Sample records for n-2-hydroxypropyl methacrylamide hpma

  1. Studies on guanidinated N-3-aminopropyl methacrylamide-N-2-hydroxypropyl methacrylamide co-polymers as gene delivery carrier.

    PubMed

    Qin, Zhu; Liu, Wei; Guo, Liang; Li, Xinsong

    2012-01-01

    Guanidinated N-3-aminopropyl methacrylamide (APMA)-N-2-hydroxypropyl methacrylamide (HPMA) co-polymers were prepared and evaluated to develop novel non-viral gene transfection carriers. The co-polymers were synthesized via radical co-polymerization of APMA and HPMA followed by total guanidination of amino groups, which employed guanidinated APMA (GPMA) for increasing cell-penetrating and HPMA as the positive shielding content. The molecular weight of guanidinated APMA-HPMA co-polymers (GPMA-HPMA) was determined by static light scattering. Furthermore, cytotoxicity and transfection experiments of GPMA-HPMA/pDNA complexes were conducted. A significant decrease of their parent cytotoxicity and an efficient transfection at relative low charge ratios were observed. The cellular distribution of most GPMA-HPMA/pDNA complexes was partially localized in the nucleus, as indicated by confocal laser scanning microscopy. The guanidination strategy employed may lead to non-viral gene delivery carriers that combine satisfactory transfection efficiency and cytotoxicity, which contribute to their cell-penetrating ability.

  2. Complexation of anionic copolymers of acrylamide and N-(2-hydroxypropyl)methacrylamide with aminoglycoside antibiotics

    NASA Astrophysics Data System (ADS)

    Solovskii, M. V.; Tarabukina, E. B.; Amirova, A. I.; Zakharova, N. V.; Smirnova, M. Yu.; Gavrilova, I. I.

    2014-03-01

    The complexation of aminoglycoside antibiotics neomycin, gentamicin, kanamycin, and amikacin in the form of free bases with carboxyl- and sulfo-containing copolymers of acrylamide and N-(2-hydroxypropyl)methacrylamide (HPMA) in water and water-salt solutions is studied by means of viscometry, equilibrium dialysis, potentiometric titration, and molecular hydrodynamics. Factors influencing the stability of formed copolymer-antibiotic complexes and determinations of their toxicity are established.

  3. Facile Synthesis of Multivalent Folate-Block Copolymer Conjugates via Aqueous RAFT Polymerization: Targeted Delivery of siRNA and Subsequent Gene Suppression†

    PubMed Central

    York, Adam W.; Zhang, Yilin; Holley, Andrew C.; Guo, Yanlin; Huang, Faqing; McCormick, Charles L.

    2009-01-01

    Cell specific delivery of small interfering ribonucleic acid (siRNA) using well-defined multivalent folate-conjugated block copolymers is reported. Primary amine functional, biocompatible, hydrophilic-block-cationic copolymers were synthesized via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization. N-(2-hydroxypropyl)methacrylamide) (HPMA), a permanently hydrophilic monomer, was copolymerized with a primary amine containing monomer, N-(3-aminopropyl)methacrylamide (APMA). Poly(HPMA) confers biocompatibility while APMA provides amine functionality allowing conjugation of folate derivatives. (HPMA-stat-APMA) was chain extended with a cationic block, poly(N-[3-(dimethylamino)propyl]methacrylamide) in order to promote electrostatic complexation between the copolymer and the negatively charged phosphate backbone of siRNA. Notably, poly(HPMA) stabilizes the neutral complexes in aqueous solution while APMA allows the conjugation of a targeting moiety, thus, dually circumventing problems associated with the delivery of genes via cationically charged complexes (universal transfection). Fluorescence microscopy and gene down-regulation studies indicate that these neutral complexes can be specifically delivered to cancer cells that over-express folate receptors. PMID:19290625

  4. HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth.

    PubMed

    Naksuriya, Ornchuma; Shi, Yang; van Nostrum, Cornelus F; Anuchapreeda, Songyot; Hennink, Wim E; Okonogi, Siriporn

    2015-08-01

    Curcumin (CM) has been reported as a potential anticancer agent. However, its pharmaceutical applications as therapeutic agent are hampered because of its poor aqueous solubility. The present study explores the advantages of polymeric micelles composed of block copolymers of methoxypoly(ethylene glycol) (mPEG) and N-(2-hydroxypropyl) methacrylamide (HPMA) modified with monolactate, dilactate and benzoyl side groups to enhance CM solubility and inhibitory activity against cancer cells. Amphiphilic block copolymers, ω-methoxypoly(ethylene glycol)-b-(N-(2-benzoyloxypropyl) methacrylamide) (PEG-HPMA-Bz) were synthesized and characterized by (1)H NMR and GPC. One polymer with a molecular weight of 28,000Da was used to formulate CM and compared with other aromatic substituted polymers. CM was loaded by a fast heating method (PEG-HPMA-DL and PEG-HPMA-Bz-L) and a nanoprecipitation method (PEG-HPMA-Bz). Physicochemical characteristics and cytotoxicity/cytocompatibility of the CM loaded polymeric micelles were evaluated. It was found that HPMA-based polymeric micelles significantly enhanced the solubility of CM. The PEG-HPMA-Bz micelles showed the best solubilization properties. CM loaded polymeric micelles showed sustained release of the loading CM for more than 20days. All of CM loaded polymeric micelles formulations showed a significantly potent cytotoxic effect against three cancer cell lines. HPMA-based polymeric micelles are therefore promising nanodelivery systems of CM for cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Backbone degradable multiblock N-(2-hydroxypropyl)methacrylamide copolymer conjugates via reversible addition-fragmentation chain transfer polymerization and thiol-ene coupling reaction.

    PubMed

    Pan, Huaizhong; Yang, Jiyuan; Kopecková, Pavla; Kopecek, Jindrich

    2011-01-10

    Telechelic water-soluble HPMA copolymers and HPMA copolymer-doxorubicin (DOX) conjugates have been synthesized by RAFT polymerization mediated by a new bifunctional chain transfer agent (CTA) that contains an enzymatically degradable oligopeptide sequence. Postpolymerization aminolysis followed by chain extension with a bis-maleimide resulted in linear high molecular weight multiblock HPMA copolymer conjugates. These polymers are enzymatically degradable; in addition to releasing the drug (DOX), the degradation of the polymer backbone resulted in products with molecular weights similar to the starting material and below the renal threshold. The new multiblock HPMA copolymers hold potential as new carriers of anticancer drugs.

  6. HPMA copolymers: Origins, early developments, present, and future☆

    PubMed Central

    Kopeček, Jindřich; Kopečková, Pavla

    2010-01-01

    The overview covers the discovery of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers, initial studies on their synthesis, evaluation of biological properties, and explorations of their potential as carriers of biologically active compounds in general and anticancer drugs in particular. The focus is on the research in the authors’ laboratory – the development of macromolecular therapeutics for the treatment of cancer and musculoskeletal diseases. In addition, the evaluation of HPMA (co)polymers as building blocks of mod and new biomaterials is presented: the utilization of semitelechelic poly(HPMA) and HPMA copolymers for the modification of biomaterial and protein surfaces and the design of hybrid block and graft HPMA copolymers that self-assemble into smart hydrogels. Finally, suggestions for the design of second-generation macromolecular therapeutics are portrayed. PMID:19919846

  7. Water-soluble polymer–drug conjugates for combination chemotherapy against visceral leishmaniasis

    PubMed Central

    Nicoletti, Salvatore; Seifert, Karin; Gilbert, Ian H.

    2010-01-01

    There is a need for new safe, effective and short-course treatments for leishmaniasis; one strategy is to use combination chemotherapy. Polymer–drug conjugates have shown promise for the delivery of anti-leishmanial agents such as amphotericin B. In this paper, we report on the preparation and biological evaluation of polymer–drug conjugates of N-(2-hydroxypropyl)methacrylamide (HPMA), amphotericin B and alendronic acid. The combinatorial polymer–drug conjugates were effective anti-leishmanial agents in vitro and in vivo, but offered no advantage over the single poly(HPMA)–amphotericin B conjugates. PMID:20338769

  8. Doxorubicin attached to HPMA copolymer via amide bond modifies the glycosylation pattern of EL4 cells.

    PubMed

    Kovar, Lubomir; Etrych, Tomas; Kabesova, Martina; Subr, Vladimir; Vetvicka, David; Hovorka, Ondrej; Strohalm, Jiri; Sklenar, Jan; Chytil, Petr; Ulbrich, Karel; Rihova, Blanka

    2010-08-01

    To avoid the side effects of the anti-cancer drug doxorubicin (Dox), we conjugated this drug to a N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer backbone. Dox was conjugated via an amide bond (Dox-HPMA(AM), PK1) or a hydrazone pH-sensitive bond (Dox-HPMA(HYD)). In contrast to Dox and Dox-HPMA(HYD), Dox-HPMA(AM) accumulates within the cell's intracellular membranes, including those of the Golgi complex and endoplasmic reticulum, both involved in protein glycosylation. Flow cytometry was used to determine lectin binding and cell death, immunoblot to characterize the presence of CD7, CD43, CD44, and CD45, and high-performance anion exchange chromatography with pulsed amperometric detector analysis for characterization of plasma membrane saccharide composition. Incubation of EL4 cells with Dox-HPMA(AM) conjugate, in contrast to Dox or Dox-HPMA(HYD), increased the amounts of membrane surface-associated glycoproteins, as well as saccharide moieties recognized by peanut agglutinin, Erythrina cristagalli, or galectin-1 lectins. Only Dox-HPMA(AM) increased expression of the highly glycosylated membrane glycoprotein CD43, while expression of others (CD7, CD44, and CD45) was unaffected. The binding sites for galectin-1 are present on CD43 molecule. Furthermore, we present that EL4 treated with Dox-HPMA(AM) possesses increased sensitivity to galectin-1-induced apoptosis. In this study, we demonstrate that Dox-HPMA(AM) treatment changes glycosylation of the EL4 T cell lymphoma surface and sensitizes the cells to galectin-1-induced apoptosis.

  9. Membrane surface engineering for protein separations: experiments and simulations.

    PubMed

    Liu, Zizhao; Du, Hongbo; Wickramasinghe, S Ranil; Qian, Xianghong

    2014-09-09

    A bisphosphonate derived ligand was successfully synthesized and grafted from the surface of regenerated cellulose membrane using atom transfer radical polymerization (ATRP) for protein separations. This ligand has a remarkable affinity for arginine (Arg) residues on protein surface. Hydrophilic residues N-(2-hydroxypropyl) methacrylamide (HPMA) was copolymerized to enhance the flexibility of the copolymer ligand and further improve specific protein adsorption. The polymerization of bisphosphonate derivatives was successful for the first time using ATRP. Static and dynamic binding capacities were determined for binding and elution of Arg rich lysozyme. The interaction mechanism between the copolymer ligand and lysozyme was elucidated using classical molecular dynamics (MD) simulations.

  10. HPMA Copolymer-Drug Conjugates with Controlled Tumor-Specific Drug Release.

    PubMed

    Chytil, Petr; Koziolová, Eva; Etrych, Tomáš; Ulbrich, Karel

    2018-01-01

    Over the past few decades, numerous polymer drug carrier systems are designed and synthesized, and their properties are evaluated. Many of these systems are based on water-soluble polymer carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, or multidrug resistance inhibitors, all covalently bound to a carrier by a biodegradable spacer that enables controlled release of the active molecule to achieve the desired pharmacological effect. Among others, the synthetic polymer carriers based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are some of the most promising carriers for this purpose. This review focuses on advances in the development of HPMA copolymer carriers and their conjugates with anticancer drugs, with triggered drug activation in tumor tissue and especially in tumor cells. Specifically, this review highlights the improvements in polymer drug carrier design with respect to the structure of a spacer to influence controlled drug release and activation, and its impact on the drug pharmacokinetics, enhanced tumor uptake, cellular trafficking, and in vivo antitumor activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Spacer length impacts the efficacy of targeted docetaxel conjugates in prostate-specific membrane antigen expressing prostate cancer.

    PubMed

    Peng, Zheng-Hong; Sima, Monika; Salama, Mohamed E; Kopečková, Pavla; Kopeček, Jindřich

    2013-12-01

    Combination of targeted delivery and controlled release is a powerful technique for cancer treatment. In this paper, we describe the design, synthesis, structure validation and biological properties of targeted and non-targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-docetaxel conjugates. Docetaxel (DTX) was conjugated to HPMA copolymer via a tetrapeptide spacer (-GFLG-). 3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid (DUPA) was used as the targeting moiety to actively deliver DTX for treatment of Prostate-Specific Membrane Antigen (PSMA) expressing prostate cancer. Short and long spacer DUPA monomers were prepared, and four HPMA copolymer--DTX conjugates (non-targeted, two targeted with short spacer of different molecular weight and targeted with long spacer) were prepared via Reversible Addition-Fragmentation Chain Transfer (RAFT) copolymerization. Following confirmation of PSMA expression on C4-2 cell line, the DTX conjugates' in vitro cytotoxicity was tested against C4-2 tumor cells and their anticancer efficacies were assessed in nude mice bearing s.c. human prostate adenocarcinoma C4-2 xenografts. The in vivo results show that the spacer length between targeting moieties and HPMA copolymer backbone can significantly affect the treatment efficacy of DTX conjugates against C4-2 tumor bearing nu/nu mice. Moreover, histological analysis indicated that the DUPA-targeted DTX conjugate with longer spacer had no toxicity in major organs of treated mice.

  12. Spacer length impacts the efficacy of targeted docetaxel conjugates in prostate-specific membrane antigen expressing prostate cancer

    PubMed Central

    Peng, Zheng-Hong; Sima, Monika; Salama, Mohamed E.; Kopečková, Pavla; Kopeček, Jindřich

    2015-01-01

    Combination of targeted delivery and controlled release is a powerful technique for cancer treatment. In this paper, we describe the design, synthesis, structure validation and biological properties of targeted and non-targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-docetaxel conjugates. Docetaxel (DTX) was conjugated to HPMA copolymer via a tetrapeptide spacer (–GFLG-). 3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid (DUPA) was used as the targeting moiety to actively deliver DTX for treatment of Prostate-Specific Membrane Antigen (PSMA) expressing prostate cancer. Short and long spacer DUPA monomers were prepared, and four HPMA copolymer – DTX conjugates (non-targeted, two targeted with short spacer of different molecular weight and targeted with long spacer) were prepared via Reversible Addition-Fragmentation Chain Transfer (RAFT) copolymerization. Following confirmation of PSMA expression on C4-2 cell line, the DTX conjugates’ in vitro cytotoxicity was tested against C4-2 tumor cells and their anticancer efficacies were assessed in nude mice bearing s.c. human prostate adenocarcinoma C4-2 xenografts. The in vivo results show that the spacer length between targeting moieties and HPMA copolymer backbone can significantly affect the treatment efficacy of DTX conjugates against C4-2 tumor bearing nu/nu mice. Moreover, histological analysis indicated that the DUPA-targeted DTX conjugate with longer spacer had no toxicity in major organs of treated mice. PMID:24160903

  13. Two birds, one stone: dual targeting of the cancer cell surface and subcellular mitochondria by the galectin-3-binding peptide G3-C12

    PubMed Central

    Sun, Wei; Li, Lian; Li, Li-jia; Yang, Qing-qing; Zhang, Zhi-rong; Huang, Yuan

    2017-01-01

    Active tumor-targeting approaches using specific ligands have drawn considerable attention over the years. However, a single ligand often fails to simultaneously target the cancer cell surface and subcellular organelles, which limits the maximum therapeutic efficacy of delivered drugs. We describe a polymeric delivery system modified with the G3-C12 peptide for sequential dual targeting. In this study, galectin-3-targeted G3-C12 peptide was conjugated onto the N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer for the delivery of D(KLAKLAK)2 (KLA) peptide. G3-C12-HPMA-KLA exhibited increased receptor-mediated internalization into galectin-3-overexpressing PC-3 cells. Furthermore, G3-C12 peptide also directed HPMA-KLA conjugates to mitochondria. This occurred because the apoptosis signal triggered the accumulation of galectin-3 in mitochondria, and the G3-C12 peptide that specifically bound to galectin-3 was trafficked along with its receptor intracellularly. As a result, G3-C12-HPMA-KLA disrupted the mitochondrial membrane, increased the generation of reactive oxygen species (ROS) and induced cytochrome c release, which ultimately resulted in enhanced cytotoxicity. An in vivo study revealed that the G3-C12 peptide significantly enhanced the tumor accumulation of the KLA conjugate. In addition, G3-C12-HPMA-KLA exhibited the best therapeutic efficacy and greatly improved the animal survival rate. Our work demonstrates that G3-C12 is a promising ligand with dual-targeting functionality. PMID:28065935

  14. Enhanced anti-tumor activity and safety profile of targeted nano-scaled HPMA copolymer-alendronate-TNP-470 conjugate in the treatment of bone malignances

    PubMed Central

    Segal, Ehud; Pan, Huaizhong; Benayoun, Liat; Kopečková, Pavla; Shaked, Yuval; Kopeček, Jindčrich; Satchi-Fainaro, Ronit

    2015-01-01

    Bone neoplasms, such as osteosarcoma, exhibit a propensity for systemic metastases resulting in adverse clinical outcome. Traditional treatment consisting of aggressive chemotherapy combined with surgical resection, has been the mainstay of these malignances. Therefore, bone-targeted non-toxic therapies are required. We previously conjugated the aminobisphosphonate alendronate (ALN), and the potent anti-angiogenic agent TNP-470 with N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer. HPMA copolymer-ALN-TNP-470 conjugate exhibited improved anti-angiogenic and anti-tumor activity compared with the combination of free ALN and TNP-470 when evaluated in a xenogeneic model of human osteosarcoma. The immune system has major effect on toxicology studies and on tumor progression. Therefore, in this manuscript we examined the safety and efficacy profiles of the conjugate using murine osteosarcoma syngeneic model. Toxicity and efficacy evaluation revealed superior anti-tumor activity and decreased organ-related toxicities of the conjugate compared with the combination of free ALN plus TNP-470. Finally, comparative anti-angiogenic activity and specificity studies, using surrogate biomarkers of circulating endothelial cells (CEC), highlighted the advantage of the conjugate over the free agents. The therapeutic platform described here may have clinical translational relevance for the treatment of bone-related angiogenesis-dependent malignances. PMID:21429572

  15. Macromolecular nanotheranostics for multimodal anticancer therapy

    NASA Astrophysics Data System (ADS)

    Huis in't Veld, Ruben; Storm, Gert; Hennink, Wim E.; Kiessling, Fabian; Lammers, Twan

    2011-10-01

    Macromolecular carrier materials based on N-(2-hydroxypropyl)methacrylamide (HPMA) are prototypic and well-characterized drug delivery systems that have been extensively evaluated in the past two decades, both at the preclinical and at the clinical level. Using several different imaging agents and techniques, HPMA copolymers have been shown to circulate for prolonged periods of time, and to accumulate in tumors both effectively and selectively by means of the Enhanced Permeability and Retention (EPR) effect. Because of this, HPMA-based macromolecular nanotheranostics, i.e. formulations containing both drug and imaging agents within a single formulation, have been shown to be highly effective in inducing tumor growth inhibition in animal models. In patients, however, as essentially all other tumor-targeted nanomedicines, they are generally only able to improve the therapeutic index of the attached active agent by lowering its toxicity, and they fail to improve the efficacy of the intervention. Bearing this in mind, we have recently reasoned that because of their biocompatibility and their beneficial biodistribution, nanomedicine formulations might be highly suitable systems for combination therapies. In the present manuscript, we briefly summarize several exemplary efforts undertaken in this regard in our labs in the past couple of years, and we show that long-circulating and passively tumor-targeted macromolecular nanotheranostics can be used to improve the efficacy of radiochemotherapy and of chemotherapy combinations.

  16. Polymer donors of nitric oxide improve the treatment of experimental solid tumours with nanosized polymer therapeutics.

    PubMed

    Šírová, Milada; Horková, Veronika; Etrych, Tomáš; Chytil, Petr; Říhová, Blanka; Studenovský, Martin

    Polymer carriers based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers with incorporated organic nitrates as nitric oxide (NO) donors were designed with the aim to localise NO generation in solid tumours, thus highly increasing the enhanced permeability and retention (EPR) effect. The NO donors were coupled to the polymer carrier either through a stable bond or through a hydrolytically degradable, pH sensitive, bond. In vivo, the co-administration of the polymer NO donor and HPMA copolymer-bound cytotoxic drug (doxorubicin; Dox) resulted in an improvement in the treatment of murine EL4 T-cell lymphoma. The polymer NO donors neither potentiated the in vitro toxicity of the cytotoxic drug nor exerted any effect on in vivo model without the EPR effect, such as BCL1 leukaemia. Thus, an increase in passive accumulation of the nanomedicine carrying cytotoxic drug via NO-enhanced EPR effect was the operative mechanism of action. The most significant improvement in the therapy was observed in a combination treatment with such a polymer conjugate of Dox, which is characterised by increased circulation in the blood and efficient accumulation in solid tumours. Notably, the combination treatment enabled the development of an anti-tumour immune response, which was previously demonstrated as an important feature of HPMA-based polymer cytotoxic drugs.

  17. Improved Tumor-Specific Drug Accumulation by Polymer Therapeutics with pH-Sensitive Drug Release Overcomes Chemotherapy Resistance.

    PubMed

    Heinrich, Anne-Kathrin; Lucas, Henrike; Schindler, Lucie; Chytil, Petr; Etrych, Tomáš; Mäder, Karsten; Mueller, Thomas

    2016-05-01

    The success of chemotherapy is limited by poor selectivity of active drugs combined with occurrence of tumor resistance. New star-like structured N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based drug delivery systems containing doxorubicin attached via a pH-sensitive hydrazone bond were designed and investigated for their ability to overcome chemotherapy resistance. These conjugates combine two strategies to achieve a high drug concentration selectively at the tumor site: (I) high accumulation by passive tumor targeting based on enhanced permeability and retention effect and (II) pH-sensitive site-specific drug release due to an acidic tumor microenvironment. Mice bearing doxorubicin-resistant xenograft tumors were treated with doxorubicin, PBS, poly HPMA (pHPMA) precursor or pHPMA-doxorubicin conjugate at different equivalent doses of 5 mg/kg bodyweight doxorubicin up to a 7-fold total dose using different treatment schedules. Intratumoral drug accumulation was analyzed by fluorescence imaging utilizing intrinsic fluorescence of doxorubicin. Free doxorubicin induced significant toxicity but hardly any tumor-inhibiting effects. Administering at least a 3-fold dose of pHPMA-doxorubicin conjugate was necessary to induce a transient response, whereas doses of about 5- to 6-fold induced strong regressions. Tumors completely disappeared in some cases. The onset of response was differential delayed depending on the tumor model, which could be ascribed to distinct characteristics of the microenvironment. Further fluorescence imaging-based analyses regarding underlying mechanisms of the delayed response revealed a related switch to a more supporting intratumoral microenvironment for effective drug release. In conclusion, the current study demonstrates that the concept of tumor site-restricted high-dose chemotherapy is able to overcome therapy resistance. Mol Cancer Ther; 15(5); 998-1007. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Amphiphilic HPMA-LMA copolymers increase the transport of Rhodamine 123 across a BBB model without harming its barrier integrity.

    PubMed

    Hemmelmann, Mirjam; Metz, Verena V; Koynov, Kaloian; Blank, Kerstin; Postina, Rolf; Zentel, Rudolf

    2012-10-28

    The successful non-invasive treatment of diseases associated with the central nervous system (CNS) is generally limited by poor brain permeability of various developed drugs. The blood-brain barrier (BBB) prevents the passage of therapeutics to their site of action. Polymeric drug delivery systems are promising solutions to effectively transport drugs into the brain. We recently showed that amphiphilic random copolymers based on the hydrophilic p(N-(2-hydroxypropyl)-methacrylamide), pHPMA, possessing randomly distributed hydrophobic p(laurylmethacrylate), pLMA, are able to mediate delivery of domperidone into the brain of mice in vivo. To gain further insight into structure-property relations, a library of carefully designed polymers based on p(HPMA) and p(LMA) was synthesized and tested applying an in vitro BBB model which consisted of human brain microvascular endothelial cells (HBMEC). Our model drug Rhodamine 123 (Rh123) exhibits, like domperidone, a low brain permeability since both substances are recognized by efflux transporters at the BBB. Transport studies investigating the impact of the polymer architecture in relation to the content of hydrophobic LMA revealed that random p(HPMA)-co-p(LMA) having 10mol% LMA is the most auspicious system. The copolymer significantly increased the permeability of Rh123 across the HBMEC monolayer whereas transcytosis of the polymer was very low. Further investigations on the mechanism of transport showed that integrity and barrier function of the BBB model were not harmed by the polymer. According to our results, p(HPMA)-co-p(LMA) copolymers are a promising delivery system for neurological therapeutics and their application might open alternative treatment strategies. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Early diagnosis of orthopedic implant failure using macromolecular imaging agents.

    PubMed

    Ren, Ke; Dusad, Anand; Zhang, Yijia; Purdue, P Edward; Fehringer, Edward V; Garvin, Kevin L; Goldring, Steven R; Wang, Dong

    2014-08-01

    To develop and evaluate diagnostic tools for early detection of wear particle-induced orthopaedic implant loosening. N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer was tagged with a near infrared dye and used to detect the inflammation induced by polymethylmethacrylate (PMMA) particles in a murine peri-implant osteolysis model. It was established by inserting an implant into the distal femur and challenging with routine PMMA particles infusion. The osteolysis was evaluated by micro-CT and histological analysis at different time points. Significant peri-implant osteolysis was found 3-month post PMMA particle challenge by micro-CT and histological analysis. At 1-month post challenge, when there was no significant peri-implant bone loss, the HPMA copolymer-near infrared dye conjugate was found to specifically target the femur with PMMA particles deposition, but not the contralateral control femur with phosphate buffered saline (PBS) infusion. The results from this study demonstrate the feasibility of utilizing the macromolecular diagnostic agent to detect particle-induced peri-implant inflammation prior to the development of detectable osteolysis. Recognition of this early pathological event would provide the window of opportunity for prevention of peri-implant osteolysis and subsequent orthopaedic implant failure.

  20. HPMA copolymer-bound doxorubicin induces immunogenic tumor cell death.

    PubMed

    Sirova, M; Kabesova, M; Kovar, L; Etrych, T; Strohalm, J; Ulbrich, K; Rihova, B

    2013-01-01

    Treatment of murine EL4 T cell lymphoma with N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugates of doxorubicin (Dox) leads to complete tumor regression and to the development of therapy-dependent longlasting cancer resistance. This phenomenon occurs with two types of Dox conjugates tested, despite differences in the covalent linkage of Dox to the polymer carrier. Such a cancer resistance cannot fully express in conventional treatment with free Dox, due to substantial immunotoxicity of the treatment, which was not observed in the polymer conjugates. In this study, calreticulin (CRT) translocation and high mobility group box-1 protein (HMGB1) release was observed in EL4 cells treated with a conjugate releasing Dox by a pH-dependent manner. As a result, the treated tumor cells were engulfed by dendritic cells (DC) in vitro, and induced their expression of CD80, CD86, and MHC II maturation markers. Conjugates with Dox bound via an amide bond only increased translocation of HSPs to the membrane, which led to an elevated phagocytosis but was not sufficient to induce increase of the maturation markers on DCs in vitro. Both types of conjugates induced engulfment of the target tumor cells in vivo, that was more intense than that seen with free Dox. It means that the induction of anti-tumor immunity documented upon treatment of EL4 lymphoma with HPMA-bound Dox conjugates does not rely solely on CRT-mediated cell death, but involves multiple mechanisms.

  1. Neutral Polymeric Micelles for RNA Delivery

    PubMed Central

    Lundy, Brittany B.; Convertine, Anthony; Miteva, Martina; Stayton, Patrick S.

    2013-01-01

    RNA interference (RNAi) drugs have significant therapeutic potential but delivery systems with appropriate efficacy and toxicity profiles are still needed. Here, we describe a neutral, ampholytic polymeric delivery system based on conjugatable diblock polymer micelles. The diblock copolymer contains a hydrophilic poly[N-(2-hydroxypropyl) methacrylamide-co-N-(2-(pyridin-2- yldisulfanyl)ethyl)methacrylamide) (poly[HPMA-co-PDSMA]) segment to promote aqueous stability and facilitate thiol-disulfide exchange reactions, and a second ampholytic block composed of propyl acrylic acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and butyl methacrylate (BMA). The poly[(HPMA-co-PDSMA)-b-(PAA-co-DMAEMA-co-BMA)] was synthesized using Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization with an overall molecular weight of 22,000 g/mol and a PDI of 1.88. Dynamic light scattering and fluorescence measurements indicated that the diblock copolymers self-assemble under aqueous conditions to form polymeric micelles with a hydrodynamic radius and critical micelle concentration of 25 nm and 25 μg/mL respectively. Red blood cell hemolysis experiments show that the neutral hydrophilic micelles have potent membrane destabilizing activity at endosomal pH values. Thiolated siRNA targeting glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was directly conjugated to the polymeric micelles via thiol exchange reactions with the pyridal disulfide groups present in the micelle corona. Maximum silencing activity in HeLa cells was observed at a 1:10 molar ratio of siRNA to polymer following a 48 h incubation period. Under these conditions 90 % mRNA knockdown and 65 % and protein knockdown of at 48 h was achieved with negligible toxicity. In contrast the polymeric micelles lacking a pH-responsive endosomalytic segment demonstrated negligible mRNA and protein knockdown under these conditions. The potent mRNA knockdown and excellent biocompatibility of the neutral siRNA conjugates demonstrate the potential utility if this carrier design for delivering therapeutic siRNA drugs. PMID:23360541

  2. The effect of polymer backbone chemistry on the induction of the accelerated blood clearance in polymer modified liposomes.

    PubMed

    Kierstead, Paul H; Okochi, Hideaki; Venditto, Vincent J; Chuong, Tracy C; Kivimae, Saul; Fréchet, Jean M J; Szoka, Francis C

    2015-09-10

    A variety of water-soluble polymers, when attached to a liposome, substantially increase liposome circulation half-life in animals. However, in certain conditions, liposomes modified with the most widely used polymer, polyethylene glycol (PEG), induce an IgM response resulting in an accelerated blood clearance (ABC) of the liposome upon the second injection. Modification of liposomes with other water-soluble polymers: HPMA (poly[N-(2-hydroxypropyl) methacrylamide]), PVP (poly(vinylpyrrolidone)), PMOX (poly(2-methyl-2-oxazoline)), PDMA (poly(N,N-dimethyl acrylamide)), and PAcM (poly(N-acryloyl morpholine)), increases circulation times of liposomes; but a precise comparison of their ability to promote long circulation or induce the ABC effect has not been reported. To obtain a more nuanced understanding of the role of polymer structure/MW to promote long circulation, we synthesized a library of polymer diacyl chain lipids with low polydispersity (1.04-1.09), similar polymer molecular weights (2.1-2.5kDa) and incorporated them into 100nm liposomes of a narrow polydispersity (0.25-1.3) composed of polymer-lipid/hydrogenated soy phosphatidylcholine/cholesterol/diD: 5.0/54.5/40/0.5. We confirm that HPMA, PVP, PMOX, PDMA and PAcM modified liposome have increased circulation times in rodents and that PVP, PDMA, and PAcM do not induce the ABC effect. We demonstrate for the first time, that HPMA does not cause an ABC effect whereas PMOX induces a pronounced ABC effect in rats. We find that a single dose of liposomes coated with PEG and PMOX generates an IgM response in rats towards the respective polymer. Finally, in this homologous polymer series, we observe a positive correlation (R=0.84 in rats, R=0.92 in mice) between the circulation time of polymer-modified liposomes and polymer viscosity; PEG and PMOX, the polymers that can initiate an ABC response were the two most viscous polymers. Our findings suggest that polymers that do not cause an ABC effect such as, HPMA or PVP, deserve further consideration as polymer coatings to improve the circulation of liposomes and other nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Polymeric nanotheranostics for real-time non-invasive optical imaging of breast cancer progression and drug release.

    PubMed

    Ferber, Shiran; Baabur-Cohen, Hemda; Blau, Rachel; Epshtein, Yana; Kisin-Finfer, Einat; Redy, Orit; Shabat, Doron; Satchi-Fainaro, Ronit

    2014-09-28

    Polymeric nanocarriers conjugated with low molecular weight drugs are designed in order to improve their efficacy and toxicity profile. This approach is particularly beneficial for anticancer drugs, where the polymer-drug conjugates selectively accumulate at the tumor site, due to the enhanced permeability and retention (EPR) effect. The conjugated drug is typically inactive, and upon its pH- or enzymatically-triggered release from the carrier, it regains its therapeutic activity. These settings lack information regarding drug-release time, kinetics and location. Thereby, real-time non-invasive intravital monitoring of drug release is required for theranostics (therapy and diagnostics). We present here the design, synthesis and characterization of a theranostic nanomedicine, based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer, owing its fluorescence-based monitoring of site-specific drug release to a self-quenched near-infrared fluorescence (NIRF) probe. We designed two HPMA copolymer-based systems that complement to a theranostic nanomedicine. The diagnostic system consists of self-quenched Cy5 (SQ-Cy5) as a reporter probe and the therapeutic system is based on the anticancer agent paclitaxel (PTX). HPMA copolymer-PTX/SQ-Cy5 systems enable site-specific release upon enzymatic degradation in cathepsin B-overexpressing breast cancer cells. The release of the drug occurs concomitantly with the activation of the fluorophore to its Turn-ON state. HPMA copolymer-SQ-Cy5 exhibits preferable body distribution and drug release compared with the free drug and probe when administered to cathepsin B-overexpressing 4T1 murine mammary adenocarcinoma-bearing mice. This approach of co-delivery of two complementary systems serves as a proof-of-concept for real-time deep tissue intravital orthotopic monitoring and may have the potential use in clinical utility as a theranostic nanomedicine. Copyright © 2014. Published by Elsevier Ireland Ltd.

  4. Synthesis and Properties of Star HPMA Copolymer Nanocarriers Synthesised by RAFT Polymerisation Designed for Selective Anticancer Drug Delivery and Imaging.

    PubMed

    Chytil, Petr; Koziolová, Eva; Janoušková, Olga; Kostka, Libor; Ulbrich, Karel; Etrych, Tomáš

    2015-06-01

    High-molecular-weight star polymer drug nanocarriers intended for the treatment and/or visualisation of solid tumours were synthesised, and their physico-chemical and preliminary in vitro biological properties were determined. The water-soluble star polymer carriers were prepared by the grafting of poly(amido amine) (PAMAM) dendrimers by hetero-telechelic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers, synthesised by the controlled radical Reversible Addition Fragmentation chain Transfer (RAFT) polymerisation. The well-defined star copolymers with Mw values ranging from 2 · 10(5) to 6 · 10(5) showing a low dispersity (approximately 1.2) were prepared in a high yield. A model anticancer drug, doxorubicin, was bound to the star polymer through a hydrazone bond, enabling the pH-controlled drug release in the target tumour tissue. The activated polymer arm ends of the star copolymer carrier enable a one-point attachment for the targeting ligands and/or a labelling moiety. In this study, the model TAMRA fluorescent dye was used to prove the feasibility of the polymer carrier visualisation by optical imaging in vitro. The tailor-made structure of the star polymer carriers should facilitate the synthesis of targeted polymer-drug conjugates, even polymer theranostics, for simultaneous tumour drug delivery and imaging. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Traceless Bioresponsive Shielding of Adenovirus Hexon with HPMA Copolymers Maintains Transduction Capacity In Vitro and In Vivo

    PubMed Central

    Prill, Jan-Michael; Šubr, Vladimír; Pasquarelli, Noemi; Engler, Tatjana; Hoffmeister, Andrea; Kochanek, Stefan; Ulbrich, Karel; Kreppel, Florian

    2014-01-01

    Capsid surface shielding of adenovirus vectors with synthetic polymers is an emerging technology to reduce unwanted interactions of the vector particles with cellular and non-cellular host components. While it has been shown that attachment of shielding polymers allows prevention of undesired interactions, it has become evident that a shield which is covalently attached to the vector surface can negatively affect gene transfer efficiency. Reasons are not only a limited receptor-binding ability of the shielded vectors but also a disturbance of intracellular trafficking processes, the latter depending on the interaction of the vector surface with the cellular transport machinery. A solution might be the development of bioresponsive shields that are stably maintained outside the host cell but released upon cell entry to allow for efficient gene delivery to the nucleus. Here we provide a systematic comparison of irreversible versus bioresponsive shields based on synthetic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers. In addition, the chemical strategy used for generation of the shield allowed for a traceless bioresponsive shielding, i.e., polymers could be released from the vector particles without leaving residual linker residues. Our data demonstrated that only a bioresponsive shield maintained the high gene transfer efficiency of adenovirus vectors both in vitro and in vivo. As an example for bioresponsive HPMA copolymer release, we analyzed the in vivo gene transfer in the liver. We demonstrated that both the copolymer's charge and the mode of shielding (irreversible versus traceless bioresponsive) profoundly affected liver gene transfer and that traceless bioresponsive shielding with positively charged HPMA copolymers mediated FX independent transduction of hepatocytes. In addition, we demonstrated that shielding with HPMA copolymers can mediate a prolonged blood circulation of vector particles in mice. Our results have significant implications for the future design of polymer-shielded Ad and provide a deeper insight into the interaction of shielded adenovirus vector particles with the host after systemic delivery. PMID:24475024

  6. G3-C12 Peptide Reverses Galectin-3 from Foe to Friend for Active Targeting Cancer Treatment.

    PubMed

    Sun, Wei; Li, Lian; Yang, Qingqing; Shan, Wei; Zhang, Zhirong; Huang, Yuan

    2015-11-02

    Galectin-3 is overexpressed by numerous carcinomas and is a potential target for active tumor treatments. On the other hand, galectin-3 also plays a key role in cancer progression and prevents cells from undergoing apoptosis, thereby offsetting the benefits of active targeting drugs. However, the relative contribution of the protective antiapoptotic effects of galectin-3 and the proapoptotic effects of galectin-3-targeted therapies has remained yet unrevealed. Here, we show that a galectin-3-binding peptide G3-C12 could reverse galectin-3 from foe to friend for active targeting delivery system. Results showed G3-C12 modified N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin conjugates (G3-C12-HPMA-Dox) could internalize into galectin-3 overexpressed PC-3 cells via a highly specific ligand-receptor pathway (2.2 times higher cellular internalization than HPMA-Dox). The internalized Dox stimulated the translocation of galectin-3 to the mitochondria to prevent from apoptosis. In turn, this caused G3-C12-HPMA-Dox to concentrate into the mitochondria after binding to galectin-3 intracellularly. Initially, mitochondrial galectin-3 weakened Dox-induced mitochondrial damage; however, as time progressed, G3-C12 active-mediation allowed increasing amounts of Dox to be delivered to the mitochondria, which eventually induced higher level of apoptosis than nontargeted copolymers. In addition, G3-C12 downregulates galectin-3 expression, 0.43 times lower than control cells, which could possibly be responsible for the suppressed cell migration. Thus, G3-C12 peptide exerts sequential targeting to both cell membrane and mitochondria via regulating galectin-3, and eventually reverses and overcomes the protective effects of galectin-3; therefore, it could be a promising agent for the treatment of galectin-3-overexpressing cancers.

  7. Cyclic Peptide-Polymer Nanotubes as Efficient and Highly Potent Drug Delivery Systems for Organometallic Anticancer Complexes.

    PubMed

    Larnaudie, Sophie C; Brendel, Johannes C; Romero-Canelón, Isolda; Sanchez-Cano, Carlos; Catrouillet, Sylvain; Sanchis, Joaquin; Coverdale, James P C; Song, Ji-Inn; Habtemariam, Abraha; Sadler, Peter J; Jolliffe, Katrina A; Perrier, Sébastien

    2018-01-08

    Functional drug carrier systems have potential for increasing solubility and potency of drugs while reducing side effects. Complex polymeric materials, particularly anisotropic structures, are especially attractive due to their long circulation times. Here, we have conjugated cyclic peptides to the biocompatible polymer poly(2-hydroxypropyl methacrylamide) (pHPMA). The resulting conjugates were functionalized with organoiridium anticancer complexes. Small angle neutron scattering and static light scattering confirmed their self-assembly and elongated cylindrical shape. Drug-loaded nanotubes exhibited more potent antiproliferative activity toward human cancer cells than either free drug or the drug-loaded polymers, while the nanotubes themselves were nontoxic. Cellular accumulation studies revealed that the increased potency of the conjugate appears to be related to a more efficient mode of action rather than a higher cellular accumulation of iridium.

  8. The pH-dependent and enzymatic release of cytarabine from hydrophilic polymer conjugates.

    PubMed

    Pola, R; Janoušková, O; Etrych, T

    2016-10-20

    Cytarabine is one of the most efficient drugs in the treatment of hematological malignancies. In this work, we describe the synthesis and characterization of two different polymer conjugates of cytarabine that were designed for the controlled release of cytarabine within the leukemia cells. Reactive copolymers of N-(2-hydroxypropyl)methacrylamide (HPMA) and 3-(3-methacrylamidopropa-noyl)thiazolidine-2-thione) or 3-(Nmethacryloylglycyl-phenylalanylleucylglycyl)thiazolidine-2-thione were used in the study as reactive polymer precursors for reaction with cytarabine. The enzymatic release of cytarabine from the conjugate containing a GFLG spacer utilizing cathepsin B was verified. In addition to enzymolysis, the pH-dependent hydrolysis of cytarabine from both copolymers was also confirmed. Approximately 40 % and 20 % of the drug was released by spontaneous hydrolysis at pH 7.4 within 72 h from the polymer conjugates with the GFLG and beta-Ala spacers, respectively. At pH 6.0, the spontaneous hydrolysis slowed down, and less than 10 % of the drug was liberated within 72 h. The results of the cytotoxicity evaluation of the polymer conjugates in vitro against various cell lines showed that the cytotoxicity of the polymer conjugates is approximately three times lower in comparison to free cytarabine.

  9. Non-immunogenic, hydrophilic/cationic block copolymers and uses thereof

    DOEpatents

    Scales, Charles W.; Huang, Faqing; McCormick, Charles L.

    2010-05-18

    The present invention provides novel non-immunogenic, hydrophilic/cationic block copolymers comprising a neutral-hydrophilic polymer and a cationic polymer, wherein both polymers have well-defined chain-end functionality. A representative example of such a block copolymer comprises poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) and poly(N-[3-(dimethylamino)propyl]methacrylamide) (PDMAPMA). Also provided is a synthesis method thereof in aqueous media via reversible addition fragmentation chain transfer (RAFT) polymerization. Further provided are uses of these block copolymers as drug delivery vehicles and protection agents.

  10. N-(2-Hydroxypropyl)methacrylamide polymer conjugated pyropheophorbide-a, a promising tumor-targeted theranostic probe for photodynamic therapy and imaging.

    PubMed

    Fang, Jun; Šubr, Vladimír; Md Islam, Waliul; Hackbarth, Steffen; Md Islam, Rayhanul; Etrych, Tomáš; Ulbrich, Karel; Maeda, Hiroshi

    2018-06-07

    Tumor-targeted photodynamic therapy (PDT) using polymeric photosensitizers is a promising therapeutic strategy for cancer treatment. In this study, we synthesized a pHPMA conjugated pyropheophorbide-a (P-PyF) as a cancer theranostic agent for PDT and photodynamic diagnostics (PDD). Pyropheophorbide-a has one carboxyl group which was conjugated to pHPMA via amide bond yielding the intended product with high purity. In aqueous solutions, P-PyF showed a mean particle size of ∼200 nm as it forms micelle which exhibited fluorescence quenching and thus very little singlet oxygen ( 1 O 2 ) production. In contrast, upon disruption of micelle strong fluorescence and 1 O 2 production were observed. In vitro study clearly showed the PDT effect of P-PyF. More potent 1 O 2 production and PDT effect were observed during irradiation at ∼420 nm, the maximal absorbance of pyropheophorbide-a, than irradiation at longer wavelength (i.e., ∼ 680 nm), suggesting selection of proper absorption light is essential for successful PDT. In vivo study showed high tumor accumulation of P-PyF compared with most of normal tissues due to the enhanced permeability and retention (EPR) effect, which resulting in superior antitumor effect under irradiation using normal xenon light source of endoscope, and clear tumor imaging profiles even in the metastatic lung cancer at 28 days after administration of P-PyF. On the contrary irradiation using long wavelength (i.e., ∼ 680 nm), the lowest Q-Band, exhibited remarkable tumor imaging effect with little autofluorescence of background. These findings strongly suggested P-PyF may be a potential candidate-drug for PDT/PDD, particularly using two different wavelength for treatment and detection/imaging, respectively. Copyright © 2018. Published by Elsevier B.V.

  11. Self-Assembled Hydrogels from Poly[N-(2-hydroxypropyl)methacrylamide] Grafted with β-Sheet Peptides

    PubMed Central

    Radu-Wu, Larisa C.; Yang, Jiyuan; Wu, Kuangshi; Kopeček, Jindřich

    2009-01-01

    A new hybrid hydrogel based on poly[N-(2-hydroxypropyl)methacrylamide] grafted with a β-sheet peptide, Beta11, was designed. Circular dichroism spectroscopy indicated that the folding ability of β-sheet peptide was retained in the hybrid system, whereas the sensitivity of the peptide towards temperature and pH variations was hindered. The polymer backbone also prevented the twisting of the fibrils that resulted from the antiparallel arrangement of the β-strands, as proved by Fourier transform infrared spectroscopy. Thioflavin T binding experiments and transmission electron microscopy showed fibril formation with minimal lateral aggregation. As a consequence, the graft copolymer self-assembled into a hydrogel in aqueous environment. This process was mediated by association of β-sheet domains. Scanning electron microscopy revealed a particular morphology of the network, characterized by long-range order and uniformly aligned lamellae. Microrheology results confirmed that concentration-dependent gelation occurred. PMID:19591463

  12. Comparison of Hydrazone Heterobifunctional Crosslinking Agents for Reversible Conjugation of Thiol-Containing Chemistry

    PubMed Central

    Christie, R. James; Anderson, Diana J.; Grainger, David W.

    2010-01-01

    Reversible covalent conjugation chemistries that allow site- and condition-specific coupling and uncoupling reactions are attractive components in nanotechnologies, bioconjugation methods, imaging and drug delivery systems. Here, we compare three heterobifunctional crosslinkers, containing both thiol- and amine- reactive chemistry, to form pH-labile hydrazones with hydrazide derivatives of the known and often published water-soluble polymer, poly[N-(2-hydroxypropyl methacrylamide)] (pHPMA), while subsequently coupling thiol-containing molecules to the crosslinker via maleimide addition. Two novel crosslinkers were prepared from the popular heterobifunctional crosslinking agent, succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC), modified to contain either terminal aldehyde groups (i.e., 1-(N-3-propanal)-4-(N-maleimidomethyl) cyclohexane carboxamide, PMCA) or methylketone groups (i.e., 1-(N-3-butanone)-4-(N-maleimidomethyl) cyclohexane carboxamide, BMCA). A third crosslinking agent was the commercially available N-4-acetylphenyl maleimide (APM). PMCA and BMCA exhibited excellent reactivity towards hydrazide-derivatized pHPMA with essentially complete hydrazone conjugation to polymer reactive sites, while APM coupled only ~ 60% of available reactive sites on the polymer despite a 3-fold molar excess relative to polymer hydrazide groups. All polymer hydrazone conjugates bearing these bifunctional agents were then further reacted with thiol-modified tetramethylrhodamine dye, confirming crosslinker maleimide reactivity after initial hydrazone polymer conjugation. Incubation of dye-labeled polymer conjugates in phosphate buffered saline at 37°C showed that hydrazone coupling resulting from APM exhibited the greatest difference in stability between pH 7.4 and 5.0, with hydrolysis and dye release increased at pH 5.0 over a 24hr incubation period. Polymer conjugates bearing hydrazones formed from crosslinker BMCA exhibited intermediate stability with hydrolysis much greater at pH 5.0 at early time points, but hydrolysis at pH 7.4 was significant after 5 hrs. Hydrazones formed with the PMCA crosslinker showed no difference in release rates at pH 7.4 and 5.0. PMID:20695431

  13. Endocytotic uptake of HPMA-based polymers by different cancer cells: impact of extracellular acidosis and hypoxia

    PubMed Central

    Gündel, Daniel; Allmeroth, Mareli; Reime, Sarah; Zentel, Rudolf; Thews, Oliver

    2017-01-01

    Background Polymeric nanoparticles allow to selectively transport chemotherapeutic drugs to the tumor tissue. These nanocarriers have to be taken up into the cells to release the drug. In addition, tumors often show pathological metabolic characteristics (hypoxia and acidosis) which might affect the polymer endocytosis. Materials and methods Six different N-(2-hydroxypropyl)methacrylamide (HPMA)-based polymer structures (homopolymer as well as random and block copolymers with lauryl methacrylate containing hydrophobic side chains) varying in molecular weight and size were analyzed in two different tumor models. The cellular uptake of fluorescence-labeled polymers was measured under hypoxic (pO2 ≈1.5 mmHg) and acidic (pH 6.6) conditions. By using specific inhibitors, different endocytotic routes (macropinocytosis and clathrin-mediated, dynamin-dependent, cholesterol-dependent endocytosis) were analyzed separately. Results The current results revealed that the polymer uptake depends on the molecular structure, molecular weight and tumor line used. In AT1 cells, the uptake of random copolymer was five times stronger than the homopolymer, whereas in Walker-256 cells, the uptake of all polymers was much stronger, but this was independent of the molecular structure and size. Acidosis increased the uptake of random copolymer in AT1 cells but reduced the intracellular accumulation of homopolymer and block copolymer. Hypoxia reduced the uptake of all polymers in Walker-256 cells. Hydrophilic polymers (homopolymer and block copolymer) were taken up by all endocytotic routes studied, whereas the more lipophilic random copolymer seemed to be taken up preferentially by cholesterol- and dynamin-dependent endocytosis. Conclusion The study indicates that numerous parameters of the polymer (structure, size) and of the tumor (perfusion, vascular permeability, pH, pO2) modulate drug delivery, which makes it difficult to select the appropriate polymer for the individual patient. PMID:28831253

  14. Endocytotic uptake of HPMA-based polymers by different cancer cells: impact of extracellular acidosis and hypoxia.

    PubMed

    Gündel, Daniel; Allmeroth, Mareli; Reime, Sarah; Zentel, Rudolf; Thews, Oliver

    2017-01-01

    Polymeric nanoparticles allow to selectively transport chemotherapeutic drugs to the tumor tissue. These nanocarriers have to be taken up into the cells to release the drug. In addition, tumors often show pathological metabolic characteristics (hypoxia and acidosis) which might affect the polymer endocytosis. Six different N -(2-hydroxypropyl)methacrylamide (HPMA)-based polymer structures (homopolymer as well as random and block copolymers with lauryl methacrylate containing hydrophobic side chains) varying in molecular weight and size were analyzed in two different tumor models. The cellular uptake of fluorescence-labeled polymers was measured under hypoxic (pO 2 ≈1.5 mmHg) and acidic (pH 6.6) conditions. By using specific inhibitors, different endocytotic routes (macropinocytosis and clathrin-mediated, dynamin-dependent, cholesterol-dependent endocytosis) were analyzed separately. The current results revealed that the polymer uptake depends on the molecular structure, molecular weight and tumor line used. In AT1 cells, the uptake of random copolymer was five times stronger than the homopolymer, whereas in Walker-256 cells, the uptake of all polymers was much stronger, but this was independent of the molecular structure and size. Acidosis increased the uptake of random copolymer in AT1 cells but reduced the intracellular accumulation of homopolymer and block copolymer. Hypoxia reduced the uptake of all polymers in Walker-256 cells. Hydrophilic polymers (homopolymer and block copolymer) were taken up by all endocytotic routes studied, whereas the more lipophilic random copolymer seemed to be taken up preferentially by cholesterol- and dynamin-dependent endocytosis. The study indicates that numerous parameters of the polymer (structure, size) and of the tumor (perfusion, vascular permeability, pH, pO 2 ) modulate drug delivery, which makes it difficult to select the appropriate polymer for the individual patient.

  15. Urinary 3-hydroxypropyl mercapturic acid (3-HPMA) concentrations in dogs with acute spinal cord injury due to intervertebral disc herniation.

    PubMed

    Sangster, A M; Zheng, L; Bentley, R T; Shi, R; Packer, R A

    2017-01-01

    The aim of this study was to investigate urinary 3-hydroxypropyl mercapturic acid (3-HPMA), a metabolite of acrolein, as a novel biomarker in acute spinal cord injury (ASCI) due to intervertebral disc herniation in dogs. Urine from 10 client-owned dogs with ASCI collected at presentation and 10 control dogs was analyzed for 3-HPMA. The median urinary 3-HPMA concentration in ASCI dogs was significantly higher than in control dogs, but was not correlated with the severity of ASCI. The median urinary 3-HPMA concentration in intact dogs was higher than in neutered dogs. Higher urinary 3-HPMA concentrations in dogs after ASCI support a role for acrolein, a cytotoxic by-product of lipid peroxidation, in canine ASCI. Urinary 3-HPMA could be used as a biomarker in future clinical trials to measure the effect of therapeutic intervention of reducing acrolein after ASCI. Copyright © 2016. Published by Elsevier Ltd.

  16. A polymer-based ratiometric intracellular glucose sensor.

    PubMed

    Zhang, Liqiang; Su, Fengyu; Buizer, Sean; Kong, Xiangxing; Lee, Fred; Day, Kevin; Tian, Yanqing; Meldrum, Deirdre R

    2014-07-04

    The glucose metabolism level reflects cell proliferative status. A polymeric glucose ratiometric sensor comprising poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) and poly[2-(methacryloyloxy)ethyl]trimethylammonium chloride (PMAETMA) was synthesized. Cellular internalization and glucose response of the polymer within HeLa cells were investigated.

  17. Polymeric Selectin Ligands Mimicking Complex Carbohydrates: From Selectin Binders to Modifiers of Macrophage Migration.

    PubMed

    Moog, Kai E; Barz, Matthias; Bartneck, Matthias; Beceren-Braun, Figen; Mohr, Nicole; Wu, Zhuojun; Braun, Lydia; Dernedde, Jens; Liehn, Elisa A; Tacke, Frank; Lammers, Twan; Kunz, Horst; Zentel, Rudolf

    2017-01-24

    Novel polymeric cell adhesion inhibitors were developed in which the selectin tetrasaccharide sialyl-Lewis X (SLe X ) is multivalently presented on a biocompatible poly(2-hydroxypropyl)methacrylamide (PHPMA) backbone either alone (P1) or in combination with O-sulfated tyramine side chains (P2). For comparison, corresponding polymeric glycomimetics were prepared in which the crucial "single carbohydrate" substructures fucose, galactose, and sialic acid side chains were randomly linked to the PHPMA backbone (P3 or P4 (O-sulfated tyramine)). All polymers have an identical degree of polymerization, as they are derived from the same precursor polymer. Binding assays to selectins, to activated endothelial cells, and to macrophages show that polyHPMA with SLe X is an excellent binder to E-, L-, and P-selectins. However, mimetic P4 can also achieve close to comparable binding affinities in in vitro measurements and surprisingly, it also significantly inhibits the migration of macrophages; this provides new perspectives for the therapy of severe inflammatory diseases. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies.

    PubMed

    Ulbrich, Karel; Holá, Kateřina; Šubr, Vladimir; Bakandritsos, Aristides; Tuček, Jiří; Zbořil, Radek

    2016-05-11

    Targeted delivery combined with controlled drug release has a pivotal role in the future of personalized medicine. This review covers the principles, advantages, and drawbacks of passive and active targeting based on various polymer and magnetic iron oxide nanoparticle carriers with drug attached by both covalent and noncovalent pathways. Attention is devoted to the tailored conjugation of targeting ligands (e.g., enzymes, antibodies, peptides) to drug carrier systems. Similarly, the approaches toward controlled drug release are discussed. Various polymer-drug conjugates based, for example, on polyethylene glycol (PEG), N-(2-hydroxypropyl)methacrylamide (HPMA), polymeric micelles, and nanoparticle carriers are explored with respect to absorption, distribution, metabolism, and excretion (ADME scheme) of administrated drug. Design and structure of superparamagnetic iron oxide nanoparticles (SPION) and condensed magnetic clusters are classified according to the mechanism of noncovalent drug loading involving hydrophobic and electrostatic interactions, coordination chemistry, and encapsulation in porous materials. Principles of covalent conjugation of drugs with SPIONs including thermo- and pH-degradable bonds, amide linkage, redox-cleavable bonds, and enzymatically-cleavable bonds are also thoroughly described. Finally, results of clinical trials obtained with polymeric and magnetic carriers are analyzed highlighting the potential advantages and future directions in targeted anticancer therapy.

  19. Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs.

    PubMed

    Mouser, V H M; Abbadessa, A; Levato, R; Hennink, W E; Vermonden, T; Gawlitta, D; Malda, J

    2017-03-23

    Fine-tuning of bio-ink composition and material processing parameters is crucial for the development of biomechanically relevant cartilage constructs. This study aims to design and develop cartilage constructs with tunable internal architectures and relevant mechanical properties. More specifically, the potential of methacrylated hyaluronic acid (HAMA) added to thermosensitive hydrogels composed of methacrylated poly[N-(2-hydroxypropyl)methacrylamide mono/dilactate] (pHPMA-lac)/polyethylene glycol (PEG) triblock copolymers, to optimize cartilage-like tissue formation by embedded chondrocytes, and enhance printability was explored. Additionally, co-printing with polycaprolactone (PCL) was performed for mechanical reinforcement. Chondrocyte-laden hydrogels composed of pHPMA-lac-PEG and different concentrations of HAMA (0%-1% w/w) were cultured for 28 d in vitro and subsequently evaluated for the presence of cartilage-like matrix. Young's moduli were determined for hydrogels with the different HAMA concentrations. Additionally, hydrogel/PCL constructs with different internal architectures were co-printed and analyzed for their mechanical properties. The results of this study demonstrated a dose-dependent effect of HAMA concentration on cartilage matrix synthesis by chondrocytes. Glycosaminoglycan (GAG) and collagen type II content increased with intermediate HAMA concentrations (0.25%-0.5%) compared to HAMA-free controls, while a relatively high HAMA concentration (1%) resulted in increased fibrocartilage formation. Young's moduli of generated hydrogel constructs ranged from 14 to 31 kPa and increased with increasing HAMA concentration. The pHPMA-lac-PEG hydrogels with 0.5% HAMA were found to be optimal for cartilage-like tissue formation. Therefore, this hydrogel system was co-printed with PCL to generate porous or solid constructs with different mesh sizes. Young's moduli of these composite constructs were in the range of native cartilage (3.5-4.6 MPa). Interestingly, the co-printing procedure influenced the mechanical properties of the final constructs. These findings are relevant for future bio-ink development, as they demonstrate the importance of selecting proper HAMA concentrations, as well as appropriate print settings and construct designs for optimal cartilage matrix deposition and final mechanical properties of constructs, respectively.

  20. The guanidinium group as a key part of water-soluble polymer carriers for siRNA complexation and protection against degradation.

    PubMed

    Tabujew, Ilja; Freidel, Christoph; Krieg, Bettina; Helm, Mark; Koynov, Kaloian; Müllen, Klaus; Peneva, Kalina

    2014-07-01

    Here, the preparation of a novel block copolymer consisting of a statistical copolymer N-(2-hydroxypropyl) methacrylamide-s-N-(3-aminopropyl) methacrylamide and a short terminal 3-guanidinopropyl methacrylamide block is reported. This polymer structure forms neutral but water-soluble nanosized complexes with siRNA. The siRNA block copolymer complexes are first analyzed using agarose gel electrophoresis and their size is determined with fluorescence correlation spectroscopy. The protective properties of the polymer against RNA degradation are investigated by treating the siRNA block copolymer complexes with RNase V1. Heparin competition assays confirm the efficient release of the cargo in vitro. In addition, the utilization of microscale thermophoresis is demonstrated for the determination of the binding strength between a fluorescently labeled polyanion and a polymer molecule. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A smart polymeric platform for multistage nucleus-targeted anticancer drug delivery.

    PubMed

    Zhong, Jiaju; Li, Lian; Zhu, Xi; Guan, Shan; Yang, Qingqing; Zhou, Zhou; Zhang, Zhirong; Huang, Yuan

    2015-10-01

    Tumor cell nucleus-targeted delivery of antitumor agents is of great interest in cancer therapy, since the nucleus is one of the most frequent targets of drug action. Here we report a smart polymeric conjugate platform, which utilizes stimulus-responsive strategies to achieve multistage nuclear drug delivery upon systemic administration. The conjugates composed of a backbone based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer and detachable nucleus transport sub-units that sensitive to lysosomal enzyme. The sub-units possess a biforked structure with one end conjugated with the model drug, H1 peptide, and the other end conjugated with a novel pH-responsive targeting peptide (R8NLS) that combining the strength of cell penetrating peptide and nuclear localization sequence. The conjugates exhibited prolonged circulation time and excellent tumor homing ability. And the activation of R8NLS in acidic tumor microenvironment facilitated tissue penetration and cellular internalization. Once internalized into the cell, the sub-units were unleashed for nuclear transport through nuclear pore complex. The unique features resulted in 50-fold increase of nuclear drug accumulation relative to the original polymer-drug conjugates in vitro, and excellent in vivo nuclear drug delivery efficiency. Our report provides a strategy in systemic nuclear drug delivery by combining the microenvironment-responsive structure and detachable sub-units. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The same drug but a different mechanism of action: comparison of free doxorubicin with two different N-(2-hydroxypropyl)methacrylamide copolymer-bound doxorubicin conjugates in EL-4 cancer cell line.

    PubMed

    Kovár, Lubomír; Strohalm, Jirí; Chytil, Petr; Mrkvan, Tomás; Kovár, Marek; Hovorka, Ondrej; Ulbrich, Karel; Ríhová, Blanka

    2007-01-01

    Doxorubicin is one of the most potent anti-tumor drugs with a broad spectrum of use. To reduce its toxic effect and improve its pharmacokinetics, we conjugated it to an HPMA copolymer carrier that enhances its passive accumulation within solid tumors via the EPR effect and decreases its cytotoxicity to normal, noncancer cells. In this study, we compared the antiproliferative, pro-survival, and death signals triggered in EL-4 cancer cells exposed to free doxorubicin and doxorubicin conjugated to a HPMA copolymer carrier via either enzymatically (PK1) or hydrolytically (HYD) degradable bonds. We have previously shown that the intracellular distribution of free doxorubicin, HYD, and PK1 is markedly different. Here, we demonstrated that these three agents greatly differ also in the antiproliferative effect and cell death signals they trigger. JNK phosphorylation sharply increased in cells treated with HYD, while treatment with free doxorubicin moderately decreased and treatment with PK1 even strongly decreased it. On the other hand, treatment with free doxorubicin greatly increased p38 phosphorylation, while PK1 and HYD increased it slightly. PK1 also significantly increased ERK phosphorylation, while both the free doxorubicin and HYD conjugate slightly decreased it. Long-term inhibition of JNK significantly increased both proliferation and viability of EL-4 cells treated with free doxorubicin, showing that the JNK signaling pathway could be critical for mediating cell death in EL-4 cells exposed to free doxorubicin. Both activation of caspase 3 and decreased binding activity of the p50 subunit of NFkappaB were observed in cells treated with free doxorubicin and HYD, while no such effects were seen in cells incubated with PK1. Analysis of the expression of genes involved in apoptosis and regulation of the cell cycle demonstrated that free doxorubicin and HYD have very similar mechanisms of action, while PK1 has very different characteristics.

  3. Synthetic polycations with controlled charge density and molecular weight as building blocks for biomaterials.

    PubMed

    Kleinberger, Rachelle M; Burke, Nicholas A D; Zhou, Christal; Stöver, Harald D H

    2016-01-01

    A series of polycations prepared by RAFT copolymerization of N-(3-aminopropyl)methacrylamide hydrochloride (APM) and N-(2-hydroxypropyl)methacrylamide, with molecular weights of 15 and 40 kDa, and APM content of 10-75 mol%, were tested as building blocks for electrostatically assembled hydrogels such as those used for cell encapsulation. Complexation and distribution of these copolymers within anionic calcium alginate gels, as well as cytotoxicity, cell attachment, and cell proliferation on surfaces grafted with the copolymers were found to depend on composition and molecular weight. Copolymers with lower cationic charge density and lower molecular weight showed less cytotoxicity and cell adhesion, and were more mobile within alginate gels. These findings aid in designing improved polyelectrolyte complexes for use as biomaterials.

  4. Aqueous dispersion polymerization: a new paradigm for in situ block copolymer self-assembly in concentrated solution.

    PubMed

    Sugihara, Shinji; Blanazs, Adam; Armes, Steven P; Ryan, Anthony J; Lewis, Andrew L

    2011-10-05

    Reversible addition-fragmentation chain transfer polymerization has been utilized to polymerize 2-hydroxypropyl methacrylate (HPMA) using a water-soluble macromolecular chain transfer agent based on poly(2-(methacryloyloxy)ethylphosphorylcholine) (PMPC). A detailed phase diagram has been elucidated for this aqueous dispersion polymerization formulation that reliably predicts the precise block compositions associated with well-defined particle morphologies (i.e., pure phases). Unlike the ad hoc approaches described in the literature, this strategy enables the facile, efficient, and reproducible preparation of diblock copolymer spheres, worms, or vesicles directly in concentrated aqueous solution. Chain extension of the highly hydrated zwitterionic PMPC block with HPMA in water at 70 °C produces a hydrophobic poly(2-hydroxypropyl methacrylate) (PHPMA) block, which drives in situ self-assembly to form well-defined diblock copolymer spheres, worms, or vesicles. The final particle morphology obtained at full monomer conversion is dictated by (i) the target degree of polymerization of the PHPMA block and (ii) the total solids concentration at which the HPMA polymerization is conducted. Moreover, if the targeted diblock copolymer composition corresponds to vesicle phase space at full monomer conversion, the in situ particle morphology evolves from spheres to worms to vesicles during the in situ polymerization of HPMA. In the case of PMPC(25)-PHPMA(400) particles, this systematic approach allows the direct, reproducible, and highly efficient preparation of either block copolymer vesicles at up to 25% solids or well-defined worms at 16-25% solids in aqueous solution.

  5. [Missile-Type Tumor-Targeting Polymer Drug, P-THP, Seeks Tumors via Three Different Steps Based on the EPR Effect].

    PubMed

    Maeda, Hiroshi; Fang, Jun; Ulbrich, Karel; Etrych, Tomáš; Nakamura, Hideaki

    2016-05-01

    The enhanced permeability and retention (EPR) effect, a tumor-targeting principle of nanomedicine, serves as a standard for tumor-targeted anticancer drug design. There are 3 key issues in ideal EPR-based antitumor drug design: i) stability in blood circulation; ii) tumor-selective accumulation (EPR effect) and efficient release of the active anticancer moiety in tumor tissues; and iii) the active uptake of the active drug into tumor cells. Using these principles, we developed N-(2- hydroxypropyl)methacrylamide (HPMA) copolymer-conjugated pirarubicin (P-THP), which uses hydrazone bond linkage; it was shown to exhibit prolonged circulation time, thereby resulting in good tumor-selective accumulation. More importantly, the hydrazone bond ensured selective and rapid release of the active drug, pirarubicin (THP), in acidic tumor environments. Further, compared to other anthracycline anticancer drugs (eg, doxorubicin), THP demonstrated more rapid intracellular uptake. Consequently, P-THP showed remarkable antitumor effect with minimal side effects. In a clinical pilot study of a stage IV prostate cancer patient with multiple metastases in the lung and bone, P-THP (50-75 mg administered once every 2-3 weeks) was shown to clear the metastatic nodules in the lung almost completely after 3 treatments where 50-70 mg THP equivalent each was administerd per 70 kg body wt, and bone metastasis disappeared after 6 months. There was no recurrence after 2 years. The patient also retained an excellent quality of life during the treatment without any apparent side effects. Thus, we propose the clinical development of P-THP as an EPR-based tumor-targeted anticancer drug.

  6. Hollow microspheres based on - Folic acid modified - Hydroxypropyl Cellulose and synthetic multi-responsive bio-copolymer for targeted cancer therapy: controlled release of daunorubicin, in vitro and in vivo studies.

    PubMed

    Metaxa, Aikaterini-Foteini; Efthimiadou, Eleni K; Boukos, Nikos; Fragogeorgi, Eirini A; Loudos, George; Kordas, George

    2014-12-01

    Conventional chemotherapy drugs such as anthracyclines show no specific activity. They destroy cancer cells but also and the healthy ones, and for that reason exhibit high toxicity. In order to alleviate the toxic effects of chemotherapeutic drugs, the administration dose is being minimized, while their reactivity against tumor cells is lessened. This problem can be overcome or at least reduced by using nanoscale drug delivery systems to target the pathogenic area. The present work deals with the synthesis, characterization and biological evaluation of multi-responsive hollow microspheres coated with Hydroxypropyl Cellulose (HPC)-a biocompatible and thermosensitive polysaccharide-conjugated with folic acid as well promising drug vehicles for targeted cancer therapy. The synthetic route consists of two steps. In the first step, a single layer of sensitive copolymers is ((Methacrylic acid (MAA), N-(2-Hydroxypropyl) methacrylamide (HPMA) and N,N'-(disulfanediylbis(ethane-2,1-diyl))bis(2-methylacrylamide) (DSBMA)) fabricated on a sacrificial template of SiO2 and in the second step, an additional layer of the folic acid modified HPC coat the microspheres' surface. The layers fabrication is performed through a combination of distillation precipitation co-polymerization and chemical deposition method. The loading capacity (% LC) and encapsulation efficiency (% EE) percentages of the chemotherapeutic agent daunorubicin (DNR) in the fabricated microspheres were calculated through the standard curve methodology. In addition, the releasing properties of the resulting spheres are investigated, using the above mentioned methodology. It is worth mentioning that, spheres release the entrapped drug under combined conditions such acidic and reductive environment along with conventional hyperthermia. Cytotoxic activity of the synthesized spheres was investigated by using the well-established method of MTT assay in MCF-7 (breast cancer), HeLa (cervical cancer) and HEK 293 (Human Embryonic Kidney healthy cells) cell lines. Confocal and fluorescence microscopy were used to confirm the in vitro targeted ability of folic acid modified drug loaded microspheres in HeLa, to that overexpress folate receptors, MCF-7 and 3T3 cells, as negative folate cell substrate. Finally, radiolabelling of the spheres is performed, with a gamma emitting radionuclide ((99m)Tc), to assess their in vivo profile by means of scintigraphic imaging and biodistribution studies. Hollow spheres release the encapsulated drug under acidic environment, conventional hyperthermia or in the presence of glutathione (reductive environment). The ability of modified drug carriers to target the HeLa cells, was confirmed by confocal and fluorescence microscopy. The resulting spheres are observed to be promising drug-carriers for cancer treatment due to their releasing properties under tumor's environment and high concentration in HeLa cells via endocytosis. In addition, the empty vehicles have no toxicity in healthy cells and present antimicrobial activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. HPMA-based block copolymers promote differential drug delivery kinetics for hydrophobic and amphiphilic molecules.

    PubMed

    Tomcin, Stephanie; Kelsch, Annette; Staff, Roland H; Landfester, Katharina; Zentel, Rudolf; Mailänder, Volker

    2016-04-15

    We describe a method how polymeric nanoparticles stabilized with (2-hydroxypropyl)methacrylamide (HPMA)-based block copolymers are used as drug delivery systems for a fast release of hydrophobic and a controlled release of an amphiphilic molecule. The versatile method of the miniemulsion solvent-evaporation technique was used to prepare polystyrene (PS) as well as poly-d/l-lactide (PDLLA) nanoparticles. Covalently bound or physically adsorbed fluorescent dyes labeled the particles' core and their block copolymer corona. Confocal laser scanning microscopy (CLSM) in combination with flow cytometry measurements were applied to demonstrate the burst release of a fluorescent hydrophobic drug model without the necessity of nanoparticle uptake. In addition, CLSM studies and quantitative calculations using the image processing program Volocity® show the intracellular detachment of the amphiphilic block copolymer from the particles' core after uptake. Our findings offer the possibility to combine the advantages of a fast release for hydrophobic and a controlled release for an amphiphilic molecule therefore pointing to the possibility to a 'multi-step and multi-site' targeting by one nanocarrier. We describe thoroughly how different components of a nanocarrier end up in cells. This enables different cargos of a nanocarrier having a consecutive release and delivery of distinct components. Most interestingly we demonstrate individual kinetics of distinct components of such a system: first the release of a fluorescent hydrophobic drug model at contact with the cell membrane without the necessity of nanoparticle uptake. Secondly, the intracellular detachment of the amphiphilic block copolymer from the particles' core after uptake occurs. This offers the possibility to combine the advantages of a fast release for a hydrophobic substance at the time of interaction of the nanoparticle with the cell surface and a controlled release for an amphiphilic molecule later on therefore pointing to the possibility to a 'multi-step and multisite' targeting by one nanocarrier. We therefore feel that this could be used for many cellular systems where the combined and orchestrated delivery of components is prerequisite in order to obtain the highest efficiency. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Evaluation of dementia by acrolein, amyloid-β and creatinine.

    PubMed

    Igarashi, Kazuei; Yoshida, Madoka; Waragai, Masaaki; Kashiwagi, Keiko

    2015-10-23

    Plasma, urine and cerebrospinal fluid (CSF) were examined for biochemical markers of dementia. Protein-conjugated acrolein (PC-Acro) and the amyloid-β (Aβ)40/42 ratio in plasma can be used to detect mild cognitive impairment (MCI) and Alzheimer's disease (AD). In plasma, PC-Acro and the Aβ40/42 ratio in MCI and AD were significantly higher relative to non-demented subjects. Furthermore, urine acrolein metabolite, 3-hydroxypropyl mercapturic acid (3-HPMA)/creatinine (Cre) and amino acid-conjugated acrolein (AC-Acro)/Cre in AD were significantly lower than MCI. It was also shown that reduced urine 3-HPMA/Cre correlated with increased plasma Aβ40/42 ratio in dementia. The Aβ40/PC-Acro ratio in CSF, together with Aβ40 and Aβ40/42 ratio, was lower in AD than MCI. Increased plasma PC-Acro and Aβ40/42 ratio and decreased urine 3-HPMA/Cre correlated with cognitive ability (MMSE). These results indicate that the measurements of acrolein derivatives together with Aβ and Cre in biologic fluids is useful to estimate severity of dementia. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Decationized polyplexes as stable and safe carrier systems for improved biodistribution in systemic gene therapy

    PubMed Central

    Golombek, Susanne K.; Dakwar, George R.; Lou, Bo; Remaut, Katrien; Mastrobattista, Enrico; van Nostrum, Cornelus F.; Jahnen-Dechent, Wilhelm; Kiessling, Fabian; Braeckmans, Kevin; Lammers, Twan; Hennink, Wim E.

    2014-01-01

    Many polycation-based gene delivery vectors show high transfection in vitro, but their cationic nature generally leads to significant toxicity and poor in vivo performance which significantly hampers their clinical applicability. Unlike conventional polycation-based systems, decationized polyplexes are based on hydrophilic and neutral polymers. They are obtained by a 3-step process: charge-driven condensation followed by disulfide crosslinking stabilization and finally polyplex decationization. They consist of a disulfide-crosslinked poly(hydroxypropyl methacrylamide) (pHPMA) core stably entrapping plasmid DNA (pDNA), surrounded by a shell of poly(ethylene glycol) (PEG). In the present paper the applicability of decationized polyplexes for systemic administration was evaluated. Cy5-labeled decationized polyplexes were evaluated for stability in plasma by fluorescence single particle tracking (fSPT), which technique showed stable size distribution for 48 h unlike its cationic counterpart. Upon the incubation of the polymers used for the formation of polyplexes with HUVEC cells, MTT assay showed excellent cytocompatibility of the neutral polymers. The safety was further demonstrated by a remarkable low teratogenicity and mortality activity of the polymers in a zebrafish assay, in great contrast with their cationic counterpart. Near infrared (NIR) dye-labeled polyplexes were evaluated for biodistribution and tumor accumulation by noninvasive optical imaging when administered systemically in tumor bearing mice. Decationized polyplexes exhibited an increased circulation time and higher tumor accumulation, when compared to their cationic precursors. Histology of tumors sections showed that decationized polyplexes induced reporter transgene expression in vivo. In conclusion, decationized polyplexes are a platform for safer polymeric vectors with improved biodistribution properties when systemically administered. PMID:25204289

  10. Hydrogel based sensor arrays (2 × 2) with perforated piezoresistive diaphragms for metabolic monitoring (in vitro)

    PubMed Central

    Orthner, M.P.; Lin, G.; Avula, M.; Buetefisch, S.; Magda, J.; Rieth, L.W.; Solzbacher, F.

    2010-01-01

    This report details the first experimental results from novel hydrogel sensor array (2 × 2) which incorporates analyte diffusion pores into a piezoresistive diaphragm for the detection of hydrogel swelling pressures and hence chemical concentrations. The sensor assembly was comprised of three components, the active four sensors, HPMA/DMA/TEGDMA (hydroxypropyl methacrylate (HPMA), N,N-dimethylaminoethyl methacrylate (DMA) and crosslinker tetra-ethyleneglycol dimethacrylate (TEGDMA)) hydrogel, and backing plate. Each of the individual sensors of the array can be used with various hydrogels used to measure the presence of a number of stimuli including pH, ionic strength, and glucose concentrations. Ideally, in the future, these sensors will be used for continuous metabolic monitoring applications and implanted subcutaneously. In this paper and to properly characterize the sensor assembly, hydrogels sensitive to changes ionic strength were synthesized using hydroxypropyl methacrylate (HPMA), N,N-dimethylaminoethyl methacrylate (DMA) and crosslinker tetra-ethyleneglycol dimethacrylate (TEGDMA) and inserted into the sensor assembly. This hydrogel quickly and reversibly swells when placed environments of physiological buffer solutions (PBS) with ionic strengths ranging from 0.025 to 0.15 M, making it ideal for proof-of-concept testing and initial characterization. The assembly was wire bonded to a printed circuit board and coated with 3 ± 0.5 μm of Parylene-C using chemical vapor deposition (CVD) to protect the sensor and electrical connections during ionic strength wet testing. Two versions of sensors were fabricated for comparison, the first incorporated diffusion pores into the diaphragm, and the second used a solid diaphragm with perforated backing plate. This new design (perforated diaphragm) was shown to have slightly higher sensitivity than solid diaphragm sensors with separate diffuse backing plates when coupled with the hydrogel. The sensitivities for the 1 mm × 1 mm, 1.25 mm × 1.25 mm, 1.5 mm × 1.5 mm perforated diaphragm sensors were 53.3 ± 6.5, 171.7 ± 8.8, and 271.47 ± 27.53 mV/V-M, respectively. These results show that perforations in the diaphragm can be used not only to allow the diffusion of analyte into the cavity but to increase mechanical stress in the piezoresistive diaphragm, thereby increasing sensor output signal. The time constants for swelling (τswelling) and contracting (τcontracting) were calculated by fitting the sensor output half cycles to an exponential growth function. We found that the sensors' response was initially retarded during the preliminary hydrogel conditioning period then improved after 3–5 cycles with values of approximately 9 and 7 min for τswelling and τcontracting. For all sensors tested τswelling > τcontracting. This may be due to the increased loading on the hydrogel from the diaphragm during the swelling process. During contraction the diaphragm aids the hydrogel by reversibly applying mechanical pressure and therefore reducing τcontracting. Long term stability testing showed the sensors remained functional for upwards of 2 weeks in the test phosphate buffer solution (PBS). PMID:23750073

  11. Hydrogel based sensor arrays (2 × 2) with perforated piezoresistive diaphragms for metabolic monitoring (in vitro).

    PubMed

    Orthner, M P; Lin, G; Avula, M; Buetefisch, S; Magda, J; Rieth, L W; Solzbacher, F

    2010-03-19

    This report details the first experimental results from novel hydrogel sensor array (2 × 2) which incorporates analyte diffusion pores into a piezoresistive diaphragm for the detection of hydrogel swelling pressures and hence chemical concentrations. The sensor assembly was comprised of three components, the active four sensors, HPMA/DMA/TEGDMA (hydroxypropyl methacrylate (HPMA), N,N-dimethylaminoethyl methacrylate (DMA) and crosslinker tetra-ethyleneglycol dimethacrylate (TEGDMA)) hydrogel, and backing plate. Each of the individual sensors of the array can be used with various hydrogels used to measure the presence of a number of stimuli including pH, ionic strength, and glucose concentrations. Ideally, in the future, these sensors will be used for continuous metabolic monitoring applications and implanted subcutaneously. In this paper and to properly characterize the sensor assembly, hydrogels sensitive to changes ionic strength were synthesized using hydroxypropyl methacrylate (HPMA), N,N-dimethylaminoethyl methacrylate (DMA) and crosslinker tetra-ethyleneglycol dimethacrylate (TEGDMA) and inserted into the sensor assembly. This hydrogel quickly and reversibly swells when placed environments of physiological buffer solutions (PBS) with ionic strengths ranging from 0.025 to 0.15 M, making it ideal for proof-of-concept testing and initial characterization. The assembly was wire bonded to a printed circuit board and coated with 3 ± 0.5 μm of Parylene-C using chemical vapor deposition (CVD) to protect the sensor and electrical connections during ionic strength wet testing. Two versions of sensors were fabricated for comparison, the first incorporated diffusion pores into the diaphragm, and the second used a solid diaphragm with perforated backing plate. This new design (perforated diaphragm) was shown to have slightly higher sensitivity than solid diaphragm sensors with separate diffuse backing plates when coupled with the hydrogel. The sensitivities for the 1 mm × 1 mm, 1.25 mm × 1.25 mm, 1.5 mm × 1.5 mm perforated diaphragm sensors were 53.3 ± 6.5, 171.7 ± 8.8, and 271.47 ± 27.53 mV/V-M, respectively. These results show that perforations in the diaphragm can be used not only to allow the diffusion of analyte into the cavity but to increase mechanical stress in the piezoresistive diaphragm, thereby increasing sensor output signal. The time constants for swelling ( τ swelling ) and contracting ( τ contracting ) were calculated by fitting the sensor output half cycles to an exponential growth function. We found that the sensors' response was initially retarded during the preliminary hydrogel conditioning period then improved after 3-5 cycles with values of approximately 9 and 7 min for τ swelling and τ contracting . For all sensors tested τ swelling > τ contracting . This may be due to the increased loading on the hydrogel from the diaphragm during the swelling process. During contraction the diaphragm aids the hydrogel by reversibly applying mechanical pressure and therefore reducing τ contracting . Long term stability testing showed the sensors remained functional for upwards of 2 weeks in the test phosphate buffer solution (PBS).

  12. Contributions to the study of the mechanisms of photodynamic cross-linking of proteins

    NASA Astrophysics Data System (ADS)

    Shen, Hui-Rong

    The illumination of proteins in solution and in cells in the presence of photosensitizers may lead to the inter- and/or intramolecular crosslinking of the proteins (photosensitized or photodynamic crosslinking). This phenomenon appears to be involved in the photohemolysis of red cells, cataract development, skin photoaging, photodynamic therapy for cancers, laser welding of tissues, biomaterial modification, and other biological situations. Although the processes involved in the photocrosslinking of proteins have been extensively studied, the mechanisms involved are still largely unknown. The main objectives of the studies reported in this dissertation were to investigate the detailed mechanisms involved in the photocrosslinking of proteins and to determine the chemical nature of the crosslinks formed. The first part of this study was devoted to the verification of the roles of His, Lys and Tyr in the photodynamic crosslinking of proteins. The crosslinking reaction was modeled using tailor-made water-soluble synthetic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers containing epsilon-aminocaproic acid side chains terminating in His, Lys or tyrosinamide residues photosensitized by rose bengal (RB) and flavin mononucleotide (FMN). RB typically produces singlet oxygen, whereas FMN produces both singlet oxygen and radicals. His-His and His-Lys crosslinks were formed with RB as the sensitizer. RB-sensitization did not crosslink Tyr residues, whereas FMN coupled two Tyr residues via a radical pathway. Protection of the His and/or Lys residues in ribonuclease A (RNase A) significantly inhibited the extent of intermolecular crosslinking, and confirmed the key roles played by His and Lys in crosslinking reactions. The second part of this study involved the elucidation of the detailed reaction mechanisms and the chemical structures of His-His and Tyr-Tyr crosslinks. N-benzoyl-histidine (Bz-His) and N-acetyl-tyrosine (Ac-Tyr) were used to model the photosensitized crosslinking of proteins involving His and Tyr residues. Photocrosslinking of Bz-His was performed in phosphate buffer at pH 7.4 with immobilized RB beads as sensitizer. The main dimerized product was isolated and characterized. Its chemical structure was established by MS and NMR methods. Ac-Tyr was photocrosslinked with FMN as the sensitizer at pH 6.0; oxygen was necessary. Three main crosslinked dimers were obtained. Their chemical structures were determined by MS and NMR data.

  13. Occupational methacrylate and acrylate allergy--cross-reactions and possible screening allergens.

    PubMed

    Aalto-Korte, Kristiina; Henriks-Eckerman, Maj-Len; Kuuliala, Outi; Jolanki, Riitta

    2010-12-01

    Acrylic resin monomers, especially acrylates and methacrylates, are important occupational allergens. To analyse patterns of concomitant patch test reactions to acrylic monomers in relation to exposure, and to suggest possible screening allergens. We reviewed the patch test files for the years 1994-2009 at the Finnish Institute of Occupational Health for allergic reactions to acrylic monomers, and analysed the clinical records of sensitized patients. In a group of 66 patients allergic to an acrylic monomer, the most commonly positive allergens were three methacrylates, namely ethyleneglycol dimethacrylate (EGDMA), 2-hydroxyethyl methacrylate (2-HEMA) and 2-hydroxypropyl methacrylate (2-HPMA), and an acrylate, namely diethyleneglycol diacrylate (DEGDA). The patterns of concomitant reactions imply that exposure to methacrylates may induce cross-reactivity to acrylates, whereas exposure to acrylates usually does not lead to cross-allergy to methacrylates. Screening for triethyleneglycol diacrylate (TREGDA) in the baseline series was found to be useful, as 3 of 8 patients with diagnosed occupational acrylate allergy might have been missed without the screening. A short screening series of four allergens, EGDMA, DEGDA, 2-HPMA and pentaerythritol triacrylate (PETA), would have screened 93% of our 66 patients; each of the remaining 5 patients reacted to different acrylic monomer(s). © 2010 John Wiley & Sons A/S.

  14. Allergic contact dermatitis caused by (meth)acrylates in nail cosmetic products in users and nail technicians - a 5-year study.

    PubMed

    Raposo, Inês; Lobo, Inês; Amaro, Cristina; Lobo, Maria de Lurdes; Melo, Helena; Parente, Joana; Pereira, Teresa; Rocha, Joana; Cunha, Ana P; Baptista, Armando; Serrano, Pedro; Correia, Teresa; Travassos, Ana R; Dias, Margarida; Pereira, Fátima; Gonçalo, Margarida

    2017-12-01

    The increasing use of long-lasting nail aesthetic products has led to a growing number of cases of allergic contact dermatitis (ACD) caused by (meth)acrylates in recent years. To provide information on ACD caused by (meth)acrylates related to nail cosmetic products. We retrospectively reviewed files of patients with ACD caused by (meth)acrylates related to nail cosmetic products, who were patch tested between January 2011 and December 2015 in 13 departments of dermatology in Portugal. Two-hundred and thirty cases of ACD caused by (meth)acrylates (55 technicians, 56 consumers, and 119 with mixed exposure) had been documented, mostly as chronic hand eczema (93%). The most common sensitizers were: 2-hydroxyethyl methacrylate (HEMA), which was positive in 90% of the tested patients, 2-hydroxypropyl methacrylate (HPMA), which was positive in 64.1%, and ethyleneglycol dimethacrylate, which was positive in 54.5%. HEMA and HPMA were the most frequent positive allergens. HEMA, which identified 90% of cases, can be considered to be a good screening allergen. The high number of cases of ACD caused by (meth)acrylates in nail cosmetic products certainly warrants better preventive measures at the occupational level, and specific regulation in the field of consumer safety. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Multifunctional PHPMA-Derived Polymer for Ratiometric pH Sensing, Fluorescence Imaging, and Magnetic Resonance Imaging.

    PubMed

    Su, Fengyu; Agarwal, Shubhangi; Pan, Tingting; Qiao, Yuan; Zhang, Liqiang; Shi, Zhengwei; Kong, Xiangxing; Day, Kevin; Chen, Meiwan; Meldrum, Deirdre; Kodibagkar, Vikram D; Tian, Yanqing

    2018-01-17

    In this paper, we report synthesis and characterization of a novel multimodality (MRI/fluorescence) probe for pH sensing and imaging. A multifunctional polymer was derived from poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) and integrated with a naphthalimide-based-ratiometric fluorescence probe and a gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid complex (Gd-DOTA complex). The polymer was characterized using UV-vis absorption spectrophotometry, fluorescence spectrofluorophotometry, magnetic resonance imaging (MRI), and confocal microscopy for optical and MRI-based pH sensing and cellular imaging. In vitro labeling of macrophage J774 and esophageal CP-A cell lines shows the polymer's ability to be internalized in the cells. The transverse relaxation time (T 2 ) of the polymer was observed to be pH-dependent, whereas the spin-lattice relaxation time (T 1 ) was not. The pH probe in the polymer shows a strong fluorescence-based ratiometric pH response with emission window changes, exhibiting blue emission under acidic conditions and green emission under basic conditions, respectively. This study provides new materials with multimodalities for pH sensing and imaging.

  16. Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin.

    PubMed

    Talelli, Marina; Iman, Maryam; Varkouhi, Amir K; Rijcken, Cristianne J F; Schiffelers, Raymond M; Etrych, Tomas; Ulbrich, Karel; van Nostrum, Cornelus F; Lammers, Twan; Storm, Gert; Hennink, Wim E

    2010-10-01

    Doxorubicin (DOX) is clinically applied in cancer therapy, but its use is associated with dose limiting severe side effects. Core-crosslinked biodegradable polymeric micelles composed of poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) methacrylamide-lactate] (mPEG-b-p(HPMAm-Lac(n))) diblock copolymers have shown prolonged circulation in the blood stream upon intravenous administration and enhanced tumor accumulation through the enhanced permeation and retention (EPR) effect. However a (physically) entrapped anticancer drug (paclitaxel) was previously shown to be rapidly eliminated from the circulation, likely because the drug was insufficiently retained in the micelles. To fully exploit the EPR effect for drug targeting, a DOX methacrylamide derivative (DOX-MA) was covalently incorporated into the micellar core by free radical polymerization. The structure of the doxorubicin derivative is susceptible to pH-sensitive hydrolysis, enabling controlled release of the drug in acidic conditions (in either the intratumoral environment and/or the endosomal vesicles). 30-40% w/w of the added drug was covalently entrapped, and the micelles with covalently entrapped DOX had an average diameter of 80 nm. The entire drug payload was released within 24 h incubation at pH 5 and 37 degrees C, whereas only around 5% release was observed at pH 7.4. DOX micelles showed higher cytotoxicity in B16F10 and OVCAR-3 cells compared to DOX-MA, likely due to cellular uptake of the micelles via endocytosis and intracellular drug release in the acidic organelles. The micelles showed better anti-tumor activity than free DOX in mice bearing B16F10 melanoma carcinoma. The results presented in this paper show that mPEG-b-p(HPMAm-Lac(n)) polymeric micelles with covalently entrapped doxorubicin is a system highly promising for the targeted delivery of cytostatic agents. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Polymer therapeutics: concepts and applications.

    PubMed

    Haag, Rainer; Kratz, Felix

    2006-02-13

    Polymer therapeutics encompass polymer-protein conjugates, drug-polymer conjugates, and supramolecular drug-delivery systems. Numerous polymer-protein conjugates with improved stability and pharmacokinetic properties have been developed, for example, by anchoring enzymes or biologically relevant proteins to polyethylene glycol components (PEGylation). Several polymer-protein conjugates have received market approval, for example the PEGylated form of adenosine deaminase. Coupling low-molecular-weight anticancer drugs to high-molecular-weight polymers through a cleavable linker is an effective method for improving the therapeutic index of clinically established agents, and the first candidates have been evaluated in clinical trials, including, N-(2-hydroxypropyl)methacrylamide conjugates of doxorubicin, camptothecin, paclitaxel, and platinum(II) complexes. Another class of polymer therapeutics are drug-delivery systems based on well-defined multivalent and dendritic polymers. These include polyanionic polymers for the inhibition of virus attachment, polycationic complexes with DNA or RNA (polyplexes), and dendritic core-shell architectures for the encapsulation of drugs. In this Review an overview of polymer therapeutics is presented with a focus on concepts and examples that characterize the salient features of the drug-delivery systems.

  18. Peptides, proteins and peptide/protein-polymer conjugates as drug delivery system.

    PubMed

    Mukherjee, Biswajit; Karmakar, Swapna D; Hossain, Chowdhury M; Bhattacharya, Sanchari

    2014-01-01

    In the last few decades, novel drug delivery strategies have been a big priority to the formulation scientists. Peptides and proteins have drawn a special attention for their wide scope in the area. Serum albumin, transferrin, recom- binant proteins, virus capsids etc. are used as carrier for drug and biomolecules. Conjugates of polymers with proteins have also shown strong potency in the field of drug delivery. Polyethylene glycol is one of the most successful polymers that has been used extensively to develop protein conjugated formulations. Besides, polyvinyl pyrrolidone, polylactic-co- glycolic acid, N-(2-hydroxypropyl) methacrylamide copolymer, polyglutamic acid have also been investigated. In this re- view, we will highlight on the most recent overview of various advantages, limitations and marketed products of proteins, peptides and protein/peptide-polymer conjugates as drug carriers, such products in clinical trials and their various uses in the field of modern drug delivery. Understanding the key features of these materials and the vigorous research in this field will develop new drug formulations that will combat various types of life-threatening diseases.

  19. Guanidinylated 3-gluconamidopropyl methacrylamide-s-3-aminopropyl methacrylamide copolymer as siRNA carriers for inhibiting human telomerase reverse transcriptase expression.

    PubMed

    Wu, Yang; Ji, Jinkai; Yang, Ran; Zhang, Xiaoqiang; Li, Yuanhui; Pu, Yuepu; Li, Xinsong

    2013-01-01

    In this report, a series of well-defined glucose- and guanidine-based cationic copolymers as gene carriers were developed to inhibit human telomerase reverse transcriptase (hTERT) gene expression. First of all, guandinylated 3-gluconamidopropyl methacrylamide-s-3-aminopropyl methacrylamide copolymers (guanidinylated GAPMA-s-APMA, abbreviated as GGA) were prepared via aqueous reversible addition--fragmentation chain transfer polymerization (RAFT). Then, three target hTERT siRNA TERT-1, TERT-2 and TERT-3 were designed and combined with GGA copolymers to form siRNA/GGA polyplexes. The polyplexes were examined by dynamic light scattering and agarose gel electrophoresis. The results indicated that GGA copolymers can condense siRNA effectively to form particles with the diameter from 157 nm to 411 nm and zeta potential values in the range from +3.7 to +15.8 mV at various charge ratios (N/P). The MTT assay data of siRNA/GGA polyplexes on human hepatocellular liver carcinoma cells (HepG2) indicated that GGA copolymer had better cell viabilities than polyethylenimine (PEI). Furthermore, the transfection of siRNA/GGA polyplexes was detected by real-time quantitative PCR (RT-qPCR) in HepG2. It was found that siRNA/GGA polyplexes could effectively silence hTERT mRNA expression in serum-free media (p<0.01). In the presence of serum, the hTERT mRNA expression in HepG2 cells have significant difference (p<0.01) between siRNA/GGA3 polyplexes and blank. The results showed that the GAPMA component can reduce the aggregation of protein in serum media. Therefore, the enhancement of transfection may be attributed to the combination of guadino groups and glucose component. And, the guandinylated 3-gluconamidopropyl methacrylamide-s-3-aminopropyl methacrylamide copolymers might be promise in gene delivery.

  20. Allergic contact dermatitis from acrylic nails in a flamenco guitarist.

    PubMed

    Alcántara-Nicolás, F A; Pastor-Nieto, M A; Sánchez-Herreros, C; Pérez-Mesonero, R; Melgar-Molero, V; Ballano, A; De-Eusebio, E

    2016-12-01

    Acrylates are molecules that are well known for their strong sensitizing properties. Historically, many beauticians and individuals using store-bought artificial nail products have developed allergic contact dermatitis from acrylates. More recently, the use of acrylic nails among flamenco guitarists to strengthen their nails has become very popular. A 40-year-old non-atopic male patient working as a flamenco guitarist developed dystrophy, onycholysis and paronychia involving the first four nails of his right hand. The lesions were confined to the fingers where acrylic materials were used in order to strengthen his nails to play the guitar. He noticed improvement whenever he stopped using these materials and intense itching and worsening when he began reusing them. Patch tests were performed and positive results obtained with 2-hydroxyethyl methacrylate (2-HEMA), 2-hydroxyethyl acrylate (2-HEA), ethyleneglycol-dimethacrylate (EGDMA) and 2-hydroxypropyl methacrylate (2-HPMA). The patient was diagnosed with occupational allergic contact dermatitis likely caused by acrylic nails. Artificial nails can contain many kinds of acrylic monomers but most cases of contact dermatitis are induced by 2-HEMA, 2-HPMA and EGDMA. This is the first reported case of occupational allergic contact dermatitis from acrylates in artificial nails in a professional flamenco guitar player. Since the practice of self-applying acrylic nail products is becoming very popular within flamenco musicians, we believe that dermatology and occupational medicine specialists should be made aware of the potentially increasing risk of sensitization from acrylates in this setting. © The Author 2016. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Immunomodulating activities of soluble synthetic polymer-bound drugs.

    PubMed

    Ríhová, Blanka

    2002-09-13

    The introduction of a synthetic material into the body always affects different body systems, including the defense system. Synthetic polymers are usually thymus-independent antigens with only a limited ability to elicit antibody formation or to induce a cellular immune response against them. However, there are many other ways that they influence or can be used to influence the immune system of the host. Low-immunogenic water-soluble synthetic polymers sometimes exhibit significant immunomodulating activity, mainly concerning the activation/suppression of NK cells, LAK cells and macrophages. Some of them, such as poly(ethylene glycol) and poly[N-(2-hydroxypropyl)methacrylamide], can be used as effective protein carriers, as they are able to reduce the immunogenicity of conjugated proteins and/or to reduce non-specific uptake of liposome/nanoparticle-entrapped drugs and other therapeutic agents. Recently, the development of vaccine delivery systems prepared from biodegradable and biocompatible water-soluble synthetic polymers, microspheres, liposomes and/or nanoparticles has received considerable attention, as they can be tailored to meet the specific physical, chemical, and immunogenic requirements of a particular antigen and some of them can also act as adjuvants. Copyright 2002 Elsevier Science B.V.

  2. Ocular pharmacokinetic study using T₁ mapping and Gd-chelate- labeled polymers.

    PubMed

    Shi, Xianfeng; Liu, Xin; Wu, Xueming; Lu, Zheng-Rong; Li, S Kevin; Jeong, Eun-Kee

    2011-12-01

    Recent advances in drug discovery have led to the development of a number of therapeutic macromolecules for treatment of posterior eye diseases. We aimed to investigate the clearance of macromolecular contrast probes (polymers conjugated with Gd-chelate) in the vitreous after intravitreal injections with the recently developed ms-DSEPI-T12 MRI and to examine the degradation of disulfide-containing biodegradable polymers in the vitreous humor in vivo. Intravitreal injections of model contrast agents poly[N-(2-hydroxypropyl)methacrylamide]-GG-1,6-hexanediamine-(Gd-DO3A), biodegradable (Gd-DTPA)-cystine copolymers, and MultiHance were performed in rabbits; their distribution and elimination from the vitreous after injections were determined by MRI. Times for macromolecular contrast agents to decrease to half their initial concentrations in the vitreous ranged from 0.4-1.3 days post-injection. Non-biodegradable polymers demonstrated slower vitreal clearance than those of disulfide-biodegradable polymers. Biodegradable polymers had similar clearance as MultiHance. Usefulness of T(1) mapping and ms-DSEPI-T12 MRI to study ocular pharmacokinetics was demonstrated. Results suggest an enzymatic degradation mechanism for the disulfide linkage in polymers in the vitreous leading to breakup of polymers in vitreous humor over time.

  3. Preparation of end-grafted polymer brushes by nitroxide-mediated free radical polymerization of vaporized vinyl monomers.

    PubMed

    Li, Jun; Chen, Xiaoru; Chang, Ying-Chih

    2005-10-11

    In this work, we report a gas-phase polymerization approach to create end-grafted vinyl based polymer films on silicon oxide based substrates. The "surface-initiated vapor deposition polymerization" (SI-VDP) of vaporized vinyl monomers, via the nitroxide-mediated free radical polymerization mechanism, was developed to fabricate various homo- and block copolymer brushes from surface-bound initiators, 1-(4'-oxa-2'-phenyl-12'-trimethoxysilyldodecyloxy)-2,2,6,6-tetra-methylpiperidine ("TEMPO"). The resulting polymer thin films were characterized by the Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, ellipsometry, and contact angle goniometry, respectively, to identify the surface composition, film thickness, surface coverage, and water contact angles. Through the SI-VDP, end-grafted polymer films of polystyrene (PSt), poly(acrylic acid) (PAAc), poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA), and poly(N-isopropylacrylamide) (PNIPAAm) with 10-200 nm thicknesses were fabricated. Furthermore, the block copolymer films of PAAc (1st block)-b-PSt (2nd block), PSt (1st block)-b-PAAc (2nd block), and a triblock copolymer film of PAAc (1st)-b-PSt (2nd)-b-PHPMA (3rd), were also fabricated, suggesting the "renewability" of the TEMPO-initiated polymerization in the SI-VDP scheme. It is also noticed that the SI-VDP is more efficient than the conventional solution phase polymerization in producing functional polymer brushes such as PNIPAAm, PAAc, or PAAc-b-PSt end-grafted films. In summary, our studies have shown clear advantages of the SI-VDP setup for the nitroxide-mediated polymerization scheme in controlling synthesis of end-grafted homo- and copolymer thin films.

  4. Amphiphilic Copolymers Shuttle Drugs Across the Blood-Brain Barrier.

    PubMed

    Clemens-Hemmelmann, Mirjam; Kuffner, Christiane; Metz, Verena; Kircher, Linda; Schmitt, Ulrich; Hiemke, Christoph; Postina, Rolf; Zentel, Rudolf

    2016-05-01

    Medical treatment of diseases of the central nervous system requires transport of drugs across the blood-brain barrier (BBB). Here, it is extended previously in vitro experiments with a model compound to show that the non-water-soluble and brain-impermeable drug domperidone (DOM) itself can be enriched in the brain by use of an amphiphilic copolymer as a carrier. This carrier consists of poly(N-(2-hydroxypropyl)-methacrylamide), statistically copolymerized with 10 mol% hydrophobic lauryl methacrylate, into whose micellar aggregates DOM is noncovalently absorbed. As tested in a BBB model efficient transport of DOM across, the BBB is achievable over a wide range of formulations, containing 0.8 to 35.5 wt% domperidone per copolymer. In neither case, the polymer itself is translocated across the BBB model. In vivo experiments in mice show that already 10 min after intraperitoneal injection of the polymer/domperidone (PolyDOM) formulation, domperidone can be detected in blood and in the brain. Highest serum and brain levels of domperidone are detected 40 min after injection. At that time point serum domperidone is increased 48-fold. Most importantly, domperidone is exclusively detectable in high amounts in the brain of PolyDOM injected mice and not in mice injected with bare domperidone. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ocular Pharmacokinetic Study Using T1 Mapping and Gd-Chelate-Labeled Polymers

    PubMed Central

    Shi, Xianfeng; Liu, Xin; Wu, Xueming; Lu, Zheng-Rong; Li, S. Kevin

    2011-01-01

    Purpose Recent advances in drug discovery have led to the development of a number of therapeutic macromolecules for treatment of posterior eye diseases. We aimed to investigate the clearance of macromolecular contrast probes (polymers conjugated with Gd-chelate) in the vitreous after intravitreal injections with the recently developed ms-DSEPI-T12 MRI and to examine the degradation of disulfide-containing biodegradable polymers in the vitreous humor in vivo. Methods Intravitreal injections of model contrast agents poly[N-(2-hydroxypropyl)methacrylamide]-GG-1,6-hexanediamine-(Gd-DO3A), biodegradable (Gd-DTPA)-cystine copolymers, and MultiHance were performed in rabbits; their distribution and elimination from the vitreous after injections were determined by MRI. Results Times for macromolecular contrast agents to decrease to half their initial concentrations in the vitreous ranged from 0.4–1.3 days post-injection. Non-biodegradable polymers demonstrated slower vitreal clearance than those of disulfide-biodegradable polymers. Biodegradable polymers had similar clearance as MultiHance. Conclusions Usefulness of T1 mapping and ms-DSEPI-T12 MRI to study ocular pharmacokinetics was demonstrated. Results suggest an enzymatic degradation mechanism for the disulfide linkage in polymers in the vitreous leading to breakup of polymers in vitreous humor over time. PMID:21691891

  6. Poly(2-ethyl-2-oxazoline) conjugates with doxorubicin for cancer therapy: In vitro and in vivo evaluation and direct comparison to poly[N-(2-hydroxypropyl)methacrylamide] analogues.

    PubMed

    Sedlacek, Ondrej; Monnery, Bryn D; Mattova, Jana; Kucka, Jan; Panek, Jiri; Janouskova, Olga; Hocherl, Anita; Verbraeken, Bart; Vergaelen, Maarten; Zadinova, Marie; Hoogenboom, Richard; Hruby, Martin

    2017-11-01

    We designed and synthesized a new delivery system for the anticancer drug doxorubicin based on a biocompatible hydrophilic poly(2-ethyl-2-oxazoline) (PEtOx) carrier with linear architecture and narrow molar mass distribution. The drug is connected to the polymer backbone via an acid-sensitive hydrazone linker, which allows its triggered release in the tumor. The in vitro studies demonstrate successful cellular uptake of conjugates followed by release of the cytostatic cargo. In vivo experiments in EL4 lymphoma bearing mice revealed prolonged blood circulation, increased tumor accumulation and enhanced antitumor efficacy of the PEtOx conjugate having higher molecular weight (40 kDa) compared to the lower molecular weight (20 kDa) polymer. Finally, the in vitro and in vivo anti-cancer properties of the prepared PEtOx conjugates were critically compared with those of the analogous system based on the well-established PHPMA carrier. Despite the relatively slower intracellular uptake of PEtOx conjugates, resulting also in their lower cytotoxicity, there are no substantial differences in in vivo biodistribution and anti-cancer efficacy of both classes of polymer-Dox conjugates. Considering the synthetic advantages of poly(2-alkyl-2-oxazoline)s, the presented study demonstrates their potential as a versatile alternative to well-known PEO- or PHPMA-based materials for construction of drug delivery systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Determination of 3-hydroxypropylmercapturic acid in urine by three column-switching high-performance liquid chromatography with electrochemical detection using a diamond electrode.

    PubMed

    Higashi, Kyohei; Shibasaki, Mana; Kuni, Kyoshiro; Uemura, Takeshi; Waragai, Masaaki; Uemura, Kenichi; Igarashi, Kazuei; Toida, Toshihiko

    2017-09-29

    A three column-switching high-performance liquid chromatography (HPLC) using an electrochemical detector (ECD) equipped with a diamond electrode was established to determine 3-hydroxypropylmercapturic acid (3-HPMA) in urine. An extracted urine sample was consecutively fractionated using a strong anion-exchange column (first column) and a C8 column (second column) via a switching valve before application on an Octa Decyl Silyl (ODS) column (third column), followed by ECD analysis. The% recovery of 3-HPMA standard throughout the three-column process and limit of detection (LOD) were 94±1% and 0.1pmol, respectively. A solid phase extraction step is required for the sensitive analysis of 3-HPMA in urine by column-switching HPLC-ECD despite a decreased% recovery (55%) of urine sample spiked with 100pmol of 3-HPMA. To test the utility of our column-switching HPLC-ECD method, 3-HPMA levels of 27 urine samples were determined, and the correlation between HPLC-ECD and LC-Electrospray ionization (ESI)-MS/MS method was examined. As a result, the median values of μmol 3-HPMA/g Creatinine (Cre) in urine obtained by column-switching HPLC-ECD and LC-MS/MS were 2.19±2.12μmol/g Cre and 2.13±3.38μmol/g Cre, respectively, and the calibration curve (y=1.5171x-1.007) exhibited good linearity within a defined range (r 2 =0.907). These results indicate that the combination of column-switching HPLC and ECD is a powerful tool for the specific, reliable detection of 3-HPMA in urine. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Synthesis and characterization of theranostic poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymer targeting tumor angiogenesis: tumor localization visualized by positron emission tomography.

    PubMed

    Yuan, Jianchao; Zhang, Haiyuan; Kaur, Harpreet; Oupicky, David; Peng, Fangyu

    2013-05-01

    Poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers were synthesized and characterized for tumor localization in vivo as a theranostic scaffold for cancer imaging and anticancer drug delivery targeting tumor angiogenesis. Tumor localization of the poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers was visualized in mice bearing human prostate cancer xenografts by positron emission tomography (PET) using a microPET scanner. PET quantitative analysis demonstrated that tumor 64Cu radioactivity (2.75 ± 0.34 %ID/g) in tumor-bearing mice 3 hours following intravenous injection of the poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers was significantly higher than the tumor 64Cu radioactivity (1.29 ± 0.26 %ID/g) in tumor-bearing mice injected with the nontargeted poly(HPMA)-DOTA-64Cu copolymers (p = .004). The poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymers hold potential as a theranostic scaffold for cancer imaging and radiochemotherapy of prostate cancer targeting tumor angiogenesis by noninvasive tracking with PET.

  9. The effect of the processing and formulation parameters on the size of nanoparticles based on block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) with and without hydrolytically sensitive groups.

    PubMed

    Neradovic, D; Soga, O; Van Nostrum, C F; Hennink, W E

    2004-05-01

    Block copolymers of poly(ethylene glycol) (PEG) as a hydrophilic block and N-isopropylacrylamide (PNIPAAm) or poly (NIPAAm-co-N-(2-hydroxypropyl) methacrylamide-dilactate) (poly(NIPAAm-co-HPMAm-dilactate)) as a thermosensitive block, are able to self-assemble in water into nanoparticles above the cloud point (CP) of the thermosensitive block. The influence of processing and the formulation parameters on the size of the nanoparticles was studied using dynamic light scattering. PNIPAAm-b-PEG 2000 polymers were not suitable for the formation of small and stable particles. Block copolymers with PEG 5000 and 10000 formed relatively small and stable particles in aqueous solutions at temperatures above the CP of the thermosensitive block. Their size decreased with increasing molecular weight of the thermosensitive block, decreasing polymer concentration and using water instead of phosphate buffered saline as solvent. Extrusion and ultrasonication were inefficient methods to size down the polymeric nanoparticles. The heating rate of the polymer solutions was a dominant factor for the size of the nanoparticles. When an aqueous polymer solution was slowly heated through the CP, rather large particles (> or = 200 nm) were formed. Regardless the polymer composition, small nanoparticles (50-70 nm) with a narrow size distribution were formed, when a small volume of an aqueous polymer solution below the CP was added to a large volume of heated water. In this way the thermosensitive block copolymers rapidly pass their CP ('heat shock' procedure), resulting in small and stable nanoparticles.

  10. Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles.

    PubMed

    Ergen, Can; Heymann, Felix; Al Rawashdeh, Wa'el; Gremse, Felix; Bartneck, Matthias; Panzer, Ulf; Pola, Robert; Pechar, Michal; Storm, Gert; Mohr, Nicole; Barz, Matthias; Zentel, Rudolf; Kiessling, Fabian; Trautwein, Christian; Lammers, Twan; Tacke, Frank

    2017-01-01

    Identifying intended or accidental cellular targets for drug delivery systems is highly relevant for evaluating therapeutic and toxic effects. However, limited knowledge exists on the distribution of nano- and micrometer-sized carrier systems at the cellular level in different organs. We hypothesized that clinically relevant carrier materials, differing in composition and size, are able to target distinct myeloid cell subsets that control inflammatory processes, such as macrophages, neutrophils, monocytes and dendritic cells. Therefore, we analyzed the biodistribution and in vivo cellular uptake of intravenously injected poly(N-(2-hydroxypropyl) methacrylamide) polymers, PEGylated liposomes and poly(butyl cyanoacrylate) microbubbles in mice, using whole-body imaging (computed tomography - fluorescence-mediated tomography), intra-organ imaging (intravital multi-photon microscopy) and cellular analysis (flow cytometry of blood, liver, spleen, lung and kidney). While the three carrier materials shared accumulation in tissue macrophages in liver and spleen, they notably differed in uptake by other myeloid subsets. Kupffer cells and splenic red pulp macrophages rapidly take up microbubbles. Liposomes efficiently reach dendritic cells in liver, lung and kidney. Polymers exhibit the longest circulation half-life and target endothelial cells in the liver, neutrophils and alveolar macrophages. The identification of such previously unrecognized target cell populations might open up new avenues for more efficient drug delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Coiled-Coil Hydrogels. Effect of Grafted Copolymer Composition and Cyclization on Gelation

    PubMed Central

    Dušek, Karel; Dušková-Smrčková, Miroslava; Yang, Jiyuan; Kopeček, Jindřich

    2009-01-01

    A mean-field theoretical approach was developed to model gelation of solutions of hydrophilic polymers with grafted peptide motifs capable of forming associates of coiled-coil type. The model addresses the competition between associates engaged in branching and cyclization. It results in relative concentrations of intra- and intermolecular associates in dependence on associate strength and motif concentration. The cyclization probability is derived from the model of equivalent Gaussian chain and takes into account all possible paths connecting the interacting motifs. Examination of the association-dissociation equilibria, controlled by the equilibrium constant for association taken as input information, determines the fractions of inter- and intramolecularly associated motifs. The gelation model is based on the statistical theory of branching processes and in combination with the cyclization model predicts the critical concentration delimiting the regions of gelled and liquid states of the system. A comparison between predictions of the model and experimental data available for aqueous solutions of poly[N-(2-hydroxypropyl)methacrylamide] grafted with oppositely charged pentaheptad peptides, CCE and CCK, indicates that the association constant of grafted motifs by four orders of magnitude lower than that of free motifs. It is predicted that at the critical concentration of each motif of about 6×10−7 mol/cm3, about half of motifs in associated state is engaged in intramolecular bonds. PMID:20160932

  12. Facile and Efficient Preparation of Tri-component Fluorescent Glycopolymers via RAFT-controlled Polymerization.

    PubMed

    Wang, Wei; Lester, John M; Amorosa, Anthony E; Chance, Deborah L; Mossine, Valeri V; Mawhinney, Thomas P

    2015-06-19

    Synthetic glycopolymers are instrumental and versatile tools used in various biochemical and biomedical research fields. An example of a facile and efficient synthesis of well-controlled fluorescent statistical glycopolymers using reversible addition-fragmentation chain-transfer (RAFT)-based polymerization is demonstrated. The synthesis starts with the preparation of β-galactose-containing glycomonomer 2-lactobionamidoethyl methacrylamide obtained by reaction of lactobionolactone and N-(2-aminoethyl) methacrylamide (AEMA). 2-Gluconamidoethyl methacrylamide (GAEMA) is used as a structural analog lacking a terminal β-galactoside. The following RAFT-mediated copolymerization reaction involves three different monomers: N-(2-hydroxyethyl) acrylamide as spacer, AEMA as target for further fluorescence labeling, and the glycomonomers. Tolerant of aqueous systems, the RAFT agent used in the reaction is (4-cyanopentanoic acid)-4-dithiobenzoate. Low dispersities (≤1.32), predictable copolymer compositions, and high reproducibility of the polymerizations were observed among the products. Fluorescent polymers are obtained by modifying the glycopolymers with carboxyfluorescein succinimidyl ester targeting the primary amine functional groups on AEMA. Lectin-binding specificities of the resulting glycopolymers are verified by testing with corresponding agarose beads coated with specific glycoepitope recognizing lectins. Because of the ease of the synthesis, the tight control of the product compositions and the good reproducibility of the reaction, this protocol can be translated towards preparation of other RAFT-based glycopolymers with specific structures and compositions, as desired.

  13. ABC Triblock Copolymer Worms: Synthesis, Characterization, and Evaluation as Pickering Emulsifiers for Millimeter-Sized Droplets

    PubMed Central

    2016-01-01

    Polymerization-induced self-assembly (PISA) is used to prepare linear poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate)–poly(benzyl methacrylate) [PGMA–PHPMA–PBzMA] triblock copolymer nano-objects in the form of a concentrated aqueous dispersion via a three-step synthesis based on reversible addition–fragmentation chain transfer (RAFT) polymerization. First, GMA is polymerized via RAFT solution polymerization in ethanol, then HPMA is polymerized via RAFT aqueous solution polymerization, and finally BzMA is polymerized via “seeded” RAFT aqueous emulsion polymerization. For certain block compositions, highly anisotropic worm-like particles are obtained, which are characterized by small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The design rules for accessing higher order morphologies (i.e., worms or vesicles) are briefly explored. Surprisingly, vesicular morphologies cannot be accessed by targeting longer PBzMA blocks—instead, only spherical nanoparticles are formed. SAXS is used to rationalize these counterintuitive observations, which are best explained by considering subtle changes in the relative enthalpic incompatibilities between the three blocks during the growth of the PBzMA block. Finally, the PGMA–PHPMA–PBzMA worms are evaluated as Pickering emulsifiers for the stabilization of oil-in-water emulsions. Millimeter-sized oil droplets can be obtained using low-shear homogenization (hand-shaking) in the presence of 20 vol % n-dodecane. In contrast, control experiments performed using PGMA–PHPMA diblock copolymer worms indicate that these more delicate nanostructures do not survive even these mild conditions. PMID:27795581

  14. [Polymer and oligomer based doxorubicin carriers].

    PubMed

    Kik, Krzysztof; Lwow, Felicja; Szmigiero, Leszek

    2007-01-01

    Doxorubicin and other anthracycline derivatives play an important role in the treatment of many malignant diseases. Unfortunately, clinical effectiveness of this class of drugs is limited by cumulative cardiotoxicity which occurs in significant percentage of patients at cumulative dose in the range 450-600 mg/m2. Therefore, several strategies have been developed to reduce cardiotoxicity of doxorubicin and its analogues. One of the possible ways leading to the improvement of anticancer selectivity of doxorubicin is the design of polymer and olygomer carriers which may transport drug molecules more efficiently and more specifically. Synthetic polymers are of increasing interest as therapeutic agents owing to their enhanced pharmacokinetic profiles relative to small molecule drugs. Currently a new class of multifunctional polymers is being prepared that can "mask" biologically active compounds, such as cytotoxic agents, until they reach target sites, but which can then release the agent in situ to effect the therapy. The legitimacy of the development of polymer based doxorubicine carriers is supported by the growing number of clinical reports indicating that the use of hydrophilic polymers or polymer coated liposomes as a platform for delivery of the drug results in better therapeutic effects than the free drug. In this article we present the most promising strategies directed at the development of improved anthracycline drugs formulations based of polymer and olygomer carriers. We review: 1) polyethylenoglycol-coated ("pegylated") liposomal doxorubicin; 2) extracellulary tumor-activated prodrugs which are conjugates of doxorubicin with peptides; 3) doxorubicin coated by higly polymerised glycosoaminoglycans; 4) conjugates of doxorubicin with copolymer of N-(2-hydroxypropyl)methacrylamide.

  15. Cathepsin S-cleavable, multi-block HPMA copolymers for improved SPECT/CT imaging of pancreatic cancer.

    PubMed

    Fan, Wei; Shi, Wen; Zhang, Wenting; Jia, Yinnong; Zhou, Zhengyuan; Brusnahan, Susan K; Garrison, Jered C

    2016-10-01

    This work continues our efforts to improve the diagnostic and radiotherapeutic effectiveness of nanomedicine platforms by developing approaches to reduce the non-target accumulation of these agents. Herein, we developed multi-block HPMA copolymers with backbones that are susceptible to cleavage by cathepsin S, a protease that is abundantly expressed in tissues of the mononuclear phagocyte system (MPS). Specifically, a bis-thiol terminated HPMA telechelic copolymer containing 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Three maleimide modified linkers with different sequences, including cathepsin S degradable oligopeptide, scramble oligopeptide and oligo ethylene glycol, were subsequently synthesized and used for the extension of the HPMA copolymers by thiol-maleimide click chemistry. All multi-block HPMA copolymers could be labeled by (177)Lu with high labeling efficiency and exhibited high serum stability. In vitro cleavage studies demonstrated highly selective and efficient cathepsin S mediated cleavage of the cathepsin S-susceptible multi-block HPMA copolymer. A modified multi-block HPMA copolymer series capable of Förster Resonance Energy Transfer (FRET) was utilized to investigate the rate of cleavage of the multi-block HPMA copolymers in monocyte-derived macrophages. Confocal imaging and flow cytometry studies revealed substantially higher rates of cleavage for the multi-block HPMA copolymers containing the cathepsin S-susceptible linker. The efficacy of the cathepsin S-cleavable multi-block HPMA copolymer was further examined using an in vivo model of pancreatic ductal adenocarcinoma. Based on the biodistribution and SPECT/CT studies, the copolymer extended with the cathepsin S susceptible linker exhibited significantly faster clearance and lower non-target retention without compromising tumor targeting. Overall, these results indicate that exploitation of the cathepsin S activity in MPS tissues can be utilized to substantially lower non-target accumulation, suggesting this is a promising approach for the development of diagnostic and radiotherapeutic nanomedicine platforms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Molecular detection of HpmA and HlyA hemolysin of uropathogenic Proteus mirabilis.

    PubMed

    Cestari, Silvia Emanoele; Ludovico, Marilucia Santos; Martins, Fernando Henrique; da Rocha, Sérgio Paulo Dejato; Elias, Waldir Pereira; Pelayo, Jacinta Sanchez

    2013-12-01

    Urinary tract infection (UTI) is one of the bacterial infections frequently documented in humans. Proteus mirabilis is associated with UTI mainly in individuals with urinary tract abnormality or related with vesicular catheterism and it can be difficult to treat because of the formation of stones in the bladder and kidneys. These stones are formed due to the presence of urease synthesized by the bacteria. Another important factor is that P. mirabilis produces hemolysin HpmA, used by the bacteria to damage the kidney tissues. Proteus spp. samples can also express HlyA hemolysin, similar to that found in Escherichia coli. A total of 211 uropathogenic P. mirabilis isolates were analyzed to detect the presence of the hpmA and hpmB genes by the techniques of polymerase chain reaction (PCR) and dot blot and hlyA by PCR. The hpmA and hpmB genes were expressed by the RT-PCR technique and two P. mirabilis isolates were sequenced for the hpmA and hpmB genes. The presence of the hpmA and hpmB genes was confirmed by PCR in 205 (97.15 %) of the 211 isolates. The dot blot confirmed the presence of the hpmA and hpmB genes in the isolates that did not amplify in the PCR. None of the isolates studied presented the hlyA gene. The hpmA and hpmB genes that were sequenced presented 98 % identity with the same genes of the HI4320 P. mirabilis sample. This study showed that the PCR technique has good sensitivity for detecting the hpmA and hpmB genes of P. mirabilis.

  17. Non-volatile copolymer compositions for fabricating gel element microarrays

    PubMed Central

    Golova, Julia B.; Chernov, Boris K.; Perov, Alexander N.; Reynolds, Jennifer; Linger, Yvonne L.; Kukhtin, Alexander; Chandler, Darrell P.

    2011-01-01

    By modifying polymer compositions and cross-linking reagents, we have developed a simple yet effective manufacturing strategy for copolymerized three-dimensional gel element arrays. A new gel-forming monomer (2-(hydroxyethyl) methacrylamide; HEMAA) was used that possesses low volatility and improves the stability of copolymerized gel element arrays to on-chip thermal cycling procedures relative to previously used monomers. Probe immobilization efficiency within the new polymer was 55%, equivalent to that obtained with acrylamide (AA) and methacrylamide (MA) monomers. Non-specific binding of single stranded targets was equivalent for all monomers. Increasing cross-linker chain length improved hybridization kinetics and end-point signal intensities relative to N,N-methylenebisacrylamide (Bis). The new copolymer formulation was successfully applied to a model orthopox array. Because HEMAA greatly simplifies gel element array manufacture, we expect it (in combination with new cross-linkers described herein) to find widespread application in microarray science. PMID:22033291

  18. Conjugated and Entrapped HPMA-PLA Nano-Polymeric Micelles Based Dual Delivery of First Line Anti TB Drugs: Improved and Safe Drug Delivery against Sensitive and Resistant Mycobacterium Tuberculosis.

    PubMed

    Upadhyay, Seema; Khan, Iliyas; Gothwal, Avinash; Pachouri, Praveen K; Bhaskar, N; Gupta, Umesh D; Chauhan, Devendra S; Gupta, Umesh

    2017-09-01

    First line antiTB drugs have several physical and toxic manifestations which limit their applications. RIF is a hydrophobic drug and has low water solubility and INH is hepatotoxic. The main objective of the study was to synthesize, characterize HPMA-PLA co-polymeric micelles for the effective dual delivery of INH and RIF. HPMA-PLA co-polymer and HPMA-PLA-INH (HPI) conjugates were synthesized and characterized by FT-IR and 1 H-NMR spectroscopy. Later on RIF loaded HPMA-PLA-INH co-polymeric micelles (PMRI) were formulated and characterized for size, zeta potential and surface morphology (SEM, TEM) as well as critical micellar concentration. The safety was assessed through RBC's interaction study. The prepared PMRI were evaluated through MABA assay against sensitive and resistant strains of M. Tuberculosis. Size, zeta and entrapment efficiency for RIF loaded HPMA-PLA-INH polymeric micelles (PMRI) was 87.64 ± 1.98 nm, -19 ± 1.93 mV and 97.2 ± 1.56%, respectively. In vitro release followed controlled and sustained delivery pattern. Sustained release was also supported by release kinetics. Haemolytic toxicity of HPI and PMRI was 8.57 and 7.05% (p < 0.01, INH Vs PMRI; p < 0.0001, RIF Vs PMRI), respectively. MABA assay (cytotoxicity) based MIC values of PMRI formulation was observed as ≥0.0625 and ≥0.50 μg/mL (for sensitive and resistant strain). The microscopic analysis further confirmed that the delivery approach was effective than pure drugs. RIF loaded and INH conjugated HPMA-PLA polymeric micelles (PMRI) were more effective against sensitive and resistant M tuberculosis. The developed approach can lead to improved patient compliance and reduced dosing in future, offering improved treatment of tuberculosis.

  19. Raman and Infrared spectroscopies and X-ray diffraction data on bupivacaine and ropivacaine complexed with 2-hydroxypropyl-β-cyclodextrin.

    PubMed

    Martins, Murillo L; Eckert, Juergen; Jacobsen, Henrik; Dos Santos, Everton C; Ignazzi, Rosanna; de Araujo, Daniele Ribeiro; Bellissent-Funel, Marie-Claire; Natali, Francesca; Marek Koza, Michael; Matic, Aleksander; de Paula, Eneida; Bordallo, Heloisa N

    2017-12-01

    The data presented in this article are related to the research article entitled "Probing the dynamics of complexed local anesthetics via neutron scattering spectroscopy and DFT calculations (http://dx.doi.org/10.1016/j.ijpharm.2017.03.051)" (Martins et al., 2017) [1]. This work shows the molecular and structural behavior of the local anesthetics (LAs) bupivacaine (BVC, C 18 H 28 N 2 O) and ropivacaine (RVC, C 17 H 26 N 2 O) before and after complexation with the water-soluble oligosaccharide 2-hydroxypropyl-β-cyclodextrin (HP-β-CD).

  20. Probing the structural dependence of carbon space lengths of poly(N-hydroxyalkyl acrylamide)-based brushes on antifouling performance.

    PubMed

    Yang, Jintao; Zhang, Mingzhen; Chen, Hong; Chang, Yung; Chen, Zhan; Zheng, Jie

    2014-08-11

    Numerous biocompatible antifouling polymers have been developed for a wide variety of fundamental and practical applications in drug delivery, biosensors, marine coatings, and many other areas. Several antifouling mechanisms have been proposed, but the exact relationship among molecular structure, surface hydration property, and antifouling performance of antifouling polymers still remains elusive. Here this work strives to provide a better understanding of the structure-property relationship of poly(N-hydroxyalkyl acrylamide)-based materials. We have designed, synthesized, and characterized a series of polyHAAA brushes of various carbon spacer lengths (CSLs), that is, poly(N-hydroxymethyl acrylamide) (polyHMAA), poly(N-(2-hydroxyethyl)acrylamide) (polyHEAA), poly(N-(3-hydroxypropyl)acrylamide) (polyHPAA), and poly(N-(5-hydroxypentyl)acrylamide) (polyHPenAA), to study the structural dependence of CSLs on their antifouling performance. HMAA, HEAA, HPAA, and HPenAA monomers contained one, two, three, and five methylene groups between hydroxyl and amide groups, while the other groups in polymer backbones were the same as each other. The relation of such small structural differences of polymer brushes to their surface hydration and antifouling performance was studied by combined experimental and computational methods including surface plasmon resonance sensors, sum frequency generation (SFG) vibrational spectroscopy, cell adhesion assay, and molecular simulations. Antifouling results showed that all polyHAAA-based brushes were highly surface resistant to protein adsorption from single protein solutions, undiluted blood serum and plasma, as well as cell adhesion up to 7 days. In particular, polyHMAA and polyHEAA with the shorter CSLs exhibited higher surface hydration and better antifouling ability than polyHPMA and polyHPenAA. SFG and molecular simulations further revealed that the variation of CSLs changed the ratio of hydrophobicity/hydrophilicity of polymers, resulting in different hydration characteristics. Among them, polyHMAA and polyHEAA with the shorter CSLs showed the highest potency for surface hydration and antifouling abilities, while polyHPenAA showed the lowest potency. The combination of both hydroxyl and amide groups in the same polymer chain provides a promising structural motif for the design of new effective antifouling materials.

  1. Process for radiation grafting hydrogels onto organic polymeric substrates

    DOEpatents

    Ratner, Buddy D.; Hoffman, Allan S.

    1976-01-01

    An improved process for radiation grafting of hydrogels onto organic polymeric substrates is provided comprising the steps of incorporating an effective amount of cupric or ferric ions in an aqueous graft solution consisting of N-vinyl-2 - pyrrolidone or mixture of N-vinyl-2 - pyrrolidone and other monomers, e.g., 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, propylene glycol acrylate, acrylamide, methacrylic acid and methacrylamide, immersing an organic polymeric substrate in the aqueous graft solution and thereafter subjecting the contacted substrate with ionizing radiation.

  2. 40 CFR 721.9925 - Aminoethylethylene urea methacrylamide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aminoethylethylene urea methacrylamide... Substances § 721.9925 Aminoethylethylene urea methacrylamide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an aminoethylethylene urea...

  3. Synthesis and characterization of antibacterial dental monomers and composites

    PubMed Central

    Xu, Xiaoming; Wang, Yapin; Liao, Sumei; Wen, Zezhang T.; Fan, Yuwei

    2012-01-01

    The objective of this study is to synthesize antibacterial methacrylate and methacrylamide monomers and formulate antibacterial fluoride-releasing dental composites. Three antibacterial methacrylate or methacrylamide monomers containing long-chain quaternary ammonium fluoride, 1,2-methacrylamido-N,N,N-trimethyldodecan-1-aminium fluoride (monomer I), N-benzyl-11-(methacryloyloxy)-N,N-dimethylundecan-1-aminium fluoride (monomer II), and methacryloxyldecylpyridinium fluoride (monomer III) have been synthesized and analyzed by nuclear magnetic resonance (NMR) and mass spectrometry (MS). The cytotoxicity test and bactericidal test against Streptococcus mutans indicate that antibacterial monomer II is superior to monomers I and III. A series of dental composites containing 0–6% of antibacterial monomer II have been formulated and tested for degree of conversion (DC), flexure strength, water sorption, solubility, and inhibition of S. mutans biofilms. An antibacterial fluoride-releasing dental composite has also been formulated and tested for flexure strength and fluoride release. The dental composite containing 3% of monomer II has a significant effect against S. mutans biofilm formation without major adverse effects on its physical and mechanical properties. The new antibacterial monomers can be used together with the fluoride-releasing monomers containing a ternary zirconiun- fluoride chelate to formulate a new antibacterial fluoride- releasing dental composite. Such a new dental composite is expected to have higher anticaries efficacy and longer service life. PMID:22447582

  4. Methacrylamide grafted elastomer composites reinforced with biobased particles

    USDA-ARS?s Scientific Manuscript database

    Modulus of rubber can be improved with grafting of unsaturated monomers. To increase the modulus of bio-based rubber composites, methacrylamide was grafted onto natural rubber composites reinforced with bio-based hydrophilic particles. Rubber particles in water were modified with methacrylamide usin...

  5. The formation of 2-hydroxypropylmercapturic acid from 1-halogenopropanes in the rat.

    PubMed

    Barnsley, E A

    1966-08-01

    1. 2-Hydroxypropylmercapturic acid, i.e. N-acetyl-S-(2-hydroxypropyl)-l-cysteine, has been isolated, as the dicyclohexylammonium salt, from the urine of rats dosed with 1-bromopropane. 2. The formation of the same metabolite from 1-chloropropane, 1-iodopropane, 1,2-epoxypropane and 1-chloropropan-2-ol has been demonstrated by chromatographic examination of the urine excreted by rats after they had been dosed with these compounds. 3. (+)- and (-)-Dicyclohexylammonium 2-hydroxypropylmercapturate have been prepared by fractional crystallization of the mixture of isomers obtained by two methods: the reaction of 1,2-epoxypropane with l-cysteine followed by acetylation, and the reduction of 2-oxopropylmercapturic acid. 4. The following compounds have also been prepared: S-(3-hydroxypropyl)-l-cysteine, (+)- and (-)-S-(2-hydroxypropyl)-l-cysteine, dicyclohexylammonium 3-hydroxypropylmercapturate, (+)- and (-)-dicyclohexylammonium 2-hydroxy-1-methylethylmercapturate, and (+)- and (-)-dicyclohexylammonium 1-(ethoxycarbonyl)ethylmercapturate.

  6. The formation of 2-hydroxypropylmercapturic acid from 1-halogenopropanes in the rat

    PubMed Central

    Barnsley, E. A.

    1966-01-01

    1. 2-Hydroxypropylmercapturic acid, i.e. N-acetyl-S-(2-hydroxypropyl)-l-cysteine, has been isolated, as the dicyclohexylammonium salt, from the urine of rats dosed with 1-bromopropane. 2. The formation of the same metabolite from 1-chloropropane, 1-iodopropane, 1,2-epoxypropane and 1-chloropropan-2-ol has been demonstrated by chromatographic examination of the urine excreted by rats after they had been dosed with these compounds. 3. (+)- and (−)-Dicyclohexylammonium 2-hydroxypropylmercapturate have been prepared by fractional crystallization of the mixture of isomers obtained by two methods: the reaction of 1,2-epoxypropane with l-cysteine followed by acetylation, and the reduction of 2-oxopropylmercapturic acid. 4. The following compounds have also been prepared: S-(3-hydroxypropyl)-l-cysteine, (+)- and (−)-S-(2-hydroxypropyl)-l-cysteine, dicyclohexylammonium 3-hydroxypropylmercapturate, (+)- and (−)-dicyclohexylammonium 2-hydroxy-1-methylethylmercapturate, and (+)- and (−)-dicyclohexylammonium 1-(ethoxycarbonyl)ethylmercapturate. PMID:5968536

  7. Fluorinated methacrylamide chitosan sequesters reactive oxygen species to relieve oxidative stress while delivering oxygen.

    PubMed

    Patil, Pritam S; Leipzig, Nic D

    2017-08-01

    Antioxidants play an important role in regulating overabundant reactive oxygen species (ROS) in wound healing to reduce oxidative stress and inflammation. In this work, we demonstrate for the first time that functionalization of methacrylamide chitosan (MAC) with aliphatic pentadecafluoro chains, to synthesize pentadecafluoro-octanoyl methacrylamide chitosan (MACF), enhances the antioxidant capacity of the MAC base hydrogel material, while being able to deliver oxygen for future enhanced wound healing applications. As such, MACF was shown to sequester more nitric oxide (p < 0.01) and hydroxyl (p < 0.0001) radicals as compared to the negative control even when delivering additional oxygen. MACF's beneficial antioxidant capacity was further confirmed in in vitro cell culture experiments using human dermal fibroblasts stressed with 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH). © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2368-2374, 2017. © 2017 Wiley Periodicals, Inc.

  8. Biosynthesis of mercapturic acids from allyl alcohol, allyl esters and acrolein

    PubMed Central

    Kaye, Clive M.

    1973-01-01

    1. 3-Hydroxypropylmercapturic acid, i.e. N-acetyl-S-(3-hydroxypropyl)-l-cysteine, was isolated, as its dicyclohexylammonium salt, from the urine of rats after the subcutaneous injection of each of the following compounds: allyl alcohol, allyl formate, allyl propionate, allyl nitrate, acrolein and S-(3-hydroxypropyl)-l-cysteine. 2. Allylmercapturic acid, i.e. N-acetyl-S-allyl-l-cysteine, was isolated from the urine of rats after the subcutaneous injection of each of the following compounds: triallyl phosphate, sodium allyl sulphate and allyl nitrate. The sulphoxide of allylmercapturic acid was detected in the urine excreted by these rats. 3. 3-Hydroxypropylmercapturic acid was identified by g.l.c. as a metabolite of allyl acetate, allyl stearate, allyl benzoate, diallyl phthalate, allyl nitrite, triallyl phosphate and sodium allyl sulphate. 4. S-(3-Hydroxypropyl)-l-cysteine was detected in the bile of a rat dosed with allyl acetate. PMID:4762754

  9. Influence of dynamic flow conditions on adsorbed plasma protein corona and surface-induced thrombus generation on antifouling brushes.

    PubMed

    Yu, Kai; Andruschak, Paula; Yeh, Han Hung; Grecov, Dana; Kizhakkedathu, Jayachandran N

    2018-06-01

    The information regarding the nature of protein corona (and its changes) and cell binding on biomaterial surface under dynamic conditions is critical to dissect the mechanism of surface-induced thrombosis. In this manuscript, we investigated the nature of protein corona and blood cell binding in heparinized recalcified human plasma, platelet rich plasma and whole blood on three highly hydrophilic antifouling polymer brushes, (poly(N, N-dimethylacrylamide) (PDMA), poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and poly[N-(2-hydroxypropyl) methacrylamide] (PHPMA) using an in vitro blood loop model at comparable arterial and venous flow, and static conditions. A fluid dynamics model was used initially to better understand the resulting flow patterns in a vertical channel containing the substrates to arrive at the placement of the substrates within the blood loop. The protein binding on the brush modified substrates was determined using ellipsometry, fluorescence microscopy and the nature of the protein corona was investigated using mass spectrometry based proteomics. The flow elevated fouling on brush coated surface from blood. The extent of plasma protein adsorption and platelet adhesion onto PDMA brush was lower than other surfaces in both static and flow conditions. The profiles of adsorbed protein corona showed strong dependence on the test conditions (static vs. flow), and the chemistry of the polymer brushes. Specially, the PDMA brush under flow conditions was more enriched with coagulation proteins, complement proteins, vitronectin and fibronectin but was less enriched with serum albumin. Apolipoprotein B-100 and complement proteins were the most abundant proteins seen on PMPC and PHPMA surfaces under both flow and static conditions, respectively. Unlike PDMA brush, the flow conditions did not affect the composition of protein corona on PMPC and PHPMA brushes. The nature of the protein corona formed in flow conditions influenced the platelet and red blood cell binding. The dependence of shear stress on platelet adhesion from platelet rich plasma and whole blood highlights the contribution of red blood cells in enhancing platelet adhesion on the surface under high shear condition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Labeling of DOTA-conjugated HPMA-based polymers with trivalent metallic radionuclides for molecular imaging.

    PubMed

    Eppard, Elisabeth; de la Fuente, Ana; Mohr, Nicole; Allmeroth, Mareli; Zentel, Rudolf; Miederer, Matthias; Pektor, Stefanie; Rösch, Frank

    2018-02-27

    In this work, the in vitro and in vivo stabilities and the pharmacology of HPMA-made homopolymers were studied by means of radiometal-labeled derivatives. Aiming to identify the fewer amount and the optimal DOTA-linker structure that provides quantitative labeling yields, diverse DOTA-linker systems were conjugated in different amounts to HPMA homopolymers to coordinate trivalent radiometals Me(III)* = gallium-68, scandium-44, and lutetium-177. Short linkers and as low as 1.6% DOTA were enough to obtain labeling yields > 90%. Alkoxy linkers generally exhibited lower labeling yields than alkane analogues despite of similar chain length and DOTA incorporation rate. High stability of the radiolabel in all examined solutions was observed for all conjugates. Labeling with scandium-44 allowed for in vivo PET imaging and ex vivo measurements of organ distribution for up to 24 h. This study confirms the principle applicability of DOTA-HPMA conjugates for labeling with different trivalent metallic radionuclides allowing for diagnosis and therapy.

  11. 40 CFR 721.4040 - Glycols, polyethylene-, 3-sulfo-2-hydroxypropyl-p-(1,1,3,3-tetra-methylbutyl)phenyl ether, sodium...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxypropyl-p-(1,1,3,3-tetra-methylbutyl)phenyl ether, sodium salt. 721.4040 Section 721.4040 Protection of...-, 3-sulfo-2-hydroxypropyl-p-(1,1,3,3-tetra-methylbutyl)phenyl ether, sodium salt. (a) Chemical..., polyethylene-, 3-sulfo-2-hydroxypropyl-p-(1,1,3,3-tetramethyl butyl)phenyl ether, sodium salt (P-90-1565) is...

  12. In-vitro investigations of a pH- and ionic-strength-responsive polyelectrolytic hydrogel using a piezoresistive microsensor

    PubMed Central

    Schulz, Volker; Guenther, Margarita; Gerlach, Gerald; Magda, Jules J.; Tathireddy, Prashant; Rieth, Loren; Solzbacher, Florian

    2010-01-01

    Environmental responsive or smart hydrogels show a volume phase transition due to changes of external stimuli such as pH or ionic strength of an ambient solution. Thus, they are able to convert reversibly chemical energy into mechanical energy and therefore they are suitable as sensitive material for integration in biochemical microsensors and MEMS devices. In this work, micro-fabricated silicon pressure sensor chips with integrated piezoresistors were used as transducers for the conversion of mechanical work into an appropriate electrical output signal due to the deflection of a thin silicon bending plate. Within this work two different sensor designs have been studied. The biocompatible poly(hydroxypropyl methacrylate-N,N-dimethylaminoethyl methacrylate-tetra-ethyleneglycol dimethacrylate) (HPMA-DMA-TEGDMA) was used as an environmental sensitive element in piezoresistive biochemical sensors. This polyelectrolytic hydrogel shows a very sharp volume phase transition at pH values below about 7.4 which is in the range of the physiological pH. The sensor's characteristic response was measured in-vitro for changes in pH of PBS buffer solution at fixed ionic strength. The experimental data was applied to the Hill equation and the sensor sensitivity as a function of pH was calculated out of it. The time-dependent sensor response was measured for small changes in pH, whereas different time constants have been observed. The same sensor principal was used for sensing of ionic strength. The time-dependent electrical sensor signal of both sensors was measured for variations in ionic strength at fixed pH value using PBS buffer solution. Both sensor types showed an asymmetric swelling behavior between the swelling and the deswelling cycle as well as different time constants, which was attributed to the different nature of mechanical hydrogel-confinement inside the sensor. PMID:21152365

  13. Light-switchable polymer from cationic to zwitterionic form: synthesis, characterization, and interactions with DNA and bacterial cells.

    PubMed

    Sobolčiak, Patrik; Spírek, Mário; Katrlík, Jaroslav; Gemeiner, Peter; Lacík, Igor; Kasák, Peter

    2013-04-25

    A novel cationic polymer poly(N,N-dimethyl-N-[3-(methacroylamino) propyl]-N-[2-[(2-nitrophenyl)methoxy]-2-oxo-ethyl]ammonium chloride) is synthesized by free-radical polymerization of N-[3-(dimethylamino)propyl] methacrylamide and subsequent quaternization with o-nitrobenzyl 2-chloroacetate. The photolabile o-nitrobenzyl carboxymethyl pendant moiety is transformed to the zwitterionic carboxybetaine form upon the irradiation at 365 nm. This feature is used to condense and, upon the light irradiation, to release double-strand DNA tested by gel electrophoresis and surface plasmon resonance experiments as well as to switch the antibacterial activity to non-toxic character demonstrated for Escherichia coli bacterial cells in solution and at the surface using the self-assembled monolayers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The interaction of radiation-generated radicals with myoglobin in aqueous solution—V. The indirect action of 2-methyl-2-hydroxypropyl radicals on oxymyoglobin

    NASA Astrophysics Data System (ADS)

    Whitburn, Kevin D.; Hoffman, Morton Z.

    The interaction of radiation-generated 2-methyl-2-hydroxypropyl radicals (derived from t-butyl alcohol) with oxymyoglobin has been examined at pH 7.3. In N 2O-saturated solutions, oxymyoglobin is converted to the ferri and ferryl derivatives of myoglobin; the production of ferrylmyoglobin is essentially eliminated when catalase is present in solution during irradiation. In deaerated solutions containing catalase, oxymyoglobin is converted to both ferro- and ferrimyoglobin during irradiation. When added O 2 is initially present, all compositional changes occur after irradiation; the presence of catalase diminishes, but does not eliminate, the extent of these postirradiation conversions of oxymyoglobin to the ferri and ferryl derivatives. These observations are interpreted in terms of the scavenging of the 2-methyl-2-hydroxypropyl radicals by O 2 to generate their peroxy analogs, which causes a displacement of the equilibrium between oxy- and ferromyoglobin. The peroxy radicals decay to produce H 2O 2, an organic peroxide, and other products. These peroxides subsequently react with ferromyoglobin to produce the ferryl form; the rate of the reaction increases with decreasing [O 2] as [ferromyoglobin] increases. This reaction is sufficiently fast in deaerated solution that substantial conversion of ferromyoglobin to ferrylmyoglobin occurs during the time of irradiation. The formation of the ferryl derivative in the presence of unconverted ferromyoglobin drives a concurrent synproportion reaction which produces ferrimyoglobin. Overall, no direct interaction of 2-methyl-2-hydroxypropyl radicals, nor their peroxy analogs, with myoglobin is indicated; all reactivity is accountable by the peroxide products of these radicals.

  15. A novel hydrogel based piezoresistive pressure sensor platform for chemical sensing

    NASA Astrophysics Data System (ADS)

    Orthner, Michael P.

    New hydrogel-based micropressure sensor arrays for use in the fields of chemical sensing, physiological monitoring, and medical diagnostics are developed and demonstrated. This sensor technology provides reliable, linear, and accurate measurements of hydrogel swelling pressures, a function of ambient chemical concentrations. For the first time, perforations were implemented into the pressure sensors piezoresistive diaphragms, used to simultaneously increase sensor sensitivity and permit diffusion of analytes into the hydrogel cavity. It was shown through analytical and numerical (finite element) methods that pore shape, location, and size can be used to modify the diaphragm mechanics and concentrate stress within the piezoresistors, thus improving electrical output (sensitivity). An optimized pore pattern was chosen based on these numerical calculations. Fabrication was performed using a 14-step semiconductor fabrication process implementing a combination of potassium hydroxide (KOH) and deep reactive ion etching (DRIE) to create perforations. The sensor arrays (2x2) measure approximately 3 x 5 mm2 and used to measure full scale pressures of 50, 25, and 5 kPa, respectively. These specifications were defined by the various swelling pressures of ionic strength, pH and glucose specific hydrogels that were targeted in this work. Initial characterization of the sensor arrays was performed using a custom built bulge testing apparatus that simultaneously measured deflection (optical profilometry), pressure, and electrical output. The new perforated diaphragm sensors were found to be fully functional with sensitivities ranging from 23 to 252 muV/V-kPa with full scale output (FSO) ranging from 5 to 80 mV. To demonstrate proof of concept, hydrogels sensitive to changes in ionic strength were synthesized using hydroxypropyl-methacrylate (HPMA), N,N-dimethylaminoethyl-methacrylate (DMA) and a tetra-ethyleneglycol-dimethacrylate (TEGDMA) crosslinker. This hydrogel quickly and reversibly swells when placed environments of physiological buffer solutions (PBS) with ionic strengths ranging from 0.025 to 0.15 M. Chemical testing showed sensors with perforated diaphragms have higher sensitivity than those with solid diaphragms, and sensitivities ranging from 53.3+/-6.5 to 271.47+/-27.53 mV/V-M, depending on diaphragm size. Additionally, recent experiments show sensors utilizing Ultra Violet (UV) polymerized glucose sensitive hydrogels respond reversibly to physiologically relevant glucose concentrations from 0 to 20 mM.

  16. Preparative enantioseparation of loxoprofen precursor by recycling countercurrent chromatography with hydroxypropyl-β-cyclodextrin as a chiral selector.

    PubMed

    Zhang, Hui; Qiu, Xujun; Lv, Liqiong; Sun, Wenyu; Wang, Chaoyue; Yan, Jizhong; Tong, Shengqiang

    2018-04-17

    Recycling countercurrent chromatography was successfully applied to the resolution of 2-(4-bromomethylphenyl)propionic acid, a key synthetic intermediate for synthesis of nonsteroidal anti-inflammatory drug loxoprofen, using hydroxypropyl-β-cyclodextrin as chiral selector. The two-phase solvent system composed of n-hexane/n-butyl acetate/0.1 mol/L citrate buffer solution with pH 2.4 (8:2:10, v/v/v) was selected. Influence factors for the enantioseparation were optimized, including type of substituted β-cyclodextrin, concentration of hydroxypropyl-β-cyclodextrin, separation temperature, and pH of aqueous phase. Under optimized separation conditions, 50 mg of 2-(4-bromomethylphenyl)propionic acid was enantioseparated using preparative recycling countercurrent chromatography. Technical details for recycling elution mode were discussed. The purities of both the S and R enantiomers were over 99.0% as determined by high-performance liquid chromatography. The enantiomeric excess of the S and R enantiomers reached 98.0%. The recovery of the enantiomers from eluted fractions was 40.8-65.6%, yielding 16.4 mg of the S enantiomer and 10.2 mg of the R enantiomer. At the same time, we attempted to enantioseparate the anti-inflammatory drug loxoprofen by countercurrent chromatography and high-performance liquid chromatography using a chiral mobile phase additive. However, no successful enantioseparation was achieved so far. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesize and Characterization of Hydroxypropyl-N-octanealkyl Chitosan Ramification

    NASA Astrophysics Data System (ADS)

    Tan, Fu-neng

    2018-03-01

    A new type of amphiphilic ramification, hydroxypropyl-N-octanealkyl chitosan was prepared from chitosan via hydrophilic group and hydrophobic group were introduced. We could protect the amino group of chitosan via the reaction of chitosan and benzaldehyde could get Schiff base structure. Structures of the products were characterized with FT-IR, elemental analysis, themogrammetry (TG) analysis and X-ray diffraction. The degree of substitution of hydrophobic group was studied by elemental analysis. The result showed this chitosan ramification was soluble, biocompatible, biodegradable and nontoxic.

  18. Development of a Plastic Embedding Method for Large-Volume and Fluorescent-Protein-Expressing Tissues

    PubMed Central

    Yang, Zhongqin; Hu, Bihe; Zhang, Yuhui; Luo, Qingming; Gong, Hui

    2013-01-01

    Fluorescent proteins serve as important biomarkers for visualizing both subcellular organelles in living cells and structural and functional details in large-volume tissues or organs. However, current techniques for plastic embedding are limited in their ability to preserve fluorescence while remaining suitable for micro-optical sectioning tomography of large-volume samples. In this study, we quantitatively evaluated the fluorescence preservation and penetration time of several commonly used resins in a Thy1-eYFP-H transgenic whole mouse brain, including glycol methacrylate (GMA), LR White, hydroxypropyl methacrylate (HPMA) and Unicryl. We found that HMPA embedding doubled the eYFP fluorescence intensity but required long durations of incubation for whole brain penetration. GMA, Unicryl and LR White each penetrated the brain rapidly but also led to variable quenching of eYFP fluorescence. Among the fast-penetrating resins, GMA preserved fluorescence better than LR White and Unicryl. We found that we could optimize the GMA formulation by reducing the polymerization temperature, removing 4-methoxyphenol and adjusting the pH of the resin solution to be alkaline. By optimizing the GMA formulation, we increased percentage of eYFP fluorescence preservation in GMA-embedded brains nearly two-fold. These results suggest that modified GMA is suitable for embedding large-volume tissues such as whole mouse brain and provide a novel approach for visualizing brain-wide networks. PMID:23577174

  19. Biological evaluation of N-2-hydroxypropyl trimethyl ammonium chloride chitosan as a carrier for the delivery of live Newcastle disease vaccine.

    PubMed

    Zhao, Kai; Sun, Yanwei; Chen, Gang; Rong, Guangyu; Kang, Hong; Jin, Zheng; Wang, Xiaohua

    2016-09-20

    Mucosal immune system plays a very important role in antiviral immune response. We prepared Newcastle disease viruses (NDV) encapsulated in N-2-hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC) nanoparticles (NDV/La Sota-N-2-HACC-NPs) by an ionic cross linking method, and assessed the potential of N-2-HACC-NPs as a mucosal immune delivery carrier. The properties of the nanoparticles were determined by transmission electron microscopy, Zeta potential and particle size analysis, encapsulation efficiency and loading capacity. NDV/La Sota-N-2-HACC-NPs have regular spherical morphologies and high stability; with 303.88±49.8nm mean diameter, 45.77±0.75mV Zeta potential, 94.26±0.42% encapsulation efficiency and 54.06±0.21% loading capacity. In vitro release assay indicated that the release of NDV from NDV/La Sota-N-2-HACC-NPs is slow. The NDV/La Sota-N-2-HACC-NPs have good biological characteristics, very low toxicity and high level of safety. Additionally, specific pathogen-free chickens immunized with NDV/La Sota-N-2-HACC-NPs showed much stronger cellular, humoral and mucosal immune responses than commercial attenuated live Newcastle disease vaccine, and NDV/La Sota-N-2-HACC-NPs reached the sustainable release effect. Our study here provides a foundation for the further development of mucosal vaccines and drugs, and the N-2-HACC-NPs should be a potential drug delivery carrier with immense potential in medical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Hydroxyalkylation with cyclic sulfates: synthesis of carbazole derived CB(2) ligands with increased polarity.

    PubMed

    Lueg, Corinna; Galla, Fabian; Frehland, Bastian; Schepmann, Dirk; Daniliuc, Constantin G; Deuther-Conrad, Winnie; Brust, Peter; Wünsch, Bernhard

    2014-01-01

    In order to increase the polarity of the potent CB2 ligand 1a, the homologous hydroxyalkyl carbazoles 2a-c were prepared and pharmacologically evaluated. An important step in the synthesis is the hydroxyalkylation of carbazole with cyclic sulfates providing the 2-hydroxyethyl and 3-hydroxypropyl derivatives 5a and 5b in a one-step reaction. The final propionamides 2a-c were prepared using the recently reported coupling reagent COMU®. The X-ray crystal structure of 2c displays an almost coplanar arrangement of the 3-phenyl-1,2,4-oxadiazole biaryl system. The increased polarity of 2a is associated with an almost 100-fold reduced CB2 affinity. The 3-hydroxypropyl derivative 2b represents the best compromise between lipophilicity and CB2 affinity (Ki  = 33 nM). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Preparation of hydroxypropyl corn and amaranth starch hydrolyzate and its evaluation as wall material in microencapsulation.

    PubMed

    Kshirsagar, Amol C; Singhal, Rekha S

    2008-06-01

    Hydroxypropylation of starches lends it useful physicochemical and functional properties that are industrially important. The literature on hydroxypropylation using organic solvents for obtaining higher molar substitution (MS) is scantily available. The present work reports on hydroxypropylation of corn and a waxy amaranth starch to different MS with propylene oxide in an alkaline-organic medium (isopropanol). The synthesis was followed in terms of MS. The parameters optimized were starch:isopropanol ratio (w/w), reaction temperature, reaction time and the quantity of alkali required in the process. A maximal MS of 0.180 and 0.162 were obtained for hydroxypropyl corn starch (HPSC) and hydroxypropyl amaranth starch (HPSA), respectively. Enzymatic hydrolysis of the HPSC and HPSA of the above MS was carried out on a 30% (w/v) solution at a pH of 6.5 and 95°C for varying time periods using 0.1% (w/w based on starch) bacterial α-amylase, termamyl. The hydrolysis was terminated by adjusting the pH to 3.5 using 0.1N HCl. The hydrolyzates were characterized in terms of dextrose equivalent and viscosity. The hydrolyzate obtained after 3h of hydrolysis was spray dried and compared to gum arabic with respect to encapsulation of model flavourings, orange oil and lemon oil. Copyright © 2007 Elsevier Ltd. All rights reserved.

  2. 40 CFR 721.6540 - Acrylamide, polymers with tetraalkyl ammonium salt and polyalkyl, aminoalkyl meth-a-cryl-a-mide...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylamide, polymers with tetraalkyl... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6540 Acrylamide, polymers... as acrylamide, polymers with tetraalkyl ammonium salt and poly-al-kyl, amino alkyl meth-a-cryl-a-mide...

  3. 40 CFR 721.6540 - Acrylamide, polymers with tetraalkyl ammonium salt and polyalkyl, aminoalkyl meth-a-cryl-a-mide...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylamide, polymers with tetraalkyl... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6540 Acrylamide, polymers... as acrylamide, polymers with tetraalkyl ammonium salt and poly-al-kyl, amino alkyl meth-a-cryl-a-mide...

  4. 40 CFR 721.6540 - Acrylamide, polymers with tetraalkyl ammonium salt and polyalkyl, aminoalkyl meth-a-cryl-a-mide...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylamide, polymers with tetraalkyl... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6540 Acrylamide, polymers... as acrylamide, polymers with tetraalkyl ammonium salt and poly-al-kyl, amino alkyl meth-a-cryl-a-mide...

  5. 40 CFR 721.6540 - Acrylamide, polymers with tetraalkyl ammonium salt and polyalkyl, aminoalkyl meth-a-cryl-a-mide...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylamide, polymers with tetraalkyl... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6540 Acrylamide, polymers... as acrylamide, polymers with tetraalkyl ammonium salt and poly-al-kyl, amino alkyl meth-a-cryl-a-mide...

  6. 40 CFR 721.6540 - Acrylamide, polymers with tetraalkyl ammonium salt and polyalkyl, aminoalkyl meth-a-cryl-a-mide...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylamide, polymers with tetraalkyl... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6540 Acrylamide, polymers... as acrylamide, polymers with tetraalkyl ammonium salt and poly-al-kyl, amino alkyl meth-a-cryl-a-mide...

  7. Synthesis and Utilization of Trialkylammonium-Substituted Cyclodextrins as Water-Soluble Chiral NMR Solvating Agents for Anionic Compounds.

    PubMed

    Dowey, Alison E; Puentes, Cira Mollings; Carey-Hatch, Mira; Sandridge, Keyana L; Krishna, Nikhil B; Wenzel, Thomas J

    2016-04-01

    Cationic trialkylammonium-substituted α-, β-, and γ-cyclodextrins containing trimethyl-, triethyl-, and tri-n-propylammonium substituent groups were synthesized and analyzed for utility as water-soluble chiral nuclear magnetic resonance (NMR) solvating agents. Racemic and enantiomerically pure (3-chloro-2-hydroxypropyl)trimethyl-, triethyl-, and tri-n-propyl ammonium chloride were synthesized from the corresponding trialkyl amine hydrochloride and either racemic or enantiomerically pure epichlorohydrin. The ammonium salts were then reacted with α-, β-, and γ-cyclodextrins at basic pH to provide the corresponding randomly substituted cationic cyclodextrins. The (1) H NMR spectra of a range of anionic, aromatic compounds was recorded with the cationic cyclodextrins. Cyclodextrins with a single stereochemistry at the hydroxy group on the (2-hydroxypropyl)trialkylammonium chloride substituent were often but not always more effective than the corresponding cyclodextrin in which the C-2 position was racemic. In several cases, the larger triethyl or tri-n-propyl derivatives were more effective than the corresponding trimethyl derivative at causing enantiomeric differentiation. None of the cyclodextrin derivatives were consistently the most effective for all of the anionic compounds studied. © 2016 Wiley Periodicals, Inc.

  8. Determination of acrylamide and methacrylamide by normal phase high performance liquid chromatography and UV detection.

    PubMed

    Paleologos, E K; Kontominas, M G

    2005-06-10

    A method using normal phase high performance liquid chromatography (NP-HPLC) with UV detection was developed for the analysis of acrylamide and methacrylamide. The method relies on the chromatographic separation of these analytes on a polar HPLC column designed for the separation of organic acids. Identification of acrylamide and methacrylamide is approached dually, that is directly in their protonated forms and as their hydrolysis products acrylic and methacrylic acid respectively, for confirmation. Detection and quantification is performed at 200 nm. The method is simple allowing for clear resolution of the target peaks from any interfering substances. Detection limits of 10 microg L(-1) were obtained for both analytes with the inter- and intra-day RSD for standard analysis lying below 1.0%. Use of acetonitrile in the elution solvent lowers detection limits and retention times, without impairing resolution of peaks. The method was applied for the determination of acrylamide and methacrylamide in spiked food samples without native acrylamide yielding recoveries between 95 and 103%. Finally, commercial samples of french and roasted fries, cookies, cocoa and coffee were analyzed to assess applicability of the method towards acrylamide, giving results similar with those reported in the literature.

  9. Comparison of photo- and thermally initiated polymerization-induced self-assembly: a lack of end group fidelity drives the formation of higher order morphologies† †Electronic supplementary information (ESI) available: Additional NMR spectra, SEC, TEM and DLS data as well as histograms for the PEG113–PHPMA400 formulations and MALDI-ToF data for the oligomer study. See DOI: 10.1039/c7py00407a

    PubMed Central

    Blackman, Lewis D.; Doncom, Kay E. B.

    2017-01-01

    Polymerization-induced self-assembly (PISA) is an emerging industrially relevant technology, which allows the preparation of defined and predictable polymer self-assemblies with a wide range of morphologies. In recent years, interest has turned to photoinitiated PISA processes, which show markedly accelerated reaction kinetics and milder conditions, thereby making it an attractive alternative to thermally initiated PISA. Herein, we attempt to elucidate the differences between these two initiation methods using isothermally derived phase diagrams of a well-documented poly(ethylene glycol)-b-(2-hydroxypropyl methacrylate) (PEG-b-HPMA) PISA system. By studying the influence of the intensity of the light source used, as well as an investigation into the thermodynamically favorable morphologies, the factors dictating differences in the obtained morphologies when comparing photo- and thermally initiated PISA were explored. Our findings indicate that differences in a combination of both reaction kinetics and end group fidelity led to the observed discrepencies between the two techniques. We find that the loss of the end group in photoinitiated PISA drives the formation of higher order structures and that a morphological transition from worms to unilamellar vesicles could be induced by extended periods of light and heat irradiation. Our findings demonstrate that PISA of identical block copolymers by the two different initiation methods can lead to structures that are both chemically and morphologically distinct. PMID:29225706

  10. RAFT Aqueous Dispersion Polymerization Yields Poly(ethylene glycol)-Based Diblock Copolymer Nano-Objects with Predictable Single Phase Morphologies

    PubMed Central

    2013-01-01

    A poly(ethylene glycol) (PEG) macromolecular chain transfer agent (macro-CTA) is prepared in high yield (>95%) with 97% dithiobenzoate chain-end functionality in a three-step synthesis starting from a monohydroxy PEG113 precursor. This PEG113-dithiobenzoate is then used for the reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA). Polymerizations conducted under optimized conditions at 50 °C led to high conversions as judged by 1H NMR spectroscopy and relatively low diblock copolymer polydispersities (Mw/Mn < 1.25) as judged by GPC. The latter technique also indicated good blocking efficiencies, since there was minimal PEG113 macro-CTA contamination. Systematic variation of the mean degree of polymerization of the core-forming PHPMA block allowed PEG113-PHPMAx diblock copolymer spheres, worms, or vesicles to be prepared at up to 17.5% w/w solids, as judged by dynamic light scattering and transmission electron microscopy studies. Small-angle X-ray scattering (SAXS) analysis revealed that more exotic oligolamellar vesicles were observed at 20% w/w solids when targeting highly asymmetric diblock compositions. Detailed analysis of SAXS curves indicated that the mean number of membranes per oligolamellar vesicle is approximately three. A PEG113-PHPMAx phase diagram was constructed to enable the reproducible targeting of pure phases, as opposed to mixed morphologies (e.g., spheres plus worms or worms plus vesicles). This new RAFT PISA formulation is expected to be important for the rational and efficient synthesis of a wide range of biocompatible, thermo-responsive PEGylated diblock copolymer nano-objects for various biomedical applications. PMID:24400622

  11. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability.

    PubMed

    Billiet, Thomas; Gevaert, Elien; De Schryver, Thomas; Cornelissen, Maria; Dubruel, Peter

    2014-01-01

    In the present study, we report on the combined efforts of material chemistry, engineering and biology as a systemic approach for the fabrication of high viability 3D printed macroporous gelatin methacrylamide constructs. First, we propose the use and optimization of VA-086 as a photo-initiator with enhanced biocompatibility compared to the conventional Irgacure 2959. Second, a parametric study on the printing of gelatins was performed in order to characterize and compare construct architectures. Hereby, the influence of the hydrogel building block concentration, the printing temperature, the printing pressure, the printing speed, and the cell density were analyzed in depth. As a result, scaffolds could be designed having a 100% interconnected pore network in the gelatin concentration range of 10-20 w/v%. In the last part, the fabrication of cell-laden scaffolds was studied, whereby the application for tissue engineering was tested by encapsulation of the hepatocarcinoma cell line (HepG2). Printing pressure and needle shape was revealed to impact the overall cell viability. Mechanically stable cell-laden gelatin methacrylamide scaffolds with high cell viability (>97%) could be printed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Synthesis and characterization of N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan chloride for potential application in gene delivery.

    PubMed

    Xiao, Bo; Wan, Ying; Wang, Xiaoyu; Zha, Qichen; Liu, Haoming; Qiu, Zhiye; Zhang, Shengmin

    2012-03-01

    A series of N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan chloride (HTCC) samples with various degrees of quaternization ranging from 12.4 to 43.7% was synthesized. The structures and properties of HTCC were investigated by FT-IR, (1)H NMR, conductometric titration and XRD analysis. It was found that HTCC had a more amorphous structure than chitosan. HTCC samples showed significantly lower cytotoxicity than polyethyleneimine in HepG2 and HeLa cell lines. The samples spontaneously formed complexes with pGL3 luciferase plasmid. These complexes had desirable particle sizes (160-300 nm) and zeta potentials (10.8-18.7 mV) when the weight ratios of HTCC to plasmid altered in the range of 3:1-20:1. In vitro gene transfection results indicated that HTCC had significantly high transfection efficiency compared with chitosan for delivering pGL3 luciferase plasmid to HeLa cells. The results suggest that HTCC could be a promising non-viral vector for safe and efficient DNA delivery. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. 75 FR 71550 - N,N,N′,N″,-Tetrakis-(2-Hydroxypropyl) Ethylenediamine (NTHE); Exemption From the Requirement of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... study in rats (1956), where the NOAEL was set at 600-900 mg/kg/day (1% in diet), based on body-weight gain effects at 3% and 5% in the diet and a slightly greater incidence of borderline abnormalities of... applied to growing crops and raw agricultural commodities. That limitation will be enforced through the...

  14. Anti-aggregatory effect of cyclodextrins in the refolding process of recombinant growth hormones from Escherichia coli inclusion bodies.

    PubMed

    Bajorunaite, Egle; Cirkovas, Andrejus; Radzevicius, Kostas; Larsen, Kim Lambertsen; Sereikaite, Jolanta; Bumelis, Vladas-Algirdas

    2009-06-01

    Cyclodextrins with different ring size and ring substituents were tested for recombinant mink and porcine growth hormones aggregation suppression in the refolding process from Escherichia coli inclusion bodies. Methyl-beta-cyclodextrin and 2-hydroxypropyl-beta-cyclodextrin show a positive effect on the aggregation suppression of both proteins. The influence of different methyl-beta-cyclodextrin and 2-hydroxypropyl-beta-cyclodextrin concentrations on the renaturation yield of both growth hormones was investigated. Moreover, methyl-beta-cyclodextrin and 2-hydroxypropyl-beta-cyclodextrin suppress not only folding-related, but also temperature-related aggregates formation of both proteins. Circular dichroism experiments (monitoring of protein solution turbidity by registering high tension voltage) showed that the onset temperature of aggregation of both growth hormones increased with increasing 2-hydroxypropyl-beta-cyclodextrin concentration. In conclusion, cyclodextrins have perspectives in biotechnology of veterinary growth hormones not only for protein production, but also for its storage.

  15. Solution blow spun Poly(lactic acid)/Hydroxypropyl methylcellulose nanofibers with antimicrobial properties

    USDA-ARS?s Scientific Manuscript database

    Poly(lactic acid) (PLA) nanofibers containing hydroxypropyl methylcellulose (HPMC) and tetracycline hydrochloride (THC) were solution blow spun from two different solvents, chloroform/acetone (CA, 80:20 v/v) and 2,2,2-triflouroethanol (TFE). The diameter distribution, chemical, thermal, thermal stab...

  16. Identification of a new tadalafil analogue, N-3-hydroxypropylnortadalafil, in a supplement product.

    PubMed

    Lee, Hui-Chun; Lin, Yun-Lian; Huang, Yen-Chun; Tsai, Chia-Fen; Wang, Der-Yuan

    2018-06-01

    A novel tadalafil analogue, which exhibits similarity to 2-hydroxypropylnortadalafil, was found in dietary supplements using adulterants screening and isolated using column chromatography. By using extensive 1D- and 2D-NMR and MS spectral analyses, the structure was determined as 6-(1,3-Benzodioxol-5-yl)-2,3,6,7,12,12a-hexahydro-2-(3-hydroxypropyl)pyrazino(1',2':1,6)pyrido(3,4-b)indole-1,4-dione, and the analogue was named N-3-hydroxypropylnortadalafil. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Acrolein Exposure in Hookah Smokers and Non-Smokers Exposed to Hookah Tobacco Secondhand Smoke: Implications for Regulating Hookah Tobacco Products.

    PubMed

    Kassem, Nada O F; Kassem, Noura O; Liles, Sandy; Zarth, Adam T; Jackson, Sheila R; Daffa, Reem M; Chatfield, Dale A; Carmella, Steven G; Hecht, Stephen S; Hovell, Melbourne F

    2018-03-06

    Acrolein is a highly ciliatoxic agent, a toxic respiratory irritant, a cardiotoxicant, and a possible carcinogen present in tobacco smoke including hookah tobacco. 105 hookah smokers and 103 non-smokers attended exclusively hookah smoking social events at either a hookah lounge or private home, and provided urine samples the morning of and the morning after the event. Samples were analyzed for 3-hydroxypropylmercapturic acid (3-HPMA), a metabolite of acrolein. Geometric mean (GM) urinary 3-HPMA levels in hookah smokers and non-smokers exposed to secondhand smoke (SHS) increased significantly, 1.41 times, 95% CI = 1.15 to 1.74 and 1.39 times, 95% CI = 1.16 to 1.67, respectively, following a hookah social event. The highest increase (1.68 times, 95% CI = 1.15 to 2.45; p = 0.007) in 3-HPMA post a hookah social event was among daily hookah smokers (GM, from 1991 pmol/mg to 3348 pmol/mg). Pre-to-post event change in urinary 3-HPMA was significantly positively correlated with pre-to-post event change in urinary cotinine among hookah smokers at either location of hookah event, (ρ = 0.359, p = 0.001), and among non-smokers in hookah lounges (ρ = 0.369, p = 0.012). Hookah tobacco smoke is a source of acrolein exposure. Findings support regulating hookah tobacco products including reducing humectants and sugar additives, which are precursors of acrolein under certain pyrolysis conditions. We suggest posting health warning signs for indoor smoking in hookah lounges, and encouraging voluntary bans of smoking hookah tobacco in private homes. Our study is the first to quantify the increase in acrolein exposure in hookah smokers and non-smokers exposed to exclusively hookah tobacco SHS at hookah social events in homes or hookah lounges. Our findings provide additional support for regulating hookah tobacco product content, protecting non-smokers' health by posting health warning signs for indoor smoking in hookah lounges, and encouraging home bans on hookah tobacco smoking to safeguard vulnerable residents.

  18. Empirical, thermodynamic and quantum-chemical investigations of inclusion complexation between flavanones and (2-hydroxypropyl)-cyclodextrins.

    PubMed

    Liu, Benguo; Li, Wei; Nguyen, Tien An; Zhao, Jian

    2012-09-15

    The inclusion complexation of (2-hydroxypropyl)-cyclodextrins with flavanones was investigated by phase solubility measurements, as well as thermodynamic and quantum chemical methods. Inclusion complexes were formed between (2-hydroxypropyl)-α-cyclodextrin (HP-α-CD), (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD), (2-hydroxypropyl)-γ-cyclodextrin (HP-γ-CD) and β-cyclodextrin (β-CD) and four flavanones (naringenin, naringin, hesperetin and dihydromyricetin) in aqueous solutions and their phase solubility was determined. For all the flavanones, the stability constants of their complexes formed with different CDs followed the rank order: HP-β-CD (MW 1540)>HP-β-CD (MW 1460)>HP-β-CD (MW 1380)>β-CD>HP-γ-CD>HP-α-CD. Experimental results and quantum chemical calculations showed that the ability of flavanones to form inclusion complex with (2-hydroxypropyl)-cyclodextrins was determined by both the steric effect and hydrophobicity of the flavanones. For flavanones that have similar molecular volumes, the hydrophobicity of the molecule was the main determining factor of its ability to form inclusion complexes with HP-β-CD, and the hydrophobicity parameter Log P is highly correlated with the stability constant of the complexes. Results of thermodynamic study demonstrated that hydrophobic interaction is the main driving force for the formation process of the flavanone-CD inclusion complexes. Quantum chemical analysis of the most active hydroxyl groups and HOMO (the highest occupied molecular orbital) showed that the B ring of the flavanones was most likely involved in hydrogen bonding with the side groups in the cavity of the CDs, through which the inclusion complex was stabilised. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Synthesis and characterization of novel polyacid-stabilized latexes.

    PubMed

    Yang, Pengcheng; Armes, S P

    2012-09-18

    A series of novel polyacid macromonomers based on 2-hydroxypropyl methacrylate (HPMA) were prepared by atom transfer radical polymerization (ATRP) via a two-step route. First, a range of well-defined PHPMA homopolymer precursors were synthesized by ATRP using a tertiary amine-functionalized initiator, 2-(dimethylamino)ethyl-2-bromoisobutyrylamide, and a CuCl/2, 2'-bipyridine (bpy) catalyst in alcoholic media at 50 °C. ATRP polymerizations were relatively slow and poorly controlled in pure isopropanol (IPA), especially when targeting higher degrees of polymerization (DP > 30). Improved control was achieved by addition of water: low polydispersity (M(w)/M(n) < 1.25) PHPMA homopolymers of DP = 30, 40, 50, 60, or 70 were successfully prepared using a 9:1 w/w % IPA/water mixture at 50 °C. These PHPMA homopolymer precursors were then derivatized to produce the corresponding poly(2-(succinyloxy)propyl methacrylate) (PSPMA) macromonomers by quaternizing the tertiary amine end-group with excess 4-vinylbenzyl chloride, followed by esterification of the pendent hydroxyl groups using excess succinic anhydride at 20 °C. These polyacid macromonomers were evaluated as reactive steric stabilizers for polystyrene latex synthesis under either aqueous emulsion polymerization or alcoholic dispersion polymerization conditions. Near-monodisperse polystyrene latexes were obtained via aqueous emulsion polymerization using 10 wt % PSPMA macromonomer (with respect to styrene monomer) with various initiators as evidenced by scanning electron microscopy, disk centrifuge photosedimentometry and light scattering studies. PSPMA macromomer concentrations as low as 1.0 wt % also produced near-monodisperse latexes, suggesting that these PSPMA macromonomers are highly effective stabilizers. Alcoholic dispersion polymerization of styrene conducted in various ethanol/water mixtures with 10 wt % PSPMA(50) macromonomer produced relatively large near-monodisperse latexes. Increasing the water content in such formulations led to smaller latexes, as expected. Control experiments conducted with 10 wt % PSPMA(50) homopolymer produced relatively large polydisperse latexes via emulsion polymerization and only macroscopic precipitates via alcoholic dispersion polymerization. Thus the terminal styrene group on the macromonomer chains is essential for the formation of well-defined latexes. FT-IR spectroscopy indicated that these latexes contained PSPMA macromonomer, whereas (1)H NMR spectroscopy studies of dissolved latexes allowed stabilizer contents to be determined. Aqueous electrophoresis and X-ray photoelectron spectroscopy studies confirmed that the PSPMA macromonomer chains were located at the latex surface, as expected. Finally, these polyacid-stabilized polystyrene latexes exhibited excellent freeze-thaw stability and remained colloidally stable in the presence of electrolyte.

  20. Nanocomposites based on self-assembly poly(hydroxypropyl methacrylate)-block-poly(N-phenylmaleimide) and Fe3O4-NPs. Thermal stability, morphological characterization and optical properties

    NASA Astrophysics Data System (ADS)

    Pizarro, Guadalupe del C.; Marambio, Oscar G.; Jeria-Orell, Manuel; Sánchez, Julio; Oyarzún, Diego P.

    2018-02-01

    The current work presents the synthesis, characterization and preparation of organic-inorganic hybrid polymer films that contain inorganic magnetic nanoparticles (NPs). The block copolymer, prepared by Atom-Transfer Radical Polymerization (ATRP), was used as a nanoreactor for iron oxide NPs. The NPs were embedded in poly(hydroxypropyl methacrylate)-block-poly(N-phenylmaleimide) matrix. The following topographical modifications of the surface of the film were specially analyzed: control of pore features and changes in surface roughness. Finally, the NPs functionality inside the polymer matrix and how it may affect the thermal and optical properties of the films were assessed.

  1. HPMC (hydroxypropyl methylcellulose) as a fat replacer improves the physical properties of low-fat tofu.

    PubMed

    Shin, Woo-Kyoung; Wicker, Louise; Kim, Yookyung

    2017-08-01

    The effect of the addition of hydroxypropyl methylcellulose (HPMC) on the textural properties of low-fat tofu was investigated. Three fat levels (240, 100 and 30 g kg -1 ) were used to make tofu, which were identified as C (full-fat tofu), L1 and L2. HPMC (5 g kg -1 ) was added to soymilk to prepare control and low-fat tofu, designated as CH, L1H and L2H. Soymilk with a lower fat level had a lower viscosity: 143 (C), 100 (L1) and 42 (L2) cP. The addition of HPMC increased the viscosity of all types of soymilk, particularly in L2H (107 cP). With fat reduction, tofu syneresis increased from 19% (C) to 29% (L2), although syneresis of L2H recovered to 19%, which is similar to high-fat control tofu. Decreased fat resulted in a lower firmness in L2 (0.67 N) compared to control (0.78 N). Firmness increased to 1.08 N in L2H tofu, whereas the firmness of CH tofu was 0.63 N. All types of tofu showed a denser, well-connected and cross-linking structure when HPMC was added, especially in L2H tofu. HPMC improved the texture of the low-fat tofu by creating a harder texture and reducing syneresis. HPMC is an effective fat replacer for lower fat soymilk. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Synergistic effect of EMF-BEMER-type pulsed weak electromagnetic field and HPMA-bound doxorubicin on mouse EL4 T-cell lymphoma.

    PubMed

    Říhová, Blanka; Etrych, Tomáš; Šírová, Milada; Tomala, Jakub; Ulbrich, Karel; Kovář, Marek

    2011-12-01

    We have investigated the effects of low-frequency pulsed electromagnetic field (LF-EMF) produced by BEMER device on experimental mouse T-cell lymphoma EL4 growing on conventional and/or athymic (nude) mice. Exposure to EMF-BEMER slowed down the growth of tumor mass and prolonged the survival of experimental animals. The effect was more pronounced in immuno-compromised nude mice compared to conventional ones. Acceleration of tumor growth was never observed. No measurable levels of Hsp 70 or increased levels of specific anti-EL4 antibodies were detected in the serum taken from experimental mice before and at different intervals during the experiment, i.e. before solid tumor appeared, at the time of its aggressive growth, and at the terminal stage of the disease. A significant synergizing antitumor effect was seen when EL4 tumor-bearing mice were simultaneously exposed to EMF-BEMER and treated with suboptimal dose of synthetic HPMA copolymer-based doxorubicin, DOX(HYD)-HPMA. Such a combination may be especially useful for heavily treated patients suffering from advanced tumor and requiring additional aggressive chemotherapy which, however, at that time could represent almost life-threatening way of medication.

  3. Preparation and characterization of aminoethyl hydroxypropyl starch modified with collagen peptide.

    PubMed

    Wen, Huigao; Hu, Jin; Ge, Hongyu; Zou, Shengqiong; Xiao, Yao; Li, Ya; Feng, Han; Fan, Lihong

    2017-08-01

    The preparation of aminoethyl hydroxypropyl starch collagen peptide (AEHPS-COP) was via an enzyme-catalyzed reaction between amino groups in aminoethyl hydroxypropyl starch (AEHPS) and γ-carboxamide groups in collagen peptide (COP) by using microbial transglutaminase (MTGase) as biocatalyst. As an intermediate reactant, AEHPS was synthesized from hydroxypropyl starch (HPS) and 2-chloroethylamine hydrochloride (CEH). The chemical structures of HPS, AEHPS and AEHPS-COP were characterized by Fourier transform infrared spectroscopy (FT-IR) and 13 C nuclear magnetic resonance ( 13 C NMR). The reaction conditions that influenced the degree of substitution (DS) of AEHPS-COP were optimized, which included the reaction temperature, the reaction time, the mass ratio of collagen peptide to aminoethyl hydroxypropyl starch and the pH value. In addition, in vitro antioxidant activities of AEHPS-COP were evaluated through the scavenging activity of hydroxyl and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. Furthermore, the methylthiazol tetrazolium (MTT) assay was applied to investigate the cell viability of AEHPS-COP. The results indicated that the AEHPS-COP exhibited better cell viability to L929 mouse fibroblast cells. Therefore, the AEHPS-COP showed a promising potential application in cosmetic, biomedical and pharmaceutical fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Randomised clinical trial: colestyramine vs. hydroxypropyl cellulose in patients with functional chronic watery diarrhoea.

    PubMed

    Fernández-Bañares, F; Rosinach, M; Piqueras, M; Ruiz-Cerulla, A; Modolell, I; Zabana, Y; Guardiola, J; Esteve, M

    2015-06-01

    Idiopathic bile acid malabsorption (BAM) has been suggested as a cause of chronic watery diarrhoea, with a response to colestyramine in 70% of patients. However, the efficacy of this drug has never been investigated in placebo-controlled trials. To evaluate the efficacy of colestyramine as compared with hydroxypropyl cellulose in the treatment of functional chronic watery diarrhoea. Patients with chronic watery diarrhoea were randomly assigned to groups given colestyramine sachets 4 g twice daily (n = 13) or identical hydroxypropyl cellulose sachets (n = 13) for 8 weeks. The primary end-point was clinical remission defined as a mean of 3 or fewer stools per day during the week before the visit, with less than 1 watery stool per day. A secondary end-point was the reduction in daily watery stool number. SeHCAT test was performed in all patients, but an abnormal test was not a prerequisite to be included. All included patients had a SeHCAT 7-day retention ≤20%. There were no statistical differences in the percentage of patients in clinical remission at week 8 between colestyramine and hydroxypropyl cellulose with either intention-to-treat (53.8% vs. 38.4%; P = 0.43) or per-protocol (63.6% vs. 38.4%; P = 0.22) analyses. However, the mean per cent decrease in watery stool number was significantly higher with colestyramine than with hydroxypropyl cellulose (-92.4 ± 3.5% vs. -75.8 ± 7.1%; P = 0.048). The rate of adverse events related to study drugs did not differ between groups. Colestyramine (4 g twice daily) is effective and safe for short-term treatment of patients with chronic watery diarrhoea presumably secondary to BAM. Clinical Trials Register number EudraCT 2009-011149-14. © 2015 John Wiley & Sons Ltd.

  5. Optimization of preparation of NDV F Gene encapsulated in N-2-HACC-CMC nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, S. S.; Zhang, Y.; Zhao, K.; Wang, X. H.

    2018-01-01

    In this study, the biodegradable materials N-2-hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC) and N, O-carboxymethyl chitosan (CMC) are used as delivery carrier for the pVAX I -F(o)-C3d6. The optimal preparation condition is as follows: concentration of N-2-HACC is 1.0 mg/ml, concentration of CMC is 0.85 mg/ml, concentration of pVAX I -F(o)-C3d6 is 100 μg ml. The results show that the prepared N-2-HACC-CMC/pFDNA NPs have regular round shape, smooth surface and good dispersion, the particle size is 310 nm, Zeta potential is 50 mV, the entrapment efficiency is 92 %, the loading capacity is 51 % (n=3).

  6. Microplates with adaptive surfaces.

    PubMed

    Akbulut, Meshude; Lakshmi, Dhana; Whitcombe, Michael J; Piletska, Elena V; Chianella, Iva; Güven, Olgun; Piletsky, Sergey A

    2011-11-14

    Here we present a new and versatile method for the modification of the well surfaces of polystyrene microtiter plates (microplates) with poly(N-phenylethylene diamine methacrylamide), (poly-NPEDMA). The chemical grafting of poly-NPEDMA to the surface of microplates resulted in the formation of thin layers of a polyaniline derivative bearing pendant methacrylamide double bonds. These were used as the attachment point for various functional polymers through photochemical grafting of various, for example, acrylate and methacrylate, polymers with different functionalities. In a model experiment, we have modified poly-NPEDMA-coated microplates with a small library of polymers containing different functional groups using a two-step approach. In the first step, double bonds were activated by UV irradiation in the presence of N,N-diethyldithiocarbamic acid benzyl ester (iniferter). This enabled grafting of the polymer library in the second step by UV irradiation of solutions of the corresponding monomers in the microplate wells. The uniformity of coatings was confirmed spectrophotometrically, by microscopic imaging and by contact angle measurements (CA). The feasibility of the current technology has been shown by the generation of a small library of polymers grafted to the microplate well surfaces and screening of their affinity to small molecules, such as atrazine, a trio of organic dyes, and a model protein, bovine serum albumin (BSA). The stability of the polymers, reproducibility of measurement, ease of preparation, and cost-effectiveness make this approach suitable for applications in high-throughput screening in the area of materials research.

  7. Comparison of amine-selective properties of weak and strong cation-exchangers.

    PubMed

    Stenholm, Ake; Lindgren, Helena; Shaffie, Juliana

    2006-09-22

    The capacity of several weak and strong cation-exchangers to adsorb 2-diethylaminoethanol (DEAE) and (2,3-hydroxypropyl) trimethylammonium chloride (HPMAC) from sodium-containing process water streams, and the ease of subsequently eluting the amines and regenerating the exchangers, were investigated. (2,3-hydroxypropyl) trimethylammonium chloride was enriched 40-fold compared with the initial amine/sodium-ratio in the bulk fluid by Amberlite IRC-50. The highest selectivity for 2-diethylaminoethanol (26-fold) was provided by Imac HP336. Neither of the selected strong cation-exchangers showed any selectivity towards 2-diethylaminoethanol, but they enriched (2,3-hydroxypropyl) trimethylammonium chloride approximately three to four fold. These findings suggest that weak cation-exchangers (WCX) could be readily used for the selective removal of these or similar amines from sodium-containing process waters.

  8. 40 CFR 721.9790 - Benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[5-[[4-[bis(2-hydroxypropyl) amino]- 6-[(3...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... with 2,2′,2″-nitrilotris[ethanol] (1:2); Benzenesulfonic acid, 5-[[4-[bis(2-hydroxyethyl)amino]-6-[(3... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzenesulfonic acid, 2,2â²-(1,2-ethenediyl)bis[5-[[4-[bis(2-hydroxypropyl) amino]- 6-[(3-sulfophenyl)amino]-1,3,5-triazin-2-yl]amino...

  9. 40 CFR 721.9790 - Benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[5-[[4-[bis(2-hydroxypropyl) amino]- 6-[(3...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... with 2,2′,2″-nitrilotris[ethanol] (1:2); Benzenesulfonic acid, 5-[[4-[bis(2-hydroxyethyl)amino]-6-[(3... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzenesulfonic acid, 2,2â²-(1,2-ethenediyl)bis[5-[[4-[bis(2-hydroxypropyl) amino]- 6-[(3-sulfophenyl)amino]-1,3,5-triazin-2-yl]amino...

  10. Neutral Polymer Micelle Carriers with pH-Responsive, Endosome-Releasing Activity Modulate Antigen Trafficking to Enhance CD8 T-Cell Responses

    PubMed Central

    Keller, Salka; Wilson, John T; Patilea, Gabriela I; Kern, Hanna B; Convertine, Anthony J; Stayton, Patrick S

    2014-01-01

    Synthetic subunit vaccines need to induce CD8+ cytotoxic T-cell (CTL) responses for effective vaccination against intracellular pathogens. Most subunit vaccines primarily generate humoral immune responses, with a weaker than desired CD8+ cytotoxic T-cell response. Here, a neutral, pH-responsive polymer micelle carrier that alters intracellular antigen trafficking was shown to enhance CD8+ T-cell responses with a correlated increase in cytosolic delivery and a decrease in exocytosis. Polymer diblock carriers consisted of a N-(2-hydroxypropyl) methacrylamide corona block with pendant pyridyl disulfide groups for reversible conjugation of thiolated ovalbumin, and a tercopolymer ampholytic core-forming block composed of propylacrylic acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and butyl methacrylate (BMA). The diblock copolymers self-assembled into 25–30 nm diameter micellar nanoparticles. Conjugation of ovalbumin to the micelles significantly enhanced antigen cross-presentation in vitro relative to free ovalbumin, an unconjugated physical mixture of ovalbumin and polymer, and a non pH-responsive micelle-ovalbumin control. Mechanistic studies in a murine dendritic cell line (DC2.4) demonstrated micelle-mediated enhancements in intracellular antigen retention and cytosolic antigen accumulation. Approximately 90% of initially internalized ovalbumin-conjugated micelles were retained in cells after 1.5 h, compared to only ~40% for controls. Furthermore, cells dosed with conjugates displayed 67-fold higher cytosolic antigen levels relative to soluble ovalbumin 4 h post uptake. Subcutaneous immunization of mice with ovalbumin-polymer conjugates significantly enhanced antigen-specific CD8+ T cell responses (0.4 % IFN-γ+ of CD8+) compared to immunization with soluble protein, ovalbumin and polymer mixture, and the control micelle without endosome-releasing activity. Additionally, pH-responsive carrier facilitated antigen delivery to antigen presenting cells in the draining lymph nodes. As early as 90 min post injection ova-micelle conjugates were associated with 28% and 55% of dendritic cells and macrophages, respectively. After 24 h, conjugates preferentially associated with dendritic cells, affording 30-, 3-, and 3-fold enhancements in uptake relative to free protein, physical mixture, and the non pH-responsive conjugate controls, respectively. These results demonstrate the potential of pH-responsive polymeric micelles for use in vaccine applications that rely on CD8+ T cell activation. PMID:24698946

  11. Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8(+) T cell responses.

    PubMed

    Keller, Salka; Wilson, John T; Patilea, Gabriela I; Kern, Hanna B; Convertine, Anthony J; Stayton, Patrick S

    2014-10-10

    Synthetic subunit vaccines need to induce CD8(+) cytotoxic T cell (CTL) responses for effective vaccination against intracellular pathogens. Most subunit vaccines primarily generate humoral immune responses, with a weaker than desired CD8(+) cytotoxic T cell response. Here, a neutral, pH-responsive polymer micelle carrier that alters intracellular antigen trafficking was shown to enhance CD8(+) T cell responses with a correlated increase in cytosolic delivery and a decrease in exocytosis. Polymer diblock carriers consisted of a N-(2-hydroxypropyl) methacrylamide corona block with pendent pyridyl disulfide groups for reversible conjugation of thiolated ovalbumin, and a tercopolymer ampholytic core-forming block composed of propylacrylic acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and butyl methacrylate (BMA). The diblock copolymers self-assembled into 25-30nm diameter micellar nanoparticles. Conjugation of ovalbumin to the micelles significantly enhanced antigen cross-presentation in vitro relative to free ovalbumin, an unconjugated physical mixture of ovalbumin and polymer, and a non-pH-responsive micelle-ovalbumin control. Mechanistic studies in a murine dendritic cell line (DC 2.4) demonstrated micelle-mediated enhancements in intracellular antigen retention and cytosolic antigen accumulation. Approximately 90% of initially internalized ovalbumin-conjugated micelles were retained in cells after 1.5h, compared to only ~40% for controls. Furthermore, cells dosed with conjugates displayed 67-fold higher cytosolic antigen levels relative to soluble ovalbumin 4h post uptake. Subcutaneous immunization of mice with ovalbumin-polymer conjugates significantly enhanced antigen-specific CD8(+) T cell responses (0.4% IFN-γ(+) of CD8(+)) compared to immunization with soluble protein, ovalbumin and polymer mixture, and the control micelle without endosome-releasing activity. Additionally, pH-responsive carrier facilitated antigen delivery to antigen presenting cells in the draining lymph nodes. As early as 90min post injection, ova-micelle conjugates were associated with 28% and 55% of dendritic cells and macrophages, respectively. After 24h, conjugates preferentially associated with dendritic cells, affording 30-, 3-, and 3-fold enhancements in uptake relative to free protein, physical mixture, and the non-pH-responsive conjugate controls, respectively. These results demonstrate the potential of pH-responsive polymeric micelles for use in vaccine applications that rely on CD8(+) T cell activation. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Cholic acid modified N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride for superoxide dismutase delivery.

    PubMed

    Cheng, Ye; Cai, Huanxin; Yin, Baoru; Yao, Ping

    2013-09-15

    A series of novel amphiphilic chitosan derivatives, cholic acid modified N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride (HTCC-CA) with different quaternization degrees and cholic acid substitutions were synthesized in this study. HTCC-CA is biocompatible and forms particles in aqueous solution. The binding with superoxide dismutase (SOD) at pH 6.8 destroys the original aggregates of HTCC-CA and produces smaller SOD/HTCC-CA complex nanoparticles via electrostatic and hydrophobic interactions. The SOD loading efficiency and loading capacity of HTCC-CA can reach to more than 90% and 45%, respectively. Confocal laser scanning microscopy observation and flow cytometry analysis reveal that SOD/HTCC-CA complex nanoparticles greatly enhance the cellular internalization of the loaded SOD. The SOD activities and malonaldehyde concentrations in the serum and organs of the rats, administrated intravenously with free SOD, free HTCC-CA, and SOD/HTCC-CA nanoparticles, were assayed to evaluate the antioxidant efficiency in vivo. The results demonstrate that free HTCC-CA is effective to scavenge superoxide radicals in the blood circulation and SOD/HTCC-CA nanoparticles have better antioxidant efficiency than free SOD as well as free HTCC-CA. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Binding of [3H]MSX-2 (3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine) to rat striatal membranes--a new, selective antagonist radioligand for A(2A) adenosine receptors.

    PubMed

    Müller, C E; Maurinsh, J; Sauer, R

    2000-01-01

    The present study describes the preparation and binding properties of a new, potent, and selective A(2A) adenosine receptor (AR) antagonist radioligand, [3H]3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargy lxanth ine ([3H]MSX-2). [3H]MSX-2 binding to rat striatal membranes was saturable and reversible. Saturation experiments showed that [3H]MSX-2 labeled a single class of binding sites with high affinity (K(d)=8.0 nM) and limited capacity (B(max)=1.16 fmol.mg(-1) of protein). The presence of 100 microM GTP, or 10 mM magnesium chloride, respectively, had no effect on [3H]MSX-2 binding. AR agonists competed with the binding of 1 nM [3H]MSX-2 with the following order of potency: 5'-N-ethylcarboxamidoadenosine (NECA)>2-[4-(carboxyethyl)phenylethylamino]-5'-N-ethylcarboxami doaden osine (CGS-21680)>2-chloroadenosine (2-CADO)>N(6)-cyclopentyladenosine (CPA). AR antagonists showed the following order of potency: 8-(m-bromostyryl)-3, 7-dimethyl-1-propargylxanthine (BS-DMPX)>1, 3-dipropyl-8-cyclopentylxanthine (DPCPX)>(R)-5, 6-dimethyl-7-(1-phenylethyl)-2-(4-pyridyl)-7H-pyrrolo[2, 3-d]pyrimidine-4-amine (SH-128)>3,7-dimethyl-1-propargylxanthine (DMPX)>caffeine. The K(i) values for antagonists were in accordance with data from binding studies with the agonist radioligand [3H]CGS21680, while agonist affinities were 3-7-fold lower. [3H]MSX-2 is a highly selective A(2A) AR antagonist radioligand exhibiting a selectivity of at least two orders of magnitude versus all other AR subtypes. The new radioligand shows high specific radioactivity (85 Ci/mmol, 3150 GBq/mmol) and acceptable nonspecific binding at rat striatal membranes of 20-30%, at 1 nM.

  14. Magnetic Resonance Imaging of Gel-cast Ceramic Composites

    DOE R&D Accomplishments Database

    Dieckman, S. L.; Balss, K. M.; Waterfield, L. G.; Jendrzejczyk, J. A.; Raptis, A. C.

    1997-01-16

    Magnetic resonance imaging (MRI) techniques are being employed to aid in the development of advanced near-net-shape gel-cast ceramic composites. MRI is a unique nondestructive evaluation tool that provides information on both the chemical and physical properties of materials. In this effort, MRI imaging was performed to monitor the drying of porous green-state alumina - methacrylamide-N.N`-methylene bisacrylamide (MAM-MBAM) polymerized composite specimens. Studies were performed on several specimens as a function of humidity and time. The mass and shrinkage of the specimens were also monitored and correlated with the water content.

  15. Influence of UV irradiation on hydroxypropyl methylcellulose polymer films

    NASA Astrophysics Data System (ADS)

    Rao, B. Lakshmeesha; Shivananda, C. S.; Shetty, G. Rajesha; Harish, K. V.; Madhukumar, R.; Sangappa, Y.

    2018-05-01

    Hydroxypropyl Methylcellulose (HPMC) biopolymer films were prepared by solution casting technique and effects of UV irradiation on the structural and optical properties of the polymer films were analysed using X-ray Diffraction and UV-Visible studies. From XRD data, the microcrystalline parameters (crystallite size (LXRD) and crystallinity (Xc)) were calculated and found to be decreasing with UV irradiation due to photo-degradation process. From the UV-Vis absorption data, the optical bandgap (Eg), average numbers of carbon atoms per conjugation length (N) of the polymer chain and the refractive index (n) at 550 nm (average wavelength of visible light) of virgin and UV irradiated HPMC films were calculated. With increase in UV exposure time, the optical bandgap energy (Eg) increases, and hence average number of carbon atoms per conjugation length (N) decreases, supports the photo-degradation of HPMC polymer films. The refractive index of the HPMC films decreases after UV irradiation, due to photo-degradation induced chain rearrangements.

  16. 40 CFR 721.5279 - 2,7-Naphthalenedisulfonic acid, 4-amino-3-[[4′2-amino-4-[(3-butoxy-2-hydroxypropyl)amino]phebyl...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reporting. (1) The chemical substance identified as 2,7-naphthalenedisulfonic acid, 4-amino-3-[[4′2-amino-4... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 2,7-Naphthalenedisulfonic acid, 4-amino-3-[[4â²2-amino-4-[(3-butoxy-2-hydroxypropyl)amino]phebyl]azo]-3,3â²-dimethyl[1,1â²-biphenyl]-4-yl...

  17. 40 CFR 721.5279 - 2,7-Naphthalenedisulfonic acid, 4-amino-3-[[4′2-amino-4-[(3-butoxy-2-hydroxypropyl)amino]phebyl...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reporting. (1) The chemical substance identified as 2,7-naphthalenedisulfonic acid, 4-amino-3-[[4′2-amino-4... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 2,7-Naphthalenedisulfonic acid, 4-amino-3-[[4â²2-amino-4-[(3-butoxy-2-hydroxypropyl)amino]phebyl]azo]-3,3â²-dimethyl[1,1â²-biphenyl]-4-yl...

  18. Reactive template synthesis of nitrogen-doped graphene-like carbon nanosheets derived from hydroxypropyl methylcellulose and dicyandiamide as efficient oxygen reduction electrocatalysts

    NASA Astrophysics Data System (ADS)

    Hu, Chun; Zhou, Yao; Ma, Ruguang; Liu, Qian; Wang, Jiacheng

    2017-03-01

    Oxygen reduction reaction (ORR) plays a dominant role in proton exchange membrane fuel cells (PEMFCs). Thus, the design and preparation of efficient ORR electrocatalysts is of high importance. In this work, we successfully prepared a series of nitrogen-doped graphene-like carbon nanosheets (NCNSs) with large pore volumes of up to 1.244 cm3 g-1 and high level of N dopants (5.3-6.8 at%) via a one-step, in-situ reactive template strategy by co-pyrolysis of hydroxypropyl methylcellulose (HPMC) and dicyandiamide (DICY) as the precursors at 1000 °C. The DICY-derived graphitic carbon nitride (g-C3N4) nanosheets could act as the hard template for the confined growth of 2D carbon nanosheets, and the further increase in the pyrolysis temperature could directly remove off the g-C3N4 template by complete decomposition and simultaneously dope N atoms within the carbon nanosheets. The pyridinic and graphitic nitrogen groups are dominant among various N functional groups in the NCNSs. The NCNS_1:10 prepared with the HPMC/DICY mass ratio of 1/10 can be used as the metal-free ORR electrocatalysts with optimal activity (onset potential: -0.1 V vs. SCE; limiting current density: 4.8 mA cm-2) in O2-saturated 0.1 M KOH electrolyte among the NCNSs. Moreover, the NCNS_1:10 demonstrates a dominant four-electron reduction process, as well as excellent long-term operation stability and outstanding methanol crossover resistance. The excellent ORR activity of the NCNS_1:10 should be mainly owing to high contents of pyridinic and graphitic N dopants, large pore volume, hierarchical structures, and microstructural defects.

  19. Fluorinated methacrylamide chitosan hydrogels enhance collagen synthesis in wound healing through increased oxygen availability.

    PubMed

    Patil, Pritam S; Fountas-Davis, Natalie; Huang, He; Michelle Evancho-Chapman, M; Fulton, Judith A; Shriver, Leah P; Leipzig, Nic D

    2016-05-01

    In this study, methacrylamide chitosan modified with perfluorocarbon chains (MACF) is used as the base material to construct hydrogel dressings for treating dermal wounds. MACF hydrogels saturated with oxygen (+O2) are examined for their ability to deliver and sustain oxygen, degrade in a biological environment, and promote wound healing in an animal model. The emerging technique of metabolomics is used to understand how MACF+O2 hydrogel dressings improve wound healing. Results indicate that MACF treatment facilitates oxygen transport rate that is two orders of magnitude greater than base MAC hydrogels. MACF hydrogel dressings are next tested in an in vivo splinted rat excisional wound healing model. Histological analysis reveals that MACF+O2 dressings improve re-epithelialization (p<0.0001) and synthesis of collagen over controls (p<0.01). Analysis of endogenous metabolites in the wounds using global metabolomics demonstrates that MACF+O2 dressings promotes a regenerative metabolic process directed toward hydroxyproline and collagen synthesis, with confirmation of metabolite levels within this pathway. The results of this study confirm that increased oxygen delivery through the application of MACF+O2 hydrogels enhances wound healing and metabolomics analyses provides a powerful tool to assess wound healing physiology. This work presents the first application of a novel class of oxygen delivering biomaterials (methacrylamide chitosan modified with perfluorocarbon chains (MACF)) as a hydrogel wound dressing. This manuscript also contains strong focus on the biochemical benefits of MACF dressings on underlying mechanisms vital to successful wound healing. In this vein, this manuscript presents the application of applied metabolomics (tandem mass spectroscopy) to uncover biomaterial interactions with wound healing mechanisms. We believe the approaches described in this manuscript will be of great interest to biomedical scientists and particularly to researchers studying wound healing, metabolomics, applied biomaterials and regenerative medicine. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Safety and efficacy of a hydroxypropyl guar/polyethylene glycol/propylene glycol-based lubricant eye-drop in patients with dry eye.

    PubMed

    Labetoulle, Marc; Messmer, Elisabeth M; Pisella, Pierre-Jean; Ogundele, Abayomi; Baudouin, Christophe

    2017-04-01

    To demonstrate non-inferiority of a hydroxypropyl guar/polyethylene glycol/propylene glycol lubricating eye-drop (HPG/PEG/PG) compared with an osmoprotective carboxymethylcellulose/glycerine eye-drop (O/CMC) for ocular surface staining. This was a multicentre, randomised, observer-masked, parallel-group study. Adults with dry eye instilled HPG/PEG/PG/ or O/CMC 4 times daily for 35 days and then as needed through day 90. Total ocular surface staining (TOSS) score changes from baseline and Impact of Dry Eye on Everyday Life (IDEEL) treatment satisfaction module scores were assessed. Non-inferiority, based on TOSS score change from baseline, was concluded if the upper limit of the 2-sided CI was <2 units. Mean±SD patient age was 64.4±13.7 years; 94 patients were randomised to treatment (HPG/PEG/PG, n=46; O/CMC, n=48). Mean±SE TOSS score change from baseline to day 35 was -2.2±0.33 with HPG/PEG/PG and -1.7±0.47 with O/CMC (treatment difference, -0.47±0.47; p=0.38), and the non-inferiority criterion was met. IDEEL treatment satisfaction scores were similar between groups at day 35 and day 90. The most frequently reported adverse event was eye irritation (HPG/PEG/PG, n=2; O/CMC, n=3). HPG/PEG/PG and O/CMC reduced ocular surface damage, and HPG/PEG/PG was non-inferior to O/CMC. Both treatments were effective, convenient and well tolerated. NCT01863368, Results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. A Hybrid CPU/GPU Pattern-Matching Algorithm for Deep Packet Inspection

    PubMed Central

    Chen, Yaw-Chung

    2015-01-01

    The large quantities of data now being transferred via high-speed networks have made deep packet inspection indispensable for security purposes. Scalable and low-cost signature-based network intrusion detection systems have been developed for deep packet inspection for various software platforms. Traditional approaches that only involve central processing units (CPUs) are now considered inadequate in terms of inspection speed. Graphic processing units (GPUs) have superior parallel processing power, but transmission bottlenecks can reduce optimal GPU efficiency. In this paper we describe our proposal for a hybrid CPU/GPU pattern-matching algorithm (HPMA) that divides and distributes the packet-inspecting workload between a CPU and GPU. All packets are initially inspected by the CPU and filtered using a simple pre-filtering algorithm, and packets that might contain malicious content are sent to the GPU for further inspection. Test results indicate that in terms of random payload traffic, the matching speed of our proposed algorithm was 3.4 times and 2.7 times faster than those of the AC-CPU and AC-GPU algorithms, respectively. Further, HPMA achieved higher energy efficiency than the other tested algorithms. PMID:26437335

  2. A Hybrid CPU/GPU Pattern-Matching Algorithm for Deep Packet Inspection.

    PubMed

    Lee, Chun-Liang; Lin, Yi-Shan; Chen, Yaw-Chung

    2015-01-01

    The large quantities of data now being transferred via high-speed networks have made deep packet inspection indispensable for security purposes. Scalable and low-cost signature-based network intrusion detection systems have been developed for deep packet inspection for various software platforms. Traditional approaches that only involve central processing units (CPUs) are now considered inadequate in terms of inspection speed. Graphic processing units (GPUs) have superior parallel processing power, but transmission bottlenecks can reduce optimal GPU efficiency. In this paper we describe our proposal for a hybrid CPU/GPU pattern-matching algorithm (HPMA) that divides and distributes the packet-inspecting workload between a CPU and GPU. All packets are initially inspected by the CPU and filtered using a simple pre-filtering algorithm, and packets that might contain malicious content are sent to the GPU for further inspection. Test results indicate that in terms of random payload traffic, the matching speed of our proposed algorithm was 3.4 times and 2.7 times faster than those of the AC-CPU and AC-GPU algorithms, respectively. Further, HPMA achieved higher energy efficiency than the other tested algorithms.

  3. Synthesis of Poly[APMA]-DOTA-64Cu conjugates for interventional radionuclide therapy of prostate cancer: assessment of intratumoral retention by micro-positron emission tomography.

    PubMed

    Yuan, Jianchao; You, Yezi; Lu, Xin; Muzik, Otto; Oupicky, David; Peng, Fangyu

    2007-01-01

    To develop new radiopharmaceuticals for interventional radionuclide therapy of locally recurrent prostate cancer, poly[N-(3-aminopropyl)methacrylamide] [poly(APMA)] polymers were synthesized by free radical precipitation polymerization in acetone-dimethylsulfoxide using N,N'-azobis(isobutyronitrile) as the initiator. The polymers were characterized with nuclear magnetic resonance, size exclusion chromatography, and dynamic light scattering (M(n) = 2.40 x 10(4), M(w)/M(n) = 1.87). Subsequently, poly[APMA] was coupled with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride as an activator, followed by conjugation with (64)Cu radionuclide. Prolonged retention of poly[APMA]-DOTA-(64)Cu conjugates within the tumor tissues was demonstrated by micro-positron emission tomography at 24 hours following intra-tumoral injection of the conjugates to human prostate xenografts in mice. The data suggest that the poly[APMA]-DOTA-(64)Cu conjugates might be useful for interventional radionuclide therapy of locally recurrent prostate cancer in humans.

  4. Sorption of benzimidazole anthelmintics to dissolved organic matter surrogates and sewage sludge.

    PubMed

    Kim, Hyo-Jung; Lee, Dong Soo; Kwon, Jung-Hwan

    2010-06-01

    The sorption coefficients of four rarely studied zwitterionic pharmaceuticals (benzimidazoles: fenbendazole, albendazole, thiabendazole and flubendazole) and four metabolites of fenbendazole to various dissolved organic matter surrogates (humic acid, sodium dodecyl sulfate micelle, hydroxypropyl-beta-cyclodextrin and liposomes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and sewage sludge) were measured to extend the available sorption coefficients and eventually to evaluate their environmental fate in soil and water environment. For the entire range of dissolved organic matters, the more hydrophobic fenbendazole and albendazole had higher sorption coefficients than thiabendazole and flubendazole, indicating that the traditional hypothesis of hydrophobic interaction holds for zwitterionic benzimidazole anthelmintics. However, the sorption coefficients of a given benzimidazole to selected dissolved organic matters (DOMs) varied within an order of magnitude. The measured K(oc) values decreased in the order of fenbendazole, albendazole, thiabendazole and flubendazole for sewage sludge and hydroxypropyl-beta-cyclodextrin whereas the orders were different for the other DOM surrogates, implying the hydrophilic nature of sewage sludge. This was also supported by the (N+O)/C elemental ratio of the sewage sludge sample used in this study. The correlations between log K(oc) and log K(ow) were weak (r(2)=0.28-0.64) and the magnitude of the sorption coefficients to the hydrophilic organic matters (hydroxypropyl-beta-cyclodextrin and sewage sludge) were similar to or slightly smaller than those for the hydrophobic organic matters (humic acids and liposome). This suggests that specific hydrophilic interactions also play a significant role in the sorption of moderately hydrophobic benzimidazoles to organic matters. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  5. Investigation of water mobility and diffusivity in hydrating micronized low-substituted hydroxypropyl cellulose, hydroxypropylmethyl cellulose, and hydroxypropyl cellulose matrix tablets by magnetic resonance imaging (MRI).

    PubMed

    Kojima, Masazumi; Nakagami, Hiroaki

    2002-12-01

    The water mobility and diffusivity in the gel-layer of hydrating low-substituted hydroxypropyl cellulose (LH41) tablets with or without a drug were investigated by magnetic resonance imaging (MRI) and compared with those properties in the gel-layer of hydroxypropylmethyl cellulose (HPMC) and hydroxypropyl cellulose (HPC) tablets. For this purpose, a localized image-analysis method was newly developed, and the spin-spin relaxation time (T(2)) and apparent self-diffusion coefficient (ADC) of water in the gel-layer were visualized in one-dimensional maps. Those maps showed that the extent of gel-layer growth in the tablets was in the order of HPC>HPMC>LH41, and there was a water mobility gradient across the gel-layers of all three tablet formulations. The T(2) and ADC in the outer parts of the gel-layers were close to those of free water. In contrast, these values in the inner parts of the gel-layer decreased progressively; suggesting that the water mobility and diffusivity around the core interface were highly restricted. Furthermore, the correlation between the T(2) of (1)H proton in the gel-layer of the tablets and the drug release rate from the tablets was observed.

  6. Antimicrobial Peptide Mimicking Primary Amine and Guanidine Containing Methacrylamide Copolymers Prepared by Raft Polymerization

    PubMed Central

    Exley, Sarah E.; Paslay, Lea C.; Sahukhal, Gyan S.; Abel, Brooks A.; Brown, Tyler D.; McCormick, Charles L.; Heinhorst, Sabine; Koul, Veena; Choudhary, Veena; Elasri, Mohamed O.; Morgan, Sarah E.

    2016-01-01

    Naturally occurring antimicrobial peptides (AMPs) display the ability to eliminate a wide variety of bacteria, without toxicity to the host eukaryotic cells. Synthetic polymers containing moieties mimicking lysine and arginine components found in AMPs have been reported to show effectiveness against specific bacteria, with the mechanism of activity purported to depend on the nature of the amino acid mimic. In an attempt to incorporate the antimicrobial activity of both amino acids into a single water-soluble copolymer, a series of copolymers containing lysine mimicking aminopropyl methacrylamide (APMA) and arginine mimicking guanadinopropyl methacrylamide (GPMA) were prepared via aqueous RAFT polymerization. Copolymers were prepared with varying ratios of the comonomers, with degree of polymerization of 35–40 and narrow molecular weight distribution to simulate naturally occurring AMPs. Antimicrobial activity was determined against Gram-negative and Gram-positive bacteria under conditions with varying salt concentration. Toxicity to mammalian cells was assessed by hemolysis of red blood cells and MTT assays of MCF-7 cells. Antimicrobial activity was observed for APMA homopolymer and copolymers with low concentrations of GPMA against all bacteria tested, with low toxicity toward mammalian cells. PMID:26558609

  7. 21 CFR 172.870 - Hydroxypropyl cellulose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... additive is used in accordance with good manufacturing practice. [46 FR 50065, Oct. 9, 1981] ... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.870 Hydroxypropyl cellulose. The food additive hydroxypropyl...

  8. 21 CFR 172.874 - Hydroxypropyl methylcellulose.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.874 Hydroxypropyl methylcellulose. The food additive hydroxypropyl methylcellulose (CAS Reg. No. 9004...: (a) The additive complies with the definition and specifications prescribed in the National Formulary...

  9. Density functional calculations on the effect of sulfur substitution for 2'-hydroxypropyl-p-nitrophenyl phosphate: C-O vs. P-O bond cleavage.

    PubMed

    Xia, Futing; Zhu, Hua

    2012-02-01

    Density functional theory calculations have been used to investigate the intra-molecular attack of 2'-hydroxypropyl-p-nitrophenyl phosphate (HPpNP) and its analogous compound 2-thiouridyl-p-nitrophenyl phosphate (s-2'pNP). Bulk solvent effect has been tested at the geometry optimization level with the polarized continuum model. It is found that the P-path involving the intra-molecular attack at the phosphorus atom and C-path involving the attack at the beta carbon atom proceed through the S(N)2-type mechanism for HPpNP and s-2'pNP. The calculated results indicate that the P-path with the free energy barrier of about 11 kcal/mol is more accessible than the C-path for the intra-molecular attack of HPpNP, which favors the formation of the five-membered phosphate diester. While for s-2'pNP, the C-path with the free energy barrier of about 21 kcal/mol proceeds more favorably than the P-path. The calculated energy barriers of the favorable pathways for HPpNP and s-2'pNP are both in agreement with the experimental results. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  10. Radiation-Induced Chemical Reactions in Hydrogel of Hydroxypropyl Cellulose (HPC): A Pulse Radiolysis Study.

    PubMed

    Yamashita, Shinichi; Ma, Jun; Marignier, Jean-Louis; Hiroki, Akihiro; Taguchi, Mitsumasa; Mostafavi, Mehran; Katsumura, Yosuke

    2016-12-01

    We performed studies on pulse radiolysis of highly transparent and shape-stable hydrogels of hydroxypropyl cellulose (HPC) that were prepared using a radiation-crosslinking technique. Several fundamental aspects of radiation-induced chemical reactions in the hydrogels were investigated. With radiation doses less than 1 kGy, degradation of the HPC matrix was not observed. The rate constants of the HPC composing the matrix, with two water decomposition radicals [hydroxyl radical ( • OH) and hydrated electron ([Formula: see text])] in the gels, were determined to be 4.5 × 10 9 and 1.8 × 10 7 M -1 s -1 , respectively. Direct ionization of HPC in the matrix slightly increased the initial yield of [Formula: see text], but the additionally produced amount of [Formula: see text] disappeared immediately within 200 ps, indicating fast recombination of [Formula: see text] with hole radicals on HPC or on surrounding hydration water molecules. Reactions of [Formula: see text] with nitrous oxide (N 2 O) and nitromethane (CH 3 NO 2 ) were also examined. Decay of [Formula: see text] due to scavenging by N 2 O and CH 3 NO 2 were both slower in hydrogels than in aqueous solutions, showing slower diffusions of the reactants in the gel matrix. The degree of decrease in the decay rate was more effective for N 2 O than for CH 3 NO 2 , revealing lower solubility of N 2 O in gel than in water. It is known that in viscous solvents, such as ethylene glycol, CH 3 NO 2 exhibits a transient effect, which is a fast reaction over the contact distance of reactants and occurs without diffusions of reactants. However, such an effect was not observed in the hydrogel used in the current study. In addition, the initial yield of [Formula: see text], which is affected by the amount of the scavenged precursor of [Formula: see text], in hydrogel containing N 2 O was slightly higher than that in water containing N 2 O, and the same tendency was found for CH 3 NO 2 .

  11. 21 CFR 172.874 - Hydroxypropyl methylcellulose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.874 Hydroxypropyl methylcellulose. The food additive hydroxypropyl... provide for such use if: (a) The additive complies with the definition and specifications prescribed in...

  12. The characterization of hydroxypropyl methylcellulose through the analysis of its substituents

    USDA-ARS?s Scientific Manuscript database

    The methyl and hydroxypropyl substituents in hydroxypropyl methylcellulose (HPMC) affect the resulting gel properties. These substituents in five HPMC gels were characterized using Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, small-amplitude oscillatory shear measurements, a...

  13. 21 CFR 172.874 - Hydroxypropyl methylcellulose.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.874 Hydroxypropyl methylcellulose. The food additive hydroxypropyl... provide for such use if: (a) The additive complies with the definition and specifications prescribed in...

  14. 21 CFR 172.874 - Hydroxypropyl methylcellulose.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.874 Hydroxypropyl methylcellulose. The food additive hydroxypropyl... provide for such use if: (a) The additive complies with the definition and specifications prescribed in...

  15. Hydroxypropyl cyclic β-(1 → 2)-D-glucans and epichlorohydrin β-cyclodextrin dimers as effective carbohydrate-solubilizers for polycyclic aromatic hydrocarbons.

    PubMed

    Choi, Jae Min; Jeong, Daham; Piao, Jinglan; Kim, Kyoungtea; Nguyen, Andrew Bao Loc; Kwon, Nak-Jung; Lee, Mi-Kyung; Lee, Im Soon; Yu, Jae-Hyuk; Jung, Seunho

    2015-01-12

    The removal of polycyclic aromatic hydrocarbons by soil washing using water is extremely difficult due to their intrinsic hydrophobic nature. In this study, the effective aqueous solubility enhancements of seven polycyclic aromatic hydrocarbons by chemically modified hydroxypropyl rhizobial cyclic β-(1 → 2)-D-glucans and epichlorohydrin β-cyclodextrin dimer have been investigated for the first time. In the presence of hydroxypropyl cyclic β-(1 → 2)-D-glucans, the solubility of benzo[a]pyrene is increased up to 38 fold of its native solubility. The solubility of pyrene and phenanthrene dramatically increased up to 160 and 359. Coronene, chrysene, perylene, and fluoranthene also show an increase of 11, 23, 23, and 97 fold, respectively, of enhanced solubility by complexation with synthetic epichlorohydrin β-cyclodextrin dimer. The physicochemical properties of the complex are characterized by Fourier-transform infrared spectra and differential scanning calorimetry. Utilizing a scanning electron microscopy, the morphological structures of native benzo[a]pyrene, pyrene, phenanthrene, coronene, chrysene, perylene, fluoranthene and their complex with novel carbohydrate-solubilizers are studied. These results elucidate that polycyclic aromatic hydrocarbons are able to form an efficient complex with hydroxypropyl cyclic β-(1 → 2)-D-glucans and β-cyclodextrin dimer, suggesting the potential usage of chemically modified novel carbohydrate-solubilizers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Structural and chemical aspects of HPMA copolymers as drug carriers.

    PubMed

    Ulbrich, Karel; Subr, Vladimír

    2010-02-17

    Synthetic strategies and chemical and structural aspects of the synthesis of HPMA copolymer conjugates with various drugs and other biologically active molecules are described and discussed in this chapter. The discussion is held from the viewpoint of design and structure of the polymer backbone and biodegradable spacer between a polymer and drug, structure and methods of attachment of the employed drugs to the carrier and structure and methods of conjugation with targeting moieties. Physicochemical properties of the water-soluble polymer-drug conjugates and polymer micelles including mechanisms of drug release are also discussed. Detailed description of biological behavior of the polymer-drug conjugates as well as application of the copolymers for surface modification and targeting of gene delivery vectors are not included, they are presented and discussed in separate chapters of this issue. Copyright 2009 Elsevier B.V. All rights reserved.

  17. pH-Responsive Layer-by-Layer Nanoshells for Direct Regulation of Cell Activity

    DTIC Science & Technology

    2012-01-01

    PVPON1,300), a monomer of metharcylic acid (MAA), hydrochloric acid, sodium hydroxide, sodium chloride , monobasic sodium phosphate, and 1-ethyl-3...dimethylamino- propyl )carbodiimide hydrochloride (EDC) were purchased from Sigma-Aldrich. Initiator, 2,20-azobis(2-methylpropionitrile) (AIBN), was purchased...butoxycarbonylaminopropyl)methacrylamide (t-BOCAPMA) for synthesis of amine-functionalized PMAA, and 4.0 ( 0.2 μm silica particles as 10% aqueous suspension were

  18. SYNTHESIS AND IN VITRO CHARACTERIZATION OF HYDROXYPROPYL METHYLCELLULOSE-GRAFT-POLY (ACRYLIC ACID/2-ACRYLAMIDO-2-METHYL-1-PROPANESULFONIC ACID) POLYMERIC NETWORK FOR CONTROLLED RELEASE OF CAPTOPRIL.

    PubMed

    Furqan Muhammad, Iqbal; Mahmood, Ahmad; Aysha, Rashid

    2016-01-01

    A super-absorbent hydrogel was developed by crosslinking of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and acrylic acid with hydroxypropyl methylcellulose (HPMC) for controlled release drug delivery of captopril, a well known antihypertensive drug. Acrylic acid and AMPS were polymerized and crosslinked with HPMC by free radical polymerization, a widely used chemical crosslinking method. N,N'-methylenebisacrylamide (MBA) and potassium persulfate (KPS) were added as cross-linker and initiator, respectively. The hydrogel formulation was loaded with captopril (as model drug). The concentration of captopril was monitored at 205 nm using UV spectrophotometer. Equilibrium swelling ratio was determined at pH 2, 4.5 and 7.4 to evaluate the pH responsiveness of the formed hydrogel. The super-absorbent hydrogels were evaluated by FTIR, SEM, XRD, and thermal analysis (DSC and TGA). The formation of new copolymeric network was determined by FTIR, XRD, TGA and DSC analysis. The hydrogel formulations with acrylic acid and AMPS ratio of 4: 1 and lower amounts of crosslinker had shown maximum swelling. Moreover, higher release rate of captopril was observed at pH 7.4 than at pH 2, because of more swelling capacity of copolymer with increasing pH of the aqueous medium. The present research work confirms the development of a stable hydrogel comprising of HPMC with acrylic acid and AMPS. The prepared hydrogels exhibited pH sensitive behav-ior. This superabsorbent composite prepared could be a successful drug carrier for treating hypertension.

  19. 76 FR 44811 - Carboxymethyl Guar Gum Sodium Salt and Carboxymethyl-Hydroxypropyl Guar; Exemption From the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... Guar Gum Sodium Salt and Carboxymethyl- Hydroxypropyl Guar; Exemption From the Requirement of a... establishes an exemption from the requirement of a tolerance for residues of carboxymethyl guar gum sodium... carboxymethyl guar gum sodium salt and carboxymethyl- hydroxypropyl guar. DATES: This regulation is effective...

  20. In vitro investigations of α-amylase mediated hydrolysis of cyclodextrins in the presence of ibuprofen, flurbiprofen, or benzo[a]pyrene.

    PubMed

    Lumholdt, Ludmilla Riisager; Holm, René; Jørgensen, Erling Bonne; Larsen, Kim Lambertsen

    2012-11-15

    In vitro studies of α-amylase degradation of α-, β- and γ-cyclodextrins and 2-hydroxypropyl-β- and -γ-cyclodextrins were investigated spectrophotometrically by measuring the formation of reducing sugars, the reaction products of α-amylase degradation. This was done to evaluate potential degradation and thereby biological conversion of the cyclodextrins if dosed orally, as the intestinal tract contains α-amylase for digestive purposes. The results demonstrated that only γ- and 2-hydroxypropyl-γ-cyclodextrins can be degraded by α-amylase to a relevant extent, that is, γ- and 2-hydroxypropyl-γ-cyclodextrins have different biopharmaceutical behaviours than the other evaluated cyclodextrins. The rate of degradation was affected by the addition of the inclusion complex forming additives flurbiprofen, ibuprofen and benzo[a]pyrene. This effect between the degradation dynamics and the included additives was caused by a correlation between solubility of the additives and the stability of the complex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Comparison of the Efficacy of Carboxymethylcellulose 0.5%, Hydroxypropyl-guar Containing Polyethylene Glycol 400/Propylene Glycol, and Hydroxypropyl Methyl Cellulose 0.3% Tear Substitutes in Improving Ocular Surface Disease Index in Cases of Dry Eye.

    PubMed

    Maharana, Prafulla K; Raghuwanshi, Sapna; Chauhan, Ashish K; Rai, Vaishali G; Pattebahadur, Rajesh

    2017-01-01

    To compare the efficacy of carboxymethylcellulose 0.5% (CMC), hydroxypropyl-guar containing polyethylene glycol 400/propylene glycol (PEG/PG), and hydroxypropyl methylcellulose 0.3% (HPMC) as tear substitutes in patients with dry eye. A retrospective evaluation of cases presenting with symptoms of dry eye from July 2014 to June 2015 was done. Patients with Ocular Surface Disease Index (OSDI) scoring >12 were included in the study. Parameters such as age, gender, Schirmer test (ST), and tear film breakup time (TBUT) were recorded on day 0, week 1, and week 4. For analysis, cases were divided into three groups; Group 1 - CMC, Group 2 - PEG/PG, and Group 3 - HPMC. Overall, 120 patients were included in the study. Demographic data and baseline characteristics were comparable among the groups. Group 2 had significant improvement in percentage change in OSDI (weeks 0-1, 0-4, and 1-4, P = 0.00), TBUT (weeks 0-1, P = 0.01; 0-4, P = 0.006; and 1-4, P = 0.007), and in ST (weeks 0-1, P = 0.02; 0-4, P = 0.002; and 1-4, P = 0.008) compared to Group 1 at all follow-ups. Group 3 had improvements similar to Group 2, but it was not at all follow-ups (improvement in percentage change OSDI [weeks 0-1, 0-4, and 1-4, P = 0.00], TBUT [weeks 0-1, P = 0.10; 0-4, P = 0.03; and 1-4, P = 0.04], and in ST [weeks 0-1, P = 0.007; 0-4, P = 0.03; and 1-4, P = 0.12]). No significant difference was found between Groups 2 and 3. Hydroxypropyl-guar containing PEG/PG and HPMC as tear substitutes are better than CMC. While HPMC was comparable to PEG/PG in subjective improvement, the objective improvement was not consistent.

  2. Evaluation of the material and tablet formation properties of modified forms of Dioscorea starches.

    PubMed

    Odeku, Oluwatoyin A; Picker-Freyer, Katharina M

    2009-11-01

    Starches obtained from four different Dioscorea species-namely, White yam (Dioscorea rotundata), Bitter yam (Dioscorea dumetorum), Chinese yam (Dioscorea oppositifolia), and Water yam (Dioscorea alata)-were modified by cross-linking, hydroxypropylation, and dual modification-cross-linking followed by hydroxypropylation. The physicochemical, material, and tablet properties of the modified starches were investigated with the aim of understanding their properties to determine their potential use for different applications. The tablet formation properties were assessed using 3D modeling, the Heckel equation, and force-displacement profiles. The analyzed tablet properties were elastic recovery, compactibility, and disintegration. The result indicates that the modifications generally increased the swelling power for all the starches in the rank order hydroxypropyl > hydroxypropylated cross-linked > cross-linked (CL) while the solubility did not show a clear-cut pattern. This indicates that hydroxypropylation generally showed the strongest effects on swelling. Furthermore, hydroxypropylation improved the hot water swelling of the CL starches. The modifications did not cause any detectable morphological change in the starch granules shape or size although slight rupture was observed in some granules. CL starch had the lowest water sorption capacity and hydroxypropylation increased the sorption capacity of the CL starches. The material property results indicate that hydroxypropylation and cross-linking did not significantly improve the flowability and compressibility but improved bonding, which resulted in an increased compaction and higher tablet crushing force even though they all disintegrated rapidly. Thus, the modified Dioscorea starches showed potentials for development as new excipients in solid dosage form design, and they could be useful as disintegrants or for Soft tableting.

  3. Synthesis of γ-hydroxypropyl P-chirogenic (±)-phosphorus oxide derivatives by regioselective ring-opening of oxaphospholane 2-oxide precursors

    PubMed Central

    Binyamin, Iris; Meidan-Shani, Shoval

    2015-01-01

    Summary The synthesis of P-chirogenic (±)-phosphine oxides and phosphinates via selective nucleophilic ring opening of the corresponding oxaphospholanes is described. Two representative substrates: the phosphonate 2-ethoxy-1,2-oxaphospholane 2-oxide and the phosphinate 2-phenyl-1,2-oxaphospholane 2-oxide were reacted with various Grignard reagents to produce a single alkyl/aryl product. These products may possess further functionalities in addition to the phosphorus center such as the γ-hydroxypropyl group which results from the ring opening and π-donor moieties such as aryl, allyl, propargyl and allene which originates from the Grignard reagent. PMID:26425187

  4. Efficiency of High Molecular Weight Backbone Degradable HPMA Copolymer – Prostaglandin E1 Conjugate in Promotion of Bone Formation in Ovariectomized Rats

    PubMed Central

    Pan, Huaizhong; Sima, Monika; Miller, Scott C.; Kopečková, Pavla; Yang, Jiyuan; Kopeček, Jindřich

    2013-01-01

    Multiblock, high molecular weight, linear, backbone degradable HPMA copolymer-prostaglandin E1 (PGE1) conjugate has been synthesized by RAFT polymerization mediated by a new bifunctional chain transfer agent (CTA), which contains an enzymatically degradable oligopeptide sequence flanked by two dithiobenzoate groups, followed by post-polymerization aminolysis and thiol-ene chain extension. The multiblock conjugate contains Asp8 as the bone-targeting moiety and enzymatically degradable bonds in the polymer backbone; in vivo degradation produces cleavage products that are below the renal threshold. Using an ovariectomized (OVX) rat model, the accumulation in bone and efficacy to promote bone formation was evaluated; low molecular weight conjugates served as control. The results indicated a higher accumulation in bone, greater enhancement of bone density, and higher plasma osteocalcin levels for the backbone degradable conjugate. PMID:23731780

  5. Synthesis, characterization, and antibacterial activity of N,O-quaternary ammonium chitosan.

    PubMed

    Xu, Tao; Xin, Meihua; Li, Mingchun; Huang, Huili; Zhou, Shengquan; Liu, Juezhao

    2011-11-08

    N,N,N-Trimethyl O-(2-hydroxy-3-trimethylammonium propyl) chitosans (TMHTMAPC) with different degrees of O-substitution were synthesized by reacting O-methyl-free N,N,N-trimethyl chitosan (TMC) with 3-chloro-2-hydroxy-propyl trimethyl ammonium chloride (CHPTMAC). The products were characterized by (1)H NMR, FTIR and TGA, and investigated for antibacterial activity against Staphylococcus aureus and Escherichia coli under weakly acidic (pH 5.5) and weakly basic (pH 7.2) conditions. TMHTMAPC exhibited enhanced antibacterial activity compared with TMC, and the activity of TMHTMAPC increased with an increase in the degree of substitution. Divalent cations (Ba(2+) and Ca(2+)) strongly reduced the antibacterial activity of chitosan, O-carboxymethyl chitosan and N,N,N-trimethyl-O-carboxymethyl chitosan, but the repression on the antibacterial activity of TMC and TMHTMAPC was weaker. This indicates that the free amino group on chitosan backbone is the main functional group interacting with divalent cations. The existence of 100 mM Na(+) slightly reduced the antibacterial activity of both chitosan and its derivatives. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Cathepsin B-sensitive polymers for compartment-specific degradation and nucleic acid release

    PubMed Central

    Chu, David S.H.; Johnson, Russell N.; Pun, Suzie H.

    2011-01-01

    Degradable cationic polymers are desirable for in vivo nucleic acid delivery because they offer significantly decreased toxicity over non-degradable counterparts. Peptide linkers provide chemical stability and high specificity for particular endopeptidases but have not been extensively studied for nucleic acid delivery applications. In this work, enzymatically degradable peptide-HPMA copolymers were synthesized by RAFT polymerization of HPMA with methacrylated peptide macromonomers, resulting in polymers with low polydispersity and near quantitative incorporation of peptides. Three peptide-HPMA copolymers were evaluated: (i) pHCathK10, containing peptides composed of the linker phe-lys-phe-leu (FKFL), a substrate of the endosomal/lysosomal endopeptidase cathepsin B, connected to oligo-(l)-lysine for nucleic acid binding, (ii) pHCath(d)K10, containing the FKFL linker with oligo-(d)-lysine, and (iii) pH(d)Cath(d)K10, containing all (d) amino acids. Cathepsin B degraded copolymers pHCathK10 and pHCath(d)K10 within one hour while no degradation of pH(d)Cath(d)K10 was observed. Polyplexes formed with pHCathK10 copolymers show DNA release by 4 hrs of treatment with cathepsin B; comparatively, polyplexes formed with pHCath(d)K10 and pH(d)Cath(d)K10 show no DNA release within 8 hrs. Transfection efficiency in HeLa and NIH/3T3 cells were comparable between the copolymers but pHCathK10 was less toxic. This work demonstrates the successful application of peptide linkers for degradable cationic polymers and DNA release. PMID:22036879

  7. Fluid loss control additives for oil well cementing compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crema, S.C.; Kucera, C.H.

    1992-03-03

    This patent describes a cementing composition useful in cementing oil, gas and water wells. It comprises hydraulic cement; and a fluid loss additive in an amount effective to reduce fluid loss, the fluid loss additive comprised of a copolymer of acrylamide monomer and vinyl formamide monomer and derivatives thereof in a weight percent ratio of from about 95:5 to 5:95, the copolymer having a molecular weight range of from about 10,000 to 3,000,000, the acrylamide monomer being selected from the group consisting of acrylamide, methacrylamide, N,N-dimethyl(meth)acrylamide, dialkylaminoalkyl(meth) acrylamide and mixtures thereof, the vinyl formamide monomer being selected from the groupmore » consisting of vinyl formamide, its hydrolysis products and derivatives thereof.« less

  8. Crosslinking hydroxylated reduced graphene oxide with RAFT-CTA: A nano-initiator for preparation of well-defined amino acid-based polymer nanohybrids.

    PubMed

    Namvari, Mina; Biswas, Chandra S; Wang, Qiao; Liang, Wenlang; Stadler, Florian J

    2017-10-15

    Here, we demonstrate a novel reversible addition-fragmentation chain transfer agent (RAFT-CTA)-modified reduced graphene oxide nanosheets (CTA-rGONSs) by crosslinking rGONSs with a RAFT-CTA via esterification reaction. These nano CTA-rGONSs were used to polymerize a hydrophobic amino acid-based methacrylamide (N-acryloyl-l-phenylalanine methyl ester) monomer with different monomer/initiator ratios. Thermogravimetric analysis showed that the polymer-graphene composites were thermally more stable than GO itself. M n of the polymers increased with increasing monomer/initiator ratio, while the polydispersity index decreased, indicating controlled polymerization. The composites were stable in DMF even after two months. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. 3D bioprinting of BMSC-laden methacrylamide gelatin scaffolds with CBD-BMP2-collagen microfibers.

    PubMed

    Du, Mingchun; Chen, Bing; Meng, Qingyuan; Liu, Sumei; Zheng, Xiongfei; Zhang, Cheng; Wang, Heran; Li, Hongyi; Wang, Nuo; Dai, Jianwu

    2015-12-18

    Three-dimensional (3D) bioprinting combines biomaterials, cells and functional components into complex living tissues. Herein, we assembled function-control modules into cell-laden scaffolds using 3D bioprinting. A customized 3D printer was able to tune the microstructure of printed bone mesenchymal stem cell (BMSC)-laden methacrylamide gelatin scaffolds at the micrometer scale. For example, the pore size was adjusted to 282 ± 32 μm and 363 ± 60 μm. To match the requirements of the printing nozzle, collagen microfibers with a length of 22 ± 13 μm were prepared with a high-speed crusher. Collagen microfibers bound bone morphogenetic protein 2 (BMP2) with a collagen binding domain (CBD) as differentiation-control module, from which BMP2 was able to be controllably released. The differentiation behaviors of BMSCs in the printed scaffolds were compared in three microenvironments: samples without CBD-BMP2-collagen microfibers in the growth medium, samples without microfibers in the osteogenic medium and samples with microfibers in the growth medium. The results indicated that BMSCs showed high cell viability (>90%) during printing; CBD-BMP2-collagen microfibers induced BMSC differentiation into osteocytes within 14 days more efficiently than the osteogenic medium. Our studies suggest that these function-control modules are attractive biomaterials and have potential applications in 3D bioprinting.

  10. Enhancement and inhibition effects on the corneal permeability of timolol maleate: Polymers, cyclodextrins and chelating agents.

    PubMed

    Rodríguez, Isabel; Vázquez, José Antonio; Pastrana, Lorenzo; Khutoryanskiy, Vitaliy V

    2017-08-30

    This study investigates how both bioadhesive polymers (chitosan, hyaluronic acid and alginate) and permeability enhancers (ethylene glycol- bis(2-aminoethylether)- N, N, N', N'- tetraacetic acid (EGTA) and hydroxypropyl-ß-cyclodextrin) influence the permeability of the anti-glaucoma drug timolol maleate through ex vivo bovine corneas. Our results showed that only the permeability enhancers alone were able to increase drug permeability, whereas the polymers significantly reduced drug permeation, and however, they increased the pre-corneal residence of timolol. Ternary systems (polymer-enhancer-drug) showed a reduced drug permeability compared to the polymers alone. Fluorescence microscopy analysis of the epithelium surface confirmed there was no evidence of epithelial disruption caused by these formulations, suggesting that polymer-enhancer interactions reduce drug solubilization and counteract the disruptive effect of the permeability enhancers on the surface of the cornea. Further mucoadhesive tests, revealed a stable interaction of chitosan and hyaluronic acid with the epithelium, while alginate showed poor mucoadhesive properties. The differences in mucoadhesion correlated with the permeability of timolol maleate observed, i.e. formulations containing mucoadhesive polymers showed lower drug permeabilities. The results of the present study indicate polymers acting as an additional barrier towards drug permeability which is even more evident in the presence of permeability enhancers like EGTA and hydroxypropyl-ß-cyclodextrin. Then, this study highlights the need to adequately select additives intended for ocular applications since interactions between them can have opposite results to what expected in terms of drug permeability. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Synthesis of modified cyclic and acyclic dextrins and comparison of their complexation ability

    PubMed Central

    Jicsinszky, László; Sohajda, Tamás; Puskás, István; Fenyvesi, Éva

    2014-01-01

    Summary We compared the complex forming ability of α-, β- and γ-cyclodextrins (α-CD, β-CD and γ-CD) with their open ring analogs. In addition to the native cyclodextrins also modified cyclodextrins and the corresponding maltooligomers, functionalized with neutral 2-hydroxypropyl moieties, were synthesized. A new synthetic route was worked out via bromination, benzylation, deacetylation and debenzylation to obtain the 2-hydroxypropyl maltooligomer counterparts. The complexation properties of non-modified and modified cyclic and acyclic dextrins were studied and compared by photon correlation spectroscopy (PCS) and capillary electrophoresis (CE) using model guest compounds. In some cases cyclodextrins and their open-ring analogs (acyclodextrins) show similar complexation abilities, while with other guests considerably different behavior was observed depending on the molecular dimensions and chemical characteristics of the guests. This was explained by the enhanced flexibility of the non-closed rings. Even the signs of enantiorecognition were observed for the chloropheniramine/hydroxypropyl maltohexaose system. Further studies are planned to help the deeper understanding of the interactions. PMID:25550750

  12. Metabolism of difebarbamate in man.

    PubMed

    Vachta, J; Valter, K; Siegfried, B

    1990-01-01

    The metabolism of 1,3-bis(3-butoxy-2-carbamoyloxypropyl)-5-ethyl-5-phenyl- (1H,3H,5H)-pyrimidine-2,4,6-trione (difebarbamate) in man was studied. Human volunteers received a single oral dose of 25 mg/kg difebarbamate. Urine was extracted with Amberlite XAD-2 resin and the extracts were separated by preparative HPLC after enzymatic hydrolysis. Four major metabolites were isolated and their structures were determined using NMR and mass spectrometry. The oxygen dealkylation led to the formation of two metabolites: 1-(3-butoxy-2-carbamoyloxypropyl)-3-(2-carbamoyloxy-3-hydrox ypropyl)-5-ethyl-5- phenyl-(1H, 3H, 5H)-pyrimidine-2,4,6,-trione and 1,3-bis(2-carbamoyloxy-3-hydroxypropyl)-5-ethyl-5-phenyl-(1H,3H,5H )- pyrimidine-2,4,6,-trione. The hydrolysis of the carbamoyloxy group with the oxygen dealkylation led to the formation of 1-(2-carbamoyloxy-3-hydroxypropyl)-3-(2,3-dihydroxypropyl)-5-ethyl - 5-phenyl-(1H,3H,5H)-pyrimidine-2,4,6,-tione, whereas the 4-hydroxylation of the benzene ring together with the oxygen dealkylation led to the formation of 1,3-bis(2-carbamoyloxy-3-hydroxypropyl)-5-ethyl-5-(4-hydroxyphenyl )-(1H,3H,5H)- pyrimidine-2,4,6,-trione. No traces of the parent drug were found.

  13. Super strong dopamine hydrogels with shape memory and bioinspired actuating behaviours modulated by solvent exchange.

    PubMed

    Huang, Jiahe; Liao, Jiexin; Wang, Tao; Sun, Weixiang; Tong, Zhen

    2018-03-28

    Dopamine-containing hydrogels were synthesized by copolymerization of dopamine methacrylamide (DMA), N,N-dimethylacrylamide (DMAA), and an N,N'-methylenebisacrylamide (BIS) crosslinker in a mixed solvent of water and DMSO. The association of DMA was formed by simply immersing in water to facilely reinforce the hydrogel due to the introduction of the second physical crosslinking. The tensile strength of the hydrogels was increased greatly and regulated in a wide range from 200 kPa to over 2 MPa. The association of DMA was destroyed upon immersing in DMSO. This reversible formation and dissociation of the association structure endowed the hydrogel with shape memory and actuating capabilities. Rapid shape fixing in water and complete shape recovery in DMSO was realized within several minutes. Bioinspired functional soft actuators were designed based on the reversible association and metal ion coordination of DMA, including fast responsive hydrogel tentacles, programable multiple shape change, reversible and versatile painting and writing "hydrogel paper". The facile preparation and strength regulation provide a new way to design novel soft actuators through solvent exchange, and will inspire more complex applications upon combining the association with other properties of mussel inspired dopamine derivatives.

  14. Poly(vinylidene fluoride-co-hexafluoropropylene)-graft-poly(dopamine methacrylamide) copolymers: A nonlinear dielectric material for high energy density storage

    NASA Astrophysics Data System (ADS)

    Rahimabady, Mojtaba; Qun Xu, Li; Arabnejad, Saeid; Yao, Kui; Lu, Li; Shim, Victor P. W.; Gee Neoh, Koon; Kang, En-Tang

    2013-12-01

    A nonlinear dielectric poly(vinylidene fluoride-co-hexafluoropropylene)-graft-poly(dopamine methacrylamide) [P(VDF-HFP)-g-PDMA] graft copolymer with ultra-high energy density of 33 J/cm3 was obtained by thermally initiated radical graft polymerization. It was observed that the dielectric constant of the graft copolymer films was 63% higher than that of P(VDF-HFP), with a large dielectric breakdown strength (>850 MV/m). Theoretical analyses and experimental measurements showed that the significant improvement in the electric polarization was attributed to the introduction of the highly polarizable hydroxyl groups in the PDMA side chains, and the large breakdown strength arose from the strong adhesion bonding of the catechol-containing graft copolymer to the metal electrode.

  15. Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element.

    PubMed

    Lakshmi, Dhana; Bossi, Alessandra; Whitcombe, Michael J; Chianella, Iva; Fowler, Steven A; Subrahmanyam, Sreenath; Piletska, Elena V; Piletsky, Sergey A

    2009-05-01

    One of the difficulties with using molecularly imprinted polymers (MIPs) and other electrically insulating materials as the recognition element in electrochemical sensors is the lack of a direct path for the conduction of electrons from the active sites to the electrode. We have sought to address this problem through the preparation and characterization of novel hybrid materials combining a catalytic MIP, capable of oxidizing the template, catechol, with an electrically conducting polymer. In this way a network of "molecular wires" assists in the conduction of electrons from the active sites within the MIP to the electrode surface. This was made possible by the design of a new monomer that combines orthogonal polymerizable functionality; comprising an aniline group and a methacrylamide. Conducting films were prepared on the surface of electrodes (Au on glass) by electropolymerization of the aniline moiety. A layer of MIP was photochemically grafted over the polyaniline, via N,N'-diethyldithiocarbamic acid benzyl ester (iniferter) activation of the methacrylamide groups. Detection of catechol by the hybrid-MIP sensor was found to be specific, and catechol oxidation was detected by cyclic voltammetry at the optimized operating conditions: potential range -0.6 V to +0.8 V (vs Ag/AgCl), scan rate 50 mV/s, PBS pH 7.4. The calibration curve for catechol was found to be linear to 144 microM, with a limit of detection of 228 nM. Catechol and dopamine were detected by the sensor, whereas analogues and potentially interfering compounds, including phenol, resorcinol, hydroquinone, serotonin, and ascorbic acid, had minimal effect (< or = 3%) on the detection of either analyte. Non-imprinted hybrid electrodes and bare gold electrodes failed to give any response to catechol at concentrations below 0.5 mM. Finally, the catalytic properties of the sensor were characterized by chronoamperometry and were found to be consistent with Michaelis-Menten kinetics.

  16. Determination of some metal ions in various meat and baby food samples by atomic spectrometry.

    PubMed

    Daşbaşı, Teslima; Saçmacı, Şerife; Ülgen, Ahmet; Kartal, Şenol

    2016-04-15

    In this paper, we report a simple and rapid solid phase extraction system for the separation/preconcentration and determination of Cd(II), Co(II), Cu(II), Fe(III), Cr(III), Pb(II), and Zn(II) ions by flame atomic absorption spectrometry (FAAS). This method is based upon the retention of metal ions on a column packed with poly[N-(3-methyl-1H-indole-1-yl)]-2-methacrylamide-co-2-acrylamido-2-methyl-1-propane sulphonic acid-co divinylbenzene] (MMAD) resin as a solid-phase extraction (SPE) sorbent at pH 8. At the optimized conditions, the limits of detection (3 s/b) between 0.12 and 1.6 μg L(-1), preconcentration factor of 100, and the relative standard deviation of ⩽1.8% were achieved (n=10). The accuracy of the method was verified by analyzing certified reference materials (CRMs) and performing recovery experiments. The developed method was successfully applied to the various natural water, meat products and baby food samples. The recoveries of analyte ions were found in added real samples and CRMs from 95% to 102%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Development and In Vitro Evaluation of an Innovative “Dietary Flavonoid Supplement” on Osteoarthritis Process

    PubMed Central

    Panico, Anna Maria; Puglisi, Giovanni

    2017-01-01

    The aim of this study was to evaluate the antidegenerative effect in osteoarthritis damage of eriocitrin alone and eriocitrin formulated as innovative “dietary flavonoid supplement.” A complexation between eriocitrin and hydroxypropyl β-cyclodextrin by solubilization/freeze-drying method was performed. The complex in solution was evaluated by phase solubility studies and the optimal 1 : 2 flavanone/cyclodextrin molar ratio was selected. Hydroxypropyl β-cyclodextrin was able to complex eriocitrin as confirmed by UV-Vis absorption, DSC, and FTIR studies. The complex formed increased the eriocitrin water solubility (from 4.1 ± 0.2 g·L−1 to 11.0 ± 0.1 g·L−1) and dissolution rate (from 37.0% to 100%) in 30 min. The in vitro studies exhibit the notion that eriocitrin and its complex inhibit AGEs in a similar manner because hydroxypropyl β-cyclodextrin does not interfere with the flavanone intrinsic property. Instead, the presence of cyclodextrin improves eriocitrin antioxidant stability maintaining a high fluorescence value until 8 hours with respect to the pure materials. Moreover, hydroxypropyl β-cyclodextrin showed moderate GAGs restoration acting synergistically with the complexed compound to maintain the structural chondrocytes integrity. The results point out that ERT/HP-betaCD complex possesses technological and biological characteristics able to obtain an easily soluble nutraceutical product, which reduces the degenerative and oxidative damage which occurs in osteoarthritis, and improve the patient compliance. PMID:28367273

  18. Rutgers/NJDOT Pavement Resource Program (NJDOT Statewide GPR Project Network GPR Data Collection and Analysis Update of HPMA GPR Database)

    DOT National Transportation Integrated Search

    2008-05-01

    Center for Advanced Transportation Infrastructure (CAIT) of Rutgers University is mandated to conduct Ground Penetrating Radar (GPR) surveys to update the NJDOT's pavement management system with GPR measured pavement layer thicknesses. Based on the r...

  19. Supramolecular hydrogel formation between chitosan and hydroxypropyl β-cyclodextrin via Diels-Alder reaction and its drug delivery.

    PubMed

    Zhang, Mengke; Wang, Jinpeng; Jin, Zhengyu

    2018-07-15

    Chitosan-cyclodextrin hydrogel (CFCD) was prepared via Diels-Alder reaction between furfural functionalized chitosan (CF) and N-maleoyl alanine functionalized hydroxypropyl β-cyclodextrin (HPCD-AMI) in aqueous media without any catalyst or initiator. The CF and HPCD-AMI were confirmed by Fourier transform infrared spectroscopy and 1 H nuclear magnetic resonance spectroscopy. The resultant CFCD hydrogel was characterized in terms of thermal peripteries, microstructure, rheology behavior, and swelling capacity. The rheology analysis found that the storage modulus G' ranged from 1pa to 1200pa as the degree of furfural substitute on chitosan increased from 2.6% to 28.3%, indicating the hydrogel strength can be tuned readily by reaction stoichiometry. The swelling behaviors proved that CFCD hydrogel was pH-responsive with low swelling capacity, which would be preferable for drug delivery. Drug adsorption analysis showed the introduction of cyclodextrin into CFCD hydrogels promoted drug adsorption capacity. In addition, methyl orange cumulative release in PBS buffer was only 48.85% after 24h, suggesting CFCD hydrogel had good sustained release capacity on the loaded drug. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Chimeric polymers formed from a monomer capable of free radical, oxidative and electrochemical polymerisation.

    PubMed

    Lakshmi, Dhana; Whitcombe, Michael J; Davis, Frank; Chianella, Iva; Piletska, Elena V; Guerreiro, Antonio; Subrahmanyam, Sreenath; Brito, Paula S; Fowler, Steven A; Piletsky, Sergey A

    2009-05-21

    A new monomer, which incorporates both aniline and methacrylamide functional groups, was shown to possess orthogonal polymerisation behaviour to produce conjugated polyaniline suitable for a wide range of applications.

  1. Treatment of symptoms of erythemato-telangiectatic rosacea with topical potassium azeloyl diglycinate and hydroxypropyl chitosan: Results of a sponsor-free, multicenter, open study.

    PubMed

    Veraldi, Stefano; Raia, Daniele Domenico; Schianchi, Rossana; De Micheli, Paolo; Barbareschi, Mauro

    2015-04-01

    Thirty-seven adult Caucasian patients (9 males and 28 females), with erythemato-telangiectatic rosacea accompanied by stinging and burning sensation, were treated with a cream containing 5% potassium azeloyl diglycinate and 1% hydroxypropyl chitosan. All patients were previously treated at other centers with topical azelaic acid and/or metronidazole. The cream was applied twice daily for 12 weeks. The objective of the study was the evaluation of the soothing effect of the cream: stinging and burning sensation were measured by means of a 4-point scale (0 = absent, 1 = mild, 2 = moderate, and 3 = severe). All patients were clinically evaluated every 4 weeks. Of 37 patients (81.1%), 30 were considered evaluable. Before the beginning of the study, the total score of stinging and burning sensation was 66 (mean: 2.2 points/patient); at the end of the study, it was 37 points (-29) (mean: 1.2 points/patient), with a reduction of 56.1%. No side effects were reported or observed. This study shows that the fixed combination potassium azeloyl diglycinate - hydroxypropyl chitosan is effective in reducing stinging and burning sensation in patients with erythemato-telangiectatic rosacea.

  2. Substitution pattern elucidation of hydroxypropyl Pinus pinaster (Ait.) bark polyflavonoid derivatives by ESI(-)-MS/MS.

    PubMed

    García Marrero, Danny E; Glasser, Wolfgang G; Pizzi, Antonio; Paczkowski, Sebastian; Laborie, Marie-Pierre G

    2014-10-01

    The structure of condensed tannins (CTs) from Pinus pinaster bark extract and their hydroxypropylated derivatives with four degrees of substitution (DS 1, 2, 3 and 4) has been characterized for the first time using negative-ion mode electrospray ionization tandem mass spectrometry (ESI(-)-MS/MS). The results showed that P. pinaster bark CTs possess structural homogeneity in terms of monomeric units (C(15), catechin). The oligomer sizes were detected to be dimers to heptamers. The derivatives showed typical phenyl-propyl ether mass fragmentation by substituent elimination (58 amu) and inherent C(15) flavonoid fissions. The relative abundance of the product ions revealed a preferential triple, tetra-/penta- and octa- hydroxypropylation substitution pattern in the monomer, dimer and trimer derivatives, respectively. A defined order of -OH reactivity towards propylene oxide was established by means of multistage experiments (A-ring ≥ B-ring > C-ring). A high structural heterogeneity of the modified oligomers was detected. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Anti-Helicobacter pylori activities of selected N-substituted cinnamamide derivatives evaluated on reference and clinical bacterial strains.

    PubMed

    Klesiewicz, Karolina; Karczewska, Elżbieta; Nowak, Paweł; Skiba-Kurek, Iwona; Sito, Edward; Pańczyk, Katarzyna; Koczurkiewicz, Paulina; Żelaszczyk, Dorota; Pękala, Elżbieta; Waszkielewicz, Anna M; Budak, Alicja; Marona, Henryk; Gunia-Krzyżak, Agnieszka

    2018-05-01

    In this study, thirty-five N-substituted derivatives of cinnamic acid amide (cinnamamide) were evaluated for anti-Helicobacter pylori activity using an agar disc-diffusion method. Qualitative screening was performed on a reference H. pylori strain (ATCC 43504), resulting in the identification of the three most active compounds, 8 (R,S-(2E)-3-(4-chlorophenyl)-N-(2-hydroxypropyl)prop-2-enamide, minimal inhibitory concentration, MIC = 7.5 µg/mL), 23 ((2E)-3-(4-chlorophenyl)-N-(2-hydroxycyclohexyl)prop-2-enamide, MIC = 10 µg/mL), and 28 ((2E)-3-(4-chlorophenyl)-N-(4-oxocyclohexyl)prop-2-enamide, MIC = 10 µg/mL). These compounds were further tested on twelve well-characterized clinical strains, yielding MIC values that ranged from 10 to 1000 µg/mL. Preliminary safety assessments of the compounds were made using the MTT viability test for cytotoxicity and Ames test for mutagenicity, which showed them to be generally safe, although compounds 8 and 28 showed mutagenic activity at some of the tested concentrations. The results of this study showed the anti-H. pylori potential of cinnamamide derivatives.

  4. Disposition of inhaled 1-chloro-2-propanol in F344/N rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, J.A.; Birnbaum, L.S.; Dahl, A.R.

    1988-09-30

    Propylene chlorohydrins, of which 1-chloro-2-propanol (1-CP) is a constituent, used as intermediates in the manufacture of propylene oxide and have been identified as potential air pollutants. The objective of these studies was to determine whether changes in the inhaled exposure concentration would affect the disposition of 1-CP in rats. In addition, experiments were conducted to identify the carbon atom of 1-CP that is metabolized to CO2. Rats were exposed nose-only to (14C)1-CP for 6 hr to 8.3 +/- 1.0 ppm (26.1 +/- 3.2 micrograms/liter air) or 77 +/- 4 ppm (245 +/- 13 micrograms/liter air) (mean +/- SE). There weremore » two major routes of elimination of 14C, urinary and exhalation of CO2, which together accounted for about 80% of the total 14C in excreta and carcass. Half-times for elimination of 14C in urine as 14CO2 were between 3 and 7 hr with no effect of exposure concentration on the elimination half-times for either route. After the end of exposure, kidneys, livers, trachea, and nasal turbinates contained high concentrations of (14C)1-CP equivalents at both exposure concentrations (30-50 nmol 14C/g tissue for the 8 ppm exposure level and 200-350 nmol 14C/g tissue for the 80 ppm exposure level). Elimination of 14C from tissues was biphasic with about 50% of the material in a tissue being rapidly eliminated with a half-time of 1 to 3 hr and the remaining material slowly eliminated with a half-time of 40 to 80 hr. There was no effect of exposure concentration on elimination half-times in tissues. Major metabolites detected in urine and tissues (liver, kidney, and lung) were N-acetyl-S-(hydroxypropyl)cysteine and/or S-(2-hydroxypropyl)-cysteine. Little unmetabolized 1-CP (less than 1%) was detected in analyzed tissues or urine.« less

  5. Mimetic marine antifouling films based on fluorine-containing polymethacrylates

    NASA Astrophysics Data System (ADS)

    Sun, Qianhui; Li, Hongqi; Xian, Chunying; Yang, Yihang; Song, Yanxi; Cong, Peihong

    2015-07-01

    Novel methacrylate copolymers containing catechol and trifluoromethyl pendant side groups were synthesized by free radical polymerization of N-(3,4-dihydroxyphenyl)ethyl methacrylamide (DMA) and 2,2,2-trifluoroethyl methacrylate (TFME) with α,α‧-azobisisobutyronitrile (AIBN) as initiator. A series of copolymers with different content of TFME ranging from 3% to 95% were obtained by changing the molar ratio of DMA to TFME from 25:1 to 1:25. Fourier transform infrared (FT-IR) spectroscopy, gel permeation chromatography (GPC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used to characterize the copolymers, which displayed a certain degree of hardness and outstanding thermostability reflected from their high glass transition temperatures. The copolymers could adhere to surfaces of glass, plastics and metals due to introduction of catechol groups as multivalent hydrogen bonding anchors. Water contact angle on the polymer films was up to 117.4°. Chemicals resistance test manifested that the polymer films possessed excellent resistance to water, salt, acid and alkali. Moreover, the polymer films displayed fair antifouling property and might be used as promising environmentally friendly marine antifouling coatings.

  6. Carbodithioic acid esters of fluoxetine, a novel class of dual-function spermicides.

    PubMed

    Kiran Kumar, S T V S; Kumar, Lalit; Sharma, Vishnu L; Jain, Ashish; Jain, Rajeev K; Maikhuri, Jagdamba P; Kumar, Manish; Shukla, Praveen K; Gupta, Gopal

    2008-10-01

    Carbodithioic acid esters of fluoxetine have been prepared by replacing the methylamino function in aminopropane chain with carbodithioic acid ester group and by adding various S-2-hydroxypropyl ester of dialkyl carbodithioic acid at 3-methylamino group. Some of these compounds showed spermicidal, antifungal and anti-Trichomonas activities. The study revealed that incorporation of carbodithioic acid residue directly into fluoxetine structure leads to compounds with better antifungal and anti-Trichomonas activities, and N-methyl-[3-phenyl-3-(4-trifluoromethyl-phenoxy)-propyl]carbodithioic acid S-(2-pyrrolidino-ethyl) ester (14) has shown better profile than both fluoxetine and nonoxynol-9. Further lead optimization may yield a potent dual-function spermicide.

  7. Influence of hydroxypropyl methylcellulose on drug release pattern of a gastroretentive floating drug delivery system using a 3(2) full factorial design.

    PubMed

    Swain, Kalpana; Pattnaik, Satyanarayan; Mallick, Subrata; Chowdary, Korla Appana

    2009-01-01

    In the present investigation, controlled release gastroretentive floating drug delivery system of theophylline was developed employing response surface methodology. A 3(2) randomized full factorial design was developed to study the effect of formulation variables like various viscosity grades and contents of hydroxypropyl methylcellulose (HPMC) and their interactions on response variables. The floating lag time for all nine experimental trial batches were less than 2 min and floatation time of more than 12 h. Theophylline release from the polymeric matrix system followed non-Fickian anomalous transport. Multiple regression analysis revealed that both viscosity and content of HPMC had statistically significant influence on all dependent variables but the effect of these variables found to be nonlinear above certain threshold values.

  8. Carbon-11 labelling of 8[[3-[4-(2-[(11)C]methoxyphenyl)piperazin-1-yl]-2-hydroxypropyl]oxy]thiochroman, a presynaptic 5-HT(1A) receptor agonist, and its in vivo evaluation in anaesthetised rat and in awake cat.

    PubMed

    Zimmer, Luc; Fournet, Guy; Benoît, Joseph; Guillaumet, Gérald; Le Bars, Didier

    2003-07-01

    A new compound, 8[[3-[4-(2-[(11)C]methoxyphenyl)piperazin-1-yl]-2-hydroxypropyl]oxy]thiochroman was labeled via O-methylation with [(11)C]methyl iodide in good yield and specific activity. Original biological evaluations included (i) the study in anesthetized rat with a beta-sensitive intracerebral probe (beta-Microprobe), allowing to measure locally the kinetic of the new PET ligand, and (ii) a PET-scan on a conditioned cat maintained awake during the acquisition. In both in vivo techniques, the new ligand did not reveal any specific binding in hippocampus indicating that this radiotracer is not suitable for mapping 5HT(1A) receptors using positron emission tomography.

  9. Two decades of occupational (meth)acrylate patch test results and focus on isobornyl acrylate.

    PubMed

    Christoffers, Wietske A; Coenraads, Pieter-Jan; Schuttelaar, Marie-Louise A

    2013-08-01

    Acrylates constitute an important cause of occupational contact dermatitis. Isobornyl acrylate sensitization has been reported in only 2 cases. We encountered an industrial process operator with occupational contact dermatitis caused by isobornyl acrylate. (i) To investigate whether it is relevant to add isobornyl acrylate to the (meth)acrylate test series. (ii) To report patients with (meth)acrylate contact allergy at an occupational dermatology clinic. Our patch test database was screened for positive reactions to (meth)acrylates between 1993 and 2012. A selected group of 14 patients was tested with an isobornyl acrylate dilution series: 0.3%, 0.1%, 0.033%, and 0.01%. Readings were performed on D2, D3, and D7. One hundred and fifty-one patients were tested with our (meth)acrylate series; 24 had positive reactions. Most positive reactions were to 2-hydroxypropyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl methacrylate, and diethyleneglycol diacrylate. Hypothetical screening with 2-hydroxypropyl acrylate, ethyleneglycol dimethacrylate, ethoxylated bisphenol A glycol dimethacrylate and trimethylolpropane triacrylate identified 91.7% of the 24 patients. No positive reactions were observed in 14 acrylate-positive patients tested with the isobornyl acrylate dilution series. The 0.3% isobornyl acrylate concentration induced irritant reactions in 3 patients. We report a rare case of allergic contact dermatitis caused by isobornyl acrylate. However, this study provides insufficient support for isobornyl acrylate to be added to a (meth)acrylate series. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Active packaging using regenerated cellulose and hydroxypropyl amylopectin for fresh food products

    USDA-ARS?s Scientific Manuscript database

    As an alternate to non-sustainable plastic packaging, polymer blends were engineered using regenerated cellulose and a hydroxypropyl functionalized starch derivative. Initially, films were cast out of solution to determine optimum blend composition, and then components were reactively extruded to in...

  11. Utilization of hydroxypropyl carboxymethyl cellulose in synthesis of silver nanoparticles.

    PubMed

    Abdel-Halim, E S; Alanazi, Humaid H; Al-Deyab, Salem S

    2015-04-01

    Hydroxypropyl carboxymethyl cellulose samples having varying degrees of substitution and varying degrees of polymerization were used to reduce silver nitrate to silver nanoparticles. UV spectral analysis of silver nanoparticles colloidal solution reveal that increasing the pH of the reduction solution leads to improvement in the intensity of the absorption band for silver nanoparticles, to be maximum at pH 11. The absorption peak intensity also enhanced upon prolonging the reaction duration up to 60 min. The conversion of silver ions to metallic silver nanoparticles was found to be temperature-dependent and maximum transformation occurs at 60 °C. The reduction efficiency of hydroxypropyl carboxymethyl cellulose was found to be affected by its degree of polymerization. Colloidal solutions of silver nanoparticles having concentration up to 1000 ppm can be prepared upon fixing the ratio between silver nitrate and hydroxypropyl carboxymethyl cellulose at 0.017-0.3g per each 100ml of the reduction solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Hydroxypropyl cellulose as an option for supplementation of cryoprotectant solutions for embryo vitrification in human assisted reproductive technologies.

    PubMed

    Mori, Chiemi; Yabuuchi, Akiko; Ezoe, Kenji; Murata, Nana; Takayama, Yuko; Okimura, Tadashi; Uchiyama, Kazuo; Takakura, Kei; Abe, Hiroyuki; Wada, Keiko; Okuno, Takashi; Kobayashi, Tamotsu; Kato, Keiichi

    2015-06-01

    Hydroxypropyl cellulose (HPC) was investigated as a replacement for serum substitute supplement (SSS) for use in cryoprotectant solutions for embryo vitrification. Mouse blastocysts from inbred (n = 1056), hybrid (n = 128) strains, and 121 vitrified blastocysts donated by infertile patients (n = 102) were used. Mouse and human blastocysts, with or without zona pellucida, were vitrified and warmed in either 1% or 5% HPC or in 5% or 20% SSS-supplemented media using the Cryotop (Kitazato BioPharma Co. Ltd, Fuji, Japan) method, and the survival and oxygen consumption rates were assessed. Viscosity of each vitrification solution was compared. Survival rates of mouse hybrid blastocysts and human zona pellucida-intact blastocysts were comparable among the groups. Mouse and human zona pellucida-free blastocysts, which normally exhibit poor cryoresistance, showed significantly higher survival rates in 5% HPC than 5% SSS (P < 0.05). The 5% HPC-supplemented vitrification solution showed a significantly higher viscosity (P < 0.05). The blastocysts were easily detached from the Cryotop strip during warming when HPC-supplemented vitrification solution was used. The oxygen consumption rates were similar between non-vitrified and 5% HPC groups. The results suggest possible use of HPC for supplementation of cryoprotectant solutions and provide useful information to improve vitrification protocols. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  13. A selective optical sensor for picric acid assay based on photopolymerization of 3-(N-methacryloyl) amino-9-ethylcarbazole.

    PubMed

    Hu, Yan-Jun; Tan, Shu-Zhen; Shen, Guo-Li; Yu, Ru-Qin

    2006-06-16

    A novel optical sensor based on covalent immobilization for picric acid assay has been described. To improve the stability of the sensor, a terminal double bond was attached to the fluorescent compound, 3-amino-9-ethylcarbazole (AEC), via methacryloyl chloride. The resultant compound, 3-(N-methacryloyl) amino-9-ethylcarbazole (MAEC) was copolymerized with 2-hydroxypropyl methacrylate on surface-modified quartz glass plates by UV irradiation. The resulting optical sensor (optode membrane) was used to determine picric acid based on fluorescence quenching. It shows a linear response toward picric acid in the concentration range of 9.33 x 10(-8) to 9.33 x 10(-5) mol l(-1), with rapid response, high stability and good selectivity to picric acid.

  14. [Characterization of microstructure of ibuprofen-hydroxypropyl-beta-cyclodextrin and ibuprofen-beta-cyclodextrin by atomic force microscope].

    PubMed

    Wang, Li-juan; Zhu, Zhao-jing; Che, Ke-ke; Ju, Feng-ge

    2008-09-01

    The microstructures of ibuprofen-hydroxypropyl-bets-cyclodextrin (IBU-HP-beta-CyD) and ibuprofen-beta-cyclodextrin (IBU-beta-CyD) were observed by atomic force microscope (AFM). The high resolving capability of AFM has the tungsten filament probe with the spring constant of 0.06 N x m(-1). Samples were observed in a small scale scanning area of 10.5 nm x 10.5 nm and 800 x 800 pixels. The original scanning images were gained by tapping mode at room temperature. Their three-dimensional reconstruction of microstructure was performed by G3DR software. The outer diameters of HP-beta-CyD and beta-CyD are 1.53 nm. The benzene diameter of IBU is 0.62 nm, fitting to the inner diameters of HP-beta-CyD and beta-CyD. The benzene and hydrophobic chain of IBU enter into the hole of cyclodextrin at 1:1 ratio. The results were evidenced by IR, X-ray diffraction and the phase solubility.

  15. Improved hydroxypropyl methylcellulose (HPMC) films through incorporation of amylose-sodium palmitate inclusion complexes

    USDA-ARS?s Scientific Manuscript database

    Polymer film blends of hydroxypropyl methylcellulose (HPMC) and amylose-sodium palmitate inclusion complexes (Na-Palm) were produced with no plasticizer, and were observed to have improved physical and gas barrier properties as compared with pure HPMC. The crystalline amylose helices incorporating t...

  16. Composite edible films based on hydroxypropyl methyl cellulose reinforced with microcrystalline cellulose nanoparticles

    USDA-ARS?s Scientific Manuscript database

    It has been stated that hydroxypropyl methyl cellulose (HPMC) based films have promising applications in the food industry because of their environmental appeal, low cost, flexibility and transparency. Nevertheless, their mechanical and moisture barrier properties should be improved. The aim of th...

  17. 21 CFR 172.874 - Hydroxypropyl methylcellulose.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Hydroxypropyl methylcellulose. 172.874 Section 172.874 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN...

  18. Comparative studies of the influence of cyclodextrins on the stability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate.

    PubMed

    Scalia, Santo; Casolari, Alberto; Iaconinoto, Antonietta; Simeoni, Silvia

    2002-11-07

    The effects of beta-cyclodextrin (beta-CD) and hydroxypropyl-beta-cyclodextrin (HP-beta-CD) on the base-catalyzed degradation and light-induced decomposition of the sunscreen agent, trans-2-ethylhexyl-p-methoxycinnamate (trans-EHMC) were investigated. Reversed-phase liquid chromatography was used to study the interaction between natural and modified cyclodextrins, added to the mobile phase, and the sunscreen. Among the available cyclodextrins (beta-CD, HP-beta-CD, hydroxypropyl-alpha-cyclodextrin and hydroxypropyl-gamma-cyclodextrin), only HP-beta-CD and beta-CD produced a significant decrease in the chromatographic retention of trans-EHMC. The complexation of the sunscreen agent with HP-beta-CD and beta-CD was confirmed by thermal analysis and nuclear magnetic resonance spectroscopy. beta-CD depressed the decomposition of trans-EHMC in alkaline solutions more effectively than HP-beta-CD. Moreover, the irradiation-induced degradation of the sunscreen agent in emulsion vehicles was reduced by complexation with beta-CD (the extent of degradation was 26.1% for the complex compared to 35.8% for free trans-EHMC) whereas HP-beta-CD had no significant effect. Therefore, the complex of beta-CD with trans-EHMC enhances the chemical- and photo-stability of the sunscreen agent. Moreover, it limits adverse interactions of the UV filter with other formulation ingredients.

  19. High Temperature Stable Separator for Lithium Batteries Based on SiO2 and Hydroxypropyl Guar Gum

    PubMed Central

    Carvalho, Diogo Vieira; Loeffler, Nicholas; Kim, Guk-Tae; Passerini, Stefano

    2015-01-01

    A novel membrane based on silicon dioxide (SiO2) and hydroxypropyl guar gum (HPG) as binder is presented and tested as a separator for lithium-ion batteries. The separator is made with renewable and low cost materials and an environmentally friendly manufacturing processing using only water as solvent. The separator offers superior wettability and high electrolyte uptake due to the optimized porosity and the good affinity of SiO2 and guar gum microstructure towards organic liquid electrolytes. Additionally, the separator shows high thermal stability and no dimensional-shrinkage at high temperatures due to the use of the ceramic filler and the thermally stable natural polymer. The electrochemical tests show the good electrochemical stability of the separator in a wide range of potential, as well as its outstanding cycle performance. PMID:26512701

  20. Effects of Phenobarbital and Carbazole on Carcinogenesis of the Lung, Thyroid, Kidney, and Bladder of Rats Pretreated with N‐Bis(2‐hydroxypropyl)nitrosamine

    PubMed Central

    Masuda, Atsuko; Imaida, Katsumi; Ogiso, Tadashi; Ito, Nobuyuki

    1988-01-01

    Studies were made on potential modifying effects of phenobarbital (PB) and carbazole on tumor development induced by N‐bis(2‐hydroxypropyl)nitrosamine (DHPN), a wide‐spectrum carcinogen in rats. Effects on the lung, thyroid, kidney, bladder and liver were investigated. Male F344 rats were given 0.2% DHPN in their drinking water for 1 week and then 0.05% PB or 0.6% carbazole in their diet for 50 weeks. Control animals were treated with either DHPN or PB or carbazole only. Neither PB nor carbazole affected the incidence or histology of lung tumors. However, PB promoted the development of thyroid tumors and preneoplastic lesions of the liver, while carbazole promoted the induction of renal pelvic tumors. PMID:3133336

  1. Radiation polymerisable compositions containing 3-sorboyloxy-2-hydroxypropyl groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, G.E.

    1976-02-03

    Compounds having at least three 3-sorboyloxy-2-hydroxypropyl groups directly attached to ether oxygen atoms are polymerised by exposure to actinic radiation, preferably in the presence of a sensitizer such as Michler's ketone or benzoin. The compounds may be obtained by the reaction either of sorbic acid with a substance having at least three glycidyl ether groups or of glycidyl sorbate with a substance having at least three phenolic or alcoholic hydroxyl groups: if desired, not all of the glycidyl groups may be consumed, so that, after actinically induced polymerisation, the epoxide-containing polymer may be cross-linked by reaction with a curing agentmore » for epoxide resins. The compounds are useful in making printed circuits or printing plates for offset printing.« less

  2. Corrosion Inhibition of High Speed Steel by Biopolymer HPMC Derivatives

    PubMed Central

    Shi, Shih-Chen; Su, Chieh-Chang

    2016-01-01

    The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose phthalate (HPMCP), and hydroxypropyl methylcellulose acetate succinate (HPMCAS) film are investigated. Based on electrochemical impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist plot and Tafel polarization demonstrate promising anti-corrosion performance of HPMC and HPMCP. With increasing film thickness, both materials reveal improvement in corrosion inhibition. Moreover, because of a hydrophobic surface and lower moisture content, HPMCP shows better anti-corrosion performance than HPMCAS. The study is of certain importance for designing green corrosion inhibitors of high speed steel surfaces by the use of biopolymer derivatives. PMID:28773733

  3. [Pharmacological availability of erythromycin granules for children's use].

    PubMed

    Korenev, S V; Garsheva, G B; Nesterova, L Ia; Grakovskaia, L K; Tentsova, A I

    1990-08-01

    Pharmaceutical availability of erythromycin granules with polymeric coating of different composition+ was studied. With an account of the ++anatomo-physiological features of a child organism and the properties of the antibiotic, acetylphthalyl cellulose in combination with hydroxypropyl methylcellulose or methyl cellulose was used as a film forming agent. The coated granules were estimated by such parameters as the time of disintegration and the rate of dissolution in various media. The results of the study showed that coating of the erythromycin granules with the film composed of acetylphthalyl cellulose and hydroxypropyl methylcellulose in the ratio of 8 to 2 provided the required protection of the antibiotic in acid media and high pharmaceutical availability of the drug.

  4. Miniaturization of cellulose fibers and effect of addition on the mechanical and barrier properties of hydroxypropyl methylcellulose

    USDA-ARS?s Scientific Manuscript database

    Cellulose fibers were miniaturized by microfluidics technology and incorporated in hydroxypropyl methylcellulose (HPMC) films to study the effect of the addition of such fibers on the mechanical and barrier properties of HPMC films suitable for food packaging applications. The particle size of the f...

  5. 76 FR 41687 - Food Additives Permitted for Direct Addition to Food for Human Consumption; Hydroxypropyl Cellulose

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    .... FDA-2010-F-0103] Food Additives Permitted for Direct Addition to Food for Human Consumption... Drug Administration (FDA) is amending the food additive regulations for hydroxypropyl cellulose by..., New York, NY 10006, filed a food additive petition (FAP 0A4780). The petition proposed to amend the...

  6. 21 CFR 172.870 - Hydroxypropyl cellulose.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... by weight aqueous solution at 25 degrees C. (2) A cellulose ether containing propylene glycol groups... disintegrator in tablets or wafers containing dietary supplements of vitamins and/or minerals. The additive is...

  7. Thermodynamic characterization of the interaction behavior of a hydrophobically modified polyelectrolyte and oppositely charged surfactants in aqueous solution: effect of surfactant alkyl chain length.

    PubMed

    Bai, Guangyue; Nichifor, Marieta; Lopes, António; Bastos, Margarida

    2005-01-13

    We have used a precision isothermal titration microcalorimeter (ITC) to measure the enthalpy curves for the interaction of a hydrophobically modified polyelectrolyte (D40OCT30) with oppositely charged surfactants (SC(n)S) in aqueous solution. D40OCT30 is a newly synthesized polymer based on dextran having pendant N-(2-hydroxypropyl)-N,N-dimethyl-N-octylammonium chloride groups randomly distributed along the polymer backbone with degree of substitution of 28.1%. The employed anionic surfactants are sodium octyl sulfate (SC(8)S) and sodium tetradecyl sulfate (SC(14)S). Microcalorimetric results along with turbidity and kinematic viscosity measurements demonstrate systematically the thermodynamic characterization of the interaction of D40OCT30/SC(n)S. A three-dimensional diagram with the derived phase boundaries is drawn to describe the effect of the alkyl chain length of surfactant and of the ratio between surfactant and pendant groups on the interaction. A more complete picture of the interaction mechanism for D40OCT30/SC(n)S systems is proposed here.

  8. Low molecular weight polyethylenimine cross-linked by 2-hydroxypropyl-gamma-cyclodextrin coupled to peptide targeting HER2 as a gene delivery vector.

    PubMed

    Huang, Hongliang; Yu, Hai; Tang, Guping; Wang, Qingqing; Li, Jun

    2010-03-01

    Gene delivery is one of the critical steps for gene therapy. Non-viral vectors have many advantages but suffered from low gene transfection efficiency. Here, in order to develop new polymeric gene vectors with low cytotoxicity and high gene transfection efficiency, we synthesized a cationic polymer composed of low molecular weight polyethylenimine (PEI) of molecular weight of 600 Da cross-linked by 2-hydroxypropyl-gamma-cyclodextrin (HP gamma-CD) and then coupled to MC-10 oligopeptide containing a sequence of Met-Ala-Arg-Ala-Lys-Glu. The oligopeptide can target to HER2, the human epidermal growth factor receptor 2, which is often over expressed in many breast and ovary cancers. The new gene vector was expected to be able to target delivery of genes to HER2 positive cancer cells for gene therapy. The new gene vector was composed of chemically bonded HP gamma-CD, PEI (600 Da), and MC-10 peptide at a molar ratio of 1:3.3:1.2. The gene vector could condense plasmid DNA at an N/P ratio of 6 or above. The particle size of HP gamma-CD-PEI-P/DNA complexes at N/P ratios 40 was around 170-200 nm, with zeta potential of about 20 mV. The gene vector showed very low cytotoxicity, strong targeting specificity to HER2 receptor, and high efficiency of delivering DNA to target cells in vitro and in vivo with the reporter genes. The delivery of therapeutic IFN-alpha gene mediated by the new gene vector and the therapeutic efficiency were also studied in mice animal model. The animal study results showed that the new gene vector HP gamma-CD-PEI-P significantly enhanced the anti-tumor effect on tumor-bearing nude mice as compared to PEI (25 kDa), HP gamma-CD-PEI, and other controls, indicating that this new polymeric gene vector is a potential candidate for cancer gene therapy. (c) 2009 Elsevier Ltd. All rights reserved.

  9. 21 CFR 172.870 - Hydroxypropyl cellulose.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... viscosity of 10 centipoises for a 10 percent by weight aqueous solution at 25 degrees C. (2) A cellulose... use as a binder and disintegrator in tablets or wafers containing dietary supplements of vitamins and...

  10. 21 CFR 172.870 - Hydroxypropyl cellulose.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... viscosity of 10 centipoises for a 10 percent by weight aqueous solution at 25 degrees C. (2) A cellulose... use as a binder and disintegrator in tablets or wafers containing dietary supplements of vitamins and...

  11. Multiphase materials with lignin. IV. Blends of hydroxypropyl cellulose with lignin

    Treesearch

    Timothy G. Rials; Wolfgang G. Glasser

    1989-01-01

    Polymer blends of hydroxypropyl cellulose (HPC) and organosolv lignin (OSL) were prepared by mixing in solutions of both pyridine and dioxane, and casting as films, and by mixing in the melt followed by extrusion. All preparations exhibited partial miscibility as evidenced by a single Tg up to a composition of 40 wt % lignin above which phase...

  12. Thermal and dynamic mechanical properties of hydroxypropyl cellulose films

    Treesearch

    Timothy G. Rials; Wolfgang G. Glasser

    1988-01-01

    Differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) were used to characterize the morphology of slovent cast hydroxypropyl cellulose (HPC) films. DSC results were indicative of a semicrystalline material with a melt of 220°C and a glass transition at 19°C (T1), although an additional event was suggested by a...

  13. Multiphase materials with lignin: 5. Effect of lignin atructure on hydroxypropyl cellulose blend morphology

    Treesearch

    Timothy G. Rials; Wolfgang G. Glasser

    1990-01-01

    The incremental elimination of hydroxy functionality in an organosolv lignin by ethylation or acetylation dramatically influenced the state of miscibility and resulting morphology of blends prepared with hydroxypropyl cellulose (HPC). A maximum level of interation between the blend components, as determined from melting point depression, occurred where 23-40% of the...

  14. Cyclodextrin-modified MEKC for enantioseparation of hexaconazole, penconazole, and myclobutanil.

    PubMed

    Wan Ibrahim, Wan Aini; Hermawan, Dadan; Sanagi, M Marsin; Aboul-Enein, Hassan Y

    2009-02-01

    A CD-modified micellar EKC (CD-MEKC) method with 2-hydroxypropyl-gamma-CD (HP-gamma-CD) as chiral selector for the enantioseparation of three chiral triazole fungicides, namely hexaconazole, penconazole, and myclobutanil, is reported for the first time. Simultaneous enantioseparation of the three triazole fungicides was successfully achieved using a CD-MEKC system containing 40 mM HP-gamma-CD and 50 mM SDS in 25 mM phosphate buffer (pH 3.0) solution with resolutions (R(s)) greater than 1.60, peak efficiencies (N) greater than 200,000 for all enantiomers and an analysis time within 15 min compared to 36 min as previously reported using sulfated-beta-CD.

  15. DFT study of the adsorption of 3-chloro-2-hydroxypropyl trimethylammonium chloride on montmorillonite surfaces in solution

    NASA Astrophysics Data System (ADS)

    Yang, Zongyi; Liu, Wenli; Zhang, He; Jiang, Xinli; Min, Fanfei

    2018-04-01

    The study of the adsorption mechanism of 3-chloro-2-hydroxypropyl trimethylammonium chloride (CHPTA), which acts as an effective clay minerals hydration inhibitor, can provide an effective approach for the design of novel high-performance inhibitors with favorable molecular structures. Density functional theory (DFT) calculations were performed to investigate the adsorption mechanism of CHPTA on dry and hydrated montmorillonite (MMT) surfaces. The interactions between CHPTA, H2O, and MMT were systematically analyzed. It was found that CHPTA was mainly adsorbed on MMT by hydrogen bonds and especially electrostatic force and that the presence of Na ions favors the adsorption of CHPTA on the Na-(001) surface. In the presence of water molecules, the adsorption of CHPTA was promoted by H2O, which exhibited a cooperative adsorption effect by enhancing the MMT-CHPTA electrostatic force and by forming more hydrogen bonds and Hsbnd Cl bonds among CHPTA, H2O and MMT.

  16. Surface properties and aggregate morphology of partially fluorinated carboxylate-type anionic gemini surfactants.

    PubMed

    Yoshimura, Tomokazu; Bong, Miri; Matsuoka, Keisuke; Honda, Chikako; Endo, Kazutoyo

    2009-11-01

    Three anionic homologues of a novel partially fluorinated carboxylate-type anionic gemini surfactant, N,N'-di(3-perfluoroalkyl-2-hydroxypropyl)-N,N'-diacetic acid ethylenediamine (2C(n)(F) edda, where n represents the number of carbon atoms in the fluorocarbon chain (4, 6, and 8)) were synthesized. In these present gemini surfactants, the relatively small carboxylic acid moieties form hydrophilic head groups. The surface properties or structures of the aggregates of these surfactants are strongly influenced by the nonflexible fluorocarbons and small head groups; this is because these surfactants have a closely packed molecular structure. The equilibrium surface tension properties of these surfactants were measured at 298.2K for various fluorocarbon chain lengths. The plot of the logarithm of the critical micelle concentration (cmc) against the fluorocarbon chain lengths for 2C(n)(F) edda (n=4, 6, and 8) showed a minimum for n=6. Furthermore, the lowest surface tension of 2C(6)(F) edda at the cmc was 16.4mNm(-1). Such unique behavior has not been observed even in the other fluorinated surfactants. Changes in the shapes and sizes of these surfactant aggregate with concentration were investigated by dynamic light scattering and transmission electron microscopy (TEM). The TEM micrographs showed that in an aqueous alkali solution, 2C(n)(F) edda mainly formed aggregates with stringlike (n=4), cagelike (n=6), and distorted bilayer structures (n=8). The morphological changes in the aggregates were affected by the molecular structure composed of nonflexible fluorocarbon chains and flexible hydrocarbon chains.

  17. An Aminopropyl Carbazole Derivative Induces Neurogenesis by Increasing Final Cell Division in Neural Stem Cells.

    PubMed

    Shin, Jae-Yeon; Kong, Sun-Young; Yoon, Hye Jin; Ann, Jihyae; Lee, Jeewoo; Kim, Hyun-Jung

    2015-07-01

    P7C3 and its derivatives, 1-(3,6-dibromo-9H-carbazol-9-yl)-3-(p-tolylamino)propan-2-ol (1) and N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)-N-(3-methoxyphenyl)-4-methylbenzenesulfonamide (2), were previously reported to increase neurogenesis in rat neural stem cells (NSCs). Although P7C3 is known to increase neurogenesis by protecting newborn neurons, it is not known whether its derivatives also have protective effects to increase neurogenesis. In the current study, we examined how 1 induces neurogenesis. The treatment of 1 in NSCs increased numbers of cells in the absence of epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2), while not affecting those in the presence of growth factors. Compound 1 did not induce astrocytogenesis during NSC differentiation. 5-Bromo-2'-deoxyuridine (BrdU) pulsing experiments showed that 1 significantly enhanced BrdU-positive neurons. Taken together, our data suggest that 1 promotes neurogenesis by the induction of final cell division during NSC differentiation.

  18. Polyvinyl pyridine microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)

    1980-01-01

    Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.

  19. Polyvinyl pyridine microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)

    1979-01-01

    Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.

  20. Gelatin methacrylamide hydrogel with graphene nanoplatelets for neural cell-laden 3D bioprinting.

    PubMed

    Wei Zhu; Harris, Brent T; Zhang, Lijie Grace

    2016-08-01

    Nervous system is extremely complex which leads to rare regrowth of nerves once injury or disease occurs. Advanced 3D bioprinting strategy, which could simultaneously deposit biocompatible materials, cells and supporting components in a layer-by-layer manner, may be a promising solution to address neural damages. Here we presented a printable nano-bioink composed of gelatin methacrylamide (GelMA), neural stem cells, and bioactive graphene nanoplatelets to target nerve tissue regeneration in the assist of stereolithography based 3D bioprinting technique. We found the resultant GelMA hydrogel has a higher compressive modulus with an increase of GelMA concentration. The porous GelMA hydrogel can provide a biocompatible microenvironment for the survival and growth of neural stem cells. The cells encapsulated in the hydrogel presented good cell viability at the low GelMA concentration. Printed neural construct exhibited well-defined architecture and homogenous cell distribution. In addition, neural stem cells showed neuron differentiation and neurites elongation within the printed construct after two weeks of culture. These findings indicate the 3D bioprinted neural construct has great potential for neural tissue regeneration.

  1. 21 CFR 524.960 - Flumethasone, neomycin, and polymyxin B ophthalmic solution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... use—(1) Amount—(i) Preparation containing hydroxypropyl methylcellulose. Dogs: 1 to 2 drops per eye, every 6 hours. (ii) Preparation without hydroxyproply methylcellulose. Dogs and cats: 2 to 3 drops per eye, every 4 hours. (2) Indications for use. Treatment of the inflammation, edema, and secondary...

  2. Chemical modification of cellulosic fibers for better convertibility in packaging applications.

    PubMed

    Vuoti, Sauli; Laatikainen, Elina; Heikkinen, Harri; Johansson, Leena-Sisko; Saharinen, Erkki; Retulainen, Elias

    2013-07-25

    Cellulose fiber has been modified by mechanical and chemical means in order to improve paper properties, which respond to moisture and temperature. When the cellulose is first refined and then etherified using hydroxypropylation under dry conditions, the paper sheets prepared from the hydroxypropylated cellulose show improved elongation. When the level of hydroxypropylation is high enough, the paper sheets also become transparent. Additionally, the effect of cellulose activation using different mechanical methods has been compared by esterification reactions. It is shown that removal of water is the most crucial step for the esterification reactions while other methods have a lesser impact. The paper sheets prepared from the esterified cellulose fibers show an increase in contact angles and high hydrophobicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Hydroxypropyl cellulose supplementation in vitrification solutions: a prospective study with donor oocytes.

    PubMed

    Gallardo, Miguel; Hebles, María; Migueles, Beatriz; Dorado, Mónica; Aguilera, Laura; González, Mercedes; Piqueras, Paloma; Lucas, Alejandro; Montero, Lorena; Sánchez-Martín, Pascual; Sánchez-Martín, Fernando; Risco, Ramón

    2017-03-01

    Hydroxypropyl cellulose (HPC), a polysaccharide that forms a viscous gel under low temperatures, is a promising substitute of the blood-derived macromolecules traditionally used in cryopreservation solutions. The performance of a protein-free, fully synthetic set of vitrification and warming solutions was assessed in a matched pair analysis with donor oocytes. A prospective study including 219 donor MII oocytes was carried out, comparing the laboratory outcomes of oocytes vitrified with HPC-based solutions and their fresh counterparts. The primary performance endpoint was the fertilization rate. Secondary parameters assessed were embryo quality on days 2 and 3. 70/73 (95.9%) vitrified MII oocytes exhibited morphologic survival 2 h post-warming, with 49 (70.0%) presented normal fertilization, compared to 105 of 146 (71.9%) MII fresh oocytes. Similar embryo quality was observed in both groups. A total of 18 embryos implanted, out of 38 embryos transferred (47.3%), resulting in 13 newborns.

  4. Penetration enhancement of ibuprofen from supersaturated solutions through human skin.

    PubMed

    Iervolino, M; Cappello, B; Raghavan, S L; Hadgraft, J

    2001-01-05

    Systematic investigations on the diffusion of ibuprofen (IBU) from supersaturated solutions through human epidermis are reported. Significant flux enhancement was obtained from supersaturated solutions compared to the saturated solution. Hydroxypropyl methylcellulose (HPMC), when used as an additive was found to be effective in maintaining the high activity state at high degrees of saturation (DS). The increase in the flux was proportional to the DS. In the presence of 2-hydroxypropyl-beta-cyclodextrin (CD) at DS 2 and 3 a lower flux was observed compared to HPMC. At DS 5 a higher flux enhancement was found suggesting that CD might act as a penetration enhancer at certain CD/drug ratios. Studies on the mechanism of stabilisation of HPMC and CD on IBU crystallisation from supersaturated systems showed that HPMC acts as a growth inhibitor and habit modifier whereas CD does not influence the crystallisation process.

  5. Hydroxypropyl-β-Cyclodextrin Spikes Local Inflammation That Induces Th2 Cell and T Follicular Helper Cell Responses to the Coadministered Antigen

    PubMed Central

    Onishi, Motoyasu; Ozasa, Koji; Kobiyama, Kouji; Ohata, Keiichi; Kitano, Mitsutaka; Taniguchi, Keiichi; Homma, Tomoyuki; Kobayashi, Masanori; Sato, Akihiko; Katakai, Yuko; Yasutomi, Yasuhiro; Wijaya, Edward; Igarashi, Yoshinobu; Nakatsu, Noriyuki; Ise, Wataru; Inoue, Takeshi; Yamada, Hiroshi; Vandenbon, Alexis; Standley, Daron M.; Kurosaki, Tomohiro; Coban, Cevayir; Aoshi, Taiki; Kuroda, Etsushi

    2015-01-01

    Cyclodextrins are commonly used as a safe excipient to enhance the solubility and bioavailability of hydrophobic pharmaceutical agents. Their efficacies and mechanisms as drug-delivery systems have been investigated for decades, but their immunological properties have not been examined. In this study, we reprofiled hydroxypropyl-β-cyclodextrin (HP-β-CD) as a vaccine adjuvant and found that it acts as a potent and unique adjuvant. HP-β-CD triggered the innate immune response at the injection site, was trapped by MARCO+ macrophages, increased Ag uptake by dendritic cells, and facilitated the generation of T follicular helper cells in the draining lymph nodes. It significantly enhanced Ag-specific Th2 and IgG Ab responses as potently as did the conventional adjuvant, aluminum salt (alum), whereas its ability to induce Ag-specific IgE was less than that of alum. At the injection site, HP-β-CD induced the temporary release of host dsDNA, a damage-associated molecular pattern. DNase-treated mice, MyD88-deficient mice, and TBK1-deficient mice showed significantly reduced Ab responses after immunization with this adjuvant. Finally, we demonstrated that HP-β-CD–adjuvanted influenza hemagglutinin split vaccine protected against a lethal challenge with a clinically isolated pandemic H1N1 influenza virus, and the adjuvant effect of HP-β-CD was demonstrated in cynomolgus macaques. Our results suggest that HP-β-CD acts as a potent MyD88- and TBK1-dependent T follicular helper cell adjuvant and is readily applicable to various vaccines. PMID:25681338

  6. Nanosized zinc oxide particles do not promote DHPN-induced lung carcinogenesis but cause reversible epithelial hyperplasia of terminal bronchioles.

    PubMed

    Xu, Jiegou; Futakuchi, Mitsuru; Alexander, David B; Fukamachi, Katsumi; Numano, Takamasa; Suzui, Masumi; Shimizu, Hideo; Omori, Toyonori; Kanno, Jun; Hirose, Akihiko; Tsuda, Hiroyuki

    2014-01-01

    Zinc oxide (ZnO) is known to induce lung toxicity, including terminal bronchiolar epithelial hyperplasia, which gives rise to concerns that nanosized ZnO (nZnO) might lead to lung carcinogenesis. We studied the tumor promoting activity of nZnO by an initiation-promotion protocol using human c-Ha-ras proto-oncogene transgenic rats (Hras128 rats). The rats were given 0.2 % N-nitrosobis(2-hydroxypropyl)amine (DHPN) in the drinking water for 2 weeks and then treated with 0.5 ml of 250 or 500 μg/ml nZnO suspension by intra-pulmonary spraying once every 2 weeks for a total of 7 times. Treatment with nZnO particles did not promote DHPN-induced lung carcinogenesis. However, nZnO dose-dependently caused epithelial hyperplasia of terminal bronchioles (EHTB) and fibrosis-associated interstitial pneumonitis (FAIP) that were independent of DHPN treatment. Tracing the fate of EHTB lesions in wild-type rats indicated that the hyperplastic lesions almost completely disappeared within 12 weeks after the last nZnO treatment. Since nZnO particles were not found in the lung and ZnCl2 solution induced similar lung lesions and gene expression profiles, the observed lesions were most likely caused by dissolved Zn(2+). In summary, nZnO did not promote carcinogenesis in the lung and induced EHTB and FAIP lesions that regressed rapidly, probably due to clearance of surplus Zn(2+) from the lung.

  7. The nonfermentable dietary fiber hydroxypropyl methylcellulose modulates intestinal microbiota

    PubMed Central

    Cox, Laura M.; Cho, Ilseung; Young, Scott A.; Anderson, W. H. Kerr; Waters, Bartholomew J.; Hung, Shao-Ching; Gao, Zhan; Mahana, Douglas; Bihan, Monika; Alekseyenko, Alexander V.; Methé, Barbara A.; Blaser, Martin J.

    2013-01-01

    Diet influences host metabolism and intestinal microbiota; however, detailed understanding of this tripartite interaction is limited. To determine whether the nonfermentable fiber hydroxypropyl methylcellulose (HPMC) could alter the intestinal microbiota and whether such changes correlated with metabolic improvements, C57B/L6 mice were normalized to a high-fat diet (HFD), then either maintained on HFD (control), or switched to HFD supplemented with 10% HPMC, or a low-fat diet (LFD). Compared to control treatment, both LFD and HPMC reduced weight gain (11.8 and 5.7 g, respectively), plasma cholesterol (23.1 and 19.6%), and liver triglycerides (73.1 and 44.6%), and, as revealed by 454-pyrosequencing of the microbial 16S rRNA gene, decreased microbial α-diversity and differentially altered intestinal microbiota. Both LFD and HPMC increased intestinal Erysipelotrichaceae (7.3- and 12.4-fold) and decreased Lachnospiraceae (2.0- and 2.7-fold), while only HPMC increased Peptostreptococcaceae (3.4-fold) and decreased Ruminococcaceae (2.7-fold). Specific microorganisms were directly linked with weight change and metabolic parameters in HPMC and HFD mice, but not in LFD mice, indicating that the intestinal microbiota may play differing roles during the two dietary modulations. This work indicates that HPMC is a potential prebiotic fiber that influences intestinal microbiota and improves host metabolism.—Cox, L. M., Cho, I., Young, S. A., Kerr Anderson, W. H., Waters, B. J., Hung, S.-C., Gao, Z., Mahana, D., Bihan, M., Alekseyenko, A. V., Methé, B. A., Blaser, M. J. The nonfermentable dietary fiber hydroxypropyl methylcellulose modulates intestinal microbiota. PMID:23154883

  8. Spatiotemporal control of synergistic gel disintegration consisting of boroxole- and glyco-based polymers via photoinduced proton transfer.

    PubMed

    Kotsuchibashi, Yohei; Ebara, Mitsuhiro; Sato, Takeshi; Wang, Yinan; Rajender, Rajender; Hall, Dennis G; Narain, Ravin; Aoyagi, Takao

    2015-02-12

    We demonstrate here a local- and remote-control of gel disintegration by using photoinduced proton transfer chemistry of photoacid generator (PAG). The gels were prepared by simply mixing two polymers, poly(N-isopropylacrylamide-co-5-methacrylamido-1,2-benzoxaborole) (P(NIPAAm-co-MAAmBO)) and poly(3-gluconamidopropyl methacrylamide) (PGAPMA) via the synergistic interaction of benzoxaborole and diol groups. The o-nitrobenzaldehyde (o-NBA) was then loaded into the gel as a PAG. The benzoxaborole-diol interaction was successfully disintegrated upon UV irradiation due to the local pH decrease inside the gel. When the gel was irradiated to a specific gel region, the synergistic interactions were disintegrated only at the exposed region. Of special interest is that the whole material eventually transitioned from gel to sol state, as the generated protons diffused gradually toward the nonilluminated region. The ability of the proposed gel-sol transition system via photoinduced proton diffusion may be beneficial for not only prompt pH changes within the gel but also the design of predictive and programmable devices for drug delivery.

  9. Preparation, characterization and in vivo evaluation of formulation of repaglinide with hydroxypropyl-β-cyclodextrin.

    PubMed

    Liu, Meina; Cao, Wen; Sun, Yinghua; He, Zhonggui

    2014-12-30

    The therapeutic efficacy of repaglinide (RPG) is limited by the low and variable oral bioavailability owing to its limited aqueous solubility. In our present study, the development and evaluation of inclusion complex applying hydroxypropyl-β-cyclodextrin (HP-β-CD) for the improvement of oral bioavailability of repaglinide was investigated systematically. The inclusion complex of repaglinide was prepared by lyophilization technique using drug: hydroxypropyl-β-cyclodextrin (1:15 mole). The prepared complexation was characterized by differential scanning calorimetry (DSC), X-ray diffractometry (XRD), NMR spectroscopy and evaluated by dissolution studies. The (1)H NMR was used in the structure study of repaglinide-HP-β-CD (RPG-HP-β-CD) inclusion complex. The analysis proved the higher probability of the repaglinide A-ring into the narrow rim of the β-cyclodextrin molecule. All the characterization information confirmed the formation of RPG-HP-β-CD inclusion complex. The in vivo pharmacokinetics of RPG-HP-β-CD and their physical mixture were performed in beagle dogs. For the first time, a simple, rapid, and sensitive LC-MS/MS method for determination of RPG in beagle dog plasma was developed. The Cmax and AUC0-t of RPG-HP-β-CD were 2.5 and 2 times higher than that of the physical mixture. These results suggested that the interaction of repaglinide with HP-β-CD could notably improve the dissolution rate and bioavailability of repaglinide comparing with its physical mixture. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Second virial coefficient of hydroxypropyl starch

    NASA Astrophysics Data System (ADS)

    Wohlfarth, Ch.

    This document is part of Subvolume D2 'Polymer Solutions - Physical Properties and their Relations I (Thermodynamic Properties: PVT -Data and miscellaneous Properties of polymer Solutions) of Volume 6 `Polymers' of Landolt-Börnstein - Group VIII `Advanced Materials and Technologies'.

  11. Development of PMMA membranes functionalized with hydroxypropyl-beta-cyclodextrins for controlled drug delivery using a supercritical CO(2)-assisted technology.

    PubMed

    Temtem, M; Pompeu, D; Jaraquemada, G; Cabrita, E J; Casimiro, T; Aguiar-Ricardo, A

    2009-07-06

    Cyclodextrin-containing polymers have proved themselves to be useful for controlled release. Herein we describe the preparation of membranes of poly(methylmethacrylate) (PMMA) containing hydroxypropyl-beta-cyclodextrins (HP-beta-CDs) using a supercritical CO(2)-assisted phase inversion method, for potential application as drug delivery devices. Results are reported on the membrane preparation, physical properties, and drug elution profile of a model drug. The polymeric membranes were obtained with HP-beta-CD contents ranging from 0 to 33.4 wt%, by changing the composition of the casting solution, and were further impregnated with ibuprofen using supercritical carbon dioxide (scCO(2)) in batch mode. The influence of the membrane functionalization in the controlled release of ibuprofen was studied by performing in vitro experiments in buffer solution pH at 7.4. The release of the anti-inflammatory drug could be tuned by varying the cyclodextrin content on the membranes.

  12. Undergraduate HBCU Student Summer Training Program for Developing Nanomedicines to Treat Prostate Cancers

    DTIC Science & Technology

    2016-08-01

    and interpret generated MS data. She also got familiarized with synthesis of HPMA polymer and conjugation of targeted peptide to the polymer . During...techniques (Ciera), polymer synthesis and nanomedicine development (Starr and Andrea), the effect of drug treatment on prostate cancer cells (My’Chelle...career in the field of prostate cancer. W81XWH-15-1-0202 15. SUBJECT TERMS Prostate cancer, co- polymer , anti-androgen, peptide-based targeting

  13. 21 CFR 172.870 - Hydroxypropyl cellulose.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... per anhydroglucose unit. The common name for this form of the additive is low substituted... colloid, stabilizer, suspending agent, or thickener, in accordance with good manufacturing practice. (2... additive is used in accordance with good manufacturing practice. [46 FR 50065, Oct. 9, 1981] ...

  14. New shell crosslinked micelles from dextran with hydrophobic end groups and their interaction with bioactive molecules.

    PubMed

    Mocanu, Georgeta; Nichifor, Marieta; Stanciu, Magdalena C

    2015-03-30

    Micelles formed in aqueous solution by dextran with hydrophobic (alkyl) end-groups were stabilized through divinyl sulfone crosslinking of the dextran shell. The efficacy of the crosslinking reaction was influenced by the divinyl sulfone amount, the pH and micelle concentration. Crosslinked micelles with a moderate crosslinking degree were further functionalized by attachment of 10 and 17 moles% N-(2-hydroxypropyl)-N,N-dimethyl-N-benzylammonium chloride groups along the dextran chain. The size and shape of both crosslinked micelles and their cationic derivatives were analyzed by DLS and TEM. The prepared micelles were able to bind anionic diclofenac (60-370 mg/g), hydrophobic anionic indometacin (70-120 mg/g), and hydrophobic alpha-tocopherol (170-220 mg/g) or ergocalciferol (90-110 mg/g) by hydrophobic or/and electrostatic forces. The release experiments and the antioxidant activity of bound alpha-tocopherol highlighted the potential of the new nano-sized micelles mainly as carriers for prolonged and controlled delivery of hydrophobic drugs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Chemical sensors using coated or doped carbon nanotube networks

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor); Meyyappan, Meyya (Inventor)

    2010-01-01

    Methods for using modified single wall carbon nanotubes ("SWCNTs") to detect presence and/or concentration of a gas component, such as a halogen (e.g., Cl.sub.2), hydrogen halides (e.g., HCl), a hydrocarbon (e.g., C.sub.nH.sub.2n+2), an alcohol, an aldehyde or a ketone, to which an unmodified SWCNT is substantially non-reactive. In a first embodiment, a connected network of SWCNTs is coated with a selected polymer, such as chlorosulfonated polyethylene, hydroxypropyl cellulose, polystyrene and/or polyvinylalcohol, and change in an electrical parameter or response value (e.g., conductance, current, voltage difference or resistance) of the coated versus uncoated SWCNT networks is analyzed. In a second embodiment, the network is doped with a transition element, such as Pd, Pt, Rh, Ir, Ru, Os and/or Au, and change in an electrical parameter value is again analyzed. The parameter change value depends monotonically, not necessarily linearly, upon concentration of the gas component. Two general algorithms are presented for estimating concentration value(s), or upper or lower concentration bounds on such values, from measured differences of response values.

  16. Coated or doped carbon nanotube network sensors as affected by environmental parameters

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor)

    2011-01-01

    Methods for using modified single wall carbon nanotubes ("SWCNTs") to detect presence and/or concentration of a gas component, such as a halogen (e.g., Cl.sub.2), hydrogen halides (e.g., HCl), a hydrocarbon (e.g., C.sub.nH.sub.2n+2), an alcohol, an aldehyde or a ketone, to which an unmodified SWCNT is substantially non-reactive. In a first embodiment, a connected network of SWCNTs is coated with a selected polymer, such as chlorosulfonated polyethylene, hydroxypropyl cellulose, polystyrene and/or polyvinylalcohol, and change in an electrical parameter or response value (e.g., conductance, current, voltage difference or resistance) of the coated versus uncoated SWCNT networks is analyzed. In a second embodiment, the network is doped with a transition element, such as Pd, Pt, Rh, Ir, Ru, Os and/or Au, and change in an electrical parameter value is again analyzed. The parameter change value depends monotonically, not necessarily linearly, upon concentration of the gas component. Two general algorithms are presented for estimating concentration value(s), or upper or lower concentration bounds on such values, from measured differences of response values.

  17. Characterization of ethylcellulose and hydroxypropyl methylcellulose thin films deposited by matrix-assisted pulsed laser evaporation

    NASA Astrophysics Data System (ADS)

    Palla-Papavlu, A.; Rusen, L.; Dinca, V.; Filipescu, M.; Lippert, T.; Dinescu, M.

    2014-05-01

    In this study is reported the deposition of hydroxypropyl methylcellulose (HPMC) and ethylcellulose (EC) by matrix-assisted pulsed laser evaporation (MAPLE). Both HPMC and EC were deposited on silicon substrates using a Nd:YAG laser (266 nm, 5 ns laser pulse and 10 Hz repetition rate) and then characterized by atomic force microscopy and Fourier transform infrared spectroscopy. It was found that for laser fluences up to 450 mJ/cm2 the structure of the deposited HPMC and EC polymer in the thin film resembles to the bulk. Morphological investigations reveal island features on the surface of the EC thin films, and pores onto the HPMC polymer films. The obtained results indicate that MAPLE may be an alternative technique for the fabrication of new systems with desired drug release profile.

  18. Proposed formation mechanism and active species of hydrogen molecules generated from a novel magnesium-citric acid-hydroxypropyl cellulose coating (MgCC) material

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shigeki; Chikuma, Toshiyuki; Chiba, Kazuyoshi; Tsuchiya, Daisuke; Hirai, Tomomitsu

    2016-02-01

    The presence of acids is known to accelerate the reaction (Mg + 2H2O = Mg(OH)2 + H2). We developed a novel Mg-citric acid coating (MgCC) material produced by milling Mg powder coated with hydroxypropyl cellulose (HPC); because of its H2 generation, this material could be used in antioxidant therapy and antiaging applications. After milling in the presence of citric acid, this material produced H2-rich water upon addition to cooled water. Although the reaction was considered to involve a two-electron transfer from Mg to 2H2O, the role of the acid in H2 generation remains incompletely understood. To clarify the reaction mechanism, we performed studies on the deuterium kinetic isotope effects (KIE) and electron spin resonance (ESR). We observed differences in the concentration ratios, such as H2/D2 > 1 and H2/(H2 + D2 + HD) > 1, involved in H2, D2, and (H2 + D2 + HD) production, and found that adducts with hydrogen atoms (Hrad) were not obtained from the spin-trapping reaction between 5-(2, 2-Dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO) and the MgCC material. The H2, D2, and HD produced from MgCC were identified by using a gas chromatograph connected to a mass spectrometer. The spin-trapping techniques showed that the Hrad adducts formed by the reaction of NaBH4 with CYPMPO could not be observed from reaction of MGCC with CYPMPO in H2O. The data suggest that the rate-controlling step and proposed transition state (TS) exist in the reaction pathway of the O-H bond cleavage and H-H bond formation. A TS of a structure such as [Mg(OH2)2]∗ could be expected in the reaction pathway between Mg and 2H2O by density functional theory calculations. Also, these results show that H2 generation is accelerated in the presence of acids because the activation energy of the TS is significantly smaller than that of H2O.

  19. High-Molecular Compounds (Selected Articles).

    DTIC Science & Technology

    1987-09-11

    with methacrylamide (AMK), methacrylic acid (MAK) and ethylene-glycolmethacrylate (MEG), copolymer of methylmethacrylate (MMA) and MAK and...polymerization in medium of isopropyl or butyl alcohol with dinitrile of azoisobutyric acid (DAK). Samples for the tests re-precipitated from acetone... temperatu .-es T. T in films of PVTs process of thermal structuring occurs, as a result of which polymer changes into undissolved state. * REFERENCES

  20. Highly Reactive Thiol-Norbornene Photo-Click Hydrogels: Toward Improved Processability.

    PubMed

    Van Hoorick, Jasper; Gruber, Peter; Markovic, Marica; Rollot, Mélanie; Graulus, Geert-Jan; Vagenende, Maxime; Tromayer, Maximilian; Van Erps, Jürgen; Thienpont, Hugo; Martins, José C; Baudis, Stefan; Ovsianikov, Aleksandr; Dubruel, Peter; Van Vlierberghe, Sandra

    2018-06-10

    In the present work, gelatin type B is modified with highly reactive norbornene functionalities (Gel-NB) following a one-pot synthesis approach to enable subsequent thiol-ene photo-click crosslinking. The modification strategy displays close control over the amount of introduced functionalities. Additionally, Gel-NB exhibits considerably improved processing capabilities in terms of two-photon polymerization when benchmarked to earlier-reported crosslinkable gelatin derivatives (e.g., gelatin-methacrylamide (Gel-MOD) and gelatin-methacrylamide-aminoethylmethacrylate (Gel-MOD-AEMA)). The improvement is especially apparent in terms of minimally required laser power (20 mW vs ≥60 mW (Gel-MOD) vs ≥40 mW (Gel-MOD-AEMA) at 100 mm s -1 scan speed) and processable concentration range (≥5 w/v% vs ≥10 w/v% (Gel-MOD/Gel-MOD-AEMA)). Furthermore, the proposed functionalization scheme maintains the excellent biocompatibility and cell interactivity of gelatin. Additionally, the norbornene functionalities have potential for straightforward postprocessing "thiol-ene" surface grafting of active molecules. As a consequence, a very promising material toward tissue engineering applications and more specifically, biofabrication, is presented. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. 40 CFR 721.10054 - Phenol, polymer with formaldehyde, 3-[(2-aminocyclohexyl)amino]-2-hydroxypropyl ethers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phenol, polymer with formaldehyde, 3... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10054 Phenol, polymer with... uses subject to reporting. (1) The chemical substance identified generically as a phenol, polymer with...

  2. 40 CFR 721.10054 - Phenol, polymer with formaldehyde, 3-[(2-aminocyclohexyl)amino]-2-hydroxypropyl ethers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phenol, polymer with formaldehyde, 3... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10054 Phenol, polymer with... uses subject to reporting. (1) The chemical substance identified generically as a phenol, polymer with...

  3. Carboxymethylated-, hydroxypropylsulfonated- and quaternized xylan derivative films

    Treesearch

    Ivan Simkovic; Ivan Kelnar; Iveta Uhliarikova; Raniero Mdndichi; Anurag Mandalika; Thomas Elder

    2014-01-01

    Under alkaline/water conditions carboxymethyl, 2-hydroxypropylsulfonate and trimethylammonium-2-hydroxypropyl groups were introduced into xylan in one step with the goal to prepare film specimens. The materials were characterized by NMR, SEC-MALS, TG/DTG/DTA, AFM and mechanical testing. The properties of triple, double and mono-substituted materials were compared. The...

  4. 40 CFR 721.10054 - Phenol, polymer with formaldehyde, 3-[(2-aminocyclohexyl)amino]-2-hydroxypropyl ethers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phenol, polymer with formaldehyde, 3... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10054 Phenol, polymer with... uses subject to reporting. (1) The chemical substance identified generically as a phenol, polymer with...

  5. 40 CFR 721.10054 - Phenol, polymer with formaldehyde, 3-[(2-aminocyclohexyl)amino]-2-hydroxypropyl ethers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phenol, polymer with formaldehyde, 3... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10054 Phenol, polymer with... uses subject to reporting. (1) The chemical substance identified generically as a phenol, polymer with...

  6. Dual-mechanism gastroretentive drug delivery system loaded with an amorphous solid dispersion prepared by hot-melt extrusion.

    PubMed

    Vo, Anh Q; Feng, Xin; Pimparade, Manjeet; Ye, Xinyou; Kim, Dong Wuk; Martin, Scott T; Repka, Michael A

    2017-05-01

    In the present study, we aimed to prepare a gastroretentive drug delivery system that would be both highly resistant to gastric emptying via multiple mechanisms and would also potentially induce in situ supersaturation. The bioadhesive floating pellets, loaded with an amorphous solid dispersion, were prepared in a single step of hot-melt extrusion technology. Hydroxypropyl cellulose (Klucel™ MF) and hypromellose (Benecel™ K15M) were used as matrix-forming polymers, and felodipine was used as the model drug. The foam pellets were fabricated based on the expansion of CO 2 , which was generated from sodium bicarbonate during the melt-extrusion process. A 2 n full factorial experimental design was utilized to investigate the effects of formulation compositions to the pellet properties. The melt-extrusion process transformed the crystalline felodipine into an amorphous state that was dispersed and "frozen" in the polymer matrix. All formulations showed high porosity and were able to float immediately, without lag time, on top of gastric fluid, and maintained their buoyancy over 12h. The pellet-specific floating force, which could be as high as 4800μN/g, increased significantly during the first hour, and was relatively stable until 9h. The sodium bicarbonate percentage was found to be most significantly effect to the floating force. The ex vivo bioadhesion force of the pellets to porcine stomach mucosa was approximately 5mN/pellet, which was more than five times higher than the gravitation force of the pellet saturated with water. Drug release was well controlled up to 12h in the sink condition of 0.5% sodium lauryl sulphate in 0.1N HCl. The dissolution at 1, 3, 5, and 8h were 5-12%, 25-45%, 55-80%, and ≥75% respectively for all 11 formulations. In biorelevant dissolution medium, a supersaturated solution was formed, and the concentration was maintained at around 2μg/mL, approximately 10-folds higher than that of the pure felodipine. All input factors significantly affected dissolution in the first 3h, but afterwards, only drug load and hypromellose (HPMC) content had significant effects. The prepared drug delivery system has great potential in overcoming low and fluctuating bioavailability of poorly soluble drugs. Felodipine (PubChem CID: 3333); hypromellose (PubChem CID: 57503849), hydroxypropyl cellulose (PubChem CID: 71306830), sodium bicarbonate (PubChem CID: 516892); sodium carbonate (PubChem CID: 10340). Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Preparation and Characterization of All-Biomass Soy Protein Isolate-Based Films Enhanced by Epoxy Castor Oil Acid Sodium and Hydroxypropyl Cellulose

    PubMed Central

    Wang, La; Li, Jianzhang; Zhang, Shifeng; Shi, Junyou

    2016-01-01

    All-biomass soy protein-based films were prepared using soy protein isolate (SPI), glycerol, hydroxypropyl cellulose (HPC) and epoxy castor oil acid sodium (ECOS). The effect of the incorporated HPC and ECOS on the properties of the SPI film was investigated. The experimental results showed that the tensile strength of the resultant films increased from 2.84 MPa (control) to 4.04 MPa and the elongation at break increased by 22.7% when the SPI was modified with 2% HPC and 10% ECOS. The increased tensile strength resulted from the reaction between the ECOS and SPI, which was confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). It was found that ECOS and HPC effectively improved the performance of SPI-based films, which can provide a new method for preparing environmentally-friendly polymer films for a number of commercial applications. PMID:28773320

  8. Preparation and Characterization of All-Biomass Soy Protein Isolate-Based Films Enhanced by Epoxy Castor Oil Acid Sodium and Hydroxypropyl Cellulose.

    PubMed

    Wang, La; Li, Jianzhang; Zhang, Shifeng; Shi, Junyou

    2016-03-15

    All-biomass soy protein-based films were prepared using soy protein isolate (SPI), glycerol, hydroxypropyl cellulose (HPC) and epoxy castor oil acid sodium (ECOS). The effect of the incorporated HPC and ECOS on the properties of the SPI film was investigated. The experimental results showed that the tensile strength of the resultant films increased from 2.84 MPa (control) to 4.04 MPa and the elongation at break increased by 22.7% when the SPI was modified with 2% HPC and 10% ECOS. The increased tensile strength resulted from the reaction between the ECOS and SPI, which was confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). It was found that ECOS and HPC effectively improved the performance of SPI-based films, which can provide a new method for preparing environmentally-friendly polymer films for a number of commercial applications.

  9. Analytical Enantioseparation of β-Substituted-2-Phenylpropionic Acids by High-Performance Liquid Chromatography with Hydroxypropyl-β-Cyclodextrin as Chiral Mobile Phase Additive.

    PubMed

    Tong, Shengqiang; Zhang, Hu; Yan, Jizhong

    2016-04-01

    Analytical enantioseparation of five β-substituted-2-phenylpropionic acids by high-performance liquid chromatography with hydroxypropyl-β-cyclodextrin (HP-β-CD) as chiral mobile phase additive was established in this paper, and chromatographic retention mechanism was studied. The effects of various factors such as the organic modifier, different ODS C18 columns and concentration of HP-β-CD were investigated. The chiral mobile phase was composed of methanol or acetonitrile and 0.5% triethylamine acetate buffer at pH 3.0 added with 25 mmol L(-1) of HP-β-CD, and baseline separations could be reached for all racemates. As for chromatographic retention mechanism, it was found that there was a negative correlation between the concentration of HP-β-CD in mobile phase and the retention factor under constant pH value and column temperature. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Minimalism in radiation synthesis of biomedical functional nanogels.

    PubMed

    Dispenza, Clelia; Sabatino, Maria Antonietta; Grimaldi, Natascia; Bulone, Donatella; Bondì, Maria Luisa; Casaletto, Maria Pia; Rigogliuso, Salvatrice; Adamo, Giorgia; Ghersi, Giulio

    2012-06-11

    A scalable, single-step, synthetic approach for the manufacture of biocompatible, functionalized micro- and nanogels is presented. In particular, poly(N-vinyl pyrrolidone)-grafted-(aminopropyl)methacrylamide microgels and nanogels were generated through e-beam irradiation of PVP aqueous solutions in the presence of a primary amino-group-carrying monomer. Particles with different hydrodynamic diameters and surface charge densities were obtained at the variance of the irradiation conditions. Chemical structure was investigated by different spectroscopic techniques. Fluorescent variants were generated through fluorescein isothiocyanate attachment to the primary amino groups grafted to PVP, to both quantify the available functional groups for bioconjugation and follow nanogels localization in cell cultures. Finally, a model protein, bovine serum albumin, was conjugated to the nanogels to demonstrate the attachment of biologically relevant molecules for targeting purposes in drug delivery. The described approach provides a novel strategy to fabricate biohybrid nanogels with a very promising potential in nanomedicine.

  11. Crosslinkable hydrogels derived from cartilage, meniscus, and tendon tissue.

    PubMed

    Visser, Jetze; Levett, Peter A; te Moller, Nikae C R; Besems, Jeremy; Boere, Kristel W M; van Rijen, Mattie H P; de Grauw, Janny C; Dhert, Wouter J A; van Weeren, P René; Malda, Jos

    2015-04-01

    Decellularized tissues have proven to be versatile matrices for the engineering of tissues and organs. These matrices usually consist of collagens, matrix-specific proteins, and a set of largely undefined growth factors and signaling molecules. Although several decellularized tissues have found their way to clinical applications, their use in the engineering of cartilage tissue has only been explored to a limited extent. We set out to generate hydrogels from several tissue-derived matrices, as hydrogels are the current preferred cell carriers for cartilage repair. Equine cartilage, meniscus, and tendon tissue was harvested, decellularized, enzymatically digested, and functionalized with methacrylamide groups. After photo-cross-linking, these tissue digests were mechanically characterized. Next, gelatin methacrylamide (GelMA) hydrogel was functionalized with these methacrylated tissue digests. Equine chondrocytes and mesenchymal stromal cells (MSCs) (both from three donors) were encapsulated and cultured in vitro up to 6 weeks. Gene expression (COL1A1, COL2A1, ACAN, MMP-3, MMP-13, and MMP-14), cartilage-specific matrix formation, and hydrogel stiffness were analyzed after culture. The cartilage, meniscus, and tendon digests were successfully photo-cross-linked into hydrogels. The addition of the tissue-derived matrices to GelMA affected chondrogenic differentiation of MSCs, although no consequent improvement was demonstrated. For chondrocytes, the tissue-derived matrix gels performed worse compared to GelMA alone. This work demonstrates for the first time that native tissues can be processed into crosslinkable hydrogels for the engineering of tissues. Moreover, the differentiation of encapsulated cells can be influenced in these stable, decellularized matrix hydrogels.

  12. Development of magnetic molecularly imprinted polymers for selective extraction: determination of citrinin in rice samples by liquid chromatography with UV diode array detection.

    PubMed

    Urraca, Javier L; Huertas-Pérez, José F; Cazorla, Guillermo Aragoneses; Gracia-Mora, Jesus; García-Campaña, Ana M; Moreno-Bondi, María Cruz

    2016-04-01

    In this work, we report the synthesis of novel magnetic molecularly imprinted polymers (m-MIPs) and their application to the selective extraction of the mycotoxin citrinin (CIT) from food samples. The polymers were prepared by surface imprinting of Fe3O4 nanoparticles, using 2-naphtholic acid (2-NA) as template molecule, N-3,5-bis(trifluoromethyl)phenyl-N'-4-vinylphenyl urea and methacrylamide as functional monomers and ethyleneglycol dimethacrylate as cross-linker. The resulting material was characterized by transmission electron microscopy (TEM), and X-ray diffraction (XRD) and Fourier transform infrared spectroscopies (FT-IR). The polymers were used to develop a solid-phase extraction method (m-MISPE) for the selective recovery of CIT from rice extracts prior to its determination by HPLC with UV diode array detection. The method involves ultrasound-assisted extraction of the mycotoxin from rice samples with (7:3, v/v) methanol/water, followed by sample cleanup and preconcentration with m-MIP. The extraction (washing and elution) conditions were optimized and their optimal values found to provide CIT recoveries of 94-98 % with relative standard deviations (RSD) less than 3.4 % (n = 3) for preconcentrated sample extracts (5 mL) fortified with the analyte at concentrations over the range 25-100 μg kg(-1). Based on the results, the application of the m-MIPs facilitates the accurate and efficient determination of CIT in rice extracts.

  13. 40 CFR 721.9790 - Benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[5-[[4-[bis(2-hydroxypropyl) amino]- 6-[(3...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...]-, disodium salt, compd. with 2,2â²,2â³-nitrilo-tris[ethanol] (1:2); Benzenesulfonic acid, 5-[[4-[bis(2.... with 2,2â²,2â³-nitrilotris[ethanol] (1:2). 721.9790 Section 721.9790 Protection of Environment...]-, disodium salt, compd. with 2,2′,2″-nitrilo-tris[ethanol] (1:2); Benzenesulfonic acid, 5-[[4-[bis(2...

  14. 40 CFR 721.9790 - Benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[5-[[4-[bis(2-hydroxypropyl) amino]- 6-[(3...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...]-, disodium salt, compd. with 2,2â²,2â³-nitrilo-tris[ethanol] (1:2); Benzenesulfonic acid, 5-[[4-[bis(2.... with 2,2â²,2â³-nitrilotris[ethanol] (1:2). 721.9790 Section 721.9790 Protection of Environment...]-, disodium salt, compd. with 2,2′,2″-nitrilo-tris[ethanol] (1:2); Benzenesulfonic acid, 5-[[4-[bis(2...

  15. 40 CFR 721.9790 - Benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[5-[[4-[bis(2-hydroxypropyl) amino]- 6-[(3...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...]-, disodium salt, compd. with 2,2â²,2â³-nitrilo-tris[ethanol] (1:2); Benzenesulfonic acid, 5-[[4-[bis(2.... with 2,2â²,2â³-nitrilotris[ethanol] (1:2). 721.9790 Section 721.9790 Protection of Environment...]-, disodium salt, compd. with 2,2′,2″-nitrilo-tris[ethanol] (1:2); Benzenesulfonic acid, 5-[[4-[bis(2...

  16. Reversible geling co-polymer and method of making

    DOEpatents

    Gutowska, Anna

    2005-12-27

    The present invention is a thereapeutic agent carrier having a thermally reversible gel or geling copolymer that is a linear random copolymer of an [meth-]acrylamide derivative and a hydrophilic comonomer, wherein the linear random copolymer is in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum geling molecular weight cutoff and a therapeutic agent.

  17. A general microchip surface modification approach using a spin-coated polymer resist film doped with hydroxypropyl cellulose.

    PubMed

    Sun, Xiuhua; Yang, Weichun; Geng, Yanli; Woolley, Adam T

    2009-04-07

    We have developed a simple and effective method for surface modification of polymer microchips by entrapping hydroxypropyl cellulose (HPC) in a spin-coated thin film on the surface. Poly(methyl methacrylate-8.5-methacrylic acid), a widely available commercial resist formulation, was utilized as a matrix for dissolving HPC and providing adherence to native polymer surfaces. Various amounts of HPC (0.1-2.0%) dissolved in the copolymer and spun on polymer surfaces were evaluated. The modified surfaces were characterized by contact angle measurement, X-ray photoelectron spectroscopy and atomic force microscopy. The developed method was applied on both poly(methyl methacrylate) and cyclic olefin copolymer microchips. A fluorescently labeled myoglobin digest, binary protein mixture, and human serum sample were all separated in these surface-modified polymer microdevices. Our work exhibits an easy and reliable way to achieve favorable biomolecular separation performance in polymer microchips.

  18. A general microchip surface modification approach using a spin-coated polymer resist film doped with hydroxypropyl cellulose

    PubMed Central

    Sun, Xiuhua; Yang, Weichun; Geng, Yanli; Woolley, Adam T.

    2009-01-01

    We have developed a simple and effective method for surface modification of polymer microchips by entrapping hydroxypropyl cellulose (HPC) in a spin-coated thin film on the surface. Poly(methyl methacrylate-8.5-methacrylic acid), a widely available commercial resist formulation, was utilized as a matrix for dissolving HPC and providing adherence to native polymer surfaces. Various amounts of HPC (0.1–2.0%) dissolved in the copolymer and spun on polymer surfaces were evaluated. The modified surfaces were characterized by contact angle measurement, X-ray photoelectron spectroscopy and atomic force microscopy. The developed method was applied on both poly(methyl methacrylate) and cyclic olefin copolymer microchips. A fluorescently labeled myoglobin digest, binary protein mixture, and human serum sample were all separated in these surface-modified polymer microdevices. Our work exhibits an easy and reliable way to achieve favorable biomolecular separation performance in polymer microchips. PMID:19294306

  19. Investigation of some topical formulations containing dexpanthenol.

    PubMed

    Stozkowska, Wiesława; Piekoś, Ryszard

    2004-01-01

    Owing to its ability to regenerate epidermal cells Dexpanthenol (D-panthenol; chemically known as (+)-2,4-dihydroxy-N-(3-hydroxypropyl)-3,3-dimethylbutyramide) has found use for the treatment of patholytic ileus and postoperative distention. The purpose of research was to develop a gel containing dexpanthenol by monitoring the effect of various concentrations of a gelating agent on the activity of the ciliary apparatus. A system containing 2.5% of hydroxyethylcellulose was optimal for the preparation of the gel. Together with a formulation containing 5% of dexpanthenol, drops with equal concentration of the active compound were tested for comparison. Physical characteristics, such as osmotic pressure, acidity, density and viscosity of the preparation were determined as well as its microbiological sterility. The anti-inflammatory activity of the gel was determined following its topical application. Epidermal tests showed its good tolerance after topical application to the shaved skin of guinea pigs.

  20. Studies on the biodegradation of fosfomycin: growth of Rhizobium huakuii PMY1 on possible intermediates synthesised chemically.

    PubMed

    McGrath, John W; Hammerschmidt, Friedrich; Preusser, Werner; Quinn, John P; Schweifer, Anna

    2009-05-07

    The first step of the mineralisation of fosfomycin by R. huakuii PMY1 is hydrolytic ring opening with the formation of (1R,2R)-1,2-dihydroxypropylphosphonic acid. This phosphonic acid and its three stereoisomers were synthesised by chemical means and tested as their ammonium salts for mineralisation as evidenced by release of P(i). Only the (1R,2R)-isomer was degraded. A number of salts of phosphonic acids such as (+/-)-1,2-epoxybutyl-, (+/-)-1,2-dihydroxyethyl-, 2-oxopropyl-, (S)-2-hydroxypropyl-, (+/-)-1-hydroxypropyl- and (+/-)-1-hydroxy-2-oxopropylphosphonic acid were synthesised chemically, but none supported growth. In vitro C-P bond cleavage activity was however detected with the last phosphonic acid. A mechanism involving phosphite had to be discarded as it could not be used as a phosphorus source. R. huakuii PMY1 grew well on (R)- and (S)-lactic acid and hydroxyacetone, but less well on propionic acid and not on acetone or (R)- and (+/-)-1,2-propanediol. The P(i) released from (1R,2R)-1,2-dihydroxypropylphosphonic acid labelled with one oxygen-18 in the PO3H2 group did not stay long enough in the cells to allow complete exchange of 18O for 16O by enzymic turnover.

  1. Increasing solubility of red bell pepper carotenoids by complexation with 2-hydroxypropyl-β-cyclodextrin.

    PubMed

    de Lima Petito, Nicolly; da Silva Dias, Daiana; Costa, Valéria Gonçalves; Falcão, Deborah Quintanilha; de Lima Araujo, Kátia Gome

    2016-10-01

    Red bell pepper carotenoids were complexed with 2-hydroxypropyl-β-cyclodextrin (2-HPβCD) in different mass ratios (1:4, 1:6, 1:8 and 1:10) through ultrasonic homogenization in order to increase carotenoid solubility and their use as natural pigment in food. Inclusion complexes, red bell pepper extract and physical mixtures were analyzed by DSC, FT-IR, (1)H NMR and DLS. Solubility assay was performed to identify the effect of complexation on the solubility of carotenoids. From characterization assays, results showed that inclusion process occurred for all tested ratios. Results for water solubility assays demonstrated clear differences between solubility index of inclusion complexes (8.06±2.59-16.55±4.40mg/mL) and physical mixtures (3.53±1.44-7.3±1.88mg/mL), while carotenoid extract was no water soluble, as expected. These results indicated that molecular inclusion of carotenoids in 2-HPβCD was efficient to enhance their solubility in water, enabling application of red bell pepper carotenoid as natural pigment and/or bioactive substances in food. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Hydration Differences Explain the Large Variations in the Complexation Thermodynamics of Modified γ-Cyclodextrins with Bile Salts.

    PubMed

    Køhler, Jonatan; Schönbeck, Christian; Westh, Peter; Holm, René

    2016-01-28

    The structure and thermodynamics of inclusion complexes of seven different γ-cyclodextrins (γCDs) and three biologically relevant bile salts (BS) were investigated in the present study. Natural γCD and six modified γCDs [two methyl-γCDs, one sulfobutyl ether-γCD (SBEγCD), and three 2-hydroxypropyl-γCDs (HPγCD)] and their complexes with BS were investigated by isothermal titration calorimetry, NMR, and molecular dynamics simulations. With the exception of the fully methylated γCD, which did not bind the BSs investigated, all of the γCDs formed 1:1 complexes with the BS, and the structures were similar to those with natural γCD; i.e., the modifications of the γCD had limited structural impact on the formation of complexes. Isothermal titration calorimetry was carried out over in the temperature interval 5-55 °C to enable the calculation of the stability constant (K) and the thermodynamic parameters enthalpy (ΔH°), entropy (ΔS°), and heat capacity (ΔCp°). The stability constants decreased with an increased degree of substitution (DS), with methyl substituents having a lower effect on the stability constant than the sulfobutyl ether and hydroxypropyl substituents on the stability constants. Enthalpy-entropy compensation was observed, since both enthalpy and entropy increased with the degree of substitution, which may reflect dehydration of the hydrophobic surface on both CD and BS. Calculations based on ΔCp° data suggested that each of the substituents dehydrated 10-20 (hydroxypropyl), 22-33 (sulfobutyl ether), and 10-15 Å(2) (methyl) of the BS surface area, in reasonable agreement with estimates from the molecular dynamics simulations. Combined with earlier investigations on modified βCDs, these results indicate general trends of the substituents on the thermodynamics of complex formation.

  3. Potent 19-norvitamin D analogs for prostate and liver cancer therapy

    PubMed Central

    Kittaka, Atsushi; Yoshida, Akihiro; Chiang, Kun-Chun; Takano, Masashi; Sawada, Daisuke; Sakaki, Toshiyuki; Chen, Tai C

    2013-01-01

    The active form of vitamin D3, 1α,25(OH)2D3 or calcitriol, is known to inhibit the proliferation and invasiveness of many types of cancer cells, including prostate and liver cancer cells. These findings support the use of 1α,25(OH)2D3 for prostate and liver cancer therapy. However, 1α,25(OH)2D3 can cause hypercalcemia, thus, analogs of 1α,25(OH)2D3 that are less calcemic but exhibit potent antiproliferative activity would be attractive as therapeutic agents. We have developed 2α-functional group substituted 19-norvitamin D3 analogs with and without 14-epimerization. Among them, 2α- and 2β-(3-hydroxypropyl)-1α,25-dihydroxy-19-norvitamin D3 (MART-10 and -11, respectively) and 14-epi-2α- and 14-epi-2β-(3-hydroxypropyl)-1α,25-dihydroxy-19-norvitamin D3 (14-epi-MART-10 and 14-epi-MART-11, respectively) were found to be the most promising. In this review, we discuss the synthesis of this unique class of vitamin D analogs, the molecular mechanism of anticancer actions of vitamin D, and the biological evaluation of these analogs for potential application to the prevention and treatment of prostate and liver cancer. PMID:23157238

  4. Positively charged gold nanoparticles capped with folate quaternary chitosan: Synthesis, cytotoxicity, and uptake by cancer cells.

    PubMed

    Yen, Hui-Ju; Young, Yen-An; Tsai, Tsung-Neng; Cheng, Kuang-Ming; Chen, Xin-An; Chen, Ying-Chuan; Chen, Cheng-Cheung; Young, Jenn-Jong; Hong, Po-da

    2018-03-01

    In this study, we synthesized various quaternary chitosan derivatives and used them to stabilize gold nanoparticles (AuNPs). These chitosan derivatives comprised N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride (HTCC), folate-HTCC, galactosyl-HTCC, and their fluorescein isothiocyanate-conjugated derivatives. Various positively surface-charged AuNPs were prepared under alkaline conditions using glucose as a reducing agent in the presence of the HTCC derivatives (HTCCs). The effects of the concentration of NaOH, glucose, and HTCCs on the particles size, zeta potential, and stability were studied in detail. Cell cycle assays verify that none of the HTCCs or HTCCs-AuNPs was cytotoxic to human umbilical vein endothelial cells. Flow cytometry analysis showed that the folate HTCC-AuNPs were internalized in Caco-2, HepG2, and HeLa cancer cells to a significantly greater extent than AuNPs without folate. But, galactosyl HTCC-AuNPs only showed high cell uptake by HepG2 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Water-Base Coatings

    DTIC Science & Technology

    1974-11-01

    reacted with hydroxypropyl methacrylate and 1-butanol modifier in butyl acrylate -isobutyl methacrylate reactive diluent mixture using dibutyltin dilaurate...disadvantages are: 1. only a few commercial systems (e. g., acrylic resins ) are available; 2. after application, the polymer must somehow be insolubilized...a bisphenol in the presence of an emulsifier and a water-miscible solvent (9); 2. emulsification of an epoxy resin -amine curing agent mixture , e.g

  6. Fabrication of magnetic hydroxypropyl cellulose-g-poly(acrylic acid) porous spheres via Pickering high internal phase emulsion for removal of Cu(2+) and Cd(2.).

    PubMed

    Zhu, Yongfeng; Zheng, Yian; Zong, Li; Wang, Feng; Wang, Aiqin

    2016-09-20

    A series of magnetic hydroxypropyl cellulose-g-poly(acrylic acid) porous spheres were prepared via O/W Pickering high internal phase emulsions (HIPEs) integrated precipitation polymerization. The structure and composition of modified Fe3O4 and porous structures were characterized by TEM, XRD, TGA and SEM. The results indicated that the silanized Fe3O4 can influence greatly the pore structure of magnetic porous sphere in addition to non-negligible impacts of the proportion of mixed solvent and co-surfactant. The adsorption experiment demonstrated that the adsorption equilibrium can be reached within 40min and the maximal adsorption capacity was 300.00mg/g for Cd(2+) and 242.72mg/g for Cu(2+), suggesting its fast adsorption kinetics and high adsorption capacity. After five adsorption-desorption cycles, no significant changes in the adsorption capacity were observed, suggesting its excellent reusability. The magnetic porous sphere can be easily separated from the solution and then find its potential as a recyclable material for highly efficient removal of heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Piroxicam/2-hydroxypropyl-beta-cyclodextrin inclusion complex prepared by a new fluid-bed coating technique.

    PubMed

    Zhang, Xingwang; Wu, Danni; Lai, Jie; Lu, Yi; Yin, Zongning; Wu, Wei

    2009-02-01

    This work was aimed at investigating the feasibility of fluid-bed coating as a new method to prepare cyclodextrin inclusion complex. The inclusion complex of the model drug piroxicam (PIX) and 2-hydroxypropyl-beta-cyclodextrin (HPCD) in aqueous ethanol solution was sprayed and deposited onto the surface of the pellet substrate upon removal of the solvent. The coating process was fluent with high coating efficiency. Scanning electron microscopy revealed a coarse pellet surface, and a loosely packed coating structure. Significantly enhanced dissolution, over 90% at 5 min, was observed at stoichiometric PIX/HPCD molar ratio (1/1) and at a ratio with excessive HPCD (1/2). Differential scanning calorimetry and powder X-ray diffractometry confirmed absence of crystallinity of PIX at PIX/HPCD molar ratio of 1/1 and 1/2. Fourier transform-infrared spectrometry and Raman spectrometry revealed interaction between PIX and HPCD adding evidence on inclusion of PIX moieties into HPCD cavities. Solid-state (13)C NMR spectrometry indicated possible inclusion of PIX through the pyridine ring. It is concluded that fluid-bed coating has potential to be used as a new technique to prepare cyclodextrin inclusion complex.

  8. Cross-linked polyvinyl pyridine coated glass particle catalyst support and aqueous composition or polyvinyl pyridine adducted microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)

    1981-01-01

    Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.

  9. Biomimetic Hydrogel Materials

    DOEpatents

    Bertozzi, Carolyn , Mukkamala, Ravindranath , Chen, Oing , Hu, Hopin , Baude, Dominique

    2003-04-22

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  10. Biomimetic hydrogel materials

    DOEpatents

    Bertozzi, Carolyn; Mukkamala, Ravindranath; Chen, Qing; Hu, Hopin; Baude, Dominique

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  11. Identification of minor secondary metabolites from the latex of Croton lechleri (Muell-Arg) and evaluation of their antioxidant activity.

    PubMed

    De Marino, Simona; Gala, Fulvio; Zollo, Franco; Vitalini, Sara; Fico, Gelsomina; Visioli, Francesco; Iorizzi, Maria

    2008-06-01

    Dragon's blood (Sangre de drago), a viscous red sap derived from Croton lechleri Muell-Arg (Euphorbiaceae), is extensively used by indigenous cultures of the Amazonian basin for its wound healing properties. The aim of this study was to identify the minor secondary metabolites and test the antioxidant activity of this sustance. A bioguided fractionation of the n-hexane, chloroform, n-butanol, and aqueous extracts led to the isolation of 15 compounds: three megastigmanes, four flavan-3-ols, three phenylpropanoids, three lignans, a clerodane, and the alkaloid taspine. In addition to these known molecules, six compounds were isolated and identified for the first time in the latex: blumenol B, blumenol C, 4,5-dihydroblumenol A, erythro-guaiacyl-glyceryl-beta-O-4'- dihydroconiferyl ether, 2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]-propane-1,3-diol and floribundic acid glucoside. Combinations of spectroscopic methods ((1)H-, (13)C- NMR and 2D-NMR experiments), ESI-MS, and literature comparisons were used for compound identification. In vitro antioxidant activities were assessed by DPPH, total antioxidant capacity and lipid peroxidation assays. Flavan-3-ols derivatives (as major phenolic compounds in the latex) exhibited the highest antioxidant activity.

  12. 75 FR 35796 - Busan 74 (2-hydroxypropyl methanethiosulfonate); Chlorine Gas; and Dichromic Acid, et al...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... disproportionately high and adverse human health impacts or environmental effects from exposure to the pesticide(s... without unreasonable adverse effects on human health or the environment. Registration review dockets... its effects on human health and the environment. DATES: Comments must be received on or before August...

  13. The effect of pH and triethanolamine on sulfisoxazole complexation with hydroxypropyl-beta-cyclodextrin.

    PubMed

    Gladys, Granero; Claudia, Garnero; Marcela, Longhi

    2003-11-01

    A novel complexation of sulfisoxazole with hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was studied. Two systems were used: binary complexes prepared with HP-beta-CD and multicomponent system (HP-beta-CD and the basic compound triethanolamine (TEA)). Inclusion complex formation in aqueous solutions and in solid state were investigated by the solubility method, thermal analysis (differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)), Fourier-transform infrared spectroscopy (FT-IR) and dissolution studies. The solid complexes of sulfisoxazole were prepared by freeze-drying the homogeneous concentrated aqueous solutions in molar ratios of sulfisoxazole:HP-beta-CD 1:1 and 1:2, and sulfisoxazole:TEA:HP-beta-CD 1:1:2. FT-IR and thermal analysis showed differences among sulfisoxazole:HP-beta-CD and sulfisoxazole:TEA:HP-beta-CD and their corresponding physical mixtures and individual components. The HP-beta-CD solubilization of sulfisoxazole could be improved by ionization of the drug molecule through pH adjustments. However, larger improvements of the HP-beta-CD solubilization are obtained when multicomponent systems are used, allowing to reduce the amount of CD necessary to prepare the target formulation.

  14. Microencapsulation of caffeic acid phenethyl ester and caffeic acid phenethyl amide by inclusion in hydroxypropyl-β-cyclodextrin.

    PubMed

    Garrido, E Manuela P J; Cerqueira, Ana S; Chavarria, Daniel; Silva, Tiago; Borges, Fernanda; Garrido, Jorge M P J

    2018-07-15

    Caffeic acid phenethyl ester (CAPE) is a bioactive polyphenolic compound obtained from propolis extract. Although it has a broad therapeutic potential, the bioavailability of CAPE is limited, due to reduced solubility and poor plasmatic stability. Efforts to reduce these pharmacokinetic drawbacks resulted in the synthesis of caffeic acid phenethyl amide (CAPA). Cyclodextrins have been proved as promising excipients for the formulation of active ingredients. Herein, we report the inclusion complexation behavior and binding ability of CAPE and CAPA with hydroxypropyl-β-cyclodextrin (HP-β-CD). The supramolecular interactions were examined through UV and FTIR spectroscopy, DSC, 1 H NMR and 2D ROESY. The CAPE/HP-β-CD and CAPA/HP-β-CD inclusion complexes stability constants were determined to be, respectively, 2911.6 and 584.6 M -1 in water and 2866.2 and 700.1 M -1 at physiological pH. The aqueous solubility increased notably, proving that HP-β-CD can be potentially useful to improve the biological, chemical and physical properties of CAPE and CAPA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Enhanced dissolution, stability and physicochemical characterization of ATRA/2-hydroxypropyl-β-cyclodextrin inclusion complex pellets prepared by fluid-bed coating technique.

    PubMed

    Chen, Zhongjian; Lu, Yi; Qi, Jianping; Wu, Wei

    2013-02-01

    The aim of this work was to prepare stable all-trans-retinoic acid (ATRA)/2-hydroxypropyl-β-cyclodextrin (HPCD) inclusion complex pellets with industrial feasible technology, the fluid-bed coating technique, using PVP K30 simultaneously as binder and reprecipitation retarder. The coating process was fluent with high coating efficiency. In vitro dissolution of the inclusion complex pellets in 5% w/v Cremopher EL solution was dramatically enhanced with no reprecipitation observed, and significantly improved stability against humidity (92.5% and 75% RH) and illumination (4500 lx ± 500 lx) was achieved by HPCD inclusion. Differential scanning calorimetry and powder X-ray diffractometry confirmed the absence of crystallinity of ATRA. Fourier transform-infrared spectrometry revealed interaction between ATRA and HPCD adding evidence on inclusion of ATRA moieties into HPCD cavities. Solid-state (13)C NMR spectrometry indicated possible inclusion of ATRA through the polyene chain, which was the main reason for the enhanced photostability. It is concluded that the fluid-bed coating technique has the potential use in the industrial preparation of ATRA/HPCD inclusion complex pellets.

  16. (13)C and (15)N solid-state NMR studies on albendazole and cyclodextrin albendazole complexes.

    PubMed

    Ferreira, M João G; García, A; Leonardi, D; Salomon, Claudio J; Lamas, M Celina; Nunes, Teresa G

    2015-06-05

    (13)C and (15)N solid-state nuclear magnetic resonance (NMR) spectra were recorded from albendazole (ABZ) and from ABZ:β-cyclodextrin, ABZ:methyl-β-cyclodextrin, ABZ:hydroxypropyl-β-cyclodextrin and ABZ:citrate-β-cyclodextrin, which were prepared by the spray-drying technique. ABZ signals were typical of a crystalline solid for the pure drug and of an amorphous compound obtained from ABZ:cyclodextrin samples. Relevant spectral differences were correlated with chemical interaction between ABZ and cyclodextrins. The number and type of complexes revealed a strong dependence on the cyclodextrin group substituent. Solid-state NMR data were consistent with the presence of stable inclusion complexes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Construction of Hierarchical Fouling Resistance Surfaces onto Poly(vinylidene fluoride) Membranes for Combating Membrane Biofouling.

    PubMed

    Li, Xue; Hu, Xuefeng; Cai, Tao

    2017-05-09

    Owing to the highly hydrophobic nature, fluoropolymer membranes usually suffer from serious fouling problem, and therefore largely limited their practical applications. Also, the development of environmentally benign and nonreleasing antifouling coatings onto the inert fluoropolymer membranes remains a great challenge and is of prime importance for various scientific interests and industrial applications. In the present work, a facile and effective approach for the construction of hierarchical fouling resistance surfaces onto the poly(vinylidene fluoride) (PVDF) membranes was developed. Graft copolymers of PVDF with poly(hyperbranched polyglycerol methacrylamide) side chains (PVDF-g-PHPGMA copolymers) were synthesized via reversible addition-fragmentation chain transfer (RAFT) graft copolymerization of pentafluorophenyl methacrylate (PFMA) with the ozone-preactivated PVDF, followed by activated ester-amine reaction of PPFMA chains with amino-terminated hyperbranched polyglycerol (HPG-NH 2 ). The copolymers could be simply processed into microfiltration (MF) membranes with surface-tethered PHPGMA side chains on the membrane and pore surfaces by nonsolvent induced phase inversion. Furthermore, the PVDF-g-PHPGMA-g-PSBMA membrane was prepared via surface-initiated atom transfer radical polymerization (SI-ATRP) of zwitterionic monomer, N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (SBMA) from the PVDF-g-PHPGMA membrane and pore surfaces. Arise from a synergistic effect of the dendritic architecture of PHPGMA branches and "superhydrophilic" nature of PSBMA brushes, the PVDF-g-PHPGMA-g-PSBMA membranes exhibit superior resistance to protein and bacteria adhesion with insignificant cytotoxicity effects, making the membranes potentially useful for water treatment and biomedical applications. One may find the present study a general and effective method for the fabrication of antifouling fluoropolymer membranes in a controllable and green manner.

  18. A study of the aggregation of cyclodextrins: Determination of the critical aggregation concentration, size of aggregates and thermodynamics using isodesmic and K2-K models.

    PubMed

    Do, Thao Thi; Van Hooghten, Rob; Van den Mooter, Guy

    2017-04-15

    The aggregation of three different cyclodextrins (CDs): 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), 2-hydroxypropyl-γ-cyclodextrin (HP-γ-CD) and sulfobutylether-β-cyclodextrin (SBE-β-CD) was studied. The critical aggregation concentration (cac) of these three CDs is quite similar and is situated at ca. 2% (m/v). There was only a small difference in the cac values determined by DLS and 1 H NMR. DLS measurements revealed that CDs in solution have three size populations wherein one of them is that of a single CD molecule. The size of aggregates determined by TEM appears to be similar to the size of the aggregates in the second size distribution determined by DLS. Isodesmic and K 2 -K self-assembly models were used for studying the aggregation process of HP-β-CD, HP-γ-CD and SBE-β-CD. The results showed that the aggregation process of these CDs is a cooperative one, where the first step of aggregation is less favorable than the next steps. The determined thermodynamic parameters showed that the aggregation process of all three CDs is spontaneous and exothermic and it is driven by an increase of the entropy of the environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The preparation and characterization of silk fibroin blended with low molecular weight hydroxypropyl methylcellulose (HPMC)

    NASA Astrophysics Data System (ADS)

    Shetty, G. Rajesha; Rao, B. Lakshmeesha; Gowda, Mahadeva; Shivananda, C. S.; Asha, S.; Sangappa, Y.

    2018-04-01

    In this work, the structure and optical properties of Silk Fibroin (SF), lower molecular weight Hydroxypropyl Methylcellulose (HPMC(L)) and its blend film of SF-HPMC(L) were studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron Microscope (SEM) and UV-Visible spectroscopy (UV-Vis). The results indicates that the homogeneous miscible blend of SF-HPMC(L) has lower crystallite size and lower optical band gap compared to virgin SF and HPMC(L). FTIR study confirms the presence of both SF and HPMC(L) molecules in the prepared blend films.

  20. Hydroxypropyl-beta-cyclodextrin as non-exhaustive extractant for organochlorine pesticides and polychlorinated biphenyls in muck soil.

    PubMed

    Wong, Fiona; Bidleman, Terry F

    2010-05-01

    Hydroxypropyl-beta-cyclodextrin (HPCD) was used as a non-exhaustive extractant for organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs) in muck soil. An optimized extraction method was developed which involved using a HPCD to soil mass ratio of 5.8 with a single extraction period of 20 h. An aging experiment was performed by spiking a muck soil with (13)C-labeled OCs and non-labeled PCBs. The soil was extracted with the optimized HPCD method and Soxhlet apparatus with dichloromethane over 550 d periodically. The HPCD extractability of the spiked OCs was greater than of the native OCs. A decreased in HPCD extractability was observed for the spiked OCs after 550 d of aging and their extractability approached those of the natives. The partition coefficient between HPCD and soil (logK(CD-Soil)) was negatively correlated with the octanol-water partition coefficient (logK(OW)) with r(2)=0.67 and p<0.05. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  1. Hydroxypropyl-beta-cyclodextrin enhanced determination for the Vitamin B12 by fluorescence quenching method.

    PubMed

    Sun, Jing; Zhu, Xiashi; Wu, Ming

    2007-05-01

    A novel fluorescence quenching method for the determination of Vitamin B12(VB12) had been developed. It was based on that the fluorescence intensity of erythrosine sodium(ES) could be enhanced by Hydroxypropyl-beta-cyclodextrin(HP-beta-CD) due to the formation of inclusion complex (HP-beta-CD-ES), while the fluorescence intensity of HP-beta-CD-ES was diminished after adding VB12 into the system, and there was a linear relationship between the fluorescence quenching value of the system (DeltaF) and the concentration of VB12 (c). The mechanism of the determination of VB12 was discussed. The results showed that under the optimal conditions, the linear range of calibration curve for the determination of VB12 was 0.0 approximately 2.1 x 10(-5) mol/L, and the detection limit was 1.8 x 10(-7) mol/ L. It could be satisfactorily applied to the determination of VB12 in injections.

  2. Durability and synergistic effects of KI on the acid corrosion inhibition of mild steel by hydroxypropyl methylcellulose.

    PubMed

    Arukalam, I O

    2014-11-04

    The performance of hydroxypropyl methylcellulose (HPMC) as safe corrosion inhibitor for mild steel in aerated 0.5M H2SO4 solution was appraised by weight loss, impedance and polarization measurements. Results indicate that HPMC functions as a good inhibitor in the studied environment and inhibition efficiency increased with increasing concentration of inhibitor and temperature. Time-dependent effect of the inhibition efficiency reveals that inhibition efficiency increased with time up to the fourth day after which it waned, but improved on addition of KI. The synergism parameter evaluated confirmed the synergistic effect of KI and HPMC. Impedance results clearly show that HPMC inhibited the corrosion reaction via adsorption onto the metal/solution interface following Freundlich adsorption isotherm. Polarization results indicate that HPMC acts as a mixed-type inhibitor with predominant cathodic effect. Theoretical study using density functional theory was employed to establish the correlation between the structure (molecular and electronic) and the inhibition efficiency. Copyright © 2014. Published by Elsevier Ltd.

  3. 40 CFR 721.4040 - Glycols, polyethylene-, 3-sulfo-2-hydroxypropyl-p-(1,1,3,3-tetra-methylbutyl)phenyl ether, sodium...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... information, and any information on methods for protecting against such risk, into an MSDS as described at... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF... substance is any manner or method of manufacture, import, or processing associated with any use of this...

  4. Anion responsive Europium (III) complexes for Optical Sensing and PARACEST MRI

    NASA Astrophysics Data System (ADS)

    Buttarazzi, Leandro Alfredo

    The Eu(III) complexes of 1-(acetyl-7-Methyl-4-(trifluoromethyl) quinolin-2(1H)-one)4,7,10 tris(2-hydroxypropyl)-1,4,7,10-tetraazacycladodecane (Eu(S-THPC)3+ ) and 1-(acetyl-dioctadecylamine)4,7,10 tris(hydroxypropyl)-1,4,7,10-tetraazacycladodecane (Eu(S-THMC)3+) were studied in order to develop complexes that are both optical sensors and MRI contrast agents that respond to biologically relevant anions. Both complexes are related to Eu(S-THP) where S-THP = (1S,4S,7S,10S)-1,4,7,10-tetrakis(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane. Eu(III) excitation, emission and time resolved luminescence spectroscopy experiments were used to study binding of the anions. One complex, Eu(THPC)3+ has an appended carbostyril dye for sensitization of Eu(III) luminescence. Luminescence experiments were done on this complex in order to quantify the effectiveness of the energy transfer from the dye to the lanthanide and to obtain binding constants of the anions from the Eu(III) emission peaks. Emission spectra were obtained by exciting the chromophore at 340 nm. Our results suggest that phosphate binds with a dissociation constant (Kd) of 4.2mM and citrate binds with a Kd of 228 uM. The quantum yield for the complex was low compared to other reported complexes in literature. Eu(S-THMC) 3+, and Eu(S-THMAC)3+ containing long carbon chains for incorporation into liposomes were explored as an approach to develop complexes with increased sensitivity as CEST agents. CEST experiments with the complex incorporated into a liposome and as a micelle were carried out. Liposome formation was achieved but no CEST effect was observed with two different lanthanide complexes. Eu(S-THMC)3+ gave the most promising results by showing CEST in acetonitrile and 50/50 acetonitrile/H 2O. However further experiments with this complex in buffered aqueous solution failed. Yb(S-THMAC)3+ solubility was poor in both acetonitrile and in water and this likely prevented the observation of CEST spectra.

  5. Effect of β-cyclodextrin derivatives on the diosgenin absorption in Caco-2 cell monolayer and rats.

    PubMed

    Okawara, Masaki; Tokudome, Yoshihiro; Todo, Hiroaki; Sugibayashi, Kenji; Hashimoto, Fumie

    2014-01-01

    Orally administrated diosgenin, a steroidal saponin found in the roots of Dioscorea villosa, improves reduced skin thickness in ovariectomized mice, and plays an important role in the treatment of hyperlipidemia. Diosgenin has been noticed as an active element in cosmeceutical and dietary supplements. We have already elucidated that the absolute oral bioavailability of diosgenin is very low; however, a high skin distribution of diosgenin was also observed. The aim of the present study was to examine and compare the effects of β-cyclodextrin (β-CD) and 3 kinds of its derivatives such as hydroxypropyl β-CD on the diosgenin permeability using a Caco-2 model and rat jejunal perfusion. These derivatives of β-CD greatly improved the low solubility of diosgenin. No significant increase was observed in the lactate dehydrogenase leakage from Caco-2 cell, while a slight decrease was found on the transepithelial electrical resistance by diosgenin and β-CD derivatives. However, β-CD derivatives, especially hydroxyethyl β-CD and hydroxypropyl β-CD, markedly enhanced diosgenin permeability across the Caco-2 monolayer and rat jejunum. The bioavailability of diosgenin in the presence of β-CD derivatives were about 4 to 11 fold higher than diosgenin suspension. The mechanisms of these enhancement effects may be due to improvements in solubility and tight junction opening.

  6. Effect of 18β-glycyrrhetinic acid and hydroxypropyl γcyclodextrin complex on indomethacin-induced small intestinal injury in mice.

    PubMed

    Ishida, Tsukasa; Miki, Ikuya; Tanahashi, Toshihito; Yagi, Saori; Kondo, Yasuyuki; Inoue, Jun; Kawauchi, Shoji; Nishiumi, Sin; Yoshida, Masaru; Maeda, Hideko; Tode, Chisato; Takeuchi, Atsuko; Nakayama, Hirokazu; Azuma, Takeshi; Mizuno, Shigeto

    2013-08-15

    Non-steroidal anti-inflammatory drugs (NSAIDs)-induced small intestinal injury is a serious clinical event with recent advances of diagnostic technologies, but a successful therapeutic method to treat such injuries is still lacking. Licorice, a traditional herbal medicine, and its derivatives have been widely used for the treatment of a variety of diseases due to their extensive biological actions. However, it is unknown whether these derivatives have an effect on NSAIDs-induced small intestinal damage. Previously, the anti-inflammatory effects of three compounds extracted from the licorice root, glycyrrhizin, 18β-glycyrrhetinic acid, and dipotassium glycyrrhizinate, were compared in vitro cell culture. The most prominent inhibitory effect on the tumor necrosis factor-α (TNF-α) production was observed with the administration of 18β-glycyrrhetinic acid as an active metabolite of glycyrrhizin. In this study, a complex compound of 18β-glycyrrhetinic acid and hydroxypropyl γcyclodextrin was examined to improve the oral bioavailability. After administration of this complex to indomethacin treated mice, a significantly high plasma concentration of 18β-glycyrrhetinic acid was detected using the tandem mass spectrometry coupled with the HPLC. Furthermore, the complex form of 18β-glycyrrhetinic acid and hydroxypropyl γcyclodextrin reduced mRNA expressions of TNF-α, interleukin (IL)-1β, and IL-6, which was histologically confirmed in the improvement of indomethacin-induced small intestinal damage. These results suggest that the complex of 18β-glycyrrhetinic acid and hydroxypropyl γcyclodextrin has the potential therapeutic value for preventing the adverse effects of indomethacin-induced small intestinal injury. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Effect of 0.3% Hydroxypropyl Methylcellulose/Dextran Versus 0.18% Sodium Hyaluronate in the Treatment of Ocular Surface Disease in Glaucoma Patients: A Randomized, Double-Blind, and Controlled Study.

    PubMed

    Prabhasawat, Pinnita; Ruangvaravate, Ngamkae; Tesavibul, Nattaporn; Thewthong, Maneerat

    2015-01-01

    To compare the efficacy and safety of 0.3% hydroxypropyl methylcellulose/dextran (HPMC/dextran) and 0.18% sodium hyaluronate (SH) in the treatment of ocular surface disease in patients using antiglaucoma drugs containing preservatives. This was a double-blind, randomized, parallel-group study in 70 glaucoma patients with Ocular Surface Disease Index (OSDI) score greater than 20 points and/or presence of ocular signs. Patients were randomized to receive either preservative-free 0.3% HPMC/dextran (n=35) or preservative-free 0.18% SH (n=35). Treatment was 1 drop in each eye, 4 times a day. Data were collected at baseline, at day 7 and day 28. The groups were homogeneous at baseline. At day 28, both treatments showed significant improvements (P<0.05) in the mean OSDI score, lid skin and lid margin inflammation, conjunctival injection, and expressibility of meibomian glands, corneal staining score, fluorescein tear breakup time (FBUT), and Schirmer I test. However, the mean OSDI score, lid margin inflammation and conjunctival injection showed significant improvements (P<0.05) in the SH group at days 7 and 28, compared to the HPMC/dextran group. FBUT and the Schirmer I test also showed significant improvements (P<0.05) in the SH group compared to the HPMC/dextran group, at day 28. No adverse reactions were observed in either group. Preservative-free artificial tear, 0.3% HPMC/dextran, and 0.18% SH, caused a significant relief of the ocular surface disease in glaucoma patients. However, 0.18% SH led to a greater improvement in ocular signs and symptoms than 0.3% HPMC/dextran.

  8. A reductionist biomimetic model system that demonstrates highly effective Zn(II)-catalyzed cleavage of an RNA model.

    PubMed

    Liu, C Tony; Neverov, Alexei A; Brown, R Stan

    2007-03-05

    The cyclization of the RNA model 2-hydroxypropyl p-nitrophenyl phosphate (HPNPP, 1) promoted by Zn2+ alone and the 1,5,9-triazacyclododecane complex of Zn2+ (Zn2+:[12]aneN3) is studied in ethanol in the presence of 0.5 equiv of -OEt/Zn2+ to investigate the effect of a low polarity/dielectric medium on a metal-catalyzed reaction of biological relevance. Ethanol exerts a medium effect that promotes strong binding of HPNPP to Zn2+, followed by a dimerization to form a catalytically active complex (HPNPP:Zn2+)2 in which the phosphate undergoes cyclization with a rate constant of kcat = 2.9 s(-1) at s(s)pH 7.1. In the presence of the triaza ligand:Zn2+ complex, the change from water to methanol and then to ethanol brings about a mechanism where two molecules of the complex, suggested as EtOH:Zn2+:[12]aneN3 and its basic form, EtO-:Zn2+:[12]aneN3, bind to HPNPP and catalyze its decomposition with a rate constant of kcat of 0.13 s(-1) at s(s)pH 7.1. Overall, the acceleration exhibited in these two situations is 4 x 10(14)-fold and 1.7 x 10(12)-fold relative to the background ethoxide-promoted reactions at the respective s(s)pH values. The implications of these findings are discussed within the context of the idea that enzymatic catalysis is enhanced by a reduced effective dielectric constant within the active site.

  9. A new generation of ferrociphenols leads to a great diversity of reactive metabolites, and exhibits remarkable antiproliferative properties† †Electronic supplementary information (ESI) available: Experimental procedures for syntheses and biological evaluation, supplementary Fig. 1–8 and Tables 1–6, X-ray crystallographic data, cif file. CCDC 1527404. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04213b

    PubMed Central

    Wang, Yong; Dansette, Patrick M.; Pigeon, Pascal; McGlinchey, Michael J.

    2017-01-01

    Organometallic compounds bearing the redox motif [ferrocenyl-ene-phenol] have very promising antiproliferative properties which have been further improved by incorporating pertinent substituents able to engender new mechanisms. Here we show that novel ferrociphenols bearing a hydroxypropyl chain exhibit strong antiproliferative effects, in most cases much better than those of cisplatin, tamoxifen, or of previously described ferrociphenols devoid of this terminal OH. This is illustrated, in the case of one of these compounds, by its IC50 values of 110 nM for MDA-MB-231 triple negative breast cancer cells and of 300 nM for cisplatin-resistant A2780cisR human ovarian cancer cells, and by its GI50 values lower than 100 nM towards a series of melanoma and renal cancer cell lines of the NCI-60 panel. Interestingly, oxidative metabolism of these hydroxypropyl-ferrociphenols yields two kinds of quinone methides (QMs) that readily react with various nucleophiles, such as glutathione, to give 1,6- and 1,8-adducts. Protonation of these quinone methides generates numerous reactive metabolites leading eventually to many rearrangement and cleavage products. This unprecedented and fully characterized metabolic profile involving a wide range of electrophilic metabolites that should react with cell macromolecules may be linked to the remarkable profile of antiproliferative activities of this new series. Indeed, the great diversity of unexpected reactive metabolites found upon oxidation will allow them to adapt to various situations present in the cancer cell. These data initiate a novel strategy for the rational design of anticancer molecules, thus opening the way to new organometallic potent anticancer drug candidates for the treatment of chemoresistant cancers. PMID:29629075

  10. Dextran based Polymeric Micelles as Carriers for Delivery of Hydrophobic Drugs.

    PubMed

    Mocanu, Georgeta; Nichifor, Marieta; Sacarescu, Liviu

    2017-01-01

    The improvement of drugs bioavailability, especially of the hydrophobic ones, by using various nanoparticles is a very exciting field of the modern research. The applicability of nano-sized shell crosslinked micelles based on dextran as supports for controlled release of several hydrophobic drugs (nystatin, rifampicin, resveratrol, and curcumin) was investigated by in vitro drug loading/release experiments. The synthesized crosslinked micelles were loaded with drugs of various hydrophobicities and their retention/release behavior was followed by dialysis procedure. Crosslinked micelles obtained from dextran with octadecyl end groups, with or without N-(2- hydroxypropyl)-N,N-dimethyl-N-benzylammonium chloride groups attached to the main dextran chains, could retain the drugs in amounts which increased with increasing drug hydrophobicity (water insolubility), as follows: 30-60 mg rifampicin/g, 70-100 mg nystatin/g, 120-144 mg resveratrol/g and 146-260 mg curcumin/g. The rate of drug release from the loaded micelles was also dependent on the drug hydrophobicity and was always slower than the free drug recovery. Antioxidant activity of curcumin and resveratrol released from the loaded micelles was preserved. The results highlighted the potential of the new nano-sized micelles as carriers for prolonged and controlled delivery of various hydrophobic drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Effect of crospovidone and hydroxypropyl cellulose on carbamazepine in high-dose tablet formulation.

    PubMed

    Flicker, Felicia; Betz, Gabriele

    2012-06-01

    The aim of this study was to develop a high-dose tablet formulation of the poorly soluble carbamazepine (CBZ) with sufficient tablet hardness and immediate drug release. A further aim was to investigate the influence of various commercial CBZ raw materials on the optimized tablet formulation. Hydroxypropyl cellulose (HPC-SL) was selected as a dry binder and crospovidone (CrosPVP) as a superdisintegrant. A direct compacted tablet formulation of 70% CBZ was optimized by a 3² full factorial design with two input variables, HPC (0--10%) and CrosPVP (0--5%). Response variables included disintegration time, amount of drug released at 15 and 60 min, and tablet hardness, all analyzed according to USP 31. Increasing HPC-SL together with CrosPVP not only increased tablet hardness but also reduced disintegration time. Optimal condition was achieved in the range of 5--9% HPC and 3--5% CrosPVP, where tablet properties were at least 70 N tablet hardness, less than 1 min disintegration, and within the USP requirements for drug release. Testing the optimized formulation with four different commercial CBZ samples, their variability was still observed. Nonetheless, all formulations conformed to the USP specifications. With the excipients CrosPVP and HPC-SL an immediate release tablet formulation was successfully formulated for high-dose CBZ of various commercial sources.

  12. Response surface methodology applied to the study of the microwave-assisted synthesis of quaternized chitosan.

    PubMed

    dos Santos, Danilo Martins; Bukzem, Andrea de Lacerda; Campana-Filho, Sérgio Paulo

    2016-03-15

    A quaternized derivative of chitosan, namely N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride (QCh), was synthesized by reacting glycidyltrimethylammonium chloride (GTMAC) and chitosan (Ch) in acid medium under microwave irradiation. Full-factorial 2(3) central composite design and response surface methodology (RSM) were applied to evaluate the effects of molar ratio GTMAC/Ch, reaction time and temperature on the reaction yield, average degree of quaternization (DQ) and intrinsic viscosity ([η]) of QCh. The molar ratio GTMAC/Ch was the most important factor affecting the response variables and RSM results showed that highly substituted QCh (DQ = 71.1%) was produced at high yield (164%) when the reaction was carried out for 30min. at 85°C by using molar ratio GTMAC/Ch 6/1. Results showed that microwave-assisted synthesis is much faster (≤30min.) as compared to conventional reaction procedures (>4h) carried out in similar conditions except for the use of microwave irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Effect of film multi-scale structure on the water vapor permeability in hydroxypropyl starch (HPS)/Na-MMT nanocomposites.

    PubMed

    Liu, Siyuan; Cai, Panfu; Li, Xiaoxi; Chen, Ling; Li, Lin; Li, Bing

    2016-12-10

    To improve the water vapor resistance of starch-based films, Na-MMT (Na-montmorillonite) as nanofillers were fabricated into hydroxypropyl starch and the multi-scale structural changes (including intermolecular interaction, short-range conformation, long-range ordered structure and the aggregated structure of the film) were revealed. The elongation of the water vapor molecule pathway by tortuous path is generally recognized as the main reason for the improvement of water resistance. However this study observed the lowest water vapor permeability (WVP) was at the 3% Na-MMT/hydroxypropyl starch (HPS) ratio instead of 5% even nanofillers were partially exfoliated at both ratio. Except for the "tortuous path" caused by nanofillers, this observation proposed that the short-range conformation of HPS chains, long-range ordered structure and the aggregated structure likely influenced the water barrier property. The relationship between WVP and multi-scale structure of the film was investigated. The results suggested that a good balance of short-range conformationin the amorphous region, long-range ordered structure and the aggregated structure of the film was required for the improvement of water vapor barrier property. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effect of pH on the rheological properties of borate crosslinked hydroxypropyl guar gum hydrogel and hydroxypropyl guar gum.

    PubMed

    Wang, Shibin; Tang, Hongbiao; Guo, Jianchun; Wang, Kunjie

    2016-08-20

    pH is an important factor affecting the performance of polymer fluid. The rheological properties of hydroxypropyl guar gum (HPG) base fluid and the structural strength, rheological properties, viscoelastic properties and thixotropy properties of HPG gel depend largely on the pH values. For the base fluid, an apparent viscosity-increasing effect was observed over the pH range from 7 to 11, and the apparent viscosity gradually decreased at pH 11.5-14, exhibiting electrostatic repulsion behavior and steric effects. For the HPG gel, at pH 7-12.5, the gel possessed higher apparent viscosity, higher elastic modulus (G'), lower tanδ (the ratio of the viscous modulus to the elastic modulus) and an "8"-shaped hysteresis loop, indicating stronger gel structure strength and the elastic dominant property. At pH 13-13.5, the gel samples exhibited the transition from a pseudoplastic fluid to a Newtonian fluid, and their viscosity, elastic modulus decreased but tanδ increased with the increase in pH values, exhibiting gradually weakened elastic properties. When the pH was 14, the gel mainly exhibited viscous characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Evaluation of the effect of hydroxypropyl-β-cyclodextrin on topical administration of milk thistle extract.

    PubMed

    Spada, Gianpiera; Gavini, Elisabetta; Cossu, Massimo; Rassu, Giovanna; Carta, Antonio; Giunchedi, Paolo

    2013-01-30

    Two water in oil emulsions composed by eudermic ingredients as glycerin, cocoa butter, almond oil and a variety of lipids, were enriched respectively with milk thistle dry extract (MT) or with a binary complex composed by MT and hydroxypropyl-β-cyclodextrin (HP) (1:4 w/w) correspondent to 1% (w/w) in sylimarine in order to obtain two different emulsions designed for the skin delivery and determine influence of hydroxypropyl-β-cyclodextrin on the extract delivery and permeation. Uv-vis spectrophotometric analyses demonstrated that phytocomplex formation influences the finding of MT after the complexation process and the in vitro antioxidant activity. Further in vitro and ex vivo experiments demonstrated that the penetration capability of MT from formulations is strictly influenced by the phytocomplex able to control MT permeation; moreover phytocomplex increases flavonoids stability during the in vitro tests. Additionally, in vivo studies showed that the penetration into the stratum corneum of the active ingredients is effectively achieved by the phytocomplex formation, in fact about 80% of MT is absorbed by the skin along 1h despite the 30% of MT not complexed absorbed during the same period. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Folate-decorated hydrophilic three-arm star-block terpolymer as a novel nanovehicle for targeted co-delivery of doxorubicin and Bcl-2 siRNA in breast cancer therapy.

    PubMed

    Qian, Junmin; Xu, Minghui; Suo, Aili; Xu, Weijun; Liu, Ting; Liu, Xuefeng; Yao, Yu; Wang, Hongjie

    2015-03-01

    To minimize the side effects and enhance the efficiency of chemotherapy, a novel folate-decorated hydrophilic cationic star-block terpolymer, [poly(l-glutamic acid γ-hydrazide)-b-poly(N,N-dimethylaminopropyl methacrylamide)]3-g-poly(ethylene glycol) ((PGAH-b-PDMAPMA)3-g-PEG), with disulfide linkages between the PEG and PDMAPMA blocks, was developed for targeted co-delivery of doxorubicin and Bcl-2 small interfering RNA (siRNA) into breast cancer cells. The terpolymer was synthesized by a combination of ring-opening polymerization, reversible addition-fragmentation chain transfer polymerization, PEGylation and hydrazinolysis. The chemical structures of the polymers were confirmed by (1)H-NMR analysis. The terpolymer could conjugate doxorubicin via an acid-labile hydrazone linkage and simultaneously efficiently complex siRNA through electrostatic interaction at N/P ratios of ⩾4:1 to form "two-in-one" nanomicelleplexes, which displayed a spherical shape and had an average size of 101.3 nm. The doxorubicin loading efficiency and content were 61.0 and 13.23%, respectively. The cytotoxicity, drug release profile, targeting ability, cellular uptake and intracellular distribution of the nanomicelleplexes were evaluated in vitro. We found that the release behaviors of doxorubicin and siRNA had a pH/reduction dual dependency. They were released faster under reductive acidic conditions (pH 5.0, glutathione: 10mM) than under physiological conditions (pH 7.4). The folate-decorated nanomicelleplexes could deliver doxorubicin and Bcl-2 siRNA more efficiently into the same MCF-7 cell and exhibited a higher cytotoxicity than non-targeted nanomicelleplexes. These results indicate that the terpolymer could act as an efficient vehicle for targeted intracellular co-delivery of doxorubicin and therapeutic siRNA in cancer therapy. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Interaction between curcumin and human serum albumin in the presence of excipients and the effect of binding on curcumin photostability.

    PubMed

    Vukićević, Milica; Tønnesen, Hanne Hjorth

    2016-01-01

    Curcumin (Cur) is known to bind to human serum albumin (HSA) which may lead to a reduced phototoxic effect of the compound in the presence of serum or saliva. The influence of excipients on the Cur-HSA binding was studied by HSA florescence quenching and Cur absorption and emission spectroscopy in the presence and absence of the selected excipients. Photostabilty of Cur in the presence of HSA was evaluated, as well as the effect of excipients on HSA bound Cur photodegradation. Cyclodextrins (CDs) (2-hydroxypropyl-β-cyclodextrin and 2-hydroxypropyl-γ-cyclodextrin) and polymers (polyethylene glycol 400, PEG 400 and Pluronic F-127, PF-127) were selected for the study. CDs and PF-127 seem to decrease Cur binding to HSA, probably through competitive binding. Cur was still bound to HSA in polyethylene glycol (PEG) solutions at the highest investigated concentration (5% w/v). However, high PEG concentration appears to have effect on the protein conformation, as shown by the fluorescence quenching study. Low Cur photostability in the presence of HSA could be improved by the addition of hydroxylpropyl-γ-cyclodextrin (HPγCD) to the samples, whereas PEG and PF-127 showed no effect.

  18. Inclusion of Paracetamol into β-cyclodextrin nanocavities in solution and in the solid state

    NASA Astrophysics Data System (ADS)

    El-Kemary, Maged; Sobhy, Saffaa; El-Daly, Samy; Abdel-Shafi, Ayman

    2011-09-01

    We report on steady-state UV-visible absorption and emission characteristics of Paracetamol, drug used as antipyretic agent, in water and within cyclodextrins (CDs): β-CD, 2-hydroxypropyl- β-CD (HP- β-CD) and 2,6-dimethyl- β-CD (Me- β-CD). The results reveal that Paracetamol forms a 1:1 inclusion complex with CD. Upon encapsulation, the emission intensity enhances, indicating a confinement effect of the nanocages on the photophysical behavior of the drug. Due to its methyl groups, the Me- β-CD shows the largest effect for the drug. The observed binding constant showing the following trend: Me- β-CD > HP- β-CD > β-CD. The less complexing effectiveness of HP- β-CD is due to the steric effect of the hydroxypropyl-substituents, which can hamper the inclusion of the guest molecules. The solid state inclusion complex was prepared by co-precipitation method and its characterization was investigated by Fourier transform infrared spectroscopy, 1H NMR and X-ray diffractometry. These approaches indicated that Paracetamol was able to form an inclusion complex with CDs, and the inclusion compounds exhibited different spectroscopic features and properties from Paracetamol.

  19. Multiscale Computational Modeling of the Nanostructure of Solid Dispersions of Hydroxypropyl Methylcellulose Acetate Succinate (HPMCAS) and Phenytoin.

    PubMed

    Huang, Wenjun; Mandal, Taraknath; Larson, Ronald G

    2017-10-02

    We recently developed coarse-grained (CG) force fields for hydroxypropyl methylcellulose acetate succinate (HPMCAS) polymers and the model drug molecule phenytoin, and a continuum transport model to study the polymer-drug nanostructures presented during a dissolution test after solvation of solid dispersion particles. We model the polymer-drug interactions that contribute to suppression of drug aggregation, release, and crystal growth during the dissolution process, and we take these as indicators of polymer effectiveness. We find that the size and the intermolecular interaction strength of the functional group and the drug loading concentration are the major factors that impact the effectiveness of the polymeric excipient. The hydroxypropyl acetyl group is the most effective functional group, followed by the acetyl group, while the deprotonated succinyl group is the least effective functional group, except that the deprotonated succinyl group at the 6-position is very effective in slowing down the phenytoin crystal growth. Our simulation results thus suggest HPMCAS with higher acetyl and lower succinyl content is more effective in promoting phenytoin solubility in dissolution media, and polymers become less effective when drug loading becomes high (i.e., 50% of the mass of the polymer/drug solid dispersion), agreeing with previous experimental studies. In addition, our transport model indicates that the drug release time from a solid dispersion particle of 2 μm diameter is less than 10 min, correlating well with the experimental time scale for a typical dissolution profile to reach maximum peak concentration. Our modeling effort, therefore, provides new avenues to understand the dissolution behavior of complex HPMCAS-phenytoin solid dispersions and offers a new design tool to optimize the formulation. Moreover, the systematic and robust approach used in our computational models can be extended to other polymeric excipients and drug candidates.

  20. Clove essential oil-in-cyclodextrin-in-liposomes in the aqueous and lyophilized states: From laboratory to large scale using a membrane contactor.

    PubMed

    Sebaaly, Carine; Charcosset, Catherine; Stainmesse, Serge; Fessi, Hatem; Greige-Gerges, Hélène

    2016-03-15

    This work is dedicated to prepare liposomal dry powder formulations of inclusion complexes of clove essential oil (CEO) and its main component eugenol (Eug). Ethanol injection method and membrane contactor were applied to prepare liposomes at laboratory and large scale, respectively. Various liposomal formulations were tested: (1) free hydroxypropyl-β-cyclodextrin loaded liposomes; (2) drug in hydroxypropyl-β-cyclodextrin in liposomes (DCL); (3) DCL2 obtained by double loading technique, where the drug is added in the organic phase and the inclusion complex in the aqueous phase. Liposomes were characterized for their particle size, polydispersity index, Zeta potential, morphology, encapsulation efficiency of CEO components and Eug loading rate. Reproducible results were obtained with both injection devices. Compared to Eug-loaded liposomes, DCL and DCL2 improved the loading rate of Eug and possessed smaller vesicles size. The DPPH(•) scavenging activity of Eug and CEO was maintained upon incorporation of Eug and CEO into DCL and DCL2. Contrary to DCL2, DCL formulations were stable after 1 month of storage at 4°C and upon reconstitution of the dried lyophilized cakes. Hence, DCL in aqueous and lyophilized forms, are considered as a promising carrier system to preserve volatile and hydrophobic drugs enlarging their application in cosmetic, pharmaceutical and food industries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Comparison of liposomal and 2-hydroxypropyl-β-cyclodextrin-lidocaine on cell viability and inflammatory response in human keratinocytes and gingival fibroblasts.

    PubMed

    Ferreira, Luiz Eduardo Nunes; Muniz, Bruno Vilela; Dos Santos, Cleiton Pita; Volpato, Maria Cristina; de Paula, Eneida; Groppo, Francisco Carlos

    2016-06-01

    The aim of this study was to observe the effect multilamellar liposomes (MLV) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) in the in-vitro effects of lidocaine in cell viability, pro-inflammatory cytokines and prostaglandin E2 release of both human keratinocytes (HaCaT) and gingival fibroblasts (HGF) cells. HaCaT and HGF cells were exposed to lidocaine 100-1 μm in plain, MLV and HP-β-CD formulations for 6 h or 24 h. The formulation effects in cell viability were measured by XTT assay and by fluorescent labelling. Cytokines (IL-8, IL-6 and TNF-α) and PGE2 release were quantified by ELISA. MLV and HP-β-CD formulations did not affect the HaCaT viability, which was significantly decreased by plain lidocaine after 24 h of exposure. Both drug carriers increased all cytokines released by HGF after 24-h exposure, and none of the carriers was able to reduce the PGE2 release induced by lidocaine. The effect of drug carrier in the lidocaine effects was dependent on the cell type, concentration and time of exposure. MLV and HP-β-CD showed benefits in improving cell viability; however, both of them showed a tendency to increase cytokine release when compared to the plain solution. © 2016 Royal Pharmaceutical Society.

  2. Enantiomeric separation of 2-arylpropionic acid nonsteroidal anti-inflammatory drugs by HPLC with hydroxypropyl-beta-cyclodextrin as chiral mobile phase additive.

    PubMed

    Ye, Jincui; Yu, Wenying; Chen, Guosheng; Shen, Zhengrong; Zeng, Su

    2010-08-01

    The enantio-separations of eight 2-arylpropionic acid nonsteroidal anti-inflammatory drugs (2-APA NSAIDs) were established using reversed-phase high-performance liquid chromatography with hydroxypropyl-beta-cyclodextrin (HP-beta-CD) as chiral mobile phase additive for studying the stereoselective skin permeation of suprofen, ketoprofen, naproxen, indoprofen, fenoprofen, furbiprofen, ibuprofen and carprofen. The effects of the mobile phase composition, concentration of HP-beta-CD and column temperature on retention and enantioselective separation were investigated. With 2-APA NSAIDs as acidic analytes, the retention times and resolutions of the enantiomers were strongly related to the pH of the mobile phase. In addition, both the concentration of HP-beta-CD and temperature had a great effect on retention time, but only a slight or almost no effect on resolutions of the analytes. Enantioseparations were achieved on a Shimpack CLC-ODS (150 x 4.6 mm i.d., 5 microm) column. The mobile phase was a mixture of methanol and phosphate buffer (pH 4.0-5.5, 20 mM) containing 25 mM HP-beta-CD. This method was flexible, simple and economically advantageous over the use of chiral stationary phase, and was successfully applied to the enantioselective determination of the racemic 2-APA NSAIDs in an enantioselective skin permeation study.

  3. Influence of enteric-coated lactose on the release profile of 4-aminopyridine from HPMC matrix tablets.

    PubMed

    Martínez-González, Ilona; Villafuerte-Robles, Leopoldo

    2004-01-01

    A weakly basic experimental drug, 4-aminopyridine, was taken as a model to study the influence of enteric-coated lactose (EL) on the release profile from hydroxypropyl methylcellulose matrices. Powder mixtures were wet-granulated with water. The dried granulation was compressed with a hydraulic press at 85 MPa. Dissolution studies were made using HCl 0.1 N and then phosphate buffer pH 7.4. Dissolution curves were described by M(t)/M(inf) = k*t(N). A trend toward increasing exponent (n) and decreasing release constant (k) values is observed with increasing EL concentrations up to 9%; this is attributed to an increasing obstruction of the diffusion path by isolated EL particles that are insoluble in HCl and are surrounded by a water-filled space. After a critical EL concentration, the water-filled spaces surrounding EL particles percolate, producing the opposite effect, increasing the release constant and decreasing the exponent (n) values as the EL proportion increases from 10% to 50%. EL particles (2% to 9%) decrease the drug and water transport in matrices dissolving in HCl. Thereafter, at pH 7.4, the pores formed by dissolution of EL particles produce the opposite. Both processes contribute to flattening the release profile. Release profiles with decreasing release constant values show a logarithmic trend toward increasing values of the exponent (n), changing from diffusion toward relaxation-erosion-controlled processes.

  4. Functionalized β-cyclodextrin based potentiometric sensor for naproxen determination.

    PubMed

    Lenik, Joanna; Łyszczek, Renata

    2016-04-01

    Potentiometric sensors based on neutral β-cyclodextrins: (2-hydroxypropyl)-β-cyclodextrin, heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin, heptakis(2,3,6-tri-O-benzoyl)-β-cyclodextrin and anionic β-cyclodextrin: (2-hydroxy-3-N,N,N-trimethylamino)propyl-β-cyclodextrin chloride for naproxen are described. Inclusion complexes of naproxen with the above-mentioned cyclodextrins were studied using IR spectroscopy. The electrode surface was made from PVC membranes doped with the appropriate β-cyclodextrin as ionophores and quaternary ammonium chlorides as positive charge additives that were dispersed in plasticizers. The optimum membrane contains heptakis(2,3,6-tri-O-benzoyl)-β-cyclodextrin, o-nitrophenyloctyl ether and tetraoctyl ammonium chloride as a lipophilic salt. The electrode is characterized by a Nernstian response slope of -59.0 ± 0.5 mV decade(-1) over the linear range of 5.0 × 10(-5)-1.0 × 10(-2) mol L(-1) and the detection limit 1.0 × 10(-5) mol L(-1), as well as the response time 10s. It can be used in the pH range 6.2-8.5 for 10 months without any considerable deterioration. Incorporation of β-cyclodextrins improved the electrode selectivity towards naproxen ions from several inorganic and organic interferents and some common drug excipients due to concovalent interactions (host molecule-guest molecule). The notable advantages of the naproxen-selective electrode include its high sensitivity, high selectivity, cost-effectiveness as well as accurate and comfortable application in drug analysis and milk samples. Copyright © 2015. Published by Elsevier B.V.

  5. Molecular insight into the inclusion of the dietary plant flavonol fisetin and its chromophore within a chemically modified γ-cyclodextrin: Multi-spectroscopic, molecular docking and solubility studies.

    PubMed

    Pahari, Biswapathik; Chakraborty, Sandipan; Sengupta, Pradeep K

    2018-09-15

    We explored the encapsulation of dietary plant flavonols fisetin and its chromophore 3-hydroxyflavone, within 2-hydroxypropyl-γ-cyclodextrin (HPγ-CDx) nano-cavity in aqueous solution using multi-spectroscopic approaches and molecular docking. Upon addition of HPγ-CDx, dramatic changes occur in the intrinsic 'two color' fluorescence behavior of the fluorophores. This is manifested by significant increase in the steady state fluorescence intensities, anisotropies, average fluorescence lifetimes and rotational correlation times. Furthermore, in the CDx environment, intrinsically achiral flavonols exhibit prominent induced circular dichroism bands. These findings indicate that the flavonol molecules spontaneously enter the relatively hydrophobic, chiral environment of the HPγ-CDx nano-cavities. Molecular docking computations corroborate the spectroscopic findings, and predict selectivity in orientation of the encapsulated flavonols. HPγ-CDx inclusion increases the aqueous solubility of individual flavonols ∼100-1000 times. The present study demonstrates that the hydroxypropyl substituent in γ-CDx controls the inclusion mode of the flavonols, leading to their enhanced solubilization and altered spectral signatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Hydroxypropyl-β-cyclodextrin-containing hydrogel enhances skin formononetin permeation/retention.

    PubMed

    Dias, Paula Hollweg; Scopel, Marina; Martiny, Simony; Bianchi, Sara Elis; Bassani, Valquiria Linck; Zuanazzi, José Angelo Silveira

    2018-04-10

    This study was aimed to investigate the in vitro permeation potential of hydrogel formulations containing the isoflavones formononetin and biochanin A and cyclodextrins in different combinations. The permeation assay was performed using porcine skin discs on Franz diffusion cells model. The isoflavone contents of the formulations were quantified in the different layers of the skin using a validated HPLC-PDA method. The isoflavones individually incorporated into the formulations showed high permeation potential, especially formononetin, after the incorporation of hydroxypropyl-β-cyclodextrin that enhanced its permeation in the epidermis and dermis. Biochanin A showed 2.7 times of permeation capacity in the epidermis and dermis mainly after incorporation of cyclodextrins in the formulations. Formononetin showed reduction in its permeation when incorporated in the formulations together to biochanin A, showing the absence of synergism. Our results indicated a noticeable skin permeation promoting effect of HPβCD in formononetin formulation. Furthermore, formononetin and biochanin A can permeate the skin being mostly retained in the epidermis and dermis, revealing its potential use in cosmetic preparations intended to prevent skin aging. © 2018 Royal Pharmaceutical Society.

  7. Rechargeable biofilm-controlling tubing materials for use in dental unit water lines.

    PubMed

    Luo, Jie; Porteous, Nuala; Sun, Yuyu

    2011-08-01

    A simple and practical surface grafting approach was developed to introduce rechargeable N-halamine-based antimicrobial functionality onto the inner surfaces of continuous small-bore polyurethane (PU) dental unit waterline (DUWL) tubing. In this approach, tetrahydrofuran (THF) solution of a free-radical initiator, dicumyl peroxide (DCP), flowed through the PU tubing (inner diameter of 1/16 in., or 1.6 mm) to diffuse DCP into the tubing's inner walls, which was used as initiator in the subsequent grafting polymerization of methacrylamide (MAA) onto the tubing. Upon chlorine bleach treatment, the amide groups of the grafted MAA side chains were transformed into acyclic N-halamines. The reactions were confirmed with attenuated total reflectance infrared (ATR) spectra and iodometric titration. The mechanical properties of the tubing were not significantly affected by the grafting reactions. The biofilm-controlling function of the new N-halamine-based PU tubing was evaluated with Pseudomonas aeruginosa (P. aeruginosa), one of the most isolated water bacteria from DUWLs, in a continuous bacterial flow model. Bacteria culturing and SEM studies showed that the inner surfaces of the new N-halamine-based PU tubing completely prevented bacterial biofilm formation for at least three to four weeks. After that, bacteria began to colonize the tubing surface. However, the lost function was fully regenerated by exposing the tubing inner surfaces to diluted chlorine bleach. The recharging process could be repeated periodically to further extend the biofilm-controlling duration for long-term applications.

  8. Rechargeable Biofilm-Controlling Tubing Materials for Use in Dental Unit Water Lines

    PubMed Central

    Luo, Jie; Porteous, Nuala; Sun, Yuyu

    2011-01-01

    A simple and practical surface grafting approach was developed to introduce rechargeable N-halamine-based antimicrobial functionality onto the inner surfaces of continuous small-bore polyurethane (PU) dental unit waterline (DUWL) tubing. In this approach, tetrahydrofuran (THF) solution of a free-radical initiator, dicumyl peroxide (DCP), flowed through the PU tubing (inner diameter of 1/16 inch, or 1.6 mm) to diffuse DCP into the tube’s inner walls, which was used as initiator in the subsequent grafting polymerization of methacrylamide (MAA) onto the tubing. Upon chlorine bleach treatment, the amide groups of the grafted MAA side chains were transformed into acyclic N-halamines. The reactions were confirmed with attenuated total reflectance infrared (ATR) spectra and iodometric titration. The mechanical properties of the tubing were not significantly affected by the grafting reactions. The biofilm-controlling function of the new N-halamine-based PU tubing was evaluated with Pseudomonas aeruginosa (P. aeruginosa), one of the most isolated water bacteria from DUWLs, in a continuous bacterial flow model. Bacteria culturing and SEM studies showed that the inner surfaces of the new N-halamine-based PU tubing completely prevented bacterial biofilm formation for at least three to four weeks. After that, bacteria began to colonize the tubing surface. However, the lost function was fully regenerated by exposing the tubing inner surfaces to diluted chlorine bleach. The recharging process could be repeated periodically to further extend the biofilm-controlling duration for long-term applications. PMID:21721534

  9. Study on a hydroxypropyl chitosan-gelatin based scaffold for corneal stroma tissue engineering

    NASA Astrophysics Data System (ADS)

    Wang, Shilu; Liu, Wanshun; Han, Baoqin; Yang, Lingling

    2009-07-01

    Hydroxypropyl chitosan (HPCTS) was crosslinked with gelatin (GEL) and chondroitin sulfate (CS) by 1,4-butanediol diglycidyl ether to synthesize a scaffold. In this study, this scaffold was tested in physical and biological characteristics as a bioactive corneal stroma surrogate. The results showed the scaffold exhibited 83-88% light transmission values at wavelengths of visible light. Besides that, the scaffold had 96% water content and allowed NaCl and glucose to permeate. Moreover, it was suitable for keratocytes growing on its surface. In the biological part, we compared the scaffold with CS-free ones to investigate the potential effect of CS and found out that CS notablely improved cell compatibility of the scaffold.

  10. Filling in the voids of electrospun hydroxypropyl cellulose network: Dielectric investigations

    NASA Astrophysics Data System (ADS)

    Maximean, Doina Manaila; Danila, Octavian; Ganea, Constantin Paul; Almeida, Pedro L.

    2018-04-01

    Here we describe an organic electro-optic device, obtained using electrospun hydroxypropyl cellulose (HPC) polymer fibres and nematic liquid crystals (LC). Its working mechanism is similar to that of a classic polymer-dispersed liquid crystal (PDLC) device. The scanning electron microscopy of the HPC deposited fibres shows a mat of fibres with diameters in the nano and micron size range. Dielectric spectroscopy measurements allow the determination of the dependence of the dielectric constant and electric energy loss on frequency and temperature as well as the determination of the activation energy. The electro-optic study shows a very good optical transmission curve, with an "on"-"off" switching voltage of less than 1V/μ m.

  11. Antifungal activity of food additives in vitro and as ingredients of hydroxypropyl methylcellulose-lipid edible coatings against Botrytis cinerea and Alternaria alternata on cherry tomato fruit.

    PubMed

    Fagundes, Cristiane; Pérez-Gago, María B; Monteiro, Alcilene R; Palou, Lluís

    2013-09-16

    The antifungal activity of food additives or 'generally recognized as safe' (GRAS) compounds was tested in vitro against Botrytis cinerea and Alternaria alternata. Radial mycelial growth of each pathogen was measured in PDA Petri dishes amended with food preservatives at 0.2, 1.0, or 2.0% (v/v) after 3, 5, and 7 days of incubation at 25 °C. Selected additives and concentrations were tested as antifungal ingredients of hydroxypropyl methylcellulose (HPMC)-lipid edible coatings. The curative activity of stable coatings was tested in in vivo experiments. Cherry tomatoes were artificially inoculated with the pathogens, coated by immersion about 24 h later, and incubated at 20 °C and 90% RH. Disease incidence and severity (lesion diameter) were determined after 6, 10, and 15 days of incubation and the 'area under the disease progress stairs' (AUDPS) was calculated. In general, HPMC-lipid antifungal coatings controlled black spot caused by A. alternata more effectively than gray mold caused by B. cinerea. Overall, the best results for reduction of gray mold on cherry tomato fruit were obtained with coatings containing 2.0% of potassium carbonate, ammonium phosphate, potassium bicarbonate, or ammonium carbonate, while 2.0% sodium methylparaben, sodium ethylparaben, and sodium propylparaben were the best ingredients for coatings against black rot. © 2013 Elsevier B.V. All rights reserved.

  12. Two new chroman derivations from the endophytic Penicillium sp. DCS523.

    PubMed

    Li, Jun-Tian; Fu, Xiao-Li; Tan, Chun; Zeng, Ying; Wang, Qi; Zhao, Pei-Ji

    2011-01-18

    Strain DCS523 was isolated from the branch tissue of Daphniphyllum longeracemosum and determined to be a Penicillium sp. according to the ITS sequence analysis. The extracts from the PDA solid fermentation media of Penicillium sp. DCS523 were purified to give two new chroman derivatives as well as six known compounds. Based on their spectral data the new compounds were identified as (Z)-6-acetyl- 3-(1,2-dihydroxypropylidene)-5-hydroxy-8-methylchroman-2-one and 6-acetyl-2α,5- dihydroxy-2-(2-hydroxypropyl)- 3α,8-dimethylchroman, respectively.

  13. High temperature chemically resistant polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  14. Preparation of buccal patch composed of carbopol, poloxamer and hydroxypropyl methylcellulose.

    PubMed

    Chun, Myung-Kwan; Kwak, Byoung-Tae; Choi, Hoo-Kyun

    2003-11-01

    A polymeric film composed of Carbopol, Poloxamer and hydroxypropyl methylcellulose was prepared to develop a buccal patch and the effects of composition of the film on adhesion time, swelling ratio, and dissolution of the film were studied. The effects of plasticizers or penetration enhancers on the release of triamcinolone acetonide (TAA) were also studied. The hydrogen bonding between Carbopol and Poloxamer played important role in reducing swelling ratio and dissolution rate of polymer film and increasing adhesion time. The swelling ratio of the composite film was significantly reduced and the adhesion time was increased when compared with Carbopol film. As the ratio of Poloxamer to hydroxypropyl methylcellulose increased from 0/66 to 33/33, the release rate of TAA decreased. However, no further significant decrease of release rate was observed beyond the ratio of 33/33. The release rate of TAA in the polymeric film containing polyethylene glycol 400, a plasticizer, showed the highest release rate followed by triethyl citrate, and castor oil. The release rate of TAA from the polymeric film containing permeation enhancers was slower than that from the control without enhancers. Therefore, these observations indicated that a preparation of a buccal patch is feasible with the polymeric film composed of Cabopol, Poloxamer and hydropropyl methylcellulose.

  15. Impact of polyethylene glycol 400/propylene glycol/hydroxypropyl-guar and 0.1% sodium hyaluronate on postoperative discomfort following cataract extraction surgery: a comparative study.

    PubMed

    Labiris, Georgios; Ntonti, Panagiota; Sideroudi, Haris; Kozobolis, Vassilios

    2017-01-01

    Universal postoperative guidelines for cataract extraction surgery are yet to be introduced. Artificial tears are gaining popularity as an additional integral component of the postoperative regime. The primary objective of this study was to explore the impact of two prevalent artificial tear preparations on postoperative discomfort following cataract extraction surgery. A total of 180 patients that underwent cataract extraction surgery were randomly divided into three groups according to their postoperative regime: a) Study group 1 (SG1) received a fixed combination of tobramycin and dexamethasone (FCTD) quid for 3 weeks and, additionally polyethylene glycol 400/propylene glycol/hydroxypropyl-guar quid, for 6 weeks, b) Study group 2 (SG2) received FCTD quid for 3 weeks and, additionally 0.1% sodium hyaluronate provided in the COMOD® device quid, for 6 weeks, and, c) Control Group (CG) received only FCTD quid for 3 weeks. The following indexes were evaluated at three postoperative checkpoints: 1) Subjective discomfort index (SDI) derived from four direct 10-scale Likert-type questions that were addressed to the patient and pertained to: a) foreign body sensation (FBS), b) blinking discomfort (BD), c) stinging sensation (SS), d) tearing sensation (TS), 2) Tear break-up time (TBUT), 3) Central corneal thickness (CCT) and, 4) Central Corneal Sensitivity (CCS). Both groups showed increased CCT values at the first examination point and reduced CCS values at all examination points. Furthermore, both SGs had better TBUT times at all examination points compared to CG (CG: 8.86 ± 1.08, SG1: 9.59 ± 1.45, CG2: 9.45 ± 1.33, p  < 0.05). BD was significantly better in both SGs only at the 1 st week of examination, while SDI values were better until the 3 rd week and only borderline better at 6 th week. Lastly, no significant differences were detected between SGs, regarding all parameters, at all examination points. Polyethylene glycol 400/propylene glycol/hydroxypropyl-guar and 0.1% sodium hyaluronate provided in the COMOD® device seem to be equally efficient in alleviating OSD symptoms following cataract extraction surgery and any of them should be routinely added to the postoperative regime. ClinicalTrials.gov Identifier: https://clinicaltrials.gov/ct2/show/NCT02558218NCT02558218.

  16. Novel medium-throughput technique for investigating drug-cyclodextrin complexation by pH-metric titration using the partition coefficient method.

    PubMed

    Dargó, Gergő; Boros, Krisztina; Péter, László; Malanga, Milo; Sohajda, Tamás; Szente, Lajos; Balogh, György T

    2018-05-05

    The present study was aimed to develop a medium-throughput screening technique for investigation of cyclodextrin (CD)-active pharmaceutical ingredient (API) complexes. Dual-phase potentiometric lipophilicity measurement, as gold standard technique, was combined with the partition coefficient method (plotting the reciprocal of partition coefficients of APIs as a function of CD concentration). A general equation was derived for determination of stability constants of 1:1 CD-API complexes (K 1:1,CD ) based on solely the changes of partition coefficients (logP o/w N -logP app N ), without measurement of the actual API concentrations. Experimentally determined logP value (-1.64) of 6-deoxy-6[(5/6)-fluoresceinylthioureido]-HPBCD (FITC-NH-HPBCD) was used to estimate the logP value (≈ -2.5 to -3) of (2-hydroxypropyl)-ß-cyclodextrin (HPBCD). The results suggested that the amount of HPBCD can be considered to be inconsequential in the octanol phase. The decrease of octanol volume due to the octanol-CD complexation was considered, thus a corrected octanol-water phase ratio was also introduced. The K 1:1,CD values obtained by this developed method showed a good accordance with the results from other orthogonal methods. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. A water-based topical Chinese traditional medicine (Zicao) for wound healing developed using 2-hydroxypropyl-β-cyclodextrin.

    PubMed

    Chen Chen, Ta; Yu, Song-Cu; Hsu, Chin-Mu; Tsai, Fuu-Jen; Tsai, Yuhsin

    2018-05-01

    Zicao is a traditional Chinese herbal medicine that has been used for the topical treatment of wounds in the form of oil-based ointment for several hundred years. To overcome the disadvantages of oil-based ointment such as irritation, discomfort, and difficulty in cleaning, this study developed a water-based topical formulation of Zicao. An ethanol extract of Zicao was included in 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) to form a water-soluble Zicao-HP-β-CD complex. The formation of the Zicao-HP-β-CD complex was determined using LC-MS, 1 H NMR, ROSEY, and solubility analysis. The bioactivity of Zicao-HP-β-CD complex in aqueous solution was evaluated using cellular uptake in vitro and experimental excision wounds in vivo. The LC-MS, 1 H NMR, ROESY, and solubility analyses results show that Zicao extract was successfully included by the HP-β-CD. The results of the cellular uptake in vitro and wound healing in vivo suggest that the effect of Zicao was enhanced following the formation of the Zicao-HP-β-CD complex. Therefore, we concluded that complexation with HP-β-CD might provide a potential method for developing an effective water-based topical solution of Zicao. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Extended release of high molecular weight hydroxypropyl methylcellulose from molecularly imprinted, extended wear silicone hydrogel contact lenses.

    PubMed

    White, Charles J; McBride, Matthew K; Pate, Kayla M; Tieppo, Arianna; Byrne, Mark E

    2011-08-01

    Symptoms of contact lenses induced dry eye (CLIDE) are typically treated through application of macromolecular re-wetting agents via eye drops. Therapeutic soft contact lenses can be formulated to alleviate CLIDE symptoms by slowly releasing comfort agent from the lens. In this paper, we present an extended wear silicone hydrogel contact lens with extended, controllable release of 120 kDa hydroxypropyl methylcellulose (HPMC) using a molecular imprinting strategy. A commercial silicone hydrogel lens was tailored to release approximately 1000 μg of HPMC over a period of up to 60 days in a constant manner at a rate of 16 μg/day under physiological flowrates, releasing over the entire range of continuous wear. Release rates could be significantly varied by the imprinting effect and functional monomer to template ratio (M/T) with M/T values 0, 0.2, 2.8, 3.4 corresponding to HPMC release durations of 10, 13, 23, and 53 days, respectively. Lenses had high optical quality and adequate mechanical properties for contact lens use. This work highlights the potential of imprinting in the design and engineering of silicone hydrogel lenses to release macromolecules for the duration of wear, which may lead to decreased CLIDE symptoms and more comfortable contact lenses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. BCM-95 and (2-hydroxypropyl)-β-cyclodextrin reverse autophagy dysfunction and deplete stored lipids in Sap C-deficient fibroblasts.

    PubMed

    Tatti, Massimo; Motta, Marialetizia; Scarpa, Susanna; Di Bartolomeo, Sabrina; Cianfanelli, Valentina; Tartaglia, Marco; Salvioli, Rosa

    2015-08-01

    Saposin (Sap) C deficiency is a rare variant form of Gaucher disease caused by impaired Sap C expression or accelerated degradation, and associated with accumulation of glucosylceramide and other lipids in the endo/lysosomal compartment. No effective therapies are currently available for the treatment of Sap C deficiency. We previously reported that a reduced amount and enzymatic activity of cathepsin (Cath) B and Cath D, and defective autophagy occur in Sap C-deficient fibroblasts. Here, we explored the use of two compounds, BCM-95, a curcumin derivative, and (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD), to improve lysosomal function of Sap C-deficient fibroblasts. Immunofluorescence and biochemical studies documented that each compound promotes an increase of the expression levels and activities of Cath B and Cath D, and efficient clearance of cholesterol (Chol) and ceramide (Cer) in lysosomes. We provide evidence that BCM-95 and HP-β-CD enhance lysosomal function promoting autophagic clearance capacity and lysosome reformation. Our findings suggest a novel pharmacological approach to Sap C deficiency directed to treat major secondary pathological aspects in this disorder. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Influence of temperature and relative humidity conditions on the pan coating of hydroxypropyl cellulose molded capsules.

    PubMed

    Macchi, Elena; Zema, Lucia; Pandey, Preetanshu; Gazzaniga, Andrea; Felton, Linda A

    2016-03-01

    In a previous study, hydroxypropyl cellulose (HPC)-based capsular shells prepared by injection molding and intended for pulsatile release were successfully coated with 10mg/cm(2) Eudragit® L film. The suitability of HPC capsules for the development of a colon delivery platform based on a time dependent approach was demonstrated. In the present work, data logging devices (PyroButton®) were used to monitor the microenvironmental conditions, i.e. temperature (T) and relative humidity (RH), during coating processes performed under different spray rates (1.2, 2.5 and 5.5g/min). As HPC-based capsules present special features, a preliminary study was conducted on commercially available gelatin capsules for comparison purposes. By means of PyroButton data-loggers it was possible to acquire information about the impact of the effective T and RH conditions experienced by HPC substrates during the process on the technological properties and release performance of the coated systems. The use of increasing spray rates seemed to promote a tendency of the HPC shells to slightly swell at the beginning of the spraying process; moreover, capsules coated under spray rates of 1.2 and 2.5g/min showed the desired release performance, i.e. ability to withstand the acidic media followed by the pulsatile release expected for uncoated capsules. Preliminary stability studies seemed to show that coating conditions might also influence the release performance of the system upon storage. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Influence of hydroxypropyl beta-cyclodextrin on the corneal permeation of pilocarpine.

    PubMed

    Aktaş, Yeşim; Unlü, Nurşen; Orhan, Mehmet; Irkeç, Murat; Hincal, A Atilla

    2003-02-01

    The influence of hydroxypropyl beta-cyclodextrin (HPbetaCD) on the corneal permeation of pilocarpine nitrate was investigated by an in vitro permeability study using isolated rabbit cornea. Pupillary-response pattern to pilocarpine nitrate with and without HPbetaCD was examined in rabbit eye. Corneal permeation of pilocarpine nitrate was found to be four times higher after adding HPbetaCD into the formulation. The reduction of pupil diameter (miosis) by pilocarpine nitrate was significantly increased as a result of HPbetaCD addition into the simple aqueous solution of the active substance. The highest miotic response was obtained with the formulation prepared in a vehicle of Carbopol 940. It is suggested that ocular bioavailability of pilocarpine nitrate could be improved by the addition of HPbetaCD.

  2. Development and Characterization of Novel Floating-Mucoadhesive Tablets Bearing Venlafaxine Hydrochloride.

    PubMed

    Misra, Raghvendra; Bhardwaj, Peeyush

    2016-01-01

    The present investigation is concerned about the development of floating bioadhesive drug delivery system of venlafaxine hydrochloride which after oral administration exhibits a unique combination of floating and bioadhesion to prolong gastric residence time and increase drug bioavailability within the stomach. The floating bioadhesive tablets were prepared by the wet granulation method using different ratios of hydroxypropyl methyl cellulose (HPMC K4MCR) and Carbopol 934PNF as polymers. Sodium bicarbonate (NaHCO3) and citric acid were used as gas (CO2) generating agents. Tablets were characterized for floating properties, in vitro drug release, detachment force, and swelling index. The concentration of hydroxypropyl methyl cellulose and Carbopol 934PNF significantly affects the in vitro drug release, floating properties, detachment force, and swelling properties of the tablets. The optimized formulation showed the floating lag time 72 ± 2.49 seconds and duration of floating 24.50 ± 0.74 hr. The in vitro release studies and floating behavior were studied in simulated gastric fluid (SGF) at pH 1.2. Different drug release kinetics models were also applied. The in vitro drug release from tablets was sufficiently sustained (more than 18 hr) and the Fickian transports of the drug from the tablets were confirmed. The radiological evidence suggests that the tablets remained buoyant and altered position in the stomach of albino rabbit and mean gastric residence time was prolonged (more than > 6 hr).

  3. Influence of beta-cyclodextrin complexation on glipizide release from hydroxypropyl methylcellulose matrix tablets.

    PubMed

    Shivakumar, H N; Desai, B G; Pandya, Saumyak; Karki, S S

    2007-01-01

    Glipizide was complexed with beta-cyclodextrin in an attempt to enhance the drug solubility. The phase solubility diagram was classified as A(L) type, which was characterized by an apparent 1:1 stability constant that had a value of 413.82 M(-1). Fourier transform infrared spectrophotometry, differential scanning calorimetry, powder x-ray diffractometry and proton nuclear magnetic resonance spectral analysis indicated considerable interaction between the drug and beta-cyclodextrin. A 2(3) factorial design was employed to prepare hydroxypropyl methylcellulose (HPMC) matrix tablets containing the drug or its complex. The effect of the total polymer loads (X1), levels of HPMC K100LV (X9), and complexation (X3) on release at first hour (Y1), 24 h (Y2), time taken for 50% release (Y3), and diffusion exponent (Y4) was systematically analyzed using the F test. Mathematical models containing only the significant terms (P < 0.05) were generated for each parameter by multiple linear regression analysis and analysis of variance. Complexation was found to exert a significant effect on Y1, Y2, and Y3, whereas total polymer loads significantly influenced all the responses. The models generated were validated by developing two new formulations with a combination of factors within the experimental domain. The experimental values of the response parameters were in close agreement with the predicted values, thereby proving-the validity of the generated mathematical models.

  4. Influence of Wheat-Milled Products and Their Additive Blends on Pasta Dough Rheological, Microstructure, and Product Quality Characteristics

    PubMed Central

    Dhiraj, B.; Prabhasankar, P.

    2013-01-01

    This study is aimed to assess the suitability of T. aestivum wheat milled products and its combinations with T. durum semolina with additives such as ascorbic acid, vital gluten and HPMC (Hydroxypropyl methyl cellulose) for pasta processing quality characteristics such as pasta dough rheology, microstructure, cooking quality, and sensory evaluation. Rheological studies showed maximum dough stability in Comb1 (T. aestivum wheat flour and semolina). Colour and cooking quality of Comb2 (T. durum semolina and T. aestivum wheat flour) and Comb3 (T. aestivum wheat semolina and T. durum semolina) were comparable with control. Pasting results indicated that T. aestivum semolina gave the lowest onset gelatinization temperature (66.9°C) but the highest peak viscosity (1.053 BU). Starch release was maximum in Comb1 (53.45%) when compared with control (44.9%) as also proved by microstructure studies. Firmness was seen to be slightly high in Comb3 (2.430 N) when compared with control (2.304 N), and sensory evaluations were also in the acceptable range for the same. The present study concludes that Comb3 comprising 50% T. durum semolina and 50% T. aestivum refined wheat flour with additives would be optimal alternate for 100% T. durum semolina for production of financially viable pasta. PMID:26904601

  5. Enzymatic triggered release of an HIV-1 entry inhibitor from prostate specific antigen degradable microparticles.

    PubMed

    Clark, Meredith R; Aliyar, Hyder A; Lee, Chang-won; Jay, Julie I; Gupta, Kavita M; Watson, Karen M; Stewart, Russell J; Buckheit, Robert W; Kiser, Patrick F

    2011-07-15

    This paper describes the design, construction and characterization of the first anti-HIV drug delivery system that is triggered to release its contents in the presence of human semen. Microgel particles were synthesized with a crosslinker containing a peptide substrate for the seminal serine protease prostate specific antigen (PSA) and were loaded with the HIV-1 entry inhibitor sodium poly(styrene-4-sulfonate) (pSS). The particles were composed of N-2-hydroxyproplymethacrylamide and bis-methacrylamide functionalized peptides based on the PSA substrates GISSFYSSK and GISSQYSSK. Exposure to human seminal plasma (HSP) degraded the microgel network and triggered the release of the entrapped antiviral polymer. Particles with the crosslinker composed of the substrate GISSFYSSK showed 17 times faster degradation in seminal plasma than that of the crosslinker composed of GISSQYSSK. The microgel particles containing 1 mol% GISSFYSSK peptide crosslinker showed complete degradation in 30 h in the presence of HSP at 37°C and pSS released from the microgels within 30 min reached a concentration of 10 μg/mL, equivalent to the published IC(90) for pSS. The released pSS inactivated HIV-1 in the presence of HSP. The solid phase synthesis of the crosslinkers, preparation of the particles by inverse microemulsion polymerization, HSP-triggered release of pSS and inactivation of HIV-1 studies are described. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Decomposition reactions of (hydroxyalkyl) nitrosoureas and related compounds: possible relationship to carcinogenicity.

    PubMed

    Singer, S S

    1985-08-01

    (Hydroxyalkyl)nitrosoureas and the related cyclic carbamates N-nitrosooxazolidones are potent carcinogens. The decompositions of four such compounds, 1-nitroso-1-(2-hydroxyethyl)urea (I), 3-nitrosooxazolid-2-one (II), 1-nitroso-1-(2-hydroxypropyl)urea (III), and 5-methyl-3-nitrosooxazolid-2-one (IV), in aqueous buffers at physiological pH were studied to determine if any obvious differences in decomposition pathways could account for the variety of tumors obtained from these four compounds. The products predicted by the literature mechanisms for nitrosourea and nitrosooxazolidone decompositions (which were derived from experiments at pH 10-12) were indeed the products formed, including glycols, active carbonyl compounds, epoxides, and, from the oxazolidones, cyclic carbonates. Furthermore, it was shown that in pH 6.4-7.4 buffer epoxides were stable reaction products. However, in the presence of hepatocytes, most of the epoxide was converted to glycol. The analytical methods developed were then applied to the analysis of the decomposition products of some related dialkylnitrosoureas, and similar results were obtained. The formation of chemically reactive secondary products and the possible relevance of these results to carcinogenesis studies are discussed.

  7. Preparation of carbon fiber unsaturated sizing agent for enhancing interfacial strength of carbon fiber/vinyl ester resin composite

    NASA Astrophysics Data System (ADS)

    Jiao, Weiwei; Cai, Yemeng; Liu, Wenbo; Yang, Fan; Jiang, Long; Jiao, Weicheng; Wang, Rongguo

    2018-05-01

    The practical application of carbon fiber (CF) reinforced vinyl ester resin (VE) composite was hampered seriously by the poor interfacial adhesion property. In this work, a novel unsaturated sizing agent was designed and prepared to improve the interfacial strength by covalently bonding CF with VE matrix. The main component of the sizing agent, N-(4‧4-diaminodiphenyl methane)-2-hydroxypropyl methacrylate (DMHM), was synthesized and confirmed by FTIR and NMR. XPS results of sized carbon fiber (SCF) showed that DMHM has adhered to desized fiber surface and reacted with some active functional groups on the surface. The SCF was characterized by high surface roughness and surface energy (especially the polar component), which means better wettability by VE. As a result, the interface shear strength and interlaminar shear strength of SCF/VE composite were enhanced by 96.56% and 66.07% respectively compared with CF/VE composite, benefited mainly from the strong and tough interphase.

  8. Mathematical modelling of the transport of hydroxypropyl-β-cyclodextrin inclusion complexes of ranitidine hydrochloride and furosemide loaded chitosan nanoparticles across a Caco-2 cell monolayer.

    PubMed

    Sadighi, Armin; Ostad, S N; Rezayat, S M; Foroutan, M; Faramarzi, M A; Dorkoosh, F A

    2012-01-17

    Chitosan nanoparticles (CS-NPs) have been used to enhance the permeability of furosemide and ranitidine hydrochloride (ranitidine HCl) which were selected as candidates for two different biopharmaceutical drug classes having low permeability across Caco-2 cell monolayers. Drugs loaded CS-NPs were prepared by ionic gelation of CS and pentasodium tripolyphosphate (TPP) which added to the drugs inclusion complexes with hydroxypropyl-β-cyclodextrin (HP-βCD). The stability constants for furosemide/HP-βCD and ranitidine HCl/HP-βCD were calculated as 335 M(-1) and 410 M(-1), whereas the association efficiencies (AE%) of the drugs/HP-βCD inclusion complexes with CS-NPs were determined to be 23.0 and 19.5%, respectively. Zetasizer and scanning electron microscopy (SEM) were used to characterise drugs/HP-βCD-NPs size and morphology. Transport of both nano and non-nano formulations of drugs/HP-βCD complexes across a Caco-2 cell monolayer was assessed and fitted to mathematical models. Furosemide/HP-βCD-NPs demonstrated transport kinetics best suited for the Higuchi model, whereas other drug formulations demonstrated power law transportation behaviour. Permeability experiments revealed that furosemide/HP-βCD and ranitidine HCl/HP-βCD nano formulations greatly induce the opening of tight junctions and enhance drug transition through Caco-2 monolayers. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Reversal of multidrug resistance in MCF-7/Adr cells by codelivery of doxorubicin and BCL2 siRNA using a folic acid-conjugated polyethylenimine hydroxypropyl-β-cyclodextrin nanocarrier

    PubMed Central

    Li, Jin-Ming; Zhang, Wei; Su, Hua; Wang, Yuan-Yuan; Tan, Cai-Ping; Ji, Liang-Nian; Mao, Zong-Wan

    2015-01-01

    Systemic administration of chemotherapy for cancer often faces drug resistance, limiting its applications in cancer therapy. In this study, we developed a simple multifunctional nanocarrier based on polyethylenimine (PEI) to codeliver doxorubicin (DOX) and BCL2 small interfering RNA (siRNA) for overcoming multidrug resistance (MDR) and enhancing apoptosis in MCF-7/Adr cancer cells by combining chemotherapy and RNA interference (RNAi) therapy. The low-molecular-weight branch PEI was used to conjugate hydroxypropyl-β-cyclodextrin (HP-β-CD) and folic acid (FA), forming the codelivery nanocarrier (FA-HP-β-CD-PEI) to encapsulate DOX with the cavity HP-β-CD and bind siRNA with the positive charge of PEI for tumor-targeting codelivering drugs. The drug-loaded nanocomplexes (FA-HP-β-CD-PEI/DOX/siRNA) showed uniform size distribution, high cellular uptake, and significant gene suppression of BCL2, displaying the potential of overcoming MDR for enhancing the effect of anticancer drugs. Furthermore, the nanocomplexes achieved significant cell apoptosis through a mechanism of downregulating the antiapoptotic protein BCL2, resulted in improving therapeutic efficacy of the coadministered DOX by tumor targeting and RNA interference. Our study indicated that combined RNAi therapy and chemotherapy using our functional codelivery nanocarrier could overcome MDR and enhance apoptosis in MDR cancer cells for a potential application in treating MDR cancers. PMID:25960653

  10. Design and In Vitro Evaluation of Compression-coated Pulsatile Release Tablets of Losartan Potassium

    PubMed Central

    Bajpai, M.; Singh, D. C. P.; Bhattacharya, A.; Singh, A.

    2012-01-01

    In majority of individuals blood pressure rises in the early morning hours, which lead to serious cardiovascular complications. Formulation of pulsatile system makes it possible to deliver drug at definite period of time when symptoms of the disease condition are most critical. The purpose of the present work was to develop pulsatile release tablet of losartan potassium for chronotherapy in hypertension. The prepared system consisted of a core tablet coated with versatile and safe hydrophilic cellulosic ethers such as, hydroxypropyl methylcellulose, hydroxypropyl cellulose and sodium carboxy methylcellulose to produce burst release after predetermined lag time. Various formulation factors were studied through series of test and in vitro dissolution study. It was found that core tablets containing superdisintegrant failed to produce burst drug release pattern while effervescent agent was able to do so. Results also reveal that coating composition and coating level affects lag time. Formulation containing effervescent agent in core and coated with 200 mg hydroxypropyl cellulose provide lag time of 4.5 h with 73% drug release in 6 h that followed a sigmoidal release pattern. These values were close to the desired objective of producing lag time of 5-6 h followed by fast drug release. This approach can thus provide a useful means for timed release of losartan and is helpful for patients with morning surge. PMID:23325989

  11. Fabrication and evaluation of valsartan–polymer– surfactant composite nanoparticles by using the supercritical antisolvent process

    PubMed Central

    Kim, Min-Soo; Baek, In-hwan

    2014-01-01

    The aim of this study was to fabricate valsartan composite nanoparticles by using the supercritical antisolvent (SAS) process, and to evaluate the correlation between in vitro dissolution and in vivo pharmacokinetic parameters for the poorly water-soluble drug valsartan. Spherical composite nanoparticles with a mean size smaller than 400 nm, which contained valsartan, were successfully fabricated by using the SAS process. X-ray diffraction and thermal analyses indicated that valsartan was present in an amorphous form within the composite nanoparticles. The in vitro dissolution and oral bioavailability of valsartan were dramatically enhanced by the composite nanoparticles. Valsartan–hydroxypropyl methylcellulose–poloxamer 407 nanoparticles exhibited faster drug release (up to 90% within 10 minutes under all dissolution conditions) and higher oral bioavailability than the raw material, with an approximately 7.2-fold higher maximum plasma concentration. In addition, there was a positive linear correlation between the pharmacokinetic parameters and the in vitro dissolution efficiency. Therefore, the preparation of composite nanoparticles with valsartan–hydroxypropyl methylcellulose and poloxamer 407 by using the SAS process could be an effective formulation strategy for the development of a new dosage form of valsartan with high oral bioavailability. PMID:25404856

  12. The D prostanoid receptor agonist BW245C [(4S)-(3-[(3R,S)-3-cyclohexyl-3-hydroxypropyl]-2,5-dioxo)-4-imidazolidineheptanoic acid] inhibits fibroblast proliferation and bleomycin-induced lung fibrosis in mice.

    PubMed

    van den Brule, Sybille; Wallemme, Laurent; Uwambayinema, Francine; Huaux, François; Lison, Dominique

    2010-11-01

    Prostaglandin (PG) D(2) exerts contrasting activities in the inflamed lung via two receptors, the D prostanoid receptor (DP) and the chemoattractant receptor-homologous molecule expressed on T helper 2 lymphocytes. DP activation is known mainly to inhibit proinflammatory cell functions. We tested the effect of a DP-specific agonist, (4S)-(3-[(3R,S)-3-cyclohexyl-3-hydroxypropyl]-2,5-dioxo)-4-imidazolidineheptanoic acid (BW245C), on pulmonary fibroblast functions in vitro and in a mouse model of lung fibrosis induced by bleomycin. DP mRNA expression was detected in cultured mouse lung primary fibroblasts and human fetal lung fibroblasts and found to be up- and down-regulated by interleukin-13 and transforming growth factor (TGF)-β, respectively. Although micromolar concentrations of BW245C and PGD(2) did not affect mouse fibroblast collagen synthesis or differentiation in myofibroblasts, they both inhibited fibroblast basal and TGF-β-induced proliferation in vitro. The repeated administration of BW245C (500 nmol/kg body weight instilled transorally in the lungs 2 days before and three times per week for 3 weeks) in bleomycin-treated mice significantly decreased both inflammatory cell recruitment and collagen accumulation in the lung (21 days). Our results indicate that BW245C can reduce lung fibrosis in part via its activity on fibroblast proliferation and suggest that DP activation should be considered as a new therapeutic target in fibroproliferative lung diseases.

  13. Complexation of carbendazim with hydroxypropyl-β-cyclodextrin to improve solubility and fungicidal activity.

    PubMed

    Ge, Xia; Huang, Zheng; Tian, Shilong; Huang, Yulong; Zeng, Chaozhen

    2012-06-05

    The effect of hydroxypropyl-β-cyclodextrin (HPβCD) on the improvement of the solubility and fungicidal activity of carbendazim (MBC) has been investigated. The inclusion complexation of HPβCD with MBC has been prepared and characterized by phase solubility diagram, fluorescence, (1)H NMR, ROESY and FT-IR spectra. The stoichiometric ratio and stability constant were determined by Job's plot and phase solubility studies, respectively. The inclusion complex MBC·HPβCD has exhibited different properties from MBC. The obtained inclusion complex was found to significantly improve the water solubility of MBC. In addition, the biological activity indicated that the complex displayed the better fungicidal activity than MBC. The present study provided useful information for a more rational application of MBC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. A Polymer Electrolyte for Dye-Sensitized Solar Cells Based on a Poly(Polyvinylidenefluoride-Co-Hexafluoropropylene)/Hydroxypropyl Methyl Cellulose Blend

    NASA Astrophysics Data System (ADS)

    Won, Lee Ji; Kim, Jae Hong; Thogiti, Suresh

    2018-05-01

    A novel polymer blend electrolyte for dye-sensitized solar cells (DSSCs) was synthesized by quasi-solidifying a liquid-based electrolyte containing an iodide/triiodide redox couple and supporting salts with a mixture of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and indigenous hydroxypropyl methyl cellulose (HPMC). A high ionic conductivity of 8.8 × 10-4 S cm-1 was achieved after introducing 5 wt% of HPMC with respect to the weight of PVDH-HFP. DSSCs were fabricated using gel polymer blend electrolytes, and the J-V characteristics of the fabricated devices were analyzed. Under optimal conditions, the photovoltaic conversion efficiency of cells with the novel HPMC-blended gel electrolyte (5.34%) was significantly greater than that of cells without HPMC (3.97%).

  15. Fractionation and reconstitution experiments provide insight into the role of starch gelatinization and pasting properties in pasta quality.

    PubMed

    Delcour, J A; Vansteelandt, J; Hythier, M; Abécassis, J

    2000-09-01

    Commercial durum wheat semolina was fractionated into protein, starch, water-extractable, and sludge fractions. The starch fraction was hydroxypropylated, annealed, or cross-linked to change its gelatinization and pasting properties. Spaghettis were made by reconstitution of the fractions, and their quality was assessed. Hydroxypropylated starches were detrimental for cooked pasta quality. Cross-linked starches made the reconstituted pasta firmer and even brittle when the degree of cross-linking was too high. These results indicate that starch properties play a role in pasta quality, although the gluten remains very important as an ultrastructure agent. It was concluded that, given a certain gluten ultrastructure, starch water uptake and gel properties and/or its interference with or breakdown of the continuous gluten network during cooking determine pasta quality.

  16. Solubility and stability of melatonin in propylene glycol and 2-hydroxypropyl-beta-cyclodextrin vehicles.

    PubMed

    Lee, B J; Choi, H G; Kim, C K; Parrott, K A; Ayres, J W; Sack, R L

    1997-12-01

    The physicochemical properties of melatonin (MT) in propylene glycol (PG) and 2-hydroxypropyl-beta-cyclodextrin (2-HPbetaCD) vehicles were characterized. MT was endothermally decomposed as determined by differential scanning calorimetry (DSC). Melting point and heat of fusion obtained were 116.9+/-0.24 degrees C and 7249+/-217 cal/mol, respectively. MT as received from a manufacture was very pure, at least 99.9%. The solubility of MT in PG solution increased slowly until reaching 40% PG and then steeply increased. Solubility of MT increased linearly as concentration of 2-HPbetaCD without PG increased (R(2)=0.993). MT solubility in the mixtures of PG and 2-HPbetaCD also increased linearly but was less than the sum of its solubility in 2-HPbetaCD and PG individually. The MT solubility was low in water, simulated gastric or intestinal fluid but the highest in the mixture of PG (40 v/v%) and 2-HPbetaCD (30 w/v%) although efficiency of MT solubilization in 2-HPbetaCD decreased as the concentration of PG increased. MT was degraded in a fashion of the first order kinetics (r(2)>0.90). MT was unstable in strong acidic solution (HCl-NaCl buffer, pH 1.4) but relatively stable in other pH values of 4 approximately 10 at 70 degrees C. In HCl-NaCl buffer, MT in 10% PG was more quickly degraded and then slowed down at a higher concentration. However, the degradation rate constant of MT in 2-HPbetaCD was not changed significantly when compared to the water. The current studies can be applied to the dosage formulations for the purpose of enhancing percutaneous absorption or bioavailability of MT.

  17. Energy efficient microwave synthesis of mesoporous Ce 0.5M 0.5O 2 (Ti, Zr, Hf) nanoparticles for low temperature CO oxidation in an ionic liquid – a comparative study

    DOE PAGES

    Alammar, Tarek; Chow, Ying -Kit; Mudring, Anja -Verena

    2014-11-19

    Ce 0.5M 0.5O 2 (M = Ti, Zr, Hf) nanoparticles have been successfully synthesized by microwave irradiation in the ionic liquid [C 4mim][Tf 2N] (1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide). The morphology, crystallinity, and chemical composition of the obtained materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and N 2–adsorption measurements. XRD and Raman spectroscopy analyses confirmed the formation of solid solutions with cubic fluorite structure. The catalytic activities of the Ce 0.5M 0.5O 2 (M = Ti, Zr, Hf) nanoparticles were investigated in the low-temperature oxidation of CO. Ce 0.5Zr 0.5O 2 nanospheresmore » exhibit the best performance (100% conversion at 350 °C), followed by Ce 0.5Hf 0.5O 2 (55% conversion at 360 °C) and Ce 0.5Ti 0.5O 2 (11% conversion at 350 °C). Heating the as-prepared Ce 0.5Zr 0.5O 2 to 600 °C for extended time leads to a decrease in surface area and, as expected decreased catalytic activity. Depending on the ionic liquid the obtained Ce 0.5Zr 0.5O 2 exhibits different morphologies, varying from nano-spheres in [C 4mim][Tf 2N] and [P 66614][Tf 2N] (P 66614 = trishexyltetradecylphosphonium) to sheet-like assemblies in [C 3mimOH][Tf 2N] (C 3mimOH = 1-(3-hydroxypropyl)-3-methylimidazolium). As a result, the microwave synthesis superiority to other heating methods like sonochemical synthesis and conventional heating was proven by comparative experiments where the catalytic activity of Ce 0.5Zr 0.5O 2 obtained by alternate methods such as conventional heating was found to be poorer than that of the microwave-synthesised material.« less

  18. 21 CFR 177.1200 - Cellophane.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Clay, natural Coconut oil fatty acid (C12-C18) diethanolamide, coconut oil fatty acid (C12-C18... monoacetate Hydroxyethyl cellulose, water-insoluble Hydroxypropyl cellulose identified in § 172.870 of this...

  19. 21 CFR 177.1200 - Cellophane.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Clay, natural Coconut oil fatty acid (C12-C18) diethanolamide, coconut oil fatty acid (C12-C18... monoacetate Hydroxyethyl cellulose, water-insoluble Hydroxypropyl cellulose identified in § 172.870 of this...

  20. Is 2-Hydroxypropyl-β-cyclodextrin a Suitable Carrier for Central Administration of Δ9 -Tetrahydrocannabinol? Preclinical Evidence.

    PubMed

    Agabio, R; Sanna, F; Lobina, C; Monduzzi, M; Nairi, V; Cugia, F; Mameli, S; Pisanu, G M; Gessa, G L; Melis, M R

    2017-12-01

    Preclinical Research Δ 9 -Tetrahydrocannabinol (THC) is a hydrophobic compound that has a potent antinociceptive effect in animals after intrathecal (IT) or intracerebroventricular (ICV) administration. The lack of a suitable solvent precludes its IT administration in humans. 2-Hydroxypropyl-β-cyclodextrin (HPβCD) increases the water solubility of hydrophobic drugs and is approved for IT administration in humans. To investigate whether HPβCD might be a suitable carrier for ICV administration of THC in rats, two formulations containing THC complexed with HPβCD (30 and 135 μg of THC per animal) and vehicle were administered to Wistar rats. The antinociceptive effect (using the tail flick test), locomotor activity, and body temperature were evaluated. ICV injection of 135 μg of THC/HPβCD complex increased tail flick latency, reduced locomotor activity, and had a dual effect on body temperature. The 30 μg THC/HPβCD formulation only produced a hyperthermic effect. All animals appeared healthy, with no difference between the groups. These results were similar to those obtained in other preclinical studies in which THC was administered centrally using solvents that are unsuitable for IT administration in humans because of their toxicity. Our findings suggest that HPβCD may be a useful carrier for IT administration of THC in humans. Drug Dev Res 78 : 411-419, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Long-term parenteral administration of 2-hydroxypropyl-β-cyclodextrin causes bone loss.

    PubMed

    Kantner, Ingrid; Erben, Reinhold G

    2012-07-01

    Cyclodextrins are oligosaccharides which are used in the pharmaceutical industry and research as vehicles for application of apolar substances such as steroids. The aim of this study was to examine the long-term effects of parenteral administration of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) on bone. Sham-operated (SHAM) or ovariectomized (OVX) adult rats were subcutaneously injected with physiological saline, 50, or 200 mg/kg HP-β-CD daily. After 4 months, body weight in OVX rats and uterine weight in SHAM rats were significantly lower after administration of 200 mg/kg HP-β-CD, relative to vehicle controls. At 200 mg/kg, HP-β-CD was hepatotoxic as measured by increased serum transaminases, and reduced serum albumin. Moreover, 200 mg/kg HP-β-CD led to decreased vertebral and tibial bone mineral density (BMD), and to cortical thinning at the tibial shaft. Bone loss in HP-β-CD-treated rats was associated with increased bone resorption as measured by increased renal deoxypyridinoline excretion. Although 50 mg/kg HP-β-CD was devoid of overt signs of organ toxicity and did not impair BMD, bone resorption was already increased. In summary, subcutaneous long-term administration of HP-β-CD at a daily dose of 200 mg/kg led to increased bone resorption and subsequent bone loss. Minor alterations in bone metabolism were also seen at 50 mg/kg.

  2. Recyclable Thermoresponsive Polymer-Cellulase Bioconjugates for Biomass Depolymerization

    PubMed Central

    Mackenzie, Katherine J.; Francis, Matthew B.

    2013-01-01

    Here we report the construction and characterization of a recoverable, thermoresponsive polymer-endoglucanase bioconjugate that matches the activity of unmodified enzymes on insoluble cellulose substrates. Two copolymers exhibiting a thermoresponsive lower critical solution temperature (LCST) were created through the copolymerization of an aminooxy-bearing methacrylamide with N-isopropylacrylamide (NIPAm) or N-isopropylmethacrylamide (NIPMa). The aminooxy group provided a handle through which the LCST was adjusted through small-molecule quenching. This allowed materials with LCSTs ranging from 20.9 °C to 60.5 °C to be readily obtained after polymerization. The thermostable endoglucanase EGPh from the hypothermophilic Pyrococcus horikoshii was transaminated with pyridoxal-5’-phosphate to produce a ketone-bearing protein, which was then site-selectively modified through oxime linkage with benzylalkoxyamine or 5 kDa-poly(ethylene glycol)-alkoxyamine. These modified proteins showed activity comparable to the controls when assayed on an insoluble cellulosic substrate. Two polymer bioconjugates were then constructed using transaminated EGPh and the aminooxy-bearing copolymers. After twelve hours, both bioconjugates produced an equivalent amount of free reducing sugars as the unmodified control using insoluble cellulose as a substrate. The recycling ability of the NIPAm copolymer-EGPh conjugate was determined through three rounds of activity, maintaining over 60% activity after two cycles of reuse and affording significantly more soluble carbohydrates than unmodified enzyme alone. When assayed on acid-pretreated Miscanthus, this bioconjugate increased the amount of reducing sugars by 2.8-fold over three rounds of activity. The synthetic strategy of this bioconjugate allows the LCST of the material to be changed readily from a common stock of copolymer and the method of attachment is applicable to a variety of proteins, enabling the same approach to be amenable to thermophile-derived cellulases or to the separation of multiple species using polymers with different recovery temperatures. PMID:23270527

  3. Novel 3-hydroxypropyl bonded phase by direct hydrosilylation of allyl alcohol on amorphous hydride silica

    PubMed Central

    Gómez, Jorge E.; Navarro, Fabián H.; Sandoval, Junior E.

    2015-01-01

    A novel 3-hydroxypropyl (propanol) bonded silica phase has been prepared by hydrosilylation of allyl alcohol on a hydride silica intermediate, in the presence of platinum (0)-divinyltetramethyldisiloxane (Karstedt's catalyst). The regio-selectivity of this synthetic approach had been correctly predicted by previous reports involving octakis(dimethylsiloxy)octasilsesquioxane (Q8M8H) and hydrogen silsesquioxane (T8H8), as molecular analogs of hydride amorphous silica. Thus, C-silylation predominated (~ 94%) over O-silylation, and high surface coverages of propanol groups (5±1 µmol/m2) were typically obtained in this work. The propanol-bonded phase was characterized by spectroscopic (IR and solid state NMR on silica microparticles), contact angle (on fused-silica wafers) and CE (on fused-silica tubes) techniques. CE studies of the migration behavior of pyridine, caffeine, tris(2,2’-bipyridine)Ru(II) chloride and lysozyme on propanol-modified capillaries were carried out. The adsorption properties of these select silanol-sensitive solutes were compared to those on the unmodified and hydride-modified tubes. It was found that hydrolysis of the SiH species underlying the immobilized propanol moieties leads mainly to strong ion-exchange based interactions with the basic solutes at pH 4, particularly with lysozyme. Interestingly, and in agreement with water contact angle and electroosmotic mobility figures, the silanol-probe interactions on the buffer-exposed (hydrolyzed) hydride surface are quite different from those of the original unmodified tube. PMID:24934906

  4. Investigation of the interactions of silibinin with 2-hydroxypropyl-β-cyclodextrin through biophysical techniques and computational methods.

    PubMed

    Kellici, Tahsin F; Ntountaniotis, Dimitrios; Leonis, Georgios; Chatziathanasiadou, Maria; Chatzikonstantinou, Alexandra V; Becker-Baldus, Johanna; Glaubitz, Clemens; Tzakos, Andreas G; Viras, Kyriakos; Chatzigeorgiou, Petros; Tzimas, Stavros; Kefala, Evangelia; Valsami, Georgia; Archontaki, Helen; Papadopoulos, Manthos G; Mavromoustakos, Thomas

    2015-03-02

    Cyclodextrins (CDs) are a well-known class of supermolecules that have been widely used to protect drugs against conjugation and metabolic inactivation as well as to enhance the aqueous solubility and hence to ameliorate the oral bioavailability of sparingly soluble drug molecules. The hepatoprotectant drug silibinin can be incorporated into CDs, and here we elucidate the interaction between the drug and the host at the molecular level. The complexation product of silibinin with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) is characterized by Differential Scanning Calorimetry, mass spectrometry, solid and liquid high-resolution NMR spectroscopy. The chemical shift changes using (13)C CP/MAS on the complexing of the guest with the host provided significant information on the molecular interactions, and they were in agreement with the 2D NOESY results. These results point out that in both solid and liquid forms, the drug is engulfed and interacts with HP-β-CD in identical manner. Molecular dynamics calculations have been performed to examine the thermodynamic characteristics associated with the silibinin-HP-β-CD interactions and to study the stability of the complex. To approximate the physiological conditions, the aqueous solubility and dissolution characteristics of the complex at pH states simulating those of the upper gastrointestinal tract have been applied. To evaluate the antiproliferative activity of silibinin-HP-β-CD complex comparatively to silibinin in MCF-7 human cancer cells, MTT assays have been performed.

  5. The effect of freeze-dried antibody concentrations on its stability in the presence of trehalose and hydroxypropyl-β-cyclodextrin: a Box-Behnken statistical design.

    PubMed

    Faghihi, Homa; Khalili, Fatemeh; Amini, Mohsen; Vatanara, Alireza

    2017-09-01

    The present study aimed at preparation and optimization of stable freeze-dried immunoglobulin G (IgG) applying proper amount of antibody with efficient combination of trehalose and hydroxypropyl-β-cyclodextrin (HPβCD). Response surface methodology was employed through a three-factor, three-level Box-Behnken design. Amounts of IgG (X 1 ), trehalose (X 2 ) and HPβCD (X 3 ) were independent variables. Aggregation following process (Y 1 ), after one month at 45 °C (Y 2 ), upon two month at 45 °C (Y 3 ) and beta-sheet content of IgG (Y 4 ) were determined as dependent variables. Results were fitted to quadratic models (except for beta-sheet content), describing the inherent relationship between main factors. Optimized formulation composed of 55.85 mg IgG, 52.51 mg trehalose and 16.01 mg HPβCD was prepared. The calculated responses of the optimized formulation were as follows: Y 1  = 0.19%, Y 2  = 0.78%, Y 3  = 1.88% and Y 4  = 68.60%, respectively. The thermal analysis confirmed the amorphous nature of optimum formulation and the integrity of IgG was shown to be favorably preserved. Validation of the optimization study demonstrated high degree of prognostic ability. The DOE study successfully predicted the optimum values of antibody as well as stabilizers for desirable process and storage stabilization of freeze-dried IgG.

  6. Investigating the Use of Polymeric Binders in Twin Screw Melt Granulation Process for Improving Compactibility of Drugs.

    PubMed

    Batra, Amol; Desai, Dipen; Serajuddin, Abu T M

    2017-01-01

    Traditionally, the melt granulation for pharmaceutical products was performed at low temperature (<90°C) with high-shear granulators using low-melting waxy binders, and tablets produced using such granules were not amenable to large-scale manufacturing. The situation has changed in recent years by the use of twin screw extruder where the processing temperature could be increased to as high as 180°C and polymers with high T g could be used as binders. In this study, different polymeric binders were screened for their suitability in improving compactibility of 2 drugs, metformin hydrochloride and acetaminophen, by twin screw melt granulation. Processing temperatures for the 2 drugs were set at 180°C and 130°C, respectively. Screw configuration, screw speed, and feed rate were optimized such that all polymeric binders used produced granules. Several hydroxypropyl cellulose, hydroxypropyl methylcellulose, polyvinylpyrrolidone, and methacrylate-based polymers, including Klucel ® EXF, Eudragit ® EPO, and Soluplus ® , demonstrated good tablet tensile strength (>2 MPa) when granules were produced using only 10% wt/wt polymer concentration. Certain polymers provided acceptable compactibility even at 5% wt/wt. Thus, twin screw melt granulation process may be used with different polymers at a wide range of temperature. Due to low excipient concentration, this granulation method is especially suitable for high-dose tablets. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Allergic contact dermatitis from sculptured acrylic nails: special presentation with an airborne pattern

    PubMed Central

    Maio, Paula; Carvalho, Rodrigo; Amaro, Cristina; Santos, Raquel; Cardoso, Jorge

    2012-01-01

    Methylmethacrylate was first reported in 1941 as a cause of contact dermatitis. Since then, occupational contact allergies to acrylates in dentistry, orthopedic surgery, printing industry and industry have been reported, but few reports are found in the literature as a consequence of the contact with sculptured artificial acrylic nails which are increasingly popular. We describe here 3 patients with contact allergy to acrylates in artificial sculptured nails. Patch tests were performed with the Portuguese baseline series of contact allergens and an extended series of acrylates were applied. In particular, we tested three female patients with allergic contact dermatitis from sculptured acrylic nails. Two of these patients were both customers and also technical nail beauticians. Two patients developed periungual eczema; one presented only with face and eyelid dermatitis had no other lesions. The tests showed positive reaction to 2-hydroxyethylmethacrylate (2-HEMA) and 2-hydroxypropylmethacrylate (2-HPMA) in all the three patients. Our cases demonstrate the variety of clinical presentations of allergic contact dermatitis from acrylic sculptured nails. They show the need to warn patients of persistent and sometimes permanent side effects of these products. They also emphasize the importance of cosmetic ingredient labeling. PMID:25386316

  8. Pharmacokinetic evaluation of novel midazolam gel formulations following buccal administration to healthy dogs.

    PubMed

    Aldawsari, Mohammed F; Lau, Vivian W; Babu, Ramapuram J; Arnold, Robert D; Platt, Simon R

    2018-01-01

    OBJECTIVE To determine the physiochemical properties and pharmacokinetics of 3 midazolam gel formulations following buccal administration to dogs. ANIMALS 5 healthy adult hounds. PROCEDURES In phase 1 of a 2-phase study, 2 gel formulations were developed that contained 1% midazolam in a poloxamer 407 (P1) or hydroxypropyl methylcellulose (H1) base and underwent rheological and in vitro release analyses. Each formulation was buccally administered to 5 dogs such that 0.3 mg of midazolam/kg was delivered. Each dog also received midazolam hydrochloride (0.3 mg/kg, IV). There was a 3-day interval between treatments. Blood samples were collected immediately before and at predetermined times for 8 hours after drug administration for determination of plasma midazolam concentration and pharmacokinetic analysis. During phase 2, a gel containing 2% midazolam in a hydroxypropyl methylcellulose base (H2) was developed on the basis of phase 1 results. That gel was buccally administered such that midazolam doses of 0.3 and 0.6 mg/kg were delivered. Each dog also received midazolam (0.3 mg/kg, IV). All posttreatment procedures were the same as those for phase 1. RESULTS The H1 and H2 formulations had lower viscosity, greater bioavailability, and peak plasma midazolam concentrations that were approximately 2-fold as high, compared with those for the P1 formulation. The mean peak plasma midazolam concentration for the H2 formulation was 187.0 and 106.3 ng/mL when the midazolam dose administered was 0.6 and 0.3 mg/kg, respectively. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that buccal administration of gel formulations might be a viable alternative for midazolam administration to dogs.

  9. Low density biodegradable shape memory polyurethane foams for embolic biomedical applications

    PubMed Central

    Singhal, Pooja; Small, Ward; Cosgriff-Hernandez, Elizabeth; Maitland, Duncan J; Wilson, Thomas S

    2014-01-01

    Low density shape memory polymer foams hold significant interest in the biomaterials community for their potential use in minimally invasive embolic biomedical applications. The unique shape memory behavior of these foams allows them to be compressed to a miniaturized form, which can be delivered to an anatomical site via a transcatheter process, and thereafter actuated to embolize the desired area. Previous work in this field has described the use of a highly covalently crosslinked polymer structure for maintaining excellent mechanical and shape memory properties at the application-specific ultra low densities. This work is aimed at further expanding the utility of these biomaterials, as implantable low density shape memory polymer foams, by introducing controlled biodegradability. A highly covalently crosslinked network structure was maintained by use of low molecular weight, symmetrical and polyfunctional hydroxyl monomers such as Polycaprolactone triol (PCL-t, Mn 900 g), N,N,N0,N0-Tetrakis (hydroxypropyl) ethylenediamine (HPED), and Tris (2-hydroxyethyl) amine (TEA). Control over the degradation rate of the materials was achieved by changing the concentration of the degradable PCL-t monomer, and by varying the material hydrophobicity. These porous SMP materials exhibit a uniform cell morphology and excellent shape recovery, along with controllable actuation temperature and degradation rate. We believe that they form a new class of low density biodegradable SMP scaffolds that can potentially be used as “smart” non-permanent implants in multiple minimally invasive biomedical applications. PMID:24090987

  10. Study of the therapeutic benefit of cationic copolymer administration to vascular endothelium under mechanical stress

    PubMed Central

    Giantsos-Adams, Kristina; Lopez-Quintero, Veronica; Kopeckova, Pavla; Kopecek, Jindrich; Tarbell, John M.; Dull, Randal

    2015-01-01

    Pulmonary edema and the associated increases in vascular permeability continue to represent a significant clinical problem in the intensive care setting, with no current treatment modality other than supportive care and mechanical ventilation. Therapeutic compound(s) capable of attenuating changes in vascular barrier function would represent a significant advance in critical care medicine. We have previously reported the development of HPMA-based copolymers, targeted to endothelial glycocalyx that are able to enhance barrier function. In this work, we report the refinement of copolymer design and extend our physiological studies todemonstrate that the polymers: 1) reduce both shear stress and pressure-mediated increase in hydraulic conductivity, 2) reduce nitric oxide production in response to elevated hydrostatic pressure and, 3) reduce the capillary filtration coefficient (Kfc) in an isolated perfused mouse lung model. These copolymers represent an important tool for use in mechanotransduction research and a novel strategy for developing clinically useful copolymers for the treatment of vascular permeability. PMID:20932573

  11. Autonomic composite hydrogels by reactive printing: materials and oscillatory response.

    PubMed

    Kramb, R C; Buskohl, P R; Slone, C; Smith, M L; Vaia, R A

    2014-03-07

    Autonomic materials are those that automatically respond to a change in environmental conditions, such as temperature or chemical composition. While such materials hold incredible potential for a wide range of uses, their implementation is limited by the small number of fully-developed material systems. To broaden the number of available systems, we have developed a post-functionalization technique where a reactive Ru catalyst ink is printed onto a non-responsive polymer substrate. Using a succinimide-amine coupling reaction, patterns are printed onto co-polymer or biomacromolecular films containing primary amine functionality, such as polyacrylamide (PAAm) or poly-N-isopropyl acrylamide (PNIPAAm) copolymerized with poly-N-(3-Aminopropyl)methacrylamide (PAPMAAm). When the films are placed in the Belousov-Zhabotinsky (BZ) solution medium, the reaction takes place only inside the printed nodes. In comparison to alternative BZ systems, where Ru-containing monomers are copolymerized with base monomers, reactive printing provides facile tuning of a range of hydrogel compositions, as well as enabling the formation of mechanically robust composite monoliths. The autonomic response of the printed nodes is similar for all matrices in the BZ solution concentrations examined, where the period of oscillation decreases in response to increasing sodium bromate or nitric acid concentration. A temperature increase reduces the period of oscillations and temperature gradients are shown to function as pace-makers, dictating the direction of the autonomic response (chemical waves).

  12. Preparation and characterization of three-dimensional scaffolds based on hydroxypropyl chitosan-graft-graphene oxide.

    PubMed

    Sivashankari, P R; Moorthi, A; Abudhahir, K Mohamed; Prabaharan, M

    2018-04-15

    Hydroxypropyl chitosan (HPCH), a water soluble derivative of chitosan, is widely considered for tissue engineering and wound healing applications due to its biocompatibility and biodegradability. Graphene oxide (GO) is a carbon-based nanomaterial which is capable of imparting desired properties to the scaffolds. Hence, the integration of GO into HPCH could allow for the production of HPCH-based scaffolds with improved swelling character, mechanical strength, and stability aimed at being used in tissue engineering. In this study, hydroxypropyl chitosan-graft-graphene oxide (HPCH-g-GO) with varying GO content (0.5, 1, 3 and 4wt.%) was prepared using HPCH and GO as a tissue engineering scaffold material. The formation of HPCH-g-GO was confirmed by FTIR and XRD analysis. Using the HPCH-g-GO as a matrix material and glutaraldehyde as a crosslinking agent, the three dimensional (3D) porous scaffolds were fabricated by the freeze-drying method. The HPCH-g-GO scaffolds exhibited uniform porosity as observed in SEM analysis. The pore size and porosity reduced as the content of GO was increased. These scaffolds presented good swelling capacity, water retention ability, mechanical strength and in vitro degradation properties. The HPCH-g-GO scaffolds irrespective of their GO content demonstrated good cell viability when compared to control. Altogether, these results suggest that HPCH-g-GO scaffolds can be used as potential tissue engineering material. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Polymer concrete composites for the production of high strength pipe and linings in high temperature corrosive environments

    DOEpatents

    Zeldin, A.; Carciello, N.; Fontana, J.; Kukacka, L.

    High temperature corrosive resistant, non-aqueous polymer concrete composites are described. They comprise about 12 to 20% by weight of a water-insoluble polymer binder polymerized in situ from a liquid monomer mixture consisting essentially of about 40 to 70% by weight of styrene, about 25 to 45% by weight acrylonitrile and about 2.5 to 7.5% by weight acrylamide or methacrylamide and about 1 to 10% by weight of a crosslinking agent. This agent is selected from the group consisting of trimethylolpropane trimethacrylate and divinyl benzene; and about 80 to 88% by weight of an inert inorganic filler system containing silica sand and portland cement, and optionally Fe/sub 2/O/sub 3/ or carbon black or mica. A free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other organic peroxides and combinations thereof to initiate crosspolymerization of the monomer mixture in the presence of said inorganic filler.

  14. 2-Hydroxypropyl-β-cyclodextrins and the Blood-Brain Barrier: Considerations for Niemann-Pick Disease Type C1

    PubMed Central

    Calias, Pericles

    2017-01-01

    The rare, chronic, autosomal-recessive lysosomal storage disease Niemann-Pick disease type C1 (NPC1) is characterized by progressively debilitating and ultimately fatal neurological manifestations. There is an urgent need for disease-modifying therapies that address NPC1 neurological pathophysiology, and passage through the blood-brain barrier represents an important consideration for novel NPC1 drugs. Animal investigations of 2-hydroxypropyl-β-cyclodextrins (HPβCD) in NPC1 in mice demonstrated that HPβCD does not cross the blood-brain barrier in significant amounts but suggested a potential for these complex oligosaccharides to moderately impact CNS manifestations when administered subcutaneously or intraperitoneally at very high doses; however, safety concerns regarding pulmonary toxicity were raised. Subsequent NPC1 investigations in cats demonstrated far greater HPβCD efficacy at much lower doses when the drug was administered directly to the CNS. Based on this, a phase 1/2a clinical trial was initiated with intrathecal administration of a specific, well-characterized mixture of HPβCD, with a tightly controlled molar substitution specification and a defined molecular “fingerprint” of the different species. The findings were very encouraging and a phase 2b/3 clinical trial has completed enrollment and is underway. In addition, phase 1 clinical studies utilizing high-dose intravenous administration of a different HPβCD are currently recruiting. Independent studies are needed for each product to satisfactorily address questions of safety, efficacy, dosing, and route of administration. The outcomes cannot be assumed to be translatable between HPβCD products and/or routes of administration. PMID:29065825

  15. Improved Aqueous Solubility and Antihypercholesterolemic Activity of Ezetimibe on Formulating with Hydroxypropyl-β-Cyclodextrin and Hydrophilic Auxiliary Substances.

    PubMed

    Srivalli, Kale Mohana Raghava; Mishra, Brahmeshwar

    2016-04-01

    The purpose of this study was to improve the aqueous solubility, dissolution, and pharmacodynamic properties of a BCS class II drug, ezetimibe (Eze) by preparing ternary cyclodextrin complex systems. We investigated the potential synergistic effect of two novel hydrophilic auxiliary substances, D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and L-ascorbic acid-2-glucoside (AA2G) on hydroxypropyl-β-cyclodextrin (HPBCD) solubilization of poorly water-soluble hypocholesterolemic drug, Eze. In solution state, the binary and ternary systems were analyzed by phase solubility studies and Job's plot. The solid complexes prepared by freeze-drying were characterized by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and scanning electron microscopy (SEM). The log P values, aqueous solubility, dissolution, and antihypercholesterolemic activity of all systems were studied. The analytical techniques confirmed the formation of inclusion complexes in the binary and ternary systems. HPBCD complexation significantly (p < 0.05) reduced the log P and improved the solubility, dissolution, and hypocholesterolemic properties of Eze, and the addition of ternary component produced further significant improvement (p < 0.05) even compared to binary system. The remarkable reduction in log P and enhancement in solubility, dissolution, and antihypercholesterolemic activity due to the addition of TPGS or AA2G may be attributed to enhanced wetting, dispersibility, and complete amorphization. The use of TPGS or AA2G as ternary hydrophilic auxiliary substances improved the HPBCD solubilization and antihypercholesterolemic activity of Eze.

  16. Gelatin- and starch-based hydrogels. Part A: Hydrogel development, characterization and coating.

    PubMed

    Van Nieuwenhove, Ine; Salamon, Achim; Peters, Kirsten; Graulus, Geert-Jan; Martins, José C; Frankel, Daniel; Kersemans, Ken; De Vos, Filip; Van Vlierberghe, Sandra; Dubruel, Peter

    2016-11-05

    The present work aims at constructing the ideal scaffold matrix of which the physico-chemical properties can be altered according to the targeted tissue regeneration application. Ideally, this scaffold should resemble the natural extracellular matrix (ECM) as close as possible both in terms of chemical composition and mechanical properties. Therefore, hydrogel films were developed consisting of methacrylamide-modified gelatin and starch-pentenoate building blocks because the ECM can be considered as a crosslinked hydrogel network consisting of both polysaccharides and structural, signaling and cell-adhesive proteins. For the gelatin hydrogels, three different substitution degrees were evaluated including 31%, 72% and 95%. A substitution degree of 32% was applied for the starch-pentenoate building block. Pure gelatin hydrogels films as well as interpenetrating networks with gelatin and starch were developed. Subsequently, these films were characterized using gel fraction and swelling experiments, high resolution-magic angle spinning (1)H NMR spectroscopy, rheology, infrared mapping and atomic force microscopy. The results indicate that both the mechanical properties and the swelling extent of the developed hydrogel films can be controlled by varying the chemical composition and the degree of substitution of the methacrylamide-modified gelatin applied. The storage moduli of the developed materials ranged between 14 and 63kPa. Phase separation was observed for the IPNs for which separated starch domains could be distinguished located in the surrounding gelatin matrix. Furthermore, we evaluated the affinity of aggrecan for gelatin by atomic force microscopy and radiolabeling experiments. We found that aggrecan can be applied as a bioactive coating for gelatin hydrogels by a straightforward physisorption procedure. Thus, we achieved distinct fine-tuning of the physico-chemical properties of these hydrogels which render them promising candidates for tissue engineering approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Preparation, characterization and in vitro evaluation of a new nucleotide analogue prodrug cyclodextrin inclusion complexes.

    PubMed

    Diab, Roudayna; Jordheim, Lars P; Degobert, Ghania; Peyrottes, Suzanne; Périgaud, Christian; Dumontet, Charles; Fessi, Hatem

    2009-01-01

    Bis(tbutyl-S-acyl-2-thioethyl)-cytidine monophosophate is a new cytotoxic mononucleotide prodrug which have been developed to reverse the cellular resistance to nucleoside analogues. Unfortunately, its in vivo utilisation was hampered by its poor water solubility, raising the need of a molecular vector capable to mask its physicochemical characteristics although without affecting its cytotoxic activity. Hydroxypropyl-beta-cyclodextrin was used to prepare the prodrug inclusion complexes, allowing it to be solubilized in water and hence to be used for in vitro and in vivo experiments. A molar ratio of the cyclodextrin: prodrug of 3 was sufficient to obtain complete solubilization of the prodrug. The inclusion complex was characterized by differential scanning calorimetry, which revealed the disappearance of the melting peak of the prodrug suggesting the formation of inclusion complex. Proton Nuclear Magnetic Resonance spectroscopy provided a definitive proof of the inclusion complex formation, which was evidenced by the large chemical shift displacements observed for protons located in the interior of the hydrophobic cyclodextrin cavity. The complex retained its cytotoxic activity as shown by in vitro cell survival assays on murine leukemia cells. These results provided a basis for potential therapeutic applications of co-formulation of this new nucleotide analogue with hydroxypropyl-beta-CD in cancer therapy.

  18. Host-Guest Interaction between Herbicide Oxadiargyl and Hydroxypropyl-β-Cyclodextrin

    PubMed Central

    Benfeito, Sofia; Borges, Fernanda; Garrido, E. Manuela

    2013-01-01

    In the face of a growing human population and increased urbanization, the demand for pesticides will simply rise. Farmers must escalate yields on increasingly fewer farm acres. However, the risks of pesticides, whether real or perceived, may force changes in the way these chemicals are used. Scientists are working toward pest control plans that are environmentally sound, effective, and profitable. In this context the development of new pesticide formulations which may improve application effectiveness, safety, handling, and storage can be pointed out as a solution. As a contribution to the area, the microencapsulation of the herbicide oxadiargyl (OXA) in (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) was performed. The study was conducted in different aqueous media (ultrapure water and in different pH buffer solutions). In all cases an increment of the oxadiargyl solubility as a function of the HP-β-CD concentration that has been related to the formation of an inclusion complex was verified. UV-Vis and NMR experiments allowed concluding that the stoichiometry of the OXA/HP-β-CD complex formed is 1 : 1. The gathered results can be regarded as an important step for its removal from industrial effluents and/or to increase the stabilizing action, encapsulation, and adsorption in water treatment plants. PMID:24396310

  19. Examination of Calcium Silicate Cements with Low-Viscosity Methyl Cellulose or Hydroxypropyl Cellulose Additive.

    PubMed

    Baba, Toshiaki; Tsujimoto, Yasuhisa

    2016-01-01

    The purpose of this study was to improve the operability of calcium silicate cements (CSCs) such as mineral trioxide aggregate (MTA) cement. The flow, working time, and setting time of CSCs with different compositions containing low-viscosity methyl cellulose (MC) or hydroxypropyl cellulose (HPC) additive were examined according to ISO 6876-2012; calcium ion release analysis was also conducted. MTA and low-heat Portland cement (LPC) including 20% fine particle zirconium oxide (ZO group), LPC including zirconium oxide and 2 wt% low-viscosity MC (MC group), and HPC (HPC group) were tested. MC and HPC groups exhibited significantly higher flow values and setting times than other groups ( p < 0.05). Additionally, flow values of these groups were higher than the ISO 6876-2012 reference values; furthermore, working times were over 10 min. Calcium ion release was retarded with ZO, MC, and HPC groups compared with MTA. The concentration of calcium ions was decreased by the addition of the MC or HPC group compared with the ZO group. When low-viscosity MC or HPC was added, the composition of CSCs changed, thus fulfilling the requirements for use as root canal sealer. Calcium ion release by CSCs was affected by changing the CSC composition via the addition of MC or HPC.

  20. Examination of Calcium Silicate Cements with Low-Viscosity Methyl Cellulose or Hydroxypropyl Cellulose Additive

    PubMed Central

    Tsujimoto, Yasuhisa

    2016-01-01

    The purpose of this study was to improve the operability of calcium silicate cements (CSCs) such as mineral trioxide aggregate (MTA) cement. The flow, working time, and setting time of CSCs with different compositions containing low-viscosity methyl cellulose (MC) or hydroxypropyl cellulose (HPC) additive were examined according to ISO 6876-2012; calcium ion release analysis was also conducted. MTA and low-heat Portland cement (LPC) including 20% fine particle zirconium oxide (ZO group), LPC including zirconium oxide and 2 wt% low-viscosity MC (MC group), and HPC (HPC group) were tested. MC and HPC groups exhibited significantly higher flow values and setting times than other groups (p < 0.05). Additionally, flow values of these groups were higher than the ISO 6876-2012 reference values; furthermore, working times were over 10 min. Calcium ion release was retarded with ZO, MC, and HPC groups compared with MTA. The concentration of calcium ions was decreased by the addition of the MC or HPC group compared with the ZO group. When low-viscosity MC or HPC was added, the composition of CSCs changed, thus fulfilling the requirements for use as root canal sealer. Calcium ion release by CSCs was affected by changing the CSC composition via the addition of MC or HPC. PMID:27981048

  1. Floating tablets for controlled release of ofloxacin via compression coating of hydroxypropyl cellulose combined with effervescent agent.

    PubMed

    Qi, Xiaole; Chen, Haiyan; Rui, Yao; Yang, Fengjiao; Ma, Ning; Wu, Zhenghong

    2015-07-15

    To prolong the residence time of dosage forms within gastrointestinal trace until all drug released at desired rate was one of the real challenges for oral controlled-release drug delivery system. Herein, we developed a fine floating tablet via compression coating of hydrophilic polymer (hydroxypropyl cellulose) combined with effervescent agent (sodium bicarbonate) to achieve simultaneous control of release rate and location of ofloxacin. Sodium alginate was also added in the coating layer to regulate the drug release rate. The effects of the weight ratio of drug and the viscosity of HPC on the release profile were investigated. The optimized formulations were found to immediately float within 30s and remain lastingly buoyant over a period of 12 h in simulated gastric fluid (SGF, pH 1.2) without pepsin, indicating a satisfactory floating and zero-order drug release profile. In addition, the oral bioavailability experiment in New Zealand rabbits showed that, the relative bioavailability of the ofloxacin after administrated of floating tablets was 172.19%, compared to marketed common release tablets TaiLiBiTuo(®). These results demonstrated that those controlled-released floating tables would be a promising gastro-retentive delivery system for drugs acting in stomach. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Development, characterization, and applications of self-assembling, photocrosslinkable collagen-based hydrogels

    NASA Astrophysics Data System (ADS)

    Gaudet, Ian Daniel

    Development of functional soft-tissue engineered constructs for use in regenerative medicine is currently limited by homogeneity within scaffolds that fails to recapitulate the complex architecture that supports normal function in healthy tissues. Additionally, recent breakthroughs in our understanding the biomechanical cell-matrix interface have provided insight into the role of substrate compliance during development and in the pathophysiological environment. This thesis is the result of investigation into using type-I collagen as a base material for creating dynamic, self-assembling, mechanically and biochemically tunable 3D hydrogel scaffolds into which instructive cellular cues can be imparted anisotropically via the directed application of light. This overarching goal was approached by (1) evaluating extant methods for photonically manipulating type I collagen mechanical properties, which led us to the conclusion that published methods were inadequate for our purposes. Following this realization, we (2) developed a novel process for derivatizing free amines on collagen amino acid residues to reactive methacrylamide moieties, allowing robust spatiotemporal control of mechanical properties through photocrosslinking with long-wave UV light and the water-soluble photoinitiator Irgacure 2959. Thorough characterization of this material, collagen methacrylamide (CMA), provided the basis for multiple applications in the field of soft tissue engineering. Additionally, (3) CMA was used in conjunction with synthetic photopolymers in an effort to create a hybrid natural/synthetic hydrogel material. CMA was also (4) employed as a dynamic hydrogel scaffold which we showed could be used to culture a number of neurogenic stem and progenitor cell types with a focus on using photomodulation to impart instructive heterogeneity to the mechanical and biochemical microenvironment. Finally, (5) we used a computational modeling approach to explain interesting yet poorly understood material phenomena exhibited by CMA observed during characterization. Using sequence and structure based models of an optimized triple helical segment of type-I collagen, we obtained valuable insight into the role of amino acid electrostatic interactions in CMA thermodynamic behavior as well as in the context of understanding the biophysical mechanisms of native type I collagen self-assembly and stability.

  3. Comparative Analysis of the Cardioprotective Properties of Opioid Receptor Agonists in a Rat Model of Myocardial Infarction

    PubMed Central

    Maslov, Leonid N.; Lishmanov, Yury B.; Oeltgen, Peter R.; Barzakh, Eva I.; Krylatov, Andrey V.; Naryzhnaya, Natalia V.; Pei, Jian-Ming; Brown, Stephen A.

    2010-01-01

    Objectives This study was conducted to test the hypothesis that opioid receptor (OR) mediated cardioprotection is agonist-specific when administered prior to coronary artery occlusion and reperfusion in a rat model. Methods Anesthetized open-chest male Wistar rats were subjected to 45 minutes of left coronary artery occlusion and 2 hours of reperfusion. Opioid agonists were infused 15 minutes prior to coronary artery occlusion. Two control groups and 15 opioid treated groups were studied. Controls were infused with either saline alone (n = 16) or dimethyl sulfoxide (DMSO) plus hydroxypropyl-β-cyclodextrin in saline (n = 19). The μ selective agonist DAMGO was infused at either 150 nmol/kg (n = 15) or 1500 nmol/kg (n = 14), and Dermorphin-H was infused at 150 nmol/kg (n = 14). The δ1 selective agonist D-Pen2,5 Enkephalin (DPDPE) was infused at 150 nmol/kg (n = 16) or 1500 nmol/kg (n = 14). The δ2 selective agonists Deltorphin II (n = 16), Deltorphin-Dvariant (n = 15) and Deltorphin-E (n = 14) were infused at 150 nmol/kg. The selective κ1 opioid agonist U-50488 was infused at 240 nmol/kg (n = 14), 1500 nmol/kg (n = 14), and 2,400 nmol/kg (n = 14). The selective κ2 opioid agonist GR-89696 was infused at 150 nmol/kg (n = 14) and 1500 nmol/kg (n = 15). Orphinan FQ (Nociceptin), also referred to as OR Ligand1 (ORL1), was infused at 220 nmol/kg (n = 15) and 1500 nmol/kg (n = 15). The infarct size/area at risk (IS/AAR) ratio was determined after reperfusion by negative staining with patent blue violet dye. Hemodynamic parameters including heart rate, mean arterial blood pressure (MAP), and rate pressure product (RPP) were determined. Results Pretreatment with the δ2 OR agonist Deltorphin II (150 nmol/kg) significantly reduced the IS/AAR ratio, while Deltorphin-Dvariant and Deltorphin-E did not exhibit an infarct sparing effect at that treatment dose. Activation of δ1 OR by DPDPE, κ1 OR by U-50488, κ2 OR by U-50488, μ OR by DAMGO, Dermophin-H, and Nociceptin had no effect on the IS/AAR ratio. U-50488 at 2,400 nmol/l induced a bradycardic effect. All other opioids had no effect on hemodynamic parameters at the doses tested. Conclusions Peripheral δ2 OR activation by Deltorphin II induces infarct size reduction in this animal model. Agonists of μ, δ1, κ1, κ2, and Nociceptin receptors at the doses tested did not induce cardiac tolerance to ischemia/reperfusion injury in vivo. PMID:21175523

  4. Preparation and characterization of molecularly imprinted polymer for di(2-ethylhexyl) phthalate: application to sample clean-up prior to gas chromatographic determination.

    PubMed

    Shaikh, Huma; Memon, Najma; Khan, Hamayun; Bhanger, M I; Nizamani, S M

    2012-07-20

    The molecularly imprinted polymer (MIP) selective for di(2-ethylhexyl) phthalate (DEHP) an environmental endocrine disruptor was prepared by suspension polymerization using methacrylamide as functional monomer and N,N'-methylene-bis-acrylamide as cross-linker. The imprinted polymer was employed for solid-phase extraction of DEHP from water samples of environmental importance and characterized by FT-IR and SEM. The adsorption properties of the imprinted polymer were demonstrated by equilibrium rebinding experiments, Pseudo-second-order kinetic model, Sips isotherm and Scatchard analysis. The reusability of MIP was checked for at least six repeated batch adsorption cycles and the results showed almost no deterioration in the adsorption capacity. The competitive recognition studies were performed with DEHP and structurally similar compounds; dimethyl phthalate (DMP), diethyl phthalate (DEP), and dibutyl phthalate (DBP). The imprinting factor (IF) of DEHP was found to be 12.86 which was much higher than the imprinting factors (IF) of other phthalates. A method constituted by molecularly imprinted solid-phase extraction (MISPE) with GC-FID was developed for DEHP analysis in water samples under very simple conditions. Sample loading and desorption conditions were also optimized. The MISPE method's linearity ranged from 0.035 to 3.0 μg ml⁻¹ with r² = 0.9998. Intra-assay, interassay precision and accuracy ranged from 0.0168% to 1.017%, 1.130% to 4.799% and 94.98% to 99.35%, respectively. The LOD and LOQ were found to be 0.011 and 0.035 μg ml⁻¹, respectively. Synthesized MIP was employed in MISPE for cleaning up the spiked river water samples prior to gas chromatographic analysis. The river samples were found to contain DEHP in the range of 1.4 × 10⁻³ to 0.349 μg ml⁻¹. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Killing mechanism of stable N-halamine cross-linked polymethacrylamide nanoparticles that selectively target bacteria.

    PubMed

    Natan, Michal; Gutman, Ori; Lavi, Ronit; Margel, Shlomo; Banin, Ehud

    2015-02-24

    Increased resistance of bacteria to disinfection and antimicrobial treatment poses a serious public health threat worldwide. This has prompted the search for agents that can inhibit both bacterial growth and withstand harsh conditions (e.g., high organic loads). In the current study, N-halamine-derivatized cross-linked polymethacrylamide nanoparticles (NPs) were synthesized by copolymerization of the monomer methacrylamide (MAA) and the cross-linker monomer N,N-methylenebis(acrylamide) (MBAA) and were subsequently loaded with oxidative chlorine using sodium hypochlorite (NaOCl). The chlorinated NPs demonstrated remarkable stability and durability to organic reagents and to repetitive bacterial loading cycles as compared with the common disinfectant NaOCl (bleach), which was extremely labile under these conditions. The antibacterial mechanism of the cross-linked P(MAA-MBAA)-Cl NPs was found to involve generation of reactive oxygen species (ROS) only upon exposure to organic media. Importantly, ROS were not generated upon suspension in water, revealing that the mode of action is target-specific. Further, a unique and specific interaction of the chlorinated NPs with Staphylococcus aureus was discovered, whereby these microorganisms were all specifically targeted and marked for destruction. This bacterial encircling was achieved without using a targeting module (e.g., an antibody or a ligand) and represents a highly beneficial, natural property of the P(MAA-MBAA)-Cl nanostructures. Our findings provide insights into the mechanism of action of P(MAA-MBAA)-Cl NPs and demonstrate the superior efficacy of the NPs over bleach (i.e., stability, specificity, and targeting). This work underscores the potential of developing sustainable P(MAA-MBAA)-Cl NP-based devices for inhibiting bacterial colonization and growth.

  6. Rheological and fracturing characteristics of a novel sulfonated hydroxypropyl guar gum.

    PubMed

    Qiu, Liewei; Shen, Yiding; Wang, Tao; Wang, Chen

    2018-05-15

    A series of sulfonated hydroxypropyl guar gum (SHG) samples with different degrees of substitution (DSs) were prepared, and the SHG solution and SHG fracturing fluid were prepared and analyzed. The SHG aqueous solutions with different DSs all exhibit shear thinning behavior, which is well correlated with the Ostwald-deWaele model. Owing to the electrostatic repulsion of SHG molecular chains, SHG solutions with a higher DS will exhibit weaker thixotropic performance and strong anti-salinity ability. In addition, the SHG fracturing fluids, which were formed by interactions between SHG and organic zirconium, exhibit good temperature- and shear-resistant properties, proppant suspension properties, and salt tolerance. Furthermore, SHG gel-breaking fluids show low interfacial and surface tensions, with low residue content and small core permeability damage. These results provide useful indicators for the applications of SHG in the oil field industry. Copyright © 2017. Published by Elsevier B.V.

  7. Cleaning efficacy of hydroxypropyl-beta-cyclodextrin for biofouling reduction on reverse osmosis membranes.

    PubMed

    Alayande, Abayomi Babatunde; Kim, Lan Hee; Kim, In S

    2016-01-01

    In this study, an environmentally friendly compound, hydroxypropyl-beta-cyclodextrin (HP-β-CD) was applied to clean reverse osmosis (RO) membranes fouled by microorganisms. The cleaning with HP-β-CD removed the biofilm and resulted in a flux recovery ratio (FRR) of 102%. As cleaning efficiency is sometimes difficult to determine using flux recovery data alone, attached bacterial cells and extracellular polymeric substances (EPS) were quantified after cleaning the biofouled membrane with HP-β-CD. Membrane surface characterization using scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared (ATR-FTIR) and atomic force microscopy (AFM) confirmed the effectiveness of HP-β-CD in removal of biofilm from the RO membrane surface. Finally, a comparative study was performed to investigate the competitiveness of HP-β-CD with other known cleaning agents such as sodium dodecyl sulfate (SDS), ethylenediaminetetraacetic acid (EDTA), Tween 20, rhamnolipid, nisin, and surfactin. In all cases, HP-β-CD was superior.

  8. Preparation, characterization, and in vitro anti-inflammatory evaluation of novel water soluble kamebakaurin/hydroxypropyl-β-cyclodextrin inclusion complex

    NASA Astrophysics Data System (ADS)

    Raza, Aun; Sun, Huifang; Bano, Shumaila; Zhao, Yingying; Xu, Xiuquan; Tang, Jian

    2017-02-01

    To enhance the aqueous solubility of kamebakaurin (KA), it was complexed with hydroxypropyl-β-cyclodextrin (HP-β-CD). In this study, the interaction KA with HP-β-CD and their inclusion complex behavior were determined by different characterization techniques such as UV-vis, 1H NMR, FT-IR, PXRD and SEM. All the characterization information proved the development of inclusion complex KA/HP-β-CD, and this inclusion complex demonstrated discriminable spectroscopic characteristics and properties from free compound KA. The results demonstrated that the water solubility of KA was remarkably increased in the presence of HP-β-CD. Furthermore, in vitro anti-inflammatory study showed that inclusion complex KA/HP-β-CD maintained the anti-inflammatory effect of KA. These results demonstrate that HP-β-CD will be promisingly employed in the application of water-insoluble anti-inflammatory phytochemicals such as KA.

  9. Enhanced bioavailability of orally administered flurbiprofen by combined use of hydroxypropyl-cyclodextrin and poly(alkyl-cyanoacrylate) nanoparticles.

    PubMed

    Zhao, Xiaoyun; Li, Wei; Luo, Qiuhua; Zhang, Xiangrong

    2014-03-01

    Flurbiprofen was formulated into nanoparticle suspension to improve its oral bioavailability. Hydroxypropyl-β-cyclodextrin inclusion-flurbiprofen complex (HP-β-CD-FP) was prepared, then incorporating this complex into poly(alkyl-cyanoacrylate) (PACA) nanoparticles. HP-β-CD-FP-PACA nanoparticle was prepared by the emulsion solvent polymerization method. The zeta potential was -26.8 mV, the mean volume particle diameter was 134 nm, drug encapsulation efficiency was 53.3 ± 3.6 % and concentration was 1.5 mg/mL. The bioavailability of flurbiprofen from optimized nanoparticles was assessed in male Wistar rats at a dose of 15 mg/kg. As compared to the flurbiprofen suspension, 211.6 % relative bioavailability was observed for flurbiprofen nanoparticles. The reduced particle size and increased surface area may contribute to improve oral bioavailability of flurbiprofen.

  10. The role of cyclodextrins in ORAC-fluorescence assays. antioxidant capacity of tyrosol and caffeic acid with hydroxypropyl-β-cyclodextrin.

    PubMed

    García-Padial, Marcos; Martínez-Ohárriz, María Cristina; Navarro-Blasco, Iñigo; Zornoza, Arantza

    2013-12-18

    Tyrosol and caffeic acid are biophenols that contribute to the beneficial properties of virgin olive oil. The influence of hydroxypropyl-β-cyclodextrin (HPβ-CD) on their respective antioxidant capacities was analyzed. The ORAC antioxidant activity of tyrosol (expressed as μM Trolox equivalents/μM Tyrosol) was 0.83 ± 0.03 and it increased up to 1.20 ± 0.11 in the presence of 0.8 mM HPβ-CD. However, the ORAC antioxidant activity of caffeic acid experienced no change. The different effect of HPβ-CD on each compound was discussed. In addition, the effect of increasing concentrations of different cyclodextrins in the development of ORAC-fluorescence (ORAC-FL) assays was studied. The ORAC signal was higher for HPβ-CD, followed by Mβ-CD, β-CD, γ-CD and finally α-CD. These results could be explained by the formation of inclusion complexes with fluorescein.

  11. Fast discrimination of hydroxypropyl methyl cellulose using portable Raman spectrometer and multivariate methods

    NASA Astrophysics Data System (ADS)

    Song, Biao; Lu, Dan; Peng, Ming; Li, Xia; Zou, Ye; Huang, Meizhen; Lu, Feng

    2017-02-01

    Raman spectroscopy is developed as a fast and non-destructive method for the discrimination and classification of hydroxypropyl methyl cellulose (HPMC) samples. 44 E series and 41 K series of HPMC samples are measured by a self-developed portable Raman spectrometer (Hx-Raman) which is excited by a 785 nm diode laser and the spectrum range is 200-2700 cm-1 with a resolution (FWHM) of 6 cm-1. Multivariate analysis is applied for discrimination of E series from K series. By methods of principal components analysis (PCA) and Fisher discriminant analysis (FDA), a discrimination result with sensitivity of 90.91% and specificity of 95.12% is achieved. The corresponding receiver operating characteristic (ROC) is 0.99, indicting the accuracy of the predictive model. This result demonstrates the prospect of portable Raman spectrometer for rapid, non-destructive classification and discrimination of E series and K series samples of HPMC.

  12. Host-guest interaction between pinocembrin and cyclodextrins: Characterization, solubilization and stability

    NASA Astrophysics Data System (ADS)

    Zhou, Shu-Ya; Ma, Shui-Xian; Cheng, Hui-Lin; Yang, Li-Juan; Chen, Wen; Yin, Yan-Qing; Shi, Yi-Min; Yang, Xiao-Dong

    2014-01-01

    The inclusion complexation behavior, characterization and binding ability of pinocembrin with β-cyclodextrin (β-CD) and its derivative 2-hydroxypropyl-β-cyclodextrin (HPβCD) were investigated in both solution and the solid state by means of XRD, DSC, 1H and 2D NMR and UV-vis spectroscopy. The results showed that the water solubility and thermal stability of pinocembrin were obviously increased in the inclusion complex with cyclodextrins. This satisfactory water solubility and high stability of the pinocembrin/CD complexes will be potentially useful for their application as herbal medicines or healthcare products.

  13. Influence of hydroxyl groups on the biological properties of cationic polymethacrylates as gene vectors.

    PubMed

    Ma, Ming; Li, Feng; Yuan, Zhe-fan; Zhuo, Ren-xi

    2010-07-01

    In this study poly(aminoethyl methacrylate) (PAEMA), poly(3-amino-2-hydroxypropyl methacrylate) (PAHPMA), poly(2-(2-aminoethylamino)ethyl methacrylate) (PAEAEMA) and poly(3-(2-aminoethylamino) 2-hydroxypropyl methacrylate) (PAEAHPMA) were synthesized using atom transfer radical polymerization to evaluate the effect of hydroxyl groups on the relative properties of cationic polymeric gene vectors. The results of heparin displacement assays showed that PAHPMA possessed a stronger binding capacity than PAEMA. PAHPMA/DNA complexes and PAEAHPMA/DNA complexes had lower zeta potentials than those of PAEMA and PAEAEMA. MTT assay results indicated that PAHPMA and PAEAHPMA exhibited obviously lower cytotoxicities than PAEMA and PAEAEMA. Subsequently, in vitro gene transfection studies in 293T cells without serum showed that PAHPMA exhibited a lower transfection efficiency than PAEMA and PAEAHPMA/DNA complexes possessed a similar transfection efficiency to PAEAEMA/DNA complexes. Moreover, PAHPMA and PAEAHPMA retained similar transfection efficiencies in DMEM with 10% serum, but PAEMA and PAEAEMA showed slightly lower transfection efficiencies than in the absence of serum. The reason for these phenomena might be attributed to the introduction of hydroxyl groups into PAHPMA and PAEAHPMA, i.e. the existence of hydroxyl groups might increase the binding capacity to DNA and at the same time decrease the surface charge of the polymer/DNA complexes due to the formation of hydrogen bonds between the polymers and DNA. Therefore, a lower zeta potential and stronger binding ability may result in a lower gene transfection efficiency. This effect of hydroxyl groups decreased with increasing amino group density on the polymer. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Preparation of high toughness nanocomposite hydrogel with UV protection performance and self-healing property

    NASA Astrophysics Data System (ADS)

    He, Xiaoyan; Wang, Meng; Zhang, Caiyun; Liu, Liqin

    2017-07-01

    An ultraviolet shielding hydrogel of P(NaSS-co-MPTC)/TiO2 was prepared by introducing TiO2 nanoparticles (TiO2 NPS) into polyampholyte matrix through photo-initiated radical copolymerization of cationic monomer of 3-(methacrylamide) propyltrimethylammonium chloride (MPTC) and anionic monomer of sodium 4-vinylbenzenesulfonate (NaSS) in the aqueous solution of sodium chloride (NaCl). FTIR, XPS, TEM, XRD, and SEM were used to characterize the morphology and structure of hydrogel of P(NaSS-co-MPTC)/TiO2. The result showed that anatase TiO2 NPS with the size about 15 20 nm were not just acted as ultraviolet shielding agent and general photo-initiator, they also could be crosslinked in polyampholyte matrix by hydrogen bonding between hydroxyl groups on the surface of TiO2 NPS and sulfonate groups on the polymer chains. Based on two kinds of reversible weak bonds of hydrogen bond and ionic bond, the P(NaSS-co-MPTC)/TiO2 hydrogel exhibited excellent mechanical properties and self-healing ability at ambient conditions, which will greatly increase its service life being a UV inhibitor.

  15. Analysis of alternariol and alternariol monomethyl ether in foodstuffs by molecularly imprinted solid-phase extraction and ultra-high-performance liquid chromatography tandem mass spectrometry.

    PubMed

    Rico-Yuste, A; Walravens, J; Urraca, J L; Abou-Hany, R A G; Descalzo, A B; Orellana, G; Rychlik, M; De Saeger, S; Moreno-Bondi, M C

    2018-03-15

    Molecularly imprinted porous polymer microspheres selective to Alternaria mycotoxins, alternariol (AOH) and alternariol monomethyl ether (AME), were synthesized and applied to the extraction of both mycotoxins in food samples. The polymer was prepared using 4-vinylpiridine (VIPY) and methacrylamide (MAM) as functional monomers, ethylene glycol dimethacrylate (EDMA) as cross-linker and 3,8,9-trihydroxy-6H-dibenzo[b,d]pyran-6-one (S2) as AOH surrogate template. A molecularly imprinted solid phase extraction (MISPE) method has been optimized for the selective isolation of the mycotoxins from aqueous samples coupled to HPLC with fluorescence (λ ex =258nm; λ em =440nm) or MS/MS analysis. The MISPE method was validated by UPLC-MS/MS for the determination of AOH and AME in tomato juice and sesame oil based on the European Commission Decision 2002/657/EC. Method performance was satisfactory with recoveries from 92.5% to 106.2% and limits of quantification within the 1.1-2.8µgkg -1 range in both samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Determination of ideal-gas enthalpies of formation for key compounds:

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, W.V.; Chirico, R.D.; Nguyen, A.

    1991-10-01

    The results of a study aimed at improvement of group-contribution methodology for estimation of thermodynamic properties of organic and organosilicon substances are reported. Specific weaknesses where particular group-contribution terms were unknown, or estimated because of lack of experimental data, are addressed by experimental studies of enthalpies of combustion in the condensed phase, vapor-pressure measurements, and differential scanning calorimetric (d.s.c.) heat-capacity measurements. Ideal-gas enthalpies of formation of ({plus minus})-butan-2-ol, tetradecan-1-ol, hexan-1,6-diol, methacrylamide, benzoyl formic acid, naphthalene-2,6-dicarboxylic acid dimethyl ester, and tetraethylsilane are reported. A crystalline-phase enthalpy of formation at 298.15 K was determined for naphthalene-2,6-dicarboxylic acid, which decomposed at 695 Kmore » before melting. The combustion calorimetry of tetraethylsilane used the proven fluorine-additivity methodology. Critical temperature and critical density were determined for tetraethylsilane with differential scanning calorimeter and the critical pressure was derived. Group-additivity parameters useful in the application of group- contribution correlations are derived. 112 refs., 13 figs., 19 tabs.« less

  17. Application and comparison of high performance liquid chromatography and high speed counter-current chromatography in enantioseparation of (±)-2-phenylpropionic acid.

    PubMed

    Tong, Shengqiang; Zheng, Ye; Yan, Jizhong

    2013-03-15

    High performance liquid chromatography (HPLC) and high speed counter-current chromatography (HSCCC) were applied and compared in enantioseparation of 2-phenylpropionic acid (2-PPA) when hydroxypropyl-β-cyclodextrin (HP-β-CD) was used as chiral mobile phase additive. For HPLC, the enantioseparation was achieved on ODS C(18) reverse phase column and the mobile phase was 25 mmol L(-1) HP-β-CD aqueous buffer solution (pH 4.0, adjusted with triethylamine): methanol: glacial acetic acid (85:15:0.5 (v/v/v)). For HSCCC, the two-phase solvent system was composed of n-hexane-ethyl acetate-0.1 mol L(-1) phosphate buffer solution pH2.67 (5:5:10 for isocratic elution and 8:2:10 for recycling elution (v/v/v)) added with 0.1 mol L(-1) HP-β-CD. The key parameters, such as a substitution degree of HP-β-CD, the concentration of HP-β-CD, pH value of the aqueous phase and the temperature were optimized for both separation methods. Using the optimum conditions a complete HSCCC enantioseparation of 40 mg of 2-propylpropionic acid in a recycling elution mode gave 15-18 mg of (+)-2-PPA and (-)-2-PPA enantiomers with 95-98% purity and 85-93% recovery. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Kinetics and mechanisms of crystal growth inhibition of indomethacin by model precipitation inhibitors

    NASA Astrophysics Data System (ADS)

    Patel, Dhaval

    Supersaturating Drug Delivery Systems (SDDS) could enhance oral bioavailability of poorly water soluble drugs (PWSD). Precipitation inhibitors (PIs) in SDDS could maintain supersaturation by inhibiting nucleation, crystal growth, or both. The mechanisms by which these effects are realized are generally unknown. The goal of this dissertation was to explore the mechanisms underpinning the effects of model PIs including hydroxypropyl beta-cyclodextrins (HP-beta-CD), hydroxypropyl methylcellulose (HPMC), and polyvinylpyrrolidone (PVP) on the crystal growth of indomethacin, a model PWSD. At high degrees of supersaturation (S), the crystal growth kinetics of indomethacin was bulk diffusion-controlled, which was attributed to a high energy form deposited on the seed crystals. At lower S, indomethacin growth kinetics was surface integration-controlled. The effect of HP-beta-CD at high S was successfully modeled using the reactive diffusion layer theory. The superior effects of PVP and HPMC as compared to HP-beta-CD at high S were attributed to a change in the rate limiting step from bulk diffusion to surface integration largely due to prevention of the high energy form formation. The effects of PIs at low S were attributed to significant retardation of the surface integration rate, a phenomenon that may reflect the adsorption of PIs onto the growing surface. PVP was selected to further understand the relationship between adsorption and crystal growth inhibition. The Langmuir adsorption isotherm model fit the adsorption isotherms of PVP and N-vinylpyrrolidone well. The affinity and extent of adsorption of PVP were significantly higher than those of N-vinylpyrrolidone, which was attributed to cooperative interactions between PVP and indomethacin. The extent of PVP adsorption on a weight-basis was greater for higher molecular weight PVP but less on a molar-basis indicating an increased percentage of loops and tails for higher molecular weight PVPs. PVP significantly inhibited indomethacin crystal growth at high S as compared to N-vinylpyrrolidone, which was attributed to a change in the growth mechanism resulting in a change in the rate limiting step from bulk diffusion to surface integration. Higher molecular weight PVPs were better inhibitors than lower molecular weight PVPs, which was attributed to a greater crystal growth barrier provided by a thicker adsorption layer.

  19. Influence of the aqueous film coating process on the properties and stability of tablets containing a moisture-labile drug.

    PubMed

    Ruotsalainen, Mirja; Heinämäki, Jyrki; Taipale, Krista; Yliruusi, Jouko

    2003-01-01

    The effects of an aqueous film coating process on the morphology and storage stability of hydroxypropyl methylcellulose-coated tablets containing a moisture-labile model drug (acetylsalicylic acid, ASA) were evaluated using an instrumented side-vented tablet pan coater. Coating parameters studied were inlet air absolute humidity 5 g/m3 and 12 g/m3, spraying air pressure 100 kPa and 500 kPa, pan air temperature 35 degrees C and 55 degrees C, and coating solution flow rate 2.2 g/min and 7.8 g/min. The surface roughness of the coatings was measured with a laser profilometer and the chemical hydrolysis of the model drug ASA with an UV-spectrophotometer. The film-coated tablets were stored at 25 degrees C/60% RH and 40 degrees C/75% RH for three months. The high absolute humidity of the inlet air increased the residual water content and surface roughness of the coated tablets. Using a lower coating solution flow rate, higher spraying air pressure and pan temperature the coatings were smooth and homogeneous. In both ambient and accelerated storage conditions, the roughness of the coatings and the hydrolysis of ASA increased, but this was independent of the film coating process. Uniform and smooth hydroxypropyl methylcellulose coatings can be achieved by improved control of process parameters related to the application of the coating solution and water evaporation of the tablet surface.

  20. Eudragit RS 100 microparticles containing 2-hydroxypropyl-beta-cyclodextrin and glutathione: physicochemical characterization, drug release and transport studies.

    PubMed

    Trapani, Adriana; Laquintana, Valentino; Denora, Nunzio; Lopedota, Angela; Cutrignelli, Annalisa; Franco, Massimo; Trapani, Giuseppe; Liso, Gaetano

    2007-01-01

    The aim of this study was to encapsulate glutathione (GSH) alone or in combination with hydroxypropyl-beta-cyclodextrin (HP-beta-CD) in Eudragit RS 100 microparticles (MPs), and to evaluate these novel delivery systems for oral administration of the considered tripeptide. The MPs were prepared by an O/O emulsion-solvent evaporation method according to a multilevel experimental design involving the volume of liquid paraffin, the HP-beta-CD amount, and the drug/polymer ratio as independent variables. The effects of these parameters on particle size, entrapment efficiency, and drug release were investigated. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) analysis and differential scanning calorimetry (DSC) studies were performed to evaluate possible interactions between GSH and Eudragit RS 100 polymer and to characterize the physical state of drug within the MPs. The release profiles of GSH from MPs were examined in vitro at pH 1.2, 6.8. and 7.4 using the USP III (BioDis) dissolution apparatus. In general, a slow and zero-order release of GSH from MPs at pH 1.2 occurred, while at higher pH values considerable amounts of glutathione disulfide (i.e., GSSG) were observed. The enzymatic stability and the intestinal permeability of some GSH-containing MPs were assessed by using pepsin, alpha-chymotrypsin, gamma-glutamyl-transpeptidase and everted frog intestinal sac methodology, respectively. The results suggest that GSH-loaded Eudragit RS 100 MPs containing HP-beta-CD represent a new sustained GSH delivery system useful for the oral administration of the examined tripeptide.

  1. Computational Modeling of Hydroxypropyl-Methylcellulose Acetate Succinate (HPMCAS) and Phenytoin Interactions: A Systematic Coarse-Graining Approach.

    PubMed

    Huang, Wenjun; Mandal, Taraknath; Larson, Ronald G

    2017-03-06

    We present coarse-grained (CG) force fields for hydroxypropyl-methylcellulose acetate succinate (HPMCAS) polymers and the drug molecule phenytoin using a bead/stiff spring model, with each bead representing a HPMCAS monomer or monomer side group (hydroxypropyl acetyl, acetyl, or succinyl) or a single phenytoin ring. We obtain the bonded and nonbonded interaction parameters in our CG model using the RDFs from atomistic simulations of short HPMCAS model oligomers (20-mer) and atomistic simulations of phenytoin molecules. The nonbonded interactions are modeled using a LJ 12-6 potential, with separate parameters for each monomer substitution type, which allows heterogeneous polymer chains to be modeled. The cross interaction terms between the polymer and phenytoin CG beads are obtained explicitly from atomistic level polymer-phenytoin simulations, rather than from mixing rules. We study the solvation behavior of 50-mer and 100-mer polymer chains and find chain-length-dependent aggregation. We also compare the phenytoin CG force field developed in this work with that in Mandal et al. (Soft Matter, 2016, 12, 8246-8255) and conclude both are suitable for studying the interaction between polymer and drug in solvated solid dispersion formulation, in the absence of drug crystallization. Finally, we present simulations of heterogeneous HPMCAS model polymer chains and phenytoin molecules. Polymer and drug form a complex in a short period of simulation time due to strong intermolecular interactions. Moreover, the protonated polymer chains are more effective than deprotonated ones in inhibiting the drug aggregation in the polymer-drug complex.

  2. Universal Coatings Based on Zwitterionic-Dopamine Copolymer Microgels.

    PubMed

    Vatankhah-Varnosfaderani, Mohammad; Hu, Xiaobo; Li, Qiaoxi; Adelnia, Hossein; Ina, Maria; Sheiko, Sergei S

    2018-06-05

    Multifunctional coatings that adhere to chemically distinct substrates are vital in many industries, including automotive, aerospace, shipbuilding, construction, petrochemical, biomedical, and pharmaceutical. We design well-defined, nearly monodisperse microgels that integrate hydrophobic dopamine methacrylamide monomers and hydrophilic zwitterionic monomers. The dopamine functionalities operate as both intraparticle cross-linkers and interfacial binders, respectively providing mechanical strength of the coatings and their strong adhesion to different substrates. In tandem, the zwitterionic moieties enable surface hydration to empower antifouling and antifogging properties. Drop-casting of microgel suspensions in ambient as well as humid environments facilitates rapid film formation and tunable roughness through regulation of cross-linking density and deposition conditions.

  3. Anaesthetic efficacy of bupivacaine 2-hydroxypropyl-β-cyclodextrin for dental anaesthesia after inferior alveolar nerve block in rats.

    PubMed

    Serpe, L; Franz-Montan, M; Santos, C P dos; Silva, C B da; Nolasco, F P; Caldas, C S; Volpato, M C; Paula, E de; Groppo, F C

    2014-05-01

    Bupivacaine is a long-acting local anaesthetic that is widely used in medicine and dentistry. The duration and intensity of its sensory blockade in animal models is increased by its inclusion in complexes with cyclodextrins. The aim of the present study was to evaluate the anaesthetic efficacy of bupivacaine 2-hydroxypropyl-β-cyclodextrin (HPβCD) inclusion complex for dental anaesthesia after inferior alveolar nerve block in rats. Thirty rats were each given an injection close to the mandibular foramen of 0.2ml of one of the following formulations: 0.5% bupivacaine alone; 0.5% bupivacaine with 1:200,000 epinephrine; and 0.5% bupivacaine-HPβCD inclusion complex (bupivacaine-HPβCD). The other sides were used as controls, with either 0.9% saline or anaesthetic-free HPβCD solution being injected. The onset, success, and duration of pulpal anaesthesia were assessed by electrical stimulation ("pulp tester") on inferior molars. Results were analysed using ANOVA (Tukey), log rank, and chi square tests (α=5%). There were no differences among the formulations in onset of anaesthesia (p=0.59) or between the bupivacaine plus epinephrine and bupivacaine plus HPβCD in duration of anaesthesia, but bupivacaine plus epinephrine gave significantly higher values than bupivacaine alone (p=0.007). Bupivacaine plus epinephrine was a better anaesthetic than bupivacaine alone (p=0.02), while Bupi-HPβCD gave intermediate results, and therefore did not differ significantly from the other 2 groups (p=0.18 with bupivacaine alone; and p=0.44 with bupivacaine plus epinephrine). The bupivacaine-HPβCD complex showed similar anaesthetic properties to those of bupivacaine with epinephrine. Copyright © 2014 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. Effect of hydroxypropyl-beta-cyclodextrin on the degradation of pentachlorophenol by potassium monopersulfate catalyzed with iron(III)-porphyrin complex.

    PubMed

    Fukushima, Masami; Tatsumi, Kenji

    2005-12-01

    A novel biomimetic catalytic system containing a supramolecular complex between iron(III)-tetrakis(p-sulfonatophenyl)porphyrin [Fe(III)-TPPS] and hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was examined for the potassium monopersulfate catalyzed oxidation of pentachlorophenol (PCP). In the absence of HP-beta-CD, the percentage of PCP disappearance and the numbers of chlorine atoms released from PCP increased to 50% and 1.5 for a 1-day reaction period, respectively. However, in the presence of HP-beta-CD, the PCP completely disappeared and the number of chlorine atoms from PCP was increased to 3.1. o-Tetrachloroquinone, 2- and 4-hydroxyl-nonachlorodiphenyl ethers, and octachlorodibenzo-p-dioxin were detected among the oxidation products. In the absence of HP-beta-CD, the percentage of PCP conversion to oxidation products increased and then reached plateau. In the presence of HP-beta-CD, the amount of oxidation products produced initially increased for the first 10 min and thereafter decreased gradually. These results suggest that the addition of HP-beta-CD results in the further degradation of oxidation products. In addition, the mineralization of PCP to CO2 was investigated using 14C6-labeled PCP. After a 1-day reaction period, 24% of the 14C6-labeled PCP was converted to 14CO2 in the presence of HP-beta-CD, although significant 14CO2 generation was not observed in its absence. The effect of HP-beta-CD on the facilitation of PCP degradation can be attributed to the fact that the self-oxidation of Fe(III)-TPPS is prevented by the formation of a stable supramolecular complex between HP-beta-CD and Fe(III)-TPPS.

  5. Effects of extensional rates on characteristic scales of two-dimensional turbulence in polymer solutions

    NASA Astrophysics Data System (ADS)

    Hidema, R.

    2014-08-01

    In order to study the effects of extensional viscosities on turbulent drag reduction, experimental studies using two-dimensional turbulence have been made. Anisotropic structures and variations of energy transfer induced by polymers are considered. Polyethyleneoxide and hydroxypropyl cellulose having different flexibility, which is due to different characteristics of extensional viscosity, are added to 2D turbulence. Variations of the turbulence were visualized by interference patterns of 2D flow, and were analysed by an image processing. The effects of polymers on turbulence in the streamwise and normal directions were also analysed by 2D Fourier transform. In addition, characteristic scales in 2D turbulence were analysed by wavelet transform.

  6. HPMC reinforced with different cellulose nanoparticles

    USDA-ARS?s Scientific Manuscript database

    Synthetic polymers, made almost entirely from chemicals derived from crude oil, are widely used as primary packaging in the food industry causing environmental issues. Hydroxypropyl Methyl Cellulose (HPMC) can be used as bio-based packaging material. In this study, the application of nanotechnology ...

  7. Matrix elimination method for the determination of precious metals in ores using electrothermal atomic absorption spectrometry.

    PubMed

    Salih, Bekir; Celikbiçak, Omür; Döker, Serhat; Doğan, Mehmet

    2007-03-28

    Poly(N-(hydroxymethyl)methacrylamide)-1-allyl-2-thiourea) hydrogels, poly(NHMMA-ATU), were synthesized by gamma radiation using (60)Co gamma source in the ternary mixture of NHMMA-ATU-H(2)O. These hydrogels were used for the specific gold, silver, platinum and palladium recovery, pre-concentration and matrix elimination from the solutions containing trace amounts of precious metal ions. Elimination of inorganic matrices such as different transition and heavy metal ions, and anions was performed by adjusting the solution pH to 0.5 that was the selective adsorption pH of the precious metal ions. Desorption of the precious metal ions was performed by using 0.8 M thiourea in 3M HCl as the most efficient desorbing agent with recovery values more than 95%. In the desorption medium, thiourea effect on the atomic signal was eliminated by selecting proper pyrolysis and atomization temperatures for all precious metal ions. Precision and the accuracy of the results were improved in the graphite furnace-atomic absorption spectrometer (GFAAS) measurements by applying the developed matrix elimination method performing the adsorption at pH 0.5. Pre-concentration factors of the studied precious metal ions were found to be at least 1000-fold. Detection limits of the precious metal ions were found to be less than 10 ng L(-1) of the all studied precious metal ions by using the proposed pre-concentration method. Determination of trace levels of the precious metals in the sea-water, anode slime, geological samples and photographic fixer solutions were performed using GFAAS clearly after applying the adsorption-desorption cycle onto the poly(NHMMA-UTU) hydrogels.

  8. Influence of hydroxypropyl-beta-cyclodextrin on the transdermal permeation and skin accumulation of oxybenzone.

    PubMed

    Felton, Linda A; Wiley, Cody J; Godwin, Donald A

    2002-10-01

    The objective of the present study was to determine the effects of hydroxypropyl-beta-cyclodextrin (HPCD) concentration on the transdermal permeation and skin accumulation of a model ultraviolet (UV) absorber, oxybenzone. The concentration of oxybenzone was held constant at 2.67 mg/mL for all formulations, while the HPCD concentrations varied from 0 to 20% (w/w). Complexation of oxybenzone by HPCD was demonstrated by differential scanning calorimetry. A modified Franz cell apparatus was used in the transdermal experiments, with aliquots of the receptor fluid assayed for oxybenzone by high-performance liquid chromatography. From the permeation data, flux of the drug was calculated. Skins were removed from the diffusion cells at specified time points over a 24-hr period and the oxybenzone content in the skin determined. The aqueous solubility of oxybenzone increased linearly with increasing HPCD concentration, following a Higuchi AL-type complexation. The stability constant of the reaction was calculated from the phase-solubility diagram and found to be 2047 M-1. As the concentration of HPCD was increased from 0 to 10%, transdermal permeation and skin accumulation of oxybenzone increased. Maximum flux occurred at 10% HPCD, where sufficient cyclodextrin was added to completely solubilize all oxybenzone. When the concentration of HPCD was increased to 20%, both transdermal permeation and skin accumulation decreased. These data suggest the formation of a drug reservoir on the surface of the skin.

  9. Practical application to time indicator of a novel white film formed by interaction of calcium salts with hydroxypropyl methylcellulose.

    PubMed

    Shiraishi, Sumihiro; Sakata, Yukoh; Yamaguchi, Hiroyuki

    2010-01-04

    We have found that a cast film forms a white film when an aqueous solution comprising hydroxypropyl methylcellulose (HPMC) and calcium salts such as calcium lactate pentahydrate (CLP) and calcium chloride (CaCl(2)) is used. In contrast, the obtained white film was transformed into a transparent film by the addition of purified water. The transformation time for the change from the white film to the transparent film was dependent on film thickness. The relationship between the transformation time and the film thickness was significantly correlated, and it was found that the white film could be adaptable as time indicator. The formation of a white film comprising HPMC and calcium salts was strongly dependent on temperature conditions. The objective of the present study is to investigate the mechanism of the formation of this white film because of the interaction between HPMC and calcium salts. The DSC and XRPD results indicate that the calcium salts affect the HPMC polymer phase in the cast film comprising HPMC and calcium salts. By carrying out attenuated total reflection Fourier transform infrared (ATR FT-IR) analysis, we found that the white film could be formed by the calcium salts affecting the region associated with the C-O-C, C-O, and CH(3) stretching of the HPMC polymer phase.

  10. Influence of different types of low substituted hydroxypropyl cellulose on tableting, disintegration, and floating behaviour of floating drug delivery systems

    PubMed Central

    Diós, Péter; Pernecker, Tivadar; Nagy, Sándor; Pál, Szilárd; Dévay, Attila

    2014-01-01

    The object of the present study is to evaluate the effect of application of low-substituted hydroxypropyl cellulose (L-HPC) 11 and B1 as excipients promoting floating in gastroretentive tablets. Directly compressed tablets were formed based on experimental design. Face-centred central composite design was applied with two factors and 3 levels, where amount of sodium alginate (X1) and L-HPC (X2) were the numerical factors. Applied types of L-HPCs and their 1:1 mixture were included in a categorical factor (X3). Studied parameters were floating lag time, floating time, floating force, swelling behaviour of tablets and dissolution of paracetamol, which was used as a model active substance. Due to their physical character, L-HPCs had different water uptake and flowability. Lower flowability and lower water uptake was observed after 60 min at L-HPC 11 compared to L-HPC B1. Shorter floating times were detected at L-HPC 11 and L-HPC mixtures with 0.5% content of sodium alginate, whereas alginate was the only significant factor. Evaluating results of drug release and swelling studies on floating tablets revealed correlation, which can serve to help to understand the mechanism of action of L-HPCs in the field development of gastroretentive dosage forms. PMID:26702261

  11. Development and physical characterization of polymer-fish oil bigel (hydrogel/oleogel) system as a transdermal drug delivery vehicle.

    PubMed

    Rehman, Khurram; Mohd Amin, Mohd Cairul Iqbal; Zulfakar, Mohd Hanif

    2014-01-01

    Polymer-Fish oil bigel (hydrogel/oleogel colloidal mixture) was developed by using fish oil and natural (sodium alginate) and synthetic (hydroxypropyl methylcellulose) polymer for pharmaceutical purposes. The bigels were closely monitored and thermal, rheological and mechanical properties were compared with the conventional hydrogels for their potential use as an effective transdermal drug delivery vehicle. Stability of the fish oil fatty acids (especially eicosapentanoic acid, EPA and docosahexanoic acid, DHA) was determined by gas chromatography and the drug content (imiquimod) was assessed with liquid chromatography. Furthermore, in vitro permeation study was conducted to determine the capability of the fish oil-bigels as transdermal drug delivery vehicle. The bigels showed pseudoplastic rheological features, with excellent mechanical properties (adhesiveness, peak stress and hardness), which indicated their excellent spreadability for application on the skin. Bigels prepared with mixture of sodium alginate and fish oil (SB1 and SB2), and the bigels prepared with the mixture of hydroxypropyl methylcellulose and fish oil (HB1-HB3) showed high cumulative permeation and drug flux compared to hydrogels. Addition of fish oil proved to be beneficial in increasing the drug permeation and the results were statistically significant (p < 0.05, one-way Anova, SPSS 20.0). Thus, it can be concluded that bigel formulations could be used as an effective topical and transdermal drug delivery vehicle for pharmaceutical purposes.

  12. Host-guest complexes of 2-hydroxypropyl-β-cyclodextrin/β-cyclodextrin and nifedipine: 1H NMR, molecular modeling, and dissolution studies

    NASA Astrophysics Data System (ADS)

    de Araújo, Márcia Valéria Gaspar; Vieira, João Victor Francisco; da Silva, Caroline W. P.; Barison, Andersson; Andrade, George Ricardo Santana; da Costa, Nivan Bezerra; Barboza, Fernanda Malaquias; Nadal, Jessica Mendes; Novatski, Andressa; Farago, Paulo Vitor; Zawadzki, Sônia Faria

    2017-12-01

    Nifedipine (NIF) is a hydrophobic drug widely used for treating cardiovascular diseases. This calcium channel blocker can present a higher apparent solubility by its inclusion into different cyclodextrins (CDs) as host-guest complexes. This paper focused on the structural investigation and dissolution behavior of inclusion complexes prepared with 2-hydroxypropyl-β-cyclodextrin (HPβCD) or β-cyclodextrin (βCD) and NIF. Drug amorphization was observed for HPβCD/NIF and βCD/NIF inclusion complexes by X-ray diffractometry (XRD). The sharp endothermic peak of NIF was not observed for these both host-guest complexes by differential scanning calorimetry (DSC). These results of XRD and DSC provide evidences of complexation between drug and the investigated CDs. 1H and saturation transfer difference nuclear magnetic resonance studies revealed the enhancement in the signal at 2.27 ppm for HPβCD/NIF and βCD/NIF inclusion complexes that corresponded to the methyl groups of NIF from the non-aromatic ring. This result suggested that non-aromatic ring of NIF was inserted into HPβCD and βCD cavities. Considering the mathematical simulations, it was observed that the inclusion process can occur in the both NH-in or NH-out forms. However, since it was used aqueous medium, it is possible to indicate that the obtained host-guest complexes HPβCD/NIF and βCD/NIF are in NH-in form which corresponded to the previous results obtained by 1H NMR experiments. Dissolution assays demonstrated that NIF inclusion complexes improved the drug release nevertheless without changing its biexponential release behavior. These host-guest complexes can be further used as feasible NIF carriers in solid dosage forms.

  13. Optimization and characterization of gastroretentive floating drug delivery system using Box-Behnken design.

    PubMed

    Rapolu, Kishore; Sanka, Krishna; Vemula, Praveen Kumar; Aatipamula, Vinaydas; Mohd, Abdul Bari; Diwan, Prakash V

    2013-12-01

    One among many strategies to prolong gastric residence time and improve local effect of the metronidazole in stomach to eradicate Helicobacter pylori in the treatment of peptic ulcer was floating drug delivery system particularly effervescent gastroretentive tablets. The objective of this study was to prepare and evaluate, effervescent floating drug delivery system of a model drug, metronidazole. Effervescent floating drug delivery tablets were prepared by wet granulation method. A three-factor, three levels Box-Behnken design was adopted for the optimization. The selected independent variables were amount of hydroxypropyl methylcellulose K 15M (X1), sodium carboxy methylcellulose (X2) and NaHCO3 (X3). The dependent variables were floating lag time (YFLT), cumulative percentage of metronidazole released at 6th h (Y6) and cumulative percentage of metronidazole released at 12th h (Y12). Physical properties, drug content, in vitro floating lag time, total floating time and drug release behavior were assessed. YFLT range was found to be from 1.02 to 12.07 min. The ranges of other responses, Y6 and Y12 were 25.72 ± 2.85 to 77.14 ± 3.42 % and 65.47 ± 1.25 to 99.65 ± 2.28 %, respectively. Stability studies revealed that no significant change in in vitro floating lag time, total floating time and drug release behavior before and after storage. It can be concluded that a combination of hydroxypropyl methylcellulose K 15M, sodium carboxy methylcellulose and NaHCO3 can be used to increase the gastric residence time of the dosage form to improve local effect of metronidazole.

  14. Collaborative Development of 2-Hydroxypropyl-β-Cyclodextrin for the Treatment of Niemann-Pick Type C1 Disease

    PubMed Central

    Ottinger, Elizabeth A.; Kao, Mark L.; Carrillo-Carrasco, Nuria; Yanjanin, Nicole; Shankar, Roopa Kanakatti; Janssen, Marjo; Brewster, Marcus; Scott, Ilona; Xu, Xin; Cradock, Jim; Terse, Pramod; Dehdashti, Seameen; Marugan, Juan; Zheng, Wei; Portilla, Lili; Hubbs, Alan; Pavan, William J.; Heiss, John; Vite, Charles H.; Walkley, Steven U.; Ory, Daniel S.; Silber, Steven A.; Porter, Forbes D.; Austin, Christopher P.; McKew, John C.

    2014-01-01

    In 2010, the National Institutes of Health (NIH) established the Therapeutics for Rare and Neglected Diseases (TRND) program within the National Center for Advancing Translational Science (NCATS), which was created to stimulate drug discovery and development for rare and neglected tropical diseases through a collaborative model between the NIH, academic scientists, nonprofit organizations, and pharmaceutical and biotechnology companies. This paper describes one of the first TRND programs, the development of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) for the treatment of Niemann-Pick disease type C1 (NPC1). NPC is a neurodegenerative, autosomal recessive rare disease caused by a mutation in either the NPC1 (about 95% of cases) or the NPC2 gene (about 5% of cases). These mutations affect the intracellular trafficking of cholesterol and other lipids, which leads to a progressive accumulation of unesterified cholesterol and glycosphingolipids in the CNS and visceral organs. Affected individuals typically exhibit ataxia, swallowing problems, seizures, and progressive impairment of motor and intellectual function in early childhood, and usually die in adolescence. There is no disease modifying therapy currently approved for NPC1 in the US. A collaborative drug development program has been established between TRND, public and private partners that has completed the pre-clinical development of HP-β-CD through IND filing for the current Phase I clinical trial that is underway. Here we discuss how this collaborative effort helped to overcome scientific, clinical and financial challenges facing the development of new drug treatments for rare and neglected diseases, and how it will incentivize the commercialization of HP-β-CD for the benefit of the NPC patient community. PMID:24283970

  15. Hydroxypropyl-β-cyclodextrin for Delivery of Baicalin via Inclusion Complexation by Supercritical Fluid Encapsulation.

    PubMed

    Li, Ying; He, Zhen-Dan; Zheng, Qian-En; Hu, Chengshen; Lai, Wing-Fu

    2018-05-14

    Over the years, various methods have been developed to enhance the solubility of insoluble drugs; however, most of these methods are time-consuming and labor intensive or involve the use of toxic materials. A method that can safely and effectively enhance the solubility of insoluble drugs is lacking. This study adopted baicalin as an insoluble drug model, and used hydroxypropyl-β-cyclodextrin for the delivery of baicalin via the inclusion complexation by supercritical fluid encapsulation. Different parameters for the complex preparation as well as the physicochemical properties of the complex have been investigated. Our results showed that when compared to the conventional solution mixing approach, supercritical fluid encapsulation enables a more precise control of the properties of the complex, and gives higher loading and encapsulation efficiency. It is anticipated that our reported method can be useful in enhancing the preparation efficiency of inclusion complexes, and can expand the application potential of insoluble herbal ingredients in treatment development and pharmaceutical formulation.

  16. Use of hydroxypropyl-β-cyclodextrin/polyethylene glycol 400, modified Fe3O4 nanoparticles for congo red removal.

    PubMed

    Yu, Lan; Xue, Weihua; Cui, Lei; Xing, Wen; Cao, Xinli; Li, Hongyu

    2014-03-01

    Fe3O4 nanoparticles were modified with Hydroxypropyl-β-cyclodextrin (HP-β-CD) and Polyethylene glycol 400 (PEG400) by a facile one-pot homogeneous precipitation method, and were used as a novel nano-adsorbent for the removal of congo red (CR) from aqueous solutions. The polymer-modified composites were characterized by FTIR, TEM, TGA, XRD and VSM, and showed excellent adsorption efficiency for CR. The value of the maximum adsorption capacity calculated according to the Langmuir isotherm model were 1.895g/g, which are much high and about 19 times that of Fe3O4 nanoparticles. Desorption study further indicates the good regeneration ability of the nanocomposites. The results suggest that the HP-β-CD/PEG400-modified Fe3O4 nanoparticles is a promising adsorbent for CR removal from aqueous solutions, and it is easily recycled owing to its large specific surface area and unique magnetic responsiveness. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  17. Swelling, erosion and drug release characteristics of salbutamol sulfate from hydroxypropyl methylcellulose-based matrix tablets.

    PubMed

    Chaibva, Faith A; Khamanga, Sandile M M; Walker, Roderick B

    2010-12-01

    Hydrophilic matrix formulations are important and simple technologies that are used to manufacture sustained release dosage forms. Hydroxypropyl methylcellulose-based matrix tablets, with and without additives, were manufactured to investigate the rate of hydration, rate of erosion, and rate and mechanism of drug release. Scanning electron microscopy was used to assess changes in the microstructure of the tablets during drug release testing and whether these changes could be related to the rate of drug release from the formulations. The results revealed that the rate of hydration and erosion was dependent on the polymer combination(s) used, which in turn affected the rate and mechanism of drug release from these formulations. It was also apparent that changes in the microstructure of matrix tablets could be related to the different rates of drug release that were observed from the test formulations. The use of scanning electron microscopy provides useful information to further understand drug release mechanisms from matrix tablets.

  18. Efficacy of 2-Hydroxypropyl-β-cyclodextrin in Niemann-Pick Disease Type C Model Mice and Its Pharmacokinetic Analysis in a Patient with the Disease.

    PubMed

    Tanaka, Yuta; Yamada, Yusei; Ishitsuka, Yoichi; Matsuo, Muneaki; Shiraishi, Koki; Wada, Koki; Uchio, Yushiro; Kondo, Yuki; Takeo, Toru; Nakagata, Naomi; Higashi, Taishi; Motoyama, Keiichi; Arima, Hidetoshi; Mochinaga, Sakiko; Higaki, Katsumi; Ohno, Kousaku; Irie, Tetsumi

    2015-01-01

    Niemann-Pick type C disease (NPC), an autosomal recessive lysosomal storage disorder, is an inherited disease characterized by the accumulation of intracellular unesterified cholesterol. A solubilizing agent of lipophilic compounds, 2-hydroxypropyl-β-cyclodextrin (HPBCD), is an attractive drug candidate against NPC disease. However, establishment of the optimum dosage of HPBCD remains to be determined. In this study, we evaluated the effective dosage of HPBCD in NPC model (Npc1(-/-)) mice, and determined serum HPBCD concentrations. Subcutaneous injection of 1000-4000 mg/kg HPBCD improved the lifespan of Npc1(-/-) mice. In addition, liver injury and cholesterol sequestration were significantly prevented by 4000 mg/kg HPBCD in Npc1(-/-) mice. Serum HPBCD concentrations, when treated at the effective dosages (1000-4000 mg/kg), were approximately 1200-2500 µg/mL at 0.5 h after subcutaneous injection, and blood HPBCD concentrations were immediately eliminated in Npc1(-/-) mice. Furthermore, we examined serum HPBCD concentrations when treated at 40000 mg (approximately 2500 mg/kg) in a patient with NPC. We observed that the effective concentration in the in vivo study using Npc1(-/-) mice was similar to that in the patient. In the patient, systemic clearance and the volume of distribution of HPBCD were in accordance with the glomerular filtration rate and extracellular fluid volume, respectively. These results could provide useful information for developing the optimal dosage regimen for HPBCD therapy when administered intravenously to NPC patients.

  19. [Effect of absorption enhancers on nasal ginsenoside Rg1 delivery and its nasal ciliotoxicity].

    PubMed

    Chen, Xin-mei; Zhu, Jia-bi; Sun, Wei-dong; Zhang, Li-jian

    2006-02-01

    The enhancing activity and safety of several absorption enhancers were evaluated as potential nasal absorption enhancers to increase intranasal absorption of ginsenoside Rg1. Nasal circulatory perfusion test in vivo had been employed to investigate the effect of absorption enhancers for nasal mucosa absorption of ginsenoside Rgl in rats. The safety of the absorption enhancers were evaluated by testing cilia movement of the in situ toad palate model, the hemolysis of erythrocyte membrane of the rabbit, leaching of protein and LDH from the mice nasal mucosa and the effect on cilia structural and specific cellular changes of nasal mucosa. Absorption enhancers were necessary to facilitate ginsenoside Rg1 absorption by nasal mucosa. Among the absorption enhancers 1% sodium deoxycholate had great effect to facilite ginsenoside Rgl absorption by nasal mucosa; 1% dipotassium glycyrrhizinate and 1% azone had moderate effect to facilitate ginsenoside Rg1 absorption by nasal mucosa; 1% Tween-80, 2% beta-cyclodextrin, 0.5% borneol (dissolved in paraffin liquid), 0.5% chitosan, 5% hydroxypropyl-beta-cyclodextrin and 0.1% EDTA had low effect to facilitate ginsenoside Rgl absorption by nasal mucosa. 1% sodium deoxycholate, 1% azone and 1% dipotassium glycyrrhizinate had serious nasal toxicity; 1% Tween-80, 2% beta-cyclodextrin, 5% hydroxypropyl-beta-cyclodextrin had moderate nasal toxicity; 0.5% borneol (dissolved in paraffin liquid), 0.5% chitosan and 0.1% EDTA have little nasal toxicity. 0.5% borneol and 0.5% chitosan were the promising candidates having a good balance between enhancing activity and safety for nasal ginsenoside Rg1 delivery.

  20. A dual sensor for real-time monitoring of glucose and oxygen

    PubMed Central

    Zhang, Liqiang; Su, Fengyu; Buizer, Sean; Lu, Hongguang; Gao, Weimin; Tian, Yanqing; Meldrum, Deirdre

    2013-01-01

    A dual glucose and oxygen sensor in a polymer format was developed. The dual sensor composed of a blue emitter as the glucose probe, a red emitter as an oxygen probe, and a yellow emitter as a built-in reference probe which does not respond to either glucose or oxygen. All the three probes were chemically immobilized in a polyacrylamide-based matrix. Therefore, the dual sensor possesses three well separated emission colors and ratiometric approach is applicable for analysis of the glucose and oxygen concentration at biological conditions. The sensor was applied for real-time monitoring of glucose and oxygen consumption of bacterial cells, Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis), and mammalian cells of mouse macrophage J774 and human cervical cancer HeLa cell lines. On the other hand, in order to achieve satisfactory sensing performance for glucose, compositions of the matrices among poly(2-hydroxyethyl methacrylate), polyacrylamide, and poly(6-aminohexyl methacrylamide) which is a linker polymer for grafting the glucose probe, were optimized. PMID:24090834

  1. Photopolymerization and Characterization of Dental Resin Cement Containing Nano Material.

    PubMed

    Kim, Duck Hyun; Sung, A-Young

    2018-09-01

    In this study, to manufacture dental resin cement, Bis-GMA was used as a major ingredient, TEGDMA was used as a diluent, and camphoroquinone was used as a photoinitiator. Nanodiamonds were added to increase the bonding strength. After mixing Bis-GMA, HPMA, TEGDMA, BHT, BPO, and camphoroquinone (photoinitiator), nanodiamonds were added at a ratio of 2-3%, and polymerization was done after stirring for 24 hours. Photopolymerization was also carried out with Dentmate (LWDEX WL-090) by irradiation at a 440-480 nm wavelength and at about 1000 mW/cm2 intensity for about 40 seconds. As a result of the SEM measurement for the surface analysis, the nanodiamonds were found to have been evenly distributed at 80∼100 nm sizes. The physical properties of each combination were also evaluated to analyze the functionality of the prepared resin cement and as a result, the cultured cells (L929) in all the combinations (Ref., ND-1, and ND-2) had no cytotoxicity. Also the mean shear bond strengths of the control group using commercial resin cement was the range of 5.87∼6.72 MPa. And also, the mean flexural strength was about 94 MPa. These results indicate that the resin cement that was manufactured in this study will have no clinical problem when commercialized for dental practice.

  2. Single Additive Enables 3D Printing of Highly Loaded Iron Oxide Suspensions.

    PubMed

    Hodaei, Amin; Akhlaghi, Omid; Khani, Navid; Aytas, Tunahan; Sezer, Dilek; Tatli, Buse; Menceloglu, Yusuf Z; Koc, Bahattin; Akbulut, Ozge

    2018-03-21

    A single additive, a grafted copolymer, is designed to ensure the stability of suspensions of highly loaded iron oxide nanoparticles (IOPs) and to facilitate three-dimensional (3D) printing of these suspensions in the filament form. This poly (ethylene glycol)-grafted copolymer of N-[3(dimethylamino)propyl]methacrylamide and acrylic acid harnesses both electrostatic and steric repulsion to realize an optimum formulation for 3D printing. When used at 1.15 wt % (by the weight of IOPs), the suspension attains ∼81 wt % solid loading-96% of the theoretical limit as calculated by the Krieger-Dougherty equation. Rectangular, thick-walled toroidal, and thin-walled toroidal magnetic cores and a porous lattice structure are fabricated to demonstrate the utilization of this suspension as an ink for 3D printing. The electrical and magnetic properties of the magnetic cores are characterized through impedance spectroscopy (IS) and vibrating sample magnetometry (VSM), respectively. The IS indicates the possibility of utilizing wire-wound 3D printed cores as the inductive coils. The VSM verifies that the magnetic properties of IOPs before and after the ink formulation are kept almost unchanged because of the low dosage of the additive. This particle-targeted approach for the formulation of 3D printing inks allows embodiment of a fully aqueous system with utmost target material content.

  3. Encapsulation of boswellic acid with β- and hydroxypropyl-β-cyclodextrin: Synthesis, characterization, in vitro drug release and molecular modelling studies

    NASA Astrophysics Data System (ADS)

    Tambe, Amruta; Pandita, Nancy; Kharkar, Prashant; Sahu, Niteshkumar

    2018-02-01

    Boswellic acids (BAs) are a group of pentacyclic triterpenes present in gum-resin of Boswellia serrata. They are well known for their anti-inflammatory, hypolipidemic, immunomodulatory and anti-tumor activity, but they have poor aqueous solubility and limited bioavailability. In order to enhance their aqueous solubility, inclusion complexes of BAs with β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) were synthesized and their drug release profiles were studied. Molecular associations of β-CD and HP-β-CD with BAs were investigated by phase solubility studies. The stability constants were found to be 380.2 and 145.9 M-1 for BA: β-CD and BA: HP-β-CD inclusion complexes, respectively with AN- type curve. BA: β-CD and BA: HP-β-CD inclusion complexes were synthesized using kneading (KN), co-precipitation (CP) and solvent evaporation (SE) methods in 1:1 as well as 1:2 ratios. Further these were characterized by Fourier transform infrared (FTIR) spectrophotometry, Powder X-ray Diffraction (P-XRD) and Differential scanning calorimetric (DSC) analysis. FTIR analysis showed shifting of frequencies in complexes as compared to CDs and BAs. P-XRD data obtained for BA: β-CD complexes synthesized by CP and SE methods showed amorphous pattern. Also, DSC analysis showed a change in thermal behaviour for synthesized complexes. In vitro drug release studies of BA: β-CD complexes showed enhanced release with 1:2 complexes than 1:1 complexes at pH 1.2 and pH 6.8. Similarly, drug release enhancement was observed more with BA: HP-β-CD complexes in 1:2 ratio than 1:1. To understand the interaction of BAs with CD cavity molecular modelling studies were performed which favored 1:2 complex formation over 1:1 complexes. The study thus highlights that CDs can be used for solubility and dissolution enhancement of BAs.

  4. Amphiphilically modified chitosan cationic nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    You, Jie; Li, Wenfeng; Yu, Chang; Zhao, Chengguang; Jin, Langping; Zhou, Yili; Xu, Xuzhong; Dong, Siyang; Lu, Xincheng; Wang, Ouchen

    2013-12-01

    A series of amphiphilic N-(2-hydroxy)propyl-3-trimethylammonium-chitosan-cholic acid (HPTA-CHI-CA) polymers were synthesized by grafting cholic acid (CA) and glycidyltrimethylammonium chloride onto chitosan. The self-assembly behavior of HPTA-CHI-CA was studied by fluorescence technique. The polymers were able to self-assemble into NPs in phosphate buffered saline with a critical aggregation concentration (CAC) in the range of 66-26 mg/L and the CAC decreased with the increasing of the degree of substitution (DS) of CA. The size of cationic HPTA-CHI-CA NPs ranges from 170 to 220 nm (PDI < 0.2). It was found that doxorubicin (DOX) could be encapsulated into HPTA-CHI-CA NPs based on self-assembly. The drug loading content and efficiency varies depending on the DS of CA and feeding ratio of DOX to polymer. In vitro release studies suggested that DOX released slowly from HPTA-CHI-CA NPs without any burst initial release. Besides, the confocal microscopic measurements indicated that DOX-HPTA-CHI-CA NPs could easily be uptaken by breast cancer (MCF-7) cells and release DOX in cytoplasm. Anti-tumor efficacy results showed that DOX-HPTA-CHI-CA NPs have a significant activity of inhibition MCF-7 cells growth. These results suggest cationic HPTA-CHI-CA may have great potential for anticancer drug delivery.

  5. Defining an optimal surface chemistry for pluripotent stem cell culture in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Zonca, Michael R., Jr.

    Surface chemistry is critical for growing pluripotent stem cells in an undifferentiated state. There is great potential to engineer the surface chemistry at the nanoscale level to regulate stem cell adhesion. However, the challenge is to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a high-throughput polymerization and screening platform, a chemically defined, synthetic polymer grafted coating that supports strong attachment and high expansion capacity of pluripotent stem cells has been discovered using mouse embryonic stem (ES) cells as a model system. This optimal substrate, N-[3-(Dimethylamino)propyl] methacrylamide (DMAPMA) that is grafted on 2D synthetic poly(ether sulfone) (PES) membrane, sustains the self-renewal of ES cells (up to 7 passages). DMAPMA supports cell attachment of ES cells through integrin beta1 in a RGD-independent manner and is similar to another recently reported polymer surface. Next, DMAPMA has been able to be transferred to 3D by grafting to synthetic, polymeric, PES fibrous matrices through both photo-induced and plasma-induced polymerization. These 3D modified fibers exhibited higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D PES membranes. Our results indicated that desirable surfaces in 2D can be scaled to 3D and that both surface chemistry and structural dimension strongly influence the growth and differentiation of pluripotent stem cells. Lastly, the feasibility of incorporating DMAPMA into a widely used natural polymer, alginate, has been tested. Novel adhesive alginate hydrogels have been successfully synthesized by either direct polymerization of DMAPMA and methacrylic acid blended with alginate, or photo-induced DMAPMA polymerization on alginate nanofibrous hydrogels. In particular, DMAPMA-coated alginate hydrogels support strong ES cell attachment, exhibiting a concentration dependency of DMAPMA. This research provides a new avenue for stem cell culture and maintenance using an optimal organic-based chemistry.

  6. Potential of Prolamins from Maize and Sorghum to Form Gluten-like Structures in Wheat-free Bread

    USDA-ARS?s Scientific Manuscript database

    Prolamins from maize (zeins) are known to form viscoelastic, extensible, cohesive dough when mixed together with starch and water above their glass transition temperature (Tg, approximately 28 °C). By adding hydroxypropyl methylcellulose (HPMC, a surface-active hydrocolloid) to this formulation, lea...

  7. Tri- and tetra-substituted cyclen based lanthanide(III) ion complexes as ribonuclease mimics: a study into the effect of log Ka, hydration and hydrophobicity on phosphodiester hydrolysis of the RNA-model 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP).

    PubMed

    Fanning, Ann-Marie; Plush, Sally E; Gunnlaugsson, Thorfinnur

    2015-05-28

    A series of tetra-substituted 'pseudo' dipeptide ligands of cyclen (1,4,7,10,-tetraazacyclododecane) and a tri-substituted 3'-pyridine ligand of cyclen, and the corresponding lanthanide(III) complexes were synthesised and characterised as metallo-ribonuclease mimics. All complexes were shown to promote hydrolysis of the phosphodiester bond of 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP, τ1/2 = 5.87 × 10(3) h), a well known RNA mimic. The La(III) and Eu(III) tri-substituted 3'-pyridine lanthanide(III) complexes being the most efficient in promoting such hydrolysis at pH 7.4 and at 37 °C; with τ1/2 = 1.67 h for La(III) and 1.74 h for Eu(III). The series was developed to provide the opportunity to investigate the consequences of altering the lanthanide(III) ion, coordination ability and hydrophobicity of a metallo-cavity on the rate of hydrolysis using the model phosphodiester, HPNP, at 37 °C. To further provide information on the role that the log Ka of the metal bound water plays in phosphodiester hydrolysis the protonation constants and the metal ion stability constants of both a tri and tetra-substituted 3'pyridine complex were determined. Our results highlighted several key features for the design of lanthanide(III) ribonucelase mimics; the presence of two metal bound water molecules are vital for pH dependent rate constants for Eu(III) complexes, optimal pH activity approximating physiological pH (∼7.4) may be achieved if the log Ka values for both MLOH and ML(OH)2 species occur in this region, small changes to hydrophobicity within the metallo cavity influence the rate of hydrolysis greatly and an amide adjacent to the metal ion capable of forming hydrogen bonds with the substrate is required for achieving fast hydrolysis.

  8. The influence of various excipients on the conversion kinetics of carbamazepine polymorphs in aqueous suspension.

    PubMed

    Tian, Fang; Saville, Dorothy J; Gordon, Keith C; Strachan, Clare J; Zeitler, J Axel; Sandler, Niklas; Rades, Thomas

    2007-02-01

    The influence of various excipients on the conversion of carbamazepine polymorphs to the dihydrate in aqueous suspension has been investigated. Ten excipients having functional groups which were potentially able to form hydrogen bonds with carbamazepine (group 1: methylcellulose, hypromellose (hydroxypropyl methylcellulose), hydroxypropylcellulose (HPC), 2-hydroxyethylcellulose (HEC), carmellose sodium (sodium carboxymethylcellulose), cellobiose; group 2: povidone (polyvinylpyrrolidone), povidone-vinyl acetate copolymer (povidone/VA) and N-methyl-2-pyrrolidone; group 3: macrogol (polyethylene glycol) and polyethylene oxide-polypropylene oxide copolymer (PEO/PPO)) were selected. Carbamazepine polymorphic forms III and I were dispersed separately into each aqueous excipient solution (0.1%, w/v) for 30 min at room temperature. The inhibition effect of each excipient was quantified using Raman spectroscopy combined with multivariate analyses. The solubility parameter of each excipient was calculated and used for categorizing excipients. Excipients in groups 1 and 2, which had both low solubility parameters (< 27.0 MPa(1/2)) and strong hydrogen bonding groups, inhibited the conversion completely. With increasing solubility parameter, the inhibition effect decreased for group 1 excipients, especially for carbamazepine form I, which had a higher specific surface area. Also, the excipients of group 3, lacking strong hydrogen bonding groups, showed poor inhibition although they had low solubility parameters (< 21.0 MPa(1/2)). This study indicated the importance of both hydrogen bonding interaction and a suitable hydrophobicity (expressed by the solubility parameter) in the inhibition of the conversion of carbamazepine to the dihydrate.

  9. Risk assessment and experimental design in the development of a prolonged release drug delivery system with paliperidone.

    PubMed

    Iurian, Sonia; Turdean, Luana; Tomuta, Ioan

    2017-01-01

    This study focuses on the development of a drug product based on a risk assessment-based approach, within the quality by design paradigm. A prolonged release system was proposed for paliperidone (Pal) delivery, containing Kollidon ® SR as an insoluble matrix agent and hydroxypropyl cellulose, hydroxypropyl methylcellulose (HPMC), or sodium carboxymethyl cellulose as a hydrophilic polymer. The experimental part was preceded by the identification of potential sources of variability through Ishikawa diagrams, and failure mode and effects analysis was used to deliver the critical process parameters that were further optimized by design of experiments. A D-optimal design was used to investigate the effects of Kollidon SR ratio ( X 1 ), the type of hydrophilic polymer ( X 2 ), and the percentage of hydrophilic polymer ( X 3 ) on the percentages of dissolved Pal over 24 h ( Y 1 - Y 9 ). Effects expressed as regression coefficients and response surfaces were generated, along with a design space for the preparation of a target formulation in an experimental area with low error risk. The optimal formulation contained 27.62% Kollidon SR and 8.73% HPMC and achieved the prolonged release of Pal, with low burst effect, at ratios that were very close to the ones predicted by the model. Thus, the parameters with the highest impact on the final product quality were studied, and safe ranges were established for their variations. Finally, a risk mitigation and control strategy was proposed to assure the quality of the system, by constant process monitoring.

  10. Inkjet printing of paracetamol and indomethacin using electromagnetic technology: Rheological compatibility and polymorphic selectivity.

    PubMed

    Kollamaram, Gayathri; Hopkins, Simon C; Glowacki, Bartek A; Croker, Denise M; Walker, Gavin M

    2018-03-30

    Drop-on-demand inkjet printing is a potential enabling technology both for continuous manufacturing of pharmaceuticals and for personalized medicine, but its use is often restricted to low-viscosity solutions and nano-suspensions. In the present study, a robust electromagnetic (valvejet) inkjet technology has been successfully applied to deposit prototype dosage forms from solutions with a wide range of viscosities, and from suspensions with particle sizes exceeding 2 μm. A detailed solid-state study of paracetamol, printed from a solution ink on hydroxypropyl methylcellulose (HPMC), revealed that the morphology of the substrate and its chemical interactions can have a considerable influence on polymorphic selectivity. Paracetamol ink crystallized exclusively into form II when printed on a smooth polyethylene terephthalate substrate, and exclusively into form I when in sufficient proximity to the rough surface of the HPMC substrate to be influenced by confinement in pores and chemical interactions. The relative standard deviation in the strength of the dosage forms was <4% in all cases, for doses as low as 0.8 mg, demonstrating the accuracy and reproducibility associated with electromagnetic inkjet technology. Good adhesion of indomethacin on HPMC was achieved using a suspension ink with hydroxypropyl cellulose, but not on an alternative polyethylene terephthalate substrate, emphasising the need to tailor the binder to the substrate. Future work will focus on lower-dose drugs, for which dosing flexibility and fixed dose combinations are of particular interest. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Supplementation of hydroxypropyl methylcellulose into yeast leavened all-whole grain barley bread potentiates cholesterol-lowering effect.

    PubMed

    Kim, Hyunsook; Turowski, Maciej; Anderson, W H Kerr; Young, Scott A; Kim, Yookyung; Yokoyama, Wallace

    2011-07-27

    We investigated in Syrian Golden hamsters the biological impact and its underlying mechanism of single whole grain breads supplemented with 2-3% hydroxypropyl methylcellulose (HPMC), a semisynthetic viscous soluble dietary fiber (SDF) as a substitute for gluten. Hamsters were fed high-fat diets supplemented with 48-65% (w/w) differently ground, freeze-dried single grain breads including whole grain wheat, barley, barley supplemented with HPMC, debranned oat, and oat supplemented with HPMC which were compared to a diet containing microcrystalline cellulose (control). All single grain breads significantly lowered plasma LDL-cholesterol concentrations compared to the control. Enrichment with HPMC further lowered plasma and hepatic cholesterol concentrations. Despite the reduced molecular weight of naturally occurring soluble (1--->3),(1--->4)-β-d-glucan (β-glucan) caused by the bread-making process, whole grain barley breads downregulated hepatic expression of CYP7A1 and HMG-CoAR genes that are responsible for bile acid and cholesterol synthesis, suggesting a possible role of bioactive compounds such as short-chain fatty acids and phenolic compounds from barley bread. Barley bread enriched with HPMC downregulated expression of ABCG5 gene. Taken together, it appears that distinctive modulation of synthesis and excretion of hepatic cholesterol and bile acid contributes to the cholesterol-lowering properties of whole grain barley breads and breads enriched with HPMC. These data suggests that alternative whole grain breads supplemented with HPMC may provide consumers with a staple food that can assist in cholesterol management.

  12. Cell Penetrating Polymers Containing Guanidinium Trigger Apoptosis in Human Hepatocellular Carcinoma Cells unless Conjugated to a Targeting N-Acetyl-Galactosamine Block.

    PubMed

    Tan, Zhe; Dhande, Yogesh K; Reineke, Theresa M

    2017-12-20

    A series of 3-guanidinopropyl methacrylamide (GPMA)-based polymeric gene delivery vehicles were developed via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers have been evaluated for their cellular internalization ability, transfection efficiency, and cytotoxicity. Two homopolymers: P(GPMA 20 ), P(GPMA 34 ), were synthesized to study the effect of guanidium polymer length on delivery efficiency and toxicity. In addition, an N-acetyl-d-galactosamine (GalNAc)-based hydrophilic block was incorporated to produce diblock polymers, which provides a neutral hydrophilic block that sterically protects plasmid-polymer complexes (polyplexes) from colloidal aggregation and aids polyplex targeting to hepatocytes via binding to asialoglycoprotein receptors (ASGPRs). Polyplexes formed with P(GPMA x ) (x = 20, 34) homopolymers were shown to be internalized via both energy-dependent and independent pathways, whereas polyplexes formed with block polymers were internalized through endocytosis. Notably, P(GPMA x ) polyplexes enter cells very efficiently but are also very toxic to human hepatocellular carcinoma (HepG2) cells and triggered cell apoptosis. In comparison, the presence of a carbohydrate block in the polymer structures reduced the cytotoxicity of the polyplex formulations and increased gene delivery efficiency with HepG2 cells. Transfection efficiency and toxicity studies were also carried out with HEK 293T (human embryonic kidney) cells for comparison. Results showed that polyplexes formed with the P(GPMA x ) homopolymers exhibit much higher transfection efficiency and lower toxicity with HEK 293T cells. The presence of the carbohydrate block did not further increase transfection efficiency in comparison to the homopolymers with HEK 293T cells, likely due to the lack of ASGPRs on the HEK 293T cell line. This study revealed that although guanidinium-based polymers have high membrane permeability, their application as plasmid delivery vehicles may be limited by their high cytotoxicity to certain cell types. Thus, the use of cell penetrating structures in polyplex formulations should be used with caution and carefully tailored toward individual cell/tissue types.

  13. Enhancement of curcumin wound healing ability by complexation with 2-hydroxypropyl-γ-cyclodextrin in sacran hydrogel film.

    PubMed

    Wathoni, Nasrul; Motoyama, Keiichi; Higashi, Taishi; Okajima, Maiko; Kaneko, Tatsuo; Arima, Hidetoshi

    2017-05-01

    Curcumin is one of promising agents to accelerate the wound-healing process. However, the efficacy of curcumin is limited due to its poor water solubility and stability. To enhance the properties of curcumin, 2-hydroxypropyl-γ-cyclodextrin (HP-γ-CyD) can be used through complexation. Recently, we revealed that sacran has the potential to form a hydrogel film (HGF) as a wound dressing material. Therefore, in the present study, we investigated the wound healing ability of curcumin/HP-γ-CyD (Cur/HP-γ-CyD) complex in sacran-based HGF (Sac-HGF). We prepared the Cur/HP-γ-CyD complex in Sac-HGF without surface roughness. Additionally, the amorphous form in the Cur/HP-γ-CyD complex in Sac-HGF were observed. In contrast, the curcumin in Sac-HGF and curcumin/HP-γ-CyD physical mixture in Sac-HGF formed inhomogeneous films due to crystallization of curcumin. Furthermore, HP-γ-CyD played an important role to increase the elastic modulus of the Sac-HGF with high re-swelling ability. The Cur/HP-γ-CyD complex in Sac-HGF maintained antioxidant properties of curcumin. Curcumin was gradually released from the HP-γ-CyD complex in Sac-HGF. Notably, the Cur/HP-γ-CyD complex in Sac-HGF provided the highest wound healing ability in hairless mice. These results suggest that the Cur/HP-γ-CyD complex in Sac-HGF has the potential for use as a new transdermal therapeutic system to promote the wound-healing process. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Cytotoxicity of novel fluoride solutions and their influence on mineral loss from enamel exposed to a Streptococcus mutans biofilm.

    PubMed

    Vieira, Thiago Isidro; Câmara, João Victor Frazão; Cardoso, Júlia Gabiroboertz; Alexandria, Adílis Kalina; Pintor, Andréa Vaz Braga; Villaça, Jaqueline Correia; Cabral, Lúcio Mendes; Romanos, Maria Teresa Villela; Fonseca-Gonçalves, Andrea; Valença, Ana Maria Gondim; Maia, Lucianne Cople

    2018-07-01

    This study evaluated the cytotoxicity, antimicrobial activity and in vitro influence of new fluoridated nanocomplexes on dental demineralization. The nanocomplexes hydroxypropyl-β-cyclodextrin with 1% titanium tetrafluoride (TiF 4 ) and γ-cyclodextrin with TiF 4 were compared to a positive control (TiF 4 ), a blank control (without treatment) and negative controls (hydroxypropyl-β-cyclodextrin, γ-cyclodextrin, deionized water), following 12- and 72-hour complexation periods. The cytotoxicity was assessed using the neutral red dye uptake assay at T1-15 min, T2-30 min and T3-24 h. A minimum bactericidal concentration (MBC) against Streptococcus mutans (ATCC 25175) was performed. Enamel blocks were exposed to an S. mutans biofilm, and the percentage of surface microhardness loss was obtained. Biocompatibility and microhardness data were analysed using ANOVA/Tukey tests (p < 0.05). At T1, the cell viability results of the nanocomplexes were similar to that of the blank control. At T2 and T3, the 72 h nanocomplexes demonstrated cell viability results similar to that of the blank, while the 12 h solutions showed results different from that of the blank (p < 0.05). All fluoridated nanocompounds inhibited S. mutans (MBC = 0.25%), while the MBC of TiF 4 alone was 0.13%. All fluoridated compounds presented a percentage of surface microhardness loss lower than that of deionized water (p < 0.05). The new fluoridated nanocomplexes did not induce critical cytotoxic effects during the experimental periods, whilst they did show bactericidal potential against S. mutans and inhibited enamel mineral loss. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Different solutions used for submucosal injection influenced early healing of gastric endoscopic mucosal resection in a preclinical study in experimental pigs.

    PubMed

    Bures, Jan; Kopácová, Marcela; Kvetina, Jaroslav; Osterreicher, Jan; Sinkorová, Zuzana; Svoboda, Zbynek; Tachecí, Ilja; Filip, Stanislav; Spelda, Stanislav; Kunes, Martin; Rejchrt, Stanislav

    2009-09-01

    We hypothesised that different solutions for submucosal injection may influence early healing of endoscopic mucosal resection (EMR). The aim of this study was to evaluate histological and immunological changes after EMR in experimental pigs. Two parallel EMRs on the anterior and posterior wall of the gastric body were performed by means of the cap technique in 21 female pigs. A glycerol-based solution (anterior EMR) and hydroxypropyl methylcellulose solution (posterior EMR) were applied for submucosal injection. The animals were sacrificed 7 days later, and tissue sections of all EMRs were stained using combined trichrome. Computer image analysis was used for objective evaluation of elastic and collagen fibres content. Two-colour indirect immunophenotyping of blood and gastric samples were performed using mouse anti-pig monoclonal antibodies. The values of collagen fibre content 7 days after EMR were significantly higher in lesions after the use of solution A in comparison with solution B (2.10 +/- 0.25% versus 1.57 +/- 0.25%, p = 0.009). Concordant results were found in elastic fibres (3.23 +/- 0.49% versus 2.93 +/- 0.61%, p = 0.018). No systemic changes in major leukocyte subpopulations were found. In gastric tissue, lymphocyte subsets exhibited only minor changes. CD4(+) T-lymphocytes were increased in the healing tissue after EMR using solution A (17.08 +/- 9.24% versus 9.76 +/- 7.97%, p = 0.011). Significant increase of SWC3(+) leukocytes was observed after EMR using solution B (47.70 +/- 25.41% versus 18.70 +/- 12.16%, p = 0.001). The use of glycerol-based solution for submucosal injection was associated with more pronounced histological signs of early healing of EMRs compared with hydroxypropyl methylcellulose.

  16. Endocytosis of beta-cyclodextrins is responsible for cholesterol reduction in Niemann-Pick type C mutant cells

    PubMed Central

    Rosenbaum, Anton I.; Zhang, Guangtao; Warren, J. David; Maxfield, Frederick R.

    2010-01-01

    Niemann-Pick type C disease (NPC) is a lysosomal storage disorder causing accumulation of unesterified cholesterol in lysosomal storage organelles. Recent studies have shown that hydroxypropyl-β-cyclodextrin injections in npc1−/− mice are partially effective in treating this disease. Using cultured fibroblasts, we have investigated the cellular mechanisms responsible for reduction of cholesterol accumulation. We show that decreased levels of cholesterol accumulation are maintained for several days after removal of cyclodextrin from the culture medium. This suggests that endocytosed cyclodextrin can reduce the cholesterol storage by acting from inside endocytic organelles rather than by removing cholesterol from the plasma membrane. To test this further, we incubated both NPC1 and NPC2 mutant cells with cholesterol-loaded cyclodextrin for 1 h, followed by chase in serum-containing medium. Although the cholesterol content of the treated cells increased after the 1-h incubation, the cholesterol levels in the storage organelles were later reduced significantly. We covalently coupled cyclodextrin to fluorescent dextran polymers. These cyclodextrin–dextran conjugates were delivered to cholesterol-enriched lysosomal storage organelles and were effective at reducing the cholesterol accumulation. We demonstrate that methyl-β-cyclodextrin is more potent than hydroxypropyl-β-cyclodextrin in reducing both cholesterol and bis(monoacylglycerol) phosphate accumulation in NPC mutant fibroblasts. Brief treatment of cells with cyclodextrins causes an increase in cholesterol esterification by acyl CoA:cholesterol acyl transferase, indicating increased cholesterol delivery to the endoplasmic reticulum. These findings suggest that cyclodextrin-mediated enhanced cholesterol transport from the endocytic system can reduce cholesterol accumulation in cells with defects in either NPC1 or NPC2. PMID:20212119

  17. Quantification of hydroxyl radical produced during phacoemulsification.

    PubMed

    Gardner, Jonathan M; Aust, Steven D

    2009-12-01

    To quantitate hydroxyl radicals produced during phacoemulsification with various irrigating solutions and conditions used in cataract surgery. Chemistry and Biochemistry Department, Utah State University, Logan, Utah, USA. All experiments were performed using an Infiniti Vision System phacoemulsifier with irrigation and aspiration. Hydroxyl radicals were quantitated using electron spin resonance spectroscopy and a spectrophotometric assay for malondialdehyde, which is formed by the oxidation of deoxyribose by the hydroxyl radical. Hydroxyl radical production increased during longitudinal-stroking phacoemulsification as power levels were increased in a nonlinear, nonexponential fashion. The detection of hydroxyl radical was reduced in irrigating solutions containing organic molecules (eg, citrate, acetate, glutathione, dextrose) and further reduced in Navstel, an irrigating solution containing a viscosity-modifying agent, hydroxypropyl methylcellulose. Hydroxyl radicals produced in settings representative of those used in phacoemulsification cataract surgery were quantitated using the deoxyribose method. Hydroxyl radical production was dependent on the level of ultrasound power applied and the irrigating solution used. Oxidative stress on the eye during phacoemulsification may be minimized by using irrigating solutions that contain organic molecules, including the viscosity-modifying agent hydroxypropyl methylcellulose, that can compete for reaction with hydroxyl radicals.

  18. Postharvest shelf-life extension of pink guavas (Psidium guajava L.) using HPMC-based edible surface coatings.

    PubMed

    Vishwasrao, Chandrahas; Ananthanarayan, Laxmi

    2016-04-01

    Psidium guajava L. var. 'Lalit' is a perishable fruit with delicate skin which is prone to damage. The objective of this study was to determine the effect of edible coating made up of hydroxypropyl methyl cellulose and palm oil on ripening of guava. Coating solution was applied over fruits and coated fruits were stored at 24 ± 1 °C and 65 ± 5%RH. Changes in fruit colour, texture softening, respiration rate, weight loss, ascorbic acid content, soluble solids, titrable acidity, chlorophyll content, total reducing sugars, total phenolic content were studied during post-harvest ripening. Fruits coated with 1 % of hydroxypropyl methyl cellulose and 0.3 % of palm oil showed significant delay in weight loss, fruit firmness as well as colour change (p < 0.05). Coating delayed the enzyme activities of peroxidase and polyphenol oxidase of the fruit. Results suggest that overall quality of coated fruit was maintained by edible coating formulation extending the shelf life of fruit up to 12 days with appreciable retention of all quality parameters tested.

  19. Evaluation of polyvinyl alcohols as mucoadhesive polymers for mucoadhesive buccal tablets prepared by direct compression.

    PubMed

    Ikeuchi-Takahashi, Yuri; Ishihara, Chizuko; Onishi, Hiraku

    2017-09-01

    The purpose of the present work was to evaluate polyvinyl alcohols (PVAs) as a mucoadhesive polymer for mucoadhesive buccal tablets prepared by direct compression. Various polymerization degree and particle diameter PVAs were investigated for their usability. The tensile strength, in vitro adhesive force, and water absorption properties of the tablets were determined to compare the various PVAs. The highest values of the tensile strength and the in vitro adhesive force were observed for PVAs with a medium viscosity and small particle size. The optimal PVA was identified by a factorial design analysis. Mucoadhesive tablets containing the optimal PVA were compared with carboxyvinyl polymer and hydroxypropyl cellulose formulations. The optimal PVA gives a high adhesive force, has a low viscosity, and resulted in relatively rapid drug release. Formulations containing carboxyvinyl polymer had high tensile strengths but short disintegration times. Higher hydroxypropyl cellulose concentration formulations had good adhesion forces and very long disintegration times. We identified the optimal characteristics of PVA, and the usefulness of mucoadhesive buccal tablets containing this PVA was suggested from their formulation properties.

  20. The Modification of Polyurethane Foams Using New Boroorganic Polyols (II) Polyurethane Foams from Boron-Modified Hydroxypropyl Urea Derivatives

    PubMed Central

    2014-01-01

    The work focuses on research related to determination of application possibility of new, ecofriendly boroorganic polyols in rigid polyurethane foams production. Polyols were obtained from hydroxypropyl urea derivatives esterified with boric acid and propylene carbonate. The influence of esterification type on properties of polyols and next on polyurethane foams properties was determined. Nitrogen and boron impacts on the foams' properties were discussed, for instance, on their physical, mechanical, and electric properties. Boron presence causes improvement of dimensional stability and thermal stability of polyurethane foams. They can be applied even at temperature 150°C. Unfortunately, introducing boron in polyurethanes foams affects deterioration of their water absorption, which increases as compared to the foams that do not contain boron. However, presence of both boron and nitrogen determines the decrease of the foams combustibility. Main impact on the decrease combustibility of the obtained foams has nitrogen presence, but in case of proper boron and nitrogen ratio their synergic activity on the combustibility decrease can be easily seen. PMID:24587721

  1. Inhibition of interaction between epigallocatechin-3-gallate and myofibrillar protein by cyclodextrin derivatives improves gel quality under oxidative stress.

    PubMed

    Zhang, Yumeng; Chen, Lin; Lv, Yuanqi; Wang, Shuangxi; Suo, Zhiyao; Cheng, Xingguang; Xu, Xinglian; Zhou, Guanghong; Li, Zhixi; Feng, Xianchao

    2018-06-01

    High levels of polyphenols can interact with myofibrillar proteins (MPs), causing damage to a MP emulsion gel. In this study, β-cyclodextrins were used to reduce covalent and non-covalent interaction between epigallocatechin-3-gallate (EGCG) and MPs under oxidative stress. The loss of both thiol and free amine groups and the unfolding of MPs caused by EGCG (80 μM/g protein) were significantly prevented by β-cyclodextrins, and the structural stability and solubility were improved. MP emulsion gel treated with EGCG (80 μM/g protein) had the highest cooking loss (68.64%) and gel strength (0.51 N). Addition of β-cyclodextrins significantly reduced cooking loss (26.24-58.20%) and improved gel strength (0.31-0.41 N) of MP emulsion gel jeopardized by EGCG under oxidative stress. Damage to the emulsifying properties of MPs caused by EGCG was significantly prevented by addition of β-cyclodextrins. β-cyclodextrins reduced interaction between EGCG and MPs in the order Methyl-β-cyclodextrin > (2-Hydroxypropyl)-β-cyclodextrin > β-cyclodextrin. In absence of EGCG, addition of β-cyclodextrins partly protected MPs from oxidative attack and improved its solubility. It is concluded that β-cyclodextrins does not markedly reduce the antioxidant ability of EGCG according to carbonyl analysis, and can effectively increase EGCG loading to potentially provide more durable antioxidant effect for meat products during processing, transportation and storage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Cyclodextrin controlled release of poorly water-soluble drugs from hydrogels.

    PubMed

    Woldum, Henriette Sie; Larsen, Kim Lambertsen; Madsen, Flemming

    2008-01-01

    The effect of 2-hydroxypropyl-beta-cyclodextrin and gamma-cyclodextrin on the release of ibuprofen, ketoprofen and prednisolone was studied. Stability constants calculated for inclusion complexes show size dependence for complexes with both cyclodextrins. Hydrogels were prepared by ultraviolet irradiation and release of each model drug was studied. For drugs formulated using cyclodextrins an increase in the achievable concentration and in the release from hydrogels was obtained due to increased solubility, although the solubility of all gamma-cyclodextrin complexes was limited. The load also was increased by adjusting pH for the acidic drugs and this exceeds the increase obtained with gamma-cyclodextrin addition.

  3. iBodies: Modular Synthetic Antibody Mimetics Based on Hydrophilic Polymers Decorated with Functional Moieties.

    PubMed

    Šácha, Pavel; Knedlík, Tomáš; Schimer, Jiří; Tykvart, Jan; Parolek, Jan; Navrátil, Václav; Dvořáková, Petra; Sedlák, František; Ulbrich, Karel; Strohalm, Jiří; Majer, Pavel; Šubr, Vladimír; Konvalinka, Jan

    2016-02-12

    Antibodies are indispensable tools for biomedicine and anticancer therapy. Nevertheless, their use is compromised by high production costs, limited stability, and difficulty of chemical modification. The design and preparation of synthetic polymer conjugates capable of replacing antibodies in biomedical applications such as ELISA, flow cytometry, immunocytochemistry, and immunoprecipitation is reported. The conjugates, named "iBodies", consist of an HPMA copolymer decorated with low-molecular-weight compounds that function as targeting ligands, affinity anchors, and imaging probes. We prepared specific conjugates targeting several proteins with known ligands and used these iBodies for enzyme inhibition, protein isolation, immobilization, quantification, and live-cell imaging. Our data indicate that this highly modular and versatile polymer system can be used to produce inexpensive and stable antibody substitutes directed toward virtually any protein of interest with a known ligand. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. iBodies: Modular Synthetic Antibody Mimetics Based on Hydrophilic Polymers Decorated with Functional Moieties

    PubMed Central

    Šácha, Pavel; Knedlík, Tomáš; Schimer, Jiří; Tykvart, Jan; Parolek, Jan; Navrátil, Václav; Dvořáková, Petra; Sedlák, František; Ulbrich, Karel; Strohalm, Jiří; Majer, Pavel

    2016-01-01

    Abstract Antibodies are indispensable tools for biomedicine and anticancer therapy. Nevertheless, their use is compromised by high production costs, limited stability, and difficulty of chemical modification. The design and preparation of synthetic polymer conjugates capable of replacing antibodies in biomedical applications such as ELISA, flow cytometry, immunocytochemistry, and immunoprecipitation is reported. The conjugates, named “iBodies”, consist of an HPMA copolymer decorated with low‐molecular‐weight compounds that function as targeting ligands, affinity anchors, and imaging probes. We prepared specific conjugates targeting several proteins with known ligands and used these iBodies for enzyme inhibition, protein isolation, immobilization, quantification, and live‐cell imaging. Our data indicate that this highly modular and versatile polymer system can be used to produce inexpensive and stable antibody substitutes directed toward virtually any protein of interest with a known ligand. PMID:26749427

  5. Directed Self-Assembly in "Breath Figure" Templating of Melamine-Based Amphiphilic Copolymers: Effect of Hydrophilic End-Chain on Honeycomb Film Formation and Wetting.

    PubMed

    Yin, Hongyao; Feng, Yujun; Billon, Laurent

    2018-01-09

    Amphiphilic copolymers are widely used in the fabrication of hierarchically honeycomb-structured films through a "breath figure" (BF) process because the hydrophilic block plays a key role in stabilising water templating. However, the hydrophilic monomers reported are mainly confined to acrylic acid and its derivatives, which largely limits understanding of the formation of BF arrays and the introduction of additional functions on porous films. The relationship between polymer composition, film microstructure and surface properties are also less documented. Herein, a novel melamine-based hydrophilic moiety, N-[3-({3-[(4,6-bis{[3-(dimethylamino)propyl]amino}-1,3,5-triazin-2yl)amino]propyl}(methyl)amino)propyl]methacrylamide (ANME), was incorporated into polystyrene (PS) chains by combining atom-transfer radical polymerisation and post-modification to afford three well-defined end-functionalised PS-PANME derivatives. These polymers were used to fabricate honeycomb films through the BF technique. Both inner and outer microstructures of the films were characterised by optical microscopy, AFM and SEM. Polymer hydrophilicity is enhanced upon increasing the PANME content, which results in variation of the film microstructure and porosity, and provokes a transition from Cassie-Baxter to Wenzel behaviour. Furthermore, the surface wettability of as-prepared honeycomb films and corresponding pillared films is mainly governed by film morphology, rather than by the properties of the polymers. Knowledge of the relationships between polymer composition and film structure, as well as surface wettability, is beneficial to design and prepare hierarchically porous films with desirable structures and properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Complete Regression of Xenograft Tumors upon Targeted Delivery of Paclitaxel via Π-Π Stacking Stabilized Polymeric Micelles

    PubMed Central

    Shi, Yang; van der Meel, Roy; Theek, Benjamin; Blenke, Erik Oude; Pieters, Ebel H.E.; Fens, Marcel H.A.M.; Ehling, Josef; Schiffelers, Raymond M.; Storm, Gert; van Nostrum, Cornelus F.; Lammers, Twan; Hennink, Wim E.

    2015-01-01

    Treatment of cancer patients with taxane-based chemotherapeutics, such as paclitaxel (PTX), is complicated by their narrow therapeutic index. Polymeric micelles are attractive nanocarriers for tumor-targeted delivery of PTX, as they can be tailored to encapsulate large amounts of hydrophobic drugs and achieve prolonged circulation kinetics. As a result, PTX deposition in tumors is increased while drug exposure to healthy tissues is reduced. However, many PTX-loaded micelle formulations suffer from low stability and fast drug release in the circulation, limiting their suitability for systemic drug targeting. To overcome these limitations, we have developed paclitaxel (PTX)-loaded micelles which are stable without chemical crosslinking and covalent drug attachment. These micelles are characterized by excellent loading capacity and strong drug retention, attributed to π-π stacking interaction between PTX and the aromatic groups of the polymer chains in the micellar core. The micelles are based on methoxy poly(ethylene glycol)-b-(N-(2-benzoyloxypropyl) methacrylamide) (mPEG-b-p(HPMAm-Bz)) block copolymers, which improved the pharmacokinetics and the biodistribution of PTX, and substantially increased PTX tumor accumulation (by more than 2000%; as compared to Taxol® or control micellar formulations). Improved biodistribution and tumor accumulation were confirmed by hybrid μCT-FMT imaging using near-infrared labeled micelles and payload. The PTX-loaded micelles were well tolerated at different doses while they induced complete tumor regression in two different xenograft models (i.e. A431 and MDA-MB-468). Our findings consequently indicate that π-π stacking-stabilized polymeric micelles are promising carriers to improve the delivery of highly hydrophobic drugs to tumors and to increase their therapeutic index. PMID:25831471

  7. Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX, and CL-20: new insights into degradation pathways obtained by the observation of novel intermediates.

    PubMed

    Balakrishnan, Vimal K; Halasz, Annamaria; Hawari, Jalal

    2003-05-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX, I) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) hydrolyze at pH > 10 to form end products including NO2-, HCHO, HCOOH, NH3, and N2O, but little information is available on intermediates, apart from the tentatively identified pentahydro-3,5-dinitro-1,3,5-triazacyclohex-1-ene (II). Despite suggestions that RDX and HMX contaminated groundwater could be economically treated via alkaline hydrolysis, the optimization of such a process requires more detailed knowledge of intermediates and degradation pathways. In this study, we hydrolyzed the monocyclic nitramines RDX, MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine), and HMX in aqueous solution (pH 10-12.3) and found that nitramine removal was accompanied by formation of 1 molar equiv of nitrite and the accumulation of the key ring cleavage product 4-nitro-2,4-diazabutanal (4-NDAB, O2NNHCH2NHCHO). Most of the remaining C and N content of RDX, MNX, and HMX was found in HCHO, N2O, HCOOH, and NH3. Consequently, we selected RDX as a model compound and hydrolyzed it in aqueous acetonitrile solutions (pH 12.3) in the presence and absence of hydroxypropyl-beta-cyclodextrin (HP-beta-CD) to explore other early intermediates in more detail. We observed a transient LC-MS peak with a [M-H] at 192 Da that was tentatively identified as 4,6-dinitro-2,4,6-triaza-hexanal (O2NNHCH2NNO2CH2NHCHO, III) considered as the hydrolyzed product of II. In addition, we detected another novel intermediate with a [M-H] at 148 Da that was tentatively identified as a hydrolyzed product of III, namely, 5-hydroxy-4-nitro-2,4-diaza-pentanal (HOCH2NNO2CH2NHCHO, IV). Both III and IV can act as precursors to 4-NDAB. In the case of the polycyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), denitration (two NO2-) also led to the formation of HCOOH, NH3, and N2O, but neither HCHO nor 4-NDAB were detected. The results provide strong evidence that initial denitration of cyclic nitramines in water is sufficient to cause ring cleavage followed by spontaneous decomposition to form the final products.

  8. HPMC supplementation reduces abdominal fat content, intestinal permeability, inflammation, and insulin resistance in diet-induced obese mice

    USDA-ARS?s Scientific Manuscript database

    The effects of hydroxypropyl methylcellulose (HPMC), a highly viscous non-fermentable soluble dietary fiber, were evaluated on adipose tissue inflammation and insulin resistance in diet induced obese (DIO) mice fed a high fat (HF) diet supplemented with either HPMC or insoluble fiber. DIO C57BL/6J m...

  9. Removal of surface lipids improves the functionality of commercial zein in viscoelastic zein-starch dough for gluten-free breadmaking

    USDA-ARS?s Scientific Manuscript database

    Maize prolamin (zein), together with starch, hydroxypropyl methylcellulose, sugar, salt, yeast and water can form wheat-like cohesive, extensible, viscoelastic dough when mixed above room temperature (e.g. 40 °C). This dough is capable of holding gas. However, it is excessively extensible, and when ...

  10. Remote Control over Underwater Dynamic Attachment/Detachment and Locomotion.

    PubMed

    Ma, Yanfei; Ma, Shuanhong; Wu, Yang; Pei, Xiaowei; Gorb, Stanislav N; Wang, Zuankai; Liu, Weimin; Zhou, Feng

    2018-06-19

    Despite extensive efforts to mimic the fascinating adhesion capability of geckos, the development of reversible adhesives underwater has long been lagging. The appearance of mussels-inspired dopamine chemistry has provided the feasibility to fabricate underwater adhesives; however, for such a system, imitating the reversible and fast dynamic attachment/detachment mechanism of gecko feet still remains unsolved. Here, by synthesizing a thermoresponsive copolymer of poly(dopamine methacrylamide-co-methoxyethyl-acrylate-co-N-isopropyl acrylamide) and then decorating it onto mushroom-shaped poly(dimethylsiloxane) pillar arrays, a novel underwater thermoresponsive gecko-like adhesive (TRGA) can be fabricated, yielding high adhesion during the attachment state above the lower critical solution temperature (LCST) of the copolymer, yet low adhesion during the detachment state below the LCST of the copolymer. By integrating the Fe 3 O 4 nanoparticles into the TRGA, TRGAs responsive to near-infrared laser radiation can be engineered, which can be successfully used for rapid and reversible remote control over adhesion so as to capture and release heavy objects underwater because of the contrast force change of both the normal adhesion force and the lateral friction force. It is also demonstrated that the material can be assembled on the tracks of an underwater mobile device to realize controllable movement. This opens up the door for developing intelligent underwater gecko-like locomotion with dynamic attachment/detachment ability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Using parahydrogen to hyperpolarize amines, amides, carboxylic acids, alcohols, phosphates, and carbonates

    PubMed Central

    Iali, Wissam; Rayner, Peter J.; Duckett, Simon B.

    2018-01-01

    Hyperpolarization turns weak nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) responses into strong signals, so normally impractical measurements are possible. We use parahydrogen to rapidly hyperpolarize appropriate 1H, 13C, 15N, and 31P responses of analytes (such as NH3) and important amines (such as phenylethylamine), amides (such as acetamide, urea, and methacrylamide), alcohols spanning methanol through octanol and glucose, the sodium salts of carboxylic acids (such as acetic acid and pyruvic acid), sodium phosphate, disodium adenosine 5′-triphosphate, and sodium hydrogen carbonate. The associated signal gains are used to demonstrate that it is possible to collect informative single-shot NMR spectra of these analytes in seconds at the micromole level in a 9.4-T observation field. To achieve these wide-ranging signal gains, we first use the signal amplification by reversible exchange (SABRE) process to hyperpolarize an amine or ammonia and then use their exchangeable NH protons to relay polarization into the analyte without changing its identity. We found that the 1H signal gains reach as high as 650-fold per proton, whereas for 13C, the corresponding signal gains achieved in a 1H-13C refocused insensitive nuclei enhanced by polarization transfer (INEPT) experiment exceed 570-fold and those in a direct-detected 13C measurement exceed 400-fold. Thirty-one examples are described to demonstrate the applicability of this technique. PMID:29326984

  12. Electro membrane extraction combined with capillary electrophoresis for the determination of amlodipine enantiomers in biological samples.

    PubMed

    Nojavan, Saeed; Fakhari, Ali Reza

    2010-10-01

    Electro membrane extraction as a new microextraction method was applied for the extraction of amlodipine (AM) enantiomers from biological samples. During the extraction time of 15  min, AM enantiomers migrated from a 3  mL sample solution, through a supported liquid membrane into a 20  μL acceptor solution presented inside the lumen of the hollow fiber. The driving force of the extraction was 200  V potential, with the negative electrode in the acceptor solution and the positive electrode in the sample solution. 2-Nitro phenyl octylether was used as the supported liquid membrane. Using 10  mM HCl as background electrolyte in the sample and acceptor solution, enrichment up to 124 times was achieved. Then, the extract was analyzed using CD modified CE method for separation of AM enantiomers. Best results were achieved using a phosphate running buffer (100  mM, pH 2.0) containing 5  mM hydroxypropyl-α-CD. The range of quantitation for both enantiomers was 10-500  ng/mL. Intra- and interday RSD (n=6) were less than 14%. The limits of quantitation and detection for both enantiomers were 10 and 3  ng/mL respectively. Finally, this procedure was applied to determine the concentration of AM enantiomers in plasma and urine samples.

  13. Apoptosis in liver cancer (HepG2) cells induced by functionalized gold nanoparticles.

    PubMed

    Ashokkumar, Thirunavukkarasu; Prabhu, Durai; Geetha, Ravi; Govindaraju, Kasivelu; Manikandan, Ramar; Arulvasu, Chinnasamy; Singaravelu, Ganesan

    2014-11-01

    An ethnopharmacological approach for biosynthesis of gold nanoparticles is being demonstrated using seed coat of Cajanus cajan. Medicinal value of capping molecule investigated for anticancer activity and results disclose its greater potential. The active principle of the seed coat [3-butoxy-2-hydroxypropyl 2-(2,4-dihydroxyphenyl) acetate] is elucidated. Rapid one-step synthesis yields highly stable, monodisperse (spherical) gold nanoparticles in the size ranging from 9 to 41 nm. Anticancer activity has been studied using liver cancer cells and cytotoxic mechanism has been evaluated using MTT, Annexin-V/PI Double-Staining Assay, Cell cycle, Comet assay and Flow cytometric analysis for apoptosis. The present investigation will open up a new possibility of functionalizing gold nanoparticles for apoptosis studies in liver cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Preparation of monodisperse curcumin-imprinted polymer by precipitation polymerization and its application for the extraction of curcuminoids from Curcuma longa L.

    PubMed

    Kitabatake, Tomoko; Tabo, Hiromi; Matsunaga, Hisami; Haginaka, Jun

    2013-08-01

    A monodisperse molecularly imprinted polymer (MIP) for curcumin was first prepared by precipitation polymerization using methacrylamide (MAM) and 4-vinylpyridine as functional co-monomers, divinylbenzene as a crosslinker, and a mixture of acetonitrile and toluene as a porogen. The use of MAM as the co-monomer resulted in the formation of a monodisperse MIP and non-imprinted polymer (NIP). MIP and NIP, respectively, were monodispersed with a narrow particle size distribution (3.3 ± 0.09 and 3.5 ± 0.10 μm). In addition to shape recognition, hydrophobic and hydrogen-bonding interactions affected the retention and molecular-recognition of curcumin on the MIP. The MIP for curcumin could extract curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin) in Curcuma longa L.

  15. Dietary hydroxypropyl methylcellulose increases excretion of saturated and trans fats by hamsters fed fast food diets.

    PubMed

    Yokoyama, Wallace; Anderson, William H K; Albers, David R; Hong, Yun-Jeong; Langhorst, Marsha L; Hung, Shao-Ching; Lin, Jiann-Tsyh; Young, Scott A

    2011-10-26

    In animal studies, hydroxypropyl methylcellulose (HPMC) intake results in increased fecal fat excretion; however, the effects on dietary saturated fatty acids (SATs) and trans-fatty acids (TRANS) remain unknown. This study investigated the effect of HPMC on digestion and absorption of lipids in male Golden Syrian hamsters fed either freeze-dried ground pizza (PZ), pound cake (PC), or hamburger and fries (BF) supplemented with dietary fiber from either HPMC or microcrystalline cellulose (MCC) for 3 weeks. We observed greater excretion of SATs and TRANS by both diets supplemented with HPMC or MCC as compared to the feed. SAT, TRANS, and unsaturated fatty acids (UNSAT) contents of feces of the PZ diet supplemented with HPMC were 5-8 times higher than diets supplemented with MCC and tended to be higher in the PC- and BF-HPMC supplemented diets as well. We also observed significant increases in fecal excretion of bile acids (2.6-3-fold; P < 0.05), sterols (1.1-1.5-fold; P < 0.05), and unsaturated fatty acids (UNSAT, 1.7-4.5-fold; P < 0.05). The animal body weight gain was inversely correlated with the excretion of fecal lipid concentrations of bile acids (r = -0.56; P < 0.005), sterols (r = -0.48; P < 0.005), SAT (r = -0.69; P < 0.005), UNSAT (r = -0.67; P < 0.005), and TRANS (r = -0.62; P < 0.005). Therefore, HPMC may be facilitating fat excretion in a biased manner with preferential fecal excretion of both TRANS and SAT in hamsters fed fast food diets.

  16. Risk assessment and experimental design in the development of a prolonged release drug delivery system with paliperidone

    PubMed Central

    Iurian, Sonia; Turdean, Luana; Tomuta, Ioan

    2017-01-01

    This study focuses on the development of a drug product based on a risk assessment-based approach, within the quality by design paradigm. A prolonged release system was proposed for paliperidone (Pal) delivery, containing Kollidon® SR as an insoluble matrix agent and hydroxypropyl cellulose, hydroxypropyl methylcellulose (HPMC), or sodium carboxymethyl cellulose as a hydrophilic polymer. The experimental part was preceded by the identification of potential sources of variability through Ishikawa diagrams, and failure mode and effects analysis was used to deliver the critical process parameters that were further optimized by design of experiments. A D-optimal design was used to investigate the effects of Kollidon SR ratio (X1), the type of hydrophilic polymer (X2), and the percentage of hydrophilic polymer (X3) on the percentages of dissolved Pal over 24 h (Y1–Y9). Effects expressed as regression coefficients and response surfaces were generated, along with a design space for the preparation of a target formulation in an experimental area with low error risk. The optimal formulation contained 27.62% Kollidon SR and 8.73% HPMC and achieved the prolonged release of Pal, with low burst effect, at ratios that were very close to the ones predicted by the model. Thus, the parameters with the highest impact on the final product quality were studied, and safe ranges were established for their variations. Finally, a risk mitigation and control strategy was proposed to assure the quality of the system, by constant process monitoring. PMID:28331293

  17. Design, development and evaluation of clopidogrel bisulfate floating tablets.

    PubMed

    Rao, K Rama Koteswara; Lakshmi, K Rajya

    2014-01-01

    The objective of the present work was to formulate and to characterize a floating drug delivery system for clopidogrel bisulphate to improve bioavailability and to minimize the side effects of the drug such as gastric bleeding and drug resistance development. Clopidogrel floating tablets were prepared by direct compression technique by the use of three polymers xanthan gum, hydroxypropyl methylcellulose (HPMC) K15M and HPMC K4M in different concentrations (20%, 25% and 30% w/w). Sodium bicarbonate (15% w/w) and microcrystalline cellulose (30% w/w) were used as gas generating agent and diluent respectively. Studies were carried out on floating behavior and influence of type of polymer on drug release rate. All the formulations were subjected to various quality control and in-vitro dissolution studies in 0.1 N hydrochloric acid (1.2 pH) and corresponding dissolution data were fitted to popular release kinetic equations in order to evaluate release mechanisms and kinetics. All the clopidogrel floating formulations followed first order kinetics, Higuchi drug release kinetics with diffusion as the dominant mechanism of drug release. As per Korsmeyer-Peppas equation, the release exponent "n" ranged 0.452-0.654 indicating that drug release from all the formulations was by non-Fickian diffusion mechanism. The drug release rate of clopidogrel was found to be affected by the type and concentration of the polymer used in the formulation (P < 0.05). As the concentration of the polymer was increased, the drug release was found to be retarded. Based on the results, clopidogrel floating tablets prepared by employing xanthan gum at concentration 25% w/w (formulation F2) was the best formulation with desired in-vitro floating time and drug dissolution.

  18. Development and evaluation of in situ gel of pregabalin

    PubMed Central

    Madan, Jyotsana R; Adokar, Bhushan R; Dua, Kamal

    2015-01-01

    Aim and Background: Pregabalin (PRG), an analog of gamma-aminobutyric acid, reduces the release of many neurotransmitters, including glutamate, and noradrenaline. It is used for the treatment of epilepsy; simple and complex partial convulsion. The present research work aims to ensure a high drug absorption by retarding the advancement of PRG formulation through the gastrointestinal tract. The work aims to design a controlled release PRG formulation which is administered as liquid and further gels in the stomach and floats in gastric juice. Materials and Methods: In situ gelling formulations were prepared using sodium alginate, calcium chloride, sodium citrate, hydroxypropyl methylcellulose (HPMC) K100M, and sodium bicarbonate. The prepared formulations were evaluated for solution viscosity, drug content, in vitro gelling studies, gel strength, and in vitro drug release. The final formulation was optimized using a 32 full factorial design. Results: The formulation containing 2.5% w/v sodium alginate and 0.2% w/v calcium chloride were considered optimum since it showed minimum floating lag time (18 s), optimum viscosity (287.3 cps), and gel strength (4087.17 dyne/cm2). The optimized formulation follows Korsmeyer-Peppas kinetic model with n value 0.3767 representing Fickian diffusion mechanism of drug release. Conclusion: Floating in situ gelling system of PRG can be formulated using sodium alginate as a gelling polymer and calcium chloride as a complexing agent to control the drug release for about 12 h for the treatment of epilepsy. PMID:26682193

  19. [Synthesis of a supermolecular nanoparticle γ-hy-PC/Ada-Dox and its antitumor activity].

    PubMed

    Li, Yong-bin; Wang, Kai; Hu, Tian-nan; Wang, Qi-wen; Hu, Qi-da; Zhou, Jun; Hu, Xiu-rong; Tang, Gu-ping

    2012-11-01

    To synthesize a (2-Hydroxypropyl)-γ-cyclodextrin-polyethylenimine/adamantane-conjugated doxorubicin (γ-hy-PC/Ada-Dox) based supramolecular nanoparticle with host-guest interaction and to identify its physicochemical characterizations and antitumor effect. A novel non-viral gene delivery vector γ-hy-PC/Ada-Dox was synthesized based on host-guest interaction. 1H-NMR, NOESY, UV-Vis, XRD and TGA were used to confirm the structure of the vector. The DNA condensing ability of complexes was investigated by particle size, zeta potential and gel retardation assay. Cytotoxicity of complexes was determined by MTT assay in BEL-7402 and SMMC-7721 cells. Cell wound healing assay was performed in HEK293 and BEL-7404 cells. The transfection efficiency was investigated in HEK293 cells. H/E staining and cell uptake assay was performed in BEL-7402 cells. The structure of γ-hy-PC/Ada-Dox was characterized by 1H-NMR, NOESY, UV-Vis, XRD, TGA. The drug loading was 0.5% and 5.5%. Gel retardation assay showed that γ-hy-PC was able to completely condense DNA at N/P ratio of 2; 0.5% and 5.5% γ-hy-PC/Ada-Dox was able to completely condense DNA at N/P ratio of 3 and 4,respectively. The cytotoxicity of polymers was lower than that of PEI25KDa. The transfection efficiency of γ-hy-PC was higher than that of γ-hy-PC/Ada-Dox at N/P ratio of 30 in HEK293 cells; and the transfection efficiency was decreasing when Ada-Dox loading was increasing. Cell uptake assay showed that γ-hy-PC/Ada-Dox was able to carry drug and FAM-siRNA into cells. The novel vector γ-hy-PC/Ada-Dox has been developed successfully, which has certain transfection efficiency and antitumor activity.

  20. Rapid separation and sensitive determination of banned aromatic amines with plastic microchip electrophoresis.

    PubMed

    Li, Ruina; Wang, Lili; Gao, Xiaotong; Du, Gangfeng; Zhai, Honglin; Wang, Xiayan; Guo, Guangsheng; Pu, Qiaosheng

    2013-03-15

    Rapid analysis of trace amount of aromatic amines in environmental samples and daily necessities has attracted considerable attentions because some of them are strongly toxic and carcinogenic. In this study, fast and efficient electrophoretic separation and sensitive determination of 5 banned aromatic amines were explored for practical analysis using disposable plastic microchips combined with a low-cost laser-induced fluorescence detector. The effect of running buffer and its additive was systematically investigated. Under the selected condition, 5 fluorescein isothiocyanate labeled aromatic amines could be baseline separated within 90s by using a 10mmol/L borate buffer containing 2% (w/v) hydroxypropyl cellulose. Calibration curves of peak areas vs. concentrations were linear up to 40 or 120μmol/L for different analytes and limits of detection were in a range of 1-3nmol/L. Theoretical plate numbers of 6.8-8.5×10(5)/m were readily achieved. The method exhibited good repeatability, relative standard deviations (n=5) of peak areas and migration times were no more than 4.6% and 0.9%, respectively. The established method was successfully applied in the quantitative analysis of these banned aromatic amines in real samples of waste water and textile, recoveries of added standards were 85-110%. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. HPMC supplementation reduces fatty liver, intestinal permeability, and insulin resistance with altered hepatic gene expression in diet-induced obese mice

    USDA-ARS?s Scientific Manuscript database

    The effects of hydroxypropyl methylcellulose (HPMC), a highly viscous nonfermentable soluble dietary fiber, were evaluated on global hepatic gene profiles, steatosis and insulin resistance in high-fat (HF) diet-induced obese (DIO) mice. DIO C57BL/6J mice were fed a HF diet supplemented with either ...

  2. Interactions between sodium dodecyl sulphate and non-ionic cellulose derivatives studied by size exclusion chromatography with online multi-angle light scattering and refractometric detection.

    PubMed

    Wittgren, Bengt; Stefansson, Morgan; Porsch, Bedrich

    2005-08-05

    The novel approach described allows to characterise the surfactant-polymer interaction under several sodium dodecyl sulphate (SDS) concentrations (0-20 mM) using size exclusion chromatography (SEC) with online multi-angle light scattering (MALS) and refractometric (RI) detection. Three different cellulose derivatives, hydroxypropyl cellulose (HPC), hydroxypropyl methyl cellulose (HPMC) and hydroxyethyl cellulose (HEC), have been studied in solution containing 10 mM NaCl and various concentrations of sodium dodecyl sulphate. It is shown that this approach is well suited for successful application of both Hummel-Dreyer and multi-component light scattering principles and yields reliable molecular masses of both the polymer complex and the polymer itself within the complex, the amount of surfactant bound into the complex as well as appropriate values of the refractive index increment (dn/dc)micro, of both the complex and the polymer in question. The more hydrophobic derivatives HPC and HPMC adsorbed significantly more SDS than HEC. The inter-chain interactions close to critical aggregation concentration (cac) were clearly seen for HPC and HPMC as an almost two-fold average increase in polymer molecular mass contained in the complex.

  3. Intranasal hydroxypropyl-β-cyclodextrin-adjuvanted influenza vaccine protects against sub-heterologous virus infection.

    PubMed

    Kusakabe, Takato; Ozasa, Koji; Kobari, Shingo; Momota, Masatoshi; Kishishita, Natsuko; Kobiyama, Kouji; Kuroda, Etsushi; Ishii, Ken J

    2016-06-08

    Intranasal vaccination with inactivated influenza viral antigens is an attractive and valid alternative to currently available influenza (flu) vaccines; many of which seem to need efficient and safe adjuvant, however. In this study, we examined whether hydroxypropyl-β-cyclodextrin (HP-β-CD), a widely used pharmaceutical excipient to improve solubility and drug delivery, can act as a mucosal adjuvant for intranasal flu vaccines. We found that intranasal immunization of mice with hemagglutinin split- as well as inactivated whole-virion influenza vaccine with HP-β-CD resulted in secretion of antigen-specific IgA and IgGs in the airway mucosa and the serum as well. As a result, both HP-β-CD adjuvanted-flu intranasal vaccine protected mice against lethal challenge with influenza virus, equivalent to those induced by experimental cholera toxin-adjuvanted ones. Of note, intranasal use of HP-β-CD as an adjuvant induced significantly lower antigen-specific IgE responses than that induced by aluminum salt adjuvant. These results suggest that HP-β-CD may be a potent mucosal adjuvant for seasonal and pandemic influenza vaccine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Application of mesoscale simulation to explore the aggregate morphology of pH-sensitive nanoparticles used as the oral drug delivery carriers under different conditions.

    PubMed

    Wang, Yan; Chen, Bo Zhi; Liu, Yue Jin; Wu, Zhi Min; Guo, Xin Dong

    2017-03-01

    The pH-sensitive nanoparticles are selected as the potentially promising oral protein and peptide drug carriers due to their excellent performance. With the poly (lactic-co-glycolic acid)/hydroxypropyl methylcellulose phthalate (PLGA/HP55) nanoparticle as a model nanoparticle, the structure-property relationship of nanoparticles with different conditions is investigated by dissipative particle dynamics (DPD) simulations in our work. In the oral drug delivery system, the poly (lactic-co-glycolic acid) (PLGA) is hydrophobic polymer, hydroxypropyl methylcellulose phthalate (HP55) is pH-sensitive enteric polymer which used to protect the nanoparticles through the stomach and polyvinyl alcohol (PVA) is hydrophilic polymer as the stabilizer. It can be seen from DPD simulations that all polymer molecules form spherical core-shell nanoparticles with stabilizer PVA molecules adsorbed on the outer surface of the PLGA/HP55 matrix at certain compositions. The DPD simulation study can provide microscopic insight into the formation and morphological changes of pH-sensitive nanoparticles which is useful for the design of new materials for high-efficacy oral drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Investigation of the effect of hydroxypropyl methylcellulose on the phase transformation and release profiles of carbamazepine-nicotinamide cocrystal.

    PubMed

    Li, Mingzhong; Qiu, Shi; Lu, Yan; Wang, Ke; Lai, Xiaojun; Rehan, Mohammad

    2014-09-01

    The aim of this work was to investigate the influence of hydroxypropyl methylcellulose (HPMC) on the phase transformation and release profile of carbamazepine-nicotinamide (CBZ-NIC) cocrystal in solution and in sustained release matrix tablets. The polymorphic transitions of the CBZ-NIC cocrystal and its crystalline properties were examined by differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Raman spectroscopy, and scanning electron microscopy (SEM). The apparent CBZ solubility and dissolution rate of CBZ-NIC cocrystal were constant in different concentrations of HPMC solutions. In a lower percentage of HPMC in the matrix tablets, the CBZ release profile of the CBZ-NIC cocrystal was nonlinear and declined over time. With an increased HPMC content in the tablets, the CBZ-NIC cocrystal formulation showed a significantly higher CBZ release rate in comparison with the other two formulations of CBZ III and the physical mixture. Because of a significantly improved dissolution rate of the CBZ-NIC cocrystal, the rate of CBZ entering into solution is significantly faster than the rate of formation of the CBZ-HPMC soluble complex in solution, leading to a higher supersaturation level of CBZ and subsequently precipitation of CBZ dihydrate.

  6. Formulation and evaluation of diclofenac controlled release matrix tablets made of HPMC and Poloxamer 188 polymer: An assessment on mechanism of drug release.

    PubMed

    Al-Hanbali, Othman A; Hamed, Rania; Arafat, Mosab; Bakkour, Youssef; Al-Matubsi, Hisham; Mansour, Randa; Al-Bataineh, Yazan; Aldhoun, Mohammad; Sarfraz, Muhammad; Dardas, Abdel Khaleq Yousef

    2018-01-01

    In this study, hydrophilic hydroxypropyl methylcellulose matrices with various concentrations of Poloxamer 188 were used in the development of oral controlled release tablets containing diclofenac sodium. Four formulations of hydrophilic matrix tablets containing 16.7% w/w HPMC and 0, 6.7, 16.7 and 25.0% w/w Poloxamer 188, respectively, were developed. Tablets were prepared by direct compression and characterized for diameter, hardness, thickness, weight and uniformity of content. The influence of various blends of hydroxypropyl methylcellulose and Poloxamer 188 on the in vitro dissolution profile and mechanism of drug release of was investigated. In the four formulations, the rate of drug release decreased with increasing the concentration of Poloxamer 188 at the initial dissolution stages due to the increase in the apparent viscosity of the gel diffusion layer. However, in the late dissolution stages, the rate of drug release increased with increasing Poloxamer 188 concentration due to the increase in wettability and dissolution of the matrix. The kinetic of drug release from the tablets followed non-Fickian mechanism, as predicted by Korsmeyer-Peppas model, which involves diffusion through the gel layer and erosion of the matrix system.

  7. Gelatin-hydroxypropyl methylcellulose water-in-water emulsions as a new bio-based packaging material.

    PubMed

    Esteghlal, Sara; Niakosari, Mehrdad; Hosseini, Seyed Mohammad Hashem; Mesbahi, Gholam Reza; Yousefi, Gholam Hossein

    2016-05-01

    Gelatin and hydroxypropyl methylcellulose (HPMC) are two incompatible and immiscible biopolymers which cannot form homogeneous composite films using usual methods. In this study, to prevent phase separation, gelatin-HPMC water-in-water (W/W) emulsion was utilized to from transparent composite films by entrapment the HPMC dispersed droplets in gelatin continuous network. The physicochemical and mechanical properties of emulsion-based films containing different amounts (5-30%) of dispersed phase were determined and compared with those of individual polymer-based films. Incorporating HPMC into W/W emulsion-based films had no significant effect on the tensile strength. The flexibility of composite films decreased at HPMC concentrations below 20%. The depletion layer at the droplets interface reduced the diffusion of water vapor molecules because of its hydrophobic nature, so the water vapor permeability remained constant. Increasing the HPMC content in the emulsion films increased the swelling and decreased the transparency. The entrapment of HPMC in continuous gelatin phase decreased its solubility. Therefore, W/W emulsions are capable of holding two incompatible polymers alongside each other within a homogeneous film network without weakening the physical properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Pilot-scale electrokinetic movement of HCB and Zn in real contaminated sediments enhanced with hydroxypropyl-beta-cyclodextrin.

    PubMed

    Li, Taiping; Yuan, Songhu; Wan, Jinzhong; Lin, Li; Long, Huayun; Wu, Xiaofeng; Lu, Xiaohua

    2009-08-01

    This study deals with the efficiency of a pilot-scale electrokinetic (EK) treatment on real aged sediments contaminated with hexachlorobenzene (HCB) and Zn. A total of 0.5m(3) of sediments were treated under a constant voltage in a polyvinyl chloride reactor. The changes of sediment pH, electrical conductivity (EC), organic content (OC), the transport of contaminants in sediments and the consumption of electric energy were evaluated. After 100 d processing, sediment pH slightly increased compared with the initial values, particularly in the bottom layer close to cathodic section, while sediment EC in most sections significantly decreased. Sediment OC in all sections increased, which implied that hydroxypropyl-beta-cyclodextrin (HPCD) was successfully penetrated across sediments by electroosmosis. Significant movement of contaminants was observed across sediments with negligible removals. Both HCB and Zn generally moved from sections near anode and accumulated near cathode. Upon the completion of treatment, the electric energy consumption was calculated as 563 kWhm(-3). This pilot-scale EK test indicates that it is difficult to achieve great removal of hydrophobic organic compounds (HOCs), or HOCs and heavy metal mixed contaminants, by EK treatment in large scale with the use of HPCD.

  9. High pressure homogenization to improve the stability of casein - hydroxypropyl cellulose aqueous systems.

    PubMed

    Ye, Ran; Harte, Federico

    2014-03-01

    The effect of high pressure homogenization on the improvement of the stability hydroxypropyl cellulose (HPC) and micellar casein was investigated. HPC with two molecular weights (80 and 1150 kDa) and micellar casein were mixed in water to a concentration leading to phase separation (0.45% w/v HPC and 3% w/v casein) and immediately subjected to high pressure homogenization ranging from 0 to 300 MPa, in 100 MPa increments. The various dispersions were evaluated for stability, particle size, turbidity, protein content, and viscosity over a period of two weeks and Scanning Transmission Electron Microscopy (STEM) at the end of the storage period. The stability of casein-HPC complexes was enhanced with the increasing homogenization pressure, especially for the complex containing high molecular weight HPC. The apparent particle size of complexes was reduced from ~200nm to ~130nm when using 300 MPa, corresponding to the sharp decrease of absorbance when compared to the non-homogenized controls. High pressure homogenization reduced the viscosity of HPC-casein complexes regardless of the molecular weight of HPC and STEM imagines revealed aggregates consistent with nano-scale protein polysaccharide interactions.

  10. High pressure homogenization to improve the stability of casein - hydroxypropyl cellulose aqueous systems

    PubMed Central

    Ye, Ran; Harte, Federico

    2013-01-01

    The effect of high pressure homogenization on the improvement of the stability hydroxypropyl cellulose (HPC) and micellar casein was investigated. HPC with two molecular weights (80 and 1150 kDa) and micellar casein were mixed in water to a concentration leading to phase separation (0.45% w/v HPC and 3% w/v casein) and immediately subjected to high pressure homogenization ranging from 0 to 300 MPa, in 100 MPa increments. The various dispersions were evaluated for stability, particle size, turbidity, protein content, and viscosity over a period of two weeks and Scanning Transmission Electron Microscopy (STEM) at the end of the storage period. The stability of casein-HPC complexes was enhanced with the increasing homogenization pressure, especially for the complex containing high molecular weight HPC. The apparent particle size of complexes was reduced from ~200nm to ~130nm when using 300 MPa, corresponding to the sharp decrease of absorbance when compared to the non-homogenized controls. High pressure homogenization reduced the viscosity of HPC-casein complexes regardless of the molecular weight of HPC and STEM imagines revealed aggregates consistent with nano-scale protein polysaccharide interactions. PMID:24159250

  11. A pilot study of direct delivery of hydroxypropyl-beta-cyclodextrin to the lung by the nasal route in a mouse model of Niemann-Pick C1 disease: motor performance is unaltered and lung disease is worsened.

    PubMed

    Erickson, Robert P; Deutsch, Gail; Patil, Ruturaj

    2018-05-01

    We have tested the efficacy of hydroxypropyl-beta-cyclodextrin (HPBCD) delivered by the nasal route in the mouse model of juvenile Niemann-Pick C1 disease (NPC1), as pulmonary disease has not responded to systemic therapy with this drug. Since mice have no gag reflex, coating of the nasal cavity, with possible access to the brain, would be followed by delivery of HPBCD to the lung. While foamy macrophages, containing stored cholesterol, were found in the Npc1 nmf164 homozygous mice, a marked inflammatory response was found with inhaled HPBCD, both in mutant and wild-type animals. Slight inflammation also occasionally occurred with saline inhalation. There was no difference between the saline-treated, HPBCD-treated, and untreated Npc1 nmf164 homozygous mice for weight, balance beam performance, or coat hanger performance. Interestingly, there was a trend to longer survival in the HPBCD-treated Npc1 nmf164 homozygous mice, which, when combined with the survival times of the saline-treated survivals (each of which was not different), became significant.

  12. Hydroxypropyl-ß-cyclodextrin as a membrane protectant during freeze-drying of hydrogenated and non-hydrogenated liposomes and molecule-in-cyclodextrin-in- liposomes: Application to trans-anethole.

    PubMed

    Gharib, Riham; Greige-Gerges, Hélène; Fourmentin, Sophie; Charcosset, Catherine

    2018-11-30

    The effect of hydrogenation of phospholipids on the characteristics of freeze-dried liposomes was investigated using hydroxypropyl-ß-cyclodextrin (HP-ß-CD) as membrane protectant. The ethanol-injection method was applied to prepare liposomes using hydrogenated (Phospholopion-90H and 80H) and non-hydrogenated phospholipids (Lipoid-S100) in combination with cholesterol. Various liposomal formulations were tested: conventional liposomes (CL) and HP-ß-CD-loaded liposomes (CDL). Liposome suspensions were concentrated by ultracentrifugation; the pellets were reconstituted in water or CD solution and the dispersions were characterized for their size, polydispersity index and zeta potential. Results demonstrated that HP-ß-CD protected only the hydrogenated batches (CL and CDL) during freeze-drying. Moreover, the presence of HP-ß-CD in the aqueous phase of CDL protected them during freeze-drying. Freeze-dried CL and CDL made of phospholipon-90H loading anethole were demonstrated to be physically stable upon reconstitution in HP-ß-CD solutions, and are able to retain anethole after 6 months of storage at 4 °C thereby making them valuable for food applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Solubility profiles, hydration and desolvation of curcumin complexed with γ-cyclodextrin and hydroxypropyl-γ-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Shityakov, Sergey; Salmas, Ramin Ekhteiari; Durdagi, Serdar; Roewer, Norbert; Förster, Carola; Broscheit, Jens

    2017-04-01

    In this study, we investigated curcumin (CUR) solubility profiles and hydration/desolvation effects of this substance formulated with γ-cyclodextrin (γ-CD) and hydroxypropyl-γ-cyclodextrin (HP-γ-CD) excipients. The CUR/HP-γ-CD complex was found to be more stable in solution with the highest apparent stability constant for CUR/HP-γ-CD (Kc = 1.58*104 M-1) as the more soluble form in distilled water. The in silico calculations, including molecular docking, Monte Carlo (MC), and molecular dynamics (MD) simulations, indicated that water molecules play an important role in host-guest complexation mediating the CUR binding to cyclodextrins via hydrogen bond formations. The CUR hydration/desolvation effects contributed to the complex formation by elevating the CUR binding affinity to both CDs. The CUR/HP-γ-CD complex after the CUR hydration was determined with a minimal Gibbs free energy of binding (ΔGbind = -9.93 kcal*mol-1) due to the major hydrophobic (vdW) forces. Overall, the results of this study can aid a development of cyclodextrin-based drug delivery vectors, signifying the importance of water molecules during the formulation processes.

  14. Development of self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system for liver cancer chemotherapy.

    PubMed

    Nittayacharn, Pinunta; Nasongkla, Norased

    2017-07-01

    The objective of this work was to develop self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system for liver cancer chemotherapy and studied the release profiles of doxorubicin (Dox) from different depot formulations. Tri-block copolymers of poly(ε-caprolactone), poly(D,L-lactide) and poly(ethylene glycol) named PLECs were successfully used as a biodegradable material to encapsulate Dox as the injectable local drug delivery system. Depot formation and encapsulation efficiency of these depots were evaluated. Results show that depots could be formed and encapsulate Dox with high drug loading content. For the release study, drug loading content (10, 15 and 20% w/w) and polymer concentration (25, 30, and 35% w/v) were varied. It could be observed that the burst release occurred within 1-2 days and this burst release could be reduced by physical mixing of hydroxypropyl-beta-cyclodextrin (HP-β-CD) into the depot system. The degradation at the surface and cross-section of the depots were examined by Scanning Electron Microscope (SEM). In addition, cytotoxicity of Dox-loaded depots and blank depots were tested against human liver cancer cell lines (HepG2). Dox released from depots significantly exhibited potent cytotoxic effect against HepG2 cell line compared to that of blank depots. Results from this study reveals an important insight in the development of injectable drug delivery system for liver cancer chemotherapy. Schematic diagram of self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system and in vitro characterizations. (a) Dox-loaded PLEC depots could be formed with more than 90% of sustained-release Dox at 25% polymer concentration and 20% Dox-loading content. The burst release occurred within 1-2 days and could be reduced by physical mixing of hydroxypropyl-beta-cyclodextrin (HP-β-CD) into the depot system. (b) Dox released from depots significantly exhibited potent cytotoxic effect against human liver cancer cell lines (HepG2 cell line) compared to that of blank depots. (c) Dox-loaded depots showed bulk erosion with hollow core at day 60.

  15. Complexation of morin with three kinds of cyclodextrin. A thermodynamic and reactivity study

    NASA Astrophysics Data System (ADS)

    Jullian, Carolina; Orosteguis, Teresita; Pérez-Cruz, Fernanda; Sánchez, Paulina; Mendizabal, Fernando; Olea-Azar, Claudio

    2008-11-01

    Properties of inclusion complexes between morin (M) and β-cyclodextrin (βCD), 2-hydroxypropyl-β-cyclodextrin (HPβCD) and Heptakis (2,6- O-di methyl) β-cyclodextrin (DMβCD) such as aqueous solubility and the association constants of this complex have been determined. The water solubility of morin was increased by inclusion with cyclodextrins. The phase-solubility diagrams drawn from UV spectral measurements are of the A L-type. Also ORAC FL studies were done. An increase in the antioxidant reactivity is observed when morin form inclusion complex with the three cyclodextrin studied. Finally, thermodynamics studies of cyclodextrin complexes indicated that for DMβCD the inclusion is primarily enthalpy-driven process meanwhile βCD and HPβCD are entropy-driven processes. This is corroborated by the different inclusion geometries obtained by 2D-NMR.

  16. Preventing Small Molecule Nucleation and Crystallization by Sequestering in a Micelle Corona

    NASA Astrophysics Data System (ADS)

    Li, Ziang; Johnson, Lindsay; Ricarte, Ralm; Yao, Letitia; Hillmyer, Marc; Bates, Frank; Lodge, Timothy

    We exploited a blend of hydroxypropyl methylcellulose acetate succinate and poly(N-isopropylacrylamide) (PNIPAm) to improve the solubility and dissolution of a rapidly crystallizing model drug molecule phenytoin and observed synergistic effect in vitro at constant drug loading by varying the blending ratio. Dynamic and static light scattering experiments showed that PNIPAm self-assembled into micelles in aqueous solution. We believe that adding these PNIPAm micelles inhibited both nucleation and crystal growth of phenytoin based on the polarized light micrographs taken from the dissolution media. The drug-polymer intermolecular interaction was revealed by nuclear Overhauser effect spectroscopy and further quantified by diffusion ordered spectroscopy. We found that the phenytoin molecules were sequestered in aqueous solution by partitioning into the corona of the micelle. The blend strategy through the use of self-assembled micelles showcased in this study offers a new platform for designing advanced excipients for oral drug delivery. This study was funded by The Dow Chemical Company through Agreement 224249AT with the University of Minnesota.

  17. Role of central and peripheral adenosine receptors in the cardiovascular responses to intraperitoneal injections of adenosine A1 and A2A subtype receptor agonists.

    PubMed

    Schindler, Charles W; Karcz-Kubicha, Marzena; Thorndike, Eric B; Müller, Christa E; Tella, Srihari R; Ferré, Sergi; Goldberg, Steven R

    2005-03-01

    1. The cardiovascular effects of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) and the adenosine A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) were investigated in rats implanted with telemetry transmitters for the measurement of blood pressure and heart rate. 2. Intraperitoneal (i.p.) injections of the adenosine A1 receptor agonist CPA led to dose-dependent decreases in both blood pressure and heart rate. These effects of 0.3 mg kg(-1) CPA were antagonized by i.p. injections of the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dimethyl-xanthine (CPT), but not by i.p. injections of the adenosine A2A receptor antagonist 3-(3-hydroxypropyl)-8-(m-methoxystyryl)-7-methyl-1-propargylxanthine phosphate disodium salt (MSX-3). Injections (i.p.) of the peripherally acting nonselective adenosine antagonist 8-sulfophenyltheophylline (8-SPT) and the purported nonselective adenosine antagonist caffeine also antagonized the cardiovascular effects of CPA. 3. The adenosine A2A agonist CGS 21680 given i.p. produced a dose-dependent decrease in blood pressure and an increase in heart rate. These effects of 0.5 mg kg(-1) CGS 21680 were antagonized by i.p. injections of the adenosine A2A receptor antagonist MSX-3, but not by i.p. injections of the antagonists CPT, 8-SPT or caffeine. 4. Central administration (intracerebral ventricular) of CGS 21680 produced an increase in heart rate, but no change in blood pressure. MSX-3 given i.p. antagonized the effects of the central injection of CGS 21680. 5. These results suggest that adenosine A1 receptor agonists produce decreases in blood pressure and heart rate that are mediated by A1 receptors in the periphery, with little or no contribution of central adenosine A1 receptors to those effects. 6. The heart rate increasing effect of adenosine A2A agonists appears to be mediated by adenosine A2A receptors in the central nervous system. The blood pressure decreasing effect of adenosine A2A agonists is most probably mediated in the periphery.

  18. Synthesis of Photocrosslinkable and Amine Containing Multifunctional Nanoparticles via Polymerization-Induced Self-Assembly.

    PubMed

    Huang, Jianbing; Li, Decai; Liang, Hui; Lu, Jiang

    2017-08-01

    Photo-crosslinkable and amine-containing block copolymer nanoparticles are synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization-induced self-assembly of a multifunctional core-forming monomer, 2-((3-(4-(diethylamino)phenyl)acryloyl)oxy)ethyl methacrylate (DEMA), using poly(2-hydroxypropyl methacrylate) macromolecular chain transfer agent as a steric stabilizer in methanol at 65 °C. By tuning the chain length of PDEMA, a range of nanoparticle morphologies (sphere, worm, and vesicle) can be obtained. Since cinnamate groups can easily undergo a [2 + 2] cycloaddition of the carbon-carbon double bonds upon UV irradiation, the as-prepared block copolymer nanoparticles are readily stabilized by photo-crosslinking to produce anisotropic nanoparticles. The crosslinked block copolymer nanoparticles can be used as templates for in situ formation polymer/gold hybrid nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. [Characteristics of cationic polymers PEI-CyD, PEI-PHPA, PEE-PHPA and PEI25kD in vitro and in vivo].

    PubMed

    Yao, Qi; Jin, Xue; Hu, Tian-nan; Wang, Qi-wen; Wang, Xun-shi; Hu, Qi-da; Xu, Sang; Zhou, Jun; Tang, Gu-ping

    2012-11-01

    To study the characteristics of cationic polymers polyethylenimine-β-cyclodextrin (PEI-CyD), polyethylenimine-poly-(3-hydroxypropyl)-aspartamide (PEI-PHPA), N,N-Dimethyldipropylenetriamine-Bis(3-aminopropyl)amine-aspartamide (PEE-PHPA) in vitro and in vivo. PEI-PHPA, PEI-CyD and PEE-PHPA were synthesized and the chemistry structure of PEI-PHPA, PEI-CyD and PEE-PHPA was confirmed by (1)H-NMR. The particle size and zeta potential of these polymers were measured, and capacity of plasmid DNA condensation was tested. The inhibition of COS-7, A549, HEK293 and C6 cells was measured by MTT assay. The transfection efficiency was determined in HEK293 cell lines. The toxicity, tissue distribution and transfection efficiency of cationic polymers were tested in vivo. When the N/P of polymers/DNA at 30, the particle sizes were close 250 nm and the zeta-potential were near 35 mv. They were able to condense DNA at N/P ratio < 5. The MTT assay showed that the IC(50) of PEE-PHPA was 21.5, 20.2, 7.30 and 37.1 μg/ml, and that of PEI25kD was 15.8, 18.3, 11.4 and 36.7 μg/ml in C6, COS-7, A549 and HEK293cell lines, respectively. The cell viability of PEI-CyD and PEI-PHPA in above cell lines was over 60%. They had high transfection efficiency in HEK293 cell lines. The LD(50) of PEI25Kd, PEI-CyD, PEI-PHPA and PEE-PHPA in vivo was 19.50, 100.4, 521.2 and 630.0, respectively by intraperitoneal (ip) injection. The contractions of these polymers were higher in kidney than in other organs and tissues.PEE-PHPA had slight effect on kidney and liver function. PEE and PEI25kD have higher transfection efficiency and higher toxicity; while PC and PHPA-PEI have lower toxicity and higher transfection efficiency to be used as non-viral gene vector.

  20. Use of Edible Laminate Layers in Intermediate Moisture Food Rations to Inhibit Moisture Migration

    DTIC Science & Technology

    2016-04-29

    methylcellulose, propylene glycol, citric acid, modified starch , white beeswax Water resistant coating on one side Watson, Inc. Dual-sided HPMC moisture...barrier film Hydroxypropyl methylcellulose, propylene glycol, citric acid, modified starch , white beeswax Water resistant coating on both sides...Moisture Barrier (BWMB) film #1 Pullulan*, beeswax, glycerin, propylene glycol, starch , polysorbate 80 Water soluble Watson, Inc. Pullulan BWMB film

  1. Predicting the Binding Mode of 2-Hydroxypropyl-β-cyclodextrin to Cholesterol by Means of the MD Simulation and the 3D-RISM-KH Theory.

    PubMed

    Hayashino, Yuji; Sugita, Masatake; Arima, Hidetoshi; Irie, Tetsumi; Kikuchi, Takeshi; Hirata, Fumio

    2018-03-19

    It has been found that a cyclodextrin derivative, 2-hydroxypropyl-β-cyclodextrin (HPβCD), has reasonable therapeutic effect on Niemann-Pick disease type C, which is caused by abnormal accumulation of unesterified cholesterol and glycolipids in the lysosomes and shortage of esterified cholesterol in other cellular compartments. We study the binding affinity and mode of HPβCD with cholesterol to elucidate the possible mechanism of HPβCD for removing cholesterol from the lysosomes. The dominant binding mode of HPβCD with cholesterol is found based on the molecular dynamics simulation and a statistical mechanics theory of liquids, or the three-dimensional reference interaction site model theory with Kovalenko-Hirata closure relation. We examine the two types of complexes between HPβCD and cholesterol, namely, one-to-one (1:1) and two-to-one (2:1). It is predicted that the 1:1 complex makes two or three types of stable binding mode in solution, in which the βCD ring tends to be located at the edge of the steroid skeleton. For the 2:1 complex, there are four different types of the complex conceivable, depending on the orientation between the two HPβCDs: head-to-head (HH), head-to-tail (HT), tail-to-head (TH), and tail-to-tail (TT). The HT and HH cyclodextrin dimers show higher affinity to cholesterol compared to the other dimers and to all the binding modes of 1:1 complexes. The physical reason why the HT and HH dimers have higher affinity compared to the other complexes is discussed based on the consistency with the 1:1 complex. On the one hand, in case of the HT and HH dimers, the position of each CD in the dimer along the cholesterol chain comes right on or close to one of the positions where a single CD makes a stable complex. On the other hand, one of the CD molecules is located on unstable region along the cholesterol chain, for the case of TH and TT dimers.

  2. Skin transport of PEGylated poly(ε-caprolactone) nanoparticles assisted by (2-hydroxypropyl)-β-cyclodextrin.

    PubMed

    Conte, Claudia; Costabile, Gabriella; d'Angelo, Ivana; Pannico, Marianna; Musto, Pellegrino; Grassia, Gianluca; Ialenti, Armando; Tirino, Pasquale; Miro, Agnese; Ungaro, Francesca; Quaglia, Fabiana

    2015-09-15

    The aim of this work was to investigate the potential of small nanoparticles (NPs) made of a poly(ethylene glycol)-poly(ε-caprolactone)-amphiphilic diblock copolymer (PEG-b-PCL, PEG=2kDa and PCL=4.2kDa) as drug carrier system through the skin. Zinc(II) phthalocyanine (ZnPc), selected as lipophilic and fluorescent model molecule, was loaded inside NPs by a melting/sonication procedure. Loaded NPs with a hydrodynamic diameter around 60nm, a slightly negative zeta potential and a ZnPc entrapment dependent on polymer/ZnPc ratio were obtained. Spectroscopic investigations evidenced that ZnPc was entrapped in monomeric form maintaining its emission properties. The transport of ZnPc through porcine ear skin was evaluated on Franz-type diffusion cells after treatment with different vehicles (water or PEG 0.4kDa) containing free ZnPc or ZnPc-loaded NPs without and with (2-hydroxypropyl)-β-cyclodextrin (HPβCD) as permeation enhancer. Independently of the sample tested, ZnPc was transported in the skin without reaching receptor compartment. On the other hand, ZnPc was found in the skin in large amount and also in the viable epidermis when delivered through NPs associated with HPβCD, especially in conditions limiting water evaporation. Fluorescence images of skin samples after 24h of permeation were in line with ZnPc dosage in the skin and demonstrated the ability of NPs covalently tagged with rhodamine to penetrate the skin and to locate in the intercellular spaces. Insight into skin chemical properties upon application of NPs by confocal Raman spectroscopy demonstrated that HPβCD caused an alteration of water profile in the skin, highly reducing the degree of hydration at stratum corneum/viable epidermis interface which can promote NP transport. Taken together, these results highlight PEG-b-PCL NPs coupled with HPβCD as a novel vehicle for the skin delivery of highly lipophilic compounds paving the way to several applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Development and optimization of carvedilol orodispersible tablets: enhancement of pharmacokinetic parameters in rabbits

    PubMed Central

    Aljimaee, Yazeed HM; El-Helw, Abdel-Rahim M; Ahmed, Osama AA; El-Say, Khalid M

    2015-01-01

    Background Carvedilol (CVD) is used for the treatment of essential hypertension, heart failure, and systolic dysfunction after myocardial infarction. Due to its lower aqueous solubility and extensive first-pass metabolism, the absolute bioavailability of CVD does not exceed 30%. To overcome these drawbacks, the objective of this work was to improve the solubility and onset of action of CVD through complexation with hydroxypropyl-β-cyclodextrin and formulation of the prepared complex as orodispersible tablets (ODTs). Methods Compatibility among CVD and all tablet excipients using differential scanning calorimetry and Fourier transform infrared spectroscopy, complexation of CVD with different polymers, and determination of the solubility of CVD in the prepared complexes were first determined. A Box-Behnken design (BBD) was used to study the effect of tablet formulation variables on the characteristics of the prepared tablets and to optimize preparation conditions. According to BBD design, 15 formulations of CVD-ODTs were prepared by direct compression and then evaluated for their quality attributes. The relative pharmacokinetic parameters of the optimized CVD-ODTs were compared with those of the marketed CVD tablet. A single dose, equivalent to 2.5 mg/kg CVD, was administered orally to New Zealand white rabbits using a double-blind, randomized, crossover design. Results The solubility of CVD was improved from 7.32 to 22.92 mg/mL after complexation with hydroxypropyl-β-cyclodextrin at a molar ratio of 1:2 (CVD to cyclodextrin). The formulated CVD-ODTs showed satisfactory results concerning tablet hardness (5.35 kg/cm2), disintegration time (18 seconds), and maximum amount of CVD released (99.72%). The pharmacokinetic data for the optimized CVD-ODT showed a significant (P<0.05) increase in maximum plasma concentration from 363.667 to 496.4 ng/mL, and a shortening of the time taken to reach maximum plasma concentration to 2 hours in comparison with the marketed tablet. Conclusion The optimized CVD-ODTs showed improved oral absorption of CVD and a subsequent acceleration of clinical effect, which is favored for hypertensive and cardiac patients. PMID:25834396

  4. Synthesis and characterization of nano-encapsulated black pepper oleoresin using hydroxypropyl beta-cyclodextrin for antioxidant and antimicrobial applications.

    PubMed

    Teixeira, Bruna N; Ozdemir, Necla; Hill, Laura E; Gomes, Carmen L

    2013-12-01

    Previous studies have reported antimicrobial and antioxidant activity of black pepper oleoresin which is associated to its phenolic compounds and piperine. The ability of cyclodextrins to form an inclusion complex with a guest molecule could improve black pepper oleoresin application, bioavailability, and stability in foods. Hydroxypropyl beta-cyclodextrin (HPBCD) inclusion complex with black pepper olereosin were synthesized using the kneading method and characterized for its physico-chemical properties and its antioxidant and antimicrobial activities. Inclusion complex size was 103.9 ± 7.6 nm and indicated to be a polydisperse system. The entrapment efficiency was 78.3 ± 3.6%, which suggests that other constituents in black pepper oleoresin have higher affinities for HPBCD than piperine (major compound in black pepper oleoresin). Thermograms showed the disappearance of oxidation peaks of black pepper oleoresin, proving complex formation with HPBCD. Phase solubility results indicated 1:1 stoichiometric inclusion complex formation and an increase of black pepper oleoresin aqueous solubility with HPBCD concentration. Nano-encapsulation with HPBCD did not affect (P > 0.05) total phenolic content; however, it enhanced (P < 0.05) black pepper oleoresin antioxidant activity. Black pepper oleoresin and its inclusion complex were analyzed for their antimicrobial activity against Escherichia coli K12 and Salmonella enterica serovar Typhimurium LT2. Both free and encapsulated black pepper oleoresin effectively inhibited bacterial growth within the concentration range tested. Black pepper oleoresin encapsulated in HPBCD was able to inhibit Salmonella at lower (P < 0.05) concentrations than its corresponding free extract. Therefore, black pepper oleoresin-HPBCD nanocapsules could have important applications in the food industry as antimicrobial and antioxidant system. © 2013 Institute of Food Technologists®

  5. Preparation and characterization of pH-sensitive methyl methacrylate-g-starch/hydroxypropylated starch hydrogels: in vitro and in vivo study on release of esomeprazole magnesium.

    PubMed

    Kumar, Pankaj; Ganure, Ashok Laxmanrao; Subudhi, Bharat Bhushan; Shukla, Shubhanjali

    2015-06-01

    In the present study, novel hydrogels were prepared through graft copolymerization of methyl methacrylate onto starch and hydroxypropylated starch for intestinal drug delivery. The successful grafting has been confirmed by FTIR, NMR spectroscopy, and elemental analysis. Morphological examination of copolymeric hydrogels by scanning electron microscopy (SEM) confirms the macroporous nature of the copolymers. The high decomposition temperature was observed in thermograms indicating the thermal stability of the hydrogels. To attain a hydrogel with maximum percent graft yield, the impact of reaction variables like concentration of ceric ammonium nitrate as initiator and methyl methacrylate as monomer were consistently optimized. X-ray powder diffraction and differential scanning calorimetric analysis supported the successful entrapment of the drug moiety (esomeprazole magnesium; proton pump inhibitor) within the hydrogel network. Drug encapsulation efficiency of optimized hydrogels was found to be >78%. Furthermore, swelling capacity of copolymeric hydrogels exhibited a pH-responsive behavior which makes the synthesized hydrogels potential candidates for controlled delivery of medicinal agents. In vitro drug release was found to be sustained up to 14 h with 80-90% drug release in pH 6.8 solution; however, the cumulative release was 40-45% in pH 1.2. The gastrointestinal transit behavior of optimized hydrogel was determined by gamma scintigraphy, using (99m)Tc as marker. The amount of radioactive tracer released from the labeled hydrogel was minimal when the hydrogel was in the stomach, whereas it increased as hydrogel reached in intestine. Well-correlated results of in vitro and in vivo analysis proved their controlled release behavior with preferential delivery into alkaline pH environment.

  6. Formulation and Characterization of Fast-Dissolving Sublingual Film of Iloperidone Using Box-Behnken Design for Enhancement of Oral Bioavailability.

    PubMed

    Londhe, Vaishali; Shirsat, Rucha

    2018-04-01

    Iloperidone is a second-generation antipsychotic drug which is used for the treatment of schizophrenia and has very low aqueous solubility and bioavailability. This drug also undergoes first-pass metabolism. The aim of this work is to formulate fast-dissolving sublingual films of iloperidone to improve its bioavailability. Sublingual films were prepared by solvent casting method. Hydroxypropyl methyl cellulose E5, propylene glycol 400, and transcutol HP were optimized using Box-Behnken three-level statistical design on the basis of disintegration time and folding endurance of films. Iloperidone:hydroxypropyl-β-cyclodextrin kneaded complex was used in films instead of plain drug due to its low solubility. Optimized film was further evaluated for drug content, pH, dissolution studies, ex vivo permeation studies, and pharmacokinetic studies in rats. The optimized film disintegrated within 30 s. The in vitro dissolution of the film showed 80.3 ± 3.4% drug dissolved within first 5 min. In ex vivo permeation studies using sublingual tissue, flux achieved within first 15 min by film was around 117.1 ± 0.35 (mcg/cm 2 /h) which was ten times more than that of plain drug. This formulation showed excellent uniformity. AUC and C max of film were significantly higher (p < 0.001) as compared to plain drug and relative bioavailability of the films was 148% when compared to the plain drug. Thus, this study showed optimized fast-dissolving sublingual film to improve permeation and bioavailability of iloperidone. Fast-dissolving films will be customer-friendly approach for geadiatric schizophrenic patients.

  7. Involvement of adenosine A1 and A2A receptors in the adenosinergic modulation of the discriminative-stimulus effects of cocaine and methamphetamine in rats.

    PubMed

    Justinova, Zuzana; Ferre, Sergi; Segal, Pavan N; Antoniou, Katerina; Solinas, Marcello; Pappas, Lara A; Highkin, Jena L; Hockemeyer, Jorg; Munzar, Patrik; Goldberg, Steven R

    2003-12-01

    Adenosine, by acting on adenosine A1 and A2A receptors, is known to antagonistically modulate dopaminergic neurotransmission. We have recently reported that nonselective adenosine receptor antagonists (caffeine and 3,7-dimethyl-1-propargylxanthine) can partially substitute for the discriminative-stimulus effects of methamphetamine. In the present study, by using more selective compounds, we investigated the involvement of A1 and A2A receptors in the adenosinergic modulation of the discriminative-stimulus effects of both cocaine and methamphetamine. The effects of the A1 receptor agonist N6-cyclopentyladenosine (CPA; 0.01-0.1 mg/kg) and antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT; 1.3-23.7 mg/kg) and the A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS 21680; 0.03-0.18 mg/kg) and antagonist 3-(3-hydroxypropyl)-8-(3-methoxystyryl)-7-methyl-1-propargylxanthin phosphate disodium salt (MSX-3; 1-56 mg/kg) were evaluated in rats trained to discriminate either 1 mg/kg methamphetamine or 10 mg/kg cocaine from saline under a fixed-ratio 10 schedule of food presentation. The A1 and A2A receptor antagonists (CPT and MSX-3) both produced high levels of drug-lever selection when substituted for either methamphetamine or cocaine and significantly shifted dose-response curves of both psychostimulants to the left. Unexpectedly, the A2A receptor agonist CGS 21680 also produced drug-appropriate responding (although at lower levels) when substituted for the cocaine-training stimulus, and both CGS 21680 and the A1 receptor agonist CPA significantly shifted the cocaine dose-response curve to the left. In contrast, both agonists did not produce significant levels of drug-lever selection when substituted for the methamphetamine-training stimulus and failed to shift the methamphetamine dose-response curve. Therefore, adenosine A1 and A2A receptors appear to play important but differential roles in the modulation of the discriminative-stimulus effects of methamphetamine and cocaine.

  8. Dual release and molecular mechanism of bilayered aceclofenac tablet using polymer mixture.

    PubMed

    Van Nguyen, Hien; Nguyen, Van Hong; Lee, Beom-Jin

    2016-12-30

    The objectives of the present study were to develop a controlled-release bilayered tablet of aceclofenac (AFN) 200mg with dual release and to gain a mechanistic understanding of the enhanced sustained release capability achieved by utilizing a binary mixture of the sustained release materials. Different formulations of the sustained-release layer were formulated by employing hydroxypropyl methylcellulose (HPMC) and hydroxypropyl cellulose (HPC) as the major retarding polymers. The in vitro dissolution studies of AFN bilayered tablets were carried out in intestinal fluid (pH 6.8 buffer). The mechanism of the synergistic rate-retarding effect of the polymer mixture containing HPC and carbomer was elucidated by the rate of swelling and erosion in intestinal fluid and the molecular interactions in the polymer network. The optimized bilayered tablets had similar in vitro dissolution profiles to the marketed tablet Clanza ® CR based on the similarity factor (f2) in combination with their satisfactory micromeritic, physicochemical properties, and stability profiles. Drug release from HPMC-based matrix was controlled by non-Fickian transport, while drug release from HPC-based matrix was solely governed by drug diffusion. The swelling and erosion data exhibited a dramatic increase of water uptake and a reduction of weight loss in the polymer mixture-loaded tablet. Fourier transform infrared (FTIR) spectra revealed strong hydrogen bonding between HPC and carbomer in the polymer mixture. Regarding spatial distribution of polymers in the polymer mixture-loaded tablet, carbomer was found to be the main component of the gel layer during the first 2h of the hydration process, which was responsible for retarding drug release at initial stage. This process was then followed by a gradual transition of HPC from the glassy core to the gel layer for further increasing gel strength. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Nicotinamide polymeric nanoemulsified systems: a quality-by-design case study for a sustained antimicrobial activity

    PubMed Central

    Zidan, Ahmed S; Ahmed, Osama AA; Aljaeid, Bader M

    2016-01-01

    Nicotinamide, the amide form of vitamin B3, was demonstrated to combat some of the antibiotic-resistant infections that are increasingly common around the world. The objective of this study was to thoroughly understand the formulation and process variabilities affecting the preparation of nicotinamide-loaded polymeric nanoemulsified particles. The quality target product profile and critical quality attributes of the proposed product were presented. Plackett–Burman screening design was employed to screen eight variables for their influences on the formulation’s critical characteristics. The formulations were prepared by an oil-in-water emulsification followed by solvent replacement. The prepared systems were characterized by entrapment capacity (EC), entrapment efficiency (EE), particle size, polydispersity index, zeta potential, transmission electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction, in vitro drug release, and their antibacterial activity against bacterial scrums. EC, EE, particle size, polydispersity index, zeta potential, and percentage release in 24 hours were found to be in the range of 33.5%–68.8%, 53.1%–67.1%, 43.3–243.3 nm, 0.08–0.28, 9.5–53.3 mV, and 5.8%–22.4%, respectively. One-way analysis of variance and Pareto charts revealed that the experimental loadings of 2-hydroxypropyl-β-cyclodextrin and Eudragit® S100 were the most significant for their effects on nicotinamide EC and EE. Moreover, the polymeric nanoemulsified particles demonstrated a sustained release profile for nicotinamide. The Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction demonstrated a significant interaction between the drug and 2-hydroxypropyl-β-cyclodextrin that might modulate the sustained release behavior. Furthermore, the formulations provided a sustained antibacterial activity that depended on nicotinamide-loading concentration, release rate, and incubation time. In conclusion, the study demonstrated the potential of polymeric nanoemulsified system to sustain the release and antibacterial activity of nicotinamide. PMID:27110111

  10. Evaluating food additives as antifungal agents against Monilinia fructicola in vitro and in hydroxypropyl methylcellulose-lipid composite edible coatings for plums.

    PubMed

    Karaca, Hakan; Pérez-Gago, María B; Taberner, Verònica; Palou, Lluís

    2014-06-02

    Common food preservative agents were evaluated in in vitro tests for their antifungal activity against Monilinia fructicola, the most economically important pathogen causing postharvest disease of stone fruits. Radial mycelial growth was measured in Petri dishes of PDA amended with three different concentrations of the agents (0.01-0.2%, v/v) after 7 days of incubation at 25 °C. Thirteen out of fifteen agents tested completely inhibited the radial growth of the fungus at various concentrations. Among them, ammonium carbonate, ammonium bicarbonate and sodium bicarbonate were the most effective while sodium acetate and sodium formate were the least effective. The effective agents and concentrations were tested as ingredients of hydroxypropyl methylcellulose (HPMC)-lipid edible coatings against brown rot disease on plums previously inoculated with M. fructicola (curative activity). 'Friar' and 'Larry Ann' plums were inoculated with the pathogen, coated with stable edible coatings about 24h later, and incubated at 20 °C and 90% RH. Disease incidence (%) and severity (lesion diameter) were determined after 4, 6, and 8 days of incubation and the 'area under the disease progress stairs' (AUDPS) was calculated. Coatings containing bicarbonates and parabens significantly reduced brown rot incidence in plums, but potassium sorbate, used at 1.0% in the coating formulation, was the most effective agent with a reduction rate of 28.6%. All the tested coatings reduced disease severity to some extent, but coatings containing 0.1% sodium methylparaben or sodium ethylparaben or 0.2% ammonium carbonate or ammonium bicarbonate were superior to the rest, with reduction rates of 45-50%. Overall, the results showed that most of the agents tested in this study had significant antimicrobial activity against M. fructicola and the application of selected antifungal edible coatings is a promising alternative for the control of postharvest brown rot in plums. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A test for measuring gustatory function.

    PubMed

    Smutzer, Gregory; Lam, Si; Hastings, Lloyd; Desai, Hetvi; Abarintos, Ray A; Sobel, Marc; Sayed, Nabil

    2008-08-01

    The purpose of this study was to determine the usefulness of edible taste strips for measuring human gustatory function. The physical properties of edible taste strips were examined to determine their potential for delivering threshold and suprathreshold amounts of taste stimuli to the oral cavity. Taste strips were then assayed by fluorescence to analyze the uniformity and distribution of bitter tastant in the strips. Finally, taste recognition thresholds for sweet taste were examined to determine whether or not taste strips could detect recognition thresholds that were equal to or better than those obtained from aqueous tests. Edible strips were prepared from pullulan-hydroxypropyl methylcellulose solutions that were dried to a thin film. The maximal amount of a tastant that could be incorporated in a 2.54 cm2 taste strip was identified by including representative taste stimuli for each class of tastant (sweet, sour, salty, bitter, and umami) during strip formation. Distribution of the bitter tastant quinine hydrochloride in taste strips was assayed by fluorescence emission spectroscopy. The efficacy of taste strips for evaluating human gustatory function was examined by using a single series ascending method of limits protocol. Sucrose taste recognition threshold data from edible strips was then compared with results that were obtained from a standard "sip and spit" recognition threshold test. Edible films that formed from a pullulan-hydroxypropyl methylcellulose polymer mixture can be used to prepare clear, thin strips that have essentially no background taste and leave no physical presence after release of tastant. Edible taste strips could uniformly incorporate up to 5% of their composition as tastant. Taste recognition thresholds for sweet taste were over one order of magnitude lower with edible taste strips when compared with an aqueous taste test. Edible taste strips are a highly sensitive method for examining taste recognition thresholds in humans. This new means of presenting taste stimuli should have widespread applications for examining human taste function in the laboratory, in the clinic, or at remote locations.

  12. [Etiological and molecular characteristics of diarrhea caused Proteus mirabilis].

    PubMed

    Shi, Xiaolu; Hu, Qinghua; Lin, Yiman; Qiu, Yaqun; Li, Yinghui; Jiang, Min; Chen, Qiongcheng

    2014-06-01

    To analyze the etiological characteristics, virulence genes and plasmids that carrying diarrhea-causing Proteus mirabilis and to assess their relationship with drug resistance and pathogenicity. Proteus mirabilis coming from six different sources (food poisoning, external environment and healthy people) were analyzed biochemically, on related susceptibility and pulsed-field gel electrophoresis (PFGE). Virulence genes were detected by PCR. Plasmids were extracted and sequenced after gel electrophoresis purification. The biochemical characteristics of Proteus mirabilis from different sources seemed basically the same, and each of them showed having common virulence genes, as ureC, rsmA, hpmA and zapA. However, the PFGE patterns and susceptibility of these strains were different, so as the plasmids that they carried. Plasmid that presented in the sequenced strain showed that the 2 683 bp length plasmid encodes qnrD gene was associated with the quinolone resistance. Etiological characteristics and molecular characteristics of Proteus mirabilis gathered from different sources, were analyzed. Results indicated that traditional biochemical analysis and common virulence gene identification might be able to distinguish the strains with different sources. However, PFGE and plasmids analysis could distinguish the sources of strains and to identify those plasmids that commonly carried by the drug-resistant strains. These findings also provided theoretical basis for further study on the nature of resistance and pathogenicity in Proteus mirabilis.

  13. Development of a dual-analyte fluorescent sensor for the determination of bioactive nitrite and selenite in water samples.

    PubMed

    Martínez-Tomé, M J; Esquembre, R; Mallavia, R; Mateo, C R

    2010-01-20

    Nitrite and selenium are two bioactive compounds found in the environment which show beneficial effects for health at low levels but have toxic effects at higher doses. Consequently, quantification of both analytes in water samples results of great interest in areas such as biomedicine, food technology and environmental analysis. In a recent paper, we immobilized the inclusion complex formed between 2,3-diaminonaphthalene (DAN) and 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CD) in a sol-gel matrix, in order to prepare a highly sensitive reagentless fluorescence-based sensor for the specific measurement of nitrite. Here we have explored the possibility of using the sol-gel immobilized complex to quantify selenite (Se (IV)), the more toxic form of selenium, as well as to act as a dual-analyte chemical sensor for simultaneous quantification of both nitrite and selenite in aqueous samples. Results show that (a) inclusion of DAN in HP-beta-CD and its subsequent immobilization in a sol-gel matrix do not modify the reactivity of DAN against selenite, (b) the reaction product formed (4,5-benzopiazselenol) remains into the cyclodextrin increasing considerably its fluorescence quantum yield and avoiding, therefore, its extraction into organic solvents, (c) the developed sensor can detect selenite concentrations at submicromolar level with a minimum detection limit of 13 nM, (d) the immobilized system is able to simultaneously quantify nitrite and selenite at submicromolar concentrations in natural water samples with no further sample pre-treatment.

  14. Effect of drug lipophilicity on in vitro release rate from oil vehicles using nicotinic acid esters as model prodrug derivatives.

    PubMed

    Weng Larsen, S; Engelbrecht Thomsen, A E; Rinvar, E; Friis, G J; Larsen, C

    2001-03-23

    The rate constants for transfer of a homologous series of nicotinic acid esters from oil vehicles to aqueous buffer phases were determined using a rotating dialysis cell. The chemical stability of butyl nicotinate has been investigated at 60 degrees C over pH range 0.5--10. Maximum stability occurs at pH 4--5 and an inflection point was seen around the pK(a). For the nicotinic acid esters, a linear correlation was established between the first-order rate constant related to attainment of equilibrium, k(obs) and the apparent partition coefficient, P(app): log k(obs)=-0.83log P(app)+0.26 (k(obs) in h(-1), n=9). For hexyl nicotinate with a true partition coefficient of 4 it was possible to determine k(obs) by decreasing pH in the aqueous release medium to 2.05. Thus, under the latter experimental conditions estimation of the relative release rates for the esters were performed. The ratio between the specific rate constant k(ow), related to the transport from oil vehicle to aqueous phase, for ethyl and hexyl nicotinate was 139. The hydrophobic substituent constant for a methylene group, pi(CH(2)), was determined for nicotinic acid esters in different oil/buffer partitioning systems to 0.54--0.58. Addition of hydroxypropyl-beta-cyclodextrin to the aqueous release medium did not enhance the transport rate of the esters from the oil phase.

  15. Tribological Performance of Green Lubricant Enhanced by Sulfidation IF-MoS2

    PubMed Central

    Shi, Shih-Chen

    2016-01-01

    Biopolymers reinforced with nanoparticle (NP) additives are widely used in tribological applications. In this study, the effect of NP additives on the tribological properties of a green lubricant hydroxypropyl methylcellulose (HPMC) composite was investigated. The IF-MoS2 NPs were prepared using the newly developed gas phase sulfidation method to form a multilayered, polyhedral structure. The number of layers and crystallinity of IF-MoS2 increased with sulfidation time and temperature. The dispersity of NPs in the HPMC was investigated using Raman and EDS mapping and showed great uniformity. The use of NPs with HPMC enhanced the tribological performance of the composites as expected. The analysis of the worn surface shows that the friction behavior of the HPMC composite with added NPs is very sensitive to the NP structure. The wear mechanisms vary with NP structure and depend on their lubricating behaviors. PMID:28773976

  16. Proteolysis of truncated hemolysin A yields a stable dimerization interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novak, Walter R. P.; Bhattacharyya, Basudeb; Grilley, Daniel P.

    2017-02-21

    Wild-type and variant forms of HpmA265 (truncated hemolysin A) fromProteus mirabilisreveal a right-handed, parallel β-helix capped and flanked by segments of antiparallel β-strands. The low-salt crystal structures form a dimeric structureviathe implementation of on-edge main-chain hydrogen bonds donated by residues 243–263 of adjacent monomers. Surprisingly, in the high-salt structures of two variants, Y134A and Q125A-Y134A, a new dimeric interface is formedviamain-chain hydrogen bonds donated by residues 203–215 of adjacent monomers, and a previously unobserved tetramer is formed. In addition, an eight-stranded antiparallel β-sheet is formed from the flap regions of crystallographically related monomers in the high-salt structures. This new interfacemore » is possible owing to additional proteolysis of these variants after Tyr240. The interface formed in the high-salt crystal forms of hemolysin A variants may mimic the on-edge β-strand positioning used in template-assisted hemolytic activity.« less

  17. Isolation and characterization of an acrylamide-degrading yeast Rhodotorula sp. strain MBH23 KCTC 11960BP.

    PubMed

    Rahim, M B H; Syed, M A; Shukor, M Y

    2012-10-01

    As well as for chemical and environmental reasons, acrylamide is widely used in many industrial applications. Due to its carcinogenicity and toxicity, its discharge into the environment causes adverse effects on humans and ecology alike. In this study, a novel acrylamide-degrading yeast has been isolated. The isolate was identified as Rhodotorula sp. strain MBH23 using ITS rRNA analysis. The results showed that the best carbon source for growth was glucose at 1.0% (w/v). The optimum acrylamide concentration, being a nitrogen source for cellular growth, was at 500 mg l(-1). The highest tolerable concentration of acrylamide was 1500 mg l(-1) whereas growth was completely inhibited at 2000 mg l(-1). At 500 mg l(-1), the strain MBH completely degraded acrylamide on day 5. Acrylic acid as a metabolite was detected in the media. Strain MBH23 grew well between pH 6.0 and 8.0 and between 27 and 30 °C. Amides such as 2-chloroacetamide, methacrylamide, nicotinamide, acrylamide, acetamide, and propionamide supported growth. Toxic heavy metals such as mercury, chromium, and cadmium inhibited growth on acrylamide. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Inhibition of the solid state transformation of carbamazepine in aqueous solution: impact of polymeric properties.

    PubMed

    Gift, Alan D; Hettenbaugh, Jacob A; Quandahl, Rachel A; Mapes, Madison

    2017-11-06

    The effects of polymers on the anhydrate-to-hydrate transformation of carbamazepine (CBZ) was investigated. The three types of polymers studied were polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA) and substituted celluloses which included hydroxypropyl methylcellulose (HPMC) and methylcellulose (MC). Anhydrous CBZ was added to dilute aqueous polymer solutions and Raman spectroscopy measurements were collected to monitor the kinetics of the solution-mediated transformation to CBZ dihydrate. Polymers exhibiting the greatest inhibition were able to reduce the growth phase of the solution-mediated transformation and change the habit of the hydrate crystal indicating polymer adsorption to the hydrate crystal surface as the mechanism of inhibition. The results of the various polymers showed that short chain substituted celluloses (HPMC and MC) inhibited the CBZ transformation to a much greater extent than longer chains. The same trend was observed for PVP and PVA, but to a lesser extent. These chain length effects were attributed to changes in polymer confirmation when adsorbed on the crystal surface. Additionally, decreasing the percentage of hydroxyl groups on the PVA polymer backbone reduced the ability of the polymer to inhibit the transformation and changing the degree of substitutions of methyl and hydroxypropyl groups on the cellulosic polymer backbone had no effect on the transformation.

  19. Enhancement of the release of azelaic acid through the synthetic membranes by inclusion complex formation with hydroxypropyl-beta-cyclodextrin.

    PubMed

    Manosroi, Jiradej; Apriyani, Maria Goretti; Foe, Kuncoro; Manosroi, Aranya

    2005-04-11

    The aim of this study was to investigate the release rates of azelaic acid and azelaic acid-hydroxypropyl-beta-cyclodextrin (HPbetaCD) inclusion complex through three types of synthetic membranes, namely cellophane, silicone and elastomer membranes. Solid inclusion complexes of azelaic acid-HPbetaCD at the molar ratio of 1:1 were prepared by coevaporation and freeze-drying methods, subsequently characterized by differential scanning calorimetry, X-ray diffractometry and dissolution studies. Solid inclusion complex obtained by coevaporation method which exhibited the inclusion of azelaic acid in the HPbetaCD cavity and gave the highest dissolution rate of azelaic acid was selected for the release study. Release studies of azelaic acid and this complex through the synthetic membranes were conducted using vertical Franz diffusion cells at 30 degrees C for 6 days. The release rates of azelaic acid through the synthetic membranes were enhanced by the formation of inclusion complex with HPbetaCD at the molar ratio of 1:1, with the increasing fluxes of about 41, 81 and 28 times of the uncomplexed system in cellophane, silicone and elastomer membranes, respectively. The result from this study can be applied for the development of azelaic acid for topical use.

  20. Hydroxypropyl cellulose methacrylate as a photo-patternable and biodegradable hybrid paper substrate for cell culture and other bioapplications.

    PubMed

    Qi, Aisha; Hoo, Siew Pei; Friend, James; Yeo, Leslie; Yue, Zhilian; Chan, Peggy P Y

    2014-04-01

    In addition to the choice of appropriate material properties of the tissue construct to be used, such as its biocompatibility, biodegradability, cytocompatibility, and mechanical rigidity, the ability to incorporate microarchitectural patterns in the construct to mimic that found in the cellular microenvironment is an important consideration in tissue engineering and regenerative medicine. Both these issues are addressed by demonstrating a method for preparing biodegradable and photo-patternable constructs, where modified cellulose is cross-linked to form an insoluble structure in an aqueous environment. Specifically, hydroxypropyl cellulose (HPC) is rendered photocrosslinkable by grafting with methylacrylic anhydride, whose linkages also render the cross-linked construct hydrolytically degradable. The HPC is then cross-linked via a photolithography-based fabrication process. The feasibility of functionalizing these HPC structures with biochemical cues is verified post-fabrication, and shown to facilitate the adhesion of mesenchymal progenitor cells. The HPC constructs are shown to be biocompatible and hydrolytically degradable, thus enabling cell proliferation and cell migration, and therefore constituting an ideal candidate for long-term cell culture and implantable tissue scaffold applications. In addition, the potential of the HPC structure is demonstrated as an alternative substrate to paper microfluidic diagnostic devices for protein and cell assays. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effects of coformers on phase transformation and release profiles of carbamazepine cocrystals in hydroxypropyl methylcellulose based matrix tablets.

    PubMed

    Qiu, Shi; Li, Mingzhong

    2015-02-01

    The aim of this study was to investigate the effects of coformers on phase transformation and release profiles of carbamazepine (CBZ) cocrystals in hydroxypropyl methylcellulose (HPMC) based matrix tablets. It has been found that selection of different coformers of saccharin (SAC) and cinnamic acid (CIN) can affect the stability of CBZ cocrystals in solution, resulting in significant differences in the apparent solubility of CBZ. The dissolution advantage of CBZ-SAC cocrystals can only be shown for a short period during dissolution because of the fast conversion to its dihydrate form (DH). HPMC can partially inhibit the crystallisation of CBZ DH during dissolution of CBZ-SAC cocrystal. However, the increased viscosity of HPMC dissolution medium reduced the dissolution rate of CBZ-SAC cocrystals. Therefore the CBZ-SAC cocrystal formulation did not show any significant advantage in CBZ release rate. In contrast the improved CBZ dissolution rate of CBZ-CIN cocrystal can be realised in both solution and formulation due to its high stability. In conclusion, exploring and understanding the mechanisms of the phase transformation of pharmaceutical cocrystals in aqueous medium for selection of lead cocrystals is the key for success of product development. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Chiral separation of vinpocetine using cyclodextrin-modified micellar electrokinetic chromatography.

    PubMed

    Wan Ibrahim, Wan Aini; Abd Wahib, Siti Munirah; Hermawan, Dadan; Sanagi, Mohd Marsin; Aboul-Enein, Hassan Y

    2012-03-01

    A cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) technique has been developed for enantioseparation of vinpocetine using an inexpensive 2-hydroxypropyl-β-CD (HP-β-CD) as the chiral selector (CS). The best chiral separation was achieved using 40 mM HP-β-CD as the CS in 50 mM phosphate buffer (pH 7.0) consisting of 40 mM sodium dodecyl sulfate (SDS) at a separation temperature and separation voltage of 25°C and 25 kV, respectively. To the author's best knowledge, this is the first CD-MEKC study able to successfully separate the four stereoisomer of vinpocetine in separation time of 9.5 min and resolution of 1.04-3.87. Copyright © 2012 Wiley Periodicals, Inc.

  3. Understanding the compaction behaviour of low-substituted HPC: macro, micro, and nano-metric evaluations.

    PubMed

    ElShaer, Amr; Al-Khattawi, Ali; Mohammed, Afzal R; Warzecha, Monika; Lamprou, Dimitrios A; Hassanin, Hany

    2018-06-01

    The fast development in materials science has resulted in the emergence of new pharmaceutical materials with superior physical and mechanical properties. Low-substituted hydroxypropyl cellulose is an ether derivative of cellulose and is praised for its multi-functionality as a binder, disintegrant, film coating agent and as a suitable material for medical dressings. Nevertheless, very little is known about the compaction behaviour of this polymer. The aim of the current study was to evaluate the compaction and disintegration behaviour of four grades of L-HPC namely; LH32, LH21, LH11, and LHB1. The macrometric properties of the four powders were studied and the compaction behaviour was evaluated using the out-of-die method. LH11 and LH22 showed poor flow properties as the powders were dominated by fibrous particles with high aspect ratios, which reduced the powder flow. LH32 showed a weak compressibility profile and demonstrated a large elastic region, making it harder for this polymer to deform plastically. These findings are supported by AFM which revealed the high roughness of LH32 powder (100.09 ± 18.84 nm), resulting in small area of contact, but promoting mechanical interlocking. On the contrary, LH21 and LH11 powders had smooth surfaces which enabled larger contact area and higher adhesion forces of 21.01 ± 11.35 nN and 9.50 ± 5.78 nN, respectively. This promoted bond formation during compression as LH21 and LH11 powders had low strength yield.

  4. Characterization of methacrylated polysaccharides in combination with amine-based monomers for application in mortar.

    PubMed

    Mignon, Arn; Devisscher, Dries; Vermeulen, Jolien; Vagenende, Maxime; Martins, José; Dubruel, Peter; De Belie, Nele; Van Vlierberghe, Sandra

    2017-07-15

    Smart pH-responsive superabsorbent polymers (SAPs) could be useful for self-healing of cracks in mortar. They will swell minimally during the alkaline conditions of mixing, leading to only small macro-pores but will swell stronger with a lower pH when water enters the cracks. As such, polysaccharides (alginate, chitosan and agarose) were methacrylated and cross-linked with amine-based monomers (dimethylaminoethyl methacrylate and dimethylaminopropyl methacrylamide) to induce a varying pH-sensitivity. These materials showed a strong cross-linking efficiency and induced moisture uptake capacities up to 122% at 95% relative humidity with a negligible hysteresis. Additionally, interesting pH-responsive swelling capacities were obtained, especially for SAPs based on chitosan and agarose with values up to 110gwater/gSAP. Most of these materials showed limited hydrolysis in cement filtrate solutions, making them very promising for use in mortar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Determination of carcinogenic herbicides in milk samples using green non-ionic silicone surfactant of cloud point extraction and spectrophotometry.

    PubMed

    Mohd, N I; Zain, N N M; Raoov, M; Mohamad, S

    2018-04-01

    A new cloud point methodology was successfully used for the extraction of carcinogenic pesticides in milk samples as a prior step to their determination by spectrophotometry. In this work, non-ionic silicone surfactant, also known as 3-(3-hydroxypropyl-heptatrimethylxyloxane), was chosen as a green extraction solvent because of its structure and properties. The effect of different parameters, such as the type of surfactant, concentration and volume of surfactant, pH, salt, temperature, incubation time and water content on the cloud point extraction of carcinogenic pesticides such as atrazine and propazine, was studied in detail and a set of optimum conditions was established. A good correlation coefficient ( R 2 ) in the range of 0.991-0.997 for all calibration curves was obtained. The limit of detection was 1.06 µg l -1 (atrazine) and 1.22 µg l -1 (propazine), and the limit of quantitation was 3.54 µg l -1 (atrazine) and 4.07 µg l -1 (propazine). Satisfactory recoveries in the range of 81-108% were determined in milk samples at 5 and 1000 µg l -1 , respectively, with low relative standard deviation, n  = 3 of 0.301-7.45% in milk matrices. The proposed method is very convenient, rapid, cost-effective and environmentally friendly for food analysis.

  6. Effects of tripolyphosphate on cellular uptake and RNA interference efficiency of chitosan-based nanoparticles in Raw 264.7 macrophages.

    PubMed

    Xiao, Bo; Ma, Panpan; Ma, Lijun; Chen, Qiubing; Si, Xiaoying; Walter, Lewins; Merlin, Didier

    2017-03-15

    Tumor necrosis factor-α (TNF-α) is a major pro-inflammatory cytokine that is mainly secreted by macrophages during inflammation. Here, we synthesized a series of N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan chlorides (HTCCs), and then used a complex coacervation technique or tripolyphosphate (TPP)-assisted ionotropic gelation strategy to complex the HTCCs with TNF-α siRNA (siTNF) to form nanoparticles (NPs). The resultant NPs had a desirable particle size (210-279nm), a slightly positive zeta potential (14-22mV), and negligible cytotoxicity against Raw 264.7 macrophages and colon-26 cells. Subsequent cellular uptake tests demonstrated that the introduction of TPP to the NPs markedly increased their cellular uptake efficiency (to nearly 100%) compared with TPP-free NPs, and yielded a correspondingly higher intracellular concentration of siRNA. Critically, in vitro gene silencing experiments revealed that all of the TPP-containing NPs showed excellent efficiency in inhibiting the mRNA expression level of TNF-α (by approximately 85-92%, which was much higher than that obtained using Oligofectamine/siTNF complexes). Collectively, these results obviously suggest that our non-toxic TPP-containing chitosan-based NPs can be exploited as efficient siTNF carriers for the treatment of inflammatory diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. β-Cyclodextrin hydrogels for the ocular release of antibacterial thiosemicarbazones.

    PubMed

    Glisoni, Romina J; García-Fernández, María J; Pino, Marylú; Gutkind, Gabriel; Moglioni, Albertina G; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Sosnik, Alejandro

    2013-04-02

    Two types of hydrophilic networks with conjugated beta-cyclodextrin (β-CD) were developed with the aim of engineering useful platforms for the localized release of an antimicrobial 5,6-dimethoxy-1-indanone N4-allyl thiosemicarbazone (TSC) in the eye and its potential application in ophthalmic diseases. Poly(2-hydroxyethyl methacrylate) soft contact lenses (SCLs) displaying β-CD, namely pHEMA-co-β-CD, and super-hydrophilic hydrogels (SHHs) of directly cross-linked hydroxypropyl-β-CD were synthesized and characterized regarding their structure (ATR/FT-IR), drug loading capacity, swelling and in vitro release in artificial lacrimal fluid. Incorporation of TSC to the networks was carried out both during polymerization (DP method) and after synthesis (PP method). The first method led to similar drug loads in all the hydrogels, with minor drug loss during the washing steps to remove unreacted monomers, while the second method evidenced the influence of structural parameters on the loading efficiency (proportion of CD units, mesh size, swelling degree). Both systems provided a controlled TSC release for at least two weeks, TSC concentrations (up to 4000μg/g dry hydrogel) being within an optimal therapeutic window for the antimicrobial ocular treatment. Microbiological tests against P. aeruginosa and S. aureus confirmed the ability of TSC-loaded pHEMA-co-β-CD network to inhibit bacterial growth. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. [Studies on formulations of Panax notoginsenosides for intranasal administration].

    PubMed

    Xu, Qing-fang; Fang, Xiao-ling; Chen, Dao-feng; Li, Jun-chan

    2003-11-01

    To develop high bioavailability preparations without irritation for Panax notoginsenosides. The effects of some additives such as microcrystalline cellulose, beta-cyclodextrin and hydroxypropyl cellulose on drug in the preparations were examined. Saponins of Panax notoginseng (PNS) was absorbed in rabbits more when administered intranasally than through other routines, and the formulations including MCC both gave high bioavailability and low irritation. Bioavailability of Panax notoginsenosides can be increased through changing routine of administration and formulations.

  9. [Effects of penetration enhancers on curcumin transdermal drug delivery].

    PubMed

    Gao, Zhen-Shen; Wang, Lan; Zhang, Mei

    2012-01-01

    To study the effects of penetration enhancers and their combinations on the curcumine transdermal drug delivery (CUR-TDDS). The penetration rate of curcumin through rat skin in vitro was measured using Valia-Chien diffusion cells, and orthogonal design method was set up for experimental design. The optimum penetration enhancers were: 3% hydroxypropyl beta cyclodextrins (HP-beta-CD), 9% borneol and 3% peppermint oil. The HP-beta-CD has the most potent enhancing effect.

  10. Surfactant-induced electroosmotic flow in microfluidic capillaries.

    PubMed

    Azadi, Glareh; Tripathi, Anubhav

    2012-07-01

    Control of EOF in microfluidic devices is essential in applications such as protein/DNA sizing and high-throughput drug screening. With the growing popularity of poly(methyl methacrylate) (PMMA) as the substrate for polymeric-based microfludics, it is important to understand the effect of surfactants on EOF in these devices. In this article, we present an extensive investigation exploring changes in EOF rate induced by SDS, polyoxyethylene lauryl ether (Brij35) and CTAB in PMMA microfluidic capillaries. In a standard protein buffer (Tris-Glycine), PMMA capillaries exhibited a cathodic EOF with measured mobility of 1.54 ± 0.1 (× 10⁻⁴ cm²/V.s). In the presence of surfactant below a critical concentration, EOF was independent of surfactant concentration. At high concentrations of surfactants, the electroosmotic mobility was found to linearly increase/decrease as the logarithm of concentration before reaching a constant value. With SDS, the EOF increased by 257% (compared to buffer), while it was decreased by 238% with CTAB. In the case of Brij35, the electroosmotic mobility was reduced by 70%. In a binary surfactant system of SDS/CTAB and SDS/Brij35, addition of oppositely charged CTAB reduced the SDS-induced EOF more effectively compared to nonionic Brij35. We propose possible mechanisms that explain the observed changes in EOF and zeta potential values. Use of neutral polymer coatings in combination with SDS resulted in 50% reduction in the electroosmotic mobility with 0.1% hydroxypropyl methyl cellulose (HPMC), while including 2% poly (N,N-dimethylacrylamide) (PDMA) had no effect. These results will potentially contribute to the development of PMMA-based microfluidic devices. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Shrinkage strain-rates of dental resin-monomer and composite systems.

    PubMed

    Atai, Mohammad; Watts, David C; Atai, Zahra

    2005-08-01

    The purpose of this study was to investigate the shrinkage strain rate of different monomers, which are commonly used in dental composites and the effect of monomer functionality and molecular mass on the rate. Bis-GMA, TEGDMA, UDMA, MMA, HEMA, HPMA and different ratios of Bis-GMA/TEGDMA were mixed with Camphorquinone and Dimethyl aminoethyle methacrylate as initiator system. The shrinkage strain of the samples photopolymerised at Ca. 550 mW/cm2 and 23 degrees C was measured using the bonded-disk technique of Watts and Cash (Meas. Sci. Technol. 2 (1991) 788-794), and initial shrinkage-strain rates were obtained by numerical differentiation. Shrinkage-strain rates rose rapidly to a maximum, and then fell rapidly upon vitrification. Strain and initial strain rate were dependent upon monomer functionality, molecular mass and viscosity. Strain rates were correlated with Bis-GMA in Bis-GMA/TEGDMA mixtures up to 75-80 w/w%, due to the higher molecular mass of Bis-GMA affecting termination reactions, and then decreased due to its higher viscosity affecting propagation reactions. Monofunctional monomers exhibited lower rates. UDMA, a difunctional monomer of medium viscosity, showed the highest shrinkage strain rate (P < 0.05). Shrinkage strain rate, related to polymerization rate, is an important factor affecting the biomechanics and marginal integrity of composites cured in dental cavities. This study shows how this is related to monomer molecular structure and viscosity. The results are significant for the production, optimization and clinical application of dental composite restoratives.

  12. Development of a stability-indicating CE assay for the determination of amlodipine enantiomers in commercial tablets.

    PubMed

    Fakhari, Ali Reza; Nojavan, Saeed; Haghgoo, Soheila; Mohammadi, Ali

    2008-11-01

    A simple, accurate, precise and sensitive method using CD for separation and stability indicating assay of enantiomers of amlodipine in the commercial tablets has been established. Several types of CD were evaluated and best results were obtained using a fused-silica capillary with phosphate running buffer (100 mM, pH 3.0) containing 5 mM hydroxypropyl-alpha-CD. The method has shown adequate separation for amlodipine enantiomers from its degradation products. The drug was subjected to oxidation, hydrolysis, photolysis and heat to apply stress conditions. The range of quantitation for both enantiomers was 5-150 microg/mL. Intra- and inter-day RSD (n=6) was <4%. The limit of quantification that produced the requisite precision and accuracy was found to be 5 microg/mL for both enantiomers. The LOD for both enantiomers was found to be 0.5 microg/mL. Degradation products produced as a result of stress studies did not interfere with the detection of enantiomers and the assay can thus be considered stability indicating.

  13. Baking loss of bread with special emphasis on increasing water holding capacity.

    PubMed

    Kotoki, D; Deka, S C

    2010-01-01

    Potato flour (PF), hydroxypropyl methylcellulose (HPMC) and honey were used as baking agents and their effects on baking loss and sensory quality were studied. PF at 1, 2 and 4% levels decreased baking loss followed by HPMC and honey. Water absorption was substantially high with the HPMC (70.8-80.8%) and PF (61.7-71.7%) compared to honey and normal standard bread. PF incorporation increased shelf-life (6-7 days) as compared to HPMC and honey. HPMC incorporated bread had higher moisture content (36.8-38.0%) followed by PF (34.5-35.8%) and honey (34.7%). The ash content was in the order of PF (1%) > honey (4%) > PF (2%) > normal bread > HPMC (0.5 g) > PF (4%) > HPMC (1 g) > HPMC (1.5 g). PF incorporated bread had sensorily highest acceptance followed by HPMC and honey.

  14. DFT predictions, synthesis, stoichiometric structures and anti-diabetic activity of Cu (II) and Fe (III) complexes of quercetin, morin, and primuletin

    NASA Astrophysics Data System (ADS)

    Jabeen, Erum; Janjua, Naveed Kausar; Ahmed, Safeer; Murtaza, Iram; Ali, Tahir; Masood, Nosheen; Rizvi, Aysha Sarfraz; Murtaza, Gulam

    2017-12-01

    The current study is aimed at the synthesis of Cu (II) and Fe (III) complexes of three flavonoids {morin (mor), quercetin (quer) and primuletin (prim)} and characterization through UV-Vis spectroscopy, cyclic voltammetry, FTIR, and thermal analysis. Structure prediction through DFT calculation was supported by experimental data. Benesi-Hildebrand equation was modified to function for 1:2 Cu-flavonoid and 1:3 Fe-flavonoid complexes. DFT predictions revealed that out of poly chelation sites present in morin and quercetin, 3-OH site was utilized as preferable chelation site while primuletin chelated through 5-OH position. In-vivo trials revealed the complexes to have better anti-diabetic potential than respective flavonoid. Fls/M-Fls proved as antagonistic to Alloxan induced diabetes and also retained anti-diabetic activity even in the presence of (2-hydroxypropyl)-β-cyclodextrin (HPβCD).

  15. A newly developed highly selective Zn2+-AcO- ion-pair sensor through partner preference: equal efficiency under solitary and colonial situation.

    PubMed

    Karar, Monaj; Paul, Suvendu; Biswas, Bhaskar; Majumdar, Tapas; Mallick, Arabinda

    2018-05-10

    Unusual self-sorting of an ion-pair under highly crowded conditions driven by a synthesized intelligent molecule 2-((E)-(3-((E)-2-hydroxy-3-methoxybenzylideneamino)-2-hydroxypropyl imino)methyl)-6-methoxyphenol, hereafter HBP, is described. When a mixture of various metal salts was allowed to react with HBP, only a specific ion-pair ZnII/AcO- in the solution simultaneously reacted, resulting in high-fidelity ion-pair recognition of HBP. This phenomenon was evidenced by significant changes in the absorption spectra and huge enhancement in emission intensity of HBP. The property that one molecule preferring one particular cation-anion pair over others is a rare but interesting phenomenon. Thus, the potential to interact selectively with the targeted ion-pair resulting in the formation of a specific complex recognized HBP as a new class of molecule that might find future applications in real time and on-site monitoring and separation of new molecules.

  16. An in vitro Comparison of Microdialysis Relative Recovery of Met- and Leu-Enkephalin Using Cyclodextrins and Antibodies as Affinity Agents

    PubMed Central

    Fletcher, Heidi J.; Stenken, Julie A.

    2008-01-01

    Cyclodextrins and antibodies have been used as affinity agents to improve relative recovery during microdialysis sampling. Two neuropeptides, methionine-enkephalin (ME) and leucine-enkephalin (LE), were chosen to compare the use of cyclodextrins and antibodies as possible affinity agents for improving their relative recovery across polycarbonate and polyethersulfone membranes during in vitro sampling. Cyclodextrins (CD) including β-CD, 2-hydroxypropyl-β-cyclodextrin (2HPβ-CD), and γ-CD gave improvements of relative recovery for both peptides of less than 2-fold as compared to controls. Comparisons of relative recovery between tyrosine-glycine-glycine, tyrosine, and phenylalanine using different cyclodextrins in the perfusion fluid were also obtained. Inclusion of an antibody against met-enkephalin in the microdialysis perfusion fluid resulted in relative recovery increases of up to 2.5-fold. These results show that using antibodies as affinity agents during microdialysis sampling may be more effective agents to improve the relative recovery of these opioid neuropeptides. PMID:18558138

  17. Quantitative investigations of xylose and arabinose substituents in hydroxypropylated and hydroxyvinylethylated arabinoxylans.

    PubMed

    Lorenz, Dominic; Knöpfle, Anna; Akil, Youssef; Saake, Bodo

    2017-11-01

    The chemical structures obtained by the modification of arabinoxylans with the cyclic carbonates propylene carbonate (PC) and 4-vinyl-1,3-dioxolan-2-one (VEC) with varying degrees of substitution were investigated. Therefore, a new analytical method was developed that is based on a microwave-assisted hydrolysis of the polysaccharides with trifluoroacetic acid and the reductive amination with 2-aminobenzoic acid. The peak assignment was achieved by HPLC-MS and the carbohydrate derivatives were quantified by HPLC-fluorescence. The obtained maximum molar substitution of PC-derivatized xylan (X HP ) was 1.8; the molar substitution of VEC-derivatized xylan (X HVE ) was 2.3. Investigations of xylose and arabinose based mono- and disubstituted derivatives revealed a preferred reaction of the cyclic carbonates with arabinose. Conversion rates were up to 2.4 times higher for monosubstitution and up to 3.0 times for disubstitution compared to xylose. Furthermore, the reaction with VEC was preferred due to higher reactivity of the newly introduced side chains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Mononuclear Ni(II) complexes of Schiff base ligands formed from unsymmetrical tripodal amines of differing arm lengths: Spectral, X-ray crystal structural, antimicrobial and DNA cleavage activity

    NASA Astrophysics Data System (ADS)

    Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Dhers, Sébastien; Küp, Fatma Öztürk; Güllü, Mithat; Ng, Seikweng

    2017-11-01

    The synthesis of two unsymmetrical N-capped tripodal amines, 2-((4-aminobutyl)(pyridin-2-ylmethyl)amino)ethanol (3) and 3-((2-aminoethyl)(pyridin-2-ylmethyl)amino)propan-1-ol (4) is reported. They feature a longer, 3-hydroxypropyl or butylamino arm than that in the analogues previously employed. All four tripodal amines, 1-4, are equipped with a 2-methylpyridyl-arm, and either an ethylamino-arm (1 and 4), propylamino-arm (2) or butylamino-arm (3). The amines, 3 and 4, have been employed in one pot condensation reactions with salicylaldehyde and its derivatives in the presence of Ni(II) metal ion. A series of new mononuclear complexes, [NiIILaldi](ClO4) or [NiIILaldi(solvent)](ClO4) with different geometry, of Schiff base ligands were generated. X-ray crystal structure determinations of [NiIILOMe3(H2O)](ClO4)·2H2O and [NiIILOMe4](ClO4) revealed them to be mononuclear. The Ni(II) ion in [NiIILOMe4](ClO4) complex is in a distorted square-planar environment whilst this ion is in distorted octahedral environment in [NiIILOMe3(H2O)](ClO4)·2H2O complex despite the longer arm length of L3. While, in related systems in our previous work, they had led to dimeric complexes. These results clearly showed that the variation of the arm lengths of the ligands and metal ions has a remarkable impact on the formation and structure of the complexes. The cleavage of DNA by all synthesised complexes was examined using gel electrophoresis experiments. Also, the antibacterial effects of components were determined against the three Gram-positive bacteria, and against the three Gram-negative bacteria and against the three yeast Candida albicans ATCC 10231, Candida krusei ATCC 1424 and Candida tropicalis ATCC 13803.

  19. Heparin Microparticle Effects on Presentation and Bioactivity of Bone Morphogenetic Protein-2

    PubMed Central

    Hettiaratchi, Marian H.; Miller, Tobias; Temenoff, Johnna S.; Guldberg, Robert E.; McDevitt, Todd C.

    2014-01-01

    Biomaterials capable of providing localized and sustained presentation of bioactive proteins are critical for effective therapeutic growth factor delivery. However, current biomaterial delivery vehicles commonly suffer from limitations that can result in low retention of growth factors at the site of interest or adversely affect growth factor bioactivity. Heparin, a highly sulfated glycosaminoglycan, is an attractive growth factor delivery vehicle due to its ability to reversibly bind positively charged proteins, provide sustained delivery, and maintain protein bioactivity. This study describes the fabrication and characterization of heparin methacrylamide (HMAm) microparticles for recombinant growth factor delivery. HMAm microparticles were shown to efficiently bind several heparin-binding growth factors (e.g. bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (FGF-2)), including a wide range of BMP-2 concentrations that exceeds the maximum binding capacity of other common growth factor delivery vehicles, such as gelatin. BMP-2 bioactivity was assessed on the basis of alkaline phosphatase (ALP) activity induced in skeletal myoblasts (C2C12). Microparticles loaded with BMP-2 stimulated comparable C2C12 ALP activity to soluble BMP-2 treatment, indicating that BMP-2-loaded microparticles retain bioactivity and potently elicit a functional cell response. In summary, our results suggest that heparin microparticles stably retain large amounts of bioactive BMP-2 for prolonged periods of time, and that presentation of BMP-2 via heparin microparticles can elicit cell responses comparable to soluble BMP-2 treatment. Consequently, heparin microparticles present an effective method of delivering and spatially retaining growth factors that could be used in a variety of systems to enable directed induction of cell fates and tissue regeneration. PMID:24881028

  20. Inclusion complexes of azadirachtin with native and methylated cyclodextrins: solubilization and binding ability.

    PubMed

    Liu, Yu; Chen, Guo-Song; Chen, Yong; Lin, Jun

    2005-06-02

    The inclusion complexation behavior of azadirachtin with several cyclodextrins and their methylated derivatives has been investigated in both solution and the solid state by means of XRD, TG-DTA, DSC, NMR, and UV-vis spectroscopy. The results show that the water solubility of azadirachtin was obviously increased after resulting inclusion complex with cyclodextrins. Typically, beta-cyclodextrin (beta-CD), dimethyl-beta-cyclodextrin (DMbetaCD), permethyl-beta-cyclodextrin (TMbetaCD), and hydroxypropyl-beta-cyclodextrin (HPbetaCD) are found to be able to solubilize azadirachtin to high levels up to 2.7, 1.3, 3.5, and 1.6 mg/mL (calculated as azadirachtin), respectively. This satisfactory water solubility and high thermal stability of the cyclodextrin-azadirachtin complexes, will be potentially useful for their application as herbal medicine or healthcare products.

Top