%1 repetition maximum [1RM]), tonnage (sets × repetitions × load), rate of fatigue (percentage decrement in repetitions from set to set), work rate (total tonnage per unit of time), rest interval (time between sets), time under load, and session duration on session rating of perceived exertion (sRPE: Borg's CR-10 scale). Here, participants performed a standardized lifting session of 5 exercises (bench press, leg press, lat pulldown, leg curl, and triceps pushdown) as either: (a) 3 sets × 8 repetitions × 3-minute recovery at 70% 1RM, (b) 3 sets × 14 repetitions × 3-minute recovery at 40% 1RM, (c) 3 sets × MNR (maximum number of repetitions) × 1-minute recovery at 70% 1RM, (d) 3 sets × MNR × 3-minute recovery at 70% 1RM, (e) 3 sets × MNR × 1-minute recovery at 40% 1RM, or (f) 3 sets × MNR × 3-minute recovery at 40% 1RM. The sRPE for session A (4 ± 1) was significantly higher than session B (2.5 ± 1), despite matched tonnage. Protocols involving MNR showed no significant difference in sRPE. Work rate was the only variable to significantly relate with sRPE (r = 0.45). Additionally, sRPE at 15-minute postexercise (5 ± 2) was not different to 30-minute postexercise (5 ± 2). In resistance training with matched tonnage and rest duration between sets, sRPE increases with intensity. In sets to volitional failure, sRPE is likely to be similar, regardless of intensity or rest duration between sets.

  19. Grip forces exerted against stationary held objects during gravity changes.

    PubMed

    Hermsdörfer, J; Marquardt, C; Philipp, J; Zierdt, A; Nowak, D; Glasauer, S; Mai, N

    1999-05-01

    In the present study, grip forces exerted against a stationary held object were recorded during parabolic flights. Such flight maneuvers induce changes of gravity with two periods of hypergravity, associated with a doubling of normal terrestrial gravity, and a 20 s period of microgravity. Accordingly, the object's weight changed from being twice as heavy as normally experienced and weightless. Grip-force recordings demonstrated that force control was seriously disturbed only during the first experience of hyper- and microgravity, with the grip forces being exceedingly high and yielding irregular fluctuations. Thereafter, however, grip force traces were smooth, the force level was scaled to the object's weight under normal and high-G conditions, and the grip force changed in parallel with the weight during the transitions between hyper- and microgravity. In addition, during weightlessness, when virtually no force was necessary to stabilize the object, a low force was established, which obviously represented a reasonable safety margin for preventing possible perturbations. Thus, all relevant aspects of grip-force control observed under normal gravity conditions were preserved during gravity changes induced by parabolic flights. Hence, grip-force control mechanisms were able to cope with hyper- and microgravity, either by incorporating relevant receptor signals, such as those originating from cutaneous mechanoreceptors, or by adequately including perceived gravity signals into control programs. However, the adaptation to the uncommon gravity conditions was not complete following the first experience; finer tuning of the control system to both hyper- and microgravity continued over the measurement interval, presumably with a longer observation period being necessary before a stable performance can be reached.

  20. Galectin-1 Exerts Inhibitory Effects during DENV-1 Infection

    PubMed Central

    Andrade, Camillo del Cistia; Riul, Thalita Bachelli; Alves, Renata Tomé; Muller, Vanessa Danielle Menjon; Russo, Raquel Rinaldi; Stowell, Sean R.; Cummings, Richard D.; Aquino, Victor Hugo; Dias-Baruffi, Marcelo

    2014-01-01

    Dengue virus (DENV) is an enveloped RNA virus that is mosquito-transmitted and can infect a variety of immune and non-immune cells. Response to infection ranges from asymptomatic disease to a severe disorder known as dengue hemorrhagic fever. Despite efforts to control the disease, there are no effective treatments or vaccines. In our search for new antiviral compounds to combat infection by dengue virus type 1 (DENV-1), we investigated the role of galectin-1, a widely-expressed mammalian lectin with functions in cell-pathogen interactions and immunoregulatory properties. We found that DENV-1 infection of cells in vitro exhibited caused decreased expression of Gal-1 in several different human cell lines, suggesting that loss of Gal-1 is associated with virus production. In test of this hypothesis we found that exogenous addition of human recombinant Gal-1 (hrGal-1) inhibits the virus production in the three different cell types. This inhibitory effect was dependent on hrGal-1 dimerization and required its carbohydrate recognition domain. Importantly, the inhibition was specific for hrGal-1, since no effect was observed using recombinant human galectin-3. Interestingly, we found that hrGal-1 directly binds to dengue virus and acts, at least in part, during the early stages of DENV-1 infection, by inhibiting viral adsorption and its internalization to target cells. To test the in vivo role of Gal-1 in DENV infection, Gal-1-deficient-mice were used to demonstrate that the expression of endogenous Galectin-1 contributes to resistance of macrophages to in vitro-infection with DENV-1 and it is also important to physiological susceptibility of mice to in vivo infection with DENV-1. These results provide novel insights into the functions of Gal-1 in resistance to DENV infection and suggest that Gal-1 should be explored as a potential antiviral compound. PMID:25392933

  1. PARP1 inhibitor olaparib (Lynparza) exerts synthetic lethal effect against ligase 4-deficient melanomas

    PubMed Central

    Czyż, Małgorzata; Toma, Monika; Gajos-Michniewicz, Anna; Majchrzak, Kinga; Hoser, Grazyna; Szemraj, Janusz; Nieborowska-Skorska, Margaret; Cheng, Phil; Gritsyuk, Daniel; Levesque, Mitchell; Dummer, Reinhard; Sliwinski, Tomasz; Skorski, Tomasz

    2016-01-01

    Cancer including melanoma may be “addicted” to double strand break (DSB) repair and targeting this process could sensitize them to the lethal effect of DNA damage. PARP1 exerts an important impact on DSB repair as it binds to both single- and double- strand breaks. PARP1 inhibitors might be highly effective drugs triggering synthetic lethality in patients whose tumors have germline or somatic defects in DNA repair genes. We hypothesized that PARP1-dependent synthetic lethality could be induced in melanoma cells displaying downregulation of DSB repair genes. We observed that PARP1 inhibitor olaparib sensitized melanomas with reduced expression of DNA ligase 4 (LIG4) to an alkylatimg agent dacarbazine (DTIC) treatment in vitro, while normal melanocytes remained intact. PARP1 inhibition caused accumulation of DSBs, which was associated with apoptosis in LIG4 deficient melanoma cells. Our hypothesis that olaparib is synthetic lethal with LIG4 deficiency in melanoma cells was supported by selective anti-tumor effects of olaparib used either alone or in combination with dacarbazine (DTIC) in LIG4 deficient, but not LIG4 proficient cells. In addition, olaparib combined with DTIC inhibited the growth of LIG4 deficient human melanoma xenografts. This work for the first time demonstrates the effectiveness of a combination of PARP1 inhibitor olaparib and alkylating agent DTIC for treating LIG4 deficient melanomas. In addition, analysis of the TCGA and transcriptome microarray databases revealed numerous individual melanoma samples potentially displaying specific defects in DSB repair pathways, which may predispose them to synthetic lethality triggered by PARP1 inhibitor combined with a cytotoxic drug. PMID:27705909

  2. Oral administration of Brazilian propolis exerts estrogenic effect in ovariectomized rats.

    PubMed

    Okamoto, Yoshinori; Tobe, Takao; Ueda, Koji; Takada, Tatsuyuki; Kojima, Nakao

    2015-04-01

    Propolis, a natural product derived from plants by honeybees, is a mixture of several hundred chemicals, including flavonoids, coumaric acids, and caffeic acids, some of which show estrogen-like activity. In this study, the estrogenic activity of crude ethanolic extract of Brazilian propolis was determined using several in vitro and in vivo assays. Propolis was found to bind to human estrogen receptors (ERs). Furthermore, propolis induced the expression of estrogen-responsive genes in ER-positive MCF-7 and Ishikawa cells. These in vitro assays suggest that propolis exerts estrogenic activity; therefore, in vivo experiments were conducted using ovariectomized rats. Oral administration of propolis (55 or 550 mg/kg/day for 3 days) significantly increased uterine wet weight and luminal epithelium thickness in comparison with the corresponding values in the corn oil-treated control group. Moreover, propolis induced ductal cell proliferation in the mammary glands. These effects were completely inhibited by full ER antagonist ICI 182,780, confirming that the effects of propolis are mediated by the ER. Our data show that oral intake of propolis induces estrogenic activity in ER-expressing organs in vivo and suggest that Brazilian propolis is a useful dietary source of phytoestrogens and a promising treatment for postmenopausal symptoms.

  3. Bilirubin exerts pro-angiogenic property through Akt-eNOS-dependent pathway.

    PubMed

    Ikeda, Yasumasa; Hamano, Hirofumi; Satoh, Akiho; Horinouchi, Yuya; Izawa-Ishizawa, Yuki; Kihira, Yoshitaka; Ishizawa, Keisuke; Aihara, Ken-Ichi; Tsuchiya, Koichiro; Tamaki, Toshiaki

    2015-11-01

    Low serum bilirubin levels are associated with the risk of cardiovascular diseases including peripheral artery disease. Bilirubin is known to exert its property such as antioxidant effect or the enhancement of flow-mediated vasodilation, however, bilirubin action on angiogenesis remains unclear. To investigate the molecular mechanism of bilirubin on angiogenic effect, we first employed C57BL/6J mice with unilateral hindlimb ischemia surgery and divided the mice into two groups (vehicle-treated group and bilirubin-treated group). The analysis of laser speckle blood flow demonstrated the enhancement of blood flow recovery in response to ischemia of mice with bilirubin treatment. The density of capillaries was significantly higher in ischemic-adductor muscles of bilirubin-treated mice. The phosphorylated levels of endothelial nitric oxide synthase (eNOS) and Akt were increased in ischemic skeletal muscles of mice with bilirubin treatment compared with vehicle treatment. In in vitro experiments by using human aortic endothelial cells, bilirubin augmented eNOS and Akt phosphorylation, cell proliferation, cell migration and tube formation. These bilirubin actions on endothelial cell activation were inhibited by LY294002, a phosphatidylinositol 3-kinase inhibitor. In conclusion, bilirubin promotes angiogenesis through endothelial cells activation via Akt-eNOS-dependent manner.

  4. Juglone exerts antitumor effect in ovarian cancer cells

    PubMed Central

    Fang, Fang; Qin, Yingxin; Qi, Ling; Fang, Qing; Zhao, Liangzhong; Chen, Shuang; Li, Qiang; Zhang, Duo; Wang, Liguo

    2015-01-01

    Objective(s): Juglone is isolated from many species of the Juglandaceae family and used as an anti-viral, anti-bacterial, and anti-tumor therapeutic. Here, we evaluated juglone-induced antitumor effect in ovarian cancer SKOV3 cells. Materials and Methods: MTT assay was performed to examine juglone anti-proliferative effect. Cell cycle and apoptosis were studied using flow cytometry in juglone-treated SKOV3 cells. To investigate molecular mechanism of cell cycle and apoptosis, protein expression levels were measured by Western blot analysis of cyclin D1, Bcl-2, Bax, cytochrome c, caspase-9 and caspase-3. To investigate the motility of juglone-treated SKOV3 cell, Matrigel invasion assay was employed to characterize cell invasion. Also, matrix metalloproteinase-2 (MMP-2) expression levels were detected by western blot. Results: Juglone significantly inhibited SKOV3 cell proliferation as shown by G0/G1 phase arrest, and this effect was mediated by inactivation of cyclin D1 protein (P<0.05). Juglone induced apoptosis in SKOV3 cell which was accompanied by caspase-9 and caspase-3 activation (P<0.05). Juglone decreased Bcl-2 levels and increased Bax and cytochrome c (Cyt c) levels (P<0.05). Juglone sufficiently inhibited invasion while evidently decreased MMP-2 expression (P<0.05). Conclusion: The results suggest that juglone could probably induce apoptosis through mitochondrial pathway and restrained cell invasiveness by decreasing MMP expression. PMID:26221477

  5. Human gamma interferon and tumor necrosis factor exert a synergistic blockade on the replication of herpes simplex virus.

    PubMed

    Feduchi, E; Alonso, M A; Carrasco, L

    1989-03-01

    The replication of herpes simplex virus type 1 (HSV-1) is not inhibited in either HeLa or HEp-2 cells treated with human alpha interferon (HuIFN-alpha), particularly when high multiplicities of infection are used. However, HuIFN-gamma partially inhibits HSV-1 translation in HEp-2 cells infected at low multiplicities. Under these conditions, the transcription of genes alpha 22, TK, and gamma 0 is greatly diminished. The combined addition of human tumor necrosis factor (TNF) and HuIFN-gamma to HEp-2 cells exerts a synergistic inhibition of HSV-1 translation. Cells treated with both cytokines continue synthesizing cellular proteins, even 20 h after HSV-1 infection. As little as 10 U of IFN-gamma per ml blocked HSV-1 DNA replication, provided that TNF was also present in the medium. Analyses of HSV-1 gene transcription suggest that the action of both TNF and IFN-gamma blocked a step that comes at or prior to early HSV-1 gene expression. This early step in HSV-1 replication inhibited by TNF and IFN-gamma occurs after virus attachment and entry into cells, since the internalization of radioactive HSV-1 virion particles was not blocked by the presence of the two cytokines. Therefore, we conclude that the synergistic action of TNF plus IFN-gamma affects a step in HSV-1 replication that comes after virus entry but before or at the transcription of immediate-early genes.

  6. Human gamma interferon and tumor necrosis factor exert a synergistic blockade on the replication of herpes simplex virus.

    PubMed Central

    Feduchi, E; Alonso, M A; Carrasco, L

    1989-01-01

    The replication of herpes simplex virus type 1 (HSV-1) is not inhibited in either HeLa or HEp-2 cells treated with human alpha interferon (HuIFN-alpha), particularly when high multiplicities of infection are used. However, HuIFN-gamma partially inhibits HSV-1 translation in HEp-2 cells infected at low multiplicities. Under these conditions, the transcription of genes alpha 22, TK, and gamma 0 is greatly diminished. The combined addition of human tumor necrosis factor (TNF) and HuIFN-gamma to HEp-2 cells exerts a synergistic inhibition of HSV-1 translation. Cells treated with both cytokines continue synthesizing cellular proteins, even 20 h after HSV-1 infection. As little as 10 U of IFN-gamma per ml blocked HSV-1 DNA replication, provided that TNF was also present in the medium. Analyses of HSV-1 gene transcription suggest that the action of both TNF and IFN-gamma blocked a step that comes at or prior to early HSV-1 gene expression. This early step in HSV-1 replication inhibited by TNF and IFN-gamma occurs after virus attachment and entry into cells, since the internalization of radioactive HSV-1 virion particles was not blocked by the presence of the two cytokines. Therefore, we conclude that the synergistic action of TNF plus IFN-gamma affects a step in HSV-1 replication that comes after virus entry but before or at the transcription of immediate-early genes. Images PMID:2536838

  7. Magnolol and honokiol exert a synergistic anti-tumor effect through autophagy and apoptosis in human glioblastomas.

    PubMed

    Cheng, Yu-Chen; Hueng, Dueng-Yuan; Huang, Hua-Yin; Chen, Jang-Yi; Chen, Ying

    2016-05-17

    Glioblastoma (GBM) is a malignant brain tumor associated with a high mortality rate. The aim of this study is to investigate the synergistic effects of honokiol (Hono) and magnolol (Mag), extracted from Magnolia officinalis, on cytotoxicity and inhibition of human GBM tumor progression in cellular and animal models. In comparison with Hono or Mag alone, co-treatment with Hono and Mag (Hono-Mag) decreased cyclin A, D1 and cyclin-dependent kinase 2, 4, 6 significantly, leading to cell cycle arrest in U87MG and LN229 human glioma cells. In addition, phosphorylated phosphoinositide 3-kinase (p-PI3K), p-Akt, and Ki67 were decreased after Hono-Mag treatment, showing proliferation inhibition. Hono-Mag treatment also reduced p-p38 and p-JNK but elevated p-ERK expression. Besides, Hono-Mag treatment induced autophagy and intrinsic and extrinsic apoptosis. Both ERK and autophagy inhibitors enhanced Hono-Mag-induced apoptosis in LN229 cells, indicating a rescuer role of ERK. In human GBM orthotopic xenograft model, the Hono-Mag treatment inhibited the tumor progression and induced apoptosis more efficiently than Temozolomide, Hono, or Mag group. In conclusion, the Hono-Mag exerts a synergistic anti-tumor effect by inhibiting cell proliferation and inducing autophagy and apoptosis in human GBM cells. The Hono-Mag may be applied as an adjuvant therapy to improve the therapeutic efficacy of GBM treatment.

  8. Ganoderma lucidum exerts anti-tumor effects on ovarian cancer cells and enhances their sensitivity to cisplatin.

    PubMed

    Zhao, Sufen; Ye, Gang; Fu, Guodong; Cheng, Jian-Xin; Yang, Burton B; Peng, Chun

    2011-05-01

    Ganoderma lucidum is a herbal mushroom known to have many health benefits, including the inhibition of tumor cell growth. However, the effect of Ganoderma lucidum on epithelial ovarian cancer (EOC), the most fatal gynecological malignancy, has not yet been reported. In this study, we determined whether Ganoderma lucidum regulates EOC cell activity. Using several cell lines derived from EOC, we found that Ganoderma lucidum strongly decreased cell numbers in a dose-dependent manner. Ganoderma lucidum also inhibited colony formation, cell migration and spheroid formation. In particular, Ganoderma lucidum was effective in inhibiting cell growth in both chemosensitive and chemoresistant cells and the treatment with Ganoderma lucidum significantly enhanced the effect of cisplatin on EOC cells. Furthermore, Ganoderma lucidum induced cell cycle arrest at the G2/M phase and also induced apoptosis by activating caspase 3. Finally, Ganoderma lucidum increased p53 but inhibited Akt expression. Taken together, these findings suggest that Ganoderma lucidum exerts multiple anti-tumor effects on ovarian cancer cells and can enhance the sensitivity of EOC cells to cisplatin.

  9. Identification and expression characterization of the myostatin (MSTN) gene and association analysis with growth traits in the razor clam Sinonovacula constricta.

    PubMed

    Niu, Donghong; Wang, Lie; Bai, Zhiyi; Xie, Shumei; Zhao, Honggang; Li, Jiale

    2015-01-25

    Myostatin (MSTN) is a member of the transforming growth factor-β superfamily (TGF-β) and is an important negative regulator of muscle growth in vertebrates. In this study, we cloned and analyzed the MSTN gene (Sc-MSTN) from razor clam (Sinonovacula constricta). The full length of Sc-MSTN cDNA sequence consists of 4226 base pairs (bp), comprising a 522-bp 5' untranslated region (UTR), a 2342-bp 3'UTR, and an open reading frame (ORF) that is 1362 in length. The ORF encodes 453 amino acids with a RXXR proteolytic site and nine conserved cysteines. Quantitative real-time PCR analysis revealed that the Sc-MSTN transcript was expressed in a wide range of tissues but appeared to exhibit the greatest level of expression in the foot. The transcript was widely detected in early developmental stages, showing the highest expression in the trochophore stage. Furthermore, six SNPs were identified in the coding region of the Sc-MSTN gene using direct sequencing. SNP-1 is non-synonymous and involves an amino acid change from Leu to Ser. Association analysis showed that SNP-1 and SNP-6 had significant influences on shell length (SL). The results suggested that MSTN could be selected as a candidate gene for the future molecular breeding of razor clam strains.

  10. Structural and Dynamic Characterization of the C313Y Mutation in Myostatin Dimeric Protein, Responsible for the “Double Muscle” Phenotype in Piedmontese Cattle

    PubMed Central

    Bongiorni, Silvia; Valentini, Alessio; Chillemi, Giovanni

    2016-01-01

    The knowledge of the molecular effects of the C313Y mutation, responsible for the “double muscle” phenotype in Piedmontese cattle, can help understanding the actual mechanism of phenotype determination and paves the route for a better modulation of the positive effects of this economic important phenotype in the beef industry, while minimizing the negative side effects, now inevitably intersected. The structure and dynamic behavior of the active dimeric form of Myostatin in cattle was analyzed by means of three state-of-the-art Molecular Dynamics simulations, 200-ns long, of wild-type and C313Y mutants. Our results highlight a role for the conserved Arg333 in establishing a network of short and long range interactions between the two monomers in the wild-type protein that is destroyed upon the C313Y mutation even in a single monomer. Furthermore, the native protein shows an asymmetry in residue fluctuation that is absent in the double monomer mutant. Time window analysis on further 200-ns of simulation demonstrates that this is a characteristic behavior of the protein, likely dependent on long range communications between monomers. The same behavior, in fact, has already been observed in other mutated dimers. Finally, the mutation does not produce alterations in the secondary structure elements that compose the characteristic TGF-β cystine-knot motif. PMID:26904102

  11. miR-30e is negatively regulated by myostatin in skeletal muscle and is functionally related to fiber-type composition.

    PubMed

    Jia, Haixue; Zhao, Yixia; Li, Tingting; Zhang, Yong; Zhu, Dahai

    2017-03-17

    Myostatin (MSTN) negatively regulates skeletal myogenesis in which microRNAs (miRNAs) also play critical roles. Using miRNA microarrays of skeletal muscle from MSTN-knockout (MSTN-/-) mice, we recently showed that miR-431 is regulated by MSTN signaling. To identify additional miRNAs regulated by MSTN, we re-analyzed these miRNA arrays and validated their expression by quantitative RT-PCR. Herein, we demonstrated that miR-30e was significantly upregulated in skeletal muscle of MSTN-/- mice compared with that of the wild-type littermates. Importantly, the predicted targets of miR-30e are functionally involved in myocyte differentiation and fiber-type formation. Using luciferase reporter gene assays, we further showed that peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (Pgc1α), is a direct target of miR-30e. Overexpression of miR-30e in C2C12 cells significantly decreased Pgc1α and increased type II form of myosin heavy chain gene expression, suggesting that miR-30e functionally associates with glycolytic myofiber formation. Thus, our data indicate that the altered fiber-type composition in MSTN-/- mice are attributable in part to deregulated expression of miR-30e.

  12. Myostatin augments muscle-specific ring finger protein-1 expression through an NF-kB independent mechanism in SMAD3 null muscle.

    PubMed

    Sriram, Sandhya; Subramanian, Subha; Juvvuna, Prasanna Kumar; Ge, Xiaojia; Lokireddy, Sudarsanareddy; McFarlane, Craig Desmond; Wahli, Walter; Kambadur, Ravi; Sharma, Mridula

    2014-03-01

    Smad (Sma and Mad-related protein) 2/3 are downstream signaling molecules for TGF-β and myostatin (Mstn). Recently, Mstn was shown to induce reactive oxygen species (ROS) in skeletal muscle via canonical Smad3, nuclear factor-κB, and TNF-α pathway. However, mice lacking Smad3 display skeletal muscle atrophy due to increased Mstn levels. Hence, our aims were first to investigate whether Mstn induced muscle atrophy in Smad3(-/-) mice by increasing ROS and second to delineate Smad3-independent signaling mechanism for Mstn-induced ROS. Herein we show that Smad3(-/-) mice have increased ROS levels in skeletal muscle, and inactivation of Mstn in these mice partially ablates the oxidative stress. Furthermore, ROS induction by Mstn in Smad3(-/-) muscle was not via nuclear factor-κB (p65) signaling but due to activated p38, ERK MAPK signaling and enhanced IL-6 levels. Consequently, TNF-α, nicotinamide adenine dinucleotide phosphate oxidase, and xanthine oxidase levels were up-regulated, which led to an increase in ROS production in Smad3(-/-) skeletal muscle. The exaggerated ROS in the Smad3(-/-) muscle potentiated binding of C/EBP homology protein transcription factor to MuRF1 promoter, resulting in enhanced MuRF1 levels leading to muscle atrophy.

  13. Genomic cloning and promoter functional analysis of myostatin-2 in shi drum, Umbrina cirrosa: conservation of muscle-specific promoter activity.

    PubMed

    Nadjar-Boger, Elisabeth; Maccatrozzo, Lisa; Radaelli, Giuseppe; Funkenstein, Bruria

    2013-02-01

    Myostatin (MSTN) is a member of the transforming growth factor-ß superfamily, known as a negative regulator of skeletal muscle development and growth in mammals. In contrast to mammals, fish possess at least two paralogs of MSTN: MSTN-1 and MSTN-2. Here we describe the cloning and sequence analysis of spliced and precursor (unspliced) transcripts as well as the 5' flanking region of MSTN-2 from the marine fish Umbrina cirrosa (ucMSTN-2). In silico analysis revealed numerous putative cis regulatory elements including several E-boxes known as binding sites to myogenic transcription factors. Transient transfection experiments using non-muscle and muscle cell lines showed high transcriptional activity in muscle cells and in differentiated neural cells, in accordance with our previous findings in MSTN-2 promoter from Sparus aurata. Comparative informatics analysis of MSTN-2 from several fish species revealed high conservation of the predicted amino acid sequence as well as the gene structure (exon length) although intron length varied between species. The proximal promoter of MSTN-2 gene was found to be conserved among Perciforms. In conclusion, this study reinforces our conclusion that MSTN-2 promoter is a very strong promoter, especially in muscle cells. In addition, we show that the MSTN-2 gene structure is highly conserved among fishes as is the predicted amino acid sequence of the peptide.

  14. Analysis of the 227 bp short interspersed nuclear element (SINE) insertion of the promoter of the myostatin (MSTN) gene in different horse breeds.

    PubMed

    Dall'Olio, Stefania; Scotti, Emilio; Fontanesi, Luca; Tassinari, Marco

    2014-01-01

    The myostatin (MSTN) gene encodes a protein known to be a negative regulator of muscle mass in mammalian species. Different polymorphisms of the horse (Equus caballus) MSTN gene have been identified, including single nucleotide polymorphisms and a short interspersed nuclear element (SINE) insertion of 227 bp within the promoter of the gene. The SINE insertion has been associated with performance traits in Thoroughbred racehorses and it was proposed as a predictor of optimum racing distance. The aims of this study were to perform in silico analysis to identify putative gains or abrogation of transcription-factor binding sites (TFBSs) generated by the SINE allele of the promoter and to analyse the frequency of the SINE insertion in horses used for racing (gallop and trot) and other purposes. The SINE insertion was genotyped in 227 horses from 10 breeds belonging to different morphological types (brachimorphic, mesomorphic, meso-dolichomorphic and dolichomorphic). The presence of the insertion was confirmed in the Quarter Horse (SINE allele frequency of 0.81) and in the Thoroughbred (0.51), whereas the SINE allele did not segregate in any of the other analysed breeds. As the SINE MSTN gene polymorphism may be population or breed specific, it is not a useful marker for association studies in all breeds.

  15. FR-167653, a selective p38 MAPK inhibitor, exerts salutary effect on liver cirrhosis through downregulation of Runx2.

    PubMed

    Hattori, Shinji; Dhar, Dipok K; Hara, Nobumasa; Tonomoto, Yasuhito; Onoda, Toshinao; Ono, Takashi; Yamanoi, Akira; Tachibana, Mitsuo; Tsuchiya, Mikako; Nagasue, Naofumi

    2007-06-01

    Liver cirrhosis remains a difficult-to-treat disease with a substantial morbidity and mortality rate. There is an emerging body of data purporting a pivotal role of the activated p38 mitogen-activated protein kinase (MAPK) in the process of cirrhosis. Several anticirrhotic agents have been developed over the past few years, and most of them exert their effects by indirectly inhibiting the p38 pathway. Effect of a selective p38 inhibitor is yet to be reported. In this study, we evaluated the salutary effect of FR-167653 (FR), a selective p38 inhibitor, in a carbon tetrachloride (CCl(4))-induced rat cirrhotic model. Twenty rats were assigned into four groups: Sham, olive oil only; Control, CCl(4) in olive oil; FR50, FR 50 mg/kg/day and CCl(4); and FR100, FR 100 mg/kg/day and CCl(4). FR dose-dependently inhibited activation of p38 and had an ameliorating effect on cirrhosis formation. Significant dose-dependent reduction in alpha-smooth muscle actin immunostaining and hydroxyproline content of the liver was noticed in the FR-treated rats. Also densitometric analysis showed a significant reduction in azan-stained area in the FR-treated rats. These fibrotic changes were observed in the myofibroblasts including the hepatic stellate cells and portal fibroblasts. mRNA expression of runt-related protein 2 (Runx2), a profibrogenic transcription factor, was significantly low in FR-treated livers, indicating that Runx2 might be a key downstream regulator of the p38 pathway. A similar reduction in expression of Smad4 and tissue inhibitor of metalloproteinase-1 was noticed in the FR-treated rats. In conclusion, FR treatment exerted a significant beneficial effect in a CCl(4)-induced rat cirrhotic model. The ameliorating effect of FR could be partially attributable to an inhibition of the Smad4/p38/Runx2 axis in the cirrhotic liver.

  16. Uranium Exerts Acute Toxicity by Binding to Pyrroloquinoline Quinone Cofactor

    SciTech Connect

    Michael R. VanEngelen; Robert I. Szilagyi; Robin Gerlach; Brady E. Lee; William A. Apel; Brent M. Peyton

    2011-02-01

    Uranium as an environmental contaminant has been shown to be toxic to eukaryotes and prokaryotes; however, no specific mechanisms of uranium toxicity have been proposed so far. Here a combination of in vivo, in vitro, and in silico studies are presented describing direct inhibition of pyrroloquinoline quinone (PQQ)-dependent growth and metabolism by uranyl cations. Electrospray-ionization mass spectroscopy, UV-vis optical spectroscopy, competitive Ca2+/uranyl binding studies, relevant crystal structures, and molecular modeling unequivocally indicate the preferred binding of uranyl simultaneously to the carboxyl oxygen, pyridine nitrogen, and quinone oxygen of the PQQ molecule. The observed toxicity patterns are consistent with the biotic ligand model of acute metal toxicity. In addition to the environmental implications, this work represents the first proposed molecular mechanism of uranium toxicity in bacteria, and has relevance for uranium toxicity in many living systems.

  17. Akt Deficiency Attenuates Muscle Size and Function but Not the Response to ActRIIB Inhibition

    PubMed Central

    Goncalves, Marcus D.; Pistilli, Emidio E.; Balduzzi, Anthony; Birnbaum, Morris J.; Lachey, Jennifer; Khurana, Tejvir S.; Ahima, Rexford S.

    2010-01-01

    Background Akt is a critical mediator of developmental skeletal muscle growth. Treatment with a soluble ActRIIB fusion protein (ActRIIB-mFc) increases skeletal muscle mass and strength by inhibiting myostatin and related peptides. Recent in vitro studies have suggested that Akt signaling is necessary for the ability of ActRIIB inhibition to induce muscle hypertrophy. Thus, we hypothesized that mice deficient in either Akt1 or Akt2 would not respond to in vivo inhibition of ActRIIB with ActRIIB-mFc treatment. Methodology and Principal Findings We analyzed body composition and muscle parameters in wild-type C57BL/6J and Akt1 and Akt2 knockout mice, and compared the responses to blockade of ActRIIB signaling via ActRIIB-mFc treatment. Mice lacking Akt1 or Akt2 had reduced muscle mass, grip strength and contractile force. However, deficiency of Akt1 or Akt2 did not prevent the ability of ActRIIB-mFc treatment to induce muscle hypertrophy, or increase grip strength and contractile force. Akt1 and Akt2 deficient mice responded similarly as wild type mice to ActRIIB-mFc treatment by increasing fiber size. Conclusions and Significance Akt1 and Akt2 are important for the regulation of skeletal muscle mass and function. However, these Akt isoforms are not essential for the ability of ActRIIB inhibition to regulate muscle size, fiber type, strength or contractile force. PMID:20856813

  18. High-density lipoprotein exerts vasculoprotection via endothelial progenitor cells

    PubMed Central

    Petoumenos, Vasileios; Nickenig, Georg; Werner, Nikos

    2009-01-01

    Endothelial progenitor cells (EPC) enhance endothelial cell repair, improve endothelial dysfunction and are a predictor for cardiovascular mortality. High-density lipoprotein (HDL) cholesterol levels inversely correlate with cardiovascular events and have vasculoprotective effects. Here we postulate that HDL influences EPC biology. HDL and EPC were isolated according to standard procedures. Differentiation of mononuclear cells into DiLDL/lectin positive cells was enhanced after HDL treatment compared to vehicle. HDL was able to inhibit apoptosis (TUNEL assay, annexin V staining) while proliferation (BrdU incorporation) of early outgrowth colonies after extended cell cultivation (14 days) was increased. Flow chamber experiments revealed an improved adhesion of HDL pre-incubated EPC on human coronary artery endothelial cells (HCAEC) compared to vehicle while HDL treatment of HCAEC prevented adhesion of inflammatory cells. Flow cytometry demonstrated an up-regulation of β2- and α4-integrins on HDL pre-incubated EPC. Blocking experiments revealed a unique role of β2-integrin in EPC adhesion. Treatment of wild-type mice with recombinant HDL after endothelial denudation resulted in enhanced re-endothelialization compared to vehicle. Finally, in patients with coronary artery disease a correlation between circulating EPC and HDL concentrations was demonstrated. We provide evidence that HDL mediates important vasculoprotective action via the improvement of function of circulating EPC. PMID:18705697

  19. Nanoliposomal Nitroglycerin Exerts Potent Anti-Inflammatory Effects

    NASA Astrophysics Data System (ADS)

    Ardekani, Soroush; Scott, Harry A.; Gupta, Sharad; Eum, Shane; Yang, Xiao; Brunelle, Alexander R.; Wilson, Sean M.; Mohideen, Umar; Ghosh, Kaustabh

    2015-11-01

    Nitroglycerin (NTG) markedly enhances nitric oxide (NO) bioavailability. However, its ability to mimic the anti-inflammatory properties of NO remains unknown. Here, we examined whether NTG can suppress endothelial cell (EC) activation during inflammation and developed NTG nanoformulation to simultaneously amplify its anti-inflammatory effects and ameliorate adverse effects associated with high-dose NTG administration. Our findings reveal that NTG significantly inhibits human U937 cell adhesion to NO-deficient human microvascular ECs in vitro through an increase in endothelial NO and decrease in endothelial ICAM-1 clustering, as determined by NO analyzer, microfluorimetry, and immunofluorescence staining. Nanoliposomal NTG (NTG-NL) was formulated by encapsulating NTG within unilamellar lipid vesicles (DPhPC, POPC, Cholesterol, DHPE-Texas Red at molar ratio of 6:2:2:0.2) that were ~155 nm in diameter and readily uptaken by ECs, as determined by dynamic light scattering and quantitative fluorescence microscopy, respectively. More importantly, NTG-NL produced a 70-fold increase in NTG therapeutic efficacy when compared with free NTG while preventing excessive mitochondrial superoxide production associated with high NTG doses. Thus, these findings, which are the first to reveal the superior therapeutic effects of an NTG nanoformulation, provide the rationale for their detailed investigation for potentially superior vascular normalization therapies.

  20. Nanoliposomal Nitroglycerin Exerts Potent Anti-Inflammatory Effects

    PubMed Central

    Ardekani, Soroush; Scott, Harry A.; Gupta, Sharad; Eum, Shane; Yang, Xiao; Brunelle, Alexander R.; Wilson, Sean M.; Mohideen, Umar; Ghosh, Kaustabh

    2015-01-01

    Nitroglycerin (NTG) markedly enhances nitric oxide (NO) bioavailability. However, its ability to mimic the anti-inflammatory properties of NO remains unknown. Here, we examined whether NTG can suppress endothelial cell (EC) activation during inflammation and developed NTG nanoformulation to simultaneously amplify its anti-inflammatory effects and ameliorate adverse effects associated with high-dose NTG administration. Our findings reveal that NTG significantly inhibits human U937 cell adhesion to NO-deficient human microvascular ECs in vitro through an increase in endothelial NO and decrease in endothelial ICAM-1 clustering, as determined by NO analyzer, microfluorimetry, and immunofluorescence staining. Nanoliposomal NTG (NTG-NL) was formulated by encapsulating NTG within unilamellar lipid vesicles (DPhPC, POPC, Cholesterol, DHPE-Texas Red at molar ratio of 6:2:2:0.2) that were ~155 nm in diameter and readily uptaken by ECs, as determined by dynamic light scattering and quantitative fluorescence microscopy, respectively. More importantly, NTG-NL produced a 70-fold increase in NTG therapeutic efficacy when compared with free NTG while preventing excessive mitochondrial superoxide production associated with high NTG doses. Thus, these findings, which are the first to reveal the superior therapeutic effects of an NTG nanoformulation, provide the rationale for their detailed investigation for potentially superior vascular normalization therapies. PMID:26584637

  1. Dynamics of Perceived Exertion in Constant-Power Cycling: Time- and Workload-Dependent Thresholds

    ERIC Educational Resources Information Center

    Balagué, Natàlia; Hristovski, Robert; García, Sergi; Aguirre, Cecilia; Vázquez, Pablo; Razon, Selen; Tenenbaum, Gershon

    2015-01-01

    Purpose: The purpose of this study was to test the dynamics of perceived exertion shifts (PES) as a function of time and workload during constant-power cycling. Method: Fifty-two participants assigned to 4 groups performed a cycling task at 4 different constant workloads corresponding to their individual rates of perceived exertion (RPEs = 13, 15,…

  2. Fatigue Induced by Physical and Mental Exertion Increases Perception of Effort and Impairs Subsequent Endurance Performance

    PubMed Central

    Pageaux, Benjamin; Lepers, Romuald

    2016-01-01

    Endurance performance involves the prolonged maintenance of constant or self-regulated power/velocity or torque/force. While the impact of numerous determinants of endurance performance has been previously reviewed, the impact of fatigue on subsequent endurance performance still needs to be documented. This review aims to present the impact of fatigue induced by physical or mental exertion on subsequent endurance performance. For the purpose of this review, endurance performance refers to performance during whole-body or single-joint endurance exercise soliciting mainly the aerobic energy system. First, the impact of physical and mental exertion on force production capacity is presented, with specific emphasize on the fact that solely physical exertion and not mental exertion induces a decrease in force production capacity of the working muscles. Then, the negative impact of fatigue induced by physical exertion and mental exertion on subsequent endurance performance is highlighted based on experimental data. Perception of effort being identified as the variable altered by both prior physical exertion and mental exertion, future studies should investigate the underlying mechanisms increasing perception of effort overtime and in presence of fatigue during endurance exercise. Perception of effort should be considered not only as marker of exercise intensity, but also as a factor limiting endurance performance. Therefore, using a psychophysiological approach to explain the regulation of endurance performance would allow a better understanding of the interaction between physiological and psychological phenomena known to impact endurance performance. PMID:27965592

  3. Effects of pressure exerted on the skin by elastic cord on the core temperature, body weight loss and salivary secretion rate at 35 degrees C.

    PubMed

    Tanaka, Sawako; Midorikawa, Tomoko; Tokura, Hiromi

    2006-03-01

    Effects of pressure exerted on the skin by elastic cord on the core temperature, body weight loss and salivary secretion rate were studied under conditions of ambient temperature of 35 degrees C and a relative humidity of 60%. Twelve healthy females, aged 18-23 years, served as subjects. The subjects entered a bioclimatic chamber and rested quietly in a chair for 80 min. Then, skin pressure was exerted by applying elastic cord (8.5 mm wide) to six different skin areas, such as axilla, under-bust, waist, inguines, thighs and ankles. The values of skin pressure by elastic cord ranged from 11.9 to 33.3 g/cm(2). In the control experiment, wrapping with an elastic cord was loosely performed without any skin pressure. Rectal and skin temperatures, body weight loss by sweating and salivary secretion rate were measured throughout the 160 min experimental period. Core temperature increased more significantly under pressure exerted on the skin. Body weight loss by mainly sweating and salivary secretion rate were significantly suppressed under pressure exerted on the skin. We discussed the physiological mechanisms in terms of suppression of central nervous activity as to why significant increase of core temperatures, inhibition of body weight loss mainly by sweating and of salivary secretion rate occurred, and furthermore practical significance of these findings for impairment of digestion, swallowing, vocalizing, defense against disease bacteria and sport activity.

  4. Sulfonoquinovosyl diacylglyceride selectively targets acute lymphoblastic leukemia cells and exerts potent anti-leukemic effects in vivo

    PubMed Central

    Jain, Chetan Kumar; Pradhan, Bhola Shankar; Banerjee, Sukdeb; Mondal, Nirup Bikash; Majumder, Subeer S.; Bhattacharyya, Madhumita; Chakrabarti, Saikat; Roychoudhury, Susanta; Majumder, Hemanta Kumar

    2015-01-01

    DNA topoisomerase II inhibitors e.g. doxorubicin and etoposide are currently used in the chemotherapy for acute lymphoblastic leukemia (ALL). These inhibitors have serious side effects during the chemotherapy e.g. cardiotoxicity and secondary malignancies. In this study we show that sulfonoquinovosyl diacylglyceride (SQDG) isolated from Azadirachta indica exerts potent anti-ALL activity both in vitro and in vivo in nude mice and it synergizes with doxorubicin and etoposide. SQDG selectively targets ALL MOLT-4 cells by inhibiting catalytic activity of topoisomerase I enzyme and inducing p53 dependent apoptotic pathway. SQDG treatment induces recruitment of ATR at chromatin and arrests the cells in S-phase. Down-regulation of topoisomerase I or p53 renders the cells less sensitive for SQDG, while ectopic expression of wild type p53 protein in p53 deficient K562 cells results in chemosensitization of the cells for SQDG. We also show that constant ratio combinations of SQDG and etoposide or SDQG and doxorubicin exert synergistic effects on MOLT-4 cell killing. This study suggests that doses of etoposide/doxorubicin can be substantially reduced by combining SQDG with these agents during ALL chemotherapy and side effects caused can be minimized. Thus dual targeting of topoisomerase I and II enzymes is a promising strategy for improving ALL chemotherapy. PMID:26189912

  5. N-Acetylserotonin and 6-Hydroxymelatonin against Oxidative Stress: Implications for the Overall Protection Exerted by Melatonin.

    PubMed

    Álvarez-Diduk, Ruslán; Galano, Annia; Tan, Dun Xian; Reiter, Russel J

    2015-07-09

    The protection exerted by N-acetylserotonin (NAS) and 6-hydroxymelatonin (6OHM) against oxidative stress was investigated using the density functional theory. It was found that these compounds are better peroxyl radical scavengers than melatonin itself, Trolox, caffeine, or genistein both in lipid and aqueous solutions. The related kinetic data is provided for the first time. The solvent polarity influences not only the absolute reactivity of NAS and 6OHM toward peroxyl radicals, but also their relative scavenging activity. In addition, they both fully inhibit the oxidative effects of copper-ascorbate mixtures, and (•)OH production via the Haber-Weiss reaction, albeit the effects on the later are only partial. On the basis of comparisons with other melatonin-related compounds, it is proposed that the role of NAS and 6OHM on the overall protection exerted by melatonin against oxidative stress is mainly related to their free radical scavenging activities. Moreover, they increase such protection. The role of the phenol moiety on such activity is demonstrated.

  6. Depletion of GTP pool is not the predominant mechanism by which ribavirin exerts its antiviral effect on Lassa virus.

    PubMed

    Ölschläger, Stephan; Neyts, Johan; Günther, Stephan

    2011-08-01

    Ribavirin (1-β-d-ribofuranosyl-1,2,4-triazole-3-carboxamide) is the standard treatment for Lassa fever, though its mode of action is unknown. One possibility is depletion of the intracellular GTP pool via inhibition of the cellular enzyme inosine monophosphate dehydrogenase (IMPDH). This study compared the anti-arenaviral effect of ribavirin with that of two other IMPDH inhibitors, mycophenolic acid (MPA) and 5-ethynyl-1-β-d-ribofuranosylimidazole-4-carboxamide (EICAR). All three compounds were able to inhibit Lassa virus replication by ≥2 log units in cell culture. Restoring the intracellular GTP pool by exogenous addition of guanosine reversed the inhibitory effects of MPA and EICAR, while ribavirin remained fully active. Analogous experiments performed with Zaire Ebola virus showed that IMPDH inhibitors are also active against this virus, although to a lesser extent than against Lassa virus. In conclusion, the experiments with MPA and EICAR indicate that replication of Lassa and Ebola virus is sensitive to depletion of the GTP pool mediated via inhibition of IMPDH. However, this is not the predominant mechanism by which ribavirin exerts its in-vitro antiviral effect on Lassa virus.

  7. Mosapride, a selective serotonin 5-HT4 receptor agonist, and alogliptin, a selective dipeptidyl peptidase-4 inhibitor, exert synergic effects on plasma active GLP-1 levels and glucose tolerance in mice.

    PubMed

    Nonogaki, Katsunori; Kaji, Takao

    2015-12-01

    Pharmacologic stimulation of serotonin 5-HT4 receptors increased plasma active glucagon-like-peptide-1 (GLP-1) levels independent of feeding, and that pharmacologic stimulation of 5-HT4 receptors and pharmacologic inhibition of dipeptidyl peptidase-4 exerted synergic effects on plasma active GLP-1 levels and glucose tolerance in mice.

  8. Triterpenoids and Polysaccharide Fractions of Ganoderma tsugae Exert Different Effects on Antiallergic Activities

    PubMed Central

    Chen, Miaw-Ling; Hsieh, Chia-Chien; Chiang, Bor-Luen; Lin, Bi-Fong

    2015-01-01

    This study was to investigate antiallergic effects of triterpenoids (Gt-TRE) and polysaccharide (Gt-PS) extracts from Ganoderma tsugae, using mast cell line RBL-2H3, T cell line EL4, primary T cells, and transfected RAW264.7 macrophage cells. The results showed that histamine secreted from activated RBL-2H3 mast cells was significantly suppressed by Gt-TRE but not Gt-PS. Interleukin- (IL-) 4 secreted from activated EL4 cells was significantly suppressed by Gt-TRE but not Gt-PS. Further primary CD4+ T cells cultures also confirmed that Gt-TRE (5 ~ 50 µg/mL) significantly suppressed Th2 cytokines IL-4 and IL-5 secretions but had no effect on Th1 cytokines IL-2 and interferon (IFN)-γ. Gt-PS did not affect IL-4 and IL-5 secretions until higher doses (400, 500 µg/mL) and significantly suppressed IFNγ secretions but enhanced IL-2 at these high doses. The reporter gene assay indicated that Gt-TRE inhibited but Gt-PS enhanced the transcriptional activity of NF-κB in activated transfected RAW264.7 cells and transfected EL4 cells. IL-4 secreted by this transfected EL-4 cells was also significantly decreased by Gt-TRE but not by Gt-PS, suggesting that these two fractions may exert different effects on NF-κB related cytokines expression. These data suggested that triterpenoids fraction of Ganoderma tsugae might be the main constituents to alleviate allergic asthma. PMID:25960757

  9. Supramolecular nanoparticles that target phosphatidylinositol-3-kinase overcome insulin resistance and exert pronounced antitumor efficacy

    PubMed Central

    Kulkarni, Ashish A.; Roy, Bhaskar; Rao, Poornima S.; Wyant, Gregory A.; Mahmoud, Ayaat; Ramachandran, Madhumitha; Sengupta, Poulomi; Goldman, Aaron; Kotamraju, Venkata Ramana; Basu, Sudipta; Mashelkar, Raghunath A; Ruoslahti, Erkki; Dinulescu, Daniela M.; Sengupta, Shiladitya

    2013-01-01

    The centrality of phosphatidylinositol-3-kinase (PI3K) in cancer etiology is well established, but clinical translation of PI3K inhibitors has been limited by feedback signaling, suboptimal intra-tumoral concentration and an insulin resistance ‘class effect’. The current study was designed to explore the use of supramolecular nanochemistry for targeting PI3K to enhance antitumor efficacy and potentially overcome these limitations. PI3K inhibitor structures were rationally modified using a cholesterol-based derivative, facilitating supramolecular nanoassembly with L-α-phosphatidylcholine and DSPE-PEG. The supramolecular nanoparticles that were assembled were physicochemically characterized and functionally evaluated in vitro. Antitumor efficacy was quantified in vivo using 4T1 breast cancer and K-RasLSL/+/Ptenfl/fl ovarian cancer models, with effects on glucose homeostasis evaluated using an insulin sensitivity test. The use of PI103 and PI828 as surrogate molecules to engineer the supramolecular nanoparticles highlighted the need to keep design principles in perspective; specifically, potency of the active molecule and the linker chemistry were critical principles for efficacy, similar to antibody-drug conjugates. We found that the supramolecular nanoparticles exerted a temporally-sustained inhibition of phosphorylation of Akt, mTOR, S6K and 4EBP in vivo. These effects were associated with increased antitumor efficacy and survival as compared with PI103 and PI828. Efficacy was further increased by decorating the nanoparticle surface with tumor-homing peptides. Notably, the use of supramolecular nanoparticles abrogated the insulin resistance that has been associated widely with other PI3K inhibitors. This study provides a preclinical foundation for the use of supramolecular nanochemistry to overcome current challenges associated with PI3K inhibitors, offering a paradigm for extension to other molecularly targeted therapeutics being explored for cancer treatment

  10. Supramolecular nanoparticles that target phosphoinositide-3-kinase overcome insulin resistance and exert pronounced antitumor efficacy.

    PubMed

    Kulkarni, Ashish A; Roy, Bhaskar; Rao, Poornima S; Wyant, Gregory A; Mahmoud, Ayaat; Ramachandran, Madhumitha; Sengupta, Poulomi; Goldman, Aaron; Kotamraju, Venkata Ramana; Basu, Sudipta; Mashelkar, Raghunath A; Ruoslahti, Erkki; Dinulescu, Daniela M; Sengupta, Shiladitya

    2013-12-01

    The centrality of phosphoinositide-3-kinase (PI3K) in cancer etiology is well established, but clinical translation of PI3K inhibitors has been limited by feedback signaling, suboptimal intratumoral concentration, and an insulin resistance "class effect." This study was designed to explore the use of supramolecular nanochemistry for targeting PI3K to enhance antitumor efficacy and potentially overcome these limitations. PI3K inhibitor structures were rationally modified using a cholesterol-based derivative, facilitating supramolecular nanoassembly with L-α-phosphatidylcholine and DSPE-PEG [1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polythylene glycol)]. The supramolecular nanoparticles (SNP) that were assembled were physicochemically characterized and functionally evaluated in vitro. Antitumor efficacy was quantified in vivo using 4T1 breast cancer and K-Ras(LSL/+)/Pten(fl/fl) ovarian cancer models, with effects on glucose homeostasis evaluated using an insulin sensitivity test. The use of PI103 and PI828 as surrogate molecules to engineer the SNPs highlighted the need to keep design principles in perspective; specifically, potency of the active molecule and the linker chemistry were critical principles for efficacy, similar to antibody-drug conjugates. We found that the SNPs exerted a temporally sustained inhibition of phosphorylation of Akt, mTOR, S6K, and 4EBP in vivo. These effects were associated with increased antitumor efficacy and survival as compared with PI103 and PI828. Efficacy was further increased by decorating the nanoparticle surface with tumor-homing peptides. Notably, the use of SNPs abrogated the insulin resistance that has been associated widely with other PI3K inhibitors. This study provides a preclinical foundation for the use of supramolecular nanochemistry to overcome current challenges associated with PI3K inhibitors, offering a paradigm for extension to other molecularly targeted therapeutics being explored for cancer

  11. Novel immunosuppressive agent caerulomycin A exerts its effect by depleting cellular iron content

    PubMed Central

    Kaur, Suneet; Srivastava, Gautam; Sharma, Amar Nath; Jolly, Ravinder S

    2015-01-01

    Background and Purpose Recently, we have described the use of caerulomycin A (CaeA) as a potent novel immunosuppressive agent. Immunosuppressive drugs are crucial for long-term graft survival following organ transplantation and treatment of autoimmune diseases, inflammatory disorders, hypersensitivity to allergens, etc. The objective of this study was to identify cellular targets of CaeA and decipher its mechanism of action. Experimental Approach Jurkat cells were treated with CaeA and cellular iron content, iron uptake/release, DNA content and deoxyribonucleoside triphosphate pool determined. Activation of MAPKs; expression level of transferrin receptor 1, ferritin and cell cycle control molecules; reactive oxygen species (ROS) and cell viability were measured using Western blotting, qRT-PCR or flow cytometry. Key Results CaeA caused intracellular iron depletion by reducing its uptake and increasing its release by cells. CaeA caused cell cycle arrest by (i) inhibiting ribonucleotide reductase (RNR) enzyme, which catalyses the rate-limiting step in the synthesis of DNA; (ii) stimulating MAPKs signalling transduction pathways that play an important role in cell growth, proliferation and differentiation; and (iii) by targeting cell cycle control molecules such as cyclin D1, cyclin-dependent kinase 4 and p21CIP1/WAF1. The effect of CaeA on cell proliferation was reversible. Conclusions and Implications CaeA exerts its immunosuppressive effect by targeting iron. The effect is reversible, which makes CaeA an attractive candidate for development as a potent immunosuppressive drug, but also indicates that iron chelation can be used as a rationale approach to selectively suppress the immune system, because compared with normal cells, rapidly proliferating cells require a higher utilization of iron. PMID:25537422

  12. The relative expression levels of insulin-like growth factor 1 and myostatin mRNA in the asynchronous development of skeletal muscle in ducks during early development.

    PubMed

    Hu, Yan; Liu, Hongxiang; Shan, Yanju; Ji, Gaige; Xu, Wenjuan; Shu, Jingting; Li, Huifang

    2015-08-10

    Genetic selection is a powerful tool for modifying poultry muscle yield. Insulin-like growth factor I (IGF-I) and myostatin (MSTN) are important regulators of muscle growth, especially in the myogenesis stage. This study compared the developmental pattern of the pectoralis major (PM) and lateral gastrocnemius (LM) muscles, mRNA expression characterization of IGF-I and MSTN-A and their correlation between 14 days in ovo and 1 week post-hatch in two Chinese local duck breeds. During early development, the growth of duck PM and LM followed an asynchronous pattern. Variations in PM growth rate observed with development followed the relative variations of MSTN and IGF-I expression; however, the same behavior was not observed in LM. Moreover, the profile of IGF-I expression in duck skeletal muscles indicated that genetic selection for high meat-yield poultry has altered the temporal expression of IGF-I and affected cellular characteristics and mass by hatch in a PM-specific manner. The MSTN-A expression profile showed synchronization with the growth of skeletal muscle and peaks of myofiber proliferation. The expression patterns of IGF-I and MSTN suggest that duck pectoralis fibers are prioritized for proliferation in embryogenesis. The IGF-1/MSTN-A mRNA ratios in PM and LM presented very similar trends in the changes of myofiber characteristics, and differences in the IGF-1/MSTN-A mRNA ratio in PM between the two breeds corresponded to the timing of differences in PM mass between the varieties. Our results support the hypothesis that relative levels of IGF-I and MSTN mRNA may participate in ordering muscle growth rates with selected development.

  13. Myostatin-deficient medaka exhibit a double-muscling phenotype with hyperplasia and hypertrophy, which occur sequentially during post-hatch development.

    PubMed

    Chisada, Shin-Ichi; Okamoto, Hiroyuki; Taniguchi, Yoshihito; Kimori, Yoshitaka; Toyoda, Atsushi; Sakaki, Yoshiyuki; Takeda, Shunichi; Yoshiura, Yasutoshi

    2011-11-01

    Myostatin (MSTN) functions as a negative regulator of skeletal muscle mass. In mammals, MSTN-deficient animals result in an increase of skeletal muscle mass with both hyperplasia and hypertrophy. A MSTN gene is highly conserved within the fish species, allowing speculation that MSTN-deficient fish could exhibit a double-muscled phenotype. Some strategies for blocking or knocking down MSTN in adult fish have been already performed; however, these fish show either only hyperplastic or hypertrophic growth in muscle fiber. Therefore, the role of MSTN in fish myogenesis during post-hatch growth remains unclear. To address this question, we have made MSTN-deficient medaka (mstnC315Y) by using the targeting induced local lesions in a genome method. mstnC315Y can reproduce and have the same survival period as WT medaka. Growth rates of WT and mstnC315Y were measured at juvenile (1-2wk post-hatching), post-juvenile (3-7wk post-hatching) and adult (8-16wk post-hatching) stages. In addition, effects of MSTN on skeletal muscle differentiation were investigated at histological and molecular levels at each developmental stage. As a result, mstnC315Y show a significant increase in body weight from the post-juvenile to adult stage. Hyper-morphogenesis of skeletal muscle in mstnC315Y was accomplished due to hyperplastic growth from post-juvenile to early adult stage, followed by hypertrophic growth in the adult stage. Myf-5 and MyoD were up-regulated in mstnC315Y at the hyperplastic growth phase, while myogenin was highly expressed in mstnC315Y at the hypertrophic growth phase. These indicated that MSTN in medaka plays a dual role for muscle fiber development. In conclusion, MSTN in medaka regulates the number and size of muscle fiber in a temporally-controlled manner during posthatch growth.

  14. High-resolution melting analysis for detection of a single-nucleotide polymorphism and the genotype of the myostatin gene in warmblood horses.

    PubMed

    Serpa, Priscila B S; Garbade, Petra; Natalini, Cláudio C; Pires, Ananda R; Tisotti, Tainor M

    2017-01-01

    OBJECTIVE To develop a high-resolution melting (HRM) assay to detect the g.66493737C>T polymorphism in the myostatin gene (MSTN) and determine the frequency of 3 previously defined g.66493737 genotypes (T/T, T/C, and C/C) in warmblood horses. SAMPLES Blood samples from 23 horses. PROCEDURES From each blood sample, DNA was extracted and analyzed by standard PCR methods and an HRM assay to determine the MSTN genotype. Three protocols (standard protocol, protocol in which a high-salt solution was added to the reaction mixture before the first melting cycle, and protocol in which an unlabeled probe was added to the reaction mixture before analysis) for the HRM assay were designed and compared. Genotype results determined by the HRM protocol that generated the most consistent melting curves were compared with those determined by sequencing. RESULTS The HRM protocol in which an unlabeled probe was added to the reaction mixture generated the most consistent melting curves. The genotypes of the g.66493737C>T polymorphism were determined for 22 horses (16 by HRM analysis and 20 by sequencing); 14, 7, and 1 had the T/T, T/C, and C/C genotypes, respectively. The genotype determined by HRM analysis agreed with that determined by sequencing for 14 of 16 horses. The frequency of alleles T and C was 79.5% and 20.5%, respectively. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that HRM analysis may be a faster and more economical alternative than PCR methods for genotyping. Genotyping results might be useful as predictors of athletic performance for horses.

  15. Haplotype diversity in the equine myostatin gene with focus on variants associated with race distance propensity and muscle fiber type proportions.

    PubMed

    Petersen, Jessica L; Valberg, Stephanie J; Mickelson, James R; McCue, Molly E

    2014-12-01

    Two variants in the equine myostatin gene (MSTN), including a T/C SNP in the first intron and a 227-bp SINE insertion in the promoter, are associated with muscle fiber type proportions in the Quarter Horse (QH) and with the prediction of race distance propensity in the Thoroughbred (TB). Genotypes from these loci, along with 18 additional variants surrounding MSTN, were examined in 301 horses of 14 breeds to evaluate haplotype relationships and diversity. The C allele of intron 1 was found in 12 of 14 breeds at a frequency of 0.27; the SINE was observed in five breeds, but common in only the TB and QH (0.73 and 0.48 respectively). Haplotype data suggest the SINE insertion is contemporary to and arose upon a haplotype containing the intron 1 C allele. Gluteal muscle biopsies of TBs showed a significant association of the intron 1 C allele and SINE with a higher proportion of Type 2B and lower proportion of Type 1 fibers. However, in the Belgian horse, in which the SINE is not present, the intron 1 SNP was not associated with fiber type proportions, and evaluation of fiber type proportions across the Belgian, TB and QH breeds shows the significant effect of breed on fiber type proportions is negated when evaluating horses without the SINE variant. These data suggest the SINE, rather than the intron 1 SNP, is driving the observed muscle fiber type characteristics and is the variant targeted by selection for short-distance racing.

  16. Influence of single nucleotide polymorphisms in the myostatin and myogenic factor 5 muscle growth-related genes on the performance traits of Marchigiana beef cattle.

    PubMed

    Sarti, F M; Lasagna, E; Ceccobelli, S; Di Lorenzo, P; Filippini, F; Sbarra, F; Giontella, A; Pieramati, C; Panella, F

    2014-09-01

    The Marchigiana is famous for its large body size and favorable dressing percentage. A myostatin (MSTN) gene mutation (a G to T transversion) was identified in the breed. The homozygote "GG" yields a "normal" phenotype, the homozygote "TT" yields a double muscled body shape but sometimes causes survival problems, and the heterozygote genotype produces an extremely muscled body without defects. In practice, Marchigiana "TT" homozygotes are culled from reproduction, but the heterozygotes are chosen as sires. The objective of this study was to assess genes involved in Marchigiana muscle development to improve selection procedures. The effects of the MSTN and myogenic factor 5 (MYF5) genes on the growth and muscle traits in the Marchigiana breed were assessed. The effects of MSTN together with the genotype of the causative mutation (g.874G > T) and the effects of the two SNP in the promoter were studied (g.-371T > A and g.-805G > C). The SNP effects were evaluated in a comparison between the means of the several genotypes or for the average gene substitution and dominance effect. Two hundred forty-nine bullocks were evaluated using a performance test. At the beginning and end of the trial, the animals were weighed and their bodies were measured every 21 d up to 12 mo of age. In addition to these observations, morphological scores and the BLUP indices were estimated at the end of the performance test. The obtained results suggested that the MSTN g.874G > T and MYF5 SNP could be considered in the selection program of the Marchigiana breed. A MSTN g.874G > T genotyping service for the breeders could help to avoid the "TT" genotype and to select for the "GT" genotype. The "AA" MYF5 SNP genotype could also be selected for even if good muscle development yields a certain size reduction.

  17. Structural and functional analysis of myostatin-2 promoter alleles from the marine fish Sparus aurata: evidence for strong muscle-specific promoter activity and post-transcriptional regulation.

    PubMed

    Nadjar-Boger, Elisabeth; Hinits, Yaniv; Funkenstein, Bruria

    2012-09-25

    Myostatin (MSTN) is a negative regulator of skeletal muscle growth. In contrast to mammals, fish possess at least two paralogs of MSTN: MSTN-1 and MSTN-2. In this study, we analyzed the structural-functional features of the four variants of Sparus aurata MSTN-2 5'-flanking region: saMSTN-2a, saMSTN-2as, saMSTN-2b and saMSTN-2c. In silico analysis revealed numerous putative cis regulatory elements including several E-boxes known as binding sites to myogenic transcription factors. Transient transfection experiments using non-muscle and muscle cell lines showed surprisingly high transcriptional activity in muscle cells, suggesting the presence of regulatory elements unique to differentiated myotubes. These observations were confirmed by in situ intramuscular injections of promoter DNA followed by reporter gene assays. Moreover, high promoter activity was found in differentiated neural cell, in agreement with MSTN-2 expression in brain. Progressive 5'-deletion analysis, using reporter gene assays, showed that the core promoter is located within the first -127 bp upstream of the ATG, and suggested the presence of regulatory elements that either repress or induce transcriptional activity. Transient transgenic zebrafish provided evidence for saMSTN-2 promoter ability to direct GFP expression to myofibers. Finally, our data shows that although no mature saMSTN-2 mRNA is observed in muscle; unspliced forms accumulate, confirming high level of transcription. In conclusion, our study shows for the first time that MSTN-2 promoter is a very robust promoter, especially in muscle cells.

  18. Myostatin, activin receptor IIb, and follistatin-like-3 gene expression are altered in adipose tissue and skeletal muscle of obese mice.

    PubMed

    Allen, David L; Cleary, Allison S; Speaker, Kristin J; Lindsay, Sarah F; Uyenishi, Jill; Reed, Jason M; Madden, Molly C; Mehan, Ryan S

    2008-05-01

    Myostatin (MSTN) is a secreted growth inhibitor expressed in muscle and adipose. We sought to determine whether expression of MSTN, its receptor activin RIIb (ActRIIb), or its binding protein follistatin-like-3 (FSTL3) are altered in subcutaneous or visceral adipose or in skeletal muscle in response to obesity. MSTN and ActRIIb mRNA levels were low in subcutaneous (SQF) and visceral fat (VF) from wild-type mice but were 50- to 100-fold higher in both SQF and VF from ob/ob compared with wild-type mice. FSTL3 mRNA levels were increased in SQF but decreased in VF in ob/ob compared with wild-type mice. Moreover, MSTN mRNA levels were twofold greater in tibialis anterior (TA) from ob/ob mice, whereas ActRIIb and FSTL3 mRNA levels were unchanged. MSTN mRNA levels were also increased in TA and SQF from mice on a high-fat diet. Injection of ob/ob mice with recombinant leptin caused FSTL3 mRNA levels to decrease in both VF and SQF in ob/ob mice; MSTN and ActRIIb mRNA levels tended to decrease only in VF. Finally, MSTN mRNA levels and promoter activity were low in adipogenic 3T3-L1 cells, but an MSTN promoter-reporter construct was activated in 3T3-L1 cells by cotransfection with the adipogenic transcription factors SREBP-1c, C/EBPalpha, and PPARgamma. These results demonstrate that expression of MSTN and its associated binding proteins can be modulated in adipose tissue and skeletal muscle by chronic obesity and suggest that alterations in their expression may contribute to the changes in growth and metabolism of lean and fat tissues occurring during obesity.

  19. Characterization of a myostatin gene (MSTN1) from spotted halibut (Verasper variegatus) and association between its promoter polymorphism and individual growth performance.

    PubMed

    Li, Hongjun; Fan, Jingfeng; Liu, Shuxi; Yang, Qing; Mu, Guiqiang; He, Chongbo

    2012-04-01

    Myostatin (MSTN) is a member of the transforming growth factor-β superfamily which could play an important role in negatively regulating skeletal muscle growth and development in mammal and non-mammal species. In the present study, a MSTN1 gene (designated as VvMSTN1) was cloned and characterized in one flatfish species, spotted halibut (Verasper variegatus). In the 3078 bp genomic sequence, three exons, two introns and a promoter sequence were identified. Sequence analysis of the promoter region revealed that it contained several cis-regulatory elements such as CAAT-box, TATA-box and E-boxes. The deduced protein sequence included a signal peptide, a TGF-β propeptide in the N-terminal region and the TGF-β active peptide in the C-terminal region. Phylogenetic analysis suggested that VvMSTN1 is an orthologue of teleost MSTN1 proteins which arose along with MSTN2 during a duplication event at the base of teleost evolution. Quantitative real-time PCR analysis revealed that VvMSTN1 mRNA was ubiquitously expressed in all nine tested tissues, with the most transcriptionally abundant in skeletal muscle. A primary assessment of sequence variability revealed five single nucleotide polymorphisms (SNPs) existed in the promoter region, among which three (G-653T, T-355C and G-253A) were genotyped with an advanced melting temperature (T(m))-shift method and tested for their association with growth traits (body length, body depth and total mass). Results indicated that genotype CC of locus T-355C had significantly higher growth traits than genotype TC and TT (P<0.05) in female spotted halibut. These results suggest that V. variegatus MSTN could be selected as a candidate gene for the future molecular breeding of stains with enhanced individual growth performance.

  20. Bamboo salt has in vitro anticancer activity in HCT-116 cells and exerts anti-metastatic effects in vivo.

    PubMed

    Zhao, Xin; Kim, So-Young; Park, Kun-Young

    2013-01-01

    Bamboo salt is a traditional food widely used in Korea. The in vitro anticancer effects of this salt were evaluated in HCT-116 human colon cancer cells using a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay. A 1% salt concentration of bamboo salt baked nine times (9×) inhibited the growth of HCT-116 cells by 53%, which was higher than salt baked three times (3×) or once (1×; 44% and 41%, respectively) and much higher than solar sea salt (Korean sea salt) and purified salt (22% and 18%, respectively). To elucidate the inhibitory mechanisms underlying the anticancer effect of the salt samples in cancer cells, expression of genes associated with apoptosis, inflammation, and metastasis was measured with reverse transcription-polymerase chain reaction and Western blotting. Bamboo salt (9×) significantly induced apoptosis in cancer cells (P<.05) by upregulating Bax, caspase-9, and caspase-3, and downregulating Bcl-2. The expression of genes associated with inflammation (NF-κB, iNOS, and COX-2) was significantly downregulated (P<.05) by 9× bamboo salt, demonstrating its anti-inflammatory properties. The 9× bamboo salt also exerted a greater anti-metastatic effect on cancer cells than the other salts as demonstrated by decreased mRNA expression of MMP genes and increased expression of tissue inhibitors of metalloproteinases, which was confirmed by the inhibition of tumor metastasis induced in colon 26-M3.1 cells in BALB/c mice. In contrast, purified and solar salts increased metastasis in the mice. Our results demonstrated that 9× bamboo salt had the most potent in vitro anticancer effect, induced apoptosis, had anti-inflammatory activities, and exerted in vivo anti-metastatic effects. Additionally, the anticancer, anti-inflammatory, and anti-metastatic effects of the 1× and 3× bamboo salts were stronger than those of the purified and solar salts.

  1. Methamphetamine inhibits antigen processing, presentation, and phagocytosis.

    PubMed

    Tallóczy, Zsolt; Martinez, Jose; Joset, Danielle; Ray, Yonaton; Gácser, Attila; Toussi, Sima; Mizushima, Noboru; Nosanchuk, Joshua D; Nosanchuk, Josh; Goldstein, Harris; Loike, John; Sulzer, David; Santambrogio, Laura

    2008-02-08

    Methamphetamine (Meth) is abused by over 35 million people worldwide. Chronic Meth abuse may be particularly devastating in individuals who engage in unprotected sex with multiple partners because it is associated with a 2-fold higher risk for obtaining HIV and associated secondary infections. We report the first specific evidence that Meth at pharmacological concentrations exerts a direct immunosuppressive effect on dendritic cells and macrophages. As a weak base, Meth collapses the pH gradient across acidic organelles, including lysosomes and associated autophagic organelles. This in turn inhibits receptor-mediated phagocytosis of antibody-coated particles, MHC class II antigen processing by the endosomal-lysosomal pathway, and antigen presentation to splenic T cells by dendritic cells. More importantly Meth facilitates intracellular replication and inhibits intracellular killing of Candida albicans and Cryptococcus neoformans, two major AIDS-related pathogens. Meth exerts previously unreported direct immunosuppressive effects that contribute to increased risk of infection and exacerbate AIDS pathology.

  2. The effects of running in an exerted state on lower extremity kinematics and joint timing.

    PubMed

    Dierks, Tracy A; Davis, Irene S; Hamill, Joseph

    2010-11-16

    Runners rarely run to the point of maximum fatigue or exhaustion. However, no studies have investigated how the level of exertion associated with a typical running session influences running mechanics. The purpose of this study was to investigate the effects that running in an exerted state had on the kinematics and joint timing within the lower extremity of uninjured, recreational runners. Twenty runners performed a prolonged treadmill run at a self-selected pace that best represented each runner's typical training run. The run ended based on heart rate or perceived exertion levels that represented a typical training run. Kinematics and joint timing between the foot, knee, and hip were analyzed at the beginning and end of the run. Increases were primarily observed at the end of the run for the peak angles, excursions, and peak velocities of eversion, tibial internal rotation, and knee internal rotation. No differences were observed for knee flexion, hip internal rotation, or any joint timing relationship. Based on these results, runners demonstrated subtle changes in kinematics in the exerted state, most notably for eversion. However, runners were able to maintain joint timing throughout the leg, which may have been a function of the knee. Thus, uninjured runners normally experience small alterations in kinematics when running with typical levels of exertion. It remains unknown how higher levels of exertion influence kinematics with joint timing and the association with running injuries, or how populations with running injuries respond to typical levels of exertion.

  3. Motivational incentives lead to a strong increase in lateral prefrontal activity after self-control exertion.

    PubMed

    Luethi, Matthias S; Friese, Malte; Binder, Julia; Boesiger, Peter; Luechinger, Roger; Rasch, Björn

    2016-10-01

    Self-control is key to success in life. Initial acts of self-control temporarily impair subsequent self-control performance. Why such self-control failures occur is unclear, with prominent models postulating a loss of a limited resource vs a loss of motivation, respectively. Here, we used functional magnetic resonance imaging to identify the neural correlates of motivation-induced benefits on self-control. Participants initially exerted or did not exert self-control. In a subsequent Stroop task, participants performed worse after exerting self-control, but not if they were motivated to perform well by monetary incentives. On the neural level, having exerted self-control resulted in decreased activation in the left inferior frontal gyrus. Increasing motivation resulted in a particularly strong activation of this area specifically after exerting self-control. Thus, after self-control exertion participants showed more prefrontal neural activity without improving performance beyond baseline level. These findings suggest that impaired performance after self-control exertion may not exclusively be due to a loss of motivation.

  4. COPD Patients with Exertional Desaturation Are at a Higher Risk of Rapid Decline in Lung Function

    PubMed Central

    Kim, Changhwan; Park, Yong Bum; Park, So Young; Park, Sunghoon; Kim, Cheol-Hong; Park, Sang Myeon; Lee, Myung-Goo; Hyun, In-Gyu; Jung, Ki-Suck

    2014-01-01

    Purpose A recent study demonstrated that exertional desaturation is a predictor of rapid decline in lung function in patients with chronic obstructive pulmonary disease (COPD); however, the study was limited by its method used to detect exertional desaturation. The main purpose of this study was to explore whether exertional desaturation assessed using nadir oxygen saturation (SpO2) during the 6-minute walk test (6MWT) can predict rapid lung function decline in patients with COPD. Materials and Methods A retrospective analysis was performed on 57 patients with moderate to very severe COPD who underwent the 6MWT. Exertional desaturation was defined as a nadir SpO2 of <90% during the 6MWT. Rapid decline was defined as an annual rate of decline in forced expiratory volume in 1 second (FEV1) ≥50 mL. Patients were divided into rapid decliner (n=26) and non-rapid decliner (n=31) groups. Results A statistically significant difference in exertional desaturation was observed between rapid decliners and non-rapid decliners (17 vs. 8, p=0.003). No differences were found between the groups for age, smoking status, BODE index, and FEV1. Multivariate analysis showed that exertional desaturation was a significant independent predictor of rapid decline in patients with COPD (relative risk, 6.8; 95% CI, 1.8 to 25.4; p=0.004). Conclusion This study supports that exertional desaturation is a predictor of rapid lung function decline in male patients with COPD. PMID:24719141

  5. Synchrony and exertion during dance independently raise pain threshold and encourage social bonding

    PubMed Central

    Tarr, Bronwyn; Launay, Jacques; Cohen, Emma; Dunbar, Robin

    2015-01-01

    Group dancing is a ubiquitous human activity that involves exertive synchronized movement to music. It is hypothesized to play a role in social bonding, potentially via the release of endorphins, which are analgesic and reward-inducing, and have been implicated in primate social bonding. We used a 2 × 2 experimental design to examine effects of exertion and synchrony on bonding. Both demonstrated significant independent positive effects on pain threshold (a proxy for endorphin activation) and in-group bonding. This suggests that dance which involves both exertive and synchronized movement may be an effective group bonding activity. PMID:26510676

  6. Synchrony and exertion during dance independently raise pain threshold and encourage social bonding.

    PubMed

    Tarr, Bronwyn; Launay, Jacques; Cohen, Emma; Dunbar, Robin

    2015-10-01

    Group dancing is a ubiquitous human activity that involves exertive synchronized movement to music. It is hypothesized to play a role in social bonding, potentially via the release of endorphins, which are analgesic and reward-inducing, and have been implicated in primate social bonding. We used a 2 × 2 experimental design to examine effects of exertion and synchrony on bonding. Both demonstrated significant independent positive effects on pain threshold (a proxy for endorphin activation) and in-group bonding. This suggests that dance which involves both exertive and synchronized movement may be an effective group bonding activity.

  7. The Effects of Local Exertion and Anticipation on the Performance of a Discrete Skill.

    DTIC Science & Technology

    1986-01-01

    8217 AFIT/CI/NR 86- 81D . TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED The Effects of Local Exertion and Anticipation on the Performance of a...34I i. ’’ , ’."k’ ’* The Effects of Local Exertion and Anticipation on the Performance of a Discrete Skill by Bruce Jaeger Captain, USAF 1986 NTIS GRA...Carolina State University I I p -. ~~ h~~~A k. .IbJ .~ .2~ ~or The Effects of Local Exertion and Anticipation on the Performance of a Discrete Skill by

  8. Rapamycin Exerts Antifungal Activity In Vitro and In Vivo against Mucor circinelloides via FKBP12-Dependent Inhibition of Tor

    PubMed Central

    Bastidas, Robert J.; Shertz, Cecelia A.; Lee, Soo Chan; Heitman, Joseph

    2012-01-01

    The zygomycete Mucor circinelloides is an opportunistic fungal pathogen that commonly infects patients with malignancies, diabetes mellitus, and solid organ transplants. Despite the widespread use of antifungal therapy in the management of zygomycosis, the incidence of infections continues to rise among immunocompromised individuals. In this study, we established that the target and mechanism of antifungal action of the immunosuppressant rapamycin in M. circinelloides are mediated via conserved complexes with FKBP12 and a Tor homolog. We found that spontaneous mutations that disrupted conserved residues in FKBP12 conferred rapamycin and FK506 resistance. Disruption of the FKBP12-encoding gene, fkbA, also conferred rapamycin and FK506 resistance. Expression of M. circinelloides FKBP12 (McFKBP12) complemented a Saccharomyces cerevisiae mutant strain lacking FKBP12 to restore rapamycin sensitivity. Expression of the McTor FKBP12-rapamycin binding (FRB) domain conferred rapamycin resistance in S. cerevisiae, and McFKBP12 interacted in a rapamycin-dependent fashion with the McTor FRB domain in a yeast two-hybrid assay, validating McFKBP12 and McTor as conserved targets of rapamycin. We showed that in vitro, rapamycin exhibited potent growth inhibitory activity against M. circinelloides. In a Galleria mellonella model of systemic mucormycosis, rapamycin improved survival by 50%, suggesting that rapamycin and nonimmunosuppressive analogs have the potential to be developed as novel antifungal therapies for treatment of patients with mucormycosis. PMID:22210828

  9. Chiari-associated exertional, cough, and sneeze headache responsive to medical therapy.

    PubMed

    Buzzi, M Gabriella; Formisano, Rita; Colonnese, Claudio; Pierelli, Francesco

    2003-04-01

    Benign exertional headache is coded as a separate entity within the International Headache Society's classification system, but the pathophysiological mechanisms underlying this clinical headache subtype are unknown and possibly are similar to those generating migraine. Coexistence of migraine and benign exertional headache in the same patient is not unusual, and antimigraine pharmacologic treatments are often effective in both headache types. Regardless, optimal management mandates that the clinician exclude any intracranial or systemic disease that could mimic "primary" exertional headache. The same holds for primary headaches induced by coughing or sneezing; congenital malformations or neoplasms, particularly within the posterior fossa, are not rare in these patients. The neurologic examination may not be sufficiently sensitive to detect the offending lesion. We describe a patient with migraine without aura and exertional secondary headache due to Chiari malformation type I whose headaches responded to treatment with propranolol and indomethacin.

  10. The Influence of a Bout of Exertion on Novice Barefoot Running Dynamics.

    PubMed

    Hashish, Rami; Samarawickrame, Sachithra D; Baker, Lucinda; Salem, George J

    2016-06-01

    Barefoot, forefoot strike (FFS) running has recently risen in popularity. Relative to shod, rear-foot strike (RFS) running, employing a FFS is associated with heightened triceps surae muscle activation and ankle mechanical demand. Novice to this pattern, it is plausible that habitually shod RFS runners exhibit fatigue to the triceps surae when acutely transitioning to barefoot running, thereby limiting their ability to attenuate impact. Therefore, the purpose was to determine how habitually shod RFS runners respond to an exertion bout of barefoot running, operationally defined as a barefoot run 20% of mean daily running distance. Twenty-one RFS runners performed novice barefoot running, before and after exertion. Ankle peak torque, triceps surae EMG median frequency, foot-strike patterns, joint energy absorption, and loading rates were evaluated. Of the 21 runners, 6 maintained a RFS, 10 adopted a mid-foot strike (MFS), and 5 adopted a FFS during novice barefoot running. In-response to exertion, MFS and FFS runners demonstrated reductions in peak torque, median frequency, and ankle energy absorption, and an increase in loading rate. RFS runners demonstrated reductions in peak torque and loading rate. These results indicate that a short bout of running may elicit fatigue to novice barefoot runners, limiting their ability to attenuate impact. Key pointsIn response to exertion, novice barefoot runners demonstrate fatigue to their soleus.In response to exertion, novice barefoot runners demonstrate a reduction in ankle energy absorptionIn response to exertion, novice barefoot runners demonstrate an increase in loading rate.

  11. The Influence of a Bout of Exertion on Novice Barefoot Running Dynamics

    PubMed Central

    Hashish, Rami; Samarawickrame, Sachithra D.; Baker, Lucinda; Salem, George J.

    2016-01-01

    Barefoot, forefoot strike (FFS) running has recently risen in popularity. Relative to shod, rear-foot strike (RFS) running, employing a FFS is associated with heightened triceps surae muscle activation and ankle mechanical demand. Novice to this pattern, it is plausible that habitually shod RFS runners exhibit fatigue to the triceps surae when acutely transitioning to barefoot running, thereby limiting their ability to attenuate impact. Therefore, the purpose was to determine how habitually shod RFS runners respond to an exertion bout of barefoot running, operationally defined as a barefoot run 20% of mean daily running distance. Twenty-one RFS runners performed novice barefoot running, before and after exertion. Ankle peak torque, triceps surae EMG median frequency, foot-strike patterns, joint energy absorption, and loading rates were evaluated. Of the 21 runners, 6 maintained a RFS, 10 adopted a mid-foot strike (MFS), and 5 adopted a FFS during novice barefoot running. In-response to exertion, MFS and FFS runners demonstrated reductions in peak torque, median frequency, and ankle energy absorption, and an increase in loading rate. RFS runners demonstrated reductions in peak torque and loading rate. These results indicate that a short bout of running may elicit fatigue to novice barefoot runners, limiting their ability to attenuate impact. Key points In response to exertion, novice barefoot runners demonstrate fatigue to their soleus. In response to exertion, novice barefoot runners demonstrate a reduction in ankle energy absorption In response to exertion, novice barefoot runners demonstrate an increase in loading rate PMID:27274672

  12. Assessment of decision-making performance and in-game physical exertion of Australian football umpires.

    PubMed

    Larkin, Paul; O'Brien, Brendan; Mesagno, Christopher; Berry, Jason; Harvey, Jack; Spittle, Michael

    2014-01-01

    The aim of this study is to investigate the effects of in-game physical exertion on decision-making performance of Australian football umpires. Fifteen Australian football umpires (Mage = 36, s = 13.5 years; Mgames umpired = 235.2, s = 151.3) volunteered to participate in the study. During five competitive Australian football pre-season games, measures of in-game physical exertion (blood lactate levels, global positioning system [GPS]) and decision-making performance (video-based test) were obtained. There were no significant correlations between physical exertion in a particular quarter and decision-making performance in either the same quarter or any other quarter. Video-based decision-making performance was effected by time in game χ(2)(3) = 24.24, P = 0.001, with Quarter 4 performance significantly better than both Quarter 2 and Quarter 3. In-game physical exertion (blood lactate) significantly decreased over the course of the game χ(2)(3) = 11.58, P = 0.009. Results indicate no definable link between in-game physical exertion and decision-making performance. It is, however, presumed that decision-making performance may be affected by the time or context of the game. Future research is warranted to explore the relationship between physical exertion and decision-making performance to potentially inform Australian football umpire training programmes that replicate in-game physical and decision-making demands.

  13. Cough, exertional, and sexual headaches: an analysis of 72 benign and symptomatic cases.

    PubMed

    Pascual, J; Iglesias, F; Oterino, A; Vázquez-Barquero, A; Berciano, J

    1996-06-01

    We analyzed our experience with cough, exertional, and vascular sexual headaches, evaluated the interrelationships among them, and examined the possible symptomatic cases. Seventy-two patients consulted us because of headaches precipitated by coughing (n = 30), physical exercise (n = 28), or sexual excitement (n = 14). Thirty (42%) were symptomatic. The 17 cases of symptomatic cough headache were secondary to Chiari type I malformation, while the majority of cases of symptomatic exertional headaches and the only case of symptomatic sexual headache were secondary to subarachnoid hemorrhage. Although the precipitant was the same, benign and symptomatic headaches differed in several clinical aspects, such as age at onset, associated clinical manifestations, or response to pharmacologic treatment. Although sharing some properties, such as male predominance, benign cough headache and benign exertional headache are clinically separate conditions. Benign cough headache began significantly later, 43 years on average, than benign exertional headache. By contrast, our findings suggest that there is a close relationship between benign exertional headache and benign vascular sexual headache. We conclude that benign and symptomatic cough headaches are different from both benign and symptomatic exertional and sexual headaches.

  14. Quadriceps activation and perceived exertion during a high intensity, steady state contraction to failure.

    PubMed

    Pincivero, D M; Gear, W S

    2000-04-01

    The ability to sustain a high-intensity, steady-state muscle contraction may have differential effects on neuromuscular activation and perceived exertion. The purpose of this study was to examine changes in neuromuscular activation and perceived exertion at a near-maximal steady-state contraction of the quadriceps in healthy men. Seventeen healthy, college-aged male volunteers were studied during isometric contractions equivalent to 80% of the maximum voluntary contraction (MVC). Perceived exertion was measured with a modified category-ratio scale (CR-10). The CR-10 scale was anchored with one high anchor at 100% MVC and one low anchor at 10% MVC. Subjects then performed an 80% MVC for as long as they could susta