Science.gov

Sample records for n-15 nmr relaxation

  1. N-15 NMR Spectroscopy as a Method for Comparing the Rates of Imidization of Several Diamines

    NASA Technical Reports Server (NTRS)

    Johnson, J. Christopher; Kuczmarski, Maria A.

    2006-01-01

    The relative rates of the conversion of amide-acid to imide was measured for a series or aromatic diamines that have been identified as potential replacements for 4,4'-methylene dianiline (MDA) in high-temperature polyimides and polymer composites. These rates were compared with the N-15 NMR resonances of the unreacted amines. The initial rates of imidization track with the difference in chemical shift between the amine nitrogens in MDA and those in the subject diamines. This comparison demonstrated that N-15 NMR spectroscopy is appropriate for the rapid screening of candidate diamines to determine their reactivity relative to MDA, and can serve to provide guidance to the process of creating the time-temperature profiles used in processing these materials into polymer matrix composites.

  2. Relaxation time estimation in surface NMR

    DOEpatents

    Grunewald, Elliot D.; Walsh, David O.

    2017-03-21

    NMR relaxation time estimation methods and corresponding apparatus generate two or more alternating current transmit pulses with arbitrary amplitudes, time delays, and relative phases; apply a surface NMR acquisition scheme in which initial preparatory pulses, the properties of which may be fixed across a set of multiple acquisition sequence, are transmitted at the start of each acquisition sequence and are followed by one or more depth sensitive pulses, the pulse moments of which are varied across the set of multiple acquisition sequences; and apply processing techniques in which recorded NMR response data are used to estimate NMR properties and the relaxation times T.sub.1 and T.sub.2* as a function of position as well as one-dimensional and two-dimension distributions of T.sub.1 versus T.sub.2* as a function of subsurface position.

  3. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1988-01-01

    This report covers the progress made on the title project during the current reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. This quarter we have focused on variable temperature spin lattice relaxation measurements for several of the Argonne coals. 5 figs.

  4. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1988-01-01

    This report covers the progress made on the title project during the current reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. This quarter we have focussed on spin lattice relaxation measurements for several of the Argonne coals. 2 figs., 1 tab.

  5. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project during the past reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines the authors are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. The authors have been reinvestigating the prospects of using zero field NMR types of techniques for two dimensional NMR structural analysis of complex organic solids such as coals. Currently MAS spin rates are not sufficiently high to permit zero field in high field NMR for protons in typical organic solids, however they are compatible with {sup 13}C-{sup 13}C dipolar couplings. In collaboration with Dr. Robert Tycko of AT T Bell Laboratories, inventor of the zero field in high field NMR method, the authors have performed the first zero field in high field {sup 13}C NMR experiments. These results are described. 9 refs., 2 figs.

  6. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1992-05-27

    This report covers the progress made on the title project for the project period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups that determine the reactivity of coals. Special attention is being paid to methods that are compatible with the very high magic angle sample spinning rates needed for operation at the high magnetic field strengths available today. Polarization inversion methods utilizing the difference in heat capacities of small groups of spins are particularly promising. Methods combining proton-proton spin diffusion with {sup 13}C CPMAS readout are being developed to determine the connectivity of functional groups in coals in a high sensitivity relay type of experiment. Additional work is aimed a delineating the role of methyl group rotation in the proton NMR relaxation behavior of coals.

  7. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1990-01-01

    This report covers the progress made on the title project and summarizes the accomplishments for the project period. Four major areas of inquiry have been pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines the authors are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. The authors have concentrated on a theoretical treatment of pairs of tightly coupled spin {1/2} nuclei under magic angle spinning conditions. The average Hamiltonian theory developed here is required for a quantitative understanding of two dimensional NMR experiments of such spin pairs in solids. These experiments in turn provide a means of determining connectivities between resonances in solid state NMR spectra. Development of these techniques will allow us to establish connectivities between functional components in coals. The complete description of these spin dynamics has turned out to be complex, and is necessary to provide a foundation upon which such experiments may be quantitatively interpreted in complex mixtures such as coals. 25 refs., 4 figs., 3 tabs.

  8. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project and summarizes the accomplishments for the project period. Four major areas of inquiry have been pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concern how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. During the last quarter the authors have concentrated on improvements in cross polarization (CP) sequences with a goal of making the CP process insensitive to experimental conditions such as the magic angle spinning (MAS) rate. In order to be able to use fields the order of 7.0 T or higher, CP efficiency must be maintained at MAS rates of over 10 kHz. The standard sequences have severe limitations at these rates which lead to intensity distortions in {sup 13}C CPMAS spectra. Thus in order to be able to take advantage of the increases in sensitivity and resolution that accompany high field operation, improvements in the NMR methods are required. The new sequences the authors are developing will be especially important for quantitative analysis of coal structure by {sup 13}C solid state NMR at high field strengths. 13 refs., 7 figs., 2 tabs.

  9. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project and summarizes the accomplishments for the project period. Four major areas of inquiry have been pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coal models. Along the same lines the author are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. During the last quarter the authors has concentrated on improvements in cross polarization (CP) sequences with a goal of making the CP process insensitive to experimental conditions such as the Hartmann-Hahn mismatch. It has been found that the usual theories of CP are incorrect, and that the CP process is very heterogeneous in nature. This has significant implications on methods typically used in quantifying {sup 13}C CPMAS spectra of coals. 19 refs., 11 figs.

  10. Jointly deriving NMR surface relaxivity and pore size distributions by NMR relaxation experiments on partially desaturated rocks

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Hughes, B.

    2014-06-01

    Nuclear magnetic resonance (NMR) relaxometry is a geophysical method widely used in borehole and laboratory applications to nondestructively infer transport and storage properties of rocks and soils as it is directly sensitive to the water/oil content and pore sizes. However, for inferring pore sizes, NMR relaxometry data need to be calibrated with respect to a surface interaction parameter, surface relaxivity, which depends on the type and mineral constituents of the investigated rock. This study introduces an inexpensive and quick alternative to the classical calibration methods, e.g., mercury injection, pulsed field gradient (PFG) NMR, or grain size analysis, which allows for jointly estimating NMR surface relaxivity and pore size distributions using NMR relaxometry data from partially desaturated rocks. Hereby, NMR relaxation experiments are performed on the fully saturated sample and on a sample partially drained at a known differential pressure. Based on these data, the (capillary) pore radius distribution and surface relaxivity are derived by joint optimization of the Brownstein-Tarr and the Young-Laplace equation assuming parallel capillaries. Moreover, the resulting pore size distributions can be used to predict water retention curves. This inverse modeling approach—tested and validated using NMR relaxometry data measured on synthetic porous borosilicate samples with known petrophysical properties (i.e., permeability, porosity, inner surfaces, pore size distributions)—yields consistent and reproducible estimates of surface relaxivity and pore radii distributions. Also, subsequently calculated water retention curves generally correlate well with measured water retention curves.

  11. NMR relaxation dispersion of vulcanized natural rubber.

    PubMed

    Kariyo, Sobiroh; Stapf, Siegfried

    2004-01-01

    The dependence of the 1H spin-lattice relaxation time on the magnetic field strength has been determined for linear and cross-linked polyisoprene for Larmor frequencies between 5 kHz and 20 MHz. Universal power-law relations are found for all temperatures and cross-link densities under investigation and are compared to published results of rotating-frame experiments on similar natural rubber samples. The shape of the individual dispersion functions can be superposed into a master curve using appropriate shift factors. While addition of filler particles even at large weight fractions has only a minor effect on the relaxation times, uniaxial deformation and swelling are demonstrated to alter the molecular dynamics significantly.

  12. Distribution of NMR relaxations in a random Heisenberg chain.

    PubMed

    Shiroka, T; Casola, F; Glazkov, V; Zheludev, A; Prša, K; Ott, H-R; Mesot, J

    2011-04-01

    NMR measurements of the (29)Si spin-lattice relaxation time T(1) were used to probe the spin-1/2 random Heisenberg chain compound BaCu(2)(Si(1-x)Ge(x))(2)O(7). Remarkable differences between the pure (x=0) and the fully random (x=0.5) cases are observed, indicating that randomness generates a distribution of local magnetic relaxations. This distribution, which is reflected in a stretched exponential NMR relaxation, exhibits a progressive broadening with decreasing temperature, caused by a growing inequivalence of magnetic sites. Compelling independent evidence for the influence of randomness is also obtained from magnetization data and Monte Carlo calculations. These results suggest the formation of random-singlet states in this class of materials, as previously predicted by theory.

  13. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy.

    PubMed

    Konuma, Tsuyoshi; Harada, Erisa; Sugase, Kenji

    2015-12-01

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  14. Microscale simulations of NMR relaxation in porous media

    NASA Astrophysics Data System (ADS)

    Mohnke, Oliver; Klitzsch, Norbert

    2010-05-01

    In petrophysical applications of nuclear magnetic resonance (NMR), the measured relaxation signals originate from the fluid filled pore space. Hence, in rocks or sediments the water content directly corresponds to the initial amplitude of the recorded NMR relaxation signals. The relaxation rate (longitudinal/transversal decay time T1, T2) is sensitive to pore sizes and physiochemical properties of rock-fluid interfaces (surface relaxivity), as well as the concentration of paramagnetic ions in the fluid phases (bulk relaxivity). In the subproject A2 of the TR32 we aim at improving the basic understanding of these processes at the pore scale and thereby advancing the interpretation of NMR data by reducing the application of restrictive approximated interpretation schemes, e.g. for deriving pore size distributions, connectivity or permeability. In this respect we numerically simulate NMR relaxation data at the micro sale to study the impact of physical and hydrological parameters such as internal field gradients or pore connectivities on NMR signals. Joint numerical simulations of the NMR relaxation behavior (Bloch equations) in the presence of internal gradients (Ampere's law) and fluid flow (Navier-Stokes) on a pore scale dimension have been implemented in a finite element (FE) model using Comsol Multiphysics. Processes governing the time and spatial behavior of the nuclear magnetization density in a porous medium are diffusion and surface interactions at the rock-fluid interface. Based on Fick's law of diffusive motion Brownstein and Tarr (1979) introduced differential equations that describe the relaxation behavior of the Spin magnetization in single isolated pores and derived analytical solutions for simple geometries, i.e. spherical, cylindrical and planar. However, by numerically solving these equations in a general way using a FE algorithm this approach can be applied to study and simulate coupled complex pore systems, e.g. derived from computer tomography (CT

  15. Microscale simulations of NMR relaxation in porous media

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Klitzsch, N.; Clauser, C.

    2009-12-01

    In petrophysical applications of nuclear magnetic resonance (NMR), the measured relaxation signals originate from the fluid filled pore space. Hence, in rocks or sediments the water content directly corresponds to the initial amplitude of the recorded NMR relaxation signals. The relaxation rate (longitudinal/transversal decay time T1, T2) is sensitive to pore sizes and physiochemical properties of rock-fluid interfaces (surface relaxivity), as well as the concentration of paramagnetic ions in the fluid phases (bulk relaxivity). We aim at improving the basic understanding of these processes at the pore scale and thereby advancing the interpretation of NMR data by reducing the application of restrictive approximated interpretation schemes, e.g. for deriving pore size distributions, connectivity or permeability. In this respect we numerically simulate NMR relaxation data at the micro sale to study the impact of physical and hydrological parameters such as internal field gradients or pore connectivities on NMR signals. Joint numerical simulations of the NMR relaxation behavior (Bloch equations) in the presence of internal gradients (Ampere’s law) and fluid flow (Navier-Stokes) on a pore scale dimension have been implemented in a finite element (FE) model using Comsol Multiphysics. Processes governing the time and spatial behavior of the nuclear magnetization density in a porous medium are diffusion and surface interactions at the rock-fluid interface. Based on Fick's law of diffusive motion Brownstein and Tarr (1979) introduced differential equations that describe the relaxation behavior of the Spin magnetization in single isolated pores and derived analytical solutions for simple geometries, i.e. spherical, cylindrical and planar. However, by numerically solving these equations in a general way using a FE algorithm this approach can be applied to study and simulate coupled complex pore systems, e.g. derived from computer tomography (CT). In this respect substantial

  16. NMR spin relaxation rates in the Heisenberg bilayer

    NASA Astrophysics Data System (ADS)

    Mendes, Tiago; Curro, Nicholas; Scalettar, Richard; Paiva, Thereza; Dos Santos, Raimundo R.

    One of the striking features of heavy fermions is the fact that in the vicinity of a quantum phase transition these systems exhibit the breakdown of Fermi-liquid behavior and superconductivity. Nuclear magnetic resonance (NMR) expirements play an important role in the study of these phenomena. Measurements of NMR spin relaxation rates and Knight shift, for instance, can be used to probe the electronic spin susceptibility of these systems. Here we studied the NMR response of the Heisenberg bilayer model. In this model, it is well known that the increase of the interplane coupling between the planes, Jperp, supresses the antiferromagnetic order at a quantum critical point (QCP). We use stochastic series expansion (SSE) and the maximum-entropy analytic continuation method to calculate the NMR spin lattice relaxation rate 1 /T1 and the spin echo decay 1 /T2 G as function of Jperp. The spin echo decay, T2 G increases for small Jperp, due to the increase of the order parameter, and then vanishes abruptly in the QCP. The effects of Jperp dilution disorder in the QCP and the relaxation rates are also discussed. This research was supported by the NNSA Grant Number DE-NA 0002908, and Ciência sem fronteiras program/CNPQ.

  17. Effective rotational correlation times of proteins from NMR relaxation interference

    NASA Astrophysics Data System (ADS)

    Lee, Donghan; Hilty, Christian; Wider, Gerhard; Wüthrich, Kurt

    2006-01-01

    Knowledge of the effective rotational correlation times, τc, for the modulation of anisotropic spin-spin interactions in macromolecules subject to Brownian motion in solution is of key interest for the practice of NMR spectroscopy in structural biology. The value of τc enables an estimate of the NMR spin relaxation rates, and indicates possible aggregation of the macromolecular species. This paper reports a novel NMR pulse scheme, [ 15N, 1H]-TRACT, which is based on transverse relaxation-optimized spectroscopy and permits to determine τc for 15N- 1H bonds without interference from dipole-dipole coupling of the amide proton with remote protons. [ 15N, 1H]-TRACT is highly efficient since only a series of one-dimensional NMR spectra need to be recorded. Its use is suggested for a quick estimate of the rotational correlation time, to monitor sample quality and to determine optimal parameters for complex multidimensional NMR experiments. Practical applications are illustrated with the 110 kDa 7,8-dihydroneopterin aldolase from Staphylococcus aureus, the uniformly 15N-labeled Escherichia coli outer membrane protein X (OmpX) in 60 kDa mixed OmpX/DHPC micelles with approximately 90 molecules of unlabeled 1,2-dihexanoyl- sn-glycero-3-phosphocholine (DHPC), and the 16 kDa pheromone-binding protein from Bombyx mori, which cover a wide range of correlation times.

  18. NMR relaxation rate and the libron energy of solid hydrogen

    NASA Technical Reports Server (NTRS)

    Sugawara, K.; Woollam, J. A.

    1978-01-01

    By taking the rotational relaxation of orthohydrogen (o-H2) in solid hydrogen into account, the authors have theoretically investigated the longitudinal NMR spin lattice relaxation rate of o-H2. The rate is characterized by an anomalous maximum, as a function of temperature, at temperatures close to the mean libron energy of o-H2. Application of the theory for o-H2 concentrations between 42% and 75% reveals a nearly concentration-independent mean libron energy equivalent to about 1 K. This qualitatively and quantitatively contradicts the conclusions of other theories, but agrees with recent experiments.

  19. Spotting the Gel Point of Photopolymers by Examining NMR Relaxation

    NASA Astrophysics Data System (ADS)

    Lee, Jack; Hofmeister, Gretchen; Baylor, Martha-Elizabeth

    Spotting when a polymer goes from liquid to solid during polymerization is necessary when working with certain optically cured polymers used to fabricate optofluidic devices that contain both optical and microfluidic features. Through the use of nuclear magnetic resonance (NMR) it may be possible to determine when the transition from liquid to solid, called the gel point, occurs. In examining the proton longitudinal relaxation time for one species of monomers in our polymer mix, our data shows as the polymer cures the relaxation time increases. By examining this data we were able to extract a time to gel point that was within the margin of error of the theoretical gel point of our materials. Outlined here is evidence of why we think longitudinal relaxation is applicable to studying polymerization, and how we are using it to attempt to extract the gel point.

  20. Characterizing RNA Excited States using NMR Relaxation Dispersion

    PubMed Central

    Xue, Yi; Kellogg, Dawn; Kimsey, Isaac J; Sathyamoorthy, Bharathwaj; Stein, Zachary W; McBrairty, Mitchell; Al-Hashimi, Hashim M.

    2016-01-01

    Changes in RNA secondary structure play fundamental roles in the cellular functions of a growing number of non-coding RNAs. This chapter describes NMR-based approaches for characterizing microsecond-to-millisecond changes in RNA secondary structure that are directed toward short-lived and low-populated species often referred to as “excited states”. Compared to larger-scale changes in RNA secondary structure, transitions towards excited states do not require assistance from chaperones, are often orders of magnitude faster, and are localized to a small number of nearby base pairs in and around non-canonical motifs. Here we describe a procedure for characterizing RNA excited states using off-resonance R1ρ NMR relaxation dispersion utilizing low-to-high spin-lock fields (25–3000 Hz). R1ρ NMR relaxation dispersion experiments are used to measure carbon and nitrogen chemical shifts in base and sugar moieties of the excited state. The chemical shift data is then interpreted with the aid of secondary structure prediction to infer potential excited states that feature alternative secondary structures. Candidate structures are then tested by using mutations, single-atom substitutions, or by changing physiochemical conditions, such as pH and temperature, to either stabilize or destabilize the candidate excited state. The resulting chemical shifts of the mutants or under different physiochemical conditions are then compared to those of the ground and excited state. Application is illustrated with a focus on the transactivation response element (TAR) from the human immune deficiency virus type 1 (HIV-1), which exists in dynamic equilibrium with at least two distinct excited states. PMID:26068737

  1. Nuclear Spin-Lattice Relaxation Times from Continuous Wave NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Wooten, Jan B.; And Others

    1979-01-01

    The experiment described, suitable for undergraduate physical chemistry laboratories, illustrates the general principles of relaxation and introduces the nmr concepts of saturation and spin-inversion. (BB)

  2. Diffusion MRI/NMR magnetization equations with relaxation times

    NASA Astrophysics Data System (ADS)

    de, Dilip; Daniel, Simon

    2012-10-01

    Bloch-Torrey diffusion magnetization equation ignores relaxation effects of magnetization. Relaxation times are important in any diffusion magnetization studies of perfusion in tissues(Brain and heart specially). Bloch-Torrey equation cannot therefore describe diffusion magnetization in a real-life situation where relaxation effects play a key role, characteristics of tissues under examination. This paper describes derivations of two equations for each of the y and z component diffusion NMR/MRI magnetization (separately) in a rotating frame of reference, where rf B1 field is applied along x direction and bias magnetic field(Bo) is along z direction. The two equations are expected to further advance the science & technology of Diffusion MRI(DMRI) and diffusion functional MRI(DFMRI). These two techniques are becoming increasingly important in the study and treatment of neurological disorders, especially for the management of patients with acute stroke. It is rapidly becoming a standard for white matter disorders, as diffusion tensor imaging (DTI) can reveal abnormalities in white matter fibre structure and provide models of brain connectivity.

  3. N-15 NMR study of the immobilization of 2,4- and 2,6-dinitrotoluene in aerobic compost.

    PubMed

    Thorn, Kevin A; Pennington, Judith C; Kennedy, Kay R; Cox, Larry G; Hayes, Charolett A; Porter, Beth E

    2008-04-01

    Large-scale aerobic windrow composting has been used to bioremediate washout lagoon soils contaminated with the explosives TNT (2,4,6-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) at several sites within the United States. We previously used 15N NMR to investigate the reduction and binding of T15NT in aerobic bench-scale reactors simulating the conditions of windrow composting. These studies have been extended to 2,4-dinitrotoluene (2,4DNT) and 2,6-dinitrotoluene (2,6DNT), which, as impurities in TNT, are usually presentwherever soils have been contaminated with TNT. Liquid-state 15N NMR analyses of laboratory reactions between 4-methyl-3-nitroaniline-15N, the major monoamine reduction product of 2,4DNT, and the Elliot soil humic acid, both in the presence and absence of horseradish peroxidase, indicated that the amine underwent covalent binding with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and non-heterocyclic condensation products. Liquid-state 15N NMR analyses of the methanol extracts of 20 day aerobic bench-scale composts of 2,4-di-15N-nitrotoluene and 2,6-di-15N-nitrotoluene revealed the presence of nitrite and monoamine, but not diamine, reduction products, indicating the occurrence of both dioxygenase enzyme and reductive degradation pathways. Solid-state CP/MAS 15N NMR analyses of the whole composts, however, suggested that reduction to monoamines followed by covalent binding of the amines to organic matter was the predominant pathway.

  4. N-15 NMR study of the immobilization of 2,4- and 2,6-dinitrotoluene in aerobic compost

    USGS Publications Warehouse

    Thorn, K.A.; Pennington, J.C.; Kennedy, K.R.; Cox, L.G.; Hayes, C.A.; Porter, B.E.

    2008-01-01

    Large-scale aerobic windrow composting has been used to bioremediate washout lagoon soils contaminated with the explosives TNT (2,4,6- trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) at several sites within the United States. We previously used 15N NMR to investigate the reduction and binding of T15NT in aerobic bench -scale reactors simulating the conditions of windrow composting. These studies have been extended to 2,4-dinitrotoluene (2,4DNT) and 2,6-dinitrotoluene (2,6DNT), which, as impurities in TNT, are usually present wherever soils have been contaminated with TNT. Liquid-state 15N NMR analyses of laboratory reactions between 4-methyl-3-nitroaniline-15N, the major monoamine reduction product of 2,4DNT, and the Elliot soil humic acid, both in the presence and absence of horseradish peroxidase, indicated that the amine underwent covalent binding with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and non-heterocyclic condensation products. Liquid-state 15N NMR analyses of the methanol extracts of 20 day aerobic bench-scale composts of 2,4-di-15N-nitrotoluene and 2,6-di-15N-nitrotoluene revealed the presence of nitrite and monoamine, but not diamine, reduction products, indicating the occurrence of both dioxygenase enzyme and reductive degradation pathways. Solid-state CP/MAS 15N NMR analyses of the whole composts, however, suggested that reduction to monoamines followed by covalent binding of the amines to organic matter was the predominant pathway. ?? 2008 American Chemical Society.

  5. On the microscopic fluctuations driving the NMR relaxation of quadrupolar ions in water

    NASA Astrophysics Data System (ADS)

    Carof, Antoine; Salanne, Mathieu; Charpentier, Thibault; Rotenberg, Benjamin

    2015-11-01

    Nuclear Magnetic Resonance (NMR) relaxation is sensitive to the local structure and dynamics around the probed nuclei. The Electric Field Gradient (EFG) is the key microscopic quantity to understand the NMR relaxation of quadrupolar ions, such as 7Li+, 23Na+, 25Mg2+, 35Cl-, 39K+, or 133Cs+. Using molecular dynamics simulations, we investigate the statistical and dynamical properties of the EFG experienced by alkaline, alkaline Earth, and chloride ions at infinite dilution in water. Specifically, we analyze the effect of the ionic charge and size on the distribution of the EFG tensor and on the multi-step decay of its auto-correlation function. The main contribution to the NMR relaxation time arises from the slowest mode, with a characteristic time on the picosecond time scale. The first solvation shell of the ion plays a dominant role in the fluctuations of the EFG, all the more that the ion radius is small and its charge is large. We propose an analysis based on a simplified charge distribution around the ion, which demonstrates that the auto-correlation of the EFG, hence the NMR relaxation time, reflects primarily the collective translational motion of water molecules in the first solvation shell of the cations. Our findings provide a microscopic route to the quantitative interpretation of NMR relaxation measurements and open the way to the design of improved analytical theories for NMR relaxation for small ionic solutes, which should focus on water density fluctuations around the ion.

  6. On the microscopic fluctuations driving the NMR relaxation of quadrupolar ions in water.

    PubMed

    Carof, Antoine; Salanne, Mathieu; Charpentier, Thibault; Rotenberg, Benjamin

    2015-11-21

    Nuclear Magnetic Resonance (NMR) relaxation is sensitive to the local structure and dynamics around the probed nuclei. The Electric Field Gradient (EFG) is the key microscopic quantity to understand the NMR relaxation of quadrupolar ions, such as (7)Li(+), (23)Na(+), (25)Mg(2+), (35)Cl(-), (39)K(+), or (133)Cs(+). Using molecular dynamics simulations, we investigate the statistical and dynamical properties of the EFG experienced by alkaline, alkaline Earth, and chloride ions at infinite dilution in water. Specifically, we analyze the effect of the ionic charge and size on the distribution of the EFG tensor and on the multi-step decay of its auto-correlation function. The main contribution to the NMR relaxation time arises from the slowest mode, with a characteristic time on the picosecond time scale. The first solvation shell of the ion plays a dominant role in the fluctuations of the EFG, all the more that the ion radius is small and its charge is large. We propose an analysis based on a simplified charge distribution around the ion, which demonstrates that the auto-correlation of the EFG, hence the NMR relaxation time, reflects primarily the collective translational motion of water molecules in the first solvation shell of the cations. Our findings provide a microscopic route to the quantitative interpretation of NMR relaxation measurements and open the way to the design of improved analytical theories for NMR relaxation for small ionic solutes, which should focus on water density fluctuations around the ion.

  7. Molecular dynamics simulations of NMR relaxation and diffusion of bulk hydrocarbons and water

    NASA Astrophysics Data System (ADS)

    Singer, Philip M.; Asthagiri, Dilip; Chapman, Walter G.; Hirasaki, George J.

    2017-04-01

    Molecular dynamics (MD) simulations are used to investigate 1H nuclear magnetic resonance (NMR) relaxation and diffusion of bulk n-C5H12 to n-C17H36 hydrocarbons and bulk water. The MD simulations of the 1H NMR relaxation times T1,2 in the fast motion regime where T1 =T2 agree with measured (de-oxygenated) T2 data at ambient conditions, without any adjustable parameters in the interpretation of the simulation data. Likewise, the translational diffusion DT coefficients calculated using simulation configurations agree with measured diffusion data at ambient conditions. The agreement between the predicted and experimentally measured NMR relaxation times and diffusion coefficient also validate the forcefields used in the simulation. The molecular simulations naturally separate intramolecular from intermolecular dipole-dipole interactions helping bring new insight into the two NMR relaxation mechanisms as a function of molecular chain-length (i.e. carbon number). Comparison of the MD simulation results of the two relaxation mechanisms with traditional hard-sphere models used in interpreting NMR data reveals important limitations in the latter. With increasing chain length, there is substantial deviation in the molecular size inferred on the basis of the radius of gyration from simulation and the fitted hard-sphere radii required to rationalize the relaxation times. This deviation is characteristic of the local nature of the NMR measurement, one that is well-captured by molecular simulations.

  8. The eigenmode perspective of NMR spin relaxation in proteins

    NASA Astrophysics Data System (ADS)

    Shapiro, Yury E.; Meirovitch, Eva

    2013-12-01

    We developed in recent years the two-body (protein and probe) coupled-rotator slowly relaxing local structure (SRLS) approach for elucidating protein dynamics from NMR spin relaxation. So far we used as descriptors the set of physical parameters that enter the SRLS model. They include the global (protein-related) diffusion tensor, D1, the local (probe-related) diffusion tensor, D2, and the local coupling/ordering potential, u. As common in analyzes based on mesoscopic dynamic models, these parameters have been determined with data-fitting techniques. In this study, we describe structural dynamics in terms of the eigenmodes comprising the SRLS time correlation functions (TCFs) generated by using the best-fit parameters as input to the Smoluchowski equation. An eigenmode is a weighted exponential with decay constant given by an eigenvalue of the Smoluchowski operator, and weighting factor determined by the corresponding eigenvector. Obviously, both quantities depend on the SRLS parameters as determined by the SRLS model. Unlike the set of best-fit parameters, the eigenmodes represent patterns of motion of the probe-protein system. The following new information is obtained for the typical probe, the 15N-1H bond. Two eigenmodes, associated with the protein and the probe, dominate when the time scale separation is large (i.e., D2 ≫ D1), the tensorial properties are simple, and the local potential is either very strong or very weak. When the potential exceeds these limits while the remaining conditions are preserved, new eigenmodes arise. The multi-exponentiality of the TCFs is associated in this case with the restricted nature of the local motion. When the time scale separation is no longer large, the rotational degrees of freedom of the protein and the probe become statistically dependent (coupled dynamically). The multi-exponentiality of the TCFs is associated in this case with the restricted nature of both the local and the global motion. The effects of local

  9. Using Paramagnetism to Slow Down Nuclear Relaxation in Protein NMR.

    PubMed

    Orton, Henry W; Kuprov, Ilya; Loh, Choy-Theng; Otting, Gottfried

    2016-12-01

    Paramagnetic metal ions accelerate nuclear spin relaxation; this effect is widely used for distance measurement and called paramagnetic relaxation enhancement (PRE). Theoretical predictions established that, under special circumstances, it is also possible to achieve a reduction in nuclear relaxation rates (negative PRE). This situation would occur if the mechanism of nuclear relaxation in the diamagnetic state is counterbalanced by a paramagnetic relaxation mechanism caused by the metal ion. Here we report the first experimental evidence for such a cross-correlation effect. Using a uniformly (15)N-labeled mutant of calbindin D9k loaded with either Tm(3+) or Tb(3+), reduced R1 and R2 relaxation rates of backbone (15)N spins were observed compared with the diamagnetic reference (the same protein loaded with Y(3+)). The effect arises from the compensation of the chemical shift anisotropy tensor by the anisotropic dipolar shielding generated by the unpaired electron spin.

  10. Curie-type paramagnetic NMR relaxation in the aqueous solution of Ni(II).

    PubMed

    Mareš, Jiří; Hanni, Matti; Lantto, Perttu; Lounila, Juhani; Vaara, Juha

    2014-04-21

    Ni(2+)(aq) has been used for many decades as a model system for paramagnetic nuclear magnetic resonance (pNMR) relaxation studies. More recently, its magnetic properties and also nuclear magnetic relaxation rates have been studied computationally. We have calculated electron paramagnetic resonance and NMR parameters using quantum-mechanical (QM) computation of molecular dynamics snapshots, obtained using a polarizable empirical force field. Statistical averages of hyperfine coupling, g- and zero-field splitting tensors, as well as the pNMR shielding terms, are compared to the available experimental and computational data. In accordance with our previous work, the isotropic hyperfine coupling as well as nuclear shielding values agree well with experimental measurements for the (17)O nuclei of water molecules in the first solvation shell of the nickel ion, whereas larger deviations are found for (1)H centers. We report, for the first time, the Curie-type contribution to the pNMR relaxation rate using QM calculations together with Redfield relaxation theory. The Curie relaxation mechanism is analogous to chemical shift anisotropy relaxation, well-known in diamagnetic NMR. Due to the predominance of other types of paramagnetic relaxation mechanisms for this system, it is possible to extract the Curie term only computationally. The Curie mechanism alone would result in around 16 and 20 s(-1) of relaxation rates (R1 and R2 respectively) for the (1)H nuclei of water molecules bonded to the Ni(2+) center, in a magnetic field of 11.7 T. The corresponding (17)O relaxation rates are around 33 and 38 s(-1). We also report the Curie contribution to the relaxation rate for molecules beyond the first solvation shell in a 1 M solution of Ni(2+) in water.

  11. New approach for understanding experimental NMR relaxivity properties of magnetic nanoparticles: focus on cobalt ferrite.

    PubMed

    Rollet, Anne-Laure; Neveu, Sophie; Porion, Patrice; Dupuis, Vincent; Cherrak, Nadine; Levitz, Pierre

    2016-12-07

    Relaxivities r1 and r2 of cobalt ferrite magnetic nanoparticles (MNPs) have been investigated in the aim of improving the models of NMR relaxation induced by magnetic nanoparticles. On one hand a large set of relaxivity data has been collected for cobalt ferrite MNP dispersions. On the other hand the relaxivity has been calculated for dispersions of cobalt ferrite MNPs with size ranging from 5 to 13 nm, without using any fitting procedure. The model is based on the magnetic dipolar interaction between the magnetic moments of the MNPs and the (1)H nuclei. It takes into account both the longitudinal and transversal contributions of the magnetic moments of MNPs leading to three contributions in the relaxation equations. The comparison of the experimental and theoretical data shows a good agreement of the NMR profiles as well as the temperature dependence.

  12. Distinguishing magnetic vs. quadrupolar relaxation in b-NMR using 8Li and 9Li

    NASA Astrophysics Data System (ADS)

    Chatzichristos, A.; McFadden, R. M. L.; Karner, V. L.; Cortie, D. L.; Fang, A.; Levy, C. D. P.; Macfarlane, W. A.; Morris, G. D.; Pearson, M. R.; Salman, Z.; Kiefl, R. F.

    2016-09-01

    Beta-detected NMR is a powerful technique in condensed matter physics. It uses the parity violation of beta decay to detect the NMR signal from a beam of highly polarized radionuclides implanted in a sample material. Spin-lattice relaxation (SLR) is studied by monitoring the rate with which the asymmetry between the beta counts in two opposing detectors is lost. Unlike classical NMR, b-NMR can study thin films and near-surface effects. The most common b-NMR isotope at TRIUMF is 8Li, which has a quadrupole moment, thus it is sensitive to both magnetic fields and electric field gradients. A challenge with 8Li b-NMR is identifying the predominant mechanism of SLR in a given sample. It is possible to distinguish between SLR mechanisms by varying the probe isotope. For two isotopes with different nuclear moments, the ratio of SLR rates should be different in the limits of either pure magnetic or quadrupolar relaxation. This method has been used in classical NMR and we report its first application to b-NMR. We measured the SLR rates for 8Li and 8Li in Pt foil and SrTiO3. Pt is a test case for pure magnetic relaxation. SrTiO3 is a non-magnetic insulator, but the source of its relaxation is not well understood. Here we show that its relaxation is mainly quadrupolar. We thank TRIUMF's CMMS for their technical support. This work was supported by: NSERC Discovery Grants to R.F.K. and W.A.M.; and IsoSiM fellowships to A.C. and R.M.L.M.

  13. On the microscopic fluctuations driving the NMR relaxation of quadrupolar ions in water

    SciTech Connect

    Carof, Antoine; Salanne, Mathieu; Rotenberg, Benjamin; Charpentier, Thibault

    2015-11-21

    Nuclear Magnetic Resonance (NMR) relaxation is sensitive to the local structure and dynamics around the probed nuclei. The Electric Field Gradient (EFG) is the key microscopic quantity to understand the NMR relaxation of quadrupolar ions, such as {sup 7}Li{sup +}, {sup 23}Na{sup +}, {sup 25}Mg{sup 2+}, {sup 35}Cl{sup −}, {sup 39}K{sup +}, or {sup 133}Cs{sup +}. Using molecular dynamics simulations, we investigate the statistical and dynamical properties of the EFG experienced by alkaline, alkaline Earth, and chloride ions at infinite dilution in water. Specifically, we analyze the effect of the ionic charge and size on the distribution of the EFG tensor and on the multi-step decay of its auto-correlation function. The main contribution to the NMR relaxation time arises from the slowest mode, with a characteristic time on the picosecond time scale. The first solvation shell of the ion plays a dominant role in the fluctuations of the EFG, all the more that the ion radius is small and its charge is large. We propose an analysis based on a simplified charge distribution around the ion, which demonstrates that the auto-correlation of the EFG, hence the NMR relaxation time, reflects primarily the collective translational motion of water molecules in the first solvation shell of the cations. Our findings provide a microscopic route to the quantitative interpretation of NMR relaxation measurements and open the way to the design of improved analytical theories for NMR relaxation for small ionic solutes, which should focus on water density fluctuations around the ion.

  14. Improved Characterization of Healthy and Malignant Tissue by NMR Line-Shape Relaxation Correlations

    PubMed Central

    Peemoeller, H.; Shenoy, R.K.; Pintar, M.M.; Kydon, D.W.; Inch, W.R.

    1982-01-01

    We performed a relaxation-line-shape correlation NMR experiment on muscle, liver, kidney, and spleen tissues of healthy mice and of mouse tumor tissue. In each tissue studied, five spin groups were resolved and characterized by their relaxation parameters. We report a previously uncharacterized semi-solid spin group and discuss briefly the value of this method for the identification of malignant tissues. PMID:7104438

  15. Ultra-low-field NMR relaxation and diffusion measurements using an optical magnetometer.

    PubMed

    Ganssle, Paul J; Shin, Hyun D; Seltzer, Scott J; Bajaj, Vikram S; Ledbetter, Micah P; Budker, Dmitry; Knappe, Svenja; Kitching, John; Pines, Alexander

    2014-09-08

    Nuclear magnetic resonance (NMR) relaxometry and diffusometry are important tools for the characterization of heterogeneous materials and porous media, with applications including medical imaging, food characterization and oil-well logging. These methods can be extremely effective in applications where high-resolution NMR is either unnecessary, impractical, or both, as is the case in the emerging field of portable chemical characterization. Here, we present a proof-of-concept experiment demonstrating the use of high-sensitivity optical magnetometers as detectors for ultra-low-field NMR relaxation and diffusion measurements.

  16. Anomalous NMR relaxation in cartilage matrix components and native cartilage: fractional-order models.

    PubMed

    Magin, Richard L; Li, Weiguo; Pilar Velasco, M; Trujillo, Juan; Reiter, David A; Morgenstern, Ashley; Spencer, Richard G

    2011-06-01

    We present a fractional-order extension of the Bloch equations to describe anomalous NMR relaxation phenomena (T(1) and T(2)). The model has solutions in the form of Mittag-Leffler and stretched exponential functions that generalize conventional exponential relaxation. Such functions have been shown by others to be useful for describing dielectric and viscoelastic relaxation in complex, heterogeneous materials. Here, we apply these fractional-order T(1) and T(2) relaxation models to experiments performed at 9.4 and 11.7 Tesla on type I collagen gels, chondroitin sulfate mixtures, and to bovine nasal cartilage (BNC), a largely isotropic and homogeneous form of cartilage. The results show that the fractional-order analysis captures important features of NMR relaxation that are typically described by multi-exponential decay models. We find that the T(2) relaxation of BNC can be described in a unique way by a single fractional-order parameter (α), in contrast to the lack of uniqueness of multi-exponential fits in the realistic setting of a finite signal-to-noise ratio. No anomalous behavior of T(1) was observed in BNC. In the single-component gels, for T(2) measurements, increasing the concentration of the largest components of cartilage matrix, collagen and chondroitin sulfate, results in a decrease in α, reflecting a more restricted aqueous environment. The quality of the curve fits obtained using Mittag-Leffler and stretched exponential functions are in some cases superior to those obtained using mono- and bi-exponential models. In both gels and BNC, α appears to account for micro-structural complexity in the setting of an altered distribution of relaxation times. This work suggests the utility of fractional-order models to describe T(2) NMR relaxation processes in biological tissues.

  17. Anomalous NMR Relaxation in Cartilage Matrix Components and Native Cartilage: Fractional-Order Models

    PubMed Central

    Magin, Richard L.; Li, Weiguo; Velasco, M. Pilar; Trujillo, Juan; Reiter, David A.; Morgenstern, Ashley; Spencer, Richard G.

    2011-01-01

    We present a fractional-order extension of the Bloch equations to describe anomalous NMR relaxation phenomena (T1 and T2). The model has solutions in the form of Mittag-Leffler and stretched exponential functions that generalize conventional exponential relaxation. Such functions have been shown by others to be useful for describing dielectric and viscoelastic relaxation in complex, heterogeneous materials. Here, we apply these fractional-order T1 and T2 relaxation models to experiments performed at 9.4 and 11.7 Tesla on type I collagen gels, chondroitin sulfate mixtures, and to bovine nasal cartilage (BNC), a largely isotropic and homogeneous form of cartilage. The results show that the fractional-order analysis captures important features of NMR relaxation that are typically described by multi-exponential decay models. We find that the T2 relaxation of BNC can be described in a unique way by a single fractional-order parameter (α), in contrast to the lack of uniqueness of multi-exponential fits in the realistic setting of a finite signal-to-noise ratio. No anomalous behavior of T1 was observed in BNC. In the single-component gels, for T2 measurements, increasing the concentration of the largest components of cartilage matrix, collagen and chondroitin sulfate, results in a decrease in α, reflecting a more restricted aqueous environment. The quality of the curve fits obtained using Mittag-Leffler and stretched exponential functions are in some cases superior to those obtained using mono- and bi-exponential models. In both gels and BNC, α appears to account for microstructural complexity in the setting of an altered distribution of relaxation times. This work suggests the utility of fractional-order models to describe T2 NMR relaxation processes in biological tissues. PMID:21498095

  18. Anomalous NMR relaxation in cartilage matrix components and native cartilage: Fractional-order models

    NASA Astrophysics Data System (ADS)

    Magin, Richard L.; Li, Weiguo; Pilar Velasco, M.; Trujillo, Juan; Reiter, David A.; Morgenstern, Ashley; Spencer, Richard G.

    2011-06-01

    We present a fractional-order extension of the Bloch equations to describe anomalous NMR relaxation phenomena ( T1 and T2). The model has solutions in the form of Mittag-Leffler and stretched exponential functions that generalize conventional exponential relaxation. Such functions have been shown by others to be useful for describing dielectric and viscoelastic relaxation in complex, heterogeneous materials. Here, we apply these fractional-order T1 and T2 relaxation models to experiments performed at 9.4 and 11.7 Tesla on type I collagen gels, chondroitin sulfate mixtures, and to bovine nasal cartilage (BNC), a largely isotropic and homogeneous form of cartilage. The results show that the fractional-order analysis captures important features of NMR relaxation that are typically described by multi-exponential decay models. We find that the T2 relaxation of BNC can be described in a unique way by a single fractional-order parameter ( α), in contrast to the lack of uniqueness of multi-exponential fits in the realistic setting of a finite signal-to-noise ratio. No anomalous behavior of T1 was observed in BNC. In the single-component gels, for T2 measurements, increasing the concentration of the largest components of cartilage matrix, collagen and chondroitin sulfate, results in a decrease in α, reflecting a more restricted aqueous environment. The quality of the curve fits obtained using Mittag-Leffler and stretched exponential functions are in some cases superior to those obtained using mono- and bi-exponential models. In both gels and BNC, α appears to account for micro-structural complexity in the setting of an altered distribution of relaxation times. This work suggests the utility of fractional-order models to describe T2 NMR relaxation processes in biological tissues.

  19. Molecular motion of micellar solutes: a /sup 13/C NMR relaxation study

    SciTech Connect

    Stark, R.E.; Kasakevich, M.L.; Granger, J.W.

    1982-02-04

    A series of simple NMR relaxation experiments have been performed on nitrobenzene and aniline dissolved in the ionic detergents sodium dodecyl sulfate (SDS) and hexadecyltrimethylammonium bromide (CTAB). Using /sup 13/C relaxation rates at various molecular sites, and comparing data obtained in organic media with those for micellar solutions, the viscosity at the solubilization site was estimated and a detailed picture of motional restrictions imposed by the micellar enviroment was derived. Viscosities of 8 to 17 cp indicate a rather fluid environment for solubilized nitrobenzene; both additives exhibit altered motional preferences in CTAB solutions only. As an aid in interpretation of the NMR data, quasi-elastic light scattering and other physical techniques have been used to evaluate the influence of organic solutes on micellar size and shape. The NMR methods are examined critically in terms of their general usefulness for studies of solubilization in detergent mice

  20. Joint numerical microscale simulations of multi-phase flow and NMR relaxation behaviour in porous media

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Ahrenholz, B.

    2011-12-01

    Nuclear Magnetic Resonance (NMR) is a useful tool for analyzing gas (methane) and fluids (water, oil) in rock formations in order to derive transport and storage properties such as pore-size distributions or relative permeability. Even though there is considerable NMR data available about hydraulic properties of rock formations, this information is only empirical. Thus, the aim of this paper is to present joint NMR and multi-phase flow simulations in micro-scale pore systems derived from micro-CT images to quantify relationships between NMR parameters and transport and storage properties of partially saturated rocks. Hereby, the NMR differential equations were implemented using an advection/diffusion lattice-Boltzmann method (LBM) where the flow field is computed by a coupled LBM CFD solver. The results of numerical imbibition and drainage experiments quantitatively agree with laboratory experiments with regard to frequently found peak shifts and bimodal NMR decay time distributions related to residual water in films and corners as well as to fluids/gases trapped in large pores. This numerical framework enables one to quantitatively describe NMR surface and bulk relaxation processes, diffusive coupling along with the multi-phase flow properties of partially saturated porous systems. Furthermore, it is a viable alternative to the more time-consuming and less controllable laboratory experiments. Such virtual experimental setups can considerably help to benchmark and validate statistical network models to better understand hydraulic properties of partially saturated rocks by using experimentally obtained NMR data.

  1. NMR permeability estimators in 'chalk' carbonate rocks obtained under different relaxation times and MICP size scalings

    NASA Astrophysics Data System (ADS)

    Rios, Edmilson Helton; Figueiredo, Irineu; Moss, Adam Keith; Pritchard, Timothy Neil; Glassborow, Brent Anthony; Guedes Domingues, Ana Beatriz; Bagueira de Vasconcellos Azeredo, Rodrigo

    2016-07-01

    The effect of the selection of different nuclear magnetic resonance (NMR) relaxation times for permeability estimation is investigated for a set of fully brine-saturated rocks acquired from Cretaceous carbonate reservoirs in the North Sea and Middle East. Estimators that are obtained from the relaxation times based on the Pythagorean means are compared with estimators that are obtained from the relaxation times based on the concept of a cumulative saturation cut-off. Select portions of the longitudinal (T1) and transverse (T2) relaxation-time distributions are systematically evaluated by applying various cut-offs, analogous to the Winland-Pittman approach for mercury injection capillary pressure (MICP) curves. Finally, different approaches to matching the NMR and MICP distributions using different mean-based scaling factors are validated based on the performance of the related size-scaled estimators. The good results that were obtained demonstrate possible alternatives to the commonly adopted logarithmic mean estimator and reinforce the importance of NMR-MICP integration to improving carbonate permeability estimates.

  2. Two dimensional NMR and NMR relaxation studies of coal structure. Progress report, September 13, 1991--December 31, 1991

    SciTech Connect

    Zilm, K.W.

    1992-05-27

    This report covers the progress made on the title project for the project period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups that determine the reactivity of coals. Special attention is being paid to methods that are compatible with the very high magic angle sample spinning rates needed for operation at the high magnetic field strengths available today. Polarization inversion methods utilizing the difference in heat capacities of small groups of spins are particularly promising. Methods combining proton-proton spin diffusion with {sup 13}C CPMAS readout are being developed to determine the connectivity of functional groups in coals in a high sensitivity relay type of experiment. Additional work is aimed a delineating the role of methyl group rotation in the proton NMR relaxation behavior of coals.

  3. Two dimensional NMR and NMR relaxation studies of coal structure. Progress report, January 1, 1992--March 31, 1992

    SciTech Connect

    Zilm, K.W.

    1992-07-01

    This report covers the progress made on the title project for the project period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups that determine the reactivity of coals. Special attention is being paid to methods that are compatible with the very high magic angle sample spinning rates needed for operation at the high magnetic field strengths available today. Polarization inversion methods utilizing the difference in heat capacities of small groups of spins are particularly promising. Methods combining proton-proton spin diffusion with {sup 13}C CPMAS readout are being developed to determine the connectivity of functional groups in coals in a high sensitivity relay type of experiment. Additional work is aimed at delineating the role of methyl group rotation in the proton NMR relaxation behavior of coals.

  4. Surface NMR measurement of proton relaxation times in medium to coarse-grained sand aquifer.

    PubMed

    Shushakov, O A

    1996-01-01

    A surface NMR investigation of groundwater in the geomagnetic field is under study. To detect the surface NMR a wire loop with a diameter of about 100 m, being an antenna for both an exciting field source and the NMR signal receiver, is laid out on the ground. A sinusoidal current pulse with a rectangular envelope is passed through the loop to excite the NMR signal. The carrier frequency of the oscillating current in this pulse is equal to the Larmor frequency of protons in the Earth's magnetic field. The current amplitude is changed up to 200 amps and the pulse duration is fixed and is equal to 40 ms. The exciting pulse is followed by an induction emf signal caused by the Larmor nuclear precession in geomagnetic field. The relaxation times T1, T2, and T2* were measured by the surface NMR for both groundwater in medium to coarse-grained sand at borehole and for bulk water under the ice surface of frozen lake. To determine T1, a longitudinal interference in experiments with repeated pulses was measured. A sequence with equal period between equal excitation pulses was used. The relaxation times T1, T2, measured for bulk water under the ice of the Ob reservoir were 1.0 s and 0.7 s, respectively. To estimate an influence of dissolved oxygen T1 of the same water at the same temperature was measured by lab NMR with and without pumping of oxygen. The relaxation time T1 measured for water in the medium to coarse-grained sand is 0.65 s. The relaxation time T2 estimated by spin echo sequence is found to be equal to 0.15 s. The relaxation time T2* is found to be about 80 ms. This result contradicts published earlier phenomenological correlation between relaxation time T2* and grain size of water-bearing rock. This could be as a result of unsound approach based on grain size or influence of paramagnetic impurities.

  5. The generalized Phillips-Twomey method for NMR relaxation time inversion

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Xiao, Lizhi; Zhang, Yi; Xie, Qingming

    2016-10-01

    The inversion of NMR relaxation time involves the Fredholm integral equation of the first kind. Due to its ill-posedness, numerical solutions to this type of equations are often found much less accurate and bear little resemblance to the true solution. There has been a strong interest in finding a well-posed method for this ill-posed problem since 1950s. In this paper, we prove the existence, the uniqueness, the stability and the convergence of the generalized Phillips-Twomey regularization method for solving this type of equations. Numerical simulations and core analyses arising from NMR transverse relaxation time inversion are conducted to show the effectiveness of the generalized Phillips-Twomey method. Both the simulation results and the core analyses agree well with the model and the realities.

  6. The generalized Phillips-Twomey method for NMR relaxation time inversion.

    PubMed

    Gao, Yang; Xiao, Lizhi; Zhang, Yi; Xie, Qingming

    2016-10-01

    The inversion of NMR relaxation time involves the Fredholm integral equation of the first kind. Due to its ill-posedness, numerical solutions to this type of equations are often found much less accurate and bear little resemblance to the true solution. There has been a strong interest in finding a well-posed method for this ill-posed problem since 1950s. In this paper, we prove the existence, the uniqueness, the stability and the convergence of the generalized Phillips-Twomey regularization method for solving this type of equations. Numerical simulations and core analyses arising from NMR transverse relaxation time inversion are conducted to show the effectiveness of the generalized Phillips-Twomey method. Both the simulation results and the core analyses agree well with the model and the realities.

  7. Measurement of Ligand–Target Residence Times by 1H Relaxation Dispersion NMR Spectroscopy

    PubMed Central

    2016-01-01

    A ligand-observed 1H NMR relaxation experiment is introduced for measuring the binding kinetics of low-molecular-weight compounds to their biomolecular targets. We show that this approach, which does not require any isotope labeling, is applicable to ligand–target systems involving proteins and nucleic acids of variable molecular size. The experiment is particularly useful for the systematic investigation of low affinity molecules with residence times in the micro- to millisecond time regime. PMID:27933946

  8. Collective water dynamics in the first solvation shell drive the NMR relaxation of aqueous quadrupolar cations

    NASA Astrophysics Data System (ADS)

    Carof, Antoine; Salanne, Mathieu; Charpentier, Thibault; Rotenberg, Benjamin

    2016-09-01

    Using molecular simulations, we analyze the microscopic processes driving the Nuclear Magnetic Resonance (NMR) relaxation of quadrupolar cations in water. The fluctuations of the Electric Field Gradient (EFG) experienced by alkaline and magnesium cations, which determine the NMR relaxation time, are mainly due to the dynamics of water molecules in their solvation shell. The dynamics of the ion plays a less important role, with the exception of the short-time dynamics in the lighter Li+ case, for which rattling in the solvent cage results in oscillations of the EFG autocorrelation function (ACF). Several microscopic mechanisms that may a priori contribute to the decay of the EFG-ACF occur in fact over too long time scales: entrance/exit of individual water molecules into/from the solvation shell, rotation of a molecule around the ion, or reorientation of the molecule. In contrast, the fluctuations of the ion-water distance are clearly correlated to that of the EFG. Nevertheless, it is not sufficient to consider a single molecule due to the cancellations arising from the symmetry of the solvation shell. The decay of the EFG-ACF, hence NMR relaxation, is in fact governed by the collective symmetry-breaking fluctuations of water in the first solvation shell.

  9. Carbon-13 chemical shift anisotropy in DNA bases from field dependence of solution NMR relaxation rates.

    PubMed

    Ying, Jinfa; Grishaev, Alexander; Bax, Ad

    2006-03-01

    Knowledge of (13)C chemical shift anisotropy (CSA) in nucleotide bases is important for the interpretation of solution-state NMR relaxation data in terms of local dynamic properties of DNA and RNA. Accurate knowledge of the CSA becomes particularly important at high magnetic fields, prerequisite for adequate spectral resolution in larger oligonucleotides. Measurement of (13)C relaxation rates of protonated carbons in the bases of the so-called Dickerson dodecamer, d(CGCGAATTCGCG)(2), at 500 and 800 MHz (1)H frequency, together with the previously characterized structure and diffusion tensor yields CSA values for C5 in C, C6 in C and T, C8 in A and G, and C2 in A that are closest to values previously reported on the basis of solid-state FIREMAT NMR measurements, and mostly larger than values obtained by in vacuo DFT calculations. Owing to the noncollinearity of dipolar and CSA interactions, interpretation of the NMR relaxation rates is particularly sensitive to anisotropy of rotational diffusion, and use of isotropic diffusion models can result in considerable errors.

  10. Effects of fiber type and diet on nuclear magnetic resonance (NMR) relaxation times of skeletal muscle

    SciTech Connect

    Mardini, I.A.; McCarter, R.J.; Fullerton, G.D.

    1986-03-01

    NMR studies of muscle have typically used muscles of mixed fiber composition and have not taken into account the metabolic state of the host. Samples of psoas (type IIB fibers) and soleus (type I fibers) muscles were obtained from 3 groups of rabbits: group C, fed regular chow; group DK fed a potassium deficient diet; and group HC fed a high cholesterol diet. The T/sub 1/ and T/sub 2/ relaxation times of psoas and soleus muscles were not significantly different for group C. Following dietary manipulation, (groups KD and HC), however, the relaxation times of the psoas and soleus muscles were significantly different. There was also a significant difference in water content of psoas muscles in groups KD and HC vs. group C but the observed differences in NMR results could be only partially accounted for by the shift in water content. The authors results suggest that (1) changes in ion or cholesterol concentration are capable of inducing changes in water bonding and structuring in muscle tissues; (2) diet must be added to the growing list of environmental factors that can cause NMR contrast changes; (3) selective use of muscles rich in one fiber type or another for NMR measurements could provide either control or diagnostic information, related to changes in body composition.

  11. Sensitivity of proton NMR relaxation times in a HTPB based polyurethane elastomer to thermo-oxidative aging.

    SciTech Connect

    Assink, Roger Alan; Mowery, Daniel Michael; Celina, Mathias Christopher

    2004-09-01

    Solid-state {sup 1}H NMR relaxometry studies were conducted on a hydroxy-terminated polybutadiene (HTPB) based polyurethane elastomer thermo-oxidatively aged at 80 C. The {sup 1}H T{sub 1}, T{sub 2}, and T{sub 1{rho}} relaxation times of samples thermally aged for various periods of time were determined as a function of NMR measurement temperature. The response of each measurement was calculated from a best-fit linear function of the relaxation time vs. aging time. It was found that the T{sub 2,H} and T{sub 1{rho},H} relaxation times exhibited the largest response to thermal degradation, whereas T{sub 1,H} showed minimal change. All of the NMR relaxation measurements on solid samples showed significantly less sensitivity to thermal aging than the T{sub 2,H} relaxation times of solvent-swollen samples.

  12. Temperature dependence of proton NMR relaxation times at earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Niedbalski, Peter; Kiswandhi, Andhika; Parish, Christopher; Ferguson, Sarah; Cervantes, Eduardo; Oomen, Anisha; Krishnan, Anagha; Goyal, Aayush; Lumata, Lloyd

    The theoretical description of relaxation processes for protons, well established and experimentally verified at conventional nuclear magnetic resonance (NMR) fields, has remained untested at low fields despite significant advances in low field NMR technology. In this study, proton spin-lattice relaxation (T1) times in pure water and water doped with varying concentrations of the paramagnetic agent copper chloride have been measured from 6 to 92oC at earth's magnetic field (1700 Hz). Results show a linear increase of T1 with temperature for each of the samples studied. Increasing the concentration of the copper chloride greatly reduced T1 and reduced dependence on temperature. The consistency of the results with theory is an important confirmation of past results, while the ability of an ultra-low field NMR system to do contrast-enhanced magnetic resonance imaging (MRI) is promising for future applicability to low-cost medical imaging and chemical identification. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.

  13. Interaction of ferulic acid derivatives with human erythrocytes monitored by pulse field gradient NMR diffusion and NMR relaxation studies.

    PubMed

    Anselmi, Cecilia; Bernardi, Francesca; Centini, Marisanna; Gaggelli, Elena; Gaggelli, Nicola; Valensin, Daniela; Valensin, Gianni

    2005-04-01

    Ferulic acid (Fer), a natural anti-oxidant and chemo-protector, is able to suppress experimental carcinogenesis in the forestomach, lungs, skin, tongue and colon. Several Fer derivatives have been suggested as promising candidates for cancer prevention, being the biological activity related also to the capacity of partitioning between aqueous and lipid phases. In the present work, pulsed field gradient (PFG) NMR diffusion measurement and NMR relaxation rates have been adopted for investigating the interaction of three Fer derivatives (Fer-C11, Fer-C12 and Fer-C13) with human erythrocytes. Binding to the erythrocyte membrane has been shown for all derivatives, which displayed a similar interaction mode such that the aromatic moiety and the terminal part of the alkyl chain were the most affected. Quantitative analysis of the diffusion coefficients was used to show that Fer-C12 and Fer-C13 display higher affinity for the cell membrane when compared with Fer-C11. These findings agree with the higher anti-oxidant activity of the two derivatives.

  14. Plastic ice in confined geometry: the evidence from neutron diffraction and NMR relaxation.

    PubMed

    Webber, J Beau W; Dore, John C; Strange, John H; Anderson, Ross; Tohidi, Bahman

    2007-10-17

    Neutron diffraction and nuclear magnetic resonance (NMR) relaxation studies have been made of water/ice in mesoporous SBA-15 silica with ordered structures of cylindrical mesopores with a pore diameter ∼8.6 nm, over the temperature range 180-300 K. Both measurements show similar depressed freezing and melting points due to the Gibb-Thomson effect. The neutron diffraction measurements for fully filled pores show, in addition to cubic and hexagonal crystalline ice, the presence of a disordered water/ice component extending a further 50-80 K, down to around or below 200 K. NMR relaxation measurements over the same temperature range show a free induction decay that is partly Gaussian and characteristic of brittle ice but that also exhibits a longer exponential relaxation component. An argument has been made (Liu et al 2006 J. Phys:. Condens. Matter 18 10009-28; Webber et al 2007 Magn. Reson. Imag. 25 533-6) to suggest that this is an observation of ice in a plastic or rotationally mobile state, and that there is a fully reversible inter-conversion between brittle and plastic states of ice as the temperature is lowered or raised. More recent detailed NMR measurements are also discussed that allow the extraction of activation enthalpies and an estimate to be made of the equilibrium thickness, as a function of temperature, if the the assumption is made that the plastic component is in the form of a layer at the silica interface. The two different techniques suggest a maximum layer thickness of about 1.0-1.5 nm.

  15. Plastic ice in confined geometry: the evidence from neutron diffraction and NMR relaxation

    NASA Astrophysics Data System (ADS)

    Webber, J. Beau W.; Dore, John C.; Strange, John H.; Anderson, Ross; Tohidi, Bahman

    2007-10-01

    Neutron diffraction and nuclear magnetic resonance (NMR) relaxation studies have been made of water/ice in mesoporous SBA-15 silica with ordered structures of cylindrical mesopores with a pore diameter ~8.6 nm, over the temperature range 180-300 K. Both measurements show similar depressed freezing and melting points due to the Gibb-Thomson effect. The neutron diffraction measurements for fully filled pores show, in addition to cubic and hexagonal crystalline ice, the presence of a disordered water/ice component extending a further 50-80 K, down to around or below 200 K. NMR relaxation measurements over the same temperature range show a free induction decay that is partly Gaussian and characteristic of brittle ice but that also exhibits a longer exponential relaxation component. An argument has been made (Liu et al 2006 J. Phys:. Condens. Matter 18 10009-28 Webber et al 2007 Magn. Reson. Imag. 25 533-6) to suggest that this is an observation of ice in a plastic or rotationally mobile state, and that there is a fully reversible inter-conversion between brittle and plastic states of ice as the temperature is lowered or raised. More recent detailed NMR measurements are also discussed that allow the extraction of activation enthalpies and an estimate to be made of the equilibrium thickness, as a function of temperature, if the the assumption is made that the plastic component is in the form of a layer at the silica interface. The two different techniques suggest a maximum layer thickness of about 1.0-1.5 nm.

  16. Microscopic insights into the NMR relaxation-based protein conformational entropy meter.

    PubMed

    Kasinath, Vignesh; Sharp, Kim A; Wand, A Joshua

    2013-10-09

    Conformational entropy is a potentially important thermodynamic parameter contributing to protein function. Quantitative measures of conformational entropy are necessary for an understanding of its role but have been difficult to obtain. An empirical method that utilizes changes in conformational dynamics as a proxy for changes in conformational entropy has recently been introduced. Here we probe the microscopic origins of the link between conformational dynamics and conformational entropy using molecular dynamics simulations. Simulation of seven proteins gave an excellent correlation with measures of side-chain motion derived from NMR relaxation. The simulations show that the motion of methyl-bearing side chains are sufficiently coupled to that of other side chains to serve as excellent reporters of the overall side-chain conformational entropy. These results tend to validate the use of experimentally accessible measures of methyl motion--the NMR-derived generalized order parameters--as a proxy from which to derive changes in protein conformational entropy.

  17. Effects of vorticity and impurity on NMR relaxation rate in chiral p-wave superconductors

    NASA Astrophysics Data System (ADS)

    Tanaka, Kenta K.; Ichioka, Masanori; Onari, Seiichiro

    2016-11-01

    In order to study site-selective NMR in chiral p-wave superconductors, we calculate local nuclear relaxation rate T1-1 in the vortex lattice state by Eilenberger theory with and without non-magnetic impurity scattering in the Born limit and unitary limit. The local T1-1 in the NMR resonance line shape is different between two chiral states p±, depending on whether the chirality is parallel or anti-parallel to the vorticity. In the p--wave, anomalous suppression of local T1-1 occurs around the vortex core due to the negative coherence term coming from odd-frequency s-wave Cooper pair induced around the vortex. We especially examine the site dependence of the anomalous suppression of local T1-1, including the applied magnetic field dependence and the impurity effects.

  18. Structural fidelity and NMR relaxation analysis in a prototype RNA hairpin.

    PubMed

    Giambaşu, George M; York, Darrin M; Case, David A

    2015-05-01

    RNA hairpins are widespread and very stable motifs that contribute decisively to RNA folding and biological function. The GTP1G2C3A4C5U6U7C8G9G10U11G12C13C14 construct (with a central UUCG tetraloop) has been extensively studied by solution NMR, and offers and excellent opportunity to evaluate the structure and dynamical description afforded by molecular dynamics (MD) simulations. Here, we compare average structural parameters and NMR relaxation rates estimated from a series of multiple independent explicit solvent MD simulations using the two most recent RNA AMBER force fields (ff99 and ff10). Predicted overall tumbling times are ∼20% faster than those inferred from analysis of NMR data and follow the same trend when temperature and ionic strength is varied. The Watson-Crick stem and the "canonical" UUCG loop structure are maintained in most simulations including the characteristic syn conformation along the glycosidic bond of G9, although some key hydrogen bonds in the loop are partially disrupted. Our analysis pinpoints G9-G10 backbone conformations as a locus of discrepancies between experiment and simulation. In general the results for the more recent force-field parameters (ff10) are closer to experiment than those for the older ones (ff99). This work provides a comprehensive and detailed comparison of state of the art MD simulations against a wide variety of solution NMR measurements.

  19. Requirements on paramagnetic relaxation enhancement data for membrane protein structure determination by NMR.

    PubMed

    Gottstein, Daniel; Reckel, Sina; Dötsch, Volker; Güntert, Peter

    2012-06-06

    Nuclear magnetic resonance (NMR) structure calculations of the α-helical integral membrane proteins DsbB, GlpG, and halorhodopsin show that distance restraints from paramagnetic relaxation enhancement (PRE) can provide sufficient structural information to determine their structure with an accuracy of about 1.5 Å in the absence of other long-range conformational restraints. Our systematic study with simulated NMR data shows that about one spin label per transmembrane helix is necessary for obtaining enough PRE distance restraints to exclude wrong topologies, such as pseudo mirror images, if only limited other NMR restraints are available. Consequently, an experimentally realistic amount of PRE data enables α-helical membrane protein structure determinations that would not be feasible with the very limited amount of conventional NOESY data normally available for these systems. These findings are in line with our recent first de novo NMR structure determination of a heptahelical integral membrane protein, proteorhodopsin, that relied extensively on PRE data.

  20. On the reliability of NMR relaxation data analyses: a Markov Chain Monte Carlo approach.

    PubMed

    Abergel, Daniel; Volpato, Andrea; Coutant, Eloi P; Polimeno, Antonino

    2014-09-01

    The analysis of NMR relaxation data is revisited along the lines of a Bayesian approach. Using a Markov Chain Monte Carlo strategy of data fitting, we investigate conditions under which relaxation data can be effectively interpreted in terms of internal dynamics. The limitations to the extraction of kinetic parameters that characterize internal dynamics are analyzed, and we show that extracting characteristic time scales shorter than a few tens of ps is very unlikely. However, using MCMC methods, reliable estimates of the marginal probability distributions and estimators (average, standard deviations, etc.) can still be obtained for subsets of the model parameters. Thus, unlike more conventional strategies of data analysis, the method avoids a model selection process. In addition, it indicates what information may be extracted from the data, but also what cannot.

  1. A subzero 1H NMR relaxation investigation of water dynamics in tomato pericarp.

    PubMed

    Foucat, Loïc; Lahaye, Marc

    2014-09-01

    (1)H NMR relaxation times (T1 and T2) were measured at low field (0.47 T) in pericarp tissues of three tomato genotypes (Ferum, LA0147 and Levovil) at subzero temperature (-20 °C) and two ripening stages (mature green and red). The unfrozen water dynamics was characterised by two T1 and three T2 components. The relaxation time values and their associated relative populations allowed differentiating the ripening stage of only LA0147 and Levovil lines. But the three genotypes were unequivocally discriminated at the red ripe stage. The unfrozen water distribution was discussed in terms of specific interactions, especially with sugars, in relation with their osmoprotectant effects.

  2. The effects of bone on proton NMR relaxation times of surrounding liquids

    NASA Technical Reports Server (NTRS)

    Davis, C. A.; Genant, H. K.; Dunham, J. S.

    1986-01-01

    Preliminary attempts by our group at UCSF to assess fat content of vertebral marrow in the lumbar spine using relaxation time information demonstrated that the presence of trabecular bone affects relaxation times. The objective of this work was a thorough study of the effects of bone on NMR relaxation characteristics of surrounding liquids. Trabecular bone from autopsy specimens was ground up and sifted into a series of powders with graded densities ranging from 0.3 gm/cc to 0.8 gm/cc. Each powder was placed first in n-saline and then in cottonseed oil. With spectroscopy, spin-lattice relaxation times (T1) and effective spin-spin relaxation times (T2*) were measured for each liquid in each bone powder. As bone density and surface to volume ratio increased, T1 decreased faster for saline than for oil. T2* decreased significantly for both water and oil as the surface to volume ratio increased. It was concluded that effects of water on T1 could be explained by a surface interaction at the bone/liquid interface, which restricted rotational and translational motion of nearby molecules. The T1s of oil were not affected since oil molecules are nonpolar, do not participate in significant intermolecular hydrogen bonding, and therefore would not be expected to interact strongly with the bone surface. Effects on T2* could be explained by local magnetic field inhomogeneities created by discontinuous magnetic susceptibility near the bone surface. These preliminary results suggest that water in contact with trabecular bone in vivo will exhibit shortened relaxation times.

  3. High resolution NMR study of T{sub 1} magnetic relaxation dispersion. IV. Proton relaxation in amino acids and Met-enkephalin pentapeptide

    SciTech Connect

    Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L.; Vieth, Hans-Martin

    2014-10-21

    Nuclear Magnetic Relaxation Dispersion (NMRD) of protons was studied in the pentapeptide Met-enkephalin and the amino acids, which constitute it. Experiments were run by using high-resolution Nuclear Magnetic Resonance (NMR) in combination with fast field-cycling, thus enabling measuring NMRD curves for all individual protons. As in earlier works, Papers I–III, pronounced effects of intramolecular scalar spin-spin interactions, J-couplings, on spin relaxation were found. Notably, at low fields J-couplings tend to equalize the apparent relaxation rates within networks of coupled protons. In Met-enkephalin, in contrast to the free amino acids, there is a sharp increase in the proton T{sub 1}-relaxation times at high fields due to the changes in the regime of molecular motion. The experimental data are in good agreement with theory. From modelling the relaxation experiments we were able to determine motional correlation times of different residues in Met-enkephalin with atomic resolution. This allows us to draw conclusions about preferential conformation of the pentapeptide in solution, which is also in agreement with data from two-dimensional NMR experiments (rotating frame Overhauser effect spectroscopy). Altogether, our study demonstrates that high-resolution NMR studies of magnetic field-dependent relaxation allow one to probe molecular mobility in biomolecules with atomic resolution.

  4. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning.

    PubMed

    Shmyreva, Anna A; Safdari, Majid; Furó, István; Dvinskikh, Sergey V

    2016-06-14

    Orders of magnitude decrease of (207)Pb and (199)Hg NMR longitudinal relaxation times T1 upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX2 (Me = Pb, Hg and X = Cl, Br, I). In lead(ii) halides, the most dramatic decrease of T1 relative to that in a static sample is in PbI2, while it is smaller but still significant in PbBr2, and not detectable in PbCl2. The effect is magnetic-field dependent but independent of the spinning speed in the range 200-15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.

  5. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Shmyreva, Anna A.; Safdari, Majid; Furó, István; Dvinskikh, Sergey V.

    2016-06-01

    Orders of magnitude decrease of 207Pb and 199Hg NMR longitudinal relaxation times T1 upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX2 (Me = Pb, Hg and X = Cl, Br, I). In lead(ii) halides, the most dramatic decrease of T1 relative to that in a static sample is in PbI2, while it is smaller but still significant in PbBr2, and not detectable in PbCl2. The effect is magnetic-field dependent but independent of the spinning speed in the range 200-15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.

  6. Relaxation NMR as a tool to study the dispersion and formulation behavior of nanostructured carbon materials.

    PubMed

    Fairhurst, David; Cosgrove, Terence; Prescott, Stuart W

    2016-06-01

    Solvent relaxation NMR has been used to estimate the surface areas and wettability of various types of nanostructured carbon materials in a range of solvents including water, ethanol, and tetrahydrofuran. We illustrate the application of the technique through several short case studies using samples including nanocarbon blacks, graphene oxide, nanographites, and porous graphenes. The technique is shown to give a good measure of surface area, correlating well with conventional surface area estimates obtained by nitrogen adsorption, transmission electron microscopy, or light scattering for the non-porous samples. NMR relaxation has advantages in terms of speed of analysis and being able to use concentrated, wet, and opaque samples. For samples that are porous, two distinct surface areas can be estimated assuming the two environments ('inner' and 'outer') have the same surface chemistry, and that there is a slow exchange of solvent molecules between them. Furthermore, we show that differences in wettability and dispersability between samples dispersed in water, ethanol, and cyclopentanone can be observed, along with changes to the surface chemistry of the interface. Copyright © 2015 John Wiley & Sons, Ltd.

  7. A proton NMR relaxation study of water dynamics in bovine serum albumin nanoparticles.

    PubMed

    Belotti, Monica; Martinelli, Andrea; Gianferri, Raffaella; Brosio, Elvino

    2010-01-14

    Water dynamics and compartmentation in glutaraldehyde cross-linked bovine serum albumin nanoparticles have been investigated by an integrated nuclear magnetic resonance (NMR) protocol based on water relaxation times and self-diffusion coefficients measurements. Multi-exponentially of water relaxation curves has been accounted for according to a diffusive and chemical exchange model (see B. P. Hills, S. F. Takacs and P. S. Belton, Mol. Phys., 1989, 67(4), 903, and Mol. Phys., 1989, 67(4), 913; E. Brosio, M. Belotti and R. Gianferri, in Food Science and Technology: New Research, ed. L. V. Greco and M. N. Bruno, Nova Science Publishers, Hauppauge (NY), 2008) that made it possible to single out water molecules in the molecular spaces in the interior of albumin nanoparticles, in the meso-cavities formed by packed nanoparticles and in the meniscus on top of the nanoparticles suspension. A quantitative rationalization of T(2) values of water different components allowed morphological information to be acquired as for the size of water filled compartments, while self-diffusion coefficient measurements of water excess or fluxed packed nanoparticles suspensions are describers of transport properties of soft biomaterials. The paper reports an NMR approach that can be seen as a general and relevant method to characterize excess-water-swollen soft biomaterials.

  8. Solution deuterium NMR quadrupolar relaxation study of heme mobility in myoglobin

    SciTech Connect

    Johnson, R.D.; La Mar, G.N.; Smith, K.M.; Parish, D.W.; Langry, K.C. )

    1989-01-18

    NMR spectroscopy has been used to monitor the quadrupolar relaxation and motional dynamics of {sup 2}H selectively incorporated into skeletal and side chain positions of the heme in sperm whale myoglobin. The hyperfine shifts of the heme resonances in paramagnetic states of myoglobin allow resolution of the signals of interest, and paramagnetic contributions to the observed line widths are shown to be insignificant. The {sup 2}H line widths for the skeletal positions of deuterohemin-reconstituted myoglobin yield a correlation time identical with that of overall protein tumbling (9 ns at 30{degree}C) and hence reflect an immobile heme group. The {sup 2}H NMR line widths of heme methyl groups exhibit motional narrowing indicative of very rapid internal rotation. Hence the methyl rotation is effectively decoupled from the overall protein tumbling, and the residual quadrupolar line width can be used directly to determine the protein tumbling rate. The {sup 2}H NMR lines from heme vinyl groups were found narrower than those from the heme skeleton. However, the range of quadrupolar coupling constants for sp{sup 2} hybridized C-{sup 2}H bonds does not permit an unequivocal interpretation in terms of mobility. 48 refs., 4 figs.

  9. Solvent dynamical behavior in an organogel phase as studied by NMR relaxation and diffusion experiments.

    PubMed

    Yemloul, Mehdi; Steiner, Emilie; Robert, Anthony; Bouguet-Bonnet, Sabine; Allix, Florent; Jamart-Grégoire, Brigitte; Canet, Daniel

    2011-03-24

    An organogelation process depends on the gelator-solvent pair. This study deals with the solvent dynamics once the gelation process is completed. The first approach used is relaxometry, i.e., the measurement of toluene proton longitudinal relaxation time T(1) as a function of the proton NMR resonance frequency (here in the 5 kHz to 400 MHz range). Pure toluene exhibits an unexpected T(1) variation, which has been identified as paramagnetic relaxation resulting from an interaction of toluene with dissolved oxygen. In the gel phase, this contribution is retrieved with, in addition, a strong decay at low frequencies assigned to toluene molecules within the gel fibers. Comparison of dispersion curves of pure toluene and toluene in the gel phase leads to an estimate of the proportion of toluene embedded within the organogel (found around 40%). The second approach is based on carbon-13 T(1) and nuclear Overhauser effect measurements, the combination of these two parameters providing direct information about the reorientation of C-H bonds. It appears clearly that reorientation of toluene is the same in pure liquid and in the gel phase. The only noticeable changes in carbon-13 longitudinal relaxation times are due to the so-called chemical shift anisotropy (csa) mechanism and reflect slight modifications of the toluene electronic distribution in the gel phase. NMR diffusion measurements by the pulse gradient spin-echo (PGSE) method allow us to determine the diffusion coefficient of toluene inside the organogel. It is roughly two-thirds of the one in pure toluene, thus indicating that self-diffusion is the only dynamical parameter to be slightly affected when the solvent is inside the gel structure. The whole set of experimental observations leads to the conclusion that, once the gel is formed, the solvent becomes essentially passive, although an important fraction is located within the gel structure.

  10. Probing the Carbonyl Functionality of a Petroleum Resin and Asphaltene through Oximation and Schiff Base Formation in Conjunction with N-15 NMR.

    PubMed

    Thorn, Kevin A; Cox, Larry G

    2015-01-01

    Despite recent advances in spectroscopic techniques, there is uncertainty regarding the nature of the carbonyl groups in the asphaltene and resin fractions of crude oil, information necessary for an understanding of the physical properties and environmental fate of these materials. Carbonyl and hydroxyl group functionalities are not observed in natural abundance 13C nuclear magnetic resonance (NMR) spectra of asphaltenes and resins and therefore require spin labeling techniques for detection. In this study, the carbonyl functionalities of the resin and asphaltene fractions from a light aliphatic crude oil that is the source of groundwater contamination at the long term USGS study site near Bemidji, Minnesota, have been examined through reaction with 15N-labeled hydroxylamine and aniline in conjunction with analysis by solid and liquid state 15N NMR. Ketone groups were revealed through 15N NMR detection of their oxime and Schiff base derivatives, and esters through their hydroxamic acid derivatives. Anilinohydroquinone adducts provided evidence for quinones. Some possible configurations of the ketone groups in the resin and asphaltene fractions can be inferred from a consideration of the likely reactions that lead to heterocyclic condensation products with aniline and to the Beckmann reaction products from the initially formed oximes. These include aromatic ketones and ketones adjacent to quaternary carbon centers, β-hydroxyketones, β-diketones, and β-ketoesters. In a solid state cross polarization/magic angle spinning (CP/MAS) 15N NMR spectrum recorded on the underivatized asphaltene as a control, carbazole and pyrrole-like nitrogens were the major naturally abundant nitrogens detected.

  11. Probing the Carbonyl Functionality of a Petroleum Resin and Asphaltene through Oximation and Schiff Base Formation in Conjunction with N-15 NMR

    PubMed Central

    Thorn, Kevin A.; Cox, Larry G.

    2015-01-01

    Despite recent advances in spectroscopic techniques, there is uncertainty regarding the nature of the carbonyl groups in the asphaltene and resin fractions of crude oil, information necessary for an understanding of the physical properties and environmental fate of these materials. Carbonyl and hydroxyl group functionalities are not observed in natural abundance 13C nuclear magnetic resonance (NMR) spectra of asphaltenes and resins and therefore require spin labeling techniques for detection. In this study, the carbonyl functionalities of the resin and asphaltene fractions from a light aliphatic crude oil that is the source of groundwater contamination at the long term USGS study site near Bemidji, Minnesota, have been examined through reaction with 15N-labeled hydroxylamine and aniline in conjunction with analysis by solid and liquid state 15N NMR. Ketone groups were revealed through 15N NMR detection of their oxime and Schiff base derivatives, and esters through their hydroxamic acid derivatives. Anilinohydroquinone adducts provided evidence for quinones. Some possible configurations of the ketone groups in the resin and asphaltene fractions can be inferred from a consideration of the likely reactions that lead to heterocyclic condensation products with aniline and to the Beckmann reaction products from the initially formed oximes. These include aromatic ketones and ketones adjacent to quaternary carbon centers, β-hydroxyketones, β-diketones, and β-ketoesters. In a solid state cross polarization/magic angle spinning (CP/MAS) 15N NMR spectrum recorded on the underivatized asphaltene as a control, carbazole and pyrrole-like nitrogens were the major naturally abundant nitrogens detected. PMID:26556054

  12. Probing the carbonyl functionality of a petroleum resin and asphaltene through oximation and schiff base formation in conjunction with N-15 NMR

    USGS Publications Warehouse

    Thorn, Kevin A.; Cox, Larry G.

    2015-01-01

    Despite recent advances in spectroscopic techniques, there is uncertainty regarding the nature of the carbonyl groups in the asphaltene and resin fractions of crude oil, information necessary for an understanding of the physical properties and environmental fate of these materials. Carbonyl and hydroxyl group functionalities are not observed in natural abundance 13C nuclear magnetic resonance (NMR) spectra of asphaltenes and resins and therefore require spin labeling techniques for detection. In this study, the carbonyl functionalities of the resin and asphaltene fractions from a light aliphatic crude oil that is the source of groundwater contamination at the long term USGS study site near Bemidji, Minnesota, have been examined through reaction with 15N-labeled hydroxylamine and aniline in conjunction with analysis by solid and liquid state 15N NMR. Ketone groups were revealed through 15N NMR detection of their oxime and Schiff base derivatives, and esters through their hydroxamic acid derivatives. Anilinohydroquinone adducts provided evidence for quinones. Some possible configurations of the ketone groups in the resin and asphaltene fractions can be inferred from a consideration of the likely reactions that lead to heterocyclic condensation products with aniline and to the Beckmann reaction products from the initially formed oximes. These include aromatic ketones and ketones adjacent to quaternary carbon centers, β-hydroxyketones, β-diketones, and β-ketoesters. In a solid state cross polarization/magic angle spinning (CP/MAS) 15N NMR spectrum recorded on the underivatized asphaltene as a control, carbazole and pyrrole-like nitrogens were the major naturally abundant nitrogens detected.

  13. Structural Analysis of Protein-RNA Complexes in Solution Using NMR Paramagnetic Relaxation Enhancements.

    PubMed

    Hennig, Janosch; Warner, Lisa R; Simon, Bernd; Geerlof, Arie; Mackereth, Cameron D; Sattler, Michael

    2015-01-01

    Biological activity in the cell is predominantly mediated by large multiprotein and protein-nucleic acid complexes that act together to ensure functional fidelity. Nuclear magnetic resonance (NMR) spectroscopy is the only method that can provide information for high-resolution three-dimensional structures and the conformational dynamics of these complexes in solution. Mapping of binding interfaces and molecular interactions along with the characterization of conformational dynamics is possible for very large protein complexes. In contrast, de novo structure determination by NMR becomes very time consuming and difficult for protein complexes larger than 30 kDa as data are noisy and sparse. Fortunately, high-resolution structures are often available for individual domains or subunits of a protein complex and thus sparse data can be used to define their arrangement and dynamics within the assembled complex. In these cases, NMR can therefore be efficiently combined with complementary solution techniques, such as small-angle X-ray or neutron scattering, to provide a comprehensive description of the structure and dynamics of protein complexes in solution. Particularly useful are NMR-derived paramagnetic relaxation enhancements (PREs), which provide long-range distance restraints (ca. 20Å) for structural analysis of large complexes and also report on conformational dynamics in solution. Here, we describe the use of PREs from sample production to structure calculation, focusing on protein-RNA complexes. On the basis of recent examples from our own research, we demonstrate the utility, present protocols, and discuss potential pitfalls when using PREs for studying the structure and dynamic features of protein-RNA complexes.

  14. Temperature-Dependent Oxygen Effect on NMR D-[Formula: see text] Relaxation-Diffusion Correlation of n-Alkanes.

    PubMed

    Shikhov, Igor; Arns, Christoph H

    2016-01-01

    Nuclear magnetic resonance (NMR) diffusion-relaxation correlation experiments (D-[Formula: see text]) are widely used for the petrophysical characterisation of rocks saturated with petroleum fluids both in situ and for laboratory analyses. The encoding for both diffusion and relaxation offers increased fluid typing contrast by discriminating fluids based on their self-diffusion coefficients, while relaxation times provide information about the interaction of solid and fluid phases and associated confinement geometry (if NMR responses of pure fluids at particular temperature and pressure are known). Petrophysical interpretation of D-[Formula: see text] correlation maps is typically assisted by the "standard alkane line"-a relaxation-diffusion correlation valid for pure normal alkanes and their mixtures in the absence of restrictions to diffusing molecules and effects of internal gradients. This correlation assumes fluids are free from paramagnetic impurities. In situations where fluid samples cannot be maintained at air-free state the diffusion-relaxation response of fluids shift towards shorter relaxation times due to oxygen paramagnetic relaxation enhancement. Interpretation of such a response using the "standard alkane line" would be erroneous and is further complicated by the temperature-dependence of oxygen solubility for each component of the alkane mixture. We propose a diffusion-relaxation correlation suitable for interpretation of low-field NMR D-[Formula: see text] responses of normal alkanes and their mixtures saturating rocks over a broad temperature range, in equilibrium with atmospheric air. We review and where necessary revise existing viscosity-relaxation correlations. Findings are applied to diffusion-relaxation dependencies taking into account the temperature dependence of oxygen solubility and solvent vapour pressure. The effect is demonstrated on a partially saturated carbonate rock.

  15. NMR spin relaxation in proteins: The patterns of motion that dissipate power to the bath

    NASA Astrophysics Data System (ADS)

    Shapiro, Yury E.; Meirovitch, Eva

    2014-04-01

    We developed in recent years the two-body coupled-rotator slowly relaxing local structure (SRLS) approach for the analysis of NMR relaxation in proteins. The two bodies/rotators are the protein (diffusion tensor D1) and the spin-bearing probe, e.g., the 15N-1H bond (diffusion tensor, D2), coupled by a local potential (u). A Smoluchowski equation is solved to yield the generic time correlation functions (TCFs), which are sums of weighted exponentials (eigenmodes). By Fourier transformation one obtains the generic spectral density functions (SDFs) which underlie the experimental relaxation parameters. The typical paradigm is to characterize structural dynamics in terms of the best-fit values of D1, D2, and u. Additional approaches we pursued employ the SRLS TCFs, SDFs, or eigenmodes as descriptors. In this study we develop yet another perspective. We consider the SDF as function of the angular velocity associated with the fluctuating fields underlying NMR relaxation. A parameter called j-fraction, which represents the relative contribution of eigenmode, i, to a given value of the SDF function at a specific frequency, ω, is defined. j-fraction profiles of the dominant eigenmodes are derived for 0 ≤ ω ≤ 1012 rad/s. They reveal which patterns of motion actuate power dissipation at given ω-values, what are their rates, and what is their relative contribution. Simulations are carried out to determine the effect of timescale separation, D1/D2, axial potential strength, and local diffusion axiality. For D1/D2 ≤ 0.01 and strong local potential of 15 kBT, power is dissipated by global diffusion, renormalized (by the strong potential) local diffusion, and probe diffusion on the surface of a cone (to be called cone diffusion). For D1/D2 = 0.1, power is dissipated by mixed eigenmodes largely of a global-diffusion-type or cone-diffusion-type, and a nearly bare renormalized-local-diffusion eigenmode. For D1/D2 > 0.1, most eigenmodes are of a mixed type. The analysis is

  16. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations.

    PubMed

    Liu, Qing; Shi, Chaowei; Yu, Lu; Zhang, Longhua; Xiong, Ying; Tian, Changlin

    2015-02-13

    Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of (15)N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S(2)) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in a defined hydrated box at neutral pH were conducted and the general order parameters (S(2)) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S(2) values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S(2) parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S(2) calculated from the experimental NMR relaxation measurements, in a site-specific manner.

  17. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    USGS Publications Warehouse

    Thorn, K.A.; Cox, L.G.

    2009-01-01

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS 15N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by 15N NMR. Liquid state 15N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (1H-15N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  18. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    SciTech Connect

    Thorn, Kevin A.; Cox, Larry G.

    2009-02-28

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS ¹⁵N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by ¹⁵N NMR. Liquid state ¹⁵N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (¹H–¹⁵N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  19. Dynamical theory of spin noise and relaxation: Prospects for real-time NMR measurements.

    PubMed

    Field, Timothy R

    2014-11-01

    Recent developments in theoretical aspects of spin noise and relaxation and their interrelationship reveal a modified spin density, distinct from the density matrix, as the necessary object to describe fluctuations in spin systems. These fluctuations are to be viewed as an intrinsic quantum mechanical property of such systems immersed in random magnetic environments and are observed as "spin noise" in the absence of any radio frequency excitation. With the prospect of ultrafast digitization, the role of spin noise in real-time parameter extraction for (NMR) spin systems, and the advantage over standard techniques, is of essential importance, especially for systems containing a small number of spins. In this article we outline prospects for harnessing the recent dynamical theory in terms of spin-noise measurement, with attention to real-time properties.

  20. NMR relaxation and water self-diffusion studies in whey protein solutions and gels.

    PubMed

    Colsenet, Roxane; Mariette, François; Cambert, Mireille

    2005-08-24

    The changes in water proton transverse relaxation behavior induced by aggregation of whey proteins are explained in terms of the simple molecular processes of diffusion and chemical exchange. The water self-diffusion coefficient was measured in whey protein solutions and gels by the pulsed field gradient NMR method. As expected, water self-diffusion was reduced with increased protein concentrations. Whatever the concentration, the water molecules were free to diffuse over distances varying from 15 to 47 mum. Water diffusion was constant over these distances, demonstrating that no restrictions were found to explain the water hindrance. The modification in protein structure by gelation induced a decrease in water diffusion. The effects of protein concentration on water diffusion are discussed and modeled. Two approaches were compared, the obstruction effect induced by a spherical particle and the cell model, which considered two water compartments with specific self-diffusion coefficients.

  1. Ultrasound Treatment of Butyl Gum and Rubber, Studied by NMR Relaxation

    NASA Astrophysics Data System (ADS)

    von Meerwall, E. D.; Feng, Wenlai; Isayev, A. I.

    2004-10-01

    We have examined the effects of intense ultrasound on butyl gum and unfilled vulcanizates using proton transverse NMR relaxation, sol extraction, GPC analysis, and glass transition measurements. At 100 deg.C the spin echo decays exhibit three components, due to entangled molecules and network, unentangled sol plus dangling chain ends, and oligomer remnants; two components suffice to describe most vulcanizates. Compared to other rubbers we have studied, all component spin relaxation times are shorter and less sensitive to ultrasound, and the fraction of the short-T2 component is significantly higher. In the gums sonication produces chain scission but no significant crosslinking. In sol extracted from sonicated rubber, the T2 component amplitudes correlate well with the trimodal molecular-weight distribution. In spite of the low glass transition temperatures (near -60 deg.C) even the longest T2 up to 120 deg.C was too short to permit pulsed-gradient diffusion measurements. The low extractable sol fraction at standard ultrasound settings confirms the conclusion that in butyl rubber sonication is less effective for network destruction than in other rubbers.

  2. Diffusion dependence of proton NMR relaxation rates in the presence of ferritin

    NASA Astrophysics Data System (ADS)

    Boss, Michael; Hammel, P. Chris

    2009-03-01

    Ferritin is the predominant iron-storage protein in living organisms. It may serve as an indicator of neurodegenerative diseases such as Alzheimer's. Measuring brain ferritin concentration non-invasively via MRI could enable better diagnoses and treatments of such diseases. Quantitative MRI determination of the ferritin concentration requires an understanding of the NMR relaxation mechanisms of hydrogen protons in the presence of ferritin. In aqueous solutions, ferritin enhances the transverse relaxation rate (R2) of the protons. This is thought to occur due to a diffusive mechanism, where protons diffusing near ferritin pass through a region of elevated magnetic field, and a chemical exchange mechanism, where protons bind to the protein for a period of time, experiencing an even higher magnetic field. These two mechanisms exhibit different dependencies on the self-diffusion coefficient of the protons. By adding glycerol to aqueous solutions, we control the self-diffusion of protons. We measure the R2 of protons in ferritin-containing binary mixtures of water and glycerol using CPMG sequences, and compare the experimental results to theoretical predictions of diffusion dependence in order to distinguish the relative importance of the mechanisms.

  3. Sensitivity and resolution of two-dimensional NMR diffusion-relaxation measurements

    NASA Astrophysics Data System (ADS)

    Kausik, Ravinath; Hürlimann, Martin D.

    2016-09-01

    The performance of 2D NMR diffusion-relaxation measurements for fluid typing applications is analyzed. In particular, we delineate the region in the diffusion - relaxation plane that can be determined with a given gradient strength and homogeneity, and compare the performance of the single and double echo encoding with the stimulated echo diffusion encoding. We show that the diffusion editing based approach is able to determine the diffusion coefficient only if the relaxation time T2 exceeds a cutoff value T2,cutoff , that scales like T2,cutoff ∝g - 2 / 3D - 1 / 3 . For stimulated echo encoding, the optimal diffusion encoding times (Td and δ), that provide the best diffusion sensitivity, rely only on the T1 /T2 ratios and not on the diffusion coefficients of the fluids or the applied gradient strengths. Irrespective of T1 , for high enough gradients (i.e. when γ2g2 DT23 >102), the Hahn echo based encoding is superior to encoding based on the stimulated echo. For weaker gradients, the stimulated echo is superior only if the T1 /T2 ratio is much larger than 1. For single component systems, the diffusion sensitivity is not adversely impacted by the uniformity of the gradients and the diffusion distributions can be well measured. The presence of non-uniform gradients can affect the determination of the diffusion distributions when you have two fluids of comparable T2 . In such situations the effective single component diffusion coefficient is always closer to the geometric mean diffusion coefficient of the two fluids.

  4. Study of cross - relaxation and molecular dynamics in the solid 3-(trifluoromethyl) benzoic acid by solid state NMR off - resonance.

    PubMed

    Woźniak-Braszak, Aneta

    2017-02-01

    Molecular dynamics of the solid 3-(trifluoromethyl) benzoic acid containing proton (1)H and fluorine (19)F nuclei was explored by the solid-state NMR off - resonance technique. Contrary to the previous experiments the proton nuclei system I relaxed in the off - resonance effective field B→e while fluorine nuclei system S was saturated for short time in comparison to the relaxation time T1I. New cross - relaxation solid - state NMR off - resonance experiments were conducted on a homebuilt pulse spectrometer operating at the on-resonance frequency of 30.2MHz, at the off - resonance frequency varied between 30.2 and 30.6MHz for protons and at the frequency of 28.411MHz for fluorines, respectively. Based on the experimental data the dispersions of the proton off - resonance spin - lattice relaxation rate ρρ(I), the fluorine off - resonance spin - lattice relaxation rate ρρ(S) and the cross - relaxation rate σρ in the rotating frame were determined.

  5. A minor conformation of a lanthanide tag on adenylate kinase characterized by paramagnetic relaxation dispersion NMR spectroscopy.

    PubMed

    Hass, Mathias A S; Liu, Wei-Min; Agafonov, Roman V; Otten, Renee; Phung, Lien A; Schilder, Jesika T; Kern, Dorothee; Ubbink, Marcellus

    2015-02-01

    NMR relaxation dispersion techniques provide a powerful method to study protein dynamics by characterizing lowly populated conformations that are in dynamic exchange with the major state. Paramagnetic NMR is a versatile tool for investigating the structures and dynamics of proteins. These two techniques were combined here to measure accurate and precise pseudocontact shifts of a lowly populated conformation. This method delivers valuable long-range structural restraints for higher energy conformations of macromolecules in solution. Another advantage of combining pseudocontact shifts with relaxation dispersion is the increase in the amplitude of dispersion profiles. Lowly populated states are often involved in functional processes, such as enzyme catalysis, signaling, and protein/protein interactions. The presented results also unveil a critical problem with the lanthanide tag used to generate paramagnetic relaxation dispersion effects in proteins, namely that the motions of the tag can interfere severely with the observation of protein dynamics. The two-point attached CLaNP-5 lanthanide tag was linked to adenylate kinase. From the paramagnetic relaxation dispersion only motion of the tag is observed. The data can be described accurately by a two-state model in which the protein-attached tag undergoes a 23° tilting motion on a timescale of milliseconds. The work demonstrates the large potential of paramagnetic relaxation dispersion and the challenge to improve current tags to minimize relaxation dispersion from tag movements.

  6. Analysis of Molecular Interaction of Drugs Within β-Cyclodextrin Cavity by Solution State Nuclear Magnetic Resonance (NMR) Relaxation.

    PubMed

    Kumar, Deepak; Krishnan, Yogeshwaran; Paranjothy, Manikandan; Pal, Samanwita

    2017-03-09

    The prime focus of the present study is to employ NMR relaxation measurement to address the intermolecular interactions as well as motional dynamics of drugs viz., paracetamol and aspirin encapsulated within β-cyclodextrin (β-CD) cavity. In this report we have attempted to demonstrate the applicability of nonselective (R1(ns) ), selective (R1(se)) and bi-selective (R1(bs)) spin-lattice relaxation rates to infer dynamical parameters e.g., molecular rotational correlation times (τc) and cross-relaxation rates (σij) of the encapsulated drugs. Molecular rotational correlation times of the free drugs were calculated using selective relaxation rate in the fast molecular motion time regime ( ωH(2)τc(2)<1 and R1(ns)/R1(se)≈ 1.500), whereas that of the 1:1 complexed drugs were found from the ratio of R1(ns)/R1(se) in the intermediate motion time regime ( ωH(2)τc(2)≈ 1 and R1(ns)/R1(se) ≈ 1.054) and compared with each other to confirm the formation of inclusion complexes. Furthermore the cross-relaxation rates have been used to evaluate the intermolecular proton distances. Also, density functional theory (DFT) calculations were performed to determine the minimum energy geometry of the inclusion complexes and the results compared with experiments. The report thus presents the possibility of utilizing NMR relaxation data, a more cost effective experiments to calculate internuclear distances in case of drug-supramolecule complexes that are generally addressed by extremely time consuming 2D Nuclear Overhauser Enhancement (NOE) based methods. Plausible mode of insertion of drug molecules into the β-CD cavity has also been described based on experimental NMR relaxation data analysis.

  7. Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosome–nascent chain complexes

    PubMed Central

    Cassaignau, Anaïs M. E.; Cabrita, Lisa D.

    2016-01-01

    The translational diffusion of macromolecules can be examined non-invasively by stimulated echo (STE) NMR experiments to accurately determine their molecular sizes. These measurements can be important probes of intermolecular interactions and protein folding and unfolding, and are crucial in monitoring the integrity of large macromolecular assemblies such as ribosome–nascent chain complexes (RNCs). However, NMR studies of these complexes can be severely constrained by their slow tumbling, low solubility (with maximum concentrations of up to 10 μM), and short lifetimes resulting in weak signal, and therefore continuing improvements in experimental sensitivity are essential. Here we explore the use of the paramagnetic longitudinal relaxation enhancement (PLRE) agent NiDO2A on the sensitivity of 15N XSTE and SORDID heteronuclear STE experiments, which can be used to monitor the integrity of these unstable complexes. We exploit the dependence of the PLRE effect on the gyromagnetic ratio and electronic relaxation time to accelerate recovery of 1H magnetization without adversely affecting storage on Nz during diffusion delays or introducing significant transverse relaxation line broadening. By applying the longitudinal relaxation-optimized SORDID pulse sequence together with NiDO2A to 70S Escherichia coli ribosomes and RNCs, NMR diffusion sensitivity enhancements of up to 4.5-fold relative to XSTE are achieved, alongside ~1.9-fold improvements in two-dimensional NMR sensitivity, without compromising the sample integrity. We anticipate these results will significantly advance the use of NMR to probe dynamic regions of ribosomes and other large, unstable macromolecular assemblies. PMID:26253948

  8. NMR spin relaxation in proteins: The patterns of motion that dissipate power to the bath

    SciTech Connect

    Shapiro, Yury E. E-mail: yuryeshapiro@gmail.com; Meirovitch, Eva E-mail: yuryeshapiro@gmail.com

    2014-04-21

    We developed in recent years the two-body coupled-rotator slowly relaxing local structure (SRLS) approach for the analysis of NMR relaxation in proteins. The two bodies/rotators are the protein (diffusion tensor D{sub 1}) and the spin-bearing probe, e.g., the {sup 15}N−{sup 1}H bond (diffusion tensor, D{sub 2}), coupled by a local potential (u). A Smoluchowski equation is solved to yield the generic time correlation functions (TCFs), which are sums of weighted exponentials (eigenmodes). By Fourier transformation one obtains the generic spectral density functions (SDFs) which underlie the experimental relaxation parameters. The typical paradigm is to characterize structural dynamics in terms of the best-fit values of D{sub 1}, D{sub 2}, and u. Additional approaches we pursued employ the SRLS TCFs, SDFs, or eigenmodes as descriptors. In this study we develop yet another perspective. We consider the SDF as function of the angular velocity associated with the fluctuating fields underlying NMR relaxation. A parameter called j-fraction, which represents the relative contribution of eigenmode, i, to a given value of the SDF function at a specific frequency, ω, is defined. j-fraction profiles of the dominant eigenmodes are derived for 0 ≤ ω ≤ 10{sup 12} rad/s. They reveal which patterns of motion actuate power dissipation at given ω-values, what are their rates, and what is their relative contribution. Simulations are carried out to determine the effect of timescale separation, D{sub 1}/D{sub 2}, axial potential strength, and local diffusion axiality. For D{sub 1}/D{sub 2} ≤ 0.01 and strong local potential of 15 k{sub B}T, power is dissipated by global diffusion, renormalized (by the strong potential) local diffusion, and probe diffusion on the surface of a cone (to be called cone diffusion). For D{sub 1}/D{sub 2} = 0.1, power is dissipated by mixed eigenmodes largely of a global-diffusion-type or cone-diffusion-type, and a nearly bare renormalized

  9. Hyperpolarized 13C NMR lifetimes in the liquid-state: relating structures and T1 relaxation times

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Hashami, Zohreh; Fidelino, Leila; Kovacs, Zoltan; Lumata, Lloyd

    Among the various attempts to solve the insensitivity problem in nuclear magnetic resonance (NMR), the physics-based technique dissolution dynamic nuclear polarization (DNP) is probably the most successful method of hyperpolarization or amplifying NMR signals. Using this technique, liquid-state NMR signal enhancements of several thousand-fold are expected for low-gamma nuclei such as carbon-13. The lifetimes of these hyperpolarized 13C NMR signals are directly related to their 13C spin-lattice relaxation times T1. Depending upon the 13C isotopic location, the lifetimes of hyperpolarized 13C compounds can range from a few seconds to minutes. In this study, we have investigated the hyperpolarized 13C NMR lifetimes of several 13C compounds with various chemical structures from glucose, acetate, citric acid, naphthalene to tetramethylallene and their deuterated analogs at 9.4 T and 25 deg C. Our results show that the 13C T1s of these compounds can range from a few seconds to more than 60 s at this field. Correlations between the chemical structures and T1 relaxation times will be discussed and corresponding implications of these results on 13C DNP experiments will be revealed. US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  10. Ultrasound Treatment of Polyisoprene Rubber, Studied by NMR Relaxation and Diffusion.

    NASA Astrophysics Data System (ADS)

    von Meerwall, E.; Sun, X. M.; Joshi, T.; Isayev, A. I.

    2006-10-01

    In support of rubber recycling, we have studied the effect of intense ultrasound on unfilled cis-polyisoprene (PI) melts and networks using proton NMR T2 relaxation and pulsed-gradient diffusion. At 70.5 deg.C the echo decays show two components, due to entangled sol and crosslinked network; and unentangled sol, dangling ends, and oligomers. Component T2 values, hence intermolecular mobilities, increase with sonication, with modest changes in relative amplitudes. The high melt molecular weight(M) without a low-M tail precluded diffusion measurements. We then examined PI melts degraded by ultrasound with and without subsequent vulcanization. Here the T2 decays are consistent with three components. Sonication shifts and broadens the M-distribution but produces no network. Curing generates at least 94% network, lowers all mobilities, and decreases the proportions of unentangled sol and of oligomers. The diffusion spectrum is bimodal, arising from intermediate fractions and oligomeric species. Both diffusion rates and all T2 values increase slightly with ultrasound amplitude. We compare these results with our earlier work in natural rubber.

  11. NMR Relaxation and Diffusion in Polymerized Microemulsions of HEMA and MMA

    NASA Astrophysics Data System (ADS)

    von Meerwall, E.; Chandran, S.; Slivka, J.; Lopina, S.; Cheung, M.

    2002-10-01

    In an effort to develop a class of materials for use in controlled drug delivery via implantation, we have used proton NMR T2 relaxation and pulsed-field-gradient diffusion (D) measurements to study bicontinuous microemulsions formed with methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA), polymerized and crosslinked with 4 wt. percent ethylene glycol dimethacrylate, in the presence of water containing ten percent surfactant, either the inert sodium alkyl sulfate or the polymerizable TREM-LF-40. Measurements were made at 50 deg. C over the full two-phase range (e. g., 30 to 96 percent aqueous, depending on HEMA/MMA ratio). We identify a trimodal T2 spectrum with components attributable to the semi-glassy network, adsorbed surfactant and ingested water, and the interstitial aqueous phase. In the latter, two distinct D rates are due to free water and dissolved surfactant; specimens are permeable to both. Component intensity ratios are non-monotonic in aqueous content. Results suggest a wide range of pore sizes and complex interactions between the mobile molecules and the network surfaces, pores, and swellable bulk. Surfactant reactivity seems to play a minor role. Results of other characterizations complement and support these findings.

  12. The Effect of Magnetic Field Inhomogeneity on the Transverse Relaxation of Quadrupolar Nuclei Measured by Multiple Quantum Filtered NMR

    NASA Astrophysics Data System (ADS)

    Eliav, U.; Kushnir, T.; Knubovets, T.; Itzchak, Y.; Navon, G.

    1997-09-01

    The effects of magnetic fieldsB0andB1inhomogeneities on techniques which are commonly used for the measurements of triple-quantum-filtered (TQF) NMR spectroscopy of23Na in biological tissues are analyzed. The results of measurements by pulse sequences with and without refocusing ofB0inhomogeneities are compared. It is shown that without refocusing the errors in the measurement of the transverse relaxation times by TQF NMR spectroscopy may be as large as 100%, and thus, refocusing of magnetic field inhomogeneity is mandatory. Theoretical calculations demonstrate that without refocusingB0inhomogeneities the spectral width and phase depend on the interpulse time intervals, thus, leading to errors in the measured relaxation times. It is shown that pulse sequences that were used for the refocusing of the magnetic field (B0) inhomogeneity also reduce the sensitivity of the experimental results to radiofrequency (B1) magnetic field inhomogeneity.

  13. Surface-NMR measurements of the longitudinal relaxation time T1 in a homogeneous sandy aquifer in Skive, Denmark

    NASA Astrophysics Data System (ADS)

    Walbrecker, J.; Behroozmand, A.

    2011-12-01

    Efficient groundwater management requires reliable means of characterizing shallow groundwater aquifers. One key parameter in this respect is hydraulic conductivity. Surface nuclear magnetic resonance (NMR) is a geophysical exploration technique that can potentially provide this type of information in a noninvasive, cost-effective way. The technique is based on measuring the precession of nuclear spins of protons in groundwater molecules. It involves large loop antennas deployed on Earth's surface to generate electromagnetic pulses tuned to specifically excite and detect groundwater proton spins. Naturally, the excited state of spins is transitory - once excited, spins relax back to their equilibrium state. This relaxation process is strongly influenced by the spin environment, which, in the case of groundwater, is defined by the aquifer. By employing empirical relations, changes in relaxation behavior can be used to identify changes in aquifer hydraulic conductivity, making the NMR relaxation signal a very important piece of information. Particularly, efforts are made to record the longitudinal relaxation parameter T1, because it is known from laboratory studies that it often reliably correlates with hydraulic conductivity, even in the presence of magnetic species. In surface NMR, T1 data are collected by recording the NMR signal amplitude following two sequential excitation pulses as a function of the delay time τ between the two pulses. In conventional acquisition, the two pulses have a mutual phase shift of π. Based on theoretical arguments it was recently shown that T1 times acquired according to this conventional surface-NMR scheme are systematically biased. It was proposed that the bias can be minimized by cycling the phase of the two pulses between π and zero in subsequent double-pulse experiments, and subtracting the resulting signal amplitudes (phase-cycled pseudosaturation recovery scheme, pcPSR). We present the first surface-NMR T1 data set recorded

  14. Dipolar cross-relaxation modulates signal amplitudes in the 1H NMR spectrum of hyperpolarized [ 13C]formate

    NASA Astrophysics Data System (ADS)

    Merritt, Matthew E.; Harrison, Crystal; Mander, William; Malloy, Craig R.; Dean Sherry, A.

    2007-12-01

    The asymmetry in the doublet of a spin coupled to hyperpolarized 13C has been used previously to measure the initial polarization of 13C. We tested the hypothesis that a single observation of the 1H NMR spectrum of hyperpolarized 13C formate monitors 13C polarization. Depending on the microwave frequency during the polarization process, in-phase or out-of-phase doublets were observed in the 1H NMR spectrum. Even in this simple two-spin system, 13C polarization was not reflected in the relative area of the JCH doublet components due to strong heteronuclear cross-relaxation. The Solomon equations were used to model the proton signal as a function of time after polarization and to estimate 13C polarization from the 1H NMR spectra.

  15. Revisiting spin-lattice relaxation time measurements for dilute spins in high-resolution solid-state NMR spectroscopy.

    PubMed

    Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua

    2016-07-01

    Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as (13)C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. (13)C) and abundant I (e.g. (1)H) spins affects the measured T1S values in solid-state NMR in the absence of (1)H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance l-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.

  16. 87Rb spin-lattice relaxation times in ferroelectric-paraelectric-incommensurate phases of Rb2CoBr4 using static NMR and MAS NMR

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2017-04-01

    To better elucidate the structural properties of Rb2CoBr4 in paraelectric, incommensurate, and ferroelectric phases, we studied the 87Rb nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation times in laboratory frame T1 and in rotating frame T1ρ. The resonance frequency and the chemical shift do not change abruptly near the phase transition temperature of Ti = 333 K and TC = 192 K, whereas T1 and T1ρ display discontinuous changes near Ti and TC. The abrupt changes in the relaxation times near these temperatures seem to be a result of the structural phase transitions. The results are distinctly different from those reported for Rb2CoCl4.

  17. Origin of abrupt rise in deuteron NMR longitudinal relaxation times of protein methyl groups below 90 K.

    PubMed

    Vugmeyster, Liliya; Ostrovsky, Dmitry; Lipton, Andrew S

    2013-05-23

    In order to examine the origin of the abrupt change in the temperature dependence of (2)H NMR longitudinal relaxation times observed previously for methyl groups of L69 in the hydrophobic core of villin headpiece protein at around 90 K (Vugmeyster et al. J. Am. Chem. Soc. 2010, 132, 4038-4039), we extended the measurements to several other methyl groups in the hydrophobic core. We show that, for all methyl groups, relaxation times experience a dramatic jump several orders of magnitude around this temperature. Theoretical modeling supports the conclusion that the origin of the apparent transition in the relaxation times is due to the existence of the distribution of conformers distinguished by their activation energy for methyl three-site hops. It is also crucial to take into account the differential contribution of individual conformers into overall signal intensity. When a particular conformer approaches the regime at which its three-site hop rate constant is on the order of the quadrupolar coupling interaction constant, the intensity of the signal due to this conformer experiences a sharp drop, thus changing the balance of the contributions of different conformers into the overall signal. As a result, the observed apparent transition in the relaxation rates can be explained without the assumption of an underlying transition in the rate constants. This work in combination with earlier results also shows that the model based on the distribution of conformers explains the relaxation behavior in the entire temperature range between 300 and 70 K.

  18. Origin of Abrupt Rise in Deuteron NMR Longitudinal Relaxation Times of Protein Methyl Groups Below 90 K

    SciTech Connect

    Vugmeyster, Liliya; Ostrovsky, Dmitry; Lipton, Andrew S.

    2013-05-23

    In order to examine the origin of the abrupt change in the temperature dependence of NMR longitudinal relaxation times observed earlier for methyl groups of L69 in the hydrophobic core of villin headpiece protein at around 90 K (Vugmeyster et al. J. Am. Chem. Soc. 2010, 132, 4038), we extended the measurements to several other methyl groups in the hydrophobic core. We show that for all methyl groups, relaxation times experience a dramatic jump several orders of magnitude around this temperature. Theoretical modeling supports the conclusion that the origin of the apparent transition in the relaxation times is due to the existence of the distribution of conformers distinguished by their activation energy for methyl three-site hops. It is also crucial to take into account the differential contribution of individual conformers into overall signal intensity. When a particular conformer approaches the regime at which its three-site hops rate constant is on the order of the quadrupolar coupling interaction constant, the intensity of the signal due to this conformer experiences a sharp drop, thus changing the balance of the contributions of different conformers into the overall signal. As a result, the observed apparent transition in the relaxation rates can be explained without the assumption of an underlying transition in the rate constants. This work in combination with earlier results also shows that the model based on the distribution of conformers explains the relaxation behavior in the entire temperature range between 300-70 K.

  19. Rapid and simple determination of T1 relaxation times in time-domain NMR by Continuous Wave Free Precession sequence

    NASA Astrophysics Data System (ADS)

    Moraes, Tiago Bueno; Monaretto, Tatiana; Colnago, Luiz Alberto

    2016-09-01

    Longitudinal (T1) and transverse (T2) relaxation times have been widely used in time-domain NMR (TD-NMR) to determine several physicochemical properties of petroleum, polymers, and food products. The measurement of T2 through the CPMG pulse sequence has been used in most of these applications because it denotes a rapid, robust method. On the other hand, T1 has been occasionally used in TD-NMR due to the long measurement time required to collect multiple points along the T1 relaxation curve. Recently, several rapid methods to measure T1 have been proposed. Those methods based upon single shot, known as Continuous Wave Free Precession (CWFP) pulse sequences, have been employed in the simultaneous measurement of T1 and T2 in a rapid fashion. However, these sequences can be used exclusively in instrument featuring short dead time because the magnitude of the signal at thermal equilibrium is required. In this paper, we demonstrate that a special CWFP sequence with a low flip angle can be a simple and rapid method to measure T1 regardless of instruments dead time. Experimental results confirmed that the method called CWFP-T1 may be used to measure both single T1 value and T1 distribution in heterogeneous samples. Therefore, CWFP-T1 sequence can be a feasible alternative to CPMG in the determination of physicochemical properties, particularly in processes where fast protocols are requested such as industrial applications.

  20. NMR relaxation of neritic carbonates: An integrated petrophysical and petrographical approach

    NASA Astrophysics Data System (ADS)

    Vincent, Benoit; Fleury, Marc; Santerre, Yannick; Brigaud, Benjamin

    2011-05-01

    A set of carbonate outcrop samples, covering a wide range of the sedimentary textures and depositional environments existing on carbonate systems, was studied through an integrated petrographical and petrophysical approach. With the aim of improving the understanding of the NMR (Nuclear Magnetic Resonance) signal of carbonates, this work is: 1) providing an atlas for various carbonate reservoir rock-types, 2) providing a workflow for integrating geological and petrophysical data and, 3) documenting common shortfalls in NMR/MICP analyses in carbonates. The petrographical investigation includes thin section and SEM (Secondary Electron Microscope) observations, whereas petrophysical investigation includes porosity (Φ), permeability (K), NMR, MICP (Mercury Injection Capillary Pressure), and specific surface area (BET) measurements. On the basis of NMR and MICP data, 4 groups of samples were identified: (1) microporous samples, (2) micro-mesoporous samples, (3) wide multimodal samples, and (4) atypical samples. The microporous samples allow us to define a maximum NMR threshold for microporosity at a T 2 of 200 ms. NMR and MICP response of the investigated carbonates are often comparable in terms of modal distribution (microporous, micro-mesoporous and wide multimodal samples). In particular, micritization, a well known but underestimated early diagenetic process, tends to homogenize the NMR signal of primarily different sedimentary facies. A grainstone with heavily micritized grains can display well sorted unimodal NMR and MICP signatures very similar, even identical, to a mudstone-wackestone. Their signatures are comparable to that of a simple sphere packing model. On the contrary, several samples (labeled atypical samples) show a discrepancy between NMR and MICP response. This discrepancy is explained by the fact that MICP can be affected by the physical connectivity of the pore network, in case of disseminated and isolated molds in a micrite matrix for instance

  1. A nonlinear BOLD model accounting for refractory effect by applying the longitudinal relaxation in NMR to the linear BOLD model.

    PubMed

    Jung, Kwan-Jin

    2009-09-01

    A mathematical model to regress the nonlinear blood oxygen level-dependent (BOLD) fMRI signal has been developed by incorporating the refractory effect into the linear BOLD model of the biphasic gamma variate function. The refractory effect was modeled as a relaxation of two separate BOLD capacities corresponding to the biphasic components of the BOLD signal in analogy with longitudinal relaxation of magnetization in NMR. When tested with the published fMRI data of finger tapping, the nonlinear BOLD model with the refractory effect reproduced the nonlinear BOLD effects such as reduced poststimulus undershoot and saddle pattern in a prolonged stimulation as well as the reduced BOLD signal for repetitive stimulation.

  2. NMR Water Self-Diffusion and Relaxation Studies on Sodium Polyacrylate Solutions and Gels in Physiologic Ionic Solutions.

    PubMed

    Bai, Ruiliang; Basser, Peter J; Briber, Robert M; Horkay, Ferenc

    2014-03-15

    Water self-diffusion coefficients and longitudinal relaxation rates in sodium polyacrylate solutions and gels were measured by NMR, as a function of polymer content and structure in a physiological concentration range of monovalent and divalent cations, Ca(2+) and Na(+). Several physical models describing the self-diffusion of the solvent were applied and compared. A free-volume model was found to be in good agreement with the experimental results over a wide range of polymer concentrations. The longitudinal relaxation rate exhibited linear dependence on polymer concentration below a critical concentration and showed non-linear behavior at higher concentrations. Both the water self-diffusion and relaxation were less influenced by the polymer in the gel state than in the uncrosslinked polymer solutions. The effect of Na(+) on the mobility of water molecules was practically undetectable. By contrast, addition of Ca(2+) strongly increased the longitudinal relaxation rate while its effect on the self-diffusion coefficient was much less pronounced.

  3. Spectral density mapping at multiple magnetic fields suitable for 13C NMR relaxation studies

    NASA Astrophysics Data System (ADS)

    Kadeřávek, Pavel; Zapletal, Vojtěch; Fiala, Radovan; Srb, Pavel; Padrta, Petr; Přecechtělová, Jana Pavlíková; Šoltésová, Mária; Kowalewski, Jozef; Widmalm, Göran; Chmelík, Josef; Sklenář, Vladimír; Žídek, Lukáš

    2016-05-01

    Standard spectral density mapping protocols, well suited for the analysis of 15N relaxation rates, introduce significant systematic errors when applied to 13C relaxation data, especially if the dynamics is dominated by motions with short correlation times (small molecules, dynamic residues of macromolecules). A possibility to improve the accuracy by employing cross-correlated relaxation rates and on measurements taken at several magnetic fields has been examined. A suite of protocols for analyzing such data has been developed and their performance tested. Applicability of the proposed protocols is documented in two case studies, spectral density mapping of a uniformly labeled RNA hairpin and of a selectively labeled disaccharide exhibiting highly anisotropic tumbling. Combination of auto- and cross-correlated relaxation data acquired at three magnetic fields was applied in the former case in order to separate effects of fast motions and conformational or chemical exchange. An approach using auto-correlated relaxation rates acquired at five magnetic fields, applicable to anisotropically moving molecules, was used in the latter case. The results were compared with a more advanced analysis of data obtained by interpolation of auto-correlated relaxation rates measured at seven magnetic fields, and with the spectral density mapping of cross-correlated relaxation rates. The results showed that sufficiently accurate values of auto- and cross-correlated spectral density functions at zero and 13C frequencies can be obtained from data acquired at three magnetic fields for uniformly 13C -labeled molecules with a moderate anisotropy of the rotational diffusion tensor. Analysis of auto-correlated relaxation rates at five magnetic fields represents an alternative for molecules undergoing highly anisotropic motions.

  4. Site-resolved 2H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra

    NASA Astrophysics Data System (ADS)

    Lindh, E. L.; Stilbs, P.; Furó, I.

    2016-07-01

    We investigate a way one can achieve good spectral resolution in 2H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the 2H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two 2H spin populations with similar chemical shifts but different quadrupole splittings. In 2H-exchanged cellulose containing two 2H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics.

  5. Miscibility of nifedipine and hydrophilic polymers as measured by (1)H-NMR spin-lattice relaxation.

    PubMed

    Aso, Yukio; Yoshioka, Sumie; Miyazaki, Tamaki; Kawanishi, Tohru; Tanaka, Kazuyuki; Kitamura, Satoshi; Takakura, Asako; Hayashi, Takashi; Muranushi, Noriyuki

    2007-08-01

    The miscibility of a drug with excipients in solid dispersions is considered to be one of the most important factors for preparation of stable amorphous solid dispersions. The purpose of the present study was to elucidate the feasibility of (1)H-NMR spin-lattice relaxation measurements to assess the miscibility of a drug with excipients. Solid dispersions of nifedipine with the hydrophilic polymers poly(vinylpyrrolidone) (PVP), hydroxypropylmethylcellulose (HPMC) and alpha,beta-poly(N-5-hydroxypentyl)-L-aspartamide (PHPA) with various weight ratios were prepared by spray drying, and the spin-lattice relaxation decay of the solid dispersions in a laboratory frame (T(1) decay) and in a rotating frame (T(1rho) decay) were measured. T(1rho) decay of nifedipine-PVP solid dispersions (3 : 7, 5 : 5 and 7 : 3) was describable with a mono-exponential equation, whereas T(1rho) decay of nifedipine-PHPA solid dispersions (3 : 7, 4 : 6 and 5 : 5) was describable with a bi-exponential equation. Because a mono-exponential T(1rho) decay indicates that the domain sizes of nifedipine and polymer in solid dispersion are less than several nm, it is speculated that nifedipine is miscible with PVP but not miscible with PHPA. All the nifedipine-PVP solid dispersions studied showed a single glass transition temperature (T(g)), whereas two glass transitions were observed for the nifedipine-PHPA solid dispersion (3 : 7), thus supporting the above speculation. For nifedipine-HPMC solid dispersions (3 : 7 and 5 : 5), the miscibility of nifedipine and HPMC could not be determined by DSC measurements due to the lack of obviously evident T(g). In contrast, (1)H-NMR spin-lattice relaxation measurements showed that nifedipine and HPMC are miscible, since T(1rho) decay of the solid dispersions (3 : 7, 5 : 5 and 7 : 3) was describable with a mono-exponential equation. These results indicate that (1)H-NMR spin-lattice relaxation measurements are useful for assessing the miscibility of a drug and an

  6. Collisional cross-section of water molecules in vapour studied by means of 1H relaxation in NMR

    NASA Astrophysics Data System (ADS)

    Mammoli, Daniele; Canet, Estel; Buratto, Roberto; Miéville, Pascal; Helm, Lothar; Bodenhausen, Geoffrey

    2016-12-01

    In gas phase, collisions that affect the rotational angular momentum lead to the return of the magnetization to its equilibrium (relaxation) in Nuclear Magnetic Resonance (NMR). To the best of our knowledge, the longitudinal relaxation rates R1 = 1/T1 of protons in H2O and HDO have never been measured in gas phase. We report R1 in gas phase in a field of 18.8 T, i.e., at a proton Larmor frequency ν0 = 800 MHz, at temperatures between 353 and 373 K and pressures between 9 and 101 kPa. By assuming that spin rotation is the dominant relaxation mechanism, we estimated the effective cross-section σJ for the transfer of angular momentum due to H2O-H2O and HDO-D2O collisions. Our results allow one to test theoretical predictions of the intermolecular potential of water in gas phase.

  7. Collisional cross-section of water molecules in vapour studied by means of 1H relaxation in NMR

    PubMed Central

    Mammoli, Daniele; Canet, Estel; Buratto, Roberto; Miéville, Pascal; Helm, Lothar; Bodenhausen, Geoffrey

    2016-01-01

    In gas phase, collisions that affect the rotational angular momentum lead to the return of the magnetization to its equilibrium (relaxation) in Nuclear Magnetic Resonance (NMR). To the best of our knowledge, the longitudinal relaxation rates R1 = 1/T1 of protons in H2O and HDO have never been measured in gas phase. We report R1 in gas phase in a field of 18.8 T, i.e., at a proton Larmor frequency ν0 = 800 MHz, at temperatures between 353 and 373 K and pressures between 9 and 101 kPa. By assuming that spin rotation is the dominant relaxation mechanism, we estimated the effective cross-section σJ for the transfer of angular momentum due to H2O-H2O and HDO-D2O collisions. Our results allow one to test theoretical predictions of the intermolecular potential of water in gas phase. PMID:28008913

  8. Mineralogical controls on NMR rock surface relaxivity: A case study of the Fontainebleau Sandstone

    NASA Astrophysics Data System (ADS)

    Livo, Kurt

    Pore size distribution is derived from nuclear magnetic resonance, but is scaled by surface relaxivity. While nuclear magnetic resonance studies generally focus on the difficulty of determining pore size distribution in unconventional shale reservoirs, there is a lack of discussion concerning pure quartz sandstones. Long surface relaxivity causes complications analyzing nuclear magnetic resonance data for pore size distribution determination. Currently, I am unaware of research that addresses the complicated pore size distribution determination in long relaxing, pure sandstone formations, which is essential to accurate downhole petrophysical modeling. The Fontainebleau sandstone is well known for its homogenous mineralogical makeup and wide range of porosity and permeability. The Hibernia sandstone exhibits a similar mineralogy and is characterized by a similar and porosity-permeability range to the Fontainebleau sandstones, but with a significantly higher portion of clay minerals (1-6%). I present systematic petrophysical properties such as porosity, pore size distribution from nuclear magnetic resonance transverse relaxation times, permeability, and volumetric magnetic susceptibility to aide in characterization of the Fontainebleau sandstone. Analysis of collected nuclear magnetic resonance data is then compared to other petrophysical studies from literature such as helium porosity and permeability, magnetic susceptibility, and electrical conductivity. I find that the lack of impurities on the grain surfaces of pure quartz samples imparts a lower surface relaxivity as compared to clay containing sandstones and makes nuclear magnetic resonance analysis more complex. Thus, inverted nuclear magnetic resonance data from cleaner outcrop samples incorrectly models pore size distribution without accounting for wider surface relaxivity variation and is improperly used when characterizing the Fontainebleau sandstone. This is further supported by evidence from less

  9. NMR relaxation of protein and water protons in diamagnetic hemoglobin solutions.

    PubMed

    Eisenstadt, M

    1985-07-02

    We have measured T1 and T2 of protein and water protons in hemoglobin solutions using broad-line pulse techniques; selective excitation and detection methods enabled the intrinsic protein and water relaxation rates, as well as the spin-transfer rate between them, to be obtained at 5, 10, and 20 MHz. Water and protein T1 data were also obtained at 100 and 200 MHz for hemoglobin in H2O/D2O mixtures by using commercial Fourier-transform instruments. The T1 data conform to a simple model of two well-mixed spin systems with single intrinsic relaxation times and an average spin-transfer rate, with each phase recovering from a radio-frequency excitation with a biexponential time dependence. At low frequencies, protein T1 and T2 agree reasonably with a model of dipolar relaxation of an array of fixed protons tumbling in solution, explicitly calculating methyl and methylene relaxation and using a continuum approximation for the others. Differing values in H2O and D2O are mainly ascribed to solvent viscosity. For water-proton relaxation, T1, T2, and spin transfer were measured for H2O and HDO, which enabled a separation of inter-and intramolecular contributions to relaxation. Despite such detail, few firm conclusions could be reached about hydration water. But it seems clear that few long-lived hydration sites are needed to explain T1 and T2, and the spin-transfer value mandates fewer than five sites with a lifetime longer than 10(-8) s.

  10. NMR relaxation and exchange in metal-organic frameworks for surface area screening

    SciTech Connect

    Chen, JJ; Mason, JA; Bloch, ED; Gygi, D; Long, JR; Reimer, JA

    2015-03-15

    We describe a robust screening technique that correlates the surface area of metal organic frameworks to the proton T-2 relaxation behavior of imbibed solvent at low field (13 MHz). In frameworks with small pore sizes (<1 nm) or strong solvent-framework interactions, diffusional exchange between the pore-confined and inter-particle solvent populations remains slow compared to the T-2 of the pore-confined solvent, allowing for a direct porosity analysis of the T-2 spectrum obtained from Laplace inversions. Increases in framework pore-size (>1 nm) lead to corresponding increases in the rate of solvent exchange, as confirmed by T-2 relaxation exchange (REXSY) experiments; increases in the pore size also increases the T-2 of the pore-confined solvent. The combination of these two effects results in comparable rates of relaxation and exchange, which precludes the direct analysis of Laplace inversions. Thus, two- and three-site kinetics models were applied to extract porosity from relaxation decays, thereby improving the utility of the porosity screening tool. (C) 2014 Elsevier Inc. All rights reserved.

  11. Hydration water dynamics in biopolymers from NMR relaxation in the rotating frame

    NASA Astrophysics Data System (ADS)

    Blicharska, Barbara; Peemoeller, Hartwig; Witek, Magdalena

    2010-12-01

    Assuming dipole-dipole interaction as the dominant relaxation mechanism of protons of water molecules adsorbed onto macromolecule (biopolymer) surfaces we have been able to model the dependences of relaxation rates on temperature and frequency. For adsorbed water molecules the correlation times are of the order of 10 -5 s, for which the dispersion region of spin-lattice relaxation rates in the rotating frame R1ρ = 1/ T1ρ appears over a range of easily accessible B1 values. Measurements of T1ρ at constant temperature and different B1 values then give the "dispersion profiles" for biopolymers. Fitting a theoretical relaxation model to these profiles allows for the estimation of correlation times. This way of obtaining the correlation time is easier and faster than approaches involving measurements of the temperature dependence of R1 = 1/ T1. The T1ρ dispersion approach, as a tool for molecular dynamics study, has been demonstrated for several hydrated biopolymer systems including crystalline cellulose, starch of different origins (potato, corn, oat, wheat), paper (modern, old) and lyophilized proteins (albumin, lysozyme).

  12. Very short NMR relaxation times of anions in ionic liquids: new pulse sequence to eliminate the acoustic ringing.

    PubMed

    Klimavicius, Vytautas; Gdaniec, Zofia; Balevicius, Vytautas

    2014-11-11

    NMR relaxation processes of anions were studied in two neat imidazolium-based room temperature ionic liquids (RTILs) 1-decyl-3-methyl-imidazolium bromide- and chloride. The spin-lattice and spin-spin relaxations of 81Br and 35Cl nuclei were found to be extremely fast due to very strong quadrupolar interactions. The determined relaxation rates are comparable with those observed in the solids or in some critical organic solute/water/salt systems. In order to eliminate the acoustic ringing of the probe-head during relaxation times measurements the novel pulse sequence has been devised. It is based on the conventional inversion recovery pulse sequence, however, instead of the last 90° pulse the subsequence of three 90° pulses applied along axes to fulfill the phase cycling condition is used. Using this pulse sequence it was possible to measure T1 for both studied nuclei. The viscosity measurements have been carried out and the rotational correlation times were calculated. The effective 35Cl quadrupolar coupling constant was found to be almost one order lower than that for 81Br, i.e. 1.8 MHz and 16.0 MHz, respectively. Taking into account the facts that the ratio of (Q(35Cl)/Q(81Br))2≈0.1 and EFG tensors on the anions are quite similar, analogous structural organizations are expected for both RTILs. The observed T1/T2 (1.27-1.44) ratios were found to be not sufficiently high to confirm the presence of long-living (on the time scale of ≥10(-8) s) mesoscopic structures or heterogeneities in the studied neat ionic liquids.

  13. Molecular interactions in the ionic liquid emim acetate and water binary mixtures probed via NMR spin relaxation and exchange spectroscopy.

    PubMed

    Allen, Jesse J; Bowser, Sage R; Damodaran, Krishnan

    2014-05-07

    Interactions of ionic liquids (ILs) with water are of great interest for many potential IL applications. 1-Ethyl-3-methylimidazolium (emim) acetate, in particular, has shown interesting interactions with water including hydrogen bonding and even chemical exchange. Previous studies have shown the unusual behavior of emim acetate when in the presence of 0.43 mole fraction of water, and a combination of NMR techniques is used herein to investigate the emim acetate-water system and the unusual behavior at 0.43 mole fraction of water. NMR relaxometry techniques are used to describe the effects of water on the molecular motion and interactions of emim acetate with water. A discontinuity is seen in nuclear relaxation behavior at the concentration of 0.43 mole fraction of water, and this is attributed to the formation of a hydrogen bonded network. EXSY measurements are used to determine the exchange rates between the H2 emim proton and water, which show a complex dependence on the concentration of the mixture. The findings support and expand our previous results, which suggested the presence of an extended hydrogen bonding network in the emim acetate-water system at concentrations close to 0.50 mole fraction of H2O.

  14. Protein Dynamics from NMR: The Slowly Relaxing Local Structure Analysis Compared with Model-Free Analysis

    PubMed Central

    Meirovitch, Eva; Shapiro, Yury E.; Polimeno, Antonino; Freed, Jack H.

    2009-01-01

    15N-1H spin relaxation is a powerful method for deriving information on protein dynamics. The traditional method of data analysis is model-free (MF), where the global and local N-H motions are independent and the local geometry is simplified. The common MF analysis consists of fitting single-field data. The results are typically field-dependent, and multi-field data cannot be fit with standard fitting schemes. Cases where known functional dynamics has not been detected by MF were identified by us and others. Recently we applied to spin relaxation in proteins the Slowly Relaxing Local Structure (SRLS) approach which accounts rigorously for mode-mixing and general features of local geometry. SRLS was shown to yield MF in appropriate asymptotic limits. We found that the experimental spectral density corresponds quite well to the SRLS spectral density. The MF formulae are often used outside of their validity ranges, allowing small data sets to be force-fitted with good statistics but inaccurate best-fit parameters. This paper focuses on the mechanism of force-fitting and its implications. It is shown that MF force-fits the experimental data because mode-mixing, the rhombic symmetry of the local ordering and general features of local geometry are not accounted for. Combined multi-field multi-temperature data analyzed by MF may lead to the detection of incorrect phenomena, while conformational entropy derived from MF order parameters may be highly inaccurate. On the other hand, fitting to more appropriate models can yield consistent physically insightful information. This requires that the complexity of the theoretical spectral densities matches the integrity of the experimental data. As shown herein, the SRLS densities comply with this requirement. PMID:16821820

  15. Observation of the vortex lattice melting by NMR spin-lattice relaxation in the mixed state

    SciTech Connect

    Bulaevskii, L.N.; Hammel, P.C.; Vinokur, V.M.

    1994-01-01

    For anisotropic layered superconductors the effect of moving vortices on the nuclear spin magnetization is calculated. Current is supposed to flow along layers, and applied magnetic field is tilted with respect to c-axis. In the solid phase the motion of the vortex lattice produces an alternating magnetic field perpendicular to the applied field which causes the decay of the spin-echo amplitude. This decay rate will display an array of peaks as a function of frequency. In the liquid phase this alternating field contribute to the longitudinal relaxation rate W{sub 1} which has a single peak.

  16. 1H NMR relaxation of water: a probe for surfactant adsorption on kaolin.

    PubMed

    Totland, Christian; Lewis, Rhiannon T; Nerdal, Willy

    2011-11-01

    In this study, (1)H NMR is used to investigate properties of sodium dodecyl sulfate (SDS), tetradecyl trimethyl ammonium bromide (TTAB), and dodecyl trimethyl ammonium bromide (DTAB) adsorbed on kaolin by NMR T(1) and T(2) measurements of the water proton resonance. The results show that adsorbed surfactants form a barrier between sample water and the paramagnetic species present on the clay surface, thus significantly increasing the proton T(1) values of water. This effect is attributed to the amount of adsorbed surfactants and the arrangement of the surfactant aggregates. The total surface area covered by the cationic (DTAB and TTAB) and anionic (SDS) surfactants could be estimated from the water T(1) data and found to correspond to the fractions of negatively and positively charged surface area, respectively. For selected samples, the amount of paramagnetic species on the clay surface was reduced by treatment with hydrofluoric (HF) acid. For these samples, T(1) and T(2) measurements were taken in the temperature range 278-338 K, revealing detailed information on molecular mobility and nuclear exchange for the sample water that is related to surfactant behavior both on the surface and in the aqueous phase.

  17. 1H-19F spin-lattice relaxation spectroscopy: proton tunnelling in the hydrogen bond studied by field-cycling NMR.

    PubMed

    Noble, D L; Aibout, A; Horsewill, A J

    2009-12-01

    Proton tunnelling in the hydrogen bonds of two fluorine substituted benzoic acid dimers has been investigated using field-cycling NMR relaxometry. The close proximity of the (19)F nuclei to the hydrogen bond protons introduces heteronuclear (19)F-(1)H dipolar interactions into the spin-lattice relaxation processes. This renders the (1)H magnetisation-recovery biexponential and introduces multiple spectral density components into the relaxation matrix characterised by frequencies that are sums and differences of the (19)F and (1)H Larmor frequencies. Using field-cycling NMR pulse sequences that measure the spin-lattice relaxation and cross-relaxation rates we demonstrate how some of these multiple spectral density components can be separately resolved. This leads to an accurate determination of the correlation times that characterise the proton tunnelling motion. A broad spectrum of relaxation behaviour is illustrated and explored in the chosen samples and the investigation is used to explore the theory and practise of field-cycling NMR relaxometry in cases where heteronuclear interactions are significant.

  18. Cross-Correlated Relaxation of Dipolar Coupling and Chemical-Shift Anisotropy in Magic-Angle Spinning R1ρ NMR Measurements: Application to Protein Backbone Dynamics Measurements

    PubMed Central

    Kurauskas, Vilius; Weber, Emmanuelle; Hessel, Audrey; Ayala, Isabel; Marion, Dominique; Schanda, Paul

    2016-01-01

    Transverse relaxation rate measurements in MAS solid-state NMR provide information about molecular motions occurring on nanoseconds-to-milliseconds (ns-ms) time scales. The measurement of heteronuclear (13C, 15N) relaxation rate constants in the presence of a spin-lock radio-frequency field (R1ρ relaxation) provides access to such motions, and an increasing number of studies involving R1ρ relaxation in proteins has been reported. However, two factors that influence the observed relaxation rate constants have so far been neglected, namely (i) the role of CSA/dipolar cross-correlated relaxation (CCR), and (ii) the impact of fast proton spin flips (i.e. proton spin diffusion and relaxation). We show that CSA/D CCR in R1ρ experiments is measurable, and that this cross-correlated relaxation rate constant depends on ns-ms motions, and can thus itself provide insight into dynamics. We find that proton spin-diffusion attenuates this cross-correlated relaxation, due to its decoupling effect on the doublet components. For measurements of dynamics, the use of R1ρ rate constants has practical advantages over the use of CCR rates, and the present manuscript reveals factors that have so far been disregarded and which are important for accurate measurements and interpretation. PMID:27500976

  19. Temperature dependence of the NMR spin-lattice relaxation rate for spin-1/2 chains

    NASA Astrophysics Data System (ADS)

    Coira, E.; Barmettler, P.; Giamarchi, T.; Kollath, C.

    2016-10-01

    We use recent developments in the framework of a time-dependent matrix product state method to compute the nuclear magnetic resonance relaxation rate 1 /T1 for spin-1/2 chains under magnetic field and for different Hamiltonians (XXX, XXZ, isotropically dimerized). We compute numerically the temperature dependence of the 1 /T1 . We consider both gapped and gapless phases, and also the proximity of quantum critical points. At temperatures much lower than the typical exchange energy scale, our results are in excellent agreement with analytical results, such as the ones derived from the Tomonaga-Luttinger liquid (TLL) theory and bosonization, which are valid in this regime. We also cover the regime for which the temperature T is comparable to the exchange coupling. In this case analytical theories are not appropriate, but this regime is relevant for various new compounds with exchange couplings in the range of tens of Kelvin. For the gapped phases, either the fully polarized phase for spin chains or the low-magnetic-field phase for the dimerized systems, we find an exponential decrease in Δ /(kBT ) of the relaxation time and can compute the gap Δ . Close to the quantum critical point our results are in good agreement with the scaling behavior based on the existence of free excitations.

  20. Structure and dynamics of water in tendon from NMR relaxation measurements.

    PubMed Central

    Peto, S; Gillis, P; Henri, V P

    1990-01-01

    Nuclear magnetic relaxation times were measured in collagen tissue when varying the orientation of the fiber with respect to the static field. T1 was found to be only slightly dependent on theta, the fiber-to-field angle, but T2 was very sensitive to the orientation, with a maximum value at the magic angle. The transverse decay curves were multiexponential. Their deconvolution displayed four components; the ones that decayed most slowly were almost independent of theta, but the two fastest ones showed a strong angular dependence that was interpreted with a cross-relaxation model. Quadrupolar dips were visible in the 1/T1 dispersion curves. These dips were independent of theta, so that the magnetization transfer could also be assumed to be independent of the fiber orientation. Finally, each component was assigned to a fraction of protons localized in the macromolecular structure and characterized by particular dynamics. The model of Woessner was applied to the water molecules tightly bound into the macromolecules, which resulted in a dynamical description of this water fraction. This description is compatible with the two-sites model of Ramachandran based on x-ray diffraction and with the extensive studies of Berendsen. However, the important indications obtained from the deconvolution lead to a less static representation of the tissue. PMID:2297563

  1. Intracellular sodium and lithium NMR relaxation times in the perfused frog heart.

    PubMed

    Burstein, D; Fossel, E T

    1987-03-01

    We have used a combination of a shift reagent and mathematical filtering or presaturation of the extracellular sodium resonance for the quantitative investigation of the intracellular sodium and lithium relaxation times in the perfused frog heart. While the T1 of the intracellular sodium was found to consist of a single-exponential time constant (approximately 23 ms), the T2 was better fit as a double-exponential decay with time constants of approximately 2 and 17 ms. However, the relative amplitudes of the two time constants in the T2 decay were found to be inconsistent with those which would be expected from a homogeneous pool of nuclei undergoing quadrupolar interactions. The relaxation times were not changed by a fivefold increase in the intracellular sodium level (due to perfusion with a ouabain-containing buffer). The T1 and T2 of the intracellular lithium (after perfusion with lithium-containing buffer) were both well fit by single exponentials (700- and 31-ms time constants, respectively).

  2. Second order rate constants for intramolecular conversions: Application to gas-phase NMR relaxation times

    NASA Astrophysics Data System (ADS)

    Bauer, S. H.; Lazaar, K. I.

    1983-09-01

    The usually quoted expression for the second order rate constant, for a unimolecular reaction at the low pressure limit, is valid only for strictly irreversible processes. Its application to isomerization reactions (which are to some extent reversible) is demonstrably in error; corrected expressions have been published. Attention is directed to intramolecular conversions over low barriers, for which the inappropriateness of the unidirectional expression becomes obvious. For such isomerizations we propose a model which incorporates only operationally observable states, so that an essential conceptual ambiguity is avoided. Use of this model is illustrated for the syn⇄anti conversions of methyl nitrite, derived from a gas phase NMR coalescence curve (Mc:Tc). The present data suggest that during isomerization the alkyl nitrites may not be completely ergodic on a time scale of 10-9 s. A regional phase-space model is proposed which has the appropriate formalism to account for this behavior.

  3. NMR relaxation of the orientation of single segments in semiflexible dendrimers

    SciTech Connect

    Markelov, Denis A. Gotlib, Yuli Ya.; Dolgushev, Maxim; Blumen, Alexander

    2014-06-28

    We study the orientational properties of labeled segments in semiflexible dendrimers making use of the viscoelastic approach of Dolgushev and Blumen [J. Chem. Phys. 131, 044905 (2009)]. We focus on the segmental orientational autocorrelation functions (ACFs), which are fundamental for the frequency-dependent spin-lattice relaxation times T{sub 1}(ω). We show that semiflexibility leads to an increase of the contribution of large-scale motions to the ACF. This fact influences the position of the maxima of the [1/T{sub 1}]-functions. Thus, going from outer to inner segments, the maxima shift to lower frequencies. Remarkably, this feature is not obtained in the classical bead-spring model of flexible dendrimers, although many experiments on dendrimers manifest such a behavior.

  4. Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion

    PubMed Central

    Meinhold, Derrick W.; Wright, Peter E.

    2011-01-01

    Detailed understanding of protein function and malfunction hinges on the ability to characterize transiently populated states and the transitions between them. Here, we use 15N, , and 13CO NMR R2 relaxation dispersion to investigate spontaneous unfolding and refolding events of native apomyoglobin. Above pH 5.0, dispersion is dominated by processes involving fluctuations of the F-helix region, which is invisible in NMR spectra. Measurements of R2 dispersion for residues contacted by the F-helix region in the native (N) structure reveal a transient state formed by local unfolding of helix F and undocking from the protein core. A similar state was detected at pH 4.75–4.95 and determined to be an on-pathway intermediate (I1) in a linear three-state unfolding scheme (N⇆I1⇆MG) leading to a transiently populated molten globule (MG) state. The slowest steps in unfolding and refolding are N → I1 (36 s-1) and MG → I1 (26 s-1), respectively. Differences in chemical shift between N and I1 are very small, except in regions adjacent to helix F, showing that their core structures are similar. Chemical shift changes between the N and MG states, obtained from R2 dispersion, reveal that the transient MG state is structurally similar to the equilibrium MG observed previously at high temperature and low pH. Analysis of MG state chemical shifts shows the location of residual helical structure in the transient intermediate and identifies regions that unfold or rearrange into nonnative structure during the N → MG transition. The experiments also identify regions of energetic frustration that “crack” during unfolding and impede the refolding process. PMID:21562212

  5. 13C NMR Relaxation Study of Segmental Motion of Poly(l-histidine) in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Uchino, Shinichi; Hiraoki, Toshifumi; Tsutsumi, Akihiro

    2004-05-01

    To study the segmental motion of poly (l-histidine) (PLH) in aqueous solution, the 13C spin-lattice relaxation time (T1) was measured at six resonance frequencies (ωC/2π) ranging from 15 to 100 MHz at temperatures from 10 to 80°C. For backbone Cα, plots of log(T1/ωC) against log(ωC) gave the well-superposed master curve, showing that the time-temperature reduction rule is realized. The shift factor obeyed the Arrhenius-type temperature dependence with the activation energy of 25.0 kJmol-1. Using this activation energy for the temperature dependence of the correlation time, the master curve was well reproduced by the Dejean-Lauprêtre-Monnerie (DLM) model. One of the parameters relating to the segmental motion was τ0/τ1=15, where τ0 and τ1 are the correlation times for the isolated single and correlated pair conformational transitions, respectively. It was found that the spectral density function J(ωC) has the exponent to the correlation time τ1 as ωCJ(ωC)˜(ωCτ1)0.71 in the region of ωCτ1≪ 1.

  6. Adaptive truncation of matrix decompositions and efficient estimation of NMR relaxation distributions

    NASA Astrophysics Data System (ADS)

    Teal, Paul D.; Eccles, Craig

    2015-04-01

    The two most successful methods of estimating the distribution of nuclear magnetic resonance relaxation times from two dimensional data are data compression followed by application of the Butler-Reeds-Dawson algorithm, and a primal-dual interior point method using preconditioned conjugate gradient. Both of these methods have previously been presented using a truncated singular value decomposition of matrices representing the exponential kernel. In this paper it is shown that other matrix factorizations are applicable to each of these algorithms, and that these illustrate the different fundamental principles behind the operation of the algorithms. These are the rank-revealing QR (RRQR) factorization and the LDL factorization with diagonal pivoting, also known as the Bunch-Kaufman-Parlett factorization. It is shown that both algorithms can be improved by adaptation of the truncation as the optimization process progresses, improving the accuracy as the optimal value is approached. A variation on the interior method viz, the use of barrier function instead of the primal-dual approach, is found to offer considerable improvement in terms of speed and reliability. A third type of algorithm, related to the algorithm known as Fast iterative shrinkage-thresholding algorithm, is applied to the problem. This method can be efficiently formulated without the use of a matrix decomposition.

  7. Interactions and exchange of CO2 and H2O in coals: an investigation by low-field NMR relaxation

    PubMed Central

    Sun, Xiaoxiao; Yao, Yanbin; Liu, Dameng; Elsworth, Derek; Pan, Zhejun

    2016-01-01

    The mechanisms by which CO2 and water interact in coal remain unclear and these are key questions for understanding ECBM processes and defining the long-term behaviour of injected CO2. In our experiments, we injected helium/CO2 to displace water in eight water-saturated samples. We used low-field NMR relaxation to investigate CO2 and water interactions in these coals across a variety of time-scales. The injection of helium did not change the T2 spectra of the coals. In contrast, the T2 spectra peaks of micro-capillary water gradually decreased and those of macro-capillary and bulk water increased with time after the injection of CO2. We assume that the CO2 diffuses through and/or dissolves into the capillary water to access the coal matrix interior, which promotes desorption of water molecules from the surfaces of coal micropores and mesopores. The replaced water mass is mainly related to the Langmuir adsorption volume of CO2 and increases as the CO2 adsorption capacity increases. Other factors, such as mineral composition, temperature and pressure, also influence the effective exchange between water and CO2. Finally, we built a quantified model to evaluate the efficiency of water replacement by CO2 injection with respect to temperature and pressure. PMID:26817784

  8. Analysis of amorphous solid dispersions using 2D solid-state NMR and (1)H T(1) relaxation measurements.

    PubMed

    Pham, Tran N; Watson, Simon A; Edwards, Andrew J; Chavda, Manisha; Clawson, Jacalyn S; Strohmeier, Mark; Vogt, Frederick G

    2010-10-04

    Solid-state NMR (SSNMR) can provide detailed structural information about amorphous solid dispersions of pharmaceutical small molecules. In this study, the ability of SSNMR experiments based on dipolar correlation, spin diffusion, and relaxation measurements to characterize the structure of solid dispersions is explored. Observation of spin diffusion effects using the 2D (1)H-(13)C cross-polarization heteronuclear correlation (CP-HETCOR) experiment is shown to be a useful probe of association between the amorphous drug and polymer that is capable of directly proving glass solution formation. Dispersions of acetaminophen and indomethacin in different polymers are examined using this approach, as well as (1)H double-quantum correlation experiments to probe additional structural features. (1)H-(19)F CP-HETCOR serves a similar role for fluorinated drug molecules such as diflunisal in dispersions, providing a rapid means to prove the formation of a glass solution. Phase separation is detected using (13)C, (19)F, and (23)Na-detected (1)H T(1) experiments in crystalline and amorphous solid dispersions that contain small domains. (1)H T(1) measurements of amorphous nanosuspensions of trehalose and dextran illustrate the ability of SSNMR to detect domain size effects in dispersions that are not glass solutions via spin diffusion effects. Two previously unreported amorphous solid dispersions involving up to three components and containing voriconazole and telithromycin are analyzed using these experiments to demonstrate the general applicability of the approach.

  9. Analysis of internal motions of interleukin-13 variant associated with severe bronchial asthma using {sup 15}N NMR relaxation measurements

    SciTech Connect

    Yoshida, Yuichiro; Ohkuri, Takatoshi; Takeda, Chika; Kuroki, Ryota; Izuhara, Kenji; Imoto, Taiji; Ueda, Tadashi . E-mail: ueda@phar.kyushu-u.ac.jp

    2007-06-22

    The single nucleotide polymorphism interleukin-13 (IL-13) R110Q is associated with severe bronchial asthma because its lower affinity leads to the augmentation of local IL-13 concentration, resulting in an increase in the signal transduction via IL-13R. Since the mutation site does not directly bind to IL-13R{alpha}2, we carried out NMR relaxation analyses of the wild-type IL-13 and IL-13-R110Q in order to examine whether the R110Q mutation affects the internal motions in IL-13 molecules. The results showed that the internal motion in the micro- to millisecond time scale on helix D, which is suggested to be important for the interaction between IL-13 and IL-13R{alpha}2, is increased in IL-13-R110Q compared with that in the wild-type IL-13. It therefore appears that the difference in the internal motions on helix D between the wild-type IL-13 and IL-13-R110Q may be involved in their affinity differences with IL-13R{alpha}2.

  10. 1H NMR z-spectra of acetate methyl in stretched hydrogels: Quantum-mechanical description and Markov chain Monte Carlo relaxation-parameter estimation

    NASA Astrophysics Data System (ADS)

    Shishmarev, Dmitry; Chapman, Bogdan E.; Naumann, Christoph; Mamone, Salvatore; Kuchel, Philip W.

    2015-01-01

    The 1H NMR signal of the methyl group of sodium acetate is shown to be a triplet in the anisotropic environment of stretched gelatin gel. The multiplet structure of the signal is due to the intra-methyl residual dipolar couplings. The relaxation properties of the spin system were probed by recording steady-state irradiation envelopes ('z-spectra'). A quantum-mechanical model based on irreducible spherical tensors formed by the three magnetically equivalent spins of the methyl group was used to simulate and fit experimental z-spectra. The multiple parameter values of the relaxation model were estimated by using a Bayesian-based Markov chain Monte Carlo algorithm.

  11. Backbone dynamics of a biologically active human FGF-1 monomer, complexed to a hexasaccharide heparin-analogue, by 15N NMR relaxation methods.

    PubMed

    Canales-Mayordomo, Angeles; Fayos, Rosa; Angulo, Jesús; Ojeda, Rafael; Martín-Pastor, Manuel; Nieto, Pedro M; Martín-Lomas, Manuel; Lozano, Rosa; Giménez-Gallego, Guillermo; Jiménez-Barbero, Jesús

    2006-08-01

    The binding site and backbone dynamics of a bioactive complex formed by the acidic fibroblast growth factor (FGF-1) and a specifically designed heparin hexasaccharide has been investigated by HSQC and relaxation NMR methods. The comparison of the relaxation data for the free and bound states has allowed showing that the complex is monomeric, and still induces mutagenesis, and that the protein backbone presents reduced motion in different timescale in its bound state, except in certain points that are involved in the interaction with the fibroblast growth factor receptor (FGFR).

  12. Water mobility and microstructure evolution in the germinating Medicago truncatula seed studied by NMR relaxometry. A revisited interpretation of multicomponent relaxation.

    PubMed

    Lahaye, Marc; Falourd, Xavier; Limami, Anis M; Foucat, Loïc

    2015-02-18

    The water status of Medicago truncatula Gaertn. seed was followed by low-field NMR relaxometry during germination with and without oryzalin or fusicoccin used as growth modulators. T1 and T2 relaxation times and proportions P1 and P2 were determined on fresh, frozen, and freeze-thawed samples to characterize changes in water dynamics and compartmentation and in the nonfreezing water fraction. The results demonstrate that low-field NMR relaxometry allowed differentiating germination phases and events occurring during them as well as perturbations related to the presence of growth modulators. The results provide clear evidence that the classical multicomponent relaxation interpretation cannot directly relate T2 components and morphological compartments in biological tissue.

  13. The mechanism of paramagnetic NMR relaxation produced by Mn(II): role of orthorhombic and fourth-order zero field splitting terms.

    PubMed

    Sharp, Robert

    2008-10-14

    Mn(II) is a spin-5/2 paramagnetic ion that mediates a characteristically large NMR paramagnetic relaxation enhancement (NMR-PRE) of nuclear spins in solution. In the range of high magnetic field strengths (above about 0.3 T), where the electronic Zeeman interaction provides the largest term of the electron spin Hamiltonian, NMR relaxation mechanism is well understood. In the lower field range, the physical picture is more complex because of the presence in the spin Hamiltonian of zero field splitting (ZFS) terms that are comparable to or greater than the Zeeman term. This work describes a systematic study of the relaxation mechanism in the low field range, particularly aspects involving the dependence of NMR-PRE on the orthorhombic (E) and fourth-order (a(q)(4), q=0,2,4) ZFS tensor components. It is shown that the fourfold (a(4)(4)) and twofold (a(2)(4)) fourth-order components exert large orientation-dependent influences on the NMR-PRE. Thus, fourth-order terms with magnitudes equal to only a few percent of the quadratic ZFS terms (D,E) produce large changes in the shape of the magnetic field profile of the PRE. Effects arising from the orthorhombic quadratic ZFS term (E) are much smaller than those of the fourth-order terms and can in most cases be neglected. However, effects due to a(4)(4) and a(2)(4) need to be included in simulations of low field data.

  14. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations Part II: CP kinetics and relaxation analysis.

    PubMed

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Excipients used in the solid drug formulations differ in their NMR relaxation and (13)C cross-polarization (CP) kinetics parameters. Therefore, experimental parameters like contact time of cross-polarization and repetition time have a major impact on the registered solid state NMR spectra and in consequence on the results of the NMR analysis. In this work the CP kinetics and relaxation of the most common pharmaceutical excipients: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. The studied excipients differ significantly in their optimum repetition time (from 5 s to 1200 s) and T(1ρ)(I) parameters (from 2 ms to 73 ms). The practical use of those differences in the excipients composition analysis was demonstrated on the example of commercially available tablets containing indapamide as an API. The information presented in this article will help to choose the correct acquisition parameters and also will save the time and effort needed for their optimization in the NMR analysis of the solid drug formulations.

  15. Spin Liquid State in the 3D Frustrated Antiferromagnet PbCuTe_{2}O_{6}: NMR and Muon Spin Relaxation Studies.

    PubMed

    Khuntia, P; Bert, F; Mendels, P; Koteswararao, B; Mahajan, A V; Baenitz, M; Chou, F C; Baines, C; Amato, A; Furukawa, Y

    2016-03-11

    PbCuTe_{2}O_{6} is a rare example of a spin liquid candidate featuring a three-dimensional magnetic lattice. Strong geometric frustration arises from the dominant antiferromagnetic interaction that generates a hyperkagome network of Cu^{2+} ions although additional interactions enhance the magnetic lattice connectivity. Through a combination of magnetization measurements and local probe investigations by NMR and muon spin relaxation down to 20 mK, we provide robust evidence for the absence of magnetic freezing in the ground state. The local spin susceptibility probed by the NMR shift hardly deviates from the macroscopic one down to 1 K pointing to a homogeneous magnetic system with a low defect concentration. The saturation of the NMR shift and the sublinear power law temperature (T) evolution of the 1/T_{1} NMR relaxation rate at low T point to a nonsinglet ground state favoring a gapless fermionic description of the magnetic excitations. Below 1 K a pronounced slowing down of the spin dynamics is witnessed, which may signal a reconstruction of spinon Fermi surface. Nonetheless, the compound remains in a fluctuating spin liquid state down to the lowest temperature of the present investigation.

  16. Spin liquid state in the 3D frustrated antiferromagnet PbCuTe2O6: NMR and muon spin relaxation studies

    DOE PAGES

    Khuntia, P.; Bert, F.; Mendels, P.; ...

    2016-03-11

    In this study, PbCuTe2O6 is a rare example of a spin liquid candidate featuring a three-dimensional magnetic lattice. Strong geometric frustration arises from the dominant antiferromagnetic interaction that generates a hyperkagome network of Cu2+ ions although additional interactions enhance the magnetic lattice connectivity. Through a combination of magnetization measurements and local probe investigations by NMR and muon spin relaxation down to 20 mK, we provide robust evidence for the absence of magnetic freezing in the ground state. The local spin susceptibility probed by the NMR shift hardly deviates from the macroscopic one down to 1 K pointing to a homogeneousmore » magnetic system with a low defect concentration. The saturation of the NMR shift and the sublinear power law temperature (T) evolution of the 1/T1 NMR relaxation rate at low T point to a nonsinglet ground state favoring a gapless fermionic description of the magnetic excitations. Below 1 K a pronounced slowing down of the spin dynamics is witnessed, which may signal a reconstruction of spinon Fermi surface. Nonetheless, the compound remains in a fluctuating spin liquid state down to the lowest temperature of the present investigation.« less

  17. Flexible and rigid structures in HIV-1 p17 matrix protein monitored by relaxation and amide proton exchange with NMR.

    PubMed

    Ohori, Yuka; Okazaki, Honoka; Watanabe, Satoru; Tochio, Naoya; Arai, Munehito; Kigawa, Takanori; Nishimura, Chiaki

    2014-03-01

    The HIV-1 p17 matrix protein is a multifunctional protein that interacts with other molecules including proteins and membranes. The dynamic structure between its folded and partially unfolded states can be critical for the recognition of interacting molecules. One of the most important roles of the p17 matrix protein is its localization to the plasma membrane with the Gag polyprotein. The myristyl group attached to the N-terminus on the p17 matrix protein functions as an anchor for binding to the plasma membrane. Biochemical studies revealed that two regions are important for its function: D14-L31 and V84-V88. Here, the dynamic structures of the p17 matrix protein were studied using NMR for relaxation and amide proton exchange experiments at the physiological pH of 7.0. The results revealed that the α12-loop, which includes the 14-31 region, was relatively flexible, and that helix 4, including the 84-88 region, was the most protected helix in this protein. However, the residues in the α34-loop near helix 4 had a low order parameter and high exchange rate of amide protons, indicating high flexibility. This region is probably flexible because this loop functions as a hinge for optimizing the interactions between helices 3 and 4. The C-terminal long region of K113-Y132 adopted a disordered structure. Furthermore, the C-terminal helix 5 appeared to be slightly destabilized due to the flexible C-terminal tail based on the order parameters. Thus, the dynamic structure of the p17 matrix protein may be related to its multiple functions.

  18. Another challenge to paramagnetic relaxation theory: a study of paramagnetic proton NMR relaxation in closely related series of pyridine-derivatised dysprosium complexes.

    PubMed

    Rogers, Nicola J; Finney, Katie-Louise N A; Senanayake, P Kanthi; Parker, David

    2016-02-14

    Measurements of the relaxation rate behaviour of two series of dysprosium complexes have been performed in solution, over the field range 1.0 to 16.5 Tesla. The field dependence has been modelled using Bloch-Redfield-Wangsness theory, allowing estimates of the electronic relaxation time, T1e, and the size of the magnetic susceptibility, μeff, to be made. Changes in relaxation rate of the order of 50% at higher fields were measured, following variation of the para-substituent in the single pyridine donor. The magnetic susceptibilities deviated unexpectedly from the free-ion values for certain derivatives in each series examined, in a manner that was independent of the electron-releasing/withdrawing ability of the pyridine substituent, suggesting that the polarisability of just one pyridine donor in octadenate ligands can play a significant role in defining the magnetic susceptibility anisotropy.

  19. NMR Method for Characterizing Microsecond-to-Millisecond Chemical Exchanges Utilizing Differential Multiple-Quantum Relaxation in High Molecular Weight Proteins.

    PubMed

    Toyama, Yuki; Osawa, Masanori; Yokogawa, Mariko; Shimada, Ichio

    2016-02-24

    Chemical exchange processes of proteins on the order of microseconds (μs) to milliseconds (ms) play critical roles in biological functions. Developments in methyl-transverse relaxation optimized spectroscopy (methyl-TROSY), which observes the slowly relaxing multiple quantum (MQ) coherences, have enabled the studies of biologically important large proteins. However, the analyses of μs to ms chemical exchange processes based on the methyl-TROSY principle are still challenging, because the interpretation of the chemical exchange contributions to the MQ relaxation profiles is complicated, as significant chemical shift differences occur in both (1)H and (13)C nuclei. Here, we report a new methyl-based NMR method for characterizing chemical exchanges, utilizing differential MQ relaxation rates and a heteronuclear double resonance pulse technique. The method enables quantitative evaluations of the chemical exchange processes, in which significant chemical shift differences exist in both the (1)H and (13)C nuclei. The versatility of the method is demonstrated with the application to KirBac1.1, with an apparent molecular mass of 200 kDa.

  20. Sub-millisecond (125)Te NMR spin-lattice relaxation times and large Knight shifts in complex tellurides: Validation of a quadratic relation across the spectrum.

    PubMed

    Levin, E M; Cui, J-F; Schmidt-Rohr, K

    2016-09-01

    (125)Te NMR spectra and spin-lattice relaxation times, T1, have been measured for several GeTe-based materials with Te excess. The spectra show inhomogeneous broadening by several thousand ppm and a systematic variation in T1 relaxation time with resonance frequency. The quadratic dependence of the spin-lattice relaxation rate, 1/T1, on the Knight shift in the Korringa relation is found to be valid over a wide range of Knight shifts. This result confirms that T1 relaxation in GeTe-based materials is mostly dominated by hyperfine interaction between nuclei and free charge carriers. In GeTe with 2.5% excess of Te, about 15% of the material exhibits a Knight shift of ≥4500ppm and a T1 of only 0.3ms, indicating a high hole concentration that could correspond to close to 50% vacancies on the Ge sublattice in this component. Our findings provide a basis for determining the charge carrier concentration and its distribution in complex thermoelectric and phase-change tellurides, which should lead to a better understanding of electronic and thermal transport properties as well as chemical bonding in these materials.

  1. Feasibility of high-resolution one-dimensional relaxation imaging at low magnetic field using a single-sided NMR scanner applied to articular cartilage

    NASA Astrophysics Data System (ADS)

    Rössler, Erik; Mattea, Carlos; Stapf, Siegfried

    2015-02-01

    Low field Nuclear Magnetic Resonance increases the contrast of the longitudinal relaxation rate in many biological tissues; one prominent example is hyaline articular cartilage. In order to take advantage of this increased contrast and to profile the depth-dependent variations, high resolution parameter measurements are carried out which can be of critical importance in an early diagnosis of cartilage diseases such as osteoarthritis. However, the maximum achievable spatial resolution of parameter profiles is limited by factors such as sensor geometry, sample curvature, and diffusion limitation. In this work, we report on high-resolution single-sided NMR scanner measurements with a commercial device, and quantify these limitations. The highest achievable spatial resolution on the used profiler, and the lateral dimension of the sensitive volume were determined. Since articular cartilage samples are usually bent, we also focus on averaging effects inside the horizontally aligned sensitive volume and their impact on the relaxation profiles. Taking these critical parameters into consideration, depth-dependent relaxation time profiles with the maximum achievable vertical resolution of 20 μm are discussed, and are correlated with diffusion coefficient profiles in hyaline articular cartilage in order to reconstruct T2 maps from the diffusion-weighted CPMG decays of apparent relaxation rates.

  2. Molecular motions of [Beta]-carotene and a carotenoporphyrin dyad in solution. A carbon-13 NMR spin-lattice relaxation time study

    SciTech Connect

    Li, S.; Swindle, S.L.; Smith, S.K.; Nieman, R.A.; Moore, A.L.; Moore, T.A.; Gust, D. )

    1995-03-09

    Analysis of [sup 13]C NMR spin-lattice relaxation times (T[sub 1]) yields information concerning both overall tumbling of molecules in solution and internal rotations about single bonds. Relaxation time and nuclear Overhauser effect data have been obtained for [Beta]-carotene and two related molecules, squalane and squalene, for zinc meso-tetraphenylporphyrin, and for a dyad consisting of a porphyrin covalently linked to a carotenoid polyene through a trimethylene bridge. Squalane and squalene, which lack conjugated double bonds, behave essentially as limp string, with internal rotations at least as rapid as overall isotropic tumbling motions. In contrast, [Beta]-carotene reorients as a rigid rod, with internal motions which are too slow to affect relaxation times. Modeling it as an anisotropic rotor yields a rotational diffusion coefficient for motion about the major axis which is 14 times larger than that for rotation about axes perpendicular to that axis. The porphyrin reorients more nearly isotropically and features internal librational motions about the single bonds to the phenyl groups. The relaxation time data for the carotenoporphyrin are consistent with internal motions similar to those of a medieval military flail. 31 refs., 3 figs., 5 tabs.

  3. An NMR thermometer for cryogenic magic-angle spinning NMR: the spin-lattice relaxation of (127)I in cesium iodide.

    PubMed

    Sarkar, Riddhiman; Concistrè, Maria; Johannessen, Ole G; Beckett, Peter; Denning, Mark; Carravetta, Marina; Al-Mosawi, Maitham; Beduz, Carlo; Yang, Yifeng; Levitt, Malcolm H

    2011-10-01

    The accurate temperature measurement of solid samples under magic-angle spinning (MAS) is difficult in the cryogenic regime. It has been demonstrated by Thurber et al. (J. Magn. Reson., 196 (2009) 84-87) [10] that the temperature dependent spin-lattice relaxation time constant of (79)Br in KBr powder can be useful for measuring sample temperature under MAS over a wide temperature range (20-296 K). However the value of T(1) exceeds 3 min at temperatures below 20K, which is inconveniently long. In this communication, we show that the spin-lattice relaxation time constant of (127)I in CsI powder can be used to accurately measure sample temperature under MAS within a reasonable experimental time down to 10 K.

  4. Understanding Structure-Property Correlation in Monocationic and Dicationic Ionic Liquids through Combined Fluorescence and Pulsed-Field Gradient (PFG) and Relaxation NMR Experiments.

    PubMed

    Kumar Sahu, Prabhat; Ghosh, Arindam; Sarkar, Moloy

    2015-11-05

    Steady state, time-resolved fluorescence and NMR experiments are carried out to gain deeper insights into the structure-property correlation in structurally similar monocationic and dicationic room-temperature ionic liquids (RTILs). The excitation wavelength dependent fluorescence response of fluorophore in 1-methy-3-propyllimidazolium bis(trifluoromethylsulfonyl)amide [C3MIm][NTf2] is found to be different from that of 1,6-bis(3-methylimidazolium-1-yl)hexane bis(trifluoromethylsulfonyl)amide [C6(MIm)2][NTf2]2 and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide [C6MIm][NTf2]. The outcomes of the present solvent dynamics study in [C3MIm][NTf2] when compared with those in [C6(MIm)2][NTf2]2 and in [C6MIm][NTf2] from our previous studies (Phys. Chem. Chem. Phys. 2014, 16, 12918-12928) indicate the involvement of dipolar rotation of imidazolium cation during solvation. To correlate the findings of solvation dynamics study with the dipolar rotation of the imidazolium ring, pulsed-field gradient (PFG)-NMR technique for translational diffusion coefficient measurement and (1)H as well as (19)F spin-lattice relaxation measurements are employed. NMR investigation reveals that an ultrafast component of solvation can be related to the dipolar rotation of imidazolium cation; hence, the role of dipolar rotation of cations in governing the dynamics of solvation in ILs cannot be ignored. Analysis of the rotational relaxation dynamics data by the Stokes-Einstein-Debye hydrodynamic theory unveils distinctive features of solute-solvent interaction in [C3MIm][NTf2] and [C6(MIm)2][NTf2]2.

  5. Long-range Li+ dynamics in the lithium argyrodite Li7PSe6 as probed by rotating-frame spin-lattice relaxation NMR.

    PubMed

    Epp, V; Gün, O; Deiseroth, H-J; Wilkening, M

    2013-05-21

    Lithium-rich argyrodites belong to a relatively new group of fast ion conducting solids. They might serve as powerful electrolytes in all-solid-state lithium-ion batteries being, from a medium-term point of view, the key technology when safe energy storage systems have to be developed. Spin-lattice relaxation (SLR) nuclear magnetic resonance (NMR) measurements carried out in the rotating frame of reference turned out to be the method of choice to study Li dynamics in argyrodites. When plotted as a function of the inverse temperature, the SLR rates log10(R1ρ) reveal an asymmetric diffusion-induced rate peak. The rate peak contains information on the Li jump rate, the activation energy of the hopping process as well as correlation effects. In particular, considering the high-temperature flank of the SLR NMR rate peak recorded in the rotating frame of reference, an activation energy of approximately 0.49 eV is found. This value represents long-range lithium jump diffusion in crystalline Li7PSe6. As an example, at 325 K the Li jump rate determined from SLR NMR is in the order of 1.4 × 10(5) s(-1). The pronounced asymmetry of the rate peak R1ρ(1/T) points to correlated Li motion. It is comparable to that which is typically found for structurally disordered materials showing a broad range of correlation times.

  6. NMR paramagnetic relaxation due to the S=5/2 complex, Fe(III)-(tetra-p-sulfonatophenyl)porphyrin: central role of the tetragonal fourth-order zero-field splitting interaction.

    PubMed

    Schaefle, Nathaniel; Sharp, Robert

    2005-05-08

    The metalloporphyrins, Me-TSPP [Me=Cr(III), Mn(III), Mn(II), Fe(III), and TSPP=meso-(tetra-p-sulfonatophenyl)porphyrin], which possess electron spins S=3/2, 2, 5/2, and 5/2, respectively, comprise an important series of model systems for mechanistic studies of NMR paramagnetic relaxation enhancement (NMR-PRE). For these S>1/2 spin systems, the NMR-PRE depends critically on the detailed form of the zero-field splitting (zfs) tensor. We report the results of experimental and theoretical studies of the NMR relaxation mechanism associated with Fe(III)-TSPP, a spin 5/2 complex for which the overall zfs is relatively large (D approximately = 10 cm(-1)). A comparison of experimental data with spin dynamics simulations shows that the primary determinant of the shape of the magnetic relaxation dispersion profile of the water proton R1 is the tetragonal fourth-order component of the zfs tensor. The relaxation mechanism, which has not previously been described, is a consequence of zfs-induced mixing of the spin eigenfunctions of adjacent Kramers doublets. We have also investigated the magnetic-field dependence of electron-spin relaxation for S=5/2 in the presence of a large zfs, such as occurs in Fe(III)-TSPP. Calculations show that field dependence of this kind is suppressed in the vicinity of the zfs limit, in agreement with observation.

  7. An inversion method of 2D NMR relaxation spectra in low fields based on LSQR and L-curve

    NASA Astrophysics Data System (ADS)

    Su, Guanqun; Zhou, Xiaolong; Wang, Lijia; Wang, Yuanjun; Nie, Shengdong

    2016-04-01

    The low-field nuclear magnetic resonance (NMR) inversion method based on traditional least-squares QR decomposition (LSQR) always produces some oscillating spectra. Moreover, the solution obtained by traditional LSQR algorithm often cannot reflect the true distribution of all the components. Hence, a good solution requires some manual intervention, for especially low signal-to-noise ratio (SNR) data. An approach based on the LSQR algorithm and L-curve is presented to solve this problem. The L-curve method is applied to obtain an improved initial optimal solution by balancing the residual and the complexity of the solutions instead of manually adjusting the smoothing parameters. First, the traditional LSQR algorithm is used on 2D NMR T1-T2 data to obtain its resultant spectra and corresponding residuals, whose norms are utilized to plot the L-curve. Second, the corner of the L-curve as the initial optimal solution for the non-negative constraint is located. Finally, a 2D map is corrected and calculated iteratively based on the initial optimal solution. The proposed approach is tested on both simulated and measured data. The results show that this algorithm is robust, accurate and promising for the NMR analysis.

  8. 11B and 27Al NMR spin-lattice relaxation and Knight shift of Mg1-xAlxB2: Evidence for an anisotropic Fermi surface

    NASA Astrophysics Data System (ADS)

    Papavassiliou, G.; Pissas, M.; Karayanni, M.; Fardis, M.; Koutandos, S.; Prassides, K.

    2002-10-01

    We report a detailed study of the 11B and 27Al NMR spin-lattice relaxation rates (1/T1) and the 27Al Knight shift (K) in Mg1-xAlxB2, 0<=x<=1. The evolution of (1/T1T) and K with x is in excellent agreement with the prediction of ab initio calculations of a highly anisotropic Fermi surface, consisting mainly of hole-type two-dimensional (2D) cylindrical sheets from bonding 2px,y boron orbitals. The density of states at the Fermi level also decreases sharply on Al doping and the 2D sheets collapse at x~0.55, where the superconducting phase disappears.

  9. H-1 Relaxation Times of Metabolites in Biological Samples Obtained with Nondestructive Ex-vivo Slow-MAS NMR

    SciTech Connect

    Hu, Jian Zhi; Wind, Robert A.; Rommereim, Donald N.

    2006-03-01

    Methods suitable for measuring 1H relaxation times such as T1, T2 and T1p, in small sized biological objects including live cells, excised organs and tissues, oil seeds etc., were developed in this work. This was achieved by combining inversion-recovery, spin-echo, or spin lock segment with the phase-adjusted spinning sideband (PASS) technique that was applied at slow sample spinning rate. Here, 2D-PASS was used to produce a high-resolution 1H spectrum free from the magnetic susceptibility broadening so that the relaxation parameters of individual metabolite can be determined. Because of the slow spinning employed, tissue and cell damage due to sample spinning is minimized. The methodologies were demonstrated by measuring 1H T1, T2 and T1p of metabolites in excised rat livers and sesame seeds at spinning rates of as low as 40 Hz.

  10. Magnetic hyperthermia efficiency and 1H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles

    NASA Astrophysics Data System (ADS)

    Ruggiero, Maria R.; Geninatti Crich, Simonetta; Sieni, Elisabetta; Sgarbossa, Paolo; Forzan, Michele; Cavallari, Eleonora; Stefania, Rachele; Dughiero, Fabrizio; Aime, Silvio

    2016-07-01

    Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar 1H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15-20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications.

  11. Fast Li ion dynamics in the solid electrolyte Li7 P3 S11 as probed by (6,7) Li NMR spin-lattice relaxation.

    PubMed

    Wohlmuth, Dominik; Epp, Viktor; Wilkening, Martin

    2015-08-24

    The development of safe and long-lasting all-solid-state batteries with high energy density requires a thorough characterization of ion dynamics in solid electrolytes. Commonly, conductivity spectroscopy is used to study ion transport; much less frequently, however, atomic-scale methods such as nuclear magnetic resonance (NMR) are employed. Here, we studied long-range as well as short-range Li ion dynamics in the glass-ceramic Li7 P3 S11 . Li(+) diffusivity was probed by using a combination of different NMR techniques; the results are compared with those obtained from electrical conductivity measurements. Our NMR relaxometry data clearly reveal a very high Li(+) diffusivity, which is reflected in a so-called diffusion-induced (6) Li NMR spin-lattice relaxation peak showing up at temperatures as low as 313 K. At this temperature, the mean residence time between two successful Li jumps is in the order of 3×10(8) s(-1) , which corresponds to a Li(+) ion conductivity in the order of 10(-4) to 10(-3) S cm(-1) . Such a value is in perfect agreement with expectations for the crystalline but metastable glass ceramic Li7 P3 S11 . In contrast to conductivity measurements, NMR analysis reveals a range of activation energies with values ranging from 0.17 to 0.26 eV, characterizing Li diffusivity in the bulk. In our case, through-going Li ion transport, when probed by using macroscopic conductivity spectroscopy, however, seems to be influenced by blocking grain boundaries including, for example, amorphous regions surrounding the Li7 P3 S11 crystallites. As a result of this, long-range ion transport as seen by impedance spectroscopy is governed by an activation energy of approximately 0.38 eV. The findings emphasize how surface and grain boundary effects can drastically affect long-range ionic conduction. If we are to succeed in solid-state battery technology, such effects have to be brought under control by, for example, sophisticated densification or through the preparation

  12. Inhomogeneous 1H NMR spin-lattice relaxation in the organic superconductor kappa-(BEDT-TTF)2Cu[N(CN)2]Br

    NASA Astrophysics Data System (ADS)

    Gezo, Joseph Christopher

    The two-dimensional superconductors based on the organic molecule "ET" have been an active area of research since their discovery over two decades ago. The member of this family with the highest critical temperature, kappa-(ET)2Cu[N(CN)2]Br ( Tc=11.7 K), has seen renewed interest since the observation of an anomalous Nernst signal by Nam et al in 2007 [51]. A similar effect was seen earlier by Ong's group in some of the high-temperature cuprate superconductors by [78,84]. This is interpreted to be evidence of a picture of superconductivity in which the resistive transition is driven by thermal fluctuations in the phase of the superconducting order parameter. Below Tc, these fluctuations take the form of bound vortex-antivortex pairs that have no long-range effect on the phase. At Tc, they undergo a Kosterlitz-Thouless unbinding transition; the unbound vortices destroy long-range phase coherence. Previously reported proton NMR measurements on this material have shown a high sensitivity to vortex motion, but reported no interesting behavior above the phase transition [15,25,42]. In this thesis, we revisit the 1H NMR properties of kappa-(ET)2Cu[N(CN)2]Br, paying specific attention to the spin-lattice relaxation, to look for some fingerprint of the phenomenon observed by Nam et al.

  13. Interaction between reduced glutathione and PEO-PPO-PEO copolymers in aqueous solutions: studied by 1H NMR and spin-lattice relaxation.

    PubMed

    Jia, Lianwei; Guo, Chen; Yang, Liangrong; Xiang, Junfeng; Tang, Yalin; Liu, Huizhou

    2011-03-17

    In order to investigate the effect of PEO-PPO-PEO copolymers on the glutathione (GSH)/glutathione-S-transferase (GST) detoxification system, interaction between the copolymers and GSH is studied by NMR measurements. Selective rotating-frame nuclear Overhauser effect (ROE) experiment confirms that glutamyl (Glu) α-H of GSH has spatial contact with EO methylene protons. Spin-lattice relaxation times of GSH Glu α-H show a decrease when PEO-PPO-PEO copolymers are added, and the decrease is greater with copolymers possessing more EO units. Other protons of GSH show little change in the presence of the copolymers. The addition of GSH promotes the dehydration of PEO-PPO-PEO copolymers. This results from the breaking of hydrogen bonds between water and the polymers and the forming of hydrogen bonds between Glu α-carboxylate protons and oxygen atoms of EO units. The dissociation constant between GSH and P85 copolymer is determined by spin-lattice relaxation measurements, which shows the binding is of low affinity and the two molecules are in fast dissociation kinetics. This study suggests that GSH transporting or utilizing systems may be affected by treatment of PEO-PPO-PEO copolymers.

  14. Effective Forces Between Diamagnetic and Paramagnetic Ions in D 2 O at Low and Moderate Ionic Strengths: An NMR Relaxation Study

    NASA Astrophysics Data System (ADS)

    Sacco, A.; Belorizky, E.; Jeannin, M.; Gorecki, W.; Fries, P. H.

    1997-09-01

    The dynamical behaviour of several pairs of dissociated, attractive and repulsive, ions is investigated in aqueous solutions for ionic strengths up to 1 mol l^{-1}. The experimental information is provided by the NMR longitudinal relaxation rates of the protons on the diamagnetic ions. The ionic solutions were chosen so that the main relaxation mechanism of these protons is due to the time fluctuations of their dipolar magnetic coupling with the electronic spins on the paramagnetic ions. This coupling strongly depends on the ion-ion potential of mean force (PMF) and on the ion self-diffusion coefficients. The interionic spatial correlations and the associated PMF are derived from a new approximation of the integral equations of the statistical mechanics of liquids. This formalism, which treats all the ions as discrete particles, rests on the infinite dilution PMF of the various ion pairs. It mixes a Born-Oppenheimer theory at infinite dilution with a sort of McMillan-Mayer approximation to take the ionic concentration into account. It goes beyond the Debye-Hückel screening theory, in which a continuous screening charge distribution approximates the effects of the discrete surrounding ions. It is related to the concept of the local dielectric constants which replace the usual macroscopic dielectric constant and depend on the interionic distances. The self-diffusion coefficients of the diamagnetic ions were measured by the NMR pulsed magnetic field gradient (PMFG) techniques applied to the resonant protons. In paramagnetic solutions, where several protonated species coexist, special caution is required and this is discussed in detail. For all the investigated solutions the theory well accounts for the observed variation of the NMR relaxation as a function of the ion charges, of the ionic strength and of the NMR proton resonance frequency. The relaxation results predicted by the new approximation of the ion-ion PMF are compared with those derived from the simple

  15. 31P NMR Relaxation of Cortical Bone Mineral at Multiple Magnetic Field Strengths and Levels of Demineralization

    PubMed Central

    Seifert, Alan C.; Wright, Alexander C.; Wehrli, Suzanne L.; Ong, Henry H.; Li, Cheng; Wehrli, Felix W.

    2013-01-01

    Purpose Recent work has shown that solid-state 1H and 31P MRI can provide detailed insight into bone matrix and mineral properties, thereby potentially enabling differentiation of osteoporosis from osteomalacia. However, 31P MRI of bone mineral is hampered by unfavorable relaxation properties. Hence, accurate knowledge of these properties is critical to optimizing MRI of bone phosphorus. Methods In this work, 31P MRI signal-to-noise ratio (SNR) was predicted on the basis of T1 and T2* (effective transverse relaxation time) measured in lamb bone at six field strengths (1.5 – 11.7 T) and subsequently verified by 3-D ultra-short echo-time and zero echo-time imaging. Further, T1 was measured in deuterium-exchanged bone and partially demineralized bone. Results 31P T2* was found to decrease from 220.3 ± 4.3 μs to 98.0 ± 1.4 μs from 1.5 to 11.7 T, and T1 to increase from 12.8 ± 0.5 s to 97.3 ± 6.4 s. Deuteron substitution of exchangeable water showed that 76% of the 31P longitudinal relaxation rate is due to 1H-31P dipolar interactions. Lastly, hypomineralization was found to decrease T1, which may have implications for 31P MRI based mineralization density quantification. Conclusion Despite the steep decrease in the T2*/T1 ratio, SNR should increase with field strength as Bo0.4 for sample-dominated noise and as Bo1.1 for coil-dominated noise. This was confirmed by imaging experiments. PMID:23505120

  16. Dynamic regulation of GDP binding to G proteins revealed by magnetic field-dependent NMR relaxation analyses

    PubMed Central

    Toyama, Yuki; Kano, Hanaho; Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio

    2017-01-01

    Heterotrimeric guanine-nucleotide-binding proteins (G proteins) serve as molecular switches in signalling pathways, by coupling the activation of cell surface receptors to intracellular responses. Mutations in the G protein α-subunit (Gα) that accelerate guanosine diphosphate (GDP) dissociation cause hyperactivation of the downstream effector proteins, leading to oncogenesis. However, the structural mechanism of the accelerated GDP dissociation has remained unclear. Here, we use magnetic field-dependent nuclear magnetic resonance relaxation analyses to investigate the structural and dynamic properties of GDP bound Gα on a microsecond timescale. We show that Gα rapidly exchanges between a ground-state conformation, which tightly binds to GDP and an excited conformation with reduced GDP affinity. The oncogenic D150N mutation accelerates GDP dissociation by shifting the equilibrium towards the excited conformation. PMID:28223697

  17. Complex mechanism of relaxation in solid chloroxylenol (antibacterial/antifungal agent) studied by ¹H NMR spectroscopy and density functional theory calculations.

    PubMed

    Latosińska, Jolanta Natalia; Latosińska, Magdalena; Tomczak, Marzena Agnieszka; Medycki, Wojciech

    2014-03-27

    Molecular relaxation in antibacterial/antifungal agent: chloroxylenol (4-chloro-3,5-dimethylphenol, PCMX) in the solid state was studied by the (1)H NMR and quantum chemistry calculations. The temperature dependencies of the proton spin-lattice relaxation time (T1) in the ranges 15-273 K (at 24.667 MHz), 77-295 K (at 15 MHz), and 112-291 K at 90 MHz and the second moment (M2) of (1)H NMR resonant line in the range 106-380 K were measured. The two minima in the temperature dependence of T1 revealed two activation processes, whereas the M2 dependence in the studied range was quite flat and revealed the only significant reduction at 380 K. The low temperature part of T1(T) dependence indicated the occurrence of two processes characteristic of methyl bearing solids; the quantum mechanics governed incoherent tunneling (responsible for the low temperature flattening of T1) and the classical Arrhenius dependence governed hindered rotation (related to the wide low temperature minimum of 0.066 s at 57 K, 24.667 MHz). The 2D potential energy surface obtained using DFT/B3LYP/6-311++G(2d,p) calculations revealed the inequivalence of methyl groups and the lack of their interplay/coupling. The activation energies of classical hindered rotation are 3.35 and 2.5 kJ/mol, whereas temperatures at which the proton tunneling T(tun) finally ceases are 52 and 63 K, for inequivalent methyl groups. C(p)(T) required for the estimation of T(tun) was calculated purely theoretically on the basis of the Einstein and Debye models of specific heat and 51 modes of atomic vibrations, 4 internal rotations, and 3 torsions calculated by DFT. The -CH3 motion (tunneling and classical) results in the reduction in the (1)H NMR line second moment from 17.3 G(2) (rigid) to approximately 11.05 G(2). The pointed high temperature minimum T1(T) of 0.109 s at 89 K, 24.667 MHz, which shifts with frequency, was assigned to small-angle libration jumps, by the Θ2 = ±15° between two positions of equilibrium. The

  18. Temperature Dependence of NMR Relaxation Times of Nucleoside Triphosphates and Inorganic Phosphate in the Isolated Perfused Rat Liver. Effect on Pi Compartmentation

    NASA Astrophysics Data System (ADS)

    Dufour, Sylvie; Thiaudière, Eric; Vidal, Giovanni; Gallis, Jean-Louis; Rousse, Nicole; Canioni, Paul

    1996-11-01

    The effect of temperature on31P NMR spectra from isolated perfused rat livers was studied at 9.4 T. Relaxation times (T1andT2) of nucleoside triphosphates (NTP) and inorganic phosphate (Pi) were determined at 37, 25, 15, and 4°C. Under hypothermic conditions, an unexpected apparent line sharpening in the Pi spectral region and a clear emergence of an additional Pi resonance were observed. This additional signal was assigned to mitochondrial Pi.T1values obtained for cytosolic and mitochondrial Pi at 4°C were 1.14 ± 0.24 s (n= 5) and 0.71 ± 0.18 s (n= 5), respectively. No significant mitochondrial contribution to the Pi resonance was observed at 37°C. Quantification of Pi and NTP liver contents at 37 and 4°C was performed by comparing the perfused liver spectrum and the corresponding perchloric acid extract spectrum. Under experimental conditions of low external Pi (0.12 mM), it was concluded that intracellular Pi was completely NMR-visible at 4 and 37°C. The observation of the mitochondrial Pi signal at 4°C was well explained by an increase in the Pi level within the matrix, in response to the mitochondrial swelling induced by hypothermia, as observed by electron microscopy.T2values for the cytosolic Pi at 37 and 4°C were 17 ± 4 ms (n= 8) and 22 ± 4 ms (n= 10), respectively. Comparison with measured linewidths indicated that line broadening for the main phosphorylated metabolites-including matrix Pi-was the result ofB0field inhomogeneity. The additional broadening of the cytosolic Pi resonance at 4 and 37°C was attributed to pH heterogeneity within the liver.

  19. Competition between Na + and Li + for Unsealed and Cytoskeleton-Depleted Human Red Blood Cell Membrane: A 23Na Multiple Quantum Filtered and 7Li NMR Relaxation Study

    NASA Astrophysics Data System (ADS)

    Srinivasan, Chandra; Minadeo, Nicole; Toon, Jason; Graham, Daniel; Mota de Freitas, Duarte; Geraldes, Carlos F. G. C.

    1999-09-01

    Evidence for competition between Li+ and Na+ for binding sites of human unsealed and cytoskeleton-depleted human red blood cell (csdRBC) membranes was obtained from the effect of added Li+ upon the 23Na double quantum filtered (DQF) and triple quantum filtered (TQF) NMR signals of Na+-containing red blood cell (RBC) membrane suspensions. We found that, at low ionic strength, the observed quenching effect of Li+ on the 23Na TQF and DQF signal intensity probed Li+/Na+ competition for isotropic binding sites only. Membrane cytoskeleton depletion significantly decreased the isotropic signal intensity, strongly affecting the binding of Na+ to isotropic membrane sites, but had no effect on Li+/Na+ competition for those sites. Through the observed 23Na DQF NMR spectra, which allow probing of both isotropic and anisotropic Na+ motion, we found anisotropic membrane binding sites for Na+ when the total ionic strength was higher than 40 mM. This is a consequence of ionic strength effects on the conformation of the cytoskeleton, in particular on the dimer-tetramer equilibrium of spectrin. The determinant involvement of the cytoskeleton in the anisotropy of Na+ motion at the membrane surface was demonstrated by the isotropy of the DQF spectra of csdRBC membranes even at high ionic strength. Li+ addition initially quenched the isotropic signal the most, indicating preferential Li+/Na+ competition for the isotropic membrane sites. High ionic strength also increased the intensity of the anisotropic signal, due to its effect on the restructuring of the membrane cytoskeleton. Further Li+ addition competed with Na+ for those sites, quenching the anisotropic signal. 7Li T1 relaxation data for Li+-containing suspensions of unsealed and csdRBC membranes, in the absence and presence of Na+ at low ionic strength, showed that cytoskeleton depletion does not affect the affinity of Na+ for the RBC membrane, but increases the affinity of Li+ by 50%. This clearly indicates that cytoskeleton

  20. Adiabatic fast passage application in solid state NMR study of cross relaxation and molecular dynamics in heteronuclear systems

    NASA Astrophysics Data System (ADS)

    Baranowski, M.; Woźniak-Braszak, A.; Jurga, K.

    2016-01-01

    The paper presents the benefits of using fast adiabatic passage for the study of molecular dynamics in the solid state heteronuclear systems in the laboratory frame. A homemade pulse spectrometer operating at the frequency of 30.2 MHz and 28.411 MHz for protons and fluorines, respectively, has been enhanced with microcontroller direct digital synthesizer DDS controller [1-4]. This work briefly describes how to construct a low-cost and easy-to-assemble adiabatic extension set for homemade and commercial spectrometers based on recently very popular Arduino shields. The described set was designed for fast adiabatic generation. Timing and synchronization problems are discussed. The cross-relaxation experiments with different initial states of the two spin systems have been performed. Contrary to our previous work [5] where the steady-state NOE experiments were conducted now proton spins 1H are polarized in the magnetic field B0 while fluorine spins 19F are perturbed by selective saturation for a short time and then the system is allowed to evolve for a period in the absence of a saturating field. The adiabatic passage application leads to a reversal of magnetization of fluorine spins and increases the amplitude of the signal.

  1. 1H and 2H NMR spin-lattice relaxation probing water: PEG molecular dynamics in solution.

    PubMed

    Clop, Eduardo M; Perillo, María A; Chattah, Ana K

    2012-10-04

    Nuclear magnetic resonance spin-lattice relaxation times (T(1)) measurements were performed in aqueous solutions of poly(ethylene glycol) (PEG) of 6000 Da molecular mass to study the dynamical relation between PEG and water molecules at different solute concentrations. (1)H-T(1) experiments were carried on at a low magnetic field in the time domain (20 MHz) and at a high field (400 MHz) to obtain spectral resolution. Two contributing components were identified in each proton system, PEG and water, presenting values of T(1) with very different orders of magnitude. The approximate matching between the shorter (1)H-T(1) values associated with water and PEG has lead us to conclude that there exists a network of interactions (hydrogen bonds) between the solute and the solvent, which results in the presence of an ordered and dehydrated structure of PEG folded or self-assembled in equilibrium with a more flexible monomer structure. Dynamic light scattering results were consistent with the formation of PEG aggregates, showing a mean size between 40 and 100 nm.

  2. Ionic liquid containing microemulsions: probe by conductance, dynamic light scattering, diffusion-ordered spectroscopy NMR measurements, and study of solvent relaxation dynamics.

    PubMed

    Pramanik, Rajib; Sarkar, Souravi; Ghatak, Chiranjib; Rao, Vishal Govind; Sarkar, Nilmoni

    2011-03-17

    Room-temperature ionic liquid (RTIL), N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([P(13)][Tf(2)N]), was substituted for polar water and formed nonaqueous microemulsions with benzene by the aid of nonionic surfactant TX-100. The phase behavior of the ternary system was investigated, and microregions of [P(13)][Tf(2)N]-in-benzene (IL/O), bicontinuous, and benzene-in-[P(13)][Tf(2)N] (O/IL) were identified by traditional electrical conductivity measurements. Dynamic light scattering (DLS) revealed the formation of these IL microemulsions because with gradual increase of RTIL contents the droplet sizes of the microemulsions are also gradually increasing. Pulsed-field gradient spin-echo NMR have been studied to measure the diffusion coefficients of neat [P(13)][Tf(2)N] and [P(13)][Tf(2)N] in microemulsions which indicate ionic liquid containing microemulsions is formed. Moreover, the dynamics of solvent relaxation have been investigated in [P(13)][Tf(2)N]/TX100/benzene microemulsions using steady-state and time-resolved fluorescence spectroscopy using coumarin 153 (C-153) and coumarin 480 (C-480) fluorescence probe with variation of RTIL contents in microemulsions. For both of the probes with increasing amount of ionic liquids in microemulsions the relative contribution of the fast components increases and the slow components contribution decreases; therefore the average solvation time decreases.

  3. My starting point: the discovery of an NMR method for measuring blood oxygenation using the transverse relaxation time of blood water.

    PubMed

    Thulborn, Keith R

    2012-08-15

    This invited personal story, covering the period from 1979 to 2010, describes the discovery of the dependence of the transverse relaxation time of water in blood on the oxygenation state of hemoglobin in the erythrocytes. The underlying mechanism of the compartmentation of the different magnetic susceptibilities of hemoglobin in its different oxygenation states also explains the mechanism that underlies blood oxygenation level dependent contrast used in fMRI. The story begins with the initial observation of line broadening during ischemia in small rodents detected by in vivo 31P NMR spectroscopy at high field. This spectroscopic line broadening or T2* relaxation effect was demonstrated to be related to the oxygenation state of blood. The effect was quantified more accurately using T2 values measured by the Carr-Purcell-Meiboom-Gill method. The effect was dependent on the integrity of the erythrocytes to compartmentalize the different magnetic susceptibilities produced by the changing spin state of the ferrous iron of hemoglobin in its different oxygenation states between the erythrocytes and the suspending solution. The hematocrit and magnetic field dependence, the requirement for erythrocyte integrity and lack of T1 dependence confirmed that the magnetic susceptibility effect explained the oxygenation state dependence of T2* and T2. This T2/T2* effect was combined with T1 based measurements of blood flow to measure oxygen consumption in animals. This blood oxygenation assay and its underlying magnetic susceptibility gradient mechanism was published in the biochemistry literature in 1982 and largely forgotten. The observation was revived to explain evolving imaging features of cerebral hematoma as MR imaging of humans increased in field strength to 1.5 T by the mid 1980s. Although the imaging version of this assay was used to measure a global metabolic rate of cerebral oxygen consumption in humans at 1.5-T by 1991, the global measurement had little clinical value

  4. Site-specific protonation kinetics of acidic side chains in proteins determined by pH-dependent carboxyl (13)C NMR relaxation.

    PubMed

    Wallerstein, Johan; Weininger, Ulrich; Khan, M Ashhar I; Linse, Sara; Akke, Mikael

    2015-03-04

    Proton-transfer dynamics plays a critical role in many biochemical processes, such as proton pumping across membranes and enzyme catalysis. The large majority of enzymes utilize acid-base catalysis and proton-transfer mechanisms, where the rates of proton transfer can be rate limiting for the overall reaction. However, measurement of proton-exchange kinetics for individual side-chain carboxyl groups in proteins has been achieved in only a handful of cases, which typically have involved comparative analysis of mutant proteins in the context of reaction network modeling. Here we describe an approach to determine site-specific protonation and deprotonation rate constants (kon and koff, respectively) of carboxyl side chains, based on (13)C NMR relaxation measurements as a function of pH. We validated the method using an extensively studied model system, the B1 domain of protein G, for which we measured rate constants koff in the range (0.1-3) × 10(6) s(-1) and kon in the range (0.6-300) × 10(9) M(-1) s(-1), which correspond to acid-base equilibrium dissociation constants (Ka) in excellent agreement with previous results determined by chemical shift titrations. Our results further reveal a linear free-energy relationship between log kon and pKa, which provides information on the free-energy landscape of the protonation reaction, showing that the variability among residues in these parameters arises primarily from the extent of charge stabilization of the deprotonated state by the protein environment. We find that side-chain carboxyls with extreme values of koff or kon are involved in hydrogen bonding, thus providing a mechanistic explanation for the observed stabilization of the protonated or deprotonated state.

  5. Crystal structure, NMR study, dielectric relaxation and AC conductivity of a new compound [Cd3(SCN)2Br6(C2H9N2)2]n

    NASA Astrophysics Data System (ADS)

    Saidi, K.; Kamoun, S.; Ayedi, H. Ferid; Arous, M.

    2013-11-01

    The crystal structure, the 13C NMR spectroscopy and the complex impedance have been carried out on [Cd3(SCN)2Br6(C2H9N2)2]n. Crystal structure shows a 2D polymeric network built up of two crystallographically independent cadmium atoms with two different octahedral coordinations. This compound exhibits a phase transition at (T=355±2 K) which has been characterized by differential scanning calorimetry (DSC), X-rays powder diffraction, AC conductivity and dielectric measurements. Examination of 13C CP/MAS line shapes shows indirect spin-spin coupling (14N and 13C) with a dipolar coupling constant of 1339 Hz. The AC conductivity of this compound has been carried out in the temperature range 325-376 K and the frequency range from 10-2 Hz to 10 MHz. The impedance data were well fitted to two equivalent electrical circuits. The results of the modulus study reveal the presence of two distinct relaxation processes. One, at low frequency side, is thermally activated due to the ionic conduction of the crystal and the other, at higher frequency side, gradually disappears when temperature reaches 355 K which is attributed to the localized dipoles in the crystal. Moreover, the temperature dependence of DC-conductivity in both phases follows the Arrhenius law and the frequency dependence of σ(ω,T) follows Jonscher's universal law. The near values of activation energies obtained from the conductivity data and impedance confirm that the transport is through the ion hopping mechanism.

  6. N15: the linear phage-plasmid.

    PubMed

    Ravin, Nikolai V

    2011-03-01

    The lambdoid phage N15 of Escherichia coli is very unusual among temperate phages in that its prophage is not integrated into chromosome but is a linear plasmid molecule with covalently closed ends. Upon infection the phage DNA circularises via cohesive ends, then phage-encoded enzyme, protelomerase, cuts at an inverted repeat site and forms hairpin ends (telomeres) of the linear plasmid prophage. Replication of the N15 prophage is initiated at an internally located ori site and proceeds bidirectionally resulting in formation of duplicated telomeres. Then the N15 protelomerase cuts duplicated telomeres generating two linear plasmid molecules with hairpin telomeres. Stable inheritance of the plasmid prophage is ensured by partitioning operon similar to the F factor sop operon. Unlike F sop, the N15 centromere consists of four inverted repeats dispersed in the genome. The multiplicity and dispersion of centromeres are required for efficient partitioning of a linear plasmid. The centromeres are located in N15 genome regions involved in phage replication and control of lysogeny, and binding of partition proteins at these sites regulates these processes. Two N15-related lambdoid Siphoviridae phages, φKO2 in Klebsiella oxytoca and pY54 in Yersinia enterocolitica, also lysogenize their hosts as linear plasmids, as well as Myoviridae marine phages VP882 and VP58.5 in Vibrio parahaemolyticus and ΦHAP-1 in Halomonas aquamarina. The genomes of all these phages contain similar protelomerase genes, lysogeny modules and replication genes, as well as plasmid-partitioning genes, suggesting that these phages may belong to a group diverged from a common ancestor.

  7. Flexibility at a glycosidic linkage revealed by molecular dynamics, stochastic modeling, and (13)C NMR spin relaxation: conformational preferences of α-L-Rhap-α-(1 → 2)-α-L-Rhap-OMe in water and dimethyl sulfoxide solutions.

    PubMed

    Pendrill, Robert; Engström, Olof; Volpato, Andrea; Zerbetto, Mirco; Polimeno, Antonino; Widmalm, Göran

    2016-01-28

    The monosaccharide L-rhamnose is common in bacterial polysaccharides and the disaccharide α-L-Rhap-α-(1 → 2)-α-L-Rhap-OMe represents a structural model for a part of Shigella flexneri O-antigen polysaccharides. Utilization of [1'-(13)C]-site-specific labeling in the anomeric position at the glycosidic linkage between the two sugar residues facilitated the determination of transglycosidic NMR (3)JCH and (3)JCC coupling constants. Based on these spin-spin couplings the major state and the conformational distribution could be determined with respect to the ψ torsion angle, which changed between water and dimethyl sulfoxide (DMSO) as solvents, a finding mirrored by molecular dynamics (MD) simulations with explicit solvent molecules. The (13)C NMR spin relaxation parameters T1, T2, and heteronuclear NOE of the probe were measured for the disaccharide in DMSO-d6 at two magnetic field strengths, with standard deviations ≤1%. The combination of MD simulation and a stochastic description based on the diffusive chain model resulted in excellent agreement between calculated and experimentally observed (13)C relaxation parameters, with an average error of <2%. The coupling between the global reorientation of the molecule and the local motion of the spin probe is deemed essential if reproduction of NMR relaxation parameters should succeed, since decoupling of the two modes of motion results in significantly worse agreement. Calculation of (13)C relaxation parameters based on the correlation functions obtained directly from the MD simulation of the solute molecule in DMSO as solvent showed satisfactory agreement with errors on the order of 10% or less.

  8. The structural plasticity of heparan sulfate NA-domains and hence their role in mediating multivalent interactions is confirmed by high-accuracy 15N-NMR relaxation studies

    PubMed Central

    Mobli, Mehdi; Nilsson, Mathias

    2007-01-01

    Considering the biological importance of heparan sulfate (HS) and the significant activity of its highly-sulfated regions (S-domains), the paucity of known functions for the non-sulfated NA-domains is somewhat puzzling. It has been suggested that chain dynamics within the NA-domains are the key to their functional role in HS. In this study, we investigate this hypothesis using state-of-the-art nuclear magnetic resonance (NMR) experiments at multiple frequencies. To resolve the problem of severe overlap in 1H-NMR spectra of repetitive polysaccharides from proteoglycans, we have prepared oligosaccharides with the chemical structure of HS NA-domains containing the 15N nucleus, which has enough chemical shift dispersion to probe the central residues of octasaccharides at atomic resolution using 600 MHz NMR. By performing NMR relaxation experiments at three magnetic-field strengths, high quality data on internal dynamics and rotational diffusion was obtained. Furthermore, translational diffusion could also be measured by NMR using pulse field gradients. These experimental data were used, in concert with molecular dynamics simulations, to provide information on local molecular shape, greatly aiding our relaxation analyses. Our results, which are more accurate than those presented previously, confirm the higher flexibility of the NA-domains as compared with reported data on S-domains. It is proposed that this flexibility has two functional roles. First, it confers a greater area of interaction from the anchoring point on the core protein for the bioactive S-domains. Secondly, it allows multiple interactions along the same HS chain that are dynamically independent of each other. Electronic Supplementary Material The online version of this article (doi:10.1007/s10719-007-9081-9) contains supplementary material, which is available to authorized users. PMID:18080183

  9. Rotary echo nutation NMR

    NASA Astrophysics Data System (ADS)

    Janssen, R.; Tijink, G. A. H.; Veeman, W. S.

    1988-01-01

    A two-dimensional solid state NMR experiment which combines rotary echoes and nutation NMR is investigated and used to study different sodium sites in zeolite NaA. It is shown that with this technique sodium ions with different relaxation rates in the rotating frame can be distinguished.

  10. Dosimetry of {sup 60}Co and {sup 192}Ir gamma-irradiated agarose gels by proton relaxation time measurement and NMR imaging, in a 0-100 Gy dose range

    SciTech Connect

    Chalansonnet, A.; Briguet, A.; Bonnat, J.L.

    1997-05-01

    Localized irradiation of the skin and subcutaneous tissues with large single doses of gamma rays can induce immediate effects characterized by erythema, desquamation, and necrosis. Correlations between the evolution of the lesions and dosimetry studies have to be established by biophysical methods. NMR studies of the effects of an irradiated Fricke solution might be a means of controlling the delivered irradiation doses. After exposition to ionizing radiations, ferrous ions are transformed into ferric ions. Both are paramagnetic ions, and proton spin-lattice relaxation is accelerated depending on the oxidation reaction. In this study, solution of ammonium ferrous sulfate in an acid environment was incorporated into a gelling substance made with agarose, so that T{sub 1} weighted image contrast could be used to detect ferric ion formation. Experiments with {sup 192}Ir and {sup 90}Co gamma rays with doses in the 0 to 100 Gy range were conducted with Fe{sup 2+} concentrations of 0.5, 1, 1.5, and 2 mM in a gelling substance containing 4% agarose. A relationship was established between the amount of Fe{sup 3+} created and the spin-lattice proton relaxation rate, which led to a straightforward dose-effect relation. The use of such high doses allowed us to reproduce realistic conditions of accidental overexposure. A linear relationship was obtained between the doses absorbed and the NMR parameters measured (T{sub 1} and relative image intensity). 17 refs., 3 figs., 1 tab.

  11. 1H NMR spin-spin relaxation and imaging in porous systems: an application to the morphological study of white portland cement during hydration in the presence of organics.

    PubMed

    Gussoni, M; Greco, F; Bonazzi, F; Vezzoli, A; Botta, D; Dotelli, G; Natali Sora, I; Pelosato, R; Zetta, L

    2004-07-01

    Proton nuclear magnetic resonance (NMR) spin-spin relaxation and imaging have been applied to investigate white Portland cement pastes during hydration in the absence and in the presence of organic solvents. The main organic solvent investigated was methanol, alone or together with the organic waste 2-chloroaniline (2-CA), an aromatic amine representative of an important class of highly toxic compounds. For all the analysed samples, prepared with a solvent-to-cement ratio of 0.4, the decay of the echo magnetization has been fitted by adopting a model that combines an exponential component with a gaussian one. The calculated independent relaxation parameters have been discussed in terms of morphological and dynamical changes that occur during the cement hardening process and pore formation. Three kinds of water molecules: "solid-like" (chemically and physically bound), "liquid-like" (porous trapped) and "free" water, endowed with anisotropic, near isotropic and isotropic motion, respectively, were identified. Spin-echo images collected on the same samples during the hydration kinetics, allowed the changes of water and solvents spatial distribution in the porous network to be monitored, showing percolation phenomena and confirming the multimodal open channels structure of the hardened cement system. Both T(2) relaxation and imaging data indicated that a pronounced delay occurs in the cement hardening when organics are present.

  12. Pulsed NMRON relaxation measurements and thermometric NMR in the quasi-2 dimensional femomagnet: Mn(COOCH 3) 2·4H 2O

    NASA Astrophysics Data System (ADS)

    Le Gros, M.; Kotlicld, A.; Turrell, B. G.

    1990-08-01

    The measurement of the field dependence of the nuclear spin-lattice relaxation time of 54Mn in the two manganese sites in the quasi-2 dimensional ferromagnet Mn(COOCH 3) 2·4H 20 obtained by the pulsed NMRON technique is reported. This technique allows the observation in low fields of the higher frequency resonance which previously could not be measured by CW methods. The anomaly in the 54Mn relaxation time observed in the 55Mn level crossing regime is discussed, and the thermometric observation of the field dependence and lice width of the resonance lines from the abundant 55Mn spin systems is reported and related to the 54Mn spin-lattice relaxation behavior.

  13. NMR T{sub 1} relaxation time measurements and calculations with translational and rotational components for liquid electrolytes containing LiBF{sub 4} and propylene carbonate

    SciTech Connect

    Richardson, P. M. Voice, A. M. Ward, I. M.

    2013-12-07

    Longitudinal relaxation (T{sub 1}) measurements of {sup 19}F, {sup 7}Li, and {sup 1}H in propylene carbonate/LiBF{sub 4} liquid electrolytes are reported. Comparison of T{sub 1} values with those for the transverse relaxation time (T{sub 2}) confirm that the measurements are in the high temperature (low correlation time) limit of the T{sub 1} minimum. Using data from pulsed field gradient measurements of self-diffusion coefficients and measurements of solution viscosity measured elsewhere, it is concluded that although in general there are contributions to T{sub 1} from both translational and rotational motions. For the lithium ions, this is mainly translational, and for the fluorine ions mainly rotational.

  14. A carbon-13 NMR spin-lattice relaxation study of the molecular conformation of the nootropic drug 2-oxopyrrolidin-1-ylacetamide

    NASA Astrophysics Data System (ADS)

    Baldo, M.; Grassi, A.; Guidoni, L.; Nicolini, M.; Pappalardo, G. C.; Viti, V.

    The spin-lattice relaxation times ( T1) of carbon-13 resonances of the drug 2-oxopyrrolidin- 1-ylacetamide ( 2OPYAC) were determined in CDCl 3 + DMSO and H 2O solutions to investigate the internal conformational flexibility. The measured T1s for the hydrogen-bearing carbon atoms of the 2-pyrrolidone ring fragment were diagnostic of a rigid conformation with respect to the acetamide linked moiety. The model of anisotropic reorientation of a rigid body was used to analyse the measured relaxation data in terms of a single conformation. Owing to the small number of T1 data available the fitting procedure for each of the possible conformations failed. The structure corresponding to the rigid conformation was therefore considered to be the one that is strongly stabilized by internal hydrogen bonding as predicted on the basis of theoretical MO ab initio quantum chemical calculations.

  15. Oxygen Mapping within Healthy and Acutely Infarcted Brain Tissue in Humans Using the NMR Relaxation of Lipids: A Proof-Of-Concept Translational Study.

    PubMed

    Colliez, Florence; Safronova, Marta M; Magat, Julie; Joudiou, Nicolas; Peeters, André P; Jordan, Bénédicte F; Gallez, Bernard; Duprez, Thierry

    2015-01-01

    The clinical applicability of brain oxygenation mapping using the MOBILE (Mapping of Oxygen By Imaging Lipids relaxation Enhancement) magnetic resonance (MR) technique was assessed in the clinical setting of normal brain and of acute cerebral ischemia as a founding proof-of-concept translational study. Changes in the oxygenation level within healthy brain tissue can be detected by analyzing the spin-lattice proton relaxation ('Global T1' combining water and lipid protons) because of the paramagnetic properties of molecular oxygen. It was hypothesized that selective measurement of the relaxation of the lipid protons ('Lipids T1') would result in enhanced sensitivity of pO2 mapping because of higher solubility of oxygen in lipids than in water, and this was demonstrated in pre-clinical models using the MOBILE technique. In the present study, 12 healthy volunteers and eight patients with acute (48-72 hours) brain infarction were examined with the same clinical 3T MR system. Both Lipids R1 (R1 = 1/T1) and Global R1 were significantly different in the infarcted area and the contralateral unaffected brain tissue, with a higher statistical significance for Lipids R1 (median difference: 0.408 s-1; p<0.0001) than for Global R1 (median difference: 0.154 s-1; p = 0.027). Both Lipids R1 and Global R1 values in the unaffected contralateral brain tissue of stroke patients were not significantly different from the R1 values calculated in the brain tissue of healthy volunteers. The main limitations of the present prototypic version of the MOBILE sequence are the long acquisition time (4 min), hampering robustness of data in uncooperative patients, and a 2 mm slice thickness precluding accurate measurements in small infarcts because of partial volume averaging effects.

  16. 3D NMR Experiments for Measuring 15N Relaxation Data of Large Proteins: Application to the 44 kDa Ectodomain of SIV gp41

    NASA Astrophysics Data System (ADS)

    Caffrey, Michael; Kaufman, Joshua; Stahl, Stephen J.; Wingfield, Paul T.; Gronenborn, Angela M.; Clore, G. Marius

    1998-12-01

    A suite of 3D NMR experiments for measuring15N-{1H} NOE,15NT1, and15NT1ρvalues in large proteins, uniformly labeled with15N and13C, is presented. These experiments are designed for proteins that exhibit extensive spectral overlap in the 2D1H-15N HSQC spectrum. The pulse sequences are readily applicable to perdeuterated samples, which increases the spectral resolution and signal-to-noise ratio, thereby permitting the characterization of protein dynamics to be extended to larger protein systems. Application of the pulse sequences is demonstrated on a perdeuterated13C/15N-labeled sample of the 44 kDa ectodomain of SIV gp41.

  17. Different structure of the complexes of two cytochrome P-450 isozymes with acetanilide by 1H-NMR relaxation and spectrophotometry.

    PubMed

    Woldman YaYu; Weiner, L M; Lyakhovich, V V

    1993-05-28

    The functional and spectral characteristics of the interaction of acetanilide with phenobarbital- and methylcholanthrene- induced rat liver microsomes, as well as with corresponding major isozymes (cytochromes P-450b and P-450c) have been compared. The magnitude of the reverse 1st type binding spectra proved to be negatively correlated with the acetanilide oxidation on isozymes under study. The data on paramagnetic relaxation of acetanilide protons in the presence of P-450 have shown the structure of the enzyme-substrate complex to be different for two isozymes, acetanilide molecule being closer to Fe ion in the active site in the case of P-450c, which is active towards acetanilide oxidation. For the P-450c-acetanilide complex the group oxidized (phenyl) is the closest to Fe ion.

  18. Enhanced NMR Relaxation of Tomonaga-Luttinger Liquids and the Magnitude of the Carbon Hyperfine Coupling in Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Kiss, A.; Pályi, A.; Ihara, Y.; Wzietek, P.; Simon, P.; Alloul, H.; Zólyomi, V.; Koltai, J.; Kürti, J.; Dóra, B.; Simon, F.

    2011-10-01

    Recent transport measurements [Churchill et al. Nature Phys.NPAHAX1745-2473 5, 321 (2009)10.1038/nphys1247] found a surprisingly large, 2-3 orders of magnitude larger than usual C13 hyperfine coupling (HFC) in C13 enriched single-wall carbon nanotubes. We formulate the theory of the nuclear relaxation time in the framework of the Tomonaga-Luttinger liquid theory to enable the determination of the HFC from recent data by Ihara et al. [Europhys. Lett. 90, 17 004 (2010)EULEEJ0295-507510.1209/0295-5075/90/17004]. Though we find that 1/T1 is orders of magnitude enhanced with respect to a Fermi-liquid behavior, the HFC has its usual, small value. Then, we reexamine the theoretical description used to extract the HFC from transport experiments and show that similar features could be obtained with HFC-independent system parameters.

  19. NMR spin-lattice relaxation study of 7Li and 93Nb nuclei in Ti- or Fe-doped LiNbO3:Mg single crystals

    NASA Astrophysics Data System (ADS)

    Yeom, Tae Ho; Lim, Ae Ran

    2016-04-01

    In this study, to understand the effects of paramagnetic impurities, we investigated the temperature dependent of the spin-lattice relaxation times of pure LiNbO3, LiNbO3:Mg, LiNbO3:Mg/Ti, LiNbO3:Mg/Fe, and LiNbO3:Mg/Fe (thermally treated at 500°C) single crystals. The results for the LiNbO3:Mg single crystals doped with Fe3+ or Ti3+ are discussed with respect to the site distribution and atomic mobility of Li and Nb. In addition, the effects of a thermal treatment on LiNbO3:Mg/Fe single crystals were examined based on the T1 analysis of 7Li and 93Nb. It was found that the presence of impurities in the crystals induced systematic changes of activation energies concerning atomic mobility.

  20. High-field 1H T1 and T2 NMR relaxation time measurements of H2O in homeopathic preparations of quartz, sulfur, and copper sulfate

    NASA Astrophysics Data System (ADS)

    Baumgartner, Stephan; Wolf, Martin; Skrabal, Peter; Bangerter, Felix; Heusser, Peter; Thurneysen, André; Wolf, Ursula

    2009-09-01

    Quantitative meta-analyses of randomized clinical trials investigating the specific therapeutic efficacy of homeopathic remedies yielded statistically significant differences compared to placebo. Since the remedies used contained mostly only very low concentrations of pharmacologically active compounds, these effects cannot be accounted for within the framework of current pharmacology. Theories to explain clinical effects of homeopathic remedies are partially based upon changes in diluent structure. To investigate the latter, we measured for the first time high-field (600/500 MHz) 1H T1 and T2 nuclear magnetic resonance relaxation times of H2O in homeopathic preparations with concurrent contamination control by inductively coupled plasma mass spectrometry (ICP-MS). Homeopathic preparations of quartz (10 c-30 c, n = 21, corresponding to iterative dilutions of 100-10-100-30), sulfur (13 x-30 x, n = 18, 10-13-10-30), and copper sulfate (11 c-30 c, n = 20, 100-11-100-30) were compared to n = 10 independent controls each (analogously agitated dilution medium) in randomized and blinded experiments. In none of the samples, the concentration of any element analyzed by ICP-MS exceeded 10 ppb. In the first measurement series (600 MHz), there was a significant increase in T1 for all samples as a function of time, and there were no significant differences between homeopathic potencies and controls. In the second measurement series (500 MHz) 1 year after preparation, we observed statistically significant increased T1 relaxation times for homeopathic sulfur preparations compared to controls. Fifteen out of 18 correlations between sample triplicates were higher for controls than for homeopathic preparations. No conclusive explanation for these phenomena can be given at present. Possible hypotheses involve differential leaching from the measurement vessel walls or a change in water molecule dynamics, i.e., in rotational correlation time and/or diffusion. Homeopathic preparations

  1. Sorption isotherm measurements by NMR.

    PubMed

    Leisen, Johannes; Beckham, Haskell W; Benham, Michael

    2002-01-01

    An experimental setup is described for the automated recording of sorption isotherms by NMR experiments at precisely defined levels of relative humidity (RH). Implementation is demonstrated for a cotton fabric; Bloch decays. T1 and T2* relaxation times were measured at predefined steps of increasing and decreasing relative humidities (RHs) so that a complete isotherm of NMR properties was obtained. Bloch decays were analyzed by fitting to relaxation functions consisting or a slow- and a fast-relaxing component. The fraction of slow-relaxing component was greater than the fraction of sorbed moisture determined from gravimetric sorption data. The excess slow-relaxing component was attributed to plasticized segments of the formerly rigid cellulose matrix. T1 and T2* sorption isotherms exhibit hysteresis similar to gravimetric sorption isotherms. However, correlating RH to moisture content (MC) reveals that both relaxation constants depend only on MC, and not on the history of moisture exposure.

  2. Superoxygenated Water as an Experimental Sample for NMR Relaxometry

    ERIC Educational Resources Information Center

    Nestle, Nikolaus; Dakkouri, Marwan; Rauscher, Hubert

    2004-01-01

    The increase in NMR relaxation rates as a result of dissolved paramagnetic species on the sample of superoxygenated drinking water is demonstrated. It is concluded that oxygen content in NMR samples is an important issue and can give rise to various problems in the interpretation of both spectroscopic and NMR imaging or relaxation experiments.

  3. Novel DNA packaging recognition in the unusual bacteriophage N15

    SciTech Connect

    Feiss, Michael; Geyer, Henriette; Klingberg, Franco; Moreno, Norma; Forystek, Amanda; Maluf, Nasib Karl; Sippy, Jean

    2015-08-15

    Phage lambda's cosB packaging recognition site is tripartite, consisting of 3 TerS binding sites, called R sequences. TerS binding to the critical R3 site positions the TerL endonuclease for nicking cosN to generate cohesive ends. The N15 cos (cos{sup N15}) is closely related to cos{sup λ}, but whereas the cosB{sup N15} subsite has R3, it lacks the R2 and R1 sites and the IHF binding site of cosB{sup λ}. A bioinformatic study of N15-like phages indicates that cosB{sup N15} also has an accessory, remote rR2 site, which is proposed to increase packaging efficiency, like R2 and R1 of lambda. N15 plus five prophages all have the rR2 sequence, which is located in the TerS-encoding 1 gene, approximately 200 bp distal to R3. An additional set of four highly related prophages, exemplified by Monarch, has R3 sequence, but also has R2 and R1 sequences characteristic of cosB–λ. The DNA binding domain of TerS-N15 is a dimer. - Highlights: • There are two classes of DNA packaging signals in N15-related phages. • Phage N15's TerS binding site: a critical site and a possible remote accessory site. • Viral DNA recognition signals by the λ-like bacteriophages: the odd case of N15.

  4. Molecular determinants for drug-receptor interactions. 8. Anisotropic and internal motions in morphine, nalorphine, oxymorphone, naloxone and naltrexone in aqueous solution by carbon-13 NMR spin-lattice relaxation times

    NASA Astrophysics Data System (ADS)

    Grassi, Antonio; Perly, Bruno; Pappalardo, Giuseppe C.

    1989-02-01

    Carbon-13 NMR spin-lattice relaxation times ( T1) were measured for morphine, oxymorphone, nalorphine, naloxone and naltrexone as hydrochloride salts in 2H 2O solution. The data refer to the molecules in the N-equatorial configuration. The experimental T1 values were interpreted using a model of anisotropic reorientation of a rigid body with superimposed internal motions of the flexible N-methyl, N-methyl-allyl and N-methyl-cyclopropyl fragments. The calculated internal motional rates were found to markedly decrease on passing from agonists to mixed (nalorphine) and pure (naloxone, naltrexone) antagonists. For these latter the observed trend of the internal flexibility about NC and CC bonds of the N-substituents is discussed in terms of a correlation with their relative antagonistic potencies. In fact, such an evidence of decreasing internal conformational dynamics in the order nalorphine, naloxone, naltrexone, appeared interestingly in line with the "two-state" model of opiate receptor operation mode proposed by Snyder.

  5. Soils, Pores, and NMR

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 < 5 ms. Moreover, the dependence of the relaxation rate on magnetic field strength allows the identification of 2D diffusion at the interfaces as the mechanism which governs the relaxation process (Pohlmeier et al. 2009). T2 relaxation curves are frequently measured for the rapid characterization of soils by means of the CPMG echo train. Basically, they contain the same information about the pore systems like T1 curves, since mostly the overall relaxation is dominated by surface relaxivity and the surface/volume ratio of the pores. However, one must be aware that T2 relaxation is additionally affected by diffusion in internal gradients, and this can be overcome by using sufficiently short echo times and low magnetic fields (Stingaciu et al. 2009). Second, the logic continuation of conventional relaxation measurements is the 2-dimensional experiment, where prior to the final detection of the CPMG echo train an encoding period is applied. This can be T1-encoding by an inversion pulse, or T2 encoding by a sequence of 90 and 180° pulses. During the following evolution time the separately encoded signals can mix and this reveals information about

  6. NMR relaxation rate studies of molecular motions in NaSn, the Laves-phase metal hydride C15-ZrCr(2)H(x) and carbon/epoxy composite materials

    NASA Astrophysics Data System (ADS)

    Stoddard, Ronald Dean

    Here I present studies of molecular motions in three very different systems: NaSn, which exhibits motion characteristic of both a superionic conductor and a rotor crystal; C15-ZrCrsb2Hsbx (x < 0.5), a metal hydride which exhibits unusual characteristics in its hydrogen motion; and, finally a study of the relationship between Tsb2 and the degree of cure of carbon/epoxy materials. NaSn is characterized by Nasp+ ions and stable (Snsb4)sp{4-} tetrahedra. At high temperatures NaSn displays a disordered solid phase (alpha-NaSn). The presence of Nasp+ ions suggests that alpha-NaSn may be a superionic conductor (translationally disordered) and the presence of stable Snsb4 tetrahedra suggests it may be a rotor crystal (organizationally disordered). The purpose of this study is to gain better understanding of the motions in alpha-NaSn by monitoring Na and Sn motion using sp{23}Na and sp{119}Sn NMR, respectively. C15-ZrCrsb2Hsbx (x < 0.5) is a Laves phase metal hydride which displays extremely rapid hydrogen motion and a Tsb1 peak which cannot be explained by a model employing a single correlation time for the motion. A model employing a Gaussian distribution of correlation times has been used to successfully fit Tsb1, but the origin of this distribution in a crystalline solid solution is not known. The purpose of this study is to better understand the low temperature hydrogen motions occurring in C15-ZrCrsb2Hsbx by extending the previous NMR measurements using Tsb1p and Tsb1D, experiments which effectively push the relaxation peak to lower temperatures. New techniques for manufacturing carbon/epoxy components are under development which require partial curing of the material. At present, no method for monitoring partial curing exists. Tsb2 is a promising monitor of degree of cure because of its sensitivity to changes rates of molecular motions. The purpose of this study is to demonstrate the sensitivity of Tsb2 to changes in molecular motion due to curing, and to find a

  7. Spin liquid state in the 3D frustrated antiferromagnet PbCuTe2O6: NMR and muon spin relaxation studies

    SciTech Connect

    Khuntia, P.; Bert, F.; Mendels, P.; Koteswararao, B.; Mahajan, A. V.; Baenitz, M.; Chou, F. C.; Baines, C.; Amato, A.; Furukawa, Y.

    2016-03-11

    In this study, PbCuTe2O6 is a rare example of a spin liquid candidate featuring a three-dimensional magnetic lattice. Strong geometric frustration arises from the dominant antiferromagnetic interaction that generates a hyperkagome network of Cu2+ ions although additional interactions enhance the magnetic lattice connectivity. Through a combination of magnetization measurements and local probe investigations by NMR and muon spin relaxation down to 20 mK, we provide robust evidence for the absence of magnetic freezing in the ground state. The local spin susceptibility probed by the NMR shift hardly deviates from the macroscopic one down to 1 K pointing to a homogeneous magnetic system with a low defect concentration. The saturation of the NMR shift and the sublinear power law temperature (T) evolution of the 1/T1 NMR relaxation rate at low T point to a nonsinglet ground state favoring a gapless fermionic description of the magnetic excitations. Below 1 K a pronounced slowing down of the spin dynamics is witnessed, which may signal a reconstruction of spinon Fermi surface. Nonetheless, the compound remains in a fluctuating spin liquid state down to the lowest temperature of the present investigation.

  8. Synthesis of C13- and N15-Labeled DNAN

    DTIC Science & Technology

    2014-07-24

    relaxation time T2 Transverse relaxation time T2* Observed transverse relaxation time TNT 2,4,6-Trinitrotoluene TLC Thin layer chromatography IHTR...heterogeneous, we decided to double the amount of sulfuric acid to improve both the mixing efficiency and the thermal control of the reaction. 2...chlorodinitrobenzene by the simple displacement of chloride using methanol and sodium hydroxide at 60 °C (Fedoroff et al., 1960). Recrystallization

  9. Relaxed heaps

    SciTech Connect

    Driscoll, J.R. ); Gabow, H.N.; Shrairman, R. ); Tarjan, R.E. )

    1988-11-01

    The relaxed heap is a priority queue data structure that achieves the same amortized time bounds as the Fibonacci heap - a sequence of m decrease key and n delete min operations takes time O(m + n log n). A variant of relaxed heaps achieves similar bounds in the worst case - O(1) time for decrease key and O(log n) for delete min. Relaxed heaps give a processor-efficient parallel implementation of Dijkstra's shortest path algorithm, and hence other algorithms in network optimization. A relaxed heap is a type of binomial queue that allows heap order to be violated.

  10. NMR Imaging of Elastomeric Materials

    DTIC Science & Technology

    1990-11-30

    on ’everse if necessary and identify by block number) FIELD GROUP SUB-GROUP nuclear magnetic resonance , imaging, elastomers, tires, composites, porous...correspondence should be addressed 1i ABSTRACT Nuclear magnetic resonance images have been obtained for four porous glass disks of different porosities...INDEX HEADINGS: NMR imaging Porous materials Spin relaxation 2. I0J INTRODUCTION Nuclear magnetic resonance (NMR) imaging has seen increasing use in the

  11. Replication and Maintenance of Linear Phage-Plasmid N15.

    PubMed

    Ravin, Nikolai V

    2015-02-01

    The lambdoid phage N15 of Escherichia coli is very unusual among temperate phages in that its prophage is not integrated into the chromosome but is a linear plasmid molecule with covalently closed ends (telomeres). Upon infection, the phage DNA circularizes via cohesive ends, and then a special phage enzyme of the tyrosine recombinase family, protelomerase, cuts at another site and joins the ends, forming hairpin telomeres of the linear plasmid prophage. Replication of the N15 prophage is initiated at an internally located ori site and proceeds bidirectionally, resulting in the formation of duplicated telomeres. The N15 protelomerase cuts them, generating two linear plasmid molecules with hairpin telomeres. Stable inheritance of the plasmid prophage is ensured by a partitioning operon similar to the F factor sop operon. Unlike the F centromere, the N15 centromere consists of four inverted repeats dispersed in the genome. The multiplicity and dispersion of centromeres are required for efficient partitioning of a linear plasmid. The centromeres are located in the N15 genome regions involved in phage replication and control of lytic development, and binding of partition proteins at these sites regulates these processes. The family of N15-like linear phage-plasmids includes lambdoid phages ɸKO2 and pY54, as well as Myoviridae phages ΦHAP-1, VHML, VP882, Vp58.5, and vB_VpaM_MAR of marine gamma-proteobacteria. The genomes of these phages contain similar protelomerase genes, lysogeny control modules, and replication genes, suggesting that these phages may belong to a group diverged from a common ancestor.

  12. Protein-Inhibitor Interaction Studies Using NMR

    PubMed Central

    Ishima, Rieko

    2015-01-01

    Solution-state NMR has been widely applied to determine the three-dimensional structure, dynamics, and molecular interactions of proteins. The designs of experiments used in protein NMR differ from those used for small-molecule NMR, primarily because the information available prior to an experiment, such as molecular mass and knowledge of the primary structure, is unique for proteins compared to small molecules. In this review article, protein NMR for structural biology is introduced with comparisons to small-molecule NMR, such as descriptions of labeling strategies and the effects of molecular dynamics on relaxation. Next, applications for protein NMR are reviewed, especially practical aspects for protein-observed ligand-protein interaction studies. Overall, the following topics are described: (1) characteristics of protein NMR, (2) methods to detect protein-ligand interactions by NMR, and (3) practical aspects of carrying out protein-observed inhibitor-protein interaction studies. PMID:26361636

  13. Petrophysical applications of NMR imaging

    SciTech Connect

    Rothwell, W.P.; Vinegar, H.J.

    1985-12-01

    A system for obtaining high-resolution NMR images of oil field cores is described. Separate proton density and T/sub 2/ relaxation images are obtained to distinguish spatial variations of fluid-filled porosity and the physical nature of the pores. Results are presented for typical sandstones.

  14. Relaxation-relaxation exchange experiments in porous media with portable Halbach-Magnets.

    NASA Astrophysics Data System (ADS)

    Haber, A.; Haber-Pohlmeier, S.; Casanova, F.; Blümich, B.

    2009-04-01

    Mobile NMR became a powerful tool following the development of portable NMR sensors for well logging. By now there are numerous applications of mobile NMR in materials analysis and chemical engineering where, for example, unique information about the structure, morphology and dynamics of polymers is obtained, and new opportunities are provided for geo-physical investigations [1]. In particular, dynamic information can be retrieved by two-dimensional Laplace exchange NMR, where the initial NMR relaxation environment is correlated with the final relaxation environment of molecules migrating from one environment to the other within a so-called NMR mixing time tm [2]. Relaxation-relaxation exchange experiments of water in inorganic porous media were performed at low and moderately inhomogeneous magnetic field with a simple, portable Halbach-Magnet. By conducting NMR transverse relaxation exchange experiments for several mixing times and converting the results to 2D T2 distributions (joint probability densities of transverse relaxation times T2) with the help of the inverse 2D Laplace Transformation (ILT), we obtained characteristic exchange times for different pore sizes. The results of first experiments on soil samples are reported, which reveal information about the complex pore structure of soil and the moisture content. References: 1. B. Blümich, J. Mauler, A. Haber, J. Perlo, E. Danieli, F. Casanova, Mobile NMR for Geo-Physical Analysis and Material Testing, Petroleum Science, xx (2009) xxx - xxx. 2. K. E. Washburn, P.T. Callaghan, Tracking pore to pore exchange using relaxation exchange spectroscopy, Phys. Rev. Lett. 97 (2006) 175502.

  15. β-NMR

    NASA Astrophysics Data System (ADS)

    Morris, Gerald D.

    2014-01-01

    The β-NMR facility at ISAC is constructed specifically for experiments in condensed matter physics with radioactive ion beams. Using co-linear optical pumping, a 8Li + ion beam having a large nuclear spin polarisation and low energy (nominally 30 keV) can be generated. When implanted into materials these ions penetrate to shallow depths comparable to length scales of interest in the physics of surfaces and interfaces between materials. Such low-energy ions can be decelerated with simple electrostatic optics to enable depth-resolved studies of near-surface phenomena over the range of about 2-200 nm. Since the β-NMR signal is extracted from the asymmetry intrinsic to beta-decay and therefore monitors the polarisation of the radioactive probe nuclear magnetic moments, this technique is fundamentally a probe of local magnetism. More generally though, any phenomena which affects the polarisation of the implanted spins by, for example, a change in resonance frequency, line width or relaxation rate can be studied. The β-NMR program at ISAC currently supports a number of experiments in magnetism and superconductivity as well as novel ultra-thin heterostructures exhibiting properties that cannot occur in bulk materials. The general purpose zero/low field and high field spectrometers are configured to perform CW and pulsed RF nuclear magnetic resonance and spin relaxation experiments over a range of temperatures (3-300 K) and magnetic fields (0-9 T).

  16. 14N15N detectability in Pluto’s atmosphere

    NASA Astrophysics Data System (ADS)

    Jessup, Kandis Lea; Gladstone, G. R.; Heays, A. N.; Gibson, S. T.; Lewis, B. R.; Stark, G.

    2013-11-01

    Based on the vapor pressure behavior of Pluto’s surface ices, Pluto’s atmosphere is expected to be predominantly composed of N2 gas. Measurement of the N2 isotopologue 15N/14N ratio within Pluto’s atmosphere would provide important clues to the evolution of Pluto’s atmosphere from the time of formation to its present state. The most straightforward way of determining the N2 isotopologue 15N/14N ratio in Pluto’s atmosphere is via spectroscopic observation of the 14N15N gas species. Recent calculations of the 80-100 nm absorption behavior of the 14N2 and 14N15N isotopologues by Heays et al. (Heays, A.N. et al. [2011]. J. Chem. Phys. 135, 244301), Lewis et al. (Lewis, B.R., Heays, A.N., Gibson, S.T., Lefebvre-Brion, H., Lefebvre, R. [2008]. J. Chem. Phys. 129, 164306); Lewis et al. (Lewis, B.R., Gibson, S.T., Zhang, W., Lefebvre-Brion, H., Robbe, J.-M. [2005]. J. Chem. Phys. 122, 144302), and Haverd et al. (Haverd, V.E., Lewis, B.R., Gibson, S.T., Stark, G. [2005]. J. Chem. Phys. 123, 214304) show that the peak magnitudes of the 14N2 and 14N15N absorption bandhead cross-sections are similar, but the locations of the bandhead peaks are offset in wavelength by ∼0.05-0.1 nm. These offsets make the segregation of the 14N2 and 14N15N absorption signatures possible. We use the most recent N2 isotopologue absorption cross-section calculations and the atmospheric density profiles resulting from photochemical models developed by Krasnopolsky and Cruickshank (Krasnopolsky, V.A., Cruickshank, D.P. [1999]. J. Geophys. Res. 104, 21979-21996) to predict the level of solar light that will be transmitted through Pluto’s atmosphere as a function of altitude during a Pluto solar occultation. We characterize the detectability of the isotopic absorption signature per altitude assuming 14N15N concentrations ranging from 0.1% to 2% of the 14N2 density and instrumental spectral resolutions ranging from 0.01 to 0.3 nm. Our simulations indicate that optical depth of unity is

  17. Interfaces in polymer nanocomposites - An NMR study

    NASA Astrophysics Data System (ADS)

    Böhme, Ute; Scheler, Ulrich

    2016-03-01

    Nuclear Magnetic Resonance (NMR) is applied for the investigation of polymer nanocomposites. Solid-state NMR is applied to study the modification steps to compatibilize layered double hydroxides with non-polar polymers. 1H relaxation NMR gives insight on the polymer dynamics over a wide range of correlation times. For the polymer chain dynamics the transverse relaxation time T2 is most suited. In this presentation we report on two applications of T2 measurements under external mechanical stress. In a low-field system relaxation NMR studies are performed in-situ under uniaxial stress. High-temperature experiments in a Couette cell permit the investigation of the polymer dynamics in the melt under shear flow.

  18. sup 31 P and sup 1 H NMR studies of the structure of enzyme-bound substrate complexes of lobster muscle arginine kinase: Relaxation measurements with Mn(II) and Co(II)

    SciTech Connect

    Jarori, G.K.; Ray, B.D.; Rao, B.D.N. )

    1989-11-28

    The paramagnetic effects of Mn(II) and Co(II) on the spin-lattice relaxation rates of {sup 31}P nuclei of ATP and ADP and of Mn(II) on the spin-lattice relaxation rate of the {delta} protons of arginine bound to arginine kinase from lobster tail muscle have been measured. Temperature variation of {sup 31}P relaxation rates in E-MnADP and E-MnATP yields activation energies ({Delta}E) in the range 6-10 kcal/mol. Thus, the {sup 31}P relaxation rates in these complexes are exchange limited and cannot provide structural information. However, the relaxation rates in E-CoADP and E-CoATP exhibit frequency dependence and {Delta}E values in the range 1-2 kcal/mol; i.e., these rates depend upon {sup 31}P-Co(II) distances. These distances were calculated to be in the range 3.2-4.5 {angstrom}, appropriate for direct coordination between Co(II) and the phosphoryl groups. The paramagnetic effect of Mn(II) on the {sup 1}H spin-lattice relaxation rate of the {delta} protons of arginine in the E-MnADP-Arg complex was also measured at three frequencies. From the frequency dependence of the relaxation rate an effective {tau}{sub C} of 0.6 ns has also been calculated, which is most likely to be the electron spin relaxation rate ({tau}{sub S1}) for Mn(II) in this complex. The distance estimated on the basis of the reciprocal sixth root of the average relaxation rate of the {delta} protons was 10.9 {plus minus} 0.3 {angstrom}.

  19. Relaxation System

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.

  20. Nuclear Moment Alignment, Relaxation and Detection Mechanisms.

    DTIC Science & Technology

    1983-03-01

    Distribuion/ - Availability Codes• I~Avail and/or SDst special / Edward Phillips Manager , NMR Gyro Project Ln 1.0 GUIDANCE & CONTROL SYSTEMSLikon 5500...06481 OW Cookmwc Woodd, HNK C@Muwdm@1lKU TABLE OF CONTENTS , Paragraph Title Page SECTION I PROGRAM DESCRIPTION ?i1.1 INTRODUCTION ........... * . 1... CONTENTS (cont) Paragraph Title Page SECTION IV - EFFECT OF SEVERAL SURFACE TREATMENTS ON 12 9Xe POLARIZATION AND RELAXATION IN NMR CELLS 4.1 INTRODUCTION

  1. Dynamics of [C{sub 3}H{sub 5}N{sub 2}]{sub 6}[Bi{sub 4}Br{sub 18}] by means of {sup 1}H NMR relaxometry and quadrupole relaxation enhancement

    SciTech Connect

    Masierak, W.; Florek-Wojciechowska, M.; Oglodek, I.; Jakubas, R.; Privalov, A. F.; Kresse, B.; Fujara, F.; Kruk, D.

    2015-05-28

    {sup 1}H spin-lattice field cycling relaxation dispersion experiments in the intermediate phase II of the solid [C{sub 3}H{sub 5}N{sub 2}]{sub 6}[Bi{sub 4}Br{sub 18}] are presented. Two motional processes have been identified from the {sup 1}H spin-lattice relaxation dispersion profiles and quantitatively described. It has been concluded that these processes are associated with anisotropic reorientations of the imidazolium ring, characterized by correlation times of the order of 10{sup −8} s-10{sup −9} s and of about 10{sup −5} s. Moreover, quadrupole relaxation enhancement (QRE) effects originating from slowly fluctuating {sup 1}H-{sup 14}N dipolar interactions have been observed. From the positions of the relaxation maxima, the quadrupole coupling parameters for the {sup 14}N nuclei in [C{sub 3}H{sub 5}N{sub 2}]{sub 6}[Bi{sub 4}Br{sub 18}] have been determined. The {sup 1}H-{sup 14}N relaxation contribution associated with the slow dynamics has been described in terms of a theory of QRE [Kruk et al., Solid State Nucl. Magn. Reson. 40, 114 (2011)] based on the stochastic Liouville equation. The shape of the QRE maxima (often referred to as “quadrupole peaks”) has been consistently reproduced for the correlation time describing the slow dynamics and the determined quadrupole coupling parameters.

  2. In situ determination of surface relaxivities for unconsolidated sediments

    NASA Astrophysics Data System (ADS)

    Duschl, Markus; Galvosas, Petrik; Brox, Timothy I.; Pohlmeier, Andreas; Vereecken, Harry

    2015-08-01

    NMR relaxometry has developed into a method for rapid pore-size determination of natural porous media. Nevertheless, it is prone to uncertainties because of unknown surface relaxivities which depend mainly on the chemical composition of the pore walls as well as on the interfacial dynamics of the pore fluid. The classical approach for the determination of surface relaxivities is the scaling of NMR relaxation times by surface to volume ratios measured by gas adsorption or mercury intrusion. However, it is preferable that a method for the determination of average pore sizes uses the same substance, water, as probe molecule for both relaxometry and surface to volume measurements. One should also ensure that in both experiments the dynamics of the probe molecule takes place on similar length scales, which are in the order of some microns. Therefore, we employed NMR diffusion measurements with different observation times using bipolar pulsed field gradients and applied them to unconsolidated sediments (two purified sands, two natural sands, and one soil). The evaluation by Mitra's short-time model for diffusion in restricted environments yielded information about the surface to volume ratios which is independent of relaxation mechanisms. We point out that methods based on NMR diffusometry yield pore dimensions and surface relaxivities consistent with a pore space as sampled by native pore fluids via the diffusion process. This opens a way to calibrate NMR relaxation measurements with other NMR techniques, providing information about the pore-size distribution of natural porous media directly from relaxometry.

  3. Bioagent detection using miniaturized NMR and nanoparticle amplification : final LDRD report.

    SciTech Connect

    Clewett, C. F. M.; Adams, David Price; Fan, Hongyou; Williams, John D.; Sillerud, Laurel O.; Alam, Todd Michael; Aldophi, Natalie L. (New Mexico Resonance, Albuquerque, NM); McDowell, Andrew F.

    2006-11-01

    This LDRD program was directed towards the development of a portable micro-nuclear magnetic resonance ({micro}-NMR) spectrometer for the detection of bioagents via induced amplification of solvent relaxation based on superparamagnetic nanoparticles. The first component of this research was the fabrication and testing of two different micro-coil ({micro}-coil) platforms: namely a planar spiral NMR {micro}-coil and a cylindrical solenoid NMR {micro}-coil. These fabrication techniques are described along with the testing of the NMR performance for the individual coils. The NMR relaxivity for a series of water soluble FeMn oxide nanoparticles was also determined to explore the influence of the nanoparticle size on the observed NMR relaxation properties. In addition, The use of commercially produced superparamagnetic iron oxide nanoparticles (SPIONs) for amplification via NMR based relaxation mechanisms was also demonstrated, with the lower detection limit in number of SPIONs per nanoliter (nL) being determined.

  4. Understanding NMR relaxometry of partially water-saturated rocks

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Jorand, R.; Nordlund, C.; Klitzsch, N.

    2015-06-01

    Nuclear magnetic resonance (NMR) relaxometry measurements are commonly used to characterize the storage and transport properties of water-saturated rocks. Estimations of these properties are based on the direct link of the initial NMR signal amplitude to porosity (water content) and of the NMR relaxation time to pore size. Herein, pore shapes are usually assumed to be spherical or cylindrical. However, the NMR response at partial water saturation for natural sediments and rocks may differ strongly from the responses calculated for spherical or cylindrical pores, because these pore shapes do not account for water menisci remaining in the corners of desaturated angular pores. Therefore, we consider a bundle of pores with triangular cross sections. We introduce analytical solutions of the NMR equations at partial saturation of these pores, which account for water menisci of desaturated pores. After developing equations that describe the water distribution inside the pores, we calculate the NMR response at partial saturation for imbibition and drainage based on the deduced water distributions. For this pore model, the NMR amplitudes and NMR relaxation times at partial water saturation strongly depend on pore shape, i.e., arising from the capillary pressure and pore shape-dependent water distribution in desaturated pores with triangular cross sections. Even so, the NMR relaxation time at full saturation only depends on the surface-to-volume ratio of the pore. Moreover, we show the qualitative agreement of the saturation-dependent relaxation-time distributions of our model with those observed for rocks and soils.

  5. {sup 1}H NMR relaxometry and quadrupole relaxation enhancement as a sensitive probe of dynamical properties of solids—[C(NH{sub 2}){sub 3}]{sub 3}Bi{sub 2}I{sub 9} as an example

    SciTech Connect

    Florek-Wojciechowska, M.; Wojciechowski, M.; Brym, Sz.; Kruk, D.; Jakubas, R.

    2016-02-07

    {sup 1}H nuclear magnetic resonance relaxometry has been applied to reveal information on dynamics and structure of Gu{sub 3}Bi{sub 2}I{sub 9} ([Gu = C(NH{sub 2}){sub 3}] denotes guanidinium cation). The data have been analyzed in terms of a theory of quadrupole relaxation enhancement, which has been extended here by including effects associated with quadrupole ({sup 14}N) spin relaxation caused by a fast fluctuating component of the electric field gradient tensor. Two motional processes have been identified: a slow one occurring on a timescale of about 8 × 10{sup −6} s which has turned out to be (almost) temperature independent, and a fast process in the range of 10{sup −9} s. From the {sup 1}H-{sup 14}N relaxation contribution (that shows “quadrupole peaks”) the quadrupole parameters, which are a fingerprint of the arrangement of the anionic network, have been determined. It has been demonstrated that the magnitude of the quadrupole coupling considerably changes with temperature and the changes are not caused by phase transitions. At the same time, it has been shown that there is no evidence of abrupt changes in the cationic dynamics and the anionic substructure upon the phase transitions.

  6. Natural relaxation

    NASA Astrophysics Data System (ADS)

    Marzola, Luca; Raidal, Martti

    2016-11-01

    Motivated by natural inflation, we propose a relaxation mechanism consistent with inflationary cosmology that explains the hierarchy between the electroweak scale and Planck scale. This scenario is based on a selection mechanism that identifies the low-scale dynamics as the one that is screened from UV physics. The scenario also predicts the near-criticality and metastability of the Standard Model (SM) vacuum state, explaining the Higgs boson mass observed at the Large Hadron Collider (LHC). Once Majorana right-handed neutrinos are introduced to provide a viable reheating channel, our framework yields a corresponding mass scale that allows for the seesaw mechanism as well as for standard thermal leptogenesis. We argue that considering singlet scalar dark matter extensions of the proposed scenario could solve the vacuum stability problem and discuss how the cosmological constant problem is possibly addressed.

  7. Scalar operators in solid-state NMR

    SciTech Connect

    Sun, Boqin

    1991-11-01

    Selectivity and resolution of solid-state NMR spectra are determined by dispersion of local magnetic fields originating from relaxation effects and orientation-dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent resonant frequencies can be represented by a set of irreducible tensors. Among these tensors, only zero rank tensors (scalar operators) are capable of providing high resolution NMR spectra. This thesis presents a series of new developments in high resolution solid-state NMR concerning the reconstruction of various scalar operators motion in solid C{sub 60} is analyzed.

  8. Photodissociation dynamics of IBr(-)(CO(2))(n), n<15.

    PubMed

    Sanford, Todd; Han, Sang-Yun; Thompson, Matthew A; Parson, Robert; Lineberger, W Carl

    2005-02-01

    We report the ionic photoproducts produced following photoexcitation of mass selected IBr(-)(CO(2))(n), n=0-14, cluster ions at 790 and 355 nm. These wavelengths provide single state excitation to two dissociative states, corresponding to the A(') (2)Pi(1/2) and B 2 (2)Sigma(1/2) (+) states of the IBr(-) chromophore. Excitation of these states in IBr(-) leads to production of I(-)+Br and Br(-)+I( *), respectively. Potential energy curves for the six lowest electronic states of IBr(-) are calculated, together with structures for IBr(-)(CO(2))(n), n=1-14. Translational energy release measurements on photodissociated IBr(-) determine the I-Br(-) bond strength to be 1.10+/-0.04 eV; related measurements characterize the A(') (2)Pi(1/2)<--X (2)Sigma(1/2) (+) absorption band. Photodissociation product distributions are measured as a function of cluster size following excitation to the A(') (2)Pi(1/2) and B 2 (2)Sigma(1/2) (+) states. The solvent is shown to drive processes such as spin-orbit relaxation, charge transfer, recombination, and vibrational relaxation on the ground electronic state. Following excitation to the A(') (2)Pi(1/2) electronic state, IBr(-)(CO(2))(n) exhibits size-dependent cage fractions remarkably similar to those observed for I(2) (-)(CO(2))(n). In contrast, excitation to the B 2 (2)Sigma(1/2) (+) state shows extensive trapping in excited states that dominates the recombination behavior for all cluster sizes we investigated. Finally, a pump-probe experiment on IBr(-)(CO(2))(8) determines the time required for recombination on the ground state following excitation to the A(') state. While the photofragmentation experiments establish 100% recombination in the ground electronic state for this and larger IBr(-) cluster ions, the time required for recombination is found to be approximately 5 ns, some three orders of magnitude longer than observed for the analogous I(2) (-) cluster ion. Comparisons are made with similar experiments carried out on I(2

  9. Dynamics in supercooled polyalcohols: Primary and secondary relaxation

    NASA Astrophysics Data System (ADS)

    Döß, A.; Paluch, M.; Sillescu, H.; Hinze, G.

    2002-10-01

    We have studied details of the molecular dynamics in a series of pure polyalcohols by means of dielectric spectroscopy and 2H nuclear magnetic resonance (NMR). From glycerol to threitol, xylitol and sorbitol a systematic change in the dynamics of the primary and secondary relaxation is found. With increasing molecular weight and fragility an increase in the width of the α-peak is observed. Details of the molecular reorientation process responsible for the α-relaxation were exploited by two-dimensional NMR experiments. It is found that in the same sequence of polyalcohols the appearance of the secondary relaxation changes gradually from a wing type scenario to a pronounced β-peak. From NMR experiments using selectively deuterated samples the molecular origin of the secondary relaxation could be elucidated in more detail.

  10. Partition of the linear plasmid N15: interactions of N15 partition functions with the sop locus of the F plasmid.

    PubMed

    Ravin, N; Lane, D

    1999-11-01

    A locus close to one end of the linear N15 prophage closely resembles the sop operon which governs partition of the F plasmid; the promoter region contains similar operator sites, and the two putative gene products have extensive amino acid identity with the SopA and -B proteins of F. Our aim was to ascertain whether the N15 sop homologue functions in partition, to identify the centromere site, and to examine possible interchangeability of function with the F Sop system. When expressed at a moderate level, N15 SopA and -B proteins partly stabilize mini-F which lacks its own sop operon but retains the sopC centromere. The stabilization does not depend on increased copy number. Likewise, an N15 mutant with most of its sop operon deleted is partly stabilized by F Sop proteins and fully stabilized by its own. Four inverted repeat sequences similar to those of sopC were located in N15. They are distant from the sop operon and from each other. Two of these were shown to stabilize a mini-F sop deletion mutant when N15 Sop proteins were provided. Provision of the SopA homologue to plasmids with a sopA deletion resulted in further destabilization of the plasmid. The N15 Sop proteins exert effective, but incomplete, repression at the F sop promoter. We conclude that the N15 sop locus determines stable inheritance of the prophage by using dispersed centromere sites. The SopB-centromere and SopA-operator interactions show partial functional overlap between N15 and F. SopA of each plasmid appears to interact with SopB of the other, but in a way that is detrimental to plasmid maintenance.

  11. Breathing and Relaxation

    MedlinePlus

    ... Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make an Appointment Ask a Question ... level is often dependent on his or her breathing pattern. Therefore, people with chronic lung conditions may ...

  12. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity.

  13. Relaxation Assessment with Varied Structured Milieu (RELAX).

    ERIC Educational Resources Information Center

    Cassel, Russell N.; Cassel, Susie L.

    1983-01-01

    Describes Relaxation Assessment with Varied Structured Milieu (RELAX), a clinical program designed to assess the degree to which an individual is able to demonstrate self-control for overall general relaxation. The program is designed for use with the Cassel Biosensors biofeedback equipment. (JAC)

  14. Hyperpolarized 131Xe NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2011-01-01

    Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I⩾1/2 nuclei is presented.

  15. Hyperpolarized 131Xe NMR spectroscopy

    PubMed Central

    Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2011-01-01

    Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I⩾1/2 nuclei is presented. PMID:21051249

  16. Determination of the solution-bound conformation of an amino acid binding protein by NMR paramagnetic relaxation enhancement: use of a single flexible paramagnetic probe with improved estimation of its sampling space.

    PubMed

    Bermejo, Guillermo A; Strub, Marie-Paule; Ho, Chien; Tjandra, Nico

    2009-07-15

    We demonstrate the feasibility of elucidating the bound ("closed") conformation of a periplasmic binding protein, the glutamine-binding protein (GlnBP), in solution, using paramagnetic relaxation enhancements (PREs) arising from a single paramagnetic group. GlnBP consists of two globular domains connected by a hinge. Using the ligand-free ("open") conformation as a starting point, conjoined rigid-body/torsion-angle simulated annealing calculations were performed using backbone (1)H(N)-PREs as a major source of distance information. Paramagnetic probe flexibility was accounted for via a multiple-conformer representation. A conventional approach where the entire PRE data set is enforced at once during simulated annealing yielded poor results due to inappropriate conformational sampling of the probe. On the other hand, significant improvements in coordinate accuracy were obtained by estimating the probe sampling space prior to structure calculation. Such sampling is achieved by refining the ensemble of probe conformers with intradomain PREs only, keeping the protein backbone fixed in the open form. Subsequently, while constraining the probe to the previously found conformations, the domains are allowed to move relative to each other under the influence of the non-intradomain PREs, giving the hinge region torsional degrees of freedom. Thus, by partitioning the protocol into "probe sampling" and "backbone sampling" stages, structures significantly closer to the X-ray structure of ligand-bound GlnBP were obtained.

  17. Micellar kinetics of a fluorosurfactant through stopped-flow NMR.

    PubMed

    Yushmanov, Pavel V; Furó, István; Stilbs, Peter

    2006-02-28

    19F NMR chemical shifts and transverse relaxation times T2 were measured as a function of time after quick stopped-flow dilution of aqueous solutions of sodium perfluorooctanoate (NaPFO) with water. Different initial concentrations of micellar solution and different proportions of mixing were tested. Previous stopped-flow studies by time-resolved small-angle X-ray scattering (TR-SAXS) detection indicated a slow (approximately 10 s) micellar relaxation kinetics in NaPFO solutions. In contrast, no evidence of any comparable slow (>100 ms) relaxation process was found in our NMR studies. Possible artifacts of stopped-flow experiments are discussed as well as differences between NMR and SAXS detection methods. Upper bounds on the relative weight of a slow relaxation process are given within existing kinetic theories of micellar dissolution.

  18. STRUCTURE ASSIGNMENT OF AMINOCONDURITOLS BY N-15 NMR CORRELATION SPECTROSCOPY; SYNTHESIS OF A POSITIONAL ISOMER OF 7-DEOXYPANCRATISTATIN. (R826113)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  19. Multiecho scheme advances surface NMR for aquifer characterization

    NASA Astrophysics Data System (ADS)

    Grunewald, Elliot; Walsh, David

    2013-12-01

    nuclear magnetic resonance (NMR) is increasingly used as a method to noninvasively characterize aquifers. This technology follows a successful history of NMR logging, applied over decades to estimate hydrocarbon reservoir properties. In contrast to logging, however, surface methods have utilized relatively simple acquisition sequences, from which pore-scale properties may not be reliably and efficiently estimated. We demonstrate for the first time the capability of sophisticated multiecho measurements to rapidly record a surface NMR response that more directly reflects aquifer characteristics. Specifically, we develop an adaptation of the multipulse Carr-Purcell-Meiboom-Gill (CPMG) sequence, widely used in logging, to measure the T2 relaxation response in a single scan. We validate this approach in a field surface NMR data set and by direct comparison with an NMR log. Adoption of the CPMG marked a landmark advancement in the history of logging NMR; we have now realized this same advancement in the surface NMR method.

  20. Understanding NMR relaxometry of partially water-saturated rocks

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Nordlund, C.; Jorand, R.; Klitzsch, N.

    2014-11-01

    Nuclear Magnetic Resonance (NMR) relaxometry measurements are commonly used to characterize the storage and transport properties of water-saturated rocks. These assessments are based on the proportionality of NMR signal amplitude and relaxation time to porosity (water content) and pore size, respectively. The relationship between pore size and NMR relaxation time depends on pore shape, which is usually assumed to be spherical or cylindrical. However, the NMR response at partial water saturation for natural sediments and rocks differs strongly from the response calculated for spherical or cylindrical pores, because these pore shapes cannot account for water menisci remaining in the corners of de-saturated angular pores. Therefore, we consider a bundle of pores with triangular cross-sections. We introduce analytical solutions of the NMR equations at partial saturation of these pores, which account for water menisci of de-saturated pores. After developing equations that describe the water distribution inside the pores, we calculate the NMR response at partial saturation for imbibition and drainage based on the deduced water distributions. For this pore model, NMR amplitude and NMR relaxation time at partial water saturation strongly depend on pore shape even so the NMR relaxation time at full saturation only depends on the surface to volume ratio of the pore. The pore-shape-dependence at partial saturation arises from the pore shape and capillary pressure dependent water distribution in pores with triangular cross-sections. Moreover, we show the qualitative agreement of the saturation dependent relaxation time distributions of our model with those observed for rocks and soils.

  1. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect

    George J. Hirasaki; Kishore K. Mohanty

    2005-09-05

    The objective of this report is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity. Oil based drilling fluids can have an adverse effect on NMR well logging if it alters the wettability of the formation. The effect of various surfactants on wettability and surface relaxivity are evaluated for silica sand. The relation between the relaxation time and diffusivity distinguishes the response of brine, oil, and gas in a NMR well log. A new NMR pulse sequence in the presence of a field gradient and a new inversion technique enables the T{sub 2} and diffusivity distributions to be displayed as a two-dimensional map. The objectives of pore morphology and rock characterization are to identify vug connectivity by using X-ray CT scan, and to improve NMR permeability correlation. Improved estimation of permeability from NMR response is possible by using estimated tortuosity as a parameter to interpolate between two existing permeability models.

  2. Water proton relaxation in dilute and unsaturated suspensions of non-porous particles.

    PubMed

    Hills, B P

    1994-01-01

    NMR water proton relaxation times are reported for suspensions of silica powder of varying silica/water ratios. Pore size distributions and pore connectivities are derived from the relaxation time distributions for the water-saturated suspension. Capillary theory appears to explain the relaxation behaviour of the unsaturated, packed suspensions. The relaxation data in suspensions that have lower solid/liquid ratios than the saturated, packed suspension are sensitive to the particular radial distribution function. This is analysed with a simple cluster model.

  3. Hydrate Shell Growth Measured Using NMR.

    PubMed

    Haber, Agnes; Akhfash, Masoumeh; Loh, Charles K; Aman, Zachary M; Fridjonsson, Einar O; May, Eric F; Johns, Michael L

    2015-08-18

    Benchtop nuclear magnetic resonance (NMR) pulsed field gradient (PFG) and relaxation measurements were used to monitor the clathrate hydrate shell growth occurring in water droplets dispersed in a continuous cyclopentane phase. These techniques allowed the growth of hydrate inside the opaque exterior shell to be monitored and, hence, information about the evolution of the shell's morphology to be deduced. NMR relaxation measurements were primarily used to monitor the hydrate shell growth kinetics, while PFG NMR diffusion experiments were used to determine the nominal droplet size distribution (DSD) of the unconverted water inside the shell core. A comparison of mean droplet sizes obtained directly via PFG NMR and independently deduced from relaxation measurements showed that the assumption of the shell model-a perfect spherical core of unconverted water-for these hydrate droplet systems is correct, but only after approximately 24 h of shell growth. Initially, hydrate growth is faster and heat-transfer-limited, leading to porous shells with surface areas larger than that of spheres with equivalent volumes. Subsequently, the hydrate growth rate becomes mass-transfer-limited, and the shells become thicker, spherical, and less porous.

  4. Metabolism of nonessential N-15-labeled amino acids and the measurement of human whole-body protein synthesis rates

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Settle, R. G.; Albina, J. A.; Melnick, G.; Dempsey, D. T.

    1991-01-01

    Eight N-15-labeled nonessential amino acids plus (N-15)H4Cl were administered over a 10-h period to four healthy adult males using a primed-constant dosage regimen. The amount of N-15 excreted in the urine and the urinary ammonia, hippuric acid, and plasma alanine N-15 enrichments were measured. There was a high degree of consistency across subjects in the ordering of the nine compounds based on the fraction of N-15 excreted.

  5. Assessment of meat quality by NMR--an investigation of pork products originating from different breeds.

    PubMed

    Straadt, Ida K; Aaslyng, Margit D; Bertram, Hanne C

    2011-12-01

    In the present study, meat obtained from uncommon and novel pig crossings between the rare Iberian and Mangalitza pigs and the more frequent Duroc and Landrace/Yorkshire pigs was characterized by time-domain proton NMR relaxometry and high-resolution proton NMR spectroscopy to elucidate the potential of NMR to assess the meat quality of new-introduced pig breeds. Multivariate data analysis of proton NMR T(2) relaxation curves obtained on fresh meat samples revealed differences in the T(2) relaxation pattern of the different breeds included in the study. Comparison of NMR T(2) relaxation data with gravimetric determination of water-holding capacity (WHC) indicated that this should be ascribed to differences in the WHC of the different meats, and that NMR T(2) relaxation in accordance with previous studies provides unique information about WHC, which may be ascribed to the fact that NMR T(2) relaxation reflects information about intrinsic meat structure. High-resolution proton NMR spectroscopy of freeze exudate and meat extracts also revealed differences in the metabolite profile of the meat between the different breeds studied. The effects of breed on the amount of lactate in the freeze exudate were observed, which could be linked to WHC of the meat. In conclusion, the different NMR techniques applied could provide complementary information about biophysical and biochemical factors of importance for meat quality assessment.

  6. Proteins responsible for lysogenic conversion caused by coliphages N15 and phi80 are highly homologous.

    PubMed Central

    Vostrov, A A; Vostrukhina, O A; Svarchevsky, A N; Rybchin, V N

    1996-01-01

    Lysogenic conversion caused by lambdoid bacteriophage phi80 and that caused by coliphage N15 have similar characteristics, suggesting that similarities in their cor genes and Cor proteins are responsible for this effect. Here we present the nucleotide sequence of the N15 cor gene. The N15 cor gene homolog was found in the phi80 cor region, but in the opposite direction of that of the open reading frame to which the phi80 cor gene had previously been assigned (M. Matsumoto, N. Ichikawa, S. Tanaka, T. Morita, and A. Matsushiro, Jpn. J. Genet. 60:475-483, 1985). PMID:8631731

  7. Proton relaxation times in cancer diagnosis

    SciTech Connect

    Santhana Mariappan, S.V.; Subramanian, S.; Chandrakumar, N.; Rajalakshmi, K.R.; Sukumaran, S.S.

    1988-10-01

    Proton nuclear magnetic resonance relaxation parameters (T1, T2) were measured for over 100 malignant and normal tissue samples of various organs of the human body. The purpose of this study was to estimate the reliability of the NMR technique in discriminating normal from malignant tissues. Breast and cervix samples were analyzed by using the malignancy index concept and we were able to distinguish malignant and normal tissue in 17 out of 18 breast samples and 5 out of 7 cervix samples. Since the relaxation data of a normal control population of the other organs were not available, the data for these are reported without any further analysis. The distinction between carcinomas and sarcomas was also made by using the estimated relaxation parameters. Malignancy indices of breast tissue samples for linear least-squares and nonlinear two-parameter and three-parameter least-squares procedures were calculated and used to evaluate the relative efficiencies in discriminating malignant from normal tissues.

  8. New Designs for NMR Core Scanning

    NASA Astrophysics Data System (ADS)

    Bluemich, B.; Anferova, S.; Talnishnikh, E.; Arnold, J.; Clauser, C.

    2006-12-01

    Within the last ten years, mobile magnetic resonance has moved from the oil field to many new areas of application. While the focus of mobile NMR in the past was on single-sided or inside-out NMR, the advent of tube-shaped Halbach magnets has introduced the conventional outside-in NMR concept to mobile NMR where the object is inside a magnet. Our Halbach magnet is constructed from small magnet blocks at light weight and low cost with a magnetic field sufficiently homogeneous. To automatize NMR measurements, the Halbach magnet is mounted on a sliding table to scan long core sections without human interaction. In homogeneous magnetic fields, the longitudinal relaxation time T1 and even the transverse relaxation time T2 are proportional to the pore diameters of rocks. Hence, the T1 and T2 signals map the pore-size distribution of the studied rock cores. For fully saturated samples the integral of the distribution curve is proportional to porosity. The porosity values from NMR measurements with the Halbach magnet are used to estimate permability. The Halbach magnet can be used for certain sample geometries in combination with exchangeable radio frequency (rf) coils with different diameters from 24 mm up to 80 mm. To measure standard Ocean Drilling Program (ODP)/Integrated Ocean Drilling Program (IODP) cores, which have a standard diameter of 60 mm and are split lengthwise after recovery, we use a surface figure-8 rf coil with an inner diameter of 60 mm. Besides 1D T2 measurements, we perform relaxation-relaxation correlation experiments, where T1 and T2 are measured in parallel. In this way, the influence of diffusion on the shape of the T2 distribution function is probed. A gradient coil system was designed to perform Pulsed Field Gradients (PFG) experiments. As the gradient coils restrict the axial access to the magnet, only cylindrical core plugs with 20 mm in diameter can be analysed by PFG NMR methods. The homogeneity of the magnetic field in the sensitive volume

  9. Latent Period of Relaxation.

    PubMed

    Kobayashi, M; Irisawa, H

    1961-10-27

    The latent period of relaxation of molluscan myocardium due to anodal current is much longer than that of contraction. Although the rate and the grade of relaxation are intimately related to both the stimulus condition and the muscle tension, the latent period of relaxation remains constant, except when the temperature of the bathing fluid is changed.

  10. NMR Characterizations of Properties of Heterogeneous Media

    SciTech Connect

    Uh, Jinsoo; Phan, Jack; Xue, Dong; Watson, A. Ted

    2003-01-28

    The overall goal of this project was to develop reliable methods for resolving macroscopic properties important for describing the flow of one or more fluid phases in reservoirs from formation measurements. During this reporting period, the determination of surface relaxivity from NMR data was investigated. A new method for determining the surface relaxivity from measured data was developed and tested with data obtained from an Exxon sample. The new method avoids the use of a certain mathematical short-time approximation in the data analysis, which has been shown to be unsuitable.

  11. [Study of the algorithm for inversion of low field nuclear magnetic resonance relaxation distribution].

    PubMed

    Chen, Shanshan; Wang, Hongzhi; Yang, Peiqiang; Zhang, Xuelong

    2014-06-01

    It is difficult to reflect the properties of samples from the signal directly collected by the low field nuclear magnetic resonance (NMR) analyzer. People must obtain the relationship between the relaxation time and the original signal amplitude of every relaxation component by inversion algorithm. Consequently, the technology of T2 spectrum inversion is crucial to the application of NMR data. This study optimized the regularization factor selection method and presented the regularization algorithm for inversion of low field NMR relaxation distribution, which is based on the regularization theory of ill-posed inverse problem. The results of numerical simulation experiments by Matlab7.0 showed that this method could effectively analyze and process the NMR relaxation data.

  12. Nuclear magnetic resonance relaxation and diffusion measurements as a proxy for soil properties

    NASA Astrophysics Data System (ADS)

    Duschl, Markus; Pohlmeier, Andreas; Galvosas, Petrik; Vereecken, Harry

    2013-04-01

    Nuclear Magnetic Resonance (NMR) relaxation and NMR diffusion measurements are two of a series of fast and non-invasive NMR applications widely used e.g. as well logging tools in petroleum exploration [1]. For experiments with water, NMR relaxation measures the relaxation behaviour of former excited water molecules, and NMR diffusion evaluates the self-diffusion of water. Applied in porous media, both relaxation and diffusion measurements depend on intrinsic properties of the media like pore size distribution, connectivity and tortuosity of the pores, and water saturation [2, 3]. Thus, NMR can be used to characterise the pore space of porous media not only in consolidated sediments but also in soil. The physical principle behind is the relaxation of water molecules in an external magnetic field after excitation. In porous media water molecules in a surface layer of the pores relax faster than the molecules in bulk water because of interactions with the pore wall. Thus, the relaxation in smaller pores is generally faster than in bigger pores resulting in a relaxation time distribution for porous media with a range of pore sizes like soil [4]. In NMR diffusion experiments, there is an additional encoding of water molecules by application of a magnetic field gradient. Subsequent storage of the magnetization and decoding enables the determination of the mean square displacement and therefore of the self-diffusion of the water molecules [5]. Employing various relaxation and diffusion experiments, we get a measure of the surface to volume ratio of the pores and the tortuosity of the media. In this work, we show the characterisation of a set of sand and soil samples covering a wide range of textural classes by NMR methods. Relaxation times were monitored by the Carr-Purcell-Meiboom-Gill sequence and analysed using inverse Laplace transformation. Apparent self-diffusion constants were detected by a 13-intervall pulse sequence and variation of the storage time. We

  13. (129)Xe NMR of Mesoporous Silicas

    SciTech Connect

    Anderson, M.T.; Asink, R.A.; Kneller, J.M.; Pietrass, T.

    1999-04-23

    The porosities of three mesoporous silica materials were characterized with {sup 129}Xe NMR spectroscopy. The materials were synthesized by a sol-gel process with r = 0, 25, and 70% methanol by weight in an aqueous cetyltrimethylammonium bromide solution. Temperature dependent chemical shifts and spin lattice relaxation times reveal that xenon does not penetrate the pores of the largely disordered (r= 70%) silica. For both r = 0 and 25%, temperature dependent resonances corresponding to physisorbed xenon were observed. An additional resonance for the r = 25% sample was attributed to xenon between the disordered cylindrical pores. 2D NMR exchange experiments corroborate the spin lattice relaxation data which show that xenon is in rapid exchange between the adsorbed and the gas phase.

  14. NMR studies of nucleic acid dynamics

    NASA Astrophysics Data System (ADS)

    Al-Hashimi, Hashim M.

    2013-12-01

    Nucleic acid structures have to satisfy two diametrically opposite requirements; on one hand they have to adopt well-defined 3D structures that can be specifically recognized by proteins; on the other hand, their structures must be sufficiently flexible to undergo very large conformational changes that are required during key biochemical processes, including replication, transcription, and translation. How do nucleic acids introduce flexibility into their 3D structure without losing biological specificity? Here, I describe the development and application of NMR spectroscopic techniques in my laboratory for characterizing the dynamic properties of nucleic acids that tightly integrate a broad set of NMR measurements, including residual dipolar couplings, spin relaxation, and relaxation dispersion with sample engineering and computational approaches. This approach allowed us to obtain fundamental new insights into directional flexibility in nucleic acids that enable their structures to change in a very specific functional manner.

  15. NMR in Copper-Oxide Metals

    SciTech Connect

    Varma, C.M.

    1996-10-01

    The anomalous part of the NMR relaxation rate of copper nuclei in the normal state of copper-oxide metals is calculated using the orbital magnetic parts of the fluctuations derived in a recent theory to explain the long wavelength transport anomalies. Oxygen and yttrium reside on lattice sites at which the anomalous contribution is absent at all hole densities. The frequency, momentum dependence, and the form factor of the fluctuations is predicted. {copyright} {ital 1996 The American Physical Society.}

  16. Diamond Deposition and Defect Chemistry Studied via Solid State NMR

    DTIC Science & Technology

    1994-06-30

    same integrated NMR signal, regardless of its chemical environment, provided complete spin-lattice relaxation occurs between averages 3 . Gem -quality...occurs between averages, and broadening from years, a large research effort has been devoted to the study paramagnetic centers is insignificant. Gem ...information on the distribution and motion mond’s durability very attractive. However, while gem - of hydrogen can be obtained from the solid-state NMR

  17. Analyzing protein-ligand interactions by dynamic NMR spectroscopy.

    PubMed

    Mittermaier, Anthony; Meneses, Erick

    2013-01-01

    Nuclear magnetic resonance (NMR) spectroscopy can provide detailed information on protein-ligand interactions that is inaccessible using other biophysical techniques. This chapter focuses on NMR-based approaches for extracting affinity and rate constants for weakly binding transient protein complexes with lifetimes of less than about a second. Several pulse sequences and analytical techniques are discussed, including line-shape simulations, spin-echo relaxation dispersion methods (CPMG), and magnetization exchange (EXSY) experiments.

  18. NMR probe of metallic states in nanoscale topological insulators.

    PubMed

    Koumoulis, Dimitrios; Chasapis, Thomas C; Taylor, Robert E; Lake, Michael P; King, Danny; Jarenwattananon, Nanette N; Fiete, Gregory A; Kanatzidis, Mercouri G; Bouchard, Louis-S

    2013-01-11

    A 125Te NMR study of bismuth telluride nanoparticles as a function of particle size revealed that the spin-lattice relaxation is enhanced below 33 nm, accompanied by a transition of NMR spectra from the single to the bimodal regime. The satellite peak features a negative Knight shift and higher relaxivity, consistent with core polarization from p-band carriers. Whereas nanocrystals follow a Korringa law in the range 140-420 K, micrometer particles do so only below 200 K. The results reveal increased metallicity of these nanoscale topological insulators in the limit of higher surface-to-volume ratios.

  19. Evaluation of sandstone surface relaxivity using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Washburn, Kathryn E.; Sandor, Magdalena; Cheng, Yuesheng

    2017-02-01

    Nuclear magnetic resonance (NMR) relaxometry is a common technique used to assess the pore size of fluid-filled porous materials in a wide variety of fields. However, the NMR signal itself only provides a relative distribution of pore size. To calculate an absolute pore size distribution from the NMR data, the material's surface relaxivity needs to be known. Here, a method is presented using laser-induced breakdown spectroscopy (LIBS) to evaluate surface relaxivity in sandstones. NMR transverse and longitudinal relaxation was measured on a set of sandstone samples and the surface relaxivity was calculated from the pore size distribution determined with MICP measurements. Using multivariate analysis, it was determined that the LIBS data can predict with good accuracy the longitudinal (R2 ∼ 0.84) and transverse (R2 ∼ 0.79) surface relaxivity. Analysis of the regression coefficients shows significant influence from several elements. Some of these are elements previously established to have an effect on surface relaxivity, such as iron and manganese, while others are not commonly associated with surface relaxivity, such as cobalt and titanium. Furthermore, LIBS provides advantages compared to current methods to calibrate surface relaxivity in terms of speed, portability, and sample size requirements. While this paper focuses on geological samples, the method could potentially be expanded to other types of porous materials.

  20. Evaluation of sandstone surface relaxivity using laser-induced breakdown spectroscopy.

    PubMed

    Washburn, Kathryn E; Sandor, Magdalena; Cheng, Yuesheng

    2017-02-01

    Nuclear magnetic resonance (NMR) relaxometry is a common technique used to assess the pore size of fluid-filled porous materials in a wide variety of fields. However, the NMR signal itself only provides a relative distribution of pore size. To calculate an absolute pore size distribution from the NMR data, the material's surface relaxivity needs to be known. Here, a method is presented using laser-induced breakdown spectroscopy (LIBS) to evaluate surface relaxivity in sandstones. NMR transverse and longitudinal relaxation was measured on a set of sandstone samples and the surface relaxivity was calculated from the pore size distribution determined with MICP measurements. Using multivariate analysis, it was determined that the LIBS data can predict with good accuracy the longitudinal (R(2)∼0.84) and transverse (R(2)∼0.79) surface relaxivity. Analysis of the regression coefficients shows significant influence from several elements. Some of these are elements previously established to have an effect on surface relaxivity, such as iron and manganese, while others are not commonly associated with surface relaxivity, such as cobalt and titanium. Furthermore, LIBS provides advantages compared to current methods to calibrate surface relaxivity in terms of speed, portability, and sample size requirements. While this paper focuses on geological samples, the method could potentially be expanded to other types of porous materials.

  1. PARAMAGNETIC RELAXATION IN CRYSTALS.

    DTIC Science & Technology

    CRYSTALS, PARAMAGNETIC RESONANCE, RELAXATION TIME , CRYSTAL DEFECTS, QUARTZ, GLASS, STRAIN(MECHANICS), TEMPERATURE, NUCLEAR SPINS, HYDROGEN, CALCIUM COMPOUNDS, FLUORIDES, COLOR CENTERS, PHONONS, OXYGEN.

  2. NMR analysis of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  3. UPTAKE OF GLYCINE-N15 BY COMPONENTS OF CELL NUCLEI

    PubMed Central

    Daly, Marie M.; Allfrey, V. G.; Mirsky, A. E.

    1952-01-01

    1. The uptake of glycine-N15 by components of cell nuclei was studied. The nuclear components were derived both from tissues with high metabolic rates-mammalian liver, kidney, and pancreas-and from cells with relatively low rates of metabolism-avian erythrocytes and echinoderm sperm. N15 uptake by nuclear components of liver, kidney, and pancreas was far more rapid than by those of erythrocytes and sperm. 2. The nuclear components of liver, kidney, and pancreas for which measurements were made were DNA, histone, and residual protein of chromatin. Uptake into DNA was low, into histone higher, and into residual protein much higher still, being comparable with that into mixed cytoplasmic protein. 3. A comparison of the uptake of N15 by the chromosomal components, histone and DNA of liver, pancreas, and kidney showed that chromosomal "activity" varies in different cells and also in the same cell depending upon its over-all activity. PMID:13011275

  4. A Review of the Principles and Applications of the NMR Technique for Near-Surface Characterization

    NASA Astrophysics Data System (ADS)

    Behroozmand, Ahmad A.; Keating, Kristina; Auken, Esben

    2015-01-01

    This paper presents a comprehensive review of the recent advances in nuclear magnetic resonance (NMR) measurements for near-surface characterization using laboratory, borehole, and field technologies. During the last decade, NMR has become increasingly popular in near-surface geophysics due to substantial improvements in instrumentation, data processing, forward modeling, inversion, and measurement techniques. This paper starts with a description of the principal theory and applications of NMR. It presents a basic overview of near-surface NMR theory in terms of its physical background and discusses how NMR relaxation times are related to different relaxation processes occurring in porous media. As a next step, the recent and seminal near-surface NMR developments at each scale are discussed, and the limitations and challenges of the measurement are examined. To represent the growth of applications of near-surface NMR, case studies in a variety of different near-surface environments are reviewed and, as examples, two recent case studies are discussed in detail. Finally, this review demonstrates that there is a need for continued research in near-surface NMR and highlights necessary directions for future research. These recommendations include improving the signal-to-noise ratio, reducing the effective measurement dead time, and improving production rate of surface NMR (SNMR), reducing the minimum echo time of borehole NMR (BNMR) measurements, improving petrophysical NMR models of hydraulic conductivity and vadose zone parameters, and understanding the scale dependency of NMR properties.

  5. TEACHING NEUROMUSCULAR RELAXATION.

    ERIC Educational Resources Information Center

    NORRIS, JEANNE E.; STEINHAUS, ARTHUR H.

    THIS STUDY ATTEMPTED TO FIND OUT WHETHER (1) THE METHODS FOR ATTAINING NEUROMUSCULAR RELAXATION THAT HAVE PROVED FRUITFUL IN THE ONE-TO-ONE RELATIONSHIP OF THE CLINIC CAN BE SUCCESSFULLY ADAPTED TO THE TEACHER-CLASS RELATIONSHIP OF THE CLASSROOM AND GYMNASIUM, AND (2) NEUROMUSCULAR RELAXATION CAN BE TAUGHT SUCCESSFULLY BY AN APPROPRIATELY TRAINED…

  6. Dynamics of Antibody Domains Studied by Solution NMR

    PubMed Central

    Vu, Bang K.; Walsh, Joseph D.; Dimitrov, Dimiter S.; Ishima, Rieko

    2012-01-01

    Information on local dynamics of antibodies is important to evaluate stability, to rationally design variants, and to clarify conformational disorders at the epitope binding sites. Such information may also be useful for improved understanding of antigen recognition. NMR can be used for characterization of local protein dynamics at the atomic level through relaxation measurements. Due to the complexity of the NMR spectra, an extensive use of this method is limited to small protein molecules, for example, antibody domains and some scFv. Here, we describe a protocol that was used to study the dynamics of an antibody domain in solution using NMR. We describe protein preparation for NMR studies, NMR sample optimization, signal assignments, and dynamics experiments. PMID:19252840

  7. Relaxation of magnetotail plasmas

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, A.

    1987-01-01

    A quasi-thermodynamic model is presented for the relaxation of magnetotail plasmas during substorms, followed by quiet times. It is proposed that the plasma relaxes to a state of low-potential energy subject to a small number of global constraints. The constraints are exactly preserved by all ideal motions and, approximately, by a wide class of motions of the plasma undergoing magnetic reconnection. A variational principle which minimizes the free energy predicts the relaxed state. Exact, two-dimensional solutions of the relaxed state are obtained. A universal feature of the exact solutions is a chain of magnetic islands along the tail axis. Sufficient conditions for the stability of relaxed states are obtained from the second variation of the free-energy functional.

  8. Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis

    NASA Astrophysics Data System (ADS)

    Ahola, Susanna; Zhivonitko, Vladimir V.; Mankinen, Otto; Zhang, Guannan; Kantola, Anu M.; Chen, Hsueh-Ying; Hilty, Christian; Koptyug, Igor V.; Telkki, Ville-Veikko

    2015-09-01

    Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhancing the resolution and information content of corresponding 1D experiments as well as reducing the experiment time by one to two orders of magnitude or more as compared with its conventional 2D counterpart. We demonstrate that the method allows one to distinguish identical molecules in different physical environments and provides chemical resolution missing in NMR spectra. Although the sensitivity of the new method is reduced due to spatial encoding, the single-scan approach enables one to use hyperpolarized substances to boost the sensitivity by several orders of magnitude, significantly enhancing the overall sensitivity of multidimensional Laplace NMR.

  9. NMR methodologies in the analysis of blueberries.

    PubMed

    Capitani, Donatella; Sobolev, Anatoly P; Delfini, Maurizio; Vista, Silvia; Antiochia, Riccarda; Proietti, Noemi; Bubici, Salvatore; Ferrante, Gianni; Carradori, Simone; De Salvador, Flavio Roberto; Mannina, Luisa

    2014-06-01

    An NMR analytical protocol based on complementary high and low field measurements is proposed for blueberry characterization. Untargeted NMR metabolite profiling of blueberries aqueous and organic extracts as well as targeted NMR analysis focused on anthocyanins and other phenols are reported. Bligh-Dyer and microwave-assisted extractions were carried out and compared showing a better recovery of lipidic fraction in the case of microwave procedure. Water-soluble metabolites belonging to different classes such as sugars, amino acids, organic acids, and phenolic compounds, as well as metabolites soluble in organic solvent such as triglycerides, sterols, and fatty acids, were identified. Five anthocyanins (malvidin-3-glucoside, malvidin-3-galactoside, delphinidin-3-glucoside, delphinidin-3-galactoside, and petunidin-3-glucoside) and 3-O-α-l-rhamnopyranosyl quercetin were identified in solid phase extract. The water status of fresh and withered blueberries was monitored by portable NMR and fast-field cycling NMR. (1) H depth profiles, T2 transverse relaxation times and dispersion profiles were found to be sensitive to the withering.

  10. Radiation damping in microcoil NMR probes

    NASA Astrophysics Data System (ADS)

    Krishnan, V. V.

    2006-04-01

    Radiation damping arises from the field induced in the receiver coil by large bulk magnetization and tends to selectively drive this magnetization back to equilibrium much faster than relaxation processes. The demand for increased sensitivity in mass-limited samples has led to the development of microcoil NMR probes that are capable of obtaining high quality NMR spectra with small sample volumes (nL-μL). Microcoil probes are optimized to increase sensitivity by increasing either the sample-to-coil ratio (filling factor) of the probe or quality factor of the detection coil. Though radiation damping effects have been studied in standard NMR probes, these effects have not been measured in the microcoil probes. Here a systematic evaluation of radiation damping effects in a microcoil NMR probe is presented and the results are compared with similar measurements in conventional large volume samples. These results show that radiation-damping effects in microcoil probe is much more pronounced than in 5 mm probes, and that it is critically important to optimize NMR experiments to minimize these effects. As microcoil probes provide better control of the bulk magnetization, with good RF and B0 inhomogeneity, in addition to negligible dipolar field effects due to nearly spherical sample volumes, these probes can be used exclusively to study the complex behavior of radiation damping.

  11. Radiation damping in microcoil NMR probes.

    PubMed

    Krishnan, V V

    2006-04-01

    Radiation damping arises from the field induced in the receiver coil by large bulk magnetization and tends to selectively drive this magnetization back to equilibrium much faster than relaxation processes. The demand for increased sensitivity in mass-limited samples has led to the development of microcoil NMR probes that are capable of obtaining high quality NMR spectra with small sample volumes (nL-microL). Microcoil probes are optimized to increase sensitivity by increasing either the sample-to-coil ratio (filling factor) of the probe or quality factor of the detection coil. Though radiation damping effects have been studied in standard NMR probes, these effects have not been measured in the microcoil probes. Here a systematic evaluation of radiation damping effects in a microcoil NMR probe is presented and the results are compared with similar measurements in conventional large volume samples. These results show that radiation-damping effects in microcoil probe is much more pronounced than in 5 mm probes, and that it is critically important to optimize NMR experiments to minimize these effects. As microcoil probes provide better control of the bulk magnetization, with good RF and B0 inhomogeneity, in addition to negligible dipolar field effects due to nearly spherical sample volumes, these probes can be used exclusively to study the complex behavior of radiation damping.

  12. Using an NMR Spectrometer to Do Magnetic Resonance Imaging: An Undergraduate Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Steinmetz, Wayne E.; Maher, M. Cyrus

    2007-01-01

    A conventional Fourier-transform NMR spectrometer with a triple-axis gradient probe can function as a MRI imager. In this experiment students gain hands-on experience with MRI while they learn about important principles underlying the practice of NMR, such as gradients, multi-dimensional spectroscopy, and relaxation. Students image a biological…

  13. Transverse Spin Relaxation in Liquid X

    SciTech Connect

    Romalis, M. V.; Ledbetter, M. P.

    2001-08-06

    Using spin-echo NMR techniques we study the transverse spin relaxation of hyperpolarized liquid X{sup 129}e in a spherical cell. We observe an instability of the transverse magnetization due to dipolar fields produced by liquid X{sup 129}e , and find that imperfections in the {pi} pulses of the spin-echo sequence suppress this instability. A simple perturbative model of this effect is in good agreement with the data. We obtain a transverse spin relaxation time of 1300sec in liquid X{sup 129}e , and discuss applications of hyperpolarized liquid X{sup 129}e as a sensitive magnetic gradiometer and for a permanent electric dipole moment search.

  14. DIFFERENTIATION IN N15 UPTAKE AND THE ORGANIZATION OF AN ARCTIC TUNDRA PLANT COMMUNITY

    EPA Science Inventory

    We used N15 soil-labeling techniques to examine how the dominant species in a N-limited, tussock tundra plant community partitioned soil N, and how such partitioning may contribute to community organization. The five most abundant species were well differentiated with respect to...

  15. ECG gated NMR-CT for cardiovascular diseases

    SciTech Connect

    Nishikawa, J.; Ohtake, T.; Machida, K.; Iio, M.; Yoshimoto, N.; Sugimoto, T.

    1985-05-01

    The authors have been applying ECG gated NMR-CT to mainly patients with myocardial infarction (MI), and hypertrophic cardiomyopathy (HCM). Thirteen patients with MI, 8 with HCM and 5 without any heart diseases were studied by ECG gated NMR imaging (spin-echo technique, TR: depends on patient heart rate, TE: 35 and 70 msec.) with 0.35 T superconducting magnet. On NMR images (MRI), the authors examined the wall thickness, wall motion and T/sub 2/ relaxation time in the area of diseased myocardium. The lesions of old MI were depicted as the area of thin wall and T/sub 2/ relaxation time of those lesions were similar to the area of non-infarcted myocardium. The lesions of recent MI (up to 3.5 months from the recent attack) were shown as the same wall thickness as the non-infarcted myocardium and the area of prolonged T/sub 2/ relaxation time compared with that of non-infarcted myocardium. MRI demonstrated diffusely thick myocardium in all patients with HCM. T/sub 2/ relaxation time of the areas of HCM was almost the same as that of normal myocardium, and it's difference among each ventricular wall in patients with HCM was not statistically significant. The authors conclude that ECG gated NMR-CT offers 3-D morphological information of the heart without any contrast material nor radioisotopes. ECG gated MRI provides the useful informations to diagnose MI, especially in the differential diagnosis between old and recent MI.

  16. NMR studies of protein structure and dynamics

    NASA Astrophysics Data System (ADS)

    Kay, Lewis E.

    2011-12-01

    Recent advances in solution NMR spectroscopy have significantly extended the spectrum of problems that can now be addressed with this technology. In particular, studies of proteins with molecular weights on the order of 100 kDa are now possible at a level of detail that was previously reserved for much smaller systems. An example of the sort of information that is now accessible is provided in a study of malate synthase G, a 723 residue enzyme that has been a focal point of research efforts in my laboratory. Details of the labeling schemes that have been employed and optimal experiments for extraction of structural and dynamics information on this protein are described. NMR studies of protein dynamics, in principle, give insight into the relation between motion and function. A description of deuterium-based spin relaxation methods for the investigation of side chain dynamics is provided. Examples where millisecond (ms) time scale dynamics play an important role and where relaxation dispersion NMR spectroscopy has been particularly informative, including applications involving the membrane enzyme PagP and mutants of the Fyn SH3 domain that fold on a ms time scale, are presented.

  17. NMR CHARACTERIZATIONS OF PROPERTIES OF HETEROGENEOUS MEDIA

    SciTech Connect

    C.T. Philip Chang; Changho Choi; Jeromy T. Hollenshead; Rudi Michalak; Jack Phan; Ramon Saavedra; John C. Slattery; Jinsoo Uh; Randi Valestrand; A. Ted Watson; Song Xue

    2005-01-01

    A critical and long-standing need within the petroleum industry is the specification of suitable petrophysical properties for mathematical simulation of fluid flow in petroleum reservoirs (i.e., reservoir characterization). The development of accurate reservoir characterizations is extremely challenging. Property variations may be described on many scales, and the information available from measurements reflect different scales. In fact, experiments on laboratory core samples, well-log data, well-test data, and reservoir-production data all represent information potentially valuable to reservoir characterization, yet they all reflect information about spatial variations of properties at different scales. Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) provide enormous potential for developing new descriptions and understandings of heterogeneous media. NMR has the rare capability to probe permeable media non-invasively, with spatial resolution, and it provides unique information about molecular motions and interactions that are sensitive to morphology. NMR well-logging provides the best opportunity ever to resolve permeability distributions within petroleum reservoirs. We develop MRI methods to determine, for the first time, spatially resolved distributions of porosity and permeability within permeable media samples that approach the intrinsic scale: the finest resolution of these macroscopic properties possible. To our knowledge, this is the first time that the permeability is actually resolved at a scale smaller than the sample. In order to do this, we have developed a robust method to determine of relaxation distributions from NMR experiments and a novel implementation and analysis of MRI experiments to determine the amount of fluid corresponding to imaging regions, which are in turn used to determine porosity and saturation distributions. We have developed a novel MRI experiment to determine velocity distributions within flowing experiments, and

  18. T2-Filtered T2 - T2 Exchange NMR

    NASA Astrophysics Data System (ADS)

    d'Eurydice, Marcel Nogueira; Montrazi, Elton Tadeu; Fortulan, Carlos Alberto; Bonagamba, Tito José

    2016-05-01

    This work introduces an alternative way to perform the T2 - T2 Exchange NMR experiment. Rather than varying the number of π pulses in the first CPMG cycle of the T2 - T2 Exchange NMR pulse sequence, as used to obtain the 2D correlation maps, it is fixed and small enough to act as a short T2-filter. By varying the storage time, a set of 1D measurements of T2 distributions can be obtained to reveal the effects of the migration dynamics combined with relaxation effects. This significantly reduces the required time to perform the experiment, allowing a more in-depth study of exchange dynamics and relaxation processes with improved signal-to-noise ratio. These aspects stand as basis of this novel experiment, T2-Filtered T2 - T2 Exchange NMR or simply T2 F-TREx.

  19. Relaxation techniques for stress

    MedlinePlus

    ... problems such as high blood pressure, stomachaches, headaches, anxiety, and depression. Using relaxation techniques can help you feel calm. These exercises can also help you manage stress and ease ...

  20. Mg NMR in DNA solutions: Dominance of site binding effects.

    PubMed

    Rose, D M; Bleam, M L; Record, M T; Bryant, R G

    1980-11-01

    (25)Mg NMR spectroscopy is applied to a study of magnesium ion interactions with DNA, which is considered as a model for a linear polyelectrolyte. It is demonstrated that the magnesium ion spectrum is complicated by a non-Lorent-zian line shape and is dominated by the effects of chemical exchange with macromolecule binding sites. A distinction is made between specific-site interactions in which the magnesium ion loses a water molecule from the first coordination sphere on binding and those interactions, referred to as territorial binding, in which the ion maintains its first coordination sphere complement of solvent. The first type of site-binding interactions are shown to dominate the magnesium ion NMR spectrum, based on a consideration of the magnitudes of the observed (25)Mg relaxation rates compared with (23)Na relaxation rates, the clear contributions of chemical exchange-limited relaxation, and an ion displacement experiment employing sodium.

  1. Study of correlations in molecular motion by multiple quantum NMR

    SciTech Connect

    Tang, J.H.

    1981-11-01

    Nuclear magnetic resonance is a very useful tool for characterizing molecular configurations through the measurement of transition frequencies and dipolar couplings. The measurement of spectral lineshapes, spin-lattice relaxation times, and transverse relaxation times also provide us with valuable information about correlations in molecular motion. The new technique of multiple quantum nuclear magnetic resonance has numerous advantages over the conventional single quantum NMR techniques in obtaining information about static and dynamic interactions of coupled spin systems. In the first two chapters, the theoretical background of spin Hamiltonians and the density matrix formalism of multiple quantum NMR is discussed. The creation and detection of multiple quantum coherence by multiple pulse sequence are discussed. Prototype multiple quantum spectra of oriented benzene are presented. Redfield relaxation theory and the application of multiple quantum NMR to the study of correlations in fluctuations are presented. A specific example of an oriented methyl group relaxed by paramagnetic impurities is studied in detail. The study of possible correlated motion between two coupled methyl groups by multiple quantum NMR is presented. For a six spin system it is shown that the four-quantum spectrum is sensitive to two-body correlations, and serves a ready test of correlated motion. The study of the spin-lattice dynamics of orienting or tunneling methyl groups (CH/sub 3/ and CD/sub 3/) at low temperatures is presented. The anisotropic spin-lattice relaxation of deuterated hexamethylbenzene, caused by the sixfold reorientation of the molecules, is investigated, and the NMR spectrometers and other experimental details are discussed.

  2. SARA: a software environment for the analysis of relaxation data acquired with accordion spectroscopy.

    PubMed

    Harden, Bradley J; Frueh, Dominique P

    2014-02-01

    We present SARA (Software for Accordion Relaxation Analysis), an interactive and user-friendly MATLAB software environment designed for analyzing relaxation data obtained with accordion spectroscopy. Accordion spectroscopy can be used to measure nuclear magnetic resonance (NMR) relaxation rates in a fraction of the time required by traditional methods, yet data analysis can be intimidating and no unified software packages are available to assist investigators. Hence, the technique has not achieved widespread use within the NMR community. SARA offers users a selection of analysis protocols spanning those presented in the literature thus far, with modifications permitting a more general application to crowded spectra such as those of proteins. We discuss the advantages and limitations of each fitting method and suggest a protocol combining the strengths of each procedure to achieve optimal results. In the end, SARA provides an environment for facile extraction of relaxation rates and should promote routine application of accordion relaxation spectroscopy.

  3. Whole-core analysis by sup 13 C NMR

    SciTech Connect

    Vinegar, H.J.; Tutunjian, P.N. ); Edelstein, W.A.; Roemer, P.B. )

    1991-06-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance {sup 13}C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. {sup 13}C NMR can be used in cores where the {sup 1}H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. {sup 13}C/{sup 1}H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good {sup 13}C signal/noise ratio (SNR) is obtained within minutes, while {sup 1}H spectra are obtained in seconds. NMR measurements have been made of the {sup 13}C and {sup 1}H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the {sup 13}C and {sup 1}H signal per unit volume is constant within about 3.5%. For heavy crudes, the {sup 13}C and {sup 1}H density measured by NMR is reduced by the shortening of spin-spin relaxation time. {sup 13}C and {sup 1}H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60{degrees} API), and alkanes (C{sub 5} through C{sub 16}) with viscosities at 77{degrees}F ranging from 0.5 cp to 2.5 {times} 10{sup 7} cp. The {sup 13}C and {sup 1}H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The {sup 13}C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled {sup 13}C NMR is shown to be insensitive to kerogen; thus, {sup 13}C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the {sup 13}C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon.

  4. Stellar Origins of C-13 and N-15-Enriched Presolar SiC Grains

    NASA Technical Reports Server (NTRS)

    Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua; Pignatari, Marco; Jose, Jordi; Nguyen, Ann

    2016-01-01

    Extreme excesses of 13 C ( C (12 C/ 13 C<10) and 15 N ( N (14 N/ 15 N< 20) in rare presolar SiC 20) in rare presolar SiClar SiC grains have been considered diagnostic of an origin in classical novae [1], though an origin in core-collapse supernovae (CCSNe) has also been proposed [2]. We report multi-element isotopic data for 19 13 C- and 15 N-enriched presolar SiC grains(12 C/13 C<16 and 14 N/ 15 N<150) from an acid resistant residue of the Murchison meteorite. These grains are enriched in 13 C and15 N, but with quite diverse Si isotopic signatures. Four grains with isotopic signatures. Four grains with isotopic signatures. Four grains with isotopic signatures. Four grains with isotopic signatures.

  5. Asymmetric Induction by a Nitrogen (14) N/(15) N Isotopomer in Conjunction with Asymmetric Autocatalysis.

    PubMed

    Matsumoto, Arimasa; Ozaki, Hanae; Harada, Shunya; Tada, Kyohei; Ayugase, Tomohiro; Ozawa, Hitomi; Kawasaki, Tsuneomi; Soai, Kenso

    2016-12-05

    Chirality arising from isotope substitution, especially with atoms heavier than the hydrogen isotopes, is usually not considered a source of chirality in a chemical reaction. An N(2) ,N(2) ,N(3) ,N(3) -tetramethyl-2,3-butanediamine containing nitrogen ((14) N/(15) N) isotope chirality was synthesized and it was revealed that this isotopically chiral diamine compound acts as a chiral initiator for asymmetric autocatalysis.

  6. Asymmetric Induction by a Nitrogen 14N/15N Isotopomer in Conjunction with Asymmetric Autocatalysis

    PubMed Central

    Ozaki, Hanae; Harada, Shunya; Tada, Kyohei; Ayugase, Tomohiro; Ozawa, Hitomi; Kawasaki, Tsuneomi

    2016-01-01

    Abstract Chirality arising from isotope substitution, especially with atoms heavier than the hydrogen isotopes, is usually not considered a source of chirality in a chemical reaction. An N 2 ,N 2 ,N 3 ,N 3‐tetramethyl‐2,3‐butanediamine containing nitrogen (14N/15N) isotope chirality was synthesized and it was revealed that this isotopically chiral diamine compound acts as a chiral initiator for asymmetric autocatalysis. PMID:27754589

  7. Protein Motions and Folding Investigated by NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Palmer, Arthur

    2002-03-01

    NMR spin relaxation spectroscopy is a powerful experimental approach for globally characterizing conformational dynamics of proteins in solution. Laboratory frame relaxation measurements are sensitive to overall rotational diffusion and internal motions on picosecond-nanosecond time scales, while rotating frame relaxation measurements are sensitive to chemical exchange processes on microsecond-millisecond time scales. The former approach is illustrated by ^15N laboratory-frame relaxation experiments as a function of temperature for the helical subdomain HP36 of the F-actin-binding headpiece domain of chicken villin. The data are analyzed using the model-free formalism to characterize order parameters and effective correlation times for intramolecular motions of individual ^15N sites. The latter approach is illustrated by ^13C Carr-Purcell-Meiboom-Gill relaxation measurements for the de novo designed α_2D protein and by ^15N rotating-frame relaxation measurements for the peripheral subunit-binding domain (PSBD) from the dihydrolopoamide acetyltransferase component of the pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus. These experiments are used to determine the folding and unfolding kinetic rate constants for the two proteins. The results for HP36, α_2D, and PSBD illustrate the capability of current NMR methods for characterizing dynamic processes on multiple time scales in proteins.

  8. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs.

  9. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs.

  10. Some nitrogen-14 NMR studies in solids

    SciTech Connect

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the /sup 14/N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long /sup 14/N longitudinal relaxation times (T/sub 1/) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between /sup 14/N and /sup 1/H. Using quadrupolar echo and CP techniques, the /sup 14/N quadrupolar coupling constants (e/sup 2/qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the /sup 14/N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects.

  11. From Strong to Fragile Glass Formers: Secondary Relaxation in Polyalcohols

    NASA Astrophysics Data System (ADS)

    Döß, A.; Paluch, M.; Sillescu, H.; Hinze, G.

    2002-03-01

    We have studied details of the molecular origin of slow secondary relaxation near Tg in a series of neat polyalcohols by means of dielectric spectroscopy and 2H NMR. From glycerol to threitol, xylitol, and sorbitol the appearance of the secondary relaxation changes gradually from a wing-type scenario to a pronounced β peak. It is found that in sorbitol the dynamics of the whole molecule contributes equally to the β process, while in glycerol the hydrogen bond forming OH groups remain rather rigid compared to the hydrogens bonded to the carbon skeleton.

  12. NMR logging apparatus

    DOEpatents

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  13. Understanding NMR T2 spectral uncertainty

    NASA Astrophysics Data System (ADS)

    Prange, Michael; Song, Yi-Qiao

    2010-05-01

    NMR relaxation and diffusion data analysis commonly uses a wide range of methods from simple exponential fitting to Laplace inversions. The pros and cons of these methods are often the subject of intense debate. We show that the ill-conditioned nature of such analysis gives rise to a range of solutions for every method resulting in uncertainty in the spectral solution. Such uncertainty is in fact characteristic of the inversion method. We show a simple method of sparse spectral representation can be used to improve the statistics of multiple-exponential-based inversion schemes.

  14. Metabolism of Nonessential N15-Labeled Amino Acids and the Measurement of Human Whole-Body Protein Synthesis Rates

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Settle, R. G.; Albina, J. A.; Dempsey, D. T.; Melnick, G.

    1991-01-01

    Eight N-15 labeled nonessential amino acids plus (15)NH4Cl were administered over a 10 h period to four healthy adult males using a primed-constant dosage regimen. The amount of N-15 excreted in the urine and the urinary ammonia, hippuric acid, and plasma alanine N-15 enrichments were measured. There was a high degree of consistency across subjects in the ordering of the nine compounds based on the fraction of N-15 excreted (Kendall coefficient of concordance W = 0.83, P is less than 0.01). Protein synthesis rates were calculated from the urinary ammonia plateau enrichment and the cumulative excretion of N-15. Glycine was one of the few amino acids that gave similar values by both methods.

  15. Extended function of plasmid partition genes: the Sop system of linear phage-plasmid N15 facilitates late gene expression.

    PubMed

    Ravin, Nikolai V; Rech, Jérôme; Lane, David

    2008-05-01

    The mitotic stability of the linear plasmid-prophage N15 of Escherichia coli depends on a partition system closely related to that of the F plasmid SopABC. The two Sop systems are distinguished mainly by the arrangement of their centromeric SopB-binding sites, clustered in F (sopC) and dispersed in N15 (IR1 to IR4). Because two of the N15 inverted repeat (IR) sites are located close to elements presumed (by analogy with phage lambda) to regulate late gene expression during the lytic growth of N15, we asked whether Sop partition functions play a role in this process. In N15, a putative Q antiterminator gene is located 6 kb upstream of the probable major late promoter and two intrinsic terminator-like sequences, in contrast to lambda, where the Q gene is adjacent to the late promoter. Northern hybridization and lacZ reporter activity confirmed the identity of the N15 late promoter (p52), demonstrated antiterminator activity of the Q analogue, and located terminator sequences between p52 and the first open reading frame. Following prophage induction, N15 mutated in IR2 (downstream from gene Q) or IR3 (upstream of p52) showed a pronounced delay in lysis relative to that for wild-type N15. Expression of ir3(-)-p52::lacZ during N15 wild-type lytic growth was strongly reduced relative to the equivalent ir3(+) fusion. The provision of Q protein and the IR2 and SopAB proteins in trans to ir3(+)-p52::lacZ increased expression beyond that seen in the absence of any one of these factors. These results indicate that the N15 Sop system has a dual role: partition and regulation of late gene transcription during lytic growth.

  16. BOOK REVIEW: NMR Imaging of Materials

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard

    2003-09-01

    Magnetic resonance imaging (MRI) of materials is a field of increasing importance. Applications extend from fundamental science like the characterization of fluid transport in porous rock, catalyst pellets and hemodialysers into various fields of engineering for process optimization and product quality control. While the results of MRI imaging are being appreciated by a growing community, the methods of imaging are far more diverse for materials applications than for medical imaging of human beings. Blümich has delivered the first book in this field. It was published in hardback three years ago and is now offered as a paperback for nearly half the price. The text provides an introduction to MRI imaging of materials covering solid-state NMR spectroscopy, imaging methods for liquid and solid samples, and unusual MRI in terms of specialized approaches to spatial resolution such as an MRI surface scanner. The book represents an excellent and thorough treatment which will help to grow research in materials MRI. Blümich developed the treatise over many years for his research students, graduates in chemistry, physics and engineering. But it may also be useful for medical students looking for a less formal discussion of solid-state NMR spectroscopy. The structure of this book is easy to perceive. The first three chapters cover an introduction, the fundamentals and methods of solid-state NMR spectroscopy. The book starts at the ground level where no previous knowledge about NMR is assumed. Chapter 4 discusses a wide variety of transformations beyond the Fourier transformation. In particular, the Hadamard transformation and the 'wavelet' transformation are missing from most related books. This chapter also includes a description of noise-correlation spectroscopy, which promises the imaging of large objects without the need for extremely powerful radio-frequency transmitters. Chapters 5 and 6 cover basic imaging methods. The following chapter about the use of relaxation and

  17. Crude protein extraction protocol for phage N15 protelomerase in vitro enzymatic assays.

    PubMed

    Chen, Qingwen; Narayanan, Kumaran

    2011-07-01

    The phage N15 protelomerase enzyme (TelN) is essential for the replication of its genome by resolution of its telRL domain, located within a telomerase occupancy site (tos), into hairpin telomeres. Isolation of TelN for in vitro processing of tos, however, is a highly complex process, requiring multiple purification steps. In this study a simplified protocol for crude total protein extraction is described that retains the tos-cleaving activity of TelN for at least 4 weeks, greatly simplifying in vitro testing of its activity. This protocol may be extended for functional analysis of other phage and bacterial proteins, particularly DNA-processing enzymes.

  18. Noninvasive testing of art and cultural heritage by mobile NMR.

    PubMed

    Blümich, Bernhard; Casanova, Federico; Perlo, Juan; Presciutti, Federica; Anselmi, Chiara; Doherty, Brenda

    2010-06-15

    Nuclear magnetic resonance (NMR) has many applications in science, medicine, and technology. Conventional instrumentation is large and expensive, however, because superconducting magnets offer maximum sensitivity. Yet NMR devices can also be small and inexpensive if permanent magnets are used, and samples need not be placed within the magnet but can be examined externally in the stray magnetic field. Mobile stray-field NMR is a method of growing interest for nondestructive testing of a diverse range of materials and processes. A well-known stray-field sensor is the commercially available NMR-MOUSE, which is small and can readily be carried to an object to be studied. In this Account, we describe mobile stray-field NMR, with particular attention to its use in analyzing objects of cultural heritage. The most common data recorded are relaxation measurements of (1)H because the proton is the most sensitive NMR nucleus, and relaxation can be measured despite the inhomogeneous magnetic field that typically accompanies a simple magnet design. Through NMR relaxation, the state of matter can be analyzed locally, and the signal amplitude gives the proton density. A variety of stray-field sensors have been designed. Small devices weighing less than a kilogram have a shallow penetration depth of just a few millimeters and a resolution of a few micrometers. Access to greater depths requires larger sensors that may weigh 30 kg or more. The use of these sensors is illustrated by selected examples, including examinations of (i) the stratigraphy of master paintings, (ii) binder aging, (iii) the deterioration of paper, (iv) wood density in master violins, (v) the moisture content and moisture profiles in walls covered with paintings and mosaics, and (vi) the evolution of stone conservation treatments. The NMR data provide unique information to the conservator on the state of the object--including past conservation measures. The use of mobile NMR remains relatively new, expanding

  19. Relaxation in quantum glasses

    NASA Astrophysics Data System (ADS)

    Ancona Torres, Carlos E.

    The Ising model in transverse field provides the simplest description of a quantum glass. I study two systems that are realizations of the Ising model in transverse field, LiHoxY1-- xF4 and Rb1-- x(NH4)xH2PO 4. In the spin glass LiHoxY1-- xF4, applying a magnetic field Ht transverse to the Ising direction introduces tunneling between the bare Ising eigenstates. In addition, the coupling between the transverse dipolar interaction and the transverse field introduces entanglement or tunable random fields depending on the concentration. By comparing the classical and quantum transitions in LiHo0.198Y0.802F4 and LiHo 0.167Y0.833F4, I characterize the crossover from random field dominated behavior in the 19.8% sample to entanglement dominated behavior in the 16.7% sample. The quantum transition in the 19.8% sample is dominated by the limit on its correlation length caused by the random fields, while the dominant effect in the 16.7% sample is the enhanced tunneling rate introduced by entanglement. The proton glass Rb1--x(NH 4)xH2PO4 relaxes through tunneling of protons in the hydrogen bonds of the crystal, yielding an effective Ising model in transverse field. Since this field cannot be tuned directly, I combine bulk dielectric susceptibility measurements with neutron Compton scattering measurements of the local tunneling potential in two different concentrations, x = 35% and 72%. I find that tunneling drives the fastest relaxation processes at temperatures as high as 20 K and explicitly calculate the tunneling rate from the tunneling potential of the hydrogen bond. Moreover, the structural mechanism for the glassy relaxation allows a real-space picture of the relaxation dynamics to be correlated to the free energy description of aging. I find that the glassy relaxation is driven by the sequential diffusion of defects called Takagi configurations with a classical to quantum crossover in the relaxation at 3 K. I relate the relaxation rate to the quantum action of tunneling

  20. Study of cultured fibroblasts in vivo using NMR

    SciTech Connect

    Karczmar, G.S.

    1984-08-01

    The goal was to study the compartmentation of phosphorylated glycolytic intermediates in intact Chicken Embryo Fibroblasts (CEFs) using /sup 31/P NMR at 109 MHz. A technique for maintaining functional cells at high densities in an NMR magnet is described. Signals were detected from cytoplasmic inorganic phosphate (P/sub i/), ATP, NAD, NADH, phosphorylcholine and phosphorylethanolamine. The effect of external glucose on cytoplasmic pools of phosphates was studied. When cells were perfused with glucose-free medium the rate of glycolysis decreased, the amplitudes of the ATP resonances decreased, and the P/sub i/ intensity increased. The quantity of NMR-detectable P/sub i/ produced was significantly greater than the quantity of NMR-detectable ATP which was lost. Experiments with /sup 32/P labeled P/sub i/ showed that as the concentration of glucose in the medium was increase, the amount of phosphate sequestered in the cells increased. We conclude that there is a pool of P/sub i/ which is not detected by high resolution NMR and that the size of this pool increases as the rate of glycolysis increase. Longtitudinal relaxation times of intracellular phosphates in normal, transformed, and primary CEFs were measured. The results demonstrate that relaxation times of phosphates are sensitive to structural and metabolic changes which occur when cells are grown in culture. 59 references. 31 figures.

  1. NMR relaxometry as a versatile tool to study Li ion dynamics in potential battery materials.

    PubMed

    Kuhn, A; Kunze, M; Sreeraj, P; Wiemhöfer, H D; Thangadurai, V; Wilkening, M; Heitjans, P

    2012-04-01

    NMR spin relaxometry is known to be a powerful tool for the investigation of Li(+) dynamics in (non-paramagnetic) crystalline and amorphous solids. As long as significant structural changes are absent in a relatively wide temperature range, with NMR spin-lattice (as well as spin-spin) relaxation measurements information on Li self-diffusion parameters such as jump rates and activation energies are accessible. Diffusion-induced NMR relaxation rates are governed by a motional correlation function describing the ion dynamics present. Besides the mean correlation rate of the dynamic process, the motional correlation function (i) reflects deviations from random motion (so-called correlation effects) and (ii) gives insights into the dimensionality of the hopping process. In favorable cases, i.e., when temperature- and frequency-dependent NMR relaxation rates are available over a large dynamic range, NMR spin relaxometry is able to provide a comprehensive picture of the relevant Li dynamic processes. In the present contribution, we exemplarily present two recent variable-temperature (7)Li NMR spin-lattice relaxation studies focussing on Li(+) dynamics in crystalline ion conductors which are of relevance for battery applications, viz. Li(7) La(3)Zr(2)O(12) and Li(12)Si(7).

  2. In situ fluid typing and quantification with 1D and 2D NMR logging.

    PubMed

    Sun, Boqin

    2007-05-01

    In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T(2) distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accuracy of fluid typing is greatly overshadowed by the overlap between T(2) peaks arising from different fluids with similar apparent T(2) relaxation times. Nevertheless, the shapes of T(2) distributions from different fluid components are often different and can be predetermined. Inversion with predetermined T(2) distributions allows us to perform fluid component decomposition to yield individual fluid volume ratios. Another effective method for in situ fluid typing is two-dimensional (2D) NMR logging, which results in proton population distribution as a function of T(2) relaxation time and fluid diffusion coefficient (or T(1) relaxation time). Since diffusion coefficients (or T(1) relaxation time) for different fluid components can be very different, it is relatively easy to separate oil (especially heavy oil) from water signal in a 2D NMR map and to perform accurate fluid typing. Combining NMR logging with resistivity and/or neutron/density logs provides a third method for in situ fluid typing. We shall describe these techniques with field examples.

  3. Quadrupolar relaxation of hyperpolarized krypton-83 as a probe for surfaces.

    PubMed

    Stupic, Karl F; Cleveland, Zackary I; Pavlovskaya, Galina E; Meersmann, Thomas

    2006-02-01

    This work reports the first systematic study of relaxation experienced by the hyperpolarized (hp) noble gas isotope (83)Kr (I=9/2) in contact with surfaces. The spin-lattice relaxation of (83)Kr is found to depend strongly on the chemical composition of the surfaces in the vicinity of the gas. This effect is caused by quadrupolar interactions during brief periods of surface adsorption that are the dominating source of longitudinal spin relaxation in the (83)Kr atoms. Simple model systems of closest packed glass beads with uniform but variable bead sizes are used for the relaxation measurements. The observed relaxation rates depend strongly on the chemical treatment of the glass surfaces and on the surface to volume ratio. Hp (83)Kr NMR relaxation measurements of porous polymers with pore sizes of 70-250 microm demonstrate the potential use of this new technique for material sciences applications.

  4. Partition operon expression in the linear plasmid prophage N15 is controlled by both Sop proteins and protelomerase.

    PubMed

    Dorokhov, Boris D; Lane, David; Ravin, Nikolai V

    2003-10-01

    The temperate coliphage N15, unlike most low copy-number prokaryotic replicons, is maintained as a linear DNA molecule with covalently closed ends. Accurate partitioning of the plasmid prophage is assured by a close homologue of the sop locus of the F plasmid. However, the region upstream of the N15 sopAB genes contains multiple putative promoters, in contrast to F sop whose expression is driven by one negatively autoregulated promoter. In addition, the centromere of N15 is represented by four inverted repeats located at widely separated sites within the region essential for replication and control of lytic functions. We have analysed expression of N15 sop genes. We find that transcription of N15 sop is driven by two major promoters. The first, P1, is similar in sequence and function to the F sop promoter; it is repressed by Sop proteins. The second promoter, P2, is upstream of P1 and is several times stronger. It is insensitive to regulation by Sop proteins but is tightly repressed by protelomerase, the N15 enzyme that completes prophage replication by generating hairpin telomeres. These results establish a regulatory link between the partition system and other processes of N15 maintenance.

  5. Robust determination of surface relaxivity from nuclear magnetic resonance DT(2) measurements.

    PubMed

    Luo, Zhi-Xiang; Paulsen, Jeffrey; Song, Yi-Qiao

    2015-10-01

    Nuclear magnetic resonance (NMR) is a powerful tool to probe into geological materials such as hydrocarbon reservoir rocks and groundwater aquifers. It is unique in its ability to obtain in situ the fluid type and the pore size distributions (PSD). The T1 and T2 relaxation times are closely related to the pore geometry through the parameter called surface relaxivity. This parameter is critical for converting the relaxation time distribution into the PSD and so is key to accurately predicting permeability. The conventional way to determine the surface relaxivity ρ2 had required independent laboratory measurements of the pore size. Recently Zielinski et al. proposed a restricted diffusion model to extract the surface relaxivity from the NMR diffusion-T2 relaxation (DT2) measurement. Although this method significantly improved the ability to directly extract surface relaxivity from a pure NMR measurement, there are inconsistencies with their model and it relies on a number of preset parameters. Here we propose an improved signal model to incorporate a scalable LT and extend their method to extract the surface relaxivity based on analyzing multiple DT2 maps with varied diffusion observation time. With multiple diffusion observation times, the apparent diffusion coefficient correctly describes the restricted diffusion behavior in samples with wide PSDs, and the new method does not require predetermined parameters, such as the bulk diffusion coefficient and tortuosity. Laboratory experiments on glass beads packs with the beads diameter ranging from 50 μm to 500 μm are used to validate the new method. The extracted diffusion parameters are consistent with their known values and the determined surface relaxivity ρ2 agrees with the expected value within ±7%. This method is further successfully applied on a Berea sandstone core and yields surface relaxivity ρ2 consistent with the literature.

  6. Hair Dye and Hair Relaxers

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  7. Quantitative analysis of protein-ligand interactions by NMR.

    PubMed

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  8. A Comparison of Relaxation Strategies.

    ERIC Educational Resources Information Center

    Matthews, Doris B.

    Some researchers argue that all relaxation techniques produce a single relaxation response while others support a specific-effects hypothesis which suggests that progressive relaxation affects the musculoskeletal system and that guided imagery affects cognitive changes. Autogenics is considered a technique which is both somatic and cognitive. This…

  9. Relaxation from particle production

    NASA Astrophysics Data System (ADS)

    Hook, Anson; Marques-Tavares, Gustavo

    2016-12-01

    We consider using particle production as a friction force by which to implement a "Relaxion" solution to the electroweak hierarchy problem. Using this approach, we are able to avoid superplanckian field excursions and avoid any conflict with the strong CP problem. The relaxation mechanism can work before, during or after inflation allowing for inflationary dynamics to play an important role or to be completely decoupled.

  10. NMR Studies of Dynamic Biomolecular Conformational Ensembles

    PubMed Central

    Torchia, Dennis A.

    2015-01-01

    Multidimensional heteronuclear NMR approaches can provide nearly complete sequential signal assignments of isotopically enriched biomolecules. The availability of assignments together with measurements of spin relaxation rates, residual spin interactions, J-couplings and chemical shifts provides information at atomic resolution about internal dynamics on timescales ranging from ps to ms, both in solution and in the solid state. However, due to the complexity of biomolecules, it is not possible to extract a unique atomic-resolution description of biomolecular motions even from extensive NMR data when many conformations are sampled on multiple timescales. For this reason, powerful computational approaches are increasingly applied to large NMR data sets to elucidate conformational ensembles sampled by biomolecules. In the past decade, considerable attention has been directed at an important class of biomolecules that function by binding to a wide variety of target molecules. Questions of current interest are: “Does the free biomolecule sample a conformational ensemble that encompasses the conformations found when it binds to various targets; and if so, on what time scale is the ensemble sampled?” This article reviews recent efforts to answer these questions, with a focus on comparing ensembles obtained for the same biomolecules by different investigators. A detailed comparison of results obtained is provided for three biomolecules: ubiquitin, calmodulin and the HIV-1 trans-activation response RNA. PMID:25669739

  11. NMR imaging microscopy

    SciTech Connect

    Not Available

    1986-10-01

    In the past several years, proton nuclear magnetic resonance (NMR) imaging has become an established technique in diagnostic medicine and biomedical research. Although much of the work in this field has been directed toward development of whole-body imagers, James Aguayo, Stephen Blackband, and Joseph Schoeninger of the Johns Hopkins University School of Medicine working with Markus Hintermann and Mark Mattingly of Bruker Medical Instruments, recently developed a small-bore NMR microscope with sufficient resolution to image a single African clawed toad cell (Nature 1986, 322, 190-91). This improved resolution should lead to increased use of NMR imaging for chemical, as well as biological or physiological, applications. The future of NMR microscopy, like that of many other newly emerging techniques, is ripe with possibilities. Because of its high cost, however, it is likely to remain primarily a research tool for some time. ''It's like having a camera,'' says Smith. ''You've got a way to look at things at very fine levels, and people are going to find lots of uses for it. But it is a very expensive technique - it costs $100,000 to add imaging capability once you have a high-resolution NMR, which itself is at least a $300,000 instrument. If it can answer even a few questions that can't be answered any other way, though, it may be well worth the cost.''

  12. ^93Nb NMR investigation of the multiferroic system Ba3NbFe3Si2O14

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd; Hoch, M. J. R.; Zhou, H. D.; Brooks, J. S.; Kuhns, P. L.; Reyes, A. P.; Wiebe, C. R.

    2009-03-01

    We present ^93Nb nuclear magnetic resonance spectroscopy and relaxation data on the new multiferroic system Ba3NbFe3Si2O14. The spin-lattice relaxation rate ^931/T1 and spin-spin relaxation rate ^931/T2 show a peak at 26 K accompanied by broadening of the NMR lineshapes, characteristic of N'eel ordering. Salient features of ^93Nb NMR lineshapes in the ordered phase and temperature-dependent ^93Nb Knight shifts will be discussed in relation to the possible bulking or tilting of the NbO6 octahedra (caused by magneto-lattice coupling) around the transition.

  13. [Sop proteins can cause transcriptional silencing of genes located close to the centromere sites of linear plasmid N15].

    PubMed

    Mardanov, A V; Lane, D; Ravin, N V

    2010-01-01

    Stable inheritance of bacterial chromosomes and low copy number plasmids is ensured by accurate partitioning of replicated molecules between the daughter cells at division. Partitioning of the prophage of the temperate bacteriophage N15, which exists as a linear plasmid molecule with covalently closed ends, depends on the sop locus, comprising genes sopA and sopB, as well as four centromere sites located in different regions of the N15 genome essential for replication and the control of lysogeny. We found that binding of SopB to the centromere can silence centromere-proximal promoters, presumably due to subsequent polymerizing of SopB along the DNA. Close to the IR4 centromere site we identified a promoter, P59, able to drive expression of phage late genes encoding the structural proteins of virion. We found that following binding to IR4 the N15 Sop proteins can cause repression of this promoter. The repression depends on SopB and became stronger in the presence of SopA. Sop-dependent silencing of centromere-proximal promoters control gene expression in phage N15, particularly preventing undesired expression of late genes in the N15 prophage. Thus, the phage N15 sop system not only ensures plasmid partitioning but is also involved in the genetic network controlling prophage replication and the maintenance of lysogeny.

  14. NMR analysis, protonation equilibria and decomposition kinetics of tolperisone.

    PubMed

    Orgován, Gábor; Tihanyi, Károly; Noszál, Béla

    2009-12-05

    The rate constants of spontaneous and hydroxide-catalyzed decomposition and the tautomer-specific protonation constants of tolperisone, a classical muscle relaxant were determined. A solution NMR method without any separation techniques was elaborated to quantitate the progress of decomposition. All the rate and equilibrium constants were determined at four different temperatures and the activation parameters were calculated. The molecular mechanism of decomposition is proposed.

  15. Ultralow field NMR spectrometer with an atomic magnetometer near room temperature.

    PubMed

    Liu, Guobin; Li, Xiaofeng; Sun, Xianping; Feng, Jiwen; Ye, Chaohui; Zhou, Xin

    2013-12-01

    We present a Cs atomic magnetometer with a sensitivity of 150fT/Hz(1/2) operating near room temperature. The nuclear magnetic resonance (NMR) signal of 125μL tap water was detected at an ultralow magnetic field down to 47nT, with the signal-to-noise ratio (SNR) of the NMR signal approaching 50 after eight averages. Relaxivity experiments with a Gd(DTPA) contrast agent in zero field were performed, in order to show the magnetometer's ability to measure spin-lattice relaxation time with high accuracy. This demonstrates the feasibility of an ultralow field NMR spectrometer based on a Cs atomic magnetometer, which has a low working temperature, short data acquisition time and high sensitivity. This kind of NMR spectrometer has great potential in applications such as chemical analysis and magnetic relaxometry detection in ultralow or zero fields.

  16. Studying Dynamics by Magic-Angle Spinning Solid-State NMR Spectroscopy: Principles and Applications to Biomolecules

    PubMed Central

    Schanda, Paul; Ernst, Matthias

    2016-01-01

    Magic-angle spinning solid-state NMR spectroscopy is an important technique to study molecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecular sciences. Here we provide an overview of experimental approaches to study molecular dynamics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin relaxation in solid samples under magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Experimental challenges for measuring relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches are discussed, which provide information about time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also discuss the theoretical basis and experimental measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct information about the amplitude of motions. The potential of combining relaxation data with such measurements of dynamically-averaged anisotropic interactions is discussed. Although the focus of this review is on the theoretical foundations of dynamics studies rather than their application, we close by discussing a small number of recent dynamics studies, where the dynamic properties of proteins in crystals are compared to those in solution. PMID:27110043

  17. Optimizing Adiabaticity in NMR

    NASA Astrophysics Data System (ADS)

    Vandermause, Jonathan; Ramanathan, Chandrasekhar

    We demonstrate the utility of Berry's superadiabatic formalism for numerically finding control sequences that implement quasi-adiabatic unitary transformations. Using an iterative interaction picture, we design a shortcut to adiabaticity that reduces the time required to perform an adiabatic inversion pulse in liquid state NMR. We also show that it is possible to extend our scheme to two or more qubits to find adiabatic quantum transformations that are allowed by the control algebra, and demonstrate a two-qubit entangling operation in liquid state NMR. We examine the pulse lengths at which the fidelity of these adiabatic transitions break down and compare with the quantum speed limit.

  18. N2H+ and N15NH+ toward the prestellar core 16293E in L1689N

    NASA Astrophysics Data System (ADS)

    Daniel, F.; Faure, A.; Pagani, L.; Lique, F.; Gérin, M.; Lis, D.; Hily-Blant, P.; Bacmann, A.; Roueff, E.

    2016-07-01

    Context. Understanding the processes that could lead to an enrichment of molecules in 15N atoms is of particular interest because this may shed light on the relatively strong variations observed in the 14N/15N ratio in various solar system environments. Aims: The sample of molecular clouds where 14N/15N ratios have been measured currently is small and has to be enlarged to allow statistically significant studies. In particular, the N2H+ molecule currently shows the broadest spread of 14N/15N ratios in high-mass star-forming regions. However, the 14N/15N ratio in N2H+ was obtained in only two low-mass star-forming regions (L1544 and B1b). We here extend this sample to a third dark cloud. Methods: We targeted the 16293E prestellar core, where the N15NH+J = 1-0 line was detected. Using a model previously developed for the physical structure of the source, we solved the molecular excitation with a nonlocal radiative transfer code. For this purpose, we computed specific collisional rate coefficients for the N15NH+-H2 collisional system. As a first step of the analysis, the N2H+ abundance profile was constrained by reproducing the N2H+J = 1-0 and 3-2 maps. A scaling factor was then applied to this profile to match the N15NH+J = 1-0 spectrum. Results: We derive a column density ratio N2H+/N15NH. Conclusions: We performed a detailed analysis of the excitation of N2H+ and N15NH+ in the direction of the 16293E core with modern models that solve the radiative transfer and with the most accurate collisional rate coefficients available to date. We obtained the third estimate of the N2H+/N15NH+ column density ratio in the direction of a cold prestellar core. The current estimate ~330 agrees with the typical value of the elemental isotopic ratio in the local interstellar medium. It is lower than in some other cores, however, where values as high as 1300 have been reported.

  19. Intermediate valence behavior of Yb2Ni12P7 studied by using 31P NMR

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Sugiura, K.; Ueda, K.; Mito, T.; Kohara, T.; Satoh, R.; Tsuchiya, K.; Nakano, T.; Takeda, N.

    2013-08-01

    The Yb-based heavy-fermion compound Yb2Ni12P7 with a hexagonal Zr2Fe12P7-type crystal structure was investigated by using the 31P nuclear magnetic resonance (NMR) technique. The complicated NMR line changes its shape gradually with decreasing temperature, implying the presence of some Knight shift components. The temperature dependences of the Knight shift and the nuclear spin-lattice relaxation rate 1/ T 1 suggest the delocalization of 4 f electrons.

  20. Magnetic equivalence of terminal nuclei in the azide anion broken by nuclear spin relaxation

    NASA Astrophysics Data System (ADS)

    Bernatowicz, P.; Szymański, S.

    NMR spectra of water solution of sodium azide selectively 15N labelled in the central position were studied using an iterative least-squares method. In agreement with predictions based on Bloch-Wangsness-Redfield nuclear spin relaxation theory, it is demonstrated that quadrupolar relaxation of the magnetically equivalent terminal 14N (spin-1) nuclei in the azide anion renders the J coupling between these nuclei an observable quantity. In isotropic fluids, this seems to be the first experimental evidence of relaxation-broken magnetic equivalence symmetry.

  1. NMR study of black-phase in SmS

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Yamada, H.; Ueda, K.; Mito, T.; Haga, Y.

    2015-03-01

    We report the result of the 33S nuclear magnetic resonance (NMR) measurement on the nonmagnetic semiconductor SmS at ambient pressure. For this measurement, the 33S isotope enriched powder sample of SmS was prepared to increase the 33S NMR intensity. We have attempted 33S NMR measurement on SmS and successfully observed the signal of it. With decreasing temperature, the spectrum measured at the constant magnetic field shifted to lower frequency and became weakly temperature dependent below 50 K. The presence of the energy gap was microscopically established by the rapid decrease in the nuclear spin-lattice relaxation rate 1/T1. The activation energy was deduced to be 625 K from an Arrhenius plot of T1.

  2. In-Phase Ultra High-Resolution In Vivo NMR.

    PubMed

    Fugariu, Ioana; Bermel, Wolfgang; Lane, Daniel; Soong, Ronald; Simpson, Andre J

    2017-04-05

    Although current NMR techniques allow organisms to be studied in vivo, magnetic susceptibility distortions, which arise from inhomogeneous distributions of chemical moieties, prevent the acquisition of high-resolution NMR spectra. Intermolecular single quantum coherence (iSQC) is a technique that breaks the sample's spatial isotropy to form long range dipolar couplings, which can be exploited to extract chemical shift information free of perturbations. While this approach holds vast potential, present practical limitations include radiation damping, relaxation losses, and non-phase sensitive data. Herein, these drawbacks are addressed, and a new technique termed in-phase iSQC (IP-iSQC) is introduced. When applied to a living system, high-resolution NMR spectra, nearly identical to a buffer extract, are obtained. The ability to look inside an organism and extract a high-resolution metabolic profile is profound and should find applications in fields in which metabolism or in vivo processes are of interest.

  3. Progressive muscle relaxation, yoga stretching, and ABC relaxation theory.

    PubMed

    Ghoncheh, Shahyad; Smith, Jonathan C

    2004-01-01

    This study compared the psychological effects of progressive muscle relaxation (PMR) and yoga stretching (hatha) exercises. Forty participants were randomly divided into two groups and taught PMR or yoga stretching exercises. Both groups practiced once a week for five weeks and were given the Smith Relaxation States Inventory before and after each session. As hypothesized, practitioners of PMR displayed higher levels of relaxation states (R-States) Physical Relaxation and Disengagement at Week 4 and higher levels of Mental Quiet and Joy as a posttraining aftereffect at Week 5. Contrary to what was hypothesized, groups did not display different levels of R-States Energized or Aware. Results suggest the value of supplementing traditional somatic conceptualizations of relaxation with the psychological approach embodied in ABC relaxation theory. Clinical and research implications are discussed.

  4. Electron spin relaxation due to reorientation of a permanent zero field splitting tensor.

    PubMed

    Schaefle, Nathaniel; Sharp, Robert

    2004-09-15

    Electron spin relaxation of transition metal ions with spin S> or =1 results primarily from thermal modulation of the zero field splitting (zfs) tensor. This occurs both by distortion of the zfs tensor due to intermolecular collisions and, for complexes with less than cubic symmetry, by reorientational modulation of the permanent zfs tensor. The reorientational mechanism is much less well characterized in previous work than the distortional mechanism although it is an important determinant of nuclear magnetic resonance (NMR) paramagnetic relaxation enhancement phenomena (i.e., the enhancement of NMR relaxation rates produced by paramagnetic ions in solution or NMR-PRE). The classical density matrix theory of spin relaxation does not provide an appropriate description of the reorientational mechanism at low Zeeman field strengths because the zero-order spin wave functions are stochastic functions of time. Using spin dynamics simulation techniques, the time correlation functions of the spin operators have been computed and used to determine decay times for the reorientational relaxation mechanism for S=1. In the zfs limit of laboratory field strengths (H(Zeem)relaxation time, tau(S) (composite function) approximately 0.53tau(R)((1)), where tau(R)((1)) is the reorientational correlation time of a molecule-fixed vector. The value of tau(S) (composite function) is independent of the magnitude of the cylindrical zfs parameter (D), but it depends strongly on low symmetry zfs terms (the E/D ratio). Other spin dynamics (SD) simulations examined spin decay in the intermediate regime of field strengths where H(Zeem) approximately H(zfs) (composite function), and in the vicinity of the Zeeman limit. The results demonstrate that the reorientational electron spin relaxation mechanism is often significant when H(zfs) (composite function)> or =H(Zeem), and that its neglect

  5. Anomalous nuclear spin-lattice relaxation of 3He in contact with ordered Al2O3 aerogel

    NASA Astrophysics Data System (ADS)

    Alakshin, E. M.; Zakharov, M. Yu.; Klochkov, A. V.; Kuzmin, V. V.; Safiullin, K. R.; Stanislavovas, A. A.; Tagirov, M. S.

    2016-09-01

    Spin-lattice relaxation of 3He in contact with the ordered Al2O3 fiber aerogel has been studied at the temperature of 1.6 K in fields of 0.1-0.5 T by the pulsed nuclear magnetic resonance (NMR) method. An additional mechanism of the relaxation of 3He in aerogels is found and it is shown that this relaxation mechanism is not associated with the adsorbed layer. A hypothesis about the influence of intrinsic paramagnetic centers on the relaxation of gaseous 3He is proposed.

  6. Molecular factors that determine Curie spin relaxation in dysprosium complexes.

    PubMed

    Caravan, P; Greenfield, M T; Bulte, J W

    2001-11-01

    Dysprosium complexes can serve as transverse relaxation (T(2)) agents for water protons through chemical exchange and the Curie spin relaxation mechanism. Using a pair of matched dysprosium(III) complexes, Dy-L1 (contains one inner-sphere water) and Dy-L2 (no inner-sphere water), it is shown that the transverse relaxation of bulk water is predominantly an inner-sphere effect. The kinetics of water exchange at Dy-L1 were determined by (17)O NMR. Proton transverse relaxation by Dy-L1 at high fields is governed primarily through a large chemical shift difference between free and bound water. Dy-L1 forms a noncovalent adduct with human serum albumin which dramatically lengthens the rotational correlation time, tau(R), causing the dipole-dipole component of the Curie spin mechanism to become significant and transverse relaxivity to increase by 3-8 times that of the unbound chelate. These findings aid in the design of new molecular species as efficient r(2) agents.

  7. Determining the sizes of micropores in activated charcoals by the pulsed NMR method

    NASA Astrophysics Data System (ADS)

    Gogelashvili, G. Sh.; Khozina, E. V.; Vartapetyan, R. Sh.; Ladychuk, D. V.; Grunin, Yu. B.

    2011-07-01

    The pulsed NMR method was used to measure the nuclear spin-spin relaxation of protons of water adsorbed in micropores of activated charcoal (AC) samples with different porous structures. A correlation was found between the spin-spin relaxation time of water protons in AC with completely filled micropores and the volume density of water primary adsorption centers in the AC samples. An equation for approximating obtained dependences is proposed that allows us to determine the volume of micropores in AC.

  8. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

  9. Autonomous driving in NMR.

    PubMed

    Perez, Manuel

    2017-01-01

    The automatic analysis of NMR data has been a much-desired endeavour for the last six decades, as it is the case with any other analytical technique. This need for automation has only grown as advances in hardware; pulse sequences and automation have opened new research areas to NMR and increased the throughput of data. Full automatic analysis is a worthy, albeit hard, challenge, but in a world of artificial intelligence, instant communication and big data, it seems that this particular fight is happening with only one technique at a time (let this be NMR, MS, IR, UV or any other), when the reality of most laboratories is that there are several types of analytical instrumentation present. Data aggregation, verification and elucidation by using complementary techniques (e.g. MS and NMR) is a desirable outcome to pursue, although a time-consuming one if performed manually; hence, the use of automation to perform the heavy lifting for users is required to make the approach attractive for scientists. Many of the decisions and workflows that could be implemented under automation will depend on the two-way communication with databases that understand analytical data, because it is desirable not only to query these databases but also to grow them in as much of an automatic manner as possible. How these databases are designed, set up and the data inside classified will determine what workflows can be implemented. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Dynamical properties of confined supercooled water: an NMR study

    NASA Astrophysics Data System (ADS)

    Mallamace, Francesco; Broccio, Matteo; Corsaro, Carmelo; Faraone, Antonio; Liu, Li; Mou, Chung-Yuan; Chen, Sow-Hsin

    2006-09-01

    We report a set of dynamical data of confined water measured in a very deeply supercooled regime (290-190 K). Water is contained in silica matrices (MCM-41-S) which consist of 1D cylindrical pores with diameters d = 14,18 and 24 Å. When confined in these tubular pores, water does not crystallize, and can be supercooled well below 200 K. We use the NMR technique to obtain the characteristic proton relaxation time-constants (the spin-lattice relaxation time-constant T1 and the spin-spin relaxation time-constant T2) and a direct measurement of the self-diffusion coefficient in the whole temperature range. We give evidence of the existence of a fragile-to-strong dynamic crossover (FSC) at TL = 225 K from the temperature dependence of the self-diffusion coefficient. A combination of the NMR self-diffusion coefficient with the average translational relaxation time, as measured by quasi-elastic neutron scattering, shows a well defined decoupling of transport coefficients, i.e. the breakdown of the Stokes-Einstein relation, on approaching the crossover temperature TL.

  11. Simultaneously cycled NMR spectroscopy.

    PubMed

    Parish, David M; Szyperski, Thomas

    2008-04-09

    Simultaneously cycled (SC) NMR was introduced and exemplified by implementing a set of 2-D [1H,1H] SC exclusive COSY (E.COSY) NMR experiments, that is, rf pulse flip-angle cycled (SFC), rf pulse phase cycled (SPC), and pulsed field gradient (PFG) strength cycled (SGC) E.COSY. Spatially selective 1H rf pulses were applied as composite pulses such that all steps of the respective cycles were affected simultaneously in different slices of the sample. This increased the data acquisition speed for an n-step cycle n-fold. A high intrinsic sensitivity was achieved by defining the cycles in a manner that the receiver phase remains constant for all steps of the cycle. Then, the signal resulting from applying the cycle corresponded to the sum of the signals from all steps of the cycle. Hence, the detected free induction decay did not have to be separated into the contributions arising from different slices, and read-out PFGs, which not only greatly reduce sensitivity but also negatively impact lineshapes in the direct dimension, were avoided. The current implementation of SFC E.COSY reached approximately 65% of the intrinsic sensitivity of the conventional phase cycled congener, making this experiment highly attractive whenever conventional data acquisition is sampling limited. Highly resolved SC E.COSY yielding accurate 3J-coupling values was recorded for the 416 Da plant alkaloid tomatidine within 80 min, that is, 12 times faster than with conventional phase cycled E.COSY. SC NMR is applicable for a large variety of NMR experiments and thus promises to be a valuable addition to the arsenal of approaches for tackling the NMR sampling problem to avoid sampling limited data acquisition.

  12. Proton magnetic relaxation study of the thermodynamic characteristics of water adsorbed by cellulose fibers

    NASA Astrophysics Data System (ADS)

    Grunin, Yu. B.; Grunin, L. Yu.; Masas, D. S.; Talantsev, V. I.; Sheveleva, N. N.

    2016-11-01

    The possibility of determining the thermodynamic parameters that characterize the sorption properties of cellulose and the state of water associated with its fibers is demonstrated using modern concepts of the structure of this vegetable polymer and methods based on theories of adsorption and NMR relaxation in heterogeneous systems.

  13. Ultrafast Relaxation in Conjugated Polymers

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takayoshi

    The following sections are included: * INTRODUCTION * EXPERIMENTAL * Samples * Femtosecond experimental apparatus * RESULTS AND DISCUSSION * Poly(phenylacetylenes) * Blue-phase PDA-3BCMU * Red-phase PDA-4BCMU * Blue-phase PDA-DFMP * P3MT * P3DT * PTV * RELAXATION MECHANISMS * Review of the previous works * Symmetry of the lower electronic excited states * Primary relaxation processes * Theoretical studies of nonlinear excitations * Mechanism of relaxation in polymers with a weakly nondegenerate ground state (poly(phenylacetylene)s) * Dual peak component with power-law decay * Single-peak component with an exponential decay * Hot self-trapped exciton * Transition to the electron-hole threshold * Transition to a biexciton state * Mechanism of relaxation in polymers with a strongly or moderately nondegenerate ground state * Classifications of polymers * Femtosecond relaxation * Picosecond relaxation * CONCLUSION * Acknowledgments * REFERENCES

  14. Relaxing music for anxiety control.

    PubMed

    Elliott, Dave; Polman, Remco; McGregor, Richard

    2011-01-01

    The purpose of this investigation was to determine the characteristics of relaxing music for anxiety control. Undergraduate students (N=84) were instructed to imagine themselves in an anxiety producing situation while listening to a selection of 30 music compositions. For each composition, level of relaxation, the factors that either enhanced or detracted from its relaxing potential and the emotional labels attached were assessed. Participants were also asked to state which music components (e.g., tempo, melody) were most conducive to relaxation. Additional information was obtained through the use of a focus group of 6 undergraduate music students. This paper presents details on the characteristics of relaxing-music for anxiety control and emotional labels attached to the relaxing compositions. Furthermore, an importance value has been attached to each of the music components under scrutiny, thus providing an indication of which music components should receive greatest attention when selecting music for anxiety control.

  15. [Structural organization and control of expression of the sop-operon of linear plasmid prophage N15].

    PubMed

    Ravin, N V; Dorokhov, B D; Lane, D

    2004-01-01

    Stable inheritance of bacterial chromosomes and low-copy-number plasmids depends on the active partition of replicated molecules between daughter cells. The partition mechanism is well known for circular plasmids F and P1. The mechanism of partition of linear replicons was studied with the example of bacteriophage N15, which persists as a linear plasmid with covalently closed ends on lysogeny, rather than integrating into the Escherichia coli chromosome. Since stable inheritance of N15 is due to the sop operon homologous to sop of the F plasmid, the control of expression of the N15 sop genes was analyzed. The sop promoter (Psop) contains a binding site for bacterial IHF and five CTTTGC copies, which overlap the -35 and -10 elements. The Sop proteins were shown to interact with a Psop-containing DNA fragment in vitro. Transcription of the sop operon is regulated by the Sop proteins: SopA represses Psop, and SopB enhances the repression, having no effect on the promoter activity in the absence of SopA. In N15 lysogenic cells, Psop proved to be repressed. This regulatory mechanism was assumed to ensure production of SopA and SopB in amounts required for the segregation stability of N15 and to neutralize occasional fluctuations of their concentration in the cell.

  16. ABC relaxation theory and the factor structure of relaxation states, recalled relaxation activities, dispositions, and motivations.

    PubMed

    Smith, J C; Wedell, A B; Kolotylo, C J; Lewis, J E; Byers, K Y; Segin, C M

    2000-06-01

    ABC Relaxation Theory proposes 15 psychological relaxation-related states (R-States): Sleepiness, Disengagement, Physical Relaxation, Mental Quiet, Rested/Refreshed, At Ease/At Peace, Energized, Aware, Joy, Thankfulness and Love, Prayerfulness, Childlike Innocence, Awe and Wonder, Mystery, and Timeless/Boundless/Infinite. The present study summarizes the results of 13 separate factor analyses of immediate relaxation-related states, states associated with recalled relaxation activities, relaxation dispositions, and relaxation motivations on a combined sample of 1,904 individuals (group average ages ranged from 28-40 yr.). Four exploratory factor analyses of Smith Relaxation Inventories yielded 15 items that most consistently and exclusively load (generally at least .70) on six replicated factors. These items included happy, joyful, energized, rested, at peace, warm, limp, silent, quiet, dozing, drowsy, prayerful, mystery, distant, and indifferent. Subsequent factor analyses restricted to these items and specifying six factors were performed on 13 different data sets. Each yielded the same six-factor solution: Factor 1: Centered Positive Affect, Factor 2: Sleepiness, Factor 3: Disengagement, Factor 4: Physical Relaxation, Factor 5: Mental Quiet, and Factor 6: Spiritual. Implications for ABC Relaxation Theory are discussed.

  17. The Spin-Lattice Relaxation of Hyperpolarized 89Y Complexes

    NASA Astrophysics Data System (ADS)

    Jindal, Ashish; Lumata, Lloyd; Xing, Yixun; Merritt, Matthew; Zhao, Piyu; Malloy, Craig; Sherry, Dean; Kovacs, Zoltan

    2011-03-01

    The low sensitivity of NMR can be overcome by dynamic nuclear polarization (DNP). However, a limitation to the use of hyperpolarized materials is the signal decay due to T1 relaxation. Among NMR-active nuclei, 89 Y is potentially valuable in medical imaging because in chelated form, pH-sensitive agents can be developed. 89 Y also offers many attractive features -- 100 % abundance, a 1/2 spin, and a long T1 , up to 10 min. Yet, developing new 89 Y complexes with even longer T1 values is desirable. Designing such complexes relies upon understanding the mechanism(s) responsible for T1 relaxation. We report an approach to hyperpolarized T1 measurements that enabled an analysis of relaxation mechanisms by selective deuteration of the ligand backbone, the solvent or both. Hyperpolarized 89 Y -- DTPA, DOTA, EDTA, and deuterated EDTA complexes were studied. Results suggest that substitution of low-gamma nuclei on the ligand backbone as opposed to that of the solvent most effectively increase the 89 Y T1 . These results are encouraging for in vivo applications as the presence of bound water may not dramatically affect the T1 .

  18. A practical tutorial to set up NMR diffusometry equipment: application to liquid crystals.

    PubMed

    Cifelli, M

    2014-10-01

    NMR diffusometry is nowadays a well-established and powerful technique to investigate molecular translation in fluid materials. Standard NMR diffusometry approaches are based on pulsed field gradients generated by specific hardware and specially designed NMR probes. Here, we present an alternative set-up that exploits the static gradient present in the fringe field of any commercial superconducting magnet. This stray field diffusometry technique can be particularly useful to study diffusional processes in fast-relaxing and slow-diffusing systems, such as thermotropic liquid crystals, ionic liquids and polymer melts.

  19. [Spin-lattice relaxation of water protons in plant and animal cells].

    PubMed

    Samuilov, F D; Nikiforov, E A; Nikiforova, V I

    2012-01-01

    NMR-spin echo method has been used to study spin-lattice relaxation time of protons T1 in plant and animal cells - muscle tissue of fish, the cells of which unlike plant cells have no developed system of vacuoles, plastids and a solid cell wall. According to the values of T1 time a new NMR parameter K, a coefficient of relaxation effectiveness of a cell structure, has been calculated. This parameter can be used for quantitative characterization of the influence of different cell structures, the tissue water interact with, for a time of spin-lattice relaxation of water protons. It has been ascertained that the values of K coefficient in animal tissue and in storing tissues of some plants differ little; it may be stipulated by permanent transmembrane water exchange which occurs at high rate in the living cell. It has been concluded that there exists a certain similarity between water state in protoplast of plant and animal cells.

  20. Al NMR study of molten aluminum oxide compounds and mixtures, measured at ultra high temperatures.

    NASA Astrophysics Data System (ADS)

    Piwowarczyk, J.; Marzke, R. F.; Wolf, G. H.; Petuskey, W. T.; Takulapalli, B.

    2002-10-01

    The technique of ultra high-temperature nuclear magnetic resonance (NMR) has provided insight into the chemical structure and properties of molten aluminum-bearing refractory ceramics, at temperatures in excess of 2000 ^oC. Through application of standard NMR measurements we have studied molten aluminum-bearing ceramics via ^27Al NMR. We have measured spin-lattice (T_1) and spin-spin (T_2) relaxation times, have studied Al-O-P chemical bonding within molten aluminua-monazite (Al_2O3 + LaPO_4) samples and have begun to measure Al diffusivity as a function of temperature and composition. To overcome the limitations of standard NMR heating systems a specially designed NMR probe was developed. Application of levitation technology and a laser heating system permit controlled, containerless heating of samples over a wide range of temperatures. Supported by NSF DMR 0116361, DMR 9818133 and by Research Corp. RA 0276

  1. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  2. NMR imaging of materials

    SciTech Connect

    Vinegar, H.J.; Rothwell, W.P.

    1988-03-01

    A method for obtaining at least one petrophysical property of a porous material containing therein at least one preselected fluid, is described, comprising: NMR imaging the material to generate signals dependent upon both M(0) and T/sub 1/ and M(0) and T/sub 2/, generating separate M(0), T/sub 1/ and T/sub 2/ images from the signals, and determining at least one petrophysical property from at least one of the images.

  3. NMR of platinum catalysts: Double NMR of chemisorbed carbon monoxide and a model for the platinum NMR line shape

    NASA Astrophysics Data System (ADS)

    Makowka, Claus D.; Slichter, Charles P.; Sinfelt, J. H.

    1985-05-01

    The authors report observation of the NMR line of 195Pt atoms in the surface layer of small platinum-metal particles on which 13CO has been chemisorbed. The surface 195Pt atoms are resolved from those of 195Pt atoms deeper in the particle by spin-echo double resonance between 195Pt and 13C. The particles, supported on η-alumina, had dispersions (fraction of the atoms that are on the surface) of 26% and 76%. Comparison with 195Pt resonance in Pt carbonyls suggests that the magnitude of the Knight shift of the surface Pt is less than 0.2%. Analysis of the 195Pt spin-lattice relaxation indicates that the small surface Knight shift results from cancellation of 6s and 5d core-polarization contributions as was found theoretically by Weinert and Freeman for clean Pt surfaces. The 13-195Pt indirect spin coupling is found to be very similar to those in diamagnetic platinum carbonyl molecules. The results show that CO bonds via the C atom and verify that concepts from studies of large single crystals are valid for the small particles. The key features of the 195Pt line shapes in these small platinum particles are described by a simple phenomenological model of the spatial Knight-shift variation inside these particles. The model successfully describes the major structure seen in the NMR line shapes of samples with dispersions ranging from 5% to 76%.

  4. NMR Methods, Applications and Trends for Groundwater Evaluation and Management

    NASA Astrophysics Data System (ADS)

    Walsh, D. O.; Grunewald, E. D.

    2011-12-01

    Nuclear magnetic resonance (NMR) measurements have a tremendous potential for improving groundwater characterization, as they provide direct detection and measurement of groundwater and unique information about pore-scale properties. NMR measurements, commonly used in chemistry and medicine, are utilized in geophysical investigations through non-invasive surface NMR (SNMR) or downhole NMR logging measurements. Our recent and ongoing research has focused on improving the performance and interpretation of NMR field measurements for groundwater characterization. Engineering advancements have addressed several key technical challenges associated with SNMR measurements. Susceptibility of SNMR measurements to environmental noise has been dramatically reduced through the development of multi-channel acquisition hardware and noise-cancellation software. Multi-channel instrumentation (up to 12 channels) has also enabled more efficient 2D and 3D imaging. Previous limitations in measuring NMR signals from water in silt, clay and magnetic geology have been addressed by shortening the instrument dead-time from 40 ms to 4 ms, and increasing the power output. Improved pulse sequences have been developed to more accurately estimate NMR relaxation times and their distributions, which are sensitive to pore size distributions. Cumulatively, these advancements have vastly expanded the range of environments in which SNMR measurements can be obtained, enabling detection of groundwater in smaller pores, in magnetic geology, in the unsaturated zone, and nearby to infrastructure (presented here in case studies). NMR logging can provide high-resolution estimates of bound and mobile water content and pore size distributions. While NMR logging has been utilized in oil and gas applications for decades, its use in groundwater investigations has been limited by the large size and high cost of oilfield NMR logging tools and services. Recently, engineering efforts funded by the US Department of

  5. Development of relaxation turbulence models

    NASA Technical Reports Server (NTRS)

    Hung, C. M.

    1976-01-01

    Relaxation turbulence models have been intensively studied. The complete time dependent mass averaged Navier-Stokes equations have been solved for flow into a two dimensional compression corner. A new numerical scheme has been incorporated into the developed computed code with an attendant order of magnitude reduction in computation time. Computed solutions are compared with experimental measurements of Law for supersonic flow. Details of the relaxation process have been studied; several different relaxation models, including different relaxation processes and varying relaxation length, are tested and compared. Then a parametric study has been conducted in which both Reynolds number and wedge angle are varied. To assess effects of Reynolds number and wedge angle, the parametric study includes the comparison of computed separation location and upstream extent of pressure rise; numerical results are also compared with the measurements of surface pressure, skin friction and mean velocity field.

  6. Estimation of water retention parameters from nuclear magnetic resonance relaxation time distributions

    PubMed Central

    Costabel, Stephan; Yaramanci, Ugur

    2013-01-01

    [1] For characterizing water flow in the vadose zone, the water retention curve (WRC) of the soil must be known. Because conventional WRC measurements demand much time and effort in the laboratory, alternative methods with shortened measurement duration are desired. The WRC can be estimated, for instance, from the cumulative pore size distribution (PSD) of the investigated material. Geophysical applications of nuclear magnetic resonance (NMR) relaxometry have successfully been applied to recover PSDs of sandstones and limestones. It is therefore expected that the multiexponential analysis of the NMR signal from water-saturated loose sediments leads to a reliable estimation of the WRC. We propose an approach to estimate the WRC using the cumulative NMR relaxation time distribution and approximate it with the well-known van-Genuchten (VG) model. Thereby, the VG parameter n, which controls the curvature of the WRC, is of particular interest, because it is the essential parameter to predict the relative hydraulic conductivity. The NMR curves are calibrated with only two conventional WRC measurements, first, to determine the residual water content and, second, to define a fixed point that relates the relaxation time to a corresponding capillary pressure. We test our approach with natural and artificial soil samples and compare the NMR-based results to WRC measurements using a pressure plate apparatus and to WRC predictions from the software ROSETTA. We found that for sandy soils n can reliably be estimated with NMR, whereas for samples with clay and silt contents higher than 10% the estimation fails. This is the case when the hydraulic properties of the soil are mainly controlled by the pore constrictions. For such samples, the sensitivity of the NMR method for the pore bodies hampers a plausible WRC estimation. Citation: Costabel, S., and U. Yaramanci (2013), Estimation of water retention parameters from nuclear magnetic resonance relaxation time distributions, Water

  7. NMR measurements in solutions of dialkylimidazolium haloaluminates

    SciTech Connect

    Takahashi, S.; Saboungi, M.L.; Klingler, R.J.; Chen, M.J.; Rathke, J.W.

    1992-06-01

    {sup 27}Al and {sup 35}Cl NMR spectra of AlCl{sub 3}-1-ethyl-3-methyl imidazolium chloride (EMIC) melts were measured for initial compositions ranging from 50 to 67 mol % AlCl{sub 3} at various temperatures. It was shown by changing the preaquisition delay time (DE value) that the dominant aluminum species are AlCl{sub 4}{sup {minus}} in the melt formed by mixing 50 mol % with EMIC and Al{sub 2}Cl{sub 7}{sup {minus}} in the 67 mol % AlCl{sub 3} melt. In the equimolar mixture, the chemical shift of {sup 27}Al NMR spectrum is 103.28 ppm and the line width is 22.83Hz. In the 67 mol % AlCl{sub 3} mixture, the chemical shift is 103.41 ppm and the line width is 2624Hz. A third species observed at 97 ppm in the {sup 27}Al spectra for the 55 and 60 mol % AlCl{sub 3} mixtures is identified to be a product of the reaction with residual water. The relaxation rates for each species in the melts were determined.

  8. Proton magnetic relaxation and internal rotations in tetramethylammonium cadmium chloride

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Utton, D. B.

    1976-01-01

    Nuclear magnetic resonance (NMR) and relaxation studies of the proton spin-lattice relaxation time (PSLRT) and proton second moment (PSM) are reported. Tetramethylammonium cadmium chloride (TMCC) was selected as a diamagnetic member of the isomorphic series, and hence proton data relate directly to the motion of the tetramethylammonium ion in the absence of paramagnetic ions. In the model adopted, the correlation time for hindered motion of one of the methyl groups differs from that of the other three groups in the low-temperature phase below 104 K. PSLRT and PSM values agree closely with experimental data with this model. Crystallographic phase transitions in TMCC occur at 104 K and 119 K according to the PSLRT measurements. Dipolar interactions between adjacent protons account for the PSLR rates below 104 K.

  9. Local Spin Relaxation within the Random Heisenberg Chain

    NASA Astrophysics Data System (ADS)

    Herbrych, J.; Kokalj, J.; Prelovšek, P.

    2013-10-01

    Finite-temperature local dynamical spin correlations Snn(ω) are studied numerically within the random spin-1/2 antiferromagnetic Heisenberg chain. The aim is to explain measured NMR spin-lattice relaxation times in BaCu2(Si0.5Ge0.5)2O7, which is the realization of a random spin chain. In agreement with experiments we find that the distribution of relaxation times within the model shows a very large span similar to the stretched-exponential form. The distribution is strongly reduced with increasing T, but stays finite also in the high-T limit. Anomalous dynamical correlations can be associated with the random singlet concept but not directly with static quantities. Our results also reveal the crucial role of the spin anisotropy (interaction), since the behavior is in contrast with the ones for the XX model, where we do not find any significant T dependence of the distribution.

  10. The origin of biexponential T2 relaxation in muscle water

    NASA Technical Reports Server (NTRS)

    Cole, W. C.; LeBlanc, A. D.; Jhingran, S. G.

    1993-01-01

    Two theories have been proposed to explain the multiexponential transverse relaxation of muscle water protons: "anatomical" and "chemical" compartmentation. In an attempt to obtain evidence to support one or the other of these two theories, interstitial and intracellular macromolecular preparations were studied and compared with rat muscle tissue by proton NMR transverse relaxation (T2) measurements. All macromolecule preparations displayed monoexponential T2 decay. Membrane alteration with DMSO/glycerin did not eliminate the biexponential T2 decay of muscle tissue. Maceration converted biexponential T2 decay of muscle tissue to single exponential decay. It is concluded that the observed two component exponential T2 decay of muscle represents anatomical compartmentation of tissue water, probably intracellular versus extracellular.

  11. Introductory Chemistry: A Molar Relaxivity Experiment in the High School Classroom.

    PubMed

    Dawsey, Anna C; Hathaway, Kathryn L; Kim, Susie; Williams, Travis J

    2013-07-09

    Dotarem and Magnevist, two clinically available magnetic resonance imaging (MRI) contrast agents, were assessed in a high school science classroom with respect to which is the better contrast agent. Magnevist, the more efficacious contrast agent, has negative side effects because its gadolinium center can escape from its ligand. However, Dotarem, though a less efficacious contrast agent, is a safer drug choice. After the experiment, students are confronted with the FDA warning on Magnevist, which enabled a discussion of drug efficacy versus safety. We describe a laboratory experiment in which NMR spin lattice relaxation rate measurements are used to quantify the relaxivities of the active ingredients of Dotarem and Magnevist. The spin lattice relaxation rate gives the average amount of time it takes the excited nucleus to relax back to the original state. Students learn by constructing molar relaxivity curves based on inversion recovery data sets that Magnevist is more relaxive than Dotarem. This experiment is suitable for any analytical chemistry laboratory with access to NMR.

  12. Introductory Chemistry: A Molar Relaxivity Experiment in the High School Classroom

    PubMed Central

    Dawsey, Anna C.; Hathaway, Kathryn L.; Kim, Susie; Williams, Travis J.

    2013-01-01

    Dotarem and Magnevist, two clinically available magnetic resonance imaging (MRI) contrast agents, were assessed in a high school science classroom with respect to which is the better contrast agent. Magnevist, the more efficacious contrast agent, has negative side effects because its gadolinium center can escape from its ligand. However, Dotarem, though a less efficacious contrast agent, is a safer drug choice. After the experiment, students are confronted with the FDA warning on Magnevist, which enabled a discussion of drug efficacy versus safety. We describe a laboratory experiment in which NMR spin lattice relaxation rate measurements are used to quantify the relaxivities of the active ingredients of Dotarem and Magnevist. The spin lattice relaxation rate gives the average amount of time it takes the excited nucleus to relax back to the original state. Students learn by constructing molar relaxivity curves based on inversion recovery data sets that Magnevist is more relaxive than Dotarem. This experiment is suitable for any analytical chemistry laboratory with access to NMR. PMID:23929983

  13. Protein structure determination with paramagnetic solid-state NMR spectroscopy.

    PubMed

    Sengupta, Ishita; Nadaud, Philippe S; Jaroniec, Christopher P

    2013-09-17

    Many structures of the proteins and protein assemblies that play central roles in fundamental biological processes and disease pathogenesis are not readily accessible via the conventional techniques of single-crystal X-ray diffraction and solution-state nuclear magnetic resonance (NMR). On the other hand, many of these challenging biological systems are suitable targets for atomic-level structural and dynamic analysis by magic-angle spinning (MAS) solid-state NMR spectroscopy, a technique that has far less stringent limitations on the molecular size and crystalline state. Over the past decade, major advances in instrumentation and methodology have prompted rapid growth in the field of biological solid-state NMR. However, despite this progress, one challenge for the elucidation of three-dimensional (3D) protein structures via conventional MAS NMR methods is the relative lack of long-distance data. Specifically, extracting unambiguous interatomic distance restraints larger than ∼5 Å from through-space magnetic dipole-dipole couplings among the protein (1)H, (13)C, and (15)N nuclei has proven to be a considerable challenge for researchers. It is possible to circumvent this problem by extending the structural studies to include several analogs of the protein of interest, intentionally modified to contain covalently attached paramagnetic tags at selected sites. In these paramagnetic proteins, the hyperfine couplings between the nuclei and unpaired electrons can manifest themselves in NMR spectra in the form of relaxation enhancements of the nuclear spins that depend on the electron-nucleus distance. These effects can be significant for nuclei located up to ∼20 Å away from the paramagnetic center. In this Account, we discuss MAS NMR structural studies of nitroxide and EDTA-Cu(2+) labeled variants of a model 56 amino acid globular protein, B1 immunoglobulin-binding domain of protein G (GB1), in the microcrystalline solid phase. We used a set of six EDTA-Cu(2

  14. In Situ Detection of Subsurface Biofilm Using Low-Field NMR: A Field Study.

    PubMed

    Kirkland, Catherine M; Herrling, Maria P; Hiebert, Randy; Bender, Andrew T; Grunewald, Elliot; Walsh, David O; Codd, Sarah L

    2015-09-15

    Subsurface biofilms are central to bioremediation of chemical contaminants in soil and groundwater whereby micro-organisms degrade or sequester environmental pollutants like nitrate, hydrocarbons, chlorinated solvents and heavy metals. Current methods to monitor subsurface biofilm growth in situ are indirect. Previous laboratory research conducted at MSU has indicated that low-field nuclear magnetic resonance (NMR) is sensitive to biofilm growth in porous media, where biofilm contributes a polymer gel-like phase and enhances T2 relaxation. Here we show that a small diameter NMR well logging tool can detect biofilm accumulation in the subsurface using the change in T2 relaxation behavior over time. T2 relaxation distributions were measured over an 18 day experimental period by two NMR probes, operating at approximately 275 kHz and 400 kHz, installed in 10.2 cm wells in an engineered field testing site. The mean log T2 relaxation times were reduced by 62% and 43%, respectively, while biofilm was cultivated in the soil surrounding each well. Biofilm growth was confirmed by bleaching and flushing the wells and observing the NMR signal's return to baseline. This result provides a direct and noninvasive method to spatiotemporally monitor biofilm accumulation in the subsurface.

  15. Quantitative rate determination by dynamic nuclear polarization enhanced NMR of a Diels-Alder reaction.

    PubMed

    Zeng, Haifeng; Lee, Youngbok; Hilty, Christian

    2010-11-01

    Emerging techniques for hyperpolarization of nuclear spins, foremost dynamic nuclear polarization (DNP), lend unprecedented sensitivity to nuclear magnetic resonance spectroscopy. Sufficient signal can be obtained from a single scan, and reactions even far from equilibrium can be studied in real-time. When following the progress of a reaction by nuclear magnetic resonance, however, spin relaxation occurs concomitantly with the reaction to alter resonance line intensities. Here, we present a model for accounting for spin-relaxation in such reactions studied by hyperpolarized NMR. The model takes into account auto- and cross-relaxation in dipole-dipole coupled spin systems and is therefore applicable to NMR of hyperpolarized protons, the most abundant NMR-active nuclei. Applied to the Diels-Alder reaction of 1,4-dipheneylbutadiene (DPBD) with 4-phenyl-1,2,4-triazole-3,5-dione (PTD), reaction rates could be obtained accurately and reproducibly. Additional parameters available from the same experiment include relaxation rates of the reaction product, which may yield further information about the molecular properties of the product. The method presented is also compatible with an experiment where a single spin in the reactant is labeled in its spin-state by a selective radio frequency pulse for subsequent tracking through the reaction, allowing the unambiguous identification of its position in the product molecule. In this case, the chemical shift specificity of high-resolution NMR can allow for the simultaneous determination of reaction rates and mechanistic information in one experiment.

  16. Using NMR Spectroscopy to Investigate the Solution Behavior of Nerve Agents and Their Binding to Acetylcholinesterase

    DTIC Science & Technology

    2016-01-01

    USING NMR SPECTROSCOPY TO INVESTIGATE THE SOLUTION BEHAVIOR OF NERVE AGENTS AND THEIR BINDING TO...Solution Behavior of Nerve Agents and Their Binding to Acetylcholinesterase 5a. CONTRACT NUMBER CB3889 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...dynamics (MD) Nerve agent Nuclear magnetic relaxation Nuclear Overhauser effect (NOE) Solution behavior 16

  17. Limitations in biexponential fitting of NMR inversion-recovery curves

    NASA Astrophysics Data System (ADS)

    Shazeeb, Mohammed Salman; Sotak, Christopher H.

    2017-03-01

    NMR relaxation agents have long been employed as contrast agents in MRI. In many cases, the contrast agent is confined to either (i) the vascular and/or extracellular compartment (EC), as is the case with gadolinium(III)-based agents, or (ii) the intracellular compartment (IC), as is the case with manganese(II) ions. The compartmentalization of contrast agents often results in tissue-water 1H relaxation profiles that are well modeled as biexponential. It has long been recognized that water exchange between compartments modifies the biexponential relaxation parameters (amplitudes and rate constants) from those that would be found in the absence of exchange. Nevertheless, interpretation in terms of an ;apparent; two-compartment biophysical model, apparent EC vs. apparent IC, can provide insight into tissue structure and function, and changes therein, in the face of physiologic challenge. The accuracy of modeling biexponential data is highly dependent upon the amplitudes, rate constants, and signal-to-noise characterizing the data. Herein, simulated (in silico) inversion-recovery relaxation data are modeled by standard, nonlinear-least-squares analysis and the error in parameter values assessed for a range of amplitudes and rate constants characteristic of in vivo systems following administration of contrast agent. The findings provide guidance for laboratories seeking to exploit contrast-agent-driven, biexponential relaxation to differentiate MRI-based compartmental properties, including the apparent diffusion coefficient.

  18. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    NASA Astrophysics Data System (ADS)

    Sachleben, J. R.

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and C-13 enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution H-1 and C-13 liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 angstrom. Internal motion is estimated to be slow with a correlation time greater than 10(exp -8) s(exp -1). The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O2 and ultraviolet. A method for measuring (N-14)-(H-1) J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T(sub 1) and T(sub 2) experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in C-13 enriched solids is demonstrated by experiments on zinc acetate and L-alanine.

  19. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    SciTech Connect

    Sachleben, Joseph Robert

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and 13C enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution 1H and 13C liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 Å. Internal motion is estimated to be slow with a correlation time > 10-8 s-1. The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O2 and ultraviolet. A method for measuring 14N-1H J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T1 and T2 experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in 13C enriched solids is demonstrated by experiments on zinc acetate and L-alanine.

  20. A new laboratory approach to shale analysis using NMR relaxometry

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    Low-field nuclear magnetic resonance (LF-NMR) relaxometry is a non-invasive technique commonly used to assess hydrogen-bearing fluids in petroleum reservoir rocks. Measurements made using LF-NMR provide information on rock porosity, pore-size distributions, and in some cases, fluid types and saturations (Timur, 1967; Kenyon et al., 1986; Straley et al., 1994; Brown, 2001; Jackson, 2001; Kleinberg, 2001; Hurlimann et al., 2002). Recent improvements in LF-NMR instrument electronics have made it possible to apply methods used to measure pore fluids to assess highly viscous and even solid organic phases within reservoir rocks. T1 and T2 relaxation responses behave very differently in solids and liquids; therefore the relationship between these two modes of relaxation can be used to differentiate organic phases in rock samples or to characterize extracted organic materials. Using T1-T2 correlation data, organic components present in shales, such as kerogen and bitumen, can be examined in laboratory relaxometry measurements. In addition, implementation of a solid-echo pulse sequence to refocus T2 relaxation caused by homonuclear dipolar coupling during correlation measurements allows for improved resolution of solid-phase protons. LF-NMR measurements of T1 and T2 relaxation time distributions were carried out on raw oil shale samples from the Eocene Green River Formation and pyrolyzed samples of these shales processed by hydrous pyrolysis and techniques meant to mimic surface and in-situ retorting. Samples processed using the In Situ Simulator approach ranged from bitumen and early oil generation through to depletion of petroleum generating potential. The standard T1-T2 correlation plots revealed distinct peaks representative of solid- and liquid-like organic phases; results on the pyrolyzed shales reflect changes that occurred during thermal processing. The solid-echo T1 and T2 measurements were used to improve assessment of the solid organic phases, specifically

  1. NMR structural studies of PECVD amorphous silicon films

    NASA Astrophysics Data System (ADS)

    Cull, Thomas Sidley, Jr.

    The properties of plasma enhanced chemical vapor deposition (PECVD) amorphous semiconductor films vary depending upon preparation conditions and doping. Hydrogenated amorphous silicon films (a-Si:H) have some properties that make these films desirable for use in solar cells and photoreceptor devices. Maximizing electronic and structural properties of such films is key to their success. Nuclear magnetic resonance, and in particular deuterium magnetic resonance (DMR) for a-Si:H,D films, is a useful means to study the morphology of such samples. The location and motions of hydrogen and the chemically equivalent deuterium within an amorphous semiconductor film can be observed with NMR. The information from the NMR studies can be correlated with electronic properties studies to determine whether a given sample would make a successful photovoltaic device. This thesis focuses on three aspects of study: comparison of two samples that differ in the bias applied to the substrate upon which the amorphous films were grown; derivation of relaxation parameters for covalently bonded deuterium; development of a new pulse sequence "incremental spin echo double resonance (SEDOR)" to study the number of unlike spins that contribute to the local field of a given nuclei. Four significant conclusions can be drawn. First, the electronic quality as measured by the photoresponse product etamutau correlates with the broad Gaussian DMR spectral feature which arises from molecular hydrogen in sites that restrict motion. Second, the relaxation of nuclear magnetization under extreme inhomogeneous broadening can be modeled very well as the relaxation without spin diffusion to faster relaxing species within a sample. Third, incremental SEDOR has either a quantum mechanical or classical behavior depending upon the length of the pulse spacing in comparison to the spin-spin relaxation time. Fourth, the local field at the hydrogen of an HD pair within an a-Si:H,D sample is determined on average by

  2. Progressive muscle relaxation, breathing exercises, and ABC relaxation theory.

    PubMed

    Matsumoto, M; Smith, J C

    2001-12-01

    This study compared the psychological effects of Progressive Muscle Relaxation (PMR) and breathing exercises. Forty-two students were divided randomly into two groups and taught PMR or breathing exercises. Both groups practiced for five weeks and were given the Smith Relaxation States Inventory before and after each session. As hypothesized, PMR practitioners displayed greater increments in relaxation states (R-States) Physical Relaxation and Disengagement, while breathing practitioners displayed higher levels of R-State Strength and Awareness. Slight differences emerged at Weeks 1 and 2; major differences emerged at Weeks 4 and 5. A delayed and potentially reinforcing aftereffect emerged for PMR only after five weeks of training--increased levels of Mental Quiet and Joy. Clinical and theoretical implications are discussed.

  3. Determining the relaxivity values of protein cage-templated nanoparticles using magnetic resonance imaging.

    PubMed

    Sana, Barindra; Lim, Sierin

    2015-01-01

    The application of magnetic resonance imaging (MRI) is often limited by low magnetic relaxivity of currently used contrast agents. This problem can be addressed by developing more sensitive contrast agents by synthesizing new types of metal complex or metallic nanoparticles. Protein cage has been used as a template in biological synthesis of magnetic nanoparticles. The magnetic nanoparticle-protein cage composites have been reported to have high magnetic relaxivity, which implies their potential application as an MRI contrast agent. The magnetic relaxivity is determined by measuring longitudinal and transverse magnetic relaxivities of the potential agent. The commonly performed techniques are field-cycling NMR relaxometry (also known as variable field relaxometry or nuclear magnetic relaxation dispersion (NMRD) profiling) and in vitro or in vivo MRI relaxometry. Here, we describe techniques for the synthesis of nanoparticle-protein cage composite and determination of their magnetic relaxivities by in vitro MR image acquisition and data processing. In this method, longitudinal and transverse relaxivities are calculated by measuring relaxation rates of water hydrogen nuclei at different nanoparticle-protein cage composite concentrations.

  4. NMR response of non-reservoir fluids in sandstone and chalk.

    PubMed

    van der Zwaag, C H; Stallmach, F; Skjetne, T; Veliyulin, E

    2001-01-01

    Transverse (T2) NMR relaxation time at 2 MHz proton resonance frequency was measured on core plug samples from two different lithologies, sandstone and chalk, before and after exposure to selected drilling fluids. The results show that NMR signal response was significantly altered after displacing 50% of the original pore fluids, crude oil and water, by drilling fluid filtrate. Relaxation spectra of the rock samples invaded by water-based filtrate shift to significantly shorter T2-values. This shift yields an underestimation of the free-fluid volumes when selecting cut-off values of 33 ms and 100 ms for sandstone and chalk, respectively. In opposite, rock samples affected by oil-based filtrate respond with a signal indicating significantly larger free-fluid volumes than present before exposure. NMR-permeability calculated based on the Timur-Coates Free Fluid model altered in some cases by one order of magnitude.

  5. A low-resolution non-invasive NMR characterization of ancient paper.

    PubMed

    Casieri, C; Bubici, S; Viola, I; De Luca, F

    2004-09-01

    The use of a portable NMR device allows a non-invasive investigation of the paper in order to assess the state of conservation of books and documents of historical or artistic interest. The NMR investigation has been found mainly on relaxation measurements whose results seem compatible with different relaxation rates in crystalline and amorphous cellulose domains. By a simplified physical picture based on spin-diffusion it appears possible to detect the alteration of the crystalline/amorphous cellulose balance and therefore to get information on some deterioration processes of paper. The use of a portable NMR device shows great potentiality because of its safe and simple in situ approach to Cultural Heritage documents. In this work, we present a research carried out on a 17th century manuscript.

  6. NMR probe of pseudogap characteristics in CaAl2-xSi2+x

    NASA Astrophysics Data System (ADS)

    Lue, C. S.; Wang, S. Y.; Fang, C. P.

    2007-06-01

    We report the results of a Al27 nuclear magnetic resonance (NMR) study of CaAl2-xSi2+x , near the stoichiometric composition with x=0 . The low-temperature NMR relaxation rates for stoichiometric (x=0) and nonstoichiometric ( x=-0.1 and 0.1) compounds follow a Korringa law, associated with a finite density of carriers at the Fermi level. High-temperature relaxation rates for x⩾0 go over to a semiconductorlike activated form, providing information about the electronic structure near the Fermi energy. The results are consistent with pseudogap features identified by recent band-structure calculations. An analysis of the pseudogap change vs composition further points out that the band-filling picture is proper for the understanding of the NMR observations in CaAl2-xSi2+x .

  7. Features of rubber swelling in transformer oil, according to NMR data

    NASA Astrophysics Data System (ADS)

    Bavin, R. R.; Fursov, D. I.; Vasil'ev, S. G.; Tarasov, V. P.; Zabrodin, V. A.; Volkov, V. I.

    2016-08-01

    NMR spectroscopy, NMR relaxation, and NMR with a pulsed magnetic field gradient methods are used to study the swelling of the elastomers based on ethylene-propylene rubber, butadiene-nitrile rubber, and fluororubber SKF-26 in transformer oil. Components corresponding to the fractions of oil and polymer network are identified. It is shown that the affinity of the polymers toward transformer oil displays an increase in the orderly sequence of ethylene-propylene rubber, fluororubber, and butadiene-nitrile rubber; the stability of the polymers towards carbon tetrachloride falls in the same sequence. Based on an analysis of the spin-spin relaxation time depending on the degree of swelling, it is found that fluororubber elastomers are characterized by the formation of a polymer network that prevents further sorption, In contrast, elastomer based on ethylene-propylene rubber gives no indication of the formation of a rigid polymer network.

  8. Stress relaxation in heterogeneous polymers

    NASA Astrophysics Data System (ADS)

    Witten, T. A.

    1992-05-01

    When heterogeneous polymers such as diblock copolymers form a microdomain phase, an imposed strain gives rise to stress from two sources, and several mechanisms of stress relaxation. The release of stress by disentanglement is strongly influenced by the effective confinement of the junction points to the domain boundaries and by the stretching of the chains. Using accepted notions of entangled chain kinetics, it is argued that the relaxation time for sliding stress is exponential in the chainlength to the 7/9 power. A method for calculating the frequency-dependent dynamic modulus is sketched. Despite the slow relaxation implied by these mechanisms, it appears possible to create domains of high energy.

  9. Electronic states and molecular dynamics of single-component molecular conductors [M (tmdt) 2] (M =Ni , Pt) studied by 13C and 1H NMR

    NASA Astrophysics Data System (ADS)

    Takagi, Rina; Miyagawa, Kazuya; Yoshimura, Masahide; Gangi, Hiro; Kanoda, Kazushi; Zhou, Biao; Idobata, Yuki; Kobayashi, Akiko

    2016-01-01

    The molecular conductors [M(tmdt) 2] (M =Ni , Pt) consisting of single molecular species are investigated with 13C NMR and 1H NMR. The temperature dependences of the 13C NMR shift and relaxation rate provide microscopic evidence for the metallic nature with appreciable electron correlations. Both compounds exhibit an anomalous frequency-dependent enhancement in the 1H nuclear spin-lattice relaxation rate in a wide temperature range. These observations signify the presence of extraordinary molecular motions with low energy excitations.

  10. Nuclear magnetic relaxation studies of water in frozen biological tissues. Cross-relaxation effects between protein and bound water protons

    NASA Astrophysics Data System (ADS)

    Escanyé, J. M.; Canet, D.; Robert, J.

    Water proton longitudinal relaxation has been investigated in frozen mouse tissues including tumors. The nonfreezable water which gives rise to a relatively sharp NMR signal at this temperature (263 K) is identified as water bound to macromolecules. Measurements have been carried out by the nonselective inversion-recovery method at 90 and 6 MHz. Partially selective inversion has been achieved at 90 MHz by the DANTE sequence. The experimental data are analyzed by means of Solomon-type equations. This analysis provides the cross-relaxation term from which the dipolar contribution to water relaxation rate, arising from interactions with macromolecular protons, is calculated. This contribution seems to be dominant. The number of water protons interacting with a given macromolecular proton is found to be of the order of 10. The data at both frequencies can be consistently interpreted in terms of water diffusion, with a characteristic time of about 10 -9 sec. These conclusions are valid for all the tissues investigated here, their relaxation parameters exhibiting only slight differences.

  11. NMR evidence for the metallic nature of highly conducting polyaniline

    NASA Astrophysics Data System (ADS)

    Kolbert, A. C.; Caldarelli, S.; Thier, K. F.; Sariciftci, N. S.; Cao, Y.; Heeger, A. J.

    1995-01-01

    Polyaniline doped with camphor sulphonic acid (PANI-CSA) has been shown to yield a material that, after casting from solution in meta-cresol, exhibits a temperature-independent magnetic susceptibility [Y. Cao, P. Smith, and A. J. Heeger, Synth. Met. 48, 91 (1992); N. S. Sariciftici, A. J. Heeger, and Y. Cao, Phys. Rev. B 49, 5988 (1994)]. We report recent 13C NMR experiments on uniformly 13enriched PANI-CSA in which the 13C spin-lattice relaxation rates are shown to obey a modified Korringa relation for relaxation via the hyperfine coupling to conduction electrons. This observation of Korringa relaxation in polyaniline provides strong evidence for a metallic state in this material. An estimate is made of the Korringa enhancement factor that provides a measure of the degree of electron-electron correlations present. Two-dimensional spin-exchange experiments are also reported, which show that the 13C NMR signal results from a heterogeneity in the sample over at least a 30-Å distance scale. These results are discussed in terms of the spatial extent of the doping-induced defect.

  12. Magic Angle Spinning NMR Metabolomics

    SciTech Connect

    Zhi Hu, Jian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  13. Stress Relaxation of Interim Restoratives.

    DTIC Science & Technology

    1978-05-18

    unmodified zinc oxide- eugenol cement were more favorable than those of IRM and Cavit. The plastic behavior of gutta-percha temporary stopping precluded assessment of its relaxation at temperatures in excess of 22P C. (Author)

  14. Relaxation labeling using modular operators

    SciTech Connect

    Duncan, J.S.; Frei, W.

    1983-01-01

    Probabilistic relaxation labeling has been shown to be useful in image processing, pattern recognition, and artificial intelligence. The approaches taken to date have been encumbered with computationally extensive summations which generally prevent real-time operation and/or easy hardware implementation. The authors present a new and unique approach to the relaxation labeling problem using modular, VLSI-oriented hierarchical complex operators. One of the fundamental concepts of this work is the representation of the probability distribution of the possible labels for a given object (pixel) as an ellipse, which may be summed with neighboring object's distribution ellipses, resulting in a new, relaxed label space. The mathematical development of the elliptical approach will be presented and compared to more classical approaches, and a hardware block diagram that shows the implementation of the relaxation scheme using vlsi chips will be presented. Finally, results will be shown which illustrate applications of the modular scheme, iteratively, to both edges and lines. 13 references.

  15. Dissolution Dynamic Nuclear Polarization Instrumentation for Real-time Enzymatic Reaction Rate Measurements by NMR.

    PubMed

    Balzan, Riccardo; Fernandes, Laetitia; Comment, Arnaud; Pidial, Laetitia; Tavitian, Bertrand; Vasos, Paul R

    2016-02-23

    The main limitation of NMR-based investigations is low sensitivity. This prompts for long acquisition times, thus preventing real-time NMR measurements of metabolic transformations. Hyperpolarization via dissolution DNP circumvents part of the sensitivity issues thanks to the large out-of-equilibrium nuclear magnetization stemming from the electron-to-nucleus spin polarization transfer. The high NMR signal obtained can be used to monitor chemical reactions in real time. The downside of hyperpolarized NMR resides in the limited time window available for signal acquisition, which is usually on the order of the nuclear spin longitudinal relaxation time constant, T1, or, in favorable cases, on the order of the relaxation time constant associated with the singlet-state of coupled nuclei, TLLS. Cellular uptake of endogenous molecules and metabolic rates can provide essential information on tumor development and drug response. Numerous previous hyperpolarized NMR studies have demonstrated the relevancy of pyruvate as a metabolic substrate for monitoring enzymatic activity in vivo. This work provides a detailed description of the experimental setup and methods required for the study of enzymatic reactions, in particular the pyruvate-to-lactate conversion rate in presence of lactate dehydrogenase (LDH), by hyperpolarized NMR.

  16. An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst.

    PubMed

    Tong, YuYe; Kim, Hee Soo; Babu, Panakkattu K; Waszczuk, Piotr; Wieckowski, Andrzej; Oldfield, Eric

    2002-01-23

    We report the first combined application of solid-state electrochemical NMR (EC NMR), cyclic voltammetry (CV), and potentiostatic current generation to investigate the topic of the ruthenium promotion of MeOH electro-oxidation over nanoscale platinum catalysts. The CV and EC NMR results give evidence for two types of CO: CO on essentially pure Pt and CO on Pt/Ru islands. There is no NMR evidence for rapid exchange between the two CO populations. CO molecules on the primarily Pt domains behave much like CO on pure Pt, with there being little effect of Ru on the Knight shift or on Korringa relaxation. In sharp contrast, COs on Pt/Ru have highly shifted (13)C NMR resonances, much weaker Korringa relaxation, and, at higher temperatures, they undergo thermally activated surface diffusion. For CO on Pt, the correlation observed between the 2pi* Fermi level local density of states and the steady-state current suggests a role for Ru in weakening the Pt-CO bond, thereby increasing the CO oxidation rate (current). The combined EC NMR/electrochemistry approach thus provides new insights into the promotion of CO tolerance in Pt/Ru fuel cell catalysts, in addition to providing a novel route to investigating promotion in heterogeneous catalysis in general.

  17. Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds

    NASA Astrophysics Data System (ADS)

    Panich, A. M.; Sergeev, N. A.; Shames, A. I.; Osipov, V. Yu; Boudou, J.-P.; Goren, S. D.

    2015-02-01

    Size dependence of physical properties of nanodiamond particles is of crucial importance for various applications in which defect density and location as well as relaxation processes play a significant role. In this work, the impact of defects induced by milling of micron-sized synthetic diamonds was studied by magnetic resonance techniques as a function of the particle size. EPR and 13C NMR studies of highly purified commercial synthetic micro- and nanodiamonds were done for various fractions separated by sizes. Noticeable acceleration of 13C nuclear spin-lattice relaxation with decreasing particle size was found. We showed that this effect is caused by the contribution to relaxation coming from the surface paramagnetic centers induced by sample milling. The developed theory of the spin-lattice relaxation for such a case shows good compliance with the experiment.

  18. Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds.

    PubMed

    Panich, A M; Sergeev, N A; Shames, A I; Osipov, V Yu; Boudou, J-P; Goren, S D

    2015-02-25

    Size dependence of physical properties of nanodiamond particles is of crucial importance for various applications in which defect density and location as well as relaxation processes play a significant role. In this work, the impact of defects induced by milling of micron-sized synthetic diamonds was studied by magnetic resonance techniques as a function of the particle size. EPR and (13)C NMR studies of highly purified commercial synthetic micro- and nanodiamonds were done for various fractions separated by sizes. Noticeable acceleration of (13)C nuclear spin-lattice relaxation with decreasing particle size was found. We showed that this effect is caused by the contribution to relaxation coming from the surface paramagnetic centers induced by sample milling. The developed theory of the spin-lattice relaxation for such a case shows good compliance with the experiment.

  19. Field Experiment Provides Ground Truth for Surface NMR Measurement

    NASA Astrophysics Data System (ADS)

    Knight, R. J.; Abraham, J. D.; Cannia, J. C.; Dlubac, K. I.; Grau, B.; Grunewald, E. D.; Irons, T.; Song, Y.; Walsh, D.

    2010-12-01

    Effective and sustainable long-term management of fresh water resources requires accurate information about the availability of water in groundwater aquifers. Proton Nuclear Magnetic Resonance (NMR) can provide a direct link to the presence of water in the pore space of geological materials through the detection of the nuclear magnetization of the hydrogen nuclei (protons) in the pore water. Of interest for groundwater applications is the measurement of the proton-NMR relaxation time constant, referred to as T2. This parameter is sensitive to the geometry of the water-filled pore space and can be related to the hydraulic conductivity. NMR logging instruments, which have been available since the 1980’s, provide direct measurements of T2 in boreholes. Surface NMR (SNMR) is a non-invasive geophysical method that uses a loop of wire on the surface to probe the NMR properties of groundwater aquifers to a depth of ~100 m, without the need for the drilling of boreholes. SNMR provides reliable measurements of a different NMR time constant referred to as T2*, that is related to, but not necessarily equivalent to, T2. The relationship between T2* and T2 is likely to depend upon the physical environment and the composition of the sampled material. In order to advance the use of SNMR as a non-invasive means of characterizing groundwater aquifers, we must answer the fundamental question: When probing a groundwater aquifer, what information is provided by T2*, the time constant measured with SNMR? Our approach was to conduct a field experiment in Nebraska, in an area underlain by the Quaternary Alluvium and Tertiary Ogallala aquifers. We first used SNMR to obtain a 1D profile of T2* to a depth of ~60 m. We then drilled a well inside the area of the SNMR loop, to a depth of ~150 m, and used the drill cuttings to describe the composition of the geologic material at the site. The borehole was kept open for 2 days to acquire logging NMR T2 measurements over the total depth. Three

  20. Dry-cured ham tissue characterization by fast field cycling NMR relaxometry and quantitative magnetization transfer.

    PubMed

    Bajd, Franci; Gradišek, Anton; Apih, Tomaž; Serša, Igor

    2016-05-31

    Fast field cycling (FFC) and quantitative magnetization transfer (qMT) NMR methods are two powerful tools in NMR analysis of biological tissues. The qMT method is well established in biomedical NMR applications, while the FFC method is often used in investigations of molecular dynamics on which longitudinal NMR relaxation times of the investigated material critically depend. Despite their proven analytical potential, these two methods were rarely used in NMR studies of food, especially when combined together. In our study, we demonstrate the feasibility of a combined FFC/qMT-NMR approach for the fast and nondestructive characterization of dry-curing ham tissues differing by protein content. The characterization is based on quantifying the pure quadrupolar peak area (area under the quadrupolar contribution of dispersion curve obtained by FFC-NMR) and the restricted magnetization pool size (obtained by qMT-NMR). Both quantities correlate well with concentration of partially immobilized, nitrogen-containing and proton magnetization exchanging muscle proteins. Therefore, these two quantities could serve as potential markers for dry-curing process monitoring. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Vacancy Relaxation in Cubic Crystals

    NASA Technical Reports Server (NTRS)

    Girifalco, L. A.; Weizer, V. G.

    1960-01-01

    The configuration of the atoms surrounding a vacancy in four face-centered cubic and three body-centered cubic metals has been computed, using a pairwise, central-force model in which the energy of interaction between two atoms was taken to have the form of a Morse function. Only radial relaxations were considered. The first and second nearest-neighbor relaxations for the face-centered systems were found to be: Pb (1.42,-0.43), Ni (2.14,-0.39), Cu(2.24,-0.40) and Ca (2.73,-0.41, expressed in percentages of normal distances. For the body-centered systems the relaxations out to the fourth nearest neighbors to the vacancy were: Fe (6.07,-2.12, -0.25, -), Ba (7.85, -2.70, 0.70, -0.33) and Na (10.80, -3.14, 3.43, -0.20). The positive signs indicate relaxation toward the vacancy and the negative signs indicate relaxation away from the vacancy. The energies of relaxation (eV) are: Pb (0.162), Ni (0.626), Cu (0.560), Ca (0.400), Fe (1.410), Ba (0.950) and Na (0.172).

  2. Relaxation behavior study of ultrasmall superparamagnetic iron oxide nanoparticles at ultralow and ultrahigh magnetic fields.

    PubMed

    Wang, Wei; Dong, Hui; Pacheco, Victor; Willbold, Dieter; Zhang, Yi; Offenhaeusser, Andreas; Hartmann, Rudolf; Weirich, Thomas E; Ma, Peixiang; Krause, Hans-Joachim; Gu, Zhongwei

    2011-12-15

    Ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) have attracted attention because of their current and potential usefulness as contrast agents for magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR). USPIOs are usually used for their significant capacity to produce predominant proton relaxation effects, which result in signal reduction. However, most previous studies that utilized USPIOs have been focused on the relaxation behavior at commonly used magnetic fields of clinical MRI systems (typically 1-3 T). In this paper, magnetic relaxation processes of protons in water surrounding the USPIOs are studied at ultralow (≤10 mT) and ultrahigh magnetic fields (14.1 T). USPIOs used in our experiments were synthesized with a core size of 6 nm, and transferred from organic to water by ligand exchange. The proton spin-lattice relaxation time (T(1)) and spin-spin relaxation time (T(2)) were investigated at ultralow (212 μT for T(2) and 10 mT for T(1)) and at 14.1 T with different iron concentrations. At all of the fields, there is a linear relationship between the inverse of relaxation times and the iron concentration. The spin-spin relaxivity (r(2)) at 14.1 T is much larger than that value of the ultralow field. At ultralow field, however, the spin-lattice relaxivity (r(1)) is larger than the r(1) at ultrahigh field. The results provide a perspective on potential in vivo and in vitro applications of USPIOs in ultralow and ultrahigh field NMR and MRI.

  3. Functional binding surface of a β-hairpin VEGF receptor targeting peptide determined by NMR spectroscopy in living cells.

    PubMed

    Diana, Donatella; Russomanno, Anna; De Rosa, Lucia; Di Stasi, Rossella; Capasso, Domenica; Di Gaetano, Sonia; Romanelli, Alessandra; Russo, Luigi; D'Andrea, Luca D; Fattorusso, Roberto

    2015-01-02

    In this study, the functional interaction of HPLW peptide with VEGFR2 (Vascular Endothelial Growth Factor Receptor 2) was determined by using fast (15)N-edited NMR spectroscopic experiments. To this aim, (15)N uniformly labelled HPLW has been added to Porcine Aortic Endothelial Cells. The acquisition of isotope-edited NMR spectroscopic experiments, including (15)N relaxation measurements, allowed a precise characterization of the in-cell HPLW epitope recognized by VEGFR2.

  4. A NMR reverse diffusion filter for the simplification of spectra of complex mixtures and the study of drug receptor interactions.

    PubMed

    Vega-Vázquez, M; Cobas, J C; Oliveira de Sousa, F F; Martin-Pastor, M

    2011-08-01

    A reverse diffusion filter NMR experiment (Drev) is proposed for the study of small molecules in binding with macromolecules. The filtering efficiency of Drev to eliminate the signals of the macromolecule is shown to be superior to conventional transverse relaxation filters at least for macromolecules containing a significant fraction of flexible residues. The Drev filter was also a useful complement for ligand-based NMR screening in combination with saturation transfer difference experiments.

  5. 119Sn-NMR investigations on superconducting Ca3Ir4Sn13: Evidence for multigap superconductivity

    DOE PAGES

    Sarkar, R.; Petrovic, C.; Bruckner, F.; ...

    2015-09-25

    In this study, we report bulk superconductivity (SC) in Ca3Ir4Sn13 by means of 119Sn nuclear magnetic resonance (NMR) experiments. Two classical signatures of BCS superconductivity in spin-lattice relaxation rate (1/T1), namely the Hebel–Slichter coherence peak just below the Tc, and the exponential decay in the superconducting phase, are evident. The noticeable decrease of 119Sn Knight shift below Tc indicates spin-singlet superconductivity. The temperature dependence of the spin-lattice relaxation rate 119(1/T1) is convincingly described by the multigap isotropic superconducting gap. NMR experiments do not witness any sign of enhanced spin fluctuations.

  6. Direct synthesis of magnetite nanoparticles from iron(II) carboxymethylcellulose and their performance as NMR contrast agents

    NASA Astrophysics Data System (ADS)

    da Silva, Delmarcio Gomes; Hiroshi Toma, Sergio; de Melo, Fernando Menegatti; Carvalho, Larissa Vieira C.; Magalhães, Alvicler; Sabadini, Edvaldo; dos Santos, Antônio Domingues; Araki, Koiti; Toma, e. Henrique E.

    2016-01-01

    Iron(II) carboxymethylcellulose (CMC) has been successfully employed in the synthesis of hydrophylic magnetite nanoparticles stabilized with a biopolymer coating, aiming applications in NMR imaging. The new method encompasses a convenient one-step synthetic procedure, allowing a good size control and yielding particles of about 10 nm (core size). In addition to the biocompatibility, the nanoparticles have promoted a drastic reduction in the transverse relaxation time (T2) of the water protons. The relaxivity rates have been investigated as a function of the nanoparticles concentration, showing a better performance in relation to the common NMR contrast agents available in the market.

  7. Anomalous hyperfine coupling and nuclear magnetic relaxation in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Okvátovity, Zoltán; Simon, Ferenc; Dóra, Balázs

    2016-12-01

    The electron-nuclear hyperfine interaction shows up in a variety of phenomena including, e.g., NMR studies of correlated states and spin decoherence effects in quantum dots. Here we focus on the hyperfine coupling and the NMR spin relaxation time T1 in Weyl semimetals. Since the density of states in Weyl semimetals varies with the square of the energy around the Weyl point, a naive power counting predicts a 1 /T1T ˜E4 scaling, with E the maximum of temperature (T ) and chemical potential. By carefully investigating the hyperfine interaction between nuclear spins and Weyl fermions, we find that while its spin part behaves conventionally, its orbital part diverges unusually, with the inverse of the energy around the Weyl point. Consequently, the nuclear spin relaxation rate scales in a graphenelike manner as 1 /T1T ˜E2ln(E /ω0) , with ω0 the nuclear Larmor frequency. This allows us to identify an effective hyperfine coupling constant, which is tunable by gating or doping. This is relevant for the decoherence effect in spintronics devices and double quantum dots, where hyperfine coupling is the dominant source of spin-blockade lifting.

  8. THz Dynamic Nuclear Polarization NMR

    PubMed Central

    Nanni, Emilio A.; Barnes, Alexander B.; Griffin, Robert G.; Temkin, Richard J.

    2013-01-01

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140–600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  9. 2H NMR studies of supercooled and glassy aspirin

    NASA Astrophysics Data System (ADS)

    Nath, R.; Nowaczyk, A.; Geil, B.; Bohmer, R.

    2007-11-01

    Acetyl salicylic acid, deuterated at the methyl group, was investigated using 2H-NMR in its supercooled and glassy states. Just above the glass transition temperature the molecular reorientations were studied using stimulated-echo spectroscopy and demonstrated a large degree of similarity with other glass formers. Deep in the glassy phase the NMR spectra look similar to those reported for the crystal [A. Detken, P. Focke, H. Zimmermann, U. Haeberlen, Z. Olejniczak, Z. T. Lalowicz, Z. Naturforsch. A 50 (1995) 95] and below 20 K they are indicative for rotational tunneling with a relatively large tunneling frequency. Measurements of the spin-lattice relaxation times for temperatures below 150 K reveal a broad distribution of correlation times in the glass. The dominant energy barrier characterizing the slow-down of the methyl group is significantly smaller than the well defined barrier in the crystal.

  10. Heterogeneities in gelatin film formation using single-sided NMR.

    PubMed

    Ghoshal, Sushanta; Mattea, Carlos; Denner, Paul; Stapf, Siegfried

    2010-12-16

    Gelatin solutions were prepared in D(2)O. The drying process of cast solutions was followed with a single-sided nuclear magnetic resonance (NMR) scanner until complete solidification occurred. Spin-spin relaxation times (T(2)) were measured at different layers with microscopic resolution and were correlated with the drying process during film formation. Additionally, the evaporation of the gelatin solution was observed optically from the reduction of the sample thickness, revealing that at the macroscopic level, the rate of evaporation is not uniform throughout the experiment. A crossover in the spatial evolution of the drying process is observed from the NMR results. At the early stages, the gel appears to be drier in the upper layers near the evaporation front, while this tendency is inverted at the later stages, when drying is faster from the bottom. XRD (X-ray diffraction) data showed that a structural heterogeneity persists in the final film.

  11. 125Te NMR study of IrTe 2

    NASA Astrophysics Data System (ADS)

    Mizuno, Kiyoshi; Magishi, Ko-ichi; Shinonome, Yasuaki; Saito, Takahito; Koyama, Kuniyuki; Matsumoto, Nobuhiro; Nagata, Shoichi

    2002-03-01

    We have measured 125Te NMR of IrTe2 in order to elucidate the origin of the anomalous behaviors in electrical and magnetic properties around 270 K. In high-temperature region, the NMR spectrum exhibits a sharp line. On the other hand, in low-temperature region, the spectrum shifts to higher magnetic field and splits into three lines. Also, the nuclear spin-lattice relaxation rate, 1/T1, is proportional to the temperature in both temperature sides; Korringa-like behavior which is characteristic of a metallic state. From the T dependences of the spectrum and 1/T1 around 270 K, it is suggested that these anomalous behaviors may not be due to the charge density wave formation but be caused by a kind of lattice distortion at low temperature.

  12. Compact NMR relaxometry of human blood and blood components.

    PubMed

    Cistola, David P; Robinson, Michelle D

    2016-11-01

    Nuclear magnetic resonance relaxometry is a uniquely practical and versatile implementation of NMR technology. Because it does not depend on chemical shift resolution, it can be performed using low-field compact instruments deployed in atypical settings. Early relaxometry studies of human blood were focused on developing a diagnostic test for cancer. Those efforts were misplaced, as the measurements were not specific to cancer. However, important lessons were learned about the factors that drive the water longitudinal (T1) and transverse (T2) relaxation times. One key factor is the overall distribution of proteins and lipoproteins. Plasma water T2 can detect shifts in the blood proteome resulting from inflammation, insulin resistance and dyslipidemia. In whole blood, T2 is sensitive to hemoglobin content and oxygenation, although the latter can be suppressed by manipulating the static and applied magnetic fields. Current applications of compact NMR relaxometry include blood tests for candidiasis, hemostasis, malaria and insulin resistance.

  13. Compact NMR relaxometry of human blood and blood components

    PubMed Central

    Cistola, David P.; Robinson, Michelle D.

    2016-01-01

    Nuclear magnetic resonance relaxometry is a uniquely practical and versatile implementation of NMR technology. Because it does not depend on chemical shift resolution, it can be performed using low-field compact instruments deployed in atypical settings. Early relaxometry studies of human blood were focused on developing a diagnostic test for cancer. Those efforts were misplaced, as the measurements were not specific to cancer. However, important lessons were learned about the factors that drive the water longitudinal (T1) and transverse (T2) relaxation times. One key factor is the overall distribution of proteins and lipoproteins. Plasma water T2 can detect shifts in the blood proteome resulting from inflammation, insulin resistance and dyslipidemia. In whole blood, T2 is sensitive to hemoglobin content and oxygenation, although the latter can be suppressed by manipulating the static and applied magnetic fields. Current applications of compact NMR relaxometry include blood tests for candidiasis, hemostasis, malaria and insulin resistance. PMID:28003711

  14. Perspectives on DNP-enhanced NMR spectroscopy in solutions

    NASA Astrophysics Data System (ADS)

    van Bentum, Jan; van Meerten, Bas; Sharma, Manvendra; Kentgens, Arno

    2016-03-01

    More than 60 years after the seminal work of Albert Overhauser on dynamic nuclear polarization by dynamic cross relaxation of coupled electron-nuclear spin systems, the quest for sensitivity enhancement in NMR spectroscopy is as pressing as ever. In this contribution we will review the status and perspectives for dynamic nuclear polarization in the liquid state. An appealing approach seems to be the use of supercritical solvents that may allow an extension of the Overhauser mechanism towards common high magnetic fields. A complementary approach is the use of solid state DNP on frozen solutions, followed by a rapid dissolution or in-situ melting step and NMR detection with substantially enhanced polarization levels in the liquid state. We will review recent developments in the field and discuss perspectives for the near future.

  15. N15 Cro And Gamma Cro Orthologous DNA-Binding Domains With Completely Different But Equally Effective Homodimer Interfaces

    SciTech Connect

    Dubrava, M.S.; Ingram, W.M.; Roberts, S.A.; Weichsel, A.; Montfort, W.R.; Cordes, M.H.J.

    2009-05-18

    Bacteriophage Cro proteins bind to target DNA as dimers but do not all dimerize with equal strength, and differ in fold in the region of the dimer interface. We report the structure of the Cro protein from Enterobacteria phage N15 at 1.05 {angstrom} resolution. The subunit fold contains five alpha-helices and is closely similar to the structure of P22 Cro (1.3 {angstrom} backbone room mean square difference over 52 residues), but quite different from that of lambda Cro, a structurally diverged member of this family with a mixed alpha-helix/beta-sheet fold. N15 Cro crystallizes as a biological dimer with an extensive interface (1303 {angstrom}{sub 2} change in accessible surface area per dimer) and also dimerizes in solution with a K(d) of 5.1 {+-} 1.5 {micro}M. Its dimerization is much stronger than that of its structural homolog P22 Cro, which does not self-associate detectably in solution. Instead, the level of self-association and interfacial area for N15 Cro is similar to that of lambda Cro, even though these two orthologs do not share the same fold and have dimer interfaces that are qualitatively different in structure. The common Cro ancestor is thought to be an all-helical monomer similar to P22 Cro. We propose that two Cro descendants independently developed stronger dimerization by entirely different mechanisms.

  16. Study of cultured fibroblasts in vivo using NMR

    SciTech Connect

    Karczmar, G.S.

    1984-01-01

    The goal of this thesis was to study the compartmentation of phosphorylated glycolytic intermediates in intact Chicken Embryo Fibroblasts (CEFs) using /sup 31/P NMR at 109 MHz. Because glycolysis is regulated differently in normal and virally transformed CEFs, NMR experiments were performed on both types of cells. A technique for maintaining functional cells at high densities in an NMR magnet is described. Signals were detected from cytoplasmic inorganic phosphate (P/sub i/), ATP, NAD, NADH, phosphorylcholine and phosphorylethanolamine. The effect of external glucose on cytoplasmic pools of phosphates was studied. However, experiments with /sup 32/P labelled P/sub i/ showed that as the concentration of glucose in the medium was increased, the amount of phosphate sequestered in the cells increased. They conclude that there is a pool of P/sub i/ which is not detected by high resolution of NMR and that the size of this pool increases as the rate of glycolysis increases. These effects were found only in cultured cells; the data for transformed and normal cells were similar. Longitudinal relaxation times of intracellular phosphates in normal, transformed, and primary CEFs were measured.

  17. X-ray CT and NMR imaging of rocks

    SciTech Connect

    Vinegar, H.J.

    1986-03-01

    In little more than a decade, X-ray computerized tomography (CT) and nuclear magnetic resonance (NMR) imaging have become the premier modalities of medical radiology. Both of these imaging techniques also promise to be useful tools in petrophysics and reservoir engineering, because CT and NMR can nondestructively image a host of physical and chemical properties of porous rocks and multiple fluid phases contained within their pores. The images are taken within seconds to minutes, at reservoir temperatures and pressures, with spatial resolution on the millimeter and submillimeter level. The physical properties imaged by the two techniques are complementary. CT images bulk density and effective atomic number. NMR images the nuclide concentration, M/sub 0/, of a variety of nuclei (/sup 1/H, /sup 19/F, /sup 23/Na, /sup 31/P, etc.), their longitudinal and transverse relaxation-time curves (t/sub 1/ and t/sub 2/), and their chemical shift spectra. In rocks, CT images both rock matrix and pore fluids, while NMR images only mobile fluids and the interactions of these mobile fluids with the confining surfaces of the pores.

  18. Coaxial probe for nuclear magnetic resonance diffusion and relaxation correlation experiments

    SciTech Connect

    Tang, Yiqiao; Hürlimann, Martin; Mandal, Soumyajit; Paulsen, Jeffrey; Song, Yi-Qiao

    2014-02-21

    A coaxial nuclear magnetic resonance (NMR) probe is built to measure diffusion and relaxation properties of liquid samples. In particular, we demonstrate the acquisition of two-dimensional (2D) distribution functions (T{sub 1}-T{sub 2} and diffusion–T{sub 2}), essential for fluids characterization. The compact design holds promise for miniaturization, thus enabling the measurement of molecular diffusion that is inaccessible to conventional micro-NMR setups. Potential applications range from crude oil characterization to biomolecular screening and detections.

  19. NMR Studies of Spin Decoherence in Phosphorus-doped Silicon

    NASA Astrophysics Data System (ADS)

    Li, D.; Dementyev, A. E.; Liu, M.; Barrett, S. E.

    2002-03-01

    Understanding nuclear spin dynamics in Si:P is an important step(B.E. Kane, quant-ph/0003031.) towards the realization of semiconductor spin-based qubits(B.E. Kane, Nature 393, 133 (1998).). We present measurements of NMR spectra and relaxation times for both ^29Si and ^31P, in fields up to 15.3 Tesla. Our progress towards Optically Pumped Nuclear Magnetic Resonance(A.E. Dementyev, P.Khandelwal, N.N. Kuzma, S.E. Barrett, L.N. Pfeiffer, K.W.West, Solid State Commun. 119, 217 (2001).) (OPNMR) of Si:P will be described.

  20. MRI and unilateral NMR study of reindeer skin tanning processes.

    PubMed

    Zhu, Lizheng; Del Federico, Eleonora; Ilott, Andrew J; Klokkernes, Torunn; Kehlet, Cindie; Jerschow, Alexej

    2015-04-07

    The study of arctic or subarctic indigenous skin clothing material, known for its design and ability to keep the body warm, provides information about the tanning materials and techniques. The study also provides clues about the culture that created it, since tanning processes are often specific to certain indigenous groups. Untreated skin samples and samples treated with willow (Salix sp) bark extract and cod liver oil are compared in this study using both MRI and unilateral NMR techniques. The two types of samples show different proton spatial distributions and different relaxation times, which may also provide information about the tanning technique and aging behavior.

  1. Solvent suppression in DNP enhanced solid state NMR

    NASA Astrophysics Data System (ADS)

    Yarava, Jayasubba Reddy; Chaudhari, Sachin Rama; Rossini, Aaron J.; Lesage, Anne; Emsley, Lyndon

    2017-04-01

    We show how DNP enhanced solid-state NMR spectra can be dramatically simplified by suppression of solvent signals. This is achieved by (i) exploiting the paramagnetic relaxation enhancement of solvent signals relative to materials substrates, or (ii) by using short cross-polarization contact times to transfer hyperpolarization to only directly bonded carbon-13 nuclei in frozen solutions. The methods are evaluated for organic microcrystals, surfaces and frozen solutions. We show how this allows for the acquisition of high-resolution DNP enhanced proton-proton correlation experiments to measure inter-nuclear proximities in an organic solid.

  2. Optimal control NMR differentiation between fast and slow sodium

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Regatte, Ravinder R.; Jerschow, Alexej

    2010-07-01

    Sodium ions in tissues and organs may experience motion on a variety of timescales, leading to NMR relaxation effects with quadrupolar coupling as the primary mechanism. The various effects that this fluctuating interaction has on spin dynamics can be exploited for distinguishing slow sodium ions from fast ones. Techniques such as triple-quantum filtering have been used for this purpose in the past. In this work we present optimal pulses which significantly improve the selectivity towards slow-tumbling sodium. These pulses can also be modified for robustness against magnetic field inhomogeneities, and could hence also become useful as MRI contrast methods.

  3. Spatial and Temporal Observation of Redox Reactions in Sands by NMR relaxometry

    NASA Astrophysics Data System (ADS)

    Mitreiter, I.; Oswald, S. E.; Stallmach, F.

    2009-04-01

    Using laboratory methods, we investigated the effect of the presence of dissolved paramagnetic ions, such as oxygen and iron, on the proton nuclear magnetic resonance (NMR) relaxation times. Oxygen is the most important electron acceptor that stimulates the activity and growth of aerobic microbes, and iron(III)-ions is the same for anaerobes, which is a key factor for contaminant degradation. We show that both, oxygen as well as iron(III)-ions affect the relaxation times by their paramagnetic properties and thus could be determined inversely by NMR relaxometry in environmentally relevant concentrations. Due to the strong difference of iron(III)- versus iron(II)-ions on relaxation time, we chose the iron(III)-iron(II) redox pair for further studies. We showed that NMR relaxation measurements are sensitive to small changes in the concentration of iron(III) species. A decrease in the relaxation times (T1 & T2) was observed corresponding to an increase in the dissolved iron(III) concentration. This effect was used to monitor relative changes in concentrations of dissolved iron(III) in natural sands. Column experiments were conducted, in which an acid (hydrochloric or sulphuric acid) was applied from the top on iron-bearing sands to dissolute the mineralogical bound iron(III). The relaxation times for different sand fractions with different concentrations of dissolved iron(III) were measured and compared to the relaxation time of water saturated sand without dissolved iron. In further experiments the iron(III) concentration was observed while iron(III) was reduced by reducing agents, e.g. magnesium and oxalic acid, and also experiments in which the pH value was increased by addition of sodium hydroxide to the pore water solution. These processes, the dissolution of iron(III) by an acid, the reduction of iron(III) and the precipitation of iron(III) in natural sands, were monitored with sufficient spatial and temporal resolution. NMR relaxometry offers a non-invasive and

  4. Relaxation schemes for Chebyshev spectral multigrid methods

    NASA Technical Reports Server (NTRS)

    Kang, Yimin; Fulton, Scott R.

    1993-01-01

    Two relaxation schemes for Chebyshev spectral multigrid methods are presented for elliptic equations with Dirichlet boundary conditions. The first scheme is a pointwise-preconditioned Richardson relaxation scheme and the second is a line relaxation scheme. The line relaxation scheme provides an efficient and relatively simple approach for solving two-dimensional spectral equations. Numerical examples and comparisons with other methods are given.

  5. Investigation of domain size in polymer membranes using double quantum filtered spin diffusion MAS NMR.

    SciTech Connect

    Fujimoto, Cy H.; Alam, Todd Michael; Cherry, Brian Ray; Cornelius, Christopher James

    2005-02-01

    Solid-state {sup 1}H magic angle spinning (MAS) NMR was used to investigate sulfonated Diels-Alder poly(phenlylene) polymer membranes. Under high spinning speed {sup 1}H MAS conditions, the proton environments of the sulfonic acid and phenylene polymer backbone are resolved. A double-quantum (DQ) filter using the rotor-synchronized back-to-back (BABA) NMR multiple-pulse sequence allowed the selective suppression of the sulfonic proton environment in the {sup 1}H MAS NMR spectra. This DQ filter in conjunction with a spin diffusion NMR experiment was then used to measure the domain size of the sulfonic acid component within the membrane. In addition, the temperature dependence of the sulfonic acid spin-spin relaxation time (T{sub 2}) was determined, providing an estimate of the activation energy for the proton dynamics of the dehydrated membrane.

  6. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    SciTech Connect

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by /sup 29/Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of /sup 29/Si spectra. A high-temperature (to 1300/sup 0/C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T/sub 1/ and T/sub 2/) measurements as a function of composition and temperature for /sup 23/Na and /sup 29/Si.

  7. Anionic cyclophanes as potential reversal agents of muscle relaxants by chemical chelation.

    PubMed

    Cameron, Kenneth S; Fielding, Lee; Mason, Rona; Muir, Alan W; Rees, David C; Thorn, Simon; Zhang, Ming Qiang

    2002-03-11

    A series of carboxyl-containing cyclophanes have been designed and synthesised as chemical chelators (or host molecules) of cationic muscle relaxant drugs (or guest molecules). Three of these cyclophane derivatives, 1-3, have been shown by NMR to form 1:1 complexes with the muscle relaxants pancuronium, and gallamine, in D(2)O, with association constants up to 10(4) M(-1). When tested in an in vitro chick biventer muscle preparation, the cyclophanes reversed the neuromuscular block induced by pancuronium and gallamine, with having the most effective reversal against pancuronium (EC(50) 40 microM.

  8. Comparative study of inversion methods of three-dimensional NMR and sensitivity to fluids

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Wang, Peng; Mao, Keyu

    2014-04-01

    Three-dimensional nuclear magnetic resonance (3D NMR) logging can simultaneously measure transverse relaxation time (T2), longitudinal relaxation time (T1), and diffusion coefficient (D). These parameters can be used to distinguish fluids in the porous reservoirs. For 3D NMR logging, the relaxation mechanism and mathematical model, Fredholm equation, are introduced, and the inversion methods including Singular Value Decomposition (SVD), Butler-Reeds-Dawson (BRD), and Global Inversion (GI) methods are studied in detail, respectively. During one simulation test, multi-echo CPMG sequence activation is designed firstly, echo trains of the ideal fluid models are synthesized, then an inversion algorithm is carried on these synthetic echo trains, and finally T2-T1-D map is built. Futhermore, SVD, BRD, and GI methods are respectively applied into a same fluid model, and the computing speed and inversion accuracy are compared and analyzed. When the optimal inversion method and matrix dimention are applied, the inversion results are in good aggreement with the supposed fluid model, which indicates that the inversion method of 3D NMR is applieable for fluid typing of oil and gas reservoirs. Additionally, the forward modeling and inversion tests are made in oil-water and gas-water models, respectively, the sensitivity to the fluids in different magnetic field gradients is also examined in detail. The effect of magnetic gradient on fluid typing in 3D NMR logging is stuied and the optimal manetic gradient is choosen.

  9. NMR 1D-imaging of water infiltration into mesoporous matrices.

    PubMed

    Le Feunteun, Steven; Diat, Olivier; Guillermo, Armel; Poulesquen, Arnaud; Podor, Renaud

    2011-04-01

    It is shown that coupling nuclear magnetic resonance (NMR) 1D-imaging with the measure of NMR relaxation times and self-diffusion coefficients can be a very powerful approach to investigate fluid infiltration into porous media. Such an experimental design was used to study the very slow seeping of pure water into hydrophobic materials. We consider here three model samples of nuclear waste conditioning matrices which consist in a dispersion of NaNO(3) (highly soluble) and/or BaSO(4) (poorly soluble) salt grains embedded in a bitumen matrix. Beyond studying the moisture progression according to the sample depth, we analyze the water NMR relaxation times and self-diffusion coefficients along its 1D-concentration profile to obtain spatially resolved information on the solution properties and on the porous structure at different scales. It is also shown that, when the relaxation or self-diffusion properties are multimodal, the 1D-profile of each water population is recovered. Three main levels of information were disclosed along the depth-profiles. They concern (i) the water uptake kinetics, (ii) the salinity and the molecular dynamics of the infiltrated solutions and (iii) the microstructure of the water-filled porosities: open networks coexisting with closed pores. All these findings were fully validated and enriched by NMR cryoporometry experiments and by performing environmental scanning electronic microscopy observations. Surprisingly, results clearly show that insoluble salts enhance the water progression and thereby increase the capability of the material to uptake water.

  10. Recent excitements in protein NMR: Large proteins and biologically relevant dynamics.

    PubMed

    Chiliveri, Sai Chaitanya; Deshmukh, Mandar V

    2016-12-01

    The advent of Transverse Relaxation Optimized SpectroscopY (TROSY) and perdeuteration allowed biomolecular NMR spectroscopists to overcome the size limitation barrier (approx. 20 kDa) in de novo structure determination of proteins. The utility of these techniques was immediately demonstrated on large proteins and protein complexes (e.g. GroELGroES, ClpP protease, Hsp90-p53, 20S proteasome, etc.). Further, recent methodological developments such as Residual Dipolar Couplings and Paramagnetic Relaxation Enhancement allowed accurate measurement of long-range structural restraints. Additionally, Carr-Purcell-Meiboom-Gill (CPMG), rotating frame relaxation experiments (R1(rho)) and saturation transfer experiments (CEST and DEST) created never-before accessibility to the (mu)s-ms timescale dynamic parameters that led to the deeper understanding of biological processes. Meanwhile, the excitement in the field continued with a series of developments in the fast data acquisition methods allowing rapid structural studies on less stable proteins. This review aims to discuss important developments in the field of biomolecular NMR spectroscopy in the recent past, i.e., in the post TROSY era. These developments not only gave access to the structural studies of large protein assemblies, but also revolutionized tools in the arsenal of today's biomolecular NMR and point to a bright future of biomolecular NMR spectroscopy.

  11. The effects of frontal EMG biofeedback and progressive relaxation upon hyperactivity and its behavioral concomitants.

    PubMed

    Braud, L W

    1978-03-01

    Hyperactive children (N = 15) and nonhyperactive children (N = 15) were compared. Hyperactive children were found to possess significantly higher (p less than .002) muscular tension levels and, in addition, presented more behavioral problems and had lower test scores. Both electromyographic (EMG) biofeedback and progressive relaxation exercises were successful in the significant reduction of muscular tension, hyperactivity, distractability, irritability, impulsivity, explosiveness, aggressivity, and emotionality in hyperactive children. The greatest improvement was seen in the area of "emotionality-aggression" (irritability, explosiveness, impulsivity, low frustration tolerance, aggresion). No differences were seen in the EMG improvement of drug and nondrug hyperactive children; both made progress under these self-control techniques. However, nondrug children made greater improvements in the behavioral area. Both EMG biofeedback and progressive relaxation resulted in improvements on the test scores of hyperactive subjects (Bender-Gestalt, Visual Sequential Memory, Digit Span, Coding). The therapy would appear to be improved by the inclusion of mental relaxation, concentration, meditation, and mind-blanking exercises for mental control.

  12. Ellipsoidal Relaxation of Deformed Vesicles

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Lira, Rafael B.; Riske, Karin A.; Dimova, Rumiana; Lin, Hao

    2015-09-01

    Theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles are presented. The current work reveals the simplicity and universal aspects of this process. The Helfrich formula is shown to apply to the dynamic relaxation of moderate-to-high tension membranes, and a closed-form solution is derived which predicts the vesicle aspect ratio as a function of time. Scattered data are unified by a time scale, which leads to a similarity behavior, governed by a distinctive solution for each vesicle type. Two separate regimes in the relaxation are identified, namely, the "entropic" and the "constant-tension" regimes. The bending rigidity and the initial membrane tension can be simultaneously extracted from the data analysis, posing the current approach as an effective means for the mechanical analysis of biomembranes.

  13. Relaxed Poisson cure rate models.

    PubMed

    Rodrigues, Josemar; Cordeiro, Gauss M; Cancho, Vicente G; Balakrishnan, N

    2016-03-01

    The purpose of this article is to make the standard promotion cure rate model (Yakovlev and Tsodikov, ) more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution (Laskin, ). It is proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, ) is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models (Rodrigues et al., ). Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented.

  14. Application of rate equations to ELDOR and saturation recovery experiments on 14N: 15N spin-label pairs

    NASA Astrophysics Data System (ADS)

    Yin, Jun-Jie; Hyde, James S.

    Rate equations describing the time dependence of population differences of the five allowed transitions in an 14N 15N spin-label pair problem are set up. Included in the formulation are the three Heisenberg exchange rate constants and different nitrogen nuclear spin-lattice relaxation rates, electron spin-lattice relaxation rates, and populations for the 14N and 15N moieties. Using matrix algebra, stationary and time-dependent solutions are obtained in a unified theoretical framework. The calculations apply to stationary and pulse electron-electron double resonance and to saturation-recovery ESR. Particular emphasis is placed on short pulse initial excitation, where the transverse relaxation processes are sufficiently slow that only the population difference of the irradiated transition departs significantly from Boltzmann equilibrium during the excitation.

  15. Resistively detected NMR of the nu=1 quantum Hall state: A tilted magnetic field study

    SciTech Connect

    Bowers, C. R.; Gusev, G. M.; Jaroszynski, J.; Reno, J. L.; Simmons, J. A.

    2010-02-15

    Previous resistively detected NMR (RDNMR) studies on the nuapprox =1 quantum Hall state have reported a 'dispersionlike' line shape and extremely short nuclear-spin-lattice relaxation times, observations which have been attributed to the formation of a skyrme lattice. Here we examine the evolution of the RDNMR line shape and nuclear-spin relaxation for Zeeman:Coulomb energy ratios ranging from 0.012 to 0.036. According to theory, suppression of the skyrme crystal, along with the associated Goldstone mode nuclear-spin-relaxation mechanism, is expected at the upper end of this range. However, we find that the anomalous line shape persists at high Zeeman energy, and only a modest decrease in the RDNMR-detected nuclear-spin-relaxation rate is observed.

  16. A mixed relaxed clock model

    PubMed Central

    2016-01-01

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325829

  17. A mixed relaxed clock model.

    PubMed

    Lartillot, Nicolas; Phillips, Matthew J; Ronquist, Fredrik

    2016-07-19

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.

  18. SQUID detected NMR and NQR. Superconducting Quantum Interference Device.

    PubMed

    Augustine, M P; TonThat, D M; Clarke, J

    1998-03-01

    The dc Superconducting QUantum Interference Device (SQUID) is a sensitive detector of magnetic flux, with a typical flux noise of the order 1 muphi0 Hz(-1/2) at liquid helium temperatures. Here phi0 = h/2e is the flux quantum. In our NMR or NQR spectrometer, a niobium wire coil wrapped around the sample is coupled to a thin film superconducting coil deposited on the SQUID to form a flux transformer. With this untuned input circuit the SQUID measures the flux, rather than the rate of change of flux, and thus retains its high sensitivity down to arbitrarily low frequencies. This feature is exploited in a cw spectrometer that monitors the change in the static magnetization of a sample induced by radio frequency irradiation. Examples of this technique are the detection of NQR in 27Al in sapphire and 11B in boron nitride, and a level crossing technique to enhance the signal of 14N in peptides. Research is now focused on a SQUID-based spectrometer for pulsed NQR and NMR, which has a bandwidth of 0-5 MHz. This spectrometer is used with spin-echo techniques to measure the NQR longitudinal and transverse relaxation times of 14N in NH4ClO4, 63+/-6 ms and 22+/-2 ms, respectively. With the aid of two-frequency pulses to excite the 359 kHz and 714 kHz resonances in ruby simultaneously, it is possible to obtain a two-dimensional NQR spectrum. As a third example, the pulsed spectrometer is used to study NMR spectrum of 129Xe after polariza-tion with optically pumped Rb. The NMR line can be detected at frequencies as low as 200 Hz. At fields below about 2 mT the longitudinal relaxation time saturates at about 2000 s. Two recent experiments in other laboratories have extended these pulsed NMR techniques to higher temperatures and smaller samples. In the first, images were obtained of mineral oil floating on water at room temperature. In the second, a SQUID configured as a thin film gradiometer was used to detect NMR in a 50 microm particle of 195Pt at 6 mT and 4.2 K.

  19. Continuous-wave NMR imaging of solids.

    PubMed

    Lurie, D J; McCallum, S J; Hutchison, J M; Alecci, M

    1996-03-01

    Current pulsed nuclear magnetic resonance methods of imaging samples such as solids with short spin-spin relaxation times are restricted to use with T2 values longer than approximately 10 microseconds. In the present study a method of imaging ultra-short T2 samples using continuous- wave, swept-field NMR is presented that, in principle, will be able to overcome this restriction. The technique is identical to that used in continuous-wave electron paramagnetic resonance imaging of paramagnetic species and involves irradiating the sample continuously with a radiofrequency excitation in the presence of a strong stationary magnetic field gradient. When the main magnetic field is swept over a suitable range, the variation of the NMR absorption signal with applied magnetic field yields a one-dimensional projection of the object under study along the gradient direction. Two- or three-dimensional image data sets may be reconstructed from projections that are obtained by applying the gradient in different directions. Signal-to-noise ratio can be improved by modulating the magnetic field and employing a lock-in amplifier to recover signal variations at the audio modulation frequency. Preliminary experiments were performed using a 7 Tesla magnet and a 300 MHz continuous-wave radiofrequency bridge with lock-in detection. The apparatus is described and the results of pilot experiments that employed vulcanized rubber samples are presented. The ability of the technique to detect short T2 samples was demonstrated by the presence of a background signal from the Perspex former of the birdcage resonator used for signal reception.

  20. Analog circuits for relaxation networks.

    PubMed

    Card, H

    1993-12-01

    Selected examples are presented of recent advances, primarily from the U.S. and Canada, in analog circuits for relaxation networks. Relaxation networks having feedback connections exhibit potentially greater computational power per neuron than feedforward networks. They are also more poorly understood especially with respect to learning algorithms. Examples are described of analog circuits for (i) supervised learning in deterministic Boltzmann machines, (ii) unsupervised competitive learning and feature maps and (iii) networks with resistive grids for vision and audition tasks. We also discuss recent progress on in-circuit learning and synaptic weight storage mechanisms.

  1. Numerical simulation of multi-dimensional NMR response in tight sandstone

    NASA Astrophysics Data System (ADS)

    Guo, Jiangfeng; Xie, Ranhong; Zou, Youlong; Ding, Yejiao

    2016-06-01

    Conventional logging methods have limitations in the evaluation of tight sandstone reservoirs. The multi-dimensional nuclear magnetic resonance (NMR) logging method has the advantage that it can simultaneously measure transverse relaxation time (T 2), longitudinal relaxation time (T 1) and diffusion coefficient (D). In this paper, we simulate NMR measurements of tight sandstone with different wettability and saturations by the random walk method and obtain the magnetization decays of Carr-Purcell-Meiboom-Gill pulse sequences with different wait times (TW) and echo spacings (TE) under a magnetic field gradient, resulting in D-T 2-T 1 maps by the multiple echo trains joint inversion method. We also study the effects of wettability, saturation, signal-to-noise ratio (SNR) of data and restricted diffusion on the D-T 2-T 1 maps in tight sandstone. The results show that with decreasing wetting fluid saturation, the surface relaxation rate of the wetting fluid gradually increases and the restricted diffusion phenomenon becomes more and more obvious, which leads to the wetting fluid signal moving along the direction of short relaxation and the direction of the diffusion coefficient decreasing in D-T 2-T 1 maps. Meanwhile, the non-wetting fluid position in D-T 2-T 1 maps does not change with saturation variation. With decreasing SNR, the ability to identify water and oil signals based on NMR maps gradually decreases. The wetting fluid D-T 1 and D-T 2 correlations in NMR diffusion-relaxation maps of tight sandstone are obtained through expanding the wetting fluid restricted diffusion models, and are further applied to recognize the wetting fluid in simulated D-T 2 maps and D-T 1 maps.

  2. Water distribution in tofu and application of T2 relaxation measurements in determination of tofu's water-holding capacity.

    PubMed

    Li, Teng; Rui, Xin; Li, Wei; Chen, Xiaohong; Jiang, Mei; Dong, Mingsheng

    2014-08-27

    Low-field nuclear magnetic resonance (LF-NMR) was introduced for the elucidation of tofu in the present study. After multiexponential analysis of relaxation decays, three water fractions centered at about 1.5-2.6, 24-114, and 132-305 ms were detected and identified as T2b, T21, and T22, respectively. Principal component analysis (PCA) of the data revealed that sample aggregation was dependent on solubility of coagulants and contained anions. Stepwise centrifugation and microwave drying were employed as dehydration methods. Significant correlations were observed between T21 and T22 relaxation times and water-holding capacity (WHC) in both dehydration processes, which implied LF-NMR measurements could be an efficient method for determination and prediction of tofu's water-holding capacity. Ten linear equations that could be applied in prediction of WHC for tofu were reported. LF-NMR was suggested to be a powerful tool for the study of tofu.

  3. Relaxation Nuclear Magnetic Resonance Imaging Investigation of Heterogeneous Aging in a Hydroxy-Terminated Polybutadiene-Based Elastomer

    SciTech Connect

    Alam, Todd M.; Cherry, Brian R.; Minard, Kevin R.; Celina, Mat C.

    2005-12-27

    Relaxation nuclear magnetic resonance imaging (R-NMRI) was employed to investigate the effects of thermo-oxidative aging in a hydroxy-terminated polybutadiene (HTPB) based elastomer. A series of three-dimensional (3D) Hahn-echo weighted single point images (SPI) of the elastomer were utilized to generate a 3D parameter map of the aged material. NMR spin-spin relaxation times (T2) were measured for each voxel producing a 3D NMR parameter (T2) map of the aged polymer. These T2 maps reveal a dramatic reduction of local polymer mobility near the aging surface with the degree of T2 heterogeneity varying as a function of aging. Using correlations between NMR T2 and material modulus, the impact of this heterogeneous thermo-oxidative aging on the material properties is discussed.

  4. Multi-scales nuclear spin relaxation of liquids in porous media

    NASA Astrophysics Data System (ADS)

    Korb, Jean-Pierre

    2010-03-01

    The magnetic field dependence of the nuclear spin-lattice relaxation rate 1/T(ω) is a rich source of dynamical information for characterizing the molecular dynamics of liquids in confined environments. Varying the magnetic field changes the Larmor frequency ω, and thus the fluctuations to which the nuclear spin relaxation is sensitive. Moreover, this method permits a more complete characterization of the dynamics than the usual measurements as a function of temperature at fixed magnetic field strength, because many common solvent liquids have phase transitions that may alter significantly the character of the dynamics over the temperature range usually studied. Further, the magnetic field dependence of the spin-lattice relaxation rate, 1/T(ω), provides a good test of the theories that relate the measurement to the microdynamical behavior of the liquid. This is especially true in spatially confined systems where the effects of reduced dimensionality may force more frequent reencounters of the studied proton spin-bearing molecules with paramagnetic impurities at the pore surfaces that may alter the correlation functions that enter the relaxation equations in a fundamental way. We show by low field NMR relaxation that changing the amount of surface paramagnetic impurities leads to striking different pore-size dependences of the relaxation times T and T of liquids in pores. Here, we focus mainly on high surface area porous materials including calibrated porous silica glasses, granular packings, heterogeneous catalytic materials, cement-based materials and natural porous materials such as clay minerals and rocks. Recent highlights NMR relaxation works are reviewed for these porous materials, like continuous characterization of the evolving microstructure of various cementitious materials and measurement of wettability in reservoir carbonate rocks. Although, the recent applications of 2-dimensional T-T and T-z-store-T correlation experiments for characterization of

  5. Towards Using NMR to Screen for Spoiled Tomatoes Stored in 1,000 L, Aseptically Sealed, Metal-Lined Totes

    PubMed Central

    Pinter, Michael D.; Harter, Tod; McCarthy, Michael J.; Augustine, Matthew P.

    2014-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is used to track factory relevant tomato paste spoilage. It was found that spoilage in tomato paste test samples leads to longer spin lattice relaxation times T1 using a conventional low magnetic field NMR system. The increase in T1 value for contaminated samples over a five day room temperature exposure period prompted the work to be extended to the study of industry standard, 1,000 L, non-ferrous, metal-lined totes. NMR signals and T1 values were recovered from a large format container with a single-sided NMR sensor. The results of this work suggest that a handheld NMR device can be used to study tomato paste spoilage in factory process environments. PMID:24594611

  6. Recent advances in application of (27)Al NMR spectroscopy to materials science.

    PubMed

    Haouas, Mohamed; Taulelle, Francis; Martineau, Charlotte

    2016-05-01

    Valuable information about the local environment of the aluminum nucleus can be obtained through (27)Al Nuclear Magnetic Resonance (NMR) parameters like the isotropic chemical shift, scalar and quadrupolar coupling constants, and relaxation rate. With nearly 250 scientific articles per year dealing with (27)Al NMR spectroscopy, this analytical tool has become popular because of the recent progress that has made the acquisition and interpretation of the NMR data much easier. The application of (27)Al NMR techniques to various classes of compounds, either in solution or solid-state, has been shown to be extremely informative concerning local structure and chemistry of aluminum in its various environments. The development of experimental methodologies combined with theoretical approaches and modeling has contributed to major advances in spectroscopic characterization especially in materials sciences where long-range periodicity and classical local NMR probes are lacking. In this review we will present an overview of results obtained by (27)Al NMR as well as the most relevant methodological developments over the last 25years, concerning particularly on progress in the application of liquid- and solid-state (27)Al NMR to the study of aluminum-based materials such as aluminum polyoxoanions, zeolites, aluminophosphates, and metal-organic-frameworks.

  7. Polarization transfer NMR imaging

    DOEpatents

    Sillerud, Laurel O.; van Hulsteyn, David B.

    1990-01-01

    A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

  8. Understanding NMR Chemical Shifts

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.

    1996-10-01

    The NMR chemical shift serves as a paradigm for molecular electronic properties. We consider the factors that determine the general magnitudes of the shifts, the state of the art in theoretical calculations, the nature of the shielding tensor, and the multidimensional shielding surface that describes the variation of the shielding with nuclear positions. We also examine the nature of the intermolecular shielding surface as a general example of a supermolecule property surface. The observed chemical shift in the zero-pressure limit is determined not only by the value of the shielding at the equilibrium geometry, but the dynamic average over the multidimensional shielding surface during rotation and vibration of the molecule. In the gas, solution, or adsorbed phase it is an average of the intermolecular shielding surface over all the configurations of the molecule with its neighbors. The temperature dependence of the chemical shift in the isolated molecule, the changes upon isotopic substitution, the changes with environment, are well characterized experimentally so that quantum mechanical descriptions of electronic structure and theories related to dynamics averaging of any electronic property can be subjected to stringent test.

  9. sup 2 H NMR study of molecular dynamics and organization in the system C sub 12 E sub 4 -water

    SciTech Connect

    Henriksson, U. ); Jonstroemer, M.; Olsson, U.; Soederman, O. ); Klose, G. )

    1991-05-02

    A sample containing 20 wt % of the nonionic surfactant tetraethylene glycol dodecyl ether (C{sub 12}E{sub 4}), specifically deuterated in the {alpha}-position, was investigated with {sup 2}H NMR relaxation in H{sub 2}O. From the frequency dependence of the longitudinal relaxation rate in the Larmor frequency range 2-55 MHz, it was concluded that the solution contains rodlike micelles. A slow motion in the microsecond time scale, as determined from the transverse relaxation rate, was interpreted taking the flexibility of the rodlike micelles explicitly into account.

  10. Producing >60,000-fold room-temperature 89Y NMR signal enhancement

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd; Jindal, Ashish; Merritt, Matthew; Malloy, Craig; Sherry, A. Dean; Kovacs, Zoltan

    2011-03-01

    89 Y in chelated form is potentially valuable in medical imaging because its chemical shift is sensitive to local factors in tumors such as pH. However, 89 Y has a low gyromagnetic ratio γn thus its NMR signal is hampered by low thermal polarization. Here we show that we can enhance the room-temperature NMR signal of 89 Y up to 65,000 times the thermal signal, which corresponds to 10 % nuclear polarization, via fast dissolution dynamic nuclear polarization (DNP). The relatively long spin-lattice relaxation time T1 (~ 500 s) of 89 Y translates to a long polarization lifetime. The 89 Y NMR enhancement is optimized by varying the glassing matrices and paramagnetic agents as well as doping the samples with a gadolinium relaxation agent. Co-polarization of 89 Y-DOTA with a 13 C sample shows that both nuclear spin species acquire the same spin temperature Ts , consistent with thermal mixing mechanism of DNP. The high room-temperature NMR signal enhancement places 89 Y, one of the most challenging nuclei to detect by NMR, in the list of viable magnetic resonance imaging (MRI) agents when hyperpolarized under optimized conditions. This work is supported in part by the National Institutes of Health grant numbers 1R21EB009147-01 and RR02584.

  11. Milli-tesla NMR and spectrophotometry of liquids hyperpolarized by dissolution dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Zhu, Yue; Chen, Chia-Hsiu; Wilson, Zechariah; Savukov, Igor; Hilty, Christian

    2016-09-01

    Hyperpolarization methods offer a unique means of improving low signal strength obtained in low-field NMR. Here, simultaneous measurements of NMR at a field of 0.7 mT and laser optical absorption from samples hyperpolarized by dissolution dynamic nuclear polarization (D-DNP) are reported. The NMR measurement field closely corresponds to a typical field encountered during sample injection in a D-DNP experiment. The optical spectroscopy allows determination of the concentration of the free radical required for DNP. Correlation of radical concentration to NMR measurement of spin polarization and spin-lattice relaxation time allows determination of relaxivity and can be used for optimization of the D-DNP process. Further, the observation of the nuclear Overhauser effect originating from hyperpolarized spins is demonstrated. Signals from 1H and 19F in a mixture of trifluoroethanol and water are detected in a single spectrum, while different atoms of the same type are distinguished by J-coupling patterns. The resulting signal changes of individual peaks are indicative of molecular contact, suggesting a new application area of hyperpolarized low-field NMR for the determination of intermolecular interactions.

  12. Compact orthogonal NMR field sensor

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  13. Integrative NMR for biomolecular research.

    PubMed

    Lee, Woonghee; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R; Tonelli, Marco; Westler, William M; Butcher, Samuel E; Henzler-Wildman, Katherine A; Markley, John L

    2016-04-01

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html ).

  14. Solid State NMR Studies of Energy Conversion and Storage Materials

    NASA Astrophysics Data System (ADS)

    Jankuru Hennadige, Sohan Roshel De Silva

    NMR (Nuclear magnetic resonance) spectroscopy is utilized to study energy conversion and storage materials. Different types of NMR techniques including Magic Angle Spinning, Cross-polarization and relaxation measurement experiments were employed. Four different projects are discussed in this dissertation. First, three types of CFx battery materials were investigated. Electrochemical studies have demonstrated different electrochemical performances by one type, delivering superior performance over the other two. 13C and 19F MAS NMR techniques are employed to identify the atomic/molecular structural factors that might account for differences in electrochemical performance among different types. Next as the second project, layered polymer dielectrics were investigated by NMR. Previous studies have shown that thin film capacitors are improved by using alternate layers of two polymers with complementary properties: one with a high breakdown strength and one with high dielectric constant as opposed to monolithic layers. 13C to 1H cross-polarization techniques were used to investigate any inter-layer properties that may cause the increase in the dielectric strength. The third project was to study two types of thermoelectric materials. These samples were made of heavily doped phosphorous and boron in silicon by two different methods: ball-milled and annealed. These samples were investigated by NMR to determine the degree of disorder and obtain insight into the doping efficiency. The last ongoing project is on a lithium-ion battery system. The nature of passivating layers or the solid electrolyte interphase (SEI) formed on the electrodes surface is important because of the direct correlation between the SEI and the battery life time/durability. Multinuclear (7Li, 19F, 31P) techniques are employed to identify the composition of the SEI formation of both positive and negative electrodes.

  15. Sb-doped PbTe: An NMR Perspective

    NASA Astrophysics Data System (ADS)

    Levin, E. M.; Schmidt-Rohr, K.; Jaworski, C. M.; Heremans, J. P.

    2010-03-01

    In PbTe, Sb as a dopant can occupy either Pb or Te sites. To understand the effect of Sb on the local charge-carrier concentration in both cases, we have studied high-resolution ^125Te and ^207Pb NMR spectra of Pb1-xSbxTe, PbSbxTe1-x, and n- and p-type PbTe samples. The spectra of Pb0.9975Sb0.0025Te and PbSb0.0025Te0.9975 have distinctly different resonance frequencies due to Knight shifts and chemical shifts produced by Sb at Pb or Te sites. Pb0.9975Sb0.0025Te is n-type while in PbSb0.0025Te0.9975 both n- and p-type are found. NMR spectra and spin-lattice T1 relaxation of ^207Pb nuclei in PbSb0.0025Te0.9975, which are sensitive to the hyperfine interaction between charge carriers and NMR nuclei, reveal at least four components, which reflect electronic inhomogeneity of the sample. The local carrier concentrations estimated from T1 NMR varies from n<3x10^17 to p˜10^19 cm-3. These multiple components help rationalize the complex temperature dependence of the thermopower of PbSb0.0025Te0.9975. However, comparison with Hall and Seebeck effects data indicates that some NMR signals are due to localized electron states, which do not directly contribute to transport.

  16. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  17. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping {sup 129}Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the {sup 131}Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  18. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  19. Multispectral Analysis of NMR Imagery

    NASA Technical Reports Server (NTRS)

    Butterfield, R. L.; Vannier, M. W. And Associates; Jordan, D.

    1985-01-01

    Conference paper discusses initial efforts to adapt multispectral satellite-image analysis to nuclear magnetic resonance (NMR) scans of human body. Flexibility of these techniques makes it possible to present NMR data in variety of formats, including pseudocolor composite images of pathological internal features. Techniques do not have to be greatly modified from form in which used to produce satellite maps of such Earth features as water, rock, or foliage.

  20. "Stressing" Relaxation in the Classroom.

    ERIC Educational Resources Information Center

    Prager-Decker, Iris

    A rationale is offered for incorporating relaxation training in elementary school classroom activities. Cited are research studies which focus on the reaction of children to stressful life changes and resulting behavioral and physical disorders. A list is given of significant life events which may be factors in causing diseases or misbehavior in…

  1. Theory of nuclear magnetic relaxation

    NASA Technical Reports Server (NTRS)

    Mcconnell, J.

    1983-01-01

    A theory of nuclear magnetic interaction is based on the study of the stochastic rotation operator. The theory is applied explicitly to relaxation by anisotropic chemical shift and to spin-rotational interactions. It is applicable also to dipole-dipole and quadrupole interactions.

  2. Relaxation properties in classical diamagnetism

    NASA Astrophysics Data System (ADS)

    Carati, A.; Benfenati, F.; Galgani, L.

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  3. Distributed Relaxation for Conservative Discretizations

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2001-01-01

    A multigrid method is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work that is a small (less than 10) multiple of the operation count in one target-grid residual evaluation. The way to achieve this efficiency is the distributed relaxation approach. TME solvers employing distributed relaxation have already been demonstrated for nonconservative formulations of high-Reynolds-number viscous incompressible and subsonic compressible flow regimes. The purpose of this paper is to provide foundations for applications of distributed relaxation to conservative discretizations. A direct correspondence between the primitive variable interpolations for calculating fluxes in conservative finite-volume discretizations and stencils of the discretized derivatives in the nonconservative formulation has been established. Based on this correspondence, one can arrive at a conservative discretization which is very efficiently solved with a nonconservative relaxation scheme and this is demonstrated for conservative discretization of the quasi one-dimensional Euler equations. Formulations for both staggered and collocated grid arrangements are considered and extensions of the general procedure to multiple dimensions are discussed.

  4. 13C NMR studies of the molecular dynamics of chlorpromazine in solution

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yohko; Ishii, Tomoko; Kurokawa, Noriko; Aoki, Toshikazu; Ohshima, Shigeru

    1996-02-01

    The optimum structure, which is expected to lead to biological activity, of chlorpromazine hydrochloride salt (compound ( I)) in solution was determined on the basis of NMR data and molecular orbital calculations; compound ( I) favours a bent structure in which the side-chain tilts toward the chlorinated benzene ring. The molecular mobility of compound ( I) in CDCl 3 and D 2O was also examined on the basis of 13C NMR spin-lattice relaxation time ( T1). T1 depends on the magnetic field strength and the solvent. The dependence indicates that the molecular mobility of compound ( I) is larger in D 2O than in CDCl 3

  5. Study of phase transition mechanisms in [N(CH3)4]2ZnCl4 by static NMR and MAS NMR

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Lim, Kye-Young

    2014-05-01

    The temperature dependences of chemical shifts, intensities, the spin-lattice relaxation time in laboratory frame T1, and in rotating frame T1ρ were measured for 1H and 13C in [N(CH3)4]2ZnCl4 by single-crystal NMR and MAS NMR. The unit cell in phase I contains two chemically inequivalent types of N(CH3)4 ions. However, the two chemically different ions N(CH3)4 cannot be practically identified from the 13C NMR spectrum. The structural changes for 1H and 13C were measured near Ti and TC4. The existence of chemically equivalent N(CH3)4 ions in phase I and the existence of the ferroelastic characteristic of the N(CH3)4 ions in phases IV and V are discussed.

  6. NMR Investigation of Chloromethane Complexes of Cryptophane-A and Its Analogue with Butoxy Groups

    PubMed Central

    2014-01-01

    Host–guest complexes between cryptophane-A as host and dichloromethane and chloroform as guests are investigated using 1H and 13C NMR spectroscopy. Moreover, a related cryptophane, with the methoxy groups replaced by butoxy units (cryptophane-But), and its complexes with the same guests were also studied. Variable temperature spectra showed effects of chemical exchange between the free and bound guests, as well as of conformational exchange of the host. The guest exchange was studied quantitatively by exchange spectroscopy or line shape analysis. Extraction of kinetic and thermodynamic parameters led to the characterization of the affinity between guests and hosts. On the other hand, the host exchange was investigated by means of 13C Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion which aims at the determination of the transverse relaxation rate R2, the inverse of the transverse relaxation time T2, as a function of the repetition of the π pulses in a CPMG train. The variation of the measured transverse relaxation rate with the repetition rate νCPMG indicated conformational exchange occurring on the microsecond–millisecond time scale. Structural information was obtained through measurements of cross-relaxation rates, both within the host and between the host and the guest protons. The NMR results were supported by DFT calculations. PMID:24472055

  7. Relaxation processes in non-Debye dielectrics

    NASA Astrophysics Data System (ADS)

    Turik, A. V.; Bogatin, A. S.; Andreev, E. V.

    2011-12-01

    The specific features of the relaxation processes in non-Debye dielectrics have been investigated. The nature of the difference between the relaxation frequencies of the dielectric constant and dielectric loss (conductivity) has been explained. It has been shown that the average relaxation frequency of the conductivity is considerably (in some cases, by several orders of magnitude) higher than the relaxation frequency of the dielectric constant owing to an increase in the conductivity spectra of the statistical weight of the relaxation processes with short relaxation times.

  8. Thermal and solvent effects on the NMR and UV parameters of some bioreductive drugs

    NASA Astrophysics Data System (ADS)

    Ramalho, Teodorico C.; Taft, Carlton A.

    2005-08-01

    N15 NMR chemical shifts and n →π* electronic transition energy for metronidazole (1) has been calculated and compared with experimental data. A detailed computational study of 1 is presented, with special attention to the performance of various theoretical methods for reproducing spectroscopic parameters in solution. The most sophisticated approach involves density functional based on the Car-Parrinello molecular dynamics simulations of 1 in aqueous solution (BP86 level) and averaging chemical shifts and ΔE(n →π*) over snapshots from the trajectory. In the NMR and UV calculations for these snapshots (performed at the B3LYP level), a small number of discrete water molecules are retained, and the remaining bulk solution effects are included via a polarizable continuum model (PCM). A good agreement with experiment is also obtained using static geometry optimization and NMR computation of pristine 1 employing a PCM approach. Further theoretical predictions are also reported for O17 NMR and ΔE(n →π*) of three hydroxycinnamic acid derivatives, which suggest that it is essential to incorporate the dynamics and solvent effects for NMR and UV calculations in the condensed phase.

  9. Exploring hyperpolarized 83Kr by remotely detected NMR relaxometry

    NASA Astrophysics Data System (ADS)

    Cleveland, Zackary I.; Pavlovskaya, Galina E.; Stupic, Karl F.; LeNoir, Catherine F.; Meersmann, Thomas

    2006-01-01

    For the first time, a hyperpolarized (hp) noble gas with a nuclear electric quadrupole moment is available for high-field nuclear-magnetic-resonance (NMR) spectroscopy and magnetic-resonance imaging. Hp Kr83 (I=9/2) is generated by spin-exchange optical pumping and separated from the rubidium vapor used in the pumping process. Optical pumping occurs under the previously unstudied condition of high krypton gas densities. Signal enhancements of more than three orders of magnitude compared to the thermal equilibrium Kr83 signal at 9.4T magnetic-field strength are obtained. The spin-lattice relaxation of Kr83 is caused primarly by quadrupolar couplings during the brief adsorption periods of the krypton atoms on the surrounding container walls and significantly limits the currently obtained spin polarization. Measurements in macroscopic glass containers and in desiccated canine lung tissue at field strengths between 0.05 and 3T using remotely detected hp Kr83 NMR spectroscopy reveal that the longitudinal relaxation dramatically accelerates as the magnetic-field strength decreases.

  10. Mapping the bound conformation and protein interactions of microtubule destabilizing peptides by STD-NMR spectroscopy.

    PubMed

    Milton, Mark J; Thomas Williamson, R; Koehn, Frank E

    2006-08-15

    Using the hemiasterlin analogs taltobulin (I, HTI-286), II, and III as model compounds, we demonstrate that relaxation-compensated STD-NMR can be used as an effective tool to efficiently provide a qualitative epitope map for microtubule destabilizing peptides. Due to the disparate relaxation behavior of the protons in these model compounds, it was essential to collect STD with very short saturation times to render an accurate picture of the binding interaction. The conformation of HTI-286 (I) in complex with the protein was determined from TRNOESY/ROESY experiments and is similar to the X-ray crystal structure conformation observed for hemiasterlin methyl ester in the absence of protein.

  11. Almost ideal 1D water diffusion in imogolite nanotubes evidenced by NMR relaxometry.

    PubMed

    Belorizky, Elie; Fries, Pascal H; Guillermo, Armel; Poncelet, Olivier

    2010-06-21

    The longitudinal proton relaxation rates R(1) of water diffusing inside synthetic aluminium silicate imogolite nanotubes are measured by fast field-cycling NMR for frequencies between 0.02 and 35 MHz at 25, 37 and 50 degrees C. We give analytical expressions of the dominant intermolecular dipolar spin-spin contribution to R(1) and to the transverse relaxation rate R(2). A remarkable variation of R(1) by more than two orders of magnitude is observed and shown to be close to the theoretical law, inversely proportional to the square root of the resonance frequency, which is characteristic of perfect molecular 1D diffusion. The physics of diffusion is discussed.

  12. Volume and structural relaxation in compressed sodium borate glass.

    PubMed

    Svenson, Mouritz N; Youngman, Randall E; Yue, Yuanzheng; Rzoska, Sylwester J; Bockowski, Michal; Jensen, Lars R; Smedskjaer, Morten M

    2016-11-21

    The structure and properties of glass can be modified through compression near the glass transition temperature (Tg), and such modified structure and properties can be maintained at ambient temperature and pressure. However, once the compressed glass undergoes annealing near Tg at ambient pressure, the modified structure and properties will relax. The challenging question is how the property relaxation is correlated with both the local and the medium-range structural relaxation. In this paper, we answer this question by studying the volume (density) and structural relaxation of a sodium borate glass that has first been pressure-quenched from its Tg at 1 GPa, and then annealed at ambient pressure under different temperature-time conditions. Using (11)B MAS NMR and Raman spectroscopy, we find that the pressure-induced densification of the glass is accompanied by a conversion of six-membered rings into non-ring trigonal boron (B(III)) units, i.e. a structural change in medium-range order, and an increase in the fraction of tetrahedral boron (B(IV)), i.e. a structural change in short-range order. These pressure-induced structural conversions are reversible during ambient pressure annealing near Tg, but exhibit a dependence on the annealing temperature, e.g. the ring/non-ring B(III) ratio stabilizes at different values depending on the applied annealing temperature. We find that conversions between structural units cannot account for the pressure-induced densification, and instead we suggest the packing of structural units as the main densification mechanism.

  13. Dynamics and Structure in Good Glass Formers LiCl-RH2O: A NMR and Quasielastic Neutron Scattering Study

    NASA Astrophysics Data System (ADS)

    Maurin, P.; Dupuy-Philon, J.; Jal, J.; Asahi, N.; Kamiyama, T.; Kawamura, J.; Nakamura, Y.

    The temperature behaviour of the self-diffusion coefficient and of the spin-lattice correlation time have been analysed from QENS and NMR experiments performed on LiCl-6H2O and LiCl-4H2O. Those results throw some light to primary and secondary relaxation time behaviour in these systems.

  14. Equivalent Relaxations of Optimal Power Flow

    SciTech Connect

    Bose, S; Low, SH; Teeraratkul, T; Hassibi, B

    2015-03-01

    Several convex relaxations of the optimal power flow (OPF) problem have recently been developed using both bus injection models and branch flow models. In this paper, we prove relations among three convex relaxations: a semidefinite relaxation that computes a full matrix, a chordal relaxation based on a chordal extension of the network graph, and a second-order cone relaxation that computes the smallest partial matrix. We prove a bijection between the feasible sets of the OPF in the bus injection model and the branch flow model, establishing the equivalence of these two models and their second-order cone relaxations. Our results imply that, for radial networks, all these relaxations are equivalent and one should always solve the second-order cone relaxation. For mesh networks, the semidefinite relaxation and the chordal relaxation are equally tight and both are strictly tighter than the second-order cone relaxation. Therefore, for mesh networks, one should either solve the chordal relaxation or the SOCP relaxation, trading off tightness and the required computational effort. Simulations are used to illustrate these results.

  15. Orientational mobility and relaxation spectra of dendrimers: Theory and computer simulation.

    PubMed

    Markelov, Denis A; Lyulin, Sergey V; Gotlib, Yuli Y; Lyulin, Alexey V; Matveev, Vladimir V; Lahderanta, Erkki; Darinskii, Anatolij A

    2009-01-28

    The developed theory of the orientational mobility of individual segments of a perfectly branched dendrimer is used to calculate the relaxation spectrum of a dendrimer. Frequency dependences of NMR relaxation 1/T(1) and of the nuclear Overhauser effect have been theoretically calculated from the Brownian dynamics simulation data. The dendrimer segmental orientational mobility is governed by three main relaxation processes: (i) the rotation of the dendrimer as a whole, (ii) the rotation of the dendrimer's branch originated from a given segment, and (iii) the local reorientation of the segment. The internal orientational mobility of an individual dendrimer segment depends only on the topological distance between this segment and the terminal shell of the dendrimer. Characteristic relaxation times of all processes and their contributions to the segmental mobility have been calculated. The influence of the number of generations and the number of the generation shell on the relaxation times has been studied. The correlation between the characteristic times and the calculated relaxation spectrum of the dendrimer has been established.

  16. Parsimony and goodness-of-fit in multi-dimensional NMR inversion

    NASA Astrophysics Data System (ADS)

    Babak, Petro; Kryuchkov, Sergey; Kantzas, Apostolos

    2017-01-01

    Multi-dimensional nuclear magnetic resonance (NMR) experiments are often used for study of molecular structure and dynamics of matter in core analysis and reservoir evaluation. Industrial applications of multi-dimensional NMR involve a high-dimensional measurement dataset with complicated correlation structure and require rapid and stable inversion algorithms from the time domain to the relaxation rate and/or diffusion domains. In practice, applying existing inverse algorithms with a large number of parameter values leads to an infinite number of solutions with a reasonable fit to the NMR data. The interpretation of such variability of multiple solutions and selection of the most appropriate solution could be a very complex problem. In most cases the characteristics of materials have sparse signatures, and investigators would like to distinguish the most significant relaxation and diffusion values of the materials. To produce an easy to interpret and unique NMR distribution with the finite number of the principal parameter values, we introduce a new method for NMR inversion. The method is constructed based on the trade-off between the conventional goodness-of-fit approach to multivariate data and the principle of parsimony guaranteeing inversion with the least number of parameter values. We suggest performing the inversion of NMR data using the forward stepwise regression selection algorithm. To account for the trade-off between goodness-of-fit and parsimony, the objective function is selected based on Akaike Information Criterion (AIC). The performance of the developed multi-dimensional NMR inversion method and its comparison with conventional methods are illustrated using real data for samples with bitumen, water and clay.

  17. Ion distribution in copper exchanged zeolites by using Si-29 spin lattice relaxation analysis

    NASA Astrophysics Data System (ADS)

    Palamara, Joseph; Seidel, Karsten; Moini, Ahmad; Prasad, Subramanian

    2016-06-01

    Transition metal-containing zeolites, particularly those with smaller pore size, have found extensive application in the selective catalytic reduction (SCR) of environmental pollutants containing nitrogen oxides. We report these zeolites have dramatically faster silicon-29 (Si-29) spin lattice relaxation times (T1) compared to their sodium-containing counterparts. Paramagnetic doping allows one to acquire Si-29 MAS spectra in the order of tens of seconds without significantly affecting the spectral resolution. Moreover, relaxation times depend on the method of preparation and the next-nearest neighbor silicon Qn(mAl) sites, where n = 4 and m = 0-4, respectively. A clear trend is noted between the effectiveness of Cu exchange and the Si-29 NMR relaxation times. It is anticipated that the availability of this tool, and the enhanced understanding of the nature of the active sites, will provide the means for designing improved SCR catalysts.

  18. The Effect of the Presence and Density of Shewanella oneidensis on Nuclear Magnetic Relaxation Measurements

    NASA Astrophysics Data System (ADS)

    Keating, K.; Halsey, J.

    2011-12-01

    A recent interest in the use of non-invasive geophysical methods to detect the presence of and measure the growth of microbes in the subsurface has arisen due to the potential use of such methods to monitor the progress of bioremediation. Previous research to this end has focused on electrical measurements, such as complex resistivity, which are sensitive to the presence of microbes but can be difficult to interpret. Nuclear magnetic resonance (NMR), an emerging near-surface geophysical method, is sensitive to the presence and physiochemical environment of hydrogen. Typically, NMR measurements in geophysics are used to detect hydrogen in water or hydrocarbons and to determine its pore environment; however, NMR imaging measurements have shown that NMR can also detect hydrogen in microbes. Geophysical NMR measurements thus have the potential to directly detect microbes in geologic material or indirectly detect the way in which the presence of microbes alters the physical and chemical properties of a water-saturated geologic material. This laboratory-scale study was designed to explore the effect of the presence and density of microbes on NMR relaxation measurements. Measurements were collected on microbial slurries and microbes in porous media both during microbial growth and on samples with known microbial density. Shewanella oneidensis was used as a representative environmental microbe in this study. The research shows that low field NMR measurements are sensitive to the presence and density of microbes and provides fundamental information required to determine if low-field NMR measurements can be used to monitor microbial growth during bioremediation.

  19. Multinuclear NMR approach to coal fly ash characterization

    SciTech Connect

    Netzel, D.A.

    1991-09-01

    This report describes the application of various nuclear magnetic resonance (NMR) techniques to study the hydration kinetics and mechanisms, the structural properties, and the adsorption characteristics of coal fly ash. Coal fly ash samples were obtained from the Dave Johnston and Laramie River electric power generating plants in Wyoming. Hydrogen NMR relaxation times were measured as a function of time to observe the kinetics of hydration for the two coal fly ashes at different temperatures and water-to-cement ration. The kinetic data for the hydrated coal fly ashes were compared to the hydration of portland cement. The mechanism used to describe the kinetic data for the hydration of portland cement was applied, with reservation, to describe the hydration of the coal fly ashes. The results showed that the coal fly ashes differ kinetically from that of portland cement and from each other. Consequently, both coal fly ashes were judged to be poorer cementitious materials than portland cement. Carbon-13 NMR CP/MAS spectra were obtained for the anhydrous coal fly ashes in an effort to determine the type of organic species that may be present, either adsorbed on the surface or entrained.

  20. Xe-129 NMR of xenon dissolved in biological media.

    NASA Astrophysics Data System (ADS)

    Mazitov, R. K.; Kuzma, N. N.; Happer, W.; Driehuys, B.; Merrill, G. F.

    2002-03-01

    The high solubility and large chemical shift of ^129Xe in various tissues makes it an ideal, non-invasive probe for pathological conditions such as cancer or atherosclerosis. To this end, we report NMR measurements of lineshapes, chemical shifts, and relaxation times of ^129Xe dissolved in the following biological tissues in vitro: heart, muscle, sinew, stomach(R.K. Mazitov, K. M. Enikeev, et al., Dokl. Akad. Nauk) 365, 396 (1999)., and the white and yolk of egg. NMR measurements of xenon dissolved in olive and sunflower oils are also reported. Tissues weighing 160--250 mg, not exposed to freezing, were studied in a 11.75 T field at the ^129Xe resonance frequency of 138.4 MHz; the pressure of xenon in the sealed-sample ampoules was ~20 bar. The influence of drugs and water content on tissues was studied. No xenon-water clathrates(J.A. Ripmeester and D.W. Davidson, J. Mol. Struct. ) 75, 67 (1981). were observed in the tissues, even at the high pressures used. The aim of this study is to establish possible correlations between the NMR parameters of dissolved xenon and the state of the tissue.

  1. Multivariate analysis relating oil shale geochemical properties to NMR relaxometry

    USGS Publications Warehouse

    Birdwell, Justin E.; Washburn, Kathryn E.

    2015-01-01

    Low-field nuclear magnetic resonance (NMR) relaxometry has been used to provide insight into shale composition by separating relaxation responses from the various hydrogen-bearing phases present in shales in a noninvasive way. Previous low-field NMR work using solid-echo methods provided qualitative information on organic constituents associated with raw and pyrolyzed oil shale samples, but uncertainty in the interpretation of longitudinal-transverse (T1–T2) relaxometry correlation results indicated further study was required. Qualitative confirmation of peaks attributed to kerogen in oil shale was achieved by comparing T1–T2 correlation measurements made on oil shale samples to measurements made on kerogen isolated from those shales. Quantitative relationships between T1–T2 correlation data and organic geochemical properties of raw and pyrolyzed oil shales were determined using partial least-squares regression (PLSR). Relaxometry results were also compared to infrared spectra, and the results not only provided further confidence in the organic matter peak interpretations but also confirmed attribution of T1–T2 peaks to clay hydroxyls. In addition, PLSR analysis was applied to correlate relaxometry data to trace element concentrations with good success. The results of this work show that NMR relaxometry measurements using the solid-echo approach produce T1–T2 peak distributions that correlate well with geochemical properties of raw and pyrolyzed oil shales.

  2. 7Li NMR study of normal human erythrocytes

    NASA Astrophysics Data System (ADS)

    Pettegrew, J. W.; Post, J. F. M.; Panchalingam, K.; Withers, G.; Woessner, D. E.

    The biological action of lithium is of great interest because of the therapeutic efficacy of the cation in manic-depressive illness. To investigate possible molecular interactions of lithium, 7Li NMR studies were conducted on normal human erythrocytes which had been incubated with lithium chloride. The uptake of lithium ions was followed by 7Li NMR, using a dysprosium, tripolyphosphate shift reagent. Lithium uptake followed single-exponential kinetics with a time constant of 14.7 h. The intracellular lithium relaxation times were T 1 ⋍ 5 s and T 2 ⋍ 0.15 s, which implies a lengthening of the lithium correlation time. It was found that lithium does not interact significantly with hemoglobin, the erythrocyte membrane, or artificial phospholipid membranes. Based on measurements of lithium T1 and T2 in concentrated agar gels, the large difference between T1 and T2 for intracellular lithium ions may be due to diffusion of the hydrated lithium ion through heterogeneous electrostatic field gradients created by the erythrocyte membrane-associated cytoskeletal network. Lithium binding to the membrane-associated cytoskeleton, however, cannot be ruled out. Because of the large differences between T1 and T2 of intracellular lithium ions, 1Li NMR may be a sensitive and promising noninvasive method to probe the intracellular environment.

  3. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect

    Hirasaki, George J.; Mohanty, Kishore K.

    2001-07-13

    This semi-annual report briefly summarizes the progress since the 1st Annual Report issued September, 2000 and the next annual report. More detailed results will be in the annual reports. The main emphasis on fluid properties was on measurements of the relaxation time and self-diffusion coefficient of ethane and propane. Ethane is similar to methane while propane is more similar to the higher alkanes. The ratio of T1 and T2 is demonstrated to be a function of both viscosity and the NMR frequency. The diffusion-induced T2 in a uniform magnetic gradient was simulated in one dimension to seek improved understanding NMR diffusion in restricted geometry. Analytical solutions can be found for this system if the correct region of validity is used. Estimation of permeability of vuggy carbonates has been problematic because the pore body size does not correlate well with pore throat size. CT scans and CPMG NMR measurements were made on a set of vuggy carbonate rocks.

  4. Plasmon-mediated energy relaxation in graphene

    SciTech Connect

    Ferry, D. K.; Somphonsane, R.; Ramamoorthy, H.; Bird, J. P.

    2015-12-28

    Energy relaxation of hot carriers in graphene is studied at low temperatures, where the loss rate may differ significantly from that predicted for electron-phonon interactions. We show here that plasmons, important in the relaxation of energetic carriers in bulk semiconductors, can also provide a pathway for energy relaxation in transport experiments in graphene. We obtain a total loss rate to plasmons that results in energy relaxation times whose dependence on temperature and density closely matches that found experimentally.

  5. Quantum mechanical NMR simulation algorithm for protein-size spin systems.

    PubMed

    Edwards, Luke J; Savostyanov, D V; Welderufael, Z T; Lee, Donghan; Kuprov, Ilya

    2014-06-01

    Nuclear magnetic resonance spectroscopy is one of the few remaining areas of physical chemistry for which polynomially scaling quantum mechanical simulation methods have not so far been available. In this communication we adapt the restricted state space approximation to protein NMR spectroscopy and illustrate its performance by simulating common 2D and 3D liquid state NMR experiments (including accurate description of relaxation processes using Bloch-Redfield-Wangsness theory) on isotopically enriched human ubiquitin - a protein containing over a thousand nuclear spins forming an irregular polycyclic three-dimensional coupling lattice. The algorithm uses careful tailoring of the density operator space to only include nuclear spin states that are populated to a significant extent. The reduced state space is generated by analysing spin connectivity and decoherence properties: rapidly relaxing states as well as correlations between topologically remote spins are dropped from the basis set.

  6. /sup 13/C NMR studies of the molecular flexibility of antidepressants

    SciTech Connect

    Munro, S.L.; Andrews, P.R.; Craik, D.J.; Gale, D.J.

    1986-02-01

    The solution dynamics of a series of clinically potent antidepressants have been investigated by measuring /sup 13/C NMR relaxation parameters. Correlation times and internal motional rates were calculated from spin-lattice relaxation times and nuclear Overhauser effects for the protonated carbons in mianserin, imipramine-like antidepressants, and amitriptyline-like antidepressants. These data were interpreted in terms of overall molecular tumbling, internal rotations, and inherent flexibility of these structures. Of particular interest was the conformational variability of the tricyclic nucleus of the tricyclic antidepressants, where the data indicated a fivefold difference in mobility of the dimethylene bridge of imipramine-like antidepressants relative to amitriptyline-like compounds. The implications of such a difference in internal motions is discussed in relation to previous NMR studies and to the reported differences in pharmacological activity of these antidepressants.

  7. {sup 1}H NMR relaxometry as an indicator of setting and water depletion during cement hydration

    SciTech Connect

    Wang, Biyun; Faure, Paméla; Thiéry, Mickaël; Baroghel-Bouny, Véronique

    2013-03-15

    Proton nuclear magnetic resonance relaxometry has been used to detect setting and microstructure evolution during cement hydration. NMR measurements were performed since casting, during setting and until hardening (from 0 to 3 days). The mobility of water molecules was assessed by an analysis focused on the diagram of longitudinal relaxation time T{sub 1} generated by an Inversion Recovery sequence. The initial stiffening of the solid network was identified by an analysis of the relaxation rate 1/T{sub 1}. The kinetics of water depletion was investigated by using a simple one-pulse acquisition sequence. In parallel, conventional techniques (Vicat needle and temperature monitoring), as well as numerical simulations of hydration, were used to complement and validate these NMR results. Cement pastes and mortars with different water-to-cement ratios made of grey or white OPCs were tested. Furthermore, the effects of the addition of sand, super-plasticizer and silica fume on the hydration kinetics were investigated.

  8. 13C and 1H NMR (Nuclear Magnetic Resonance) studies of solid polyolefines

    NASA Technical Reports Server (NTRS)

    Cudby, M. E. A.; Harris, R. K.; Metcalfe, K.; Packer, K. J.; Smith, P. W. R.

    1983-01-01

    The basis of H-1 and C-13 high-resolution NMR investigations of solid polymers is outlined. The C-13 NMR spectra of solid syndiotactic and isotactic polypropene are discussed and their interpretation in terms of conformation and chain-packing effects are reviewed. The effects of decreasing temperature on the C-13 high-resolution spectrum of an annealed sample of isotactic polypropene is described and interpreted in terms of the crystal structure. The question of the proportion of the sample giving rise to C-13 signals is addressed and some results reported. The main cause for observing only part of the total sample is shown to be the H-1 rotating frame spin-lattice relaxation behavior. The H-1 spin-lattice relaxation and spectral characteristics of a number of polyolefin samples are summarized and the role of spin-diffusion discussed.

  9. Nuclear magnetic resonance in cancer, XII: Application of NMR malignancy index to human lung tumours.

    PubMed Central

    Goldsmith, M.; Koutcher, J. A.; Damadian, R.

    1977-01-01

    Sixty specimens of human lung tissue from 52 individuals were inspected at 22.5 MHz by proton magnetic resonance techniques. The purpose of the study was to evaluate the diagnostic capabilities of the nuclear magnetic resonance (NMR) technique for the diagnosis of malignancy. The combination of two NMR parameters (spin-lattice (T1) and spin-spin (T2) relaxation times) into a malignancy index yielded 3 cases of overlap between the two populations of tissue. The mean and standard deviations obtained were 1.966 +/- 0.262 for normal tissue, and 2.925 +/- 0.864 for malignant specimens. In addition, analysis of the electrolyte and water content of the tissues confirm that factors other than specimen water content influence the relaxation time. PMID:911662

  10. The Titan 14N/ 15N and 12C/ 13C isotopic ratios in HCN from Cassini/CIRS

    NASA Astrophysics Data System (ADS)

    Vinatier, Sandrine; Bézard, Bruno; Nixon, Conor A.

    2007-11-01

    We report the detection of H 13CN and HC 15N in mid-infrared spectra recorded by the Composite Infrared Spectrometer (CIRS) aboard Cassini, along with the determination of the 12C/ 13C and 14N/ 15N isotopic ratios. We analyzed two sets of limb spectra recorded near 13-15° S (Tb flyby) and 83° N (T4 flyby) at 0.5 cm -1 resolution. The spectral range 1210-1310 cm -1 was used to retrieve the temperature profile in the range 145-490 km at 13° S and 165-300 km at 83° N. These two temperature profiles were then incorporated in the atmospheric model to retrieve the abundance profile of H 12C 14N, H 13CN and HC 15N from their bands at 713, 706 and 711 cm -1, respectively. The HCN abundance profile was retrieved in the range 90-460 km at 15° S and 165-305 km at 83° N. There is no evidence for vertical variations of the isotopic ratios. Constraining the isotopic abundance profiles to be proportional to the HCN one, we find C12/C13=89-18+22 at 15° S, and 68-12+16 at 83° N, two values that are statistically consistent. A combination of these results yields a 12C/ 13C value equal to 75±12. This global result, as well as the 15° S one, envelop the value in Titan's methane ( 82.3±1) [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784] measured at 10° S and is slightly lower than the terrestrial inorganic standard value (89). The 14N/ 15N isotopic ratio is found equal to 56-13+16 at 15° S and 56-9+10 at 83° N. Combining the two values yields 14N/ 15N = 56 ± 8, which corresponds to an enrichment in 15N of about 4.9 compared with the terrestrial ratio. These results agree with the values obtained from previous ground-based millimeter observations [Hidayat, T., Marten, A., Bézard, B., Gautier, D., Owen, T., Matthews, H.E., Paubert, G., 1997. Icarus 126, 170-182; Marten, A., Hidayat, T., Biraud, Y., Moreno, R., 2002. Icarus 158, 532-544]. The 15N/ 14N ratio found in HCN is ˜3 times higher than in N 2 [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779

  11. jsNMR: an embedded platform-independent NMR spectrum viewer.

    PubMed

    Vosegaard, Thomas

    2015-04-01

    jsNMR is a lightweight NMR spectrum viewer written in JavaScript/HyperText Markup Language (HTML), which provides a cross-platform spectrum visualizer that runs on all computer architectures including mobile devices. Experimental (and simulated) datasets are easily opened in jsNMR by (i) drag and drop on a jsNMR browser window, (ii) by preparing a jsNMR file from the jsNMR web site, or (iii) by mailing the raw data to the jsNMR web portal. jsNMR embeds the original data in the HTML file, so a jsNMR file is a self-transforming dataset that may be exported to various formats, e.g. comma-separated values. The main applications of jsNMR are to provide easy access to NMR data without the need for dedicated software installed and to provide the possibility to visualize NMR spectra on web sites.

  12. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    SciTech Connect

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  13. Kinetic activation-relaxation technique.

    PubMed

    Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand

    2011-10-01

    We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon).

  14. Models of violently relaxed galaxies

    NASA Astrophysics Data System (ADS)

    Merritt, David; Tremaine, Scott; Johnstone, Doug

    1989-02-01

    The properties of spherical self-gravitating models derived from two distribution functions that incorporate, in a crude way, the physics of violent relaxation are investigated. The first distribution function is identical to the one discussed by Stiavelli and Bertin (1985) except for a change in the sign of the 'temperature', i.e., e exp(-aE) to e exp(+aE). It is shown that these 'negative temperature' models provide a much better description of the end-state of violent relaxation than 'positive temperature' models. The second distribution function is similar to the first except for a different dependence on angular momentum. Both distribution functions yield single-parameter families of models with surface density profiles very similar to the R exp 1/4 law. Furthermore, the central concentration of models in both families increases monotonically with the velocity anisotropy, as expected in systems that formed through cold collapse.

  15. Kinetic activation-relaxation technique

    NASA Astrophysics Data System (ADS)

    Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand

    2011-10-01

    We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon).

  16. Resonant relaxation in electroweak baryogenesis

    NASA Astrophysics Data System (ADS)

    Lee, Christopher; Cirigliano, Vincenzo; Ramsey-Musolf, Michael J.

    2005-04-01

    We compute the leading, chiral charge-changing relaxation term in the quantum transport equations that govern electroweak baryogenesis using the closed time path formulation of nonequilibrium quantum field theory. We show that the relaxation transport coefficients may be resonantly enhanced under appropriate conditions on electroweak model parameters and that such enhancements can mitigate the impact of similar enhancements in the CP-violating source terms. We also develop a power counting in the time and energy scales entering electroweak baryogenesis and include effects through second order in ratios ɛ of the small and large scales. We illustrate the implications of the resonantly enhanced O(ɛ2) terms using the Minimal Supersymmetric Standard Model, focusing on the interplay between the requirements of baryogenesis and constraints obtained from collider studies, precision electroweak data, and electric dipole moment searches.

  17. NMR planar microcoil for microanalysis

    NASA Astrophysics Data System (ADS)

    Sorli, B.; Chateaux, J. F.; Quiquerez, L.; Bouchet-Fakri, L.; Briguet, A.; Morin, P.

    2006-11-01

    This article deals with the analysis of small sample volume by using a planar microcoil and a micromachined cavity. This microcoil is used as a nuclear magnetic resonance (NMR) radio frequency detection coil in order to perform in vitro NMR analysis of the sample introduced into the microcavity. It is a real challenging task to develop microsystem for NMR spectrum extraction for smaller and smaller sample volume. Moreover, it is advantageous that these microsystems could be integrated in a Micro Total Analysing System (μ -TAS) as an analysing tool. In this paper, NMR theory, description, fabrication process and electrical characterization of planar microcoils receiver are described. Results obtained on NMR microspectroscopy experiments have been performed on water and ethanol, using a 1 mm diameter planar coil. This microcoil is tuned and matched at 85.13 MHz which is the Larmor frequency of proton in a 2 T magnetic field. This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29 30 janvier 2004.

  18. Relaxation: A Fourth "R" for Education.

    ERIC Educational Resources Information Center

    Frederick, A. B.

    Relaxation training helps the individual handle tension through concentrating upon efficient use of muscles. A program of progressive relaxation can be easily incorporated into elementary and secondary schools. Objectives of such a program include the following: (a) to learn to relax technically for purposes of complete rest (deep muscle…

  19. Magnetization-recovery experiments for static and MAS-NMR of I = 3/2 nuclei

    NASA Astrophysics Data System (ADS)

    Yesinowski, James P.

    2006-05-01

    Multifrequency pulsed NMR experiments on quadrupole-perturbed I = 3/2 spins in single crystals are shown to be useful for measuring spin-lattice relaxation parameters even for a mixture of quadrupolar plus magnetic relaxation mechanisms. Such measurements can then be related to other MAS-NMR experiments on powders. This strategy is demonstrated by studies of 71Ga and 69Ga (both I = 3/2) spin-lattice relaxation behavior in a single-crystal (film) sample of gallium nitride, GaN, at various orientations of the axially symmetric nuclear quadrupole coupling tensor. Observation of apparent single-exponential relaxation behavior in I = 3/2 saturation-recovery experiments can be misleading when individual contributing rate processes are neglected in the interpretation. The quadrupolar mechanism (dominant in this study) has both a single-quantum process ( T1Q1) and a double-quantum process ( T1Q2), whose time constants are not necessarily equal. Magnetic relaxation (in this study most likely arising from hyperfine couplings to unpaired delocalized electron spins in the conduction band) also contributes to a single-quantum process ( T1M). A strategy of multifrequency irradiation with observation of satellite and/or central transitions, incorporating different initial conditions for the level populations, provides a means of obtaining these three relaxation time constants from single-crystal 71Ga data alone. The 69Ga results provide a further check of internal consistency, since magnetic and quadrupolar contributions to its relaxation scale in opposite directions compared to 71Ga. For both perpendicular and parallel quadrupole coupling tensor symmetry axis orientations small but significant differences between T1Q1 and T1Q2 were measured, whereas for a tensor symmetry axis oriented at the magic-angle (54.74°) the values were essentially equal. Magic-angle spinning introduces a number of complications into the measurement and interpretation of the spin-lattice relaxation

  20. Heteronuclear Adiabatic Relaxation Dispersion (HARD) for quantitative analysis of conformational dynamics in proteins.

    PubMed

    Traaseth, Nathaniel J; Chao, Fa-An; Masterson, Larry R; Mangia, Silvia; Garwood, Michael; Michaeli, Shalom; Seelig, Burckhard; Veglia, Gianluigi

    2012-06-01

    NMR relaxation methods probe biomolecular motions over a wide range of timescales. In particular, the rotating frame spin-lock R(1ρ) and Carr-Purcell-Meiboom-Gill (CPMG) R(2) experiments are commonly used to characterize μs to ms dynamics, which play a critical role in enzyme folding and catalysis. In an effort to complement these approaches, we introduced the Heteronuclear Adiabatic Relaxation Dispersion (HARD) method, where dispersion in rotating frame relaxation rate constants (longitudinal R(1ρ) and transverse R(2ρ)) is created by modulating the shape and duration of adiabatic full passage (AFP) pulses. Previously, we showed the ability of the HARD method to detect chemical exchange dynamics in the fast exchange regime (k(ex)∼10(4)-10(5) s(-1)). In this article, we show the sensitivity of the HARD method to slower exchange processes by measuring R(1ρ) and R(2ρ) relaxation rates for two soluble proteins (ubiquitin and 10C RNA ligase). One advantage of the HARD method is its nominal dependence on the applied radio frequency field, which can be leveraged to modulate the dispersion in the relaxation rate constants. In addition, we also include product operator simulations to define the dynamic range of adiabatic R(1ρ) and R(2ρ) that is valid under all exchange regimes. We conclude from both experimental observations and simulations that this method is complementary to CPMG-based and rotating frame spin-lock R(1ρ) experiments to probe conformational exchange dynamics for biomolecules. Finally, this approach is germane to several NMR-active nuclei, where relaxation rates are frequency-offset independent.

  1. Arresting relaxation in Pickering Emulsions

    NASA Astrophysics Data System (ADS)

    Atherton, Tim; Burke, Chris

    2015-03-01

    Pickering emulsions consist of droplets of one fluid dispersed in a host fluid and stabilized by colloidal particles absorbed at the fluid-fluid interface. Everyday materials such as crude oil and food products like salad dressing are examples of these materials. Particles can stabilize non spherical droplet shapes in these emulsions through the following sequence: first, an isolated droplet is deformed, e.g. by an electric field, increasing the surface area above the equilibrium value; additional particles are then adsorbed to the interface reducing the surface tension. The droplet is then allowed to relax toward a sphere. If more particles were adsorbed than can be accommodated by the surface area of the spherical ground state, relaxation of the droplet is arrested at some non-spherical shape. Because the energetic cost of removing adsorbed colloids exceeds the interfacial driving force, these configurations can remain stable over long timescales. In this presentation, we present a computational study of the ordering present in anisotropic droplets produced through the mechanism of arrested relaxation and discuss the interplay between the geometry of the droplet, the dynamical process that produced it, and the structure of the defects observed.

  2. NMR evidence for asymmetric radiation damage of bilayer liposomes

    NASA Astrophysics Data System (ADS)

    Sprinz, H.; Franck, U.; Schäfer, H.; Hübner, G.

    In aqueous solutions of irradiated sonicated egg yolk lecithin vesicles the 1H relaxation times T1 and T2 were determined for the outer and inner (CH 3) 3N +-groups at 250 MHz and at room temperature. After a γ irradiation up to a dose of 13.5 kGy, T1 remains constant T1=(0.33±0.01)s, T2 is a sensitive parameter in detecting radiation induced changes of slow reorientations for the lipid molecules. While T2=0.10 s for the outer head group signal decreases by 25% after irradiation, the effect is significantly smaller for the inner head group. This preferred radiation damage of the outer lipid layer may be a consequence of the indirect radiation action and/or due to the geometric packing constraints in small vesicles. The spectroscopic results were derived from partially relaxed NMR spectra. This method seems to be useful for the detection of the effects of different agents on the radiation damage of the liposome, as demonstrated with the partially relaxed head group spectra in the presence of NaCl.

  3. NMR relaxometry study of plaster mortar with polymer additives

    SciTech Connect

    Jumate, E.; Manea, D.; Moldovan, D.; Fechete, R.

    2013-11-13

    The cement mixed with water forms a plastic paste or slurry which stiffness in time and finally hardens into a resistant stone. The addition of sand aggregates, polymers (Walocel) and/or calcium carbonate will modify dramatically the final mortar mechanic and thermal properties. The hydration processes can be observed using the 1D NMR measurements of transverse T{sub 2} relaxation times distributions analysed by a Laplace inversion algorithm. These distributions were obtained for mortar pasta measured at 2 hours after preparation then at 3, 7 and 28 days after preparation. Multiple components are identified in the T{sub 2} distributions. These can be associated with the proton bounded chemical or physical to the mortar minerals characterized by a short T{sub 2} relaxation time and to water protons in pores with three different pore sizes as observed from SEM images. The evaporation process is faster in the first hours after preparation, while the mortar hydration (bonding of water molecules to mortar minerals) can be still observed after days or months from preparation. Finally, the mechanic resistance was correlated with the transverse T{sub 2} relaxation rates corresponding to the bound water.

  4. Improved determination of the astrophysical S(0) factor of the N15(p,α)C12 reaction

    NASA Astrophysics Data System (ADS)

    Cognata, M. La; Goldberg, V. Z.; Mukhamedzhanov, A. M.; Spitaleri, C.; Tribble, R. E.

    2009-07-01

    We present new improved R matrix fits of direct data and indirect Trojan Horse data for the N15(p,α)C12 reaction and provide a more accurate recommended value of S(0)=73.0±5.0 MeV b from direct Redder data [A. Redder , Z. Phys. A 305, 325 (1982)] and S(0)=70.0±13.5 MeV b from the Trojan Horse data [M. La Cognata , Phys. Rev. C 76, 065804 (2007)]. We also analyze a recent fit by Barker [F. C. Barker, Phys. Rev. C 78, 044611 (2008)] and demonstrate that when all the uncertainties are taken into account, our results overlap with his. We also provide a fit of the Trojan Horse data that properly takes into account finite residual energy resolution of the data.

  5. Effects of Various Forms of Relaxation Training on Physiological and Self-Report Measures of Relaxation

    ERIC Educational Resources Information Center

    Reinking, Richard H.; Kohl, Marilyn L.

    1975-01-01

    Examines relative effectiveness of four types of relaxation training including Jacobson-Wolpe and electromyograph (EMG) feedback. Dependent measures are EMG recordings and self-report measures of relaxation. All groups reported increased relaxation, but EMG groups were superior in EMG measures of speed of learning and depth of relaxation.…

  6. Relation between Direct Observation of Relaxation and Self-Reported Mindfulness and Relaxation States

    ERIC Educational Resources Information Center

    Hites, Lacey S.; Lundervold, Duane A.

    2013-01-01

    Forty-four individuals, 18-47 (MN 21.8, SD 5.63) years of age, took part in a study examining the magnitude and direction of the relationship between self-report and direct observation measures of relaxation and mindfulness. The Behavioral Relaxation Scale (BRS), a valid direct observation measure of relaxation, was used to assess relaxed behavior…

  7. Effects of Progressive Relaxation versus Biofeedback-Assisted Relaxation with College Students.

    ERIC Educational Resources Information Center

    See, John D.; Czerlinsky, Thomas

    1990-01-01

    Examined use of biofeedback, relaxation training, or both in a college relaxation class with an enrollment of 33 students. Results indicated students receiving relaxation training plus biofeedback improved significantly more on psychological variables than did students receiving only relaxation training. (Author/ABL)

  8. Solution NMR conformation of glycosaminoglycans.

    PubMed

    Pomin, Vitor H

    2014-04-01

    Nuclear magnetic resonance (NMR) spectroscopy has been giving a pivotal contribution to the progress of glycomics, mostly by elucidating the structural, dynamical, conformational and intermolecular binding aspects of carbohydrates. Particularly in the field of conformation, NOE resonances, scalar couplings, residual dipolar couplings, and chemical shift anisotropy offsets have been the principal NMR parameters utilized. Molecular dynamics calculations restrained by NMR-data input are usually employed in conjunction to generate glycosidic bond dihedral angles. Glycosaminoglycans (GAGs) are a special class of sulfated polysaccharides extensively studied worldwide. Besides regulating innumerous physiological processes, these glycans are also widely explored in the global market as either clinical or nutraceutical agents. The conformational aspects of GAGs are key regulators to the quality of interactions with the functional proteins involved in biological events. This report discusses the solution conformation of each GAG type analyzed by one or more of the above-mentioned methods.

  9. High-sensitivity NMR beyond 200,000 atmospheres of pressure

    NASA Astrophysics Data System (ADS)

    Meier, T.; Reichardt, S.; Haase, J.

    2015-08-01

    Pressure-induced changes in the chemical or electronic structure of solids require pressures well into the Giga-Pascal (GPa) range due to the strong bonding. Anvil cell designs can reach such pressures, but their small and mostly inaccessible sample chamber has severely hampered NMR experiments in the past. With a new cell design that has a radio frequency (RF) micro-coil in the high pressure chamber, NMR experiments beyond 20 Giga-Pascal are reported for the first time. 1 H NMR of water shows sensitivity and resolution obtained with the cells, and 63 Cu NMR on a cuprate superconductor (YBa2Cu3O7-δ) demonstrates that single-crystals can be investigated, as well. 115 In NMR of the ternary chalcogenide AgInTe2 discovers an insulator-metal transition with shift and relaxation measurements. The pressure cells can be mounted easily on standard NMR probes that fit commercial wide-bore magnets with regular cryostats for field- and temperature-dependent measurements ready for many applications in physics and chemistry.

  10. High-resolution heteronuclear multi-dimensional NMR spectroscopy in magnetic fields with unknown spatial variations.

    PubMed

    Zhang, Zhiyong; Huang, Yuqing; Smith, Pieter E S; Wang, Kaiyu; Cai, Shuhui; Chen, Zhong

    2014-05-01

    Heteronuclear NMR spectroscopy is an extremely powerful tool for determining the structures of organic molecules and is of particular significance in the structural analysis of proteins. In order to leverage the method's potential for structural investigations, obtaining high-resolution NMR spectra is essential and this is generally accomplished by using very homogeneous magnetic fields. However, there are several situations where magnetic field distortions and thus line broadening is unavoidable, for example, the samples under investigation may be inherently heterogeneous, and the magnet's homogeneity may be poor. This line broadening can hinder resonance assignment or even render it impossible. We put forth a new class of pulse sequences for obtaining high-resolution heteronuclear spectra in magnetic fields with unknown spatial variations based on distant dipolar field modulations. This strategy's capabilities are demonstrated with the acquisition of high-resolution 2D gHSQC and gHMBC spectra. These sequences' performances are evaluated on the basis of their sensitivities and acquisition efficiencies. Moreover, we show that by encoding and decoding NMR observables spatially, as is done in ultrafast NMR, an extra dimension containing J-coupling information can be obtained without increasing the time necessary to acquire a heteronuclear correlation spectrum. Since the new sequences relax magnetic field homogeneity constraints imposed upon high-resolution NMR, they may be applied in portable NMR sensors and studies of heterogeneous chemical and biological materials.

  11. Investigation of Rhodopsin Dynamics in its Signaling State by Solid-State Deuterium NMR Spectroscopy

    PubMed Central

    Struts, Andrey V.; Chawla, Udeep; Perera, Suchithranga M.D.C.; Brown, Michael F.

    2017-01-01

    Site-directed deuterium NMR spectroscopy is a valuable tool to study the structural dynamics of biomolecules in cases where solution NMR is inapplicable. Solid-state 2H NMR spectral studies of aligned membrane samples of rhodopsin with selectively labeled retinal provide information on structural changes of the chromophore in different protein states. In addition, solid-state 2H NMR relaxation time measurements allow one to study the dynamics of the ligand during the transition from the inactive to the active state. Here we describe the methodological aspects of solid-state 2H NMR spectroscopy for functional studies of rhodopsin, with an emphasis on the dynamics of the retinal cofactor. We provide complete protocols for the preparation of NMR samples of rhodopsin with 11-cis-retinal selectively deuterated at the methyl groups in aligned membranes. In addition, we review optimized conditions for trapping the rhodopsin photointermediates; and lastly we address the challenging problem of trapping the signaling state of rhodopsin in aligned membrane films. PMID:25697522

  12. Exact NMR simulation of protein-size spin systems using tensor train formalism

    NASA Astrophysics Data System (ADS)

    Savostyanov, D. V.; Dolgov, S. V.; Werner, J. M.; Kuprov, Ilya

    2014-08-01

    We introduce a new method, based on alternating optimization, for compact representation of spin Hamiltonians and solution of linear systems of algebraic equations in the tensor train format. We demonstrate the method's utility by simulating, without approximations, a N15 NMR spectrum of ubiquitin—a protein containing several hundred interacting nuclear spins. Existing simulation algorithms for the spin system and the NMR experiment in question either require significant approximations or scale exponentially with the spin system size. We compare the proposed method to the Spinach package that uses heuristic restricted state space techniques to achieve polynomial complexity scaling. When the spin system topology is close to a linear chain (e.g., for the backbone of a protein), the tensor train representation is more compact and can be computed faster than the sparse representation using restricted state spaces.

  13. Dynamics of Glass Relaxation at Room Temperature

    NASA Astrophysics Data System (ADS)

    Welch, Roger C.; Smith, John R.; Potuzak, Marcel; Guo, Xiaoju; Bowden, Bradley F.; Kiczenski, T. J.; Allan, Douglas C.; King, Ellyn A.; Ellison, Adam J.; Mauro, John C.

    2013-06-01

    The problem of glass relaxation under ambient conditions has intrigued scientists and the general public for centuries, most notably in the legend of flowing cathedral glass windows. Here we report quantitative measurement of glass relaxation at room temperature. We find that Corning® Gorilla® Glass shows measurable and reproducible relaxation at room temperature. Remarkably, this relaxation follows a stretched exponential decay rather than simple exponential relaxation, and the value of the stretching exponent (β=3/7) follows a theoretical prediction made by Phillips for homogeneous glasses.

  14. Time of relaxation in dusty plasma model

    NASA Astrophysics Data System (ADS)

    Timofeev, A. V.

    2015-11-01

    Dust particles in plasma may have different values of average kinetic energy for vertical and horizontal motion. The partial equilibrium of the subsystems and the relaxation processes leading to this asymmetry are under consideration. A method for the relaxation time estimation in nonideal dusty plasma is suggested. The characteristic relaxation times of vertical and horizontal motion of dust particles in gas discharge are estimated by analytical approach and by analysis of simulation results. These relaxation times for vertical and horizontal subsystems appear to be different. A single hierarchy of relaxation times is proposed.

  15. NMR imaging and spectroscopy of the mammalian central nervous system after heavy ion radiation

    SciTech Connect

    Richards, T.; Budinger, T.F.

    1988-01-01

    NMR imaging, NMR spectroscopy, and histopathologic techniques were used to study the proton relaxation time and related biochemical changes in the rodent brain after in vivo helium beam irradiation with single doses of 10, 20, 30, and 50 Gy. Two-dimensional Fourier transform spin-echo imaging and saturation recovery with projection reconstruction were used to measure the NMR relaxation parameters. These parameters were correlated with proton spectroscopy and histopathology. Additional high resolution in vitro proton spectroscopy was performed on brain extracts to observe chemical changes that could not be seen in vivo. The major findings from these experiments were that at 4-14 days postirradiation, image intensity and T1 relaxation time decreased on the irradiated side and increased on the nonirradiated side relative to nonirradiated control animals. In vivo surface coil proton spectroscopy methods demonstrated changes in lipid and phosphatidylcholine (p-choline) peaks. In vitro studies of the aqueous fraction of brain extracts showed radiation-induced changes in lactate, 4-aminobutyric acid, and p-choline peak areas. In the organic fraction, radiation-induced changes were observed in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. With histology and Evans blue injections, blood-brain barrier alterations were seen as early as 4 days after a dose of 50 Gy.

  16. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: nitroxide radicals in solution.

    PubMed

    Kruk, D; Korpała, A; Kubica, A; Meier, R; Rössler, E A; Moscicki, J

    2013-01-14

    For nitroxide radicals in solution one can identify three frequency regimes in which (1)H spin-lattice relaxation rate of solvent molecules depend linearly on square root of the (1)H resonance frequency. Combining a recently developed theory of nuclear (proton) spin-lattice relaxation in solutions of nitroxide radicals [D. Kruk et al., J. Chem. Phys. 137, 044512 (2012)] with properties of the spectral density function associated with translational dynamics, relationships between the corresponding linear changes of the relaxation rate (for (14)N spin probes) and relative translational diffusion coefficient of the solvent and solute molecules have been derived (in analogy to (15)N spin probes [E. Belorizky et al., J. Phys. Chem. A 102, 3674 (1998)]). This method allows a simple and straightforward determination of diffusion coefficients in spin-labeled systems, by means of (1)H nuclear magnetic resonance (NMR) relaxometry. The approach has thoroughly been tested by applying to a large set of experimental data-(1)H spin-lattice relaxation dispersion results for solutions of different viscosity (decalin, glycerol, propylene glycol) of (14)N and (15)N spin probes. The experiments have been performed versus temperature (to cover a broad range of translational diffusion coefficients) using field cycling spectrometer which covers three decades in (1)H resonance frequency, 10 kHz-20 MHz. The limitations of NMR relaxometry caused by the time scale of the translational dynamics as well as electron spin relaxation have been discussed. It has been shown that for spin-labeled systems NMR relaxometry gives access to considerably faster diffusion processes than for diamagnetic systems.

  17. Translational diffusion in paramagnetic liquids by 1H NMR relaxometry: Nitroxide radicals in solution

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Korpała, A.; Kubica, A.; Meier, R.; Rössler, E. A.; Moscicki, J.

    2013-01-01

    For nitroxide radicals in solution one can identify three frequency regimes in which 1H spin-lattice relaxation rate of solvent molecules depend linearly on square root of the 1H resonance frequency. Combining a recently developed theory of nuclear (proton) spin-lattice relaxation in solutions of nitroxide radicals [D. Kruk et al., J. Chem. Phys. 137, 044512 (2012)], 10.1063/1.4736854 with properties of the spectral density function associated with translational dynamics, relationships between the corresponding linear changes of the relaxation rate (for 14N spin probes) and relative translational diffusion coefficient of the solvent and solute molecules have been derived (in analogy to 15N spin probes [E. Belorizky et al., J. Phys. Chem. A 102, 3674 (1998)], 10.1021/jp980397h). This method allows a simple and straightforward determination of diffusion coefficients in spin-labeled systems, by means of 1H nuclear magnetic resonance (NMR) relaxometry. The approach has thoroughly been tested by applying to a large set of experimental data—1H spin-lattice relaxation dispersion results for solutions of different viscosity (decalin, glycerol, propylene glycol) of 14N and 15N spin probes. The experiments have been performed versus temperature (to cover a broad range of translational diffusion coefficients) using field cycling spectrometer which covers three decades in 1H resonance frequency, 10 kHz-20 MHz. The limitations of NMR relaxometry caused by the time scale of the translational dynamics as well as electron spin relaxation have been discussed. It has been shown that for spin-labeled systems NMR relaxometry gives access to considerably faster diffusion processes than for diamagnetic systems.

  18. 1H NMR, 13C NMR and mass spectral studies of some Schiff bases derived from 3-amino-1,2,4-triazole.

    PubMed

    Issa, Y M; Hassib, H B; Abdelaal, H E

    2009-11-01

    Heterocyclic Schiff bases derived from 3-amino-1,2,4-triazole and different substituted aromatic aldehydes are prepared and subjected to (1)H NMR, (13)C NMR and mass spectral analyses. (1)H NMR spectra in DMSO exhibit a sharp singlet within the 9.35-8.90ppm region which corresponds to the azomethine proton. The position of this signal is largely dependent on the nature of the substituents on the benzal moiety. It is observed that the shape, position and the integration value of the signal of the aromatic proton of the triazole ring ((5)C) are clearly affected by the rate of exchange, relaxation time, concentration of solution as well as the solvent used. (13)C NMR is taken as substantial support for the results reached from (1)H NMR studies. The mass spectral results are taken as a tool to confirm the structure of the investigated compounds. The base peak (100%), mostly the M-1 peak, indicates the facile loss of hydrogen radical. The fragmentation pattern of the unsubstituted Schiff base is taken as the general scheme. Differences in the other schemes result from the effect of the electronegativity of the substituents attached to the aromatic ring.

  19. NMR detection of thermal damage in carbon fiber reinforced epoxy resins.

    PubMed

    Brady, Steven K; Conradi, Mark S; Vaccaro, Christopher M

    2005-02-01

    Composite materials of epoxy resins reinforced by carbon fibers are increasingly being used in the construction of aircraft. In these applications, the material may be thermally damaged and weakened by jet blast and accidental fires. The feasibility of using proton NMR relaxation times T1, T1rho, and T2 to detect and quantify the thermal damage is investigated. In conventional spectrometers with homogeneous static magnetic fields, T1rho is readily measured and is found to be well correlated with thermal damage. This suggests that NMR measurements of proton T1rho may be used for non-destructive evaluation of carbon fiber-epoxy composites. Results from T1rho measurements in the inhomogeneous static and RF magnetic fields of an NMR-MOUSE are also discussed.

  20. New Insights into High-Performance Thermoelectric Tellurides from ^125Te NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Levin, E. M.; Hu, Y.-Y.; Cook, B. A.; Harringa, J. L.; Schmidt-Rohr, K.; Kanatzidis, M. G.

    2009-11-01

    Thermoelectric materials are widely used for direct transformation of heat to electricity (Seebeck effect) and for solid state refrigeration (Peltier effect). Efforts to increase the efficiency of high-performance thermoelectrics, which include narrow-gap, doped tellurium-based semiconductors, require detailed knowledge of their local structure and bonding. We have used ^125Te nuclear magnetic resonance (NMR) as a local probe for obtaining better understanding of these high-performance thermoelectric tellurides, specifically PbTe doped with Ag and Sb (LAST materials) and GeTe doped with Ag and Sb (TAGS materials). The resonance frequencies and line shapes of the NMR spectra, as well as spin-lattice relaxation times and chemical shift anisotropies are highly sensitive to the composition and synthesis conditions of LAST and TAGS materials, enabling studies of the local composition, distortion, bonding, and carrier concentration. Several intriguing phenomena including electronic inhomogeneity and local distortions of the crystal lattice have been observed by NMR.

  1. 125Te and 139La NMR Studies of Single Crystal LaTe3

    NASA Astrophysics Data System (ADS)

    Chudo, Hiroyuki; Michioka, Chishiro; Itoh, Yutaka; Yoshimura, Kazuyoshi

    2007-12-01

    We report 125Te and 139La NMR studies for single crystals of LaTe3 between 10 and 160 K under an applied field of H = 7.4841 T. We observed the broad 125Te(1) NMR signals of metallic Te(1) sheets with a superlattice modulation and the sharp 125Te(2) and 139La NMR signals of LaTe(2) bi-layers. Temperature dependence of 125Te(1) nuclear spin-lattice relaxation times of the modulated Te(1) sheets obeys a modified Korringa relation. The results indicate that the electronic state on the Te(1) sheets is a Landau-Fermi liquid on a misfit superlattice or a Tomonaga-Luttinger liquid in a two-dimensional charge-density wave ordering state.

  2. Nondestructive Quantification of Local Plasticizer Concentration in PVC by (1)H NMR Relaxometry.

    PubMed

    Adams, Alina; Kwamen, Rance; Woldt, Benjamin; Graß, Michael

    2015-12-01

    The properties of plasticized poly(vinyl chloride) (PVC) , one of the most important polymers today, are strongly dictated by the concentration of plasticizer. Yet, it has been impossible to quantify this concentration at different positions inside a PVC product without its destruction because of a lack of suitable analytical methods. Thus, this paper introduces a simple, fast, and efficient way to determine truly nondestructively the concentration of plasticizer in PVC by single-sided nuclear magnetic resonance (NMR). With the help of correlation curves between the concentration of plasticizer inside nonaged PVC samples and the corresponding volume-averaged NMR parameters, single-sided NMR allows the quantification of the local concentration of plasticizer in aged PVC plates at different depths by spatially resolved relaxation measurements. The presented approach represents a fundamental step toward in situ characterization of plasticized PVC.

  3. 13C-NMR in Iodine and Potassium Intercalated C60 Solid

    NASA Astrophysics Data System (ADS)

    Maniwa, Yutaka; Shibata, Takayuki; Mizoguchi, Kenji; Kume, Kiyoshi; Kikuchi, Koichi; Ikemoto, Isao; Suzuki, Shinzo; Achiba, Yoji

    1992-07-01

    Iodine intercalated C60, I2.29C60, was studied by 13C NMR above 160 K. A sharp NMR signal and a strong temperature-dependent spin-lattice relaxation time, T1, indicated a presence of C60 molecular rotation much higher than 10 kHz at least down to 160 K. No evidence of metallic characteristics was found in the NMR shift (143± 1 ppm) and the T1 (40± 5 sec at room temperature). In K3C60, metallic behavior, T1T˜constant, was observed at the carbon sites between 20 K and 100 K. Electronic density of states at the Fermi level, N(EF), in I2.29C60 was estimated to be smaller than 0.12 of that in K3C60, assuming a relationship between N(EF) and T1T for normal metals.

  4. Solid-state and unilateral NMR study of deterioration of a Dead Sea Scroll fragment.

    PubMed

    Masic, A; Chierotti, M R; Gobetto, R; Martra, G; Rabin, I; Coluccia, S

    2012-02-01

    Unilateral and solid-state nuclear magnetic resonance (NMR) analyses were performed on a parchment fragment of the Dead Sea Scroll (DSS). The analyzed sample belongs to the collection of non-inscribed and nontreated fragments of known archaeological provenance from the John Rylands University Library in Manchester. Therefore, it can be considered as original DSS material free from any contamination related to the post-discovery period. Considering the paramount significance of the DSS, noninvasive approaches and portable in situ nondestructive methods are of fundamental importance for the determination of composition, structure, and chemical-physical properties of the materials under study. NMR studies reveal low amounts of water content associated with very short proton relaxation times, T(1), indicating a high level of deterioration of collagen molecules within scroll fragments. In addition, (13)C cross-polarization magic-angle-spinning (CPMAS) NMR spectroscopy shows characteristic peaks of lipids whose presence we attribute to the production technology that did not involve liming. Extraction with chloroform led to the reduction of both lipid and protein signals in the (13)C CPMAS spectrum indicating probable involvement of lipids in parchment degradation processes. NMR absorption and relaxation measurements provide nondestructive, discriminative, and sensitive tools for studying the deterioration effects on the organization and properties of water and collagen within ancient manuscripts.

  5. NMR characterization of membrane protein-detergent micelle solutions by use of microcoil equipment.

    PubMed

    Stanczak, Pawel; Horst, Reto; Serrano, Pedro; Wüthrich, Kurt

    2009-12-30

    Using microcoil NMR technology, the uniformly (2)H,(15)N-labeled integral membrane protein OmpX, and the phosphocholine derivative detergent Fos-10 (n-decylphosphocholine), we investigated solutions of mixed protein-detergent micelles to determine the influence of the detergent concentration on the NMR spectra of the protein. In a first step, we identified key parameters that influence the composition of the micelle solutions, which resulted in a new protocol for the preparation of well-defined concentrated protein solutions. This led to the observation that high-quality 2D [(15)N,(1)H]-transverse relaxation-optimized spectroscopy (TROSY) spectra of OmpX reconstituted in mixed micelles with Fos-10 were obtained only in a limited range of detergent concentrations. Outside of this range from about 90-180 mM, we observed a significant decrease of the average peak intensity. Relaxation-optimized NMR measurements of the rotational and translational diffusion coefficients of the OmpX/Fos-10 mixed micelles, D(r) and D(t), respectively, then showed that the stoichiometry and the effective hydrodynamic radius of the protein-containing micelles are not significantly affected by high Fos-10 concentrations and that the deterioration of NMR spectra is due to the increased viscosity at high detergent concentrations. The paper thus provides a basis for refined guidelines on the preparation of integral membrane proteins for structural studies.

  6. A Brief Survey of β-Detected NMR of Implanted 8Li+ in Organic Polymers

    NASA Astrophysics Data System (ADS)

    McGee, F. H.; McKenzie, I.; Buck, T.; Daley, C. R.; Forrest, J. A.; Harada, M.; Kiefl, R. F.; Levy, C. D. P.; Morris, G. D.; Pearson, M. R.; Sugiyama, J.; Wang, D.; MacFarlane, W. A.

    2014-12-01

    Unlike the positive muon, we expect the chemistry of the implanted 8Li+β-NMR probe in organic polymers to be simply that of the monovalent ion, but almost nothing is known about the NMR of isolated Li+ in this context. Here, we present a brief survey of 8Li+β-NMR in a variety of insulating polymers at high magnetic field, including polyimide, PET, polycarbonate, polystyrene and polyethylene oxide. In all cases, we find a large-amplitude, broad Lorentzian resonance near the Larmor frequency, consistent with the expected diamagnetic charge state. We also find remarkably fast spin-lattice relaxation rates 1/T1. There is very little dependence of either linewidth or 1/T1 on the proton density, the main source of nuclear dipolar magnetic fields, leading us to conclude the main contribution to both broadening and spin relaxation at room temperature is quadrupolar in origin. This behaviour is very different from crystalline insulators such as MgO and Al2O3, and suggests that 8Li+β-NMR will be an important probe of polymer dynamics. Additionally, we note dramatically different behaviour of one sample above its glass transition, motivating the construction of a high temperature spectrometer to enable further exploration at elevated temperature.

  7. 17O NMR study of diamagnetic and paramagnetic lanthanide(III)-DOTA complexes in aqueous solution.

    PubMed

    Fusaro, Luca; Luhmer, Michel

    2014-08-18

    The complexes between the polyaminocarboxylate DOTA ligand and the whole series of stable lanthanide(III) metal ions, except Gd(3+), were studied in aqueous solution by (17)O NMR. For all of the paramagnetic systems, the (17)O NMR signals of both the nonchelating (O1) and chelating (O2) oxygen atoms could be detected, and for some of them, the signals of both the SAP and TSAP (TSAP') conformational isomers were also observed. Line width data analysis reveals that signal broadening is not dominated by paramagnetic relaxation enhancement, as it was believed to be. The data indicate that quadrupole relaxation and, for some complexes, chemical exchange between the SAP and TSAP isomers are the major contributions to the (17)O NMR line width at 25 °C. Besides, the Fermi contact and pseudocontact contributions to the observed lanthanide-induced shifts could be extracted. The (17)O hyperfine coupling constants determined for O2 in the SAP and TSAP isomers are similar to each other and to the values reported for several Gd(III) complexes comprising fast-exchanging ligands. Interestingly, the results suggest that (17)O NMR should prove to be useful for the study of highly paramagnetic Gd(III) complexes of nonlabile ligands.

  8. Nuclear Magnetic Spin-Noise and Unusual Relaxation of Oxygen-17 in Water

    NASA Astrophysics Data System (ADS)

    Bendet-Taicher, Eli

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) have evolved into widely used techniques, providing diagnostic power in medicine and material sciences due to their high precision and non-invasive nature. Due to the small population differences between spin energy states, a significant sensitivity problem for NMR arises. The low sensitivity of NMR is probably its greatest limitation for applications to biological systems. An alternative probe tuning strategy based on the spin-noise response for application in standard one-dimensional and common high-resolution multidimensional standard biomolecular NMR experiments has shown an increase of up to 50% signal-to-noise (SNR) in one-dimensional NMR experiments and an increase of up to 22% in multi-dimensional ones. The method requires the adjustment of the optimal tuning condition, which may be offset by several hundreds kHz from the conventional tuning settings using the noise response of the water protons as an indicator. This work is described in the first part of the thesis (chapters 2--3). The second part (Chapter 4) of the thesis deals with anomalous oxygen-17 NMR relaxation behavior in water. Oxygen-17 (17O), which has spin of 5/2 and a natural abundance of 0.0373% possesses an electric quadrupole moment. Spin-lattice and spin-spin relaxation occur by the quadrupole interaction, while the J-coupling to 1H spins and exchange are deciding factors. T1 and T2 of 17O in water have been previously measured over a large range of temperatures. The spin-spin relaxation times of 17O as a function of temperature show an anomalous behaviour, expressed by a local maximum at the temperature of maximum density (TMD) of water. It is shown that the same anomalous behaviour shifts to the respective temperatures of maximum density for H2O/D2O solutions with different compositions and salt concentrations. This phenomenon can be correlated to the pH dependency of T2 of 17O in water, and water proton exchange rates

  9. Nuclear Spin Relaxation Characteristic of Submonolayer He Films in Nanochannels

    NASA Astrophysics Data System (ADS)

    Matsushita, Taku; Kawai, Ryosuke; Kuze, Atsushi; Hieda, Mitsunori; Wada, Nobuo

    2014-04-01

    In order to obtain information on dynamics of helium films in the nondegenerate fluid region, we have performed a pulsed-NMR experiment at 3.29 MHz on He films adsorbed in straight 2.4 nm channels of FSM silicates down to 0.54 K. In general, the spin-lattice and spin-spin relaxation times and were explained in terms of the two-dimensional Bloembergen-Purcell-Pound model for dipolar relaxation. Temperature dependences of in submonolayer He films show a minimum, indicating that the dipolar-field correlation time is about s. The temperature of the minimum monotonically lowers with increasing coverage, suggesting that He adatoms become more mobile at higher coverages. The low-dimensional property of He adatoms is observed as the separation of and above where . On the other hand, several features specific to films in the nanochannel geometry were also found. Especially, the temperature dependence of becomes very small just below and shows a shoulder at lower temperatures. This anomaly has not been observed in He adsorbed in wider pores or on flat surfaces, so that it is considered to be characteristic of He films confined in narrow channels with a diameter of a few nm.

  10. Computer Simulation of NMR Spectra.

    ERIC Educational Resources Information Center

    Ellison, A.

    1983-01-01

    Describes a PASCAL computer program which provides interactive analysis and display of high-resolution nuclear magnetic resonance (NMR) spectra from spin one-half nuclei using a hard-copy or monitor. Includes general and theoretical program descriptions, program capability, and examples of its use. (Source for program/documentation is included.)…

  11. Deuterium Exchange Kinetics by NMR.

    ERIC Educational Resources Information Center

    Roper, G. C.

    1985-01-01

    Describes a physical chemistry experiment which allows such concepts as kinetics, catalysis, isotope shifts, coupling constants, and the use of nuclear magnetic resonance (NMR) for quantitative work to be covered in the same exercise. Background information, experimental procedures used, and typical results obtained are included. (JN)

  12. Quantitative analysis of polymer mixtures in solution by pulsed field-gradient spin echo NMR spectroscopy.

    PubMed

    Van Lokeren, Luk; Ben Sassi, Hanen; Van Assche, Guy; Ribot, François

    2013-06-01

    Pulsed Field-Gradient Spin Echo (PGSE) NMR, which associates to a spectral dimension the measure of diffusion coefficients, is a convenient technique for mixture analysis. Unfortunately, because of relaxation, the quantification of mixtures by PGSE NMR is far from straightforward for mixtures with strong spectral overlap. Antalek (J. Am. Chem. Soc. 128 (2006) 8402-8403) proposed a quantification strategy based on DECRA analysis and extrapolation to zero of the diffusion delay. More recently, Barrère et al. (J. Magn. Reson. 216 (2012) 201-208) presented a new strategy based also on DECRA and on the renormalization of the intensities using estimates of the T1 and T2 relaxation times. Here we report an alternative quantification approach in which the fractions are obtained by analyzing the PGSE attenuation profile with a general Stejskal-Tanner equation that explicitly includes the relaxation effects. The required values of T1 and T2 relaxation times are either independently measured with conventional sequences or determined, along with the fractions and the diffusion coefficients, from the simultaneous analysis of up to 6 PGSE data sets recorded with different diffusion delays. This method yields errors lower than 3% for the fractions, even for complete spectral overlap, as demonstrated on model binary and ternary mixtures of polystyrene in the case of a convection compensating double stimulated echo (DSTE) sequence.

  13. "Solvent Effects" in 1H NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Cavaleiro, Jose A. S.

    1987-01-01

    Describes a simple undergraduate experiment in chemistry dealing with the "solvent effects" in nuclear magnetic resonance (NMR) spectroscopy. Stresses the importance of having students learn NMR spectroscopy as a tool in analytical chemistry. (TW)

  14. Push-through Direction Injectin NMR Automation

    EPA Science Inventory

    Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two major spectroscopic techniques successfully used in metabolomics studies. The non-invasive, quantitative and reproducible characteristics make NMR spectroscopy an excellent technique for detection of endogeno...

  15. Metal-insulator transition in the Hollandite vanadate K2V8O16 investigated by 51V NMR measurements

    NASA Astrophysics Data System (ADS)

    Okai, Katsunori; Itoh, Masayuki; Shimizu, Yasuhiro; Isobe, Masahiko; Yamaura, Jun-Ichi; Ueda, Yutaka

    2009-03-01

    51V NMR measurements have been made on powdered samples to investigate the metal-insulator (MI) transition and the local magnetic properties of the Hollandite vanadate K2V8O16 which undergoes the MI transition at TMI~170 K. An asymmetric 51V NMR spectrum in the metallic phase has the T-dependent negative Knight shift K. The two NMR spectra appears around TMI, showing the coexistence of the metallic and insulating phases in consistent with the two-step first-order transition. The temperature dependence of K and the 51V nuclear spin-lattice relaxation rate indicates the presence of the ferromagnetic spin fluctuations in the metallic phase. A 51V NMR spectrum observed below TMI has the temperature-independent K~0.35%, showing the presence of the nonmagnetic ground state.

  16. The Relationship between NMR Chemical Shifts of Thermally Polarized and Hyperpolarized (89) Y Complexes and Their Solution Structures.

    PubMed

    Xing, Yixun; Jindal, Ashish K; Regueiro-Figueroa, Martín; Le Fur, Mariane; Kervarec, Nelly; Zhao, Piyu; Kovacs, Zoltan; Valencia, Laura; Pérez-Lourido, Paulo; Tripier, Raphaël; Esteban-Gómez, David; Platas-Iglesias, Carlos; Sherry, A Dean

    2016-11-07

    Recently developed dynamic nuclear polarization (DNP) technology offers the potential of increasing the NMR sensitivity of even rare nuclei for biological imaging applications. Hyperpolarized (89) Y is an ideal candidate because of its narrow NMR linewidth, favorable spin quantum number (I=1/2 ), and long longitudinal relaxation times (T1 ). Strong NMR signals were detected in hyperpolarized (89) Y samples of a variety of yttrium complexes. A dataset of (89) Y NMR data composed of 23 complexes with polyaminocarboxylate ligands was obtained using hyperpolarized (89) Y measurements or (1) H,(89) Y-HMQC spectroscopy. These data were used to derive an empirical equation that describes the correlation between the (89) Y chemical shift and the chemical structure of the complexes. This empirical correlation serves as a guide for the design of (89) Y sensors. Relativistic (DKH2) DFT calculations were found to predict the experimental (89) Y chemical shifts to a rather good accuracy.

  17. Continuous monitoring of the zinc-phosphate acid-base cement setting reaction by proton nuclear magnetic relaxation

    NASA Astrophysics Data System (ADS)

    Apih, T.; Lebar, A.; Pawlig, O.; Trettin, R.

    2001-06-01

    Proton nuclear magnetic relaxation is a well-established technique for continuous and non destructive monitoring of hydration of conventional Portland building cements. Here, we demonstrate the feasibility of nuclear magnetic resonance (NMR) monitoring of the setting reaction of zinc-phosphate acid-base dental cements, which harden in minutes as compared to days, as in the case of Portland cements. We compare the setting of cement powder (mainly, zinc oxide) prepared with clinically used aluminum-modified orthophosphoric acid solution with the setting of a model system where cement powder is mixed with pure orthophosphoric acid solution. In contrast to previously published NMR studies of setting Portland cements, where a decrease of spin-lattice relaxation time is attributed to enhanced relaxation at the growing internal surface, spin-lattice relaxation time T1 increases during the set of clinically used zinc-phosphate cement. Comparison of these results with a detailed study of diffusion, viscosity, and magnetic-field dispersion of T1 in pure and aluminum-modified orthophosphoric acid demonstrates that the increase of T1 in the setting cement is connected with the increase of molecular mobility in the residual phosphoric acid solution. Although not taken into account so far, such effects may also significantly influence the relaxation times in setting Portland cements, particularly when admixtures with an effect on water viscosity are used.

  18. Relaxation-based distance measurements between a nitroxide and a lanthanide spin label

    NASA Astrophysics Data System (ADS)

    Jäger, H.; Koch, A.; Maus, V.; Spiess, H. W.; Jeschke, G.

    2008-10-01

    Distance measurements by electron paramagnetic resonance techniques between labels attached to biomacromolecules provide structural information on systems that cannot be crystallized or are too large to be characterized by NMR methods. However, existing techniques are limited in their distance range and sensitivity. It is anticipated by theoretical considerations that these limits could be extended by measuring the enhancement of longitudinal relaxation of a nitroxide label due to a lanthanide complex label at cryogenic temperatures. The relaxivity of the dysprosium complex with the macrocyclic ligand DOTA can be determined without direct measurements of longitudinal relaxation rates of the lanthanide and without recourse to model compounds with well defined distance by analyzing the dependence of relaxation enhancement on either temperature or concentration in homogeneous glassy frozen solutions. Relaxivities determined by the two calibration techniques are in satisfying agreement with each other. Error sources for both techniques are examined. A distance of about 2.7 nm is measured in a model compound of the type nitroxide-spacer-lanthanide complex and is found in good agreement with the distance in a modeled structure. Theoretical considerations suggest that an increase of the upper distance limit requires measurements at lower fields and temperatures.

  19. Relaxation damping in oscillating contacts

    PubMed Central

    Popov, M.; Popov, V.L.; Pohrt, R.

    2015-01-01

    If a contact of two purely elastic bodies with no sliding (infinite coefficient of friction) is subjected to superimposed oscillations in the normal and tangential directions, then a specific damping appears, that is not dependent on friction or dissipation in the material. We call this effect “relaxation damping”. The rate of energy dissipation due to relaxation damping is calculated in a closed analytic form for arbitrary axially-symmetric contacts. In the case of equal frequency of normal and tangential oscillations, the dissipated energy per cycle is proportional to the square of the amplitude of tangential oscillation and to the absolute value of the amplitude of normal oscillation, and is dependent on the phase shift between both oscillations. In the case of low frequency tangential oscillations with superimposed high frequency normal oscillations, the dissipation is proportional to the ratio of the frequencies. Generalization of the results for macroscopically planar, randomly rough surfaces as well as for the case of finite friction is discussed. PMID:26549011

  20. Sensitivity enhancement and contrasting information provided by free radicals in oriented-sample NMR of bicelle-reconstituted membrane proteins.

    PubMed

    Tesch, Deanna M; Nevzorov, Alexander A

    2014-02-01

    Elucidating structure and topology of membrane proteins (MPs) is essential for unveiling functionality of these important biological constituents. Oriented-sample solid-state NMR (OS-NMR) is capable of providing such information on MPs under nearly physiological conditions. However, two dimensional OS-NMR experiments can take several days to complete due to long longitudinal relaxation times combined with the large number of scans to achieve sufficient signal sensitivity in biological samples. Here, free radicals 5-DOXYL stearic acid, TEMPOL, and CAT-1 were added to uniformly (15)N-labeled Pf1 coat protein reconstituted in DMPC/DHPC bicelles, and their effect on the longitudinal relaxation times (T1Z) was investigated. The dramatically shortened T1Z's allowed for the signal gain per unit time to be used for either: (i) up to a threefold reduction of the total experimental time at 99% magnetization recovery or (ii) obtaining up to 74% signal enhancement between the control and radical samples during constant experimental time at "optimal" relaxation delays. In addition, through OS-NMR and high-field EPR studies, free radicals were able to provide positional constraints in the bicelle system, which provide a description of the location of each residue in Pf1 coat protein within the bicellar membranes. This information can be useful in the determination of oligomerization states and immersion depths of larger membrane proteins.