Sample records for n-3 long-chain fatty

  1. Can long chain n-3 fatty acids from feed be converted into very long chain n-3 fatty acids in fillets from farmed rainbow trout (Oncorhynchus mykiss)?

    NASA Astrophysics Data System (ADS)

    Lušnic Polak, M.; Demšar, L.; Luzar, U.; Polak, T.

    2017-09-01

    The link between the basic chemical and fatty acid composition of trout feed on one hand and trout (Oncorhynchus mykiss) meat (fillet) was investigated.. The content of 52 fatty acids from feed and trout meat lipids was determined by in-situ transesterification and capillary column gas-liquid chromatography. On average, 100 g of trout feed contained 7.4 g of moisture, 47.7 g of proteins, 6.09 g of ash, 21.4 g of fat, and as for fatty acid composition, 47.8 wt. % were monounsaturated, 34.0 wt. % were polyunsaturated and 18.1 wt. % were saturated fatty acids, with the PS ratio 1.88, n-6/n-3 ratio 1.74, 0.80 wt. % of trans and 3.28 wt. % of very long chain n-3 fatty acids. On average, 100 g of trout meat contained 76.1 g of moisture, 21.4 g of proteins, 1.34 g of ash, 2.52 g of fat, and in the fatty acid composition 42.1 wt. % were monounsaturated, 38.2 wt. % were polyunsaturated and 18.9 wt. % were saturated fatty acids, with the PS ratio 2.02, n-6/n-3 ratio 0.98, 0.95 wt. % of trans and 13.25 wt. % of very long chain n-3 fatty acids.

  2. Association between very long chain fatty acids in the meibomian gland and dry eye resulting from n-3 fatty acid deficiency.

    PubMed

    Tanaka, Hideko; Harauma, Akiko; Takimoto, Mao; Moriguchi, Toru

    2015-06-01

    In our previously study, we reported lower tear volume in with an n-3 fatty acid deficient mice and that the docosahexaenoic acid and total n-3 fatty acid levels in these mice are significantly reduced in the meibomian gland, which secretes an oily tear product. Furthermore, we noted very long chain fatty acids (≥25 carbons) in the meibomian gland. To verify the detailed mechanism of the low tear volume in the n-3 fatty acid-deficient mice, we identified the very long chain fatty acids in the meibomian gland, measured the fatty acid composition in the tear product. Very long chain fatty acids were found to exist as monoesters. In particular, very long chain fatty acids with 25-29 carbons existed for the most part as iso or anteiso branched-chain fatty acids. n-3 fatty acid deficiency was decreased the amount of meibum secretion from meibomian gland without change of fatty acid composition. These results suggest that the n-3 fatty acid deficiency causes the enhancement of evaporation of tear film by reducing oily tear secretion along with the decrease of meibomian gland function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Long-chain n-3 and n-6 polyunsaturated fatty acids and risk of atrial fibrillation: Results from a Danish cohort study.

    PubMed

    Mortensen, Lotte Maxild; Lundbye-Christensen, Søren; Schmidt, Erik Berg; Calder, Philip C; Schierup, Mikkel Heide; Tjønneland, Anne; Parner, Erik T; Overvad, Kim

    2017-01-01

    Studies of the relation between polyunsaturated fatty acids and risk of atrial fibrillation have been inconclusive. The risk of atrial fibrillation may depend on the interaction between n-3 and n-6 polyunsaturated fatty acids as both types of fatty acids are involved in the regulation of systemic inflammation. We investigated the association between dietary intake of long chain polyunsaturated fatty acids (individually and in combination) and the risk of atrial fibrillation with focus on potential interaction between the two types of polyunsaturated fatty acids. The risk of atrial fibrillation in the Diet, Cancer and Health Cohort was analyzed using the pseudo-observation method to explore cumulative risks on an additive scale providing risk differences. Dietary intake of long chain polyunsaturated fatty acids was assessed by food frequency questionnaires. The main analyses were adjusted for the dietary intake of n-3 α-linolenic acid and n-6 linoleic acid to account for endogenous synthesis of long chain polyunsaturated fatty acids. Interaction was assessed as deviation from additivity of absolute association measures (risk differences). Cumulative risks in 15-year age periods were estimated in three strata of the cohort (N = 54,737). No associations between intake of n-3 or n-6 long chain polyunsaturated fatty acids and atrial fibrillation were found, neither when analyzed separately as primary exposures nor when interaction between n-3 and n-6 long chain polyunsaturated fatty acids was explored. This study suggests no association between intake of long chain polyunsaturated fatty acids and risk of atrial fibrillation.

  4. Evaluation of long-chain n3 fatty acid content in diploid and triploid rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Intake of long chain n3 fatty acids (LCn3), eicosapentaenoic acid (EPA; 20:5 n3) and docosahexaenoic acid (DHA; 22:6 n3), is associated with reduced cardiovascular disease. There is growing interest in farmed fish like rainbow trout, Oncorhynchus mykiss, as sources of LCn3. The trout industry raises...

  5. Low breast milk levels of long-chain n-3 fatty acids in allergic women, despite frequent fish intake.

    PubMed

    Johansson, S; Wold, A E; Sandberg, A-S

    2011-04-01

    Long-chain n-3 polyunsaturated fatty acids (PUFAs) have immune regulating and anti-inflammatory effects. However, their role in allergic disease is unclear. Allergic diseases are immunologically heterogeneous, and we hypothesized that n-3 fatty acid composition in serum and breast milk may vary according to clinical manifestations. Further, animal studies have shown reduction of serum-PUFA levels during allergic inflammation. To investigate fatty acid composition in breast milk and serum from women with different atopic disease manifestations. Secondly, to determine whether low PUFA levels reflected insufficient intakes. Fatty acids were analysed in breast milk and serum of women with atopic eczema and respiratory allergy (n=16), only respiratory allergy (n=7), as well as healthy women (n=22). Dietary intake of foods expected to affect long-chain n-3 PUFA levels were estimated by food-frequency questionnaire. The fatty acid pattern was related to diagnostic group and intake of relevant food items using a multivariate pattern recognition method (partial least squares projections to latent structures and discriminant analysis). Results Women with a combination of eczema and respiratory allergy had lower breast milk levels of several PUFAs (arachidonic acid, eicosapentaenoic acid, EPA, docosahexaenoic acid, DHA, and docosapentaenoic acid, DPA), and a lower ratio of long-chain n-3 PUFAs/n-6 PUFAs. Their PUFA levels differed not only from that of healthy women, but also from that of women with only respiratory allergy. The latter had a fatty acid pattern similar to that of healthy women. Despite low EPA, DHA and DPA levels women with eczema and respiratory allergy consumed no less fish than did healthy women. Our data suggest that reduced levels of long-chain n-3 fatty acids in serum and breast milk characterize women with extensive allergic disease including eczema, and are not related to low fish intake. Consumption of PUFAs during the allergic process may explain

  6. Thirteen-year prospective study between fish consumption, long-chain n-3 fatty acids intakes and cognitive function.

    PubMed

    Kesse-Guyot, E; Péneau, S; Ferry, M; Jeandel, C; Hercberg, S; Galan, P

    2011-02-01

    Because of their structural, anti-inflammatory and antithrombic properties, long-chain n-3 fatty acids may be key factors in the aging process. We sought to elucidate the association between intake of long-chain n-3 fatty acids and/or fish and cognitive function evaluated 13 years after dietary assessment. Prospective population-based study. 3,294 adults from the SU.VI.MAX study (Supplementation with Antioxidant Vitamins and Minerals study). MEASUREMENTS/STATISTICAL ANALYSIS: Subjects underwent a standardized clinical examination which included cognitive tests and self-reported cognitive difficulties scale (2007-2009). Poor scores were defined using percentiles as cut-off. Dietary data were assessed through repeated 24-h dietary records. Odd ratio (OR), comparing the fourth (Q4) to the first quartile (Q1), of having a poor score were calculated using adjusted logistic regression. Self-reported cognitive difficulties were less frequent among subjects with higher intakes of total n-3 long chain fatty acids (OR = 0.72, CI 95%=0.56-0.92) and eicosapentaenoic acid (OR Q4 versus Q1 = 0.74, CI 95%=0.58-0.95), even after adjustment for depressive symptoms. A borderline significant association was also found with high fish consumption (OR Q4 versus Q1 = 0.80, CI 95%=0.63-1.01). Cognitive complaints, which may be an early indicator of cognitive decline, are less frequent among the elderly who have a high long-chain n-3 acids intake, as assessed 13 years earlier.

  7. Alternative Sources of n-3 Long-Chain Polyunsaturated Fatty Acids in Marine Microalgae

    PubMed Central

    Martins, Dulce Alves; Custódio, Luísa; Barreira, Luísa; Pereira, Hugo; Ben-Hamadou, Radhouan; Varela, João; Abu-Salah, Khalid M.

    2013-01-01

    The main source of n-3 long-chain polyunsaturated fatty acids (LC-PUFA) in human nutrition is currently seafood, especially oily fish. Nonetheless, due to cultural or individual preferences, convenience, geographic location, or awareness of risks associated to fatty fish consumption, the intake of fatty fish is far from supplying the recommended dietary levels. The end result observed in most western countries is not only a low supply of n-3 LC-PUFA, but also an unbalance towards the intake of n-6 fatty acids, resulting mostly from the consumption of vegetable oils. Awareness of the benefits of LC-PUFA in human health has led to the use of fish oils as food supplements. However, there is a need to explore alternatives sources of LC-PUFA, especially those of microbial origin. Microalgae species with potential to accumulate lipids in high amounts and to present elevated levels of n-3 LC-PUFA are known in marine phytoplankton. This review focuses on sources of n-3 LC-PUFA, namely eicosapentaenoic and docosahexaenoic acids, in marine microalgae, as alternatives to fish oils. Based on current literature, examples of marketed products and potentially new species for commercial exploitation are presented. PMID:23807546

  8. Long-chain n-3 polyunsaturated fatty acids in plasma in British meat-eating, vegetarian, and vegan men.

    PubMed

    Rosell, Magdalena S; Lloyd-Wright, Zouë; Appleby, Paul N; Sanders, Thomas A B; Allen, Naomi E; Key, Timothy J

    2005-08-01

    Plasma concentrations of long-chain n-3 polyunsaturated fatty acids are lower in vegetarians and in vegans than in omnivores. No data are available on whether these concentrations differ between long- and short-term vegetarians and vegans. We compared plasma fatty acid composition in meat-eaters, vegetarians, and vegans and examined whether the proportions of eicosapentaenoic acid (20:5n-3; EPA), docosapentaenoic acid (22:5n-3; DPA), and docosahexaenoic acid (22:6n-3; DHA) were related to the subjects' duration of adherence to their diets or to the proportions of plasma linoleic acid (18:2n-6; LA) and alpha-linolenic acid (18:3n-3; ALA). The present cross-sectional study included 196 meat-eating, 231 vegetarian, and 232 vegan men in the United Kingdom. Information on anthropometry, diet, and smoking habits was obtained through a questionnaire. Total fatty acid composition in plasma was measured. The proportions of plasma EPA and DHA were lower in the vegetarians and in the vegans than in the meat-eaters, whereas only small differences were seen for DPA. Plasma EPA, DPA, and DHA proportions were not significantly associated with the duration of time since the subjects became vegetarian or vegan, which ranged from <1 y to >20 y. In the vegetarians and the vegans, plasma DHA was inversely correlated with plasma LA. The proportions of plasma long-chain n-3 fatty acids were not significantly affected by the duration of adherence to a vegetarian or vegan diet. This finding suggests that when animal foods are wholly excluded from the diet, the endogenous production of EPA and DHA results in low but stable plasma concentrations of these fatty acids.

  9. Dietary flavonoids increase plasma very long-chain (n-3) fatty acids in rats.

    PubMed

    Toufektsian, Marie-Claire; Salen, Patricia; Laporte, François; Tonelli, Chiara; de Lorgeril, Michel

    2011-01-01

    Flavonoids probably contribute to the health benefits associated with the consumption of fruit and vegetables. However, the mechanisms by which they exert their effects are not fully elucidated. PUFA of the (n-3) series also have health benefits. Epidemiological and clinical studies have suggested that wine flavonoids may interact with the metabolism of (n-3) PUFA and increase their blood and cell levels. The present studies in rats were designed to assess whether flavonoids actually increase plasma levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the main very long-chain (n-3) PUFA. Rats were fed a corn-derived anthocyanin (ACN)-rich (ACN-rich) or ACN-free diet with constant intakes of plant and marine (n-3) PUFA for 8 wk (Expt. 1). Plasma fatty acids were measured by GC. The ACN-rich diet contained ~0.24 ± 0.01 mg of ACN/g pellets. There were no significant differences between groups in the main saturated, monounsaturated, and (n-6) fatty acids. In contrast, plasma EPA and DHA were greater in the ACN-rich diet group than in the ACN-free diet group (P < 0.05). We obtained similar results in 2 subsequent experiments in which rats were administered palm oil (80 μL/d) and consumed the ACN-rich or ACN-free diet (Expt. 2) or were supplemented with fish oil (60 mg/d, providing 35 mg DHA and 12 mg EPA) and consumed the ACN-rich or ACN-free diet (Expt. 3). In both experiments, plasma EPA and DHA were significantly greater in the ACN-rich diet group. These studies demonstrate that the consumption of flavonoids increases plasma very long-chain (n-3) PUFA levels. These data confirm previous clinical and epidemiological studies and provide new insights into the health benefits of flavonoids.

  10. Partial replacement of dietary linoleic acid with long chain n-3 polyunsaturated fatty acids protects against dextran sulfate sodium-induced colitis in rats.

    PubMed

    Tyagi, Anupama; Kumar, Uday; Santosh, Vadakattu Sai; Reddy, Suryam; Mohammed, Saazida Bhanu; Ibrahim, Ahamed

    2014-12-01

    Imbalances in the dietary n-6 and n-3 polyunsaturated fatty acids have been implicated in the increased prevalence of inflammatory bowel disease. This study investigated the effects of substitution of linoleic acid with long chain n-3 polyunsaturated fatty acids and hence decreasing n-6:n-3 fatty acid ratio on inflammatory response in dextran sulfate sodium induced colitis. Male weanling Sprague Dawley rats were fed diets with n-6:n-3 fatty acid in the ratios of 215,50,10 or 5 for 3 months and colitis was induced by administration of dextran sulfate sodium in drinking water during last 11 days. Decreasing the dietary n-6:n-3 fatty acid ratio to 10 and 5 significantly attenuated the severity of colitis as evidenced by improvements in clinical symptoms, reversal of shortening of colon length, reduced severity of anemia, preservation of colonic architecture as well as reduced colonic mucosal myeloperoxidase activity. This protection was associated with suppression of colonic mucosal proinflammatory mediators such as TNFα, IL-1β and nitric oxide. These findings suggest that long chain n-3 polyunsaturated fatty acids at a level of 3.0 g/kg diet (n-6:n-3 ratio of 10) prevents dextran sulfate sodium induced colitis by suppressing the proinflammatory mediators. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Anthocyanins do not influence long-chain n-3 fatty acid status: studies in cells, rodents and humans.

    PubMed

    Vauzour, David; Tejera, Noemi; O'Neill, Colette; Booz, Valeria; Jude, Baptiste; Wolf, Insa M A; Rigby, Neil; Silvan, Jose Manuel; Curtis, Peter J; Cassidy, Aedin; de Pascual-Teresa, Sonia; Rimbach, Gerald; Minihane, Anne Marie

    2015-03-01

    Increased tissue status of the long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) is associated with cardiovascular and cognitive benefits. Limited epidemiological and animal data suggest that flavonoids, and specifically anthocyanins, may increase EPA and DHA levels, potentially by increasing their synthesis from the shorter-chain n-3 PUFA, α-linolenic acid. Using complimentary cell, rodent and human studies we investigated the impact of anthocyanins and anthocyanin-rich foods/extracts on plasma and tissue EPA and DHA levels and on the expression of fatty acid desaturase 2 (FADS2), which represents the rate limiting enzymes in EPA and DHA synthesis. In experiment 1, rats were fed a standard diet containing either palm oil or rapeseed oil supplemented with pure anthocyanins for 8 weeks. Retrospective fatty acid analysis was conducted on plasma samples collected from a human randomized controlled trial where participants consumed an elderberry extract for 12 weeks (experiment 2). HepG2 cells were cultured with α-linolenic acid with or without select anthocyanins and their in vivo metabolites for 24 h and 48 h (experiment 3). The fatty acid composition of the cell membranes, plasma and liver tissues were analyzed by gas chromatography. Anthocyanins and anthocyanin-rich food intake had no significant impact on EPA or DHA status or FADS2 gene expression in any model system. These data indicate little impact of dietary anthocyanins on n-3 PUFA distribution and suggest that the increasingly recognized benefits of anthocyanins are unlikely to be the result of a beneficial impact on tissue fatty acid status. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Anthocyanins do not influence long-chain n-3 fatty acid status: studies in cells, rodents and humans☆

    PubMed Central

    Vauzour, David; Tejera, Noemi; O'Neill, Colette; Booz, Valeria; Jude, Baptiste; Wolf, Insa M.A.; Rigby, Neil; Silvan, Jose Manuel; Curtis, Peter J.; Cassidy, Aedin; de Pascual-Teresa, Sonia; Rimbach, Gerald; Minihane, Anne Marie

    2015-01-01

    Increased tissue status of the long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) is associated with cardiovascular and cognitive benefits. Limited epidemiological and animal data suggest that flavonoids, and specifically anthocyanins, may increase EPA and DHA levels, potentially by increasing their synthesis from the shorter-chain n-3 PUFA, α-linolenic acid. Using complimentary cell, rodent and human studies we investigated the impact of anthocyanins and anthocyanin-rich foods/extracts on plasma and tissue EPA and DHA levels and on the expression of fatty acid desaturase 2 (FADS2), which represents the rate limiting enzymes in EPA and DHA synthesis. In experiment 1, rats were fed a standard diet containing either palm oil or rapeseed oil supplemented with pure anthocyanins for 8 weeks. Retrospective fatty acid analysis was conducted on plasma samples collected from a human randomized controlled trial where participants consumed an elderberry extract for 12 weeks (experiment 2). HepG2 cells were cultured with α-linolenic acid with or without select anthocyanins and their in vivo metabolites for 24 h and 48 h (experiment 3). The fatty acid composition of the cell membranes, plasma and liver tissues were analyzed by gas chromatography. Anthocyanins and anthocyanin-rich food intake had no significant impact on EPA or DHA status or FADS2 gene expression in any model system. These data indicate little impact of dietary anthocyanins on n-3 PUFA distribution and suggest that the increasingly recognized benefits of anthocyanins are unlikely to be the result of a beneficial impact on tissue fatty acid status. PMID:25573539

  13. Intake of long-chain ω-3 fatty acids from diet and supplements in relation to mortality.

    PubMed

    Bell, Griffith A; Kantor, Elizabeth D; Lampe, Johanna W; Kristal, Alan R; Heckbert, Susan R; White, Emily

    2014-03-15

    Evidence from experimental studies suggests that the long-chain ω-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid have beneficial effects that may lead to reduced mortality from chronic diseases, but epidemiologic evidence is mixed. Our objective was to evaluate whether intake of long-chain ω-3 fatty acids from diet and supplements is associated with cause-specific and total mortality. Study participants (n = 70,495) were members of a cohort study (the Vitamins and Lifestyle Study) who were residents of Washington State aged 50-76 years at the start of the study (2000-2002). Participants were followed for mortality through 2006 (n = 3,051 deaths). Higher combined intake of eicosapentaenoic acid and docosahexaenoic acid from diet and supplements was associated with a decreased risk of total mortality (hazard ratio (HR) = 0.82, 95% confidence interval (CI): 0.73, 0.93) and mortality from cancer (HR = 0.77, 95% CI: 0.64, 0.92) but only a small reduction in risk of death from cardiovascular disease (HR = 0.87, 95% CI: 0.68, 1.10). These results suggest that intake of long-chain ω-3 fatty acids may reduce risk of total and cancer-specific mortality.

  14. Original Research: Effect of various dietary fats on fatty acid profile in duck liver: Efficient conversion of short-chain to long-chain omega-3 fatty acids

    PubMed Central

    Chen, Xi; Du, Xue; Shen, Jianliang; Wang, Weiqun

    2016-01-01

    Omega-3 fatty acids, especially long-chain omega-3 fatty acids, have been associated with potential health benefits for chronic disease prevention. Our previous studies found that dietary omega-3 fatty acids could accumulate in the meat and eggs in a duck model. This study was to reveal the effects of various dietary fats on fatty acid profile and conversion of omega-3 fatty acids in duck liver. Female Shan Partridge Ducks were randomly assigned to five dietary treatments, each consisting of 6 replicates of 30 birds. The experimental diets substituted the basal diet by 2% of flaxseed oil, rapeseed oil, beef tallow, or fish oil, respectively. In addition, a dose response study was further conducted for flaxseed and fish oil diets at 0.5%, 1%, and 2%, respectively. At the end of the five-week treatment, fatty acids were extracted from the liver samples and analyzed by GC-FID. As expected, the total omega-3 fatty acids and the ratio of total omega-3/omega-6 significantly increased in both flaxseed and fish oil groups when compared with the control diet. No significant change of total saturated fatty acids or omega-3 fatty acids was found in both rapeseed and beef tallow groups. The dose response study further indicated that 59–81% of the short-chain omega-3 ALA in flaxseed oil-fed group was efficiently converted to long-chain DHA in the duck liver, whereas 1% of dietary flaxseed oil could produce an equivalent level of DHA as 0.5% of dietary fish oil. The more omega-3 fatty acids, the less omega-6 fatty acids in the duck liver. Taken together, this study showed the fatty acid profiling in the duck liver after various dietary fat consumption, provided insight into a dose response change of omega-3 fatty acids, indicated an efficient conversion of short- to long-chain omega-3 fatty acid, and suggested alternative long-chain omega-3 fatty acid-enriched duck products for human health benefits. PMID:27510581

  15. Original Research: Effect of various dietary fats on fatty acid profile in duck liver: Efficient conversion of short-chain to long-chain omega-3 fatty acids.

    PubMed

    Chen, Xi; Du, Xue; Shen, Jianliang; Lu, Lizhi; Wang, Weiqun

    2017-01-01

    Omega-3 fatty acids, especially long-chain omega-3 fatty acids, have been associated with potential health benefits for chronic disease prevention. Our previous studies found that dietary omega-3 fatty acids could accumulate in the meat and eggs in a duck model. This study was to reveal the effects of various dietary fats on fatty acid profile and conversion of omega-3 fatty acids in duck liver. Female Shan Partridge Ducks were randomly assigned to five dietary treatments, each consisting of 6 replicates of 30 birds. The experimental diets substituted the basal diet by 2% of flaxseed oil, rapeseed oil, beef tallow, or fish oil, respectively. In addition, a dose response study was further conducted for flaxseed and fish oil diets at 0.5%, 1%, and 2%, respectively. At the end of the five-week treatment, fatty acids were extracted from the liver samples and analyzed by GC-FID. As expected, the total omega-3 fatty acids and the ratio of total omega-3/omega-6 significantly increased in both flaxseed and fish oil groups when compared with the control diet. No significant change of total saturated fatty acids or omega-3 fatty acids was found in both rapeseed and beef tallow groups. The dose response study further indicated that 59-81% of the short-chain omega-3 ALA in flaxseed oil-fed group was efficiently converted to long-chain DHA in the duck liver, whereas 1% of dietary flaxseed oil could produce an equivalent level of DHA as 0.5% of dietary fish oil. The more omega-3 fatty acids, the less omega-6 fatty acids in the duck liver. Taken together, this study showed the fatty acid profiling in the duck liver after various dietary fat consumption, provided insight into a dose response change of omega-3 fatty acids, indicated an efficient conversion of short- to long-chain omega-3 fatty acid, and suggested alternative long-chain omega-3 fatty acid-enriched duck products for human health benefits. © 2016 by the Society for Experimental Biology and Medicine.

  16. Interplay Between n-3 and n-6 Long-Chain Polyunsaturated Fatty Acids and the Endocannabinoid System in Brain Protection and Repair.

    PubMed

    Dyall, Simon C

    2017-11-01

    The brain is enriched in arachidonic acid (ARA) and docosahexaenoic acid (DHA), long-chain polyunsaturated fatty acids (LCPUFAs) of the n-6 and n-3 series, respectively. Both are essential for optimal brain development and function. Dietary enrichment with DHA and other long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA), has shown beneficial effects on learning and memory, neuroinflammatory processes, and synaptic plasticity and neurogenesis. ARA, DHA and EPA are precursors to a diverse repertoire of bioactive lipid mediators, including endocannabinoids. The endocannabinoid system comprises cannabinoid receptors, their endogenous ligands, the endocannabinoids, and their biosynthetic and degradation enzymes. Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are the most widely studied endocannabinoids and are both derived from phospholipid-bound ARA. The endocannabinoid system also has well-established roles in neuroinflammation, synaptic plasticity and neurogenesis, suggesting an overlap in the neuroprotective effects observed with these different classes of lipids. Indeed, growing evidence suggests a complex interplay between n-3 and n-6 LCPUFA and the endocannabinoid system. For example, long-term DHA and EPA supplementation reduces AEA and 2-AG levels, with reciprocal increases in levels of the analogous endocannabinoid-like DHA and EPA-derived molecules. This review summarises current evidence of this interplay and discusses the therapeutic potential for brain protection and repair.

  17. Glycine N-acyltransferase-like 3 is responsible for long-chain N-acylglycine formation in N18TG2 cells[S

    PubMed Central

    Jeffries, Kristen A.; Dempsey, Daniel R.; Farrell, Emma K.; Anderson, Ryan L.; Garbade, Gabrielle J.; Gurina, Tatyana S.; Gruhonjic, Imran; Gunderson, Carly A.

    2016-01-01

    Long-chain fatty acid amides are signaling lipids found in mammals and other organisms; however, details of the metabolic pathways for the N-acylglycines and primary fatty acid amides (PFAMs) have remained elusive. Heavy-labeled precursor and subtraction lipidomic experiments in mouse neuroblastoma N18TG2 cells, a model cell line for the study of fatty acid amide metabolism, establish the biosynthetic pathways for the N-acylglycines and the PFAMs. We provide evidence that the N-acylglycines are formed by a long-chain specific glycine-conjugating enzyme, glycine N-acyltransferase-like 3 (GLYATL3). siRNA knockdown of GLYATL3 in the N18TG2 cells resulted in a decrease in the levels of the N-acylglycines and the PFAMs. This is the first report of an enzyme responsible for long-chain N-acylglycine production in cellula. The production of the PFAMs in N18TG2 cells was reported to occur by the oxidative cleavage of the N-acylglycines, as catalyzed by peptidylglycine α-amidating monooxygenase (PAM). siRNA knockdown of PAM resulted in an accumulation of [13C18]N-oleoylglycine and decreased levels of [13C18]oleamide when the N18TG2 cells were grown in the presence of [13C18]oleic acid. The addition of [1-13C]palmitate to the N18TG2 cell growth media led to the production of a family of [1-13C]palmitoylated fatty acid amides, consistent with the biosynthetic pathways detailed herein. PMID:27016726

  18. De novo fatty acid biosynthesis and elongation in very long-chain acyl-CoA dehydrogenase-deficient mice supplemented with odd or even medium-chain fatty acids.

    PubMed

    Tucci, Sara; Behringer, Sidney; Spiekerkoetter, Ute

    2015-11-01

    An even medium-chain triglyceride (MCT)-based diet is the mainstay of treatment in very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD). Previous studies with magnetic resonance spectroscopy have shown an impact of MCT on the average fatty acid chain length in abdominal fat. We therefore assume that medium-chain fatty acids (MCFAs) are elongated and accumulate in tissue as long-chain fatty acids. In this study, we explored the hepatic effects of long-term supplementation with MCT or triheptanoin, an odd-chain C7-based triglyceride, in wild-type and VLCAD-deficient (VLCAD(-/-) ) mice after 1 year of supplementation as compared with a control diet. The de novo biosynthesis and elongation of fatty acids, and peroxisomal β-oxidation, were quantified by RT-PCR. This was followed by a comprehensive analysis of hepatic and cardiac fatty acid profiles by GC-MS. Long-term application of even and odd MCFAs strongly induced de novo biosynthesis and elongation of fatty acids in both wild-type and VLCAD(-/-) mice, leading to an alteration of the hepatic fatty acid profiles. We detected de novo-synthesized and elongated fatty acids, such as heptadecenoic acid (C17:1n9), eicosanoic acid (C20:1n9), erucic acid (C22:1n9), and mead acid (C20:3n9), that were otherwise completely absent in mice under control conditions. In parallel, the content of monounsaturated fatty acids was massively increased. Furthermore, we observed strong upregulation of peroxisomal β-oxidation in VLCAD(-/-) mice, especially when they were fed an MCT diet. Our data raise the question of whether long-term MCFA supplementation represents the most efficient treatment in the long term. Studies on the hepatic toxicity of triheptanoin are still ongoing. © 2015 FEBS.

  19. Seafood Long-Chain n-3 Polyunsaturated Fatty Acids and Cardiovascular Disease: A Science Advisory From the American Heart Association.

    PubMed

    Rimm, Eric B; Appel, Lawrence J; Chiuve, Stephanie E; Djoussé, Luc; Engler, Mary B; Kris-Etherton, Penny M; Mozaffarian, Dariush; Siscovick, David S; Lichtenstein, Alice H

    2018-05-17

    Since the 2002 American Heart Association scientific statement "Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease," evidence from observational and experimental studies and from randomized controlled trials continues to emerge to further substantiate the beneficial effects of seafood long-chain n-3 polyunsaturated fatty acids and cardiovascular disease. A recent American Heart Association science advisory addressed the specific effect of n-3 polyunsaturated fatty acid supplementation on clinical cardiovascular events. This American Heart Association science advisory extends that review and offers further support to include n-3 polyunsaturated fatty acids from seafood consumption. Several potential mechanisms have been investigated, including antiarrhythmic, anti-inflammatory, hematologic, and endothelial, although for most, longer-term dietary trials of seafood are warranted to substantiate the benefit of seafood as a replacement for other important sources of macronutrients. The present science advisory reviews this evidence and makes a suggestion in the context of the 2015-2020 Dietary Guidelines for Americans and in consideration of other constituents of seafood and the impact on sustainability. We conclude that 1 to 2 seafood meals per week be included to reduce the risk of congestive heart failure, coronary heart disease, ischemic stroke, and sudden cardiac death, especially when seafood replaces the intake of less healthy foods. © 2018 American Heart Association, Inc.

  20. Role of long-chain and very-long-chain polyunsaturated fatty acids in macular degenerations and dystrophies

    PubMed Central

    Liu, Aihua; Lin, Yanhua; Terry, Ryan; Nelson, Kelly; Bernstein, Paul S

    2014-01-01

    Macular degeneration is a progressive, bilateral eye disorder that damages the macula of the human eye. The most common form of macular degeneration is age-related macular degeneration (AMD), which is the leading cause of irreversible blindness in people older than 50 years in developed countries. Autosomal dominant Stargardt disease-3 (STGD3) is an inherited macular dystrophy that has clinical features similar to dry AMD, but occurs at a much earlier age. It is caused by a mutation in the elongation of very-long-chain fatty acids-like 4 (ELOVL4) gene, which is responsible for encoding the elongase enzyme that converts shorter chain fatty acids into C28–C38 very long-chain polyunsaturated fatty acids (VLCPUFAs, total number of carbons ≥24). Diets rich in long-chain polyunsaturated fatty acids (LCPUFAs) have inverse associations with the progression of AMD and STGD3, and a deficiency in retinal LCPUFAs and VLCPUFAs has been detected in AMD retinas and STGD3 animal models. This article systematically summarizes the roles of LCPUFAs and VLCPUFAs in AMD and STGD3, and discusses future research directions. PMID:25324899

  1. [Overexpression of four fatty acid synthase genes elevated the efficiency of long-chain polyunsaturated fatty acids biosynthesis in mammalian cells].

    PubMed

    Zhu, Guiming; Saleh, Abdulmomen Ali Mohammed; Bahwal, Said Ahmed; Wang, Kunfu; Wang, Mingfu; Wang, Didi; Ge, Tangdong; Sun, Jie

    2014-09-01

    Three long-chain polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (ARA, 20:4n-6), are the most biologically active polyunsaturated fatty acids in the body. They are important in developing and maintaining the brain function, and in preventing and treating many diseases such as cardiovascular disease, inflammation and cancer. Although mammals can biosynthesize these long-chain polyunsaturated fatty acids, the efficiency is very low and dietary intake is needed to meet the requirement. In this study, a multiple-genes expression vector carrying mammalian A6/A5 fatty acid desaturases and multiple-genes expression vector carrying mammalian Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases coding genes was used to transfect HEK293T cells, then the overexpression of the target genes was detected. GC-MS analysis shows that the biosynthesis efficiency and level of DHA, EPA and ARA were significantly increased in cells transfected with the multiple-genes expression vector. Particularly, DHA level in these cells was 2.5 times higher than in the control cells. This study indicates mammal possess a certain mechanism for suppression of high level of biosynthesis of long chain polyunsaturated fatty acids, and the overexpression of Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases broke this suppression mechanism so that the level of DHA, EPA and ARA was significantly increased. This study also provides a basis for potential applications of this gene construct in transgenic animal to produce high level of these long-chain polyunsaturated fatty acid.

  2. Hypothalamic fatty acid sensing in Senegalese sole (Solea senegalensis): response to long-chain saturated, monounsaturated, and polyunsaturated (n-3) fatty acids.

    PubMed

    Conde-Sieira, Marta; Bonacic, Kruno; Velasco, Cristina; Valente, Luisa M P; Morais, Sofia; Soengas, José L

    2015-12-15

    We assessed the presence of fatty acid (FA)-sensing mechanisms in hypothalamus of Senegalese sole (Solea senegalensis) and investigated their sensitivity to FA chain length and/or level of unsaturation. Stearate (SA, saturated FA), oleate (OA, monounsaturated FA of the same chain length), α-linolenate [ALA, a n-3 polyunsaturated fatty acid (PUFA) of the same chain length], and eicosapentanoate (EPA, a n-3 PUFA of a larger chain length) were injected intraperitoneally. Parameters related to FA sensing and neuropeptide expression in the hypothalamus were assessed after 3 h and changes in accumulated food intake after 4, 24, and 48 h. Three FA sensing systems characterized in rainbow trout were also found in Senegalese sole and were activated by OA in a way similar to that previously characterized in rainbow trout and mammals. These hypothalamic FA sensing systems were also activated by ALA, differing from mammals, where n-3 PUFAs do not seem to activate FA sensors. This might suggest additional roles and highlights the importance of n-3 PUFA in fish diets, especially in marine species. The activation of FA sensing seems to be partially dependent on acyl chain length and degree of saturation, as no major changes were observed after treating fish with SA or EPA. The activation of FA sensing systems by OA and ALA, but not SA or EPA, is further reflected in the expression of hypothalamic neuropeptides involved in the control of food intake. Both OA and ALA enhanced anorexigenic capacity compatible with the activation of FA sensing systems. Copyright © 2015 the American Physiological Society.

  3. Dietary n-3 long chain polyunsaturated fatty acids in allergy prevention and asthma treatment.

    PubMed

    Willemsen, Linette E M

    2016-08-15

    The rise in non-communicable diseases, such as allergies, in westernized countries links to changes in lifestyle and diet. N-3 long chain polyunsaturated fatty acids (LCPUFA) present in marine oils facilitate a favorable milieu for immune maturation and may contribute to allergy prevention. N-3 LCPUFA can suppress innate and adaptive immune activation and induce epigenetic changes. Murine studies convincingly show protective effects of fish oil, a source of n-3 LCPUFA, in food allergy and asthma models. Observational studies in human indicate that high dietary intake of n-3 LCPUFA and low intake of n-6 PUFA may protect against the development of allergic disease early in life. High n-6 PUFA intake is also associated with an increased asthma risk while n-3 LCPUFA may be protective and reduce symptoms. The quality of the marine oil used has impact on efficacy of allergy prevention and several observations link in particular n-3 LCPUFA DHA to allergy suppression. Randomized controlled trials indicate that optimal timing, duration and dosage of n-3 LC-PUFA is required to exert an allergy protective effect. Supplementation during early pregnancy and lactation has shown promising results regarding allergy prevention. However these findings should be confirmed in a larger cohort. Although clinical trials in asthma patients reveal no consistent clinical benefits of n-3 LCPUFA supplementation on lung function, it can suppress airway inflammation. Future food-pharma approaches may reveal whether adjunct therapy with dietary n-3 LCPUFA can improve allergy prevention or immunotherapy via support of allergen specific oral tolerance induction or contribute to the efficacy of drug therapy for asthma patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG-CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES

    EPA Science Inventory

    Very-long-chain highly unsaturated C28 fatty acids (HUFAs), found in a number of dinoflagellates, are released as methyl esters from phospholipids obtained by fractionation of lipid extracts. By contrast, the highly unsaturated C18 fatty acid octadecapentaenoic acid (18:5n-3), co...

  5. Long-chain 3-hydroxy fatty acids accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial trifunctional protein deficiencies uncouple oxidative phosphorylation in heart mitochondria.

    PubMed

    Tonin, Anelise M; Amaral, Alexandre U; Busanello, Estela N B; Grings, Mateus; Castilho, Roger F; Wajner, Moacir

    2013-02-01

    Cardiomyopathy is a common clinical feature of some inherited disorders of mitochondrial fatty acid β-oxidation including mitochondrial trifunctional protein (MTP) and isolated long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies. Since individuals affected by these disorders present tissue accumulation of various fatty acids, including long-chain 3-hydroxy fatty acids, in the present study we investigated the effect of 3-hydroxydecanoic (3 HDCA), 3-hydroxydodecanoic (3 HDDA), 3-hydroxytetradecanoic (3 HTA) and 3-hydroxypalmitic (3 HPA) acids on mitochondrial oxidative metabolism, estimated by oximetry, NAD(P)H content, hydrogen peroxide production, membrane potential (ΔΨ) and swelling in rat heart mitochondrial preparations. We observed that 3 HTA and 3 HPA increased resting respiration and diminished the respiratory control and ADP/O ratios using glutamate/malate or succinate as substrates. Furthermore, 3 HDDA, 3 HTA and 3 HPA decreased ΔΨ, the matrix NAD(P)H pool and hydrogen peroxide production. These data indicate that these fatty acids behave as uncouplers of oxidative phosphorylation. We also verified that 3 HTA-induced uncoupling-effect was not mediated by the adenine nucleotide translocator and that this fatty acid induced the mitochondrial permeability transition pore opening in calcium-loaded organelles since cyclosporin A prevented the reduction of mitochondrial ΔΨ and swelling provoked by 3 HTA. The present data indicate that major 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies behave as strong uncouplers of oxidative phosphorylation potentially impairing heart energy homeostasis.

  6. Desaturase and elongase-limiting endogenous long-chain polyunsaturated fatty acid biosynthesis.

    PubMed

    Zhang, Ji Yao; Kothapalli, Kumar S D; Brenna, J Thomas

    2016-03-01

    Endogenous synthesis of the long-chain polyunsaturated fatty acids (LCPUFAs) is mediated by the fatty acid desaturase (FADS) gene cluster (11q12-13.1) and elongation of very long-chain fatty acids 2 (ELOVL2) (6p24.2) and ELOVL5 (6p12.1). Although older biochemical work identified the product of one gene, FADS2, rate limiting for LCPUFA synthesis, recent studies suggest that polymorphisms in any of these genes can limit accumulation of product LCPUFA. Genome-wide association study (GWAS) of Greenland Inuit shows strong adaptation signals within FADS gene cluster, attributed to high omega-3 fatty acid intake, while GWAS found ELOVL2 associated with sleep duration, age and DNA methylation. ELOVL5 coding mutations cause spinocerebellar ataxia 38, and epigenetic marks were associated with depression and suicide risk. Two sterol response element binding sites were found on ELOVL5, a SREBP-1c target gene. Minor allele carriers of a 3 single nucleotide polymorphism (SNP) haplotype in ELOVL2 have decreased 22 : 6n-3 levels. Unequivocal molecular evidence shows mammalian FADS2 catalyzes direct Δ4-desaturation to yield 22 : 6n-3 and 22 : 5n-6. An SNP near FADS1 influences the levels of 5-lipoxygenase products and epigenetic alteration. Genetic polymorphisms within FADS and ELOVL can limit LCPUFA product accumulation at any step of the biosynthetic pathway.

  7. A Tc-99m-labeled long chain fatty acid derivative for myocardial imaging.

    PubMed

    Magata, Yasuhiro; Kawaguchi, Takayoshi; Ukon, Misa; Yamamura, Norio; Uehara, Tomoya; Ogawa, Kazuma; Arano, Yasushi; Temma, Takashi; Mukai, Takahiro; Tadamura, Eiji; Saji, Hideo

    2004-01-01

    C-11- and I-123-labeled long chain fatty acid derivatives have been reported as useful radiopharmaceuticals for the estimation of myocardial fatty acid metabolism. We have reported that Tc-99m-labeled N-[[[(2-mercaptoethyl)amino]carbonyl]methyl]-N-(2-mercaptoethyl)-6-aminohexanoic acid ([(99m)Tc]MAMA-HA), a medium chain fatty acid derivative, is metabolized by beta-oxidation in the liver and that the MAMA ligand is useful for attaching to the omega-position of fatty acid derivatives as a chelating group for Tc-99m. On the basis of these findings, we focused on developing a Tc-99m-labeled long chain fatty acid derivative that reflected fatty acid metabolism in the myocardium. In this study, we synthesized a dodecanoic acid derivative, MAMA-DA, and a hexadecanoic acid derivative, MAMA-HDA, and performed radiolabeling and biodistribution studies. [(99m)Tc]MAMA-DA and [(99m)Tc]MAMA-HDA were prepared using a ligand-exchange reaction. Biodistribution studies were carried out in normal mice and rats. Then, a high initial uptake of Tc-99m was observed, followed by a rapid clearance from the heart. The maximum heart/blood ratio was 3.6 at 2 min postinjection of [(99m)Tc]MAMA-HDA. These kinetics were similar to those with postinjection of p-[(125)I]iodophenylpentadecanoic acid. Metabolite analysis showed [(99m)Tc]MAMA-HDA was metabolized by beta-oxidation in the body. In conclusion, [(99m)Tc]MAMA-HDA is a promising compound as a long chain fatty acid analogue for estimating beta-oxidation of fatty acid in the heart.

  8. Bioavailability of long-chain n-3 fatty acids from enriched meals and from microencapsulated powder.

    PubMed

    Hinriksdottir, H H; Jonsdottir, V L; Sveinsdottir, K; Martinsdottir, E; Ramel, A

    2015-03-01

    Despite the potential benefits of long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs), intake is often low because of low consumption of oily seafood. Microencapsulated fish oil powder can improve tolerance and acceptance of LC n-3 PUFAs. Bioavailability is important to achieve efficacy. We investigated the bioavailability of LC n-3 PUFAs from microencapsulated powder in comparison with meals enriched with liquid fish oil. Participants (N=99, age⩾50 years) of this 4-week double-blinded dietary intervention were randomized into three groups. Group 1 (n=38) received 1.5 g/d eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) as ready-to-eat meals enriched with liquid fish oil; group 2 (n=30) received the same amount of these LC n-3 PUFAs as microencapsulated fish oil powder and regular meals; and group 3 (n=31) was the control group, which received placebo powder and regular meals. Blood samples were taken from fingertips at baseline and at the end point. Seventy-seven subjects (77.8%) completed the study. The amount of EPA in blood doubled in both groups that received LC n-3 PUFAs (P<0.05), but it did not change in the control group. The changes in DHA were less but still significant in both intervention groups. According to multivariate analysis, both intervention groups had higher end-point LC n-3 PUFA concentrations compared with placebo, but differences between intervention groups were not significant. Bioavailability of LC n-3 PUFAs in encapsulated powder is very similar to the bioavailability of LC n-3 PUFAs in ready-to-eat meals enriched with liquid fish oil. Thus, encapsulated powder can be considered useful to increase LC n-3 PUFA concentrations in blood.

  9. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES.

    EPA Science Inventory

    The very long chain highly unsaturated C28 fatty acids, octacosaheptaenoic [28:7(n-6)] and octacosaoctaenoic acid [28:8(n-3)], were found to be associated with phospholipids, obtained by fractionation of total lipid extracts into distinct lipid classes, in 4 and 6, respectively, ...

  10. Incorporation of Dairy Lipids in the Diet Increased Long-Chain Omega-3 Fatty Acids Status in Post-weaning Rats

    PubMed Central

    Drouin, Gaetan; Catheline, Daniel; Sinquin, Annaëlle; Baudry, Charlotte; Le Ruyet, Pascale; Rioux, Vincent; Legrand, Philippe

    2018-01-01

    In human nutrition, optimized the status of n-3 long-chain polyunsaturated fatty acids (LCPUFA) and especially docosahexaenoic acid (DHA) during growth appears to be one of the most important goal. We investigated the potential impact of a partial incorporation of dairy lipids (DL) in the diet to increase the n-3 LCPUFA content in tissues, compared to a mixture of vegetable oils. Rats were fed with vegetable oil diet or DL diet, supplemented or not supplemented with DHA, from weaning for 6 weeks. All diets provided the same quantity of 2.3% of total fatty acids of precursor α-linolenic acid. LCPUFA levels in brain, retina, liver, heart, red blood cells and epididymal adipose tissue, Δ-6 desaturase activity and mRNA expression in liver, and plasma cholesterol were measured. Rats fed a DL diet increased their DHA content in brain and retina compared with rats fed a vegetable oil diet and reached the same level than rats directly supplemented with DHA. The status of n-3 docosapentaenoic acid increased with DL diet in heart, red blood cells and liver. The n-3 docosapentaenoic acid specifically discriminated DL diets in the heart. DL diet increased α-linolenic acid content in liver and epididymal adipose tissue, provided specific fatty acids as short- and medium-chain fatty acids and myristic acid, and increased plasma cholesterol. We hypothesized that dairy lipids may increase the n-3 LCPUFA enrichment in tissues by preserving precursor α-linolenic acid from β-mitochondrial oxidation, associated with the presence of short- and medium-chain fatty acids in DL diets. In conclusion, a partial incorporation of dairy lipids in the diet with an adequate α-linolenic acid content improved the n-3 LCPUFA status, especially DHA in brain and retina. PMID:29876354

  11. The effects of n-3 long-chain polyunsaturated fatty acid supplementation on AGEs and sRAGE in type 2 diabetes mellitus.

    PubMed

    Kurt, Asuman; Andican, Gülnur; Siva, Zeynep Oşar; Andican, Ahat; Burcak, Gülden

    2016-12-01

    In diabetes mellitus, chronic hyperglycemia leads to formation of advanced glycation end products (AGEs). Binding of AGEs to receptors of AGE (RAGE) causes deleterious effects. In populations with a high consumption of n-3 long-chain polyunsaturated fatty acids, a lower prevalence of diabetes mellitus has been reported. We aimed to investigate the effects of n-3 fatty acid (EPA and DHA) supplementation on the levels of AGEs (carboxymethyl lysine (CML) and pentosidine), sRAGE, and nuclear factor kappa B (NF-kB) in type 2 diabetes mellitus (T2DM). T2DM patients (n = 38) treated with oral hypoglycemic agents, without insulin were supplemented with n-3 fatty acids (1.2 g/day) for 2 months. Plasma CML, pentosidine, sRAGE, and NF-kB levels were measured by ELISA both before and after the supplementation. n-3 fatty acid supplementation significantly reduced fasting glucose (p < 0.01), glycated hemoglobin (HbA 1c ) (p < 0.05), and pentosidine (p < 0.05) levels. The supplementation induced percentage changes in pentosidine and HbA 1c and in pentosidine and creatinine were observed to be correlated (r = 0.349, p < 0.05) and (r = 0.377, p < 0.05), respectively. Waist circumference and systolic and diastolic pressures were significantly decreased due to n-3 supplementation (p < 0.001, p < 0.01, p < 0.01), respectively. Our results show that supplementation with n-3 fatty acid has beneficial effects on waist circumference; systolic and diastolic blood pressures; and the levels of glucose, HbA 1c , and pentosidine in T2DM patients. However, the supplementation failed to decrease these parameters to the reference ranges for healthy subjects. In addition, the supplementation did not appear to induce any significant differences in CML, sRAGE, or NF-kB.

  12. Metabolic health benefits of long-chain omega-3 polyunsaturated fatty acids.

    PubMed

    Howe, Peter; Buckley, Jon

    2014-11-01

    Restricting energy intake and increasing physical activity are advocated for reducing obesity, but many individuals have difficulty complying with these recommendations. Consumption of long-chain omega-3 polyunsaturated fatty acids (n-3 LCPUFA) offers multiple mechanisms to counteract obesity, including appetite suppression; circulatory improvements, which promote nutrient delivery to skeletal muscle and changes in gene expression, which shift metabolism toward increased fat oxidation; increased energy expenditure; and reduced fat deposition. n-3 LCPUFA may also alter gene expression in skeletal muscle to suppress catabolic pathways and upregulate anabolic pathways, resulting in greater lean tissue mass, metabolic rate, and maintenance of physical function. n-3 LCPUFA supplementation has been shown to counteract obesity in rodents, but evidence in humans is limited. Epidemiological associations between n-3 LCPUFA intakes and obesity are inconclusive. Several studies, on the other hand, indicate inverse relationships between biomarkers of n-3 LCPUFA status and obesity, although causality is uncertain. There have been few human intervention trials of omega-3 supplementation for obesity; some have indicated potential benefits, especially when combined with energy-restricted diets or exercise. More trials are needed to confirm these effects and identify mechanisms of action. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  13. Serum long-chain omega-3 polyunsaturated Fatty acids and future blood pressure in an ageing population.

    PubMed

    Nyantika, A N; Tuomainen, T-P; Kauhanen, J; Voutilainen, S; Virtanen, J K

    2015-05-01

    To investigate the associations of serum long-chain omega-3 polyunsaturated fatty acids (PUFA) and hair mercury with future blood pressure in an ageing population. Prospective study with baseline measurements in 1998-2001 and follow-up measurements in 2005-2008. The linear relationships (β) of baseline serum fatty acids and hair mercury with future systolic and diastolic blood pressure and pulse pressure were analyzed with multiple linear regression models, using log-transformed values. 181 men and 200 women aged 53-73 y from the Kuopio Ischemic Heart Disease Risk Factor Study (KIHD) population in Eastern Finland, who were free of cardiovascular disease, diabetes or hypertension at baseline. Total serum esterified and nonesterified fatty acids and pubic hair mercury were used as markers for exposure. Anthropometric and other lifestyle and health-related data were collected. The mean serum concentrations were 1.67% (SD 0.92) for eicosapentaenoic acid (EPA), 0.79% (SD 0.16) for docosapentaenoic acid (DPA) and 2.78 (SD 0.92) for docosahexaenoic acid (DHA), of all serum fatty acids. The mean hair mercury concentration was 1.5 µg/g (SD 1.6). We did not find statistically significant associations between the baseline serum long-chain omega-3 PUFA concentrations or hair mercury content and future blood pressure. Hair mercury did not modify the associations with the long-chain omega-3 PUFAs, either. Higher serum long-chain omega-3 PUFA concentration, a biomarker of fish or fish oil consumption, may not have an impact on future blood pressure in an ageing population.

  14. A low omega-6 polyunsaturated fatty acid (n-6 PUFA) diet increases omega-3 (n-3) long chain PUFA status in plasma phospholipids in humans.

    PubMed

    Wood, K E; Lau, A; Mantzioris, E; Gibson, R A; Ramsden, C E; Muhlhausler, B S

    2014-04-01

    This study aimed to determine the effect of reducing the dietary linoleic acid (LA) intake from ~5% to <2.5% energy (%E) on n-3 long chain PUFA (LCPUFA) status in humans. Thirty-six participants followed a <2.5%E LA diet for 4 weeks. Nutrient intakes were estimated from diet diaries and blood samples were collected for assessment of fatty acid composition in plasma and erythrocyte phospholipids. LA intakes were reduced from 4.6%E to 2%E during the low LA intervention (P<0.001) while n-3 LCPUFA intakes were unchanged. LA and total n-6 PUFA content of plasma and erythrocyte phospholipids were significantly reduced after the low LA diet phase (P<0.001). The n-3 LCPUFA content of plasma phospholipids was significantly increased after the low LA diet compared to baseline (6.22% vs. 5.53%, P<0.001). These data demonstrate that reducing LA intake for 4 weeks increases n-3 LCPUFA status in humans in the absence of increased n-3 LCPUFA intake. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A critical assessment of transmethylation procedures for n-3 long-chain polyunsaturated fatty acid quantification of lipid classes.

    PubMed

    Sehl, Anthony; Couëdelo, Leslie; Fonseca, Laurence; Vaysse, Carole; Cansell, Maud

    2018-06-15

    Lipid transmethylation methods described in the literature are not always evaluated with care so to insure that the methods are effective, especially on food matrix or biological samples containing polyunsaturated fatty acid (PUFA). The aim of the present study was to select a method suitable for all lipid species rich in long chain n-3 PUFA. Three published methods were adapted and applied on individual lipid classes. Lipid (trans)methylation efficiency was characterized in terms of reaction yield and gas chromatography (GC) analysis. The acid-catalyzed method was unable to convert triglycerides and sterol esters, while the method using an incubation at a moderate temperature was ineffective on phospholipids and sterol esters. On the whole only the method using sodium methoxide and sulfuric acid was effective on lipid classes taken individually or in a complex medium. This study highlighted the use of an appropriate (trans)methylation method for insuring an accurate fatty acid composition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Restoration of fillet n-3 long-chain polyunsaturated fatty acid is improved by a modified fish oil finishing diet strategy for atlantic salmon (Salmo salar L.) smolts fed palm fatty acid distillate.

    PubMed

    Codabaccus, Mohamed B; Bridle, Andrew R; Nichols, Peter D; Carter, Chris G

    2012-01-11

    Reducing the lipid content in fish prior to feeding a fish oil finishing diet (FOFD) has the potential to improve n-3 long-chain (≥ C(20)) polyunsaturated fatty acid (LC-PUFA) restoration. This study had two main objectives: (1) determine whether feeding Atlantic salmon smolt a 75% palm fatty acid distillate diet (75PFAD) improves the apparent digestibility (AD) of saturated fatty acids (SFA) and (2) examine whether a food deprivation period after growth on 75PFAD leads to higher n-3 LC-PUFA restoration in the fillet when applying a FOFD. The AD of SFA was higher for 75PFAD compared to that of a fish oil (FO) diet. The relative level (as % total fatty acids (FA)) of n-3 LC-PUFA was higher in unfed fish compared to that in continuously fed fish after 21 and 28 day FOFD periods, respectively. Our results suggest that a food deprivation period prior to feeding a FOFD improves the efficiency of n-3 LC-PUFA restoration in the fillet of Atlantic salmon smolt.

  17. APOE ε4 and the associations of seafood and long-chain omega-3 fatty acids with cognitive decline

    PubMed Central

    Wang, Yamin; Barnes, Lisa L.; Tangney, Christine; Bennett, David A.; Morris, Martha Clare

    2016-01-01

    Objective: To examine the association between consumption of seafood and long-chain n-3 fatty acids with change in 5 cognitive domains over an average of 4.9 years. Methods: From an ongoing longitudinal, community-based epidemiologic study of aging and dementia (the Rush Memory and Aging Project), we included 915 participants (age 81.4 ± 7.2 years, 25% men) who had completed at least one follow-up cognitive assessment and dietary data. Diet was assessed by semiquantitative food frequency questionnaire. Scores for global cognitive function and 5 cognitive domains (episodic, semantic, and working memory, perceptual speed, and visuospatial ability) were assessed using 19 cognitive tests. Mixed models adjusted for multiple risk factors of cognitive change were used to assess the associations. Results: Consumption of seafood was associated with slower decline in semantic memory (β = 0.024; p = 0.03) and perceptual speed (β = 0.020; p = 0.05) in separate models adjusted for age, sex, education, participation in cognitive activities, physical activity, alcohol consumption, smoking, and total energy intake. In secondary analyses, APOE ε4 carriers demonstrated slower rates of decline in global cognition and in multiple cognitive domains with weekly seafood consumption and with moderate to high long-chain n-3 fatty acid intake from food. These associations were not present in APOE ε4 noncarriers. Higher intake levels of α-linolenic acid were associated with slower global cognitive decline, but also only in APOE ε4 carriers. Conclusions: These results suggest protective relations of one meal per week of seafood and long-chain n-3 fatty acids against decline in multiple cognitive domains. The role of APOE ε4 in this association needs further study. PMID:27164694

  18. Very Long Chain Fatty Acids Are Functionally Involved in Necroptosis.

    PubMed

    Parisi, Laura R; Li, Nasi; Atilla-Gokcumen, G Ekin

    2017-12-21

    Necroptosis is a form of regulated cell death that is linked to various human diseases. Distinct membrane-related, thus lipid-dependent, alterations take place during necroptosis. However, little is known about the roles of specific lipids in this process. We used an untargeted LC-MS-based approach to reveal that distinct lipid species are regulated at the molecular level during necroptosis. We found that ceramides and very long chain fatty acids accumulate during this process. Intrigued by the specificity of very long chain fatty acid accumulation, we focused on characterizing their involvement during necroptosis. Biochemical characterizations suggested that activated fatty acid biosynthesis and elongation could be responsible for these accumulations. We further showed that inhibition of fatty acid biosynthesis and depletion of very long chain fatty acids prevented loss of plasma membrane integrity and cell death, strongly suggesting that very long chain fatty acids are functionally involved in necroptosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice.

    PubMed

    de Theije, Caroline G M; van den Elsen, Lieke W J; Willemsen, Linette E M; Milosevic, Vanja; Korte-Bouws, Gerdien A H; Lopes da Silva, Sofia; Broersen, Laus M; Korte, S Mechiel; Olivier, Berend; Garssen, Johan; Kraneveld, Aletta D

    2015-03-01

    Allergy is suggested to exacerbate impaired behaviour in children with neurodevelopmental disorders. We have previously shown that food allergy impaired social behaviour in mice. Dietary fatty acid composition may affect both the immune and nervous system. The aim of this study was to assess the effect of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) on food allergy-induced impaired social behaviour and associated deficits in prefrontal dopamine (DA) in mice. Mice were fed either control or n-3 LCPUFA-enriched diet before and during sensitization with whey. Social behaviour, acute allergic skin response and serum immunoglobulins were assessed. Monoamine levels were measured in brain and intestine and fatty acid content in brain. N-3 LCPUFA prevented impaired social behaviour of allergic mice. Moreover, n-3 LCPUFA supplementation increased docosahexaenoic acid (DHA) incorporation into the brain and restored reduced levels of prefrontal DA and its metabolites 3,4-dihydroxyphenylacetic acid, 3-methoxytyramine and homovanillic acid in allergic mice. In addition to these brain effects, n-3 LCPUFA supplementation reduced the allergic skin response and restored decreased intestinal levels of serotonin metabolite 5-hydroxyindoleacetic acid in allergic mice. N-3 LCPUFA may have beneficial effects on food allergy-induced deficits in social behaviour, either indirectly by reducing the allergic response and restoring intestinal 5-HT signalling, or directly by DHA incorporation into neuronal membranes, affecting the DA system. Therefore, it is of interest to further investigate the relevance of food allergy-enhanced impairments in social behaviour in humans and the potential benefits of dietary n-3 LCPUFA supplementation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Lipid oxidation of stored eggs enriched with very long chain n-3 fatty acids, as affected by dietary olive leaves (Olea europea L.) or α-tocopheryl acetate supplementation.

    PubMed

    Botsoglou, E; Govaris, A; Fletouris, D; Botsoglou, N

    2012-09-15

    The antioxidant potential of dietary olive leaves or α-tocopheryl acetate supplementation on lipid oxidation of refrigerated stored hen eggs enriched with very long-chain n-3 fatty acids, was investigated. Ninety-six brown Lohmann laying hens, were equally assigned into three groups. Hens within the control group were given a typical diet containing 3% fish oil, whereas other groups were given the same diet further supplemented with 10 g ground olive leaves/kg feed or 200mg α-tocopheryl acetate/kg feed. Results showed that α-tocopheryl acetate or olive leaves supplementation had no significant effect on the fatty acid composition and malondialdehyde (MDA) levels of fresh eggs but reduced their lipid hydroperoxide levels compared to controls. Storage for 60 d decreased the proportions of polyunsaturated fatty acids (PUFAs) but increased those of monounsaturated fatty acids (MUFAs) in eggs from the control group, while had no effect on the fatty acid composition of the eggs from the other two groups, which showed decreased levels of lipid hydroperoxides and MDA. Therefore, the very long chain n-3 PUFAs in eggs were protected from undergoing deterioration partly by olive leaves supplementation and totally by α-tocopheryl acetate supplementation. In addition, incorporating tocopherols into eggs might also provide a source of tocopherols for the human diet. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Purification and characterization of an amidohydrolase for N4-long-chain fatty acyl derivatives of 1-beta-D-arabinofuranosylcytosine from mouse liver microsomes.

    PubMed

    Hori, K; Tsuruo, T; Tsukagoshi, S; Sakurai, Y

    1984-03-01

    N4-Long-chain fatty acyl-1-beta-D-arabinofuranosylcytosine amidohydrolase, a metabolizing enzyme for N4-acyl derivatives of 1-beta-D-arabinofuranosylcytosine with long-chain fatty acids, was purified from mouse liver microsomes. The purification was accomplished by solubilization of liver microsomes with Triton X-100, diethylaminoethyl cellulose chromatography, gel filtrations, hydroxyapatite chromatography, and concanavalin A:Sepharose chromatography. On sodium dodecyl sulfate:polyacrylamide gel electrophoresis, the purified enzyme preparation produced a single protein band with a molecular weight of 54,000. The enzyme had an optimal pH of 9.0, and the Michaelis constant for N4-palmitoyl-1-beta-D-arabinofuranosylcytosine was 67 microM. The thiols such as dithiothreitol or 2-mercaptoethanol stabilized the enzyme and stimulated its activity. p-Chloromercuribenzoate, N-ethylmaleimide, diisopropylfluorophosphate, and phenylmethylsulfonyl fluoride strongly inhibited the reaction. Bovine serum albumin markedly stimulated the enzyme activity, whereas detergents such as Triton X-100, deoxycholate, and sodium dodecyl sulfate had little effect. The enzyme did not require monovalent or divalent cations. Among the series of N4-acyl derivatives of 1-beta-D-arabinofuranosylcytosine with different chain lengths of acyl residues, the purified enzyme preferentially hydrolyzed the derivatives with long-chain fatty acids (C12 to C18), and N4-palmitoyl-1-beta-D-arabinofuranosylcytosine was the most susceptible. The purified enzyme was inactive on various N-acylamino acids, amides, oligopeptides, proteins, N-acylsphingosines (ceramides), triglyceride, lecithin, and lysolecithin. These results suggest that N4-long-chain fatty acyl-1-beta-D-arabinofuranosylcytosine amidohydrolase may be a new type of linear amidase.

  2. Modulation of heart rate and heart rate variability by n-3 long chain polyunsaturated fatty acids: Speculation on mechanism(s).

    PubMed

    Drewery, Merritt L; Spedale, Steven B; Lammi-Keefe, Carol J

    2017-09-01

    Heart rate (HR) and heart rate variability (HRV) are valuable markers of health. Although the underlying mechanism(s) are controversial, it is well documented that n-3 long chain polyunsaturated fatty acid (LCPUFA) intake improves HR and HRV in various populations. Autonomic modulation and/or alterations in cardiac electrophysiology are commonly cited as potential mechanisms responsible for these effects. This article reviews existing evidence for each and explores a separate mechanism which has not received much attention but has scientific merit. Based on presented evidence, it is proposed that n-3 LCPUFAs affect HR and HRV directly by autonomic modulation and indirectly by altering circulating factors, both dependently and independently of the autonomic nervous system. The evidence for changes in cardiac electrophysiology as the mechanism by which n-3 LCPUFAs affect HR and HRV needs strengthening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Long-chain n-3 PUFA: plant v. marine sources.

    PubMed

    Williams, Christine M; Burdge, Graham

    2006-02-01

    Increasing recognition of the importance of the long-chain n-3 PUFA, EPA and DHA, to cardiovascular health, and in the case of DHA to normal neurological development in the fetus and the newborn, has focused greater attention on the dietary supply of these fatty acids. The reason for low intakes of EPA and DHA in most developed countries (0.1-0.5 g/d) is the low consumption of oily fish, the richest dietary source of these fatty acids. An important question is whether dietary intake of the precursor n-3 fatty acid, alpha-linolenic acid (alphaLNA), can provide sufficient amounts of tissue EPA and DHA by conversion through the n-3 PUFA elongation-desaturation pathway. alphaLNA is present in marked amounts in plant sources, including green leafy vegetables and commonly-consumed oils such as rape-seed and soyabean oils, so that increased intake of this fatty acid would be easier to achieve than via increased fish consumption. However, alphaLNA-feeding studies and stable-isotope studies using alphaLNA, which have addressed the question of bioconversion of alphaLNA to EPA and DHA, have concluded that in adult men conversion to EPA is limited (approximately 8%) and conversion to DHA is extremely low (<0.1%). In women fractional conversion to DHA appears to be greater (9%), which may partly be a result of a lower rate of utilisation of alphaLNA for beta-oxidation in women. However, up-regulation of the conversion of EPA to DHA has also been suggested, as a result of the actions of oestrogen on Delta6-desaturase, and may be of particular importance in maintaining adequate provision of DHA in pregnancy. The effect of oestrogen on DHA concentration in pregnant and lactating women awaits confirmation.

  4. Associations of human retinal very long-chain polyunsaturated fatty acids with dietary lipid biomarkers

    PubMed Central

    Gorusupudi, Aruna; Liu, Aihua; Hageman, Gregory S.; Bernstein, Paul S.

    2016-01-01

    The human retina is well-known to have unique lipid profiles enriched in long-chain polyunsaturated fatty acids (LC-PUFAs) and very long-chain polyunsaturated fatty acids (VLC-PUFAs) that appear to promote normal retinal structure and function, but the influence of diet on retinal lipid profiles in health and disease remains controversial. In this study, we examined two independent cohorts of donor eyes and related their retinal lipid profiles with systemic biomarkers of lipid intake. We found that serum and red blood cell lipids, and to a lesser extent orbital fat, are indeed excellent biomarkers of retinal lipid content and n-3/n-6 ratios in both the LC-PUFA and VLC-PUFA series. Eyes from age-related macular degeneration (AMD) donors have significantly decreased levels of VLC-PUFAs and low n-3/n-6 ratios. These results are consistent with the protective role of dietary n-3 LC-PUFAs against AMD and emphasize the importance of monitoring systemic biomarkers of lipid intake when undertaking clinical trials of lipid supplements for prevention and treatment of retinal disease. PMID:26764040

  5. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton.

    PubMed

    Hixson, Stefanie M; Arts, Michael T

    2016-08-01

    Phytoplankton are the main source of energy and omega-3 (n-3) long-chain essential fatty acids (EFA) in aquatic ecosystems. Their growth and biochemical composition are affected by surrounding environmental conditions, including temperature, which continues to increase as a result of climate warming. Increasing water temperatures may negatively impact the production of EFA by phytoplankton through the process of homeoviscous adaptation. To investigate this, we conducted an exploratory data synthesis with 952 fatty acid (FA) profiles from six major groups of marine and freshwater phytoplankton. Temperature was strongly correlated with a decrease in the proportion of n-3 long-chain polyunsaturated FA (LC-PUFA) and an increase in omega-6 FA and saturated FA. Based on linear regression models, we predict that global n-3 LC-PUFA production will be reduced by 8.2% for eicosapentaenoic acid (EPA) and 27.8% for docosahexaenoic acid (DHA) with an increase in water temperature of 2.5 °C. Using a previously published estimate of the global production of EPA by diatoms, which contribute to most of the world's supply of EPA, we predict a loss of 14.2 Mt of EPA annually as a result of ocean warming. The n-3 LC-PUFA are vitally important for an array of key physiological functions in aquatic and terrestrial organisms, and these FA are mainly produced by phytoplankton. Therefore, reduced production of these EFA, as a consequence of climate warming, is predicted to negatively affect species that depend on these compounds for optimum physiological function. Such profound changes in the biochemical composition of phytoplankton cell membranes can lead to cascading effects throughout the world's ecosystems. © 2016 John Wiley & Sons Ltd.

  6. Confocal analysis of hepatocellular long-chain fatty acid uptake.

    PubMed

    Elsing, C; Winn-Börner, U; Stremmel, W

    1995-12-01

    Transmembrane transport and cytosolic accumulation of fatty acids were investigated using confocal laser scanning microscopy (cLSM). A Zeiss LSM 310 system was used to determine the uptake of the fluorescent fatty acid derivative 12-(N-methyl)-N-[(7-nitrobenz-2-oxa-1,3- diazol-4-yl)amino]octadecanoic acid (12-NBD stearate) (C18) in single rat hepatocytes. Uptake was a saturable process with a Michaelis-Menten constant value of 68 nM. Initial uptake velocity was dependent on extracellular presence of albumin and beta-lactoglobulin. Absence of albumin reduced uptake to 32 +/- 16% (P < 0.01) of control values. In the presence of unlabeled stearate, uptake of 12-NBD stearate was lowered to 49 +/- 12% (P < 0.01). Ion substitution experiments showed no sodium dependency of uptake. Increase in membrane potential led to a pronounced accumulation of the fatty acid derivative within the plasma membrane and in the adjacent cytoplasmic compartment, whereas membrane depolarization had no effect on uptake rates. In separate experiments line scans through representative hepatocytes were analyzed to generate "x-t" plots. 12-NBD stearate showed a fluorescence pattern with prominent staining of the area of the plasma membrane and the adjacent cytoplasm, dependent on the presence of extracellular albumin. For the hepatocellular cytosolic accumulation process of 12-NBD stearate a diffusion constant of 22.2 +/- 6.2 x 10(-9) cm2/s was calculated. In contrast to the long-chain fatty acid derivative 12-NBD stearate, short (C5)- and medium (C11)-chain fatty acids revealed no membrane interaction with hepatocytes. Erythrocytes also lacked a membrane interaction process for 12-NBD stearate. In conclusion, it was demonstrated that cLSM is capable of directly evaluating the cellular fatty acid uptake process at a subcellular level.

  7. Effect of n-3 long chain polyunsaturated fatty acids during the perinatal period on later body composition.

    PubMed

    Rodríguez, G; Iglesia, I; Bel-Serrat, S; Moreno, L A

    2012-06-01

    A systematic review to identify studies reporting the effects of n-3 long chain polyunsaturated fatty acids (LCPUFA) intake, during pregnancy and postnatally, on infants and young children's body composition was performed. A structured search strategy was performed in the MEDLINE (PubMed), EMBASE, and LILACS databases. Inclusion and exclusion criteria were defined according to the research question. Only those studies addressing the relationship between n-3 LCPUFA exposure during the perinatal period and later adiposity measured in terms of weight, height, body mass index (BMI), skinfold thickness and/or circumferences were included regardless of the study design. Studies quality was scored and were thereafter categorised into those reporting on maternal intake of n-3 LCPUFA during pregnancy or lactation (6 publications) or on infant's n-3 LCPUFA intake (7 publications). Two studies showed inverse associations between maternal n-3 LCPUFA intake and children's later body composition (lower adiposity, BMI or body weight), two showed direct associations and no effects were observed in the remaining two studies. Among those studies focusing on n-3 LCPUFA intake through enriched infant formulas; three observed no effect on later body composition and two showed higher weight and adiposity with increased amounts of n-3 LCPUFA. Reversely, in two studies weight and fat mass decreased. In conclusion, reported body composition differences in infants and young children were not clearly explained by perinatal n-3 LCPUFA intake via supplemented formulas, breastfeeding or maternal intakes of n-3 LCPUFA during pregnancy and lactation. Associated operational mechanisms including n-3 LCPUFA doses and sources applied are not sufficiently explained and therefore no conclusions could be made.

  8. In ovo exposure to omega-3 fatty acids does not enhance omega-3 long-chain polyunsaturated fatty acid metabolism in broiler chickens.

    PubMed

    Kanakri, K; Carragher, J; Muhlhausler, B; Hughes, R; Gibson, R

    2017-10-01

    The content of omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) in chicken meat can be boosted by feeding broilers a diet containing α-linolenic acid (ALA, from flaxseed oil), some of which is converted by hepatic enzymes to n-3 LCPUFA. However, most of the accumulated n-3 polyunsaturated fatty acid (PUFA) in meat tissues is still in the form of ALA. Despite this, the levels of chicken diets are being enhanced by the inclusion of vegetable and marine sources of omega-3 fats. This study investigated whether the capacity of chicken for n-3 LCPUFA accumulation could be enhanced or inhibited by exposure to an increased supply of ALA or n-3 LCPUFA in ovo. Breeder hens were fed either flaxseed oil (High-ALA), fish oil (high n-3 LCPUFA) or tallow- (low n-3 PUFA, Control) based diets. The newly hatched chicks in each group were fed either the High-ALA or the Control diets until harvest at 42 days' post-hatch. The n-3 PUFA content of egg yolk and day-old chick meat closely matched the n-3 PUFA composition of the maternal diet. In contrast, the n-3 PUFA composition of breast and leg meat tissues of the 42-day-old offspring closely matched the diet fed post-hatch, with no significant effect of maternal diet. Indeed, there was an inhibition of n-3 LCPUFA accumulation in meat of the broilers from the maternal Fish-Oil diet group when fed the post-hatch High-ALA diet. Therefore, this approach is not valid to elevate n-3 LCPUFA in chicken meat.

  9. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop.

    PubMed

    Ruiz-Lopez, Noemi; Haslam, Richard P; Napier, Johnathan A; Sayanova, Olga

    2014-01-01

    Omega-3 (also called n-3) long-chain polyunsaturated fatty acids (≥C20; LC-PUFAs) are of considerable interest, based on clear evidence of dietary health benefits and the concurrent decline of global sources (fish oils). Generating alternative transgenic plant sources of omega-3 LC-PUFAs, i.e. eicosapentaenoic acid (20:5 n-3, EPA) and docosahexaenoic acid (22:6 n-3, DHA) has previously proved problematic. Here we describe a set of heterologous genes capable of efficiently directing synthesis of these fatty acids in the seed oil of the crop Camelina sativa, while simultaneously avoiding accumulation of undesirable intermediate fatty acids. We describe two iterations: RRes_EPA in which seeds contain EPA levels of up to 31% (mean 24%), and RRes_DHA, in which seeds accumulate up to 12% EPA and 14% DHA (mean 11% EPA and 8% DHA). These omega-3 LC-PUFA levels are equivalent to those in fish oils, and represent a sustainable, terrestrial source of these fatty acids. We also describe the distribution of these non-native fatty acids within C. sativa seed lipids, and consider these data in the context of our current understanding of acyl exchange during seed oil synthesis. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  10. Zeolites relieves inhibitory stress from high concentrations of long chain fatty acids.

    PubMed

    Nordell, Erik; Hansson, Anna B; Karlsson, Martin

    2013-12-01

    Protein and fat rich slaughterhouse waste is a very attractive waste stream for the production of biogas because of the high biochemical methane potential of the substrate. The material has however some drawbacks as the sole material for biogas production due to the production of several process disturbing metabolites such as ammonia, sulfides and long chain fatty acids. We can in this work present results that show that zeolites have the potential to relieve inhibitory stress from the presence of long chain fatty acids. Moreover, the results strongly indicate that it is mainly acetic acid consumers that are most negatively affected by long chain fatty acids and that the mechanism of stress relief is an adsorption of long chain fatty acids to the zeolites. In addition to this, it is shown that the effect is immediate and that only a small amount of zeolites is necessary to cancel the inhibitory effect of long chain fatty acids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Integrated Immunomodulatory Mechanisms through which Long-Chain n-3 Polyunsaturated Fatty Acids Attenuate Obese Adipose Tissue Dysfunction

    PubMed Central

    Liddle, Danyelle M.; Wellings, Hannah R.; Power, Krista A.; Robinson, Lindsay E.; Monk, Jennifer M.

    2017-01-01

    Obesity is a global health concern with rising prevalence that increases the risk of developing other chronic diseases. A causal link connecting overnutrition, the development of obesity and obesity-associated co-morbidities is visceral adipose tissue (AT) dysfunction, characterized by changes in the cellularity of various immune cell populations, altered production of inflammatory adipokines that sustain a chronic state of low-grade inflammation and, ultimately, dysregulated AT metabolic function. Therefore, dietary intervention strategies aimed to halt the progression of obese AT dysfunction through any of the aforementioned processes represent an important active area of research. In this connection, fish oil-derived dietary long-chain n-3 polyunsaturated fatty acids (PUFA) in the form of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to attenuate obese AT dysfunction through multiple mechanisms, ultimately affecting AT immune cellularity and function, adipokine production, and metabolic signaling pathways, all of which will be discussed herein. PMID:29186929

  12. Maternal intake of seafood and supplementary long chain n-3 poly-unsaturated fatty acids and preterm delivery.

    PubMed

    Brantsæter, Anne Lise; Englund-Ögge, Linda; Haugen, Margareta; Birgisdottir, Bryndis Eva; Knutsen, Helle Katrine; Sengpiel, Verena; Myhre, Ronny; Alexander, Jan; Nilsen, Roy M; Jacobsson, Bo; Meltzer, Helle Margrete

    2017-01-19

    Preterm delivery increases the risk of neonatal morbidity and mortality. Studies suggest that maternal diet may affect the prevalence of preterm delivery. The aim of this study was to assess whether maternal intakes of seafood and marine long chain n-3 polyunsaturated fatty acids (LCn-3PUFA) from supplements were associated with preterm delivery. The study population included 67,007 women from the Norwegian Mother and Child Cohort Study. Maternal food and supplement intakes were assessed by a validated self-reported food frequency questionnaire in mid-pregnancy. Information about gestational duration was obtained from the Medical Birth Registry of Norway. We used Cox regression to estimate hazard ratios (HR) with 95% confidence intervals (CI) for associations between total seafood, lean fish, fatty fish, and LCn-3PUFA intakes and preterm delivery. Preterm was defined as any onset of delivery before gestational week 37, and as spontaneous or iatrogenic deliveries and as preterm delivery at early, moderate, and late preterm gestations. Lean fish constituted 56%, fatty fish 34% and shellfish 10% of seafood intake. Any intake of seafood above no/rare intake (>5 g/d) was associated with lower prevalence of preterm delivery. Adjusted HRs were 0.76 (CI: 0.66, 0.88) for 1-2 servings/week (20-40 g/d), 0.72 (CI: 0.62, 0.83) for 2-3 servings/week (40-60 g/d), and 0.72 (CI: 0.61, 0.85) for ≥3 servings/week (>60 g/d), p-trend <0.001. The association was seen for lean fish (p-trend: 0.005) but not for fatty fish (p-trend: 0.411). The intake of supplementary LCn-3PUFA was associated only with lower prevalence of early preterm delivery (before 32 gestational weeks), while increasing intake of LCn-3PUFA from food was associated with lower prevalence of overall preterm delivery (p-trend: 0.002). Any seafood intake above no/rare was associated with lower prevalence of both spontaneous and iatrogenic preterm delivery, and with lower prevalence of late preterm delivery. Any

  13. Effects of dietary saturated and n-6 polyunsaturated fatty acids on the incorporation of long-chain n-3 polyunsaturated fatty acids into blood lipids.

    PubMed

    Dias, C B; Wood, L G; Garg, M L

    2016-07-01

    Omega-3 polyunsaturated fatty acids (n-3PUFA) are better absorbed when they are combined with high-fat meals. However, the role of different dietary fats in modulating the incorporation of n-3PUFA in blood lipids in humans has not been previously explored. Omega-6 polyunsaturated fatty acids (n-6PUFA) are known to compete with n-3PUFA in the metabolic pathways and for the incorporation into phospholipids, whereas saturated fats (SFA) may enhance n-3PUFA incorporation into tissues. In a randomized parallel-design trial, we aimed to investigate the long-term effects of n-3PUFA supplementation in subjects consuming a diet enriched with either SFA or n-6PUFA on fatty acid incorporation into plasma and erythrocytes and on blood lipid profiles (total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides). Dietary supplementation with n-3PUFA co-administered with SFA for 6 weeks resulted in a significant rise in total cholesterol (0.46±0.60 mmol/L; P=0.020) and LDL-C (0.48±0.48 mmol/L; P=0.011) in comparison with combination with n-6PUFA. The diet enriched with SFA also induced a greater increase in eicosapentaenoic acid (2.07±0.79 vs 1.15±0.53; P=0.004), a smaller decrease in docosapentaenoic acid (-0.12±0.23 vs -0.30±0.20; P=0.034) and a similar increase in docosahexaenoic acid (3.85±1.14 vs 3.10±1.07; P=0.128) percentage in plasma compared with the diet enriched with n-6PUFA. A similar effect was seen in erythrocytes. N-3PUFA supplementation resulted in similar changes in HDL-C and triglyceride levels. The results suggest that dietary substitution of SFA with n-6PUFA, despite maintaining low levels of circulating cholesterol, hinders n-3PUFA incorporation into plasma and tissue lipids.

  14. Effect of lipid type on growth performance, meat quality and the content of long chain n-3 fatty acids in pork meat.

    PubMed

    Morel, Patrick C H; Leong, Jasmine; Nuijten, Wilhelmina G M; Purchas, Roger W; Wilkinson, Brian H P

    2013-10-01

    The aim of the present study was to produce pork with enhanced nutritive value for humans, both in terms of fatty acid profile (mainly long chain n-3 fatty acids by feeding fish oil) and selenium. Forty-eight female pigs were allocated to one of six treatment groups: animal by-products and plant feedstuffs with tallow, plant feedstuffs with a blend of soybean oil and linseed oil with or without a supplement (CLA, selenium, vitamin E and vitamin C), plant feedstuffs with tallow and supplement, plant feedstuffs with fish oil and supplement. The diets containing the fish oil were fed up to either 49 days or 28 days before slaughter. The dietary treatments had no significant effects on growth performance, carcass characteristics and meat quality. When fish oil was included in the diet, higher levels of EPA, DPA and DHA were measured in the subcutaneous fat (up to 3.74%). Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Dietary polychlorinated biphenyls, long-chain n-3 polyunsaturated fatty acids and incidence of malignant melanoma.

    PubMed

    Donat-Vargas, Carolina; Berglund, Marika; Glynn, Anders; Wolk, Alicja; Åkesson, Agneta

    2017-02-01

    For malignant melanoma, other risk factors aside from sun exposure have been hardly explored. Polychlorinated biphenyls (PCBs)-mainly from fatty fish- may affect melanogenesis and promote melanoma progression, while long-chain n-3 polyunsaturated fatty acids seem to exert antineoplastic actions in melanoma cells. We aimed to assess the association of validated estimates of dietary PCB exposure as well as the intake of eicosapentaenoic acid and docosahexaenoic acid (EPA-DHA), accounting for sun habits and skin type, with the risk of malignant melanoma in middle-aged and elderly women. We included 20,785 women at baseline in 2009 from the prospective population-based Swedish Mammography Cohort. Validated estimates of dietary PCB exposure and EPA-DHA intake were obtained via a food frequency questionnaire. Incident melanoma cases were ascertained through register-linkage. During 4.5 years of follow-up, we ascertained 67 incident cases of melanoma. After multivariable adjustments, exposure to dietary PCBs was associated with four-fold increased risk of malignant melanoma (hazard ratio [HR], 4.0 [95% confidence interval {CI}, 1.2-13; P for trend = 0.02]), while EPA-DHA intake was associated with 80% lower risk (HR, 0.2 [95% CI, 0.1-0.8; P for trend = 0.03]), comparing the highest exposure tertiles with the lowest. While we found a direct association between dietary PCB exposure and risk of melanoma, EPA-DHA intake showed to have a substantial protective association. Question of benefits and risk from fish consumption is very relevant and further prospective studies in the general population verifying these findings are warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Metabolic and Endocrine Effects of Long Chain vs. Essential Omega-3 Polyunsaturated Fatty Acids in Polycystic Ovary Syndrome

    PubMed Central

    Vargas, M. Luisa; Almario, Rogelio U.; Buchan, Wendy; Kim, Kyoungmi; Karakas, Sidika E.

    2011-01-01

    Objective To compare the effects of essential vs. long chain omega (n)-3 polyunsaturated fatty acids (PUFA) in polycystic ovary syndrome (PCOS). Materials/Methods In this 6-week, prospective, double-blinded, placebo (soybean oil) controlled study, 51 completers received 3.5 g n-3 PUFA/day (essential from flaxseed oil or long chain from fish oil). Anthropometric variables, cardiovascular risk factors and androgens were measured; oral glucose tolerance test (OGTT) and frequently sampled intravenous GTT (FSIVGTT) were conducted at the baseline and 6 wks. Results Between group comparisons showed significant differences in serum triglyceride response (p = 0.0368), while the changes in disposition index (DI) also tended to differ (p = 0.0621). When within group changes (after vs. before intervention) were considered, fish oil and flaxseed oil lowered serum triglyceride (p = 0.0154 and p = 0.0176, respectively). Fish oil increased glucose at 120 min of OGTT (p = 0.0355); decreased Matsuda index (p= 0.0378); and tended to decrease early insulin response during IVGTT (AIRg; p = 0.0871). Soybean oil increased glucose at 30 min (p = 0.0030) and 60 min (p = 0.0121) and AUC for glucose (p = 0.0122) during OGTT; tended to decrease AIRg during IVGTT (p= 0.0848); reduced testosterone (p = 0.0216) and tended to reduce SHBG (p = 0.0858). Fasting glucose, insulin, adiponectin, leptin or hs-CRP did not change with any intervention. Conclusions Long chain vs. essential n-3 PUFA rich oils have distinct metabolic and endocrine effects in PCOS, and therefore they should not be used inter-changeably. PMID:21640360

  17. Metabolic and endocrine effects of long-chain versus essential omega-3 polyunsaturated fatty acids in polycystic ovary syndrome.

    PubMed

    Vargas, M Luisa; Almario, Rogelio U; Buchan, Wendy; Kim, Kyoungmi; Karakas, Sidika E

    2011-12-01

    The objective of the study was to compare the effects of essential vs long-chain omega (n)-3 polyunsaturated fatty acids (PUFAs) in polycystic ovary syndrome. In this 6-week, prospective, double-blinded, placebo (soybean oil)-controlled study, 51 completers received 3.5 g n-3 PUFA per day (essential PUFA from flaxseed oil or long-chain PUFA from fish oil). Anthropometric variables, cardiovascular risk factors, and androgens were measured; oral glucose tolerance test (OGTT) and frequently sampled intravenous GTT (IVGTT) were conducted at baseline and 6 weeks. Between-group comparisons showed significant differences in serum triglyceride response (P = .0368), whereas the changes in disposition index also tended to differ (P = .0621). When within-group changes (after vs before intervention) were considered, fish oil and flaxseed oil lowered serum triglyceride (P = .0154 and P = .0176, respectively). Fish oil increased glucose at 120 minutes of OGTT (P = .0355), decreased the Matsuda index (P = .0378), and tended to decrease acute insulin response during IVGTT (P = .0871). Soybean oil increased glucose at 30 (P = .0030) and 60 minutes (P = .0121) and AUC for glucose (P = .0122) during OGTT, tended to decrease acute insulin response during IVGTT (P = .0848), reduced testosterone (P = .0216), and tended to reduce sex hormone-binding globulin (P = .0858). Fasting glucose, insulin, adiponectin, leptin, or high-sensitivity C-reactive protein did not change with any intervention. Long-chain vs essential n-3 PUFA-rich oils have distinct metabolic and endocrine effects in polycystic ovary syndrome; and therefore, they should not be used interchangeably. Published by Elsevier Inc.

  18. Incorporation of dietary n-3 fatty acids into selective phosphatidylcholine lipids in human plasma after salmon intake

    USDA-ARS?s Scientific Manuscript database

    Elevated intake of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) is associated with reduced risk for cardiovascular disease. Intake of n-3 LCPUFA is often quantified by analysis of plasma phospholipid fatty acids (PLFA); however, the typical analysis by gas chromatography does not allow fo...

  19. Production of long chain omega-3 fatty acids and carotenoids in tropical areas by a new heat-tolerant microalga Tetraselmis sp. DS3.

    PubMed

    Tsai, Hsin-Pei; Chuang, Lu-Te; Chen, Ching-Nen Nathan

    2016-02-01

    Demand for long chain ω-3 fatty acids from non-fish source for vegetarians has increased recently. Marine microalgae are the primary producers of EPA/DHA and promising alternatives for fish oil. Tropical areas have abundant sunlight throughout the year for microalgal cultivation but this practice can be hindered by high temperature. Discovery of heat-tolerant marine microalgae that can synthesize EPA/DHA will solve these problems. A new species of microalga was isolated from a high temperature lagoon and identified as Tetraselmis sp. DS3. These cells could grow at 40 °C, the highest temperature for marine microalgal growth ever reported. Its ω-3 fatty acids and EPA accounted for 33 and 10% of total lipids, respectively, grown in nitrogen-depleted conditions. These cells also accumulated more than 5% β-carotene and 0.48% lutein in biomass. This new microalga can be cultivated for long chain ω-3 fatty acids and lutein production in the tropical areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Time trend investigation of PCBs, PBDEs, and organochlorine pesticides in selected n-3 polyunsaturated fatty acid rich dietary fish oil and vegetable oil supplements; nutritional relevance for human essential n-3 fatty acid requirements.

    PubMed

    Jacobs, Miriam N; Covaci, Adrian; Gheorghe, Adriana; Schepens, Paul

    2004-03-24

    In addition to being used in the food and animal feed industry, fish oils have also been used traditionally as dietary supplements. Due to the presence of long-chain n-3 fatty acids, fish oils have therapeutic benefits in the prevention and treatment of cardiovascular, immunological, and arthritic diseases, as well as childhood deficiency diseases such as rickets, because of a high content of vitamin D. However, fish oils are also susceptible to contamination with lipophilic organic chemicals that are now ubiquitous contaminants of marine ecosystems. Many vegetable oils are sources of the shorter chain precursor forms of n-3 fatty acids, and in recent years the specialist dietary supplement market has expanded to include these oils in a variety of different formulations. This paper reports analytical results of selected contaminants, including polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers, for a range of commercially available n-3 fatty acid rich fish and vegetable oil dietary supplements. Using principal component analysis, the values are compared with historic samples to elucidate time trends in contamination profiles. Levels of contaminants are discussed in relation to the nutritional benefits to the consumer of long- and short-chain forms of n-3 fatty acids.

  1. Long-chain ω-3 fatty acid intake and endometrial cancer risk in the Women’s Health Initiative12345

    PubMed Central

    Brasky, Theodore M; Rodabough, Rebecca J; Liu, Jingmin; Kurta, Michelle L; Wise, Lauren A; Orchard, Tonya S; Cohn, David E; Belury, Martha A; White, Emily; Manson, JoAnn E; Neuhouser, Marian L

    2015-01-01

    Background: Inflammation may be important in endometrial cancer development. Long-chain ω-3 (n–3) polyunsaturated fatty acids (LCω-3PUFAs) may reduce inflammation and, therefore, reduce cancer risk. Because body mass is associated with both inflammation and endometrial cancer risk, it may modify the association of fat intake on risk. Objective: We examined whether intakes of LCω-3PUFAs were associated with endometrial cancer risk overall and stratified by body size and histologic subtype. Design: Women were n = 87,360 participants of the Women’s Health Initiative Observational Study and Clinical Trials who were aged 50–79 y, had an intact uterus, and completed a baseline food-frequency questionnaire. After 13 y of follow-up, n = 1253 incident invasive endometrial cancers were identified. Cox regression models were used to estimate HRs and 95% CIs for the association of intakes of individual ω-3 fatty acids and fish with endometrial cancer risk. Results: Intakes of individual LCω-3PUFAs were associated with 15–23% linear reductions in endometrial cancer risk. In women with body mass index (BMI; in kg/m2) <25, those in the upper compared with lowest quintiles of total LCω-3PUFA intake (sum of eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) had significantly reduced endometrial cancer risk (HR: 0.59; 95% CI: 0.40, 0.82; P-trend = 0.001), whereas there was little evidence of an association in overweight or obese women. The reduction in risk observed in normal-weight women was further specific to type I cancers. Conclusions: Long-chain ω-3 intake was associated with reduced endometrial cancer risk only in normal-weight women. Additional studies that use biomarkers of ω-3 intake are needed to more accurately estimate their effects on endometrial cancer risk. This trial was registered at clinicaltrials.gov as NCT00000611. PMID:25739930

  2. The relevance of serum levels of long chain omega-3 polyunsaturated fatty acids and prostate cancer risk: A meta-analysis

    PubMed Central

    Chua, Michael E.; Sio, Maria Christina D.; Sorongon, Mishell C.; Morales, Marcelino L.

    2013-01-01

    Objective: Our objective was to systematically analyze the evidence for an association between serum level long chain omega-3 polyunsaturated fatty acid (n-3 PUFA) and prostate cancer risk from human epidemiological studies. Study Procedures: We searched biomedical literature databases up to November 2011 and included epidemiological studies with description of long chain n-3 PUFA and incidence of prostate cancer in humans. Critical appraisal was done by two independent reviewers. Data were pooled using the general variance-based method with random-effects model; effect estimates were expressed as risk ratio with 95% confidence interval (CI). Heterogeneity was assessed by Chi2 and quantified by I2, publication bias was also determined. Results: In total, 12 studies were included. Significant negative association was noted between high serum level of n-3 PUFA doc-osapentaenoic acid (DPA) and total prostate cancer risk (RR:0.756; 95% CI 0.599, 0.955; p = 0.019). Likewise, a positive association between high blood level of fish oil contents, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and high-grade prostate tumour incidence (RR:1.381; 95% CI 1.050, 1.817; p = 0.021) was noted; however, this finding was evident only after adjustment was done on interstudy variability through the removal of a lower quality study from the pool. Conclusions: High serum levels of long chain n-3 PUFA DPA is associated with reduced total prostate cancer risk. While high blood level of EPA and DHA is possibly associated with increased high-grade prostate tumour risk. PMID:23766835

  3. Diverse physiological effects of long-chain saturated fatty acids: implications for cardiovascular disease.

    PubMed

    Flock, Michael R; Kris-Etherton, Penny M

    2013-03-01

    The purpose of this review is to discuss the metabolism of long-chain saturated fatty acids and the ensuing effects on an array of metabolic events. Individual long-chain saturated fatty acids exhibit unique biological properties. Dietary saturated fat absorption varies depending on chain-length and the associated food matrix. The in-vivo metabolism of saturated fatty acids varies depending on the individual fatty acid and the nutritional state of the individual. A variety of fatty acid metabolites are formed, each with their own unique structure and properties that warrant further research. Replacing saturated fatty acids with unsaturated fatty acids improves the blood lipid profile and reduces cardiovascular disease risk, although the benefits depend on the specific saturated fatty acid(s) being replaced. Acknowledging the complexity of saturated fatty acid metabolism and associated metabolic events is important when assessing their effects on cardiovascular disease risk. Investigating the biological effects of saturated fatty acids will advance our understanding of how they affect cardiovascular disease risk.

  4. Biomarker of Long-Chain n-3 Fatty Acid Intake and Breast Cancer: Accumulative Evidence from an Updated Meta-Analysis of Epidemiological Studies.

    PubMed

    Yang, Bo; Ren, Xiao L; Wang, Zhi Y; Wang, Liang; Zhao, Feng; Guo, Xiao J; Li, Duo

    2018-06-14

    We aimed to summarize the up-to-date epidemiology evidence on biomarkers of long-chain (LC) n-3 fatty acid (FA) intake in relation to breast cancer (BC). Epidemiology studies determining FA levels in biospecimen (circulating blood or adipose tissue (AT)) were identified from PubMed, EMBASE, and Cochrane Library databases until March 2018. Multivariate-adjusted risk ratios (RRs) with 95% confidence intervals (CIs) were pooled using a random-effect model. Difference in biospecimen proportions of LC n-3 FA between BC cases and non-cases were analyzed as a standardized mean difference (SMD). Thirteen cohort and eleven case-control studies were eligible for the present meta-analysis. The estimated SMD was -0.14 (95% CI: -0.27, -0.11) for LC n-3 FA and -0.27 (95% CI: -0.42, -0.11) for LC n-3/n-6 FA ratio. When comparing the top tertiles with the bottom baseline levels, circulating LC n-3 FA was significantly associated with a lower risk of BC (RR: 0.84, 95% CI: 0.74, 0.96), but not AT (RR: 1.02, 95% CI: 0.70, 1.48). Significant inverse dose-response associations were observed for each 1% increment of circulating 20:5n-3 and 22:6n-3. This meta-analysis highlights that circulating LC n-3 FA as a biomarker of intake may be an independent predictive factor for BC, especially 20:5n-3 and 22:6n-3.

  5. The safety of Lipistart, a medium-chain triglyceride based formula, in the dietary treatment of long-chain fatty acid disorders: a phase I study.

    PubMed

    MacDonald, Anita; Webster, Rachel; Whitlock, Matthew; Gerrard, Adam; Daly, Anne; Preece, Mary Anne; Evans, Sharon; Ashmore, Catherine; Chakrapani, Anupam; Vijay, Suresh; Santra, Saikat

    2018-03-28

    Children with long-chain fatty acid β-oxidation disorders (LCFAOD) presenting with clinical symptoms are treated with a specialist infant formula, with medium chain triglyceride (MCT) mainly replacing long chain triglyceride (LCT). It is essential that the safety and efficacy of any new specialist formula designed for LCFAOD be tested in infants and children. In an open-label, 21-day, phase I trial, we studied the safety of a new MCT-based formula (feed 1) in six well-controlled children (three male), aged 7-13 years (median 9 years) with LCFAOD (very long chain acyl CoA dehydrogenase deficiency [VLCADD], n=2; long chain 3-hydroxyacyl CoA dehydrogenase deficiency [LCHADD], n=2; carnitine acyl carnitine translocase deficiency [CACTD], n=2). Feed 1 (Lipistart; Vitaflo) contained 30% energy from MCT, 7.5% LCT and 3% linoleic acid and it was compared with a conventional MCT feed (Monogen; Nutricia) (feed 2) containing 17% energy from MCT, 3% LCT and 1.1% linoleic acid. Subjects consumed feed 2 for 7 days then feed 1 for 7 days and finally resumed feed 2 for 7 days. Vital signs, blood biochemistry, ECG, weight, height, food/feed intake and symptoms were monitored. Five subjects completed the study. Their median daily volume of both feeds was 720 mL (range 500-1900 mL/day). Feed 1 was associated with minimal changes in tolerance, free fatty acids (FFA), acylcarnitines, 3-hydroxybutyrate (3-HB), creatine kinase (CK), blood glucose, liver enzymes and no change in an electrocardiogram (ECG). No child complained of muscle pain or symptoms associated with LCFAOD on either feed. This is the first safety trial reported of an MCT formula specifically designed for infants and children with LCFAOD. In this short-term study, it appeared safe and well tolerated in this challenging group.

  6. Selective enrichment of n-3 fatty acids in human plasma lipid motifs following intake of marine fish

    USDA-ARS?s Scientific Manuscript database

    Plasma levels of n-3 long chain polyunsaturated fatty acids (LCPUFA) are associated with a reduction in risk of cardiovascular disease and other chronic, age-related diseases like Alzheimer’s disease. In this work, we tested the hypothesis that n-3 LCPUFA fatty acids in human plasma are incorporated...

  7. Maternal breast milk long-chain n-3 fatty acids are associated with increased risk of atopy in breastfed infants.

    PubMed

    Stoney, R M; Woods, R K; Hosking, C S; Hill, D J; Abramson, M J; Thien, F C K

    2004-02-01

    Australia has one of the highest prevalence rates internationally of allergic conditions, such as asthma and eczema. Atopy is one hallmark for the development of allergic disease and predisposes to allergic inflammation in the target organs. omega-3 (n-3) fatty acids (FAs) are thought to act as precursors to the formation of less active inflammatory mediators, with the potential to reduce inflammation. To investigate whether increased n-3 FA levels in maternal breast milk are associated with a lower risk of developing atopy in infancy. Subjects were part of the prospective Melbourne atopy cohort study, which involved 620 children born into families where at least one first-degree relative had an atopic disease. Some 224 women (mean age 31.4+/-4.2 (SD) years, with 73.2% (n=164) having self-reported atopy) provided either a colostrum (n=194) or 3-month expressed breast milk (EBM) sample (n=118). Maternal colostrum and 3-month EBM samples were analysed for FA content by gas chromatography. Skin prick tests (SPTs) to six common allergens were performed on infants at 6, 12 and 24 months of age and on mothers who agreed at study entry. For infants sensitized to foods at 6 months (n=29), the total n-3 FA level in the colostrum was significantly higher (P=0.004) as were levels of individual long-chain n-3 FAs, docosoapentaenoic acid (DPA, C22:5, P=0.001) and docosahexaenoic acid (DHA, C22:6, P=0.002) than in non-sensitized infants. Infants with aero-allergen sensitization at 24 months (n=30) had higher levels of the n-3 FA, DPA (P=0.002) and DHA (P=0.007), and similarly higher total n-3 FA (P=0.009) in maternal colostrum than those infants who were not sensitized. Higher n-3 FA levels in the colostrum do not appear to confer protection against, but may be a risk factor for, the eventual development of atopy in high-risk breastfed infants.

  8. A computational search for lipases that can preferentially hydrolyze long-chain omega-3 fatty acids from fish oil triacylglycerols.

    PubMed

    Kamal, Md Zahid; Barrow, Colin J; Rao, Nalam Madhusudhana

    2015-04-15

    Consumption of long-chain omega-3 fatty acids is known to decrease the risk of major cardiovascular events. Lipases, a class of triacylglycerol hydrolases, have been extensively tested to concentrate omega-3 fatty acids from fish oils, under mild enzymatic conditions. However, no lipases with preference for omega-3 fatty acids selectivity have yet been discovered or developed. In this study we performed an exhaustive computational study of substrate-lipase interactions by docking, both covalent and non-covalent, for 38 lipases with a large number of structured triacylglycerols containing omega-3 fatty acids. We identified some lipases that have potential to preferentially hydrolyze omega-3 fatty acids from structured triacylglycerols. However omega-3 fatty acid preferences were found to be modest. Our study provides an explanation for absence of reports of lipases with omega-3 fatty acid hydrolyzing ability and suggests methods for developing these selective lipases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Pork as a Source of Omega-3 (n-3) Fatty Acids

    PubMed Central

    Dugan, Michael E.R.; Vahmani, Payam; Turner, Tyler D.; Mapiye, Cletos; Juárez, Manuel; Prieto, Nuria; Beaulieu, Angela D.; Zijlstra, Ruurd T.; Patience, John F.; Aalhus, Jennifer L.

    2015-01-01

    Pork is the most widely eaten meat in the world, but typical feeding practices give it a high omega-6 (n-6) to omega-3 (n-3) fatty acid ratio and make it a poor source of n-3 fatty acids. Feeding pigs n-3 fatty acids can increase their contents in pork, and in countries where label claims are permitted, claims can be met with limited feeding of n-3 fatty acid enrich feedstuffs, provided contributions of both fat and muscle are included in pork servings. Pork enriched with n-3 fatty acids is, however, not widely available. Producing and marketing n-3 fatty acid enriched pork requires regulatory approval, development costs, quality control costs, may increase production costs, and enriched pork has to be tracked to retail and sold for a premium. Mandatory labelling of the n-6/n-3 ratio and the n-3 fatty acid content of pork may help drive production of n-3 fatty acid enriched pork, and open the door to population-based disease prevention polices (i.e., food tax to provide incentives to improve production practices). A shift from the status-quo, however, will require stronger signals along the value chain indicating production of n-3 fatty acid enriched pork is an industry priority. PMID:26694475

  10. Pork as a Source of Omega-3 (n-3) Fatty Acids.

    PubMed

    Dugan, Michael E R; Vahmani, Payam; Turner, Tyler D; Mapiye, Cletos; Juárez, Manuel; Prieto, Nuria; Beaulieu, Angela D; Zijlstra, Ruurd T; Patience, John F; Aalhus, Jennifer L

    2015-12-16

    Pork is the most widely eaten meat in the world, but typical feeding practices give it a high omega-6 (n-6) to omega-3 (n-3) fatty acid ratio and make it a poor source of n-3 fatty acids. Feeding pigs n-3 fatty acids can increase their contents in pork, and in countries where label claims are permitted, claims can be met with limited feeding of n-3 fatty acid enrich feedstuffs, provided contributions of both fat and muscle are included in pork servings. Pork enriched with n-3 fatty acids is, however, not widely available. Producing and marketing n-3 fatty acid enriched pork requires regulatory approval, development costs, quality control costs, may increase production costs, and enriched pork has to be tracked to retail and sold for a premium. Mandatory labelling of the n-6/n-3 ratio and the n-3 fatty acid content of pork may help drive production of n-3 fatty acid enriched pork, and open the door to population-based disease prevention polices (i.e., food tax to provide incentives to improve production practices). A shift from the status-quo, however, will require stronger signals along the value chain indicating production of n-3 fatty acid enriched pork is an industry priority.

  11. Very-long-chain ω-3 fatty acid supplements and adipose tissue functions: a randomized controlled trial.

    PubMed

    Hames, Kazanna C; Morgan-Bathke, Maria; Harteneck, Debra A; Zhou, Lendia; Port, John D; Lanza, Ian R; Jensen, Michael D

    2017-06-01

    Background: Increased omega-3 (n-3) fatty acid consumption is reported to benefit patients with metabolic syndrome, possibly due to improved adipose tissue function. Objective: We tested the effects of high-dose, very-long-chain ω-3 fatty acids on adipose tissue inflammation and insulin regulation of lipolysis. Design: A double-blind, placebo-controlled study compared 6 mo of 3.9 g eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)/d (4.2 g total ω-3/d; n = 12) with a placebo (4.2 g oleate/d; n = 9) in insulin-resistant adults. Before and after treatment, the volunteers underwent adipose tissue biopsies to measure the total (CD68 + ), pro- (CD14 + = M1), and anti- (CD206 + = M2) inflammatory macrophages, crown-like structures, and senescent cells, as well as a 2-step pancreatic clamping with a [U- 13 C]palmitate infusion to determine the insulin concentration needed to suppress palmitate flux by 50% (IC 50(palmitate) f). Results: In the ω-3 group, the EPA and DHA contributions to plasma free fatty acids increased ( P = 0.0003 and P = 0.003, respectively), as did the EPA and DHA content in adipose tissue ( P < 0.0001 and P < 0.0001, respectively). Despite increases in adipose and plasma EPA and DHA in the ω-3 group, there were no significant changes in the IC 50(palmitate) f (19 ± 2 compared with 24 ± 3 μIU/mL), adipose macrophages (total: 31 ± 2/100 adipocytes compared with 33 ± 2/100 adipocytes; CD14 + : 13 ± 2/100 adipocytes compared with 14 ± 2/100 adipocytes; CD206 + : 28 ± 2/100 adipocytes compared with 29 ± 3/100 adipocytes), crown-like structures (1 ± 0/10 images compared with 1 ± 0/10 images), or senescent cells (4% ± 1% compared with 4% ± 1%). There were no changes in these outcomes in the placebo group. Conclusions: Six months of high-dose ω-3 supplementation raised plasma and adipose ω-3 fatty acid concentrations but had no beneficial effects on adipose tissue lipolysis or inflammation in insulin-resistant adults. This trial

  12. Dietary conjugated linoleic acid and long-chain n-3 fatty acids in mammary and prostate cancer protection: a review.

    PubMed

    Heinze, Verónica M; Actis, Adriana B

    2012-02-01

    The role of dietary fatty acids on cancer is still controversial. To examine the current literature on the protective role of conjugated linoleic acid (CLA) and marine long-chain fatty acids [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] and the risk of breast and prostate cancer, data from 41 case-control and cohort studies and relevant in vitro and animal experiments were included in this 2000-2010 revision. Epidemiological studies on CLA intake or its tissue concentration related to breast and prostate tumorigenesis are not conclusive; EPA and DHA intake have shown important inverse associations just in some studies. Additional research on the analysed association is required.

  13. Long-term dietary supplementation with saury oil attenuates metabolic abnormalities in mice fed a high-fat diet: combined beneficial effect of omega-3 fatty acids and long-chain monounsaturated fatty acids.

    PubMed

    Yang, Zhi-Hong; Inoue, Seika; Taniguchi, Yasuko; Miyahara, Hiroko; Iwasaki, Yusuke; Takeo, Jiro; Sakaue, Hiroshi; Nakaya, Yutaka

    2015-12-01

    Pacific saury is a common dietary component in East Asia. Saury oil contains considerable levels of n-3 unsaturated fatty acids (PUFA) and long-chain monounsaturated fatty acids (LCMUFA) with aliphatic tails longer than 18 carbons. In our previous study, consumption of saury oil for 4 to 6 wk improved insulin sensitivity and the plasma lipid profile in mice. However, the long-term effects of saury oil on metabolic syndrome (MetS) risk factors remain to be demonstrated. In the current study, we examined the long-term effects of saury oil on mice fed a high-fat diet, and compared the effect of n-3 PUFA EPA and LCMUFA on MetS risk factor in diet-induced obese mice. In Experiment 1, male C57BL/6 J mice were fed either a 32% lard diet (control) or a diet containing 22% lard plus 10% saury oil (saury oil group) for 18 weeks. Although no differences were found in body weight and energy expenditure between the control and saury oil groups, the saury oil diet decreased plasma insulin, non-HDL cholesterol, hepatic steatosis, and adipocyte size, and altered levels of mRNA transcribed from genes involved in insulin signaling and inflammation in adipose tissue. Organ and plasma fatty acid profile analysis revealed that consumption of saury oil increased n-3 PUFA and LCMUFA (especially n-11 LCMUFA) levels in multiple organs, and decreased the fatty acid desaturation index (C16:1/C16:0; C18:1/C18:0) in liver and adipose tissue. In Experiment 2, male C57BL/6 J mice were fed a 32% lard diet (control), a diet containing 28% lard plus 4% EPA (EPA group), or a diet containing 20% lard plus 12% LCMUFA concentrate (LCMUFA group) for 8 weeks. EPA or LCMUFA intake increased organ levels of EPA and LCMUFA, respectively. Consumption of EPA reduced plasma lipid levels and hepatic lipid deposition, and decreased the fatty acid desaturation index in liver and adipose tissue. Consumption of LCMUFA decreased plasma non-HDL cholesterol, improved hyperinsulinemia, and decreased the fatty acid

  14. Considerations Regarding Neuropsychiatric Nutritional Requirements for Omega-3 Long Chain Fatty Acids Intakes

    PubMed Central

    Hibbeln, Joseph R.; Davis, John M.

    2009-01-01

    Background Adverse neurodevelopmental and neuropsychiatric outcomes have been established as signs of nutrient deficiencies and may be applicable to insufficient dietary intakes of omega-3 long chain fatty acids (n-3 LCFAs). Objective Consider if statistical definitions for Daily Reference Intakes can be applied to n-3 LCFAs intakes during pregnancy for maternal and neurodevelopmental deficiencies. Design Data was prospectively collected from women during pregnancy and children up to age 8 y participating in the Avon Longitudinal Study of Parents and Children (ALSPAC). Statistical analyses took social and lifestyle factors into account. Results During pregnancy, n-3 LCFA intakes from seafood that putatively meet statistical definitions of an Estimated Average Requirement ranged from 0.05 –0.06 en % (111–139 mg/d/2,000 Cal) for suboptimal fine motor control at 42 m and 0.065-0.08 en% (114–181 mg/d/2,000 Cal) for suboptimal verbal IQ at age 8 y and 0.18–0.22 en% (389–486 mg/d/2,000 Cal) for maternal depression at 32 w. Intakes of n-3 ranging from 0.2–0.41 en% (445 – 917 mg/d/2,000 Cal) prevented both increased risk of maternal depression and adverse neurodevelopmental outcomes for children among 97.5% of the population. No upper limit for safety was found. Conclusion During pregnancy, a n-3 LCFA intake of 0.40 en% (900 mg/d/2,000 Cal) from seafood is likely to meet the nutritional requirements for 97.5 % of the mothers and children of this population. These considerations do not constitute DRI’s for docosahexaenoic acid and n-3 LCFAs, but may contribute to their formulation. PMID:19619995

  15. Atopic sensitization during the first year of life in relation to long chain polyunsaturated fatty acid levels in human milk.

    PubMed

    Duchén, K; Yu, G; Björkstén, B

    1998-10-01

    The levels of the long chain polyunsaturated n-6 and n-3 fatty acids (PUFA) were studied in colostrum and mature milk of 29 atopic and 29 nonatopic mothers and related to sensitization in their babies during the first 12 mo of life. The levels of alpha-linolenic acid (LNA) were lower (0.96 versus 1.23 weight percentage, p < 0.01) and the levels of dihomo-gamma-linoleic acid were higher (0.36 versus 0.31 weight percentage, p < 0.05) in mature milk from mothers of atopic babies (n = 24) compared with mothers of nonatopic babies (n = 34). The total n-3 levels and the ratio of n-6 PUFA/n-3 PUFA were similar in colostrum of all mothers and then decreased significantly in mature milk (p < 0.001), particularly in milk given to atopic babies. The levels of the n-6 fatty acids arachidonic acid, C22:4, and C22:5 n-6 correlated in milk samples from nonatopic mothers (r = 0.61-0.97, p < 0.05 to p < 0.001) but were largely absent in colostrum and mature milk from atopic mothers. In contrast, LNA and eicosapentaenoic levels correlated in colostrum from the atopic mothers (r = 0.61-0.88) regardless of atopic sensitization in the infants, whereas LNA correlated to C20:4 n-3 in colostrum from nonatopic mothers of nonatopic infants. Furthermore, the levels of the n-3 fatty acid C20:4 n-3 correlated significantly to all n-6 fatty acids, except linoleic acid (r = 0.64-0.79, all p < 0.01) in mature milk from nonatopic mothers of nonsensitized children. Low levels of LNA and total n-3 long chain polyunsaturated fatty acids, in mature milk from the mothers, appear to be associated with atopic sensitization early in life, as well as disturbed relationships between the n-3 fatty acid 20:4 and the n-6 fatty acids particularly in mature milk. On the other hand, disturbed relationships within the individual fatty acids in the n-6 series in human milk reflected the atopic status in the mothers. The variations in the lipid composition of human milk could in part explain some of the

  16. ELOVL4 protein preferentially elongates 20:5n3 to very long chain PUFAs over 20:4n6 and 22:6n3[S

    PubMed Central

    Yu, Man; Benham, Aaron; Logan, Sreemathi; Brush, R. Steven; Mandal, Md Nawajes A.; Anderson, Robert E.; Agbaga, Martin-Paul

    2012-01-01

    We hypothesized that reduction/loss of very long chain PUFAs (VLC-PUFAs) due to mutations in the ELOngase of very long chain fatty acid-4 (ELOVL4) protein contributes to retinal degeneration in autosomal dominant Stargardt-like macular dystrophy (STGD3) and age-related macular degeneration; hence, increasing VLC-PUFA in the retina of these patients could provide some therapeutic benefits. Thus, we tested the efficiency of elongation of C20-C22 PUFA by the ELOVL4 protein to determine which substrates are the best precursors for biosynthesis of VLC-PUFA. The ELOVL4 protein was expressed in pheochromocytoma cells, while green fluorescent protein-expressing and nontransduced cells served as controls. The cells were treated with 20:5n3, 22:6n3, and 20:4n6, either individually or in equal combinations. Both transduced and control cells internalized and elongated the supplemented FAs to C22-C26 precursors. Only ELOVL4-expressing cells synthesized C28-C38 VLC-PUFA from these precursors. In general, 20:5n3 was more efficiently elongated to VLC-PUFA in the ELOVL4-expressing cells, regardless of whether it was in combination with 22:6n3 or with 20:4n6. In each FA treatment group, C34 and C36 VLC-PUFAs were the predominant VLC-PUFAs in the ELOVL4-expressing cells. In summary, 20:5n3, followed by 20:4n6, seems to be the best precursor for boosting the synthesis of VLC-PUFA by ELOVL4 protein. PMID:22158834

  17. Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil.

    PubMed

    Ryckebosch, Eline; Bruneel, Charlotte; Termote-Verhalle, Romina; Goiris, Koen; Muylaert, Koenraad; Foubert, Imogen

    2014-10-01

    The purpose of this work was to evaluate the nutritional value of the total lipid extract of different omega-3 long chain polyunsaturated fatty acids producing photoautotrophic microalgae in one study. It was shown that microalgae oils from Isochrysis, Nannochloropsis, Phaeodactylum, Pavlova and Thalassiosira contain sufficient omega-3 LC-PUFA to serve as an alternative for fish oil, which was used as the 'golden standard'. In the microalgae oils an important part of the omega-3 long chain polyunsaturated fatty acids are present in the polar lipid fraction, which may be favourable from a bioavailability and stability viewpoint. Consumption of microalgae oil ensures intake of sterols and carotenoids. The intake of sterols, including cholesterol and phytosterols, is probably not relevant. The intake of carotenoids is however definitely significant and could give the microalgae oils a nutritional added value compared to fish oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Characterization of Long-Chain Fatty Acid as N-(4-Aminomethylphenyl) Pyridinium Derivative by MALDI LIFT-TOF/TOF Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Frankfater, Cheryl; Jiang, Xuntian; Hsu, Fong-Fu

    2018-05-01

    Charge remote fragmentation (CRF) elimination of CnH2n+2 residues along the aliphatic tail of long chain fatty acid is hall mark of keV high-energy CID fragmentation process. It is an important fragmentation pathway leading to structural characterization of biomolecules by CID tandem mass spectrometry. In this report, we describe MALDI LIFT TOF-TOF mass spectrometric approach to study a wide variety of fatty acids (FAs), which were derivatized to N-(4-aminomethylphenyl) pyridinium (AMPP) derivative, and desorbed as M+ ions by laser with or without matrix. The high-energy MALDI LIFT TOF-TOF mass spectra of FA-AMPP contain fragment ions mainly deriving from CRF cleavages of CnH2n+2 residues, as expected. These ions together with ions from specific cleavages of the bond(s) involving the functional group within the molecule provide more complete structural identification than those produced by low-energy CID/HCD using a linear ion-trap instrument. However, this LIFT TOF-TOF mass spectrometric approach inherits low sensitivity, a typical feature of high-energy CID tandem mass spectrometry. Because of the lack of unit mass precursor ion selection with sufficient sensitivity of the current LIFT TOF-TOF technology, product ion spectra from same chain length fatty acids with difference in one or two double bonds in a mixture are not distinguishable.

  19. Deficiency of long-chain polyunsaturated fatty acids in phenylketonuria: a cross-sectional study.

    PubMed

    Drzymała-Czyż, Sławomira; Kałużny, Łukasz; Krzyżanowska-Jankowska, Patrycja; Walkowiak, Dariusz; Mozrzymas, Renata; Walkowiak, Jarosław

    2018-01-01

    The etiology of altered blood fatty acid (FA) profile in phenylketonuria (PKU) is understood only partially. We aimed to determine whether FAs deficiency is dependent on the diet or metabolic disturbances. The study comprised 40 PKU patients (20 female, 20 male; aged 11 to 35 years; 12 children and 28 adults) and 40 healthy subjects (HS; 20 female, 20 male, aged 18 to 33 years). We assessed the profile of FAs (gas chromatography/mass spectrometry) and analyzed the 72-hour dietary recalls. The amount of C14:0, C16:0 and C16:1n-7, C18:1n-9 did not differ between the analyzed groups. The percentage of C18:0 was higher, while C20:3n-9, C18:2n-6, C20:2n-6, C20:4n-6, C22:4n-6, C22:5n-6 and C22:6n-3 was lower in PKU than in HS. However, C18:3n-6, C18:3n-3 and n-6/n-3 ratio were higher in PKU patients. The C20:4n-6/C20:3n-6 ratio (reaction catalyzed by Δ5-desaturase), the C22:5n-6/C22:4n-6 and the C22:6n-3/C22:5n-3 ratio (both reactions catalyzed by Δ6 desaturase) were significantly lower in PKU patients. Therefore, the deficiency of long-chain polyunsaturated fatty acids in PKU patients may result not only from inadequate supply but also from metabolic disturbances.

  20. Interaction between Marine-Derived n-3 Long Chain Polyunsaturated Fatty Acids and Uric Acid on Glucose Metabolism and Risk of Type 2 Diabetes Mellitus: A Case-Control Study.

    PubMed

    Li, Kelei; Wu, Kejian; Zhao, Yimin; Huang, Tao; Lou, Dajun; Yu, Xiaomei; Li, Duo

    2015-08-26

    The present case-control study explored the interaction between marine-derived n-3 long chain polyunsaturated fatty acids (n-3 LC PUFAs) and uric acid (UA) on glucose metabolism and risk of type 2 diabetes mellitus (T2DM). Two hundred and eleven healthy subjects in control group and 268 T2DM subjects in case group were included. Plasma phospholipid (PL) fatty acids and biochemical parameters were detected by standard methods. Plasma PL C22:6n-3 was significantly lower in case group than in control group, and was negatively correlated with fasting glucose (r = -0.177, p < 0.001). Higher plasma PL C22:6n-3 was associated with lower risk of T2DM, and the OR was 0.32 (95% confidence interval (CI), 0.12 to 0.80; p = 0.016) for per unit increase of C22:6n-3. UA was significantly lower in case group than in control group. UA was positively correlated with fasting glucose in healthy subjects, but this correlation became negative in T2DM subjects. A significant interaction was observed between C22:6n-3 and UA on fasting glucose (p for interaction = 0.005): the lowering effect of C22:6n-3 was only significant in subjects with a lower level of UA. In conclusion, C22:6n-3 interacts with UA to modulate glucose metabolism.

  1. Synthesis of structured triacylglycerols enriched in n-3 fatty acids by immobilized microbial lipase.

    PubMed

    Araújo, Maria Elisa Melo Branco de; Campos, Paula Renata Bueno; Alberto, Thiago Grando; Contesini, Fabiano Jares; Carvalho, Patrícia de Oliveira

    The search for new biocatalysts has aroused great interest due to the variety of micro-organisms and their role as enzyme producers. Native lipases from Aspergillus niger and Rhizopus javanicus were used to enrich the n-3 long-chain polyunsaturated fatty acids content in the triacylglycerols of soybean oil by acidolysis with free fatty acids from sardine oil in solvent-free media. For the immobilization process, the best lipase/support ratios were 1:3 (w/w) for Aspergillus niger lipase and 1:5 (w/w) for Rhizopus javanicus lipase using Amberlite MB-1. Both lipases maintained constant activity for 6 months at 4°C. Reaction time, sardine-free fatty acids:soybean oil mole ratio and initial water content of the lipase were investigated to determine their effects on n-3 long-chain polyunsaturated fatty acids incorporation into soybean oil. Structured triacylglycerols with 11.7 and 7.2% of eicosapentaenoic acid+docosahexaenoic acid were obtained using Aspergillus niger lipase and Rhizopus javanicus lipase, decreasing the n-6/n-3 fatty acids ratio of soybean oil (11:1 to 3.5:1 and 4.7:1, respectively). The best reaction conditions were: initial water content of lipase of 0.86% (w/w), sardine-free faty acids:soybean oil mole ratio of 3:1 and reaction time of 36h, at 40°C. The significant factors for the acidolysis reaction were the sardine-free fatty acids:soybean oil mole ratio and reaction time. The characterization of structured triacylglycerols was obtained using easy ambient sonic-spray ionization mass spectrometry. The enzymatic reaction led to the formation of many structured triacylglycerols containing eicosapentaenoic acid, docosahexaenoic acid or both polyunsaturated fatty acids. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  2. Radiolabeled dimethyl branched long chain fatty acid for heart imaging

    DOEpatents

    Knapp, Jr., Furn F.; Goodman, Mark M.; Kirsch, Gilbert

    1988-08-16

    A radiolabeled long chain fatty acid for heart imaging that has dimethyl branching at one of the carbons of the chain which inhibits the extent to which oxidation can occur. The closer to the carboxyl the branching is positioned, the more limited the oxidation, thereby resulting in prolonged retention of the radiolabeled compound in the heart.

  3. Red blood cell n-3 polyunsaturated fatty acids in first trimester of pregnancy are inversely associated with placental weight.

    PubMed

    Magnusardottir, Anna R; Steingrimsdottir, Laufey; Thorgeirsdottir, Holmfridur; Hauksson, Arnar; Skuladottir, Gudrun V

    2009-01-01

    To investigate pregnancy outcome in relation to red blood cell (RBC) level of long-chain n-3 polyunsaturated fatty acids (PUFA) in the first trimester of pregnancy and the influence of lifestyle factors on the RBC level of long-chain n-3 PUFA. Observational study in a community with traditional fish and cod liver oil consumption. Seventy-seven healthy pregnant women. The PUFA composition of RBC was measured in the 11th to 15th week of pregnancy. The women answered food frequency and lifestyle questionnaires. Information on pregnancy outcome was collected from birth records. Placental weight, long-chain n-3 PUFA in diet and RBC, smoking. Of all the pregnancy outcome variables tested, placental weight was the only one associated with long-chain n-3 PUFA in RBC. Inverse association was found between the proportion of long-chain n-3 PUFA in RBC and placental weight, adjusted for birthweight (p=0.035). The proportion of long-chain n-3 PUFA in RBC was positively related to long-chain n-3 PUFA intake (p<0.001) and negatively related to smoking (p=0.011). The human fetus relies on maternal supply and placental delivery of long-chain n-3 PUFA for optimal development and function, particularly of the central nervous system. Given the importance of dietary n-3 PUFA during pregnancy, further studies are warranted to investigate the relationship between placental weight, maternal long-chain n-3 PUFA status and smoking.

  4. Influence of dietary long-chain n-3 fatty acids from menhaden fish oil on plasma concentrations of alpha-tocopherol in geriatric beagles.

    PubMed

    Hall, Jean A; Tooley, Katie A; Gradin, Joseph L; Jewell, Dennis E; Wander, Rosemary C

    2002-01-01

    To determine effects of dietary n-3 fatty acids from Menhaden fish oil on plasma alpha-tocopherol concentrations in Beagles. 32 female Beagles. For 82 days, dogs were fed diets that contained 1 of 2 ratios of n-6:n-3 fatty acids (40:1 [low n-3] and 1.4:1 [high n-3]) and 1 of 3 concentrations of all-rac-alpha-tocopheryl acetate (low, 17 mg/kg of diet; medium, 101 mg/kg; and high, 447 mg/kg) in a 2 X 3 factorial study. Diets high in n-3 fatty acids significantly increased total content of n-3 fatty acids in plasma (17.0 g/100 g of fatty acids), compared with low n-3 diets (2.02 g/100 g of fatty acids). Mean +/- SEM plasma concentration of cholesterol was significantly lower in dogs consuming high n-3 diets (4.59 +/- 0.48 mmol/L), compared with dogs consuming low n-3 diets (5.71 +/- 0.48 mmol/L). A significant interaction existed between the ratio for n-6 and n-3 fatty acids and amount of alpha-tocopheryl acetate in the diet (plasma alpha-tocopherol concentration expressed on a molar basis), because the plasma concentration of alpha-toco-pherol was higher in dogs consuming low n-3 diets, compared with those consuming high n-3 diets, at the 2 higher amounts of dietary alpha-tocopheryl acetate. Plasma alpha-tocopherol concentration expressed relative to total lipid content did not reveal effects of dietary n-3 fatty acids on concentration of alpha-tocopherol. Plasma alpha-tocopherol concentration is not dependent on dietary ratio of n-6 and n-3 fatty acids when alpha-tocopherol concentration is expressed relative to the total lipid content of plasma.

  5. Cycloate, an inhibitor of fatty acid elongase, modulates the metabolism of very-long-side-chain alkylresorcinols in rye seedlings.

    PubMed

    Magnucka, Elzbieta G; Suzuki, Yoshikatsu; Pietr, Stanislaw J; Kozubek, Arkadiusz; Zarnowski, Robert

    2009-10-01

    Cycloate inhibits the biosynthesis of very-long-chain fatty acids, the essential constituents of plant waxes and suberin. Fatty acids also serve as precursors of aliphatic carbon chains in resorcinolic lipids, which play a fundamental role in the plant defence system against fungal pathogens. In this study, the effect of cycloate on the biosynthesis of 5-n-alkylresorcinols in rye seedlings (Secale cereale L.) grown under various light and thermal conditions was examined. The content of alkylresorcinols biosynthesised in rye was generally increased by the herbicide in both green and etiolated plants. The presence of cycloate also affected patterns of alkylresorcinol homologues in plants grown at 15 and 22 degrees C; very-long-side-chain compounds were less abundant, whereas both short-chain saturated and unsaturated homologues were generally accumulated. No cycloate-related effects caused by homologue pattern modifications were observed at elevated temperature. This study extends present understanding of the mode of action of thiocarbamate herbicides. Cycloate markedly affected the biosynthesis of very-long-side-chain resorcinolic lipids in rye seedlings, confirming the existence of parallels in both fatty acid and alkylresorcinol biosynthetic pathways. The observed cycloate-driven accumulation of 5-n-alkylresorcinols may improve the resistance of cereals to infections caused by microbial pathogens. Copyright 2009 Society of Chemical Industry.

  6. Microencapsulated krill and tuna oil blend raises plasma long-chain n-3 polyunsaturated fatty acid levels compared to tuna oil with similar increases in ileal contractility in rats.

    PubMed

    Patten, Glen S; Sanguansri, Luz; Augustin, Mary Ann; Abeywardena, Mahinda Y; Bird, Anthony R; Patch, Craig S; Belobrajdic, Damien P

    2017-03-01

    Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) may be more bioavailable from krill oil compared to fish oil due to their phospholipid structure. We tested whether a microencapsulated krill and tuna oil blend (ME-TOKO) provided greater LC n-3 PUFA bioavailability, improved blood lipid profiles and increased intestinal contractility compared to microencapsulated tuna oil (ME-TO). Rats were divided into three groups to receive isocaloric diets containing ME-TO, ME-TOKO and microencapsulated olive oil (ME-OO) at 0.3 or 2 g/100 g for 4 weeks. Final body and organ weights, feed intake and waste output were similar. ME-TOKO rats had higher plasma total LC n-3 PUFA levels compared to ME-TO, but liver LC n-3 PUFA levels and plasma triglyceride and cholesterol levels were similar in non-fasted rats. Diets containing 2% ME-TO and ME-TOKO also showed similar increases in ileal contractility. In summary, ME-TO bioavailability of LC n-3 PUFA was similar to ME-TOKO.

  7. Correlations between FAS elongation cycle genes expression and fatty acid production for improvement of long-chain fatty acids in Escherichia coli.

    PubMed

    Lee, Sunhee; Jung, Yeontae; Lee, Seunghan; Lee, Jinwon

    2013-03-01

    Microorganisms have been used for biodiesel (fatty acid methyl ester) production due to their significant environmental and economic benefits. The aim of the present research was to develop new strains of Escherichia coli K-12 MG1655 and to increase the content of long-chain fatty acids by overexpressing essential enzymes that are involved in the fatty acid synthase elongation cycle. In addition, the relationship of β-ketoacyl-acyl carrier protein (ACP) synthase (fabH), β-ketoacyl-ACP reductase (fabG), β-hydroxyacyl-ACP dehydrase (fabZ), and β-enoyl-ACP reductase (fabI) with respect to fatty acid production was investigated. The four enzymes play a unique role in fatty acid biosynthesis and elongation processes. We report the generation of recombinant E. coli strains that produced long-chain fatty acids to amounts twofold over wild type. To verify the results, NAD(+)/NADH ratios and glucose analyses were performed. We also confirmed that FabZ plays an important role in producing unsaturated fatty acids (UFAs) as E. coli SGJS25 (overexpressing the fabZ gene) produced the highest percentage of UFAs (35 % of total long-chain fatty acids), over wild type and other recombinants. Indeed, cis-9-hexadecenoic acid, a major UFA in E. coli SGJS25, was produced at levels 20-fold higher than in wild type after 20 h in culture. The biochemically engineered E. coli presented in this study is expected to be more economical for producing long-chain fatty acids in quality biodiesel production processes.

  8. Changes in cholesterol homeostasis modify the response of F1B hamsters to dietary very long chain n-3 and n-6 polyunsaturated fatty acids

    PubMed Central

    2011-01-01

    Background The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC) n-3 polyunsaturated fatty acids (PUFA) is paradoxical to that observed in humans. This anomaly is attributed, in part, to low lipoprotein lipase activity and is dependent on cholesterol status. To further elucidate the mechanism(s) for these responses, hamsters were fed diets containing supplemental fish oil (VLC n-3 PUFA) or safflower oil (n-6 PUFA) (both 10% [w/w]) and either cholesterol-supplemented (0.1% cholesterol [w/w]) or cholesterol-depleted (0.01% cholesterol [w/w] and 10 days prior to killing fed 0.15% lovastatin+2% cholestyramine [w/w]). Results Cholesterol-supplemented hamsters fed fish oil, relative to safflower oil, had higher non-high density lipoprotein (HDL) cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic low density lipoprotein (LDL) receptor, sterol regulatory element binding protein (SREBP)-1c and acyl-CoA: cholesterol acyl transferase-2 (ACAT) mRNA and protein (p < 0.05), and higher hepatic apolipoprotein (apo) B-100 and apo E protein levels. In contrast, cholesterol-depleted hamsters fed fish oil, relative to safflower oil, had lower non-HDL cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic SREBP-1c (p < 0.05) but not apo B-100, apo E or ACAT-2 mRNA or protein levels. Independent of cholesterol status, fish oil fed hamsters had lower HDL cholesterol concentrations (p < 0.001), which were associated with lower hepatic apoA-I protein levels (p < 0.05). Conclusion These data suggest disturbing cholesterol homeostasis in F1B hamsters alters their response to dietary fatty acids, which is reflected in altered plasma lipoprotein patterns and regulation of genes associated with their metabolism. PMID:22018327

  9. Changes in cholesterol homeostasis modify the response of F1B hamsters to dietary very long chain n-3 and n-6 polyunsaturated fatty acids.

    PubMed

    Lecker, Jaime L; Matthan, Nirupa R; Billheimer, Jeffrey T; Rader, Daniel J; Lichtenstein, Alice H

    2011-10-21

    The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC) n-3 polyunsaturated fatty acids (PUFA) is paradoxical to that observed in humans. This anomaly is attributed, in part, to low lipoprotein lipase activity and is dependent on cholesterol status. To further elucidate the mechanism(s) for these responses, hamsters were fed diets containing supplemental fish oil (VLC n-3 PUFA) or safflower oil (n-6 PUFA) (both 10% [w/w]) and either cholesterol-supplemented (0.1% cholesterol [w/w]) or cholesterol-depleted (0.01% cholesterol [w/w] and 10 days prior to killing fed 0.15% lovastatin+2% cholestyramine [w/w]). Cholesterol-supplemented hamsters fed fish oil, relative to safflower oil, had higher non-high density lipoprotein (HDL) cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic low density lipoprotein (LDL) receptor, sterol regulatory element binding protein (SREBP)-1c and acyl-CoA: cholesterol acyl transferase-2 (ACAT) mRNA and protein (p < 0.05), and higher hepatic apolipoprotein (apo) B-100 and apo E protein levels. In contrast, cholesterol-depleted hamsters fed fish oil, relative to safflower oil, had lower non-HDL cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic SREBP-1c (p < 0.05) but not apo B-100, apo E or ACAT-2 mRNA or protein levels. Independent of cholesterol status, fish oil fed hamsters had lower HDL cholesterol concentrations (p < 0.001), which were associated with lower hepatic apoA-I protein levels (p < 0.05). These data suggest disturbing cholesterol homeostasis in F1B hamsters alters their response to dietary fatty acids, which is reflected in altered plasma lipoprotein patterns and regulation of genes associated with their metabolism.

  10. Atlantic salmon (Salmo salar L.) as a net producer of long-chain marine ω-3 fatty acids.

    PubMed

    Sanden, Monica; Stubhaug, Ingunn; Berntssen, Marc H G; Lie, Øyvind; Torstensen, Bente E

    2011-12-14

    The objective of the present study was to investigate the effects of replacing high levels of marine ingredients with vegetable raw materials and with emphasis on lipid metabolism and net production of long-chain polyunsaturated ω-3 fatty acids (EPA + DHA). Atlantic salmon were fed three different replacement vegetable diets and one control marine diet before sensory attributes, β-oxidation capacity, and fatty acid productive value (FAPV) of ingested fatty acids (FAs) were evaluated. Fish fed the high replacement diet had a net production of 0.8 g of DHA and a FAPV of 142%. Fish fed the marine diet had a net loss of DHA. The present work shows that Atlantic salmon can be a net producer of marine DHA when dietary fish oil is replaced by vegetable oil with minor effects on sensory attributes and lipid metabolism.

  11. Increase of EPA-derived hydroxy, epoxy and dihydroxy fatty acid levels in human plasma after a single dose of long-chain omega-3 PUFA.

    PubMed

    Schuchardt, Jan Philipp; Schneider, Inga; Willenberg, Ina; Yang, Jun; Hammock, Bruce D; Hahn, Andreas; Schebb, Nils Helge

    2014-06-01

    Several supplementation studies with long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) describe an increase of EPA-derived hydroxy, epoxy and dihydroxy fatty acids in blood, while changes in levels of other LC n-3 and n-6 PUFA-derived oxylipins were minor. In order to investigate the kinetics of changes in oxylipin levels in response to LC n-3 PUFA ingestion, we conducted a single dose treatment study with healthy subjects. In the present kinetic study, we compared patterns of hydroxy, epoxy and dihydroxy fatty acids in plasma of 6 healthy men before and after 6, 8, 24, and 48h of fish oil (1008mg EPA and 672mg DHA) ingestion. Levels of EPA- as well as other LC PUFA-derived hydroxy, epoxy and dihydroxy fatty acids were analyzed in plasma by LC-MS. Additionally, levels of these oxylipins were compared with their parent PUFA levels in plasma phospholipids. All EPA-derived oxylipin levels were significantly increased 6h after LC n-3 PUFA ingestion and gradually drop thereafter reaching the baseline levels about 48h after treatment. The relative increase in EPA plasma phospholipid levels highly correlated with the increase of plasma EPA-derived oxylipin levels at different time points. In contrast, plasma levels of arachidonic acid- and DHA-derived oxylipins as well as parent PUFA levels in plasma phospholipids were hardly changed. Our findings demonstrate that a single dose of LC n-3 PUFAs can rapidly induce a shift in the EPA oxylipin profile of healthy subjects within a few hours. Taking the high biological activity of the EPA-derived epoxy fatty acids into account, even short-term treatment with LC n-3 PUFAs may cause systemic effects, which warrant further investigation. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Reducing persistent organic pollutants while maintaining long chain omega-3 fatty acid in farmed Atlantic salmon using decontaminated fish oils for an entire production cycle.

    PubMed

    Berntssen, M H G; Olsvik, P A; Torstensen, B E; Julshamn, K; Midtun, T; Goksøyr, A; Johansen, J; Sigholt, T; Joerum, N; Jakobsen, J-V; Lundebye, A-K; Lock, E-J

    2010-09-01

    Oily fish are an important source of health promoting nutrients such as the very long chain marine omega-3 (VLC-n3) fatty acids and simultaneously a source of potentially hazardous contaminants. Fish oils that are used in fish feed are the main source for both contaminants and VLC-n3. Decontamination techniques have recently been developed to effectively remove persistent organic contaminants from fish oils. The aim of the present study was to assess the level of potentially hazardous contaminants and the health beneficial fatty acids in Atlantic salmon reared on novel decontaminated feeds. Atlantic salmon were fed for 18 months (an entire seawater production cycle) on diets based on decontaminated or non-treated (control) fish oils until market size (approximately 5 kg). The level of known notorious persistent organic pollutants (POPs, i.e. dioxins, dioxin-like polychlorinated biphenyls (DL-PCBs), non dioxin-like PCBs, poly brominated diphenyl ethers (PBDE), and organochlorine pesticides), as well as fatty acid composition were analysed in fish oils, the two diets, and Atlantic salmon fillet. The oil decontamination process was a two-step procedure using active carbon and short path distillation. The fillet levels of POPs in market size fish were reduced by 68-85% while the concentration of very long chain omega-3 fatty acids was reduced by 4-7%. No differences in biomarkers of dioxin-like component exposures, such as hepatic gene expression of CYP1A or AhR2B, CYP1A protein expression and 7-ethoxyresorufin O-deethylase (EROD) activity, were observed between salmon raised on normal or decontaminated feeds, thus indicating that the difference in POPs levels were of no biological significance to the fish. Atlantic salmon reared on decontaminated feeds had sum polychlorinated dibenzodioxins/furans (PCDD/Fs) and DL-PCB concentrations that were comparable with terrestrial food products such as beef, while the level of marine omega-3 fatty acids remained as high as for

  13. Unique plasma metabolomic signatures of individuals with inherited disorders of long-chain fatty acid oxidation

    USDA-ARS?s Scientific Manuscript database

    Blood and urine acylcarnitine profiles are commonly used to diagnose long-chain fatty acid oxidation disorders (FAOD: i.e., long-chain hydroxy-acyl-CoA dehydrogenase [LCHAD] and carnitine palmitoyltransferase 2 [CPT2] deficiency), but the global metabolic impact of long-chain FAOD has not been repor...

  14. Conversion of α-linolenic acid to long-chain omega-3 fatty acid derivatives and alterations of HDL density subfractions and plasma lipids with dietary polyunsaturated fatty acids in Monk parrots (Myiopsitta monachus).

    PubMed

    Petzinger, C; Larner, C; Heatley, J J; Bailey, C A; MacFarlane, R D; Bauer, J E

    2014-04-01

    The effect of α-linolenic acid from a flaxseed (FLX)-enriched diet on plasma lipid and fatty acid metabolism and possible atherosclerosis risk factors was studied in Monk parrots (Myiopsitta monachus). Twenty-four Monk parrots were randomly assigned to diets containing either 10% ground SUNs or 10% ground FLXs. Feed intake was calculated daily. Blood samples, body condition scores and body weights were obtained at -5 weeks, day 0, 7, 14, 28, 42 and 70. Plasma samples were analysed for total cholesterol, free cholesterol, triacylglycerols and lipoproteins. Phospholipid subfraction fatty acid profiles were determined. By day 70, the FLX group had significantly higher plasma phospholipid fatty acids including 18:3n-3 (α-linolenic acid), 20:5n-3 (eicosapentaenoic acid) and 22:6n-3 (docosahexaenoic acid). The sunflower group had significantly higher plasma phospholipid levels of 20:4n-6 (arachidonic acid). By day 70, the high-density lipoprotein (HDL) peak shifted resulting in significantly different HDL peak densities between the two experimental groups (1.097 g/ml FLX group and 1.095 g/ml SUN group, p = 0.028). The plasma fatty acid results indicate that Monk parrots can readily convert α-linolenic acid to the long-chain omega-3 derivatives including docosahexaenoic acid and reduce 20:4n-6 accumulation in plasma phospholipids. The reason for a shift in the HDL peak density is unknown at this time. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  15. Long Chain Fatty Acid Acylated Derivatives of Quercetin-3-O-Glucoside as Antioxidants to Prevent Lipid Oxidation

    PubMed Central

    Warnakulasuriya, Sumudu N.; Ziaullah; Rupasinghe, H.P. Vasantha

    2014-01-01

    Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G. PMID:25384198

  16. Long chain fatty acid acylated derivatives of quercetin-3-o-glucoside as antioxidants to prevent lipid oxidation.

    PubMed

    Warnakulasuriya, Sumudu N; Ziaullah; Rupasinghe, H P Vasantha

    2014-11-06

    Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G.

  17. n-3 fatty acids: role in neurogenesis and neuroplasticity.

    PubMed

    Crupi, R; Marino, A; Cuzzocrea, S

    2013-01-01

    Omega-3 polyunsaturated fatty acids (PUFA) are essential unsaturated fatty acids with a double bond (C=C) starting after the third carbon atom from the end of the carbon chain. They are important nutrients but, unfortunately, mammals cannot synthesize them, whereby they must be obtained from food sources or from supplements. Amongst nutritionally important polyunsaturated n-3 fatty acids, α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are highly concentrated in the brain and have anti-oxidative stress, anti-inflammatory and antiapoptotic effects. They are involved in many bodily processes and may reportedly lead to neuron protection in neurological diseases. aged or damaged neurons and in Alzheimer's disease. Their effect in cognitive and behavioral functions and in several neurological and psychiatric disorders has been also proven. The dentate gyrus (DG), a sub-region of hippocampus, is implicated in cognition and mood regulation. The hippocampus represents one of the two areas in the mammalian brain in which adult neurogenesis occurs. This process is associated with beneficial effects on cognition, mood and chronic pharmacological treatment. The exposure to n-3 fatty acids enhances adult hippocampal neurogenesis associated with cognitive and behavioral processes, promotes synaptic plasticity by increasing long-term potentiation and modulates synaptic protein expression to stimulate the dendritic arborization and new spines formation. On this basis we review the effect of n-3 fatty acids on adult hippocampal neurogenesis and neuroplasticity. Moreover their possible use as a new therapeutic approach for neurodegenerative diseases is pointed out.

  18. Omega-3 long-chain polyunsaturated fatty acids for extremely preterm infants: a systematic review.

    PubMed

    Zhang, Peiyin; Lavoie, Pascal M; Lacaze-Masmonteil, Thierry; Rhainds, Marc; Marc, Isabelle

    2014-07-01

    Omega-3 long chain polyunsaturated fatty acid (LCPUFA) exposure can be associated with reduced neonatal morbidities. We systematically review the evidence for the benefits of omega-3 LCPUFAs for reducing neonatal morbidities in extremely preterm infants. Data sources were PubMed, Embase, Center for Reviews and Dissemination, and the Cochrane Register of Controlled Trials. Original studies were selected that included infants born at <29 weeks' gestation, those published until May 2013, and those that evaluated the relationship between omega-3 LCPUFA supplementation and major adverse neonatal outcomes. Data were extracted on study design and outcome. Effect estimates were pooled. Of the 1876 studies identified, 18 randomized controlled trials (RCTs) and 6 observational studies met the defined criteria. No RCT specifically targeted a population of extremely preterm infants. Based on RCTs, omega-3 LCPUFA was not associated with a decreased risk of bronchopulmonary dysplasia in infants overall (pooled risk ratio [RR] 0.97, 95% confidence interval [CI] 0.82-1.13], 12 studies, n = 2809 infants); however, when considering RCTs that include only infants born at ≤32 weeks' gestation, a trend toward a reduction in the risk of bronchopulmonary dysplasia (pooled RR 0.88, 95% CI 0.74-1.05, 7 studies, n = 1156 infants) and a reduction in the risk of necrotizing enterocolitis (pooled RR 0.50, 95% CI 0.23-1.10, 5 studies, n = 900 infants) was observed with LCPUFA. Large-scale interventional studies are required to determine the clinical benefits of omega-3 LCPUFA, specifically in extremely preterm infants, during the neonatal period. Copyright © 2014 by the American Academy of Pediatrics.

  19. Potential therapeutic impact of omega-3 long chain-polyunsaturated fatty acids on inflammation markers in Duchenne muscular dystrophy: A double-blind, controlled randomized trial.

    PubMed

    Rodríguez-Cruz, Maricela; Cruz-Guzmán, Oriana Del Rocío; Almeida-Becerril, Tomás; Solís-Serna, Alan Donovan; Atilano-Miguel, Salvador; Sánchez-González, Juan Raúl; Barbosa-Cortés, Lourdes; Ruíz-Cruz, Eugenia Dolores; Huicochea, Juan Carlos; Cárdenas-Conejo, Alan; Escobar-Cedillo, Rosa Elena; Yam-Ontiveros, Carlos Alberto; Ricárdez-Marcial, Edgar F

    2017-09-23

    Duchenne Muscular Dystrophy (DMD) is the most frequent dystrophy in childhood generated by a deficiency in dystrophin. DMD is a neuromuscular disease and its clinical course comprises chronic inflammation and gradual muscle weakness. Supplementation of omega-3 long chain-Polyunsaturated Fatty Acids (ω-3 long chain-PUFA) reduces inflammatory markers in various disorders. The goal of this research was to analyze the influence of ω-3 long chain-PUFA intake on gene expression and blood inflammatory markers in boys with DMD. In a placebo-controlled, double. Blind, randomized trial, boys with DMD (n = 36) consumed 2.9 g/day of ω-3 long chain-PUFA or sunflower oil as control, in capsules, for a period of 6 months. Blood was analyzed at baseline and at months 1, 2, 3, and 6 of supplementation for expression of inflammatory markers in leukocytes and serum. There was high adherence to capsule intake (control: 95.3% ± 7.2%, and ω-3 long chain-PUFA: 97.4% ± 3.7% at month 6). Enrichment of EicosaPentaenoic Acid (EPA) and DocosaHexaenoic Acid (DHA) in erythrocytes increased significantly in patients supplemented with ω-3 long chain-PUFA compared with the placebo group during the 6 months of supplementation. Messenger RNA (mRNA) of the Nuclear Factor kappa beta (NF-κB) and its target genes InterLeukin 1 beta (IL-1β) and IL-6 was downregulated significantly (p < 0.05) in leukocytes from DMD boys supplemented with ω-3 long chain-PUFA for 6 months, compared to the placebo group. Omega-3 long chain-PUFA intake decreased the serum IL-1β (-59.5%; p = 0.011) and IL-6 (-54.8%; p = 0.041), and increased the serum IL-10 (99.9%, p < 0.005), in relation to those with placebo treatment. Supplementation with ω-3 long chain-PUFA 2.9 g/day is well-tolerated, has a beneficial reductive effect on proinflammatory markers, and increases an anti-inflammatory marker, indicating that ω-3 long chain-PUFA could have a potential therapeutic impact on chronic inflammation in

  20. Biosynthesis of Polyunsaturated Fatty Acids in Octopus vulgaris: Molecular Cloning and Functional Characterisation of a Stearoyl-CoA Desaturase and an Elongation of Very Long-Chain Fatty Acid 4 Protein

    PubMed Central

    Monroig, Óscar; de Llanos, Rosa; Varó, Inmaculada; Hontoria, Francisco; Tocher, Douglas R.; Puig, Sergi; Navarro, Juan C.

    2017-01-01

    Polyunsaturated fatty acids (PUFAs) have been acknowledged as essential nutrients for cephalopods but the specific PUFAs that satisfy the physiological requirements are unknown. To expand our previous investigations on characterisation of desaturases and elongases involved in the biosynthesis of PUFAs and hence determine the dietary PUFA requirements in cephalopods, this study aimed to investigate the roles that a stearoyl-CoA desaturase (Scd) and an elongation of very long-chain fatty acid 4 (Elovl4) protein play in the biosynthesis of essential fatty acids (FAs). Our results confirmed the Octopus vulgaris Scd is a ∆9 desaturase with relatively high affinity towards saturated FAs with ≥ C18 chain lengths. Scd was unable to desaturate 20:1n-15 (∆520:1) suggesting that its role in the biosynthesis of non-methylene interrupted FAs (NMI FAs) is limited to the introduction of the first unsaturation at ∆9 position. Interestingly, the previously characterised ∆5 fatty acyl desaturase was indeed able to convert 20:1n-9 (∆1120:1) to ∆5,1120:2, an NMI FA previously detected in octopus nephridium. Additionally, Elovl4 was able to mediate the production of 24:5n-3 and thus can contribute to docosahexaenoic acid (DHA) biosynthesis through the Sprecher pathway. Moreover, the octopus Elovl4 was confirmed to play a key role in the biosynthesis of very long-chain (>C24) PUFAs. PMID:28335553

  1. Biosynthesis of Polyunsaturated Fatty Acids in Octopus vulgaris: Molecular Cloning and Functional Characterisation of a Stearoyl-CoA Desaturase and an Elongation of Very Long-Chain Fatty Acid 4 Protein.

    PubMed

    Monroig, Óscar; de Llanos, Rosa; Varó, Inmaculada; Hontoria, Francisco; Tocher, Douglas R; Puig, Sergi; Navarro, Juan C

    2017-03-21

    Polyunsaturated fatty acids (PUFAs) have been acknowledged as essential nutrients for cephalopods but the specific PUFAs that satisfy the physiological requirements are unknown. To expand our previous investigations on characterisation of desaturases and elongases involved in the biosynthesis of PUFAs and hence determine the dietary PUFA requirements in cephalopods, this study aimed to investigate the roles that a stearoyl-CoA desaturase (Scd) and an elongation of very long-chain fatty acid 4 (Elovl4) protein play in the biosynthesis of essential fatty acids (FAs). Our results confirmed the Octopus vulgaris Scd is a ∆9 desaturase with relatively high affinity towards saturated FAs with ≥ C 18 chain lengths. Scd was unable to desaturate 20:1 n- 15 ( ∆5 20:1) suggesting that its role in the biosynthesis of non-methylene interrupted FAs (NMI FAs) is limited to the introduction of the first unsaturation at ∆9 position. Interestingly, the previously characterised ∆5 fatty acyl desaturase was indeed able to convert 20:1 n- 9 ( ∆11 20:1) to ∆5,11 20:2, an NMI FA previously detected in octopus nephridium. Additionally, Elovl4 was able to mediate the production of 24:5 n- 3 and thus can contribute to docosahexaenoic acid (DHA) biosynthesis through the Sprecher pathway. Moreover, the octopus Elovl4 was confirmed to play a key role in the biosynthesis of very long-chain (>C 24 ) PUFAs.

  2. Blood pressure-lowering effects of long chain n-3 fatty acids from meals enriched with liquid fish oil and from microencapsulated powder.

    PubMed

    Sveinsdottir, Kolbrun; Martinsdottir, Emilia; Ramel, Alfons

    2016-12-01

    Diet plays an important role in the etiology of hypertension. Blood pressure (BP)-lowering properties of long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) are promising. The aim was to investigate whether different formulations of fish oil differently affect blood pressure in community-dwelling adults. The hypothesis was that fish oil formulations would improve BP in comparison with a placebo. In this 4-week randomized, placebo-controlled, doubly-blinded dietary intervention study, participants (N = 99, >50 years) from the capital area of Iceland were randomized into three groups. Group 1 (n = 38) received 6 meals/week fortified with a liquid fish oil and placebo powder. Group 2 (n = 30) received conventional (unfortified) meals and microencapsulated powder. Group 3 (n = 31) was the control group which received conventional meals and placebo powder. Calculated on a weekly basis, the amount of EPA + DHA provided was 1.5 g/d. Systolic (SBP) and diastolic BP (DBP) were measured before and after the intervention period. Seventy-seven subjects finished the study (77.8%). Drop-out rates were not different between groups. According to multivariate statistics, endpoint SBP was lower in Group 1 (-7.0 mmHg, p = 0.037) and in Group 2 (-7.2 mmHg, p = 0.037) as compared with Group 3. There was no significant difference in DBP between the groups. Our study shows that LC n-3 PUFA from microencapsulated powder are equally effective to meaningfully reduce SBP as LC n-3 PUFA from meals enriched with liquid fish oil in comparison with a control group.

  3. An Open-label Phase 2 Study of UX007 (Triheptanoin) in Subjects With Long-Chain Fatty Acid Oxidation Disorders (LC-FAOD)

    ClinicalTrials.gov

    2018-06-01

    Long-chain Fatty Acid Oxidation Disorders (LC-FAOD); Carnitine Palmitoyltransferase (CPT II) Deficiency; Very Long Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency; Longchain 3-hydroxy-acyl-CoA Dehydrogenase (LCHAD) Deficiency; Trifunctional Protein (TFP) Deficiency

  4. Role of perinatal long-chain omega-3 fatty acids in cortical circuit maturation: Mechanisms and implications for psychopathology

    PubMed Central

    McNamara, Robert K; Vannest, Jennifer J; Valentine, Christina J

    2015-01-01

    Accumulating translational evidence suggests that the long-chain omega-3 fatty acid docosahexaenoic acid (DHA) plays a role in the maturation and stability of cortical circuits that are impaired in different recurrent psychiatric disorders. Specifically, rodent and cell culture studies find that DHA preferentially accumulates in synaptic and growth cone membranes and promotes neurite outgrowth, dendritic spine stability, and synaptogenesis. Additional evidence suggests that DHA may play a role in microglia-mediated synaptic pruning, as well as myelin development and resilience. In non-human primates n-3 fatty acid insufficiency during perinatal development leads to widespread deficits in functional connectivity in adult frontal cortical networks compared to primates raised on DHA-fortified diet. Preterm delivery in non-human primates and humans is associated with early deficits in cortical DHA accrual. Human preterm birth is associated with long-standing deficits in myelin integrity and cortical circuit connectivity and increased risk for attention deficit/hyperactivity disorder (ADHD), mood, and psychotic disorders. In general, ADHD and mood and psychotic disorders initially emerge during rapid periods of cortical circuit maturation and are characterized by DHA deficits, myelin pathology, and impaired cortical circuit connectivity. Together these associations suggest that early and uncorrected deficits in fetal brain DHA accrual may represent a modifiable risk factor for cortical circuit maturation deficits in psychiatric disorders, and could therefore have significant implications for informing early intervention and prevention strategies. PMID:25815252

  5. Rye polyphenols and the metabolism of n-3 fatty acids in rats: a dose dependent fatty fish-like effect.

    PubMed

    Ounnas, Fayçal; de Lorgeril, Michel; Salen, Patricia; Laporte, François; Calani, Luca; Mena, Pedro; Brighenti, Furio; Del Rio, Daniele; Demeilliers, Christine

    2017-01-10

    As long-chain fatty acids (LCFA) of the n-3 series are critically important for human health, fish consumption has considerably increased in recent decades, resulting in overfishing to respond to the worldwide demand, to an extent that is not sustainable for consumers' health, fisheries economy, and marine ecology. In a recent study, it has been shown that whole rye (WR) consumption improves blood and liver n-3 LCFA levels and gut microbiota composition in rats compared to refined rye. The present work demonstrates that specific colonic polyphenol metabolites may dose dependently stimulate the synthesis of n-3 LCFA, possibly through their microbial and hepatic metabolites in rats. The intake of plant n-3 alpha-linolenic acid and WR results in a sort of fatty fish-like effect, demonstrating that the n-3 LCFA levels in blood and tissues could be increased without eating marine foods, and therefore without promoting unsustainable overfishing, and without damaging marine ecology.

  6. Maternal n-6 and n-3 fatty acid status during pregnancy is related to infant heart rate and heart rate variability: An exploratory study.

    PubMed

    Drewery, M L; Gaitán, A V; Spedale, S B; Monlezun, C J; Miketínas, D C; Lammi-Keefe, C J

    2017-11-01

    Early life heart rate (HR) and heart rate variability (HRV) reflect autonomic system maturation. Intervention with n-3 long chain polyunsaturated fatty acids (LCPUFAs) during pregnancy favorably affects fetal HR and HRV, complementing previous observations for n-3 LCPUFA intervention during infancy. The relationship between maternal fatty acid status during pregnancy and infant HR/HRV has not previously been assessed. The aim of this study was to explore associations between maternal n-6 and n-3 fatty acid status during pregnancy and infant HR and HRV at 2 weeks, 4 months, and 6 months of age using linear regression models. Maternal n-3 fatty acids were inversely related to infant HR and positively related to HRV. Conversely, maternal n-6 fatty acids were positively related to infant HR and inversely related to HRV. These data build on existing literature evidencing a role for n-3 fatty acids in accelerating autonomic development and link n-6 fatty acids to HR/HRV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Women who take n-3 long-chain polyunsaturated fatty acid supplements during pregnancy and lactation meet the recommended intake.

    PubMed

    Jia, Xiaoming; Pakseresht, Mohammadreza; Wattar, Nour; Wildgrube, Jamie; Sontag, Stephanie; Andrews, Murphy; Subhan, Fatheema Begum; McCargar, Linda; Field, Catherine J

    2015-05-01

    The aim of the current study was to estimate total intake and dietary sources of eicosapentaenoic acid (EPA), docosapentanoic (DPA), and docosahexaenoic acid (DHA) and compare DHA intakes with the recommended intakes in a cohort of pregnant and lactating women. Twenty-four-hour dietary recalls and supplement intake questionnaires were collected from 600 women in the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort at each trimester of pregnancy and 3 months postpartum. Dietary intake was estimated in 2 ways: by using a commercial software program and by using a database created for APrON. Only 27% of women during pregnancy and 25% at 3 months postpartum met the current European Union (EU) consensus recommendation for DHA. Seafood, fish, and seaweed products contributed to 79% of overall n-3 long-chain polyunsaturated fatty acids intake from foods, with the majority from salmon. The estimated intake of DHA and EPA was similar between databases, but the estimated DPA intake was 20%-30% higher using the comprehensive database built for this study. Women who took a supplement containing DHA were 10.6 and 11.1 times more likely to meet the current EU consensus recommendation for pregnancy (95% confidence interval (CI): 6.952-16.07; P<0.001) and postpartum (95% CI: 6.803-18.14; P<0.001), respectively. Our results suggest that the majority of women in the cohort were not meeting the EU recommendation for DHA during pregnancy and lactation, but taking a supplement significantly improved the likelihood that they would meet recommendations.

  8. Dietary intake and adipose tissue content of long-chain n-3 PUFAs and subsequent 5-y change in body weight and waist circumference.

    PubMed

    Jakobsen, Marianne U; Madsen, Lise; Skjøth, Flemming; Berentzen, Tina L; Halkjær, Jytte; Tjønneland, Anne; Schmidt, Erik B; Sørensen, Thorkild Ia; Kristiansen, Karsten; Overvad, Kim

    2017-05-01

    Background: Adding long-chain n-3 (ω-3) polyunsaturated fatty acids (PUFAs) to a rodent diet reduces fat mass and prevents the development of obesity, but evidence of a similar effect in humans is rather limited. Objectives: We investigated the associations between dietary intake and adipose tissue content of long-chain n-3 PUFAs and subsequent 5-y change in body weight and waist circumference in humans. Effect modification by the carbohydrate:protein ratio and glycemic index was also investigated. Design: A total of 29,152 participants included in the Diet, Cancer, and Health cohort were followed. Dietary intake was assessed with the use of a validated 192-item semiquantitative food-frequency questionnaire. Adipose tissue content of fatty acids was determined by gas chromatography in a random sample of the cohort ( n = 1660). Anthropometric measurements were taken at baseline and 5 y later. Associations were investigated with the use of a linear regression model. Results: For high (1.22 g/d) compared with low (0.28 g/d) total n-3 PUFA intake, the difference in 5-y weight change was 147.6 g (95% CI: -42.3, 337.5 g); P -trend = 0.088. No associations between the individual n-3 PUFAs eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid were observed. Intake of n-3 PUFAs was not associated with a 5-y change in waist circumference. For high (0.16%) compared with low (0.06%) adipose tissue content of EPA, the difference in 5-y weight change was -649.6 g (95% CI: -1254.2, -44.9 g); P -trend = 0.027. No associations between total n-3 PUFA, docosapentaenoic acid, and docosahexaenoic acid and 5-y weight change were observed. Adipose tissue content of n-3 PUFAs was not associated with 5-y change in waist circumference. No effect modification by carbohydrate:protein ratio or glycemic index was found. Conclusion: Dietary intake and adipose tissue content of long-chain n-3 PUFAs were neither consistently nor appreciably associated with change in body weight

  9. The association of serum long-chain n-3 PUFA and hair mercury with exercise cardiac power in men.

    PubMed

    Tajik, Behnam; Kurl, Sudhir; Tuomainen, Tomi-Pekka; Virtanen, Jyrki K

    2016-08-01

    Long-chain n-3 PUFA from fish and exercise capacity are associated with CVD risk. Fish, especially large and old predatory fish, may contain Hg, which may attenuate the inverse association of long-chain n-3 PUFA with CVD. However, the associations of long-chain n-3 PUFA or Hg exposure with exercise capacity are not well known. We aimed to evaluate the associations of serum long-chain n-3 PUFA EPA, docosapentaenoic acid (DPA) and DHA and hair Hg with exercise cardiac power (ECP, a ratio of VO2max:maximal systolic blood pressure (SBP) during an exercise test), a measure for exercise capacity. For this, data from the population-based Kuopio Ischaemic Heart Disease Risk Factor Study were analysed cross-sectionally in order to determine the associations between serum long-chain n-3 PUFA, hair Hg and ECP in 1672 men without CVD, aged 42-60 years. After multivariate adjustments, serum total long-chain n-3 PUFA concentration was associated with higher ECP and VO2max (P trend across quartiles=0·04 and P trend=0·02, respectively), but not with maximal SBP (P trend=0·69). Associations were generally similar when EPA, DPA and DHA were evaluated individually. Hair Hg was not associated with ECP, VO2max or maximal SBP. However, the associations of total long-chain n-3 PUFA (P interaction=0·03) and EPA (P interaction=0·02) with higher VO2max were stronger among men with lower hair Hg. Higher serum long-chain n-3 PUFA concentration, mainly a marker for fish consumption in this study population, was associated with higher ECP and VO2max in middle-aged men from eastern Finland.

  10. Omega-3 long-chain polyunsaturated fatty acids support aerial insectivore performance more than food quantity.

    PubMed

    Twining, Cornelia W; Brenna, J Thomas; Lawrence, Peter; Shipley, J Ryan; Tollefson, Troy N; Winkler, David W

    2016-09-27

    Once-abundant aerial insectivores, such as the Tree Swallow (Tachycineta bicolor), have declined steadily in the past several decades, making it imperative to understand all aspects of their ecology. Aerial insectivores forage on a mixture of aquatic and terrestrial insects that differ in fatty acid composition, specifically long-chain omega-3 polyunsaturated fatty acid (LCPUFA) content. Aquatic insects contain high levels of both LCPUFA and their precursor omega-3 PUFA, alpha-linolenic acid (ALA), whereas terrestrial insects contain much lower levels of both. We manipulated both the quantity and quality of food for Tree Swallow chicks in a full factorial design. Diets were either high-LCPUFA or low in LCPUFA but high in ALA, allowing us to separate the effects of direct LCPUFA in diet from the ability of Tree Swallows to convert their precursor, ALA, into LCPUFA. We found that fatty acid composition was more important for Tree Swallow chick performance than food quantity. On high-LCPUFA diets, chicks grew faster, were in better condition, and had greater immunocompetence and lower basal metabolic rates compared with chicks on both low LCPUFA diets. Increasing the quantity of high-LCPUFA diets resulted in improvements to all metrics of performance while increasing the quantity of low-LCPUFA diets only resulted in greater immunocompetence and lower metabolic rates. Chicks preferentially retained LCPUFA in brain and muscle when both food quantity and LCPUFA were limited. Our work suggests that fatty acid composition is an important dimension of aerial insectivore nutritional ecology and reinforces the importance of high-quality aquatic habitat for these declining birds.

  11. Saturated Branched Chain, Normal Odd-Carbon-Numbered, and n-3 (Omega-3) Polyunsaturated Fatty Acids in Freshwater Fish in the Northeastern United States.

    PubMed

    Wang, Dong Hao; Jackson, James R; Twining, Cornelia; Rudstam, Lars G; Zollweg-Horan, Emily; Kraft, Clifford; Lawrence, Peter; Kothapalli, Kumar; Wang, Zhen; Brenna, J Thomas

    2016-10-04

    The fatty acid profiles of wild freshwater fish are poorly characterized as a human food source for several classes of fatty acids, particularly for branched chain fatty acids (BCFA), a major bioactive dietary component known to enter the US food supply primarily via dairy and beef fat. We evaluated the fatty acid content of 27 freshwater fish species captured in the northeastern US with emphasis on the BCFA and bioactive polyunsaturated fatty acids (PUFA) most associated with fish, specifically n-3 (omega-3) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Mean BCFA content across all species was 1.0 ± 0.5% (mean ± SD) of total fatty acids in edible muscle, with rainbow smelt (Osmerus mordax) and pumpkinseed (Lepomis gibbosus) the highest at >2% BCFA. In comparison, EPA + DHA constituted 28% ± 7% of total fatty acids. Across all fish species, the major BCFA were iso-15:0, anteiso-15:0, iso-16:0, iso-17:0 and anteiso-17:0. Fish skin had significantly higher BCFA content than muscle tissues, at 1.8% ± 0.7%, but lower EPA and DHA. Total BCFA in fish skins was positively related with that in muscle (r 2 = 0.6). The straight chain saturates n-15:0 and n-17:0 which have been identified previously as markers for dairy consumption were relatively high with means of 0.4% and 0.6%, respectively, and may be an underappreciated marker for seafood intake. Consuming a standardized portion, 70 g (2.5 oz), of wild freshwater fish contributes only small amounts of BCFA, 2.5-24.2 mg, to the American diet, while it adds surprisingly high amounts of EPA + DHA (107 mg to 558 mg).

  12. Enteral diets enriched with medium-chain triglycerides and N-3 fatty acids prevent chemically induced experimental colitis in rats.

    PubMed

    Kono, Hiroshi; Fujii, Hideki; Ogiku, Masahito; Tsuchiya, Masato; Ishii, Kenichi; Hara, Michio

    2010-11-01

    The specific purpose of this study was to evaluate the significant effects of medium-chain triglycerides (MCTs) and N-3 fatty acids on chemically induced experimental colitis induced by 2,4,6-trinitrobenzene sulphonic acid (TNBS) in rats. Male Wistar rats were fed liquid diets enriched with N-6 fatty acid (control diets), N-3 fatty acid (MCT- diets), and N-3 fatty acid and MCT (MCT+ diets) for 2 weeks and then were given an intracolonic injection of TNBS. Serum and tissue samples were collected 5 days after ethanol or TNBS enema. The severity of colitis was evaluated pathologically, and tissue myeloperoxidase activity was measured in colonic tissues. Furthermore, protein levels for inflammatory cytokines and a chemokine were assessed by an enzyme-linked immunosorbent assay in colonic tissues. Induction of proinflammatory cytokines tumor necrosis factor-α and interleukin-1β in the colon by TNBS enema was markedly attenuated by the MCT+ diet among the 3 diets studied. Furthermore, the induction of chemokines macrophage inflammatory protein-2 and monocyte chemotactic protein-1 also was blunted significantly in animals fed the MCT+ diets. As a result, MPO activities in the colonic tissue also were blunted significantly in animals fed the MCT+ diets compared with those fed the control diets or the MCT- diets. Furthermore, the MCT+ diet improved chemically induced colitis significantly among the 3 diets studied. Diets enriched with both MCTs and N-3 fatty acids may be effective for the therapy of inflammatory bowel disease as antiinflammatory immunomodulating nutrients. Copyright © 2010 Mosby, Inc. All rights reserved.

  13. Supplementation with N-3 Long-Chain Polyunsaturated Fatty Acids or Olive Oil in Men and Women with Renal Disease Induces Differential Changes in the DNA Methylation of FADS2 and ELOVL5 in Peripheral Blood Mononuclear Cells

    PubMed Central

    Hoile, Samuel P.; Clarke-Harris, Rebecca; Huang, Rae-Chi; Calder, Philip C.; Mori, Trevor A.; Beilin, Lawrence J.; Lillycrop, Karen A.; Burdge, Graham C.

    2014-01-01

    Background Studies in animal models and in cultured cells have shown that fatty acids can induce alterations in the DNA methylation of specific genes. There have been no studies of the effects of fatty acid supplementation on the epigenetic regulation of genes in adult humans. Methods and Results We investigated the effect of supplementing renal patients with 4 g daily of either n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) or olive oil (OO) for 8 weeks on the methylation status of individual CpG loci in the 5′ regulatory region of genes involved in PUFA biosynthesis in peripheral blood mononuclear cells from men and women (aged 53 to 63 years). OO and n-3 LCPUFA each altered (>10% difference in methylation) 2/22 fatty acid desaturase (FADS)-2 CpGs, while n-3 LCPUFA, but not OO, altered (>10%) 1/12 ELOVL5 CpGs in men. OO altered (>6%) 8/22 FADS2 CpGs and (>3%) 3/12 elongase (ELOVL)-5 CpGs, while n-3 LCPUFA altered (>5%) 3/22 FADS2 CpGs and 2/12 (>3%) ELOVL5 CpGs in women. FADS1 or ELOVL2 methylation was unchanged. The n-3 PUFA supplementation findings were replicated in blood DNA from healthy adults (aged 23 to 30 years). The methylation status of the altered CpGs in FADS2 and ELOVL5 was associated negatively with the level of their transcripts. Conclusions These findings show that modest fatty acid supplementation can induce altered methylation of specific CpG loci in adult humans, contingent on the nature of the supplement and on sex. This has implications for understanding the effect of fatty acids on PUFA metabolism and cell function. PMID:25329159

  14. Long-chain omega-3 fatty acids, fibrates and niacin as therapeutic options in the treatment of hypertriglyceridemia: a review of the literature.

    PubMed

    Ito, Matthew K

    2015-10-01

    Hypertriglyceridemia affects approximately 33% of the US population. Elevated triglyceride levels are independently associated with cardiovascular disease (CVD) risk, and severe hypertriglyceridemia is a risk factor for acute pancreatitis. Guidelines for the management of severe hypertriglyceridemia (≥5.6 mmol/L [≥500 mg/dL]) recommend immediate use of triglyceride-lowering agents; however, statins remain the first line of therapy for the management of mild to moderate hypertriglyceridemia (1.7-5.6 mmol/L [150-499 mg/dL]). Statins primarily target elevated low-density lipoprotein cholesterol levels, but have also been shown to reduce mean triglyceride levels by up to 18% (or 43% in patients with triglyceride levels≥3.1 mmol/L [≥273 mg/dL]). However, individuals with hypertriglyceridemia may need additional reduction in triglyceride-rich lipoproteins and remnant particles to further reduce residual CVD risk. A number of guidelines recommend the addition of fibrates, niacin, or long-chain omega-3 fatty acids if elevated triglyceride or non-high-density lipoprotein cholesterol levels persist despite the use of high-intensity statin therapy. This review evaluates the impact of fibrates, niacin, and long-chain omega-3 fatty acids on lipid profiles and cardiovascular outcomes in patients with hypertriglyceridemia. It also assesses the adverse effects and drug-drug interactions associated with these triglyceride-lowering agents, because although they have all been shown to effectively reduce triglyceride levels in patients with hypertriglyceridemia, they differ with regard to their associated benefit-risk profiles. Long-chain omega-3 fatty acids may be a well-tolerated and effective alternative to fibrates and niacin, yet further large-scale clinical studies are required to evaluate their effects on cardiovascular outcomes and CVD risk reduction in patients with hypertriglyceridemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Overexpression of Human Fatty Acid Transport Protein 2/Very Long Chain Acyl-CoA Synthetase 1 (FATP2/Acsvl1) Reveals Distinct Patterns of Trafficking of Exogenous Fatty Acids

    PubMed Central

    Melton, Elaina M.; Cerny, Ronald L.; DiRusso, Concetta C.; Black, Paul N.

    2014-01-01

    In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4hr. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of

  16. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids.

    PubMed

    Melton, Elaina M; Cerny, Ronald L; DiRusso, Concetta C; Black, Paul N

    2013-11-01

    In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of

  17. A critical role for very long-chain fatty acid elongases in oleic acid-mediated Saccharomyces cerevisiae cytotoxicity.

    PubMed

    Wang, Qiao; Du, Xiuxiu; Ma, Ke; Shi, Ping; Liu, Wenbin; Sun, Jing; Peng, Min; Huang, Zhiwei

    2018-03-01

    Elongases FEN1/ELO2 and SUR4/ELO3 are important enzymes involved in the elongation of long-chain fatty acids (LCFAs) to very long-chain fatty acids (VLCFAs) in Saccharomyces cerevisiae. The molecular mechanism of the involvement of these elongases in lipotoxicity is unclear. In the present study, we investigated the role of VLCFA elongases in oleic acid-mediated yeast cytotoxicity. The spot test showed that yeast strains with the deletion of ELO2 or ELO3 were strikingly sensitive to oleic acid, while there was no change on the growth of strain with deleted ELO1 which was involved in the elongation of C 14 fatty acid (FA) to C 16 FA. By using GC-MS, the unsaturation index was increased in elo2△ and elo3△ mutants after treatment with oleic acid (OLA). However, the proportion of VLCFAs was increased in response to OLA in the wild-type strain. The growth inhibition of elo2△ and elo3△ could be partially rescued by two commonly used antioxidant agents N-acetyl cysteine (NAC) and Ascorbic acid (VC). The further study showed that exposure to excess OLA led to an increase in the levels of reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS), and a decline in the quantity of reduced glutathione (GSH) in both the wild type and mutant strains. However, the antioxidant enzyme activities of superoxide dismutase (SOD) and catalase (CAT) were increased in the wild type and elo1△ strains, while they were significantly decreased in the mutants of elo2△ and elo3△ after treated with excess OLA. Thus, oxidative damage mainly contributed to the cell death induced by OLA in ole2△ and ole3△. Taken together, although disruption of ELO2 or ELO3 did not affect the cellular lipid unsaturation, they altered the distribution and propotion of cellular VLCFAs, leading to the cell membrane impairment, which augmented the ability of OLA to permeabilize the plasma membrane. The data suggest that the very long-chain fatty acids elongases ELO2 and ELO3

  18. Metabolic Analysis Reveals Altered Long-Chain Fatty Acid Metabolism in the Host by Huanglongbing Disease.

    PubMed

    Suh, Joon Hyuk; Niu, Yue S; Wang, Zhibin; Gmitter, Frederick G; Wang, Yu

    2018-02-07

    Candidatus Liberibacter asiaticus (CLas) is the presumed causal agent of Huanglongbing, one of the most destructive diseases in citrus. However, the lipid metabolism component of host response to this pathogen has not been investigated well. Here, metabolic profiling of a variety of long-chain fatty acids and their oxidation products was first performed to elucidate altered host metabolic responses of disease. Fatty acid signals were found to decrease obviously in response to disease regardless of cultivar. Several lipid oxidation products strongly correlated with those fatty acids were also consistently reduced in the diseased group. Using a series of statistical methods and metabolic pathway mapping, we found significant markers contributing to the pathological symptoms and identified their internal relationships and metabolic network. Our findings suggest that the infection of CLas may cause the altered metabolism of long-chain fatty acids, possibly leading to manipulation of the host's defense derived from fatty acids.

  19. Heterologous co-expression of accA, fabD, and thioesterase genes for improving long-chain fatty acid production in Pseudomonas aeruginosa and Escherichia coli.

    PubMed

    Lee, Sunhee; Jeon, Eunyoung; Jung, Yeontae; Lee, Jinwon

    2012-05-01

    The goal of the present study was to increase the content of intracellular long-chain fatty acids in two bacterial strains, Pseudomonas aeruginosa PA14 and Escherichia coli K-12 MG1655, by co-overexpressing essential enzymes that are involved in the fatty acid synthesis metabolic pathway. Recently, microbial fatty acids and their derivatives have been receiving increasing attention as an alternative source of fuel. By introducing two genes (accA and fabD) of P. aeruginosa into the two bacterial strains and by co-expressing with them the fatty acyl-acyl carrier protein thioesterase gene of Streptococcus pyogenes (strain MGAS10270), we have engineered recombinant strains that are efficient producers of long-chain fatty acids (C16 and C18). The recombinant strains exhibit a 1.3-1.7-fold increase in the production of long-chain fatty acids over the wild-type strains. To enhance the production of total long-chain fatty acids, we researched the carbon sources for optimized culture conditions and results were used for post-culture incubation period. E. coli SGJS17 (containing the accA, fabD, and thioesterase genes) produced the highest content of intracellular total fatty acids; in particular, the unsaturated fatty acid content was about 20-fold higher than that in the wild-type E. coli.

  20. Dietary supplementation with very long-chain n-3 fatty acids in man decreases expression of the interleukin-2 receptor (CD25) on mitogen-stimulated lymphocytes from patients with inflammatory skin diseases.

    PubMed

    Søyland, E; Lea, T; Sandstad, B; Drevon, A

    1994-04-01

    T-cell activation and cytokine production play an important role in several chronic inflammatory diseases. Because n-3 fatty acids exert beneficial effects on the clinical state of some of these diseases, we examined the effect of dietary supplementation of n-3 fatty acids on T-cell proliferation, expression of CD25 (interleukin-2 receptor alpha-chain), secretion of interleukin-2, interleukin-6 and tumour necrosis factor from T-cells from patients with psoriasis and atopic dermatitis. During 4 months, 21 patients supplied 6 g of highly concentrated ethyl esters of EPA and DHA in gelatin capsules daily to their diet. In the control group 20 patients supplied 6 g per day of corn oil in gelatin capsules to their diet. Eicosapentaenoic acid (20:5, n-3) of serum phospholipids increased from 14 (min 4-max 42) to 81 (min 59-max 144) mg l-1 (P < 0.01) in patients with atopic dermatitis receiving n-3 fatty acids, and from 25 (min 7-max 66) to 74 (min 46-max 142) mg l-1 (P < 0.01) in patients with psoriasis, whereas docosahexaenoic acid (22:6, n-3) increased from 65 (min 46-max 120) to 92 (min 54-max 121) mg l-1 (P < 0.05) and from 81 (min 38-max 122) to 92 (min 63-max 169) mg l-1 (NS) in atopic and psoriatic patients, respectively. The changes in the serum phospholipid fatty acid profile in the groups receiving n-3 fatty acids, correlate to the dietary intake of corresponding fatty acids.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Thermodynamic Interactions between Polystyrene and Long-Chain Poly(n-Alkyl Acrylates) Derived from Plant Oils.

    PubMed

    Wang, Shu; Robertson, Megan L

    2015-06-10

    Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter χ. We have investigated the χ parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the χ parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The χ parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the χ parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between

  2. Long-chain n-3 fatty acids enhance neonatal insulin-regulated protein metabolism in piglets by differentially altering muscle lipid composition

    PubMed Central

    Bergeron, Karen; Julien, Pierre; Davis, Teresa A.; Myre, Alexandre; Thivierge, M. Carole

    2009-01-01

    This study investigated the role of long-chain n-3 polyunsaturated fatty acids (LCn-3PUFAs) of muscle phospholipids in the regulation of neonatal metabolism. Twenty-eight piglets were weaned at 2 days of age and raised on one of two milk formulas that consisted of either a control formula supplying 0% or a formula containing 3.5% LCn-3PUFAs until 10 or 28 days of age. There was a developmental decline in the insulin sensitivity of amino acid disposal in control pigs during the first month of life, with a slope of −2.24 μmol·kg−1·h−1 (P = 0.01) per unit of insulin increment, as assessed using hyperinsulinemic-euglycemic-euaminoacidemic clamps. LCn-3PUFA feeding blunted this developmental decline, resulting in differing insulin sensitivities (P < 0.001). When protein metabolism was assessed under parenteral feeding-induced hyperinsulinemia, LCn-3PUFAs reduced by 16% whole body oxidative losses of amino acids (from 238 to 231 μmol·kg−1·h−1; P = 0.06), allowing 41% more amino acids to accrete into body proteins (from 90 to 127 μmol·kg−1·h−1; P = 0.06). The fractional synthetic rate of muscle mixed proteins remained unaltered by the LCn-3PUFA feeding. However, LCn-3PUFAs retarded a developmental increase in the essential-to-nonessential amino acid ratio of the muscle intracellular free pool (P = 0.05). Overall, alterations in metabolism were concomitant with a preferential incorporation of LCn-3PUFAs into muscle total membrane phospholipids (P < 0.001), in contrast to intramuscular triglycerides. These results underscore the potential role of LCn-3PUFAs as regulators of different aspects of protein metabolism in the neonate. PMID:17673528

  3. Changes in cholesterol homeostasis modify the response of F1B hamsters to dietary very long chain n-3 and n-6 polyunsaturated fatty acids

    USDA-ARS?s Scientific Manuscript database

    The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC) n-3 PUFA is paradoxical to that observed in humans. This anomaly is attributed, in part, to low lipoprotein lipase activity and dependent on cholesterol status. To further elucidate the mechanism(...

  4. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melton, Elaina M.; Center for Cardiovascular Sciences, Albany Medical College, Albany, NY; Cerny, Ronald L.

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4,more » for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  5. Maternal long-chain polyunsaturated fatty acid status during early pregnancy and children's risk of problem behavior at age 5-6 years.

    PubMed

    Loomans, Eva M; Van den Bergh, Bea R H; Schelling, Maaike; Vrijkotte, Tanja G M; van Eijsden, Manon

    2014-04-01

    To prospectively investigate the association between maternal long-chain polyunsaturated fatty acid (LCPUFA) status and ratio during pregnancy and children's risk of problem behavior at 5 years of age. Maternal LCPUFA status in plasma phospholipids during pregnancy (M = 13.3, SD = 3 weeks) was available for 4336 women. Children's behavior was rated by their mother (n = 2502) and teacher (n = 2061). When using multivariate logistic regression analyses, we found that greater concentrations of omega-3 fatty acid docosahexaenoic acid (OR 0.75; 95% CI 0.56-0.99; P = .05) decreased children's risk for emotional symptoms. Although lower eicosapentaenoic acid and a greater omega-6:omega-3 LCPUFA (ie, arachidonic acid/[docosahexaenoic acid + eicosapentaenoic acid]) tended to increase the risk for emotional symptoms and the risk of hyperactivity/inattention problems for the omega-6:omega-3 LCPUFA, the results were nonsignificant (P = .07). No evidence was found for mediation by preterm birth and being small for gestational age. The child's sex and infant feeding pattern did not modify the associations. Our results suggest long-term developmental programming influences of maternal LCPUFA status during pregnancy and stress the importance of an adequate and balanced supply of fatty acids in pregnant women for optimal fetal brain development and subsequent long-term behavioral outcomes. Copyright © 2014 Mosby, Inc. All rights reserved.

  6. Only One of the Five Ralstonia solanacearum Long-Chain 3-Ketoacyl-Acyl Carrier Protein Synthase Homologues Functions in Fatty Acid Synthesis

    PubMed Central

    Cheng, Juanli; Ma, Jincheng; Lin, Jinshui; Fan, Zhen-Chuan; Cronan, John E.

    2012-01-01

    Ralstonia solanacearum, a major phytopathogenic bacterium, causes a bacterial wilt disease in diverse plants. Although fatty acid analyses of total membranes of R. solanacearum showed that they contain primarily palmitic (C16:0), palmitoleic (C16:1) and cis-vaccenic (C18:1) acids, little is known regarding R. solanacearum fatty acid synthesis. The R. solanacearum GMI1000 genome is unusual in that it contains four genes (fabF1, fabF2, fabF3, and fabF4) annotated as encoding 3-ketoacyl-acyl carrier protein synthase II homologues and one gene (fabB) annotated as encoding 3-ketoacyl-acyl carrier protein synthase I. We have analyzed this puzzling apparent redundancy and found that only one of these genes, fabF1, encoded a long-chain 3-ketoacyl-acyl carrier protein synthase, whereas the other homologues did not play roles in R. solanacearum fatty acid synthesis. Mutant strains lacking fabF1 are nonviable, and thus, FabF1 is essential for R. solanacearum fatty acid biosynthesis. Moreover, R. solanacearum FabF1 has the activities of both 3-ketoacyl-acyl carrier protein synthase II and 3-ketoacyl-acyl carrier protein synthase I. PMID:22194290

  7. Effects of medium-chain triglycerides, long-chain triglycerides, or 2-monododecanoin on fatty acid composition in the portal vein, intestinal lymph, and systemic circulation in rats.

    PubMed

    You, Yi-Qian Nancy; Ling, Pei-Ra; Qu, Jason Zhensheng; Bistrian, Bruce R

    2008-01-01

    Fatty acid absorption patterns can have a major impact on the fatty acid composition in the portal, intestinal lymph, and systemic circulation. This study sought to determine the effects of long-chain triglycerides (LCT), medium-chain triglycerides (MCT), and 2-monododecanoin (2mono) on intestinal fatty acid composition during continuous feeding over a brief period. The lipid sources were 100% LCT, 100% MCT, a 50:50 mixture of LCT and MCT (LCT/MCT), and a 50:50 mixture of LCT and 2mono (LCT/2mono). A total of 27 rats were randomly given 1 of the 4 diets at 200 kcal/kg/d, with 30% of total calories from lipids over 3 hours. MCT significantly increased each of the medium-chain fatty acids (C6:0, C8:0, and C10:0) as free fatty acids in the portal vein and about 10%/mol of C10:0 as triglycerides in the lymph compared with the other groups. There was significantly less C10:0 in lymphatic triglycerides with LCT/MCT than with MCT, but more than in the LCT and LCT/2mono diets. MCT also significantly increased the contents of C16:0, C18:0, C18:1, and C20:4 in the lymphatic triglycerides compared with all other groups including LCT/MCT. The amount of linoleic acid (C18:2) in lymphatic triglycerides followed the relative amounts of this fatty acid in the diet, with the greatest in LCT followed by LCT/MCT and LCT/2mono and least in MCT. A so-called structured lipid composed of the medium-chain fatty acid dodecanoic acid on the 2 position and long-chain fatty acids on the 1 and 3 positions appeared to be endogenously synthesized in response to the LCT/2mono diet. The original differences in MCT and LCT content in the diets were preserved in the fatty acid composition in the intestinal free fatty acids and triglycerides during feeding. In addition, the duration of lipid administration can play a role in altering fatty acid composition in the intestine.

  8. Effects of Medium-Chain Triglycerides, Long-Chain Triglycerides, or 2-Monododecanoin on Fatty Acid Composition in the Portal Vein, Intestinal Lymph, and Systemic Circulation in Rats

    PubMed Central

    Nancy You, Yi-Qian; Ling, Pei-Ra; Qu, Jason Zhensheng; Bistrian, Bruce R.

    2011-01-01

    Background Fatty acid absorption patterns can have a major impact on the fatty acid composition in the portal, intestinal lymph, and systemic circulation. This study sought to determine the effects of long-chain triglycerides (LCT), medium-chain triglycerides (MCT), and 2-monododecanoin (2mono) on intestinal fatty acid composition during continuous feeding over a brief period. Methods The lipid sources were 100% LCT, 100% MCT, a 50:50 mixture of LCT and MCT (LCT/MCT), and a 50:50 mixture of LCT and 2mono (LCT/2mono). A total of 27 rats were randomly given 1 of the 4 diets at 200 kcal/kg/d, with 30% of total calories from lipids over 3 hours. Results MCT significantly increased each of the medium-chain fatty acids (C6:0, C8:0, and C10:0) as free fatty acids in the portal vein and about 10%/mol of C10:0 as triglycerides in the lymph compared with the other groups. There was significantly less C10:0 in lymphatic triglycerides with LCT/MCT than with MCT, but more than in the LCT and LCT/2mono diets. MCT also significantly increased the contents of C16:0, C18:0, C18:1, and C20:4 in the lymphatic triglycerides compared with all other groups including LCT/MCT. The amount of linoleic acid (C18:2) in lymphatic triglycerides followed the relative amounts of this fatty acid in the diet, with the greatest in LCT followed by LCT/MCT and LCT/2mono and least in MCT. A so-called structured lipid composed of the medium-chain fatty acid dodecanoic acid on the 2 position and long-chain fatty acids on the 1 and 3 positions appeared to be endogenously synthesized in response to the LCT/2mono diet. Conclusions The original differences in MCT and LCT content in the diets were preserved in the fatty acid composition in the intestinal free fatty acids and triglycerides during feeding. In addition, the duration of lipid administration can play a role in altering fatty acid composition in the intestine. PMID:18407910

  9. Long-chain omega-3 fatty acids in aneurysmal subarachnoid hemorrhage: A randomized pilot trial of pharmaconutrition.

    PubMed

    Saito, Geisi; Zapata, Rodrigo; Rivera, Rodrigo; Zambrano, Héctor; Rojas, David; Acevedo, Hernán; Ravera, Franco; Mosquera, John; Vásquez, Juan E; Mura, Jorge

    2017-01-01

    Functional recovery after aneurysmal subarachnoid hemorrhage (SAH) remains a significant problem. We tested a novel therapeutic approach with long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) to assess the safety and feasibility of an effectiveness trial. We conducted a multicentre, parallel, randomized, open-label pilot trial. Patients admitted within 72 hours after SAH with modified Fisher scale scores of 3 or 4 who were selected for scheduled aneurysm clipping were allocated to receive either n-3 PUFA treatment (parenteral perioperative: 5 days; oral: 8 weeks) plus usual care or usual care alone. Exploratory outcome measures included major postoperative intracranial bleeding complications (PIBCs), cerebral infarction caused by delayed cerebral ischemia, shunt-dependent hydrocephalus, and consent rate. The computed tomography evaluator was blinded to the group assignment. Forty-one patients were randomized, but one patient had to be excluded after allocation. Twenty patients remained for intention to treat analysis in each trial arm. No PIBs (95% confidence interval [CI]: 0.00 to 0.16) or other unexpected harm were observed in the intervention group (IG). No patient suspended the intervention due to side effects. There was a trend towards improvements in all benefit-related outcomes in the IG. The overall consent rate was 0.91 (95% CI: 0.78 to 0.96), and there was no consent withdrawal. Although the balance between the benefit and harm of the intervention appears highly favourable, further testing on SAH patients is required. We recommend proceeding with amendments in a dose-finding trial to determine the optimal duration of parenteral treatment.

  10. Continuous gradient temperature Raman spectroscopy of the long chain polyunsaturated fatty acids Docosapentaenoic (DPA, 22:5n-6) and Docosahexaenoic (DHA; 22:6n-3) from -100 to 20° C

    USDA-ARS?s Scientific Manuscript database

    The structural, cognitive and visual development of the human brain and retina strictly require long-chain polyunsaturated fatty acids (LC-PUFA). Excluding water, the mammalian brain is about 60% lipid. One of the great unanswered questions with respect to biological science in general is the absolu...

  11. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.

    PubMed

    Crown, Scott B; Marze, Nicholas; Antoniewicz, Maciek R

    2015-01-01

    The branched chain amino acids (BCAA) valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA) framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0) and odd chain length (C15:0 and C17:0) fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.

  12. Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants.

    PubMed

    Ruiz-López, Noemi; Sayanova, Olga; Napier, Johnathan A; Haslam, Richard P

    2012-04-01

    Omega-3 (ω-3) very long chain polyunsaturated fatty acids (VLC-PUFAs) such as eicosapentaenoic acid (EPA; 20:5 Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6 Δ4,7,10,13,16,19) have been shown to have significant roles in human health. Currently the primary dietary source of these fatty acids are marine fish; however, the increasing demand for fish and fish oil (in particular the expansion of the aquaculture industry) is placing enormous pressure on diminishing marine stocks. Such overfishing and concerns related to pollution in the marine environment have directed research towards the development of a viable alternative sustainable source of VLC-PUFAs. As a result, the last decade has seen many genes encoding the primary VLC-PUFA biosynthetic activities identified and characterized. This has allowed the reconstitution of the VLC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate ω-3 VLC-PUFAs at levels approaching those found in native marine organisms. Moreover, as a result of these engineering activities, knowledge of the fundamental processes surrounding acyl exchange and lipid remodelling has progressed. The application of new technologies, for example lipidomics and next-generation sequencing, is providing a better understanding of seed oil biosynthesis and opportunities for increasing the production of unusual fatty acids. Certainly, it is now possible to modify the composition of plant oils successfully, and, in this review, the most recent developments in this field and the challenges of producing VLC-PUFAs in the seed oil of higher plants will be described.

  13. Cancer Risk and Eicosanoid Production: Interaction between the Protective Effect of Long Chain Omega-3 Polyunsaturated Fatty Acid Intake and Genotype

    PubMed Central

    Lenihan-Geels, Georgia; Bishop, Karen S.; Ferguson, Lynnette R.

    2016-01-01

    Dietary inclusion of fish and fish supplements as a means to improve cancer prognosis and prevent tumour growth is largely controversial. Long chain omega-3 polyunsaturated fatty acids (LCn-3 PUFA), eicosapentaenoic acid and docosahexaenoic acid, may modulate the production of inflammatory eicosanoids, thereby influencing local inflammatory status, which is important in cancer development. Although in vitro studies have demonstrated inhibition of tumour cell growth and proliferation by LCn-3 PUFA, results from human studies have been mainly inconsistent. Genes involved in the desaturation of fatty acids, as well as the genes encoding enzymes responsible for eicosanoid production, are known to be implicated in tumour development. This review discusses the current evidence for an interaction between genetic polymorphisms and dietary LCn-3 PUFA in the risk for breast, prostate and colorectal cancers, in regards to inflammation and eicosanoid synthesis. PMID:26891335

  14. Long-chain polyunsaturated fatty acid biosynthesis in the euryhaline herbivorous teleost Scatophagus argus: Functional characterization, tissue expression and nutritional regulation of two fatty acyl elongases.

    PubMed

    Xie, Dizhi; Chen, Fang; Lin, Siyuan; You, Cuihong; Wang, Shuqi; Zhang, Qinghao; Monroig, Óscar; Tocher, Douglas R; Li, Yuanyou

    2016-08-01

    Both the spotted scat Scatophagus argus and rabbitfish Siganus canaliculatus belong to the few cultured herbivorous marine teleost, however, their fatty acyl desaturase (Fad) system involved in long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis is different. The S. argus has a △6 Fad, while the rabbitfish has △4 and △6/△5 Fads, which were the first report in vertebrate and marine teleost, respectively. In order to compare the characteristics of elongases of very long-chain fatty acids (Elovl) between them, two Elovl cDNAs were cloned from S. argus in the present study. One has 885bp of open read fragment (ORF) encoding a protein with 294 amino acid (aa) showing Elovl5 activity functionally characterized by heterologous expression in yeast, which was primarily active for the elongation of C18 and C20 PUFAs. The other has 915bp of ORF coding for a 305 aa protein showing Elovl4 activity, which was more efficient in the elongation of C20 and C22 PUFAs. Tissue distribution analyses by RT-PCR showed that elovl5 was highly expressed in the liver compared to other tissues determined, whereas elovl4 transcripts were only detected in the eye. The expression of elovl5 and elovl4 were significantly affected by dietary fatty acid composition, with highest expression of mRNA in the liver and eye of fish fed a diet with an 18:3n-3/18:2n-6 ratio of 1.7:1. These results indicated that the S. argus has a similar Elovl system in the LC-PUFA biosynthetic pathway to that of rabbitfish although their Fad system was different, suggesting that the diversification of fish LC-PUFA biosynthesis specificities is more associated with its Fad system. These new insights expand our knowledge and understanding of the molecular basis and regulation of LC-PUFA biosynthesis in fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Fads1 and 2 are promoted to meet instant need for long-chain polyunsaturated fatty acids in goose fatty liver.

    PubMed

    Osman, Rashid H; Liu, Long; Xia, Lili; Zhao, Xing; Wang, Qianqian; Sun, Xiaoxian; Zhang, Yihui; Yang, Biao; Zheng, Yun; Gong, Daoqing; Geng, Tuoyu

    2016-07-01

    Global prevalence of non-alcoholic fatty liver disease (NAFLD) constitutes a threat to human health. Goose is a unique model of NAFLD for discovering therapeutic targets as its liver can develop severe steatosis without overt injury. Fatty acid desaturase (Fads) is a potential therapeutic target as Fads expression and mutations are associated with liver fat. Here, we hypothesized that Fads was promoted to provide a protection for goose fatty liver. To test this, goose Fads1 and Fads2 were sequenced. Fads1/2/6 expression was determined in goose liver and primary hepatocytes by quantitative PCR. Liver fatty acid composition was also analyzed by gas chromatography. Data indicated that hepatic Fads1/2/6 expression was gradually increased with the time of overfeeding. In contrast, trans-C18:1n9 fatty acid (Fads inhibitor) was reduced. However, enhanced Fads capacity for long-chain polyunsaturated fatty acid (LC-PUFA) synthesis was not sufficient to compensate for the depleted LC-PUFAs in goose fatty liver. Moreover, cell studies showed that Fads1/2/6 expression was regulated by fatty liver-associated factors. Together, these findings suggest Fads1/2 as protective components are promoted to meet instant need for LC-PUFAs in goose fatty liver, and we propose this is required for severe hepatic steatosis without liver injury.

  16. Long-Term Supplementation with Chromium Malate Improves Short Chain Fatty Acid Content in Sprague-Dawley Rats.

    PubMed

    Wu, Huiyu; Feng, Weiwei; Mao, Guanghua; Zhao, Ting; Wu, Xiangyang; Wang, Songmei; Zou, Yanmin; Yang, Liuqing; Wang, Liang

    2016-11-01

    Our previous study showed that chromium malate improved the composition of intestinal flora, glycometabolism, glycometabolism-related enzymes, and lipid metabolism in type 2 diabetes mellitus (T2DM) rats. The present study was designed to evaluate the effect of chromium malate with long-term supplementation on short chain fatty acid (SCFA) content in Sprague-Dawley rats. The samples were analyzed by gas chromatography with high linearity (R 2  ≥ 0.9995), low quantification limit (0.011-0.070 mM), and satisfactory recoveries. The method was simple and environmentally friendly. The acetic content in cecum of 3-month control group was significantly higher than that of 1-year control group. When compared with 1-year control group, chromium malate (at a dose of 20.0 μg Cr/kg bw) could significantly increase acetic, propionic, i-butyric butyric, butyric, i-valeric, valeric, and n-caproic levels. The acetic, propionic, i-butyric, valeric, and n-caproic contents of 1-year chromium malate group (at a dose of 20.0 μg Cr/kg bw) had a significant improvement when compared with 1-year chromium picolinate group. Acetic, propionic, and butyric contained approximately 91.65 % of the total SCFAs in 1-year group. The results indicated that the improvement of chromium malate on short chain fatty acid content change was better than that of chromium picolinate.

  17. N-3 fatty acids reduced trans fatty acids retention and increased docosahexaenoic acid levels in the brain.

    PubMed

    Lavandera, Jimena Verónica; Saín, Juliana; Fariña, Ana Clara; Bernal, Claudio Adrián; González, Marcela Aída

    2017-09-01

    The levels of docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) are critical for the normal structure and function of the brain. Trans fatty acids (TFA) and the source of the dietary fatty acids (FA) interfere with long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis. The aim of this study was to investigate the effect of TFA supplementation in diets containing different proportions of n-9, n-6, and n-3 FA on the brain FA profile, including the retention of TFA, LC-PUFA levels, and n-6/n-3 PUFA ratios. These parameters were also investigated in the liver, considering that LC-PUFA are mainly bioconverted from their dietary precursors in this tissue and transported by serum to the brain. Also, stearoyl-CoA desaturase-1 (SCD1) and sterol regulatory element-binding protein-1c (SREBP-1c) gene expressions were evaluated. Male CF1 mice were fed (16 weeks) diets containing different oils (olive, corn, and rapeseed) with distinct proportions of n-9, n-6, and n-3 FA (55.2/17.2/0.7, 32.0/51.3/0.9, and 61.1/18.4/8.6), respectively, substituted or not with 0.75% of TFA. FA composition of the brain, liver, and serum was assessed by gas chromatography. TFA were incorporated into, and therefore retained in the brain, liver, and serum. However, the magnitude of retention was dependent on the tissue and type of isomer. In the brain, total TFA retention was lower than 1% in all diets. Dietary n-3 PUFA decreased TFA retention and increased DHA accretion in the brain. The results underscore the importance of the type of dietary FA on the retention of TFA in the brain and also on the changes of the FA profile.

  18. Omega-3 Long-Chain Fatty Acids in the Heart, Kidney, Liver and Plasma Metabolite Profiles of Australian Prime Lambs Supplemented with Pelleted Canola and Flaxseed Oils.

    PubMed

    Nguyen, Don V; Le, Van H; Nguyen, Quang V; Malau-Aduli, Bunmi S; Nichols, Peter D; Malau-Aduli, Aduli E O

    2017-08-17

    The objective of the study was to ascertain whether human health beneficial omega-3 long-chain (≥C 20 ) polyunsaturated fatty acid ( n -3 LC-PUFA) content in heart, kidney and liver can be enhanced by supplementing prime lambs with graded levels of canola and flaxseed oil. Health status of the lambs, as a consequence of the supplementation, was also investigated by examining their plasma metabolites. Sixty purebred and first-cross lambs were allocated to one of five treatments of lucerne hay basal diet supplemented with isocaloric and isonitrogenous wheat-based pellets without oil inclusion (Control) or graded levels of canola oil at 2.5% (2.5C), 5% (5C), flaxseed oil at 2.5% (2.5F) and 5% (5F) in a completely randomised design. Pre-slaughter blood, post-slaughter kidney, liver and heart samples were analysed for plasma metabolite and fatty acid profiles. Summations of docosapentaenoic acid and docosahexaenoic acid, and total n -3 LC-PUFA were enhanced in the liver and kidney of 5F supplemented lambs with a marked decrease in n -6/ n -3 ratio and significant breed differences detected. There were generally no deleterious impacts on animal health status. A combination of 5% oil supplementation and lamb genetics is an effective and strategic management tool for enhancing n -3 LC-PUFA contents of heart, kidney and liver without compromising lamb health.

  19. Omega–3 Long-Chain Fatty Acids in the Heart, Kidney, Liver and Plasma Metabolite Profiles of Australian Prime Lambs Supplemented with Pelleted Canola and Flaxseed Oils

    PubMed Central

    Nguyen, Don V.; Le, Van H.; Nguyen, Quang V.; Malau-Aduli, Bunmi S.; Nichols, Peter D.

    2017-01-01

    The objective of the study was to ascertain whether human health beneficial omega–3 long-chain (≥C20) polyunsaturated fatty acid (n-3 LC-PUFA) content in heart, kidney and liver can be enhanced by supplementing prime lambs with graded levels of canola and flaxseed oil. Health status of the lambs, as a consequence of the supplementation, was also investigated by examining their plasma metabolites. Sixty purebred and first-cross lambs were allocated to one of five treatments of lucerne hay basal diet supplemented with isocaloric and isonitrogenous wheat-based pellets without oil inclusion (Control) or graded levels of canola oil at 2.5% (2.5C), 5% (5C), flaxseed oil at 2.5% (2.5F) and 5% (5F) in a completely randomised design. Pre-slaughter blood, post-slaughter kidney, liver and heart samples were analysed for plasma metabolite and fatty acid profiles. Summations of docosapentaenoic acid and docosahexaenoic acid, and total n-3 LC-PUFA were enhanced in the liver and kidney of 5F supplemented lambs with a marked decrease in n-6/n-3 ratio and significant breed differences detected. There were generally no deleterious impacts on animal health status. A combination of 5% oil supplementation and lamb genetics is an effective and strategic management tool for enhancing n-3 LC-PUFA contents of heart, kidney and liver without compromising lamb health. PMID:28817082

  20. Effects of dietary n-3 fatty acids on the phospholipid molecular species of monkey brain.

    PubMed

    Lin, D S; Connor, W E; Anderson, G J; Neuringer, M

    1990-10-01

    We examined the changes in the molecular species of brain ethanolamine glycerophospholipids of monkeys fed diets containing widely ranging amounts of n-3 fatty acids. Two groups of rhesus monkeys were fed pre- and postnatally either a control diet (soy oil; containing 8% of fatty acids as 18:3n-3) or a deficient diet (safflower oil; containing less than 0.3% 18:3n-3). The brains of these animals were analyzed at 22 months of age. A third group of monkeys was fed the safflower oil diet to 22 months of age and then switched to a fish oil diet (28% long-chain n-3 fatty acids) for 1-2 years before autopsy. The molecular species of the diacyl, alkylacyl, and alkenylacyl ethanolamine glycerophospholipids from frontal cortex were separated by HPLC. A total of 24 molecular species were identified. Fatty acids in the sn-2 position differed markedly among the diet groups, but the sn-1 position always contained only 16:0, 18:0, or 18:1. In the diacyl subclass of the control brain, the n-3 molecular species represented 41% of total and the n-6 species 45%, whereas in the deficient brain the n-3 molecular species decreased to 9% and n-6 molecular species increased to 77%. The fatty acid 22:5n-6 did not replace 22:6n-3 in a symmetrical fashion in the molecular species of the deficient brain. In the brains of the fish oil-fed monkeys, the n-3 molecular species amounted to 61% and n-6 molecular species were reduced to 25%. The species 18:1-22:6, 16:0-22:6, and 18:0-22:6 generally changed proportionally in response to diet.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Lipolysis of natural long chain and synthetic medium chain galactolipids by pancreatic lipase-related protein 2.

    PubMed

    Amara, Sawsan; Barouh, Nathalie; Lecomte, Jérôme; Lafont, Dominique; Robert, Sylvie; Villeneuve, Pierre; De Caro, Alain; Carrière, Frédéric

    2010-04-01

    Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the most abundant lipids in nature, mainly as important components of plant leaves and chloroplast membranes. Pancreatic lipase-related protein 2 (PLRP2) was previously found to express galactolipase activity, and it is assumed to be the main enzyme involved in the digestion of these common vegetable lipids in the gastrointestinal tract. Most of the previous in vitro studies were however performed with medium chain synthetic galactolipids as substrates. It was shown here that recombinant guinea pig (Cavia porcellus) as well as human PLRP2 hydrolyzed at high rates natural DGDG and MGDG extracted from spinach leaves. Their specific activities were estimated by combining the pH-stat technique, thin layer chromatography coupled to scanning densitometry and gas chromatography. The optimum assay conditions for hydrolysis of these natural long chain galactolipids were investigated and the optimum bile salt to substrate ratio was found to be different from that established with synthetic medium chains MGDG and DGDG. Nevertheless the length of acyl chains and the nature of the galactosyl polar head of the galactolipid did not have major effects on the specific activities of PLRP2, which were found to be very high on both medium chain [1786+/-100 to 5420+/-85U/mg] and long chain [1756+/-208 to 4167+/-167U/mg] galactolipids. Fatty acid composition analysis of natural MGDG, DGDG and their lipolysis products revealed that PLRP2 only hydrolyzed one ester bond at the sn-1 position of galactolipids. PLRP2 might be used to produce lipid and free fatty acid fractions enriched in either 16:3 n-3 or 18:3 n-3 fatty acids, both found at high levels in galactolipids. 2010 Elsevier B.V. All rights reserved.

  2. Relationship between Long Chain n-3 Polyunsaturated Fatty Acids and Autism Spectrum Disorder: Systematic Review and Meta-Analysis of Case-Control and Randomised Controlled Trials

    PubMed Central

    Mazahery, Hajar; Stonehouse, Welma; Delshad, Maryam; Kruger, Marlena C.; Conlon, Cathryn A.; Beck, Kathryn L.; von Hurst, Pamela R.

    2017-01-01

    Omega-3 long chain polyunsaturated fatty acid supplementation (n-3 LCPUFA) for treatment of Autism Spectrum Disorder (ASD) is popular. The results of previous systematic reviews and meta-analyses of n-3 LCPUFA supplementation on ASD outcomes were inconclusive. Two meta-analyses were conducted; meta-analysis 1 compared blood levels of LCPUFA and their ratios arachidonic acid (ARA) to docosahexaenoic acid (DHA), ARA to eicosapentaenoic acid (EPA), or total n-6 to total n-3 LCPUFA in ASD to those of typically developing individuals (with no neurodevelopmental disorders), and meta-analysis 2 compared the effects of n-3 LCPUFA supplementation to placebo on symptoms of ASD. Case-control studies and randomised controlled trials (RCTs) were identified searching electronic databases up to May, 2016. Mean differences were pooled and analysed using inverse variance models. Heterogeneity was assessed using I2 statistic. Fifteen case-control studies (n = 1193) were reviewed. Compared with typically developed, ASD populations had lower DHA (−2.14 [95% CI −3.22 to −1.07]; p < 0.0001; I2 = 97%), EPA (−0.72 [95% CI −1.25 to −0.18]; p = 0.008; I2 = 88%), and ARA (−0.83 [95% CI, −1.48 to −0.17]; p = 0.01; I2 = 96%) and higher total n-6 LCPUFA to n-3 LCPUFA ratio (0.42 [95% CI 0.06 to 0.78]; p = 0.02; I2 = 74%). Four RCTs were included in meta-analysis 2 (n = 107). Compared with placebo, n-3 LCPUFA improved social interaction (−1.96 [95% CI −3.5 to −0.34]; p = 0.02; I2 = 0) and repetitive and restricted interests and behaviours (−1.08 [95% CI −2.17 to −0.01]; p = 0.05; I2 = 0). Populations with ASD have lower n-3 LCPUFA status and n-3 LCPUFA supplementation can potentially improve some ASD symptoms. Further research with large sample size and adequate study duration is warranted to confirm the efficacy of n-3 LCPUFA. PMID:28218722

  3. Esterification of fatty acids using nylon-immobilized lipase in n-hexane: kinetic parameters and chain-length effects.

    PubMed

    Zaidi, A; Gainer, J L; Carta, G; Mrani, A; Kadiri, T; Belarbi, Y; Mir, A

    2002-02-28

    The esterification of long-chain fatty acids in n-hexane catalyzed by nylon-immobilized lipase from Candida rugosa has been investigated. Butyl oleate (22 carbon atoms), oleyl butyrate (22 carbon atoms) and oleyl oleate (36 carbon atoms) were produced at maximum reaction rates of approximately equal to 60 mmol h(-1) g(-1) immobilized enzyme when the substrates were present in equimolar proportions at an initial concentration of 0.6 mol l(-1). The observed kinetic behavior of all the esterification reactions is found to follow a ping-pong bi-bi mechanism with competitive inhibition by both substrates. The effect of the chain-length of the fatty acids and the alcohols could be correlated to some mechanistic models, in accordance with the calculated kinetic parameters.

  4. Effects of Long-Chain and Medium-Chain Fatty Acids on Apoptosis and Oxidative Stress in Human Liver Cells with Steatosis.

    PubMed

    Wang, Baogui; Li, Lumin; Fu, Jing; Yu, Ping; Gong, Deming; Zeng, Cheng; Zeng, Zheling

    2016-03-01

    Nonalcoholic fatty liver disease (NAFLD) is closely associated with obesity-related metabolic complications, which caused by excess energy intake and physical inactivity apart from genetic defects. The mechanisms that promote disease progression from NAFLD to further liver injury are still unclear. We hypothesize that the progression involved "2nd hit" is strongly influenced by the type of fatty acids in diets. Flow cytometric analysis showed that medium-chain fatty acid (MCFA) markedly decreased the percentage of late apoptotic and necrotic cells compared with long-chain fatty acid (LCFA), and MCFA inhibited the activities of caspase-3 and -9 in human liver cells with steatosis. Western blot analysis found that the levels of inflammatory markers (interleukin [IL]-6, IL-1-β, and tumor necrosis factor-α) were substantially reduced by MCFA compared with LCFA. Proteomic analysis further showed that LCFA inhibited the expression of antioxidant enzymes, and increased the expression of proteins associated with oxidative stress. It was found that LCFA (palmitate), not MCFA induced apoptosis, oxidative stress and chronic inflammatory responses in the hepatic cells with steatosis. In conclusion, reasonable selection of dietary fats has potential to translate therapeutically by ameliorating disease progression in patients with NAFLD. © 2016 Institute of Food Technologists®

  5. Maternal prenatal and/or postnatal n-3 long chain polyunsaturated fatty acids (LCPUFA) supplementation for preventing allergies in early childhood.

    PubMed

    Gunaratne, Anoja W; Makrides, Maria; Collins, Carmel T

    2015-07-22

    Allergies have become more prevalent globally over the last 20 years. Dietary consumption of n-3 (or omega 3) long chain polyunsaturated fatty acids (LCPUFA) has declined over the same period of time. This, together with the known role of n-3 LCPUFA in inhibiting inflammation, has resulted in speculation that n-3 LCPUFA may prevent allergy development. Dietary n-3 fatty acids supplements may change the developing immune system of the newborn before allergic responses are established, particularly for those with a genetic predisposition to the production of the immunoglobulin E (IgE) antibody. Individuals with IgE-mediated allergies have both the signs and symptoms of the allergic disease and a positive skin prick test (SPT) to the allergen. To assess the effect of n-3 LCPUFA supplementation in pregnant and/or breastfeeding women on allergy outcomes (food allergy, atopic dermatitis (eczema), allergic rhinitis (hay fever) and asthma/wheeze) in their children. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (6 August 2014), PubMed (1966 to 01 August 2014), CINAHL via EBSCOhost (1984 to 01 August 2014), Scopus (1995 to 01 August 2014), Web of Knowledge (1864 to 01 August 2014) and ClinicalTrials.gov (01 August 2014) and reference lists of retrieved studies. We included randomised controlled trials (RCTs) evaluating the effect of n-3 LCPUFA supplementation of pregnant and/or lactating women (compared with placebo or no treatment) on allergy outcomes of the infants or children. Trials using a cross-over design and trials examining biochemical outcomes only were not eligible for inclusion. Two review authors independently assessed eligibility and trial quality and performed data extraction. Where the review authors were also investigators on trials selected, an independent reviewer assessed trial quality and performed data extraction. Eight trials involving 3366 women and their 3175 children were included in the review. In these trials, women

  6. A New Pain Regulatory System via the Brain Long Chain Fatty Acid Receptor GPR40/FFA1 Signal.

    PubMed

    Nakamoto, Kazuo

    2017-01-01

    An increasingly large number of pharmacological and physiological works on fatty acids have shown that the functional properties of fatty acids are regulated by the amount of individual fatty acid intake and the distribution of fatty acids among organs. Recently, it has been determined that G-protein-coupled receptor 40/free fatty acid receptor 1 (GPR40/FFA1) is activated by long-chain fatty acids, such as docosahexaenoic acid (DHA). GPR40/FFA1 is mainly expressed in the β cell of the pancreas, spinal cord and brain. It is reported that this receptor has a functional role in controlling blood glucose levels via the modulation of insulin secretion. However, its physiological function in the brain remains unknown. Our previous studies have shown that GPR40/FFA1 is expressed in pro-opiomelanocortin (POMC)-positive neurons of the arcuate nucleus, serotonergic neurons in the nucleus raphe magnus, and in noradrenergic neurons in the locus coeruleus. Furthermore, the intracerebroventricular injection of DHA or GW9508, which is a selective GPR40/FFA1 agonist, attenuates formalin-induced inflammatory pain behavior through increasing β-endorphin release in the hypothalamus. It also suppresses complete Freund's adjuvant-induced mechanical allodynia and thermal hyperalgesia. Our findings suggest that brain free long-chain fatty acids-GPR40/FFA1 signaling might have an important role in the modulation of endogenous pain control systems. In this review, I discuss the current status and our recent study regarding a new pain regulatory system via the brain long chain fatty acid receptor GPR40/FFA1 signal.

  7. ω-3 Long Chain Polyunsaturated Fatty Acids as Sensitizing Agents and Multidrug Resistance Revertants in Cancer Therapy

    PubMed Central

    Corsetto, Paola Antonia; Kopecka, Joanna; Riganti, Chiara

    2017-01-01

    Chemotherapy efficacy is strictly limited by the resistance of cancer cells. The ω-3 long chain polyunsaturated fatty acids (ω-3 LCPUFAs) are considered chemosensitizing agents and revertants of multidrug resistance by pleiotropic, but not still well elucidated, mechanisms. Nowadays, it is accepted that alteration in gene expression, modulation of cellular proliferation and differentiation, induction of apoptosis, generation of reactive oxygen species, and lipid peroxidation are involved in ω-3 LCPUFA chemosensitizing effects. A crucial mechanism in the control of cell drug uptake and efflux is related to ω-3 LCPUFA influence on membrane lipid composition. The incorporation of docosahexaenoic acid in the lipid rafts produces significant changes in their physical-chemical properties affecting content and functions of transmembrane proteins, such as growth factors, receptors and ATP-binding cassette transporters. Of note, ω-3 LCPUFAs often alter the lipid compositions more in chemoresistant cells than in chemosensitive cells, suggesting a potential adjuvant role in the treatment of drug resistant cancers. PMID:29261109

  8. N-terminal acylation of somatostatin analog with long chain fatty acids enhances its stability and anti-proliferative activity in human breast adenocarcinoma cells.

    PubMed

    Dasgupta, Piyali; Singh, Anu; Mukherjee, Rama

    2002-01-01

    The anti-proliferative activity of the somatostatin analog RC-160 is limited by its short serum half life. To circumvent this limitation, fatty acids of chain lengths ranging from 4 to 18 were individually conjugated to the N-terminal residue of RC-160. The lipophilized derivatives of RC-160 were synthesized, purified and characterized. The anti-proliferative activity of lipophilized-RC-160 on the human breast carcinoma cell line MCF-7, was evaluated in vitro. The long chain lipopeptides like pamitoyl-RC-160 exhibited significantly higher anti-proliferative activity on MCF-7 cells (p<0.001), relative to RC-160. The affinity of RC-160 towards somatostatin receptors remained unaltered by pamitoylation. However, the observed increase in bioactivity was manifested within an optimum range of chain length of the lipoppetide. Increasing the peptide hydrophobicity beyond this range reduced the bioactivity of lipophilized-RC-160. Accordingly, stearoyl-RC-160, manifested lower anti-neoplastic activity and receptor affinity relative to pamitoyl-RC-160 and RC-160 itself. The signaling pathways underlying the antineoplastic activity of these lipopeptides were found to be similar to RC-160. Pamitoyl-RC-160 displayed enhanced inhibition of protein tyrosine kinase activity and intracellular cAMP levels in MCF-7 cells, relative to butanoyl-RC-160 or RC-160 itself. Pamitoyl-RC-160 also displayed greater resistance towards trypsin and serum degradation than RC-160. Lipophilization of RC-160 with long chain fatty acids like pamitic acid improves its stability and anti-proliferative activity, thereby improving the scope of enhancing its therapeutic index. However, the optimization of peptide hydrophobicity seems to be a crucial factor governing the efficacy of bioactive lipopeptides.

  9. Effect of n-3 long chain polyunsaturated fatty acid supplementation in pregnancy on infants’ allergies in first year of life: randomised controlled trial

    PubMed Central

    Palmer, D J; Sullivan, T; Gold, M S; Prescott, S L; Heddle, R; Gibson, R A

    2012-01-01

    Objective To determine whether dietary n-3 long chain polyunsaturated fatty acid (LCPUFA) supplementation of pregnant women with a fetus at high risk of allergic disease reduces immunoglobulin E associated eczema or food allergy at 1 year of age. Design Follow-up of infants at high hereditary risk of allergic disease in the Docosahexaenoic Acid to Optimise Mother Infant Outcome (DOMInO) randomised controlled trial. Setting Adelaide, South Australia. Participants 706 infants at high hereditary risk of developing allergic disease whose mothers were participating in the DOMInO trial. Interventions The intervention group (n=368) was randomly allocated to receive fish oil capsules (providing 900 mg of n-3 LCPUFA daily) from 21 weeks’ gestation until birth; the control group (n=338) received matched vegetable oil capsules without n-3 LCPUFA. Main outcome measure Immunoglobulin E associated allergic disease (eczema or food allergy with sensitisation) at 1 year of age. Results No differences were seen in the overall percentage of infants with immunoglobulin E associated allergic disease between the n-3 LCPUFA and control groups (32/368 (9%) v 43/338 (13%); unadjusted relative risk 0.68, 95% confidence interval 0.43 to 1.05, P=0.08; adjusted relative risk 0.70, 0.45 to 1.09, P=0.12), although the percentage of infants diagnosed as having atopic eczema (that is, eczema with associated sensitisation) was lower in the n-3 LCPUFA group (26/368 (7%) v 39/338 (12%); unadjusted relative risk 0.61, 0.38 to 0.98, P=0.04; adjusted relative risk 0.64, 0.40 to 1.02, P=0.06). Fewer infants were sensitised to egg in the n-3 LCPUFA group (34/368 (9%) v 52/338 (15%); unadjusted relative risk 0.61, 0.40 to 0.91, P=0.02; adjusted relative risk 0.62, 0.41 to 0.93, P=0.02), but no difference between groups in immunoglobulin E associated food allergy was seen. Conclusion n-3 LCPUFA supplementation in pregnancy did not reduce the overall incidence of immunoglobulin E associated allergies in

  10. Dietary α-Linolenic Acid, Marine ω-3 Fatty Acids, and Mortality in a Population With High Fish Consumption: Findings From the PREvención con DIeta MEDiterránea (PREDIMED) Study.

    PubMed

    Sala-Vila, Aleix; Guasch-Ferré, Marta; Hu, Frank B; Sánchez-Tainta, Ana; Bulló, Mònica; Serra-Mir, Mercè; López-Sabater, Carmen; Sorlí, Jose V; Arós, Fernando; Fiol, Miquel; Muñoz, Miguel A; Serra-Majem, Luis; Martínez, J Alfredo; Corella, Dolores; Fitó, Montserrat; Salas-Salvadó, Jordi; Martínez-González, Miguel A; Estruch, Ramón; Ros, Emilio; B

    2016-01-26

    Epidemiological evidence suggests a cardioprotective role of α-linolenic acid (ALA), a plant-derived ω-3 fatty acid. It is unclear whether ALA is beneficial in a background of high marine ω-3 fatty acids (long-chain n-3 polyunsaturated fatty acids) intake. In persons at high cardiovascular risk from Spain, a country in which fish consumption is customarily high, we investigated whether meeting the International Society for the Study of Fatty Acids and Lipids recommendation for dietary ALA (0.7% of total energy) at baseline was related to all-cause and cardiovascular disease mortality. We also examined the effect of meeting the society's recommendation for long-chain n-3 polyunsaturated fatty acids (≥500 mg/day). We longitudinally evaluated 7202 participants in the PREvención con DIeta MEDiterránea (PREDIMED) trial. Multivariable-adjusted Cox regression models were fitted to estimate hazard ratios. ALA intake correlated to walnut consumption (r=0.94). During a 5.9-y follow-up, 431 deaths occurred (104 cardiovascular disease, 55 coronary heart disease, 32 sudden cardiac death, 25 stroke). The hazard ratios for meeting ALA recommendation (n=1615, 22.4%) were 0.72 (95% CI 0.56-0.92) for all-cause mortality and 0.95 (95% CI 0.58-1.57) for fatal cardiovascular disease. The hazard ratios for meeting the recommendation for long-chain n-3 polyunsaturated fatty acids (n=5452, 75.7%) were 0.84 (95% CI 0.67-1.05) for all-cause mortality, 0.61 (95% CI 0.39-0.96) for fatal cardiovascular disease, 0.54 (95% CI 0.29-0.99) for fatal coronary heart disease, and 0.49 (95% CI 0.22-1.01) for sudden cardiac death. The highest reduction in all-cause mortality occurred in participants meeting both recommendations (hazard ratio 0.63 [95% CI 0.45-0.87]). In participants without prior cardiovascular disease and high fish consumption, dietary ALA, supplied mainly by walnuts and olive oil, relates inversely to all-cause mortality, whereas protection from cardiac mortality is limited to

  11. Continuous gradient temperature Raman spectroscopy of the long chain polyunsaturated fatty acids docosapentaenoic (DPA, 22:5n-6) and docosahexaenoic (DHA; 22:6n-3) from -100 to 20° C

    NASA Astrophysics Data System (ADS)

    Broadhurst, C. Leigh; Schmidt, Walter F.; Kim, Moon S.; Nguyen, Julie K.; Qin, Jianwei; Chao, Kuanglin; Bauchan, Gary L.; Shelton, Daniel R.

    2016-05-01

    The structural, cognitive and visual development of the human brain and retina strictly require long-chain polyunsaturated fatty acids (LC-PUFA). Excluding water, the mammalian brain is about 60% lipid. One of the great unanswered questions with respect to biological science in general is the absolute necessity of the LC-PUFA docosahexaenoic acid (DHA; 22:6n-3) in these fast signal processing tissues. A lipid of the same chain length with just one less diene group, docosapentaenoic acid (DPA; 22:5n-6) is fairly abundant in terrestrial food chains yet cannot substitute for DHA. Gradient Temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS to DPA, and DHA from -100 to 20°C. 20 Mb three-dimensional data arrays with 1°C increments and first/second derivatives allows complete assignment of solid, liquid and transition state vibrational modes, including low intensity/frequency vibrations that cannot be readily analyzed with conventional Raman. DPA and DHA show significant spectral changes with premelting (-33 and -60°C, respectively) and melting (-27 and -44°C, respectively). The CH2-(HC=CH)-CH2 moieties are not identical in the second half of the DHA and DPA structures. The DHA molecule contains major CH2 twisting (1265 cm-1) with no noticeable CH2 bending, consistent with a flat helical structure with small pitch. Further modeling of neuronal membrane phospholipids must take into account this structure for DHA, which would be configured parallel to the hydrophilic head group line.

  12. Supplementing long-chain n-3 polyunsaturated fatty acids in canned wild Pacific pink salmon with Alaska salmon oil

    PubMed Central

    Lapis, Trina J; Oliveira, Alexandra C M; Crapo, Charles A; Himelbloom, Brian; Bechtel, Peter J; Long, Kristy A

    2013-01-01

    Establishing n-3 polyunsaturated fatty acid contents in canned wild Alaska pink salmon products is challenging due to ample natural variation found in lipid content of pink salmon muscle. This study investigated the effect of adding salmon oil (SO) to canned pink salmon produced from fish exhibiting two opposite degrees of skin watermarking, bright (B) and dark (D). Specific goals of the study were to evaluate the benefits of adding SO to canned pink salmon with regard to nutritional value of the product, sensory characteristics, and the oxidative and hydrolytic stability of the lipids over thermal processing. Six groups of canned pink salmon were produced with variable levels of SO, either using bright (with 0, 1, or 2% SO) or dark (with 0, 2, or 4% SO) pink salmon. Compositional analysis revealed highest (P < 0.05) lipid content in sample B2 (8.7%) and lowest (P < 0.05) lipid content in sample D0 (3.5%). Lipid content of samples B0, B1, D2, and D4 was not significantly different (P > 0.05) ranging from 5.7% to 6.8%. Consequently, addition of SO to canned pink salmon allowed for consistent lipid content between bright and dark fish. Addition of 1% or 2% SO to canned bright pink salmon was not detrimental to the sensory properties of the product. It is recommended that canned bright pink salmon be supplemented with at least 1% SO, while supplementation with 2% SO would guarantee a minimum quantity of 1.9 g of n-3 fatty acids per 100 g of product. Addition of 4% SO to canned dark pink salmon was detrimental to product texture and taste, while supplementation with 2% SO did not negatively affect sensorial properties of the product. Accordingly, canned dark pink salmon should be supplemented with 2% SO so that a minimum n-3 fatty acids content of 1.5 g per 100 g of product. PMID:24804010

  13. The Role of n-3 Polyunsaturated Fatty Acids in the Prevention and Treatment of Breast Cancer

    PubMed Central

    Liu, Jiajie; Ma, David W. L.

    2014-01-01

    Breast cancer (BC) is the most common cancer among women worldwide. Dietary fatty acids, especially n-3 polyunsaturated fatty acids (PUFA), are believed to play a role in reducing BC risk. Evidence has shown that fish consumption or intake of long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial for inhibiting mammary carcinogenesis. The evidence regarding α-linolenic acid (ALA), however, remains equivocal. It is essential to clarify the relation between ALA and cancer since ALA is the principal source of n-3 PUFA in the Western diet and the conversion of ALA to EPA and DHA is not efficient in humans. In addition, the specific anticancer roles of individual n-3 PUFA, alone, have not yet been identified. Therefore, the present review evaluates ALA, EPA and DHA consumed individually as well as in n-3 PUFA mixtures. Also, their role in the prevention of BC and potential anticancer mechanisms of action are examined. Overall, this review suggests that each n-3 PUFA has promising anticancer effects and warrants further research. PMID:25412153

  14. Theoretical dietary modelling of Australian seafood species to meet long-chain omega 3 fatty acid dietary recommendations

    PubMed Central

    Grieger, Jessica A.; McLeod, Catherine; Chan, Lily; Miller, Michelle D.

    2013-01-01

    Background Several agencies recommend seafood to be consumed 2–3 times per week. In Australia, there is a lack of nutrient composition data for seafood species and it is not known whether including different seafood species in a diet would provide sufficient long-chain omega 3 fatty acids (LC n–3 PUFA) to meet various national recommendations. Objective To utilise recent nutrient composition data for major Australian seafood groups (n=24) with the addition of two tuna options (total n=26) to: (1) determine whether including these species into a diet based on the Australian Guide to Healthy Eating (AGHE) will achieve LC n–3 PUFA recommendations [Adequate Intake (AI: 160 mg/d men, 90 mg/d women)], Suggested Dietary Target (SDT), 500 mg/d Heart Foundation (HF) recommendation and (2) determine the weekly number of servings of seafood to meet recommendations using either lower fat (n=23, <10% total fat) or higher fat (n=3, ≥10% total fat) seafood. Design Two simulation models incorporated all 26 species of seafood or only lower fat seafood into a diet based on the AGHE. Two further models identified the number of servings of lower or higher fat seafood required to meet recommendations. Results Including 2 and 3 servings/week of any seafood would enable 89% of women and 66% of men to meet the AI. Including only lower fat seafood would enable 83% of women and 47% of men to meet the AI. Half a serving/week of higher fat seafood would enable 100% of men and women to meet the AI. Conclusions Including the recommended 2–3 servings of seafood/week requires at least some higher fat seafood to be consumed in order for most men and women to meet the AI. Further messages and nutrition resources are needed which provide options on how to increase intake of LC n–3 PUFA, specifically through consumption of the higher fat seafood. PMID:24179469

  15. The antidepressant role of dietary long-chain polyunsaturated n-3 fatty acids in two phases in the developing brain.

    PubMed

    Ferraz, Anete Curte; Kiss, Agata; Araújo, Renata Lins Fuentes; Salles, Hélidy Maria Rossi; Naliwaiko, Katya; Pamplona, Juliana; Matheussi, Francesca

    2008-03-01

    In this work we investigated the effect from fish oil (FO) supplementation, rich in n-3 fatty acids, on an antidepressant effect on adult rats in Phase A (supplementation during pregnancy and lactation) and phase B (supplementation during post-weaning until adulthood). During Phase A, female rats, used as matrix to obtain male rats, were divided in three groups: FO (daily supplemented), CF (coconut fat daily supplemented) and control (not supplemented). Our results showed that adult rats whose mothers were supplemented with FO during Phase A and rats supplemented during phase B demonstrated a significantly decreased immobility time when compared to control and CF groups. There was no difference in neither motor activity nor anxiety behavior in the three groups excluding false positive results. Our results suggest that n-3 fatty acids supplementation during Phases A and B had a beneficial effect on preventing the development of depression-like behavior in adult rats.

  16. Prevention of alcoholic fatty liver and mitochondrial dysfunction in the rat by long-chain polyunsaturated fatty acids

    PubMed Central

    Song, Byoung-Joon; Moon, Kwan-Hoon; Olsson, Nils U.; Salem, Norman

    2008-01-01

    Background/Aims We reported that reduced dietary intake of polyunsaturated fatty acids (PUFA) such as arachidonic (AA,20:4n6, omega-6) and docosahexaenoic (DHA,22:6n3, omega-3) acids led to alcohol-induced fatty liver and fibrosis. This study was aimed at studying the mechanisms by which a DHA/AA-supplemented diet prevents alcohol-induced fatty liver. Methods Male Long-Evans rats were fed an ethanol or control liquid-diet with or without DHA/AA for 9 weeks. Plasma transaminase levels, liver histology, oxidative/nitrosative stress markers, and activities of oxidatively-modified mitochondrial proteins were evaluated. Results Chronic alcohol administration increased the degree of fatty liver but fatty liver decreased significantly in rats fed the alcohol-DHA/AA-supplemented diet. Alcohol exposure increased oxidative/nitrosative stress with elevated levels of ethanol-inducible CYP2E1, nitric oxide synthase, nitrite and mitochondrial hydrogen peroxide. However, these increments were normalized in rats fed the alcohol-DHA/AA-supplemented diet. The number of oxidatively-modified mitochondrial proteins was markedly increased following alcohol exposure but significantly reduced in rats fed the alcohol-DHA/AA-supplemented diet. The suppressed activities of mitochondrial aldehyde dehydrogenase, ATP synthase, and 3-ketoacyl-CoA thiolase in ethanol-exposed rats were also recovered in animals fed the ethanol-DHA/AA-supplemented diet. Conclusions Addition of DHA/AA prevents alcohol-induced fatty liver and mitochondrial dysfunction in an animal model by protecting various mitochondrial enzymes most likely through reducing oxidative/nitrosative stress. PMID:18571270

  17. Magnetic self-orientation of lyotropic hexagonal phases based on long chain alkanoic (fatty) acids.

    PubMed

    Douliez, Jean-Paul

    2010-07-06

    It is presently shown that long chain (C14, C16, and C18) alkanoic (saturated fatty) acids can form magnetically oriented hexagonal phases in aqueous concentrated solutions in mixtures with tetrabutylammonium (TBAOH) as the counterion. The hexagonal phase occurred for a molar ratio, alkanoic acid/TBAOH, higher than 1, i.e., for an excess of fatty acid. The hexagonal phase melted to an isotropic phase (micelles) upon heating at a given temperature depending on the alkyl chain length. The self-orientation of the hexagonal phase occurred upon cooling from the "high-temperature" isotropic phase within the magnetic field. The long axis of the hexagonal phase was shown to self-orient parallel to the magnetic field as evidenced by deuterium solid-state NMR. This finding is expected to be of interest in the field of structural biology and materials chemistry for the synthesis of oriented materials.

  18. Ovarian Function Modulates the Effects of Long-Chain Polyunsaturated Fatty Acids on the Mouse Cerebral Cortex.

    PubMed

    Herrera, Jose L; Ordoñez-Gutierrez, Lara; Fabrias, Gemma; Casas, Josefina; Morales, Araceli; Hernandez, Guadalberto; Acosta, Nieves G; Rodriguez, Covadonga; Prieto-Valiente, Luis; Garcia-Segura, Luis M; Alonso, Rafael; Wandosell, Francisco G

    2018-01-01

    Different dietary ratios of n -6/ n -3 long-chain polyunsaturated fatty acids (LC-PUFAs) may alter brain lipid profile, neural activity, and brain cognitive function. To determine whether ovarian hormones influence the effect of diet on the brain, ovariectomized and sham-operated mice continuously treated with placebo or estradiol were fed for 3 months with diets containing low or high n -6/ n -3 LC-PUFA ratios. The fatty acid (FA) profile and expression of key neuronal proteins were analyzed in the cerebral cortex, with intact female mice on standard diet serving as internal controls of brain lipidome composition. Diets containing different concentrations of LC-PUFAs greatly modified total FAs, sphingolipids, and gangliosides in the cerebral cortex. Some of these changes were dependent on ovarian hormones, as they were not detected in ovariectomized animals, and in the case of complex lipids, the effect of ovariectomy was partially or totally reversed by continuous administration of estradiol. However, even though differential dietary LC-PUFA content modified the expression of neuronal proteins such as synapsin and its phosphorylation level, PSD-95, amyloid precursor protein (APP), or glial proteins such as glial fibrillary acidic protein (GFAP), an effect also dependent on the presence of the ovary, chronic estradiol treatment was unable to revert the dietary effects on brain cortex synaptic proteins. These results suggest that, in addition to stable estradiol levels, other ovarian hormones such as progesterone and/or cyclic ovarian secretory activity could play a physiological role in the modulation of dietary LC-PUFAs on the cerebral cortex, which may have clinical implications for post-menopausal women on diets enriched with different proportions of n -3 and n -6 LC-PUFAs.

  19. Nitrogen sparing effect of structured triglycerides containing both medium-and long-chain fatty acids in critically ill patients; a double blind randomized controlled trial.

    PubMed

    Lindgren, B F; Ruokonen, E; Magnusson-Borg, K; Takala, J

    2001-02-01

    Patients with sepsis and trauma are characterised by hypermetabolism, insulin resistance and protein catabolism. Fat emulsions containing medium chain triglycerides have been suggested to be beneficial for these patients since medium chain fatty acids are a more readily available source of energy when compared to long chain fatty acids. The aim of this study was to compare a medium and long chain triglyceride emulsion consisting of structured triglycerides (ST) with a long chain triglyceride (LCT) emulsion in terms of effects on nitrogen balance, energy metabolism and safety. 30 ICU patients with sepsis or multiple injury received a fat emulsion with ST or 20% LCT (1.5 g triglycerides/kg body weight/day) as a component of total parenteral nutrition (TPN), for 5 days in a double blind randomised parallel group design. The main analysis was made on the 3 day per protocol population due to lack of patients at day 5. There were no differences in baseline characteristics of the two groups receiving either the LCT or the ST emulsion. The efficacy analysis was performed on the per protocol population (n=9 ST, n=11 LCT). There was a significant difference between the two treatments regarding daily nitrogen balances when the first 3 days were analysed P=0.0038). This resulted in an amelioration of the nitrogen balance on day 3 in the group on ST as compared to those on LCT (0.1+/-2.4 g vs -9.9+/-2.1 g P=0.01). The 3 day cumulative nitrogen balance was significantly better in the group receiving ST compared to those on LCT (-0.7+/-6.0 vs -16.7+/-3.9 P=0.03). This better cumulative nitrogen balance on day 3 was also preserved as a tendency (P=0.061) in the analysis of the intention to treat population, but on day 5 there was no significant difference (P=0.08). The ST emulsion was well tolerated and no difference was found compared to the LCT emulsion regarding respiratory quotient, energy expenditure, glucose or triglyceride levels during infusion. Administration of a

  20. The recovery of 13C-labeled oleic acid in rat lymph after administration of long chain triacylglycerols or specific structured triacylglycerols.

    PubMed

    Vistisen, Bodil; Mu, Huiling; Høy, Carl-Erik

    2006-09-01

    Consumption of specific structured triacylglycerols, MLM (M = medium chain fatty acid, L = long chain fatty acid), delivers fast energy and long chain fatty acids to the organism. The purpose of the present study was to compare lymphatic absorption of (13)C-labeled MLM and (13)C-labeled LLL in rats. Stable isotope labeling enables the separation of the endogenous and exogenous fatty acids. Lymph was collected during 24 h following administration of MLM or LLL. Lymph fatty acid composition and (13)C-enrichment were determined and quantified by gas chromatography combustion isotope ratio mass spectrometry. The recovery of 18:1n-9 was higher after administration of LLL compared with MLM (58.1% +/- 7.4% and 29.1% +/- 3.9%, respectively, P < 0.001). This may be due to a higher chylomicron formation stimulated by a higher amount of long chain fatty acids in the intestine after LLL compared with MLM administration. This was confirmed by the tendencies of higher lymphatic transport of endogenous fatty acids. The study revealed a higher lymphatic recovery of the administered long chain fatty acids after LLL compared with MLM consumption.

  1. Measurement of stable isotopic enrichment and concentration of long-chain fatty acyl-carnitines in tissue by HPLC-MS.

    PubMed

    Sun, Dayong; Cree, Melanie G; Zhang, Xiao-Jun; Bøersheim, Elisabet; Wolfe, Robert R

    2006-02-01

    We have developed a new method for the simultaneous measurements of stable isotopic tracer enrichments and concentrations of individual long-chain fatty acyl-carnitines in muscle tissue using ion-pairing high-performance liquid chromatography-electrospray ionization quadrupole mass spectrometry in the selected ion monitoring (SIM) mode. Long-chain fatty acyl-carnitines were extracted from frozen muscle tissue samples by acetonitrile/methanol. Baseline separation was achieved by reverse-phase HPLC in the presence of the volatile ion-pairing reagent heptafluorobutyric acid. The SIM capability of a single quadrupole mass analyzer allows further separation of the ions of interest from the sample matrixes, providing very clean total and selected ion chromatograms that can be used to calculate the stable isotopic tracer enrichment and concentration of long-chain fatty acyl-carnitines in a single analysis. The combination of these two separation techniques greatly simplifies the sample preparation procedure and increases the detection sensitivity. Applying this protocol to biological muscle samples proves it to be a very sensitive, accurate, and precise analytical tool.

  2. Stimulation by epinephrine of the membrane transport of long chain fatty acid in the adipocyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abumrad, N.A.; Perry, P.R.; Whitesell, R.R.

    1985-08-25

    In isolated rat adipocytes, epinephrine rapidly stimulates the transport of long chain fatty acid across the plasma membrane. At a concentration of unbound oleate of 0.1 microM and 5 min exposure to the hormone, the minimal effective concentration of epinephrine is 0.03 and the optimal concentration 0.3 microM (0.01 and 0.1 microgram/ml). The stimulated rates are 5-10-fold the basal rate of influx or efflux. The hormone effect is on the transport process specifically as shown by isolation of the product of transport in either direction as unesterified fatty acid and inhibition by the transport inhibitors phloretin and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. Thismore » effect of epinephrine on transport coordinates physiologically with lipase activation to bring about fatty acid release from adipose tissue.« less

  3. Three-way assessment of long-chain n-3 PUFA nutrition: by questionnaire and matched blood and skin samples.

    PubMed

    Wallingford, Sarah C; Pilkington, Suzanne M; Massey, Karen A; Al-Aasswad, Naser M I; Ibiebele, Torukiri I; Celia Hughes, Maria; Bennett, Susan; Nicolaou, Anna; Rhodes, Lesley E; Green, Adèle C

    2013-02-28

    The long-chain n-3 PUFA, EPA, is believed to be important for skin health, including roles in the modulation of inflammation and protection from photodamage. FFQ and blood levels are used as non-invasive proxies for assessing skin PUFA levels, but studies examining how well these proxies reflect target organ content are lacking. In seventy-eight healthy women (mean age 42·8, range 21-60 years) residing in Greater Manchester, we performed a quantitative analysis of long-chain n-3 PUFA nutrition estimated from a self-reported FFQ (n 75) and correlated this with n-3 PUFA concentrations in erythrocytes (n 72) and dermis (n 39). Linear associations between the three n-3 PUFA measurements were assessed by Spearman correlation coefficients and agreement between these measurements was estimated. Average total dietary content of the principal long-chain n-3 PUFA EPA and DHA was 171 (SD 168) and 236 (SD 248) mg/d, respectively. EPA showed significant correlations between FFQ assessments and both erythrocyte (r 0·57, P< 0·0001) and dermal (r 0·33, P= 0·05) levels, as well as between erythrocytes and dermis (r 0·45, P= 0·008). FFQ intake of DHA and the sum of n-3 PUFA also correlated well with erythrocyte concentrations (r 0·50, P< 0·0001; r 0·27, P= 0·03). Agreement between ranked thirds of dietary intake, blood and dermis approached 50% for EPA and DHA, though gross misclassification was lower for EPA. Thus, FFQ estimates and circulating levels of the dietary long-chain n-3 PUFA, EPA, may be utilised as well-correlated measures of its dermal bioavailability.

  4. Establishing very long-chain fatty alcohol and wax ester biosynthesis in Saccharomyces cerevisiae.

    PubMed

    Wenning, Leonie; Yu, Tao; David, Florian; Nielsen, Jens; Siewers, Verena

    2017-05-01

    Wax esters (WEs) are neutral lipids and can be used for a broad range of commercial applications, including personal care products, lubricants, or coatings. They are synthesized by enzymatic reactions catalyzed by a fatty acyl reductase (FAR) and a wax ester synthase (WS). At present, commercially used WEs are mainly isolated from Simmondsia chinensis (jojoba), but the high extraction costs and limited harvest areas constrain their use. The use of FARs in combination with different WSs to achieve a synthesis of jojoba-like WEs in bacteria and yeast has been reported previously, but the products were restricted to C28-C36 WEs. These rather short WEs make up only a very small percentage of the total WEs in natural jojoba oil. The synthesis of longer chain WEs (up to C44) in Saccharomyces cerevisiae has so far only been achieved after substrate feeding. Here we identified new routes for producing very long-chain fatty alcohols (VLCFOHs) up to a chain length of C22 by heterologous expression of a FAR derived from Apis mellifera (AmFAR1) or Marinobacter aquaeolei VT8 (Maqu_2220) in S. cerevisiae and achieved maximum yields of 3.22 ± 0.36 mg/g cell dry weight (CDW) and 7.84 ± 3.09 mg/g CDW, respectively, after 48 h. Moreover, we enabled the synthesis of jojoba-like WEs up to a chain length of C42, catalyzed by a combination of Maqu_2220 together with the WS from S. chinensis (SciWS) and the S. cerevisiae elongase Elo2p, with a maximum yield of 12.24 ± 3.35 mg/g CDW after 48 h. Biotechnol. Bioeng. 2017;114: 1025-1035. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. High-throughput assay for long chain fatty acyl-CoA elongase using homogeneous scintillation proximity format.

    PubMed

    Shimamura, Ken; Miyamoto, Yasuhisa; Kitazawa, Hidefumi; Kobayashi, Tsutomu; Kotani, Hidehito; Tokita, Shigeru

    2009-04-01

    Elongase of very-long-chain fatty acid (Elovl) 6 is a rate-limiting enzyme that is responsible for the elongation of long-chain fatty acids such as palmitoic acid (C16). Elovl6 is abundantly expressed in liver and adipose tissue, and the expression levels in these tissues are up-regulated in obese animals. Furthermore, Elovl6-deficient mice display improved glucose homeostasis and insulin sensitivity, suggesting that Elovl6 might be a potential therapeutic target for metabolic disorders. From the drug discovery point of view, it is critical to establish a high-throughput screening (HTS) assay for the identification of therapeutic agents. Conventional assay methods for fatty acid elongases include an extraction step for respective radioactive products from the reaction mixtures, which is labor-intensive and not feasible for HTS. In this study, we utilized the acyl-coenzyme A (CoA) binding protein (ACBP) as a molecular probe to detect radioactive long-chain acyl-CoA, a direct product of Elovl6. Recombinant ACBP binds stearoyl-CoA but not malonyl-CoA, enabling specific detection of the radioactive product in the homogenous reaction mixture without the liquid extraction step. Finally, combination of ACBP and scintillation proximity assay beads led to specific detection of Elovl6 activity with appropriate window and reproducibility amenable to HTS (signal-to-background noise ratio of approximately 13.0-fold, Z' = 0.85). The assay system described here has the potential to enable identification of small compounds that modify fatty acid elongase activity and assessment of the therapeutic potential of acyl-CoA elongases.

  6. Peroxisome proliferator-activated receptor mRNA levels are modified by dietary n-3 fatty acid restriction and energy restriction in the brain and liver of growing rats

    USDA-ARS?s Scientific Manuscript database

    Without dietary sources of long chain (LC) n-3 fatty acids, alpha-linolenic acid (ALA;18:3n-3) is the precursor for docosahexaenoic acid (DHA; 22:6n-3). It is not known how energy restriction (ER) impacts ALA conversion to DHA. We tested the hypothesis that ER reduces LCn-3 content in growing rats ...

  7. Primary Metabolism and Medium-Chain Fatty Acid Alterations Precede Long-Chain Fatty Acid Changes Impacting Neutral Lipid Metabolism in Response to an Anticancer Lysophosphatidylcholine Analogue in Yeast.

    PubMed

    Tambellini, Nicolas P; Zaremberg, Vanina; Krishnaiah, Saikumari; Turner, Raymond J; Weljie, Aalim M

    2017-10-06

    The nonmetabolizable lysophosphatidylcholine (LysoPC) analogue edelfosine is the prototype of a class of compounds being investigated for their potential as selective chemotherapeutic agents. Edelfosine targets membranes, disturbing cellular homeostasis. Is not clear at this point how membrane alterations are communicated between intracellular compartments leading to growth inhibition and eventual cell death. In the present study, a combined metabolomics/lipidomics approach for the unbiased identification of metabolic pathways altered in yeast treated with sublethal concentrations of the LysoPC analogue was employed. Mass spectrometry of polar metabolites, fatty acids, and lipidomic profiling was used to study the effects of edelfosine on yeast metabolism. Amino acid and sugar metabolism, the Krebs cycle, and fatty acid profiles were most disrupted, with polar metabolites and short-medium chain fatty acid changes preceding long and very long-chain fatty acid variations. Initial increases in metabolites such as trehalose, proline, and γ-amino butyric acid with a concomitant decrease in metabolites of the Krebs cycle, citrate and fumarate, are interpreted as a cellular attempt to offset oxidative stress in response to mitochondrial dysfunction induced by the treatment. Notably, alanine, inositol, and myristoleic acid showed a steady increase during the period analyzed (2, 4, and 6 h after treatment). Of importance was the finding that edelfosine induced significant alterations in neutral glycerolipid metabolism resulting in a significant increase in the signaling lipid diacylglycerol.

  8. Protective effect of dietary long-chain n-3 polyunsaturated fatty acids on bone loss in gonad-intact middle-aged male rats.

    PubMed

    Shen, Chwan-Li; Yeh, James K; Rasty, Jahan; Li, Yong; Watkins, Bruce A

    2006-03-01

    This study evaluated the effect of a fat blend containing long-chain (LC) n-3 PUFA on bone mineral density (BMD) and bone metabolism in gonad-intact middle-aged male rats (12 months old, n 28). Seven rats were killed on day 0 of dietary intervention to determine the baseline BMD. The remaining rats (seven per group) were fed a diet with one of the following dietary lipid treatments (g/kg diet): 167 g safflower oil + 33 g menhaden oil (N6 + N3 diet, control), 200 g safflower oil (N6 diet, almost devoid of LC n-3 PUFA), or 190 g menhaden oil + 10 g corn oil (N3 diet, rich in LC n-3 PUFA) for 20 weeks. After 20 weeks, all dietary treatment groups had a lower BMD compared with the baseline reference. However, rats fed the N3 diet had the highest bone mineral content and cortical + subcortical BMD compared with those fed the N6 and control N6 + N3 diet. Compared with the control (N6 + N3) group, rats fed the N3 diet had higher values for serum insulin-like growth factor-I, parathyroid hormone, 1,25-(OH)2 vitamin D3 and bone-specific alkaline phosphatase activity, but lower bone NO production and urinary Ca, whereas rats fed the N6 diet had higher bone prostaglandin E2 production and serum pyridinoline. These findings indicate a protective action of LC n-3 PUFA on ageing-induced bone loss in gonad-intact middle-aged male rats through a modulation of local factors and systemic calcitrophic hormones.

  9. Effect of natural antioxidants in Spanish salchichón elaborated with encapsulated n-3 long chain fatty acids in konjac glucomannan matrix.

    PubMed

    Munekata, P E S; Domínguez, R; Franco, D; Bermúdez, R; Trindade, M A; Lorenzo, Jose M

    2017-02-01

    The effect of natural antioxidants on physicochemical properties, lipid and protein oxidation, volatile compounds and free fatty acids (FFA) were determined in Spanish salchichón enriched with n-3 fatty acids encapsulated and stabilized in konjac matrix. Phenolic compounds of beer residue extract (BRE), chestnut leaves extract (CLE) and peanut skin extract (PSE) were also identified and quantified. Five batches of salchichón were prepared: control (CON, without antioxidants), butylated hydroxytoluene (BHT), BRE, CLE and PSE. The main phenolic compounds were catechin and benzoic acid for BRE, gallic acid and catechin for CLE and catechin and protocatechuic acid for PSE. Statistical analysis did not show significant differences on chemical composition among treatments. Reductions in luminosity (P<0.05) and pH (P<0.001) were observed with the CLE batch, whereas the other colour parameters were not affected by the addition of natural antioxidants. Finally, the inclusion of antioxidants (P<0.001) decreased the hexanal content, whereas the FFA content increased by the addition of natural extracts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Short-chain fatty acid sensing in rat duodenum.

    PubMed

    Akiba, Yasutada; Inoue, Takuya; Kaji, Izumi; Higashiyama, Masaaki; Narimatsu, Kazuyuki; Iwamoto, Ken-ichi; Watanabe, Masahiko; Guth, Paul H; Engel, Eli; Kuwahara, Atsukazu; Kaunitz, Jonathan D

    2015-02-01

    Luminal lipid in the duodenum modulates gastroduodenal functions via the release of gut hormones and mediators such as cholecystokinin and 5-HT. The effects of luminal short-chain fatty acids (SCFAs) in the foregut are unknown. Free fatty acid receptors (FFARs) for long-chain fatty acids (LCFAs) and SCFAs are expressed in enteroendocrine cells. SCFA receptors, termed FFA2 and FFA3, are expressed in duodenal enterochromaffin cells and L cells, respectively. Activation of LCFA receptor (FFA1) and presumed FFA3 stimulates duodenal HCO3(-) secretion via a glucagon-like peptide (GLP)-2 pathway, whereas FFA2 activation induces HCO3(-) secretion via muscarinic and 5-HT4 receptor activation. The presence of SCFA sensing in the duodenum with GLP-2 and 5-HT signals further supports the hypothesis that luminal SCFA in the foregut may contribute towards the generation of functional symptoms. Intraduodenal fatty acids (FA) and bacterial overgrowth, which generate short-chain FAs (SCFAs), have been implicated in the generation of functional dyspepsia symptoms. We studied the mechanisms by which luminal SCFA perfusion affects duodenal HCO3(-) secretion (DBS), a measure of mucosal neurohumoral activation. Free fatty acid receptor (FFAR) 1 (FFA1), which binds long-chain FA (LCFA), and SCFA receptors FFA2 and FFA3 were immunolocalised to duodenal enteroendocrine cells. FFA3 colocalised with glucagon-like peptide (GLP)-1, whereas FFA2 colocalised with 5-HT. Luminal perfusion of the SCFA acetate or propionate increased DBS, enhanced by dipeptidyl peptidase-IV (DPPIV) inhibition, at the same time as increasing GLP-2 portal blood concentrations. Acetate-induced DBS was partially inhibited by monocarboxylate/HCO3(-) exchanger inhibition without affecting GLP-2 release, implicating acetate absorption in the partial mediation of DBS. A selective FFA2 agonist dose-dependently increased DBS, unaffected by DPPIV inhibition or by cholecystokinin or 5-HT3 receptor antagonists, but was inhibited

  11. Increased Long Chain acyl-Coa Synthetase Activity and Fatty Acid Import Is Linked to Membrane Synthesis for Development of Picornavirus Replication Organelles

    PubMed Central

    Scott, Alison J.; Ford, Lauren A.; Pei, Zhengtong; Watkins, Paul A.; Ernst, Robert K.; Belov, George A.

    2013-01-01

    All positive strand (+RNA) viruses of eukaryotes replicate their genomes in association with membranes. The mechanisms of membrane remodeling in infected cells represent attractive targets for designing future therapeutics, but our understanding of this process is very limited. Elements of autophagy and/or the secretory pathway were proposed to be hijacked for building of picornavirus replication organelles. However, even closely related viruses differ significantly in their requirements for components of these pathways. We demonstrate here that infection with diverse picornaviruses rapidly activates import of long chain fatty acids. While in non-infected cells the imported fatty acids are channeled to lipid droplets, in infected cells the synthesis of neutral lipids is shut down and the fatty acids are utilized in highly up-regulated phosphatidylcholine synthesis. Thus the replication organelles are likely built from de novo synthesized membrane material, rather than from the remodeled pre-existing membranes. We show that activation of fatty acid import is linked to the up-regulation of cellular long chain acyl-CoA synthetase activity and identify the long chain acyl-CoA syntheatse3 (Acsl3) as a novel host factor required for polio replication. Poliovirus protein 2A is required to trigger the activation of import of fatty acids independent of its protease activity. Shift in fatty acid import preferences by infected cells results in synthesis of phosphatidylcholines different from those in uninfected cells, arguing that the viral replication organelles possess unique properties compared to the pre-existing membranes. Our data show how poliovirus can change the overall cellular membrane homeostasis by targeting one critical process. They explain earlier observations of increased phospholipid synthesis in infected cells and suggest a simple model of the structural development of the membranous scaffold of replication complexes of picorna-like viruses, that may be

  12. A Novel Protocol to Analyze Short- and Long-Chain Fatty Acids Using Nonaqueous Microchip Capillary Electrophoresis

    NASA Technical Reports Server (NTRS)

    Cable, M. L.; Stockton, A. M.; Mora, Maria F; Willis, P. A.

    2013-01-01

    We propose a new protocol to identify and quantify both short- and long-chain saturated fatty acids in samples of astrobiological interest using non-aqueous microchip capillary electrophoresis (micronNACE) with laser induced fluorescence (LIF).

  13. Long-Chain Omega-3 Polyunsaturated Fatty Acids Modulate Mammary Gland Composition and Inflammation.

    PubMed

    Khadge, Saraswoti; Thiele, Geoffrey M; Sharp, John Graham; McGuire, Timothy R; Klassen, Lynell W; Black, Paul N; DiRusso, Concetta C; Talmadge, James E

    2018-06-01

    Studies in rodents have shown that dietary modifications as mammary glands (MG) develop, regulates susceptibility to mammary tumor initiation. However, the effects of dietary PUFA composition on MGs in adult life, remains poorly understood. This study investigated morphological alterations and inflammatory microenvironments in the MGs of adult mice fed isocaloric and isolipidic liquid diets with varying compositions of omega (ω)-6 and long-chain (Lc)-ω3FA that were pair-fed. Despite similar consumption levels of the diets, mice fed the ω-3 diet had significantly lower body-weight gains, and abdominal-fat and mammary fat pad (MFP) weights. Fatty acid analysis showed significantly higher levels of Lc-ω-3FAs in the MFPs of mice on the ω-3 diet, while in the MFPs from the ω-6 group, Lc-ω-3FAs were undetectable. Our study revealed that MGs from ω-3 group had a significantly lower ductal end-point density, branching density, an absence of ductal sprouts, a thinner ductal stroma, fewer proliferating epithelial cells and a lower transcription levels of estrogen receptor 1 and amphiregulin. An analysis of the MFP and abdominal-fat showed significantly smaller adipocytes in the ω-3 group, which was accompanied by lower transcription levels of leptin, IGF1, and IGF1R. Further, MFPs from the ω-3 group had significantly decreased numbers and sizes of crown-like-structures (CLS), F4/80+ macrophages and decreased expression of proinflammatory mediators including Ptgs2, IL6, CCL2, TNFα, NFκB, and IFNγ. Together, these results support dietary Lc-ω-3FA regulation of MG structure and density and adipose tissue inflammation with the potential for dietary Lc-ω-3FA to decrease the risk of mammary gland tumor formation.

  14. The dietary n6:n3 fatty acid ratio during pregnancy is inversely associated with child neurodevelopment in the EDEN mother-child cohort.

    PubMed

    Bernard, Jonathan Y; De Agostini, Maria; Forhan, Anne; de Lauzon-Guillain, Blandine; Charles, Marie-Aline; Heude, Barbara

    2013-09-01

    Long-chain polyunsaturated fatty acids (LC-PUFAs) of the n6 (ω6) and n3 series are essential for the development of a child's brain. Fetal LC-PUFA exposure as well as infant exposure via breast milk depend on the maternal intake of these LC-PUFAs and of their respective dietary precursors (PUFAs). We aimed to investigate the associations between maternal LC-PUFA and PUFA [(LC)PUFA] dietary intake during pregnancy and child neurodevelopment at ages 2 and 3 y. In 1335 mother-child pairs from the EDEN cohort, we evaluated associations between daily maternal (LC)PUFA intake during the last 3 months of pregnancy with the child's language at age 2 y and with different assessments of development at age 3 y. Associations were investigated separately in breastfed and never-breastfed children. We examined interactions between the ratios of n6 and n3 (LC)PUFA intakes (n6:n3 fatty acid ratio) and duration of breastfeeding. Breastfeeding mothers had a lower n6:n3 fatty acid ratio (8.4 vs. 8.8; P = 0.02). Among never-breastfed children (n = 338), we found negative associations between maternal dietary n6:n3 fatty acid ratios and neurodevelopment, as reflected by the child's language at age 2 y (β ± SE = -2.1 ± 0.7; P = 0.001) and development assessed with the Ages and Stages Questionnaire at age 3 y (-1.5 ± 0.8; P = 0.05). Among mothers with a high n6:n3 fatty acid ratio only, breastfeeding duration was positively associated with language at age 2 y (P-interaction < 0.05). This suggests that the ratio between maternal dietary n6 and n3 (LC)PUFA intake possibly influences the child's brain development during fetal life but not during or by breastfeeding. However, breastfeeding might compensate for prenatal imbalance in maternal dietary n6:n3 fatty acid ratio.

  15. Lymphatic recovery of exogenous oleic acid in rats on long chain or specific structured triacylglycerol diets.

    PubMed

    Vistisen, Bodil; Mu, Huiling; Høy, Carl-Erik

    2006-09-01

    Specific structured triacylglycerols, MLM (M = medium-chain fatty acid, L = long-chain fatty acid), rapidly deliver energy and long-chain fatty acids to the body and are used for longer periods in human enteral feeding. In the present study rats were fed diets of 10 wt% MLM or LLL (L = oleic acid [18:1 n-9], M = caprylic acid [8:01) for 2 wk. Then lymph was collected 24 h following administration of a single bolus of 13C-labeled MLM or LLL. The total lymphatic recovery of exogenous 18:1 n-9 24 h after administration of a single bolus of MLM or LLL was similar in rats on the LLL diet (43% and 45%, respectively). However, the recovery of exogenous 18:1 n-9 was higher after a single bolus of MLM compared with a bolus of LLL in rats on the MLM diet (40% and 24%, respectively, P = 0.009). The recovery of lymphatic 18:1 n-9 of the LLL bolus tended to depend on the diet triacylglycerol structure and composition (P= 0.07). This study demonstrated that with a diet containing specific structured triacylglycerol, the lymphatic recovery of 18:1 n-9 after a single bolus of fat was dependent on the triacylglycerol structure of the bolus. This indicates that the lymphatic recovery of long-chain fatty acids from a single meal depends on the overall long-chain fatty acid composition of the habitual diet. This could have implications for enteral feeding for longer periods.

  16. Bacterial Long-Chain Polyunsaturated Fatty Acids: Their Biosynthetic Genes, Functions, and Practical Use

    PubMed Central

    Yoshida, Kiyohito; Hashimoto, Mikako; Hori, Ryuji; Adachi, Takumi; Okuyama, Hidetoshi; Orikasa, Yoshitake; Nagamine, Tadashi; Shimizu, Satoru; Ueno, Akio; Morita, Naoki

    2016-01-01

    The nutritional and pharmaceutical values of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic, eicosapentaenoic and docosahexaenoic acids have been well recognized. These LC-PUFAs are physiologically important compounds in bacteria and eukaryotes. Although little is known about the biosynthetic mechanisms and functions of LC-PUFAs in bacteria compared to those in higher organisms, a combination of genetic, bioinformatic, and molecular biological approaches to LC-PUFA-producing bacteria and some eukaryotes have revealed the notably diverse organization of the pfa genes encoding a polyunsaturated fatty acid synthase complex (PUFA synthase), the LC-PUFA biosynthetic processes, and tertiary structures of the domains of this enzyme. In bacteria, LC-PUFAs appear to take part in specific functions facilitating individual membrane proteins rather than in the adjustment of the physical fluidity of the whole cell membrane. Very long chain polyunsaturated hydrocarbons (LC-HCs) such as hentriacontanonaene are considered to be closely related to LC-PUFAs in their biosynthesis and function. The possible role of LC-HCs in strictly anaerobic bacteria under aerobic and anaerobic environments and the evolutionary relationships of anaerobic and aerobic bacteria carrying pfa-like genes are also discussed. PMID:27187420

  17. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties

    PubMed Central

    Abedi, Elahe; Sahari, Mohammad Ali

    2014-01-01

    Recent studies have clearly shown the importance of polyunsaturated fatty acids (as essential fatty acids) and their nutritional value for human health. In this review, various sources, nutritional properties, and metabolism routes of long-chain polyunsaturated fatty acids (LC-PUFA) are introduced. Since the conversion efficiency of linoleic acid (LA) to arachidonic acid (AA) and also α-linolenic acid (ALA) to docosahexaenoic acid (DHA) and eicosatetraenoic acid (EPA) is low in humans, looking for the numerous sources of AA, EPA and EPA fatty acids. The sources include aquatic (fish, crustaceans, and mollusks), animal sources (meat, egg, and milk), plant sources including 20 plants, most of which were weeds having a good amount of LC-PUFA, fruits, herbs, and seeds; cyanobacteria; and microorganisms (bacteria, fungi, microalgae, and diatoms). PMID:25473503

  18. The impact of omega-3 fatty acids on osteoporosis.

    PubMed

    Maggio, M; Artoni, A; Lauretani, F; Borghi, L; Nouvenne, A; Valenti, G; Ceda, G P

    2009-01-01

    The essential polyunsaturated fatty acids (PUFAs) comprise 2 main classes: n-6 and n-3 fatty acids. The most common source of n-6 fatty acids is linoleic acid (LA) which is found in high concentrations in various vegetable oils. Arachidonic acid (AA), the 20-carbon n-6 fatty acid, is obtained largely by synthesis from LA in the body. The n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic (DHA) are found in fish and fish oils. Long-Chain polyunsaturated fatty acids (LCPUFAs) and lipid mediators derived from LCPUFAs have critical roles in the regulation of a variety of biological processes including bone metabolism. There are different mechanisms by which dietary fatty acids affect bone: effect on calcium balance, effect on osteoblastogenesis and osteoblast activity, change of membrane function, decrease in inflammatory cytokines such as interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-alpha), modulation of peroxisome proliferators-activated receptor gamma (PPARgamma). Animal studies have shown that a higher dietary omega-3/omega-6 fatty acids ratio is associated with beneficial effects on bone health. In spite of increasing evidence of the positive effects of dietary fats on bone metabolism from animal and in vitro studies, the few studies conducted in humans do not allow us to draw a definitive conclusion on their usefulness in clinical practice.

  19. Inhibition of telomerase by linear-chain fatty acids: a structural analysis.

    PubMed Central

    Oda, Masako; Ueno, Takamasa; Kasai, Nobuyuki; Takahashi, Hirotada; Yoshida, Hiromi; Sugawara, Fumio; Sakaguchi, Kengo; Hayashi, Hideya; Mizushina, Yoshiyuki

    2002-01-01

    In the present study, we have found that mono-unsaturated linear-chain fatty acids in the cis configuration with C(18) hydrocarbon chains (i.e. oleic acid) strongly inhibited the activity of human telomerase in a cell-free enzymic assay, with an IC(50) value of 8.6 microM. Interestingly, fatty acids with hydrocarbon chain lengths below 16 or above 20 carbons substantially decreased the potency of inhibition of telomerase. Moreover, the cis-mono-unsaturated C(18) linear-chain fatty acid oleic acid was the strongest inhibitor of all the fatty acids tested. A kinetic study revealed that oleic acid competitively inhibited the activity of telomerase ( K (i)=3.06 microM) with respect to the telomerase substrate primer. The energy-minimized three-dimensional structure of the linear-chain fatty acid was calculated and modelled. A molecule width of 11.53-14.26 A (where 1 A=0.1 nm) in the C(16) to C(20) fatty acid structure was suggested to be important for telomerase inhibition. The three-dimensional structure of the telomerase active site (i.e. the substrate primer-binding site) appears to have a pocket that could bind oleic acid, with the pocket being 8.50 A long and 12.80 A wide. PMID:12121150

  20. An alternative to fish oils: Metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids.

    PubMed

    Venegas-Calerón, Mónica; Sayanova, Olga; Napier, Johnathan A

    2010-04-01

    It is now accepted that omega-3 polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA; 20:5Delta5,8,11,14,17) and docosahexaenoic acid (DHA, 22:6Delta4,7,10,13,16,19) play important roles in a number of aspects of human health, with marine fish rich in these beneficial fatty acids our primary dietary source. However, over-fishing and concerns about pollution of the marine environment indicate a need to develop alternative, sustainable sources of very long chain polyunsaturated fatty acids (VLC-PUFAs) such as EPA and DHA. A number of different strategies have been considered, with one of the most promising being transgenic plants "reverse-engineered" to produce these so-called fish oils. Considerable progress has been made towards this goal and in this review we will outline the recent achievements in demonstrating the production of omega-3 VLC-PUFAs in transgenic plants. We will also consider how these enriched oils will allow the development of nutritionally-enhanced food products, suitable either for direct human ingestion or for use as an animal feedstuff. In particular, the requirements of aquaculture for omega-3 VLC-PUFAs will act as a strong driver for the development of such products. In addition, biotechnological research on the synthesis of VLC-PUFAs has provided new insights into the complexities of acyl-channelling and triacylglycerol biosynthesis in higher plants. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Three Randomized Controlled Trials of Early Long-Chain Polyunsaturated Fatty Acid Supplementation on Means-End Problem Solving in 9-Month-Olds

    ERIC Educational Resources Information Center

    Drover, James; Hoffman, Dennis R.; Castaneda, Yolanda S.; Morale, Sarah E.; Birch, Eileen E.

    2009-01-01

    This study examines whether feeding infants formula supplemented with long-chain polyunsaturated fatty acids (LCPUFA) improves cognitive function of 9-month-olds. Participants included 229 infants from 3 randomized controlled trials. Children received either formula supplemented with docosahexaenoic acid and arachidonic acid, or a control formula…

  2. The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development

    PubMed Central

    Bach, Liên; Michaelson, Louise V.; Haslam, Richard; Bellec, Yannick; Gissot, Lionel; Marion, Jessica; Da Costa, Marco; Boutin, Jean-Pierre; Miquel, Martine; Tellier, Frédérique; Domergue, Frederic; Markham, Jonathan E.; Beaudoin, Frederic; Napier, Johnathan A.; Faure, Jean-Denis

    2008-01-01

    Very-long-chain fatty acids (VLCFAs) are synthesized as acyl-CoAs by the endoplasmic reticulum-localized elongase multiprotein complex. Two Arabidopsis genes are putative homologues of the recently identified yeast 3-hydroxy-acyl-CoA dehydratase (PHS1), the third enzyme of the elongase complex. We showed that Arabidopsis PASTICCINO2 (PAS2) was able to restore phs1 cytokinesis defects and sphingolipid long chain base overaccumulation. Conversely, the expression of PHS1 was able to complement the developmental defects and the accumulation of long chain bases of the pas2–1 mutant. The pas2–1 mutant was characterized by a general reduction of VLCFA pools in seed storage triacylglycerols, cuticular waxes, and complex sphingolipids. Most strikingly, the defective elongation cycle resulted in the accumulation of 3-hydroxy-acyl-CoA intermediates, indicating premature termination of fatty acid elongation and confirming the role of PAS2 in this process. We demonstrated by in vivo bimolecular fluorescence complementation that PAS2 was specifically associated in the endoplasmic reticulum with the enoyl-CoA reductase CER10, the fourth enzyme of the elongase complex. Finally, complete loss of PAS2 function is embryo lethal, and the ectopic expression of PHS1 led to enhanced levels of VLCFAs associated with severe developmental defects. Altogether these results demonstrate that the plant 3-hydroxy-acyl-CoA dehydratase PASTICCINO2 is an essential and limiting enzyme in VLCFA synthesis but also that PAS2-derived VLCFA homeostasis is required for specific developmental processes. PMID:18799749

  3. Omega-3 fatty acids and non-alcoholic fatty liver disease: Evidence of efficacy and mechanism of action.

    PubMed

    Scorletti, Eleonora; Byrne, Christopher D

    2018-03-22

    For many years it has been known that high doses of long chain omega-3 fatty acids are beneficial in the treatment of hypertriglyceridaemia. Over the last three decades, there has also been a wealth of in vitro and in vivo data that has accumulated to suggest that long chain omega-3 fatty acid treatment might be beneficial to decrease liver triacylglycerol. Several biological mechanisms have been identified that support this hypothesis; notably, it has been shown that long chain omega-3 fatty acids have a beneficial effect: a) on bioactive metabolites involved in inflammatory pathways, and b) on alteration of nuclear transcription factor activities such as peroxisome proliferator-activated receptors (PPARs), sterol regulatory element-binding protein 1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP), involved in inflammatory pathways and liver lipid metabolism. Since the pathogenesis of non alcoholic fatty liver disease (NAFLD) begins with the accumulation of liver lipid and progresses with inflammation and then several years later with development of fibrosis; it has been thought in patients with NAFLD omega-3 fatty acid treatment would be beneficial in treating liver lipid and possibly also in ameliorating inflammation. Meta-analyses (of predominantly dietary studies and small trials) have tended to support the assertion that omega-3 fatty acids are beneficial in decreasing liver lipid, but recent randomised controlled trials have produced conflicting data. These trials have suggested that omega-3 fatty acid might be beneficial in decreasing liver triglyceride (docosahexanoic acid also possibly being more effective than eicosapentanoic acid) but not in decreasing other features of steatohepatitis (or liver fibrosis). The purpose of this review is to discuss recent evidence regarding biological mechanisms by which long chain omega-3 fatty acids might act to ameliorate liver disease in NAFLD; to consider the recent evidence from randomised

  4. Differences in the intramolecular structure of structured oils do not affect pancreatic lipase activity in vitro or the absorption by rats of (n-3) fatty acids.

    PubMed

    Porsgaard, Trine; Xu, Xuebing; Göttsche, Jesper; Mu, Huiling

    2005-07-01

    The fatty acid composition and intramolecular structure of dietary triacylglycerols (TAGs) influence their absorption. We compared the in vitro pancreatic lipase activity and the lymphatic transport in rats of fish oil and 2 enzymatically interesterified oils containing 10:0 and (n-3) PUFAs of marine origin to investigate whether the positional distribution of fatty acids influenced the overall bioavailability of (n-3) PUFAs in the body. The structured oils had the (n-3) PUFA either mainly at the sn-1,3 position (LML, M = medium-chain fatty acid, L = long-chain fatty acid) or mainly at the sn-2 position (MLM). Oils were administered to lymph-cannulated rats and lymph was collected for 24 h. The fatty acid composition as well as the lipid class distribution of lymph samples was determined. In vitro pancreatic lipase activity was greater when fish oil was the substrate than when the structured oils were the substrates (P < 0.001 at 40 min). This was consistent with a greater 8-h recovery of total fatty acids from fish oil compared with the 2 structured oils (P < 0.05). The absorption profiles of MLM and LML in rats and their in vitro rates of lipase activity did not differ. This indicates that the absorption rate is highly influenced by the lipase activity, which in turn is affected by the fatty acid composition and intramolecular structure. The lipid class distribution in lymph collected from the 3 groups of rats did not differ. In conclusion, the intramolecular structure did not affect the overall absorption of (n-3) PUFAs.

  5. STATISTICAL EVALUATION OF AN ANALYTICAL GC/MS METHOD FOR THE DETERMINATION OF LONG CHAIN FATTY ACIDS

    EPA Science Inventory

    In-depth evaluation of an analytical method to detect and quantify long chain fatty acids (C8 - C16) at trace level concentrations (25-1000 µg/l) is presented. The method requires derivatization of the acids with methanolic boron trifluoride, separation, and...

  6. The ABC transporter Rv1272c of Mycobacterium tuberculosis enhances the import of long-chain fatty acids in Escherichia coli.

    PubMed

    Martin, Audrey; Daniel, Jaiyanth

    2018-02-05

    Mycobacterium tuberculosis (Mtb), which causes tuberculosis, is capable of accumulating triacylglycerol (TAG) by utilizing fatty acids from host cells. ATP-binding cassette (ABC) transporters are involved in transport processes in all organisms. Among the classical ABC transporters in Mtb none have been implicated in fatty acid import. Since the transport of fatty acids from the host cell is important for dormancy-associated TAG synthesis in the pathogen, mycobacterial ABC transporter(s) could potentially be involved in this process. Based on sequence identities with a bacterial ABC transporter that mediates fatty acid import for TAG synthesis, we identified Rv1272c, a hitherto uncharacterized ABC-transporter in Mtb that also shows sequence identities with a plant ABC transporter involved in fatty acid transport. We expressed Rv1272c in E. coli and show that it enhances the import of radiolabeled fatty acids. We also show that Rv1272c causes a significant increase in the metabolic incorporation of radiolabeled long-chain fatty acids into cardiolipin, a tetra-acylated phospholipid, and phosphatidylglycerol in E. coli. This is the first report on the function of Rv1272c showing that it displays a long-chain fatty acid transport function. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Enhancing enzymatic hydrolysis of xylan by adding sodium lignosulfonate and long-chain fatty alcohols.

    PubMed

    Lou, Hongming; Yuan, Long; Qiu, Xueqing; Qiu, Kexian; Fu, Jinguo; Pang, Yuxia; Huang, Jinhao

    2016-01-01

    Sodium lignosulfonate (SXSL) and long-chain fatty alcohols (LFAs) could enhance the enzymatic hydrolysis of xylan, and the compound of SXSL and LFAs have synergies on the enzymatic hydrolysis. SXSL shows a strong enhancement in buffer pH range from 4.0 to 6.0. The enhancement increased with the SXSL dosage and the xylanase loading. The cellulose and lignin in corncob substrate could not only adsorb xylanase nonproductively, but also seriously reduce the accessibility of xylanase on xylan to impede the enzymatic hydrolysis of xylan. Cellulase could break the plant cell wall structure of corncob and make additives work better. The xylose yield of corncob at 72h increased from 59.4% to 73.7% by adding the compound of 5g/L SXSL and 0.01% (v/v) n-decanol, which was higher than that without cellulase and additives by 30.7%. Meanwhile, the glucose yield at 72h of corncob increased from 45.8% to 62.3%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Omega-3 fatty acid deficiency selectively up-regulates delta6-desaturase expression and activity indices in rat liver: prevention by normalization of omega-3 fatty acid status.

    PubMed

    Hofacer, Rylon; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Magrisso, I Jack; Benoit, Stephen C; McNamara, Robert K

    2011-09-01

    This study investigated the effects of perinatal dietary omega-3 (n-3) fatty acid depletion and subsequent repletion on the expression of genes that regulate long-chain (LC) polyunsaturated fatty acid biosynthesis in rat liver and brain. It was hypothesized that chronic n-3 fatty acid deficiency would increase liver Fads1 and Fads2 messenger RNA (mRNA) expression/activity and that n-3 fatty acid repletion would normalize this response. Adult rats fed the n-3-free diet during perinatal development exhibited significantly lower erythrocyte, liver, and frontal cortex LCn-3 fatty acid composition and reciprocal elevations in LC omega-6 (n-6) fatty acid composition compared with controls (CONs) and repleted rats. Liver Fads2, but not Fads1, Elovl2, or Elovl5, mRNA expression was significantly greater in n-3-deficient (DEF) rats compared with CONs and was partially normalized in repleted rats. The liver 18:3n-6/18:2n-6 ratio, an index of delta6-desturase activity, was significantly greater in DEF rats compared with CON and repleted rats and was positively correlated with Fads2 mRNA expression among all rats. The liver 18:3n-6/18:2n-6 ratio, but not Fads2 mRNA expression, was also positively correlated with erythrocyte and frontal cortex LCn-6 fatty acid compositions. Neither Fads1 or Fads2 mRNA expression was altered in brain cortex of DEF rats. These results confirm previous findings that liver, but not brain, delta6-desaturase expression and activity indices are negatively regulated by dietary n-3 fatty acids. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Omega-3 and omega-6 fatty acid intakes and endometrial cancer risk in a population-based case-control study.

    PubMed

    Arem, Hannah; Neuhouser, Marian L; Irwin, Melinda L; Cartmel, Brenda; Lu, Lingeng; Risch, Harvey; Mayne, Susan T; Yu, Herbert

    2013-04-01

    Animal and laboratory studies suggest that long-chain omega-3 (n-3) fatty acids, a type of polyunsaturated fat found in fatty fish, may protect against carcinogenesis, but human studies on dietary intake of polyunsaturated fats and fish with endometrial cancer risk show mixed results. We evaluated the associations between endometrial cancer risk and intake of fatty acids and fish in a population-based sample of 556 incident cancer cases and 533 age-matched controls using multivariate unconditional logistic regression methods. Although total n-3 fatty acid intake was not associated with endometrial cancer risk, higher intakes of eicosapentaenoic (EPA 20:5) and docosahexaenoic (DHA 22:6) fatty acids were significantly associated with lower risks (OR = 0.57, 95 % CI: 0.39-0.84; OR = 0.64, 95 % CI: 0.44-0.94; respectively) comparing extreme quartiles. The ratio of n-3:n-6 fatty acids was inversely associated with risk only on a continuous scale (OR = 0.84, 95 % CI: 0.71-0.99), while total fish intake was not associated with risk. Fish oil supplement use was significantly associated with reduced risk of endometrial cancer: OR = 0.63 (95 % CI: 0.45-0.88). Our results suggest that dietary intake of the long-chain polyunsaturated fatty acids EPA and DHA in foods and supplements may have protective associations against the development of endometrial cancer.

  10. Acetaminophen-induced liver injury is attenuated in transgenic fat-1 mice endogenously synthesizing long-chain n-3 fatty acids.

    PubMed

    Feng, Ruibing; Wang, Yang; Liu, Conghui; Yan, Chunyan; Zhang, Hang; Su, Huanxing; Kang, Jing X; Shang, Chang-Zhen; Wan, Jian-Bo

    2018-04-18

    Acetaminophen (APAP) overdose-induced hepatotoxicity is the most commonly cause of drug-induced liver failure characterized by oxidative stress, mitochondrial dysfunction, and cell damage. Therapeutic efficacy of omega-3 polyunsaturated fatty acids (n-3 PUFA) in several models of liver disease is well documented. However, the impacts of n-3 PUFA on APAP hepatotoxicity are not adequately addressed. In this study, the fat-1 transgenic mice that synthesize endogenous n-3 PUFA and wild type (WT) littermates were injected intraperitoneally with APAP at the dose of 400 mg/kg to induce liver injury, and euthanized at 0 h, 2 h, 4 h and 6 h post APAP injection for sampling. APAP overdose caused severe liver injury in WT mice as indicated by serum parameters, histopathological changes and hepatocyte apoptosis, which were remarkably ameliorated in fat-1 mice. These protective effects of n-3 PUFA were associated with regulation of the prolonged JNK activation via inhibition of apoptosis signal-regulating kinase 1 (ASK1)/mitogen-activated protein kinase kinase 4 (MKK4) pathway. Additionally, the augment of endogenous n-3 PUFA reduced nuclear factor kappa B (NF-κB) - mediated inflammation response induced by APAP treatment in the liver. These findings indicate that n-3 PUFA has potent protective effects against APAP-induced acute liver injury, suggesting that n-3 dietary supplement with n-3 PUFA may be a potential therapeutic strategy for the treatment of hepatotoxicity induced by APAP overdose. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Inadequate daily intakes of n-3 polyunsaturated fatty acids (PUFA) in the general French population of children (3-10 years) and adolescents (11-17 years): the INCA2 survey.

    PubMed

    Guesnet, Philippe; Tressou, Jessica; Buaud, Benjamin; Simon, Noëmie; Pasteau, Stéphane

    2018-04-23

    This paper deals with the dietary daily intakes of main polyunsaturated fatty acids (PUFA) in French children and adolescents. Dietary intakes of main PUFA were determined from a general French population of 1500 children (3-10 years) and adolescents (11-17 years) by using the most recent set of national robust data on food (National Survey INCA 2 performed in 2006 and 2007). Main results showed that mean daily intakes of total fat and n-6 PUFA linoleic acid (LA, 18:2n-6) were close to current recommended values for children and adolescent populations. However, 80% (children) to 90% (adolescents) of our French populations not only ingested low quantities of n-3 long-chain PUFA (docosahexaenoic (22:6n-3) and eicosapentaenoic (20:5n-3) acids) but also very low quantities of alpha-linolenic acid (ALA, 18:3n-3) at the origin of a non-balanced n-6/n-3 ratio. Inadequate consumption of EPA + DHA was also observed in subgroups of infants and adolescent who consumed more than two servings/week of fish. Such disequilibrium in PUFA dietary intakes in favor of n-6 PUFA could have adverse impact on cell membrane incorporation of long-chain n-3 PUFA and deleterious impacts on the health of children and adolescents. Promoting the consumption of both vegetable oils and margarines rich in ALA, and oily fish rich in long-chain n-3 PUFA might improve such PUFA disequilibrium.

  12. Dietary n-6 and n-3 fatty acids in immunity and autoimmune disease.

    PubMed

    Harbige, L S

    1998-11-01

    Clearly there is much evidence to show that under well-controlled laboratory and dietary conditions fatty acid intake can have profound effects on animal models of autoimmune disease. Studies in human autoimmune disease have been less dramatic; however, human trials have been subject to uncontrolled dietary and genetic backgrounds, infection and other environmental influences, and basic trial designs have been inadequate. The impact of dietary fatty acids on animal autoimmune disease models appears to depend on the animal model and the type and amount of fatty acids fed. Diets low in fat, essential fatty acid-deficient, or high in n-3 fatty acids from fish oils increase the survival and reduce disease severity in spontaneous autoantibody-mediated disease, whilst linoleic acid-rich diets appear to increase disease severity. In experimentally-induced T-cell-mediated autoimmune disease, essential fatty acid-deficient diets or diets supplemented with n-3 fatty acids appear to augment disease, whereas n-6 fatty acids prevent or reduce the severity. In contrast, in both T-cell and antibody-mediated auto-immune disease the desaturated and elongated metabolites of linoleic acid are protective. Suppression of autoantibody and T lymphocyte proliferation, apoptosis of autoreactive lymphocytes, and reduced pro-inflammatory cytokine production by high-dose fish oils are all likely mechanisms by which n-3 fatty acids ameliorate autoimmune disease. However, these could be undesirable long-term effects of high-dose fish oil which may compromise host immunity. The protective mechanism(s) of n-6 fatty acids in T-cell- mediated autoimmune disease are less clear, but may include dihomo-gamma-linolenic acid- and arachidonic acid-sensitive immunoregulatory circuits such as Th1 responses, TGF beta 1-mediated effects and Th3-like responses. It is often claimed that n-6 fatty acids promote autoimmune and inflammatory disease based on results obtained with linoleic acid only. It should be

  13. Long-chain n-3 PUFA supplied by the usual diet decrease plasma stearoyl-CoA desaturase index in non-hypertriglyceridemic older adults at high vascular risk.

    PubMed

    Pérez-Heras, Ana M; Mayneris-Perxachs, Jordi; Cofán, Montserrat; Serra-Mir, Mercè; Castellote, Ana I; López-Sabater, Carmen; Fitó, Montserrat; Salas-Salvadó, Jordi; Martínez-González, Miguel-Ángel; Corella, Dolores; Estruch, Ramon; Ros, Emilio; Sala-Vila, Aleix

    2018-02-01

    The activity of stearoyl-CoA desaturase-1 (SCD1), the central enzyme in the synthesis of monounsaturated fatty acids (MUFA), has been associated with de novo lipogenesis. In experimental models SCD1 is down-regulated by polyunsaturated fatty acids (PUFA), but clinical studies are scarce. The effect of long-chain n-3 PUFA (LCn-3PUFA) supplied by the regular diet, in the absence of fatty fish or fish oil supplementation, remains to be explored. We related 1-y changes in plasma SCD1 index, as assessed by the C16:1n-7/C16:0 ratio, to both adiposity traits and nutrient intake changes in a sub-cohort (n = 243) of non-hypertriglyceridemic subjects of the PREDIMED (PREvención con DIeta MEDiterranea) trial. After adjustment for confounders, including changes in fasting triglycerides, plasma SCD1 index increased in parallel with body weight (0.221 [95% confidence interval, 0.021 to 0.422], P = 0.031) and BMI (0.115 [0.027 to 0.202], P = 0.011). Additionally, dietary LCn-3PUFA (but not MUFA or plant-derived PUFA) were associated with decreased plasma SCD1 index (-0.544 [-1.044 to -0.043], P = 0.033, for each 1 g/d-increase in LCn-3PUFA). No associations were found for other food groups, but there was a trend for fatty fish intake (-0.083 [-0.177 to 0.012], P = 0.085, for each 10 g/d-increase). Our data add clinical evidence on the down-regulation of plasma SCD1 index by LCn-3PUFA in the context of realistic changes in fish consumption in the customary, non-supplemented diet. http://www.Controlled-trials.com/ISRCTN35739639. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  14. Long-chain polyunsaturated fatty acid supplementation had no effect on body weight but reduced energy intake in overweight and obese women.

    PubMed

    Harden, Charlotte J; Dible, Victoria A; Russell, Jean M; Garaiova, Iveta; Plummer, Sue F; Barker, Margo E; Corfe, Bernard M

    2014-01-01

    Longer-chain polyunsaturated fatty acids may have greater appetite-suppressing effects than shorter-chain, monosaturated, and saturated fatty acids. Because fish oils are predominantly composed of n-3 long-chain polyunsaturated fatty acid and may assist in the treatment of obesity comorbidities, their effect on body weight and body mass index is of interest. We hypothesized that daily supplementation with docosahexaenoic acid (DHA)-rich oil would reduce energy intake and body weight in overweight and obese women compared with supplementation with oleic acid (OA) rich oil. A double-blinded, randomized, parallel intervention was conducted. Body mass index (in kilograms per meter squared), body weight (in kilograms), body fat (in percent), and lean tissue (in kilograms) were measured at baseline and 12 weeks after intervention with DHA or OA. Diet diaries were also completed at these time points for estimation of energy and macronutrient intake. Subjects reported significantly lower energy (P = .020), carbohydrate (g) (P = .037), and fat (g) (P = .045) intake after DHA compared with OA. Body mass or composition was not affected by treatment, although a fall in body weight in the DHA group approached statistical significance (P = .089). Daily ingestion of DHA over a 12-week period may reduce energy intake in overweight and obese females, but longer-term and adequately powered studies using subjects of both sexes are needed. Other factors that should be considered include the following: the choice of control, the body mass index category of subjects, and ways of improving the compliancy and accuracy of dietary assessment. © 2013.

  15. Microbial Incorporation of Fatty Acids Derived From n-Alkanes Into Glycerides and Waxes

    PubMed Central

    Davis, J. B.

    1964-01-01

    When n-alkanes with 13 to 20 carbon atoms were fed to a Nocardia closely related to N. salmonicolor, the produced cellular triglycerides and aliphatic waxes invariably contained fatty acids with an even or an odd number of carbon atoms subject to this feature of the n-alkane substrate. Beta-oxidation and C2 addition are both operative, as evidenced by the spectra of fatty acids incorporated into the cellular lipid components. There is no distinction in the rate of microbial incorporation of the odd-or even-numbered carbon chains. The fatty acids are apparently directly derived from the long chain n-alkanes, rather than synthesized via the classic C2-condensation route. The alcohol component of waxes produced by the Nocardia is invariably of the same chain length as the n-alkane substrate. PMID:14170957

  16. Disturbance of mitochondrial functions provoked by the major long-chain 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies in skeletal muscle.

    PubMed

    Cecatto, Cristiane; Godoy, Kálita Dos Santos; da Silva, Janaína Camacho; Amaral, Alexandre Umpierrez; Wajner, Moacir

    2016-10-01

    The pathogenesis of the muscular symptoms and recurrent rhabdomyolysis that are commonly manifested in patients with mitochondrial trifunctional protein (MTP) and long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) deficiencies is still unknown. In this study we investigated the effects of the major long-chain monocarboxylic 3-hydroxylated fatty acids (LCHFA) accumulating in these disorders, namely 3-hydroxytetradecanoic (3HTA) and 3-hydroxypalmitic (3HPA) acids, on important mitochondrial functions in rat skeletal muscle mitochondria. 3HTA and 3HPA markedly increased resting (state 4) and decreased ADP-stimulated (state 3) and CCCP-stimulated (uncoupled) respiration. 3HPA provoked similar effects in permeabilized skeletal muscle fibers, validating the results obtained in purified mitochondria. Furthermore, 3HTA and 3HPA markedly diminished mitochondrial membrane potential, NAD(P)H content and Ca(2+) retention capacity in Ca(2+)-loaded mitochondria. Mitochondrial permeability transition (mPT) induction probably underlie these effects since they were totally prevented by cyclosporin A and ADP. In contrast, the dicarboxylic analogue of 3HTA did not alter the tested parameters. Our data strongly indicate that 3HTA and 3HPA behave as metabolic inhibitors, uncouplers of oxidative phosphorylation and mPT inducers in skeletal muscle. It is proposed that these pathomechanisms disrupting mitochondrial homeostasis may be involved in the muscle alterations characteristic of MTP and LCHAD deficiencies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Activation of Short and Long Chain Fatty Acid Sensing Machinery in the Ileum Lowers Glucose Production in Vivo.

    PubMed

    Zadeh-Tahmasebi, Melika; Duca, Frank A; Rasmussen, Brittany A; Bauer, Paige V; Côté, Clémence D; Filippi, Beatrice M; Lam, Tony K T

    2016-04-15

    Evidence continues to emerge detailing the myriad of ways the gut microbiota influences host energy homeostasis. Among the potential mechanisms, short chain fatty acids (SCFAs), the byproducts of microbial fermentation of dietary fibers, exhibit correlative beneficial metabolic effects in humans and rodents, including improvements in glucose homeostasis. The underlying mechanisms, however, remain elusive. We here report that one of the main bacterially produced SCFAs, propionate, activates ileal mucosal free fatty acid receptor 2 to trigger a negative feedback pathway to lower hepatic glucose production in healthy rats in vivo We further demonstrate that an ileal glucagon-like peptide-1 receptor-dependent neuronal network is necessary for ileal propionate and long chain fatty acid sensing to regulate glucose homeostasis. These findings highlight the potential to manipulate fatty acid sensing machinery in the ileum to regulate glucose homeostasis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Modeling of anaerobic degradation of solid slaughterhouse waste: inhibition effects of long-chain fatty acids or ammonia.

    PubMed

    Lokshina, L Y; Vavilin, V A; Salminen, E; Rintala, J

    2003-01-01

    The anaerobic bioconversion of solid poultry slaughterhouse wastes was kinetically investigated. The modified version of simulation model was applied for description of experimental data in mesophilic laboratory digester and assays. Additionally, stages of formation and consumption of long chain fatty acids (LCFA) were included in the model. Batch data on volatile solids, ammonium, acetate, butyrate, propionate, LCFA concentrations, pH level, cumulative volume, and methane partial pressure were used for model calibration. As a reference, the model was used to describe digestion of solid sorted household waste. Simulation results showed that an inhibition of polymer hydrolysis by volatile fatty acids and acetogenesis by NH3 or LCFA could be responsible for the complex system dynamics during degradation of lipid- and protein-rich wastes.

  19. ω3 fatty acid desaturases from microorganisms: structure, function, evolution, and biotechnological use.

    PubMed

    Wang, Mingxuan; Chen, Haiqin; Gu, Zhennan; Zhang, Hao; Chen, Wei; Chen, Yong Q

    2013-12-01

    The biosynthesis of very-long-chain polyunsaturated fatty acids involves an alternating process of fatty acid desaturation and elongation catalyzed by complex series of enzymes. ω3 desaturase plays an important role in converting ω6 fatty acids into ω3 fatty acids. Genes for this desaturase have been identified and characterized in a wide range of microorganisms, including cyanobacteria, yeasts, molds, and microalgae. Like all fatty acid desaturases, ω3 desaturase is structurally characterized by the presence of three highly conserved histidine-rich motifs; however, unlike some desaturases, it lacks a cytochrome b5-like domain. Understanding the structure, function, and evolution of ω3 desaturases, particularly their substrate specificities in the biosynthesis of very-long-chain polyunsaturated fatty acids, lays the foundation for potential production of various ω3 fatty acids in transgenic microorganisms.

  20. Formula with long-chain polyunsaturated fatty acids reduces incidence of allergy in early childhood.

    PubMed

    Foiles, Amanda M; Kerling, Elizabeth H; Wick, Jo A; Scalabrin, Deolinda M F; Colombo, John; Carlson, Susan E

    2016-03-01

    Allergy has sharply increased in affluent Western countries in the last 30 years. N-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs) may protect the immune system against development of allergy. We prospectively categorized illnesses by body system in a subset of 91 children from the Kansas City cohort of the DIAMOND (DHA Intake and Measurement of Neural Development) study who had yearly medical records through 4 years of age. As infants, they were fed either a control formula without LCPUFA (n = 19) or one of three formulas with LCPUFA from docosahexaenoic acid (DHA) and arachidonic acid (ARA) (n = 72). Allergic illnesses in the first year were lower in the combined LCPUFA group compared to the control. LCPUFAs significantly delayed time to first allergic illness (p = 0.04) and skin allergic illness (p = 0.03) and resulted in a trend to reduced wheeze/asthma (p = 0.1). If the mother had no allergies, LCPUFAs reduced the risk of any allergic diseases (HR = 0.24, 95% CI = 0.1, 0.56, p = 0.0.001) and skin allergic diseases (HR = 0.35, 95% CI = 0.13, 0.93, p = 0.04). In contrast, if the mother had allergies, LCPUFAs reduced wheezing/asthma (HR = 0.26, 95% CI = 0.07, 0.9, p = 0.02). LCPUFA supplementation during infancy reduced the risk of skin and respiratory allergic diseases in childhood with effects influenced by maternal allergies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Importance of medium chain fatty acids in animal nutrition

    NASA Astrophysics Data System (ADS)

    Baltić, B.; Starčević, M.; Đorđević, J.; Mrdović, B.; Marković, R.

    2017-09-01

    Fats in animal and human nutrition are a common subject of research. These studies most often pay attention to particular fat groups (saturated, unsaturated, polyunsaturated fats or fats grouped by the length of their fatty acid chains into short, medium or long chain fatty acids). Medium chain fatty acids (MCFAs) have two main sources: milk and coconut oil. To date, research has shown these acids have positive effects on health, production, feed digestibility and lower body and muscle fats in broilers and swine. MCFAs possess antibacterial, anticoccidial and antiviral effects. Also, it has been proven that these acids act synergistically if they are used together with organic acids, essential oils, or probiotics. Nowadays, commercial MCFA products are available for use in animal nutrition as feed additives.

  2. ECERIFERUM2-LIKE proteins have unique biochemical and physiological functions in very-long-chain fatty acid elongation.

    PubMed

    Haslam, Tegan M; Haslam, Richard; Thoraval, Didier; Pascal, Stéphanie; Delude, Camille; Domergue, Frédéric; Fernández, Aurora Mañas; Beaudoin, Frédéric; Napier, Johnathan A; Kunst, Ljerka; Joubès, Jérôme

    2015-03-01

    The extension of very-long-chain fatty acids (VLCFAs) for the synthesis of specialized apoplastic lipids requires unique biochemical machinery. Condensing enzymes catalyze the first reaction in fatty acid elongation and determine the chain length of fatty acids accepted and produced by the fatty acid elongation complex. Although necessary for the elongation of all VLCFAs, known condensing enzymes cannot efficiently synthesize VLCFAs longer than 28 carbons, despite the prevalence of C28 to C34 acyl lipids in cuticular wax and the pollen coat. The eceriferum2 (cer2) mutant of Arabidopsis (Arabidopsis thaliana) was previously shown to have a specific deficiency in cuticular waxes longer than 28 carbons, and heterologous expression of CER2 in yeast (Saccharomyces cerevisiae) demonstrated that it can modify the acyl chain length produced by a condensing enzyme from 28 to 30 carbon atoms. Here, we report the physiological functions and biochemical specificities of the CER2 homologs CER2-LIKE1 and CER2-LIKE2 by mutant analysis and heterologous expression in yeast. We demonstrate that all three CER2-LIKEs function with the same small subset of condensing enzymes, and that they have different effects on the substrate specificity of the same condensing enzyme. Finally, we show that the changes in acyl chain length caused by each CER2-LIKE protein are of substantial importance for cuticle formation and pollen coat function. © 2015 American Society of Plant Biologists. All Rights Reserved.

  3. Long-chain polyunsaturated fatty acids and the preterm infant: a case study in developmentally sensitive nutrient needs in the United States.

    PubMed

    Brenna, J Thomas

    2016-02-01

    The vast majority of infant formulas in the United States contain the long-chain polyunsaturated fatty acids (PUFAs) docosahexaenoic acid (22:6n-3) and arachidonic acid (20:4n-6), which were first permitted by the US Food and Drug Administration in 2001. As a scientific case study, preclinical animal studies of these nutrients definitively influenced the design and interpretation of human clinical studies. Early studies were tied to the availability of test substances, and in hindsight suggest re-evaluation of the essential fatty acid concept in light of the totality of available evidence. Research in the 1950s established the essentiality of n-6 PUFAs for skin integrity; however, widespread recognition of the essentiality of n-3 PUFAs came decades later despite compelling evidence of their significance. Barriers to an understanding of the essentiality of n-3 PUFAs were as follows: 1) their role is in neural function, which is measured only with difficulty compared with skin lesions and growth faltering that are apparent for n-6 PUFAs; 2) the experimental use of vegetable oils as PUFA sources that contain the inefficiently used C18 PUFAs rather than the operative C20 and C22 PUFAs; 3) the shift from reliance on high-quality animal studies to define mechanisms that established the required nutrients in the first part of the 20th century to inherently challenging human studies. Advances in nutrition of premature infants require the best practices and opinions available, taking into account the totality of preclinical and clinical evidence. © 2016 American Society for Nutrition.

  4. Study of Triheptanoin for Treatment of Long-Chain Fatty Acid Oxidation Disorder

    ClinicalTrials.gov

    2017-03-21

    Very Long-chain acylCoA Dehydrogenase (VLCAD) Deficiency; Carnitine Palmitoyltransferase 2 (CPT2) Deficiency; Mitochondrial Trifunctional Protein (TFP) Deficiency; Long-chain 3 hydroxyacylCoA Dehydrogenase (LCHAD) Deficiency

  5. Growth and development in preterm infants fed long-chain polyunsaturated fatty acids: a prospective, randomized controlled trial.

    PubMed

    O'Connor, D L; Hall, R; Adamkin, D; Auestad, N; Castillo, M; Connor, W E; Connor, S L; Fitzgerald, K; Groh-Wargo, S; Hartmann, E E; Jacobs, J; Janowsky, J; Lucas, A; Margeson, D; Mena, P; Neuringer, M; Nesin, M; Singer, L; Stephenson, T; Szabo, J; Zemon, V

    2001-08-01

    A randomized, masked, controlled trial was conducted to assess effects of supplementing premature infant formulas with oils containing the long-chain polyunsaturated fatty acids, arachidonic acid (AA; 20:4 n6), and docosahexaenoic acid (DHA; 22:6 n3) on growth, visual acuity, and multiple indices of development. Infants (N = 470) with birth weights 750 to 1800 g were assigned within 72 hours of the first enteral feeding to 1 of 3 formula groups with or without long-chain polyunsaturated fatty acids: 1) control (N = 144), 2) AA+DHA from fish/fungal oil (N = 140), and 3) AA+DHA from egg-derived triglyceride (egg-TG)/fish oil (N = 143). Infants were fed human milk and/or Similac Special Care with or without 0.42% AA and 0.26% DHA to term corrected age (CA), then fed human milk or NeoSure with or without 0.42% AA and 0.16% DHA to 12 months' CA. Infants fed exclusively human milk to term CA (EHM-T; N = 43) served as a reference. Visual acuity measured by acuity cards at 2, 4, and 6 months' CA was not different among groups. Visual acuity measured by swept-parameter visual-evoked potentials in a subgroup from 3 sites (45 control, 50 AA+DHA [fish/fungal]; 39 AA+DHA [egg-TG/fish]; and 23 EHM-T) was better in both the AA+DHA (fish/fungal; least square [LS] means [cycle/degree] +/- standard error [SE; octaves] 11.4 +/- 0.1) and AA+DHA (egg-TG/fish; 12.5 +/- 0.1) than control (8.4 +/- 0.1) and closer to that of the EHM-T group (16.0 +/- 0.2) at 6 months' CA. Visual acuity improved from 4 to 6 months' CA in all but the control group. Scores on the Fagan test of novelty preference were greater in AA+DHA (egg-TG/fish; LS means +/- SE, 59.4 +/- 7.7) than AA+DHA (fish/fungal; 57.0 +/- 7.5) and control (57.5 +/- 7.4) at 6 months' CA, but not at 9 months' CA. There were no differences in the Bayley Mental Development Index at 12 months' CA. However, the Bayley motor development index was higher for AA+DHA (fish/fungal; LS means +/- SE, 90.6 +/- 4.4) than control (81.8 +/- 4.3) for

  6. ω-3 Long-Chain Polyunsaturated Fatty Acids and Fatty Acid Desaturase Activity Ratios as Eventual Endophenotypes for ADHD.

    PubMed

    Henríquez-Henríquez, Marcela; Solari, Sandra; Várgas, Gisela; Vásquez, Luis; Allende, Fidel; Castañón S, Carla; Tenorio, Marcela; Quiroga Gutiérrez, Teresa

    2015-11-01

    Epidemiological studies suggest that long-chain polyunsaturated fatty acids (LC-PUFAs) may be suitable as endophenotypes for ADHD. To be appropriated vulnerability traits, endophenotypes should be altered in unaffected relatives of index cases. Serum profiles of LC-PUFAs in unaffected relatives of ADHD patients remain understudied. The main objective of this study was to compare serum LC-PUFAs in ADHD patients, unaffected relatives of index cases, and general-population unaffected participants. LC-PUFA profiles of 72 participants (27 ADHD patients, 27 unaffected relatives, and 18 general-population participants) were obtained by gas chromatography-mass spectrometry (GC-MS). Groups were compared by parametrical statistics. Unaffected females from the general population presented lower Docosapentaenoic acid (DPA; p = .0012) and a-linolenic acid (ALA; p = .0091) levels compared with ADHD females and unaffected relatives. In addition, docosahexaenoic acid (DHA)/ALA and DHA/DPA ratios, addressing desaturase activity, were significantly lower in ADHD patients and unaffected relatives of ADHD patients in the female-subgroup (p = .022 and .04, respectively). DHA/ALA, DHA/DPA, serum DPA, and serum ALA may be suitable as endophenotypes for ADHD women. © The Author(s) 2012.

  7. Long-Chain Polyunsaturated Fatty Acids and Clinical Outcomes of Preterm Infants.

    PubMed

    Lapillonne, Alexandre; Moltu, Sissel J

    2016-01-01

    Long-chain polyunsaturated fatty acids (LCPUFAs) play specific roles during the perinatal period and are very important nutrients to consider. The possible effects of LCPUFAs, particularly docosahexaenoic acid (DHA), on various clinical outcomes of preterm infants are discussed in this paper. Since DHA accumulates in the central nervous system during development, a lot of attention has focused on the effects of DHA on neurodevelopment. Experimental studies as well as recent clinical trials show that providing larger amounts of DHA than currently and routinely provided is associated with better neurological outcomes at 18 months to 2 years. This early advantage, however, does not seem to translate into detectable change in visual and neurodevelopmental outcomes or behavior when assessed in childhood. There is growing evidence that, in addition to effects on development, omega-3 LCPUFAs may reduce the incidence or severity of neonatal morbidities by affecting different steps of the immune and anti-inflammatory response. Studies in preterm infants suggest that the omega-3 LCPUFAs may play a significant role by reducing the risk of bronchopulmonary dysplasia, necrotizing enterocolitis and possibly retinopathy of prematurity and sepsis. Overall, evidence is increasing to support the benefits of high-dose DHA for various health outcomes of preterm infants. These findings are of major clinical relevance mainly because infants born preterm are at particularly high risk for a nutritional deficit in omega-3 fatty acids, predisposing to adverse neonatal outcomes. Further studies are warranted to address these issues as well as to more precisely determine the LCPUFA requirement in order to favor the best possible outcomes of preterm infants. © 2016 S. Karger AG, Basel.

  8. Adherence to an (n-3) Fatty Acid/Fish Intake Pattern Is Inversely Associated with Metabolic Syndrome among Puerto Rican Adults in the Greater Boston Area123

    PubMed Central

    Noel, Sabrina E.; Newby, P. K.; Ordovas, Jose M.; Tucker, Katherine L.

    2010-01-01

    Combinations of fatty acids may affect risk of metabolic syndrome. Puerto Ricans have a disproportionate number of chronic conditions compared with other Hispanic groups. We aimed to characterize fatty acid intake patterns of Puerto Rican adults aged 45–75 y and living in the Greater Boston area (n = 1207) and to examine associations between these patterns and metabolic syndrome. Dietary fatty acids, as a percentage of total fat, were entered into principle components analysis. Spearman correlation coefficients were used to examine associations between fatty acid intake patterns, nutrients, and food groups. Associations with metabolic syndrome were analyzed by using logistic regression and general linear models with quintiles of principal component scores. Four principal components (factors) emerged: factor 1, short- and medium-chain SFA/dairy; factor 2, (n-3) fatty acid/fish; factor 3, very long-chain (VLC) SFA and PUFA/oils; and factor 4, monounsaturated fatty acid/trans fat. The SFA/dairy factor was inversely associated with fasting serum glucose concentrations (P = 0.02) and the VLC SFA/oils factor was negatively related to waist circumference (P = 0.008). However, these associations were no longer significant after additional adjustment for BMI. The (n-3) fatty acid/fish factor was associated with a lower likelihood of metabolic syndrome (Q5 vs. Q1: odds ratio: 0.54, 95% CI: 0.34, 0.86). In summary, principal components analysis of fatty acid intakes revealed 4 dietary fatty acid patterns in this population. Identifying optimal combinations of fatty acids may be beneficial for understanding relationships with health outcomes given their diverse effects on metabolism. PMID:20702744

  9. Therapeutic potential of n-3 polyunsaturated fatty acids in disease.

    PubMed

    Fetterman, James W; Zdanowicz, Martin M

    2009-07-01

    The potential therapeutic benefits of supplementation with n-3 polyunsaturated fatty acids (PUFAs) in various diseases are reviewed, and the antiinflammatory actions, activity, and potential drug interactions and adverse effects of n-3 PUFAs are discussed. Fish oils are an excellent source of long-chain n-3 PUFAs, such as eicosapentaenoic acid and docosahexaenoic acid. After consumption, n-3 PUFAs can be incorporated into cell membranes and reduce the amount of arachidonic acid available for the synthesis of proinflammatory eicosanoids (e.g., prostaglandins, leukotrienes). Likewise, n-3 PUFAs can also reduce the production of inflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1, and interleukin-6. Considerable research has been conducted to evaluate the potential therapeutic effects of fish oils in numerous conditions, including arthritis, coronary artery disease, inflammatory bowel disease, asthma, and sepsis, all of which have inflammation as a key component of their pathology. Additional investigations into the use of supplementation with fish oils in patients with neural injury, cancer, ocular diseases, and critical illness have recently been conducted. The most commonly reported adverse effects of fish oil supplements are a fishy aftertaste and gastrointestinal upset. When recommending an n-3 PUFA, clinicians should be aware of any possible adverse effect or drug interaction that, although not necessarily clinically significant, may occur, especially for patients who may be susceptible to increased bleeding (e.g., patients taking warfarin). The n-3 PUFAs have been shown to be efficacious in treating and preventing various diseases. The wide variation in dosages and formulations used in studies makes it difficult to recommend dosages for specific treatment goals.

  10. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling.

    PubMed Central

    Faergeman, N J; Knudsen, J

    1997-01-01

    The intracellular concentration of free unbound acyl-CoA esters is tightly controlled by feedback inhibition of the acyl-CoA synthetase and is buffered by specific acyl-CoA binding proteins. Excessive increases in the concentration are expected to be prevented by conversion into acylcarnitines or by hydrolysis by acyl-CoA hydrolases. Under normal physiological conditions the free cytosolic concentration of acyl-CoA esters will be in the low nanomolar range, and it is unlikely to exceed 200 nM under the most extreme conditions. The fact that acetyl-CoA carboxylase is active during fatty acid synthesis (Ki for acyl-CoA is 5 nM) indicates strongly that the free cytosolic acyl-CoA concentration is below 5 nM under these conditions. Only a limited number of the reported experiments on the effects of acyl-CoA on cellular functions and enzymes have been carried out at low physiological concentrations in the presence of the appropriate acyl-CoA-buffering binding proteins. Re-evaluation of many of the reported effects is therefore urgently required. However, the observations that the ryanodine-senstitive Ca2+-release channel is regulated by long-chain acyl-CoA esters in the presence of a molar excess of acyl-CoA binding protein and that acetyl-CoA carboxylase, the AMP kinase kinase and the Escherichia coli transcription factor FadR are affected by low nanomolar concentrations of acyl-CoA indicate that long-chain acyl-CoA esters can act as regulatory molecules in vivo. This view is further supported by the observation that fatty acids do not repress expression of acetyl-CoA carboxylase or Delta9-desaturase in yeast deficient in acyl-CoA synthetase. PMID:9173866

  11. Long-chain n-3 PUFAs from fish oil enhance resting state brain glucose utilization and reduce anxiety in an adult nonhuman primate, the grey mouse lemur

    PubMed Central

    Pifferi, Fabien; Dorieux, Olène; Castellano, Christian-Alexandre; Croteau, Etienne; Masson, Marie; Guillermier, Martine; Van Camp, Nadja; Guesnet, Philippe; Alessandri, Jean-Marc; Cunnane, Stephen; Dhenain, Marc; Aujard, Fabienne

    2015-01-01

    Decreased brain content of DHA, the most abundant long-chain n-3 polyunsaturated fatty acid (n-3 LCPUFA) in the brain, is accompanied by severe neurosensorial impairments linked to impaired neurotransmission and impaired brain glucose utilization. In the present study, we hypothesized that increasing n-3 LCPUFA intake at an early age may help to prevent or correct the glucose hypometabolism observed during aging and age-related cognitive decline. The effects of 12 months’ supplementation with n-3 LCPUFA on brain glucose utilization assessed by positron emission tomography was tested in young adult mouse lemurs (Microcebus murinus). Cognitive function was tested in parallel in the same animals. Lemurs supplemented with n-3 LCPUFA had higher brain glucose uptake and cerebral metabolic rate of glucose compared with controls in all brain regions. The n-3 LCPUFA-supplemented animals also had higher exploratory activity in an open-field task and lower evidence of anxiety in the Barnes maze.jlr Our results demonstrate for the first time in a nonhuman primate that n-3 LCPUFA supplementation increases brain glucose uptake and metabolism and concomitantly reduces anxiety. PMID:26063461

  12. Long-chain n-3 PUFAs from fish oil enhance resting state brain glucose utilization and reduce anxiety in an adult nonhuman primate, the grey mouse lemur.

    PubMed

    Pifferi, Fabien; Dorieux, Olène; Castellano, Christian-Alexandre; Croteau, Etienne; Masson, Marie; Guillermier, Martine; Van Camp, Nadja; Guesnet, Philippe; Alessandri, Jean-Marc; Cunnane, Stephen; Dhenain, Marc; Aujard, Fabienne

    2015-08-01

    Decreased brain content of DHA, the most abundant long-chain n-3 polyunsaturated fatty acid (n-3 LCPUFA) in the brain, is accompanied by severe neurosensorial impairments linked to impaired neurotransmission and impaired brain glucose utilization. In the present study, we hypothesized that increasing n-3 LCPUFA intake at an early age may help to prevent or correct the glucose hypometabolism observed during aging and age-related cognitive decline. The effects of 12 months' supplementation with n-3 LCPUFA on brain glucose utilization assessed by positron emission tomography was tested in young adult mouse lemurs (Microcebus murinus). Cognitive function was tested in parallel in the same animals. Lemurs supplemented with n-3 LCPUFA had higher brain glucose uptake and cerebral metabolic rate of glucose compared with controls in all brain regions. The n-3 LCPUFA-supplemented animals also had higher exploratory activity in an open-field task and lower evidence of anxiety in the Barnes maze. Our results demonstrate for the first time in a nonhuman primate that n-3 LCPUFA supplementation increases brain glucose uptake and metabolism and concomitantly reduces anxiety. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  13. Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals.

    PubMed

    Yu, Tao; Zhou, Yongjin J; Wenning, Leonie; Liu, Quanli; Krivoruchko, Anastasia; Siewers, Verena; Nielsen, Jens; David, Florian

    2017-05-26

    Production of chemicals and biofuels through microbial fermentation is an economical and sustainable alternative for traditional chemical synthesis. Here we present the construction of a Saccharomyces cerevisiae platform strain for high-level production of very-long-chain fatty acid (VLCFA)-derived chemicals. Through rewiring the native fatty acid elongation system and implementing a heterologous Mycobacteria FAS I system, we establish an increased biosynthesis of VLCFAs in S. cerevisiae. VLCFAs can be selectively modified towards the fatty alcohol docosanol (C 22 H 46 O) by expressing a specific fatty acid reductase. Expression of this enzyme is shown to impair cell growth due to consumption of VLCFA-CoAs. We therefore implement a dynamic control strategy for separating cell growth from docosanol production. We successfully establish high-level and selective docosanol production of 83.5 mg l -1 in yeast. This approach will provide a universal strategy towards the production of similar high value chemicals in a more scalable, stable and sustainable manner.

  14. Safety evaluation of a medium- and long-chain triacylglycerol oil produced from medium-chain triacylglycerols and edible vegetable oil.

    PubMed

    Matulka, R A; Noguchi, O; Nosaka, N

    2006-09-01

    To reduce the incorporation of dietary lipids into adipose tissue, modified fats and oils have been developed, such as medium-chain triacylglycerols (MCT). Typical dietary lipids from vegetable oils, termed long-chain triacylglycerols (LCT), are degraded by salivary, intestinal and pancreatic lipases into two fatty acids and a monoacyl glycerol; whereas, MCT are degraded by the same enzymes into three fatty acids and the simple glycerol backbone. Medium-chain fatty acids (MCFA) are readily absorbed from the small intestine directly into the bloodstream and transported to the liver for hepatic metabolism, while long-chain fatty acids (LCFA) are incorporated into chylomicrons and enter the lymphatic system. MCFA are readily broken down to carbon dioxide and two-carbon fragments, while LCFA are re-esterified to triacylglycerols and either metabolized for energy or stored in adipose tissue. Therefore, consumption of MCT decreases the incorporation of fatty acids into adipose tissue. However, MCT have technological disadvantages precluding their use in many food applications. A possible resolution is the manufacture and use of a triacylglycerol containing both LCT and MCT, termed medium- and long-chain triacylglycerol (MLCT). This manuscript describes studies performed for the safety evaluation of a MLCT oil enzymatically produced from MCT and edible vegetable oil (containing LCT), by a transesterification process. The approximate fatty acid composition of this MLCT consists of caprylic acid (9.7%), capric acid (3.3%), palmitic acid (3.8%), stearic acid (1.7%), oleic acid (51.2%), linoleic acid (18.4%), linolenic acid (9.0%), and other fatty acids (2.9%). The approximate percentages of long (L) and medium (M) fatty acids in the triacylglyerols are as follows: L, L, L (55.1%), L, L, M (35.2%), L, M, M (9.1%), and M, M, M (0.6%). The studies included: (1) acute study in rats (LD50>5000 mg/kg); (2) 6 week repeat-dose safety study via dietary administration to rats (NOAEL

  15. Associations of Dietary Long-Chain ω-3 Polyunsaturated Fatty Acids and Fish Consumption With Endometrial Cancer Risk in the Black Women's Health Study

    PubMed Central

    Brasky, Theodore M.; Sponholtz, Todd R.; Palmer, Julie R.; Rosenberg, Lynn; Ruiz-Narváez, Edward A.; Wise, Lauren A.

    2016-01-01

    Dietary long-chain (LC) ω-3 polyunsaturated fatty acids (PUFAs), which derive primarily from intakes of fatty fish, are thought to inhibit inflammation and de novo estrogen synthesis. This study prospectively examined the associations of dietary LC ω-3 PUFAs and fish with endometrial cancer risk in 47,602 African-American women living in the United States, aged 21–69 years at baseline in 1995, and followed them until 2013 (n = 282 cases). Multivariable-adjusted Cox regression models estimated hazard ratios and 95% confidence intervals for associations of LC ω-3 PUFA (quintiled) and fish (quartiled) intake with endometrial cancer risk, overall and by body mass index (BMI; weight (kg)/height (m)2). The hazard ratio for quintile 5 of total dietary LC ω-3 PUFAs versus quintile 1 was 0.79 (95% confidence interval (CI): 0.51, 1.24); there was no linear trend. Hazard ratios for the association were smaller among normal-weight women (BMI <25: hazard ratio (HR) = 0.53, 95% CI: 0.18, 1.58) than among overweight/obese women (BMI ≥25: HR = 0.88, 95% CI: 0.54, 1.43), but these differences were not statistically significant. Fish intake was also not associated with risk (quartile 4 vs. quartile 1: HR = 0.86, 95% CI: 0.56, 1.31). Again hazard ratios were smaller among normal-weight women (HR = 0.65) than among overweight/obese women (HR = 0.94). While compatible with no association, the hazard ratios observed among leaner African-American women are similar to those from recent prospective studies conducted in predominantly white populations. PMID:26755676

  16. Crystal Structures of Xanthomonas campestris OleA Reveal Features That Promote Head-to-Head Condensation of Two Long-Chain Fatty Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goblirsch, BR; Frias, JA; Wackett, LP

    2012-05-22

    OleA is a thiolase superfamily enzyme that has been shown to catalyze the condensation of two long-chain fatty acylcoenzyme A (CoA) substrates. The enzyme is part of a larger gene cluster responsible for generating long-chain olefin products, a potential biofuel precursor. In thiolase superfamily enzymes, catalysis is achieved via a ping-pong mechanism. The first substrate forms a covalent intermediate with an active site cysteine that is followed by reaction with the second substrate. For OleA, this conjugation proceeds by a nondecarboxylative Claisen condensation. The OleA from Xanthomonas campestris has been crystallized and its structure determined, along with inhibitor-bound and xenon-derivatizedmore » structures, to improve our understanding of substrate positioning in the context of enzyme turnover. OleA is the first characterized thiolase superfamily member that has two long-chain alkyl substrates that need to be bound simultaneously and therefore uniquely requires an additional alkyl binding channel. The location of the fatty acid biosynthesis inhibitor, cerulenin, that possesses an alkyl chain length in the range of known OleA substrates, in conjunction with a single xenon binding site, leads to the putative assignment of this novel alkyl binding channel. Structural overlays between the OleA homologues, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase and the fatty acid biosynthesis enzyme FabH, allow assignment of the two remaining channels: one for the thioester-containing pantetheinate arm and the second for the alkyl group of one substrate. A short beta-hairpin region is ordered in only one of the crystal forms, and that may suggest open and closed states relevant for substrate binding. Cys143 is the conserved catalytic cysteine within the superfamily, and the site of alkylation by cerulenin. The alkylated structure suggests that a glutamic acid residue (Glu117 beta) likely promotes Claisen condensation by acting as the catalytic base. Unexpectedly

  17. Crystal Structures of Xanthomonas campestris OleA Reveal Features That Promote Head-to-Head Condensation of Two Long-Chain Fatty Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goblirsch, Brandon R.; Frias, Janice A.; Wackett, Lawrence P.

    2012-10-25

    OleA is a thiolase superfamily enzyme that has been shown to catalyze the condensation of two long-chain fatty acyl-coenzyme A (CoA) substrates. The enzyme is part of a larger gene cluster responsible for generating long-chain olefin products, a potential biofuel precursor. In thiolase superfamily enzymes, catalysis is achieved via a ping-pong mechanism. The first substrate forms a covalent intermediate with an active site cysteine that is followed by reaction with the second substrate. For OleA, this conjugation proceeds by a nondecarboxylative Claisen condensation. The OleA from Xanthomonas campestris has been crystallized and its structure determined, along with inhibitor-bound and xenon-derivatizedmore » structures, to improve our understanding of substrate positioning in the context of enzyme turnover. OleA is the first characterized thiolase superfamily member that has two long-chain alkyl substrates that need to be bound simultaneously and therefore uniquely requires an additional alkyl binding channel. The location of the fatty acid biosynthesis inhibitor, cerulenin, that possesses an alkyl chain length in the range of known OleA substrates, in conjunction with a single xenon binding site, leads to the putative assignment of this novel alkyl binding channel. Structural overlays between the OleA homologues, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase and the fatty acid biosynthesis enzyme FabH, allow assignment of the two remaining channels: one for the thioester-containing pantetheinate arm and the second for the alkyl group of one substrate. A short {beta}-hairpin region is ordered in only one of the crystal forms, and that may suggest open and closed states relevant for substrate binding. Cys143 is the conserved catalytic cysteine within the superfamily, and the site of alkylation by cerulenin. The alkylated structure suggests that a glutamic acid residue (Glu117{beta}) likely promotes Claisen condensation by acting as the catalytic base

  18. Breastfeeding, long-chain polyunsaturated fatty acids in colostrum, and infant mental development.

    PubMed

    Guxens, Mònica; Mendez, Michelle A; Moltó-Puigmartí, Carolina; Julvez, Jordi; García-Esteban, Raquel; Forns, Joan; Ferrer, Muriel; Vrijheid, Martine; López-Sabater, M Carmen; Sunyer, Jordi

    2011-10-01

    Breastfeeding has been associated with improved neurodevelopment in children. However, it remains unknown to what extent nutritional advantages of breast milk may explain this relationship. We assessed the role of parental psychosocial factors and colostrum long-chain polyunsaturated fatty acid (LC-PUFA) levels in the relationship between breastfeeding and children's neurodevelopment. A population-based birth cohort was established in the city of Sabadell (Catalonia, Spain) as part of the INMA-INfancia y Medio Ambiente Project. A total of 657 women were recruited during the first trimester of pregnancy. Information about parental characteristics and breastfeeding was obtained by using a questionnaire, and trained psychologists assessed mental and psychomotor development by using the Bayley Scales of Infant Development in 504 children at 14 months of age. A high percentage of breastfeeds among all milk feeds accumulated during the first 14 months was positively related with child mental development (0.37 points per month of full breastfeeding [95% confidence interval: 0.06-0.67]). Maternal education, social class, and intelligence quotient only partly explained this association. Children with a longer duration of breastfeeding also exposed to higher ratios between n-3 and n-6 PUFAs in colostrum had significantly higher mental scores than children with low breastfeeding duration exposed to low levels. Greater levels of accumulated breastfeeding during the first year of life were related to higher mental development at 14 months, largely independently from a wide range of parental psychosocial factors. LC-PUFA levels seem to play a beneficial role in children's mental development when breastfeeding levels are high.

  19. Long-chain omega 3 fatty acids: molecular bases of potential antioxidant actions.

    PubMed

    Giordano, Elena; Visioli, Francesco

    2014-01-01

    Several lines of investigation are being developed to assess the impact of polyunsaturated fatty acids, namely those of the omega 3 series, intake on oxidative stress. Keeping in mind that there might be a dose-response relation, in vivo and in vitro data strongly suggest that omega 3 fatty acids might act as anti- rather than pro-oxidant in several cells such as vascular cells, hence diminishing inflammation, oxidative stress, and, in turn, the risk of atherosclerosis and degenerative disorders such as cardiovascular disease. © 2013 Published by Elsevier Ltd.

  20. Molecular characterization of elongase of very long-chain fatty acids 6 (elovl6) genes in Misgurnus anguillicaudatus and their potential roles in adaptation to cold temperature.

    PubMed

    Chen, Jingwen; Cui, Yun; Yan, Jie; Jiang, Jimin; Cao, Xiaojuan; Gao, Jian

    2018-08-05

    Elongase of very long-chain fatty acids 6 (ELOVL6) is a rate-limiting enzyme catalyzing elongation of saturated and monounsaturated long-chain fatty acid. Although functional characteristics of Elovl6 have been demonstrated in mammal, the role of elovl6 in fish remains unclear. In this study, we firstly cloned three isoforms of elovl6 (elovl6a, elovl6b and elovl6-like) from loach (Misgurnus anguillicaudatus). Molecular characterizations of the three elovl6 isoforms in loach and their expressions of early life stages and different tissues were then determined. We also functionally characterized the three elovl6 isoforms using heterologous expression in baker's yeast. Results obtained here showed the three elovl6 proteins in loach can elongate C16:0 and C16:1 to C18:0 and C18:1, respectively. At last, to confirm the role of three loach elovl6 isoforms for elongation of fatty acids in adaption to cold stress, differences in skin histological structures, body fatty acid compositions, expressions of four hepatic lipogenesis or lipolysis related genes, and expressions of the three elovl6 isoforms and their related gene uncoupling protein 1 (ucp1) in different tissues were investigated in the loach reared in two different water temperatures (28 °C and 4 °C) for ten days. Cold stress increased ratios of C18/C16 and C20:5n-3/C18:3n-3 in loach body, and induced expressions of hepatic acyl-CoA delta-9 desaturase 1 (scd1), sterol-regulator element-binding protein 1 (srebp1), carnitine palmitoyltransferase 1 (cpt1) and fatty acid synthase (fas). Meanwhile, significant differences were found in expressions of the three elovl6 isoforms in different tissues between 28 °C and 4 °C groups. Overall, this study suggests that the three elovl6 isoforms in loach have ability to elongate C16 to C18, and elovl6 proteins in loach may play a role in adaptation to cold stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Optimal dietary therapy of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency

    PubMed Central

    Gillingham, Melanie B.; Connor, William E.; Matern, Dietrich; Rinaldo, Piero; Burlingame, Terry; Meeuws, Kaatje; Harding, Cary O.

    2009-01-01

    Current dietary therapy for long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) or trifunctional protein (TFP) deficiency consists of fasting avoidance, and limiting long-chain fatty acid (LCFA) intake. This study reports the relationship of dietary intake and metabolic control as measured by plasma acylcarnitine and organic acid profiles in 10 children with LCHAD or TFP deficiency followed for 1 year. Subjects consumed an average of 11% of caloric intake as dietary LCFA, 11% as MCT, 12% as protein, and 66% as carbohydrate. Plasma levels of hydroxypalmitoleic acid, hydroxyoleic, and hydroxylinoleic carnitine esters positively correlated with total LCFA intake and negatively correlated with MCT intake suggesting that as dietary intake of LCFA decreases and MCT intake increases, there is a corresponding decrease in plasma hydroxyacylcarnitines. There was no correlation between plasma acylcarnitines and level of carnitine supplementation. Dietary intake of fat-soluble vitamins E and K was deficient. Dietary intake and plasma levels of essential fatty acids, linoleic and linolenic acid, were deficient. On this dietary regimen, the majority of subjects were healthy with no episodes of metabolic decompensation. Our data suggest that an LCHAD or TFP-deficient patient should adhere to a diet providing age-appropriate protein and limited LCFA intake (10% of total energy) while providing 10–20% of energy as MCT and a daily multi-vitamin and mineral (MVM) supplement that includes all of the fat-soluble vitamins. The diet should be supplemented with vegetable oils as part of the 10% total LCFA intake to provide essential fatty acids. PMID:12809642

  2. Omega-3 fatty acids: new insights into the pharmacology and biology of docosahexaenoic acid, docosapentaenoic acid, and eicosapentaenoic acid.

    PubMed

    Davidson, Michael H

    2013-12-01

    Fish oil contains a complex mixture of omega-3 fatty acids, which are predominantly eicosapentaenoic acid (EPA), docosapentaenoic acid, and docosahexaenoic acid (DHA). Each of these omega-3 fatty acids has distinct biological effects that may have variable clinical effects. In addition, plasma levels of omega-3 fatty acids are affected not only by dietary intake, but also by the polymorphisms of coding genes fatty acid desaturase 1-3 for the desaturase enzymes that convert short-chain polyunsaturated fatty acids to long-chain polyunsaturated fatty acids. The clinical significance of this new understanding regarding the complexity of omega-3 fatty acid biology is the purpose of this review. FADS polymorphisms that result in either lower levels of long-chain omega-3 fatty acids or higher levels of long-chain omega-6 polyunsaturated fatty acids, such as arachidonic acid, are associated with dyslipidemia and other cardiovascular risk factors. EPA and DHA have differences in their effects on lipoprotein metabolism, in which EPA, with a more potent peroxisome proliferator-activated receptor-alpha effect, decreases hepatic lipogenesis, whereas DHA not only enhances VLDL lipolysis, resulting in greater conversion to LDL, but also increases HDL cholesterol and larger, more buoyant LDL particles. Overall, these results emphasize that blood concentrations of individual long-chain polyunsaturated fatty acids, which reflect both dietary intake and metabolic influences, may have independent, but also complementary- biological effects and reinforce the need to potentially provide a complex mixture of omega-3 fatty acids to maximize cardiovascular risk reduction.

  3. Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils.

    PubMed

    Lee Chang, Kim Jye; Dunstan, Graeme A; Abell, Guy C J; Clementson, Lesley A; Blackburn, Susan I; Nichols, Peter D; Koutoulis, Anthony

    2012-03-01

    Heterotrophic growth of thraustochytrids has potential in co-producing a feedstock for biodiesel and long-chain (LC, ≥C(20)) omega-3 oils. Biodiscovery of thraustochytrids from Tasmania (temperate) and Queensland (tropical), Australia, covered a biogeographic range of habitats including fresh, brackish, and marine waters. A total of 36 thraustochytrid strains were isolated and separated into eight chemotaxonomic groups (A-H) based on fatty acid (FA) and sterol composition which clustered closely with four different genera obtained by 18S rDNA molecular identification. Differences in the relative proportions (%FA) of long-chain C(20), C(22), omega-3, and omega-6 polyunsaturated fatty acids (PUFA), including docosahexaenoic acid (DHA), docosapentaenoic acid, arachidonic acid, eicosapentaenoic acid (EPA), and saturated FA, as well as the presence of odd-chain PUFA (OC-PUFA) were the major factors influencing the separation of these groups. OC-PUFA were detected in temperate strains of groups A, B, and C (Schizochytrium and Thraustochytrium). Group D (Ulkenia) had high omega-3 LC-PUFA (53% total fatty acids (TFA)) and EPA up to 11.2% TFA. Strains from groups E and F (Aurantiochytrium) contained DHA levels of 50-61% TFA after 7 days of growth in basal medium at 20 °C. Groups G and H (Aurantiochytrium) strains had high levels of 15:0 (20-30% TFA) and the sum of saturated FA was in the range of 32-51%. β,β-Carotene, canthaxanthin, and astaxanthin were identified in selected strains. Phylogenetic and chemotaxonomic groupings demonstrated similar patterns for the majority of strains. Our results demonstrate the potential of these new Australian thraustochytrids for the production of biodiesel in addition to omega-3 LC-PUFA-rich oils.

  4. Structure Dependence of Long-Chain [18F]Fluorothia Fatty Acids as Myocardial Fatty Acid Oxidation Probes

    PubMed Central

    Pandey, Mukesh K.; Belanger, Anthony P.; Wang, Shuyan; DeGrado, Timothy R.

    2012-01-01

    In-vivo imaging of regional fatty acid oxidation (FAO) rates would have considerable potential for evaluation of mammalian diseases. We have synthe sized and evaluated 18F-labeled thia fatty acid analogues as metabolically trapped FAO probes to understand the effect of chain length, degree of unsaturation and placement of the thia-substituent on myocardial uptake and retention. 18-[18F]fluoro-4-thia-(9Z)-octadec-9-enoic acid (3) showed excellent heart:background radioactivity concentration ratios along with highest retention in heart and liver. Pretreatment of rats with the CPT-1 inhibitor, POCA, caused >80% reduction in myocardial uptake of 16-[18F]fluoro-4-thia-hexadecanoic acid (2), and 3 indicating high specificity for FAO. In contrast, 18-[18F]fluoro-4-thia-octadecanoic acid (4), showed dramatically reduced myocardial uptake and blunted response to POCA. 18-[18F]fluoro-6-thia-octadecanoic acid (5), showed moderate myocardial uptake and no sensitivity of myocardial uptake to POCA. The results demonstrate relationships between structures of 18F-labelled thia fatty acid and uptake, and their utility as FAO probes in various tissues. PMID:23153307

  5. Estimation of fish and omega-3 fatty acid intake in pediatric nonalcoholic fatty liver disease

    PubMed Central

    St-Jules, David E; Watters, Corilee A; Brunt, Elizabeth M; Wilkens, Lynne R; Novotny, Rachel; Belt, Patricia; Lavine, Joel E

    2013-01-01

    Introduction Fish and omega-3 fatty acids are reported to be beneficial in pediatric nonalcoholic fatty liver disease (NAFLD), but no studies have assessed their relation to histological severity. The objectives of this study were to evaluate the dietary intake of fish and omega-3 fatty acids in children with biopsy-proven NAFLD, and examine their association with serological and histological indicators of disease. Materials and Methods This was a cross-sectional analysis of 223 children (6–18 years) that participated in the Treatment of Nonalcoholic Fatty Liver Disease in Children trial or the NAFLD Database study conducted by the Nonalcoholic Steatohepatitis Clinical Research Network. The distribution of fish and omega-3 fatty acid intake were determined from responses to the Block Brief 2000 Food Frequency Questionnaire, and analyzed for associations with serum alanine aminotransferase, histological features of fatty liver disease, and diagnosis of steatohepatitis after adjusting for demographic, anthropometric and dietary variables. Results The minority of subjects consumed the recommended eight ounces of fish per week (22/223 (10%)) and 200 mg of long-chain omega-3 fatty acids per day (12/223 (5%)). Lack of fish and long-chain omega-3 fatty acid intake was associated with greater portal (p=0.03 and p=0.10, respectively) and lobular inflammation (p=0.09 and p=0.004, respectively) after controlling for potential confounders. Discussion Fish and omega-3 fatty acid intake were insufficient in children with NAFLD, which may increase susceptibility to hepatic inflammation. Patients with pediatric NAFLD should be encouraged to consume the recommended amount of fish per week. PMID:24177784

  6. The Staphylococcus aureus Response to Unsaturated Long Chain Free Fatty Acids: Survival Mechanisms and Virulence Implications

    PubMed Central

    Kenny, John G.; Ward, Deborah; Josefsson, Elisabet; Jonsson, Ing-Marie; Hinds, Jason; Rees, Huw H.; Lindsay, Jodi A.; Tarkowski, Andrej; Horsburgh, Malcolm J.

    2009-01-01

    Staphylococcus aureus is an important human commensal and opportunistic pathogen responsible for a wide range of infections. Long chain unsaturated free fatty acids represent a barrier to colonisation and infection by S. aureus and act as an antimicrobial component of the innate immune system where they are found on epithelial surfaces and in abscesses. Despite many contradictory reports, the precise anti-staphylococcal mode of action of free fatty acids remains undetermined. In this study, transcriptional (microarrays and qRT-PCR) and translational (proteomics) analyses were applied to ascertain the response of S. aureus to a range of free fatty acids. An increase in expression of the σB and CtsR stress response regulons was observed. This included increased expression of genes associated with staphyloxanthin synthesis, which has been linked to membrane stabilisation. Similarly, up-regulation of genes involved in capsule formation was recorded as were significant changes in the expression of genes associated with peptidoglycan synthesis and regulation. Overall, alterations were recorded predominantly in pathways involved in cellular energetics. In addition, sensitivity to linoleic acid of a range of defined (sigB, arcA, sasF, sarA, agr, crtM) and transposon-derived mutants (vraE, SAR2632) was determined. Taken together, these data indicate a common mode of action for long chain unsaturated fatty acids that involves disruption of the cell membrane, leading to interference with energy production within the bacterial cell. Contrary to data reported for other strains, the clinically important EMRSA-16 strain MRSA252 used in this study showed an increase in expression of the important virulence regulator RNAIII following all of the treatment conditions tested. An adaptive response by S. aureus of reducing cell surface hydrophobicity was also observed. Two fatty acid sensitive mutants created during this study were also shown to diplay altered pathogenesis as assessed

  7. [Eucaloric substitution of medium chain triglycerides for dietary long chain fatty acids improves body composition and lipid profile in a patient with human immunodeficiency virus lipodystrophy].

    PubMed

    Vázquez, C; Reyes, R; Alcaraz, F; Balsa, J A; Botella-Carretero, J I

    2006-01-01

    Lipodystrophy is a frequent disorder among patients with human immunodeficiency virus (HIV) infection, characterized by a loss of adipose tissue from the extremities, gluteal region and face, with excess fat in the neck and abdominal region. Metabolic abnormalities such as hyperlipidaemia and diabetes mellitus frequently coexist, posing these patients to an increased cardiovascular risk. Drug therapy may improve some of these metabolic disturbances, but to date there are no treatments for lipodystrophy with proven benefit. A 42-year-old man with HIV lipodystrophy was started on a standard low caloric diet with <30% of total fat and <10% of saturated fat, together with rosiglitazone 8 mg daily. After five months of treatment, given that lipodystrophic features and dyslipidaemia were still present in our patient, we tried to further improve therapeutic results by eucaloric substitution of medium chain triglycerides for dietary long chain fatty acids. Three months later, a dramatic change in body composition was shown with an increase in lean mass and a decrease in fat mass, together with an improvement in lipid profile. Eucaloric substitution of medium chain triglycerides for dietary long chain fatty acids may produce therapeutic benefits in HIV lipodystrophy.

  8. Diacylglycerol acyltransferase 2 of Mortierella alpina with specificity on long-chain polyunsaturated fatty acids: A potential tool for reconstituting lipids with nutritional value.

    PubMed

    Jeennor, Sukanya; Veerana, Mayura; Anantayanon, Jutamas; Panchanawaporn, Sarocha; Chutrakul, Chanikul; Laoteng, Kobkul

    2017-12-10

    Based on available genome sequences and bioinformatics tools, we searched for an uncharacterized open reading frame of Mortierella alpina (MaDGAT2) using diacylglycerol acyltransferase sequence (fungal DGAT type 2B) as a query. Functional characterization of the identified native and codon-optimized M. alpina genes were then performed by heterologous expression in Saccharomyces cerevisiae strain defective in synthesis of neutral lipid (NL). Lipid analysis of the yeast tranformant carrying MaDGAT2 showed that the NL biosynthesis and lipid particle formation were restored by the gene complementation. Substrate specificity study of the fungal enzyme by fatty acid supplementation in the transformant cultures showed that it had a broad specificity on saturated and unsaturated fatty acid substrates for esterification into triacylglycerol (TAG). The n-6 polyunsaturated fatty acids (PUFAs) with 18 and 20 carbon atoms, including linoleic acid, γ-linolenic acid, dihomo γ-linolenic and arachidonic acid could be incorporated into TAG fraction in the yeast cells. Interestingly, among n-3 PUFAs tested, the MaDGAT2 enzyme preferred eicosapentaenoic acid (EPA) substrate as its highly proportional constituent found in TAG fraction. This study provides a potential genetic tool for reconstituting oils rich in long-chain PUFAs with nutritional value. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Long-chain polyunsaturated fatty acid status during pregnancy and maternal mental health in pregnancy and the postpartum period: results from the GUSTO study.

    PubMed

    Chong, Mary F F; Ong, Yi-Lin; Calder, Philip C; Colega, Marjorelee; Wong, Jocelyn X Y; Tan, Chuen Seng; Lim, Ai Lin; Fisk, Helena L; Cai, Shirong; Pang, Wei Wei; Broekman, Birit F P; Saw, Seang Mei; Kwek, Kenneth; Godfrey, Keith M; Chong, Yap-Seng; Gluckman, Peter; Meaney, Michael J; Chen, Helen

    2015-07-01

    Studies have demonstrated a relationship between lower omega-3 long-chain polyunsaturated fatty acid (LC-PUFA) status and anxiety and depression. It is uncertain whether similar associations occur in pregnant women, when anxiety and depression could have long-term effects on the offspring. We examined the associations between plasma LC-PUFA status during pregnancy and perinatal mental health. At 26-28 weeks' gestation, plasma LC-PUFAs were measured in mothers of the Growing Up in Singapore Toward healthy Outcomes (GUSTO) mother-offspring cohort study, who were recruited between June 2009 and September 2010. Maternal symptoms of anxiety and depression were assessed with the State-Trait Anxiety Inventory (STAI) and Edinburgh Postnatal Depression Scale (EPDS) during the same period and at 3 months' postpartum. The STAI-state subscale was used as a continuous measure of current anxiety, while EPDS scores ≥ 15 during pregnancy or ≥ 13 postpartum were indicative of symptoms of probable depression. In adjusted regression analyses (n = 698), lower plasma total omega-3 PUFA concentrations (β = -6.49 STAI-state subscale scores/unit increase of omega-3 fatty acid; 95% CI, -11.90 to -1.08) and higher plasma omega-6:omega-3 PUFA ratios (β = 6.58 scores/unit increase of fatty acid ratio; 95% CI, 1.19 to 12.66), specifically higher arachidonic acid (AA):docosahexaenoic acid, AA:eicosapentaenoic acid, and AA:docosapentaenoic acid ratios, were associated with increased antenatal anxiety (P < .05 for all), but not postpartum anxiety. There was no association between plasma PUFAs and perinatal probable depression. No association was found with probable depression in pregnancy or postpartum. Lower plasma omega-3 fatty acids and higher omega-6:omega-3 fatty acid ratios were associated with higher antenatal anxiety, but not postpartum anxiety. Replication in other studies is needed to confirm the findings and determine the direction of causality. ClinicalTrials.gov identifier: NCT

  10. Fish Oil-Derived Long-Chain n-3 Polyunsaturated Fatty Acids Reduce Expression of M1-Associated Macrophage Markers in an ex vivo Adipose Tissue Culture Model, in Part through Adiponectin.

    PubMed

    De Boer, Anna A; Monk, Jennifer M; Liddle, Danyelle M; Power, Krista A; Ma, David W L; Robinson, Lindsay E

    2015-01-01

    Adipose tissue (AT) macrophages (ATM) play a key role in obesity-associated pathologies, and their phenotype can be influenced by the local tissue microenvironment. Interestingly, long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) and the LC n-3 PUFA-upregulated adipokine, adiponectin (Ad), may mitigate excessive ATM inflammatory M1-polarization responses. However, to what extent LC n-3 PUFA and Ad work in concert to affect macrophage phenotype has not been examined. Thus, we used an established ex vivo AT organ culture model using visceral AT from mice fed a control (CON; 10% w/w safflower oil) n-6 PUFA-rich diet or an isocaloric fish oil (FO; 3% w/w menhaden oil + 7% w/w safflower oil)-derived LC n-3 PUFA-rich diet to generate AT conditioned media (ACM). We then evaluated if CON or FO ACM affected macrophage polarization markers in a model designed to mimic acute [18 h ACM plus lipopolysaccharide (LPS) for the last 6 h] or chronic (macrophages treated with LPS-challenged CON or FO ACM for 24 h) inflammation ± Ad-neutralizing antibody and the LPS-neutralizing agent, polymyxin B. In the acute inflammation model, macrophages treated with FO ACM had decreased lipid uptake and mRNA expression of M1 markers (Nos2, Nfκb, Il6, Il18, Ccl2, and Ccl5) compared with CON ACM (p ≤ 0.05); however, these effects were largely attenuated when Ad was neutralized (p > 0.05). Furthermore, in the chronic inflammation model, macrophages treated with FO ACM had decreased mRNA expression of M1 markers (Nos2, Tnfα, Ccl2, and Il1β) and IL-6 and CCL2 secretion (p ≤ 0.05); however, some of these effects were lost when Ad was neutralized, and were further exacerbated when both Ad and LPS were neutralized. Taken together, this work shows that LC n-3 PUFA and Ad work in concert to suppress certain M1 macrophage responses. Thus, future strategies to modulate the ATM phenotype should consider the role of both LC n-3 PUFA and Ad in mitigating obese AT

  11. Fish Oil-Derived Long-Chain n-3 Polyunsaturated Fatty Acids Reduce Expression of M1-Associated Macrophage Markers in an ex vivo Adipose Tissue Culture Model, in Part through Adiponectin

    PubMed Central

    De Boer, Anna A.; Monk, Jennifer M.; Liddle, Danyelle M.; Power, Krista A.; Ma, David W. L.; Robinson, Lindsay E.

    2015-01-01

    Adipose tissue (AT) macrophages (ATM) play a key role in obesity-associated pathologies, and their phenotype can be influenced by the local tissue microenvironment. Interestingly, long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) and the LC n-3 PUFA-upregulated adipokine, adiponectin (Ad), may mitigate excessive ATM inflammatory M1-polarization responses. However, to what extent LC n-3 PUFA and Ad work in concert to affect macrophage phenotype has not been examined. Thus, we used an established ex vivo AT organ culture model using visceral AT from mice fed a control (CON; 10% w/w safflower oil) n-6 PUFA-rich diet or an isocaloric fish oil (FO; 3% w/w menhaden oil + 7% w/w safflower oil)-derived LC n-3 PUFA-rich diet to generate AT conditioned media (ACM). We then evaluated if CON or FO ACM affected macrophage polarization markers in a model designed to mimic acute [18 h ACM plus lipopolysaccharide (LPS) for the last 6 h] or chronic (macrophages treated with LPS-challenged CON or FO ACM for 24 h) inflammation ± Ad-neutralizing antibody and the LPS-neutralizing agent, polymyxin B. In the acute inflammation model, macrophages treated with FO ACM had decreased lipid uptake and mRNA expression of M1 markers (Nos2, Nfκb, Il6, Il18, Ccl2, and Ccl5) compared with CON ACM (p ≤ 0.05); however, these effects were largely attenuated when Ad was neutralized (p > 0.05). Furthermore, in the chronic inflammation model, macrophages treated with FO ACM had decreased mRNA expression of M1 markers (Nos2, Tnfα, Ccl2, and Il1β) and IL-6 and CCL2 secretion (p ≤ 0.05); however, some of these effects were lost when Ad was neutralized, and were further exacerbated when both Ad and LPS were neutralized. Taken together, this work shows that LC n-3 PUFA and Ad work in concert to suppress certain M1 macrophage responses. Thus, future strategies to modulate the ATM phenotype should consider the role of both LC n-3 PUFA and Ad in mitigating obese AT

  12. Reversed-phase high-performance liquid chromatography purification of methyl esters of C(16)-C(28) polyunsaturated fatty acids in microalgae, including octacosaoctaenoic acid [28:8(n-3)].

    PubMed

    Mansour, Maged P

    2005-12-02

    A preparative reversed-phase (RP; C(18)) high-performance liquid chromatography (HPLC) method with gradient elution using acetonitrile (MeCN)-chloroform (CHCl(3)) (or dichloromethane (DCM)) and evaporative light-scattering detection (ELSD) with automatic multiple injection and fraction collection was used to purify milligram quantities of microalgal polyunsaturated fatty acids (PUFA), separated as methyl esters (ME). PUFA-ME purified included methyl esters of docosahexaenoic acid (DHA; 22:6(n-3)), eicosapentaenoic acid (EPA; 20:5(n-3)) and the unusual very long-chain (C(28)) highly unsaturated fatty acid (VLC-HUFA), octacosaoctaenoic acid [28:8(n-3)(4, 7, 10, 13, 16, 19, 22, 25)] from the marine dinoflagellate Scrippsiella sp. CS-295/c. Other PUFA purified from various microalgae using this RP-HPLC method to greater than 95% purity included 16:3(n-4), 16:4(n-3), 16:4(n-1) and 18:5(n-3). The number of injections required was variable and depended on the abundance of the desired PUFA-ME, and resolution from closely eluting PUFA-ME, which determined the maximum loading. The purity of these fatty acids was determined by electron impact (EI) GC-MS and the chain length and location of double bonds was determined by EI GC-MS of 4,4-dimethyl oxazoline (DMOX) derivatives formed using a low temperature method. Advantages over silver-ion HPLC for purifying PUFA-ME is that separation occurs according to chain length as well as degree of unsaturation enabling separation of PUFA-ME with the same degree of unsaturation but different chain length (i.e. between 18:5(n-3) and 20:5(n-3)). In addition, PUFA-ME are not strongly adsorbed, but elute earlier than their more saturated corresponding FAME of the same chain length. This method is robust, simple, and requires only a short re-equilibration time. It is a useful tool for preparing milligram quantities of pure PUFA-ME for bioactive screening (as free fatty acids), although many multiple injections may be required for minor PUFA

  13. Human milk polyunsaturated long-chain fatty acids and secretory immunoglobulin A antibodies and early childhood allergy.

    PubMed

    Duchén, K; Casas, R; Fagerås-Böttcher, M; Yu, G; Björkstén, B

    2000-02-01

    changes in PUFA serum phospholipids, particularly for the n-6 PUFA. The AA: EPA ratio in maternal milk was related, however, to the AA:EPA only in serum from non-allergic children, while this was not the case in allergic children. The levels of total S-IgA, anti-cat S-IgA, anti-ovalbumin S-IgA, and anti-beta-lactoglobulin S-IgA in milk from mothers of allergic, as compared to non-allergic, children were similar through the first 3 months of lactation. Low levels of n-3 PUFA in human milk, and particularly a high AA:EPA ratio in maternal milk and serum phospholipids in the infants, were related to the development of symptoms of allergic disease at 18 months of age. The milk PUFA composition influenced the composition of PUFA in serum phospholipids of the children. We also showed that the lower levels of colostral anti-ovalbumin S-IgA and lower total S-IgA in mature milk from atopic mothers did not influence the development of allergic disease in the children up to 18 months of age. The findings indicate that low alpha-linolenic acid, C18:3 n-3 (LNA) and n-3 long-chain polyunsaturated fatty acids (LCP) 20-22 carbon chains, but not the levels of S-IgA antibodies to allergens, are related to the development of atopy in children.

  14. N-3 polyunsaturated fatty acid regulation of hepatic gene transcription

    PubMed Central

    Jump, Donald B.

    2009-01-01

    Purpose of review The liver plays a central role in whole body lipid metabolism and adapts rapidly to changes in dietary fat composition. This adaption involves changes in the expression of genes involved in glycolysis, de-novo lipogenesis, fatty acid elongation, desaturation and oxidation. This review brings together metabolic and molecular studies that help explain n-3 (omega-3) polyunsaturated fatty acid regulation of hepatic gene transcription. Recent findings Dietary n-3 polyunsaturated fatty acid regulates hepatic gene expression by targeting three major transcriptional regulatory networks: peroxisome proliferator-activated receptor α, sterol regulatory element binding protein-1 and the carbohydrate regulatory element binding protein/Max-like factor X heterodimer. 22 : 6,n-3, the most prominent n-3 polyunsaturated fatty acid in tissues, is a weak activator of peroxisome proliferator-activated receptor α. Hepatic metabolism of 22 : 6,n-3, however, generates 20 : 5,n-3, a strong peroxisome proliferator-activated receptor α activator. In contrast to peroxisome proliferator-activated receptor α, 22 : 6,n-3 is the most potent fatty acid regulator of hepatic sterol regulatory element binding protein-1. 22 : 6,n-3 suppresses sterol regulatory element binding protein-1 gene expression while enhancing degradation of nuclear sterol regulatory element binding protein-1 through 26S proteasome and Erk1/2-dependent mechanisms. Both n-3 and n-6 polyunsaturated fatty acid suppress carbohydrate regulatory element binding protein and Max-like factor X nuclear abundance and interfere with glucose-regulated hepatic metabolism. Summary These studies have revealed unique mechanisms by which specific polyunsaturated fatty acids control peroxisome proliferator activated receptor α, sterol regulatory element binding protein-1 and carbohydrate regulatory element binding protein/Max-like factor X function. As such, specific metabolic and signal transduction pathways contribute

  15. Considerations for incorporating eicosapentaenoic and docosahexaenoic omega-3 fatty acids into the military food supply chain.

    PubMed

    Ismail, Adam; Rice, Harry B

    2014-11-01

    The U.S. military may consider exploring the inclusion of the long-chain omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in the diets of active duty military personnel. To be successful, certain challenges must be overcome including determining appropriate dosage, ensuring cost efficiency, and optimizing stability. To increase EPA and DHA intake, the military should consider using one of three strategies, including mandates or recommendations on omega-3 supplement usage, contracts to purchase commercially available foods for distribution in the food supply chain, or direct addition of EPA and DHA into currently consumed foods. This review presents the challenges and strategies and provides potential suggestions to the military to increase the likelihood of success. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  16. The effect of low-fat beef patties formulated with a low-energy fat analogue enriched in long-chain polyunsaturated fatty acids on lipid oxidation and sensory attributes.

    PubMed

    Alejandre, Marta; Passarini, Denis; Astiasarán, Iciar; Ansorena, Diana

    2017-12-01

    A new low-energy gelled emulsion containing algae oil was developed as animal fat replacer. Its stability was evaluated under different storage conditions: 4V (4°C/vacuum), 4NV (4°C/no vacuum), 25V (25°C/vacuum) and 25NV (25°C/no vacuum). According to moisture, hardness, color and lipid oxidation data, 4°C under vacuum (4V) was selected as the best condition. Once the gelled emulsion was characterized, its effectiveness as fat analogue was demonstrated in beef patties. Reformulated patties were produced with 100% of animal fat replacement and compared to conventional patties (9%fat). A 70%fat reduction was achieved in the new patties, mainly due to a reduction in the saturated fatty acids. Also, decreased n-6 (76%lower content) and increased eicosapentaenoic and docosahexaenoic acids (55%higher content) were noticed in the new formulation. The incorporation of the gelled emulsion containing reduced amount of n-6 fatty acids and increased amounts of long chain n-3 fatty acids (EPA+DHA) reduced the oxidation status of the patties and their sensory evaluation resulted in acceptable scores. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride

    PubMed Central

    Roe, Charles R.; Sweetman, Lawrence; Roe, Diane S.; David, France; Brunengraber, Henri

    2002-01-01

    The current dietary treatment of long-chain fatty acid oxidation defects (high carbohydrate with medium-even-chain triglycerides and reduced amounts of long-chain fats) fails, in many cases, to prevent cardiomyopathy, rhabdomyolysis, and muscle weakness. We hypothesized that the apparent defect in energy production results from a depletion of the catalytic intermediates of the citric acid cycle via leakage through cell membranes (cataplerosis). We further hypothesized that replacing dietary medium-even-chain fatty acids (precursors of acetyl-CoA) by medium-odd-chain fatty acids (precursors of acetyl-CoA and anaplerotic propionyl-CoA) would restore energy production and improve cardiac and skeletal muscle function. We fed subjects with long-chain defects a controlled diet in which the fat component was switched from medium-even-chain triglycerides to triheptanoin. In three patients with very-long-chain acyl-CoA dehydrogenase deficiency, this treatment led rapidly to clinical improvement that included the permanent disappearance of chronic cardiomyopathy, rhabdomyolysis, and muscle weakness (for more than 2 years in one child), and of rhabdomyolysis and weakness in the others. There was no evidence of propionyl overload in these patients. The treatment has been well tolerated for up to 26 months and opens new avenues for the management of patients with mitochondrial fat oxidation disorders. PMID:12122118

  18. Hypothalamic GPR40 signaling activated by free long chain fatty acids suppresses CFA-induced inflammatory chronic pain.

    PubMed

    Nakamoto, Kazuo; Nishinaka, Takashi; Sato, Naoya; Mankura, Mitsumasa; Koyama, Yutaka; Kasuya, Fumiyo; Tokuyama, Shogo

    2013-01-01

    GPR40 has been reported to be activated by long-chain fatty acids, such as docosahexaenoic acid (DHA). However, reports studying functional role of GPR40 in the brain are lacking. The present study focused on the relationship between pain regulation and GPR40, investigating the functional roles of hypothalamic GPR40 during chronic pain caused using a complete Freund's adjuvant (CFA)-induced inflammatory chronic pain mouse model. GPR40 protein expression in the hypothalamus was transiently increased at day 7, but not at days 1, 3 and 14, after CFA injection. GPR40 was co-localized with NeuN, a neuron marker, but not with glial fibrillary acidic protein (GFAP), an astrocyte marker. At day 1 after CFA injection, GFAP protein expression was markedly increased in the hypothalamus. These increases were significantly inhibited by the intracerebroventricular injection of flavopiridol (15 nmol), a cyclin-dependent kinase inhibitor, depending on the decreases in both the increment of GPR40 protein expression and the induction of mechanical allodynia and thermal hyperalgesia at day 7 after CFA injection. Furthermore, the level of DHA in the hypothalamus tissue was significantly increased in a flavopiridol reversible manner at day 1, but not at day 7, after CFA injection. The intracerebroventricular injection of DHA (50 µg) and GW9508 (1.0 µg), a GPR40-selective agonist, significantly reduced mechanical allodynia and thermal hyperalgesia at day 7, but not at day 1, after CFA injection. These effects were inhibited by intracerebroventricular pretreatment with GW1100 (10 µg), a GPR40 antagonist. The protein expression of GPR40 was colocalized with that of β-endorphin and proopiomelanocortin, and a single intracerebroventricular injection of GW9508 (1.0 µg) significantly increased the number of neurons double-stained for c-Fos and proopiomelanocortin in the arcuate nucleus of the hypothalamus. Our findings suggest that hypothalamic GPR40 activated by free long chain fatty

  19. Hypothalamic GPR40 Signaling Activated by Free Long Chain Fatty Acids Suppresses CFA-Induced Inflammatory Chronic Pain

    PubMed Central

    Nakamoto, Kazuo; Nishinaka, Takashi; Sato, Naoya; Mankura, Mitsumasa; Koyama, Yutaka; Kasuya, Fumiyo; Tokuyama, Shogo

    2013-01-01

    GPR40 has been reported to be activated by long-chain fatty acids, such as docosahexaenoic acid (DHA). However, reports studying functional role of GPR40 in the brain are lacking. The present study focused on the relationship between pain regulation and GPR40, investigating the functional roles of hypothalamic GPR40 during chronic pain caused using a complete Freund's adjuvant (CFA)-induced inflammatory chronic pain mouse model. GPR40 protein expression in the hypothalamus was transiently increased at day 7, but not at days 1, 3 and 14, after CFA injection. GPR40 was co-localized with NeuN, a neuron marker, but not with glial fibrillary acidic protein (GFAP), an astrocyte marker. At day 1 after CFA injection, GFAP protein expression was markedly increased in the hypothalamus. These increases were significantly inhibited by the intracerebroventricular injection of flavopiridol (15 nmol), a cyclin-dependent kinase inhibitor, depending on the decreases in both the increment of GPR40 protein expression and the induction of mechanical allodynia and thermal hyperalgesia at day 7 after CFA injection. Furthermore, the level of DHA in the hypothalamus tissue was significantly increased in a flavopiridol reversible manner at day 1, but not at day 7, after CFA injection. The intracerebroventricular injection of DHA (50 µg) and GW9508 (1.0 µg), a GPR40-selective agonist, significantly reduced mechanical allodynia and thermal hyperalgesia at day 7, but not at day 1, after CFA injection. These effects were inhibited by intracerebroventricular pretreatment with GW1100 (10 µg), a GPR40 antagonist. The protein expression of GPR40 was colocalized with that of β-endorphin and proopiomelanocortin, and a single intracerebroventricular injection of GW9508 (1.0 µg) significantly increased the number of neurons double-stained for c-Fos and proopiomelanocortin in the arcuate nucleus of the hypothalamus. Our findings suggest that hypothalamic GPR40 activated by free long chain fatty

  20. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxgenase with a bacterial type-I fatty acid synthase in E. coli

    DOE PAGES

    Coursolle, Dan; Shanklin, John; Lian, Jiazhang; ...

    2015-06-23

    Microbial long chain alcohols and alkanes are renewable biofuels that could one day replace petroleum-derived fuels. Here we report a novel pathway for high efficiency production of these products in Escherichia coli strain BL21(DE3). We first identified the acyl-ACP reductase/aldehyde deformylase combinations with the highest activity in this strain. Next, we used catalase coexpression to remove toxic byproducts and increase the overall titer. Finally, by introducing the type-I fatty acid synthase from Corynebacterium ammoniagenes, we were able to bypass host regulatory mechanisms of fatty acid synthesis that have thus far hampered efforts to optimize the yield of acyl-ACP-derived products inmore » BL21(DE3). When all these engineering strategies were combined with subsequent optimization of fermentation conditions, we were able to achieve a final titer around 100 mg/L long chain alcohol/alkane products including a 57 mg/L titer of pentadecane, the highest titer reported in E. coli BL21(DE3) to date. The expression of prokaryotic type-I fatty acid synthases offer a unique strategy to produce fatty acid-derived products in E. coli that does not rely exclusively on the endogenous type-II fatty acid synthase system.« less

  1. Overview of Omega-3 Fatty Acid Therapies

    PubMed Central

    Bradberry, J. Chris; Hilleman, Daniel E.

    2013-01-01

    The triglyceride (TG)-lowering benefits of the very-long-chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are well documented. Available as prescription formulations and dietary supplements, EPA and DHA are recommended by the American Heart Association for patients with coronary heart disease and hypertriglyceridemia. Dietary supplements are not subject to the same government regulatory standards for safety, efficacy, and purity as prescription drugs are; moreover, supplements may contain variable concentrations of EPA and DHA and possibly other contaminants. Reducing low-density lipoprotein-cholesterol (LDL-C) levels remains the primary treatment goal in the management of dyslipidemia. Dietary supplements and prescription formulations that contain both EPA and DHA may lower TG levels, but they may also increase LDL-C levels. Two prescription formulations of long-chain omega-3 fatty acids are available in the U.S. Although prescription omega-3 acid ethyl esters (OM-3-A EEs, Lovaza) contain high-purity EPA and DHA, prescription icosapent ethyl (IPE, Vascepa) is a high-purity EPA agent. In clinical trials of statin-treated and non–statin-treated patients with hypertriglyceridemia, both OM-3-A EE and IPE lowered TG levels and other atherogenic markers; however, IPE did not increase LDL-C levels. Results of recent outcomes trials of long-chain omega-3 fatty acids, fibrates, and niacin have been disappointing, failing to show additional reductions in adverse cardiovascular events when combined with statins. Therefore, the REDUCE–IT study is being conducted to evaluate the effect of the combination of IPE and statins on cardiovascular outcomes in high-risk patients. The results of this trial are eagerly anticipated. PMID:24391388

  2. Identification of long and very long chain fatty acids, plasmalogen-C16:0 and phytanic acid as new lipid biomarkers in Tunisian coronary artery disease patients.

    PubMed

    Hadj Ahmed, Samia; Koubaa, Nadia; Kharroubi, Wafa; Zarrouk, Amira; Mnari, Amira; Batbout, Fethi; Gamra, Habib; Hammami, Sonia; Lizard, Gérard; Hammami, Mohamed

    2017-07-01

    Long and very long chain fatty acids (LCFAs and VLCFAs) may play an active role in coronary artery diseases (CAD) etiology. Our aim was to evaluate the associations between LCPUFAs (C20:4n-6; C20:5n-3 and C22:6n-3) and VLCSFAs (C22:0, C24:0; and C26:0), as well as markers of peroxisomal integrity evaluated by phytanic acid and plasmalogen-C16:0 (PL-C16:0) in addition to the markers of lipid peroxidation (malondialdehyde [MDA] and conjugated dienes [CD]) and inflammation (high sensitivity C-reactive protein [hs-CRP]) with vascular severity evaluated by Gensini score in order to determine their possible effects on CAD in Tunisian population. Lipidomic strategy based on GC/MS-SIM was used to quantify LCPUFAs, VLCSFAs, and PL-C16:0 in red blood cells of CAD patients, non-CAD patients, and controls. We observed a significant increase in phytanic acid, PL-C16:0 and VLCFAs, particularly C26:0, in CAD group compared to controls. Further our findings showed positive correlations of C26:0 with MDA and with vascular severity score (Gensini score). In addition, a significant negative correlation was shown between hs-CRP and C22:6 n-3 (r=-0.297; p=0.002) and a significant positive association was observed between hs-CRP and C20:4 n-6 levels (r=0.196; p=0.039). Our results show changes in LCPUFAs and VLCSFAs concentrations in RBC among study groups, and suggest alterations in fatty acids metabolism regulated by elongase and desaturase enzymes. The positive correlations of C20:4n-6 and the negative correlations of C22:6n-3, simultaneously with Gensini score and hs-CRP, suggest a link of both inflammation and vascular severity complication of CAD with LCPUFAs and VLCSFAs. Induction of lipid oxidation, can be one of the outcomes of LCFAs and VLCFAs accumulation in vascular tissues and, thus, playing an important role in the pathogenesis of atherosclerosis. Quantification of LCPUFAs and VLCSFAs, phytanic acid and PL-C16:0 simultaneously, would be of great value for the screening of

  3. Long-chain polyunsaturated fatty acids decline rapidly in milk from mothers delivering extremely preterm indicating the need for supplementation.

    PubMed

    Nilsson, Anders K; Löfqvist, Chatarina; Najm, Svetlana; Hellgren, Gunnel; Sävman, Karin; Andersson, Mats X; Smith, Lois E H; Hellström, Ann

    2018-06-01

    Our aim was to perform an in-depth analysis of the composition of fatty acids in milk from mothers delivering extremely preterm babies. We investigated longitudinal changes in milk fatty acid profiles and the relationship between several types of fatty acids, including omega-3 and omega-6. Milk samples were collected at three stages of lactation from 78 mothers who delivered at less than 28 weeks of pregnancy at the Sahlgrenska University Hospital, Gothenburg, Sweden, from April 2013 to September 2015. Fatty acid composition was analysed by gas chromatography-mass spectrometry. A reduction in long-chain polyunsaturated fatty acids (LCPUFAs) was observed during the lactation period. The concentrations of arachidonic acid and docosahexaenoic acid declined from medians of 0.34 to 0.22 mol% and 0.29 to 0.15 mol%, respectively, between postnatal day 7 and a postmenstrual age of 40 weeks. Strong correlations were found between the intermediates of several classes of fatty acids, including omega-3, omega-6 and omega-9. A rapid reduction in LCPUFA content in the mother's milk during the lactation period emphasises the importance of fatty acid supplementation to infants born extremely preterm, at least during the period corresponding to the third trimester, when rapid development of the brain and adipose tissue requires high levels of LCPUFAs. ©2018 The Authors. Acta Paediatrica published by John Wiley & Sons Ltd on behalf of Foundation Acta Paediatrica.

  4. The effect of long chain polyunsaturated fatty acid supplementation on intelligence in low birth weight infant during lactation: A meta-analysis

    PubMed Central

    Song, Yuan; Liu, Ya; Pan, Yun; Yuan, Xiaofeng; Chang, Pengyu; Tian, Yuan; Cui, Weiwei

    2018-01-01

    Background Low birth weight infant (LBWIs) are prone to mental and behavioural problems. As an important constituent of the brain and retina, long chain polyunsaturated fatty acids are essential for foetal infant mental and visual development. The effect of lactation supplemented with long chain polyunsaturated fatty acids (LCPUFA) on the improvement of intelligence in low birth weight children requires further validation. Methods In this study, a comprehensive search of multiple databases was performed to identify studies focused the association between intelligence and long chain polyunsaturated fatty acid supplementation in LBWIs. Studies that compared the Bayley Scales of Infant Development (BSID) or the Wechsler Abbreviated Scale of Intelligence for Children (WISC) scores between LBWIs who were supplemented and controls that were not supplemented with LCPUFA during lactation were selected for inclusion in the meta-analysis. Results The main outcome was the mean difference in the mental development index (MDI) and psychomotor development index (PDI) of the BSID and the full scale intelligence quotient (FSIQ), verbal intelligence quotient (VIQ) and performance intelligence quotient (PIQ) of the WISC between LBWIs and controls. Our findings indicated that the mean BSID or WISC scores in LBWIs did not differ between the supplemented groups and controls. Conclusion This meta-analysis does not reveal that LCPUFA supplementation has a significant impact on the level of intelligence in LBWIs. PMID:29634752

  5. Human serum-derived hydroxy long-chain fatty acids exhibit anti-inflammatory and anti-proliferative activity

    PubMed Central

    2011-01-01

    Background Circulating levels of novel long-chain hydroxy fatty acids (called GTAs) were recently discovered in the serum of healthy subjects which were shown to be reduced in subjects with colorectal cancer (CRC), independent of tumor burden or disease stage. The levels of GTAs were subsequently observed to exhibit an inverse association with age in the general population. The current work investigates the biological activity of these fatty acids by evaluating the effects of enriched human serum extracts on cell growth and inflammation. Methods GTAs were extracted from commercially available bulk human serum and then chromatographically separated into enriched (GTA-positive) and depleted (GTA-negative) fractions. SW620, MCF7 and LPS stimulated RAW264.7 cells were treated with various concentrations of the GTA-positive and GTA-negative extracts, and the effects on cell growth and inflammation determined. Results Enriched fractions resulted in poly-ADP ribose polymerase (PARP) cleavage, suppression of NFκB, induction of IκBα, and reduction in NOS2 mRNA transcript levels. In RAW264.7 mouse macrophage cells, incubation with enriched fractions prior to treatment with LPS blocked the induction of several pro-inflammatory markers including nitric oxide, TNFα, IL-1β, NOS2 and COX2. Conclusions Our results show that human serum extracts enriched with endogenous long-chain hydroxy fatty acids possess anti-inflammatory and anti-proliferative activity. These findings support a hypothesis that the reduction of these metabolites with age may result in a compromised ability to defend against uncontrolled cell growth and inflammation, and could therefore represent a significant risk for the development of CRC. PMID:21586136

  6. Effect of triacylglycerols containing medium- and long-chain fatty acids on serum triacylglycerol levels and body fat in college athletes.

    PubMed

    Takeuchi, Hiroyuki; Kasai, Michio; Taguchi, Nobuo; Tsuji, Hiroaki; Suzuki, Masashige

    2002-04-01

    Triacylglycerols containing medium- and long-chain fatty acids (TML) have medium- and long-chain fatty acids in the same molecule. The effects of dietary TML on serum lipid levels and body fat were studied in six young men belonging to a university rowing club. A double-blind crossover study was performed in which for 3 wk the subjects ingested a liquid diet containing 20 g/d of soybean oil or TML in addition to their regular diets. Throughout the study, they were asked to keep their usual lifestyle, including diet and physical activity. The body composition of the subjects was measured weekly. Blood samples were taken at 0, 2, and 3 wk of each treatment period. There was no significant difference in energy intake between the soybean oil diet period and the TML diet period. The rate of variation of serum triacylglycerol concentration was significantly lower after a consumption of the TML liquid diet for 3 wk compared with the soybean oil liquid diet. The rate of variation of body fat mass was also significantly lower after a consumption of the TML liquid diet for 3 wk compared with the soybean oil liquid diet. However, the serum cholesterol concentration did not change significantly during either dietary treatment. These results suggest that TML, compared with soybean oil, may have the potential to prevent hypertriglyceridemia and obesity caused by consumption of a high-fat diet.

  7. Ultrasonic-assisted incorporation of nano-encapsulated omega-3 fatty acids to enhance the fatty acid profile of pork meat.

    PubMed

    Ojha, K Shikha; Perussello, Camila A; García, Carlos Álvarez; Kerry, Joseph P; Pando, Daniel; Tiwari, Brijesh K

    2017-10-01

    In this study, ultrasound was employed to enhance the diffusion of microencapsulated fatty acids into pork meat. Nanovesicles of fish oil composed of 42% EPA (eicosapentanoic acid) and 16% DHA (docosahexanoic acid) were prepared using two different commercial Pronanosome preparations (Lipo-N and Lipo-CAT; which yield cationic and non-cationic nanovesicles, respectively). The thin film hydration (TFH) methodology was employed for encapsulation. Pork meat (Musculus semitendinosus) was submerged in the nanovesicles suspension and subjected to ultrasound (US) treatment at 25kHz for either 30 or 60min. Samples were analysed for fatty acid composition using gas chromatography-flame ionisation (GC-FID). The content of long-chain PUFAs, especially omega-3, was found to increase following the US treatment which was higher for Lipo-CAT compared to Lipo-N nanovesicles. Samples subjected to Lipo-N had higher atherogenic and thrombogenic indices, indicating higher levels of saturated fatty acids compared to the Lipo-CAT. The omega-6/omega-3 ratio in pork meat was significantly reduced following the US treatment, thus indicating an improved fatty acid profile of pork. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. ECERIFERUM2-LIKE Proteins Have Unique Biochemical and Physiological Functions in Very-Long-Chain Fatty Acid Elongation1[OPEN

    PubMed Central

    Haslam, Tegan M.; Haslam, Richard; Thoraval, Didier; Pascal, Stéphanie; Delude, Camille; Domergue, Frédéric; Fernández, Aurora Mañas; Beaudoin, Frédéric; Napier, Johnathan A.; Kunst, Ljerka; Joubès, Jérôme

    2015-01-01

    The extension of very-long-chain fatty acids (VLCFAs) for the synthesis of specialized apoplastic lipids requires unique biochemical machinery. Condensing enzymes catalyze the first reaction in fatty acid elongation and determine the chain length of fatty acids accepted and produced by the fatty acid elongation complex. Although necessary for the elongation of all VLCFAs, known condensing enzymes cannot efficiently synthesize VLCFAs longer than 28 carbons, despite the prevalence of C28 to C34 acyl lipids in cuticular wax and the pollen coat. The eceriferum2 (cer2) mutant of Arabidopsis (Arabidopsis thaliana) was previously shown to have a specific deficiency in cuticular waxes longer than 28 carbons, and heterologous expression of CER2 in yeast (Saccharomyces cerevisiae) demonstrated that it can modify the acyl chain length produced by a condensing enzyme from 28 to 30 carbon atoms. Here, we report the physiological functions and biochemical specificities of the CER2 homologs CER2-LIKE1 and CER2-LIKE2 by mutant analysis and heterologous expression in yeast. We demonstrate that all three CER2-LIKEs function with the same small subset of condensing enzymes, and that they have different effects on the substrate specificity of the same condensing enzyme. Finally, we show that the changes in acyl chain length caused by each CER2-LIKE protein are of substantial importance for cuticle formation and pollen coat function. PMID:25596184

  9. Long-chain omega-3 from low-trophic-level fish provides value to farmed seafood.

    PubMed

    Bibus, Douglas M

    2015-03-01

    Low-trophic-level fish are a crucial source of long-chain (LC) omega-3 fatty acids for farmed fish and humans. Many farm-raised fish species have a clear need for these nutrients. Farmed fish deposit the LC omega-3s in their flesh and transfer them up the food chain. However, the content of LC omega-3s in farm-raised seafood continues to decline, while the content of shorter-chain plant-sourced omega-3s, and pro-inflammtory omega-6s continue to increase. This reduces its nutritional worth. The value of low-trophic-level fish is often viewed merely as its price at the dock. Some reports and metrics steer public attention towards the mass balance between quantities of low-trophic-level fish and farmed seafood. However, the the nutritional value of seafood is more important than its mere quantities. The role of low-trophic-level fish in human nutrition, health, and wellbeing is a fundamental component of its economic value to society.

  10. Inhibition of Long Chain Fatty Acyl-CoA Synthetase (ACSL) and Ischemia Reperfusion Injury

    PubMed Central

    Prior, Allan M.; Zhang, Man; Blakeman, Nina; Datta, Palika; Pham, Hung; Young, Lindon H.; Weis, Margaret T.; Hua, Duy H.

    2014-01-01

    Various triacsin C analogs, containing different alkenyl chains and carboxylic acid bioisoteres including 4-aminobenzoic acid, isothiazolidine dioxide, hydroxylamine, hydroxytriazene, and oxadiazolidine dione, were synthesized and their inhibitions of long chain fatty acyl-CoA synthetase (ACSL) were examined. Two methods, a cell-based assay of ACSL activity and an in situ [14C]-palmitate incorporation into extractable lipids were used to study the inhibition. Using an in vivo leukocyte recruitment inhibition protocol, the translocation of one or more cell adhesion molecules from the cytoplasm to the plasma membrane on either the endothelium or leukocyte or both was inhibited by inhibitors 1, 9, and triacsin C. The results suggest that inhibition of ACSL may attenuate the vascular inflammatory component associated with ischemia reperfusion injury and lead to a decrease of infarct expansion. PMID:24480468

  11. Food sources and intake of n-6 and n-3 fatty acids in low-income countries with emphasis on infants, young children (6-24 months), and pregnant and lactating women.

    PubMed

    Michaelsen, Kim F; Dewey, Kathryn G; Perez-Exposito, Ana B; Nurhasan, Mulia; Lauritzen, Lotte; Roos, Nanna

    2011-04-01

    With increasing interest in the potential effects of n-6 and n-3 fatty acids in early life, there is a need for data on the dietary intake of polyunsaturated fatty acids (PUFA) in low-income countries. This review compiles information on the content in breast milk and in foods that are important in the diets of low-income countries from the few studies available. We also estimate the availability of fat and fatty acids in 13 low-income and middle-income countries based on national food balance sheets from the United Nations' Food and Agriculture Organization Statistical Database (FOASTAT). Breast milk docosahexaenoic acid content is very low in populations living mainly on a plant-based diet, but higher in fish-eating countries. Per capita supply of fat and n-3 fatty acids increases markedly with increasing gross domestic product (GDP). In most of the 13 countries, 70-80% of the supply of PUFA comes from cereals and vegetable oils, some of which have very low α-linolenic acid (ALA) content. The total n-3 fatty acid supply is below or close to the lower end of the recommended intake range [0.4%E (percentage of energy supply)] for infants and young children, and below the minimum recommended level (0.5%E) for pregnant and lactating women in the nine countries with the lowest GDP. Fish is important as a source of long-chain n-3 fatty acids, but intake is low in many countries. The supply of n-3 fatty acids can be increased by using vegetable oils with higher ALA content (e.g. soybean or rapeseed oil) and by increasing fish production (e.g. through fish farming). © 2011 Blackwell Publishing Ltd.

  12. Synthesis of medium-chain fatty acids and their incorporation into triacylglycerols by cell-free fractions from Cuphea embryos.

    PubMed

    Deerberg, S; von Twickel, J; Förster, H H; Cole, T; Fuhrmann, J; Heise, K P

    1990-02-01

    During their rapid maturation period, seeds of Cuphea wrightii A. Gray mainly accumulate medium-chain fatty acids (C8 to C14) in their storage lipids. The rate of lipid deposition (40-50 mg·d(-1)·(g fresh weight)(-1)) is fourfold higher than in seeds of Cuphea racemosa (L. f.) Spreng, which accumulate long-chain fatty acids (C16 to C18). Measurements of the key enzymes of fatty-acid synthesis in cell-free extracts of seeds of different maturities from Cuphea wrightii show that malonyl-CoA synthesis may be a triggering factor for the observed high capacity for fatty-acid synthesis. Experiments on the incorporation of [1-(14)C]acetate into fatty acids by purified plastid preparations from embryos of Cuphea wrightii have demonstrated that the biosynthesis of medium-chain fatty acids (C8 to C14) is localized in the plastid. Thus, in the presence of cofactors for lipid synthesis (ATP, NADPH, NADH, acyl carrier protein, and sn-glycerol-3-phosphate), purified plastid fractions predominantly synthesized free fatty acids, 30% of which were of medium chain length. Transesterification of the freshly synthesized fatty acids to coenzyme A and recombination with the microsomal fraction of the embryo homogenate induced triacylglycerol synthesis. It also stimulated fatty-acid synthesis by a factor 2-3 and increased the relative amount of medium-chain fatty acids bound to triacylglycerols, which corresponded to about 60-80% in this lipid fraction.

  13. Meta-analysis of dietary essential fatty acids and long-chain polyunsaturated fatty acids as they relate to visual resolution acuity in healthy preterm infants.

    PubMed

    SanGiovanni, J P; Parra-Cabrera, S; Colditz, G A; Berkey, C S; Dwyer, J T

    2000-06-01

    To derive combined estimates of visual resolution acuity differences between healthy preterm infants consuming different compositions and ratios of essential fatty acids (EFAs) and docosahexaenoic acid (DHA), an omega-3 (n-3) long-chain polyunsaturated fatty acid (LCPUFA). Electronic biomedical reference database (Medline and Health Star from 1965 to July 1999) searches with index terms omega-3, n-3, infant, vision, acuity, and human. Current review article, monograph, and book chapter bibliography/reference section hand searches. A total of 5 original articles and 4 review chapters were reviewed for details on study design, conduct, and outcome. Four prospective trials of EFA/LCPUFA supplementation were included in these analyses. For behaviorally based outcomes, there were 2 randomized comparisons each at

  14. Short-chain fatty acid sensing in rat duodenum

    PubMed Central

    Akiba, Yasutada; Inoue, Takuya; Kaji, Izumi; Higashiyama, Masaaki; Narimatsu, Kazuyuki; Iwamoto, Ken-ichi; Watanabe, Masahiko; Guth, Paul H; Engel, Eli; Kuwahara, Atsukazu; Kaunitz, Jonathan D

    2015-01-01

    Intraduodenal fatty acids (FA) and bacterial overgrowth, which generate short-chain FAs (SCFAs), have been implicated in the generation of functional dyspepsia symptoms. We studied the mechanisms by which luminal SCFA perfusion affects duodenal HCO3− secretion (DBS), a measure of mucosal neurohumoral activation. Free fatty acid receptor (FFAR) 1 (FFA1), which binds long-chain FA (LCFA), and SCFA receptors FFA2 and FFA3 were immunolocalised to duodenal enteroendocrine cells. FFA3 colocalised with glucagon-like peptide (GLP)-1, whereas FFA2 colocalised with 5-HT. Luminal perfusion of the SCFA acetate or propionate increased DBS, enhanced by dipeptidyl peptidase-IV (DPPIV) inhibition, at the same time as increasing GLP-2 portal blood concentrations. Acetate-induced DBS was partially inhibited by monocarboxylate/HCO3− exchanger inhibition without affecting GLP-2 release, implicating acetate absorption in the partial mediation of DBS. A selective FFA2 agonist dose-dependently increased DBS, unaffected by DPPIV inhibition or by cholecystokinin or 5-HT3 receptor antagonists, but was inhibited by atropine and a 5-HT4 antagonist. By contrast, a selective FFA1 agonist increased DBS accompanied by GLP-2 release, enhanced by DPPIV inhibition and inhibited by a GLP-2 receptor antagonist. Activation of FFA1 by LCFA and presumably FFA3 by SCFA increased DBS via GLP-2 release, whereas FFA2 activation stimulated DBS via muscarinic and 5-HT4 receptor activation. SCFA/HCO3− exchange also appears to be present in the duodenum. The presence of duodenal fatty acid sensing receptors that signal hormone release and possibly signal neural activation may be implicated in the pathogenesis of functional dyspepsia. PMID:25433076

  15. Medium and Long Chain Fatty Acids Differentially Modulate Apoptosis and Release of Inflammatory Cytokines in Human Liver Cells.

    PubMed

    Li, Lumin; Wang, Baogui; Yu, Ping; Wen, Xuefang; Gong, Deming; Zeng, Zheling

    2016-06-01

    Medium chain fatty acids (MCFA) can be more easily absorbed and supply energy more rapidly than long chain fatty acids (LCFA). However, little is known about the inflammatory response by the treatment of MCFA in human liver cells. Thus this study used human liver cells (LO2) to evaluate the effects of MCFA on apoptosis and inflammatory response. Tetrazolim-based colorimetric assay and lactate dehydrogenase assay were used to measure the viability of LO2 cells, isolated spleens and liver cells from BALB/C mice. Inverted fluorescence microscopy and flow cytometry were used to assess the cell apoptosis. Activity of superoxide dismutase and malondialdehyde level were measured to determine the oxidative damage. mRNA or protein levels of classical pro-inflammatory cytokines were analyzed by quantitative real-time polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay and western blotting. The results showed that the liver cells treated with the fatty acids at 200 μM for 24 h exhibited good viability. Fatty acids induced inflammatory cytokines at transcriptional and translational levels to a lesser extent than lipopolysaccharide. LCFA (oleic acid) up-regulated tumor necrosis fator-α, monocyte chemoattractant-1 and interleukin-1β while down-regulated IL-6 and IL-8 secretion to a higher extent than MCFA in mRNA and protein levels. These findings suggested that MCFA may induce apoptosis to a less extent and exert more gentle inflammation than LCFA in human liver cells. © 2016 Institute of Food Technologists®

  16. Long-chain n-3 polyunsaturated fatty acids and incidence rate of coronary artery calcification in Japanese in Japan and United States whites – population-based prospective cohort study

    PubMed Central

    Sekikawa, Akira; Miura, Katsuyuki; Lee, Sunghee; Fujiyoshi, Akira; Edmundowicz, Daniel; Kadowaki, Takashi; Evans, Rhobert W.; Kadowaki, Sayaka; Sutton-Tyrrell, Kim; Okamura, Tomonori; Bertolet, Marnie; Masaki, Kamal H.; Nakamura, Yasuyuki; Barinas-Mitchell, Emma J. M.; Willcox, Bradley J.; Kadota, Aya; Seto, Todd B.; Maegawa, Hiroshi; Kuller, Lewis H.; Ueshima, Hirotsugu

    2014-01-01

    Objective To determine whether serum levels of long-chain n-3 polyunsaturated fatty acids (LCn3PUFAs) contribute to the difference in incidence rate of coronary artery calcification (CAC) between Japanese in Japan and U.S. whites. Methods In a population-based prospective-cohort study, 214 Japanese and 152 white men aged 40–49 years at baseline (2002–2006) with coronary calcium score (CCS) = 0 were reexamined for CAC in 2007–2010. Among these, 175 Japanese and 113 whites participated in the follow-up exam. Incident cases were defined as participants with CCS ≥ 10 at follow-up. A relative risk regression analysis was used to model incidence rate ratio between Japanese and whites. The incidence rate ratio was first adjusted for potential confounders at baseline and then further adjusted for serum LCn3PUFAs at baseline. Results Mean (standard deviation) serum percentage of LCn3PUFA was > 100% higher in Japanese than in whites (9.08 (2.49) versus 3.84 (1.79), respectively, p<0.01). Japanese had a significantly lower incidence rate of CAC compared to whites (0.9 versus 2.9/100 person-years, respectively, p < 0.01). Incidence rate ratio of CAC taking follow-up time into account between Japanese and white men was 0.321 (95% confidence interval (CI) 0.150, 0.690: p<0.01). After adjusting for age, systolic-blood pressure, low-density-lipoprotein cholesterol, diabetes, and other potential confounders, the ratio remained significant: 0.262 (95% CI: 0.094, 0.731, p=0.01). After further adjusting for LCn3PUFAs, however, the ratio was attenuated and became non-significant (0.376 (95% CI: 0.090, 1.572, p=0.18). Conclusions LCn3PUFAs significantly contributed to the difference in CAC incidence between Japanese and white men. PMID:24352736

  17. Structural Basis for Substrate Fatty Acyl Chain Specificity

    PubMed Central

    McAndrew, Ryan P.; Wang, Yudong; Mohsen, Al-Walid; He, Miao; Vockley, Jerry; Kim, Jung-Ja P.

    2008-01-01

    Very-long-chain acyl-CoA dehydrogenase (VLCAD) is a member of the family of acyl-CoA dehydrogenases (ACADs). Unlike the other ACADs, which are soluble homotetramers, VLCAD is a homodimer associated with the mitochondrial membrane. VLCAD also possesses an additional 180 residues in the C terminus that are not present in the other ACADs. We have determined the crystal structure of VLCAD complexed with myristoyl-CoA, obtained by co-crystallization, to 1.91-Å resolution. The overall fold of the N-terminal ∼400 residues of VLCAD is similar to that of the soluble ACADs including medium-chain acyl-CoA dehydrogenase (MCAD). The novel C-terminal domain forms an α-helical bundle that is positioned perpendicular to the two N-terminal helical domains. The fatty acyl moiety of the bound substrate/product is deeply imbedded inside the protein; however, the adenosine pyrophosphate portion of the C14-CoA ligand is disordered because of partial hydrolysis of the thioester bond and high mobility of the CoA moiety. The location of Glu-422 with respect to the C2-C3 of the bound ligand and FAD confirms Glu-422 to be the catalytic base. In MCAD, Gln-95 and Glu-99 form the base of the substrate binding cavity. In VLCAD, these residues are glycines (Gly-175 and Gly-178), allowing the binding channel to extend for an additional 12Å and permitting substrate acyl chain lengths as long as 24 carbons to bind. VLCAD deficiency is among the more common defects of mitochondrial β-oxidation and, if left undiagnosed, can be fatal. This structure allows us to gain insight into how a variant VLCAD genotype results in a clinical phenotype. PMID:18227065

  18. Sirtuin 3 (SIRT3) Protein Regulates Long-chain Acyl-CoA Dehydrogenase by Deacetylating Conserved Lysines Near the Active Site

    PubMed Central

    Bharathi, Sivakama S.; Zhang, Yuxun; Mohsen, Al-Walid; Uppala, Radha; Balasubramani, Manimalha; Schreiber, Emanuel; Uechi, Guy; Beck, Megan E.; Rardin, Matthew J.; Vockley, Jerry; Verdin, Eric; Gibson, Bradford W.; Hirschey, Matthew D.; Goetzman, Eric S.

    2013-01-01

    Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases. PMID:24121500

  19. Long-chain omega-3 polyunsaturated fatty acid dietary intake is positively associated with bone mineral density in normal and osteopenic Spanish women

    PubMed Central

    Pedrera-Canal, Maria; Aliaga, Ignacio; Leal-Hernandez, Olga; Rico-Martin, Sergio; Canal-Macias, Maria L.

    2018-01-01

    The regular consumption of long-chain omega-3 polyunsaturated fatty acids (LCO3-PUFAs) results in general health benefits. The intake of LCO3-PUFAs has been reported to contribute to bone metabolism. We aimed to investigate the relationships between dietary intakes of LCO3-PUFAs and bone mineral density (BMD) in Spanish women aged 20–79 years old. A total of 1865 female subjects (20–79 years old) were enrolled, and lumbar (L2, L3, L3 and total spine), hip (femoral neck (FN), femoral trochanter (FT) and Ward’s triangle (WT)) bone mineral density (BMD) were measured by dual energy X-ray absorptiometry (DXA). Dietary intakes of total energy, calcium, vitamin D, alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and n-6 fatty acids (linoleic acid (LA) and arachidonic acid (AA)) were assessed by a self-administered food frequency questionnaire (FFQ). Spearman’s rank correlations between LCO3-PUFAs and BMD were estimated. Partial correlations controlling for age, weight, height, dietary calcium, vitamin D, menopausal status and energy were calculated. A multiple regression analysis was computed to assess significant associations with BMD in this population. After adjustment for potential confounding factors, there were positive correlations between ALA, EPA and DHA intake and BMD. According to the WHO diagnosis criteria for osteoporosis, in this population of normal and osteopenic women, the dietary intake of ALA was also significantly associated with BMD at the hip. In normal women, the dietary intake of DHA was also significantly associated with BMD at the lumbar spine. No significant associations between LCO3-PUFAs and BMD were detected in the lumbar spine of osteopenic or osteoporotic women. The dietary intake of LCO3-PUFAs was positively associated with BMD in Spanish women at both the hips and the lumbar spine. We highlight that the intake of LCO3-PUFAs is not significantly associated with BMD in osteoporotic women; however

  20. A novel omega3-fatty acid desaturase involved in the biosynthesis of eicosapentaenoic acid.

    PubMed Central

    Pereira, Suzette L; Huang, Yung-Sheng; Bobik, Emil G; Kinney, Anthony J; Stecca, Kevin L; Packer, Jeremy C L; Mukerji, Pradip

    2004-01-01

    Long-chain n-3 PUFAs (polyunsaturated fatty acids) such as EPA (eicosapentaenoic acid; 20:5 n-3) have important therapeutic and nutritional benefits in humans. In plants, cyanobacteria and nematodes, omega3-desaturases catalyse the formation of these n-3 fatty acids from n-6 fatty acid precursors. Here we describe the isolation and characterization of a gene ( sdd17 ) derived from an EPA-rich fungus, Saprolegnia diclina, that encodes a novel omega3-desaturase. This gene was isolated by PCR amplification of an S. diclina cDNA library using oligonucleotide primers corresponding to conserved regions of known omega3-desaturases. Expression of this gene in Saccharomyces cerevisiae, in the presence of various fatty acid substrates, revealed that the recombinant protein could exclusively desaturate 20-carbon n-6 fatty acid substrates with a distinct preference for ARA (arachidonic acid; 20:4 n-6), converting it into EPA. This activity differs from that of the known omega3-desaturases from any organism. Plant and cyanobacterial omega3-desaturases exclusively desaturate 18-carbon n-6 PUFAs, and a Caenorhabditis elegans omega3-desaturase preferentially desaturated 18-carbon PUFAs over 20-carbon substrates, and could not convert ARA into EPA when expressed in yeast. The sdd17 -encoded desaturase was also functional in transgenic somatic soya bean embryos, resulting in the production of EPA from exogenously supplied ARA, thus demonstrating its potential for use in the production of EPA in transgenic oilseed crops. PMID:14651475

  1. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  2. Unique plasma metabolomic signatures of individuals with inherited disorders of long-chain fatty acid oxidation

    PubMed Central

    McCoin, Colin S.; Piccolo, Brian D.; Knotts, Trina A.; Matern, Dietrich; Vockley, Jerry; Gillingham, Melanie B.; Adams, Sean H.

    2016-01-01

    Blood and urine acylcarnitine profiles are commonly used to diagnose long-chain fatty acid oxidation disorders (FAOD: i.e., long-chain hydroxy-acyl-CoA dehydrogenase [LCHAD] and carnitine palmitoyltransferase 2 [CPT2] deficiency), but the global metabolic impact of long-chain FAOD has not been reported. We utilized untargeted metabolomics to characterize plasma metabolites in 12 overnight-fasted individuals with FAOD (10 LCHAD, 2 CPT2) and 11 healthy age-, sex-, and body mass index (BMI)-matched controls, with the caveat that individuals with FAOD consume a low-fat diet supplemented with medium-chain triglycerides (MCT) while matched controls consume a typical American diet. 832 metabolites were identified in plasma, and partial least squared-discriminant analysis (PLS-DA) identified 114 non-acylcarnitine variables that discriminated FAOD subjects and controls. FAOD individuals had significantly higher triglycerides and lower specific phosphatidylethanolamines, ceramides and sphingomyelins. Differences in phosphatidylcholines were also found but the directionality differed by species. Further, there were few differences in non-lipid metabolites indicating the metabolic impact of FAOD specifically on lipid pathways. This analysis provides evidence that LCHAD/CPT2 deficiency significantly alters complex lipid pathway flux. This metabolic signature may provide powerful clinical tools capable of confirming or diagnosing FAOD, even in subjects with a mild phenotype, and provide clues regarding the biochemical and metabolic impact of FAOD that could be relevant to the etiology of FAOD symptoms. PMID:26907176

  3. Rapid alternative absorption of dietary long-chain fatty acids with upregulation of intestinal glycosylated CD36 in liver cirrhosis.

    PubMed

    Yamamoto, Yasunori; Hiasa, Yoichi; Murakami, Hidehiro; Ikeda, Yoshio; Yamanishi, Hirofumi; Abe, Masanori; Matsuura, Bunzo; Onji, Morikazu

    2012-07-01

    Dietary long-chain fatty acid (LCFA) intake is an important risk factor for hepatic inflammation and hepatocarcinogenesis. An alternate route of dietary LCFA absorption has been suggested in patients with liver cirrhosis (LC). We aimed to determine this alternate route and to identify its mechanism. Twenty healthy control subjects and 47 patients with LC-n = 23 with portal hypertension [PH(+)LC] and 24 without portal hypertension [PH(-)LC)]-were enrolled. [¹³C]Palmitate (an LCFA) and octanoate (a medium-chain fatty acid [MCFA]) were administered by using gastrointestinal endoscopy. Breath ¹³CO₂ was measured to quantify metabolized fatty acids. We also examined intestinal specimens of patients in these groups. A more rapid increase in metabolized palmitate, which showed a pattern similar to that of octanoate metabolism, was observed in patients with LC than in healthy control subjects. The increase in the PH(-)LC group was higher than that in the PH(+)LC group. However, the concentration of metabolized palmitate increased with treatment of the PH(+)LC group with a portal-systemic shunt. Morphologic changes such as expanded lymph and blood vessels were present, and glycosylated CD36 increased in the jejunum of the PH(+)LC group. This group had high serum concentrations of glucagon-like peptide-2. These data suggest that dietary LCFAs, similar to MCFAs, are absorbed via blood vessels in patients with LC. Rapid absorption of LCFAs by an alternative method occurred in patients with LC. This altered LCFA processing is likely related to upregulation of intestinal glycosylated CD36 and could contribute to pathogenesis in patients with LC.

  4. Effect of supplementation with long-chain ω-3 polyunsaturated fatty acids on behavior and cognition in children with attention deficit/hyperactivity disorder (ADHD): a randomized placebo-controlled intervention trial.

    PubMed

    Widenhorn-Müller, Katharina; Schwanda, Simone; Scholz, Elke; Spitzer, Manfred; Bode, Harald

    2014-01-01

    To determine whether supplementation with the long-chain omega-3 polyunsaturated fatty acids eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) affects behavioral symptoms and cognitive impairments in children 6-12 years of age diagnosed with attention-deficit/hyperactivity disorder (ADHD). The randomized, double-blind placebo-controlled 16 weeks trial was conducted with 95 children diagnosed with ADHD according to DSM-IV criteria. Behavior was assessed by parents, teachers and investigators using standardized rating scales and questionnaires. Further outcome variables were working memory, speed of information processing and various measures of attention. For a subgroup of 81 participants, erythrocyte membrane fatty acid composition was analyzed before and after the intervention. Supplementation with the omega-3 fatty acid mix increased EPA and DHA concentrations in erythrocyte membranes and improved working memory function, but had no effect on other cognitive measures and parent- and teacher-rated behavior in the study population. Improved working memory correlated significantly with increased EPA, DHA and decreased AA (arachidonic acid). Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Omega-3 fatty acids: cardiovascular benefits, sources and sustainability.

    PubMed

    Lee, John H; O'Keefe, James H; Lavie, Carl J; Harris, William S

    2009-12-01

    The evidence for the cardioprotective nature of omega-3 fatty acids is abundant, and currently available data indicate that patients with known coronary heart disease should consume at least 1 g daily of long-chain omega-3 fatty acids from either oily fish or fish-oil supplements, and that individuals without disease should consume at least 250-500 mg daily. However, this area of research poses two questions. Firstly, which is the best source of omega-3 fatty acids-fish or fish-oil supplements? Secondly, are recommendations for omega-3 supplementation warranted in view of the rapid depletion of world fish stocks? The argument that eating fish is better than taking fish-oil supplements stems from the fact that several important nutrients, such as vitamin D, selenium, and antioxidants, are missing from the supplements. However, three major prevention trials have clearly indicated that omega-3 fatty acid capsules confer cardiovascular benefits and, therefore, that both are cardioprotective. Sustainable sources of omega-3 fatty acids will need to be identified if long-term cardiovascular risk reduction is to be achieved at the population level.

  6. Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance.

    PubMed

    Su, Hui-Min

    2010-05-01

    Docosahexaenoic acid (DHA, 22:6n-3) is specifically enriched in the brain and mainly anchored in the neuronal membrane, where it is involved in the maintenance of normal neurological function. Most DHA accumulation in the brain takes place during brain development in the perinatal period. However, hippocampal DHA levels decrease with age and in the brain disorder Alzheimer's disease (AD), and this decrease is associated with reduced hippocampal-dependent spatial learning memory ability. A potential mechanism is proposed by which the n-3 fatty acids DHA and eicosapentaenoic acid (20:5n-3) aid the development and maintenance of spatial learning memory performance. The developing brain or hippocampal neurons can synthesize and take up DHA and incorporate it into membrane phospholipids, especially phosphatidylethanolamine, resulting in enhanced neurite outgrowth, synaptogenesis and neurogenesis. Exposure to n-3 fatty acids enhances synaptic plasticity by increasing long-term potentiation and synaptic protein expression to increase the dendritic spine density, number of c-Fos-positive neurons and neurogenesis in the hippocampus for learning memory processing. In aged rats, n-3 fatty acid supplementation reverses age-related changes and maintains learning memory performance. n-3 fatty acids have anti-oxidative stress, anti-inflammation, and anti-apoptosis effects, leading to neuron protection in the aged, damaged, and AD brain. Retinoid signaling may be involved in the effects of DHA on learning memory performance. Estrogen has similar effects to n-3 fatty acids on hippocampal function. It would be interesting to know if there is any interaction between DHA and estrogen so as to provide a better strategy for the development and maintenance of learning memory. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Basal omega-3 fatty acid status affects fatty acid and oxylipin responses to high-dose n3-HUFA in healthy volunteers

    USDA-ARS?s Scientific Manuscript database

    Objective: Baseline concentrations of highly unsaturated omega-3 fatty acid (n3-HUFA) may influence the ability of dietary n3-HUFA to affect changes in concentrations of esterified fatty acids and their metabolites. This study evaluates the influence of basal n3-HUFA and n3-HUFA metabolite status ...

  8. Dietary n-3 fatty acid restriction during gestation in rats: neuronal cell body and growth-cone fatty acids.

    PubMed

    Auestad, N; Innis, S M

    2000-01-01

    Growth cones are membrane-rich structures found at the distal end of growing axons and are the predecessors of the synaptic membranes of nerve endings. This study examined whether n-3 fatty acid restriction during gestation in rats alters the composition of growth cone and neuronal cell body membrane fatty acids in newborns. Female rats were fed a standard control diet containing soy oil (8% of fatty acids as 18:3n-3 by wt) or a semisynthetic n-3 fatty acid-deficient diet with safflower oil (0.3% of fatty acids as 18:3n-3 by wt) throughout normal pregnancy. Experiments were conducted on postnatal day 2 to minimize the potential for contamination from synaptic membranes and glial cells. Dietary n-3 fatty acid restriction resulted in lower docosahexaenoic acid (DHA) concentrations and a corresponding higher docosapentaenoic acid concentration in neuronal growth cones, but had no effects on neuronal cell body fatty acid concentrations. These studies suggest that accretion of DHA in growth cones, but not neuronal cell bodies, is affected by n-3 fatty acid restriction during gestation. Differences in other fatty acids or components between the semisynthetic and the standard diet, however, could have been involved in the effects on growth-cone DHA content. The results also provide evidence to suggest that the addition of new membrane fatty acids to neurons during development occurs along the shaft of the axon or at the growth cone, rather than originating at the cell body.

  9. Dietary Alfalfa and Calcium Salts of Long-Chain Fatty Acids Alter Protein Utilization, Microbial Populations, and Plasma Fatty Acid Profile in Holstein Freemartin Heifers.

    PubMed

    He, Yang; Qiu, Qinghua; Shao, Taoqi; Niu, Wenjing; Xia, Chuanqi; Wang, Haibo; Li, Qianwen; Gao, Zhibiao; Yu, Zhantao; Su, Huawei; Cao, Binghai

    2017-12-20

    This study presented the effects of alfalfa and calcium salts of long-chain fatty acids (CSFA) on feed intake, apparent digestibility, rumen fermentation, microbial community, plasma biochemical parameters, and fatty acid profile in Holstein freemartin heifers. Eight Holstein freemartin heifers were randomly divided into a 4 × 4 Latin Square experiment with 2 × 2 factorial diets, with or without alfalfa or CSFA. Dietary supplementation of CSFA significantly increased the apparent digestibility of dry matter, crude protein, neutral detergent fiber, organic matter, and significantly reduced N retention (P < 0.05). CSFA increased the concentration of ammonia nitrogen in the ruminal fluid (P < 0.05), but alfalfa increased the concentration of valerate and isovalerate (P < 0.05). CSFA increased the concentration of ammonia nitrogen and the relative population of Streptococcus bovis in the rumen (P < 0.05) and inhibited the relative population of Ruminococcus flavefaciens, methanogens, and protozoa (P < 0.05). Alfalfa instead of Leymus chinensis increased the relative population of Butyrivibrio fibrisolvens and Ruminobacter amylophilus in the rumen (P < 0.05) and reduced the relative population of the Ruminococcus albus and Megasphaera elsdenii (P < 0.05). Supplemental CSFA increased the concentration of cholesterol and low-density lipoprotein cholesterol in the plasma (P < 0.05). And it also altered the composition of fatty acids in the plasma, which was expressed in reducing saturated fatty acid (ΣSFA) ratio and C14-C17 fatty acids proportion except C16:0 (P < 0.05) and increasing the proportion of polyunsaturated fatty acid (ΣPUFA) and unsaturated fatty acid (ΣUFA) (P < 0.05). The results showed that alfalfa and CSFA had interaction effect on the apparent digestibility of ether extracts, plasma triglyceride concentration, isobutyrate concentration, and Ruminococcus albus relative abundance in the rumen. It was concluded that alfalfa substituting Leymus chinensis

  10. Possible involvement of long chain fatty acids in the spores of Ganoderma lucidum (Reishi Houshi) to its anti-tumor activity.

    PubMed

    Fukuzawa, Masataka; Yamaguchi, Rie; Hide, Izumi; Chen, Zhiqing; Hirai, Yuko; Sugimoto, Akiko; Yasuhara, Tadashi; Nakata, Yoshihiro

    2008-10-01

    During our isolation of biologically active substances from the spores of Ganoderma lucidum (Reishi Houshi, G. lucidum) guided by the inhibitory activity on HL-60 cell proliferation, NMR spectroscopic and mass spectrometric data indicate the substance contains a mixture of several long chain fatty acids. Hence, in this study, we have examined the inhibitory effects of an ethanolic extract of the spores of G. lucidum as the spore extract, on the proliferation of various human cancer cell lines by comparison with several authentic long chain fatty acids. Of the fatty acids we examined nonadecanoic acid (C19:0) showed the highest inhibitory activity for HL-60 cell proliferation with IC(50) values of 68+/-7 microM followed by heptadecanoic acid (C17:0, 120+/-23 microM), octa- (C18:0, 127+/-4 microM) and hexadecanoic acids (C16:0, 132+/-25 microM), respectively. The corresponding unsaturated fatty acids containing one double bond such as cis-10-nonadecenoic acid (C19:1), cis-9-octadecenoic acid (C18:1), cis-10-heptadecenoic acid (C17:1) and cis-9-hexadecenoic acid (C16:1) were less effective. The ethanolic extract of spores of G. lucidum were shown by annexin-V FITC/PI double staining to induce apoptosis of HL-60 cells in a similar way to cis-10-nonadecenoic acid (C19:1). These unsaturated fatty acids probably inhibit tumor necrosis factor production induced by lipopolysaccharide in a mouse macrophage preparation. Our results suggest the spores of G. lucidum contain 19-carbon fatty acids as one of the components for characteristics of its physiological effects.

  11. Association between serum long-chain omega-3 polyunsaturated fatty acids and cognitive performance in elderly men and women: The Kuopio Ischaemic Heart Disease Risk Factor Study.

    PubMed

    D'Ascoli, T A; Mursu, J; Voutilainen, S; Kauhanen, J; Tuomainen, T-P; Virtanen, J K

    2016-08-01

    Fish intake and the long-chain omega-3 polyunsaturated fatty acids (PUFAs) in fish have been suggested to lower the risk of cognitive decline. We assessed whether serum long-chain omega-3 PUFAs eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) are associated with performance on neuropsychological tests in an older population and whether exposure to methylmercury, mainly from fish, or apolipoprotein-E4 (Apo-E4) phenotype can modify the associations. A total of 768 participants from the population-based Kuopio Ischaemic Heart Disease Risk Factor Study were included. Cognitive function was measured using five neuropsychological tests: the Trail Making Test, the Verbal Fluency Test, the Selective Reminding Test, the Visual Reproduction Test and the Mini Mental State Exam. Multivariate-adjusted analysis of covariance and linear regression were used to analyze the cross-sectional associations. We found statistically significant associations between serum EPA+DPA+DHA and better performance in the Trail Making Test and the Verbal Fluency Test. The individual associations with EPA and DHA were similar with the findings with EPA+DPA+DHA, although the associations with DHA were stronger. No associations were observed with serum DPA. Pubic hair mercury content was associated only with a worse performance in the Trail Making Test, and mercury had only little impact on the associations between the serum PUFAs and cognitive performance. Apo-E4 phenotype did not modify the associations with PUFAs or mercury. Higher serum long-chain omega-3 PUFA concentrations were associated with better performance on neuropsychological tests of frontal lobe functioning in older men and women. Mercury exposure or Apo-E4 phenotype had little impact on cognitive performance.

  12. Long-chain omega-3 from low-trophic-level fish provides value to farmed seafood

    PubMed Central

    Bibus, Douglas M

    2015-01-01

    Low-trophic-level fish are a crucial source of long-chain (LC) omega-3 fatty acids for farmed fish and humans. Many farm-raised fish species have a clear need for these nutrients. Farmed fish deposit the LC omega-3s in their flesh and transfer them up the food chain. However, the content of LC omega-3s in farm-raised seafood continues to decline, while the content of shorter-chain plant-sourced omega-3s, and pro-inflammtory omega-6s continue to increase. This reduces its nutritional worth. The value of low-trophic-level fish is often viewed merely as its price at the dock. Some reports and metrics steer public attention towards the mass balance between quantities of low-trophic-level fish and farmed seafood. However, the the nutritional value of seafood is more important than its mere quantities. The role of low-trophic-level fish in human nutrition, health, and wellbeing is a fundamental component of its economic value to society. PMID:26097289

  13. Two Predicted Transmembrane Domains Exclude Very Long Chain Fatty acyl-CoAs from the Active Site of Mouse Wax Synthase

    PubMed Central

    Kawelke, Steffen; Feussner, Ivo

    2015-01-01

    Wax esters are used as coatings or storage lipids in all kingdoms of life. They are synthesized from a fatty alcohol and an acyl-CoA by wax synthases. In order to get insights into the structure-function relationships of a wax synthase from Mus musculus, a domain swap experiment between the mouse acyl-CoA:wax alcohol acyltransferase (AWAT2) and the homologous mouse acyl-CoA:diacylglycerol O-acyltransferase 2 (DGAT2) was performed. This showed that the substrate specificity of AWAT2 is partially determined by two predicted transmembrane domains near the amino terminus of AWAT2. Upon exchange of the two domains for the respective part of DGAT2, the resulting chimeric enzyme was capable of incorporating up to 20% of very long acyl chains in the wax esters upon expression in S. cerevisiae strain H1246. The amount of very long acyl chains in wax esters synthesized by wild type AWAT2 was negligible. The effect was narrowed down to a single amino acid position within one of the predicted membrane domains, the AWAT2 N36R variant. Taken together, we provide first evidence that two predicted transmembrane domains in AWAT2 are involved in determining its acyl chain length specificity. PMID:26714272

  14. Association between neurotrophin 4 and long-chain polyunsaturated fatty acid levels in mid-trimester amniotic fluid.

    PubMed

    Benn, Kiesha; Passos, Mariana; Jayaram, Aswathi; Harris, Mary; Bongiovanni, Ann Marie; Skupski, Daniel; Witkin, Steven S

    2014-11-01

    The omega-3 long-chain polyunsaturated fatty acid (LCPUFA) docosahexaenoic acid (DHA) and the omega-6 LCPUFA arachidonic acid (AA) are essential nervous system components that increase in concentration throughout gestation. The neurotrophins, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4) are small basic peptides crucial for fetal brain development. The DHA supplementation during pregnancy has been suggested to enhance neural development. We evaluated whether amniotic fluid DHA and AA concentrations correlated with intra-amniotic neurotrophin levels. Amniotic fluid, obtained at 15 to 19 weeks gestation from 62 women, was tested for BDNF, NGF, NT3, and NT4 by enzyme-linked immunosorbent assay. Concentrations of DHA and AA, and saturated and monounsaturated fatty acids, were determined by gas chromatography. Associations were analyzed by the Spearman rank correlation test. Median levels of AA and DHA were 2.3% and 1.3% of the total intra-amniotic fatty acids, respectively. Median neurotrophin levels (pg/mL) were 36.7 for NT3, 26.8 for BDNF, 5.2 for NT4, and 0.8 for NGF. Intra-amniotic NT4 and BDNF levels were correlated (P = .0016), while NT3 and NGF levels were unrelated to each other or to BDNF or NT4. Only NT4 was positively correlated with amniotic fluid DHA (P < .0001) and AA (P = .0003) concentrations. There were no associations between DHA, AA, or any neurotrophin and maternal age, gestational age at time of amniocentesis, amniocentesis indication, parity, or gestational age at delivery. Elevations in intra-amniotic NT4 with increasing levels of DHA and AA suggest that these LCPUFAs may specifically influence the extent of NT4-mediated fetal brain neurogenesis. © The Author(s) 2014.

  15. Characterization of oilseed lipids from "DHA-producing Camelina sativa": a new transformed land plant containing long-chain omega-3 oils.

    PubMed

    Mansour, Maged P; Shrestha, Pushkar; Belide, Srinivas; Petrie, James R; Nichols, Peter D; Singh, Surinder P

    2014-02-21

    New and sustainable sources of long-chain (LC, ≥C₂₀) omega-3 oils containing DHA (docosahexaenoic acid, 22:6ω3) are required to meet increasing demands. The lipid content of the oilseed of a novel transgenic, DHA-producing land plant, Camelina sativa, containing microalgal genes able to produce LC omega-3 oils, contained 36% lipid by weight with triacylglycerols (TAG) as the major lipid class in hexane extracts (96% of total lipid). Subsequent chloroform-methanol (CM) extraction recovered further lipid (~50% polar lipid, comprising glycolipids and phospholipids) and residual TAG. The main phospholipid species were phosphatidyl choline and phosphatidyl ethanolamine. The % DHA was: 6.8% (of total fatty acids) in the TAG-rich hexane extract and 4.2% in the polar lipid-rich CM extract. The relative level of ALA (α-linolenic acid, 18:3ω3) in DHA-camelina seed was higher than the control. Major sterols in both DHA- and control camelina seeds were: sitosterol, campesterol, cholesterol, brassicasterol and isofucosterol. C₁₆-C₂₂ fatty alcohols, including iso-branched and odd-chain alcohols were present, including high levels of iso-17:0, 17:0 and 19:0. Other alcohols present were: 16:0, iso-18:0, 18:0 and 18:1 and the proportions varied between the hexane and CM extracts. These iso-branched odd-chain fatty alcohols, to our knowledge, have not been previously reported. These components may be derived from wax esters, or free fatty alcohols.

  16. The effect of dietary supplementation with calcium salts of long chain fatty acids and/or L-carnitine on ovarian activity of Rahmani ewes.

    PubMed

    El-Shahat, K H; Abo-El maaty, Amal M

    2010-01-01

    This study investigated the effect of dietary supplementation with calcium salts of long chain fatty acids with or without of l-carnitine on ovarian activity using 24 Rahmani ewes randomly allocated to four treatments. Control animals (n=6) were fed a basal diet of hay (64.2%) and barley grain (35.0%) plus minerals and vitamins (0.8%). Ewes on the three treatments received the same basal diet supplemented with calcium salts of long chain fatty acids (CSFA) at 3% of the basal diet dry matter intake (1.4 kg/ewe/d); 250 ppm l-carnitine (LC); or both these supplements (CSFA+LC). All use exhibited natural estrus on one or two occasions and were weighed at the start and the end of the study as well as body condition score was assessed at the end of study. All ewes were then synchronised for estrus using intravaginal sponges for 12 d prior to the start of the nutritional treatments and three weeks after the nutritional treatments began. The nutritional treatments were imposed for a total of 8 weeks. Blood samples were collected prior to the start of treatments and every two weeks thereafter except after sponge removal of first and second synchronisation where the blood samples were collected daily for progesterone assay. The results revealed that Rahmani ewes received basal diet (control) and l-carnitine had significantly decrease final body weight and body condition score (36.3+/-0.4; 36.8+/-0.3; 2.2+/-0.04; 2.1+/-0.05; p<0.05, respectively) than those on CSFA and CSFA+LC (38.6+/-0.9; 39.5+/-0.6; 3.3+/-0.07; 3.4+/-0.06; respectively). At the second ultrasound examination, the control animals had significantly fewer total follicles (7.3+/-0.8; p<0.05) than those on the CSFA (8.4+/-0.8), l-carnitine (8.7+/-1.5) and CSFA+LC (8.0+/-0.6) treatments. The increased numbers occurred in the medium and large categories of follicles. In addition, the ovulation rates were significantly lower (p<0.05) for control (1.3+/-0.2) and l-carnitine (1.5+/-0.00) than for CSFA (2.5+/-0.3) and

  17. Effects of Long-Chain Polyunsaturated Fatty Acid Supplementation of Infant Formula on Cognition and Behaviour at 9 Years of Age

    ERIC Educational Resources Information Center

    de Jong, Corina; Kikkert, Hedwig K.; Fidler, Vaclav; Hadders-Algra, Mijna

    2012-01-01

    Aim: Long-chain polyunsaturated fatty acid (LCPUFA) supplementation of infant formula may have a beneficial effect on cognitive development. This study aimed to investigate the effect of LCPUFA formula supplementation primarily on cognition and secondarily on behaviour at age 9 years. Special attention was paid to the potentially modifying effect…

  18. Simple and sensitive analysis of long-chain free fatty acids in milk by fluorogenic derivatization and high-performance liquid chromatography.

    PubMed

    Lu, Chi-Yu; Wu, Hsin-Lung; Chen, Su-Hwei; Kou, Hwang-Shang; Wu, Shou-Mei

    2002-01-02

    A highly sensitive high-performance liquid chromatography (HPLC) method is described for the simultaneous determination of some important saturated and unsaturated fatty acids in milk, including lauric (dodecanoic), myristic (tetradecanoic), palmitic (hexadecanoic), stearic (octadecanoic), palmitoleic (hexadecenoic), oleic (octadecenoic), and linoleic acids (octadecadienoic acids). The fatty acids were fluorogenically derivatized with 2-(2-naphthoxy)ethyl 2-(piperidino)ethanesulfonate (NOEPES) as their naphthoxyethyl derivatives. The resulting derivatives were separated by isocratic HPLC and monitored with a fluorometric detector (lambdaex = 235 nm, lambdaem = 350 nm). The fatty acids in milk were extracted with toluene, and the extract with the fatty acids was directly derivatized with NOEPES without solvent replacement. Determination of long-chain free fatty acids in milk is feasible by a standard addition method. A small amount of milk product, 10 microL, is sufficient for the analysis.

  19. Influence of long-chain polyunsaturated fatty acid formula feeds on vitamin E status in preterm infants.

    PubMed

    Kaempf-Rotzoll, Daisy E; Hellstern, Gerald; Linderkamp, Otwin

    2003-10-01

    It has been recommended to supplement formulas for preterm infants with n-3 and n-6 long-chain polyunsaturated fatty acids (LCP) to improve growth, visual acuity, and neurodevelopmental performance. However, large amounts of LCP may increase lipid peroxidation and oxidative stress in preterm infants. We investigated if, under high supplementation of natural tocopherols, LCP addition to formula can be performed safely without causing tocopherol depletion in cell membranes. Thirty-one healthy preterm infants with gestational ages from 28 to 32 weeks were evaluated in a prospective, randomized study from birth to day 42. Nine infants received an n-3 and n-6 LCP-enriched formula (A), eleven infants a standard formula (B), and eleven infants breast milk (control group). Alpha- and gamma-tocopherol extracts were added to both formulas, amounting to five times the value in breast milk (2.3 mg/dL in both formulas versus 0.45 mg/dL in breast milk). Erythrocyte arachidonic acid (AA) and docosahexaenoic acid (DHA) in the phosphatidylethanolamine fraction were similar in the three groups over the study period, whereas a significant reduction of erythrocyte AA and DHA could be detected in the phosphatidylcholine fraction in all three groups from day 14 onwards, when compared to respective cord blood values, with lowest values in the standard formula group. Amazingly, levels of alpha- and gamma-tocopherol were higher in plasma, erythrocytes, platelets, monocytes, and polymorphonuclear leukocytes with LCP supplementation as compared to standard formula and breast milk from day 7 onwards, whereas in buccal mucosal cells, this was not the case until day 42. Gammatocopherol uptake in the LCP-supplemented group was also significantly higher in all cell fractions studied from day 7 onwards. We therefore hypothesize that the LCP supplementation used in formula A improves tocopherol solubility and stability in biological membranes. Under high-dose vitamin E addition to n-3 and n-6 LCP

  20. Dietary (n-6 : n-3) Fatty Acids Alter Plasma and Tissue Fatty Acid Composition in Pregnant Sprague Dawley Rats

    PubMed Central

    Kassem, Amira Abdulbari; Abu Bakar, Md Zuki; Yong Meng, Goh; Mustapha, Noordin Mohamed

    2012-01-01

    The objective of this paper is to study the effects of varying dietary levels of n-6 : n-3 fatty acid ratio on plasma and tissue fatty acid composition in rat. The treatment groups included control rats fed chow diet only, rats fed 50% soybean oil (SBO): 50% cod liver oil (CLO) (1 : 1), 84% SBO: 16% CLO (6 : 1), 96% SBO: 4% CLO (30 : 1). Blood samples were taken at day 15 of pregnancy, and the plasma and tissue were analyzed for fatty acid profile. The n-3 PUFA in plasma of Diet 1 : 1 group was significantly higher than the other diet groups, while the total n-6 PUFA in plasma was significantly higher in Diet 30 : 1 group as compared to the control and Diet 1 : 1 groups. The Diet 1 : 1 group showed significantly greater percentages of total n-3 PUFA and docosahexaenoic acid in adipose and liver tissue, and this clearly reflected the contribution of n-3 fatty acids from CLO. The total n-6 PUFA, linoleic acid, and arachidonic acid were significantly difference in Diet 30 : 1 as compared to Diet 1 : 1 and control group. These results demonstrated that the dietary ratio of n-6 : n-3 fatty acid ratio significantly affected plasma and tissue fatty acids profile in pregnant rat. PMID:22489205

  1. Antimicrobial medium- and long-chain free fatty acids prevent PrfA-dependent activation of virulence genes in Listeria monocytogenes.

    PubMed

    Sternkopf Lillebæk, Eva Maria; Lambert Nielsen, Stine; Scheel Thomasen, Rikke; Færgeman, Nils J; Kallipolitis, Birgitte H

    The foodborne pathogen Listeria monocytogenes is the causative agent of the invasive disease listeriosis. Infection by L. monocytogenes involves bacterial crossing of the intestinal barrier and intracellular replication in a variety of host cells. The PrfA protein is the master regulator of virulence factors required for bacterial entry, intracellular replication and cell-to-cell spread. PrfA-dependent activation of virulence genes occurs primarily in the blood and during intracellular infection. In contrast, PrfA does not play a significant role in regulation of virulence gene expression in the intestinal environment. In the gastrointestinal phase of infection, the bacterium encounters a variety of antimicrobial agents, including medium- and long-chain free fatty acids that are commonly found in our diet and as active components of bile. Here we show that subinhibitory concentrations of specific antimicrobial free fatty acids act to downregulate transcription of PrfA-activated virulence genes. Interestingly, the inhibitory effect is also evident in cells encoding a constitutively active variant of PrfA. Collectively, our data suggest that antimicrobial medium- and long-chain free fatty acids may act as signals to prevent PrfA-mediated activation of virulence genes in environments where PrfA activation is not required, such as in food and the gastrointestinal tract. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. 'Designer oils' low in n-6:n-3 fatty acid ratio beneficially modifies cardiovascular risks in mice.

    PubMed

    Riediger, Natalie D; Azordegan, Nazila; Harris-Janz, Sydney; Ma, David W L; Suh, Miyoung; Moghadasian, Mohammed H

    2009-08-01

    Cardiovascular benefits of dietary n-3 fatty acids have been shown. However, benefits of n-3 fatty acids as part of a high fat, low n-6:n-3 fatty acid ratio diet has not been fully characterized. Aim of this study is to investigate cardiovascular and metabolic benefits of 'designer oils' containing a low ratio of n-6:n-3 fatty acids in C57BL/6 mice. Three groups of C57BL/6 mice were fed an atherogenic diet supplemented with either a fish oil- or flaxseed oil-based 'designer oil' with an approximate n-6:n-3 fatty acid ratio of 2:1 (treated groups, n = 6 each) or with a safflower oil-based formulation with a high ratio (25:1) of n-6:n-3 fatty acids (control group, n = 6) for 6 weeks. Food intake, body weight, and blood lipid levels were monitored regularly. Fatty acid profile of the heart tissues was assessed. Histological assessment of liver samples was conducted. At the end of the study body weight and food intake was significantly higher in the flax group compared to control. The levels of 20:5n-3 and 22:6n-3 was significantly increased in the heart phospholipids in both flax and fish groups compared to control; tissue 20:4n-6 was significantly reduced in the fish group compared to control. Significant liver pathology was observed in the control group only. Lowering dietary ratio of n-6:n-3 fatty acids may significantly reduce cardiovascular and metabolic risks in mice regardless of the source of n-3 fatty acids.

  3. N-3 fatty acids and membrane microdomains: from model membranes to lymphocyte function.

    PubMed

    Shaikh, Saame Raza; Teague, Heather

    2012-12-01

    This article summarizes the author's research on fish oil derived n-3 fatty acids, plasma membrane organization and B cell function. We first cover basic model membrane studies that investigated how docosahexaenoic acid (DHA) targeted the organization of sphingolipid-cholesterol enriched lipid microdomains. A key finding here was that DHA had a relatively poor affinity for cholesterol. This work led to a model that predicted DHA acyl chains in cells would manipulate lipid-protein microdomain organization and thereby function. We then review how the predictions of the model were tested with B cells in vitro followed by experiments using mice fed fish oil. These studies reveal a highly complex picture on how n-3 fatty acids target lipid-protein organization and B cell function. Key findings are as follows: (1) n-3 fatty acids target not just the plasma membrane but also endomembrane organization; (2) DHA, but not eicosapentaenoic acid (EPA), disrupts microdomain spatial distribution (i.e. clustering), (3) DHA alters protein lateral organization and (4) changes in membrane organization are accompanied by functional effects on both innate and adaptive B cell function. Altogether, the research over the past 10 years has led to an evolution of the original model on how DHA reorganizes membrane microdomains. The work raises the intriguing possibility of testing the model at the human level to target health and disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Effect of GPR84 deletion on obesity and diabetes development in mice fed long chain or medium chain fatty acid rich diets.

    PubMed

    Du Toit, Eugene; Browne, Liam; Irving-Rodgers, Helen; Massa, Helen M; Fozzard, Nicolette; Jennings, Michael P; Peak, Ian R

    2017-04-20

    Although there is good evidence showing that diets rich in medium chain fatty acids (MCFAs) have less marked obesogenic and diabetogenic effects than diets rich in long chain fatty acids (LCFAs), the role of the pro-inflammatory, medium chain fatty acid receptor (GPR84) in the aetiology of obesity and glucose intolerance is not well characterised. We set out to determine whether GPR84 expression influences obesity and glucose intolerance susceptibility in MCFA and LCFA rich diet fed mice. Wild type (WT) and GPR84 knockout (KO) mice were fed a control, MCFA or LCFA diet, and body mass, heart, liver and epididymal fat mass was assessed, as well as glucose tolerance and adipocyte size. LCFA diets increased body mass and decreased glucose tolerance in both WT and GPR84 KO animals while MCFA diets had no effect on these parameters. There were no differences in body weight when comparing WT and GPR84 KO mice on the respective diets. Glucose tolerance was also similar in WT and GPR84 KO mice irrespective of diet. Liver mass was increased following LCFA feeding in WT but not GPR84 KO mice. Hepatic triglyceride content was increased in GPR84 KO animals fed MCFA, and myocardial triglyceride content was increased in GPR84 KO animals fed LCFA. GPR84 deletion had no effects on body weight or glucose tolerance in mice fed either a high MCFA or LCFA diet. GPR84 may influence lipid metabolism, as GPR84 KO mice had smaller livers and increased myocardial triglyceride accumulation when fed LCFA diets, and increased liver triglyceride accumulation in responses to increased dietary MCFAs.

  5. Improving rheology and enzymatic hydrolysis of high-solid corncob slurries by adding lignosulfonate and long-chain fatty alcohols.

    PubMed

    Lou, Hongming; Wu, Shun; Li, Xiuli; Lan, Tianqing; Yang, Dongjie; Pang, Yuxia; Qiu, Xueqing; Li, Xuehui; Huang, Jinhao

    2014-08-20

    The effects of lignosulfonate (SXSL) and long-chain fatty alcohols (LFAs) on the rheology and enzymatic hydrolysis of high-solid corncob slurries were investigated. The application of 2.5% (w/w) SXSL increased the substrate enzymatic digestibility (SED) of high-solid corncob slurries at 72 h from 31.7 to 54.0%, but meanwhile it increased the slurry's yield stress and complex viscosity to make the slurry difficult to stir and pump. The smallest molecular weight (MW) SXSL fraction had the strongest enhancement on SED. The SXSL fraction with large MW had a negative effect on rheology. n-Octanol (C8) and n-decanol (C10) improved the rheological properties of high-solid slurry and are strong enough to counteract the negative effect of SXSL. Furthermore, C8 and C10 clearly enhanced the enzymatic hydrolysis of high-solid corncob slurries with and without SXSL. A mechanism was proposed to explain the observed negative effect of SXSL and the positive effect of LFAs on the rheological properties.

  6. Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids.

    PubMed

    Sousa, Diana Z; Smidt, Hauke; Alves, Maria M; Stams, Alfons J M

    2009-06-01

    Syntrophic relationships are the key for biodegradation in methanogenic environments. We review the ecological and physiological features of syntrophic communities involved in the degradation of saturated and unsaturated long-chain fatty acids (LCFA), as well as their potential application to convert lipids/fats containing waste to biogas. Presently, about 14 species have been described with the ability to grow on fatty acids in syntrophy with methanogens, all belonging to the families Syntrophomonadaceae and Syntrophaceae. The principle pathway of LCFA degradation is through beta-oxidation, but the initial steps in the conversion of unsaturated LCFA are unclear. Communities enriched on unsaturated LCFA also degrade saturated LCFA, but the opposite generally is not the case. For efficient methane formation, the physical and inhibitory effects of LCFA on methanogenesis need to be considered. LCFA adsorbs strongly to biomass, which causes encapsulation of active syntrophic communities and hampers diffusion of substrate and products in and out of the biomass. Quantification of archaea by real-time PCR analysis suggests that potential LCFA inhibitory effect towards methanogens might be reversible. Rather, the conversion of adsorbed LCFA in batch assays was shown to result in a significant increase of archaeal cell numbers in anaerobic sludge samples.

  7. Effect of n-3 fatty acids on free tryptophan and exercise fatigue.

    PubMed

    Huffman, Derek M; Altena, Thomas S; Mawhinney, Thomas P; Thomas, Tom R

    2004-08-01

    Free tryptophan (Trp), which is augmented by liberated free fatty acids (FFA) from adipose tissue, can induce mental fatigue via serotonin during exercise. Since an attenuation in FFA has been observed with omega-3 fatty acid (n-3fa) use, our purpose was to examine the effect of n-3fa supplementation on free Trp availability and exercise fatigue. Ten recreationally trained men ( n=5) and women ( n=5), with maximal oxygen consumption (VO(2max))of 51.6 (3.0) and 44.3 (1.4) ml kg(-1) min(-1), respectively, were studied on two occasions following an overnight fast, before and after n-3fa supplementation (4 g day(-1) for 4 weeks). The exercise trials consisted of a 75-min treadmill run at 60% VO(2max) followed immediately by a high-intensity incremental bout to fatigue. Measurements included exercise monitors, plasma volume (PV), triglycerides (TG), FFA, glycerol, lactate, and glucose. Free Trp and branched-chain amino acids (BCAA) were measured and correlated with time to fatigue; all blood variables were corrected for PV. Free Trp, lactate, glucose, FFA, and glycerol were not significantly different between trials, but TG ( P<0.001) and the free Trp/BCAA ratio were significantly lower after n-3fa use [1.76 (0.18)x10(-2) microg ml(-1)] versus before supplementation [2.17 (0.22), P=0.033]. There was a non-significant increase in time to fatigue after supplementation [10.2 (0.3) min] versus before n-3fa use [9.7 (0.2), P=0.068], and a tendency for higher BCAA levels after supplementation, P=0.068. However, neither free Trp nor the free Trp/BCAA ratio significantly predicted time to fatigue. In conclusion, n-3fa supplementation did not diminish free Trp concentrations or significantly improve endurance performance during a maximal bout of exercise.

  8. Characterization of Oilseed Lipids from “DHA-Producing Camelina sativa”: A New Transformed Land Plant Containing Long-Chain Omega-3 Oils

    PubMed Central

    Mansour, Maged P.; Shrestha, Pushkar; Belide, Srinivas; Petrie, James R.; Nichols, Peter D.; Singh, Surinder P.

    2014-01-01

    New and sustainable sources of long-chain (LC, ≥C20) omega-3 oils containing DHA (docosahexaenoic acid, 22:6ω3) are required to meet increasing demands. The lipid content of the oilseed of a novel transgenic, DHA-producing land plant, Camelina sativa, containing microalgal genes able to produce LC omega-3 oils, contained 36% lipid by weight with triacylglycerols (TAG) as the major lipid class in hexane extracts (96% of total lipid). Subsequent chloroform-methanol (CM) extraction recovered further lipid (~50% polar lipid, comprising glycolipids and phospholipids) and residual TAG. The main phospholipid species were phosphatidyl choline and phosphatidyl ethanolamine. The % DHA was: 6.8% (of total fatty acids) in the TAG-rich hexane extract and 4.2% in the polar lipid-rich CM extract. The relative level of ALA (α-linolenic acid, 18:3ω3) in DHA-camelina seed was higher than the control. Major sterols in both DHA- and control camelina seeds were: sitosterol, campesterol, cholesterol, brassicasterol and isofucosterol. C16–C22 fatty alcohols, including iso-branched and odd-chain alcohols were present, including high levels of iso-17:0, 17:0 and 19:0. Other alcohols present were: 16:0, iso-18:0, 18:0 and 18:1 and the proportions varied between the hexane and CM extracts. These iso-branched odd-chain fatty alcohols, to our knowledge, have not been previously reported. These components may be derived from wax esters, or free fatty alcohols. PMID:24566436

  9. The omega-3 fatty acid DHA dose-dependently reduces atherosclerosis: a putative role for F4-neuroprostanes a specific class of peroxidized metabolites

    USDA-ARS?s Scientific Manuscript database

    Objective. Consumption of long chain omega-3 polyunsaturated fatty acids is associated with reduced risks of cardiovascular disease but the role of their oxygenated metabolites remains unclear. We hypothesized that peroxidized metabolites of docosahexaenoic acid (DHA, 22:6 n-3) could play a role in ...

  10. Mitochondrial fatty acid biosynthesis and muscle fiber plasticity in very long-chain acyl-CoA dehydrogenase-deficient mice.

    PubMed

    Tucci, Sara; Mingirulli, Nadja; Wehbe, Zeinab; Dumit, Verónica I; Kirschner, Janbernd; Spiekerkoetter, Ute

    2018-01-01

    The white skeletal muscle of very long-chain acyl-CoA-dehydrogenase-deficient (VLCAD -/- ) mice undergoes metabolic modification to compensate for defective β-oxidation in a progressive and time-dependent manner by upregulating glucose oxidation. This metabolic regulation seems to be accompanied by morphologic adaptation of muscle fibers toward the glycolytic fiber type II with the concomitant upregulation of mitochondrial fatty acid biosynthesis (mFASII) and lipoic acid biosynthesis. Dietary supplementation of VLCAD -/- mice with different medium-chain triglycerides over 1 year revealed that odd-chain species has no effect on muscle fiber switch, whereas even-chain species inhibit progressive metabolic adaptation. Our study shows that muscle may undergo adaptive mechanisms that are modulated by dietary supplementation. We describe for the first time a concomitant change of mFASII in this muscular adaptation process. © 2017 Federation of European Biochemical Societies.

  11. Red Blood Cell Docosapentaenoic Acid (DPA n-3) is Inversely Associated with Triglycerides and C-reactive Protein (CRP) in Healthy Adults and Dose-Dependently Increases Following n-3 Fatty Acid Supplementation

    PubMed Central

    Skulas-Ray, Ann C.; Flock, Michael R.; Richter, Chesney K.; Harris, William S.; West, Sheila G.; Kris-Etherton, Penny M.

    2015-01-01

    The role of the long-chain omega-3 (n-3) fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in lipid metabolism and inflammation has been extensively studied; however, little is known about the relationship between docosapentaenoic acid (DPA, 22:5 n-3) and inflammation and triglycerides (TG). We evaluated whether n-3 DPA content of red blood cells (RBC) was associated with markers of inflammation (interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and C-reactive protein (CRP) and fasting TG prior to n-3 supplementation in two studies (Study 1: n = 115, aged 20–44 years, body mass index (BMI) 20–30 kg/m2, TG = 34–176 mg/dL; Study 2: n = 28, aged 22–65 years, BMI 24–37 kg/m2, TG = 141–339 mg/dL). We also characterized the dose-response effects of n-3 fatty acid supplementation on RBC n-3 DPA after five months of supplementation with fish oil (Study 1: 0, 300, 600, 900, and 1800 mg/day EPA + DHA) and eight weeks of prescription n-3 ethyl esters (Study 2: 0, 850, and 3400 mg/day EPA + DHA). In Study 1, RBC n-3 DPA was inversely correlated with CRP (R2 = 36%, p < 0.001) and with fasting TG (r = −0.30, p = 0.001). The latter finding was replicated in Study 2 (r = −0.33, p = 0.04). In both studies, n-3 supplementation significantly increased RBC n-3 DPA dose-dependently. Relative increases were greater for Study 1, with increases of 29%–61% vs. 14%–26% for Study 2. The associations between RBC n-3 DPA, CRP, and fasting TG may have important implications for the prevention of atherosclerosis and chronic inflammatory diseases and warrant further study. PMID:26247967

  12. Synthesis and characterization of poly(3-hydroxyalkanoates) from Brassica carinata oil with high content of erucic acid and from very long chain fatty acids.

    PubMed

    Impallomeni, Giuseppe; Ballistreri, Alberto; Carnemolla, Giovanni Marco; Guglielmino, Salvatore P P; Nicolò, Marco Sebastiano; Cambria, Maria Grazia

    2011-01-01

    Pseudomonas aeruginosa produced medium chain length poly(3-hydroxyalkanoates) (mcl-PHAs) when grown on substrates containing very long chain fatty acids (VLCFA, C>20). Looking for low cost carbon sources, we tested Brassica carinata oil (erucic acid content 35-48%) as an intact triglyceride containing VLCFA. Oleic (C18:1), erucic (C22:1), and nervonic (C24:1) acids were also employed for mcl-PHA production as model substrates. The polymers obtained were analyzed by GC of methanolyzed samples, GPC, 1H and 13C NMR, ESI MS of partially pyrolyzed samples, and DSC. The repeating units of such polymers were saturated and unsaturated, with a higher content of the latter in the case of the PHA obtained from B. carinata oil. Statistical analysis of the ion intensity in the ESI mass spectra showed that the PHAs from pure fatty acids are random copolymers, while the PHA from B. carinata oil is either a pure polymer or a mixture of polymers. Weight-average molecular weight varied from ca. 56,000 g/mol for the PHA from B. carinata oil and oleic acid, to about 120,000 g/mol for those from erucic and nervonic acids. The PHAs from erucic and nervonic acids were partially crystalline, with rubbery characteristics and a melting point (Tm) of 50°C, while the PHAs from oleic acid and from B. carinata oil afforded totally amorphous materials, with glass transition temperatures (Tg) of -52°C and -47°C, respectively. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Curcumin and long-chain Omega-3 polyunsaturated fatty acids for Prevention of type 2 Diabetes (COP-D): study protocol for a randomised controlled trial.

    PubMed

    Thota, Rohith N; Acharya, Shamasunder H; Abbott, Kylie A; Garg, Manohar L

    2016-11-29

    Lifestyle interventions, including increase in physical activity and dietary counselling, have shown the ability to prevent type 2 diabetes (T2D) in high-risk state individuals, but the prevalence is still skyrocketing in Australia, in line with global prevalence. Currently, no medicines are approved by the Therapeutic Goods Administration in Australia for the management of prediabetes. Therefore, there is a need of developing a safer, biologically efficacious and cost-effective alternative for delaying the transition of individual health state from prediabetes into T2D. In the current trial we propose to evaluate the effects of curcumin and/or long-chain omega-3 polyunsaturated fatty acids on improving glycosylated haemoglobin as a primary outcome, along with secondary outcomes of glycaemic indices, lipid profile and inflammatory parameters. Eighty individuals diagnosed with prediabetes, aged between 30 and 70 years, will be randomly assigned to double placebo, curcumin alone, fish oil alone or double active groups according to a computer-generated randomisation sequence for 12 weeks. At baseline and post-intervention visits participants will be asked to provide blood samples and undergo body composition measurements. A blood sample is used for estimating glycaemic profiles, lipid profiles and inflammatory parameters (C-reactive protein, whole blood cell count, adiponectin, leptin, interleukin-6). The interim visit includes review on compliance with supplements based on capsule log and capsule count, adverse events and anthropometric measurements. In addition to these procedures, participants provide self-reported questionnaires on dietary intake (using a 3-day food record), a physical activity questionnaire and medical history. This trial aims to determine whether curcumin and/or long-chain omega-3 polyunsaturated fatty acids affect surrogate markers of glycaemic control which is relevant to delaying T2D. To date 38 participants completed the trial. No changes

  14. Assessment of a land-locked Atlantic salmon (Salmo salar L.) population as a potential genetic resource with a focus on long-chain polyunsaturated fatty acid biosynthesis.

    PubMed

    Betancor, M B; Olsen, R E; Solstorm, D; Skulstad, O F; Tocher, D R

    2016-03-01

    The natural food for Atlantic salmon (Salmo salar) in freshwater has relatively lower levels of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA) than found in prey for post-smolt salmon in seawater. Land-locked salmon such as the Gullspång population feed exclusively on freshwater type lipids during its entire life cycle, a successful adaptation derived from divergent evolution. Studying land-locked populations may provide insights into the molecular and genetic control mechanisms that determine and regulate n-3 LC-PUFA biosynthesis and retention in Atlantic salmon. A two factorial study was performed comparing land-locked and farmed salmon parr fed diets formulated with fish or rapeseed oil for 8 weeks. The land-locked parr had higher capacity to synthesise n-3 LC-PUFA as indicated by higher expression and activity of desaturase and elongase enzymes. The data suggested that the land-locked salmon had reduced sensitivity to dietary fatty acid composition and that dietary docosahexaenoic acid (DHA) did not appear to suppress expression of LC-PUFA biosynthetic genes or activity of the biosynthesis pathway, probably an evolutionary adaptation to a natural diet lower in DHA. Increased biosynthetic activity did not translate to enhanced n-3 LC-PUFA contents in the flesh and diet was the only factor affecting this parameter. Additionally, high lipogenic and glycolytic potentials were found in land-locked salmon, together with decreased lipolysis which in turn could indicate increased use of carbohydrates as an energy source and a sparing of lipid. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Biodegradation of long-chain n-paraffins from waste oil of car engine by Acinetobacter sp.

    PubMed

    Koma, D; Hasumi, F; Yamamoto, E; Ohta, T; Chung, S Y; Kubo, M

    2001-01-01

    Microorganisms that degrade long-chain n-paraffins from used car engine oil were isolated from soil. For the screening, a fraction of n-paraffin prepared from car engine oil was applied as the sole carbon source. The strain was identified as Acinetobacter sp. The ability of the strain to assimilate long-chain n-paraffins was assessed and characterized. The strain mineralized long-chain n-paraffins (0.1% w/v) in the minimal medium after cultivation for 96 h and also reduced the weight of the waste oil added (1% w/v) by 20% after 72 h without an extracellular biosurfactant. When n-hexadecane was fed as substrate, 1-hexadecanol and 1-hexadecanoic acid were detected as the intermediates by gas chromatography/mass spectrometry. This indicates that the long-chain n-paraffins were metabolized via the terminal oxidation pathway of n-alkane.

  16. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance - A review.

    PubMed

    Saini, Ramesh Kumar; Keum, Young-Soo

    2018-06-15

    Linoleic acid (LA) (n-6) and α-linolenic acid (ALA) (n-3) are essential fatty acids (EFAs) as they cannot be synthesized by humans or other higher animals. In the human body, these fatty acids (FAs) give rise to arachidonic acid (ARA, n-6), eicosapentaenoic acid (EPA, n-3), and docosahexaenoic acid (DHA, n-3) that play key roles in regulating body homeostasis. Locally acting bioactive signaling lipids called eicosanoids derived from these FAs also regulate diverse homeostatic processes. In general, ARA gives rise to pro-inflammatory eicosanoids whereas EPA and DHA give rise to anti-inflammatory eicosanoids. Thus, a proportionally higher consumption of n-3 PUFAs can protect us against inflammatory diseases, cancer, cardiovascular diseases, and other chronic diseases. The present review summarizes major sources, intake, and global consumption of n-3 and n-6 PUFAs. Their metabolism to biosynthesize long-chain PUFAs and eicosanoids and their roles in brain metabolism, cardiovascular disease, obesity, cancer, and bone health are also discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Excessive ingestion of long-chain polyunsaturated fatty acids during developmental stage causes strain- and sex-dependent eye abnormalities in mice.

    PubMed

    Maekawa, Motoko; Iwayama, Yoshimi; Watanabe, Akiko; Nozaki, Yayoi; Ohnishi, Tetsuo; Ohba, Hisako; Toyoshima, Manabu; Hamazaki, Kei; Osumi, Noriko; Aruga, Jun; Yoshikawa, Takeo

    2010-11-12

    The eyes are rich in long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid [ARA; 20:4 (n-6)] and docosahexaenoic acid [DHA; 22:6 (n-3)]. Despite their abundance in the eyes, ARA and DHA cannot be sufficiently synthesized de novo in mammals. During gestation, eye development is exceptionally rapid, and substantial amounts of LC-PUFAs are needed to ensure proper eye development. Here, we studied the influences of dietary LC-PUFAs in dams (C57BL/6 and C3H/He) on the eye morphogenesis and organogenesis of their pups. Intriguingly, fetuses and newborn mice from C57BL/6 dams fed an LC-PUFA (particularly ARA)-enriched diet displayed a much higher incidence of eye abnormalities such as microphthalmia (small eye) and corneal opacity than those from dams fed an LC-PUFA-poor diet. The effects of LC-PUFAs on eye anomalies were evident only in the female pups of C57BL/6 inbred mice, not in those of C3H/He mice or male C57BL/6 mice. These results demonstrate a gene-by-environment (GxE) interaction in eye development in mice. Furthermore, our molecular analysis suggested the potential roles of Pitx3 and Pax6 in the above interaction involving ARA. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Aspirin increases mitochondrial fatty acid oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E.

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse themore » mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. - Highlights: • Aspirin increases mitochondrial—but inhibits peroxisomal—fatty acid oxidation. • Aspirin acetylates mitochondrial proteins including fatty acid oxidation enzymes. • SIRT3 does not influence the effect of aspirin on fatty acid oxidation. • Increased fatty acid oxidation is likely due to altered mitochondrial morphology and respiration.« less

  19. Inflammation in Response to n3 Fatty Acids in a Porcine Obesity Model

    PubMed Central

    Faris, Richard J; Boddicker, Rebecca L; Walker-Daniels, Jennifer; Li, Jenny; Jones, Douglas E; Spurlock, Michael E

    2012-01-01

    Fatty acids have distinct cellular effects related to inflammation and insulin sensitivity. Dietary saturated fat activates toll-like receptor 4, which in turn can lead to chronic inflammation, insulin resistance, and adipose tissue macrophage infiltration. Conversely, n3 fatty acids are generally antiinflammatory and promote insulin sensitivity, in part via peroxisome proliferator-activated receptor γ. Ossabaw swine are a useful biomedical model of obesity. We fed Ossabaw pigs either a low-fat control diet or a diet containing high-fat palm oil with or without additional n3 fatty acids for 30 wk to investigate the effect of saturated fats and n3 fatty acids on obesity-linked inflammatory markers. The diet did not influence the inflammatory markers C-reactive protein, TNFα, IL6, or IL12. In addition, n3 fatty acids attenuated the increase in inflammatory adipose tissue CD16–CD14+ macrophages induced by high palm oil. High-fat diets with and without n3 fatty acids both induced hyperglycemia without hyperinsulinemia. The high-fat only group but not the high-fat group with n3 fatty acids showed reduced insulin sensitivity in response to insulin challenge. This effect was not mediated by decreased phosphorylation of protein kinase B. Therefore, in obese Ossabaw swine, n3 fatty acids partially attenuate insulin resistance but only marginally change inflammatory status and macrophage phenotype in adipose tissue. PMID:23561883

  20. [Utilization of glucose and long-chain fatty acids in lactating dairy cows fed a fat-enriched diet].

    PubMed

    Voigt, J; Gaafar, K; Kanitz, W; Precht, D; Becker, F; Schneider, F; Spitschak, M; Schönhusen, U; Junghans, P; Aschenbach, J R; Gäbel, G

    2005-11-01

    The fate of carbon from long-chain fatty acids and glucose in dairy cows which were fed with protected fat was studied using stable isotope technique. The experiment was carried out on two groups of dairy cows (n=16 in each group) during the first 15 weeks of the lactation period. The cows were fed isoenergetic and isoproteinogenous diets based on corn silage. About 1.8 kg of tapioca starch in the diet of the starch group was substituted by about 0.7 kg of rumen protected fat (Ca salts of palm oil and soybean oil) in the diet of the fat group. The carbon atoms of dietary fat were naturally depleted in 13C as compared to carbon atoms of starch. Daily milk performance and lactose output were significantly (P < 0.05) higher among the cows fed with fat diet. In comparison to the starch group, the enrichment of milk fat with 13C was significantly lower, while that of breath CO2 was significantly higher in the fat group (P < 0.05). This means the fatty acids were incorporated into milk fat in preference to metabolic oxidation. Further studies showed that blood glucose is oxidized to a lower extent and is used for the synthesis of lactose to a higher proportion if the cows were fed with the fat diet. The glucose entry rate into the body glucose pool was not different between the diets. In conclusion, the dietary fatty acids perform a glucose sparing effect and improve the glucose supply for the mammary gland.

  1. Safety assessment of medium- and long-chain triacylglycerols containing 30% (w/w) medium-chain fatty acids in mice and rats.

    PubMed

    Zhou, Shengmin; Wang, Yueqiang; Jiang, Yuanrong; Yu, Liangli Lucy

    2017-06-01

    A novel medium- and long-chain triacylglycerols (MLCT), with 30% (w/w) medium-chain fatty acids (MCFA) was evaluated for its safety as a dietary fat in mice and rats. The subacute oral toxicity study showed that the maximum tolerated dose exceeded 54.33 g/kg body weight (kg bw)/day. In the 90-day feeding study, no dose-related adverse effects were observed in rats administered diets formulated with different levels of MLCT (2.0, 4.0, and 8.0 g/kg bw/day) as compared to the rapeseed oil control diet. Further safety assessment in pregnant rats did not reveal any significant difference relative to the control at a treatment level up to 8.0 g MLCT/kg bw/day. The results from this study indicated the safe use of MLCT with high contents of MCFA in food products for improving human health. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Long-chain 3-hydroxyacyl-coenzyme A dehydrogenase (L-CHAD) deficiency in a patient with the Bannayan-Riley-Ruvalcaba syndrome.

    PubMed

    Fryburg, J S; Pelegano, J P; Bennett, M J; Bebin, E M

    1994-08-01

    Bannayan-Riley-Ruvalcaba syndrome (BRRS) is an autosomal dominant condition of macrocephaly in combination with lipomas/hemangiomas, hypotonia, developmental delay, and a lipid myopathy. The etiology of the lipid storage myopathy has been unclear. We describe a black boy with findings of BRRS who also has a defect in long-chain fatty acid oxidation expressed in cultured skin fibroblasts as a deficiency of long-chain-L-3-hydroxyacyl-CoA dehydrogenase (L-CHAD). He also has an abnormal brain MRI and increased size of both lower limbs. We present this child because of his unusual combination of findings, and postulate that L-CHAD deficiency may be the cause of the lipid myopathy in BRRS.

  3. Inhibitory Effect of Long-Chain Fatty Acids on Biogas Production and the Protective Effect of Membrane Bioreactor

    PubMed Central

    Dasa, Kris Triwulan; Westman, Supansa Y.; Cahyanto, Muhammad Nur; Niklasson, Claes

    2016-01-01

    Anaerobic digestion of lipid-containing wastes for biogas production is often hampered by the inhibitory effect of long-chain fatty acids (LCFAs). In this study, the inhibitory effects of LCFAs (palmitic, stearic, and oleic acid) on biogas production as well as the protective effect of a membrane bioreactor (MBR) against LCFAs were examined in thermophilic batch digesters. The results showed that palmitic and oleic acid with concentrations of 3.0 and 4.5 g/L resulted in >50% inhibition on the biogas production, while stearic acid had an even stronger inhibitory effect. The encased cells in the MBR system were able to perform better in the presence of LCFAs. This system exhibited a significantly lower percentage of inhibition than the free cell system, not reaching over 50% at any LCFA concentration tested. PMID:27699172

  4. Pentadecanoic and Heptadecanoic Acids: Multifaceted Odd-Chain Fatty Acids12

    PubMed Central

    Pfeuffer, Maria; Jaudszus, Anke

    2016-01-01

    The odd-chain fatty acids (OCFAs) pentadecanoic acid (15:0) and heptadecanoic acid (17:0), which account for only a small proportion of total saturated fatty acids in milk fat and ruminant meat, are accepted biomarkers of dairy fat intake. However, they can also be synthesized endogenously, for example, from gut-derived propionic acid (3:0). A number of studies have shown an inverse association between OCFA concentrations in human plasma phospholipids or RBCs and risk of type 2 diabetes and cardiovascular disease. We propose a possible involvement in metabolic regulation from the assumption that there is a link between 15:0 and 17:0 and the metabolism of other short-chain, medium-chain, and longer-chain OCFAs. The OCFAs 15:0 and 17:0 can be elongated to very-long-chain FAs (VLCFAs) such as tricosanoic acid (23:0) and pentacosanoic acid (25:0) in glycosphingolipids, particularly found in brain tissue, or can be derived from these VLCFAs. Their chains can be shortened, yielding propionyl-coenzyme A (CoA). Propionyl-CoA, by succinyl-CoA, can replenish the citric acid cycle (CAC) with anaplerotic intermediates and, thus, improve mitochondrial energy metabolism. Mitochondrial function is compromised in a number of disorders and may be impaired with increasing age. Optimizing anaplerotic intermediate availability for the CAC may help to cope with demands in times of increased metabolic stress and with aging. OCFAs may serve as substrates for synthesis of both odd-numbered VLCFAs and propionyl-CoA or store away excess propionic acid. PMID:27422507

  5. Spray-dried structured lipid containing long-chain polyunsaturated fatty acids for use in infant formulas.

    PubMed

    Nagachinta, Supakana; Akoh, Casimir C

    2013-10-01

    Human milk fat (HMF) analogs are structured lipids (SLs) modified to have palmitic acid content at the sn-2 position of the triacylglycerol (TAG) and fatty acid composition comparable to HMF. Some of these SLs are also designed to incorporate long-chain polyunsaturated fatty acids (LCPUFAs) because of their important role in infant development. In this study, Maillard reaction products (MRPs), obtained from heated whey protein isolates and corn syrup solids (CSS) solution, were used as encapsulants for microencapsulation of 2 enzymatically synthesized SLs for infant formula applications. The encapsulated SL powders were obtained through spray-drying and evaluated in terms of their microencapsulation efficiency, chemical and physical properties, oxidative stability, and dispersibility. The microencapsulation efficiency of the SLs was 90%. Dispersibility test using particle size measurement demonstrated that these powders dispersed quickly into a homogeneous suspension. The encapsulated SL powders had low peroxide and thiobarbituric acid-reactive substances values. Lower oxidative stability was obtained in the powder containing SL with a higher degree of unsaturation and a lower concentration of tocopherols. The results demonstrated that the degree of fatty acid unsaturation and concentration of endogenous antioxidant in starting oils influenced the oxidative stability of the encapsulated SLs. © 2013 Institute of Food Technologists®

  6. Aspirin Increases Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E.; Bharathi, Sivakama S.; Zhang, Yuxun; Stolz, Donna B.; Goetzman, Eric S.

    2016-01-01

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 hr incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. PMID:27856258

  7. Brain white matter development is associated with a human-specific haplotype increasing the synthesis of long chain fatty acids.

    PubMed

    Peters, Bart D; Voineskos, Aristotle N; Szeszko, Philip R; Lett, Tristram A; DeRosse, Pamela; Guha, Saurav; Karlsgodt, Katherine H; Ikuta, Toshikazu; Felsky, Daniel; John, Majnu; Rotenberg, David J; Kennedy, James L; Lencz, Todd; Malhotra, Anil K

    2014-04-30

    The genetic and molecular pathways driving human brain white matter (WM) development are only beginning to be discovered. Long chain polyunsaturated fatty acids (LC-PUFAs) have been implicated in myelination in animal models and humans. The biosynthesis of LC-PUFAs is regulated by the fatty acid desaturase (FADS) genes, of which a human-specific haplotype is strongly associated with ω-3 and ω-6 LC-PUFA concentrations in blood. To investigate the relationship between LC-PUFA synthesis and human brain WM development, we examined whether this FADS haplotype is associated with age-related WM differences across the life span in healthy individuals 9-86 years of age (n = 207). Diffusion tensor imaging was performed to measure fractional anisotropy (FA), a putative measure of myelination, of the cerebral WM tracts. FADS haplotype status was determined with a single nucleotide polymorphism (rs174583) that tags this haplotype. Overall, normal age-related WM differences were observed, including higher FA values in early adulthood compared with childhood, followed by lower FA values across older age ranges. However, individuals homozygous for the minor allele (associated with lower LC-PUFA concentrations) did not display these normal age-related WM differences (significant age × genotype interactions, p(corrected) < 0.05). These findings suggest that LC-PUFAs are involved in human brain WM development from childhood into adulthood. This haplotype and LC-PUFAs may play a role in myelin-related disorders of neurodevelopmental origin.

  8. Breastfeeding and long-chain polyunsaturated fatty acid intake in the first 4 post-natal months and infant cognitive development: an observational study.

    PubMed

    Keim, Sarah A; Daniels, Julie L; Siega-Riz, Anna Maria; Herring, Amy H; Dole, Nancy; Scheidt, Peter C

    2012-10-01

    The aim of this study was to examine infant feeding and the long-chain polyunsaturated fatty acid (LCPUFA) concentration of breast milk and formulas in relation to infant development. The prospective Pregnancy, Infection and Nutrition Study (n=358) collected data on breastfeeding, breast milk samples and the formulas fed through 4months post-partum. At 12months of age, infants' development was assessed (Mullen Scales of Early Learning). Linear regression was used to examine development in relation to breastfeeding, breast milk docosahexaenoic acid (DHA) and arachidonic acid (AA) concentration, and DHA and AA concentration from the combination of breast milk and formula. The median breast milk DHA concentration was 0.20% of total fatty acids [interquartile range (IQR)=0.14, 0.34]; median AA concentration was 0.52% (IQR=0.44, 0.63). Upon adjustment for preterm birth, sex, smoking, race and ethnicity and education, breastfeeding exclusivity was unrelated to development. Among infants exclusively breastfed, breast milk LCPUFA concentration was not associated with development (Mullen composite, DHA: adjusted β=-1.3, 95% confidence interval: -10.3, 7.7). Variables combining DHA and AA concentrations from breast milk and formula, weighted by their contribution to diet, were unassociated with development. We found no evidence of enhanced infant development related to the LCPUFA content of breast milk or formula consumed during the first four post-natal months. © 2011 Blackwell Publishing Ltd.

  9. Distribution of volatile branched-chain fatty acids in various lamb tissues.

    PubMed

    Brennand, C P; Lindsay, R C

    1992-01-01

    Volatile fatty acids (C4-C11) including even-, odd-, and branched-chain members in lamb tissues were quantitatively analyzed. Volatile branched-chain fatty acids (BCFA) were more concentrated in subcutaneous adipose tissue samples (rump, shoulder, breast) than in perinepheric adipose or muscle tissues. Perinepheric adipose tissue contained relatively high quantities of n-chain, even-numbered fatty acids and very low levels of BCFA. Greater variation existed in fatty acid profiles among similar subcutaneous adipose tissues from different lambs than between samples of adipose tissue from different carcass sites from a given lamb sample. 4-Methyl- and 4-ethyloctanoic acids were present at concentrations greatly above threshold levels in all lamb fats tested, and thus upon hydrolysis would contribute species-related flavors to lamb. 4-Methylnonanoic concentrations in lamb fats ranged from nondetectable to greater than the threshold level, and therefore this compound would not always contribute to the species-related flavors of lamb. Lean meat samples contained very low concentrations of 4-methyl- and 4-ethyloctanoic acids. Copyright © 1992. Published by Elsevier Ltd.

  10. CPT1{alpha} over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jambor de Sousa, Ulrike L.; Koss, Michael D.; Fillies, Marion

    2005-12-16

    To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1{alpha} (CPT1{alpha}). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1{alpha} transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1{alpha} over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1{alpha} over-expressing cells in a concentration-dependent manner. Both, PA and CPT1{alpha} over-expression increased cell death. Interestingly,more » PA reduced total cell number only in cells over-expressing CPT1{alpha}, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo.« less

  11. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective

    PubMed Central

    Schönfeld, Peter; Wojtczak, Lech

    2016-01-01

    Short- and medium-chain fatty acids (SCFAs and MCFAs), independently of their cellular signaling functions, are important substrates of the energy metabolism and anabolic processes in mammals. SCFAs are mostly generated by colonic bacteria and are predominantly metabolized by enterocytes and liver, whereas MCFAs arise mostly from dietary triglycerides, among them milk and dairy products. A common feature of SCFAs and MCFAs is their carnitine-independent uptake and intramitochondrial activation to acyl-CoA thioesters. Contrary to long-chain fatty acids, the cellular metabolism of SCFAs and MCFAs depends to a lesser extent on fatty acid-binding proteins. SCFAs and MCFAs modulate tissue metabolism of carbohydrates and lipids, as manifested by a mostly inhibitory effect on glycolysis and stimulation of lipogenesis or gluconeogenesis. SCFAs and MCFAs exert no or only weak protonophoric and lytic activities in mitochondria and do not significantly impair the electron transport in the respiratory chain. SCFAs and MCFAs modulate mitochondrial energy production by two mechanisms: they provide reducing equivalents to the respiratory chain and partly decrease efficacy of oxidative ATP synthesis. PMID:27080715

  12. Condensing enzymes from Cuphea wrightii associated with medium chain fatty acid biosynthesis.

    PubMed

    Slabaugh, M B; Leonard, J M; Knapp, S J

    1998-03-01

    Seed oils of most Cuphea species contain > 90% medium chain (C8-C14) fatty acids. Thioesterases with specificity for these substrates are important determinants of the medium chain phenotype. The role of condensing enzymes, however, has not been investigated. cDNA clones encoding beta-ketoacyl-acyl carrier protein (ACP) synthase (KAS) were isolated from C. wrightii, a C10/C12-producing species. Deduced amino acid sequences of four unique clones were approximately 60% identical to plant KAS I sequences and approximately 75% identical to a distinct class of KAS sequences recently identified in castor and barley. A 46 kDa protein that was observed only in developing and mature seed was detected using antiserum directed against recombinant Cuphea KAS protein. The 46 kDa protein was abundant in developing seeds of six medium chain-producing Cuphea species but barely detected in one long chain-producing species. A 48 kDa protein identified immunologically as KAS I was expressed in both medium and long chain-producing Cuphea species and was detected in all tissues tested. In in vitro assays, extracts from C. wrightii and C. viscosissima developing embryos were unable to extend fatty acid chains beyond C10 following treatment with 10 microns cerulenin, a potent inhibitor of KAS I. However, a C. viscosissima mutant, cpr-1, whose seed oils are deficient in caprate relative to wild type, was impaired in extension of C8 to C10 in this assay and Western analysis revealed a specific deficiency in 46 kDa KAS in cpr-1 embryos. These results implicate cerulenin-resistant condensing activity in production of medium chain fatty acids in Cuphea.

  13. Effects of dietary conjugated linoleic acid and linoleic:linolenic acid ratio on polyunsaturated fatty acid status in laying hens.

    PubMed

    Du, M; Ahn, D U; Sell, J L

    2000-12-01

    A study was conducted to determine the effects of dietary conjugated linoleic acid (CLA) and the ratio of linoleic:linolenic acid on long-chain polyunsaturated fatty acid status. Thirty-two 31-wk-old White Leghorn hens were randomly assigned to four diets containing 8.2% soy oil, 4.1% soy oil + 2.5% CLA (4.1% CLA source), 4.1% flax oil + 2.5% CLA, or 4.1% soy oil + 4.1% flax oil. Hens were fed the diets for 3 wk before eggs and tissues were collected for the study. Lipids were extracted from egg yolk and tissues, classes of egg yolk lipids were separated, and fatty acid concentrations of total lipids, triglyceride, phosphatidylethanolamine, and phosphatidylcholine were analyzed by gas chromatography. The concentrations of monounsaturated fatty acids and non-CLA polyunsaturated fatty acids were reduced after CLA feeding. The amount of arachidonic acid was decreased after CLA feeding in linoleic acid- and linolenic acid-rich diets, but amounts of eicosapentaenoic acid and docosahexaenoic acid were increased in the linolenic-rich diet, indicating that the synthesis or deposition of long-chain n-3 fatty acids was accelerated after CLA feeding. The increased docosahexaenoic acid and eicosapentaenoic acid contents in lipid may be compensation for the decreased arachidonic acid content. Dietary supplementation of linoleic acid increased n-6 fatty acid levels in lipids, whereas linolenic acid increased n-3 fatty acid levels. Results also suggest that CLA might not be elongated to synthesize long-chain fatty acids in significant amounts. The effect of CLA in reducing the level of n-6 fatty acids and promoting the level of n-3 fatty acids could be related to the biological effects of CLA.

  14. Medium-chain triglycerides impair lipid metabolism and induce hepatic steatosis in very long-chain acyl-CoA dehydrogenase (VLCAD)-deficient mice.

    PubMed

    Tucci, Sara; Primassin, Sonja; Ter Veld, Frank; Spiekerkoetter, Ute

    2010-09-01

    A medium-chain-triglyceride (MCT)-based diet is mainstay of treatment in very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD), a long-chain fatty acid beta-oxidation defect. Beneficial effects have been reported with an MCT-bolus prior to exercise. Little is known about the impact of a long-term MCT diet on hepatic lipid metabolism. Here we investigate the effects of MCT-supplementation on liver and blood lipids in the murine model of VLCADD. Wild-type (WT) and VLCAD-knock-out (KO) mice were fed (1) a long-chain triglyceride (LCT)-diet over 5weeks, (2) an MCT diet over 5 weeks and (3) an LCT diet plus MCT-bolus. Blood and liver lipid content were determined. Expression of genes regulating lipogenesis was analyzed by RT-PCR. Under the LCT diet, VLCAD-KO mice accumulated significantly higher blood cholesterol concentrations compared to WT mice. The MCT-diet induced severe hepatic steatosis, significantly higher serum free fatty acids and impaired hepatic lipid mobilization in VLCAD-KO mice. Expression at mRNA level of hepatic lipogenic genes was up-regulated. The long-term MCT diet stimulates lipogenesis and impairs hepatic lipid metabolism in VLCAD-KO mice. These results suggest a critical reconsideration of a long-term MCT-modified diet in human VLCADD. In contrast, MCT in situations of increased energy demand appears to be a safer treatment alternative.

  15. N-Docosahexaenoyl Dopamine, an Endocannabinoid-like Conjugate of Dopamine and the n-3 Fatty Acid Docosahexaenoic Acid, Attenuates Lipopolysaccharide-Induced Activation of Microglia and Macrophages via COX-2.

    PubMed

    Wang, Ya; Plastina, Pierluigi; Vincken, Jean-Paul; Jansen, Renate; Balvers, Michiel; Ten Klooster, Jean Paul; Gruppen, Harry; Witkamp, Renger; Meijerink, Jocelijn

    2017-03-15

    Several studies indicate that the n-3 long-chain polyunsaturated fatty acid docosahexaenoic acid (DHA) contributes to an attenuated inflammatory status in the development of neurodegenerative disorders, such as Alzheimer's and Parkinson's disease. To explain these effects, different mechanisms are being proposed, including those involving endocannabinoids and related signaling molecules. Many of these compounds belong to the fatty acid amides, conjugates of fatty acids with biogenic amines. Conjugates of DHA with ethanolamine or serotonin have previously been shown to possess anti-inflammatory and potentially neuroprotective properties. Here, we synthesized another amine conjugate of DHA, N-docosahexaenoyl dopamine (DHDA), and tested its immune-modulatory properties in both RAW 264.7 macrophages and BV-2 microglial cells. N-Docosahexaenoyl dopamine significantly suppressed the production of nitric oxide (NO), the cytokine interleukin-6 (IL-6), and the chemokines macrophage-inflammatory protein-3α (CCL20) and monocyte chemoattractant protein-1 (MCP-1), whereas its parent compounds, dopamine and DHA, were ineffective. Further exploration of potential effects of DHDA on key inflammatory mediators revealed that cyclooxygenase-2 (COX-2) mRNA level and production of prostaglandin E 2 (PGE 2 ) were concentration-dependently inhibited in macrophages. In activated BV-2 cells, PGE 2 production was also reduced, without changes in COX-2 mRNA levels. In addition, DHDA did not affect NF-kB activity in a reporter cell line. Finally, the immune-modulatory activities of DHDA were compared with those of N-arachidonoyl dopamine (NADA) and similar potencies were found in both cell types. Taken together, our data suggest that DHDA, a potentially endogenous endocannabinoid, may be an additional member of the group of immune-modulating n-3 fatty acid-derived lipid mediators.

  16. Color and fatty acid profile of abdominal fat pads from broiler chickens fed lobster meal.

    PubMed

    Rathgeber, B M; Anderson, D M; Thompson, K L; Macisaac, J L; Budge, S

    2011-06-01

    Consumer demands for food products enriched with healthful n-3 fatty acids are steadily increasing. Feeding marine byproducts may provide an economical means of increasing the long-chain n-3 content of broiler tissues. A study was conducted to evaluate the effect of dietary lobster meal (LM) on the color and fatty acid profile of broiler chicken fatty tissue. Broilers were fed increasing levels (0, 2, 4, 6, 8, and 10%) of LM for 35 d. Fat pad samples were collected at slaughter and color and fatty acid concentrations were determined. A linear effect was found of LM on red coloration (P < 0.05) as dietary LM increased. Fat pad eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) levels also increased (P < 0.0001) in a linear fashion. The essential long-chain fatty acids were lower for the 10% LM diet (0.37 mg of EPA/g; 0.16 mg of DHA/g) compared with the 8% LM diet (0.51 mg of EPA/g; 0.27 mg of DHA/g). Using lobster meal as a feed ingredient resulted in broiler abdominal fat pads with a favorable increase in n-3 fatty acids.

  17. Acyl CoA profiles of transgenic plants that accumulate medium-chain fatty acids indicate inefficient storage lipid synthesis in developing oilseeds.

    PubMed

    Larson, Tony R; Edgell, Teresa; Byrne, James; Dehesh, Katayoon; Graham, Ian A

    2002-11-01

    Several Brassica napus lines transformed with genes responsible for the synthesis of medium- or long-chain fatty acids were examined to determine limiting factor(s) for the subsequent accumulation of these fatty acids in seed lipids. Examination of a decanoic acid (10:0) accumulating line revealed a disproportionately high concentration of 10:0 CoA during seed development compared to long-chain acyl CoAs isolated from the same tissues, suggesting that poor incorporation of 10:0 CoA into seed lipids limits 10:0 fatty acid accumulation. This relationship was also seen for dodecanoyl (12:0) CoA and fatty acid in a high 12:0 line, but not for octadecanoic (18:0) CoA and fatty acid in a high 18:0 line. Comparison of 10:0 CoA and fatty acid proportions from seeds at different developmental stages for transgenic B. napus and Cuphea hookeriana, the source plant for the medium-chain thioesterase and 3-ketoacyl-ACP synthase transgenes, revealed that C. hookeriana incorporates 10:0 CoA into seed lipids more efficiently than transgenic B. napus. Furthermore, beta-oxidation and glyoxylate cycle activities were not increased above wild type levels during seed development in the 8:0/10:0 line, suggesting that lipid catabolism was not being induced in response to the elevated 10:0 CoA concentrations. Taken together, these data suggest that transgenic plants that are engineered to synthesize medium-chain fatty acids may lack the necessary mechanisms, such as specific acyltransferases, to incorporate these fatty acids efficiently into seed lipids.

  18. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia.

    PubMed

    Bosch, Jackie; Gerstein, Hertzel C; Dagenais, Gilles R; Díaz, Rafael; Dyal, Leanne; Jung, Hyejung; Maggiono, Aldo P; Probstfield, Jeffrey; Ramachandran, Ambady; Riddle, Matthew C; Rydén, Lars E; Yusuf, Salim

    2012-07-26

    The use of n-3 fatty acids may prevent cardiovascular events in patients with recent myocardial infarction or heart failure. Their effects in patients with (or at risk for) type 2 diabetes mellitus are unknown. In this double-blind study with a 2-by-2 factorial design, we randomly assigned 12,536 patients who were at high risk for cardiovascular events and had impaired fasting glucose, impaired glucose tolerance, or diabetes to receive a 1-g capsule containing at least 900 mg (90% or more) of ethyl esters of n-3 fatty acids or placebo daily and to receive either insulin glargine or standard care. The primary outcome was death from cardiovascular causes. The results of the comparison between n-3 fatty acids and placebo are reported here. During a median follow up of 6.2 years, the incidence of the primary outcome was not significantly decreased among patients receiving n-3 fatty acids, as compared with those receiving placebo (574 patients [9.1%] vs. 581 patients [9.3%]; hazard ratio, 0.98; 95% confidence interval [CI], 0.87 to 1.10; P=0.72). The use of n-3 fatty acids also had no significant effect on the rates of major vascular events (1034 patients [16.5%] vs. 1017 patients [16.3%]; hazard ratio, 1.01; 95% CI, 0.93 to 1.10; P=0.81), death from any cause (951 [15.1%] vs. 964 [15.4%]; hazard ratio, 0.98; 95% CI, 0.89 to 1.07; P=0.63), or death from arrhythmia (288 [4.6%] vs. 259 [4.1%]; hazard ratio, 1.10; 95% CI, 0.93 to 1.30; P=0.26). Triglyceride levels were reduced by 14.5 mg per deciliter (0.16 mmol per liter) more among patients receiving n-3 fatty acids than among those receiving placebo (P<0.001), without a significant effect on other lipids. Adverse effects were similar in the two groups. Daily supplementation with 1 g of n-3 fatty acids did not reduce the rate of cardiovascular events in patients at high risk for cardiovascular events. (Funded by Sanofi; ORIGIN ClinicalTrials.gov number, NCT00069784.).

  19. n-3 fatty acid enrichment of edible tissue of poultry: a review.

    PubMed

    Rymer, C; Givens, D I

    2005-02-01

    There is clear evidence of the nutritional benefits of consuming long-chain n-3 PUFA, which are found predominantly in oily fish. However, oily fish consumption, particularly in the United Kingdom, is declining, as is the consumption of all meats with the exception of poultry, which has increased in consumption by 73% in the last 30 yr. This pattern, if less marked, is reflected throughout Europe, and therefore one means of increasing long-chain n-3 PUFA consumption would be to increase the long-chain n-3 PUFA content in the edible tissues of poultry. This review considers the feasibility of doing this, concentrating particularly on chickens and turkeys. It begins by summarizing the benefits to human health of consuming greater quantities of n-3 FA and the sources of n-3 PUFA in the human diet. The literature on altering the FA composition of poultry meat is then reviewed, and the factors affecting the incorporation of n-3 PUFA into edible tissues of poultry are investigated. The concentration of alpha-linolenic acid (ALA) in the edible tissues of poultry is readily increased by increasing the concentration of ALA in the birds' diet (particularly meat with skin, and dark meat to a greater extent than white meat). The concentration of EPA in both white and dark meat is also increased when the birds' diet is supplemented with EPA, although supplementing the diet with the precursor (ALA) does not result in a noticeable increase in EPA content in the edible tissues. Although supplementing the birds' diets with relatively high concentrations of DHA does result in an increased concentration of DHA in the tissues, the relationship between dietary and tissue concentrations of DHA is much weaker than that observed with ALA and EPA. The impact that altering the FA composition of edible poultry tissue may have on the organoleptic and storage qualities of poultry products is also considered.

  20. Fractionated aliphatic alcohols as synthetic precursors of ultra long-chain monoacylglycerols for cosmetic applications.

    PubMed

    Pérez, B; Hansen, B S; Bulsara, P A; Rawlings, A V; Clarke, M J; Guo, Z

    2017-10-01

    Xerosis is an abnormally dry and flaky skin condition that is associated with a change in the packing behaviour of the lipid matrix in the stratum corneum (SC), the outermost layer of the skin. This skin condition can lead to an increase in transepidermal water loss (TEWL). As ultralong-chain fatty acids have a positive effect on maintaining the packing behaviour of the SC lipid matrix, a moisturizer which contains glycerides of ultralong-chain fatty acids could act as a semi-occlusive layer on the surface of the skin. This will lower the rate of water evaporation through the epidermis and consequently help prevent or improve skin xerosis. To identify a novel source of ultralong-chain lipids and develop monoacylglycerols with mixed fatty acyl chain lengths that have occlusive properties superior to petrolatum. Initially, Performacol 425, a mixture of very long-chain fatty alcohols, was fractionated using short path distillation to yield a fraction enriched with C22:0-C26:0 fatty alcohols. The fatty alcohol fraction was then oxidized using Jones reagent, and the resulting fatty acids were esterified with glycerol to yield the corresponding monoglycerides using Novozym 435. These were then evaluated using Fourier transform infrared spectroscopy, differential scanning calorimetry and water vapour transmission rate measurements. The monoacylglycerols enriched with C22:0-C26:0 displayed a melting point of 80°C and orthorhombic packing; packing behaviour mainly present in healthy SC. In addition, a phospholipid-structured emulsion containing 3% of the monoglycerides displayed occlusive properties superior to the vehicle containing 3% petrolatum jelly. Performacol 425 can be a potential source of fatty alcohols to synthesize monoacylglycerols that can improve the occlusive behaviour of phospholipid-structured emulsions. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  1. Short-Chain Fatty Acids Enhance the Lipid Accumulation of 3T3-L1 Cells by Modulating the Expression of Enzymes of Fatty Acid Metabolism.

    PubMed

    Yu, Haining; Li, Ran; Huang, Haiyong; Yao, Ru; Shen, Shengrong

    2018-01-01

    Short-chain fatty acids (SCFA) such as acetic acid, propionic acid, and butyric acid are produced by fermentation by gut microbiota. In this paper, we investigate the effects of SCFA on 3T3-L1 cells and the underlying molecular mechanisms. The cells were treated with acetic acid, propionic acid, or butyric acid when cells were induced to differentiate into adipocytes. MTT assay was employed to detect the viability of 3T3-L1 cells. Oil Red O staining was used to visualize the lipid content in 3T3-L1 cells. A triglyceride assay kit was used to detect the triacylglycerol content in 3T3-L1 cells. qRT-PCR and Western blot were used to evaluate the expression of metabolic enzymes. MTT results showed that safe concentrations of acetic acid, propionic acid, and butyric acid were less than 6.4, 3.2, and 0.8 mM, respectively. Oil Red O staining and triacylglycerols detection results showed that treatment with acetic acid, propionic acid, and butyric acid accelerated the 3T3-L1 adipocyte differentiation. qRT-PCR and Western blot results showed that the expressions of lipoprotein lipase (LPL), adipocyte fatty acid binding protein 4 (FABP4), fatty acid transporter protein 4 (FATP4), and fatty acid synthase (FAS) were significantly increased by acetic acid, propionic acid, and butyric acid treatment during adipose differentiation (p < 0.05). In conclusion, SCFA promoted lipid accumulation by modulating the expression of enzymes of fatty acid metabolism. © 2018 AOCS.

  2. Plasma n-3 and n-6 fatty acids and inflammatory markers in Chinese vegetarians.

    PubMed

    Yu, Xiaomei; Huang, Tao; Weng, Xiumei; Shou, Tianxing; Wang, Qiang; Zhou, Xiaoqiong; Hu, Qinxin; Li, Duo

    2014-09-29

    Polyunsaturated fatty acid (PUFA) intake favorably affects chronic inflammatory-related diseases such as cardiovascular disease; however, the relationship between the PUFA and inflammatory factors in the healthy vegetarians were not clear. We aimed to investigate the plasma fatty acids status, and its association with plasma inflammatory factors in Chinese vegetarians and omnivores. A total of 89 male vegetarians and 106 male omnivores were participated the study. Plasma concentrations of inflammatory factors were detected by ELISA, and as standard methods fatty acids were extracted and determined by chromatography. Compared with omnivores, vegetarians have significant higher interleukin-6 (IL-6), plasma n-6 PUFA, n-6/n-3, and 18:3n-3; while they have significant lower leukotriene B4 (LTB4), cyclo-oxygenase-2 (COX2) and prostaglandin E2 (PGE2), 20:5n-3, 22:5n-3, 22:6n-3, and n-3 PUFA. In vegetarians, plasma 20:4n-6 was significant positively related to TNF-α. LTB4 was significantly positively related to plasma 22:6n-3, and negatively associated with n-6 PUFA. Vegetarians have higher plasma n-6 PUFA and IL-6, but lower LTB4, n-3 PUFA, 22:6n-3, COX2 and PGE2 levels. It would seem appropriate for vegetarians to increase their dietary n-3 PUFA, while reduce dietary n-6 PUFA and thus reduce the risk of chronic inflammatory-related diseases.

  3. Dietary long-chain omega-3 fatty acids of marine origin: a comparison of their protective effects on coronary heart disease and breast cancers.

    PubMed

    Judé, Sébastien; Roger, Sébastien; Martel, Eric; Besson, Pierre; Richard, Serge; Bougnoux, Philippe; Champeroux, Pascal; Le Guennec, Jean-Yves

    2006-01-01

    The relationship between high fish consumption and low mortality following coronary heart disease (CHD) and low incidence of breast cancer was first mentioned 3 decades ago. The fishes of interest are rich in omega-3 long-chain polyunsaturated fatty acids (omega-3 LC-PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which could be the active nutrients. The current consensus about cardioprotection is that omega-3 LC-PUFAs would mainly exert antiarrhythmic effects. One of the proposed mechanisms is that circulating non-esterified LC-PUFAs partition into cardiac cells membrane phospholipids and exert a direct effect on ionic channels and/or modify intracellular calcium homeostasis. In another hypothesis, changes in the metabolism of phosphoinositides would be involved and lead to the differential activation of PKC isoforms. As compared to the mechanisms proposed for the cardioprotective effects of omega-3 LC-PUFAs, less is known about the molecular mechanisms involved in breast cancers prevention. Some proposed mechanisms such as the modulation of phosphoinositides metabolism and/or modulation of intracellular calcium homeostasis, are common to both pathologies. Other hypotheses involve the alteration of the cellular redox status induced by highly peroxidizable polyunsaturated fatty acids (FA), or the modulation of gene expression, both phenomena being tightly linked to apoptosis. In this review, we report and compare some proposed mechanisms for the involvement of omega-3 LC-PUFAs in both cardiac and breast cancer protection. Deliberately, we chose to discuss only the mechanisms, which are less described in other reviews such as ionic channels in cancer, calcium homeostasis, PKC activation or matrix metalloproteinases in both cancer and cardiac models. The leitmotiv along this review is that cardio- and cancero-protective effects use common pathways. Comparison of the cellular effects might therefore help to highlight the "protective

  4. Influence of oilseed supplement ranging in n-6/n-3 ratio on fatty acid composition and Δ5-, Δ6-desaturase protein expression in steer muscles.

    PubMed

    Turner, T D; Mitchell, A; Duynisveld, J; Pickova, J; Doran, O; McNiven, M A

    2012-12-01

    This study investigated effects of roasted or extruded oilseed supplementation ranging in n-6/n-3 ratios from 0.3 to 5.0 on the fatty acid composition and expression of delta-5 desaturase (Δ5d) and Δ6-desaturase (Δ6d) protein in commercial steer cheek (m. masseter) and diaphragm (pars costalis diaphragmatis) muscles. In general, the n-6/n-3 ratio of the diet had a subsequent effect on the muscle n-6/n-3 ratio (P < 0.05), with muscle 18:2n-6 and 18:3n-3 content relating to proportion of dietary soya bean and linseed (P < 0.01). Compared with canola, pure linseed and soya bean diets reduced 14:1c-9 and 16:1c-9 (P < 0.05) but increased 18:1t-11 and c-9,t-11 conjugated linoleic acid (CLA) content (P < 0.01). Oilseed processing had a minor influence but extruded oilseeds increase 18:1t-11 and c-9,t-11 CLA compared with roasted (P < 0.05). Polar lipid 18:3n-3 and n-3 long-chain polyunsaturated fatty acid (LC, ⩾20 carbons PUFA) derivative content increased in relation to dietary linseed supplementation in the diaphragm (P < 0.01), whereas only 18:3n-3 was increased in the cheek (P < 0.01). Protein expression did not differ between diets; however, in each muscle the Δ5d protein expression had a stronger association with the desaturase products rather than the precursors. The relationship between Δ5d protein expression and the muscle LC n-6/n-3 ratio was negative in both muscles (P < 0.05). The relationship between Δ6d protein expression and the LC n-6/n-3 ratio was positive in the cheek (P < 0.001) and negative in the diaphragm (P < 0.05). In conclusion, diet n-6/n-3 ratio affected muscle 18:2n-6 and 18:3n-3 deposition, whereas the Δ5d and Δ6d protein expression had some influence on the polar lipid LC-PUFA profile. Results reaffirm that processed oilseeds can be used to increase the proportion of fatty acids potentially beneficial for human health, by influencing the formation of LC-PUFA and reducing the n-6/n-3 ratio.

  5. Sites of intermolecular crosslinking of fatty acyl chains in phospholipids carrying a photoactivable carbene precursor

    PubMed Central

    Gupta, Chhitar M.; Costello, Catherine E.; Khorana, H. Gobind

    1979-01-01

    Sonicated vesicles of 1-fatty acyl-2-ω-(2-diazo-3,3,3-trifluoropropionoxy) fatty acyl sn-glycero-3-phosphoryl-cholines were shown recently to form intermolecular crosslinks by insertion of the photogenerated carbene into a C—H bond of a neighboring hydrocarbon chain. We now report that photolysis of multilamellar dispersions gives a second series of products in which carbene insertion is accompanied by elimination of a molecule of hydrogen fluoride. The sites of crosslinking in the latter compounds have been studied by mass spectrometry using phospholipids with varying chain lengths of the fatty acyl groups carrying the carbene precursor. The patterns observed show that the point of maximum crosslinking is consistent with the recent conclusion that in phospholipids the sn-2 fatty acyl chain trails the sn-1 chain by 2-4 atoms. Images PMID:16592675

  6. Deficiency of a Retinal Dystrophy Protein, Acyl-CoA Binding Domain-containing 5 (ACBD5), Impairs Peroxisomal β-Oxidation of Very-long-chain Fatty Acids*

    PubMed Central

    Yagita, Yuichi; Shinohara, Kyoko; Abe, Yuichi; Nakagawa, Keiko; Al-Owain, Mohammed; Alkuraya, Fowzan S.; Fujiki, Yukio

    2017-01-01

    Acyl-CoA binding domain-containing 5 (ACBD5) is a peroxisomal protein that carries an acyl-CoA binding domain (ACBD) at its N-terminal region. The recent identification of a mutation in the ACBD5 gene in patients with a syndromic form of retinal dystrophy highlights the physiological importance of ACBD5 in humans. However, the underlying pathogenic mechanisms and the precise function of ACBD5 remain unclear. We herein report that ACBD5 is a peroxisomal tail-anchored membrane protein exposing its ACBD to the cytosol. Using patient-derived fibroblasts and ACBD5 knock-out HeLa cells generated via genome editing, we demonstrate that ACBD5 deficiency causes a moderate but significant defect in peroxisomal β-oxidation of very-long-chain fatty acids (VLCFAs) and elevates the level of cellular phospholipids containing VLCFAs without affecting peroxisome biogenesis, including the import of membrane and matrix proteins. Both the N-terminal ACBD and peroxisomal localization of ACBD5 are prerequisite for efficient VLCFA β-oxidation in peroxisomes. Furthermore, ACBD5 preferentially binds very-long-chain fatty acyl-CoAs (VLC-CoAs). Together, these results suggest a direct role of ACBD5 in peroxisomal VLCFA β-oxidation. Based on our findings, we propose that ACBD5 captures VLC-CoAs on the cytosolic side of the peroxisomal membrane so that the transport of VLC-CoAs into peroxisomes and subsequent β-oxidation thereof can proceed efficiently. Our study reclassifies ACBD5-related phenotype as a novel peroxisomal disorder. PMID:27899449

  7. Serum omega-3 fatty acids and treatment outcomes among women undergoing assisted reproduction.

    PubMed

    Chiu, Y-H; Karmon, A E; Gaskins, A J; Arvizu, M; Williams, P L; Souter, I; Rueda, B R; Hauser, R; Chavarro, J E

    2018-01-01

    Are serum polyunsaturated fatty acids (PUFA) concentrations, including omega-33-PUFA) and omega-6 (ω6-PUFA), related to ART outcomes? Serum levels of long-chain ω3-PUFA were positively associated with probability of live birth among women undergoing ART. Intake of ω3-PUFA improves oocyte and embryo quality in animal and human studies. However, a recent cohort study found no relation between circulating ω3-PUFA levels and pregnancy rates after ART. This analysis included a random sample of 100 women from a prospective cohort study (EARTH) at the Massachusetts General Hospital Fertility Center who underwent 136 ART cycles within one year of blood collection. Serum fatty acids (expressed as percentage of total fatty acids) were measured by gas chromatography in samples taken between Days 3 and 9 of a stimulated cycle. Primary outcomes included the probability of implantation, clinical pregnancy and live birth per initiated cycle. Cluster-weighted generalized estimating equation (GEE) models were used to analyze the association of total and specific PUFAs with ART outcomes adjusting for age, body mass index, smoking status, physical activity, use of multivitamins and history of live birth. The median [25th, 75th percentile] serum level of ω3-PUFA was 4.7% [3.8%, 5.8%] of total fatty acids. Higher levels of serum long-chain ω3-PUFA were associated with higher probability of clinical pregnancy and live birth. Specifically, after multivariable adjustment, the probability of clinical pregnancy and live birth increased by 8% (4%, 11%) and 8% (95% CI: 1%, 16%), respectively, for every 1% increase in serum long-chain ω3-PUFA levels. Intake of long-chain ω3-PUFA was also associated with a higher probability of life birth in these women, with RR of 2.37 (95% CI: 1.02, 5.51) when replacing 1% energy of long-chain ω3-PUFA for 1% energy of saturated fatty acids. Serum ω6-PUFA, ratios of ω6 and ω3-PUFA, and total PUFA were not associated with ART outcomes. The

  8. Potential for daily supplementation of n-3 fatty acids to reverse symptoms of dry eye in mice.

    PubMed

    Harauma, Akiko; Saito, Junpei; Watanabe, Yoshitake; Moriguchi, Toru

    2014-06-01

    The purpose of this study was to determine the change in tear volume, as a predominant symptom of dry eye syndrome, in dietary n-3 fatty acid deficient mice compared with n-3 fatty acid adequate mice. The tear volume in n-3 fatty acid deficient mice was significantly lower than that in n-3 fatty acid adequate mice. In addition, the concentration of n-3 fatty acid in the lacrimal and meibomian glands, which affects the production of tears, was markedly decreased compared with n-3 fatty acid adequate mice. However, the tear volume recovered almost completely after one week of continuous administration of fish oil containing EPA and DHA in n-3 fatty acid deficient mice. Also, the concentration of DHA in the meibomian gland of n-3 fatty acid deficient group recovered to approximately 80% more than that of n-3 fatty acid adequate group. These results suggested that dietary n-3 fatty acids deficiency showed reversible dry eye syndrome, and that n-3 fatty acids have an important role in the production of tears. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. [The clinical value of measuring plasma level of very long chain fatty acids in Addison disease].

    PubMed

    Chen, Jun; Zhang, Jian; Wang, De-Xin

    2007-09-01

    To determine the level of very long chain fatty acids (VLCFA) in plasma to find out X-linked adrenoleukodystrophy (X-ALD) in patients with Addison disease. By using gas chromatography measurement of plasma levels of C(26:0), ratios of C(26:0)/C(22:0) and C(24:0)/C(22:0) was carried out in 36 patients with Addison disease. Among the 36 cases, 6 had elevated plasma VLCFA levels; thus the presence of X-ALD was confirmed. Misdiagnosis of X-ALD can be reduced by measuring plasma level of VLCFA early in male patients with Addison disease, especially in young ones.

  10. Docosahexaenoic acid synthesis from n-3 fatty acid precursors in rat hippocampal neurons.

    PubMed

    Kaduce, Terry L; Chen, Yucui; Hell, Johannes W; Spector, Arthur A

    2008-05-01

    Docosahexaenoic acid (DHA), the most abundant n-3 polyunsaturated fatty acid in the brain, has important functions in the hippocampus. To better understand essential fatty acid homeostasis in this region of the brain, we investigated the contributions of n-3 fatty acid precursors in supplying hippocampal neurons with DHA. Primary cultures of rat hippocampal neurons incorporated radiolabeled 18-, 20-, 22-, and 24-carbon n-3 fatty acid and converted some of the uptake to DHA, but the amounts produced from either [1-14C]alpha-linolenic or [1-14C]eicosapentaenoic acid were considerably less than the amounts incorporated when the cultures were incubated with [1-14C]22:6n-3. Most of the [1-14C]22:6n-3 uptake was incorporated into phospholipids, primarily ethanolamine phosphoglycerides. Additional studies demonstrated that the neurons converted [1-14C]linoleic acid to arachidonic acid, the main n-6 fatty acid in the brain. These findings differ from previous results indicating that cerebral and cerebellar neurons cannot convert polyunsaturated fatty acid precursors to DHA or arachidonic acid. Fatty acid compositional analysis demonstrated that the hippocampal neurons contained only 1.1-2.5 mol% DHA under the usual low-DHA culture conditions. The relatively low-DHA content suggests that some responses obtained with these cultures may not be representative of neuronal function in the brain.

  11. The influence of a formula supplemented with dairy lipids and plant oils on the erythrocyte membrane omega-3 fatty acid profile in healthy full-term infants: a double-blind randomized controlled trial

    PubMed Central

    2012-01-01

    Background Human milk is the optimal nutrition for infants. When breastfeeding is not possible, supplementation of infant formula with long chain polyunsaturated fatty acids appears to promote neurodevelopmental outcome and visual function. Plant oils, that are the only source of fat in most of infant formulas, do not contain specific fatty acids that are present in human and cow milk and do not encounter milk fat triglyceride structure. Experimental data suggest that a mix of dairy lipids and plant oils can potentiate endogenous synthesis of n-3 long chain polyunsaturated fatty acids. This trial aims to determine the effect of an infant formula supplemented with a mixture of dairy lipids and plant oils on the erythrocyte membrane omega-3 fatty acid profile in full-term infants (primary outcome). Erythrocyte membrane long chain polyunsaturated fatty acids and fatty acids content, the plasma lipid profile and the insulin-growth factor 1 level, the gastrointestinal tolerance, the changes throughout the study in blood fatty acids content, in growth and body composition are evaluated as secondary outcomes. Methods/Design In a double-blind controlled randomized trial, 75 healthy full-term infants are randomly allocated to receive for four months a formula supplemented with a mixture of dairy lipids and plant oils or a formula containing only plant oils or a formula containing plant oils supplemented with arachidonic acid and docosahexaenoic acid. Twenty-five breast-fed infants constitute the reference group. Erythrocyte membrane omega-3 fatty acid profile, long chain polyunsaturated fatty acids and the other fatty acids content, the plasma lipid profile and the insulin-growth factor 1 level are measured after four months of intervention. Gastrointestinal tolerance, the changes in blood fatty acids content, in growth and body composition, assessed by means of an air displacement plethysmography system, are also evaluated throughout the study. Discussion The achievement

  12. The influence of a formula supplemented with dairy lipids and plant oils on the erythrocyte membrane omega-3 fatty acid profile in healthy full-term infants: a double-blind randomized controlled trial.

    PubMed

    Giannì, Maria Lorella; Roggero, Paola; Baudry, Charlotte; Ligneul, Amandine; Morniroli, Daniela; Garbarino, Francesca; le Ruyet, Pascale; Mosca, Fabio

    2012-10-17

    Human milk is the optimal nutrition for infants. When breastfeeding is not possible, supplementation of infant formula with long chain polyunsaturated fatty acids appears to promote neurodevelopmental outcome and visual function. Plant oils, that are the only source of fat in most of infant formulas, do not contain specific fatty acids that are present in human and cow milk and do not encounter milk fat triglyceride structure. Experimental data suggest that a mix of dairy lipids and plant oils can potentiate endogenous synthesis of n-3 long chain polyunsaturated fatty acids. This trial aims to determine the effect of an infant formula supplemented with a mixture of dairy lipids and plant oils on the erythrocyte membrane omega-3 fatty acid profile in full-term infants (primary outcome). Erythrocyte membrane long chain polyunsaturated fatty acids and fatty acids content, the plasma lipid profile and the insulin-growth factor 1 level, the gastrointestinal tolerance, the changes throughout the study in blood fatty acids content, in growth and body composition are evaluated as secondary outcomes. In a double-blind controlled randomized trial, 75 healthy full-term infants are randomly allocated to receive for four months a formula supplemented with a mixture of dairy lipids and plant oils or a formula containing only plant oils or a formula containing plant oils supplemented with arachidonic acid and docosahexaenoic acid. Twenty-five breast-fed infants constitute the reference group. Erythrocyte membrane omega-3 fatty acid profile, long chain polyunsaturated fatty acids and the other fatty acids content, the plasma lipid profile and the insulin-growth factor 1 level are measured after four months of intervention. Gastrointestinal tolerance, the changes in blood fatty acids content, in growth and body composition, assessed by means of an air displacement plethysmography system, are also evaluated throughout the study. The achievement of an appropriate long chain

  13. Fatty Acid Synthesis in Pea Root Plastids Is Inhibited by the Action of Long-Chain Acyl- Coenzyme As on Metabolite Transporters1

    PubMed Central

    Fox, Simon R.; Rawsthorne, Stephen; Hills, Matthew J.

    2001-01-01

    The uptake in vitro of glucose (Glc)-6-phosphate (Glc-6-P) into plastids from the roots of 10- to 14-d-old pea (Pisum sativum L. cv Puget) plants was inhibited by oleoyl-coenzyme A (CoA) concentrations in the low micromolar range (1–2 μm). The IC50 (the concentration of inhibitor that reduces enzyme activity by 50%) for the inhibition of Glc-6-P uptake was approximately 750 nm; inhibition was reversed by recombinant rapeseed (Brassica napus) acyl-CoA binding protein. In the presence of ATP (3 mm) and CoASH (coenzyme A; 0.3 mm), Glc-6-P uptake was inhibited by 60%, due to long-chain acyl-CoA synthesis, presumably from endogenous sources of fatty acids present in the preparations. Addition of oleoyl-CoA (1 μm) decreased carbon flux from Glc-6-P into the synthesis of starch and through the oxidative pentose phosphate (OPP) pathway by up to 73% and 40%, respectively. The incorporation of carbon from Glc-6-P into fatty acids was not detected under any conditions. Oleoyl-CoA inhibited the incorporation of acetate into fatty acids by 67%, a decrease similar to that when ATP was excluded from incubations. The oleoyl-CoA-dependent inhibition of fatty acid synthesis was attributable to a direct inhibition of the adenine nucleotide translocator by oleoyl-CoA, which indirectly reduced fatty acid synthesis by ATP deprivation. The Glc-6-P-dependent stimulation of acetate incorporation into fatty acids was reversed by the addition of oleoyl-CoA. PMID:11457976

  14. Omega-3 Fatty Acid Deficiency Augments Risperidone-Induced Hepatic Steatosis in Rats: Positive Association with Stearoyl-CoA Desaturase

    PubMed Central

    McNamara, Robert K.; Magrisso, I. Jack; Hofacer, Rylon; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Benoit, Stephen C.

    2012-01-01

    Psychiatric patients frequently exhibit long-chain n-3 (LCn-3) fatty acid deficits and elevated triglyceride (TAG) production following chronic exposure to second generation antipsychotics (SGA). Emerging evidence suggests that SGAs and LCn-3 fatty acids have opposing effects on stearoyl-CoA desaturase-1 (SCD1), which plays a pivotal role in TAG biosynthesis. Here we evaluated whether low LCn-3 fatty acid status would augment elevations in rat liver and plasma TAG concentrations following chronic treatment with the SGA risperidone (RSP), and evaluated relationships with hepatic SCD1 expression and activity indices. In rats maintained on the n-3 fatty acid-fortified (control) diet, chronic RSP treatment significantly increased liver SCD1 mRNA and activity indices (18:1/18:0 and 16:1/16:0 ratios), and significantly increased liver, but not plasma, TAG concentrations. Rats maintained on the n-3 deficient diet exhibited significantly lower liver and erythrocyte LCn-3 fatty acid levels, and associated elevations in LCn-6/LCn-3 ratio. In n-3 deficient rats, RSP-induced elevations in liver SCD1 mRNA and activity indices (18:1/18:0 and 16:1/16:0 ratios) and liver and plasma TAG concentrations were significantly greater than those observed in RSP-treated controls. Plasma glucose levels were not altered by diet or RSP, and body weight was lower in RSP- and VEH-treated n-3 deficient rats. These preclinical data support the hypothesis that low n-3 fatty acid status exacerbates RSP-induced hepatic steatosis by augmenting SCD1 expression and activity. PMID:22750665

  15. Prevention of fatal arrhythmias in high-risk subjects by fish oil n-3 fatty acid intake.

    PubMed

    Leaf, Alexander; Albert, Christine M; Josephson, Mark; Steinhaus, David; Kluger, Jeffrey; Kang, Jing X; Cox, Benjamin; Zhang, Hui; Schoenfeld, David

    2005-11-01

    The long-chain n-3 fatty acids in fish have been demonstrated to have antiarrhythmic properties in experimental models and to prevent sudden cardiac death in a randomized trial of post-myocardial infarction patients. Therefore, we hypothesized that these n-3 fatty acids might prevent potentially fatal ventricular arrhythmias in high-risk patients. Four hundred two patients with implanted cardioverter/defibrillators (ICDs) were randomly assigned to double-blind treatment with either a fish oil or an olive oil daily supplement for 12 months. The primary end point, time to first ICD event for ventricular tachycardia or fibrillation (VT or VF) confirmed by stored electrograms or death from any cause, was analyzed by intention to treat. Secondary analyses were performed for "probable" ventricular arrhythmias, "on-treatment" analyses for all subjects who had taken any of their oil supplements, and "on-treatment" analyses only of those subjects who were on treatment for at least 11 months. Compliance with double-blind treatment was similar in the 2 groups; however, the noncompliance rate was high (35% of all enrollees). In the primary analysis, assignment to treatment with the fish oil supplement showed a trend toward a prolonged time to the first ICD event (VT or VF) or of death from any cause (risk reduction of 28%; P=0.057). When therapies for probable episodes of VT or VF were included, the risk reduction became significant at 31%; P=0.033. For those who stayed on protocol for at least 11 months, the antiarrhythmic benefit of fish oil was improved for those with confirmed events (risk reduction of 38%; P=0.034). Although significance was not achieved for the primary end point, this study provides evidence that for individuals at high risk of fatal ventricular arrhythmias, regular daily ingestion of fish oil fatty acids may significantly reduce potentially fatal ventricular arrhythmias.

  16. Immune activation by medium-chain triglyceride-containing lipid emulsions is not modulated by n-3 lipids or toll-like receptor 4.

    PubMed

    Olthof, Evelyn D; Gülich, Alexandra F; Renne, Mike F; Landman, Sija; Joosten, Leo A B; Roelofs, Hennie M J; Wanten, Geert J A

    2015-10-01

    Saturated medium-chain triglycerides (MCT) as part of the parenteral lipid regimen (50% MCT and 50% long chain triglycerides (LCT)) activate the immune system in vitro. Fish oil (FO)-derived n-3 fatty acids (FA) inhibit saturated FA-induced immune activation via a toll-like receptor (TLR)-4 mediated mechanism. We hypothesized that effects of parenteral MCTs on immune cells involve TLR-4 signaling and that these effects are modulated by n-3 FA that are present in FO. To test this hypothesis we assessed effects of addition of various commercially available mixed parenteral lipid emulsions, n-3 FA and of TLR-4 inhibition on MCT-induced human immune cell activation by evaluation of the expression of leukocyte membrane activation markers and reactive oxygen species (ROS) production. All MCT-containing lipid emulsions activated leukocytes by inducing changes in expression of membrane markers and stimulus induced ROS production, whereas MCT-free lipid emulsions lacked this effect. Moreover, addition of n-3 FA to LCT/MCT did not prevent MCT-induced immune activation. TLR-4 inhibitors did not distinctly modulate MCT-induced changes in immune function. Taken together, these findings suggest that leukocyte activation by parenteral MCTs does not involve TLR-4 signaling and is not modulated by n-3 FA in FO-, but is exerted via different signaling pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective.

    PubMed

    Schönfeld, Peter; Wojtczak, Lech

    2016-06-01

    Short- and medium-chain fatty acids (SCFAs and MCFAs), independently of their cellular signaling functions, are important substrates of the energy metabolism and anabolic processes in mammals. SCFAs are mostly generated by colonic bacteria and are predominantly metabolized by enterocytes and liver, whereas MCFAs arise mostly from dietary triglycerides, among them milk and dairy products. A common feature of SCFAs and MCFAs is their carnitine-independent uptake and intramitochondrial activation to acyl-CoA thioesters. Contrary to long-chain fatty acids, the cellular metabolism of SCFAs and MCFAs depends to a lesser extent on fatty acid-binding proteins. SCFAs and MCFAs modulate tissue metabolism of carbohydrates and lipids, as manifested by a mostly inhibitory effect on glycolysis and stimulation of lipogenesis or gluconeogenesis. SCFAs and MCFAs exert no or only weak protonophoric and lytic activities in mitochondria and do not significantly impair the electron transport in the respiratory chain. SCFAs and MCFAs modulate mitochondrial energy production by two mechanisms: they provide reducing equivalents to the respiratory chain and partly decrease efficacy of oxidative ATP synthesis. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  18. Long-chain fatty acid combustion rate is associated with unique metabolite profiles in skeletal muscle mitochondria.

    PubMed

    Seifert, Erin L; Fiehn, Oliver; Bezaire, Véronic; Bickel, David R; Wohlgemuth, Gert; Adams, Sean H; Harper, Mary-Ellen

    2010-03-24

    Incomplete or limited long-chain fatty acid (LCFA) combustion in skeletal muscle has been associated with insulin resistance. Signals that are responsive to shifts in LCFA beta-oxidation rate or degree of intramitochondrial catabolism are hypothesized to regulate second messenger systems downstream of the insulin receptor. Recent evidence supports a causal link between mitochondrial LCFA combustion in skeletal muscle and insulin resistance. We have used unbiased metabolite profiling of mouse muscle mitochondria with the aim of identifying candidate metabolites within or effluxed from mitochondria and that are shifted with LCFA combustion rate. Large-scale unbiased metabolomics analysis was performed using GC/TOF-MS on buffer and mitochondrial matrix fractions obtained prior to and after 20 min of palmitate catabolism (n = 7 mice/condition). Three palmitate concentrations (2, 9 and 19 microM; corresponding to low, intermediate and high oxidation rates) and 9 microM palmitate plus tricarboxylic acid (TCA) cycle and electron transport chain inhibitors were each tested and compared to zero palmitate control incubations. Paired comparisons of the 0 and 20 min samples were made by Student's t-test. False discovery rate were estimated and Type I error rates assigned. Major metabolite groups were organic acids, amines and amino acids, free fatty acids and sugar phosphates. Palmitate oxidation was associated with unique profiles of metabolites, a subset of which correlated to palmitate oxidation rate. In particular, palmitate oxidation rate was associated with distinct changes in the levels of TCA cycle intermediates within and effluxed from mitochondria. This proof-of-principle study establishes that large-scale metabolomics methods can be applied to organelle-level models to discover metabolite patterns reflective of LCFA combustion, which may lead to identification of molecules linking muscle fat metabolism and insulin signaling. Our results suggest that future studies

  19. Dose- and type-dependent effects of long-chain fatty acids on adipogenesis and lipogenesis of bovine adipocytes.

    PubMed

    Yanting, Chen; Yang, Q Y; Ma, G L; Du, M; Harrison, J H; Block, E

    2018-02-01

    Differentiation and lipid metabolism of adipocytes have a great influence on milk performance, health, and feed efficiency of dairy cows. The effects of dietary long-chain fatty acids (FA) on adipogenesis and lipogenesis of dairy cows are often confounded by other nutritional and physiological factors in vivo. Therefore, this study used an in vitro approach to study the effect of dose and type of long-chain FA on adipogenesis and lipogenesis of bovine adipocytes. Stromal vascular cells were isolated from adipose tissue of dairy cows and induced into mature adipocytes in the presence of various long-chain FA including myristic, palmitic, stearic, oleic, or linoleic acid. When concentrations of myristic, palmitic, and oleic acids in adipogenic mediums were 150 and 200 μM, the induced mature adipocytes had greater lipid content compared with other concentrations of FA. In addition, mature adipocytes induced at 100 μM stearic acid and 300 μM linoleic acid had the greatest content of lipid than at other concentrations. High concentrations of saturated FA were more toxic for cells than the same concentration of unsaturated FA during the induction. When commitment stage was solely treated with FA, the number of differentiated mature adipocytes was greater for oleic and linoleic acids than other FA. When the maturation stage was treated with FA, the number of mature adipocytes was not affected, but the lipid content in adipocytes was affected and ranked oleic > linoleic > myristic > stearic > palmitic. In summary, this study showed that adipogenesis and lipogenesis of bovine adipocytes were differentially affected by long-chain FA, with unsaturated FA more effective than saturated FA. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids

    USDA-ARS?s Scientific Manuscript database

    Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...

  1. Mechanism, Kinetics and Microbiology of Inhibition Caused by Long-Chain Fatty Acids in Anaerobic Digestion of Algal Biomass

    DOE PAGES

    Ma, Jingwei; Zhao, Quan-Bao; Laurens, Lieve L.; ...

    2015-09-15

    Oleaginous microalgae contain a high level of lipids, which can be extracted and converted to biofuel. The lipid-extracted residue can then be further utilized through anaerobic digestion to produce biogas. However, long-chain fatty acids (LCFAs) have been identified as the main inhibitory factor on microbial activity of anaerobic consortium. In this study, the mechanism of LCFA inhibition on anaerobic digestion of whole and lipid-extracted algal biomass was investigated with a range of calcium concentrations against various inoculum to substrate ratios as a means to alleviate the LCFA inhibition.

  2. Mechanism, Kinetics and Microbiology of Inhibition Caused by Long-Chain Fatty Acids in Anaerobic Digestion of Algal Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jingwei; Zhao, Quan-Bao; Laurens, Lieve L.

    Oleaginous microalgae contain a high level of lipids, which can be extracted and converted to biofuel. The lipid-extracted residue can then be further utilized through anaerobic digestion to produce biogas. However, long-chain fatty acids (LCFAs) have been identified as the main inhibitory factor on microbial activity of anaerobic consortium. In this study, the mechanism of LCFA inhibition on anaerobic digestion of whole and lipid-extracted algal biomass was investigated with a range of calcium concentrations against various inoculum to substrate ratios as a means to alleviate the LCFA inhibition.

  3. The effects of n-3 fatty acid deficiency and repletion upon the fatty acid composition and function of the brain and retina.

    PubMed

    Connor, W E; Neuringer, M

    1988-01-01

    It is now apparent that both n-6 and n-3 fatty acids are essential for normal development in mammals, and that each has specific functions in the body. N-6 fatty acids are necessary primarily for growth, reproduction, and the maintenance of skin integrity, whereas n-3 fatty acids are involved in the development and function of the retina and cerebral cortex and perhaps other organs such as the testes. Fetal life and infancy are particularly critical for the nervous tissue development. Therefore, with respect to human nutrition, adequate amounts of omega-3 fatty acids should be provided during pregnancy, lactation and infancy, but probably throughout life. We estimate that adequate levels are provided by diets containing 6-8% kcals from linoleic acid and 1% from n-3 fatty acids (alpha-linolenic acid, EPA and DHA), resulting in a ratio of n-6 to n-3 fatty acids of 4:1 to 10:1. The essentiality of n-3 fatty acids resides in their presence as DHA in vital membranes of the photoreceptors of the retina and the synaptosomes and other subcellular membranes of the brain. The replacement of DHA in deficient animals by the n-6 fatty acid, 22:5, results in abnormal functioning of the membranes for reasons as yet to be ascertained. Most significant is the lability of fatty acid composition in the retinal and brain of deficient animals. Dietary fish oil, which contains EPA and DHA, will readily lead to a change in the composition of the membrane of retina and brain, fatty acids, with DHA replacing the n-6 fatty acid, 22:5. The interrelationships between the chemistry of neural and retinal membranes as affected by diet and their biological functioning provides an exciting prospect for future investigations.

  4. Comparison of triglycerides and phospholipids as supplemental sources of dietary long-chain polyunsaturated fatty acids in piglets.

    PubMed

    Mathews, Susan A; Oliver, William T; Phillips, Oulayvanh T; Odle, Jack; Diersen-Schade, Deborah A; Harrell, Robert J

    2002-10-01

    Addition of arachidonic acid (AA) and docosahexaenoic acid (DHA) to infant formula promotes visual and neural development. This study was designed to determine whether the source of dietary long-chain polyunsaturated fatty acids (LCPUFA) affected overall animal health and safety. Piglets consumed ad libitum from 1 to 16 d of age a skim milk-based formula with different fat sources added to provide 50% of the metabolizable energy. Treatment groups were as follows: control (CNTL; no added LCPUFA), egg phospholipid (PL), algal/fungal triglyceride (TG) oils, TG plus PL (soy lecithin source) added to match phospholipid treatment (TG + PL) and essential fatty acid deficient (EFAD). Formulas with LCPUFA provided 0.6 and 0.3 g/100 g total fatty acids as AA and DHA, respectively. CNTL piglets had 40% longer ileal villi than PL piglets (P < 0.03), but the TG group was not different from the CNTL group. Gross liver histology did not differ among any of the formula-fed groups (P > 0.1). Apparent dry matter digestibility was 10% greater in CNTL, TG and TG + PL groups compared with PL piglets (P < 0.002). No differences in alanine aminotransferase were detected among treatments, but aspartate aminotransferase was elevated (P < 0.03) in PL piglets compared with TG + PL piglets. Total plasma AA concentration was greater in the TG group compared with CNTL piglets (P < 0.05). Total plasma DHA concentrations were greater in TG piglets compared with PL (P < 0.06) or CNTL (P < 0.02) piglets. These data demonstrate that the algal/fungal TG sources of DHA and AA may be a more appropriate supplement for infant formulas than the egg PL source based on piglet plasma fatty acid profiles and apparent dry matter digestibilities.

  5. Glycerol-3-phosphate acyltransferase (GPAT)-1, but not GPAT4, incorporates newly synthesized fatty acids into triacylglycerol and diminishes fatty acid oxidation.

    PubMed

    Wendel, Angela A; Cooper, Daniel E; Ilkayeva, Olga R; Muoio, Deborah M; Coleman, Rosalind A

    2013-09-20

    Four glycerol-3-phosphate acyltransferase (GPAT) isoforms, each encoded by a separate gene, catalyze the initial step in glycerolipid synthesis; in liver, the major isoforms are GPAT1 and GPAT4. To determine whether each of these hepatic isoforms performs a unique function in the metabolism of fatty acid, we measured the incorporation of de novo synthesized fatty acid or exogenous fatty acid into complex lipids in primary mouse hepatocytes from control, Gpat1(-/-), and Gpat4(-/-) mice. Although hepatocytes from each genotype incorporated a similar amount of exogenous fatty acid into triacylglycerol (TAG), only control and Gpat4(-/-) hepatocytes were able to incorporate de novo synthesized fatty acid into TAG. When compared with controls, Gpat1(-/-) hepatocytes oxidized twice as much exogenous fatty acid. To confirm these findings and to assess hepatic β-oxidation metabolites, we measured acylcarnitines in liver from mice after a 24-h fast and after a 24-h fast followed by 48 h of refeeding with a high sucrose diet to promote lipogenesis. Confirming the in vitro findings, the hepatic content of long-chain acylcarnitine in fasted Gpat1(-/-) mice was 3-fold higher than in controls. When compared with control and Gpat4(-/-) mice, after the fasting-refeeding protocol, Gpat1(-/-) hepatic TAG was depleted, and long-chain acylcarnitine content was 3.5-fold higher. Taken together, these data demonstrate that GPAT1, but not GPAT4, is required to incorporate de novo synthesized fatty acids into TAG and to divert them away from oxidation.

  6. Design and rationale of the WELCOME trial: A randomised, placebo controlled study to test the efficacy of purified long chainomega-3 fatty acid treatment in non-alcoholic fatty liver disease [corrected].

    PubMed

    Scorletti, E; Bhatia, L; McCormick, K G; Clough, G F; Nash, K; Calder, P C; Byrne, C D

    2014-03-01

    Non-alcoholic fatty liver disease (NAFLD) represents a range of liver conditions from simple fatty liver to progressive end stage liver disease requiring liver transplantation. NAFLD is common in the population and in certain sub groups (e.g. type 2 diabetes) up to 70% of patients may be affected. NAFLD is not only a cause of end stage liver disease and hepatocellular carcinoma, but is also an independent risk factor for type 2 diabetes and cardiovascular disease. Consequently, effective treatments for NAFLD are urgently needed. The WELCOME study is testing the hypothesis that treatment with high dose purified long chain omega-3 fatty acids will have a beneficial effect on a) liver fat percentage and b) two histologically validated algorithmically-derived biomarker scores for liver fibrosis. In a randomised double blind placebo controlled trial, 103 participants with NAFLD were randomised to 15-18months treatment with either 4g/day purified long chain omega-3 fatty acids (Omacor) or 4g/day olive oil as placebo. Erythrocyte percentage DHA and EPA enrichment (a validated proxy for hepatic enrichment) was determined by gas chromatography. Liver fat percentage was measured in three discrete liver zones by magnetic resonance spectroscopy (MRS). We also measured body fat distribution, physical activity and a range of cardiometabolic risk factors. Recruitment started in January 2010 and ended in June 2011. We identified 178 potential participants, and randomised 103 participants who met the inclusion criteria. The WELCOME study was approved by the local ethics committee (REC: 08/H0502/165; www.clinicalTrials.gov registration number NCT00760513). Copyright © 2014 Elsevier Inc. All rights reserved.

  7. DHA-rich n-3 fatty acid supplementation decreases DNA methylation in blood leukocytes: the OmegAD study.

    PubMed

    Karimi, Mohsen; Vedin, Inger; Freund Levi, Yvonne; Basun, Hans; Faxén Irving, Gerd; Eriksdotter, Maria; Wahlund, Lars-Olof; Schultzberg, Marianne; Hjorth, Erik; Cederholm, Tommy; Palmblad, Jan

    2017-10-01

    Background: Dietary fish oils, rich in long-chain n-3 (ω-3) fatty acids (FAs) [e.g., docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3)], modulate inflammatory reactions through various mechanisms, including gene expression, which is measured as messenger RNA concentration. However, the effects of long-term treatment of humans with DHA and EPA on various epigenetic factors-such as DNA methylation, which controls messenger RNA generation-are poorly described. Objective: We wanted to determine the effects of 6 mo of dietary supplementation with an n-3 FA preparation rich in DHA on global DNA methylation of peripheral blood leukocytes (PBLs) and the relation to plasma EPA and DHA concentrations in Alzheimer disease (AD) patients. Design: In the present study, DNA methylation in four 5'-cytosine-phosphate-guanine-3' (CpG) sites of long interspersed nuclear element-1 repetitive sequences was assessed in a group of 63 patients (30 given the n-3 FA preparation and 33 given placebo) as an estimation of the global DNA methylation in blood cells. Patients originated from the randomized, double-blind, placebo-controlled OmegAD study, in which 174 AD patients received either 1.7 g DHA and 0.6 g EPA (the n-3 FA group) or placebo daily for 6 mo. Results: At 6 mo, the n-3 FA group displayed marked increases in DHA and EPA plasma concentrations (2.6- and 3.5-fold), as well as decreased methylation in 2 out of 4 CpG sites ( P < 0.05 for all), respectively. This hypomethylation in CpG2 and CpG4 sites showed a reverse correlation to changes in plasma EPA concentration ( r = -0.25, P = 0.045; and r = -0.26, P = 0.041, respectively), but not to changes in plasma DHA concentration, and were not related to apolipoprotein E-4 allele frequency. Conclusion: Supplementation with n-3 FA for 6 mo was associated with global DNA hypomethylation in PBLs. Our data may be of importance in measuring various effects of marine oils, including gene expression, in patients

  8. Highly efficient preparation of selectively isotope cluster-labeled long chain fatty acids via two consecutive C(sp3)-C(sp3) cross-coupling reactions.

    PubMed

    Lethu, Sébastien; Matsuoka, Shigeru; Murata, Michio

    2014-02-07

    An efficient synthesis involving two copper-catalyzed alkyl-alkyl coupling reactions has been designed to easily access doubly isotope-labeled fatty acids. Such NMR- and IR-active compounds were obtained in excellent overall yields and will be further used for determining the conformation of an alkyl chain of lipidic biomolecules upon interaction with proteins.

  9. Establishment of the fatty acid profile of the brain of the king penguin (Aptenodytes patagonicus) at hatch: effects of a yolk that is naturally rich in n-3 polyunsaturates.

    PubMed

    Speake, Brian K; Decrock, Frederic; Surai, Peter F; Wood, Nicholas A R; Groscolas, René

    2003-01-01

    Because the yolk lipids of the king penguin (Aptenodytes patagonicus) contain the highest concentrations of long-chain n-3 polyunsaturated fatty acids yet reported for an avian species, the consequences for the establishment of the brain's fatty acid profile in the embryo were investigated. To place the results in context, the fatty acid compositions of yolk lipid and brain phospholipid of the king penguin were compared with those from three other species of free-living birds. The proportions of docosahexaenoic acid (22:6n-3; DHA) in the total lipid of the initial yolks for the Canada goose (Branta canadensis), mallard (Anas platyrhynchos), moorhen (Gallinula chloropus), and king penguin were (% w/w of fatty acids) 1.0+/-0.1, 1.9+/-0.2, 3.3+/-0.1, and 5.9+/-0.2, respectively. The respective concentrations of DHA (% w/w of phospholipid fatty acids) in brains of the newly hatched chicks of these same species were 18.5+/-0.2, 19.6+/-0.7, 16.9+/-0.4, and 17.6+/-0.1. Thus, the natural interspecies diversity in yolk fatty acid profiles does not necessarily produce major differences in the DHA content of the developing brain. Only about 1% of the amount of DHA initially present in the yolk was recovered in the brain of the penguin at hatch. There was no preferential uptake of DHA from the yolk during development of the king penguin.

  10. Validation of the omega-3 fatty acid intake measured by a web-based food frequency questionnaire against omega-3 fatty acids in red blood cells in men with prostate cancer.

    PubMed

    Allaire, J; Moreel, X; Labonté, M-È; Léger, C; Caron, A; Julien, P; Lamarche, B; Fradet, V

    2015-09-01

    The objective of this study was to evaluate the ability of a web-based self-administered food frequency questionnaire (web-FFQ) to assess the omega-3 (ω-3) fatty acids (FAs) intake of men affected with prostate cancer (PCa) against a biomarker. The study presented herein is a sub-study from a phase II clinical trial. Enrolled patients afflicted with PCa were included in the sub-study analysis if the FA profiles from the red blood cell (RBC) membranes and FA intakes at baseline were both determined at the time of the data analysis (n=60). Spearman's correlation coefficients were calculated to estimate the correlations between FA intakes and their proportions in the RBC membranes. Intakes of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were highly correlated with their respective proportions in the RBC membranes (both rs=0.593, P<0.0001). Correlation between alpha-linolenic acid (ALA) intake and its proportion in RBC was not significant (rs=0.130, P=0.332). Correlations were observed between fatty fish intake and total ω-3 FAs (rs=0.304, P=0.02), total long-chain ω-3 FAs (rs=0.290, P=0.03) and DHA (rs=0.328, P=0.01) in RBC membranes. This study has shown that the web-FFQ is an accurate tool to assess total long-chain ω-3 FAs, EPA and DHA but not ALA intake in clinical trials and epidemiological studies carried out in men with PCa.

  11. Blood fatty acid changes in healthy young Americans in response to a 10-week diet that increased n-3 and reduced n-6 fatty acid consumption: a randomised controlled trial.

    PubMed

    Young, Andrew J; Marriott, Bernadette P; Champagne, Catherine M; Hawes, Michael R; Montain, Scott J; Johannsen, Neil M; Berry, Kevin; Hibbeln, Joseph R

    2017-05-01

    Military personnel generally under-consume n-3 fatty acids and overconsume n-6 fatty acids. In a placebo-controlled, double-blinded study, we investigated whether a diet suitable for implementation in military dining facilities and civilian cafeterias could benefit n-3/n-6 fatty acid status of consumers. Three volunteer groups were provided different diets for 10 weeks. Control (CON) participants consumed meals from the US Military's Standard Garrison Dining Facility Menu. Experimental, moderate (EXP-Mod) and experimental-high (EXP-High) participants consumed the same meals, but high n-6 fatty acid and low n-3 fatty acid containing chicken, egg, oils and food ingredients were replaced with products having less n-6 fatty acids and more n-3 fatty acids. The EXP-High participants also consumed smoothies containing 1000 mg n-3 fatty acids per serving, whereas other participants received placebo smoothies. Plasma and erythrocyte EPA and DHA in CON group remained unchanged throughout, whereas EPA, DHA and Omega-3 Index increased in EXP-Mod and EXP-High groups, and were higher than in CON group after 5 weeks. After 10 weeks, Omega-3 Index in EXP-High group had increased further. No participants exhibited changes in fasting plasma TAG, total cholesterol, LDL, HDL, mood or emotional reactivity. Replacing high linoleic acid (LA) containing foods in dining facility menus with similar high oleic acid/low LA and high n-3 fatty acid foods can improve n-6/n-3 blood fatty acid status after 5 weeks. The diets were well accepted and suitable for implementation in group feeding settings like military dining facilities and civilian cafeterias.

  12. Long-Chain Fatty Acid Oxidation Disorders (LC-FAOD) Extension Study for Subjects Previously Enrolled in Triheptanoin Studies.

    ClinicalTrials.gov

    2018-06-19

    Carnitine Palmitoyltransferase (CPT I or CPT II) Deficiency; Very Long Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency; Long-chain 3-hydroxy-acyl-CoA Dehydrogenase (LCHAD) Deficiency; Trifunctional Protein (TFP) Deficiency; Carnitine-acylcarnitine Translocase (CACT) Deficiency

  13. Olfactory discrimination ability and brain expression of c-fos, Gir and Glut1 mRNA are altered in n-3 fatty acid-depleted rats.

    PubMed

    Hichami, Aziz; Datiche, Frédérique; Ullah, Sana; Liénard, Fabienne; Chardigny, Jean-Michel; Cattarelli, Martine; Khan, Naim Akhtar

    2007-11-22

    The long-chain polyunsaturated n-3 fatty acids (n-3 PUFA), particularly docosahexaenoic acid (DHA), are abundantly present in the central nervous system and play an important role in cognitive functions such as learning and memory. We, therefore, investigated the effects of n-3 PUFA-depletion in rats (F2 generation) on the learning of an olfactory discrimination task, progressively acquired within a four-arm maze, and on the mRNA expression of some candidate genes, i.e., c-fos, Gir and glucose transporter (Glut1), which could reflect the level of cerebral activity. We observed that DHA contents were dramatically decreased in the olfactory bulb, the piriform cortex and the neocortex of n-3-depleted rats. Furthermore, the n-3 deficiency resulted in a mild olfactory learning impairment as these rats required more days to master the olfactory task compared to control rats. Real-time RT-PCR experiments revealed that the training induced the expression of c-fos mRNA in all the three regions of the brain whereas Gir and Glut1 mRNA were induced only in olfactory bulb and neocortex. However, such an increase was less marked in the n-3-deficient rats. Taken together, these results allow us to assume that the behavioural impairment in n-3-deficient rats is linked to the depletion of n-3 fatty acids in brain regions processing olfactory cues. Data are discussed in view of the possible role of some of these genes in learning-induced neuronal olfactory plasticity.

  14. Very-Long-Chain Fatty Acids Are Involved in Polar Auxin Transport and Developmental Patterning in Arabidopsis[W

    PubMed Central

    Roudier, François; Gissot, Lionel; Beaudoin, Frédéric; Haslam, Richard; Michaelson, Louise; Marion, Jessica; Molino, Diana; Lima, Amparo; Bach, Liên; Morin, Halima; Tellier, Frédérique; Palauqui, Jean-Christophe; Bellec, Yannick; Renne, Charlotte; Miquel, Martine; DaCosta, Marco; Vignard, Julien; Rochat, Christine; Markham, Jonathan E.; Moreau, Patrick; Napier, Johnathan; Faure, Jean-Denis

    2010-01-01

    Very-long-chain fatty acids (VLCFAs) are essential for many aspects of plant development and necessary for the synthesis of seed storage triacylglycerols, epicuticular waxes, and sphingolipids. Identification of the acetyl-CoA carboxylase PASTICCINO3 and the 3-hydroxy acyl-CoA dehydratase PASTICCINO2 revealed that VLCFAs are important for cell proliferation and tissue patterning. Here, we show that the immunophilin PASTICCINO1 (PAS1) is also required for VLCFA synthesis. Impairment of PAS1 function results in reduction of VLCFA levels that particularly affects the composition of sphingolipids, known to be important for cell polarity in animals. Moreover, PAS1 associates with several enzymes of the VLCFA elongase complex in the endoplasmic reticulum. The pas1 mutants are deficient in lateral root formation and are characterized by an abnormal patterning of the embryo apex, which leads to defective cotyledon organogenesis. Our data indicate that in both tissues, defective organogenesis is associated with the mistargeting of the auxin efflux carrier PIN FORMED1 in specific cells, resulting in local alteration of polar auxin distribution. Furthermore, we show that exogenous VLCFAs rescue lateral root organogenesis and polar auxin distribution, indicating their direct involvement in these processes. Based on these data, we propose that PAS1 acts as a molecular scaffold for the fatty acid elongase complex in the endoplasmic reticulum and that the resulting VLCFAs are required for polar auxin transport and tissue patterning during plant development. PMID:20145257

  15. Can Early Omega-3 Fatty Acid Exposure Reduce Risk of Childhood Allergic Disease?

    PubMed

    Miles, Elizabeth A; Calder, Philip C

    2017-07-21

    A causal link between increased intake of omega-6 ( n -6) polyunsaturated fatty acids (PUFAs) and increased incidence of allergic disease has been suggested. This is supported by biologically plausible mechanisms, related to the roles of eicosanoid mediators produced from the n -6 PUFA arachidonic acid. Fish and fish oils are sources of long chain omega-3 ( n -3) PUFAs. These fatty acids act to oppose the actions of n -6 PUFAs particularly with regard to eicosanoid synthesis. Thus, n -3 PUFAs may protect against allergic sensitisation and allergic manifestations. Epidemiological studies investigating the association between maternal fish intake during pregnancy and allergic outcomes in infants/children of those pregnancies suggest protective associations, but the findings are inconsistent. Fish oil provision to pregnant women is associated with immunologic changes in cord blood. Studies performed to date indicate that provision of fish oil during pregnancy may reduce sensitisation to common food allergens and reduce prevalence and severity of atopic eczema in the first year of life, with a possible persistence until adolescence. A recent study reported that fish oil consumption in pregnancy reduces persistent wheeze and asthma in the offspring at ages 3 to 5 years. Eating oily fish or fish oil supplementation in pregnancy may be a strategy to prevent infant and childhood allergic disease.

  16. Role of 3-Hydroxy Fatty Acid-Induced Hepatic Lipotoxicity in Acute Fatty Liver of Pregnancy

    PubMed Central

    Ibdah, Jamal A.

    2018-01-01

    Acute fatty liver of pregnancy (AFLP), a catastrophic illness for both the mother and the unborn offspring, develops in the last trimester of pregnancy with significant maternal and perinatal mortality. AFLP is also recognized as an obstetric and medical emergency. Maternal AFLP is highly associated with a fetal homozygous mutation (1528G>C) in the gene that encodes for mitochondrial long-chain hydroxy acyl-CoA dehydrogenase (LCHAD). The mutation in LCHAD results in the accumulation of 3-hydroxy fatty acids, such as 3-hydroxy myristic acid, 3-hydroxy palmitic acid and 3-hydroxy dicarboxylic acid in the placenta, which are then shunted to the maternal circulation leading to the development of acute liver injury observed in patients with AFLP. In this review, we will discuss the mechanistic role of increased 3-hydroxy fatty acid in causing lipotoxicity to the liver and in inducing oxidative stress, mitochondrial dysfunction and hepatocyte lipoapoptosis. Further, we also review the role of 3-hydroxy fatty acids in causing placental damage, pancreatic islet β-cell glucolipotoxicity, brain damage, and retinal epithelial cells lipoapoptosis in patients with LCHAD deficiency. PMID:29361796

  17. Omega-3 fatty acids lower blood pressure by directly activating large-conductance Ca2+-dependent K+ channels

    PubMed Central

    Hoshi, Toshinori; Wissuwa, Bianka; Tian, Yutao; Tajima, Nobuyoshi; Xu, Rong; Bauer, Michael; Heinemann, Stefan H.; Hou, Shangwei

    2013-01-01

    Long-chain polyunsaturated omega-3 fatty acids such as docosahexaenoic acid (DHA), found abundantly in oily fish, may have diverse health-promoting effects, potentially protecting the immune, nervous, and cardiovascular systems. However, the mechanisms underlying the purported health-promoting effects of DHA remain largely unclear, in part because molecular signaling pathways and effectors of DHA are only beginning to be revealed. In vascular smooth muscle cells, large-conductance Ca2+- and voltage-activated K+ (BK) channels provide a critical vasodilatory influence. We report here that DHA with an EC50 of ∼500 nM rapidly and reversibly activates BK channels composed of the pore-forming Slo1 subunit and the auxiliary subunit β1, increasing currents by up to ∼20-fold. The DHA action is observed in cell-free patches and does not require voltage-sensor activation or Ca2+ binding but involves destabilization of the closed conformation of the ion conduction gate. DHA lowers blood pressure in anesthetized wild-type but not in Slo1 knockout mice. DHA ethyl ester, contained in dietary supplements, fails to activate BK channels and antagonizes the stimulatory effect of DHA. Slo1 BK channels are thus receptors for long-chain omega-3 fatty acids, and these fatty acids—unlike their ethyl ester derivatives—activate the channels and lower blood pressure. This finding has practical implications for the use of omega-3 fatty acids as nutraceuticals for the general public and also for the critically ill receiving omega-3–enriched formulas. PMID:23487785

  18. Attenuated Total Reflectance Fourier transform infrared spectroscopy for determination of long chain free fatty acid concentration in oily wastewater using the double wavenumber extrapolation technique

    USDA-ARS?s Scientific Manuscript database

    Long Chain Free Fatty Acids (LCFFAs) from the hydrolysis of fat, oil and grease (FOG) are major components in the formation of insoluble saponified solids known as FOG deposits that accumulate in sewer pipes and lead to sanitary sewer overflows (SSOs). A Double Wavenumber Extrapolative Technique (DW...

  19. Induction of a reversible cardiac lipidosis by a dietary long-chain fatty acid (erucic acid). Relationship to lipid accumulation in border zones of myocardial infarcts.

    PubMed Central

    Chien, K. R.; Bellary, A.; Nicar, M.; Mukherjee, A.; Buja, L. M.

    1983-01-01

    Previous studies have demonstrated that cardiac myocytes in the border zone of acute myocardial infarction become markedly overloaded with neutral lipid during the transition from reversible to irreversible injury. To examine directly the role of these changes in neutral lipid metabolism in the development of irreversible cellular injury and associated increases in tissue Ca2+ content, the authors fed rats large amounts of a fatty acid (erucic acid) that is poorly oxidized by the heart and that subsequently accumulates as neutral lipid. Rats fed a high erucic acid (C22:1) diet in the form of 20% rapeseed oil for 3-5 days had a fourfold increase in triglyceride (49.5 +/- 3.8 SEM mg/g wet wt versus 13.6 +/- 13, n = 4) and a 60% increase in long-chain acyl CoA content (166.0 +/- 21.9 versus 91.5 +/- 9.0 nM/g wet wt, n = 4), compared with controls. However, there was no change in long-chain acyl carnitine or total phospholipid content. Histochemical studies showed accumulation of numerous lipid droplets in the myocytes, and electron microscopy revealed localization of lipid vesicles in direct contact with mitochondria, thus mimicking the lipid-laden cells in the border zone regions of acute myocardial infarcts. The acute lipidosis was reversible with either continued feeding of erucic acid for several weeks or conversion to a normal diet. It was not associated with an increased tissue Ca2+ content, nor with cell necrosis. However, continued erucic acid intake for 3 months was associated with focal myocardial degeneration and loss of myocytes. These results suggest that acute increases in neutral lipids, as found in the border zone of acute myocardial infarction, may not be the cause of progression to irreversible damage during acute myocardial injury, but that the persistent presence of similar lipid material over months may result in focal myocardial degeneration. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:6859230

  20. Ovarian Function Modulates the Effects of Long-Chain Polyunsaturated Fatty Acids on the Mouse Cerebral Cortex

    PubMed Central

    Herrera, Jose L.; Ordoñez-Gutierrez, Lara; Fabrias, Gemma; Casas, Josefina; Morales, Araceli; Hernandez, Guadalberto; Acosta, Nieves G.; Rodriguez, Covadonga; Prieto-Valiente, Luis; Garcia-Segura, Luis M.; Alonso, Rafael; Wandosell, Francisco G.

    2018-01-01

    Different dietary ratios of n−6/n−3 long-chain polyunsaturated fatty acids (LC-PUFAs) may alter brain lipid profile, neural activity, and brain cognitive function. To determine whether ovarian hormones influence the effect of diet on the brain, ovariectomized and sham-operated mice continuously treated with placebo or estradiol were fed for 3 months with diets containing low or high n−6/n−3 LC-PUFA ratios. The fatty acid (FA) profile and expression of key neuronal proteins were analyzed in the cerebral cortex, with intact female mice on standard diet serving as internal controls of brain lipidome composition. Diets containing different concentrations of LC-PUFAs greatly modified total FAs, sphingolipids, and gangliosides in the cerebral cortex. Some of these changes were dependent on ovarian hormones, as they were not detected in ovariectomized animals, and in the case of complex lipids, the effect of ovariectomy was partially or totally reversed by continuous administration of estradiol. However, even though differential dietary LC-PUFA content modified the expression of neuronal proteins such as synapsin and its phosphorylation level, PSD-95, amyloid precursor protein (APP), or glial proteins such as glial fibrillary acidic protein (GFAP), an effect also dependent on the presence of the ovary, chronic estradiol treatment was unable to revert the dietary effects on brain cortex synaptic proteins. These results suggest that, in addition to stable estradiol levels, other ovarian hormones such as progesterone and/or cyclic ovarian secretory activity could play a physiological role in the modulation of dietary LC-PUFAs on the cerebral cortex, which may have clinical implications for post-menopausal women on diets enriched with different proportions of n−3 and n−6 LC-PUFAs. PMID:29740285

  1. Reduction of the n-6:n-3 long-chain PUFA ratio during pregnancy and lactation on offspring body composition: follow-up results from a randomized controlled trial up to 5 y of age.

    PubMed

    Brei, Christina; Stecher, Lynne; Much, Daniela; Karla, Marie-Theres; Amann-Gassner, Ulrike; Shen, Jun; Ganter, Carl; Karampinos, Dimitrios C; Brunner, Stefanie; Hauner, Hans

    2016-06-01

    It has been hypothesized that the n-6:n-3 (ω-6:ω-3) long-chain polyunsaturated fatty acid (LCPUFA) ratio in the maternal diet during the prenatal and early postnatal phase positively affects the body composition of the offspring. However, only limited data from prospective human intervention studies with long-term follow-up are available. We assessed the long-term effects of a reduced n-6:n-3 LCPUFA ratio in the diets of pregnant and lactating women [1020 mg docosahexaenoic acid (DHA) plus 180 mg eicosapentaenoic acid (EPA)/d together with an arachidonic acid-balanced diet compared with a control diet] on the body weights and compositions of their offspring from 2 to 5 y of age with a focus on the 5-y results. Participants in the randomized controlled trial received follow-up assessments with annual body-composition measurements including skinfold thickness (SFT) measurements (primary outcome), a sonographic assessment of abdominal subcutaneous and preperitoneal fat, and child growth. In addition, abdominal MRI was performed in a subgroup of 5-y-old children. For the statistical analysis, mixed models for repeated measures (MMRMs) were fit with the use of data from each visit since birth (except for MRI). Maternal LCPUFA supplementation did not significantly influence the children's sum of 4 SFTs [means ± SDs at 5 y of age: intervention, 23.9 ± 4.7 mm (n = 57); control, 24.5 ± 5.0 mm (n = 55); adjusted mean difference, -0.5 (95% CI: -2.2, 1.2)], growth, or ultrasonography measures at any time point in the adjusted MMRM model (all P values < 0.05). Results were consistent with abdominal MRI measurements (n = 44) at 5 y of age, which showed no significant differences in subcutaneous and visceral adipose tissue volumes and ratios. The current study provides no evidence that a dietary reduction of the n-6:n-3 LCPUFA ratio in the maternal diet during pregnancy and lactation is a useful early preventive strategy against obesity at preschool age. This trial was

  2. Encapsulation of vegetable oils as source of omega-3 fatty acids for enriched functional foods.

    PubMed

    Ruiz Ruiz, Jorge Carlos; Ortiz Vazquez, Elizabeth De La Luz; Segura Campos, Maira Rubi

    2017-05-03

    Polyunsaturated omega-3 fatty acids (PUFAs), a functional component present in vegetable oils, are generally recognized as being beneficial to health. Omega-3 PUFAs are rich in double bonds and unsaturated in nature; this attribute makes them highly susceptible to lipid oxidation and unfit for incorporation into long shelf life foods. The microencapsulation of oils in a polymeric matrix (mainly polysaccharides) offers the possibility of controlled release of the lipophilic functional ingredient and can be useful for the supplementation of foods with PUFAs. The present paper provides a literature review of different vegetable sources of omega-3 fatty acids, the functional effects of omega-3 fatty acids, different microencapsulation methods that can possibly be used for the encapsulation of oils, the properties of vegetable oil microcapsules, the effect of encapsulation on oxidation stability and fatty acid composition of vegetable oils, and the incorporation of long-chain omega-3 polyunsaturated fatty acids in foods.

  3. Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing.

    PubMed

    Bourre, J M

    2004-01-01

    Among various organs, in the brain, the fatty acids most extensively studied are omega-3 fatty acids. Alpha-linolenic acid (18:3omega3) deficiency alters the structure and function of membranes and induces minor cerebral dysfunctions, as demonstrated in animal models and subsequently in human infants. Even though the brain is materially an organ like any other, that is to say elaborated from substances present in the diet (sometimes exclusively), for long it was not accepted that food can have an influence on brain structure, and thus on its function. Lipids, and especially omega-3 fatty acids, provided the first coherent experimental demonstration of the effect of diet (nutrients) on the structure and function of the brain. In fact the brain, after adipose tissue, is the organ richest in lipids, whose only role is to participate in membrane structure. First it was shown that the differentiation and functioning of cultured brain cells requires not only alpha-linolenic acid (the major component of the omega-3, omega3 family), but also the very long omega-3 and omega-6 carbon chains (1). It was then demonstrated that alpha-linolenic acid deficiency alters the course of brain development, perturbs the composition and physicochemical properties of brain cell membranes, neurones, oligodendrocytes, and astrocytes (2). This leads to physicochemical modifications, induces biochemical and physiological perturbations, and results in neurosensory and behavioural upset (3). Consequently, the nature of polyunsaturated fatty acids (in particular omega-3) present in formula milks for infants (premature and term) conditions the visual and cerebral abilities, including intellectual. Moreover, dietary omega-3 fatty acids are certainly involved in the prevention of some aspects of cardiovascular disease (including at the level of cerebral vascularization), and in some neuropsychiatric disorders, particularly depression, as well as in dementia, notably Alzheimer's disease. Recent

  4. Glycerol-3-phosphate Acyltransferase (GPAT)-1, but Not GPAT4, Incorporates Newly Synthesized Fatty Acids into Triacylglycerol and Diminishes Fatty Acid Oxidation*

    PubMed Central

    Wendel, Angela A.; Cooper, Daniel E.; Ilkayeva, Olga R.; Muoio, Deborah M.; Coleman, Rosalind A.

    2013-01-01

    Four glycerol-3-phosphate acyltransferase (GPAT) isoforms, each encoded by a separate gene, catalyze the initial step in glycerolipid synthesis; in liver, the major isoforms are GPAT1 and GPAT4. To determine whether each of these hepatic isoforms performs a unique function in the metabolism of fatty acid, we measured the incorporation of de novo synthesized fatty acid or exogenous fatty acid into complex lipids in primary mouse hepatocytes from control, Gpat1−/−, and Gpat4−/− mice. Although hepatocytes from each genotype incorporated a similar amount of exogenous fatty acid into triacylglycerol (TAG), only control and Gpat4−/− hepatocytes were able to incorporate de novo synthesized fatty acid into TAG. When compared with controls, Gpat1−/− hepatocytes oxidized twice as much exogenous fatty acid. To confirm these findings and to assess hepatic β-oxidation metabolites, we measured acylcarnitines in liver from mice after a 24-h fast and after a 24-h fast followed by 48 h of refeeding with a high sucrose diet to promote lipogenesis. Confirming the in vitro findings, the hepatic content of long-chain acylcarnitine in fasted Gpat1−/− mice was 3-fold higher than in controls. When compared with control and Gpat4−/− mice, after the fasting-refeeding protocol, Gpat1−/− hepatic TAG was depleted, and long-chain acylcarnitine content was 3.5-fold higher. Taken together, these data demonstrate that GPAT1, but not GPAT4, is required to incorporate de novo synthesized fatty acids into TAG and to divert them away from oxidation. PMID:23908354

  5. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beller, Harry R.; Goh, Ee-Been; Keasling, Jay D.

    2010-01-07

    Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which four decades ago was reported to biosynthesize iso- and anteiso branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty-acid overproducing E. coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3more » (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-CoA produced the same C27 monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or -ACP) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (?-ketoacyl-ACP synthase III), which catalyzes decarboxylative Claisen

  6. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus.

    PubMed

    Beller, Harry R; Goh, Ee-Been; Keasling, Jay D

    2010-02-01

    Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which 4 decades ago was reported to biosynthesize iso- and anteiso-branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty acid-overproducing Escherichia coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-coenzyme A (CoA) produced the same C(27) monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or-ACP [acyl carrier protein]) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (beta-ketoacyl-ACP synthase III), which

  7. Anti-Biofilm Activity of a Long-Chain Fatty Aldehyde from Antarctic Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis Biofilm

    PubMed Central

    Casillo, Angela; Papa, Rosanna; Ricciardelli, Annarita; Sannino, Filomena; Ziaco, Marcello; Tilotta, Marco; Selan, Laura; Marino, Gennaro; Corsaro, Maria M.; Tutino, Maria L.; Artini, Marco; Parrilli, Ermenegilda

    2017-01-01

    Staphylococcus epidermidis is a harmless human skin colonizer responsible for ~20% of orthopedic device-related infections due to its capability to form biofilm. Nowadays there is an interest in the development of anti-biofilm molecules. Marine bacteria represent a still underexploited source of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules. Previous results have demonstrated that the culture supernatant of Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125 impairs the formation of S. epidermidis biofilm. Further, evidence supports the hydrophobic nature of the active molecule, which has been suggested to act as a signal molecule. In this paper we describe an efficient activity-guided purification protocol which allowed us to purify this anti-biofilm molecule and structurally characterize it by NMR and mass spectrometry analyses. Our results demonstrate that the anti-biofilm molecule is pentadecanal, a long-chain fatty aldehyde, whose anti-S. epidermidis biofilm activity has been assessed using both static and dynamic biofilm assays. The specificity of its action on S. epidermidis biofilm has been demonstrated by testing chemical analogs of pentadecanal differing either in the length of the aliphatic chain or in their functional group properties. Further, indications of the mode of action of pentadecanal have been collected by studying the bioluminescence of a Vibrio harveyi reporter strain for the detection of autoinducer AI-2 like activities. The data collected suggest that pentadecanal acts as an AI-2 signal. Moreover, the aldehyde metabolic role and synthesis in the Antarctic source strain has been investigated. To the best of our knowledge, this is the first report on the identification of an anti-biofilm molecule form from cold-adapted bacteria and on the action of a long-chain fatty aldehyde acting as an anti-biofilm molecule against S. epidermidis. PMID:28280714

  8. Long-Term Major Clinical Outcomes in Patients With Long Chain Fatty Acid Oxidation Disorders Before and After Transition to Triheptanoin Treatment—A Retrospective Chart Review

    PubMed Central

    Vockley, Jerry; Marsden, Deborah; McCracken, Elizabeth; DeWard, Stephanie; Barone, Amanda; Hsu, Kristen; Kakkis, Emil

    2015-01-01

    Background Long chain fatty acid oxidation disorders (LC-FAOD) are caused by defects in the metabolic pathway that converts stored long-chain fatty acids into energy, leading to a deficiency in mitochondrial energy production during times of physiologic stress and fasting. Severe and potentially life threatening clinical manifestations include rhabdomyolysis, hypoglycemia, hypotonia/weakness, cardiomyopathy and sudden death. We present the largest cohort of patients to date treated with triheptanoin, a specialized medium odd chain (C7) triglyceride, as a novel energy source for the treatment of LC-FAOD. Methods This was a retrospective, comprehensive medical record review study of data from 20 of a total 24 patients with LC-FAOD who were treated for up to 12.5 years with triheptanoin, as part of a compassionate use protocol. Clinical outcomes including hospitalization event rates, number of hospitalization days/year, and abnormal laboratory values were determined for the total period of the study before and after triheptanoin treatment, as well as for specified periods before and after initiation of triheptanoin treatment. Other events of interest were documented including rhabdomyolysis, hypoglycemia, and cardiomyopathy. Results LC-FAOD in these 20 subjects was associated with 320 hospitalizations from birth to the end date of study. The mean hospitalization days/year decreased significantly by 67% during the period after triheptanoin initiation (n=15; 5.76 vs 17.55 vs; P=0.0242) and a trend toward a 35% lower hospitalization event rate was observed in the period after triheptanoin initiation compared with the before-treatment period (n=16 subjects >6 months of age; 1.26 vs 1.94; P=0.1126). The hypoglycemia event rate per year in 9 subjects with hypoglycemia problems declined significantly by 96% (0.04 vs 0.92; P=0.0091) and related hospitalization days/year were also significantly reduced (n=9; 0.18 vs 8.42; P=0.0257). The rhabdomyolysis hospital event rate in 11

  9. Extensive esterification of adrenal C19-delta 5-sex steroids to long-chain fatty acids in the ZR-75-1 human breast cancer cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulin, R.; Poirier, D.; Merand, Y.

    1989-06-05

    Estrogen-sensitive human breast cancer cells (ZR-75-1) were incubated with the 3H-labeled adrenal C19-delta 5-steroids dehydroepiandrosterone (DHEA) and its fully estrogenic derivative, androst-5-ene-3 beta,17 beta-diol (delta 5-diol) for various time intervals. When fractionated by solvent partition, Sephadex LH-20 column chromatography and silica gel TLC, the labeled cell components were largely present (40-75%) in three highly nonpolar, lipoidal fractions. Mild alkaline hydrolysis of these lipoidal derivatives yielded either free 3H-labeled DHEA or delta 5-diol. The three lipoidal fractions cochromatographed with the synthetic DHEA 3 beta-esters, delta 5-diol 3 beta (or 17 beta)-monoesters and delta 5-diol 3 beta,17 beta-diesters of long-chain fatty acids.more » DHEA and delta 5-diol were mainly esterified to saturated and mono-unsaturated fatty acids. For delta 5-diol, the preferred site of esterification of the fatty acids is the 3 beta-position while some esterification also takes place at the 17 beta-position. Time course studies show that ZR-75-1 cells accumulate delta 5-diol mostly (greater than 95%) as fatty acid mono- and diesters while DHEA is converted to delta 5-diol essentially as the esterified form. Furthermore, while free C19-delta 5-steroids rapidly diffuse out of the cells after removal of the precursor (3H)delta 5-diol, the fatty acid ester derivatives are progressively hydrolyzed, and DHEA and delta 5-diol thus formed are then sulfurylated prior to their release into the culture medium. The latter process however is rate-limited, since new steady-state levels of free steroids and fatty acid esters are rapidly reached and maintained for extended periods of time after removal of precursor, thus maintaining minimal concentrations of intracellular steroids.« less

  10. Apolipoprotein C-III, n-3 polyunsaturated fatty acids, and "insulin-resistant" T-455C APOC3 gene polymorphism in heart disease patients: example of gene-diet interaction.

    PubMed

    Olivieri, Oliviero; Martinelli, Nicola; Sandri, Marco; Bassi, Antonella; Guarini, Patrizia; Trabetti, Elisabetta; Pizzolo, Francesca; Girelli, Domenico; Friso, Simonetta; Pignatti, Pier Franco; Corrocher, Roberto

    2005-02-01

    Apolipoprotein C-III (apo C-III) is a marker of cardiovascular disease risk associated with triglyceride (TG)-rich lipoproteins. The T-455C polymorphism in the insulin-responsive element of the APOC3 gene influences TG and apo C-III concentrations. Long-chain n-3 polyunsaturated fatty acids (PUFAs) contained in fish have well-known apo C-III-lowering properties. We investigated the possibility of an interactive effect between the APOC3 gene variant and erythrocyte n-3 PUFAs, suitable markers of dietary intake of fatty acids, on apo C-III concentrations in a population of 848 heart disease patients who had coronary angiography. In the population as a whole, apo C-III concentrations were significantly inversely correlated with total erythrocyte PUFAs, but the correlation was not significant when only -455CC homozygous individuals were taken into account. In the total population and in subgroups with the -455TT and -455CT genotypes, the relative proportions of individuals presenting with increased apo C-III (i.e., above the 75th percentile value calculated on the entire population after exclusion of individuals taking lipids-lowering medications) decreased progressively as the n-3 PUFA and docosahexaenoic acid concentrations increased. The opposite situation was observed in the homozygous -455CC subgroup, in whom increasing erythrocyte n-3 PUFA and docosahexaenoic acid concentrations were associated with higher proportions of individuals with high apo C-III. A formal interactive effect between genotype and n-3 PUFAs was confirmed even after adjustment for possible confounding variables [age, sex, body mass index, smoking, coronary artery disease (CAD)/CAD-free status, or use of lipid-lowering medications] by logistic models. Patients homozygous for the -455C APOC3 variant are poorly responsive to the apo C-III-lowering effects of n-3 PUFAs.

  11. Intake of Fish and Omega-3 (n-3) Fatty Acids: Effect on Humans During Actual and Simulated Weightlessness

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Pierson, D. L.; Mehta, S. K.; Zwart, S. R.

    2011-01-01

    Space flight has many negative effects on human physiology, including bone and muscle loss. Bone and muscle are two systems that are positively affected by dietary intake of fish and n-3 fatty acids. The mechanism is likely to be related to inhibition by n-3 fatty acids of inflammatory cytokines (such as TNF) and thus inhibition of downstream NF-kB activation. We have documented this effect in a 3-dimensional cell culture model, where NF-kB activation in osteoclasts was inhibited by eicosapentaenoic acid, an n-3 fatty acid. We have also indentified that NF-kB activation in peripheral blood mononuclear cells of Space Shuttle crews. We found that after Shuttle flights of 2 wk, expression of the protein p65 (evidence of NF-kB activation) was increased at landing (P less than 0.001). When evaluating the effects of n-3 fatty acid intake on bone breakdown after 60 d of bed rest (a weightlessness analog). We found that after 60 d of bed rest, greater intake of n-3 fatty acids was associated with less N-telopeptide excretion (Pearson r = -0.62, P less than 0.05). We also evaluated the relationship of fish intake and bone loss in astronauts after 4 to 6 mo missions on the International Space Station. Higher consumption of fish during flight was associated with higher bone mineral density (Pearson r = 0.46, P less than 0.05). Together, these findings provide evidence of the cellular mechanism by which n-3 fatty acids can inhibit bone loss, and preliminary human evidence of the potential for n-3 fatty acids to counteract bone loss associated with space flight. This study was supported by the NASA Human Research Program.

  12. Short branched-chain C6 carboxylic acids result in increased growth, novel 'unnatural' fatty acids and increased membrane fluidity in a Listeria monocytogenes branched-chain fatty acid-deficient mutant.

    PubMed

    Sen, Suranjana; Sirobhushanam, Sirisha; Hantak, Michael P; Lawrence, Peter; Brenna, J Thomas; Gatto, Craig; Wilkinson, Brian J

    2015-10-01

    Listeria monocytogenes is a psychrotolerant food borne pathogen, responsible for the high fatality disease listeriosis, and expensive food product recalls. Branched-chain fatty acids (BCFAs) of the membrane play a critical role in providing appropriate membrane fluidity and optimum membrane biophysics. The fatty acid composition of a BCFA-deficient mutant is characterized by high amounts of straight-chain fatty acids and even-numbered iso fatty acids, in contrast to the parent strain where odd-numbered anteiso fatty acids predominate. The presence of 2-methylbutyrate (C5) stimulated growth of the mutant at 37°C and restored growth at 10°C along with the content of odd-numbered anteiso fatty acids. The C6 branched-chain carboxylic acids 2-ethylbutyrate and 2-methylpentanoate also stimulated growth to a similar extent as 2-methylbutyrate. However, 3-methylpentanoate was ineffective in rescuing growth. 2-Ethylbutyrate and 2-methylpentanoate led to novel major fatty acids in the lipid profile of the membrane that were identified as 12-ethyltetradecanoic acid and 12-methylpentadecanoic acid respectively. Membrane anisotropy studies indicated that growth of strain MOR401 in the presence of these precursors increased its membrane fluidity to levels of the wild type. Cells supplemented with 2-methylpentanoate or 2-ethylbutyrate at 10°C shortened the chain length of novel fatty acids, thus showing homeoviscous adaptation. These experiments use the mutant as a tool to modulate the membrane fatty acid compositions through synthetic precursor supplementation, and show how existing enzymes in L. monocytogenes adapt to exhibit non-native activity yielding unique 'unnatural' fatty acid molecules, which nevertheless possess the correct biophysical properties for proper membrane function in the BCFA-deficient mutant. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Optimization of odd chain fatty acid production by Yarrowia lipolytica.

    PubMed

    Park, Young-Kyoung; Dulermo, Thierry; Ledesma-Amaro, Rodrigo; Nicaud, Jean-Marc

    2018-01-01

    Odd chain fatty acids (odd FAs) have a wide range of applications in therapeutic and nutritional industries, as well as in chemical industries including biofuel. Yarrowia lipolytica is an oleaginous yeast considered a preferred microorganism for the production of lipid-derived biofuels and chemicals. However, it naturally produces negligible amounts of odd chain fatty acids. The possibility of producing odd FAs using Y. lipolytica was investigated. Y. lipolytica wild-type strain was shown able to grow on weak acids; acetate, lactate, and propionate. Maximal growth rate on propionate reached 0.24 ± 0.01 h -1 at 2 g/L, and growth inhibition occurred at concentration above 10 g/L. Wild-type strain accumulated lipids ranging from 7.39 to 8.14% (w/w DCW) depending on the carbon source composition, and odd FAs represented only 0.01-0.12 g/L. We here proved that the deletion of the PHD1 gene improved odd FAs production, which reached a ratio of 46.82% to total lipids. When this modification was transferred to an obese strain, engineered for improving lipid accumulation, further increase odd FAs production reaching a total of 0.57 g/L was shown. Finally, a fed-batch co-feeding strategy was optimized for further increase odd FAs production, which generated 0.75 g/L, the best production described so far in Y. lipolytica . A Y. lipolytica strain able to accumulate high level of odd chain fatty acids, mainly heptadecenoic acid, has been successfully developed. In addition, a fed-batch co-feeding strategy was optimized to further improve lipid accumulation and odd chain fatty acid content. These lipids enriched in odd chain fatty acid can (1) improve the properties of the biodiesel generated from Y. lipolytica lipids and (2) be used as renewable source of odd chain fatty acid for industrial applications. This work paves the way for further improvements in odd chain fatty acids and fatty acid-derived compound production.

  14. Stable hydrogen and carbon isotopic compositions of long-chain (C21-C33) n-alkanes and n-alkenes in insects

    NASA Astrophysics Data System (ADS)

    Chikaraishi, Yoshito; Kaneko, Masanori; Ohkouchi, Naohiko

    2012-10-01

    We report the molecular and stable isotopic (δD and δ13C) compositions of long-chain n-alkanes in common insects including the cabbage butterfly, swallowtail, wasp, hornet, grasshopper, and ladybug. Insect n-alkanes are potential candidates of the contamination of soil and sedimentary n-alkanes that are believed to be derived from vascular plant waxes. Long-chain n-alkanes (range C21-33; maximum C23-C29) are found to be abundant in the insects (31-781 μg/dry g), with a carbon preference index (CPI) of 5.1-31.5 and an average chain length (ACL) of 24.9-29.3. The isotopic compositions (mean ± 1σ, n = 33) of the n-alkanes are -195 ± 16‰ for hydrogen and -30.6 ± 2.4‰ for carbon. The insect n-alkanes are depleted in D by approximately 30-40‰ compared with wax n-alkanes from C3 (-155 ± 25‰) and C4 vascular plants (-167 ± 13‰), whereas their δ13C values fall between those of C3 (-36.2 ± 2.4‰) and C4 plants (-20.3 ± 2.4‰). Thus, the contribution of insect-derived n-alkanes to soil and sediment could potentially shift δD records of n-alkanes toward more negative values and potentially muddle the assumed original C3/C4 balance in the δ13C records of the soil and sedimentary n-alkanes. n-Alkenes are also found in three insects (swallowtail, wasp and hornet). They are more depleted in D relative to the same carbon numbered n-alkanes (δDn-alkene - δDn-alkane = -17 ± 16‰), but the δ13C values are almost identical to those of the n-alkanes (δ13Cn-alkene - δ13Cn-alkane = 0.1 ± 0.2‰). These results suggest that these n-alkenes are desaturated products of the same carbon numbered n-alkanes.

  15. A comparison of the metabolic fate of Fatty acids of different chain lengths in developing oilseeds.

    PubMed

    Battey, J F; Ohlrogge, J B

    1989-07-01

    To determine if medium and long chain fatty acids can be appropriately metabolized by species that normally produce 16 and 18 carbon fatty acids, homogenates of developing Cuphea wrightii, Carthamus tinctorius, and Crambe abyssinica seeds were incubated with radiolabeled lauric, palmitic, oleic, and erucic acids. In all three species, acyl-CoA synthetase showed broad substrate specificity in synthesis of acyl-coenzyme A (CoA) from any of the fatty acids presented. In Carthamus, two- to fivefold less of the foreign FAs, lauric, and erucic acid was incorporated into acyl-CoAs than palmitic and oleic acid. Lauric and erucic acid also supported less glycerolipid synthesis in Carthamus than palmitic and oleic acid, but the rate of acyl-CoA synthesis did not control rate of glycerolipid synthesis. In all species examined, medium and long chain fatty acids were incorporated predominantly into triacylglycerols and were almost excluded from phospholipid synthesis, whereas palmitic and oleic acid were found predominantly in polar lipids. However, the rate of esterification of unusual fatty acids to triacylglycerol is slow in species that do not normally synthesize these acyl substrates.

  16. A Comparison of the Metabolic Fate of Fatty Acids of Different Chain Lengths in Developing Oilseeds

    PubMed Central

    Battey, James F.; Ohlrogge, John B.

    1989-01-01

    To determine if medium and long chain fatty acids can be appropriately metabolized by species that normally produce 16 and 18 carbon fatty acids, homogenates of developing Cuphea wrightii, Carthamus tinctorius, and Crambe abyssinica seeds were incubated with radiolabeled lauric, palmitic, oleic, and erucic acids. In all three species, acyl-CoA synthetase showed broad substrate specificity in synthesis of acyl-coenzyme A (CoA) from any of the fatty acids presented. In Carthamus, two- to fivefold less of the foreign FAs, lauric, and erucic acid was incorporated into acyl-CoAs than palmitic and oleic acid. Lauric and erucic acid also supported less glycerolipid synthesis in Carthamus than palmitic and oleic acid, but the rate of acyl-CoA synthesis did not control rate of glycerolipid synthesis. In all species examined, medium and long chain fatty acids were incorporated predominantly into triacylglycerols and were almost excluded from phospholipid synthesis, whereas palmitic and oleic acid were found predominantly in polar lipids. However, the rate of esterification of unusual fatty acids to triacylglycerol is slow in species that do not normally synthesize these acyl substrates. PMID:16666885

  17. Tissue-specific strategies of the very-long chain acyl-CoA dehydrogenase-deficient (VLCAD-/-) mouse to compensate a defective fatty acid β-oxidation.

    PubMed

    Tucci, Sara; Herebian, Diran; Sturm, Marga; Seibt, Annette; Spiekerkoetter, Ute

    2012-01-01

    Very long-chain acyl-CoA dehydrogenase (VLCAD)-deficiency is the most common long-chain fatty acid oxidation disorder presenting with heterogeneous phenotypes. Similar to many patients with VLCADD, VLCAD-deficient mice (VLCAD(-/-)) remain asymptomatic over a long period of time. In order to identify the involved compensatory mechanisms, wild-type and VLCAD(-/-) mice were fed one year either with a normal diet or with a diet in which medium-chain triglycerides (MCT) replaced long-chain triglycerides, as approved intervention in VLCADD. The expression of the mitochondrial long-chain acyl-CoA dehydrogenase (LCAD) and medium-chain acyl-CoA dehydrogenase (MCAD) was quantified at mRNA and protein level in heart, liver and skeletal muscle. The oxidation capacity of the different tissues was measured by LC-MS/MS using acyl-CoA substrates with a chain length of 8 to 20 carbons. Moreover, in white skeletal muscle the role of glycolysis and concomitant muscle fibre adaptation was investigated. In one year old VLCAD(-/-) mice MCAD and LCAD play an important role in order to compensate deficiency of VLCAD especially in the heart and in the liver. However, the white gastrocnemius muscle develops alternative compensatory mechanism based on a different substrate selection and increased glucose oxidation. Finally, the application of an MCT diet over one year has no effects on LCAD or MCAD expression. MCT results in the VLCAD(-/-) mice only in a very modest improvement of medium-chain acyl-CoA oxidation capacity restricted to cardiac tissue. In conclusion, VLCAD(-/-) mice develop tissue-specific strategies to compensate deficiency of VLCAD either by induction of other mitochondrial acyl-CoA dehydrogenases or by enhancement of glucose oxidation. In the muscle, there is evidence of a muscle fibre type adaptation with a predominance of glycolytic muscle fibres. Dietary modification as represented by an MCT-diet does not improve these strategies long-term.

  18. Dietary fish oil supplements increase tissue n-3 fatty acid composition and expression of delta-6 desaturase and elongase-2 in Jade Tiger hybrid abalone.

    PubMed

    Mateos, Hintsa T; Lewandowski, Paul A; Su, Xiao Q

    2011-08-01

    This study was conducted to investigate the effects of fish oil (FO) supplements on fatty acid composition and the expression of ∆6 desaturase and elongase 2 genes in Jade Tiger abalone. Five test diets were formulated to contain 0.5, 1.0, 1.5, 2.0 and 2.5% of FO respectively, and the control diet was the normal commercial abalone diet with no additional FO supplement. The muscle, gonad and digestive glands (DG) of abalone fed with all of the five test diets showed significantly high levels of total n-3 polyunsaturated fatty acid (PUFA), eicosapentaenoic acid (EPA), docosapentaenoic acid n-3 (DPAn-3), and docosahexaenoic acid (DHA) than the control group. In all three types of tissue, abalone fed diet supplemented with 1.5% FO showed the highest level of these fatty acids (P < 0.05). For DPAn-3 the higher level was also found in muscle and gonad of abalone fed diet supplemented with 2% FO (P < 0.05). Elongase 2 expression was markedly higher in the muscle of abalone fed diet supplemented with 1.5% FO (P < 0.05), followed by the diet containing 2% FO supplement. For ∆6 desaturase, significantly higher expression was observed in muscle of abalone fed with diet containing 0.5% FO supplement (P < 0.05). Supplementation with FO in the normal commercial diet can significantly improve long chain n-3 PUFA level in cultured abalone, with 1.5% being the most effective supplementation level.

  19. [Long-chain polyunsaturated fatty acids in breast-fed and formula fed healthy infants].

    PubMed

    Decsi, T; Adamovich, K; Szász, M; Berthold, K

    1995-03-26

    While human milk contains considerable amounts of long-chain polyunsaturated fatty acids (LCP), most formulae contain only the precursors of LCP synthesis (linoleic and alpha-linolenic acids) but are devoid of preformed dietary LCP such as are arachidonic and docosahexaenoic acids. LCP contents in plasma phospholipids (PL), triglycerides (TG) and sterol esters (STE) were measured by high resolution capillary gas-liquid chromatography in healthy, term infants fed human milk of formula. Percentage contributions of the precursor fatty acids were similar or higher in plasma lipids in formula fed than in breast-fed infants, meanwhile values of the intermediary metabolites of LCP synthesis did not differ between the two groups. Percentage contributions of arachidonic acid were higher in breast-fed than in formula fed infants at the ages of 2 weeks (PL: 9.39 +/- 1.00 vs. 6.91 +/- 0.38, TG: 0.61 +/- 0.03 vs. 0.41 +/- 0.05, %weight/weight, mean +/- SEM), 1 month (PL: 9.06 +/- 1.04 vs. 6.16 +/- 0.35, TG: 0.62 +/- 0.10 vs. 0.32 +/- 0.04, STE: 4.50 +/- 0.45 vs. 2.84 +/- 0.39) and 2 months (PL: 8.41 +/- 1.19 vs. 5.74 +/- 0.37). Similarly, docosahexaenoic acid values were at the ages of 1 month (PL: 1.94 +/- 0.21 vs. 1.19 +/- 0.21, TG: 0.12 +/- 0.03 vs. 0.04 +/- 0.02) and 2 months (PL: 2.02 +/- 0.36 vs. 0.99 +/- 0.07) significantly higher in breast-fed infants than in those receiving formula.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Free fatty acid receptor 3 is a key target of short chain fatty acid. What is the impact on the sympathetic nervous system?

    PubMed

    López Soto, Eduardo Javier; Gambino, Luisina Ongaro; Mustafá, Emilio Román

    2014-01-01

    Nervous system (NS) activity participates in metabolic homeostasis by detecting peripheral signal molecules derived from food intake and energy balance. High quality diets are thought to include fiber-rich foods like whole grain rice, breads, cereals, and grains. Several studies have associated high consumption of fiber-enriched diets with a reduced risk of diabetes, obesity, and gastrointestinal disorders. In the lower intestine, anaerobic fermentation of soluble fibers by microbiota produces short chain fatty acids (SCFAs), key energy molecules that have a recent identified leading role in the intestinal gluconeogenesis, promoting beneficial effects on glucose tolerance and insulin resistance. SCFAs are also signaling molecules that bind to specific G-protein coupled receptors (GPCRs) named Free Fatty Acid Receptor 3 (FFA3, GPR41) and 2 (FFA2, GPR43). However, how SCFAs impact NS activity through their GPCRs is poorly understood. Recently, studies have demonstrated the presence of FFA2 and FFA3 in the sympathetic NS of rat, mouse and human. Two studies have showed that FFA3 activation by SCFAs increases firing and norepinephrine (NE) release from sympathetic neurons. However, the recent study from the Ikeda Laboratory revealed that activation of FFA3 by SCFAs impairs N-type calcium channel (NTCC) activity, which contradicts the idea of FFA3 activation leading to increased action potential evoked NE release. Here we will discuss the scope of the latter study and the putative physiological role of SCFAs and FFAs in the sympathetic NS.

  1. Growth-Environment Dependent Modulation of Staphylococcus aureus Branched-Chain to Straight-Chain Fatty Acid Ratio and Incorporation of Unsaturated Fatty Acids.

    PubMed

    Sen, Suranjana; Sirobhushanam, Sirisha; Johnson, Seth R; Song, Yang; Tefft, Ryan; Gatto, Craig; Wilkinson, Brian J

    2016-01-01

    The fatty acid composition of membrane glycerolipids is a major determinant of Staphylococcus aureus membrane biophysical properties that impacts key factors in cell physiology including susceptibility to membrane active antimicrobials, pathogenesis, and response to environmental stress. The fatty acids of S. aureus are considered to be a mixture of branched-chain fatty acids (BCFAs), which increase membrane fluidity, and straight-chain fatty acids (SCFAs) that decrease it. The balance of BCFAs and SCFAs in USA300 strain JE2 and strain SH1000 was affected considerably by differences in the conventional laboratory medium in which the strains were grown with media such as Mueller-Hinton broth and Luria broth resulting in high BCFAs and low SCFAs, whereas growth in Tryptic Soy Broth and Brain-Heart Infusion broth led to reduction in BCFAs and an increase in SCFAs. Straight-chain unsaturated fatty acids (SCUFAs) were not detected. However, when S. aureus was grown ex vivo in serum, the fatty acid composition was radically different with SCUFAs, which increase membrane fluidity, making up a substantial proportion of the total (<25%) with SCFAs (>37%) and BCFAs (>36%) making up the rest. Staphyloxanthin, an additional major membrane lipid component unique to S. aureus, tended to be greater in content in cells with high BCFAs or SCUFAs. Cells with high staphyloxanthin content had a lower membrane fluidity that was attributed to increased production of staphyloxanthin. S. aureus saves energy and carbon by utilizing host fatty acids for part of its total fatty acids when growing in serum, which may impact biophysical properties and pathogenesis given the role of SCUFAs in virulence. The nutritional environment in which S. aureus is grown in vitro or in vivo in an infection is likely to be a major determinant of membrane fatty acid composition.

  2. Egg n-3 fatty acid composition modulates biomarkers of choline metabolism in free-living lacto-ovo-vegetarian women of reproductive age.

    PubMed

    West, Allyson A; Shih, Yun; Wang, Wei; Oda, Keiji; Jaceldo-Siegl, Karen; Sabaté, Joan; Haddad, Ella; Rajaram, Sujatha; Caudill, Marie A; Burns-Whitmore, Bonny

    2014-10-01

    The lacto-ovo-vegetarian (LOV) dietary regimen allows eggs, which are a rich source of choline. Consumption of eggs by LOV women may be especially important during pregnancy and lactation when demand for choline is high. The aim of this single blind, randomized, crossover-feeding study was to determine how near-daily egg consumption influenced biomarkers of choline metabolism in healthy LOV women of reproductive age (n=15). Because long-chain n-3 fatty acids could influence choline metabolism, the effect of n-3-enriched vs nonenriched eggs on choline metabolites was also investigated. Three 8-week dietary treatments consisting of six n-3-enriched eggs per week, six nonenriched eggs per week, and an egg-free control phase were separated by 4-week washout periods. Choline metabolites were quantified in fasted plasma collected before and after each treatment and differences in posttreatment choline metabolite concentrations were determined with linear mixed models. The n-3-enriched and nonenriched egg treatments produced different choline metabolite profiles compared with the egg-free control; however, response to the eggs did not differ (P>0.1). Consumption of the n-3-enriched egg treatment yielded higher plasma free choline (P=0.02) and betaine (P<0.01) (vs egg-free control) concentrations, whereas consumption of the nonenriched egg treatment yielded borderline higher (P=0.06) plasma phosphatidylcholine (vs egg-free control) levels. Neither egg treatment increased levels of plasma trimethylamine oxide, a gut-flora-dependent oxidative choline metabolite implicated as a possible risk factor for cardiovascular disease. Overall these data suggest that egg fatty-acid composition modulates the metabolic use of choline. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  3. Differences in elongation of very long chain fatty acids and fatty acid metabolism between triple-negative and hormone receptor-positive breast cancer.

    PubMed

    Yamashita, Yuji; Nishiumi, Shin; Kono, Seishi; Takao, Shintaro; Azuma, Takeshi; Yoshida, Masaru

    2017-08-29

    Triple-negative breast cancer (TN) is more aggressive than other subtypes of breast cancer and has a lower survival rate. Furthermore, detailed biological information about the disease is lacking. This study investigated characteristics of metabolic pathways in TN. We performed the metabolome analysis of 74 breast cancer tissues and the corresponding normal breast tissues using LC/MS. Furthermore, we classified the breast cancer tissues into ER-positive, PgR-positive, HER2-negative breast cancer (EP+H-) and TN, and then the differences in their metabolic pathways were investigated. The RT-PCR and immunostaining were carried out to examine the expression of ELOVL1, 2, 3, 4, 5, 6, and 7. We identified 142 of hydrophilic metabolites and 278 of hydrophobic lipid metabolites in breast tissues. We found the differences between breast cancer and normal breast tissues in choline metabolism, glutamine metabolism, lipid metabolism, and so on. Most characteristic of comparison between EP+H- and TN were differences in fatty acid metabolism was which were related to the elongation of very long chain fatty acids were detected between TN and EP+H-. Real-time RT-PCR showed that the mRNA expression levels of ELOVL1, 5, and 6 were significantly upregulated by 8.5-, 4.6- and 7.0-fold, respectively, in the TN tumors compared with their levels in the corresponding normal breast tissue samples. Similarly, the mRNA expression levels of ELOVL1, 5, and 6 were also significantly higher in the EP+H- tissues than in the corresponding normal breast tissues (by 4.9-, 3.4-, and 2.1-fold, respectively). The mRNA expression level of ELOVL6 was 2.6-fold higher in the TN tumors than in the EP+H- tumors. During immunostaining, the TN and EP+H- tumors demonstrated stronger ELOVL1 and 6 staining than the corresponding normal breast tissues, but ELOVL5 was not stained strongly in the TN or EP+H- tumors. Furthermore, the TN tumors exhibited stronger ELOVL1 and 6 staining than the EP+H- tumors. Marked

  4. Disrupted short chain specific β-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae.

    PubMed

    Leber, Christopher; Choi, Jin Wook; Polson, Brian; Da Silva, Nancy A

    2016-04-01

    Biologically derived fatty acids have gained tremendous interest as an alternative to petroleum-derived fuels and chemical precursors. We previously demonstrated the synthesis of short chain fatty acids in Saccharomyces cerevisiae by introduction of the Homo sapiens fatty acid synthase (hFAS) with heterologous phosphopantetheine transferases and heterologous thioesterases. In this study, short chain fatty acid production was improved by combining a variety of novel enzyme and metabolic engineering strategies. The use of a H. sapiens-derived thioesterase and phosphopantetheine transferase were evaluated. In addition, strains were engineered to disrupt either the full β-oxidation (by deleting FAA2, PXA1, and POX1) or short chain-specific β-oxidation (by deleting FAA2, ANT1, and PEX11) pathways. Prohibiting full β-oxidation increased hexanoic and octanoic acid levels by 8- and 79-fold relative to the parent strain expressing hFAS. However, by targeting only short chain β-oxidation, hexanoic and octanoic acid levels increased further to 31- and 140-fold over the parent. In addition, an optimized hFAS gene increased hexanoic, octanoic, decanoic and total short chain fatty acid levels by 2.9-, 2.0-, 2.3-, and 2.2-fold, respectively, relative to the non-optimized counterpart. By combining these unique enzyme and metabolic engineering strategies, octanoic acid was increased more than 181-fold over the parent strain expressing hFAS. © 2015 Wiley Periodicals, Inc.

  5. Dietary omega-3 fatty acids for women.

    PubMed

    Bourre, Jean-Marie

    2007-01-01

    This review details the specific needs of women for omega-3 fatty acids, including alpha linoleic acid (ALA) and the very long chain fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Omega-3 fatty acid (dietary or in capsules) ensures that a woman's adipose tissue contains a reserve of these fatty acids for the developing fetus and the breast-fed newborn infant. This ensures the optimal cerebral and cognitive development of the infant. The presence of large quantities of EPA and DHA in the diet slightly lengthens pregnancy, and improves its quality. Human milk contains both ALA and DHA, unlike that of other mammals. Conditions such as diabetes can alter the fatty acid profile of mother's milk, while certain diets, like those of vegetarians, vegans, or even macrobiotic diets, can have the same effect, if they do not include seafood. ALA, DHA and EPA, are important for preventing ischemic cardiovascular disease in women of all ages. Omega-3 fatty acids can help to prevent the development of certain cancers, particularly those of the breast and colon, and possibly of the uterus and the skin, and are likely to reduce the risk of postpartum depression, manic-depressive psychosis, dementias (Alzheimer's disease and others), hypertension, toxemia, diabetes and, to a certain extend, age-related macular degeneration. Omega-3 fatty acids could play a positive role in the prevention of menstrual syndrome and postmenopausal hot flushes. The normal western diet contains little ALA (less than 50% of the RDA). The only adequate sources are rapeseed oil (canola), walnuts and so-called "omega-3" eggs (similar to wild-type or Cretan eggs). The amounts of EPA and DHA in the diet vary greatly from person to person. The only good sources are fish and seafood, together with "omega-3" eggs.

  6. Homozygous Expression of Mutant ELOVL4 Leads to Seizures and Death in a Novel Animal Model of Very Long-Chain Fatty Acid Deficiency.

    PubMed

    Hopiavuori, Blake R; Deák, Ferenc; Wilkerson, Joseph L; Brush, Richard S; Rocha-Hopiavuori, Nicole A; Hopiavuori, Austin R; Ozan, Kathryn G; Sullivan, Michael T; Wren, Jonathan D; Georgescu, Constantin; Szweda, Luke; Awasthi, Vibhudutta; Towner, Rheal; Sherry, David M; Anderson, Robert E; Agbaga, Martin-Paul

    2018-02-01

    Lipids are essential components of the nervous system. However, the functions of very long-chain fatty acids (VLC-FA; ≥ 28 carbons) in the brain are unknown. The enzyme ELOngation of Very Long-chain fatty acids-4 (ELOVL4) catalyzes the rate-limiting step in the biosynthesis of VLC-FA (Agbaga et al., Proc Natl Acad Sci USA 105(35): 12843-12848, 2008; Logan et al., J Lipid Res 55(4): 698-708, 2014), which we identified in the brain as saturated fatty acids (VLC-SFA). Homozygous mutations in ELOVL4 cause severe neuropathology in humans (Ozaki et al., JAMA Neurol 72(7): 797-805, 2015; Mir et al., BMC Med Genet 15: 25, 2014; Cadieux-Dion et al., JAMA Neurol 71(4): 470-475, 2014; Bourassa et al., JAMA Neurol 72(8): 942-943, 2015; Aldahmesh et al., Am J Hum Genet 89(6): 745-750, 2011) and are post-natal lethal in mice (Cameron et al., Int J Biol Sci 3(2): 111-119, 2007; Li et al., Int J Biol Sci 3(2): 120-128, 2007; McMahon et al., Molecular Vision 13: 258-272, 2007; Vasireddy et al., Hum Mol Genet 16(5): 471-482, 2007) from dehydration due to loss of VLC-SFA that comprise the skin permeability barrier. Double transgenic mice with homozygous knock-in of the Stargardt-like macular dystrophy (STDG3; 797-801_AACTT) mutation of Elovl4 with skin-specific rescue of wild-type Elovl4 expression (S + Elovl4 mut/mut mice) develop seizures by P19 and die by P21. Electrophysiological analyses of hippocampal slices showed aberrant epileptogenic activity in S + Elovl4 mut/mut mice. FM1-43 dye release studies showed that synapses made by cultured hippocampal neurons from S + Elovl4 mut/mut mice exhibited accelerated synaptic release kinetics. Supplementation of VLC-SFA to cultured hippocampal neurons from mutant mice rescued defective synaptic release to wild-type rates. Together, these studies establish a critical, novel role for ELOVL4 and its VLC-SFA products in regulating synaptic release kinetics and epileptogenesis. Future studies aimed at understanding the molecular

  7. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa.

    PubMed

    Hu, Zhaohui; Wu, Qian; Dalal, Jyoti; Vasani, Naresh; Lopez, Harry O; Sederoff, Heike W; Qu, Rongda

    2017-01-01

    With its high seed oil content, the mustard family plant Camelina sativa has gained attention as a potential biofuel source. As a bioenergy crop, camelina has many advantages. It grows on marginal land with low demand for water and fertilizer, has a relatively short life cycle, and is stress tolerant. As most other crop seed oils, camelina seed triacylglycerols (TAGs) consist of mostly long, unsaturated fatty acyl moieties, which is not desirable for biofuel processing. In our efforts to produce shorter, saturated chain fatty acyl moieties in camelina seed oil for conversion to jet fuel, a 12:0-acyl-carrier thioesterase gene, UcFATB1, from California bay (Umbellularia californica Nutt.) was expressed in camelina seeds. Up to 40% of short chain laurate (C12:0) and myristate (C14:0) were present in TAGs of the seed oil of the transgenics. The total oil content and germination rate of the transgenic seeds were not affected. Analysis of positions of these two fatty acyl moieties in TAGs indicated that they were present at the sn-1 and sn-3 positions, but not sn-2, on the TAGs. Suppression of the camelina KASII genes by RNAi constructs led to higher accumulation of palmitate (C16:0), from 7.5% up to 28.5%, and further reduction of longer, unsaturated fatty acids in seed TAGs. Co-transformation of camelina with both constructs resulted in enhanced accumulation of all three medium-chain, saturated fatty acids in camelina seed oils. Our results show that a California bay gene can be successfully used to modify the oil composition in camelina seed and present a new biological alternative for jet fuel production.

  8. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa

    PubMed Central

    Dalal, Jyoti; Vasani, Naresh; Lopez, Harry O.; Sederoff, Heike W.

    2017-01-01

    With its high seed oil content, the mustard family plant Camelina sativa has gained attention as a potential biofuel source. As a bioenergy crop, camelina has many advantages. It grows on marginal land with low demand for water and fertilizer, has a relatively short life cycle, and is stress tolerant. As most other crop seed oils, camelina seed triacylglycerols (TAGs) consist of mostly long, unsaturated fatty acyl moieties, which is not desirable for biofuel processing. In our efforts to produce shorter, saturated chain fatty acyl moieties in camelina seed oil for conversion to jet fuel, a 12:0-acyl-carrier thioesterase gene, UcFATB1, from California bay (Umbellularia californica Nutt.) was expressed in camelina seeds. Up to 40% of short chain laurate (C12:0) and myristate (C14:0) were present in TAGs of the seed oil of the transgenics. The total oil content and germination rate of the transgenic seeds were not affected. Analysis of positions of these two fatty acyl moieties in TAGs indicated that they were present at the sn-1 and sn-3 positions, but not sn-2, on the TAGs. Suppression of the camelina KASII genes by RNAi constructs led to higher accumulation of palmitate (C16:0), from 7.5% up to 28.5%, and further reduction of longer, unsaturated fatty acids in seed TAGs. Co-transformation of camelina with both constructs resulted in enhanced accumulation of all three medium-chain, saturated fatty acids in camelina seed oils. Our results show that a California bay gene can be successfully used to modify the oil composition in camelina seed and present a new biological alternative for jet fuel production. PMID:28212406

  9. Effects of aerosol formulation to amino acids and fatty acids contents in Haruan extract.

    PubMed

    Febriyenti; Bai-Baie, Saringat Bin; Laila, Lia

    2012-01-01

    Haruan (Channa striatus) extract was formulated to aerosol for wound and burn treatment. Haruan extract is containing amino acids and fatty acids that important for wound healing process. The purpose of this study is to observe the effect of formulation and other excipients in the formula to amino acids and fatty acids content in Haruan extract before and after formulated into aerosol. Precolumn derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) method is used for amino acids analysis. Fatty acids in Haruan extract were esterified using transesterification method to form FAMEs before analyzed using GC. Boron trifluoride-methanol reagent is used for transesterification. Tyrosine and methionine concentrations were different after formulated. The concentrations were decrease. There are six fatty acids have amount that significantly different after formulated into concentrate and aerosol. Contents of these fatty acids were increase. Generally, fatty acids which had content increased after formulated were the long-chain fatty acids. This might be happen because of chain extension process. Saponification and decarboxylation would give the chain extended product. Therefore contents of long-chain fatty acids were increase. Generally, the aerosol formulation did not affect the amino acids concentrations in Haruan extract while some long-chain fatty acids concentrations were increase after formulated into concentrate and aerosol.

  10. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid short- and branched-chain alkyl esters biodiesel.

    PubMed

    Teo, Wei Suong; Ling, Hua; Yu, Ai-Qun; Chang, Matthew Wook

    2015-01-01

    Biodiesel is a mixture of fatty acid short-chain alkyl esters of different fatty acid carbon chain lengths. However, while fatty acid methyl or ethyl esters are useful biodiesel produced commercially, fatty acid esters with branched-chain alcohol moieties have superior fuel properties. Crucially, this includes improved cold flow characteristics, as one of the major problems associated with biodiesel use is poor low-temperature flow properties. Hence, microbial production as a renewable, nontoxic and scalable method to produce fatty acid esters with branched-chain alcohol moieties from biomass is critical. We engineered Saccharomyces cerevisiae to produce fatty acid short- and branched-chain alkyl esters, including ethyl, isobutyl, isoamyl and active amyl esters using endogenously synthesized fatty acids and alcohols. Two wax ester synthase genes (ws2 and Maqu_0168 from Marinobacter sp.) were cloned and expressed. Both enzymes were found to catalyze the formation of fatty acid esters, with different alcohol preferences. To boost the ability of S. cerevisiae to produce the aforementioned esters, negative regulators of the INO1 gene in phospholipid metabolism, Rpd3 and Opi1, were deleted to increase flux towards fatty acyl-CoAs. In addition, five isobutanol pathway enzymes (Ilv2, Ilv5, Ilv3, Aro10, and Adh7) targeted into the mitochondria were overexpressed to enhance production of alcohol precursors. By combining these engineering strategies with high-cell-density fermentation, over 230 mg/L fatty acid short- and branched-chain alkyl esters were produced, which is the highest titer reported in yeast to date. In this work, we engineered the metabolism of S. cerevisiae to produce biodiesels in the form of fatty acid short- and branched-chain alkyl esters, including ethyl, isobutyl, isoamyl and active amyl esters. To our knowledge, this is the first report of the production of fatty acid isobutyl and active amyl esters in S. cerevisiae. Our findings will be useful for

  11. Genetics Home Reference: very long-chain acyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... Very long chain acyl-CoA dehydrogenase deficiency Screening, Technology, and Research in Genetics Virginia Department of Health (PDF) Patient Support and Advocacy Resources (4 links) Children's Mitochondrial Disease Network (UK) FOD (Fatty Oxidation Disorders) ...

  12. Effect of dietary selenium and omega-3 fatty acids on muscle composition and quality in broilers

    PubMed Central

    Haug, Anna; Eich-Greatorex, Susanne; Bernhoft, Aksel; Wold, Jens P; Hetland, Harald; Christophersen, Olav A; Sogn, Trine

    2007-01-01

    Background Human health may be improved if dietary intakes of selenium and omega-3 fatty acids are increased. Consumption of broiler meat is increasing, and the meat content of selenium and omega-3 fatty acids are affected by the composition of broiler feed. A two-way analyses of variance was used to study the effect of feed containing omega-3 rich plant oils and selenium enriched yeast on broiler meat composition, antioxidation- and sensory parameters. Four different wheat-based dietary treatments supplemented with 5% rapeseed oil or 4% rapeseed oil plus 1% linseed oil, and either 0.50 mg selenium or 0.84 mg selenium (organic form) per kg diet was fed to newly hatched broilers for 22 days. Results The different dietary treatments gave distinct different concentrations of selenium and fatty acids in thigh muscle; one percent linseed oil in the diet increased the concentration of the omega-3 fatty acids 18:3, 20:5 and 22:5, and 0.84 mg selenium per kg diet gave muscle selenium concentration at the same level as is in fish muscle (0.39 mg/kg muscle). The high selenium intake also resulted in increased concentration of the long-chain omega-3 fatty acids EPA (20:5), DPA (22:5) and DHA (22:6), thus it may be speculated if high dietary selenium might have a role in increasing the concentration of EPA, DPA and DHA in tissues after intake of plant oils contning omega-3 fatty acids. Conclusion Moderate modifications of broiler feed may give a healthier broiler meat, having increased content of selenium and omega-3 fatty acids. High intakes of selenium (organic form) may increase the concentration of very long-chain omega-3 fatty acids in muscle. PMID:17967172

  13. Effect of chain length on binding of fatty acids to Pluronics in microemulsions.

    PubMed

    James-Smith, Monica A; Shekhawat, Dushyant; Cheung, Sally; Moudgil, Brij M; Shah, Dinesh O

    2008-03-15

    We investigated the effect of fatty acid chain length on the binding capacity of drug and fatty acid to Pluronic F127-based microemulsions. This was accomplished by using turbidity experiments. Pluronic-based oil-in-water microemulsions of various compositions were synthesized and titrated to turbidity with concentrated Amitriptyline, an antidepressant drug. Sodium salts of C(8), C(10), or C(12) fatty acid were used in preparation of the microemulsion and the corresponding binding capacities were observed. It has been previously determined that, for microemulsions prepared with sodium caprylate (C(8) fatty acid soap), a maximum of 11 fatty acid molecules bind to the microemulsion per 1 molecule of Pluronic F127 and a maximum of 12 molecules of Amitriptyline bind per molecule of F127. We have found that with increasing the chain length of the fatty acid salt component of the microemulsion, the binding capacity of both the fatty acid and the Amitriptyline to the microemulsion decreases. For sodium salts of C(8), C(10) and C(12) fatty acids, respectively, a maximum of approximately 11, 8.4 and 8.3 molecules of fatty acid molecules bind to 1 Pluronic F127 molecule. We propose that this is due to the decreasing number of free monomers with increasing chain length. As chain length increases, the critical micelle concentration (cmc) decreases, thus leading to fewer monomers. Pluronics are symmetric tri-block copolymers consisting of propylene oxide (PO) and ethylene oxide (EO). The polypropylene oxide block, PPO is sandwiched between two polyethylene oxide (PEO) blocks. The PEO blocks are hydrophilic while PPO is hydrophobic portion in the Pluronic molecule. Due to this structure, we propose that the fatty acid molecules that are in monomeric form most effectively diffuse between the PEO "tails" and bind to the hydrophobic PPO groups.

  14. Associations between omega-3 fatty acids and 25(OH)D and psychological distress among Inuit in Canada.

    PubMed

    Skogli, Hans-Ragnar; Geoffroy, Dominique; Weiler, Hope A; Tell, Grethe S; Kirmayer, Laurence J; Egeland, Grace M

    2017-01-01

    Inuit in Canada have experienced dietary changes over recent generations, but how this relates to psychological distress has not been investigated. To evaluate how nutritional biomarkers are related to psychological distress. A total of 36 communities in northern Canada participated in the International Polar Year Inuit Health Survey (2007-2008). Of 2796 households, 1901 (68%) participated; 1699 Inuit adults gave blood samples for biomarker analysis and answered the Kessler 6-item psychological distress questionnaire (K6). Biomarkers included n-3 fatty acids and 25-hydroxyvitamin D (25(OH)D). The K6 screens for psychological distress over the last 30 days with six items scored on a 4-point scale. A total score of 13 or more indicates serious psychological distress (SPD). Logistic regression models were used to investigate any associations between SPD and biomarkers while controlling for age, gender, marital status, days spent out on the land, feeling of being alone, income and smoking. The 30-day SPD prevalence was 11.2%, with women below 30 years having the highest and men 50 years and more having the lowest SPD prevalence at 16.1% and 2.6%, respectively. SPD was associated with being female, younger age, not being married or with a common-law partner, spending few days out on the land, feelings of being alone, smoking and low income. Low levels of both 25(OH)D and long-chain n-3 FAs were associated with higher odds for SPD in both unadjusted and adjusted logistic regression models. In this cross-sectional analysis, low levels of 25(OH)D and long-chain n-3 FAs were associated with higher odds ratios for SPD, which highlights the potential impact of traditional foods on mental health and wellbeing. Cultural practices are also important for mental health and it may be that the biomarkers serve as proxies for cultural activities related to food collection, sharing and consumption that increase both biomarker levels and psychological well-being. n-3 FAs: omega-3

  15. Associations between omega-3 fatty acids and 25(OH)D and psychological distress among Inuit in Canada

    PubMed Central

    Skogli, Hans-Ragnar; Geoffroy, Dominique; Weiler, Hope A.; Tell, Grethe S.; Kirmayer, Laurence J.; Egeland, Grace M.

    2017-01-01

    ABSTRACT Background: Inuit in Canada have experienced dietary changes over recent generations, but how this relates to psychological distress has not been investigated. Objective: To evaluate how nutritional biomarkers are related to psychological distress. Design: A total of 36 communities in northern Canada participated in the International Polar Year Inuit Health Survey (2007–2008). Of 2796 households, 1901 (68%) participated; 1699 Inuit adults gave blood samples for biomarker analysis and answered the Kessler 6-item psychological distress questionnaire (K6). Biomarkers included n-3 fatty acids and 25-hydroxyvitamin D (25(OH)D). The K6 screens for psychological distress over the last 30 days with six items scored on a 4-point scale. A total score of 13 or more indicates serious psychological distress (SPD). Logistic regression models were used to investigate any associations between SPD and biomarkers while controlling for age, gender, marital status, days spent out on the land, feeling of being alone, income and smoking. Results: The 30-day SPD prevalence was 11.2%, with women below 30 years having the highest and men 50 years and more having the lowest SPD prevalence at 16.1% and 2.6%, respectively. SPD was associated with being female, younger age, not being married or with a common-law partner, spending few days out on the land, feelings of being alone, smoking and low income. Low levels of both 25(OH)D and long-chain n-3 FAs were associated with higher odds for SPD in both unadjusted and adjusted logistic regression models. Conclusion: In this cross-sectional analysis, low levels of 25(OH)D and long-chain n-3 FAs were associated with higher odds ratios for SPD, which highlights the potential impact of traditional foods on mental health and wellbeing. Cultural practices are also important for mental health and it may be that the biomarkers serve as proxies for cultural activities related to food collection, sharing and consumption that increase both

  16. trans Octadecenoic acid and trans octadecadienoic acid are inversely related to long-chain polyunsaturates in human milk: results of a large birth cohort study.

    PubMed

    Szabó, Eva; Boehm, Günther; Beermann, Christopher; Weyermann, Maria; Brenner, Hermann; Rothenbacher, Dietrich; Decsi, Tamás

    2007-05-01

    Several observational studies indicate that trans isomeric fatty acids may interfere with the metabolism of essential fatty acids in the human organism. The objective was to investigate the relation between trans fatty acids and long-chain polyunsaturates in mature human milk. Human milk samples (n=769) were obtained at the 6th week of lactation from mothers participating in a birth cohort study in Germany. The fatty acid composition of the milk samples was measured by high-resolution capillary gas-liquid chromatography. trans Octadecenoic and trans octadecadienoic acids were inversely correlated with linoleic acid (r=-0.32 and -0.33, P<0.0001 for both), alpha-linolenic acid (r=-0.35 and -0.27, P<0.0001), arachidonic acid (r=-0.60 and -0.47, P<0.0001), and docosahexaenoic acid (r=-0.51 and -0.33, P<0.0001). In contrast, no inverse correlations were observed between trans hexadecenoic acid and polyunsaturated fatty acids. The data obtained in the present study suggest that the availability of 18-carbon trans isomeric fatty acids may be inversely related to the availability of long-chain polyunsaturated fatty acids in mature human milk.

  17. Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum.

    PubMed

    Svetlitshnyi, V; Rainey, F; Wiegel, J

    1996-10-01

    Three strains of an anaerobic thermophilic organoheterotrophic lipolytic alkalitolerant bacterium, Thermosyntropha lipolytica gen. nov., sp. nov. (type strain JW/VS-265T; DSM 11003), were isolated from alkaline hot springs of Lake Bogoria (Kenya). The cells were nonmotile, non-spore forming, straight or slightly curved rods. At 60 degrees C the pH range for growth determined at 25 degrees C [pH25 degrees C] was 7.15 to 9.5, with an optimum between 8.1 and 8.9 (pH60 degrees C of 7.6 and 8.1). At a pH25 degrees C of 8.5 the temperature range for growth was from 52 to 70 degrees C, with an optimum between 60 and 66 degrees C. The shortest doubling time was around 1 h. In pure culture the bacterium grew in a mineral base medium supplemented with yeast extract, tryptone, Casamino Acids, betaine, and crotonate as carbon sources, producing acetate as a major product and constitutively a lipase. During growth in the presence of olive oil, free long-chain fatty acids were accumulated in the medium but the pure culture could not utilize olive oil, triacylglycerols, short- and long-chain fatty acids, and glycerol for growth. In syntrophic coculture (Methanobacterium strain JW/VS-M29) the lipolytic bacteria grew on triacylglycerols and linear saturated and unsaturated fatty acids with 4 to 18 carbon atoms, but glycerol was not utilized. Fatty acids with even numbers of carbon atoms were degraded to acetate and methane, while from odd-numbered fatty acids 1 mol of propionate per mol of fatty acid was additionally formed. 16S rDNA sequence analysis identified Syntrophospora and Syntrophomonas spp. as closest phylogenetic neighbors.

  18. Short-term n-3 fatty acid supplementation but not aspirin increases plasma proresolving mediators of inflammation.

    PubMed

    Barden, Anne; Mas, Emilie; Croft, Kevin D; Phillips, Michael; Mori, Trevor A

    2014-11-01

    Resolution of inflammation is an active process involving specialized proresolving mediators (SPM) formed from the n-3 fatty acids. This study examined the effect of n-3 fatty acid supplementation and aspirin on plasma SPMs in healthy humans. Healthy volunteers (n = 21) were supplemented with n-3 fatty acids (2.4g/day) for 7 days with random assignment to take aspirin (300 mg/day) or placebo from day 5 to day 7. Blood was collected at baseline (day 0), day 5, and day 7. Plasma 18R/S-HEPE, E-series resolvins, 17R/S-HDHA, D-series resolvins, 14R/S-HDHA, and MaR-1 were measured by LC/MS/MS. At baseline concentrations of E- and D- series resolvins and the upstream precursors 18R/S-HEPE, 17R/S-HDHA ranged from 0.1nM to 0.2nM. 14R/S-HDHA was 3-fold higher than the other SPMs at baseline but MaR-1 was below the limit of detection. Supplementation with n-3 fatty acids significantly increased RvE1, 18R/S-HEPE, 17R/S-HDHA, and 14R/S-HDHA but not other SPMs. The addition of aspirin after 5 days of n-3 fatty acids did not affect concentrations of any SPM. N-3 fatty acid supplementation for 5 days results in concentrations of SPMs that are biologically active in healthy humans. Aspirin administered after n-3 fatty acids did not offer any additional benefit in elevating the levels of SPMs. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  19. Breast milk fatty acid composition has a long-term effect on the risk of asthma, eczema, and sensitization.

    PubMed

    van Elten, T M; van Rossem, L; Wijga, A H; Brunekreef, B; de Jongste, J C; Koppelman, G H; Smit, H A

    2015-11-01

    Levels of n-3 polyunsaturated fatty acids (PUFAs) and n-6 PUFAs in breast milk are associated with the development of allergic diseases up to school age. However, it is unknown whether this relationship persists when the child becomes older. We therefore studied the association between levels of n-3 PUFAs and n-6 PUFAs in breast milk of allergic- and nonallergic mothers and asthma, eczema and sensitization up to the age of 14 years. The study was nested in the ongoing PIAMA birth cohort. At the child's age of 3 months, 276 mothers provided a breast milk sample. Asthma (N total = 269) and eczema (N total = 274) were self-reported up to the child's age of 14 years. Specific serum IgE levels were measured at the ages of 4, 8 and 12 years (N total = 216). Generalized estimating equations analyses were used to take account of repeated observations. Asthma up to the age of 14 years is less prevalent in children of allergic mothers receiving breast milk with higher levels of n-3 long chain polyunsaturated (LCP) fatty acids (OR 0.50; 95% CI 0.31-0.79), and more prevalent in children of nonallergic mothers receiving breast milk with higher levels of n-6LCP (OR 1.86; 95% CI 1.14-3.03). Weaker associations in similar direction were observed for eczema and sensitization. Direction of associations were consistent and of similar magnitude throughout childhood. The association between breast milk fatty acid composition and asthma, eczema and sensitization persists up to the age of 14 years in children of both allergic and nonallergic mothers. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Association of plasma n-6 and n-3 polyunsaturated fatty acids with synovitis in the knee: the MOST study

    USDA-ARS?s Scientific Manuscript database

    In osteoarthritis (OA) the synovium is often inflamed and inflammatory cytokines contribute to cartilage damage. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have anti-inflammatory effects whereas omega-6 polyunsaturated fatty acids (n-6 PUFAs) have, on balance, proinflammatory effects. The goal ...

  1. SIRT3 and SIRT5 Regulate the Enzyme Activity and Cardiolipin Binding of Very Long-Chain Acyl-CoA Dehydrogenase

    PubMed Central

    Zhang, Yuxun; Bharathi, Sivakama S.; Rardin, Matthew J.; Uppala, Radha; Verdin, Eric; Gibson, Bradford W.; Goetzman, Eric S.

    2015-01-01

    SIRT3 and SIRT5 have been shown to regulate mitochondrial fatty acid oxidation but the molecular mechanisms behind the regulation are lacking. Here, we demonstrate that SIRT3 and SIRT5 both target human very long-chain acyl-CoA dehydrogenase (VLCAD), a key fatty acid oxidation enzyme. SIRT3 deacetylates and SIRT5 desuccinylates K299 which serves to stabilize the essential FAD cofactor in the active site. Further, we show that VLCAD binds strongly to cardiolipin and isolated mitochondrial membranes via a domain near the C-terminus containing lysines K482, K492, and K507. Acetylation or succinylation of these residues eliminates binding of VLCAD to cardiolipin. SIRT3 deacetylates K507 while SIRT5 desuccinylates K482, K492, and K507. Sirtuin deacylation of recombinant VLCAD rescues membrane binding. Endogenous VLCAD from SIRT3 and SIRT5 knockout mouse liver shows reduced binding to cardiolipin. Thus, SIRT3 and SIRT5 promote fatty acid oxidation by converging upon VLCAD to promote its activity and membrane localization. Regulation of cardiolipin binding by reversible lysine acylation is a novel mechanism that is predicted to extrapolate to other metabolic proteins that localize to the inner mitochondrial membrane. PMID:25811481

  2. Mechanism of the protective effects of long chain n-alkyl glucopyranosides against ultrasound-induced cytolysis of HL-60 cells.

    PubMed

    Cheng, Jason Y; Riesz, Peter

    2007-07-01

    Recently it has been shown that long chain (C5-C8) n-alkyl glucopyranosides completely inhibit ultrasound-induced cytolysis [J.Z. Sostaric, N. Miyoshi, P. Riesz, W.G. DeGraff, and J.B. Mitchell, Free Radical Biol. Med., 39 (2005) 1539]. This protective effect has possible applications in HIFU (high intensity focused ultrasound) for tumor treatment, and in ultrasound assisted drug delivery and gene therapy. n-Alkyl glucopyranosides with hexyl (5mM), heptyl (3mM), octyl (2mM) n-alkyl chains protected 100% of HL-60 cells in vitro from 1.057 MHz ultrasound-induced cytolysis under a range of conditions that resulted in 35-100% cytolysis in the absence of glucopyranosides. However the hydrophilic methyl-beta-d-glucopyranoside did not protect cells. The surface active n-alkyl glucopyranosides accumulate at the gas-liquid interface of cavitation bubbles. The OH radicals and H atoms formed in collapsing cavitation bubbles react by H-atom abstraction from either the n-alkyl chain or the glucose moiety of the n-alkyl glucopyranosides. Owing to the high concentration of the long chain surfactants at the gas-liquid interface of cavitation bubbles, the initially formed carbon radicals on the alkyl chains are transferred to the glucose moieties to yield radicals which react with oxygen leading to the formation of hydrogen peroxide. In this work, we find that the sonochemically produced hydrogen peroxide yields from oxygen-saturated solutions of long chain (hexyl, octyl) n-alkyl glucopyranosides at 614 kHz and 1.057 MHz ultrasound increase with increasing n-alkyl glucopyranoside concentration but are independent of concentration for methyl-beta-D-glucopyranoside. These results are consistent with the previously proposed mechanism of sonoprotection [J.Z. Sostaric, N. Miyoshi, P. Riesz, W.G. DeGraff, and J.B. Mitchell, Free Radical Biol. Med., 39 (2005) 1539]. This sequence of events prevents sonodynamic cell killing by initiation of lipid peroxidation chain reactions in cellular

  3. Long-Chain Alkyl Cyanides: Unprecedented Volatile Compounds Released by Pseudomonas and Micromonospora Bacteria.

    PubMed

    Montes Vidal, Diogo; von Rymon-Lipinski, Anna-Lena; Ravella, Srinivasa; Groenhagen, Ulrike; Herrmann, Jennifer; Zaburannyi, Nestor; Zarbin, Paulo H G; Varadarajan, Adithi R; Ahrens, Christian H; Weisskopf, Laure; Müller, Rolf; Schulz, Stefan

    2017-04-03

    The analysis of volatiles from bacterial cultures revealed long-chain aliphatic nitriles, a new class of natural products. Such nitriles are produced by both Gram-positive Micromonospora echinospora and Gram-negative Pseudomonas veronii bacteria, although the structures differ. A variable sequence of chain elongation and dehydration in the fatty acid biosynthesis leads to either unbranched saturated or unsaturated nitriles with an ω-7 double bond, such as (Z)-11-octadecenenitrile, or methyl-branched unsaturated nitriles with the double bond located at C-3, such as (Z)-13-methyltetradec-3-enenitrile. The nitrile biosynthesis starts from fatty acids, which are converted into their amides and finally dehydrated. The structures and biosyntheses of the 19 naturally occurring compounds were elucidated by mass spectrometry, synthesis, and feeding experiments with deuterium-labeled precursors. Some of the nitriles showed antimicrobial activity, for example, against multiresistant Staphylococcus aureus strains. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Omega-3 fatty acids, nutrient retention values, and sensory meat eating quality in cooked and raw Australian lamb.

    PubMed

    Flakemore, Aaron Ross; Malau-Aduli, Bunmi Sherifat; Nichols, Peter David; Malau-Aduli, Aduli Enoch Othniel

    2017-01-01

    This study evaluated omega-3 intramuscular fatty acids in the longissimus thoracis et lumborum of commercially prepared Australian lamb loin chops. Meats, denuded of external fats were cooked by means of conductive dry-heat using a fry grilling hot plate, to a core temperature of 70°C. An untrained consumer panel assessed meat appearance, aroma, tenderness, juiciness, taste and overall liking. Results showed no compositional alterations (P>0.05) to omega-3 fatty acids due to cooking treatment, whereas on absolute terms (mg/100g muscle) omega-3 fatty acids significantly (P<0.05) increased. The mean EPA+DHA content of the cooked meat at 32.8±2.3mg/100g muscle exceeded the minimum 30mg/100g per edible portion required for the defined Australian classification as 'source' long-chain (≥C 20 ) omega-3 for cooked lamb. A 3.4% intramuscular fat content in the initial raw meat was sufficient to maintain acceptable overall sensory eating quality. Results endorse the application of this cooking method to enable delivery of health beneficial long-chain omega-3 fatty acids of commercially prepared Australian lamb loin chops to consumers without impediments to sensory eating properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Data on pigments and long-chain fatty compounds identified in Dietzia sp. A14101 grown on simple and complex hydrocarbons

    PubMed Central

    Hvidsten, Ina; Mjøs, Svein Are; Bødtker, Gunhild; Barth, Tanja

    2015-01-01

    This data article provides: 1. An overview of tentatively identified long chain compounds in Dietzia sp. A14101 grown on simple and complex hydrocarbons; 2. Preliminary Identification of pigments in bacterial material obtained from incubation with a hydrocarbon (dodecane, n-C12) as the only carbon and energy source; 3. Some pictures to illustrate the cell surface charge test. PMID:26442286

  6. Fatty acid chain length, postprandial satiety and food intake in lean men.

    PubMed

    Poppitt, S D; Strik, C M; MacGibbon, A K H; McArdle, B H; Budgett, S C; McGill, A-T

    2010-08-04

    High-fat diets are associated with obesity, and the weak satiety response elicited in response to dietary lipids is likely to play a role. Preliminary evidence from studies of medium (MCT) and long chain triglycerides (LCT) supports greater appetite suppression on high-MCT diets, possibly a consequence of direct portal access, more rapid oxidation and muted lipaemia. No data is as yet available on high-SCT diets which also have direct hepatic access. In this study SCT- (dairy fats), MCT- (coconut oil) and LCT-enriched (beef tallow) test breakfasts (3.3 MJ) containing 52 g lipid (58 en% fat) were investigated in a randomized, cross-over study in 18 lean men. All participants were required to complete the 3 study days in randomised order. Participants rated appetite sensations using visual analogue scales (VAS), and energy intake (EI) was measured by covert weighing of an ad libitum lunch meal 3.5 h postprandially. Blood samples were collected by venous cannulation. There were no detectable differences between breakfasts in perceived pleasantness, visual appearance, smell, taste, aftertaste and palatability (P>0.05). There was no significant effect of fatty acid chain length on ratings of hunger, fullness, satisfaction or current thoughts of food, nor did energy (mean, sem: SCT: 4406, 366 kJ; MCT: 4422, 306 kJ; LCT: 4490, 324 kJ; P>0.05) or macronutrient intake at lunch differ between diets. The maximum difference in EI between diets was less than 2%. Postprandial lipaemia also did not differ significantly. We conclude that there was no evidence that fatty acid chain length has an effect on measures of appetite and food intake when assessed following a single high-fat test meal in lean participants. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Synthesis, chemical characterization, and economical feasibility of poly-phenolic-branched-chain fatty acids: Synthesis of poly-phenolic-branched-chain fatty acids

    USDA-ARS?s Scientific Manuscript database

    New poly-phenolic branched-chain fatty acid (poly-PBC-FA) products were synthesized from a combination of soybean fatty acids and phenolic materials through a highly efficient zeolite catalyzed arylation method. These poly-PBC-FAs are liquid at room temperature and do not have the unpleasant odor li...

  8. Maternal long chain polyunsaturated fatty acid supplementation in infancy increases length- and weight-for-age but not BMI to 6 years when controlling for effects of maternal smoking

    PubMed Central

    Currie, L.M.; Tolley, E.A.; Thodosoff, J.M.; Kerling, E.H.; Sullivan, D.K.; Colombo, J.; Carlson, S.E.

    2015-01-01

    Summary Long chain polyunsaturated fatty acids (LCPUFA) are added to infant formula but their effect on long-term growth of children is under studied. We evaluated the effects of feeding LCPUFA-supplemented formula (n=54) compared to control formula (n=15) throughout infancy on growth from birth-6 years. Growth was described using separate models developed with the MIXED procedure of SAS® that included maternal smoking history and gender. Compared to children fed control formula, children who consumed LCPUFA supplemented formula had higher length-/stature-/and weight-for-age percentiles but not body mass index (BMI) percentile from birth to 6 years. Maternal smoking predicted lower stature (2-6 years), higher weight-for-length (birth-18 months) and BMI percentile (2-6 years) independent of LCPUFA effects. Gender interacted with the effect of LCPUFA on stature, and the relationship between smoking and BMI, with a larger effect for boys. Energy intake did not explain growth differences. A relatively small control sample is a limitation. PMID:25936840

  9. Reprint of "Stable hydrogen and carbon isotopic compositions of long-chain (C21-C33) n-alkanes and n-alkenes in insects"

    NASA Astrophysics Data System (ADS)

    Chikaraishi, Yoshito; Kaneko, Masanori; Ohkouchi, Naohiko

    2013-06-01

    We report the molecular and stable isotopic (δD and δ13C) compositions of long-chain n-alkanes in common insects including the cabbage butterfly, swallowtail, wasp, hornet, grasshopper, and ladybug. Insect n-alkanes are potential candidates of the contamination of soil and sedimentary n-alkanes that are believed to be derived from vascular plant waxes. Long-chain n-alkanes (range C21-33; maximum C23-C29) are found to be abundant in the insects (31-781 μg/dry g), with a carbon preference index (CPI) of 5.1-31.5 and an average chain length (ACL) of 24.9-29.3. The isotopic compositions (mean ± 1σ, n = 33) of the n-alkanes are -195 ± 16‰ for hydrogen and -30.6 ± 2.4‰ for carbon. The insect n-alkanes are depleted in D by approximately 30-40‰ compared with wax n-alkanes from C3 (-155 ± 25‰) and C4 vascular plants (-167 ± 13‰), whereas their δ13C values fall between those of C3 (-36.2 ± 2.4‰) and C4 plants (-20.3 ± 2.4‰). Thus, the contribution of insect-derived n-alkanes to soil and sediment could potentially shift δD records of n-alkanes toward more negative values and potentially muddle the assumed original C3/C4 balance in the δ13C records of the soil and sedimentary n-alkanes. n-Alkenes are also found in three insects (swallowtail, wasp and hornet). They are more depleted in D relative to the same carbon numbered n-alkanes (δDn-alkene - δDn-alkane = -17 ± 16‰), but the δ13C values are almost identical to those of the n-alkanes (δ13Cn-alkene - δ13Cn-alkane = 0.1 ± 0.2‰). These results suggest that these n-alkenes are desaturated products of the same carbon numbered n-alkanes.

  10. N-3 Polyunsaturated Fatty Acids through the Lifespan: Implication for Psychopathology

    PubMed Central

    Pusceddu, Matteo M.; Kelly, Philip; Stanton, Catherine; Cryan, John F.

    2016-01-01

    Objective: The impact of lifetime dietary habits and their role in physical, mental, and social well-being has been the focus of considerable recent research. Omega-3 polyunsaturated fatty acids as a dietary constituent have been under the spotlight for decades. Omega-3 polyunsaturated fatty acids constitute key regulating factors of neurotransmission, neurogenesis, and neuroinflammation and are thereby fundamental for development, functioning, and aging of the CNS. Of note is the fact that these processes are altered in various psychiatric disorders, including attention deficit hyperactivity disorder, depression, and Alzheimer’s disease. Design: Relevant literature was identified through a search of MEDLINE via PubMed using the following words, “n-3 PUFAs,” “EPA,” and “DHA” in combination with “stress,” “cognition,” “ADHD,” “anxiety,” “depression,” “bipolar disorder,” “schizophrenia,” and “Alzheimer.” The principal focus was on the role of omega-3 polyunsaturated fatty acids throughout the lifespan and their implication for psychopathologies. Recommendations for future investigation on the potential clinical value of omega-3 polyunsaturated fatty acids were examined. Results: The inconsistent and inconclusive results from randomized clinical trials limits the usage of omega-3 polyunsaturated fatty acids in clinical practice. However, a body of literature demonstrates an inverse correlation between omega-3 polyunsaturated fatty acid levels and quality of life/ psychiatric diseases. Specifically, older healthy adults showing low habitual intake of omega-3 polyunsaturated fatty acids benefit most from consuming them, showing improved age-related cognitive decline. Conclusions: Although further studies are required, there is an exciting and growing body of research suggesting that omega-3 polyunsaturated fatty acids may have a potential clinical value in the prevention and treatment of psychopathologies. PMID:27608809

  11. Factors affecting variations in the detailed fatty acid profile of Mediterranean buffalo milk determined by 2-dimensional gas chromatography.

    PubMed

    Pegolo, S; Stocco, G; Mele, M; Schiavon, S; Bittante, G; Cecchinato, A

    2017-04-01

    Buffalo milk is the world's second most widely produced milk, and increasing attention is being paid to its composition, particularly the fatty acid profile. The objectives of the present study were (1) to characterize the fatty acid composition of Mediterranean buffalo milk, and (2) to investigate potential sources of variation in the buffalo milk fatty acid profile. We determined the profile of 69 fatty acid traits in 272 individual samples of Mediterranean buffalo milk using gas chromatography. In total, 51 individual fatty acids were identified: 24 saturated fatty acids, 13 monounsaturated fatty acids, and 14 polyunsaturated fatty acids. The major individual fatty acids in buffalo milk were in the order 16:0, 18:1 cis-9, 14:0, and 18:0. Saturated fatty acids were the predominant fraction in buffalo milk fat (70.49%); monounsaturated and polyunsaturated fatty acids were at 25.95 and 3.54%, respectively. Adopting a classification based on carbon-chain length, we found that medium-chain fatty acids (11-16 carbons) represented the greater part (53.7%) of the fatty acid fraction of buffalo milk, whereas long-chain fatty acids (17-24 carbons) and short-chain fatty acids (4-10 carbons) accounted for 32.73 and 9.72%, respectively. The n-3 and n-6 fatty acids were 0.46 and 1.77%, respectively. The main conjugated linoleic acid, rumenic acid, represented 0.45% of total milk fatty acids. Herd/test date and stage of lactation were confirmed as important sources of variation in the fatty acid profile of buffalo milk. The percentages of short-chain and medium-chain fatty acids in buffalo milk increased in early lactation (+0.6 and +3.5%, respectively), whereas long-chain fatty acids decreased (-4.2%). The only exception to this pattern was butyric acid, which linearly decreased from the beginning of lactation, confirmation that its synthesis is independent of malonyl-CoA. These results seem to suggest that in early lactation the mobilization of energy reserves may have less

  12. Intake of Fish and Omega-3 (N-3) Fatty Acid: Effect on Humans during Actual and Simulated Weightlessness

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Mehta, Satish K.; Pierson, Duane L.; Zwart, Sara R.

    2009-01-01

    Space flight has many negative effects on human physiology, including bone and muscle loss. These are some of the systems on which intakes of fish and n-3 fatty acids have positive effects. These effects are likely to occur through inhibition of inflammatory cytokines (such as TNFalpha) and thus inhibition of downstream NF-KB activation. We documented this effect in a 3D cell culture model, where NF-KB activation in osteoclasts was inhibited by eicosapentaenoic acid, an n-3 fatty acid. We have extended these studies and report here (a) NF-KB expression in peripheral blood mononuclear cells of Space Shuttle crews on 2-wk missions, (b) the effects of n-3 fatty acid intake after 60 d of bed rest (a weightlessness analog), and (c) the effects of fish intake in astronauts after 4 to 6 mo on the International Space Station. After Shuttle flights of 2 wk, NFKB p65 expression at landing was increased (P less than 0.001). After 60 d of bed rest, higher intake of n-3 fatty acids was associated with less N-telopeptide excretion (Pearson r = -0.62, P less than 0.05). Higher consumption of fish during flight was associated with higher bone mineral density (Pearson r = -0.46, P less than 0.05). Together with our earlier findings, these data provide mechanistic cellular and preliminary human evidence of the potential for n-3 fatty acids to counteract bone loss associated with spaceflight. This study was supported by the NASA Human Research Program.

  13. Supplementation with n-3, n-6, n-9 fatty acids in an insulin-resistance animal model: does it improve VLDL quality?

    PubMed

    Lucero, D; Olano, C; Bursztyn, M; Morales, C; Stranges, A; Friedman, S; Macri, E V; Schreier, L; Zago, V

    2017-05-24

    Insulin-resistance (IR), of increased cardiovascular risk, is characterized by the production of altered VLDL with greater atherogenicity. Dietary fatty acids influence the type of circulating VLDL. But, it is not clear how dietary fatty acids impact VLDL characteristics in IR. to evaluate the effects of n-3, n-6 and n-9 fatty acid supplementation on preventing atherogenic alterations in VLDL, in a diet-induced IR rat model. Male Wistar rats (180-200 g) were fed: standard diet (control, n = 8) and a sucrose rich diet (30% sucrose in water/12 weeks, SRD; n = 24). Simultaneously, SRD was subdivided into SRD-C (standard diet), and three other groups supplemented (15% w/w) with: fish oil (SRD-n3), sunflower oil (SRD-n6) and high oleic sunflower oil (SRD-n9). Lipid profile, free fatty acids, glucose, and insulin were measured. Isolated VLDL (d < 1.006 g ml -1 ) was characterized by chemical composition and size (size exclusion-HPLC). In comparison with SRD-C: SRD-n3 showed an improved lipoprotein profile (p < 0.01), with lower levels of insulin and HOMA-IR (p < 0.05). SRD-n6 showed increased levels of HDL-cholesterol and lower insulin levels. SRD-n9 did not exhibit differences in lipid and IR profile, and even favored weight gain and visceral fat. Only SRD-n3 prevented the alterations in VLDL-TG% (54.2 ± 4.4% vs. 68.6 ± 8.2, p < 0.05) and showed lower large VLDL-% (22.5[19.7-35.6] vs. 49.1[15.5-82.0], p < 0.05), while SRD-n6 and SRD-n9 did not show effects. In IR, while n-3 PUFA showed expected favorable effects, supplementation with n-6 PUFA and n-9 MUFA did not prevent atherogenic alterations of VLDL. Thus, the recommendations of supplementation with these fatty acids in general diet should be revised.

  14. Metabolic Engineering for Enhanced Medium Chain Omega Hydroxy Fatty Acid Production in Escherichia coli

    PubMed Central

    Xiao, Kang; Yue, Xiu-Hong; Chen, Wen-Chao; Zhou, Xue-Rong; Wang, Lian; Xu, Lin; Huang, Feng-Hong; Wan, Xia

    2018-01-01

    Medium chain hydroxy fatty acids (HFAs) at ω-1, 2, or 3 positions (ω-1/2/3) are rare in nature but are attractive due to their potential applications in industry. They can be metabolically engineered in Escherichia coli, however, the current yield is low. In this study, metabolic engineering with P450BM3 monooxygenase was applied to regulate both the chain length and sub-terminal position of HFA products in E. coli, leading to increased yield. Five acyl-acyl carrier protein thioesterases from plants and bacteria were first evaluated for regulating the chain length of fatty acids. Co-expression of the selected thioesterase gene CcFatB1 with a fatty acid metabolism regulator fadR and monooxygenase P450BM3 boosted the production of HFAs especially ω-3-OH-C14:1, in both the wild type and fadD deficient strain. Supplementing renewable glycerol to reduce the usage of glucose as a carbon source further increased the HFAs production to 144 mg/L, representing the highest titer of such HFAs obtained in E. coli under the comparable conditions. This study illustrated an improved metabolic strategy for medium chain ω-1/2/3 HFAs production in E. coli. In addition, the produced HFAs were mostly secreted into culture media, which eased its recovery. PMID:29467747

  15. Lipophilization of somatostatin analog RC-160 with long chain fatty acid improves its antiproliferative and antiangiogenic activity in vitro.

    PubMed

    Dasgupta, P; Mukherjee, R

    2000-01-01

    The therapeutic potential of the somatostatin analogue RC-160 having antiproliferative activity, is limited by its short serum half life. To overcome this limitation, fatty acids namely butanoic acid and myristic acid were conjugated to the N-terminal residue of RC-160. The lipophilized derivatives of RC-160 were synthesized, purified by reverse phase HPLC and characterized by ES-mass spectroscopy. The antiproliferative activity of lipophilized derivatives of RC-160 on the growth of MIA-PaCa2 (human pancreatic carcinoma), DU145 (human prostate carcinoma), ECV304 (human umbilical chord endothelioma), as well as their antiangiogenic activity was evaluated in vitro. The relative stability of myristoyl-RC-160 towards degradation by proteases and serum was also determined. Myristoyl-RC-160 exhibited significantly higher antiproliferative efficacy than RC-160, on the above cell lines (P<0.01). Receptor binding assays, demonstrated that the affinity of RC-160 towards somatostatin receptors remains unaltered by myristoylation. Unlike RC-160, the myristoylated derivative was found to have significantly greater resistance to protease and serum degradation (P<0.01). Myristoyl-RC-160 exhibited significantly greater antiproliferative activity on ECV304, than RC-160 (P<0.01). Myristoyl RC-160 could also inhibit capillary tube formation more efficiently than RC-160 in a dose dependent manner, suggesting that it possessed enhanced antiangiogenic activity in vitro (P<0.001). Lipophilization of RC-160 with long chain fatty acids like myristic acid endows it with improved antiproliferative and antiangiogenic activity, stability and therapeutic index. British Journal of Pharmacology (2000) 109, 101 - 109

  16. Lipophilization of somatostatin analog RC-160 with long chain fatty acid improves its antiproliferative and antiangiogenic activity in vitro

    PubMed Central

    Dasgupta, P; Mukherjee, R

    2000-01-01

    The therapeutic potential of the somatostatin analogue RC-160 having antiproliferative activity, is limited by its short serum half life. To overcome this limitation, fatty acids namely butanoic acid and myristic acid were conjugated to the N-terminal residue of RC-160. The lipophilized derivatives of RC-160 were synthesized, purified by reverse phase HPLC and characterized by ES-mass spectroscopy. The antiproliferative activity of lipophilized derivatives of RC-160 on the growth of MIA-PaCa2 (human pancreatic carcinoma), DU145 (human prostate carcinoma), ECV304 (human umbilical chord endothelioma), as well as their antiangiogenic activity was evaluated in vitro. The relative stability of myristoyl-RC-160 towards degradation by proteases and serum was also determined. Myristoyl-RC-160 exhibited significantly higher antiproliferative efficacy than RC-160, on the above cell lines (P<0.01). Receptor binding assays, demonstrated that the affinity of RC-160 towards somatostatin receptors remains unaltered by myristoylation. Unlike RC-160, the myristoylated derivative was found to have significantly greater resistance to protease and serum degradation (P<0.01). Myristoyl-RC-160 exhibited significantly greater antiproliferative activity on ECV304, than RC-160 (P<0.01). Myristoyl RC-160 could also inhibit capillary tube formation more efficiently than RC-160 in a dose dependent manner, suggesting that it possessed enhanced antiangiogenic activity in vitro (P<0.001). Lipophilization of RC-160 with long chain fatty acids like myristic acid endows it with improved antiproliferative and antiangiogenic activity, stability and therapeutic index. PMID:10694208

  17. Fish oil, insulin sensitivity, insulin secretion and glucose tolerance in healthy people: is there any effect of fish oil supplementation in relation to the type of background diet and habitual dietary intake of n-6 and n-3 fatty acids?

    PubMed

    Giacco, Rosalba; Cuomo, Vincenzo; Vessby, Bengt; Uusitupa, Matti; Hermansen, Kjeld; Meyer, Barbara J; Riccardi, Gabriele; Rivellese, Angela A

    2007-10-01

    To evaluate whether a moderate supplementation of long-chain n-3 fatty acids is able to modulate insulin sensitivity, insulin secretion, beta-cell function and glucose tolerance in healthy individuals consuming a diet rich in either saturated or monounsaturated fat, also in relation to their habitual dietary intake of n-6 and n-3 fatty acid. One hundred and sixty-two healthy individuals were randomly assigned to follow either one of two isoenergetic diets for 3 months, one rich in monounsaturated fats and the other rich in saturated fats. Within each group there was a second randomisation to fish oil (n-3 fatty acids 3.6 g/day) or placebo. At the beginning and at the end of the treatment periods insulin sensitivity (SI), first phase insulin response (FPIR) and glucose tolerance (K(G)-value) were evaluated by the intravenous glucose tolerance test (IVGTT). Fish oil did not have any effect on SI, FPIR, K(G)-value and disposition index in either diet. Even after dividing subjects according to the median value of n-6/n-3 ratio of serum phospholipids at baseline, there was no change in SI (Delta SI 0.42+/-0.34 on fish oil vs 0.14+/-0.23 on placebo for those with n-6/n-3 <4.85; -1.03+/-0.47 on fish oil vs -0.27+/-0.32 on placebo for those with n-6/n-3 >4.85) (M+/-SE), FPIR (Delta FPIR 135.9+/-78.9 vs 157.2+/-157.5 pmol/L; 38.8+/-181.7 vs 357.1+/-181.7 pmol/L), K(G)-value (Delta K(G) 0.14+/-0.15 vs 0.12+/-0.11; -0.32+/-0.16 vs 0.15+/-0.15) or disposition index (Delta disposition index 1465.4+/-830.4 vs 953.8+/-690.0; -1641.6+/-1034.3 vs 446.6+/-905.1). Considering the 75th percentile of n-6/n-3 ratio (5.82) the results on insulin sensitivity, insulin secretion and disposition index were confirmed, while, in this more extreme situation, n-3 fatty acid supplementation induced a significant deterioration of K(G)-value (p=0.02). In healthy individuals a moderate supplementation of fish oil does not affect insulin sensitivity, insulin secretion, beta-cell function or glucose

  18. Reduced levels of hydroxylated, polyunsaturated ultra long-chain fatty acids in the serum of colorectal cancer patients: implications for early screening and detection

    PubMed Central

    2010-01-01

    Background There are currently no accurate serum markers for detecting early risk of colorectal cancer (CRC). We therefore developed a non-targeted metabolomics technology to analyse the serum of pre-treatment CRC patients in order to discover putative metabolic markers associated with CRC. Using tandem-mass spectrometry (MS/MS) high throughput MS technology we evaluated the utility of selected markers and this technology for discriminating between CRC and healthy subjects. Methods Biomarker discovery was performed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Comprehensive metabolic profiles of CRC patients and controls from three independent populations from different continents (USA and Japan; total n = 222) were obtained and the best inter-study biomarkers determined. The structural characterization of these and related markers was performed using liquid chromatography (LC) MS/MS and nuclear magnetic resonance technologies. Clinical utility evaluations were performed using a targeted high-throughput triple-quadrupole multiple reaction monitoring (TQ-MRM) method for three biomarkers in two further independent populations from the USA and Japan (total n = 220). Results Comprehensive metabolomic analyses revealed significantly reduced levels of 28-36 carbon-containing hydroxylated polyunsaturated ultra long-chain fatty-acids in all three independent cohorts of CRC patient samples relative to controls. Structure elucidation studies on the C28 molecules revealed two families harbouring specifically two or three hydroxyl substitutions and varying degrees of unsaturation. The TQ-MRM method successfully validated the FTICR-MS results in two further independent studies. In total, biomarkers in five independent populations across two continental regions were evaluated (three populations by FTICR-MS and two by TQ-MRM). The resultant receiver-operator characteristic curve AUCs ranged from 0.85 to 0.98 (average = 0.91 ± 0.04). Conclusions A

  19. Omega 3 fatty acids on child growth, visual acuity and neurodevelopment.

    PubMed

    Campoy, Cristina; Escolano-Margarit, Ma Victoria; Anjos, Tania; Szajewska, Hania; Uauy, Ricardo

    2012-06-01

    The aim of this review is to evaluate the effects of omega-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) supplementation in pregnant and lactating women and infants during postnatal life, on the visual acuity, psychomotor development, mental performance and growth of infants and children. Eighteen publications (11 sets of randomized control clinical trial [RCTs]) assessed the effects of the n-3 LCPUFA supplementation during pregnancy on neurodevelopment and growth, in the same subjects at different time points; 4 publications (2 data sets from RCTs) addressed physiological responses to n-3 LCPUFA supplementation during pregnancy & lactation and 5 publications (3 data sets from RCTs) exclusively during lactation. Some of these studies showed beneficial effects of docosahexaenoic acid (DHA) supplementation during pregnancy and/or lactation especially on visual acuity outcomes and some on long-term neurodevelopment; a few, showed positive effects on growth. There were also 15 RCTs involving term infants who received infant formula supplemented with DHA, which met our selection criteria. Many of these studies claimed a beneficial effect of such supplementation on visual, neural, or developmental outcomes and no effects on growth. Although new well designed and conducted studies are being published, evidence from RCTs does not demonstrate still a clear and consistent benefit of n-3 LCPUFA supplementation during pregnancy and/or lactation on term infants growth, neurodevelopment and visual acuity. These results should be interpreted with caution due to methodological limitations of the included studies.

  20. Intestinal digestibility of long-chain fatty acids in lactating dairy cows: A meta-analysis and meta-regression.

    PubMed

    Boerman, J P; Firkins, J L; St-Pierre, N R; Lock, A L

    2015-12-01

    The objective of this analysis was to examine the intestinal digestibility of individual long-chain fatty acids (FA) in lactating dairy cows. Available data were collated from 15 publications containing 61 treatments, which reported total and individual FA duodenal flows and calculations of intestinal digestibility. All studies involved lactating dairy cows, and estimates of digestibility were based on measurements either between the duodenum and ileum (18 treatments) or between the duodenum and feces (43 treatments). Fatty acid digestibility was calculated for C16:0, C18:0, C18:1 (cis and trans isomers), C18:2, and C18:3. Digestibility of C18:0 was lower than for C18:1 and C18:3, with no difference in digestibility between saturated FA (C16:0 and C18:0). We weighted the studies by the reciprocal of the variance to generate best-fit equations to predict individual FA digestibility based on duodenal flow of FA and dietary independent variables. The flow of C18:0 negatively affected the digestibility of C18:0 and was also included in the best-fit equations for all other 18-carbon FA using duodenal flow characteristics. The type of fat supplemented had an effect on digestibility of individual FA, with whole seeds having reduced digestibility. Our meta-analysis results showed minimal differences in the digestibility of individual FA. However, C18:0 flow through the duodenum had a negative effect on the digestibility of several individual FA, with the largest negative effect on C18:0 digestibility. The mechanisms that reduce C18:0 absorption at high concentrations are unknown and warrant further investigation. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. The effect of feeding modified soyabean oil enriched with C18 : 4 n-3 to broilers on the deposition of n-3 fatty acids in chicken meat.

    PubMed

    Rymer, C; Hartnell, G F; Givens, D I

    2011-03-01

    Supplementing broiler diets with conventional vegetable oils has little effect on the long-chain n-3 PUFA (LC n-3 PUFA) content of the meat. The present study investigated the effect on fatty acid composition and sensory characteristics of chicken meat when broilers were fed oil extracted from soyabeans (SDASOY) that had been genetically engineered to produce C18 : 4n-3 (stearidonic acid (SDA), 240 mg/g oil). Three diets were fed to 120 birds (eight replicate pens of five birds) from 15 d to slaughter (41-50 d). Diets were identical apart from the oil added to them (45 and 50 g/kg as fed in the grower and finisher phases, respectively), which was either SDASOY, near-isogenic soya (CON) or fish oil (FISH). The LC n-3 PUFA content of the meat increased in the order CON, SDASOY and FISH. In breast meat with skin, the SDA concentration was 522, 13 and 37 (sem 14·4) mg/100 g meat for SDASOY, CON and FISH, respectively. Equivalent values for C20 : 5n-3 (EPA) were 53, 13 and 140 (sem 8·4); for C22 : 5n-3 (docosapentaenoic acid (DPA)) 65, 15 and 101 (sem 3·5); for C22 : 6n-3 (DHA) 19, 9 and 181 (sem 4·4). Leg meat (with skin) values for SDA were 861, 23 and 68 (sem 30·1); for EPA 87, 9 and 258 (sem 7·5); for DPA 95, 20 and 165 (sem 5·0); for DHA 29, 10 and 278 (sem 8·4). Aroma, taste and aftertaste of freshly cooked breast meat were not affected. Fishy aromas, tastes and aftertastes were associated with LC n-3 PUFA content of the meat, being most noticeable in the FISH leg meat (both freshly cooked and reheated) and in the reheated SDASOY leg meat.

  2. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    PubMed

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-01

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  3. Optimization of the Synthesis of Structured Phosphatidylcholine with Medium Chain Fatty Acid.

    PubMed

    Ochoa-Flores, Angélica A; Hernández-Becerra, Josafat A; Cavazos-Garduño, Adriana; Vernon-Carter, Eduardo J; García, Hugo S

    2017-11-01

    Structured phosphatidylcholine was successfully produced by acidolysis between phosphatidylcholine and free medium chain fatty acid, using phospholipase A 1 immobilized on Duolite A568. Response surface methodology was applied to optimize the reaction system using three process parameters: molar ratio of substrates (phosphatidylcholine to free medium chain fatty acid), enzyme loading, and reaction temperature. All parameters evaluated showed linear and quadratic significant effects on the production of modified phosphatidylcholine; molar ratio of substrates contributed positively, but temperature influenced negatively. Increased enzyme loading also led to increased production of modified phosphatidylcholine but only during the first 9 hours of the acidolysis reaction. Optimal conditions obtained from the model were a ratio of phosphatidylcholine to free medium chain fatty acid of 1:15, an enzyme loading of 12%, and a temperature of 45°C. Under these conditions a production of modified phosphatidylcholine of 52.98 % were obtained after 24 h of reaction. The prediction was confirmed from the verification experiments; the production of modified phosphatidylcholine was 53.02%, the total yield of phosphatidylcholine 64.28% and the molar incorporation of medium chain fatty acid was 42.31%. The acidolysis reaction was scaled-up in a batch reactor with a similar production of modified phosphatidylcholine, total yield of phosphatidylcholine and molar incorporation of medium chain fatty acid. Purification by column chromatography of the structured phosphatidylcholine yielded 62.53% of phosphatidylcholine enriched with 42.52% of medium chain fatty acid.

  4. n-3 fatty acids reduce plasma 20-hydroxyeicosatetraenoic acid and blood pressure in patients with chronic kidney disease.

    PubMed

    Barden, Anne E; Burke, Valerie; Mas, Emilie; Beilin, Lawrence J; Puddey, Ian B; Watts, Gerald F; Irish, Ashley B; Mori, Trevor A

    2015-09-01

    Metabolism of arachidonic acid by cytochrome P450 ω-hydroxylase leads to the formation of 20-hydroxyeicosatetraenoic acid (20-HETE) that regulates vascular function, sodium homeostasis and blood pressure (BP). Supplementation with n-3 fatty acids is known to alter arachidonic acid metabolism and reduce the formation of the lipid peroxidation products F2-isoprostanes, but the effect of n-3 fatty acids on 20-HETE has not been studied. We previously reported a significant effect of n-3 fatty acids but not coenzyme Q10 (CoQ) to reduce BP in a double-blind, placebo-controlled intervention, wherein patients with chronic kidney disease (CKD) were randomized to n-3 fatty acids (4 g), CoQ (200 mg), both supplements or control (4 g olive oil), daily for 8 weeks. This study examined the effect of n-3 fatty acids on plasma and urinary 20-HETE in the same study, as well as plasma and urinary F2-isoprostanes, and relate these to changes in BP. Seventy-four patients completed the 8-week intervention. n-3 fatty acids but not CoQ significantly reduced plasma 20-HETE (P = 0.001) and F2-isoprostanes (P < 0.001). In regression models adjusted for BP at baseline, postintervention plasma 20-HETE was a significant predictor of the fall in SBP (P < 0.0001) and DBP (P < 0.0001) after n-3 fatty acids. This is the first report that n-3 fatty acid supplementation reduces plasma 20-HETE in humans and that this associates with reduced BP. These results provide a plausible mechanism for the reduction in BP observed in patients with CKD following n-3 fatty acid supplementation.

  5. Role of ω3 long-chain polyunsaturated fatty acids in reducing cardio-metabolic risk factors.

    PubMed

    Abeywardena, Mahinda Y; Patten, Glen S

    2011-09-01

    Cardiovascular disease is the leading cause of mortality in many economically developed nations, and its incidence is increasing at a rapid rate in emerging economies. Diet and lifestyle issues are closely associated with a myriad of cardiovascular disease risk factors including abnormal plasma lipids, hypertension, insulin resistance, diabetes and obesity, suggesting that diet-based approaches may be of benefit. Omega-3 longchain-polyunsaturated fatty acids (ω3 LC-PUFA) are increasingly being used in the prevention and management of several cardiovascular risk factors. Both the ω3 and ω6 PUFA families are considered essential, as the human body is itself unable to synthesize them. The conversion of the two precursor fatty acids - linoleic acid (18:2ω6) and α-linoleic acid (α18:3ω3) - of these two pathways to longer (≥C(20)) PUFA is inefficient. Although there is an abundance of ω6 PUFA in the food supply; in many populations the relative intake of ω3 LC-PUFA is low with health authorities advocating increased consumption. Fish oil, rich in eicosapentaenoic (EPA, 20:5ω3) and docosahexaenoic (DHA, 22:6ω3) acids, has been found to cause a modest reduction in blood pressure at a dose level of >3g/d both in untreated and treated hypertensives. Whilst a multitude of mechanisms may contribute to the blood pressure lowering action of ω3 LC-PUFA, improved vascular endothelial cell function appears to play a central role. Recent studies which evaluated the potential benefits of fish oil in type-2 diabetes have helped to alleviate concerns raised in some previous studies which used relatively large dose (5-8 g/d) and reported a worsening of glycemic control. Several meta-analyses have confirmed that the most consistent action of ω3 LC-PUFA in insulin resistance and type-2 diabetes is the reduction in triglycerides. In some studies, fish oil has been found to cause a small rise in LDL-cholesterol, but a change in the LDL particle size, from the smaller more

  6. Age-related changes of n-3 and n-6 polyunsaturated fatty acids in the anterior cingulate cortex of individuals with major depressive disorder.

    PubMed

    Conklin, Sarah M; Runyan, Caroline A; Leonard, Sherry; Reddy, Ravinder D; Muldoon, Matthew F; Yao, Jeffrey K

    2010-01-01

    Accumulating evidence finds a relative deficiency of peripheral membrane fatty acids in persons with affective disorders such as unipolar and bipolar depression. Here we sought to investigate whether postmortem brain fatty acids within the anterior cingulate cortex (BA-24) varied according to the presence of major depression at the time of death. Using capillary gas chromatography we measured fatty acids in a depressed group (n=12), and in a control group without lifetime history of psychiatric diagnosis (n=14). Compared to the control group, the depressed group showed significantly lower concentrations of numerous saturated and polyunsaturated fatty acids including both the n-3 and n-6 fatty acids. Additionally, significant correlations between age at death and precursor (or metabolites) in the n-3 fatty acid pathway were demonstrated in the depressed group but not in control subjects. In the n-6 fatty acid family, the ratio of 20:3(n-6)/18:2(n-6) was higher in patients than in control groups, whereas the ratio of 20:4(n-6)/20:3(n-6) was relatively decreased in patients. Lastly, a significant negative correlation between age and the ratio of 20:4(n-6) to 22:6(n-3) was found in patients, but not in controls. Taken together, decreases in 22:6(n-3) may be caused, at least in part, by the diminished formation of 20:5(n-3), which is derived from 20:4(n-3) through a Delta5 desaturase reaction. The present findings from postmortem brain tissue raise the possibility that an increased ratio of 20:4(n-6) to 22:6(n-3) may provide us with a biomarker for depression. Future research should further investigate these relationships. Published by Elsevier Ltd.

  7. Long-term correction of very long-chain acyl-coA dehydrogenase deficiency in mice using AAV9 gene therapy.

    PubMed

    Keeler, Allison M; Conlon, Thomas; Walter, Glenn; Zeng, Huadong; Shaffer, Scott A; Dungtao, Fu; Erger, Kirsten; Cossette, Travis; Tang, Qiushi; Mueller, Christian; Flotte, Terence R

    2012-06-01

    Very long-chain acyl-coA dehydrogenase (VLCAD) is the rate-limiting step in mitochondrial fatty acid oxidation. VLCAD-deficient mice and patients clinical symptoms stem from not only an energy deficiency but also long-chain metabolite accumulations. VLCAD-deficient mice were treated systemically with 1 × 10(12) vector genomes of recombinant adeno-associated virus 9 (rAAV9)-VLCAD. Biochemical correction was observed in vector-treated mice beginning 2 weeks postinjection, as characterized by a significant drop in long-chain fatty acyl accumulates in whole blood after an overnight fast. Changes persisted through the termination point around 20 weeks postinjection. Magnetic resonance spectroscopy (MRS) and tandem mass spectrometry (MS/MS) revealed normalization of intramuscular lipids in treated animals. Correction was not observed in liver tissue extracts, but cardiac muscle extracts showed significant reduction of long-chain metabolites. Disease-specific phenotypes were characterized, including thermoregulation and maintenance of euglycemia after a fasting cold challenge. Internal body temperatures of untreated VLCAD(-/-) mice dropped below 20 °C and the mice became lethargic, requiring euthanasia. In contrast, all rAAV9-treated VLCAD(-/-) mice and the wild-type controls maintained body temperatures. rAAV9-treated VLCAD(-/-) mice maintained euglycemia, whereas untreated VLCAD(-/-) mice suffered hypoglycemia following a fasting cold challenge. These promising results suggest rAAV9 gene therapy as a potential treatment for VLCAD deficiency in humans.

  8. Genome-wide meta-analyses identify novel loci associated with n-3 and n-6 polyunsaturated fatty acid levels in Chinese and European-ancestry populations.

    PubMed

    Hu, Yao; Li, Huaixing; Lu, Ling; Manichaikul, Ani; Zhu, Jingwen; Chen, Yii-Der I; Sun, Liang; Liang, Shuang; Siscovick, David S; Steffen, Lyn M; Tsai, Michael Y; Rich, Stephen S; Lemaitre, Rozenn N; Lin, Xu

    2016-03-15

    Epidemiological studies suggest that levels of n-3 and n-6 long-chain polyunsaturated fatty acids are associated with risk of cardio-metabolic outcomes across different ethnic groups. Recent genome-wide association studies in populations of European ancestry have identified several loci associated with plasma and/or erythrocyte polyunsaturated fatty acids. To identify additional novel loci, we carried out a genome-wide association study in two population-based cohorts consisting of 3521 Chinese participants, followed by a trans-ethnic meta-analysis with meta-analysis results from 8962 participants of European ancestry. Four novel loci (MYB, AGPAT4, DGAT2 and PPT2) reached genome-wide significance in the trans-ethnic meta-analysis (log10(Bayes Factor) ≥ 6). Of them, associations of MYB and AGPAT4 with docosatetraenoic acid (log10(Bayes Factor) = 11.5 and 8.69, respectively) also reached genome-wide significance in the Chinese-specific genome-wide association analyses (P = 4.15 × 10(-14) and 4.30 × 10(-12), respectively), while associations of DGAT2 with gamma-linolenic acid (log10(Bayes Factor) = 6.16) and of PPT2 with docosapentaenoic acid (log10(Bayes Factor) = 6.24) were nominally significant in both Chinese- and European-specific genome-wide association analyses (P ≤ 0.003). We also confirmed previously reported loci including FADS1, NTAN1, NRBF2, ELOVL2 and GCKR. Different effect sizes in FADS1 and independent association signals in ELOVL2 were observed. These results provide novel insight into the genetic background of polyunsaturated fatty acids and their differences between Chinese and European populations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Omega-3 Fatty Acid Deficiency Increases Stearoyl-CoA Desaturase Expression and Activity Indices in Rat Liver: Positive Association with Non-Fasting Plasma Triglyceride Levels

    PubMed Central

    Hofacer, Rylon; Magrisso, I. Jack; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Benoit, Stephen C.; McNamara, Robert K.

    2011-01-01

    Although omega-3 (n-3) fatty acids negatively regulate triglyceride biosynthesis, the mechanisms mediating this effect are poorly understood, and emerging evidence suggests that stearoyl-CoA desaturase (Scd1) is required for de novo triglyceride biosynthesis. To investigate this mechanism, we determined the effects of perinatal n-3 deficiency and postnatal repletion on rat liver Scd1 mRNA expression and activity indices (liver 16:1/16:0 & 18:1/18:0 ratios), and determined relationships with postprandial (non-fasting) plasma triglyceride levels. Rats were fed conventional diets with or without the n-3 fatty acid precursor α-linolenic acid (ALA, 18:3n-3) during perinatal development (E0-P100), and a subset of rats fed the ALA− diet were switched to the ALA+ diet post-weaning (P21-P100, repletion). Compared with controls, rats fed the ALA− diet exhibited significantly lower liver long-chain n-3 fatty acid compositions and elevations in monounsaturated fatty acid composition, both of which were normalized in repleted rats. Liver Scd1 mRNA expression and activity indices (16:1/16:0 & 18:1/18:0 ratios) were significantly greater in n-3 deficient rats compared with controls and repleted rats. Among all rats, liver Scd1 mRNA expression was positively correlated with liver 18:1/18:0 and 16:1/16:0 ratios. Plasma triglyceride levels, but not glucose or insulin levels, were significantly greater in n-3 deficient rats compared with controls and repleted rats. Liver Scd1 mRNA expression and activity indices were positively correlated with plasma triglyceride levels. These preclinical findings demonstrate that n-3 fatty acid status is an important determinant of liver Scd1 mRNA expression and activity, and suggest that down-regulation of Scd1 is a mechanism by which n-3 fatty acids repress constitutive triglyceride biosynthesis. PMID:22047910

  10. Long Chain N-acyl Homoserine Lactone Production by Enterobacter sp. Isolated from Human Tongue Surfaces

    PubMed Central

    Yin, Wai-Fong; Purmal, Kathiravan; Chin, Shenyang; Chan, Xin-Yue; Chan, Kok-Gan

    2012-01-01

    We report the isolation of N-acyl homoserine lactone-producing Enterobacter sp. isolate T1-1 from the posterior dorsal surfaces of the tongue of a healthy individual. Spent supernatants extract from Enterobacter sp. isolate T1-1 activated the biosensor Agrobacterium tumefaciens NTL4(pZLR4), suggesting production of long chain AHLs by these isolates. High resolution mass spectrometry analysis of these extracts confirmed that Enterobacter sp. isolate T1-1 produced a long chain N-acyl homoserine lactone, namely N-dodecanoyl-homoserine lactone (C12-HSL). To the best of our knowledge, this is the first isolation of Enterobacter sp., strain T1-1 from the posterior dorsal surface of the human tongue and N-acyl homoserine lactones production by this bacterium. PMID:23202161

  11. Effect of calcium salt of long-chain fatty acids and alfalfa supplementation on performance of Holstein bulls.

    PubMed

    He, Yang; Niu, Wenjing; Qiu, Qinghua; Xia, Chuanqi; Shao, Taoqi; Wang, Haibo; Li, Qianwen; Yu, Zhantao; Gao, Zhibiao; Rahman, Muhammad Aziz Ur; Su, Huawei; Cao, Binghai

    2018-01-09

    The purpose of this study was to assess the effects of calcium salt of long-chain fatty acids (CSFA) and alfalfa on beef cattle in the late fattening. 48 Holstein bulls were selected and randomly divided into 4 groups, feeding four dietary that Leymus chinensis with (LC) or with no (LN) 2.4% CSFA, and alfalfa replaced 50% Leymus chinensis with (AC) or with no (AN) 2.4% CSFA. The results indicated that alfalfa improved the feed conversion rate ( P < 0.05). CSFA increased serum low density lipoprotein cholesterol, and reduced the cooking loss of Longissimus muscle ( P < 0.05). CSFA and alfalfa reduced Acetate/Propionate. Alfalfa and CASF had significant additive effects on the apparent digestibility of dry matter, crude protein, neutral detergent fiber, acid detergent fiber, organic matter and rumen fermentation for acetate, isobutyrate, butyrate, isovalerate, total volatile fatty acids ( P < 0.05). CSFA increased microbial diversity index when compared with alfalfa ( P < 0.05), but no significant differences were detected in bacterial genera abundances among diets. The relative abundances of rumen bacterial genera have significant correlation with apparent digestibility of nutrients, rumen fermentation characteristics and serum biochemical parameters ( P < 0.05). These results comprehensively evaluated the additive effects of alfalfa and CSFA on the application in Holstein bulls.

  12. Long-chain polyunsaturated fatty acids may mutually benefit both obesity and osteoporosis.

    PubMed

    Kelly, Owen J; Gilman, Jennifer C; Kim, Youjin; Ilich, Jasminka Z

    2013-07-01

    The overconsumption of n-6 polyunsaturated fatty acids (PUFA), resulting in a high ratio of n-6 to n-3 PUFA, may contribute to the increased pathogenesis of obesity and osteoporosis by promoting low-grade chronic inflammation (LGCI). As evidence suggests, both obesity and osteoporosis are linked on a cellular and systemic basis. This review will analyze if a relationship exists between LGCI, fat, bone, and n-3 PUFA. During the life cycle, inflammation increases, fat mass accumulates, and bone mass declines, thus suggesting that a connection exists. This review will begin by examining how the current American diet and dietary guidelines may fall short of providing an anti-inflammatory dose of the n-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). It will then define LGCI and outline the evidence for a relationship between fat and bone. Inflammation as it pertains to obesity and osteoporosis and how EPA and DHA can alleviate the associated inflammation will be discussed, followed by some preliminary evidence to show how mesenchymal stem cell (MSC) lineage commitment may be altered by inflammation to favor adipogenesis. Our hypothesis is that n-3 PUFA positively influence obesity and osteoporosis by reducing LGCI, ultimately leading to a beneficial shift in MSC lineage commitment. This hypothesis essentially relates the need for more focused research in several areas such as determining age and lifestyle factors that promote the shift in MSC commitment and if current intakes of EPA and DHA are optimal for fat and bone. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Regulation of Long-Chain N-Acyl-Homoserine Lactones in Agrobacterium vitis

    PubMed Central

    Hao, Guixia; Burr, Thomas J.

    2006-01-01

    Homologs of quorum-sensing luxR and luxI regulatory genes, avsR and avsI, were identified in Agrobacterium vitis strain F2/5. Compared to other LuxI proteins from related species, the deduced AvsI shows the greatest identity to SinI (71%) from Sinorhizobium meliloti Rm1021. AvsR possesses characteristic autoinducer binding and helix-turn-helix DNA binding domains and shares a high level of identity with SinR (38%) from Rm1021. Site-directed mutagenesis of avsR and avsI was performed, and both genes are essential for hypersensitive-like response (HR) and necrosis. Two hypothetical proteins (ORF1 and ORF2) that are positioned downstream of avsR-avsI are also essential for the phenotypes. Profiles of N-acyl-homoserine lactones (AHLs) isolated from the wild type and mutants revealed that disruption of avsI, ORF1, or ORF2 abolished the production of long-chain AHLs. Disruption of avsR reduces long-chain AHLs. Expression of a cloned avsI gene in A. tumefaciens strain NT1 resulted in synthesis of long-chain AHLs. The necrosis and HR phenotypes of the avsI and avsR mutants were fully complemented with cloned avsI. The addition of synthetic AHLs (C16:1 and 3-O-C16:1) complemented grape necrosis in the avsR, avsI, ORF1, and ORF2 mutants. It was determined by reverse transcriptase PCR that the expression level of avsI is regulated by avsR but not by aviR or avhR, two other luxR homologs which were previously shown to be associated with induction of a tobacco hypersensitive response and grape necrosis. We further verified that avsR regulates avsI by measuring the expression of an avsI::lacZ fusion construct. PMID:16513747

  14. Associations between Proportion of Plasma Phospholipid Fatty Acids, Depressive Symptoms and Major Depressive Disorder. Cross-Sectional Analyses from the AGES Reykjavik Study.

    PubMed

    Imai, C M; Halldorsson, T I; Aspelund, T; Eiriksdottir, G; Launer, L J; Thorsdottir, I; Harris, T B; Gudnason, V; Brouwer, I A; Gunnarsdottir, I

    2018-01-01

    Deficits in n-3 fatty acids may be associated with depression. However, data are scarce from older adults who are at greater risk of poor dietary intake and of developing depression. To investigate proportion of plasma phospholipid fatty acids with respect to depressive symptoms and major depressive disorder in community dwelling older adults. Cross-sectional analyses of 1571 participants in the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study aged 67-93 years. Depressive symptoms were measured using the 15-item Geriatric Depression Scale (GDS-15). Major depressive disorder was assessed according to Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria using the Mini-International Neuropsychiatric Interview (MINI). Depressive symptoms were observed in 195 (12.4%) subjects and there were 27 (1.7%) cases of major depressive disorder. Participants with depressive symptoms were less educated, more likely to be smokers, less physically active and consumed cod liver oil less frequently. Difference in GDS-15 scores by tertiles of n-3 fatty acid proportion was not significant. Proportion of long chain n-3 fatty acids (Eicosapentaenoic- + Docosahexaenoic acid) were inversely related to major depressive disorder, (tertile 2 vs. tertile 1) OR: 0.31 (95% CI: 0.11, 0.86); tertile 3 vs. tertile 1, OR: 0.45 (95% CI: 0.17, 1.21). In our cross sectional analyses low proportions of long chain n-3 fatty acids in plasma phospholipids appear to be associated with increased risk of major depressive disorder. However, the results from this study warrant further investigation in prospective setting with sufficiently long follow-up.

  15. Cadmium Alters the Concentration of Fatty Acids in THP-1 Macrophages.

    PubMed

    Olszowski, Tomasz; Gutowska, Izabela; Baranowska-Bosiacka, Irena; Łukomska, Agnieszka; Drozd, Arleta; Chlubek, Dariusz

    2018-03-01

    Fatty acid composition of human immune cells influences their function. The aim of this study was to evaluate the effects of known toxicant and immunomodulator, cadmium, at low concentrations on levels of selected fatty acids (FAs) in THP-1 macrophages. The differentiation of THP-1 monocytes into macrophages was achieved by administration of phorbol myristate acetate. Macrophages were incubated with various cadmium chloride (CdCl 2 ) solutions for 48 h at final concentrations of 5 nM, 20 nM, 200 nM, and 2 μM CdCl 2 . Fatty acids were extracted from samples according to the Folch method. The fatty acid levels were determined using gas chromatography. The following fatty acids were analyzed: long-chain saturated fatty acids (SFAs) palmitic acid and stearic acid, very long-chain saturated fatty acid (VLSFA) arachidic acid, monounsaturated fatty acids (MUFAs) palmitoleic acid, oleic acid and vaccenic acid, and n-6 polyunsaturated fatty acids (PUFAs) linoleic acid and arachidonic acid. Treatment of macrophages with very low concentrations of cadmium (5-200 nM) resulted in significant reduction in the levels of arachidic, palmitoleic, oleic, vaccenic, and linoleic acids and significant increase in arachidonic acid levels (following exposure to 5 nM Cd), without significant reduction of palmitic and stearic acid levels. Treatment of macrophages with the highest tested cadmium concentration (2 μM) produced significant reduction in the levels of all examined FAs: SFAs, VLSFA, MUFAs, and PUFAs. In conclusion, cadmium at tested concentrations caused significant alterations in THP-1 macrophage fatty acid levels, disrupting their composition, which might dysregulate fatty acid/lipid metabolism thus affecting macrophage behavior and inflammatory state.

  16. Development of rabbit meat products fortified with n-3 polyunsaturated fatty acids.

    PubMed

    Petracci, Massimiliano; Bianchi, Maurizio; Cavani, Claudio

    2009-02-01

    Rabbit meat is a highly digestible, tasty, low-calorie food, often recommended by nutritionists over other meats. Currently research in the rabbit sector is interested in developing feeding strategies aiming to further increase the nutritional value of rabbit meat as a "functional food" by including n-3 polyunsaturated fatty acids (n-3 PUFA), conjugated linoleic acid (CLA), vitamins and antioxidants in rabbit diets and assessing their effects on both raw and stored/processed meat quality properties. Our recent studies indicate that the dietary inclusion from 3 to 6% of linseed might be considered as a way to achieve the enrichment of the meat with α-linolenic acid and to guarantee satisfactory product stability during further processing and storage. Considering that 6% dietary linseed corresponds to a n-3 PUFA content of 8.5% of the total fatty acids and a lipid content of 4.7 g/100 g of leg meat, a content of 396 mg n-3 PUFA/100g meat can be estimated, which represents about 19% of the recommended daily allowance (RDA) for n-3 PUFA.

  17. Development of Rabbit Meat Products Fortified With n-3 Polyunsaturated Fatty Acids

    PubMed Central

    Petracci, Massimiliano; Bianchi, Maurizio; Cavani, Claudio

    2009-01-01

    Rabbit meat is a highly digestible, tasty, low-calorie food, often recommended by nutritionists over other meats. Currently research in the rabbit sector is interested in developing feeding strategies aiming to further increase the nutritional value of rabbit meat as a “functional food” by including n-3 polyunsaturated fatty acids (n-3 PUFA), conjugated linoleic acid (CLA), vitamins and antioxidants in rabbit diets and assessing their effects on both raw and stored/processed meat quality properties. Our recent studies indicate that the dietary inclusion from 3 to 6% of linseed might be considered as a way to achieve the enrichment of the meat with α-linolenic acid and to guarantee satisfactory product stability during further processing and storage. Considering that 6% dietary linseed corresponds to a n-3 PUFA content of 8.5% of the total fatty acids and a lipid content of 4.7 g/100 g of leg meat, a content of 396 mg n-3 PUFA/100g meat can be estimated, which represents about 19% of the recommended daily allowance (RDA) for n-3 PUFA. PMID:22253971

  18. Acyl coenzyme A thioesterase 7 regulates neuronal fatty acid metabolism to prevent neurotoxicity.

    PubMed

    Ellis, Jessica M; Wong, G William; Wolfgang, Michael J

    2013-05-01

    Numerous neurological diseases are associated with dysregulated lipid metabolism; however, the basic metabolic control of fatty acid metabolism in neurons remains enigmatic. Here we have shown that neurons have abundant expression and activity of the long-chain cytoplasmic acyl coenzyme A (acyl-CoA) thioesterase 7 (ACOT7) to regulate lipid retention and metabolism. Unbiased and targeted metabolomic analysis of fasted mice with a conditional knockout of ACOT7 in the nervous system, Acot7(N-/-), revealed increased fatty acid flux into multiple long-chain acyl-CoA-dependent pathways. The alterations in brain fatty acid metabolism were concomitant with a loss of lean mass, hypermetabolism, hepatic steatosis, dyslipidemia, and behavioral hyperexcitability in Acot7(N-/-) mice. These failures in adaptive energy metabolism are common in neurodegenerative diseases. In agreement, Acot7(N-/-) mice exhibit neurological dysfunction and neurodegeneration. These data show that ACOT7 counterregulates fatty acid metabolism in neurons and protects against neurotoxicity.

  19. Long-chain carboxylic acids in pyrolysates of Green River kerogen

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Tannenbaum, E.; Huizinga, B. J.; Kaplan, I. R.

    1986-01-01

    Long-chain fatty acids (C10-C32), as well as C14-C21 isoprenoid acids (except for C18), have been identified in anhydrous and hydrous pyrolyses products of Green River kerogen (200-400 degrees C, 2-1000 hr). These kerogen-released fatty acids are characterized by a strong even/odd predominance (CPI: 4.8-10.2) with a maximum at C16 followed by lesser amounts of C18 and C22 acids. This distribution is different from that of unbound and bound geolipids extracted from Green River shale. The unbound fatty acids show a weak even/odd predominance (CPI: 1.64) with a maximum at C14, and bound fatty acids display an even/odd predominance (CPI: 2.8) with maxima at C18 and C30. These results suggest that fatty acids were incorporated into kerogen during sedimentation and early diagenesis and were protected from microbial and chemical changes over geological periods of time. Total quantities of fatty acids produced during heating of the kerogen ranged from 0.71 to 3.2 mg/g kerogen. Highest concentrations were obtained when kerogen was heated with water for 100 hr at 300 degrees C. Generally, their amounts did not decrease under hydrous conditions with increase in temperature or heating time, suggesting that significant decarboxylation did not occur under the pyrolysis conditions used, although hydrocarbons were extensively generated.

  20. n-3 and n-6 Fatty Acid Changes in the Erythrocyte Membranes of Patients with 658240251 Clostridium difficile Infection.

    PubMed

    Czepiel, Jacek; Gdula-Argasińska, Joanna; Garlicki, Aleksander

    2016-01-01

    The implications of circulating essential fatty acids (FA) on the inflammatory risk profile and clinical outcome are still unclear. In order to gain a deeper understanding of the role of polyunsaturated fatty acids (PUFA) in the pathogenesis of acute infection, we analyzed the FA content in red blood cell (RBC) membranes of patients with Clostridium difficile infection (CDI) and controls. We prospectively studied 60 patients including 30 patients with CDI and 30 controls to assess lipid concentrations in erythrocyte membranes using gas chromatography. We observed a higher level of saturated fatty acids (SFA) in RBC membranes from patients with CDI. In patients with CDI, we also noticed a higher level of 20:4 n-6 FA and only a small amounts of C20:2n-6, C20:3n-6 FAs, arachidonic acid (AA) precursors, which suggest an intense inflammatory reaction in the organism during infection. We also noticed low levels of n-3 FA in the RBC membranes of patients infected with CDI. There is a deficit of n-3 FA in patients with CDI. n-3 FA are probably used during CDI as precursors of pro-resolving mediators that may indicate a therapeutic role of n-3 PUFAs in CDI. The changes in fatty acids in erythrocyte membranes during CDI alter their functions which may have an impact on the clinical outcome.

  1. Low omega-3 index values and monounsaturated fatty acid levels in early pregnancy: an analysis of maternal erythrocytes fatty acids.

    PubMed

    Hoge, Axelle; Bernardy, Florence; Donneau, Anne-Françoise; Dardenne, Nadia; Degée, Sylvie; Timmermans, Marie; Nisolle, Michelle; Guillaume, Michèle; Castronovo, Vincenzo

    2018-04-02

    It is unanimously recognized that the maternal nutritional status at the pregnancy onset influence both short-term and long-term health of the mother and offspring. Among several nutrients, LCPUFA, particularly from the omega-3 family, are of utmost importance. This study was carried out to determine fatty acids profile of maternal erythrocyte membranes in early pregnancy and to identify potential determinants impacting on this status. A cohort of 122 healthy women with a singleton pregnancy was included. Fatty acids were analyzed using gas chromatography. Because of the lack of cutoff values, reference ranges were used to determine fatty acids categories. Of concern, our data revealed low monounsaturated and long-chain omega-3 fatty acid status in most participants. More than 75% of Belgian pregnant women exhibited Pal, AO and EPA levels as well as IOM3 values below the laboratory reference ranges. Higher DHA concentrations and IOM3 values were found among foreign-nationality participants, non-smokers and physically active women. With regard to dietary factors, omega-3 supplements and diet seem to be complementary since DHA from supplements (but not from diet) and EPA from diet (but not from supplements) were found to be associated with higher concentrations of DHA and EPA, respectively. Our study presents evidence demonstrating that the fatty acid status of most early pregnant women is far from being optimal based on the admitted general reference values. Clinicians should be advice to carefully evaluate and improve this status to guarantee the best possible outcome for both the mother and the baby.

  2. Specialized proresolving lipid mediators in humans with the metabolic syndrome after n-3 fatty acids and aspirin.

    PubMed

    Barden, Anne E; Mas, Emilie; Croft, Kevin D; Phillips, Michael; Mori, Trevor A

    2015-12-01

    The metabolic syndrome (MetS) is associated with a chronic low-grade inflammatory state and may be affected by the ability to resolve inflammation, which is an active process that involves specialized proresolving lipid mediators (SPMs) derived from n-3 (ω-3) fatty acids. We compared plasma concentrations of SPMs in men and women with features of the MetS and in healthy matched control subjects in response to intakes of n-3 fatty acids and aspirin. MetS volunteers (n = 22) and healthy, matched controls (n = 21) were studied in parallel for 4 wk. Both groups took n-3 fatty acids (2.4 g/d) for 4 wk with the addition of aspirin (300 mg/d) during the last 7 d. Blood was collected at baseline and at 3 and 4 wk. Plasma SPMs were measured with the use of liquid chromatography-tandem mass spectrometry and included 18-hydroxyeicosapentaenoic acid (18-HEPE), E-series resolvins, 17-hydroxydocosahexaenoic acid (17-HDHA), D-series resolvins, 14-hydroxydocosahexaenoic acid (14-HDHA), and maresin-1. Baseline SPMs did not differ between groups. There was an increase in the SPM precursors 18-HEPE, 17-HDHA, and 14-HDHA after n-3 fatty acid supplementation that was significantly attenuated in the MetS (P < 0.05). However, the E-series resolvins increased to a similar extent in the groups after n-3 fatty acid supplementation, and the D-series resolvins were not different from those at baseline. The addition of aspirin to n-3 fatty acids did not alter any SPMs in either group. Volunteers with MetS had reduced plasma concentrations of the precursors of the E- and D- series resolvins as well as of 14-HDHA in response to n-3 fatty acid supplementation. However, plasma E-series resolvins were increased to a similar extent after n-3 fatty acid supplementation in both groups, and the addition of aspirin to n-3 fatty acid supplementation did not alter any of the plasma SPMs in MetS and control subjects. Additional studies in the MetS are required to determine whether SPMs affect the ability

  3. The n-3 long-chain PUFAs modulate the impact of the GCKR Pro446Leu polymorphism on triglycerides in adolescents.

    PubMed

    Rousseaux, Julien; Duhamel, Alain; Dumont, Julie; Dallongeville, Jean; Molnar, Denes; Widhalm, Kurt; Manios, Yannis; Sjöström, Michael; Kafatos, Anthony; Breidenassel, Christina; Gonzales-Gross, Marcela; Cuenca-Garcia, Magdalena; Censi, Laura; Ascensión, Marcos; De Henauw, Stefaan; Moreno, Luis A; Meirhaeghe, Aline; Gottrand, Frédéric

    2015-09-01

    Dietary n-3 long-chain PUFAs (LC-PUFAs) are associated with improvement in the parameters of the metabolic syndrome (MetS). Glucokinase regulatory protein (GCKR) is a key protein regulating intracellular glucose disposal. Our aim was to investigate: i) the relationship between the GCKR rs1260326 (Pro446Leu) polymorphism and parameters of the MetS; and ii) a potential influence of n-3 and n-6 LC-PUFA levels on this relationship in the HELENA study (1,155 European adolescents). Linear regression analyses were performed to study the association between rs1260326 and the outcomes of interest. Interactions between rs1260326 and LC-PUFA levels on outcomes were explored. The T allele of rs1260326 was associated with higher serum TG concentrations compared with the C allele. In contrast to n-6 LC-PUFA levels, a significant interaction (P = 0.01) between rs1260326 and total n-3 LC-PUFA levels on serum TG concentrations was observed. After stratification on the n-3 LC-PUFA median values, the association between rs1260326 and TG concentration was significant only in the group with high n-3 LC-PUFA levels. In conclusion, this is the first evidence that n-3 LC-PUFAs may modulate the impact of the GCKR rs1260326 polymorphism on TG concentrations in adolescents. Several molecular mechanisms, in link with glucose uptake, could explain these findings. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  4. Polyphenol fatty acid esters as serine protease inhibitors: a quantum-chemical QSAR analysis.

    PubMed

    Viskupicova, Jana; Danihelova, Martina; Majekova, Magdalena; Liptaj, Tibor; Sturdik, Ernest

    2012-12-01

    We investigated the ability of polyphenol fatty acid esters to inhibit the activity of serine proteases trypsin, thrombin, elastase and urokinase. Potent protease inhibition in micromolar range was displayed by rutin and rutin derivatives esterified with medium and long chain, mono- and polyunsaturated fatty acids (1e-m), followed by phloridzin and esculin esters with medium and long fatty acid chain length (2a-d, 3a-d), while unmodified compounds showed only little or no effect. QSAR study of the compounds tested provided the most significant parameters for individual inhibition activities, i.e. number of hydrogen bond donors for urokinase, molecular volume for thrombin, and solvation energy for elastase. According to the statistical analysis, the action of elastase inhibitors is opposed to those of urokinase and thrombin. Cluster analysis showed two groups of compounds: original polyphenols together with rutin esters with short fatty acid chain length and rutin esters with long fatty acid chain length.

  5. Effect of dietary n-3 fatty acids supplementation on fatty acid metabolism in atorvastatin-administered SHR.Cg-Leprcp/NDmcr rats, a metabolic syndrome model.

    PubMed

    Al Mamun, Abdullah; Hashimoto, Michio; Katakura, Masanori; Tanabe, Yoko; Tsuchikura, Satoru; Hossain, Shahdat; Shido, Osamu

    2017-01-01

    The effects of cholesterol-lowering statins, which substantially benefit future cardiovascular events, on fatty acid metabolism have remained largely obscured. In this study, we investigated the effects of atorvastatin on fatty acid metabolism together with the effects of TAK-085 containing highly purified eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) ethyl ester on atorvastatin-induced n-3 polyunsaturated fatty acid lowering in SHR.Cg-Lepr cp /NDmcr (SHRcp) rats, as a metabolic syndrome model. Supplementation with 10mg/kg body weight/day of atorvastatin for 17 weeks significantly decreased plasma total cholesterol and very low density lipoprotein cholesterol. Atorvastatin alone caused a subtle change in fatty acid composition particularly of EPA and DHA in the plasma, liver or erythrocyte membranes. However, the TAK-085 consistently increased both the levels of EPA and DHA in the plasma, liver and erythrocyte membranes. After confirming the reduction of plasma total cholesterol, 300mg/kg body weight/day of TAK-085 was continuously administered for another 6 weeks. Supplementation with TAK-085 did not decrease plasma total cholesterol but significantly increased the EPA and DHA levels in both the plasma and liver compared with rats administered atorvastatin only. Supplementation with atorvastatin alone significantly decreased sterol regulatory element-binding protein-1c, Δ5- and Δ6-desaturases, elongase-5, and stearoyl-coenzyme A (CoA) desaturase-2 levels and increased 3-hydroxy-3-methylglutaryl-CoA reductase mRNA expression in the liver compared with control rats. TAK-085 supplementation significantly increased stearoyl-CoA desaturase-2 mRNA expression. These results suggest that long-term supplementation with atorvastatin decreases the EPA and DHA levels by inhibiting the desaturation and elongation of n-3 fatty acid metabolism, while TAK-085 supplementation effectively replenishes this effect in SHRcp rat liver. Copyright © 2016 Elsevier Masson

  6. The older people, omega-3, and cognitive health (EPOCH) trial design and methodology: A randomised, double-blind, controlled trial investigating the effect of long-chain omega-3 fatty acids on cognitive ageing and wellbeing in cognitively healthy older adults

    PubMed Central

    2011-01-01

    Background Some studies have suggested an association between omega-3 long-chain polyunsaturated fatty acids (n-3 LC PUFAs) and better cognitive outcomes in older adults. To date, only two randomised, controlled trials have assessed the effect of n-3 LC PUFA supplementation on cognitive function in older cognitively healthy populations. Of these trials only one found a benefit, in the subgroup carrying the ApoE-ε4 allele. The benefits of n-3 LC PUFA supplementation on cognitive function in older normal populations thus still remain unclear. The main objective of the current study was to provide a comprehensive assessment of the potential of n-3 LC PUFAs to slow cognitive decline in normal elderly people, and included ApoE-ε4 allele carriage as a potential moderating factor. The detailed methodology of the trial is reported herein. Methods The study was a parallel, 18-month, randomised, double-blind, placebo-controlled intervention with assessment at baseline and repeated 6-monthly. Participants (N = 391, 53.7% female) aged 65-90 years, English-speaking and with normal cognitive function, were recruited from metropolitan Adelaide, South Australia. Participants in the intervention arm received capsules containing fish-oil at a daily dosage of 1720 mg of docosahexaenoic acid and 600 mg of eicosapentaenoic acid while the placebo arm received the equivalent amount of olive oil in their capsules. The primary outcome is rate of change in cognitive performance, as measured by latent variables for the cognitive constructs (encompassing Reasoning, Working Memory, Short-term Memory, Retrieval Fluency, Inhibition, Simple and Choice-Reaction Time, Perceptual Speed, Odd-man-out Reaction Time, Speed of Memory Scanning, and Psychomotor Speed) and assessed by latent growth curve modeling. Secondary outcomes are change in the Mini-mental State Examination, functional capacity and well-being (including health status, depression, mood, and self-report cognitive functioning), blood

  7. Studies on long chain cis- and trans-acyl-CoA esters and Acyl-CoA dehydrogenase from rat heart mitochondria.

    PubMed

    Korsrud, G O; Conacher, H B; Jarvis, G A; Beare-Rogers, J L

    1977-02-01

    The beta-oxidation of long chain fatty acids was investigated in a preparation of rat heart mitochondria. The acyl-CoA esters of the cis and trans isomers of delta9-hexadecenoic, delta9-octadecenoic, delta11-eicosenoic, and delta13-docosenoic acids were prepared. Rates of the acyl-CoA reaction were determined with an extract from rat heart mitochondria. The apparent Michaelis constant (Km) and maximum velocity (Vmax) were calculated for each substrate. In general, apparent Vmax values decreased with increasing chain length of the monoenoic substrates. Reduced activity of acyl-CoA dehydrogenase with long chain acyl-CoA esters could have contributed to accumulation of lipids in hearts of rats fed diets containing long chain fatty acids.

  8. Long-chain fatty acid triglyceride (TG) metabolism disorder impairs male fertility: a study using adipose triglyceride lipase deficient mice.

    PubMed

    Masaki, Hidetake; Kim, Namhyo; Nakamura, Hitomi; Kumasawa, Keiichi; Kamata, Eriko; Hirano, Ken-Ichi; Kimura, Tadashi

    2017-07-01

    Does the deletion of adipose triglyceride lipase (Atgl) gene impair male fertility? The deletion of Atgl gene impaired male fertility but the effect was partially reversed by a low long-chain triglyceride (TG) diet. ATGL specifically hydrolyses long-chain fatty acid TG to diacylglycerol and a high level of expression of ATGL in testes has been reported. However, the role of ATGL in male fertility is unknown. To investigate the effect of deletion of Atgl gene on male fertility, cauda epididymides and testes were collected from wild-type, heterozygous and homozygous Atgl-deficient mice at 10 weeks of age and epididymal sperm analysis and histological analysis of the testes were performed. To investigate whether a medium-chain triglycerides (MCTs) replacement diet mitigated the impaired male fertility by deletion of Atgl gene, homozygous Atgl-deficient mice were fed a MCT replacement diet, or a standard diet including long-chain triglycerides (LCTs) in a control group, for 6 weeks from 5 weeks of age (n = 22). The systematic and local effects of the MCT replacement diet on spermatogenesis and sperm maturation in the epididymis were analyzed at 10 weeks of age. Hematoxylin and eosin staining in paraffin-embedded sections of testes and Oil Red O staining in frozen sections of testes were performed. The epididymal sperm concentrations were analyzed. Statistical analyses were performed using the Student's t-test or Mann-Whitney U test with Shapiro-Wilk Normality test. Although heterozygous mice were fertile and showed a similar number of epididymal total and motile sperm concentrations to wild-type mice, the deletion of Atgl gene in homozygous mice led to accumulation of TG deposits in testes and impaired spermatogenesis. The deletion of Atgl gene also impaired the sperm maturation process required for sperm to acquire the ability to move forward in the epididymis. The MCT replacement diet for 6 weeks increased the plasma level of non-esterified fatty acid (NEFA) (1

  9. Higher n3-fatty acid status is associated with lower risk of iron depletion among food insecure Canadian Inuit women.

    PubMed

    Jamieson, Jennifer A; Kuhnlein, Harriet V; Weiler, Hope A; Egeland, Grace M

    2013-04-02

    High rates of iron deficiency and anemia are common among Inuit and Arctic women despite a traditional diet based on animal source foods. However, representative data on iron status and relevant determinants for this population are lacking. The objectives were to determine the prevalence of anemia and depletion of iron stores, then to identify correlates of iron status in non-pregnant Canadian Inuit women. In a cross-sectional survey of 1550 women in the International Polar Year Inuit Health Survey, 2007-2008, hemoglobin, serum ferritin, soluble transferrin receptor (on a subset), C-reactive protein (CRP), RBC fatty acid composition, and H pylori serology were analyzed on fasting venous blood. Sociodemographic, food security status, anthropometric, dietary, and health data were collected. Correlates of iron status were assessed with multivariate linear and logistic models. Anemia was observed in 21.7% and iron deficient erythropoiesis in 3.3% of women. For women with CRP ≤ 10 mg/L (n = 1260) 29.4% had depleted iron stores. Inadequate iron intakes were observed in 16% of premenopausal and <1% of postmenopausal women. Among food insecure women, higher long-chain (n-3) polyunsaturated fatty acid (LC-PUFA) status, which reflects a more traditional food pattern, was associated with reduced risk of iron depletion. Iron depletion and anemia are a concern for Inuit women despite adequate total dietary iron intake primarily from heme sources. The high prevalence of H. pylori exposure, together with dietary iron adequacy, suggests an inflammation-driven iron deficiency and mild anemia. The anti-inflammatory properties of LC-PUFA may be important for iron status in this population.

  10. The n-3 long-chain PUFAs modulate the impact of the GCKR Pro446Leu polymorphism on triglycerides in adolescents[S

    PubMed Central

    Rousseaux, Julien; Duhamel, Alain; Dumont, Julie; Dallongeville, Jean; Molnar, Denes; Widhalm, Kurt; Manios, Yannis; Sjöström, Michael; Kafatos, Anthony; Breidenassel, Christina; Gonzales-Gross, Marcela; Cuenca-Garcia, Magdalena; Censi, Laura; Ascensión, Marcos; De Henauw, Stefaan; Moreno, Luis A.; Meirhaeghe, Aline; Gottrand, Frédéric

    2015-01-01

    Dietary n-3 long-chain PUFAs (LC-PUFAs) are associated with improvement in the parameters of the metabolic syndrome (MetS). Glucokinase regulatory protein (GCKR) is a key protein regulating intracellular glucose disposal. Our aim was to investigate: i) the relationship between the GCKR rs1260326 (Pro446Leu) polymorphism and parameters of the MetS; and ii) a potential influence of n-3 and n-6 LC-PUFA levels on this relationship in the HELENA study (1,155 European adolescents). Linear regression analyses were performed to study the association between rs1260326 and the outcomes of interest. Interactions between rs1260326 and LC-PUFA levels on outcomes were explored. The T allele of rs1260326 was associated with higher serum TG concentrations compared with the C allele. In contrast to n-6 LC-PUFA levels, a significant interaction (P = 0.01) between rs1260326 and total n-3 LC-PUFA levels on serum TG concentrations was observed. After stratification on the n-3 LC-PUFA median values, the association between rs1260326 and TG concentration was significant only in the group with high n-3 LC-PUFA levels. In conclusion, this is the first evidence that n-3 LC-PUFAs may modulate the impact of the GCKR rs1260326 polymorphism on TG concentrations in adolescents. Several molecular mechanisms, in link with glucose uptake, could explain these findings. PMID:26136510

  11. Inhibition of mammary tumor promotion by dietary D,L-2-difluoromethylornithine in combination with omega-3 and omega-6 fatty acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunce, O.R.; Abou-El-Ela, S.H.

    1990-02-26

    The authors laboratory has shown an inhibitor effect on mammary tumor promotion by a 20% corn oil diet when D,L-2-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC), was fed to female rats with 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary tumors. Analyses of mammary adenocarcinomas from these rats showed that DFMO not only inhibited ODC but also eicosanoid synthesis. Inhibition of tumor promotion, ODC activity and eicosanoid synthesis was additive when dietary combinations of DFMO and menhaden oil were fed. However, when 0.5% DFMO was fed along with 20% dietary fat, signs of toxicity were seen. The overall objective of this study was tomore » establish the minimal and non-toxic dose of DFMO which can give an additive or synergistic antipromoter effect when fed along with dietary n-3 and/or n-6 fatty acids to female Sprague-Dawley rats with DMBA-induced mammary tumors. Four dietary levels of DFMO (0, 0.125, 0.250, and 0.500%) were fed in diets containing 20% fat as either corn, black currant seed or menhaden oil. Dose response effects on tumorigenicity as well as toxicity were noted. Long chain n-3 fatty acids gave greater inhibition of tumorigenesis than shorter chain fatty acids when combined with DFMO. DFMO (0.25%) inhibited tumorigenesis without toxic effects on weight gain, whereas, 0.125% DFMO did not alter tumorigenesis. Supporting biochemical data are presented.« less

  12. Properties of Acetate Kinase Isozymes and a Branched-Chain Fatty Acid Kinase from a Spirochete

    PubMed Central

    Harwood, Caroline S.; Canale-Parola, Ercole

    1982-01-01

    Spirochete MA-2, which is anaerobic, ferments glucose, forming acetate as a major product. The spirochete also ferments (but does not utilize as growth substrates) small amounts of l-leucine, l-isoleucine, and l-valine, forming the branched-chain fatty acids isovalerate, 2-methylbutyrate, and isobutyrate, respectively, as end products. Energy generated through the fermentation of these amino acids is utilized to prolong cell survival under conditions of growth substrate starvation. A branched-chain fatty acid kinase and two acetate kinase isozymes were resolved from spirochete MA-2 cell extracts. Kinase activity was followed by measuring the formation of acyl phosphate from fatty acid and ATP. The branched-chain fatty acid kinase was active with isobutyrate, 2-methylbutyrate, isovalerate, butyrate, valerate, or propionate as a substrate but not with acetate as a substrate. The acetate kinase isozymes were active with acetate and propionate as substrates but not with longer-chain fatty acids as substrates. The acetate kinase isozymes and the branched-chain fatty acid kinase differed in nucleoside triphosphate and cation specificities. Each acetate kinase isozyme had an apparent molecular weight of approximately 125,000, whereas the branched-chain fatty acid kinase had a molecular weight of approximately 76,000. These results show that spirochete MA-2 synthesizes a branched-chain fatty acid kinase specific for leucine, isoleucine, and valine fermentation. It is likely that a phosphate branched-chain amino acids is also synthesized by spirochete MA-2. Thus, in spirochete MA-2, physiological mechanisms have evolved which serve specifically to generate maintenance energy from branched-chain amino acids. PMID:6288660

  13. Dietary long-chain unsaturated fatty acids acutely and differently reduce the activities of lipogenic enzymes and of citrate carrier in rat liver.

    PubMed

    Gnoni, Antonio; Giudetti, Anna M

    2016-09-01

    The activities of lipogenic enzymes appear to fluctuate with changes in the level and type of dietary fats. Polyunsaturated fatty acids (PUFAs) are known to induce on hepatic de novo lipogenesis (DNL) the highest inhibitory effect, which occurs through a long-term adaptation. Data on the acute effects of dietary fatty acids on DNL are lacking. In this study with rats, the acute 1-day effect of high-fat (15 % w/w) diets (HFDs) enriched in saturated fatty acids (SFAs) or unsaturated fatty acids (UFAs), i.e., monounsaturated (MUFA) and PUFA, of the ω-6 and ω-3 series on DNL and plasma lipid level was investigated; a comparison with a longer time feeding (21 days) was routinely carried out. After 1-day HFD administration UFA, when compared to SFA, reduced plasma triacylglycerol (TAG) level and the activities of the lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), a decreased activity of the citrate carrier (CIC), a mitochondrial protein linked to lipogenesis, was also detected. In this respect, ω-3 PUFA was the most effective. On the other hand, PUFA maintained the effects at longer times, and the acute inhibition induced by MUFA feeding on DNL enzyme and CIC activities was almost nullified at 21 days. Mitochondrial fatty acid composition was slightly but significantly changed both at short- and long-term treatment, whereas the early changes in mitochondrial phospholipid composition vanished in long-term experiments. Our results suggest that in the early phase of administration, UFA coordinately reduced both the activities of de novo lipogenic enzymes and of CIC. ω-3 PUFA showed the greatest effect.

  14. Butyrate and other short-chain fatty acids increase the rate of lipolysis in 3T3-L1 adipocytes

    PubMed Central

    Rumberger, John M.; Arch, Jonathan R.S.

    2014-01-01

    We determined the effect of butyrate and other short-chain fatty acids (SCFA) on rates of lipolysis in 3T3-L1 adipocytes. Prolonged treatment with butyrate (5 mM) increased the rate of lipolysis approximately 2–3-fold. Aminobutyric acid and acetate had little or no effect on lipolysis, however propionate stimulated lipolysis, suggesting that butyrate and propionate act through their shared activity as histone deacetylase (HDAC) inhibitors. Consistent with this, the HDAC inhibitor trichostatin A (1 µM) also stimulated lipolysis to a similar extent as did butyrate. Western blot data suggested that neither mitogen-activated protein kinase (MAPK) activation nor perilipin down-regulation are necessary for SCFA-induced lipolysis. Stimulation of lipolysis with butyrate and trichostatin A was glucose-dependent. Changes in AMP-activated protein kinase (AMPK) phosphorylation mediated by glucose were independent of changes in rates of lipolysis. The glycolytic inhibitor iodoacetate prevented both butyrate- and tumor necrosis factor-alpha-(TNF-α) mediated increases in rates of lipolysis indicating glucose metabolism is required. However, unlike TNF-α– , butyrate-stimulated lipolysis was not associated with increased lactate release or inhibited by activation of pyruvate dehydrogenase (PDH) with dichloroacetate. These data demonstrate an important relationship between lipolytic activity and reported HDAC inhibitory activity of butyrate, other short-chain fatty acids and trichostatin A. Given that HDAC inhibitors are presently being evaluated for the treatment of diabetes and other disorders, more work will be essential to determine if these effects on lipolysis are due to inhibition of HDAC. PMID:25320679

  15. [Comparison of long-chain polyunsaturated fatty acids in plasma and erythrocyte phospholipids for biological monitoring].

    PubMed

    Kawabata, Terue; Nakai, Kunihiko; Hagiwara, Chie; Kurokawa, Naoyuki; Murata, Katsuyuki; Yaginuma, Kozue; Satoh, Hiroshi

    2011-01-01

    Previous data have indicated that the erythrocyte membrane may be the preferred sample type for assessing long-chain polyunsaturated fatty acid (LCPUFA) contents in cardiac and cerebral membranes. In this epidemiological study, we examined whether plasma phospholipids can be used for accurate biological monitoring of the LCPUFA state or whether analysis of erythrocyte membrane phospholipids is indispensable. (1) The analysis of LCPUFA contents in erythrocyte membrane phospholipids was conducted at baseline and after 1 and 3 days at 4°C, and 21 days at -40°C, after blood drawing, and the changes in LCPUFA content were examined. (2) The LCPUFA compositions of plasma and erythrocyte phospholipids in 133 young women (18-30 years old) were examined and the relationships between the sample type and the levels of LCPUFAs were determined. Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and DHA/arachidonic acid (AA) and (EPA+DHA)/AA ratios in erythrocyte membrane phospholipids after 21 days of blood drawing significantly decreased compared with the corresponding baseline data. Regarding AA, EPA and DHA, a significant positive correlation was shown between levels of erythrocyte membrane phospholipids and plasma phospholipids (AA, r=0.364; EPA, r=0.709; DHA, r=0.653). The predictive value of plasma phospholipids for determining the highest concentration quartile in erythrocyte phospholipids was better in EPA (70%) than in DHA (55%) and AA (42%). The measurement of LCPUFA content in erythrocyte membrane phospholipids is necessary for accurate biological monitoring. We also found that LCPUFA in erythrocyte membrane phospholipids is stable in cold storage (4°C) for 3 days after blood drawing.

  16. Omega-3 fatty acids are inversely related to callous and unemotional traits in adolescent boys with attention deficit hyperactivity disorder.

    PubMed

    Gow, Rachel V; Vallee-Tourangeau, Frederic; Crawford, Michael Angus; Taylor, Eric; Ghebremeskel, Kebreab; Bueno, Allain A; Hibbeln, Joseph R; Sumich, Alexander; Rubia, Katya

    2013-06-01

    A number of research studies have reported abnormal plasma fatty acid profiles in children with ADHD along with some benefit of n-3 to symptoms of ADHD. However, it is currently unclear whether (lower) long chain-polyunsaturated fatty acids (LC-PUFAs) are related to ADHD pathology or to associated behaviours. The aim of this study was to test whether (1) ADHD children have abnormal plasma LC-PUFA levels and (2) ADHD symptoms and associated behaviours are correlated with LC-PUFA levels. Seventy-two, male children with (n=29) and without a clinical diagnosis of ADHD (n=43) were compared in their plasma levels of LC-PUFA. Plasma DHA was higher in the control group prior to statistical correction. Callous-unemotional (CU) traits were found to be significantly negatively related to both eicosapentaenoic acid (EPA), and total omega-3 in the ADHD group. The findings unveil for the first time that CU and anti-social traits in ADHD are associated with lower omega-3 levels. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Computational Redesign of Acyl-ACP Thioesterase with Improved Selectivity toward Medium-Chain-Length Fatty Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grisewood, Matthew J.; Hernández-Lozada, Néstor J.; Thoden, James B.

    Enzyme and metabolic engineering offer the potential to develop biocatalysts for converting natural resources to a wide range of chemicals. To broaden the scope of potential products beyond natural metabolites, methods of engineering enzymes to accept alternative substrates and/or perform novel chemistries must be developed. DNA synthesis can create large libraries of enzyme-coding sequences, but most biochemistries lack a simple assay to screen for promising enzyme variants. Our solution to this challenge is structure-guided mutagenesis, in which optimization algorithms select the best sequences from libraries based on specified criteria (i.e., binding selectivity). We demonstrate this approach by identifying medium-chain (C8–C12)more » acyl-ACP thioesterases through structure-guided mutagenesis. Medium-chain fatty acids, which are products of thioesterase-catalyzed hydrolysis, are limited in natural abundance, compared to long-chain fatty acids; the limited supply leads to high costs of C6–C10 oleochemicals such as fatty alcohols, amines, and esters. Here, we applied computational tools to tune substrate binding of the highly active ‘TesA thioesterase in Escherichia coli. We used the IPRO algorithm to design thioesterase variants with enhanced C12 or C8 specificity, while maintaining high activity. After four rounds of structure-guided mutagenesis, we identified 3 variants with enhanced production of dodecanoic acid (C12) and 27 variants with enhanced production of octanoic acid (C8). The top variants reached up to 49% C12 and 50% C8 while exceeding native levels of total free fatty acids. A comparably sized library created by random mutagenesis failed to identify promising mutants. The chain length-preference of ‘TesA and the best mutant were confirmed in vitro using acyl-CoA substrates. Molecular dynamics simulations, confirmed by resolved crystal structures, of ‘TesA variants suggest that hydrophobic forces govern ‘TesA substrate specificity

  18. Computational Redesign of Acyl-ACP Thioesterase with Improved Selectivity toward Medium-Chain-Length Fatty Acids

    DOE PAGES

    Grisewood, Matthew J.; Hernández-Lozada, Néstor J.; Thoden, James B.; ...

    2017-04-20

    Enzyme and metabolic engineering offer the potential to develop biocatalysts for converting natural resources to a wide range of chemicals. To broaden the scope of potential products beyond natural metabolites, methods of engineering enzymes to accept alternative substrates and/or perform novel chemistries must be developed. DNA synthesis can create large libraries of enzyme-coding sequences, but most biochemistries lack a simple assay to screen for promising enzyme variants. Our solution to this challenge is structure-guided mutagenesis, in which optimization algorithms select the best sequences from libraries based on specified criteria (i.e., binding selectivity). We demonstrate this approach by identifying medium-chain (C8–C12)more » acyl-ACP thioesterases through structure-guided mutagenesis. Medium-chain fatty acids, which are products of thioesterase-catalyzed hydrolysis, are limited in natural abundance, compared to long-chain fatty acids; the limited supply leads to high costs of C6–C10 oleochemicals such as fatty alcohols, amines, and esters. Here, we applied computational tools to tune substrate binding of the highly active ‘TesA thioesterase in Escherichia coli. We used the IPRO algorithm to design thioesterase variants with enhanced C12 or C8 specificity, while maintaining high activity. After four rounds of structure-guided mutagenesis, we identified 3 variants with enhanced production of dodecanoic acid (C12) and 27 variants with enhanced production of octanoic acid (C8). The top variants reached up to 49% C12 and 50% C8 while exceeding native levels of total free fatty acids. A comparably sized library created by random mutagenesis failed to identify promising mutants. The chain length-preference of ‘TesA and the best mutant were confirmed in vitro using acyl-CoA substrates. Molecular dynamics simulations, confirmed by resolved crystal structures, of ‘TesA variants suggest that hydrophobic forces govern ‘TesA substrate specificity

  19. Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84.

    PubMed

    Wang, Jinghong; Wu, Xiaosu; Simonavicius, Nicole; Tian, Hui; Ling, Lei

    2006-11-10

    Free fatty acids (FFAs) play important physiological roles in many tissues as an energy source and as signaling molecules in various cellular processes. Elevated levels of circulating FFAs are associated with obesity, dyslipidemia, and diabetes. Here we show that GPR84, a previously orphan G protein-coupled receptor, functions as a receptor for medium-chain FFAs with carbon chain lengths of 9-14. Medium-chain FFAs elicit calcium mobilization, inhibit 3',5'-cyclic AMP production, and stimulate [35S]guanosine 5'-O-(3-thiotriphosphate) binding in a GPR84-dependent manner. The activation of GPR84 by medium-chain FFAs couples primarily to a pertussis toxin-sensitive G(i/o) pathway. In addition, we show that GPR84 is selectively expressed in leukocytes and markedly induced in monocytes/macrophages upon activation by lipopolysaccharide. Furthermore, we demonstrate that medium-chain FFAs amplify lipopolysaccharide-stimulated production of the proinflammatory cytokine interleukin-12 p40 through GPR84. Our results indicate a role for GPR84 in directly linking fatty acid metabolism to immunological regulation.

  20. Long-Chain Fatty Acid Combustion Rate Is Associated with Unique Metabolite Profiles in Skeletal Muscle Mitochondria

    PubMed Central

    Seifert, Erin L.; Fiehn, Oliver; Bezaire, Véronic; Bickel, David R.; Wohlgemuth, Gert; Adams, Sean H.; Harper, Mary-Ellen

    2010-01-01

    Background/Aim Incomplete or limited long-chain fatty acid (LCFA) combustion in skeletal muscle has been associated with insulin resistance. Signals that are responsive to shifts in LCFA β-oxidation rate or degree of intramitochondrial catabolism are hypothesized to regulate second messenger systems downstream of the insulin receptor. Recent evidence supports a causal link between mitochondrial LCFA combustion in skeletal muscle and insulin resistance. We have used unbiased metabolite profiling of mouse muscle mitochondria with the aim of identifying candidate metabolites within or effluxed from mitochondria and that are shifted with LCFA combustion rate. Methodology/Principal Findings Large-scale unbiased metabolomics analysis was performed using GC/TOF-MS on buffer and mitochondrial matrix fractions obtained prior to and after 20 min of palmitate catabolism (n = 7 mice/condition). Three palmitate concentrations (2, 9 and 19 µM; corresponding to low, intermediate and high oxidation rates) and 9 µM palmitate plus tricarboxylic acid (TCA) cycle and electron transport chain inhibitors were each tested and compared to zero palmitate control incubations. Paired comparisons of the 0 and 20 min samples were made by Student's t-test. False discovery rate were estimated and Type I error rates assigned. Major metabolite groups were organic acids, amines and amino acids, free fatty acids and sugar phosphates. Palmitate oxidation was associated with unique profiles of metabolites, a subset of which correlated to palmitate oxidation rate. In particular, palmitate oxidation rate was associated with distinct changes in the levels of TCA cycle intermediates within and effluxed from mitochondria. Conclusions/Significance This proof-of-principle study establishes that large-scale metabolomics methods can be applied to organelle-level models to discover metabolite patterns reflective of LCFA combustion, which may lead to identification of molecules linking muscle fat

  1. PCSK9 Induces CD36 Degradation and Affects Long-Chain Fatty Acid Uptake and Triglyceride Metabolism in Adipocytes and in Mouse Liver.

    PubMed

    Demers, Annie; Samami, Samaneh; Lauzier, Benjamin; Des Rosiers, Christine; Ngo Sock, Emilienne Tudor; Ong, Huy; Mayer, Gaetan

    2015-12-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes the degradation of the low-density lipoprotein receptor thereby elevating plasma low-density lipoprotein cholesterol levels and the risk of coronary heart disease. Thus, the use of PCSK9 inhibitors holds great promise to prevent heart disease. Previous work found that PCSK9 is involved in triglyceride metabolism, independently of its action on low-density lipoprotein receptor, and that other yet unidentified receptors could mediate this effect. Therefore, we assessed whether PCSK9 enhances the degradation of CD36, a major receptor involved in transport of long-chain fatty acids and triglyceride storage. Overexpressed or recombinant PCSK9 induced CD36 degradation in cell lines and primary adipocytes and reduced the uptake of the palmitate analog Bodipy FL C16 and oxidized low-density lipoprotein in 3T3-L1 adipocytes and hepatic HepG2 cells, respectively. Surface plasmon resonance, coimmunoprecipitation, confocal immunofluorescence microscopy, and protein degradation pathway inhibitors revealed that PCSK9 directly interacts with CD36 and targets the receptor to lysosomes through a mechanism involving the proteasome. Importantly, the level of CD36 protein was increased by >3-fold upon small interfering RNA knockdown of endogenous PCSK9 in hepatic cells and similarly increased in the liver and visceral adipose tissue of Pcsk9(-/-) mice. In Pcsk9(-/-) mice, increased hepatic CD36 was correlated with an amplified uptake of fatty acid and accumulation of triglycerides and lipid droplets. Our results demonstrate an important role of PCSK9 in modulating the function of CD36 and triglyceride metabolism. PCSK9-mediated CD36 degradation may serve to limit fatty acid uptake and triglyceride accumulation in tissues, such as the liver. © 2015 American Heart Association, Inc.

  2. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets

    PubMed Central

    Ulven, Trond

    2012-01-01

    The deorphanization of the free fatty acid (FFA) receptors FFA1 (GPR40), FFA2 (GPR43), FFA3 (GPR41), GPR84, and GPR120 has made clear that the body is capable of recognizing and responding directly to nonesterified fatty acid of virtually any chain length. Colonic fermentation of dietary fiber produces high concentrations of the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, a process which is important to health. The phylogenetically related 7-transmembrane (7TM) receptors free fatty acid receptor 2 (FFA2) and FFA3 are activated by these SCFAs, and several lines of evidence indicate that FFA2 and FFA3 mediate beneficial effects associated with a fiber-rich diet, and that they may be of interest as targets for treatment of inflammatory and metabolic diseases. FFA2 is highly expressed on immune cells, in particular neutrophils, and several studies suggest that the receptor plays a role in diseases involving a dysfunctional neutrophil response, such as inflammatory bowel disease (IBD). Both FFA2 and FFA3 have been implicated in metabolic diseases such as type 2 diabetes and in regulation of appetite. More research is however required to clarify the potential of the receptors as drug targets and establish if activation or inhibition would be the preferred mode of action. The availability of potent and selective receptor modulators is a prerequisite for these studies. The few modulators of FFA2 or FFA3 that have been published hitherto in the peer-reviewed literature in general have properties that make them less than ideal as such tools, but published patent applications indicate that better tool compounds might soon become available which should enable studies critical to validate the receptors as new drug targets. PMID:23060857

  3. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets.

    PubMed

    Ulven, Trond

    2012-01-01

    The deorphanization of the free fatty acid (FFA) receptors FFA1 (GPR40), FFA2 (GPR43), FFA3 (GPR41), GPR84, and GPR120 has made clear that the body is capable of recognizing and responding directly to nonesterified fatty acid of virtually any chain length. Colonic fermentation of dietary fiber produces high concentrations of the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, a process which is important to health. The phylogenetically related 7-transmembrane (7TM) receptors free fatty acid receptor 2 (FFA2) and FFA3 are activated by these SCFAs, and several lines of evidence indicate that FFA2 and FFA3 mediate beneficial effects associated with a fiber-rich diet, and that they may be of interest as targets for treatment of inflammatory and metabolic diseases. FFA2 is highly expressed on immune cells, in particular neutrophils, and several studies suggest that the receptor plays a role in diseases involving a dysfunctional neutrophil response, such as inflammatory bowel disease (IBD). Both FFA2 and FFA3 have been implicated in metabolic diseases such as type 2 diabetes and in regulation of appetite. More research is however required to clarify the potential of the receptors as drug targets and establish if activation or inhibition would be the preferred mode of action. The availability of potent and selective receptor modulators is a prerequisite for these studies. The few modulators of FFA2 or FFA3 that have been published hitherto in the peer-reviewed literature in general have properties that make them less than ideal as such tools, but published patent applications indicate that better tool compounds might soon become available which should enable studies critical to validate the receptors as new drug targets.

  4. DNA methylation perturbations in genes involved in polyunsaturated Fatty Acid biosynthesis associated with depression and suicide risk.

    PubMed

    Haghighi, Fatemeh; Galfalvy, Hanga; Chen, Sean; Huang, Yung-Yu; Cooper, Thomas B; Burke, Ainsley K; Oquendo, Maria A; Mann, J John; Sublette, M Elizabeth

    2015-01-01

    Polyunsaturated fatty acid (PUFA) status has been associated with neuropsychiatric disorders, including depression and risk of suicide. Long-chain PUFAs (LC-PUFAs) are obtained in the diet or produced by sequential desaturation and elongation of shorter-chain precursor fatty acids linoleic acid (LA, 18:2n-6) and α-linolenic acid (ALA, 18:3n-3). We compared DNA methylation patterns in genes involved in LC-PUFA biosynthesis in major depressive disorder (MDD) with (n = 22) and without (n = 39) history of suicide attempt, and age- and sex-matched healthy volunteers (n = 59). Plasma levels of selected PUFAs along the LC-PUFA biosynthesis pathway were determined by transesterification and gas chromatography. CpG methylation levels for the main human LC-PUFA biosynthetic genes, fatty acid desaturases 1 (Fads1) and 2 (Fads2), and elongation of very long-chain fatty acids protein 5 (Elovl5), were assayed by bisulfite pyrosequencing. Associations between PUFA levels and diagnosis or suicide attempt status did not survive correction for multiple testing. However, MDD diagnosis and suicide attempts were significantly associated with DNA methylation in Elovl5 gene regulatory regions. Also the relative roles of PUFA levels and DNA methylation with respect to diagnostic and suicide attempt status were determined by least absolute shrinkage and selection operator logistic regression analyses. We found that PUFA associations with suicide attempt status were explained by effects of Elovl5 DNA methylation within the regulatory regions. The observed link between plasma PUFA levels, DNA methylation, and suicide risk may have implications for modulation of disease-associated epigenetic marks by nutritional intervention.

  5. Erythrocyte stearidonic acid and other n-3 fatty acids and CHD in the Physicians’ Health Study

    USDA-ARS?s Scientific Manuscript database

    Intake of marine-based n-3 fatty acids (EPA, docosapentaenoic acid and DHA) is recommended to prevent CHD. Stearidonic acid (SDA), a plant-based n-3 fatty acid, is a precursor of EPA and may be more readily converted to EPA than a-linolenic acid (ALA). While transgenic soyabeans might supply SDA at ...

  6. Effects of similar intakes of marine n-3 fatty acids from enriched food products and fish oil on cardiovascular risk markers in healthy human subjects.

    PubMed

    Kirkhus, Bente; Lamglait, Amandine; Eilertsen, Karl-Erik; Falch, Eva; Haider, Trond; Vik, Hogne; Hoem, Nils; Hagve, Tor-Arne; Basu, Samar; Olsen, Elisabeth; Seljeflot, Ingebjørg; Nyberg, Lena; Elind, Elisabeth; Ulven, Stine M

    2012-05-01

    There is convincing evidence that consumption of fish and fish oil rich in long-chain (LC) n-3 PUFA (n-3 LCPUFA), EPA (20 : 5n-3) and DHA (22 : 6n-3) reduce the risk of CHD. The aim of the present study was to investigate whether n-3 LCPUFA-enriched food products provide similar beneficial effects as fish oil with regard to incorporation into plasma lipids and effects on cardiovascular risk markers. A parallel 7-week intervention trial was performed where 159 healthy men and women were randomised to consume either 34 g fish pâté (n 44), 500 ml fruit juice (n 38) or three capsules of concentrated fish oil (n 40), all contributing to a daily intake of approximately 1 g EPA and DHA. A fourth group did not receive any supplementation or food product and served as controls (n 37). Plasma fatty acid composition, serum lipids, and markers of inflammation and oxidative stress were measured. Compared with the control group, plasma n-3 LCPUFA and EPA:arachidonic acid ratio increased equally in all intervention groups. However, no significant changes in blood lipids and markers of inflammation and oxidative stress were observed. In conclusion, enriched fish pâté and fruit juice represent suitable delivery systems for n-3 LCPUFA. However, although the dose given is known to reduce the risk of CVD, no significant changes were observed on cardiovascular risk markers in this healthy population.

  7. A post-GWAS confirming the SCD gene associated with milk medium- and long-chain unsaturated fatty acids in Chinese Holstein population.

    PubMed

    Li, C; Sun, D; Zhang, S; Liu, L; Alim, M A; Zhang, Q

    2016-08-01

    The stearoyl-CoA desaturase (delta-9-desaturase) gene encodes a key enzyme in the cellular biosynthesis of monounsaturated fatty acids. In our initial genome-wide association study (GWAS) of Chinese Holstein cows, 19 SNPs fell in a 1.8-Mb region (20.3-22.1 Mb) on chromosome 26 underlying the SCD gene and were highly significantly associated with C14:1 or C14 index. The aims of this study were to verify whether the SCD gene has significant genetic effects on milk fatty acid composition in dairy cattle. By resequencing the entire coding region of the bovine SCD gene, a total of six variations were identified, including three coding variations (g.10153G>A, g.10213T>C and g.10329C>T) and three intronic variations (g.6926A>G, g.8646G>A and g.16158G>C). The SNP in exon 3, g.10329C>T, was predicted to result in an amino acid replacement from alanine (GCG) to valine (GTG) in the SCD protein. An association study for 16 milk fatty acids using 346 Chinese Holstein cows with accurate phenotypes and genotypes was performed using the mixed animal model with the proc mixed procedure in sas 9.2. All six detected SNPs were revealed to be associated with six medium- and long-chain unsaturated fatty acids (P = 0.0457 to P < 0.0001), specifically for C14:1 and C14 index (P = 0.0005 to P < 0.0001). Subsequently, strong linkage disequilibrium (D' = 0.88-1.00) was observed among all six SNPs in SCD and the five SNPs (rs41623887, rs109923480, rs42090224, rs42092174 and rs42091426) within the 1.8-Mb region identified in our previous GWAS, indicating that the significant association of the SCD gene with milk fatty acid content traits reduced the observed significant 1.8-Mb chromosome region in GWAS. Haplotype-based analysis revealed significant associations of the haplotypes encompassing the six SCD SNPs and one SNP (rs109923480) in a GWAS with C14:1, C14 index, C16:1 and C16 index (P = 0.0011 to P < 0.0001). In summary, our findings provide replicate evidence for our previous

  8. Dietary (n-3) fatty acids reduce plasma F2-isoprostanes but not prostaglandin F2alpha in healthy humans.

    PubMed

    Nälsén, Cecilia; Vessby, Bengt; Berglund, Lars; Uusitupa, Matti; Hermansen, Kjeld; Riccardi, Gabrielle; Rivellese, Angela; Storlien, Len; Erkkilä, Arja; Ylä-Herttuala, Seppo; Tapsell, Linda; Basu, Samar

    2006-05-01

    (n-3) Fatty acids are unsaturated and are therefore easily subject to oxidization; however, they have several beneficial health effects, which include protection against cardiovascular diseases. The aim of this study was to investigate whether (n-3) fatty acids, with a controlled fat quality in the background diet, affect nonenzymatic and enzymatic lipid peroxidation and antioxidant status in humans. A total of 162 men and women in a multicenter study (The KANWU study) were randomly assigned to a diet containing a high proportion of saturated fatty acids or monounsaturated fatty acids (MUFA) for 3 mo. Within each diet group, there was a second random assignment to supplementation with fish-oil capsules [3.6 g (n-3) fatty acids/d] or placebo. Biomarkers of nonenzymatic and enzymatic lipid peroxidation in vivo were determined by measuring 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)) and prostaglandin F(2alpha) (PGF(2alpha)) concentrations in plasma at baseline and after 3 mo. Antioxidant status was determined by measuring plasma antioxidant capacity with an enhanced chemiluminescence assay. The plasma 8-iso-PGF(2alpha) concentration was significantly decreased after 3 mo of supplementation with (n-3) fatty acids (P = 0.015), whereas the PGF(2alpha) concentration was not affected. The antioxidant status was not affected by supplementation of (n-3) fatty acids, but was improved by the background diet with a high proportion of MUFA. We conclude that supplementation with (n-3) fatty acids decreases nonenzymatic free radical-catalyzed isoprostane formation, but does not affect cyclooxygenase-mediated prostaglandin formation.

  9. Olive leaves (Olea europaea L.) versus α-tocopheryl acetate as dietary supplements for enhancing the oxidative stability of eggs enriched with very-long-chain n-3 fatty acids.

    PubMed

    Botsoglou, Evropi N; Govaris, Alexandros K; Ambrosiadis, Ioannis A; Fletouris, Dimitrios J

    2013-06-01

    Ninety-six brown Lohmann laying hens were equally assigned into four groups with six replicates. Hens within the control group were given a corn/soybean-based diet supplemented with 30 g kg(-1) fish oil. Two other groups were given the same diet further supplemented with olive leaves at 5 (OL5) and 10 (OL10) g kg(-1) respectively, while the diet of the fourth group was supplemented with α-tocopheryl acetate (TOC) at 200 mg kg(-1). Eggs were analysed for lipid hydroperoxide and malondialdehyde (MDA) contents, fatty acid profile, α-tocopherol content and susceptibility to iron-induced lipid oxidation. Neither OL nor TOC supplementation affected (P>0.05) the fatty acid composition. Dietary supplementation with OL10 or TOC reduced (P≤0.05) the lipid hydroperoxide content but exerted no (P>0.05) effect on the MDA content of fresh eggs compared with controls. Eggs submitted to iron-induced lipid oxidation from the OL5 group presented higher (P≤0.05) MDA levels than the control but lower (P≤0.05) than the OL10 group. Eggs from the TOC group presented lower (P≤0.05) MDA levels compared with all groups at all incubation time points. The results of this study suggested that dietary supplementation with both OL10 and TOC could protect n-3 fatty acids in eggs from deterioration. © 2012 Society of Chemical Industry.

  10. Impact of L-FABP and glucose on polyunsaturated fatty acid induction of PPARα-regulated β-oxidative enzymes

    PubMed Central

    Petrescu, Anca D.; Huang, Huan; Martin, Gregory G.; McIntosh, Avery L.; Storey, Stephen M.; Landrock, Danilo; Kier, Ann B.

    2013-01-01

    Liver fatty acid binding protein (L-FABP) is the major soluble protein that binds very-long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs) in hepatocytes. However, nothing is known about L-FABP's role in n-3 PUFA-mediated peroxisome proliferator activated receptor-α (PPARα) transcription of proteins involved in long-chain fatty acid (LCFA) β-oxidation. This issue was addressed in cultured primary hepatocytes from wild-type, L-FABP-null, and PPARα-null mice with these major findings: 1) PUFA-mediated increase in the expression of PPARα-regulated LCFA β-oxidative enzymes, LCFA/LCFA-CoA binding proteins (L-FABP, ACBP), and PPARα itself was L-FABP dependent; 2) PPARα transcription, robustly potentiated by high glucose but not maltose, a sugar not taken up, correlated with higher protein levels of these LCFA β-oxidative enzymes and with increased LCFA β-oxidation; and 3) high glucose altered the potency of n-3 relative to n-6 PUFA. This was not due to a direct effect of glucose on PPARα transcriptional activity nor indirectly through de novo fatty acid synthesis from glucose. Synergism was also not due to glucose impacting other signaling pathways, since it was observed only in hepatocytes expressing both L-FABP and PPARα. Ablation of L-FABP or PPARα as well as treatment with MK886 (PPARα inhibitor) abolished/reduced PUFA-mediated PPARα transcription of these genes, especially at high glucose. Finally, the PUFA-enhanced L-FABP distribution into nuclei with high glucose augmentation of the L-FABP/PPARα interaction reveals not only the importance of L-FABP for PUFA induction of PPARα target genes in fatty acid β-oxidation but also the significance of a high glucose enhancement effect in diabetes. PMID:23238934

  11. Dietary enrichment with medium chain triglycerides (AC-1203) elevates polyunsaturated fatty acids in the parietal cortex of aged dogs: implications for treating age-related cognitive decline.

    PubMed

    Taha, Ameer Y; Henderson, Samuel T; Burnham, W M

    2009-09-01

    Dogs demonstrate an age-related cognitive decline, which may be related to a decrease in the concentration of omega-3 polyunsaturated fatty acids (n-3 PUFA) in the brain. Medium chain triglycerides (MCT) increase fatty acid oxidation, and it has been suggested that this may raise brain n-3 PUFA levels by increasing mobilization of n-3 PUFA from adipose tissue to the brain. The goal of the present study was to determine whether dietary MCT would raise n-3 PUFA concentrations in the brains of aged dogs. Eight Beagle dogs were randomized to a control diet (n = 4) or an MCT (AC-1203) enriched diet (n = 4) for 2 months. The animals were then euthanized and the parietal cortex was removed for phospholipid, cholesterol and fatty acid determinations by gas-chromatography. Dietary enrichment with MCT (AC-1203) resulted in a significant increase in brain phospholipid and total lipid concentrations (P < 0.05). In particular, n-3 PUFA within the phospholipid, unesterified fatty acid, and total lipid fractions were elevated in AC-1203 treated subjects as compared to controls (P < 0.05). Brain cholesterol concentrations did not differ significantly between the groups (P > 0.05). These results indicate that dietary enrichment with MCT, raises n-3 PUFA concentrations in the parietal cortex of aged dogs.

  12. Enzymatic preparation of structured oils containing short-chain fatty acids.

    PubMed

    Kanda, Ayato; Namiki, Fusako; Hara, Setsuko

    2010-01-01

    Structured oils prepared by enzymatic transacylation with triacylglycerols (TAGs) and various fatty acids (FAs) were characterized. Transacylation with trilaurin and saturated FAs (C4:0-C16:0) was performed using Lipozyme RM-IM under standard reaction conditions. The structured oils thus produced had transacylation ratios of 25-37%, as medium-chain FAs > long-chain FAs > short-chain FAs. This result confirmed that short-chain FAs have little reactivity in enzymatic transacylation. All prepared oils shared the same composition of TAG molecular species, as demonstrated by HPLC analysis, and contained a mixture of mono-substituted, di-substituted, and non-substituted TAGs. The reaction conditions for transacylation with TAGs and short-chain FAs were optimized to improve transacylation ratios. The introduction ratios of C4:0, C5:0, and C6:0 into trilaurin were increased to 52.4, 42.5, and 34.1%, respectively, by extending the reaction time. Transacylation between TAGs and short-chain FAs was further examined by using Lipase PL. C4:0 was introduced at 51.1%, the same ratio as for Lipozyme RM-IM. When C5:0 and C6:0 were used as the FA substrate, the transacylation ratios obtained were 47.7 and 43.4%, respectively, higher than those for Lipase RM-IM. Lipase PL is therefore useful for introducing short-chain FAs into TAGs.

  13. Forms of n-3 (ALA, C18:3n-3 or DHA, C22:6n-3) Fatty Acids Affect Carcass Yield, Blood Lipids, Muscle n-3 Fatty Acids and Liver Gene Expression in Lambs.

    PubMed

    Ponnampalam, Eric N; Lewandowski, Paul A; Fahri, Fahri T; Burnett, Viv F; Dunshea, Frank R; Plozza, Tim; Jacobs, Joe L

    2015-11-01

    The effects of supplementing diets with n-3 alpha-linolenic acid (ALA) and docosahexaenoic acid (DHA) on plasma metabolites, carcass yield, muscle n-3 fatty acids and liver messenger RNA (mRNA) in lambs were investigated. Lambs (n = 120) were stratified to 12 groups based on body weight (35 ± 3.1 kg), and within groups randomly allocated to four dietary treatments: basal diet (BAS), BAS with 10.7 % flaxseed supplement (Flax), BAS with 1.8 % algae supplement (DHA), BAS with Flax and DHA (FlaxDHA). Lambs were fed for 56 days. Blood samples were collected on day 0 and day 56, and plasma analysed for insulin and lipids. Lambs were slaughtered, and carcass traits measured. At 30 min and 24 h, liver and muscle samples, respectively, were collected for determination of mRNA (FADS1, FADS2, CPT1A, ACOX1) and fatty acid composition. Lambs fed Flax had higher plasma triacylglycerol, body weight, body fat and carcass yield compared with the BAS group (P < 0.001). DHA supplementation increased carcass yield and muscle DHA while lowering plasma insulin compared with the BAS diet (P < 0.01). Flax treatment increased (P < 0.001) muscle ALA concentration, while DHA treatment increased (P < 0.001) muscle DHA concentration. Liver mRNA FADS2 was higher and CPT1A lower in the DHA group (P < 0.05). The FlaxDHA diet had additive effects, including higher FADS1 and ACOX1 mRNA than for the Flax or DHA diet. In summary, supplementation with ALA or DHA modulated plasma metabolites, muscle DHA, body fat and liver gene expression differently.

  14. Omega 3 fatty acids, gestation and pregnancy outcomes.

    PubMed

    Larqué, Elvira; Gil-Sánchez, Alfonso; Prieto-Sánchez, María Teresa; Koletzko, Berthold

    2012-06-01

    Pregnancy is associated with a reduction in maternal serum docosahexaenoic acid (DHA, 22:6 n-3) percentage and its possible depletion in the maternal store. Since the synthesis of long chain polyunsaturated fatty acids (LCPUFA) in the fetus and placenta is low, both the maternal LCPUFA status and placental function are critical for their supply to the fetus. Maternal supplementation with DHA up to 1 g/d or 2·7 g n-3 LCPUFA did not have any harmful effect. DHA supplementation in large studies slightly the enhanced length of gestation (by about 2 days), which may increase the birth weight by about 50 g at delivery. However no advice can be given on their general using to avoid preterm deliveries in low or high risk pregnancies. Several studies, but not all, reported improvements of the offspring in some neurodevelopmental tests as a result of DHA supplementation during gestation, or, at least, positive relationships between maternal or cord serum DHA percentages and cognitive skills in young children. The effect seems more evident in children with low DHA proportions, which raises the question of how to identify those mothers who might have a poor DHA status and who could benefit from such supplementation. Most studies on the effects of n-3 LCPUFA supplementation during pregnancy on maternal depression were judged to be of low-to-moderate quality, mainly due to small sample sizes and failure to adhere to Consolidated Standards of Reporting Trials guidelines. In contrast, the effects of n-3 LCPUFA supplementation on reducing allergic diseases in offspring are promising.

  15. ω-3 Fatty acids reverse lipotoxity through induction of autophagy in nonalcoholic fatty liver disease.

    PubMed

    Chen, Yi; Xu, Chengfu; Yan, Tianlian; Yu, Chaohui; Li, Youming

    2015-01-01

    The aim of this study was to evaluate the effect of ω-3 fatty acids on nonalcoholic fatty liver disease concerning hepatocyte lipid accumulation as well as apoptosis induced by free fatty acids (FFAs) and to explore the underlying mechanism involving autophagy. Hepatocytes were incubated with a mixture of free fatty acids (FFAs) to mimic in vitro lipotoxicity in the pathogenesis of nonalcoholic fatty liver disease, presented by lipid accumulation and cellular apoptosis. Chemical inhibitor or inducer of autophagy and genetic deficit cells, as well as ω-3 fatty acids were used as intervention. The autophagic role of ω-3 fatty acids was investigated using Western blot and immunofluorescence. The underlying mechanism of ω-3 fatty acids involving autophagy was preliminarily explored by quantitative real-time polymerase chain reaction and Western blot. FFAs induce lipid accumulation and apoptosis in hepatocytes. Inhibition or genetic defect of autophagy increases lipid accumulation induced by FFA, whereas induction acts inversely. ω-3 Fatty acids reduced lipid accumulation and inhibited apoptosis induced by FFA. ω-3 Fatty acids induced autophagy by downregulating stearoyl-CoA desaturase 1 expression in hepatocytes. ω-3 Fatty acids exert protective effects on hepatocytes against lipotoxicity through induction of autophagy, as demonstrated by inhibition of lipid accumulation and apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Engineering E. coli strain for conversion of short chain fatty acids to bioalcohols

    PubMed Central

    2013-01-01

    Background Recent progress in production of various biofuel precursors and molecules, such as fatty acids, alcohols and alka(e)nes, is a significant step forward for replacing the fossil fuels with renewable fuels. A two-step process, where fatty acids from sugars are produced in the first step and then converted to corresponding biofuel molecules in the second step, seems more viable and attractive at this stage. We have engineered an Escherichia coli strain to take care of the second step for converting short chain fatty acids into corresponding alcohols by using butyrate kinase (Buk), phosphotransbutyrylase (Ptb) and aldehyde/alcohol dehydrogenase (AdhE2) from Clostridium acetobutylicum. Results The engineered E. coli was able to convert butyric acid and other short chain fatty acids of chain length C3 to C7 into corresponding alcohols and the efficiency of conversion varied with different E. coli strain type. Glycerol proved to be a better donor of ATP and electron as compared to glucose for converting butyric acid to butanol. The engineered E. coli was able to tolerate up to 100 mM butyric acid and produced butanol with the conversion rate close to 100% under anaerobic condition. Deletion of native genes, such as fumarate reductase (frdA) and alcohol dehydrogenase (adhE), responsible for side products succinate and ethanol, which act as electron sink and could compete with butyric acid uptake, did not improve the butanol production efficiency. Indigenous acyl-CoA synthetase (fadD) was found to play no role in the conversion of butyric acid to butanol. Engineered E. coli was cultivated in a bioreactor under controlled condition where 60 mM butanol was produced within 24 h of cultivation. A continuous bioreactor with the provision of cell recycling allowed the continuous production of butanol at the average productivity of 7.6 mmol/l/h until 240 h. Conclusions E. coli engineered with the pathway from C. acetobutylicum could efficiently convert butyric acid

  17. Long-chain polyunsaturated fatty acids and the preterm infant: a case study in developmentally sensitive nutrient needs in the United States1234

    PubMed Central

    2016-01-01

    The vast majority of infant formulas in the United States contain the long-chain polyunsaturated fatty acids (PUFAs) docosahexaenoic acid (22:6n–3) and arachidonic acid (20:4n–6), which were first permitted by the US Food and Drug Administration in 2001. As a scientific case study, preclinical animal studies of these nutrients definitively influenced the design and interpretation of human clinical studies. Early studies were tied to the availability of test substances, and in hindsight suggest re-evaluation of the essential fatty acid concept in light of the totality of available evidence. Research in the 1950s established the essentiality of n–6 PUFAs for skin integrity; however, widespread recognition of the essentiality of n–3 PUFAs came decades later despite compelling evidence of their significance. Barriers to an understanding of the essentiality of n–3 PUFAs were as follows: 1) their role is in neural function, which is measured only with difficulty compared with skin lesions and growth faltering that are apparent for n–6 PUFAs; 2) the experimental use of vegetable oils as PUFA sources that contain the inefficiently used C18 PUFAs rather than the operative C20 and C22 PUFAs; 3) the shift from reliance on high-quality animal studies to define mechanisms that established the required nutrients in the first part of the 20th century to inherently challenging human studies. Advances in nutrition of premature infants require the best practices and opinions available, taking into account the totality of preclinical and clinical evidence. PMID:26791188

  18. A randomised cross-over trial in healthy adults indicating improved absorption of omega-3 fatty acids by pre-emulsification

    PubMed Central

    Garaiova, Iveta; Guschina, Irina A; Plummer, Sue F; Tang, James; Wang, Duolao; Plummer, Nigel T

    2007-01-01

    Background The health benefits of increased intakes of omega-3 fatty acids are well established but palatability often presents a problem. The process of emulsification is used in the food industry to provide a wider spectrum of use, often with the result of increased consumption. Moreover, as emulsification is an important step in the digestion and absorption of fats, the pre-emulsification process may enhance digestion and absorption. In this study the levels of plasma fatty acid and triacylglycerol (TAG) following the ingestion of either an oil mixture or an emulsified oil mixture have been compared. Methods In this randomised cross-over study, 13 volunteers received the oil mixture and 11 received the oil emulsion as part of an otherwise fat free meal. Blood samples were collected at 0, 1.5, 3, 4.5, 6, 7.5 and 9 hours after ingestion of oil, separated and stored at -20°C. Plasma triacylglycerols were assessed spectrophotometrically and fatty acids were determined by gas chromatography. Following a washout period of twenty days the procedure was repeated with the assignments reversed. Results The postprandial plasma TAG and the C18:3 (n-6), C18:3(n-3), C20:5(n-3) and C22:6 (n-3) polyunsaturated fatty acid (PUFA) levels for the emulsified oil group were increased significantly (P = 0.0182; P = 0.0493; P = 0.0137; P < 0.0001; P = 0.0355 respectively) compared with the non-emulsified oil group. The C16:0 and C18:0 saturated fatty acids, the C18:1 (n-9) monounsaturated fatty acid and the C18:2 PUFA were not significantly different for the oil and emulsified oil groups. Conclusion Pre-emulsification of an oil mixture prior to ingestion increases the absorption of longer chain more highly unsaturated fatty acids (especially eicosapentaenoic acid and docosahexaenoic acid) but does not affect absorption of shorter chain less saturated fatty acids, suggesting that pre-emulsification of fish oils may be a useful means of boosting absorption of these beneficial fatty

  19. Effect of long-chain Fatty acids on the binding of triflupromazine to human serum albumin: a spectrophotometric study.

    PubMed

    Kitamura, Keisuke; Takegami, Shigehiko; Tanaka, Rumi; Omran, Ahmed Ahmed; Kitade, Tatsuya

    2014-01-01

    Human serum albumin (HSA) in the blood binds long-chain fatty acids (LCFAs), and the number of bound LCFAs varies from 1 to 7 depending on the physical condition of the body. In this study, the influence of LCFA-HSA binding on drug-HSA binding was studied using triflupromazine (TFZ), a psychotropic phenothiazine drug, in a buffer (0.1 M NaCl, pH 7.40, 37°C) by a second-derivative spectrophotometric method which can suppress the residual background signal effects of HSA observed in the absorption spectra. The examined LCFAs were caprylic acid (CPA), lauric acid (LRA), oleic acid (OLA), and linoleic acid (LNA), respectively. Using the derivative intensity change of TFZ induced by the addition of HSA containing LCFA, the binding mode of TFZ was predicted to be a partition-like nonspecific binding. The binding constant (K M(-1)) showed an increase according to the LCFA content in HSA for LRA, OLA, and LNA up to an LCFA/HSA molar ratio of 3-4. However, at higher ratios the K value decreased, i.e. for OLA and LNA, at an LCFA/HSA ratio of 6-7, the K value decreased to 40% of the value for HSA alone. In contrast, CPA, having the shortest chain length (8 carbons) among the studied LCFAs, induced a 20% decrease in the K value regardless of its content in HSA. Since the pharmacological activity of a drug is closely related to the unbound drug concentration in the blood, the results of the present study are pharmaco-kinetically, pharmacologically, and clinically very important.

  20. Expression of the long-chain fatty acid receptor GPR120 in the gonadotropes of the mouse anterior pituitary gland.

    PubMed

    Moriyama, Ryutaro; Deura, Chikaya; Imoto, Shingo; Nose, Kazuhiro; Fukushima, Nobuyuki

    2015-01-01

    G-protein-coupled receptor 120 (GPR120) has been known to be a receptor of long-chain fatty acids. Here, we investigated GPR120 expression in the mouse pituitary gland via real-time PCR, in situ hybridization, and immunohistochemistry. GPR120 mRNA was abundantly expressed in the pituitary gland of ad-lib fed animals. In situ hybridization and immunohistochemistry revealed GPR120 expression in the gonadotropes of the anterior pituitary gland, but not in thyrotropes, somatotropes, lactotropes, corticotropes, melanotropes, and the posterior pituitary gland. Furthermore, 24 h of fasting induced an increase in GPR120 mRNA expression in the pituitary gland. These results demonstrate that GPR120 in mouse pituitary gonadotropes is upregulated by fasting and that it may play a role in controlling gonadotropin secretion.

  1. The effects of long-term diet and omega-3 fatty acid supplementation on coagulation factor VII and serum phospholipids with special emphasis on the R353Q polymorphism of the FVII gene.

    PubMed

    Lindman, Anja S; Pedersen, Jan I; Hjerkinn, Elsa M; Arnesen, Harald; Veierød, Marit B; Ellingsen, Ingrid; Seljeflot, Ingebjørg

    2004-06-01

    The aim of the present study was to investigate the effect of long-term diet and very long chain n-3 fatty acids (VLC n-3) intervention on plasma coagulation factor VII (FVII), choline-containing phospholipids (PC) and triglycerides (TG), especially related to the R353Q polymorphism of the FVII gene. The present investigation included 219 subjects from the Diet and Omega-3 Intervention Trial on atherosclerosis (DOIT), a 2x2 factorial designed study in elderly men with long-standing hypercholesterolemia. The subjects were randomly allocated to receive placebo capsules (corn oil) (control), placebo capsules and dietary advice ("Mediterranean type" diet), VLC n-3 capsules, or VLC n-3 capsules and dietary advice combined. The R353Q genotype and the levels of FVIIc, FVIIag, FVIIa, PC, and TG at baseline and after 6 months were determined. Diet intervention was followed by a significant reduction of 5.1% in the levels of FVIIag and 2.4 mU/ml in FVIIa (95% CI -7.4, -2.9, and -3.8, -1.1, respectively) (both p<0.001) compared to the no diet group, independent of genotype. No effects of diet intervention on FVIIc, PC or TG were observed. After VLC n-3 supplementation the TG levels were significantly reduced compared to placebo (p=0.01), whereas all FVII levels and PC remained unchanged. Dietary advice towards a "Mediterranean type" diet, but not VLC n-3 supplementation, was shown to reduce the levels of FVIIag and FVIIa after 6 months, independent of genotype. The results indicate the dietary advice to be more favourable in reducing this risk factor for CVD as compared to specific VLC n-3 supplementation.

  2. Use of supplemental long-chain omega-3 fatty acids and risk for cardiac death: An updated meta-analysis and review of research gaps.

    PubMed

    Maki, Kevin C; Palacios, Orsolya M; Bell, Marjorie; Toth, Peter P

    Randomized controlled trials (RCTs) assessing use of long-chain omega-3 polyunsaturated fatty acids (LC-OM3), primarily eicosapentaenoic acid, and/or docosahexaenoic acid have shown mixed results. The objectives of the study were to update and further explore the available RCT data regarding LC-OM3 supplementation and risk for cardiac death and to propose testable hypotheses for the mixed results obtained in RCTs regarding supplemental LC-OM3 use and cardiac risk. A literature search was conducted using PubMed and Ovid/MEDLINE for RCTs assessing LC-OM3 supplements or pharmaceuticals with intervention periods of at least 6 months and reporting on the outcome of cardiac death. Meta-analysis was used to compare cumulative frequencies of cardiac death events between the LC-OM3 and control groups, including sensitivity and subset analyses. Fourteen RCTs were identified for the primary analysis (71,899 subjects). In the LC-OM3 arms, 1613 cardiac deaths were recorded (4.48% of subjects), compared with 1746 cardiac deaths in the control groups (4.87% of subjects). The pooled relative risk estimate showed an 8.0% (95% confidence interval 1.6%, 13.9%, P = .015) lower risk in the LC-OM3 arms vs controls. Subset analyses showed numerically larger effects (12.9%-29.1% lower risks, all P < .05) in subsets of RCTs with eicosapentaenoic acid + docosahexaenoic acid dosages >1 g/d and higher risk samples (secondary prevention, baseline mean or median triglycerides ≥150 mg/dL, low-density lipoprotein cholesterol ≥130 mg/dL, statin use <40% of subjects). Heterogeneity was low (I 2  ≤ 15.5%, P > .05) for the primary and subset analyses. LC-OM3 supplementation is associated with a modest reduction in cardiac death. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  3. Genetics Home Reference: long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency Screening, Technology, and Research in Genetics Virginia Department of Health (PDF) Patient Support and Advocacy Resources (4 links) Children Living with Inherited Metabolic Diseases (CLIMB) Children's Mitochondrial ...

  4. Synthesis and evaluation of fatty acid amides on the N-oleoylethanolamide-like activation of peroxisome proliferator activated receptor α.

    PubMed

    Takao, Koichi; Noguchi, Kaori; Hashimoto, Yosuke; Shirahata, Akira; Sugita, Yoshiaki

    2015-01-01

    A series of fatty acid amides were synthesized and their peroxisome proliferator-activated receptor α (PPAR-α) agonistic activities were evaluated in a normal rat liver cell line, clone 9. The mRNAs of the PPAR-α downstream genes, carnitine-palmitoyltransferase-1 and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase, were determined by real-time reverse transcription-polymerase chain reaction (RT-PCR) as PPAR-α agonistic activities. We prepared nine oleic acid amides. Their PPAR-α agonistic activities were, in decreasing order, N-oleoylhistamine (OLHA), N-oleoylglycine, Oleamide, N-oleoyltyramine, N-oleoylsertonin, and Olvanil. The highest activity was found with OLHA. We prepared and evaluated nine N-acylhistamines (N-acyl-HAs). Of these, OLHA, C16:0-HA, and C18:1Δ(9)-trans-HA showed similar activity. Activity due to the different chain length of the saturated fatty acid peaked at C16:0-HA. The PPAR-α antagonist, GW6471, inhibited the induction of the PPAR-α downstream genes by OLHA and N-oleoylethanolamide (OEA). These data suggest that N-acyl-HAs could be considered new PPAR-α agonists.

  5. Effect of n-3 polyunsaturated fatty acids on the lipidic profile of healthy Mexican volunteers.

    PubMed

    Carvajal, O; Angulo, O

    1997-01-01

    The effect of n-3 polyunsaturated fatty acids on the serum lipid profile in a Mexican population was evaluated. Three g of salmon oil was the daily intake during four weeks. Total cholesterol, triglycerides, low density lipoproteins, high density lipoproteins and erythrocyte fatty acid composition were analyzed. The hypertriglyceridemic group showed a statistically significant (p < 0.05) reduction of triglycerides and significant (p < 0.01) elevation of high density lipoproteins. The hypercholesterolemic group reduced significantly the levels of cholesterol and triglycerides; high density lipoproteins were augmented by 11.6%. The hypolipidemic effect of n-3 polyunsaturated fatty acids was manifest in the Mexican volunteers under the conditions here evaluated.

  6. N-terminal fatty acylated His-dPhe-Arg-Trp-NH(2) tetrapeptides: influence of fatty acid chain length on potency and selectivity at the mouse melanocortin receptors and human melanocytes.

    PubMed

    Todorovic, Aleksandar; Holder, Jerry Ryan; Bauzo, Rayna M; Scott, Joseph Walker; Kavanagh, Renny; Abdel-Malek, Zalfa; Haskell-Luevano, Carrie

    2005-05-05

    The melanocortin system is involved in the regulation of a diverse number of physiologically important pathways including pigmentation, feeding behavior, weight and energy homeostasis, inflammation, and sexual function. All the endogenous melanocortin agonist ligands possess the conserved His-Phe-Arg-Trp tetrapeptide sequence that is postulated to be important for melanocortin receptor molecular recognition and stimulation. Previous studies by our laboratory resulted in the discovery that increasing alkyl chain length at the N-terminal "capping" region of the His-dPhe-Arg-Trp-NH(2) tetrapeptide resulted in a 100-fold increased melanocortin receptor agonist potency. This study was undertaken to systematically evaluate the pharmacological effects of increasing N-capping alkyl chain length of the CH(3)(CH(2))(n)CO-His-dPhe-Arg-Trp-NH(2) (n = 6-16) tetrapeptide template. Twelve analogues were synthesized and pharmacologically characterized at the mouse melanocortin receptors MC1R and MC3R-MC5R and human melanocytes known to express the MC1R. These peptides demonstrated melanocortin receptor selectivity profiles different from those of previously published tetrapeptides. The most notable results of enhanced ligand potency (20- to 200-fold) and receptor selectivity were observed at the MC1R. Tetrapeptides that possessed greater than nine alkyl groups were superior to alpha-MSH in terms of the stimulation of human melanocyte tyrosinase activity. Additionally, the n-pentadecanoyl derivative had a residual effect on tyrosinase activity that existed for at least 4 days after the peptide was removed from the human melanocyte culture medium. These data demonstrate the utility, potency, and residual effect of melanocortin tetrapeptides by adding N-terminal fatty acid moieties.

  7. Impact of Omega-3 Fatty Acids on the Gut Microbiota

    PubMed Central

    Farinon, Barbara

    2017-01-01

    Long-term dietary habits play a crucial role in creating a host-specific gut microbiota community in humans. Despite the many publications about the effects of carbohydrates (prebiotic fibers), the impact of dietary fats, such as omega-3 polyunsaturated fatty acids (PUFAs), on the gut microbiota is less well defined. The few studies completed in adults showed some common changes in the gut microbiota after omega-3 PUFA supplementation. In particular, a decrease in Faecalibacterium, often associated with an increase in the Bacteroidetes and butyrate-producing bacteria belonging to the Lachnospiraceae family, has been observed. Coincidentally, a dysbiosis of these taxa is found in patients with inflammatory bowel disease. Omega-3 PUFAs can exert a positive action by reverting the microbiota composition in these diseases, and increase the production of anti-inflammatory compounds, like short-chain fatty acids. In addition, accumulating evidence in animal model studies indicates that the interplay between gut microbiota, omega-3 fatty acids, and immunity helps to maintain the intestinal wall integrity and interacts with host immune cells. Finally, human and animal studies have highlighted the ability of omega-3 PUFAs to influence the gut–brain axis, acting through gut microbiota composition. From these findings, the importance of the omega-3 connection to the microbiota emerges, encouraging further studies. PMID:29215589

  8. Medium-chain fatty acid synthesis in lactating-rabbit mammary gland. Intracellular concentration and specificity of medium-chain acyl thioester hydrolase.

    PubMed Central

    Knudsen, J

    1979-01-01

    The concentration of medium-chain acyl thioester hydrolase and of fatty acid synthetase was determined by rocket immunoelectrophoresis in nine different particle-free supernatant fractions from lactating-rabbit mammary gland. The molar ratio of the hydrolase to fatty acid synthetase was 1.99 +/- 0.66 (mean +/- S.D.). A rate-limiting concentration of malonyl-CoA was required to ensure the predominant synthesis of medium-chain fatty acids when 2 mol of the hydrolase was added per mol of fatty acid synthetase. The interaction of the hydrolase with fatty acid synthetase was concentration-dependent, though an optimum concentration of hydrolase to synthetase could not be obtained. The lactating-rabbit mammary gland hydrolase altered the pattern of fatty acids synthesized by fatty acid synthetases prepared from cow, goat, sheep and rabbit lactating mammary glands, rabbit liver and cow adipose tissue. PMID:574008

  9. Identification and functional characterisation of genes encoding the omega-3 polyunsaturated fatty acid biosynthetic pathway from the coccolithophore Emiliania huxleyi.

    PubMed

    Sayanova, Olga; Haslam, Richard P; Calerón, Monica Venegas; López, Noemi Ruiz; Worthy, Charlotte; Rooks, Paul; Allen, Michael J; Napier, Johnathan A

    2011-05-01

    The Prymnesiophyceae coccolithophore Emiliania huxleyi is one of the most abundant alga in our oceans and therefore plays a central role in marine foodwebs. E. huxleyi is notable for the synthesis and accumulation of the omega-3 long chain polyunsaturated fatty acid docosahexaenoic acid (DHA; 22:6Δ(4,7,10,13,16,19), n-3) which is accumulated in fish oils and known to have health-beneficial properties to humans, preventing cardiovascular disease and related pathologies. Here we describe the identification and functional characterisation of the five E. huxleyi genes which direct the synthesis of docosahexaenoic acid in this alga. Surprisingly, E. huxleyi does not use the conventional Δ6-pathway, instead using the alternative Δ8-desaturation route which has previously only been observed in a few unrelated microorganisms. Given that E. huxleyi accumulates significant levels of the Δ6-desaturated fatty acid stearidonic acid (18:4Δ(6,9,12,15), n-3), we infer that the biosynthesis of DHA is likely to be metabolically compartmentalised from the synthesis of stearidonic acid. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation

    PubMed Central

    Jump, Donald B.; Torres-Gonzalez, Moises; Olson, L. Karl

    2010-01-01

    Acetyl CoA carboxylase (ACC1 & ACC2) generates malonyl CoA, a substrate for de novo lipogenesis (DNL) and an inhibitor of mitochondrial fatty acid β-oxidation (FAO). Malonyl CoA is also a substrate for microsomal fatty acid elongation, an important pathway for saturated (SFA), mono- (MUFA) and polyunsaturated fatty acid (PUFA) synthesis. Despite the interest in ACC as a target for obesity and cancer therapy, little attention has been given to the role ACC plays in long chain fatty acid synthesis. This report examines the effect of pharmacological inhibition of ACC on DNL & palmitate (16:0) and linoleate (18:2,n-6) metabolism in HepG2 and LnCap cells. The ACC inhibitor, soraphen A, lowers cellular malonyl CoA, attenuates DNL and the formation of fatty acid elongation products derived from exogenous fatty acids, i.e., 16:0 & 18:2,n-6; IC50 ~ 5 nM. Elevated expression of fatty acid elongases (Elovl5, Elovl6) or desaturases (FADS1, FADS2) failed to override the soraphen A effect on SFA, MUFA or PUFA synthesis. Inhibition of fatty acid elongation leads to the accumulation of 16- and 18-carbon unsaturated fatty acids derived from 16:0 and 18:2,n-6, respectively. Pharmacological inhibition of ACC activity will not only attenuate DNL and induce FAO, but will also attenuate the synthesis of very long chain saturated, mono- and polyunsaturated fatty acids. PMID:21184748

  11. Increased blood pressure later in life may be associated with perinatal n-3 fatty acid deficiency.

    PubMed

    Armitage, James A; Pearce, Adrian D; Sinclair, Andrew J; Vingrys, Algis J; Weisinger, Richard S; Weisinger, Harrison S

    2003-04-01

    Hypertension is a major risk factor for cardiovascular and cerebrovascular disease. Previous work in both animals and humans with high blood pressure has demonstrated the antihypertensive effects of n-3 polyunsaturated fatty acids (PUFA), although it is not known whether these nutrients are effective in preventing hypertension. The predominant n-3 PUFA in the mammalian nervous system, docosahexaenoic acid (DHA), is deposited into synaptic membranes at a high rate during the perinatal period, and recent observations indicate that the perinatal environment is important for the normal development of blood pressure control. This study investigated the importance of perinatal n-3 PUFA supply in the control of blood pressure in adult Sprague-Dawley rats. Pregnant rat dams were fed semisynthetic diets that were either deficient in (DEF) or supplemented with (CON) n-3 PUFA. Offspring were fed the same diets as their mothers until 9 wk; then, half of the rats from each group were crossed over to the opposite diet creating four groups, i.e., CON-CON; CON-DEF; DEF-DEF, DEF-CON. Mean arterial blood pressures (MAP) were measured directly, at 33 wk of age, by cannulation of the femoral artery. The phospholipid fatty acid profile of the hypothalamic region was determined by capillary gas-liquid chromatography. The tissue phospholipid fatty acid profile reflected the diet that the rats were consuming at the time of testing. Both groups receiving DEF after 9 wk of age (i.e., DEF-DEF and CON-DEF) had similar profiles with a reduction in DHA levels of 30%, compared with rats receiving CON (i.e., CON-CON and DEF-CON). DEF-DEF rats had significantly raised MAP compared with all other groups, with differences as great as 17 mm Hg. DEF-CON rats had raised MAP compared with CON-CON rats, and DEF-DEF rats had higher MAP than CON-DEF rats, despite the fact that their respective fatty acid profiles were not different. These findings indicate that inadequate levels of DHA in the perinatal

  12. Recent developments in altering the fatty acid composition of ruminant-derived foods.

    PubMed

    Shingfield, K J; Bonnet, M; Scollan, N D

    2013-03-01

    There is increasing evidence to indicate that nutrition is an important factor involved in the onset and development of several chronic human diseases including cancer, cardiovascular disease (CVD), type II diabetes and obesity. Clinical studies implicate excessive consumption of medium-chain saturated fatty acids (SFA) and trans-fatty acids (TFA) as risk factors for CVD, and in the aetiology of other chronic conditions. Ruminant-derived foods are significant sources of medium-chain SFA and TFA in the human diet, but also provide high-quality protein, essential micronutrients and several bioactive lipids. Altering the fatty acid composition of ruminant-derived foods offers the opportunity to align the consumption of fatty acids in human populations with public health policies without the need for substantial changes in eating habits. Replacing conserved forages with fresh grass or dietary plant oil and oilseed supplements can be used to lower medium-chain and total SFA content and increase cis-9 18:1, total conjugated linoleic acid (CLA), n-3 and n-6 polyunsaturated fatty acids (PUFA) to a variable extent in ruminant milk. However, inclusion of fish oil or marine algae in the ruminant diet results in marginal enrichment of 20- or 22-carbon PUFA in milk. Studies in growing ruminants have confirmed that the same nutritional strategies improve the balance of n-6/n-3 PUFA, and increase CLA and long-chain n-3 PUFA in ruminant meat, but the potential to lower medium-chain and total SFA is limited. Attempts to alter meat and milk fatty acid composition through changes in the diet fed to ruminants are often accompanied by several-fold increases in TFA concentrations. In extreme cases, the distribution of trans 18:1 and 18:2 isomers in ruminant foods may resemble that of partially hydrogenated plant oils. Changes in milk fat or muscle lipid composition in response to diet are now known to be accompanied by tissue-specific alterations in the expression of one or more

  13. Bio-based phenolic-branched-chain fatty acid isomers synthesized from vegetable oils and natural monophenols using modified h+-ferrierite zeolite

    USDA-ARS?s Scientific Manuscript database

    A new group of phenolic branched-chain fatty acids (n-PBC-FA), hybrid molecules of natural monophenols (i.e., thymol, carvacrol and creosote) and mixed fatty acid (i.e., derived from soybean and safflower oils), were efficiently produced through a process known as arylation. The reaction involves a...

  14. Synthesis of Very-Long-Chain Fatty Acids in the Epidermis Controls Plant Organ Growth by Restricting Cell Proliferation

    PubMed Central

    Nobusawa, Takashi; Okushima, Yoko; Nagata, Noriko; Kojima, Mikiko; Sakakibara, Hitoshi; Umeda, Masaaki

    2013-01-01

    Plant organ growth is controlled by inter-cell-layer communication, which thus determines the overall size of the organism. The epidermal layer interfaces with the environment and participates in both driving and restricting growth via inter-cell-layer communication. However, it remains unknown whether the epidermis can send signals to internal tissue to limit cell proliferation in determinate growth. Very-long-chain fatty acids (VLCFAs) are synthesized in the epidermis and used in the formation of cuticular wax. Here we found that VLCFA synthesis in the epidermis is essential for proper development of Arabidopsis thaliana. Wild-type plants treated with a VLCFA synthesis inhibitor and pasticcino mutants with defects in VLCFA synthesis exhibited overproliferation of cells in the vasculature or in the rib zone of shoot apices. The decrease of VLCFA content increased the expression of IPT3, a key determinant of cytokinin biosynthesis in the vasculature, and, indeed, elevated cytokinin levels. These phenotypes were suppressed in ipt3;5;7 triple mutants, and also by vasculature-specific expression of cytokinin oxidase, which degrades active forms of cytokinin. Our results imply that VLCFA synthesis in the epidermis is required to suppress cytokinin biosynthesis in the vasculature, thus fine-tuning cell division activity in internal tissue, and therefore that shoot growth is controlled by the interaction between the surface (epidermis) and the axis (vasculature) of the plant body. PMID:23585732

  15. Camelina meal increases egg n-3 fatty acid content without altering egg quality or production in laying hens

    USDA-ARS?s Scientific Manuscript database

    Camelina sativa is an oilseed plant rich in n-3 and n-6-fatty acids and extruding defatted seed meal results in high protein meal (~40%) containing residual n-3 fatty acids. We examined the effects of feeding extruded defatted camelina seed meal to commercial laying hens on egg production, quality, ...

  16. Omega-3 fatty acids for cystic fibrosis.

    PubMed

    Oliver, Colleen; Watson, Helen

    2016-01-05

    study (43 participants) demonstrated a significant increase in serum phospholipid essential fatty acid content and a significant drop in the n-6/n-3 fatty acid ratio following omega-3 fatty acid supplementation compared to control. The longer-term study (17 participants) demonstrated a significant increase in essential fatty acid content in neutrophil membranes and a significant decrease in the leukotriene B4 to leukotriene B5 ratio in participants taking omega-3 supplements compared to placebo. This review found that regular omega-3 supplements may provide some benefits for people with cystic fibrosis with relatively few adverse effects, although evidence is insufficient to draw firm conclusions or recommend routine use of these supplements in people with cystic fibrosis. This review has highlighted the lack of data for many outcomes meaningful to people with or making treatment decisions about cystic fibrosis. A large, long-term, multicentre, randomised controlled study is needed to determine any significant therapeutic effect and to assess the influence of disease severity, dosage and duration of treatment. Future researchers should note the need for additional pancreatic enzymes.

  17. Differential effects of n-3 polyunsaturated fatty acids on metabolic control and vascular reactivity in the type 2 diabetic ob/ob mouse.

    PubMed

    Mustad, Vikkie A; Demichele, Stephen; Huang, Yung-Sheng; Mika, Amanda; Lubbers, Nathan; Berthiaume, Nathalie; Polakowski, Jim; Zinker, Brad

    2006-10-01

    Diets rich in monounsaturated fatty acids (MUFA) are recommended for individuals with type 2 diabetes mellitus (T2DM). The American Heart Association recommends increasing intakes of n-3 polyunsaturated fatty acids (PUFA) to reduce the risk of vascular disease in high-risk individuals; however, the long-term effects of these bioactive fatty acids on glucose metabolism in insulin resistance are controversial. The present studies were conducted to evaluate the effects of diets rich in both MUFA and alpha linolenic acid (C18:3n-3, ALA), eicosapentaenoic acid (C20:5n-3, EPA), or docosahexaenoic acid (C22:6n-3, DHA), on glycemic control and other parameters related to vascular health in a mouse model of T2DM and insulin resistance. Male ob/ob mice (n = 15 per treatment) were fed 1 of 4 lipid-modified formula diets (LFDs) for 4 weeks: (1) MUFA control, (2) ALA blend, (3) EPA blend, and (4) DHA blend. A portion of a MUFA-rich lipid blend in the control LFD was replaced with 11% to 14% energy as n-3 PUFA. After 4 weeks, plasma glucose response to a standard meal (1.5 g carbohydrate/kg body weight) and insulin challenge (2 U/kg body weight, IP) was assessed, and samples were collected for analysis of glucose, insulin, and lipids. Vascular reactivity of isolated aortic rings was assessed in an identical follow-up study. The results showed that insulin-resistant mice fed an LFD with EPA and/or DHA blends had significantly (P < .05) lower triglycerides and free fatty acids, but insulin sensitivity and fasting plasma glucose were not improved. However, mice fed with the ALA blend had significantly improved insulin sensitivity when compared to those fed with other LFD (P < .05). Animals fed an LFD with n-3 PUFA from marine or plant sources showed significantly improved vascular responses as compared with the MUFA-rich LFD (E(max), P < .05) and ob/ob reference mice consuming chow (E(max) and pEC(50), P < .05). In summary, long-term consumption of LFD with n-3 PUFAs improved blood

  18. n-3 Polyunsaturated fatty acids in animal models with neuroinflammation.

    PubMed

    Orr, Sarah K; Trépanier, Marc-Olivier; Bazinet, Richard P

    2013-01-01

    Neuroinflammation is present in the majority of acute and chronic neurological disorders. Excess or prolonged inflammation in the brain is thought to exacerbate neuronal damage and loss. Identifying modulators of neuroinflammation is an active area of study since it may lead to novel therapies. Omega-3 polyunsaturated fatty acids (n-3 PUFA) are anti-inflammatory in many non-neural tissues; their role in neuroinflammation is less studied. This review summarizes the relationship between n-3 PUFA and brain inflammation in animal models of brain injury and aging. Evidence by and large shows protective effects of n-3 PUFA in models of sickness behavior, stroke, aging, depression, Parkinson's disease, diabetes, and cytokine- and irradiation-induced cognitive impairments. However, rigorous studies that test the direct effects of n-3 PUFA in neuroinflammation in vivo are lacking. Future research in this area is necessary to determine if, and if so which, n-3 PUFA directly target brain inflammatory pathways. n-3 PUFA bioactive metabolites may provide novel therapeutic targets for neurological disorders with a neuroinflammatory component. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The omega-3 fatty acid nutritional landscape: health benefits and sources.

    PubMed

    Deckelbaum, Richard J; Torrejon, Claudia

    2012-03-01

    Dietary fatty acids (FA) are increasingly recognized as major biologic regulators and have properties that relate to health outcomes and disease. The longer chain, more bioactive (n-6) (or omega-6) FA and (n-3) (or omega-3) FA share similar elongation and desaturation enzymes in their conversion from the essential (n-6) FA, linoleic acid, and (n-3) FA, α-linolenic acid (ALA). Conversion from these essential FA is very inefficient. However, now for the (n-3) FA series, soy oil can be enriched with (n-3) stearidonic acid (SDA) to allow for much more efficient conversion to longer chain EPA. EPA and the longer chain DHA possess distinct physical and biological properties that generally impart properties to cells and tissue, which underlie their ability to promote health and prevent disease. Although active in a number of areas of human biology, mechanisms of action of EPA and DHA are perhaps best defined in cardiovascular disease. There is concern that to reach the intake recommendations of EPA and DHA, their supply from cold water fish will be insufficient. Gaps in understanding mechanisms of action of (n-3) FA in a number of health and disease areas as well as optimal sources and intake levels for each need to be defined by further research. Because of the inefficient conversion of ALA, the appearance of SDA in enriched soy oil offers a biologically effective and cost effective approach to providing a sustainable plant source for (n-3) FA in the future.

  20. Mechanisms by Which Dietary Fatty Acids Regulate Mitochondrial Structure-Function in Health and Disease.

    PubMed

    Sullivan, E Madison; Pennington, Edward Ross; Green, William D; Beck, Melinda A; Brown, David A; Shaikh, Saame Raza

    2018-05-01

    Mitochondria are the energy-producing organelles within a cell. Furthermore, mitochondria have a role in maintaining cellular homeostasis and proper calcium concentrations, building critical components of hormones and other signaling molecules, and controlling apoptosis. Structurally, mitochondria are unique because they have 2 membranes that allow for compartmentalization. The composition and molecular organization of these membranes are crucial to the maintenance and function of mitochondria. In this review, we first present a general overview of mitochondrial membrane biochemistry and biophysics followed by the role of different dietary saturated and unsaturated fatty acids in modulating mitochondrial membrane structure-function. We focus extensively on long-chain n-3 (ω-3) polyunsaturated fatty acids and their underlying mechanisms of action. Finally, we discuss implications of understanding molecular mechanisms by which dietary n-3 fatty acids target mitochondrial structure-function in metabolic diseases such as obesity, cardiac-ischemia reperfusion injury, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and select cancers.