Sample records for n-3 pufa-deficient diet

  1. A butter diet induces higher levels of n-3 PUFA and of n-3/n-6 PUFA ratio in rat serum and hearts than a safflower oil diet.

    PubMed

    Hirai, K; Ozeki, Y; Nakano, T; Takezoe, R; Nakanishi, M; Asano, Y; Higuchi, H

    2001-01-01

    The effects of a 47-week diet of butter or safflower oil as fat in combination with casein or soy protein as protein were observed for the serum concentrations of lipids and fatty acid compositions in rat serum and heart. Serum total cholesterol (Chol) did not differ among the four experimental diet groups. In the butter groups, significantly higher low-density lipoprotein (LDL)-Chol and lower high-density lipoprotein (HDL)-Chol were observed than in the safflower oil groups (p<0.005, respectively). Higher levels of α-tocopherol were found in the butter groups than in the safflower oil groups (p<0.05) and in the casein groups than in the soy protein groups (p<0.01). In comparison with the safflower oil groups, the butter groups showed higher n-3 polyunsaturated fatty acids (PUFA) contents and lower n-6 PUFA contents in serum and the hearts (p<0.005). The ratios of n-3/n-6 PUFA in the butter groups in serum, 0.26 and 0.18, and in the hearts, 0.37 and 0.36, (butter-casein diet and butter-soy protein diet, respectively) were higher than those of the safflower oil groups of under 0.01 in serum and 0.02 and 0.03 in the hearts (safflower oil-casein diet and safflower oil-soy protein diet, respectively) (p<0.005). In the soy protein groups, higher n-3 PUFA contents in the hearts were found than those of the casein groups (p<0.05). This study suggested that the butter diet induces higher levels of n-3 PUFA and a higher n-3/n-6 PUFA ratio than the safflower oil diet in rat serum and hearts over a long feeding period.

  2. Marginal Vitamin B-6 Deficiency Decreases Plasma (n-3) and (n-6) PUFA Concentrations in Healthy Men and Women123

    PubMed Central

    Zhao, Mei; Lamers, Yvonne; Ralat, Maria A.; Coats, Bonnie S.; Chi, Yueh-Yun; Muller, Keith E.; Bain, James R.; Shankar, Meena N.; Newgard, Christopher B.; Stacpoole, Peter W.; Gregory, Jesse F.

    2012-01-01

    Previous animal studies showed that severe vitamin B-6 deficiency altered fatty acid profiles of tissue lipids, often with an increase of linoleic acid and a decrease of arachidonic acid. However, little is known about the extent to which vitamin B-6 deficiency affects human fatty acid profiles. The aim of this study was to determine the effects of marginal vitamin B-6 deficiency on fatty acid profiles in plasma, erythrocytes, and peripheral blood mononuclear cells (PBMC) of healthy adults fed a 28-d, low-vitamin B-6 diet. Healthy participants (n = 23) received a 2-d, controlled, vitamin B-6–adequate diet followed by a 28-d, vitamin B-6–restricted diet to induce a marginal deficiency. Plasma HDL and LDL cholesterol concentrations, FFA concentrations, and erythrocyte and PBMC membrane fatty acid compositions did not significantly change from baseline after the 28-d restriction. Plasma total arachidonic acid, EPA, and DHA concentrations decreased from (mean ± SD) 548 ± 96 to 490 ± 94 μmol/L, 37 ± 13 to 32 ± 13 μmol/L, and 121 ± 28 to 109 ± 28 μmol/L [positive false discovery rate (pFDR) adjusted P < 0.05], respectively. The total (n-6):(n-3) PUFA ratio in plasma exhibited a minor increase from 15.4 ± 2.8 to 16.6 ± 3.1 (pFDR adjusted P < 0.05). These data indicate that short-term vitamin B-6 restriction decreases plasma (n-3) and (n-6) PUFA concentrations and tends to increase the plasma (n-6):(n-3) PUFA ratio. Such changes in blood lipids may be associated with the elevated risk of cardiovascular disease in vitamin B-6 insufficiency. PMID:22955512

  3. Impact of diesel exhaust exposure on the liver of mice fed on omega-3 polyunsaturated fatty acids-deficient diet.

    PubMed

    Umezawa, Masakazu; Nakamura, Masayuki; El-Ghoneimy, Ashraf A; Onoda, Atsuto; Shaheen, Hazem M; Hori, Hiroshi; Shinkai, Yusuke; El-Sayed, Yasser S; El-Far, Ali H; Takeda, Ken

    2018-01-01

    Exposure to diesel exhaust (DE) exacerbates non-alcoholic fatty liver disease, and may systemically affect lipid metabolism. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have anti-inflammatory activity and suppresses hepatic triacylglycerol accumulation, but many daily diets are deficient in this nutrient. Therefore, the effect of DE exposure in mice fed n-3 PUFA-deficient diet was investigated. Mice were fed control chow or n-3 PUFA-deficient diet for 4 weeks, then exposed to clean air or DE by inhalation for further 4 weeks. Liver histology, plasma parameters, and expression of fatty acid synthesis-related genes were evaluated. N-3 PUFA-deficient diet increased hepatic lipid droplets accumulation and expression of genes promoting fatty acid synthesis: Acaca, Acacb, and Scd1. DE further increased the plasma leptin and the expression of fatty acid synthesis-related genes: Acacb, Fasn, and Scd1. N-3 PUFA-deficient diet and DE exposure potentially enhanced hepatic fatty acid synthesis and subsequently accumulation of lipid droplets. The combination of low-dose DE exposure and intake of n-3 PUFA-deficient diet may be an additional risk factor for the incidence of non-alcoholic fatty liver disease. The present study suggests an important mechanism for preventing toxicity of DE on the liver through the incorporation of n-3 PUFAs in the diet. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A low omega-6 polyunsaturated fatty acid (n-6 PUFA) diet increases omega-3 (n-3) long chain PUFA status in plasma phospholipids in humans.

    PubMed

    Wood, K E; Lau, A; Mantzioris, E; Gibson, R A; Ramsden, C E; Muhlhausler, B S

    2014-04-01

    This study aimed to determine the effect of reducing the dietary linoleic acid (LA) intake from ~5% to <2.5% energy (%E) on n-3 long chain PUFA (LCPUFA) status in humans. Thirty-six participants followed a <2.5%E LA diet for 4 weeks. Nutrient intakes were estimated from diet diaries and blood samples were collected for assessment of fatty acid composition in plasma and erythrocyte phospholipids. LA intakes were reduced from 4.6%E to 2%E during the low LA intervention (P<0.001) while n-3 LCPUFA intakes were unchanged. LA and total n-6 PUFA content of plasma and erythrocyte phospholipids were significantly reduced after the low LA diet phase (P<0.001). The n-3 LCPUFA content of plasma phospholipids was significantly increased after the low LA diet compared to baseline (6.22% vs. 5.53%, P<0.001). These data demonstrate that reducing LA intake for 4 weeks increases n-3 LCPUFA status in humans in the absence of increased n-3 LCPUFA intake. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Neuropathological Responses to Chronic NMDA in Rats Are Worsened by Dietary n-3 PUFA Deprivation but Are Not Ameliorated by Fish Oil Supplementation

    PubMed Central

    Kim, Hyung-Wook; Taha, Ameer Y.; Cheon, Yewon; Igarashi, Miki; Rapoport, Stanley I.; Rao, Jagadeesh S.

    2014-01-01

    Background Dietary long-chain n-3 polyunsaturated fatty acid (PUFA) supplementation may be beneficial for chronic brain illnesses, but the issue is not agreed on. We examined effects of dietary n-3 PUFA deprivation or supplementation, compared with an n-3 PUFA adequate diet (containing alpha-linolenic acid [18:3 n-3] but not docosahexaenoic acid [DHA, 22:6n-3]), on brain markers of lipid metabolism and excitotoxicity, in rats treated chronically with NMDA or saline. Methods Male rats after weaning were maintained on one of three diets for 15 weeks. After 12 weeks, each diet group was injected i.p. daily with saline (1 ml/kg) or a subconvulsive dose of NMDA (25 mg/kg) for 3 additional weeks. Then, brain fatty acid concentrations and various markers of excitotoxicity and fatty acid metabolism were measured. Results Compared to the diet-adequate group, brain DHA concentration was reduced, while n-6 docosapentaenoic acid (DPA, 22:5n-6) concentration was increased in the n-3 deficient group; arachidonic acid (AA, 20:4n-6) concentration was unchanged. These concentrations were unaffected by fish oil supplementation. Chronic NMDA increased brain cPLA2 activity in each of the three groups, but n-3 PUFA deprivation or fish oil did not change cPLA2 activity or protein compared with the adequate group. sPLA2 expression was unchanged in the three conditions, whereas iPLA2 expression was reduced by deprivation but not changed by supplementation. BDNF protein was reduced by NMDA in N-3 PUFA deficient rats, but protein levels of IL-1β, NGF, and GFAP did not differ between groups. Conclusions N-3 PUFA deprivation significantly worsened several pathological NMDA-induced changes produced in diet adequate rats, whereas n-3 PUFA supplementation did not affect NMDA induced changes. Supplementation may not be critical for this measured neuropathology once the diet has an adequate n-3 PUFA content. PMID:24798187

  6. Brain histological changes in young mice submitted to diets with different ratios of n-6/n-3 polyunsaturated fatty acids during maternal pregnancy and lactation.

    PubMed

    Tian, Chunyu; Fan, Chaonan; Liu, Xinli; Xu, Feng; Qi, Kemin

    2011-10-01

    N-3 polyunsaturated fatty acids (n-3 PUFAs) are essential for brain development and function, but the appropriate quantity of dietary n-3 PUFAs and ratio of n-6/n-3 PUFAs have not been clearly determined. In this study, we investigated the effects of different dietary ratios of n-6/n-3 PUFAs on the brain structural development in mice and the expression of associated transcription factors. C57 BL/6J mice were fed with one of two categories of n-3 PUFA-containing diets (a flaxseed oil diet and a flaxseed/fish oil mixed diet) or an n-3 PUFA-deficient diet. For each of the n-3 PUFA diets, flaxseed oil or flaxseed/fish oil was combined with other oils to yield three different n-6/n-3 ratios, which ranged from 15.7:1 to 1.6:1. The feeding regimens began two months before mouse conception and continued throughout lactation for new pups. As compared with the n-3 PUFA-deficient diet, both the flaxseed oil n-3 PUFA diets and the flaxseed/fish oil n-3 PUFA diets significantly increased the expression levels of brain neuron-specific enolase, glial fibrillary acidic protein and myelin basic protein, somewhat dose-dependently, in new pup mice at 21 d and 42 d of age. The expression of PPAR-γ in the brains of pup mice was increased only at 7 d of age with the n-3 PUFA diet, and no changes in the expression of PPAR-α and PPAR-β were found among all the diet groups. These results suggest that the higher intake amount of n-3 PUFAs with a low ratio of n-6/n-3 PUFAs at about 1-2:1, supplied during both maternal pregnancy and lactation, may be more beneficial for early brain development, and PPAR-γ may act in one of the pathways by which n-3 PUFAs promote early brain development. Copyright © 2011 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  7. No consequences of dietary n-3 polyunsaturated fatty acid deficiency on the severity of scopolamine-induced dry eye.

    PubMed

    Viau, Sabrina; Pasquis, Bruno; Maire, Marie-Annick; Fourgeux, Cynthia; Grégoire, Stéphane; Acar, Niyazi; Bretillon, Lionel; Creuzot-Garcher, Catherine P; Joffre, Corinne

    2011-04-01

    Epidemiological studies suggest that dietary n-3 polyunsaturated fatty acids (PUFAs) may protect against dry eye. This study aimed to evaluate whether a dietary deficiency in n-3 PUFAs may increase the severity of the pathology in a scopolamine-induced model of dry eye in the rat. Lewis rats of three consecutive generations were bred under a balanced diet or a diet deprived of n-3 PUFAs. Dry eye was experimentally induced by continuous scopolamine delivery in female animals from the third generation of both groups. After 10 days of treatment, the clinical signs of ocular dryness were evaluated in vivo using fluorescein staining. MHC II and the rat mucin rMuc5AC were immunostained on ocular sphere cryosections. The transcript levels of the pro-inflammatory cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and interferon (IFN)-γ were quantified in the exorbital lacrimal glands (LG) and in the conjunctiva using reverse transcription followed by polymerase chain reaction. Lipids were extracted from the exorbital LG for fatty acid analysis of the phospholipids using gas chromatography. When compared to control animals, the scopolamine treatment induced an increase in the cornea fluorescein staining score (from 0.5 ± 0.0 to 2.5 ± 1.0 arbitrary units (AU) for the balanced diet and from 1.2 ± 0.8 to 2.6 ± 0.5 AU for the n-3 PUFA-deficient diet); a decrease in rMuc5AC immunostaining in the conjunctival epithelium (-34% for the balanced diet and -23% for the n-3 PUFA-deficient diet); an increase in the LG transcript levels of TNF-α for the balanced diet and of TNF-α and IFN-γ for the deficient diet; an increase in the conjunctival transcript levels of IL-1β and IL-6 for the deficient diet; an increase in arachidonic acid (AA) and in the ∆5-desaturase index (ratio of AA to dihomo-gamma-linolenic acid) in the exorbital LG for both diets. When compared to the balanced diet, the n-3 PUFA-deficient diet induced an increase in the LG transcript levels

  8. Why and How Meet n-3 PUFA Dietary Recommendations?

    PubMed Central

    Molendi-Coste, Olivier; Legry, Vanessa; Leclercq, Isabelle A.

    2011-01-01

    Obesity and the metabolic syndrome are systemic inflammatory diseases reaching epidemic proportions. Contemporary changes in human nutrition occurred characterized by increased consumption of fat and of vegetable oils rich in n-6 polyunsaturated fatty acids (PUFAs) together with decrease in n-3 PUFA-rich foods, resulting in an n-6/n-3 ratio of 10–20/1 in Western diet for a ratio around 1/1 in the diet of our ancestors. The literature provides compelling evidence for the health benefit of n-3 PUFA consumption on inflammation and metabolic syndrome prevention and treatment. Such evidence led to the establishment of comprehensive recommendations. However, we show here that, both in collective catering proposed to children and in hospital diet, it is not straightforward to meet such recommendations. Willingness of governments to institute changes, with accountable decisions on catering, nutritional education, and food processing, is required to face our neglected responsibility in promoting balanced diet and consumption of foods rich in essential nutrients in the general population. PMID:21197079

  9. Enriching Diet with n-3 PUFAs to Help Prevent Cardiovascular Diseases in Healthy Adults: Results from Clinical Trials.

    PubMed

    Manuelli, Matteo; Della Guardia, Lucio; Cena, Hellas

    2017-07-18

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are believed to be important for cardiovascular health. Many investigations have been carried out in an attempt to examine the effect of n-3 PUFAs intake, in the form of supplementation or fortified foods, for the management of cardiovascular disease (CVD) and risk factors for CVD, whereas less is known about the effect on healthy individuals. The present study reviews the available literature in order to examine the relationship between n-3 PUFAs intake, either via supplementation or enriched food, and the prevention of CVD among healthy adults. Interventional clinical trials on subjects aged >18 years old with none of the established risk factors for CVD have been considered for review. n-3 PUFAs supplementation or enriched food may positively regulate triglycerides and some lipoprotein subsets, as well as several vascular and coagulation parameters, even in healthy patients, presenting no risk factors for CVD, suggesting a protective effect. Diet enrichment with omega-3 is likely to be useful in helping to lower the risk of developing CVD in healthy individuals, but still offers no strong evidence of a tangible benefit on a population level. Additional studies are needed to determine the optimal daily intake, especially to prevent the unfavorable effects of PUFAs over-consumption.

  10. White Bass (Morone chrysops) Preferentially Retain n-3 PUFA in Ova When Fed Prepared Diets with Varying FA Content.

    PubMed

    Fuller, S Adam; Rawles, Steven D; McEntire, Matthew E; Bader, Troy J; Riche, Marty; Beck, Benjamin H; Webster, Carl D

    2017-10-01

    We evaluated the fatty acid (FA) composition of broodstock white bass ova fed one of six commercial diets with increasing polyunsaturated FA content (n-6/n-3 ratio; 0.36, 0.39, 0.46, 0.83, 1.07, 1.12) eight weeks prior to sampling. Fatty acid profiles of ova from brooders fed each of the six diets were significantly altered according to canonical discriminant analysis. Ova FA profiles resulting from the 0.39 diet separated those from the 0.36 diet based on lower 18:2n-6 (LNA) and higher 20:1n-9 concentrations from the 0.36 diet. Ova profiles were further separated based on lower concentrations of 22:5n-3 (DPA) from the 0.46 diet, lower concentrations of 20:5n-3 (EPA) in the 1.12 and 0.83 diets, and lower concentrations of 22:6n-3 (DHA) in all other diets relative to the 0.46 diet. Changes in ova FA profile at four and eight weeks were consistent with dietary intake with an approximate 2% increase in any given FA class with increasing time on individual diet. There was no correlation between dietary ARA concentrations (0.7-1.1 mol%), or dietary EPA/ARA ratios (7-15), and the concentrations (1.4-1.7 mol%) or ratios (3.3-4.4) found in the ova by diet. Our results suggest that white bass females have the ability to preferentially incorporate n-3 PUFA, particularly DHA, suggesting mobilization of this FA from other tissues for ova deposition or preferential dietary incorporation of PUFA into ova. These results will add to the limited FA information available in white bass and enable nutritionists to formulate broodstock diets that maximize reproductive potential in this species.

  11. PUFA and LC-PUFA intake during the first year of life: can dietary practice achieve a guideline diet?

    PubMed

    Schwartz, J; Dube, K; Alexy, U; Kalhoff, H; Kersting, M

    2010-02-01

    An appropriate supply of n-3 long-chain polyunsaturated fatty acids (LC-PUFAs) during early childhood may enhance cognitive development. Little attention is paid to the fatty acid (FA) supply during the complementary feeding period. We examined the polyunsaturated fatty acids (PUFAs) and LC-PUFAs pattern in dietary practice of two study groups and evaluated the results against the present Dietary Guidelines in Germany. The food consumption and FA pattern of dietary practice in subjects from two prospective studies (n=102 and n=184, respectively) at the age of 3, 6 and 9 months was assessed by weighed diet records, and changes during the first year of life were compared with the food-based dietary guidelines for the first year of life. Dietary practice in the complementary feeding period was clearly dominated by commercial food products. The FA composition in dietary practice was different from the Guideline Diet and the ratio of n-6/n-3 PUFAs was less favorable. Consumption of breast milk or formula was still of major importance for the intake of LC-PUFAs in the complementary feeding period. LC-PUFAs are predominantly provided by breast milk and formula during the first year of life and consequently decrease when milk consumption decreases. For compensation, commercial complementary food might come closer to the Guideline Diet by lowering the n-6/n-3 PUFA ratio through appropriate vegetable oil along with an increase in total fat content up to the legal limit.

  12. Comprehensive biometric, biochemical and histopathological assessment of nutrient deficiencies in gilthead sea bream fed semi-purified diets.

    PubMed

    Ballester-Lozano, Gabriel F; Benedito-Palos, Laura; Estensoro, Itziar; Sitjà-Bobadilla, Ariadna; Kaushik, Sadasivam; Pérez-Sánchez, Jaume

    2015-09-14

    Seven isoproteic and isolipidic semi-purified diets were formulated to assess specific nutrient deficiencies in sulphur amino acids (SAA), n-3 long-chain PUFA (n-3 LC-PUFA), phospholipids (PL), P, minerals (Min) and vitamins (Vit). The control diet (CTRL) contained these essential nutrients in adequate amounts. Each diet was allocated to triplicate groups of juvenile gilthead sea bream fed to satiety over an 11-week feeding trial period. Weight gain of n-3 LC-PUFA, P-Vit and PL-Min-SAA groups was 50, 60-75 and 80-85 % of the CTRL group, respectively. Fat retention was decreased by all nutrient deficiencies except by the Min diet. Strong effects on N retention were found in n-3 LC-PUFA and P fish. Combined anaemia and increased blood respiratory burst were observed in n-3 LC-PUFA fish. Hypoproteinaemia was found in SAA, n-3 LC-PUFA, PL and Vit fish. Derangements of lipid metabolism were also a common disorder, but the lipodystrophic phenotype of P fish was different from that of other groups. Changes in plasma levels of electrolytes (Ca, phosphate), metabolites (creatinine, choline) and enzyme activities (alkaline phosphatase) were related to specific nutrient deficiencies in PL, P, Min or Vit fish, whereas changes in circulating levels of growth hormone and insulin-like growth factor I primarily reflected the intensity of the nutritional stressor. Histopathological scoring of the liver and intestine segments showed specific nutrient-mediated changes in lipid cell vacuolisation, inflammation of intestinal submucosa, as well as the distribution and number of intestinal goblet and rodlet cells. These results contribute to define the normal range of variation for selected biometric, biochemical, haematological and histochemical markers.

  13. [Enrichment effect of vitamin-deficient diet of rats by polyunsaturated fatty acids omega-3 on vitamin biomarkers and antioxidant status].

    PubMed

    Vrzhesinskaia, O A; Beketova, V M; Kodentsova, O G; Pereverzeva, O G; Kosheleva, O V; Sokol'nikov, A A; Kulakova, S N; Baturina, V A; Soto, S Kh

    2013-01-01

    Using the model of combined vitamin deficiency based on 5-fold reduction of the amount of vitamin mixture in semi-synthetic diet and on vitamin E exclusion from the mixture, the influence of omega-3 polyunsaturated fatty acids (PUFA) on vitamin and antioxidant status has been investigated. The enrichment of rat diet with PUFA was achieved by replacing of sunflower oil (4.5% of the diet) on linseed oil. This substitute led to omega-3 PUFA elevation from 0.03 to 2.4 g per 100 g of food and PUFA and saturated fatty acids diet ratio increased from 1.3 to 1.9. The diet treatment with PUFA did not affect blood plasma retinol concentration and total vitamin A (retinol palmitate and retinol) rat liver content, while liver retinol significantly 1,5-fold elevated. Despite of preliminary equation of tocopherols content in vegetable oils (up to 60 IU per 100 g by adding dl-alpha-tocopherol to linseed oil) the consuming of linen oil deteriorated animal vitamin E supply. The liver alpha-tocopherol content significantly decreased by 14%, its blood plasma concentration insignificantly decreased by 26%, while the amount of beta - and gamma-tocopherol significantly increased in 5,4-fold. At the same deprivation of vitamin D in the diet of rats treated with linseed oil 25(OH)D blood plasma concentration was 1,3-fold higher compared with the animals treated with sunflower oil, but the difference did not reach significance reliable. In this case, this index had significant differences from that of the receiving adequate diet rats in control group, having 2-fold higher concentration of vitamin D transport form in blood plasma. PUFA enrichment of the combined vitamin-deficit diet did not affect liver level of vitamin C, vitamin B1 and vitamin B2. Contrary to the assumptions, the enrichment with PUFA of vitamin-deficient diet did not lead to a further increase of liver MDA level and a decrease of liver ascorbic acid content, which is typical for animals in combined vitamin deficiency. The

  14. An Ω-3 fatty acid-deficient diet during gestation induces depressive-like behavior in rats: the role of the hypothalamo-pituitary-adrenal (HPA) system.

    PubMed

    Tang, Mimi; Liu, Yiping; Wang, Lu; Li, Huande; Cai, Hualin; Zhang, Min; Dang, Ruili; Xue, Ying; Wu, Yanqin

    2018-06-08

    Low intake of omega-3 (Ω-3) polyunsaturated fatty acids (PUFAs) especially docosahexaenoic acid (DHA) is associated with postpartum depression. DHA deficiency is accompanied by impaired attention and cognition, and will precipitate psychiatric symptoms. However, the effects of dietary DHA on postpartum depression remain unclear. We established a normal pregnancy model to evaluate whether an Ω-3 PUFA-deficient diet during gestation could induce depressive-like behavior and aggravate dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis in rats. A between-group design was used to assess the effects of Ω-3 PUFA content (deficiency, control and supplementary) and reproductive status (virgin or parous). We assessed depressive-like behavior and measured the fatty acid composition in the liver. The protein expressions of glucocorticoid receptor (GR) and mineralocorticoid receptor (MCR) were also measured to evaluate the HPA activity. Exposure to the Ω-3 PUFA-deficient diet resulted in an increased immobility time in a forced swimming test (FST). Additionally, our results firstly showed the decreased expression of GR in the hippocampus of parous rats that were exposed to Ω-3 PUFA-deficient diets, which may partly facilitate the hyperactivity of the HPA axis and exert detrimental effects. Moreover, the reduction of GR was ameliorated by Ω-3 PUFA supplementation, providing new evidence for Ω-3 PUFAs in the progression of postpartum depression.

  15. Membrane raft organization is more sensitive to disruption by (n-3) PUFA than nonraft organization in EL4 and B cells.

    PubMed

    Rockett, Benjamin Drew; Franklin, Andrew; Harris, Mitchel; Teague, Heather; Rockett, Alexis; Shaikh, Saame Raza

    2011-06-01

    Model membrane and cellular detergent extraction studies show (n-3) PUFA predominately incorporate into nonrafts; thus, we hypothesized (n-3) PUFA could disrupt nonraft organization. The first objective of this study was to determine whether (n-3) PUFA disrupted nonrafts of EL4 cells, an extension of our previous work in which we discovered an (n-3) PUFA diminished raft clustering. EPA or DHA treatment of EL4 cells increased plasma membrane accumulation of the nonraft probe 1,1'-dilinoleyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate by ~50-70% relative to a BSA control. Förster resonance energy transfer imaging showed EPA and DHA also disrupted EL4 nanometer scale nonraft organization by increasing the distance between nonraft molecules by ~25% compared with BSA. However, changes in nonrafts were due to an increase in cell size; under conditions where EPA or DHA did not increase cell size, nonraft organization was unaffected. We next translated findings on EL4 cells by testing if (n-3) PUFA administered to mice disrupted nonrafts and rafts. Imaging of B cells isolated from mice fed low- or high-fat (HF) (n-3) PUFA diets showed no change in nonraft organization compared with a control diet (CD). However, confocal microscopy revealed the HF (n-3) PUFA diet disrupted lipid raft clustering and size by ~40% relative to CD. Taken together, our data from 2 different model systems suggest (n-3) PUFA have limited effects on nonrafts. The ex vivo data, which confirm previous studies with EL4 cells, provide evidence that (n-3) PUFA consumed through the diet disrupt B cell lipid raft clustering.

  16. Membrane Raft Organization Is More Sensitive to Disruption by (n-3) PUFA Than Nonraft Organization in EL4 and B Cells123

    PubMed Central

    Rockett, Benjamin Drew; Franklin, Andrew; Harris, Mitchel; Teague, Heather; Rockett, Alexis; Shaikh, Saame Raza

    2011-01-01

    Model membrane and cellular detergent extraction studies show (n-3) PUFA predominately incorporate into nonrafts; thus, we hypothesized (n-3) PUFA could disrupt nonraft organization. The first objective of this study was to determine whether (n-3) PUFA disrupted nonrafts of EL4 cells, an extension of our previous work in which we discovered an (n-3) PUFA diminished raft clustering. EPA or DHA treatment of EL4 cells increased plasma membrane accumulation of the nonraft probe 1,1′-dilinoleyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate by ~50–70% relative to a BSA control. Förster resonance energy transfer imaging showed EPA and DHA also disrupted EL4 nanometer scale nonraft organization by increasing the distance between nonraft molecules by ~25% compared with BSA. However, changes in nonrafts were due to an increase in cell size; under conditions where EPA or DHA did not increase cell size, nonraft organization was unaffected. We next translated findings on EL4 cells by testing if (n-3) PUFA administered to mice disrupted nonrafts and rafts. Imaging of B cells isolated from mice fed low- or high-fat (HF) (n-3) PUFA diets showed no change in nonraft organization compared with a control diet (CD). However, confocal microscopy revealed the HF (n-3) PUFA diet disrupted lipid raft clustering and size by ~40% relative to CD. Taken together, our data from 2 different model systems suggest (n-3) PUFA have limited effects on nonrafts. The ex vivo data, which confirm previous studies with EL4 cells, provide evidence that (n-3) PUFA consumed through the diet disrupt B cell lipid raft clustering. PMID:21525263

  17. Liver conversion of docosahexaenoic and arachidonic acids from their 18-carbon precursors in rats on a DHA-free but α-LNA-containing n-3 PUFA adequate diet.

    PubMed

    Gao, Fei; Kim, Hyung-Wook; Igarashi, Miki; Kiesewetter, Dale; Chang, Lisa; Ma, Kaizong; Rapoport, Stanley I

    2011-01-01

    The long-chain polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), and arachidonic acid (AA, 20:4n-6), are critical for health. These PUFAs can be synthesized in liver from their plant-derived precursors, α-linolenic acid (α-LNA, 18:3n-3) and linoleic acid (LA, 18:2n-6). Vegetarians and vegans may have suboptimal long-chain n-3 PUFA status, and the extent of the conversion of α-LNA to EPA and DHA by the liver is debatable. We quantified liver conversion of DHA and other n-3 PUFAs from α-LNA in rats fed a DHA-free but α-LNA (n-3 PUFA) adequate diet, and compared results to conversion of LA to AA. [U-(13)C]LA or [U-(13)C]α-LNA was infused intravenously for 2h at a constant rate into unanesthetized rats fed a DHA-free α-LNA adequate diet, and published equations were used to calculate kinetic parameters. The conversion coefficient k(⁎) of DHA from α-LNA was much higher than for AA from LA (97.2×10(-3) vs. 10.6×10(-3)min(-1)), suggesting that liver elongation-desaturation is more selective for n-3 PUFA biosynthesis on a per molecule basis. The net daily secretion rate of DHA, 20.3μmol/day, exceeded the reported brain DHA consumption rate by 50-fold, suggesting that the liver can maintain brain DHA metabolism with an adequate dietary supply solely of α-LNA. This infusion method could be used in vegetarians or vegans to determine minimal daily requirements of EPA and DHA in humans. Published by Elsevier B.V.

  18. Long-chain n-3 PUFA supplied by the usual diet decrease plasma stearoyl-CoA desaturase index in non-hypertriglyceridemic older adults at high vascular risk.

    PubMed

    Pérez-Heras, Ana M; Mayneris-Perxachs, Jordi; Cofán, Montserrat; Serra-Mir, Mercè; Castellote, Ana I; López-Sabater, Carmen; Fitó, Montserrat; Salas-Salvadó, Jordi; Martínez-González, Miguel-Ángel; Corella, Dolores; Estruch, Ramon; Ros, Emilio; Sala-Vila, Aleix

    2018-02-01

    The activity of stearoyl-CoA desaturase-1 (SCD1), the central enzyme in the synthesis of monounsaturated fatty acids (MUFA), has been associated with de novo lipogenesis. In experimental models SCD1 is down-regulated by polyunsaturated fatty acids (PUFA), but clinical studies are scarce. The effect of long-chain n-3 PUFA (LCn-3PUFA) supplied by the regular diet, in the absence of fatty fish or fish oil supplementation, remains to be explored. We related 1-y changes in plasma SCD1 index, as assessed by the C16:1n-7/C16:0 ratio, to both adiposity traits and nutrient intake changes in a sub-cohort (n = 243) of non-hypertriglyceridemic subjects of the PREDIMED (PREvención con DIeta MEDiterranea) trial. After adjustment for confounders, including changes in fasting triglycerides, plasma SCD1 index increased in parallel with body weight (0.221 [95% confidence interval, 0.021 to 0.422], P = 0.031) and BMI (0.115 [0.027 to 0.202], P = 0.011). Additionally, dietary LCn-3PUFA (but not MUFA or plant-derived PUFA) were associated with decreased plasma SCD1 index (-0.544 [-1.044 to -0.043], P = 0.033, for each 1 g/d-increase in LCn-3PUFA). No associations were found for other food groups, but there was a trend for fatty fish intake (-0.083 [-0.177 to 0.012], P = 0.085, for each 10 g/d-increase). Our data add clinical evidence on the down-regulation of plasma SCD1 index by LCn-3PUFA in the context of realistic changes in fish consumption in the customary, non-supplemented diet. http://www.Controlled-trials.com/ISRCTN35739639. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  19. Maternal PUFA ω-3 Supplementation Prevents Neonatal Lung Injuries Induced by Hyperoxia in Newborn Rats.

    PubMed

    Sharma, Dyuti; Nkembi, Armande Subayi; Aubry, Estelle; Houeijeh, Ali; Butruille, Laura; Houfflin-Debarge, Véronique; Besson, Rémi; Deruelle, Philippe; Storme, Laurent

    2015-09-14

    Bronchopulmonary dysplasia (BPD) is one of the most common complications of prematurity, occurring in 30% of very low birth weight infants. The benefits of dietary intake of polyunsaturated fatty acids ω-3 (PUFA ω-3) during pregnancy or the perinatal period have been reported. The aim of this study was to assess the effects of maternal PUFA ω-3 supplementation on lung injuries in newborn rats exposed to prolonged hyperoxia. Pregnant female Wistar rats (n = 14) were fed a control diet (n = 2), a PUFA ω-6 diet (n = 6), or a PUFA ω-3 diet (n = 6), starting with the 14th gestation day. At Day 1, female and newborn rats (10 per female) were exposed to hyperoxia (O₂, n = 70) or to the ambient air (Air, n = 70). Six groups of newborns rats were obtained: PUFA ω-6/O₂ (n = 30), PUFA ω-6/air (n = 30), PUFA ω-3/O₂ (n = 30), PUFA ω-3/air (n = 30), control/O₂ (n = 10), and control/air (n = 10). After 10 days, lungs were removed for analysis of alveolarization and pulmonary vascular development. Survival rate was 100%. Hyperoxia reduced alveolarization and increased pulmonary vascular wall thickness in both control (n = 20) and PUFA ω-6 groups (n = 60). Maternal PUFA ω-3 supplementation prevented the decrease in alveolarization caused by hyperoxia (n = 30) compared to PUFA ω-6/O₂ (n = 30) or to the control/O₂ (n = 10), but did not significantly increase the thickness of the lung vascular wall. Therefore, maternal PUFA ω-3 supplementation may protect newborn rats from lung injuries induced by hyperoxia. In clinical settings, maternal PUFA ω-3 supplementation during pregnancy and during lactation may prevent BPD development after premature birth.

  20. A n-3 PUFA depletion applied to rainbow trout fry (Oncorhynchus mykiss) does not modulate its subsequent lipid bioconversion capacity.

    PubMed

    Mellery, Julie; Brel, Jonathan; Dort, Junio; Geay, Florian; Kestemont, Patrick; Francis, David S; Larondelle, Yvan; Rollin, Xavier

    2017-01-01

    Nutritional strategies are currently developed to produce farmed fish rich in n-3 long-chain PUFA (LC-PUFA) whilst replacing fish oil by plant-derived oils in aquafeeds. The optimisation of such strategies requires a thorough understanding of fish lipid metabolism and its nutritional modulation. The present study evaluated the fatty acid bioconversion capacity of rainbow trout (Oncorhynchus mykiss) fry previously depleted in n-3 PUFA through a 60-d pre-experimental feeding period with a sunflower oil-based diet (SO) followed by a 36-d experimental period during which fish were fed either a linseed oil-based diet (LO) (this treatment being called SO/LO) or a fish oil-based diet (FO) (this treatment being called SO/FO). These treatments were compared with fish continuously fed on SO, LO or FO for 96 d. At the end of the 36-d experimental period, SO/LO and SO/FO fish recovered >80 % of the n-3 LC-PUFA reported for LO and FO fish, respectively. Fish fed on LO showed high apparent in vivo elongation and desaturation activities along the n-3 biosynthesis pathway. However, at the end of the experimental period, no impact of the fish n-3 PUFA depletion was observed on apparent in vivo elongation and desaturation activities of SO/LO fish as compared with LO fish. In contrast, the fish n-3 PUFA depletion negatively modulated the n-6 PUFA bioconversion capacity of fish in terms of reduced apparent in vivo elongation and desaturation activities. The effects were similar after 10 or 36 d of the experimental period, indicating the absence of short-term effects.

  1. Improvement of the omega 3 index of healthy subjects does not alter the effects of dietary saturated fats or n-6PUFA on LDL profiles.

    PubMed

    Dias, Cintia B; Amigó, Núria; Wood, Lisa G; Mallol, Roger; Correig, Xavier; Garg, Manohar L

    2017-03-01

    Dietary fat composition is known to modulate circulating lipid and lipoprotein levels. Although supplementation with long chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) has been shown to reduce plasma triglyceride levels, the effect of the interactions between LCn-3PUFA and the major dietary fats consumed has not been previously investigated. In a randomized controlled parallel design clinical intervention, we examined the effect of diets rich in either saturated fatty acids (SFA) or omega-6 polyunsaturated fatty acids (n-6PUFA) on plasma lipid levels and lipoprotein profiles (lipoprotein size, concentration and distribution in subclasses) in subjects with an adequate omega 3 index. Twenty six healthy subjects went through a four-week pre-supplementation period with LCn-3PUFA and were then randomized to diets rich in either n-6PUFA or SFA both supplemented with LCn-3PUFA. The diet rich in n-6PUFA decreased low density lipoprotein (LDL) particle concentration (-8%, p=0.013) and LDL cholesterol (LDL-C) level (-8%, p=0.021), while the saturated fat rich diet did not affect LDL particle concentration or LDL-C levels significantly. Nevertheless, dietary saturated fatty acids increased LCn-3PUFA in plasma and tissue lipids compared with n-6PUFA, potentially reducing other cardiovascular risk factors such as inflammation and clotting tendency. Improvement on the omega 3 index of healthy subjects did not alter the known effects of dietary saturated fats and n-6PUFA on LDL profiles. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Effects of supplementation with fish oil and n-3 PUFAs enriched egg yolk phospholipids on anhedonic-like response and body weight in the rat chronic mild stress model of depression.

    PubMed

    Rutkowska, M; Trocha, M; Szandruk, M; Słupski, W; Rymaszewska, J

    2013-08-01

    Polyunsaturated fatty acids play an important role in the human organism. They guarantee a normal function of nervous cells, influence neurotransmission, and build some elements of cellular membranes. Several reports indicate an association between a deficiency of polyunsaturated fatty acids and depression. The aim of this study was to examine the effects of diet supplemented with fish oil, which is rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs) and n-3 PUFAs enriched phospholipids ("super lecithin") obtained from designed eggs on anhedonic-like response and body weight in the rat chronic mild stress (CMS) model of depression. The results showed that neither fish oil nor n-3 PUFAs enriched egg yolk phospholipids supplementation reversed disturbances caused by CMS, such as anhedonic-like state or reduction of body weight gain.

  3. Lipoic acid prevents suppression of connective tissue proliferation in the rat liver induced by n-3 PUFAs. A pilot study.

    PubMed

    Arend, A; Zilmer, M; Vihalemm, T; Selstam, G; Sepp, E

    2000-01-01

    As previously shown, dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) suppress connective tissue proliferation in the rat liver wound concurrent with an elevated level of lipid peroxidation. The present study was undertaken to investigate the influence of alpha-lipoic acid (LA), a natural anti-oxidant, on these effects of n-3 PUFAs. Rats were fed with a commercial pellet diet (control group) or with diets enriched with 10% of sunflower oil (n-6 group) or 10% of fish oil (n-3 group) for 8 weeks followed by addition of LA to the same diets for 10 days. Then a liver thermic wound was induced and the administration of LA was continued for 6 days. The proliferation of the connective tissue, the level of lipid peroxidation and their peroxidizability and the content of prostaglandins E2 and F2alpha were measured in the liver wounds. LA prevented the suppression of connective tissue proliferation in the healing wound induced by n-3 PUFAs, avoided the increase in peroxidation of lipids, reduced peroxidizability of lipids and modulated the decrease in PGE2 and PGF2alpha. The results indicate that dietary LA may prevent the suppression of liver wound healing induced by n-3 PUFAs.

  4. Effect of omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation to lactating sows on growth and indicators of stress in post-weaned pig

    USDA-ARS?s Scientific Manuscript database

    Dietary n-3 PUFA are precursors for lipid metabolites that reduce inflammation. Two experiments were conducted to test the hypothesis that enriching the sow diet in n-3 PUFA during late gestation and throughout lactation reduces stress and inflammation, and promotes growth in weaned pigs. A protecte...

  5. Low n-6/n-3 PUFA Ratio Improves Lipid Metabolism, Inflammation, Oxidative Stress and Endothelial Function in Rats Using Plant Oils as n-3 Fatty Acid Source.

    PubMed

    Yang, Li Gang; Song, Zhi Xiu; Yin, Hong; Wang, Yan Yan; Shu, Guo Fang; Lu, Hui Xia; Wang, Shao Kang; Sun, Gui Ju

    2016-01-01

    Lipid metabolism, inflammation, oxidative stress and endothelial function play important roles in the pathogenesis of cardiovascular disease (CVD), which may be affected by an imbalance in the n-6/n-3 polyunsaturated fatty acid (PUFA) ratio. This study aimed to investigate the effects of the n-6/n-3 PUFA ratio on these cardiovascular risk factors in rats fed a high-fat diet using plant oils as the main n-3 PUFA source. The 1:1 and 5:1 ratio groups had significantly decreased serum levels of total cholesterol, low-density lipoprotein cholesterol, and proinflammatory cytokines compared with the 20:1 group (p < 0.05). Additionally, the 20:1 group had significantly increased serum levels of E-Selectin, von Willebrand factor (vWF), and numerous markers of oxidative stress compared with the other groups (p < 0.05). The 1:1 group had a significantly decreased lipid peroxide level compared with the other groups (p < 0.05). Serum levels of malondialdehyde, reactive oxygen species and vWF tended to increase with n-6/n-3 PUFA ratios increasing from 5:1 to 20:1. We demonstrated that low n-6/n-3 PUFA ratio (1:1 and 5:1) had a beneficial effect on cardiovascular risk factors by enhancing favorable lipid profiles, having anti-inflammatory and anti-oxidative stress effects, and improving endothelial function. A high n-6/n-3 PUFA ratio (20:1) had adverse effects. Our results indicated that low n-6/n-3 PUFA ratios exerted beneficial cardiovascular effects, suggesting that plant oils could be used as a source of n-3 fatty acids to prevent CVD. They also suggested that we should be aware of possible adverse effects from excessive n-3 PUFA.

  6. Randomized placebo-controlled intervention with n-3 LC-PUFA-supplemented yoghurt: effects on circulating eicosanoids and cardiovascular risk factors.

    PubMed

    Dawczynski, Christine; Massey, Karen A; Ness, Christina; Kiehntopf, Michael; Stepanow, Stefanie; Platzer, Matthias; Grün, Michael; Nicolaou, Anna; Jahreis, Gerhard

    2013-10-01

    The study examined the value of n-3 LC-PUFA-enriched yogurt as means of improving cardiovascular health. Fifty three mildly hypertriacylglycerolemic subjects (TAG ≥ 1.7 mmol/L) participated in a randomized, placebo-controlled, double-blind, parallel designed study. The subjects consumed 1) control yoghurt; 2) yoghurt enriched with 0.8 g n-3 LC-PUFA/d; or 3) yoghurt enriched with 3 g n-3 LC-PUFA/d for a period of 10 wks. Blood samples were taken at the beginning and the end of the study period. Following daily intake of 3 g n-3 LC-PUFA for 10 weeks, n-3 LC-PUFA levels increased significantly in plasma and red blood cells (RBC) with concomitant increase in the EPA-derived mediators (PGE₃, 12-, 15-, 18-HEPE) in plasma whilst cardiovascular risk factors such as HDL, TAG, AA/EPA ratio, and n-3 index were improved (P < 0.05); the decrease of TAG and increase in HDL were associated with the CD36 genotype. The observed increase of n-3 LC-PUFA in RBC and plasma lipids due to intake of n-3 LC-PUFA enriched yoghurt resulted in a reduction of cardiovascular risk factors and inflammatory mediators showing that daily consumption of n-3 PUFA enriched yoghurt can be an effective way of supplementing the daily diet and improving cardiovascular health. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  7. Dietary n-3 PUFAs augment caspase 8 activation in Staphylococcal aureus enterotoxin B stimulated T-cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, R.

    sequelae of mercury exposure, this novel finding for the first time suggests a testable molecular mechanism explaining the overall anti-inflammatory properties of n-3 PUFAs. - Highlights: • Dietary n-3 PUFAs counter Hg{sup 2+} immunotoxicity • Hg{sup 2+} interference with SEB-mediated signal transduction is ameliorated by n-3 PUFA rich diets. • Dietary n-3 PUFAs augment SEB-mediated activation of caspase 8 in vivo.« less

  8. Impact of maternal n-3 polyunsaturated fatty acid deficiency on dendritic arbor morphology and connectivity of developing Xenopus laevis central neurons in vivo.

    PubMed

    Igarashi, Miki; Santos, Rommel A; Cohen-Cory, Susana

    2015-04-15

    Docosahexaenoic acid (DHA, 22:6n-3) is an essential component of the nervous system, and maternal n-3 polyunsaturated fatty acids (PUFAs) are an important source for brain development. Here, the impact of DHA on developing central neurons was examined using an accessible in vivo model. Xenopus laevis embryos from adult female frogs fed n-3 PUFA-adequate or deficient diets were analyzed every 10 weeks for up to 60 weeks, when frogs were then switched to a fish oil-supplemented diet. Lipid analysis showed that DHA was significantly reduced both in oocytes and tadpoles 40 weeks after deprivation, and brain DHA was reduced by 57% at 60 weeks. In vivo imaging of single optic tectal neurons coexpressing tdTomato and PSD-95-GFP revealed that neurons were morphologically simpler in tadpoles from frogs fed the deficient diet compared with the adequate diet. Tectal neurons had significantly fewer dendrite branches and shorter dendritic arbor over a 48 h imaging period. Postsynaptic cluster number and density were lower in neurons deprived of n-3 PUFA. Moreover, changes in neuronal morphology correlated with a 40% decrease in the levels of BDNF mRNA and mature protein in the brain, but not in TrkB. Importantly, switching to a fish oil-supplemented diet induced a recovery in DHA content in the frog embryos within 20 weeks and diminished the deprivation effects observed on tectal neurons of Stage 45 tadpoles. Consequently, our results indicate that DHA impacts dendrite maturation and synaptic connectivity in the developing brain, and it may be involved in neurotrophic support by BDNF. Copyright © 2015 the authors 0270-6474/15/356079-14$15.00/0.

  9. Brain and Hepatic Mt mRNA Is Reduced in Response to Mild Energy Restriction and n-3 Polyunsaturated Fatty Acid Deficiency in Juvenile Rats

    PubMed Central

    Mehus, Aaron A.; Picklo, Sr, Matthew J.

    2017-01-01

    Metallothioneins (MTs) perform important regulatory and cytoprotective functions in tissues including the brain. While it is known that energy restriction (ER) and dietary n-3 polyunsaturated fatty acid (PUFA) deficiency impact postnatal brain growth and development, little data exist regarding the impact of undernutrition upon MT expression in growing animals. We tested the hypothesis that ER with and without dietary n-3 PUFA deficiency reduces MT expression in juvenile rats. ER rats were individually pair-fed at 75% of the ad libitum (AL) intake of control rats provided diets consisting of either soybean oil (SO) that is α-linolenic acid (ALA; 18:3n-3) sufficient or corn oil (CO; ALA-deficient). Fatty acids (FA) and metal concentrations of liver and brain regions were analyzed. Tissue expression of MTs (Mt1-3) and modulators of MT expression including glucocorticoid receptors (Nr3c1 and Nr3c2) and several mediators of thyroid hormone regulation (Dio1-3, Mct8, Oatp1c1, Thra, and Thrb) were measured. Plasma corticosterone and triiodothyronine levels were also evaluated. ER, but not metal deficiency, reduced Mt2 expression in the cerebellum (50%) and cerebral cortex (23%). In liver, a reduction in dietary n-3 PUFA reduced Mt1, Mt2, Nr3c1, Mct8, and Thrb. ER elevated Nr3c1, Dio1, and Thrb and reduced Thra in the liver. Given MT’s role in cellular protection, further studies are needed to evaluate whether ER or n-3 PUFA deficiency may leave the juvenile brain and/or liver more susceptible to endogenous or environmental stressors. PMID:29048374

  10. Brain and Hepatic Mt mRNA Is Reduced in Response to Mild Energy Restriction and n-3 Polyunsaturated Fatty Acid Deficiency in Juvenile Rats.

    PubMed

    Mehus, Aaron A; Picklo, Matthew J

    2017-10-19

    Metallothioneins (MTs) perform important regulatory and cytoprotective functions in tissues including the brain. While it is known that energy restriction (ER) and dietary n -3 polyunsaturated fatty acid (PUFA) deficiency impact postnatal brain growth and development, little data exist regarding the impact of undernutrition upon MT expression in growing animals. We tested the hypothesis that ER with and without dietary n -3 PUFA deficiency reduces MT expression in juvenile rats. ER rats were individually pair-fed at 75% of the ad libitum (AL) intake of control rats provided diets consisting of either soybean oil (SO) that is α-linolenic acid (ALA; 18:3 n -3) sufficient or corn oil (CO; ALA-deficient). Fatty acids (FA) and metal concentrations of liver and brain regions were analyzed. Tissue expression of MTs ( Mt1-3 ) and modulators of MT expression including glucocorticoid receptors ( Nr3c1 and Nr3c2 ) and several mediators of thyroid hormone regulation ( Dio1-3 , Mct8 , Oatp1c1 , Thra , and Thrb ) were measured. Plasma corticosterone and triiodothyronine levels were also evaluated. ER, but not metal deficiency, reduced Mt2 expression in the cerebellum (50%) and cerebral cortex (23%). In liver, a reduction in dietary n -3 PUFA reduced Mt1 , Mt2 , Nr3c1 , Mct8 , and Thrb . ER elevated Nr3c1 , Dio1 , and Thrb and reduced Thra in the liver. Given MT's role in cellular protection, further studies are needed to evaluate whether ER or n -3 PUFA deficiency may leave the juvenile brain and/or liver more susceptible to endogenous or environmental stressors.

  11. Cerebral asymmetry and behavioral lateralization in rats chronically lacking n-3 polyunsaturated fatty acids.

    PubMed

    Vancassel, Sylvie; Aïd, Sabah; Pifferi, Fabien; Morice, Elise; Nosten-Bertrand, Marika; Chalon, Sylvie; Lavialle, Monique

    2005-11-15

    Anatomic and functional brain lateralization underlies hemisphere specialization for cognitive and motor control, and deviations from the normal patterns of asymmetry appear to be related to behavioral deficits. Studies on n-3 polyunsaturated fatty acid (PUFA) deficiency and behavioral impairments led us to postulate that a chronic lack of n-3 PUFA can lead to changes in lateralized behavior by affecting structural or neurochemical patterns of asymmetry in motor-related brain structures. We compared the effects of a chronic n-3 PUFA deficient diet with a balanced diet on membrane phospholipid fatty acids composition and immunolabeling of choline acetyltransferase (ChAt), as a marker of cholinergic neurons, in left and right striatum of rats. Lateral motor behavior was assessed by rotation and paw preference. Control rats had an asymmetric PUFA distribution with a right behavioral preference, whereas ChAt density was symmetrical. In deficient rats, the cholinergic neuron density was 30% lower on the right side, associated with a loss of PUFA asymmetry and behavior laterality. They present higher rotation behavior, and significantly more of them failed the handedness test. These results indicate that a lack of n-3 PUFA is linked with a lateral behavior deficit, possibly leading to cognitive disturbances.

  12. Compared with that of MUFA, a high dietary intake of n-3 PUFA does not reduce the degree of pathology in mdx mice.

    PubMed

    Henderson, Gregory C; Evans, Nicholas P; Grange, Robert W; Tuazon, Marc A

    2014-05-28

    Duchenne muscular dystrophy (DMD) is a severe muscle disease that affects afflicted males from a young age, and the mdx mouse is an animal model of this disease. Although new drugs are in development, it is also essential to assess potential dietary therapies that could assist in the management of DMD. In the present study, we compared two diets, high-MUFA diet v. high-PUFA diet, in mdx mice. To generate the high-PUFA diet, a portion of dietary MUFA (oleic acid) was replaced with the dietary essential n-3 PUFA α-linolenic acid (ALA). We sought to determine whether ALA, compared with oleic acid, was beneficial in mdx mice. Consumption of the high-PUFA diet resulted in significantly higher n-3 PUFA content and reduced arachidonic acid content in skeletal muscle phospholipids (PL), while the high-MUFA diet led to higher oleate content in PL. Mdx mice on the high-MUFA diet exhibited 2-fold lower serum creatine kinase activity than those on the high-PUFA diet (P< 0·05) as well as a lower body fat percentage (P< 0·05), but no significant difference in skeletal muscle histopathology results. There was no significant difference between the dietary groups with regard to phosphorylated p65 (an inflammatory marker) in skeletal muscle. In conclusion, alteration of PL fatty acid (FA) composition by the high-PUFA diet made mdx muscle more susceptible to sarcolemmal leakiness, while the high-MUFA diet exhibited a more favourable impact. These results may be important for designing dietary treatments for DMD patients, and future work on dietary FA profiles, such as comparing other FA classes and dose effects, is needed.

  13. Site-Specific Fat-1 Knock-In Enables Significant Decrease of n-6PUFAs/n-3PUFAs Ratio in Pigs

    PubMed Central

    Li, Mengjing; Ouyang, Hongsheng; Yuan, Hongming; Li, Jianing; Xie, Zicong; Wang, Kankan; Yu, Tingting; Liu, Minghao; Chen, Xue; Tang, Xiaochun; Jiao, Huping; Pang, Daxin

    2018-01-01

    The fat-1 gene from Caenorhabditis elegans encodes a fatty acid desaturase which was widely studied due to its beneficial function of converting n-6 polyunsaturated fatty acids (n-6PUFAs) to n-3 polyunsaturated fatty acids (n-3PUFAs). To date, many fat-1 transgenic animals have been generated to study disease pathogenesis or improve meat quality. However, all of them were generated using a random integration method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker-free fat-1 transgenic pigs in a site-specific manner. The Rosa26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Rosa 26 (pRosa26) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 9 (Cas9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene at the pRosa26 locus. Furthermore, this single-copy fat-1 gene supported satisfactory expression in a variety of tissues in F1 generation pigs. Importantly, the gas chromatography analysis indicated that these fat-1 knock-in pigs exhibited a significant increase in the level of n-3PUFAs, leading to an obvious decrease in the n-6PUFAs/n-3PUFAs ratio from 9.36 to 2.12 (***P < 0.0001). Altogether, our fat-1 knock-in pigs hold great promise for improving the nutritional value of pork and serving as an animal model to investigate therapeutic effects of n-3PUFAs on various diseases. PMID:29563188

  14. Site-Specific Fat-1 Knock-In Enables Significant Decrease of n-6PUFAs/n-3PUFAs Ratio in Pigs.

    PubMed

    Li, Mengjing; Ouyang, Hongsheng; Yuan, Hongming; Li, Jianing; Xie, Zicong; Wang, Kankan; Yu, Tingting; Liu, Minghao; Chen, Xue; Tang, Xiaochun; Jiao, Huping; Pang, Daxin

    2018-05-04

    The fat-1 gene from Caenorhabditis elegans encodes a fatty acid desaturase which was widely studied due to its beneficial function of converting n-6 polyunsaturated fatty acids (n-6PUFAs) to n-3 polyunsaturated fatty acids (n-3PUFAs). To date, many fat-1 transgenic animals have been generated to study disease pathogenesis or improve meat quality. However, all of them were generated using a random integration method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker-free fat-1 transgenic pigs in a site-specific manner. The Rosa26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Rosa 26 (pRosa26) locus via Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 9 (Cas9) system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene at the pRosa26 locus. Furthermore, this single-copy fat-1 gene supported satisfactory expression in a variety of tissues in F1 generation pigs. Importantly, the gas chromatography analysis indicated that these fat-1 knock-in pigs exhibited a significant increase in the level of n-3PUFAs, leading to an obvious decrease in the n-6PUFAs/n-3PUFAs ratio from 9.36 to 2.12 (*** P < 0.0001). Altogether, our fat-1 knock-in pigs hold great promise for improving the nutritional value of pork and serving as an animal model to investigate therapeutic effects of n-3PUFAs on various diseases. Copyright © 2018 Li et al.

  15. Dietary n-3 PUFA affect TcR-mediated activation of purified murine T cells and accessory cell function in co-cultures

    PubMed Central

    CHAPKIN, R S; ARRINGTON, J L; APANASOVICH, T V; CARROLL, R J; MCMURRAY, D N

    2002-01-01

    Diets enriched in n-3 polyunsaturated fatty acids (PUFA) suppress several functions of murine splenic T cells by acting directly on the T cells and/or indirectly on accessory cells. In this study, the relative contribution of highly purified populations of the two cell types to the dietary suppression of T cell function was examined. Mice were fed diets containing different levels of n-3 PUFA; safflower oil (SAF; control containing no n-3 PUFA), fish oil (FO) at 2% and 4%, or 1% purified docosahexaenoic acid (DHA) for 2 weeks. Purified (>90%) T cells were obtained from the spleen, and accessory cells (>95% adherent, esterase-positive) were obtained by peritoneal lavage. Purified T cells or accessory cells from each diet group were co-cultured with the alternative cell type from every other diet group, yielding a total of 16 different co-culture combinations. The T cells were stimulated with either concanavalin A (ConA) or antibodies to the T cell receptor (TcR)/CD3 complex and the costimulatory molecule CD28 (αCD3/αCD28), and proliferation was measured after four days. Suppression of T cell proliferation in the co-cultures was dependent upon the dose of dietary n-3 PUFA fed to mice from which the T cells were derived, irrespective of the dietary treatment of accessory cell donors. The greatest dietary effect was seen in mice consuming the DHA diet (P = 0·034 in the anova; P = 0·0053 in the Trend Test), and was observed with direct stimulation of the T cell receptor and CD28 costimulatory ligand, but not with ConA. A significant dietary effect was also contributed accessory cells (P = 0·033 in the Trend Test). We conclude that dietary n-3 PUFA affect TcR-mediated by T cell activation by both direct and indirect (accessory cell) mechanisms. PMID:12296847

  16. Protective role of n6/n3 PUFA supplementation with varying DHA/EPA ratios against atherosclerosis in mice.

    PubMed

    Liu, Liang; Hu, Qinling; Wu, Huihui; Xue, Yihong; Cai, Liang; Fang, Min; Liu, Zhiguo; Yao, Ping; Wu, Yongning; Gong, Zhiyong

    2016-06-01

    The effects of n3 polyunsaturated fatty acids (PUFA) on cardiovascular disease are controversial. We currently explored the effects of various ratios of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on high-fat-induced atherosclerosis. In model apoE(-/-) mice, high-fat diets (HFD) were partially replaced with fish and algal oils (DHA/EPA 2:1, 1:1 and 1:2) and/or plant oils enriched in linoleic and alpha-linolenic acids with an n6/n3 ratio of 4:1. PUFA supplementation significantly reduced the atherosclerotic plaque area, serum lipid profile, inflammatory response, aortic ROS production, proinflammatory factors and scavenger receptor expression as compared to those in the HFD group. However, plant oils did not have a significant effect on the following: serum HDL-C level; aortic ABCA1, ABCG1 and LAL mRNA expression; and CD36 and LOX-1 protein expression. Compared to the plant-oil-treated group, the DHA/EPA 1:1 group had a smaller atherosclerotic plaque area, higher serum HDL-C levels and lesser CD36 and MSR-1 mRNA expression; the DHA/EPA 2:1 group had lower serum TC, LDL-C and TNF-α levels and lower aortic ROS levels. Our study suggested that n3 PUFA from animals had more potent atheroprotective effects than that from plants. Supplementation involving higher DHA/EPA ratios and an n6/n3 ratio of 4:1 was beneficial for reducing serum "bad cholesterol" and a 1:1 DHA/EPA ratio with an n6/n3 ratio of 4:1 was beneficial for improving serum "good cholesterol" and inhibiting ox-LDL uptake. Our results suggest that achieving an n6/n3 ratio of 4:1 in the diet is also important in addition to having an optimal DHA/EPA ratio. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Preservation of Metabolic Flexibility in Skeletal Muscle by a Combined Use of n-3 PUFA and Rosiglitazone in Dietary Obese Mice

    PubMed Central

    van Schothorst, Evert M.; Bunschoten, Annelies; Flachs, Pavel; Kus, Vladimir; Kuda, Ondrej; Bardova, Kristina; Janovska, Petra; Hensler, Michal; Rossmeisl, Martin; Wang-Sattler, Rui; Prehn, Cornelia; Adamski, Jerzy; Illig, Thomas; Keijer, Jaap; Kopecky, Jan

    2012-01-01

    Insulin resistance, the key defect in type 2 diabetes (T2D), is associated with a low capacity to adapt fuel oxidation to fuel availability, i.e., metabolic inflexibility. This, in turn, contributes to a further damage of insulin signaling. Effectiveness of T2D treatment depends in large part on the improvement of insulin sensitivity and metabolic adaptability of the muscle, the main site of whole-body glucose utilization. We have shown previously in mice fed an obesogenic high-fat diet that a combined use of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) and thiazolidinediones (TZDs), anti-diabetic drugs, preserved metabolic health and synergistically improved muscle insulin sensitivity. We investigated here whether n-3 LC-PUFA could elicit additive beneficial effects on metabolic flexibility when combined with a TZD drug rosiglitazone. Adult male C57BL/6N mice were fed an obesogenic corn oil–based high-fat diet (cHF) for 8 weeks, or randomly assigned to various interventions: cHF with n-3 LC-PUFA concentrate replacing 15% of dietary lipids (cHF+F), cHF with 10 mg rosiglitazone/kg diet (cHF+ROSI), cHF+F+ROSI, or chow-fed. Indirect calorimetry demonstrated superior preservation of metabolic flexibility to carbohydrates in response to the combined intervention. Metabolomic and gene expression analyses in the muscle suggested distinct and complementary effects of the interventions, with n-3 LC-PUFA supporting complete oxidation of fatty acids in mitochondria and the combination with n-3 LC-PUFA and rosiglitazone augmenting insulin sensitivity by the modulation of branched-chain amino acid metabolism. These beneficial metabolic effects were associated with the activation of the switch between glycolytic and oxidative muscle fibers, especially in the cHF+F+ROSI mice. Our results further support the idea that the combined use of n-3 LC-PUFA and TZDs could improve the efficacy of the therapy of obese and diabetic patients. PMID:22952760

  18. Influence of dietary n-3 LC-PUFA on growth, nutritional composition and immune function in marine fish Sebastiscus marmoratus

    NASA Astrophysics Data System (ADS)

    Peng, Shiming; Yue, Yanfeng; Gao, Quanxin; Shi, Zhaohong; Yin, Fei; Wang, Jiangang

    2014-09-01

    A 60-day feeding experiment was conducted to investigate the influence of dietary omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) on growth, nutritional composition and immune function of marine fish Sebastiscus marmoratus. Five diets containing 3.6, 10.2, 18.2, 26.5, or 37.0 g/kg n-3 LC-PUFA were prepared. The results reveal significant influences of dietary n-3 LC-PUFA on the final weight, weight gain, specific growth rate, feed conversion ratio, and condition factor. As dietary n-3 LCPUFA increased, weight gain and specific growth rate increased and were significantly higher in groups fed 18.2, 26.5 and 37.0 g/kg than in groups fed 3.6 and 10.2 g/kg ( P<0.05); there was no significant difference between groups fed 18.2, 26.5, or 37.0 g/kg ( P>0.05). With increasing dietary n-3 LC-PUFA, eicosapentaenoic acid and docosahexenoic acid content in muscle and liver increased significantly, immunoglobulin class M content gradually increased from 9.1 to 14.8 μg/L, and lysozyme activity content increased from 1 355 to 2 268 U/mL. Broken line model analysis according to weight gain indicated that a dietary n-3 LC-PUFA level of 18.2 g/kg is essential for normal growth at a fat level of 125 g/kg. Therefore, appropriate dietary n-3 LC-PUFA not only promote growth and improve the n-3 LC-PUFA content, but also enhance immune function in S. marmoratus.

  19. Ratio of n-3/n-6 PUFAs and risk of breast cancer: a meta-analysis of 274135 adult females from 11 independent prospective studies

    PubMed Central

    2014-01-01

    Background Increased ratio of n-3/n-6 polyunsaturated fatty acids (PUFAs) in diet or serum may have a protective effect on the risk of breast cancer (BC); however, the conclusions from prospective studies are still controversial. The purpose of this study is to ascertain the relationship between intake ratio of n-3/n-6 PUFAs and the risk of BC, and estimate the potential summarized dose–response trend. Methods Relevant English-language studies were identified through Cochrane Library, PubMed and EMBASE database till April 2013. Eligible prospective studies reporting the multivariate adjusted risk ratios (RRs) for association of n-3/n-6 PUFAs ratio in diet or serum with BC risk. Data extraction was conducted independently by 2 investigators; disagreements were reconciled by consensus. Study quality was assessed using the Newcastle-Ottawa scale. Study-specific RRs were combined via a random-effects model. Results Six prospective nested case–control and 5 cohort studies, involving 8,331 BC events from 274,135 adult females across different countries, were included in present study. Subjects with higher dietary intake ratio of n-3/n-6 PUFAs have a significantly lower risk of BC among study populations (pooled RR = 0.90; 95% CI: 0.82, 0.99), and per 1/10 increment of ratio in diet was associated with a 6% reduction of BC risk (pooled RR = 0.94; 95% CI: 0.90, 0.99; P for linear trend = 0.012). USA subjects with higher ratio of n-3/n-6 in serum phospholipids (PL) have a significantly lower risk of BC (pooled RR = 0.62; 95% CI: 0.39, 0.97; I2 = 0.00%; P for metaregression = 0.103; P for a permutation test = 0.100), and per 1/10 increment of ratio in serum PL was associated with 27% reduction of BC risk (pooled RR = 0.73; 95% CI: 0.59, 0.91; P for linear trend = 0.004; P for metaregression = 0.082; P for a permutation test = 0.116). Conclusions Higher intake ratio of n-3/n-6 PUFAs is associated with lower risk of BC among females, which implies an important evidence for

  20. Lifelong intake of flaxseed or menhaden oil to provide varying n-6 to n-3 PUFA ratios modulate bone microarchitecture during growth, but not after OVX in Sprague-Dawley rats.

    PubMed

    Longo, Amanda B; Sullivan, Philip J; Peters, Sandra J; LeBlanc, Paul J; Wohl, Gregory R; Ward, Wendy E

    2017-08-01

    Skeletal health is a lifelong process impacted by environmental factors, including nutrient intake. The n-3 source and PUFA ratio affect bone health in growing rats, or following ovariectomy (OVX), but no study has investigated the longitudinal effect of PUFA-supplementation throughout these periods of bone development. One-month-old, Sprague-Dawley rats (n = 98) were randomized to receive one of four diets from 1 through 6 months of age. Diets were modified from AIN-93G to contain a varying amount and source of n-3 (flaxseed versus menhaden oil) to provide an n-6 to n-3 ratio of 10:1 or 5:1. At 3 (prior to SHAM or OVX) and 6 months of age, bone microarchitecture of the tibia was quantified using in vivo micro-computed tomography (SkyScan 1176, Bruker microCT). Providing 5:1 (flaxseed) resulted in lower trabecular thickness and medullary area and greater cortical area fraction during growth compared to diets with a 10:1 PUFA ratio, but many of these differences were not apparent following OVX. PUFA-supplementation at levels attainable in human diet modulates some bone structure outcomes during periods of growth, but is not an adequate strategy for the prevention of OVX-induced bone loss in rats. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Increased blood pressure later in life may be associated with perinatal n-3 fatty acid deficiency.

    PubMed

    Armitage, James A; Pearce, Adrian D; Sinclair, Andrew J; Vingrys, Algis J; Weisinger, Richard S; Weisinger, Harrison S

    2003-04-01

    Hypertension is a major risk factor for cardiovascular and cerebrovascular disease. Previous work in both animals and humans with high blood pressure has demonstrated the antihypertensive effects of n-3 polyunsaturated fatty acids (PUFA), although it is not known whether these nutrients are effective in preventing hypertension. The predominant n-3 PUFA in the mammalian nervous system, docosahexaenoic acid (DHA), is deposited into synaptic membranes at a high rate during the perinatal period, and recent observations indicate that the perinatal environment is important for the normal development of blood pressure control. This study investigated the importance of perinatal n-3 PUFA supply in the control of blood pressure in adult Sprague-Dawley rats. Pregnant rat dams were fed semisynthetic diets that were either deficient in (DEF) or supplemented with (CON) n-3 PUFA. Offspring were fed the same diets as their mothers until 9 wk; then, half of the rats from each group were crossed over to the opposite diet creating four groups, i.e., CON-CON; CON-DEF; DEF-DEF, DEF-CON. Mean arterial blood pressures (MAP) were measured directly, at 33 wk of age, by cannulation of the femoral artery. The phospholipid fatty acid profile of the hypothalamic region was determined by capillary gas-liquid chromatography. The tissue phospholipid fatty acid profile reflected the diet that the rats were consuming at the time of testing. Both groups receiving DEF after 9 wk of age (i.e., DEF-DEF and CON-DEF) had similar profiles with a reduction in DHA levels of 30%, compared with rats receiving CON (i.e., CON-CON and DEF-CON). DEF-DEF rats had significantly raised MAP compared with all other groups, with differences as great as 17 mm Hg. DEF-CON rats had raised MAP compared with CON-CON rats, and DEF-DEF rats had higher MAP than CON-DEF rats, despite the fact that their respective fatty acid profiles were not different. These findings indicate that inadequate levels of DHA in the perinatal

  2. Dietary intake and adipose tissue content of long-chain n-3 PUFAs and subsequent 5-y change in body weight and waist circumference.

    PubMed

    Jakobsen, Marianne U; Madsen, Lise; Skjøth, Flemming; Berentzen, Tina L; Halkjær, Jytte; Tjønneland, Anne; Schmidt, Erik B; Sørensen, Thorkild Ia; Kristiansen, Karsten; Overvad, Kim

    2017-05-01

    Background: Adding long-chain n-3 (ω-3) polyunsaturated fatty acids (PUFAs) to a rodent diet reduces fat mass and prevents the development of obesity, but evidence of a similar effect in humans is rather limited. Objectives: We investigated the associations between dietary intake and adipose tissue content of long-chain n-3 PUFAs and subsequent 5-y change in body weight and waist circumference in humans. Effect modification by the carbohydrate:protein ratio and glycemic index was also investigated. Design: A total of 29,152 participants included in the Diet, Cancer, and Health cohort were followed. Dietary intake was assessed with the use of a validated 192-item semiquantitative food-frequency questionnaire. Adipose tissue content of fatty acids was determined by gas chromatography in a random sample of the cohort ( n = 1660). Anthropometric measurements were taken at baseline and 5 y later. Associations were investigated with the use of a linear regression model. Results: For high (1.22 g/d) compared with low (0.28 g/d) total n-3 PUFA intake, the difference in 5-y weight change was 147.6 g (95% CI: -42.3, 337.5 g); P -trend = 0.088. No associations between the individual n-3 PUFAs eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid were observed. Intake of n-3 PUFAs was not associated with a 5-y change in waist circumference. For high (0.16%) compared with low (0.06%) adipose tissue content of EPA, the difference in 5-y weight change was -649.6 g (95% CI: -1254.2, -44.9 g); P -trend = 0.027. No associations between total n-3 PUFA, docosapentaenoic acid, and docosahexaenoic acid and 5-y weight change were observed. Adipose tissue content of n-3 PUFAs was not associated with 5-y change in waist circumference. No effect modification by carbohydrate:protein ratio or glycemic index was found. Conclusion: Dietary intake and adipose tissue content of long-chain n-3 PUFAs were neither consistently nor appreciably associated with change in body weight

  3. Omega-3 deficiency impairs honey bee learning

    PubMed Central

    Arien, Yael; Dag, Arnon; Zarchin, Shlomi; Masci, Tania

    2015-01-01

    Deficiency in essential omega-3 polyunsaturated fatty acids (PUFAs), particularly the long-chain form of docosahexaenoic acid (DHA), has been linked to health problems in mammals, including many mental disorders and reduced cognitive performance. Insects have very low long-chain PUFA concentrations, and the effect of omega-3 deficiency on cognition in insects has not been studied. We show a low omega-6:3 ratio of pollen collected by honey bee colonies in heterogenous landscapes and in many hand-collected pollens that we analyzed. We identified Eucalyptus as an important bee-forage plant particularly poor in omega-3 and high in the omega-6:3 ratio. We tested the effect of dietary omega-3 deficiency on olfactory and tactile associative learning of the economically highly valued honey bee. Bees fed either of two omega-3–poor diets, or Eucalyptus pollen, showed greatly reduced learning abilities in conditioned proboscis-extension assays compared with those fed omega-3–rich diets, or omega-3–rich pollen mixture. The effect on performance was not due to reduced sucrose sensitivity. Omega-3 deficiency also led to smaller hypopharyngeal glands. Bee brains contained high omega-3 concentrations, which were only slightly affected by diet, suggesting additional peripheral effects on learning. The shift from a low to high omega-6:3 ratio in the Western human diet is deemed a primary cause of many diseases and reduced mental health. A similar shift seems to be occurring in bee forage, possibly an important factor in colony declines. Our study shows the detrimental effect on cognitive performance of omega-3 deficiency in a nonmammal. PMID:26644556

  4. Does perinatal omega-3 polyunsaturated fatty acid deficiency increase appetite signaling?

    PubMed

    Mathai, Michael L; Soueid, Mona; Chen, Nora; Jayasooriya, Anura P; Sinclair, Andrew J; Wlodek, Mary E; Weisinger, Harrison S; Weisinger, Richard S

    2004-11-01

    To investigate the effect of maternal dietary omega-3 polyunsaturated fatty acid (PUFA) deficiency and repletion on food appetite signaling. Sprague-Dawley rat dams were maintained on diets either supplemented with (CON) or deficient in (DEF) omega-3 PUFA. All offspring were raised on the maternal diet until weaning. After weaning, two groups remained on the respective maternal diet (CON and DEF groups), whereas a third group, born of dams fed the DEF diet, were switched to the CON diet (REC). Experiments on food intake began when the male rats reached 16 weeks of age. Food intake was stimulated either by a period of food restriction, by blocking glucose utilization (by 2-deoxyglucose injection), or by blocking beta-oxidation of fatty acids (by beta-mercaptoacetate injection). DEF animals consumed more than CON animals in response to all stimuli, with the greatest difference (1.9-fold) demonstrated following administration of 2-deoxyglucose. REC animals also consumed more than CON animals in response to food restriction and 2-deoxyglucose but not to beta-mercaptoacetate. These findings indicate that supply of omega-3 PUFA, particularly during the perinatal period, plays a role in the normal development of mechanisms controlling food intake, especially glucoprivic (i.e. reduced glucose availability) appetite signaling. Dietary repletion of omega-3 PUFA from 3 weeks of age restored intake responses to fatty acid metabolite signaling but did not reverse those in response to food restriction or glucoprivic stimuli.

  5. Oil from transgenic Camelina sativa containing over 25 % n-3 long-chain PUFA as the major lipid source in feed for Atlantic salmon (Salmo salar).

    PubMed

    Betancor, Mónica B; Li, Keshuai; Bucerzan, Valentin S; Sprague, Matthew; Sayanova, Olga; Usher, Sarah; Han, Lihua; Norambuena, Fernando; Torrissen, Ole; Napier, Johnathan A; Tocher, Douglas R; Olsen, Rolf E

    2018-06-01

    Facing a bottleneck in the growth of aquaculture, and a gap in the supply and demand of the highly beneficial n-3 long-chain PUFA (LC-PUFA), sustainable alternatives to traditional marine-based feeds are required. Therefore, in the present trial, a novel oil obtained from a genetically engineered oilseed crop, Camelina sativa, that supplied over 25 % n-3 LC-PUFA was tested as a sole dietary-added lipid source in Atlantic salmon (Salmo salar) feed. Three groups of fish were fed three experimental diets for 12 weeks with the same basal composition and containing 20 % added oil supplied by either a blend of fish oil and rapeseed oil (1:3) (COM) reflecting current commercial formulations, wild-type Camelina oil (WCO) or the novel transgenic Camelina oil (TCO). There were no negative effects on the growth, survival rate or health of the fish. The whole fish and flesh n-3 LC-PUFA levels were highest in fish fed TCO, with levels more than 2-fold higher compared with those of fish fed the COM and WCO diets, respectively. Diet TCO had no negative impacts on the evaluated immune and physiological parameters of head kidney monocytes. The transcriptomic responses of liver and mid-intestine showed only mild effects on metabolism genes. Overall, the results clearly indicated that the oil from transgenic Camelina was highly efficient in supplying n-3 LC-PUFA providing levels double that obtained with a current commercial standard, and similar to those a decade ago before substantial dietary fishmeal and oil replacement.

  6. Modification of high saturated fat diet with n-3 polyunsaturated fat improves glucose intolerance and vascular dysfunction

    PubMed Central

    Lamping, KL; Nuno, DW; Coppey, LJ; Holmes, AJ; Hu, S; Oltman, CL; Norris, AW; Yorek, MA

    2013-01-01

    Aims The ability of dietary enrichment with monounsaturated (MUFA), n-3, or n-6 polyunsaturated fatty acids (PUFA) to reverse glucose intolerance and vascular dysfunction resulting from excessive dietary saturated fatty acids is not resolved. We hypothesized that partial replacement of dietary saturated fats with n-3 PUFA enriched menhaden oil (MO) would provide greater improvement in glucose tolerance and vascular function compared to n-6 enriched safflower oil (SO) or MUFA-enriched olive oil (OO). Material and Methods We fed mice a high saturated fat diet (60% kcal from lard) for 12 weeks before substituting half the lard with MO, SO or OO for an additional 4 weeks. At the end of 4 weeks, we assessed glucose tolerance, insulin signaling and reactivity of isolated pressurized gracilis arteries. Results After 12 weeks of saturated fat diet, body weights were elevated and glucose tolerance abnormal compared to mice on control diet (13% kcal lard). Diet substituted with MO restored basal glucose levels, glucose tolerance, and indices of insulin signaling (phosphorylated Akt) to normal whereas restoration was limited for SO and OO substitutions. Although dilation to acetylcholine was reduced in arteries from mice on HF, OO and SO diets compared to normal diet, dilation to acetylcholine was fully restored and constriction to phenylephrine reduced in MO fed mice compared to normal. Conclusion We conclude that short term enrichment of an ongoing high fat diet with n-3 PUFA rich MO but not MUFA rich OO or n-6 PUFA rich SO reverses glucose tolerance, insulin signaling, and vascular dysfunction. PMID:22950668

  7. Are n-3 PUFA dietary recommendations met in in-hospital and school catering?

    PubMed

    Molendi-Coste, O; Legry, V; Leclercq, I A

    2011-06-01

    Literature provides compelling evidence for the health benefits of n-3 polyunsaturated fatty acids (PUFA) consumption and low n-6/n-3 ratio, in particular, on inflammation and metabolic syndrome prevention and treatment. Consequently, recommendations were established for adequate n-3 PUFA supplies in the general population. The aim of our study was to evaluate the fatty acid (FA) profile in collective catering in relation to those recommendations. We obtained composition of lunches provided by the Township of Lille (France) to children and adults, and of "standard", "low-fat" and "for diabetic" menus from the catering service of St Luc university hospital (Brussels, Belgium). The average proportions of fish, meat, oils, and dairy were used to estimate total, saturated, monounsaturated and polyunsaturated (n-6 and n-3) FA contents. We used official tables of foodstuffs composition provided by the French Agency for Food Safety, the project "Nutritional Composition of Aquatic Products", the French Institute for Nutrition, and the USDA National Nutrient Database for Standard Reference. French guidelines were taken as reference for daily recommended intakes. n-3 PUFA content in lunches provided by municipal catering and in in-hospital menus were slightly below recommended intakes. In the latter, n-3 PUFA enriched margarine contributed for 50% to daily intakes. Despite, the n-6/n-3 ratio was too high, especially in municipal catering (around 20), related to excessive n-6 PUFA supply. Our results highlight that meeting n-3 PUFA nutritional recommendation remains challenging for collective catering. A detailed analysis of provided menus represents a powerful tool to increase awareness and foster improvement in practice.

  8. Maternal Diet Supplementation with n-6/n-3 Essential Fatty Acids in a 1.2 : 1.0 Ratio Attenuates Metabolic Dysfunction in MSG-Induced Obese Mice

    PubMed Central

    Martin, Josiane Morais; Miranda, Rosiane Aparecida; Palma-Rigo, Kesia; Alves, Vander Silva; Fabricio, Gabriel Sergio; Pavanello, Audrei; Franco, Claudinéia Conationi da Silva; Ribeiro, Tatiane Aparecida; Visentainer, Jesuí Vergílio; Banafé, Elton Guntendeorfer; Martin, Clayton Antunes; Mathias, Paulo Cezar de Freitas

    2016-01-01

    Essential polyunsaturated fatty acids (PUFAs) prevent cardiometabolic diseases. We aimed to study whether a diet supplemented with a mixture of n-6/n-3 PUFAs, during perinatal life, attenuates outcomes of long-term metabolic dysfunction in prediabetic and obese mice. Seventy-day-old virgin female mice were mated. From the conception day, dams were fed a diet supplemented with sunflower oil and flaxseed powder (containing an n-6/n-3 PUFAs ratio of 1.2 : 1.0) throughout pregnancy and lactation, while control dams received a commercial diet. Newborn mice were treated with monosodium L-glutamate (MSG, 4 mg g−1 body weight per day) for the first 5 days of age. A batch of weaned pups was sacrificed to quantify the brain and pancreas total lipids; another batch were fed a commercial diet until 90 days of age, where glucose homeostasis and glucose-induced insulin secretion (GIIS) as well as retroperitoneal fat and Lee index were assessed. MSG-treated mice developed obesity, glucose intolerance, insulin resistance, pancreatic islet dysfunction, and higher fat stores. Maternal flaxseed diet-supplementation decreased n-6/n-3 PUFAs ratio in the brain and pancreas and blocked glucose intolerance, insulin resistance, GIIS impairment, and obesity development. The n-6/n-3 essential PUFAs in a ratio of 1.2 : 1.0 supplemented in maternal diet during pregnancy and lactation prevent metabolic dysfunction in MSG-obesity model. PMID:28050167

  9. ELOVL4 protein preferentially elongates 20:5n3 to very long chain PUFAs over 20:4n6 and 22:6n3[S

    PubMed Central

    Yu, Man; Benham, Aaron; Logan, Sreemathi; Brush, R. Steven; Mandal, Md Nawajes A.; Anderson, Robert E.; Agbaga, Martin-Paul

    2012-01-01

    We hypothesized that reduction/loss of very long chain PUFAs (VLC-PUFAs) due to mutations in the ELOngase of very long chain fatty acid-4 (ELOVL4) protein contributes to retinal degeneration in autosomal dominant Stargardt-like macular dystrophy (STGD3) and age-related macular degeneration; hence, increasing VLC-PUFA in the retina of these patients could provide some therapeutic benefits. Thus, we tested the efficiency of elongation of C20-C22 PUFA by the ELOVL4 protein to determine which substrates are the best precursors for biosynthesis of VLC-PUFA. The ELOVL4 protein was expressed in pheochromocytoma cells, while green fluorescent protein-expressing and nontransduced cells served as controls. The cells were treated with 20:5n3, 22:6n3, and 20:4n6, either individually or in equal combinations. Both transduced and control cells internalized and elongated the supplemented FAs to C22-C26 precursors. Only ELOVL4-expressing cells synthesized C28-C38 VLC-PUFA from these precursors. In general, 20:5n3 was more efficiently elongated to VLC-PUFA in the ELOVL4-expressing cells, regardless of whether it was in combination with 22:6n3 or with 20:4n6. In each FA treatment group, C34 and C36 VLC-PUFAs were the predominant VLC-PUFAs in the ELOVL4-expressing cells. In summary, 20:5n3, followed by 20:4n6, seems to be the best precursor for boosting the synthesis of VLC-PUFA by ELOVL4 protein. PMID:22158834

  10. Uncoupling of interleukin-6 from its signalling pathway by dietary n-3-polyunsaturated fatty acid deprivation alters sickness behaviour in mice

    PubMed Central

    Mingam, Rozenn; Moranis, Aurélie; Bluthé, Rose-Marie; De Smedt-Peyrusse, Véronique; Kelley, Keith W.; Guesnet, Philippe; Lavialle, Monique; Dantzer, Robert; Layé, Sophie

    2009-01-01

    Sickness behaviour is an adaptive behavioural response to the activation of the innate immune system. It is mediated by brain cytokine production and action, especially interleukin-6 (IL-6). Polyunsaturated fatty acids (PUFA) are essential fatty acids that are highly incorporated in brain cells membranes and display immunomodulating properties. We hypothesized that a decrease in n-3 PUFA brain level by dietary means impacts on lipopolysaccharide (LPS)-induced IL-6 production and sickness behaviour. Our results show that mice exposed throughout life to a diet containing n-3 PUFA (n-3/n-6 diet) display a decrease in social interaction that does not occur in mice submitted to a diet devoid of n-3 PUFA (n-6 diet). LPS induced high IL-6 plasma levels as well as expression of IL-6 mRNA in the hippocampus and cFos mRNA in the brainstem of mice fed either diet, indicating intact immune-to-brain communication. However, STAT3 and STAT1 activation, a hallmark of IL-6 signalling pathway, was lower in the hippocampus of LPS-treated n-6 mice as compared to n-3/n-6 mice. In addition, LPS did not reduce social interaction in IL-6 knock-out (IL-6 KO) mice and failed to induce STAT3 activation in the brain of IL-6 KO mice. Altogether, these findings point to alteration in brain STAT3 as a key mechanism for the lack of effect of LPS on social interaction in mice fed with the n-6 PUFA diet. The relative deficiency of Western diets in n-3 PUFA could impact on behavioural aspects of the host response to infection. PMID:18973601

  11. Combination of n-3 polyunsaturated fatty acids reduces atherogenesis in apolipoprotein E-deficient mice by inhibiting macrophage activation.

    PubMed

    Takashima, Akira; Fukuda, Daiju; Tanaka, Kimie; Higashikuni, Yasutomi; Hirata, Yoichiro; Nishimoto, Sachiko; Yagi, Shusuke; Yamada, Hirotsugu; Soeki, Takeshi; Wakatsuki, Tetsuzo; Taketani, Yutaka; Shimabukuro, Michio; Sata, Masataka

    2016-11-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are major components of n-3 polyunsaturated fatty acids (n-3 PUFAs) which inhibit atherogenesis, although few studies have examined the effects of the combination of EPA and DHA on atherogenesis. The aim of this study was to investigate whether DHA has additional anti-atherosclerotic effects when combined with EPA. Male 8-week-old apolipoprotein E-deficient (Apoe -/- ) mice were fed a western-type diet supplemented with different amounts of EPA and DHA; EPA (2.5%, w/w), low-dose EPA + DHA (2.5%, w/w), or high-dose EPA + DHA (5%, w/w) for 20 weeks. The control group was fed a western-type diet containing no n-3 PUFA. Histological and gene expression analysis were performed in atherosclerotic lesions in the aorta. To address the mechanisms, RAW264.7 cells were used. All n-3 PUFA treatments significantly attenuated the development and destabilization of atherosclerotic plaques compared with the control. The anti-atherosclerotic effects were enhanced in the high-dose EPA + DHA group (p < 0.001), whereas the pure EPA group and low-dose EPA + DHA group showed similar results. EPA and DHA additively attenuated the expression of inflammatory molecules in RAW264.7 cells stimulated with LPS. DHA or EPA + DHA suppressed LPS-induced toll-like receptor 4 (TLR4) expression in lipid rafts on RAW264.7 cells (p < 0.05). Lipid raft disruption by methyl-β-cyclodextrin suppressed mRNA expression of inflammatory molecules in LPS-stimulated macrophages. n-3 PUFAs suppressed atherogenesis. DHA combined with EPA had additional anti-inflammatory effects and inhibited atherogenesis in Apoe -/- mice. The reduction of TLR4 expression in lipid rafts in macrophages by DHA might be involved in this mechanism, at least partially. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Effect of omega 3 and omega 6 fatty acid intakes from diet and supplements on plasma fatty acid levels in the first 3 years of life.

    PubMed

    Hoyos, Camilla; Almqvist, Catarina; Garden, Frances; Xuan, Wei; Oddy, Wendy H; Marks, Guy B; Webb, Karen L

    2008-01-01

    The optimal method for conducting omega (n-)3 polyunsaturated fatty acid (PUFA) supplementation trials in children is unknown. To assess the impact of n-3 and n-6 PUFA intake from the background diet on plasma levels of n-3 and n-6 PUFA in children aged 0-3 years, with and without n-3 supplementation. Subjects were randomised antenatally to receive either n-3 PUFA supplements and low n-6 PUFA cooking oils and spreads or a control intervention, designed to maintain usual fatty acid intake. Dietary intake was assessed at 18 months by 3-day weighed food record and at 3 years by food frequency questionnaire. Plasma phospholipids were measured at both time points. Associations were tested by regression. N-3 PUFA intake from background diet did not significantly affect plasma n-3 levels. In contrast, n-6 PUFA intake in background diet was positively related to plasma n-6 levels in both study groups. In addition, n-6 PUFA intake from diet was negatively associated with plasma n-3 levels at 18 months and 3 years (-0.16%/g n-6 intake, 95%CI -0.29 to -0.03 and -0.05%/g n-6 intake, 95%CI -0.09 to -0.01, respectively) in the active group, but not in the control group. Interventions intending to increase plasma n-3 PUFA in children by n-3 supplementation should also minimise n-6 PUFA intake in the background diet.

  13. Feeding soy protein isolate and n-3 PUFA affects polycystic liver disease progression in a PCK rat model of autosomal polycystic kidney disease.

    PubMed

    Maditz, Kaitlin H; Benedito, Vagner A; Oldaker, Chris; Nanda, Nainika; Lateef, Sundus S; Livengood, Ryan; Tou, Janet C

    2015-04-01

    In polycystic liver disease (PCLD), multiple cysts cause liver enlargement, structural damage, and loss of function. Soy protein and dietary ω-3 polyunsaturated fatty acids (n-3 PUFAs) have been found to decrease cyst proliferation and inflammation in polycystic kidney disease. Therefore, the aim of the study was to investigate whether soy protein and n-3 PUFA supplementation attenuates PCLD. Young (age 28 days) female PCK rats were fed (n = 12 per group) either casein + corn oil (casein + CO), casein + soybean oil (casein + SO), soy protein isolate + soybean oil (SPI + SO), or SPI + 1:1 soybean/salmon oil blend (SPI + SB) diet for 12 weeks. Liver histology, gene expression by real-time quantitative polymerase chain reaction, and serum markers of liver injury were determined. Diet had no effect on PCLD progression as indicated by no significant differences in liver weight and hepatic proliferation gene expression between diet groups. PCK rats fed SPI + SB diet, however, had the greatest (P < 0.05) histological evidence of hepatic cyst obstruction, portal inflammation, steatosis, and upregulation (P = 0.03) of fibrosis-related genes. Rats fed SPI + SB diet also had the lowest (P < 0.001) serum cholesterol and higher (P < 0.05) serum alkaline phosphatase and bilirubin concentrations. Feeding young female PCK rats SPI and n-3 PUFA failed to attenuate PCLD progression. Furthermore, feeding SPI + SB diet resulted in complications of hepatic steatosis attributable to cysts obstruction of bile duct and hepatic vein. Based on the results, it was concluded that diet intervention alone was not effective at attenuating PCLD associated with autosomal recessive polycystic kidney disease.

  14. Mitochondrial basis of the anti-arrhythmic action of lidocaine and modulation by the n-6 to n-3 PUFA ratio of cardiac phospholipids.

    PubMed

    Demaison, Luc; Moreau, Daniel; Clauw, Fabienne; Vergely, Catherine; Rochette, Luc

    2013-08-01

    The aim of this study was to evaluate the involvement of mitochondria in the mechanism of the anti-arrhythmic lidocaine. Rats were fed with a diet containing either n-6 polyunsaturated fatty acids (PUFAs, SSO group) or an equimolecular mixture of n-3 and n-6 PUFAs (FO group) for 8 weeks. The hearts were perfused according to the working mode using a medium with or without lidocaine 5 μm. They were then subjected to local ischemia (20 min) and reperfusion (30 min). Dietary n-3 PUFAs triggered the expected decrease in the n-6/n-3 PUFA ratio of cardiac phospholipids. Reperfusing the ischemic area favored the incidence of severe arrhythmias. Lidocaine treatment abolished almost completely reperfusion arrhythmias in the FO group, but did not display anti-arrhythmic properties in the SSO group. As it was indicated by measurements of the mitochondrial function, lidocaine seemed to favor mitochondrial calcium retention in the FO group, which might prevent cytosolic calcium spikes and reperfusion arrhythmias. In the SSO group, the resistance to lidocaine was associated with an aggravation of cellular damages. The mitochondrial calcium retention capacities were saturated, and lidocaine was unable to increase them, making the drug inefficient in preventing reperfusion arrhythmias. © 2012 The Authors Fundamental and Clinical Pharmacology © 2012 Société Française de Pharmacologie et de Thérapeutique. Published by John Wiley & Sons Ltd.

  15. Effects of n-3 PUFAs on Intestinal Mucosa Innate Immunity and Intestinal Microbiota in Mice after Hemorrhagic Shock Resuscitation.

    PubMed

    Tian, Feng; Gao, Xuejin; Zhang, Li; Wang, Xinying; Wan, Xiao; Jiang, Tingting; Wu, Chao; Bi, Jingcheng; Lei, Qiucheng

    2016-09-29

    n -3 polyunsaturated fatty acids (PUFAs) can improve the function of the intestinal barrier after damage from ischemia-reperfusion or hemorrhagic shock resuscitation (HSR). However, the effects of n -3 PUFAs on intestinal microbiota and the innate immunity of the intestinal mucosa after HSR remain unclear. In the present study, 40 C57BL/6J mice were randomly assigned to five groups: control, sham, HSR, HSR + n -3 PUFAs and HSR + n -6 PUFAs. Mice were sacrificed 12 h after HSR. Liver, spleen, mesenteric lymph nodes and terminal ileal tissues were collected. Intestinal mucosae were scraped aseptically. Compared with the HSR group, the number of goblet cells increased, expression of mucin 2 was restored and disturbed intestinal microbiota were partly stabilized in the PUFA-administered groups, indicating that both n -3 and n -6 PUFAs reduced overproliferation of Gammaproteobacteria while promoting the growth of Bacteroidetes. Notably, n -3 PUFAs had an advantage over n -6 PUFAs in improving ileal tissue levels of lysozyme after HSR. Thus, PUFAs, especially n -3 PUFAs, partly improved the innate immunity of intestinal mucosa in mice after HSR. These findings suggest a clinical rationale for providing n -3 PUFAs to patients recovering from ischemia-reperfusion.

  16. Diet-Gene Interactions and PUFA Metabolism: A Potential Contributor to Health Disparities and Human Diseases

    PubMed Central

    Chilton, Floyd H.; Murphy, Robert C.; Wilson, Bryan A.; Sergeant, Susan; Ainsworth, Hannah; Seeds, Michael C.; Mathias, Rasika A.

    2014-01-01

    The “modern western” diet (MWD) has increased the onset and progression of chronic human diseases as qualitatively and quantitatively maladaptive dietary components give rise to obesity and destructive gene-diet interactions. There has been a three-fold increase in dietary levels of the omega-6 (n-6) 18 carbon (C18), polyunsaturated fatty acid (PUFA) linoleic acid (LA; 18:2n-6), with the addition of cooking oils and processed foods to the MWD. Intense debate has emerged regarding the impact of this increase on human health. Recent studies have uncovered population-related genetic variation in the LCPUFA biosynthetic pathway (especially within the fatty acid desaturase gene (FADS) cluster) that is associated with levels of circulating and tissue PUFAs and several biomarkers and clinical endpoints of cardiovascular disease (CVD). Importantly, populations of African descent have higher frequencies of variants associated with elevated levels of arachidonic acid (ARA), CVD biomarkers and disease endpoints. Additionally, nutrigenomic interactions between dietary n-6 PUFAs and variants in genes that encode for enzymes that mobilize and metabolize ARA to eicosanoids have been identified. These observations raise important questions of whether gene-PUFA interactions are differentially driving the risk of cardiovascular and other diseases in diverse populations, and contributing to health disparities, especially in African American populations. PMID:24853887

  17. A comparison of heart rate variability, n-3 PUFA status and lipid mediator profile in age- and BMI-matched middle-aged vegans and omnivores.

    PubMed

    Pinto, Ana M; Sanders, Thomas A B; Kendall, Alexandra C; Nicolaou, Anna; Gray, Robert; Al-Khatib, Haya; Hall, Wendy L

    2017-03-01

    Low heart rate variability (HRV) predicts sudden cardiac death. Long-chain (LC) n-3 PUFA (C20-C22) status is positively associated with HRV. This cross-sectional study investigated whether vegans aged 40-70 years (n 23), whose diets are naturally free from EPA (20 : 5n-3) and DHA (22 : 6n-3), have lower HRV compared with omnivores (n 24). Proportions of LC n-3 PUFA in erythrocyte membranes, plasma fatty acids and concentrations of plasma LC n-3 PUFA-derived lipid mediators were significantly lower in vegans. Day-time interbeat intervals (IBI), adjusted for physical activity, age, BMI and sex, were significantly shorter in vegans compared with omnivores (mean difference -67 ms; 95 % CI -130, -3·4, P50 % and high-frequency power) were similarly lower in vegans, with no differences during sleep. In conclusion, vegans have higher 24 h SDNN, but lower day-time HRV and shorter day-time IBI relative to comparable omnivores. Vegans may have reduced availability of precursor markers for pro-resolving lipid mediators; it remains to be determined whether there is a direct link with impaired cardiac function in populations with low-n-3 status.

  18. Variation Quality and Kinetic Parameter of Commercial n-3 PUFA-Rich Oil during Oxidation via Rancimat

    PubMed Central

    Yang, Kai-Min; Chiang, Po-Yuan

    2017-01-01

    Different biological sources of n-3 polyunsaturated fatty acids (n-3 PUFA) in mainstream commercial products include algae and fish. Lipid oxidation in n-3 PUFA-rich oil is the most important cause of its deterioration. We investigated the kinetic parameters of n-3 PUFA-rich oil during oxidation via Rancimat (at a temperature range of 70~100 °C). This was done on the basis of the Arrhenius equation, which indicates that the activation energies (Ea) for oxidative stability are 82.84–96.98 KJ/mol. The chemical substrates of different oxidative levels resulting from oxidation via Rancimat at 80 °C were evaluated. At the initiation of oxidation, the tocopherols in the oil degraded very quickly, resulting in diminished protection against further oxidation. Then, the degradation of the fatty acids with n-3 PUFA-rich oil was evident because of decreased levels of PUFA along with increased levels of saturated fatty acids (SFA). The quality deterioration from n-3 PUFA-rich oil at the various oxidative levels was analyzed chemometrically. The anisidine value (p-AV, r: 0.92) and total oxidation value (TOTOX, r: 0.91) exhibited a good linear relationship in a principal component analysis (PCA), while oxidative change and a significant quality change to the induction period (IP) were detected through an agglomerative hierarchical cluster (AHC) analysis. PMID:28350348

  19. Variation Quality and Kinetic Parameter of Commercial n-3 PUFA-Rich Oil during Oxidation via Rancimat.

    PubMed

    Yang, Kai-Min; Chiang, Po-Yuan

    2017-03-28

    Different biological sources of n -3 polyunsaturated fatty acids ( n -3 PUFA) in mainstream commercial products include algae and fish. Lipid oxidation in n -3 PUFA-rich oil is the most important cause of its deterioration. We investigated the kinetic parameters of n -3 PUFA-rich oil during oxidation via Rancimat (at a temperature range of 70~100 °C). This was done on the basis of the Arrhenius equation, which indicates that the activation energies ( E a) for oxidative stability are 82.84-96.98 KJ/mol. The chemical substrates of different oxidative levels resulting from oxidation via Rancimat at 80 °C were evaluated. At the initiation of oxidation, the tocopherols in the oil degraded very quickly, resulting in diminished protection against further oxidation. Then, the degradation of the fatty acids with n -3 PUFA-rich oil was evident because of decreased levels of PUFA along with increased levels of saturated fatty acids (SFA). The quality deterioration from n -3 PUFA-rich oil at the various oxidative levels was analyzed chemometrically. The anisidine value (p-AV, r: 0.92) and total oxidation value (TOTOX, r: 0.91) exhibited a good linear relationship in a principal component analysis (PCA), while oxidative change and a significant quality change to the induction period (IP) were detected through an agglomerative hierarchical cluster (AHC) analysis.

  20. Dietary n-3 polyunsaturated fatty acid intake and all-cause and cardiovascular mortality in adults on hemodialysis: The DIET-HD multinational cohort study.

    PubMed

    Saglimbene, Valeria M; Wong, Germaine; Ruospo, Marinella; Palmer, Suetonia C; Campbell, Katrina; Larsen, Vanessa Garcia; Natale, Patrizia; Teixeira-Pinto, Armando; Carrero, Juan-Jesus; Stenvinkel, Peter; Gargano, Letizia; Murgo, Angelo M; Johnson, David W; Tonelli, Marcello; Gelfman, Rubén; Celia, Eduardo; Ecder, Tevfik; Bernat, Amparo G; Del Castillo, Domingo; Timofte, Delia; Török, Marietta; Bednarek-Skublewska, Anna; Duława, Jan; Stroumza, Paul; Hoischen, Susanne; Hansis, Martin; Fabricius, Elisabeth; Wollheim, Charlotta; Hegbrant, Jörgen; Craig, Jonathan C; Strippoli, Giovanni F M

    2017-12-06

    Patients on hemodialysis suffer from high risk of premature death, which is largely attributed to cardiovascular disease, but interventions targeting traditional cardiovascular risk factors have made little or no difference. Long chain n-3 polyunsaturated fatty acids (n-3 PUFA) are putative candidates to reduce cardiovascular disease. Diets rich in n-3 PUFA are recommended in the general population, although their role in the hemodialysis setting is uncertain. We evaluated the association between the dietary intake of n-3 PUFA and mortality for hemodialysis patients. The DIET-HD study is a prospective cohort study (January 2014-June 2017) in 9757 adults treated with hemodialysis in Europe and South America. Dietary n-3 PUFA intake was measured at baseline using the GA 2 LEN Food Frequency Questionnaire. Adjusted Cox regression analyses clustered by country were conducted to evaluate the association of dietary n-3 PUFA intake with cardiovascular and all-cause mortality. During a median follow up of 2.7 years (18,666 person-years), 2087 deaths were recorded, including 829 attributable to cardiovascular causes. One third of the study participants consumed sufficient (at least 1.75 g/week) n-3 PUFA recommended for primary cardiovascular prevention, and less than 10% recommended for secondary prevention (7-14 g/week). Compared to patients with the lowest tertile of dietary n-3 PUFA intake (<0.37 g/week), the adjusted hazard ratios (95% confidence interval) for cardiovascular mortality for patients in the middle (0.37 to <1.8 g/week) and highest (≥1.8 g/week) tertiles of n-3 PUFA were 0.82 (0.69-0.98) and 1.03 (0.84-1.26), respectively. Corresponding adjusted hazard ratios for all-cause mortality were 0.96 (0.86-1.08) and 1.00 (0.88-1.13), respectively. Dietary n-3 PUFA intake was not associated with cardiovascular or all-cause mortality in patients on hemodialysis. As dietary n-3 PUFA intake was low, the possibility that n-3 PUFA supplementation might mitigate

  1. PUFA diets alter the microRNA expression profiles in an inflammation rat model

    PubMed Central

    ZHENG, ZHENG; GE, YINLIN; ZHANG, JINYU; XUE, MEILAN; LI, QUAN; LIN, DONGLIANG; MA, WENHUI

    2015-01-01

    Omega-3 and -6 polyunsaturated fatty acids (PUFAs) can directly or indirectly regulate immune homeostasis via inflammatory pathways, and components of these pathways are crucial targets of microRNAs (miRNAs). However, no study has examined the changes in the miRNA transcriptome during PUFA-regulated inflammatory processes. Here, we established PUFA diet-induced autoimmune-prone (AP) and autoimmune-averse (AA) rat models, and studied their physical characteristics and immune status. Additionally, miRNA expression patterns in the rat models were compared using microarray assays and bioinformatic methods. A total of 54 miRNAs were differentially expressed in common between the AP and the AA rats, and the changes in rno-miR-19b-3p, -146b-5p and -183-5p expression were validated using stem-loop reverse transcription-quantitative polymerase chain reaction. To better understand the mechanisms underlying PUFA-regulated miRNA changes during inflammation, computational algorithms and biological databases were used to identify the target genes of the three validated miRNAs. Furthermore, Gene Ontology (GO) term annotation and KEGG pathway analyses of the miRNA targets further allowed to explore the potential implication of the miRNAs in inflammatory pathways. The predicted PUFA-regulated inflammatory pathways included the Toll-like receptor (TLR), T cell receptor (TCR), NOD-like receptor (NLR), RIG-I-like receptor (RLR), mitogen-activated protein kinase (MAPK) and the transforming growth factor-β (TGF-β) pathway. This study is the first report, to the best of our knowledge, on in vivo comparative profiling of miRNA transcriptomes in PUFA diet-induced inflammatory rat models using a microarray approach. The results provide a useful resource for future investigation of the role of PUFA-regulated miRNAs in immune homeostasis. PMID:25672643

  2. Three-way assessment of long-chain n-3 PUFA nutrition: by questionnaire and matched blood and skin samples.

    PubMed

    Wallingford, Sarah C; Pilkington, Suzanne M; Massey, Karen A; Al-Aasswad, Naser M I; Ibiebele, Torukiri I; Celia Hughes, Maria; Bennett, Susan; Nicolaou, Anna; Rhodes, Lesley E; Green, Adèle C

    2013-02-28

    The long-chain n-3 PUFA, EPA, is believed to be important for skin health, including roles in the modulation of inflammation and protection from photodamage. FFQ and blood levels are used as non-invasive proxies for assessing skin PUFA levels, but studies examining how well these proxies reflect target organ content are lacking. In seventy-eight healthy women (mean age 42·8, range 21-60 years) residing in Greater Manchester, we performed a quantitative analysis of long-chain n-3 PUFA nutrition estimated from a self-reported FFQ (n 75) and correlated this with n-3 PUFA concentrations in erythrocytes (n 72) and dermis (n 39). Linear associations between the three n-3 PUFA measurements were assessed by Spearman correlation coefficients and agreement between these measurements was estimated. Average total dietary content of the principal long-chain n-3 PUFA EPA and DHA was 171 (SD 168) and 236 (SD 248) mg/d, respectively. EPA showed significant correlations between FFQ assessments and both erythrocyte (r 0·57, P< 0·0001) and dermal (r 0·33, P= 0·05) levels, as well as between erythrocytes and dermis (r 0·45, P= 0·008). FFQ intake of DHA and the sum of n-3 PUFA also correlated well with erythrocyte concentrations (r 0·50, P< 0·0001; r 0·27, P= 0·03). Agreement between ranked thirds of dietary intake, blood and dermis approached 50% for EPA and DHA, though gross misclassification was lower for EPA. Thus, FFQ estimates and circulating levels of the dietary long-chain n-3 PUFA, EPA, may be utilised as well-correlated measures of its dermal bioavailability.

  3. The association of serum long-chain n-3 PUFA and hair mercury with exercise cardiac power in men.

    PubMed

    Tajik, Behnam; Kurl, Sudhir; Tuomainen, Tomi-Pekka; Virtanen, Jyrki K

    2016-08-01

    Long-chain n-3 PUFA from fish and exercise capacity are associated with CVD risk. Fish, especially large and old predatory fish, may contain Hg, which may attenuate the inverse association of long-chain n-3 PUFA with CVD. However, the associations of long-chain n-3 PUFA or Hg exposure with exercise capacity are not well known. We aimed to evaluate the associations of serum long-chain n-3 PUFA EPA, docosapentaenoic acid (DPA) and DHA and hair Hg with exercise cardiac power (ECP, a ratio of VO2max:maximal systolic blood pressure (SBP) during an exercise test), a measure for exercise capacity. For this, data from the population-based Kuopio Ischaemic Heart Disease Risk Factor Study were analysed cross-sectionally in order to determine the associations between serum long-chain n-3 PUFA, hair Hg and ECP in 1672 men without CVD, aged 42-60 years. After multivariate adjustments, serum total long-chain n-3 PUFA concentration was associated with higher ECP and VO2max (P trend across quartiles=0·04 and P trend=0·02, respectively), but not with maximal SBP (P trend=0·69). Associations were generally similar when EPA, DPA and DHA were evaluated individually. Hair Hg was not associated with ECP, VO2max or maximal SBP. However, the associations of total long-chain n-3 PUFA (P interaction=0·03) and EPA (P interaction=0·02) with higher VO2max were stronger among men with lower hair Hg. Higher serum long-chain n-3 PUFA concentration, mainly a marker for fish consumption in this study population, was associated with higher ECP and VO2max in middle-aged men from eastern Finland.

  4. Sex-dependent association between erythrocyte n-3 PUFA and type 2 diabetes in older overweight people.

    PubMed

    Abbott, Kylie A; Veysey, Martin; Lucock, Mark; Niblett, Suzanne; King, Katrina; Burrows, Tracy; Garg, Manohar L

    2016-04-01

    The association between n-3 PUFA intake and type 2 diabetes (T2D) is unclear, and studies relating objective biomarkers of n-3 PUFA consumption to diabetic status remain limited. The aim of this study was to determine whether erythrocyte n-3 PUFA levels (n-3 index; n-3I) are associated with T2D in a cohort of older adults (n 608). To achieve this, the n-3I (erythrocyte %EPA+%DHA) was determined by GC and associated with fasting blood glucose; HbA1c; and plasma insulin. Insulin resistance (IR) was assessed using the homeostatic model assessment of insulin resistance (HOMA--IR). OR for T2D were calculated for each quartile of n-3I. In all, eighty-two type 2 diabetic (46·3 % female; 76·7 (sd 5·9) years) and 466 non-diabetic (57·9 % female; 77·8 (sd 7·1) years) individuals were included in the analysis. In overweight/obese (BMI≥27 kg/m2), the prevalence of T2D decreased across ascending n-3I quartiles: 1·0 (reference), 0·82 (95 % CI 0·31, 2·18), 0·56 (95 % CI 0·21, 1·52) and 0·22 (95 % CI 0·06, 0·82) (P trend=0·015). A similar but non-significant trend was seen in overweight men. After adjusting for BMI, no associations were found between n-3I and fasting blood glucose, HbA1c, insulin or HOMA-IR. In conclusion, higher erythrocyte n-3 PUFA status may be protective against the development of T2D in overweight women. Further research is warranted to determine whether dietary interventions that improve n-3 PUFA status can improve measures of IR, and to further elucidate sex-dependent differences.

  5. Decreased n-6/n-3 polyunsaturated fatty acid ratio reduces chronic reflux esophagitis in rats.

    PubMed

    Wei, Jing-Jing; Tang, Du-Peng; Xie, Jing-Jing; Yang, Li-Yong; Zhuang, Ze-Hao

    2016-09-01

    To investigate the effect of dietary ratio of n-6/n-3 PUFAs on chronic reflux esophagitis (RE) and lipid peroxidation. Rat RE model were established and then fed on a diet contained different n-6/n-3 PUFA ratios (1:1.5, 5:1, 10:1) or received pure n-6 PUFA diet for 14 days. Esophageal pathological changes were evaluated using macroscopic examination and hematoxyline-eosin staining. IL-1β, IL-8, and TNFα mRNA and protein levels of were determined using RT-PCR and Western blotting, respectively. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were determined using ELISA. The severity of esophagitis was lowest in the PUFA(1:1.5) group (P<0.05). IL-1β, IL-8, and TNFα mRNA and protein and MDA levels were significantly increased in model groups with the increasing n-6/n-3 PUFA ratios. SOD levels were significantly decreased in all RE PUFA groups (P<0.05). Esophageal injury and lipid peroxidation appeared to be ameliorated by increased n-3 PUFAs intake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The n-3 long-chain PUFAs modulate the impact of the GCKR Pro446Leu polymorphism on triglycerides in adolescents.

    PubMed

    Rousseaux, Julien; Duhamel, Alain; Dumont, Julie; Dallongeville, Jean; Molnar, Denes; Widhalm, Kurt; Manios, Yannis; Sjöström, Michael; Kafatos, Anthony; Breidenassel, Christina; Gonzales-Gross, Marcela; Cuenca-Garcia, Magdalena; Censi, Laura; Ascensión, Marcos; De Henauw, Stefaan; Moreno, Luis A; Meirhaeghe, Aline; Gottrand, Frédéric

    2015-09-01

    Dietary n-3 long-chain PUFAs (LC-PUFAs) are associated with improvement in the parameters of the metabolic syndrome (MetS). Glucokinase regulatory protein (GCKR) is a key protein regulating intracellular glucose disposal. Our aim was to investigate: i) the relationship between the GCKR rs1260326 (Pro446Leu) polymorphism and parameters of the MetS; and ii) a potential influence of n-3 and n-6 LC-PUFA levels on this relationship in the HELENA study (1,155 European adolescents). Linear regression analyses were performed to study the association between rs1260326 and the outcomes of interest. Interactions between rs1260326 and LC-PUFA levels on outcomes were explored. The T allele of rs1260326 was associated with higher serum TG concentrations compared with the C allele. In contrast to n-6 LC-PUFA levels, a significant interaction (P = 0.01) between rs1260326 and total n-3 LC-PUFA levels on serum TG concentrations was observed. After stratification on the n-3 LC-PUFA median values, the association between rs1260326 and TG concentration was significant only in the group with high n-3 LC-PUFA levels. In conclusion, this is the first evidence that n-3 LC-PUFAs may modulate the impact of the GCKR rs1260326 polymorphism on TG concentrations in adolescents. Several molecular mechanisms, in link with glucose uptake, could explain these findings. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  7. Dietary n-3 polyunsaturated fatty acid and status of immunocompetent cells involved in innate immunity in female rats.

    PubMed

    Sasaki, T; Kanke, Y; Kudoh, K; Nagahashi, M; Toyokawa, M; Matsuda, M; Shimizu, J; Takita, T

    2000-01-01

    The aim of this study was to estimate the contributions of dietary n-3 polyunsaturated fatty acid (PUFA), a representative dietary immunosuppressant, to the activity of both alveolar macrophages (AM) and natural killer (NK) cells, and compare them to those of n-6 PUFA. Twelve 5-week-old female Sprague-Dawley rats were divided into two dietary groups, one fed a 10% fat diet for 9 weeks enriched with n-3 PUFA (n-3 diet) and the other an n-6 PUFA (n-6 diet). AM reduced the release of nitric oxide, monocyte chemoattractant protein 1 and tumor necrosis factor alpha in the rats fed the n-3 diet, compared with rats fed the n-6 diet. NK cell activity was reduced by consumption of the n-3 diet. This study suggests that consumption of n-3 PUFA can ameliorate pulmonary inflammatory disorders which are affected by the reduction of not only proinflammatory cytokines but also chemokine released from AM. Copyright 2000 S. Karger AG, Basel

  8. A Metabolomic Analysis of Omega-3 Fatty Acid-Mediated Attenuation of Western Diet-Induced Nonalcoholic Steatohepatitis in LDLR -/- Mice

    PubMed Central

    Depner, Christopher M.; Traber, Maret G.; Bobe, Gerd; Kensicki, Elizabeth; Bohren, Kurt M.; Milne, Ginger; Jump, Donald B.

    2013-01-01

    Background Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease and a risk factor for cirrhosis, hepatocellular carcinoma and liver failure. Previously, we reported that dietary docosahexaenoic acid (DHA, 22:6,n-3) was more effective than eicosapentaenoic acid (EPA, 20:5,n-3) at reversing western diet (WD) induced NASH in LDLR-/- mice. Methods Using livers from our previous study, we carried out a global non-targeted metabolomic approach to quantify diet-induced changes in hepatic metabolism. Results Livers from WD + olive oil (WD + O)-fed mice displayed histological and gene expression features consistent with NASH. The metabolomic analysis of 320 metabolites established that the WD and n-3 polyunsaturated fatty acid (PUFA) supplementation had broad effects on all major metabolic pathways. Livers from WD + O-fed mice were enriched in saturated (SFA) and monounsaturated fatty acids (MUFA), palmitoyl-sphingomyelin, cholesterol, n-6 PUFA, n-6 PUFA-containing phosphoglycerolipids, n-6 PUFA-derived oxidized lipids (12-HETE) and depleted of C20-22 n-3 PUFA-containing phosphoglycerolipids, C20-22 n-3 PUFA-derived oxidized lipids (18-HEPE, 17,18-DiHETE) and S-lactoylglutathione, a methylglyoxal detoxification product. WD + DHA was more effective than WD + EPA at attenuating WD + O-induced changes in NASH gene expression markers, n-6 PUFA and oxidized lipids, citrate and S-lactosyl glutathione. Diet-induced changes in hepatic MUFA and sphingolipid content were associated with changes in expression of enzymes involved in MUFA and sphingolipid synthesis. Changes in hepatic oxidized fatty acids and S-lactoylglutathione, however, correlated with hepatic n-3 and n-6 C20-22 PUFA content. Hepatic C20-22 n-3 PUFA content was inversely associated with hepatic α-tocopherol and ascorbate content and positively associated with urinary F2- and F3-isoprostanes, revealing diet effects on whole body oxidative stress. Conclusion DHA regulation of

  9. A metabolomic analysis of omega-3 fatty acid-mediated attenuation of western diet-induced nonalcoholic steatohepatitis in LDLR-/- mice.

    PubMed

    Depner, Christopher M; Traber, Maret G; Bobe, Gerd; Kensicki, Elizabeth; Bohren, Kurt M; Milne, Ginger; Jump, Donald B

    2013-01-01

    Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease and a risk factor for cirrhosis, hepatocellular carcinoma and liver failure. Previously, we reported that dietary docosahexaenoic acid (DHA, 22:6,n-3) was more effective than eicosapentaenoic acid (EPA, 20:5,n-3) at reversing western diet (WD) induced NASH in LDLR(-/-) mice. Using livers from our previous study, we carried out a global non-targeted metabolomic approach to quantify diet-induced changes in hepatic metabolism. Livers from WD + olive oil (WD + O)-fed mice displayed histological and gene expression features consistent with NASH. The metabolomic analysis of 320 metabolites established that the WD and n-3 polyunsaturated fatty acid (PUFA) supplementation had broad effects on all major metabolic pathways. Livers from WD + O-fed mice were enriched in saturated (SFA) and monounsaturated fatty acids (MUFA), palmitoyl-sphingomyelin, cholesterol, n-6 PUFA, n-6 PUFA-containing phosphoglycerolipids, n-6 PUFA-derived oxidized lipids (12-HETE) and depleted of C20-22 n-3 PUFA-containing phosphoglycerolipids, C20-22 n-3 PUFA-derived oxidized lipids (18-HEPE, 17,18-DiHETE) and S-lactoylglutathione, a methylglyoxal detoxification product. WD + DHA was more effective than WD + EPA at attenuating WD + O-induced changes in NASH gene expression markers, n-6 PUFA and oxidized lipids, citrate and S-lactosyl glutathione. Diet-induced changes in hepatic MUFA and sphingolipid content were associated with changes in expression of enzymes involved in MUFA and sphingolipid synthesis. Changes in hepatic oxidized fatty acids and S-lactoylglutathione, however, correlated with hepatic n-3 and n-6 C20-22 PUFA content. Hepatic C20-22 n-3 PUFA content was inversely associated with hepatic α-tocopherol and ascorbate content and positively associated with urinary F2- and F3-isoprostanes, revealing diet effects on whole body oxidative stress. DHA regulation of hepatic SFA, MUFA, PUFA

  10. Effects of Dietary n-6:n-3 PUFA Ratios on Lipid Levels and Fatty Acid Profile of Cherry Valley Ducks at 15-42 Days of Age.

    PubMed

    Li, Mengmeng; Zhai, Shuangshuang; Xie, Qiang; Tian, Lu; Li, Xiaocun; Zhang, Jiaming; Ye, Hui; Zhu, Yongwen; Yang, Lin; Wang, Wence

    2017-11-22

    The objective of this study was to investigate the effects of dietary n-6:n-3 PUFA ratio on growth performance, serum and tissue lipid levels, fatty acid profile, and hepatic expression of fatty acid synthesis genes in ducks. A total of 3168 15-day old ducks were fed different n-6:n-3 PUFA ratios: 13:1 (control), 10:1, 8:1, 6:1, 4:1, and 2:1. The feeding trial lasted 4 weeks. Our results revealed that dietary n-6:n-3 PUFA ratios had no effects on growth performance. The 2:1 group had the highest serum triglyceride levels. Serum total cholesterol and HDL levels were higher in the 13:1 and 8:1 groups than in the 6:1 and 2:1 groups. The concentration of C18:3n-3 in serum and tissues (liver and muscle) increased with decreasing dietary n-6:n-3 PUFA ratios. The hepatic expression of FADS2, ELOVL5, FADS1, and ELOVL2 increased on a quadratic function with decreasing dietary n-6:n-3 PUFA ratios. These results demonstrate that lower dietary n-6:n-3 PUFA ratios had strong effects on the fatty acid profile of edible parts and the deposition of n-3 PUFAs in adipose tissue of ducks.

  11. The n-3 long-chain PUFAs modulate the impact of the GCKR Pro446Leu polymorphism on triglycerides in adolescents[S

    PubMed Central

    Rousseaux, Julien; Duhamel, Alain; Dumont, Julie; Dallongeville, Jean; Molnar, Denes; Widhalm, Kurt; Manios, Yannis; Sjöström, Michael; Kafatos, Anthony; Breidenassel, Christina; Gonzales-Gross, Marcela; Cuenca-Garcia, Magdalena; Censi, Laura; Ascensión, Marcos; De Henauw, Stefaan; Moreno, Luis A.; Meirhaeghe, Aline; Gottrand, Frédéric

    2015-01-01

    Dietary n-3 long-chain PUFAs (LC-PUFAs) are associated with improvement in the parameters of the metabolic syndrome (MetS). Glucokinase regulatory protein (GCKR) is a key protein regulating intracellular glucose disposal. Our aim was to investigate: i) the relationship between the GCKR rs1260326 (Pro446Leu) polymorphism and parameters of the MetS; and ii) a potential influence of n-3 and n-6 LC-PUFA levels on this relationship in the HELENA study (1,155 European adolescents). Linear regression analyses were performed to study the association between rs1260326 and the outcomes of interest. Interactions between rs1260326 and LC-PUFA levels on outcomes were explored. The T allele of rs1260326 was associated with higher serum TG concentrations compared with the C allele. In contrast to n-6 LC-PUFA levels, a significant interaction (P = 0.01) between rs1260326 and total n-3 LC-PUFA levels on serum TG concentrations was observed. After stratification on the n-3 LC-PUFA median values, the association between rs1260326 and TG concentration was significant only in the group with high n-3 LC-PUFA levels. In conclusion, this is the first evidence that n-3 LC-PUFAs may modulate the impact of the GCKR rs1260326 polymorphism on TG concentrations in adolescents. Several molecular mechanisms, in link with glucose uptake, could explain these findings. PMID:26136510

  12. Relationship between diet and plasma long-chain n-3 PUFAs in older people: impact of apolipoprotein E genotype

    PubMed Central

    Samieri, Cécilia; Lorrain, Simon; Buaud, Benjamin; Vaysse, Carole; Berr, Claudine; Peuchant, Evelyne; Cunnane, Stephen C.; Barberger-Gateau, Pascale

    2013-01-01

    The main risk factors for Alzheimer's disease, age and the ϵ4 allele of the APOE gene (APOE4), might modify the metabolism of n-3 PUFAs and in turn, their impact on cognition. The aim of this study was to investigate the association between dietary fat and plasma concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in elderly persons, taking the APOE4 genotype into account. The sample was composed of 1,135 participants from the Three-City study aged 65 years and over, of whom 19% were APOE4 carriers. Mean plasma proportions of EPA [1.01%, standard deviation (SD) 0.60] and DHA (2.41%, SD 0.81) did not differ according to APOE4. In multivariate models, plasma EPA increased with frequency of fish consumption (P < 0.0001), alcohol intake (P = 0.0006), and female gender (P = 0.02), and decreased with intensive consumption of n-6 oils (P = 0.02). The positive association between fish consumption and plasma DHA was highly significant whatever the APOE genotype (P < 0.0001) but stronger in APOE4 noncarriers than in carriers (P = 0.06 for interaction). Plasma DHA increased significantly with age (P = 0.009) in APOE4 noncarriers only. These findings suggest that dietary habits, gender, and APOE4 genotype should be considered when designing interventions to increase n-3 PUFA blood levels in older people. PMID:23801662

  13. Obesity development in neuron-specific lipoprotein lipase deficient mice is not responsive to increased dietary fat content or change in fat composition.

    PubMed

    Wang, Hong; Taussig, Matthew D; DiPatrizio, Nicholas V; Bruce, Kimberley; Piomelli, Daniele; Eckel, Robert H

    2016-07-01

    We have previously reported that mice with neuron-specific LPL deficiency (NEXLPL-/-) become obese by 16weeks of age on chow. Moreover, these mice had reduced uptake of triglyceride (TG)-rich lipoprotein-derived fatty acids and lower levels of n-3 long chain polyunsaturated fatty acids (n-3 PUFAs) in the hypothalamus. Here, we asked whether increased dietary fat content or altered dietary composition could modulate obesity development in NEXLPL-/- mice. Male NEXLPL-/- mice and littermate controls (WT) were randomly assigned one of three synthetic diets; a high carbohydrate diet (HC, 10% fat), a high-fat diet (HF, 45% fat), or a HC diet supplemented with n-3 PUFAs (HCn-3, 10% fat, Lovaza, GSK®). After 42weeks of HC feeding, body weight and fat mass were increased in the NEXLPL-/- mice compared to WT. WT mice fed a HF diet displayed typical diet-induced obesity, but weight gain was only marginal in HF-fed NEXLPL-/- mice, with no significant difference in body composition. Dietary n-3 PUFA supplementation did not prevent obesity in NEXLPL-/- mice, but was associated with differential modifications in hypothalamic gene expression and PUFA concentration compared to WT mice. Our findings suggest that neuronal LPL is involved in the regulation of body weight and composition in response to either the change in quantity (HF feeding) or quality (n-3 PUFA-enriched) of dietary fat. The precise role of LPL in lipid sensing in the brain requires further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Characterization of Volatile Compounds with HS-SPME from Oxidized n-3 PUFA Rich Oils via Rancimat Tests.

    PubMed

    Yang, Kai-Min; Cheng, Ming-Ching; Chen, Chih-Wei; Tseng, Chin-Yin; Lin, Li-Yun; Chiang, Po-Yuan

    2017-02-01

    Algae oil and fish oil are n-3 PUFA mainstream commercial products. The various sources for the stability of n-3 PUFA oxidation are influenced by the fatty acid composition, extraction and refined processing. In this study, the oil stability index (OSI) occurs within 2.3 to 7.6 hours with three different n-3 PUFA rich oil. To set the OSI in the Rancimat test as the oil stability limit and observed various degrees of oxidation (0, 25, 50, 75, 100 and 125%). The volatile oxidation compounds were analyzed via headspace-solid phase microextraction (HS-SPME) and GC/MS. We detected 51 volatile compound variations during the oxidation, which were composed of aldehydes, hydrocarbons, cyclic compounds, alcohols, benzene compounds, ketones, furans, ester and pyrrolidine. The off-flavor characteristics can be strongly influenced by the synergy effects of volatile oxidation compounds. Chemometric analysis (PCA and AHC) was applied to identify the sensitive oxidation marker compounds, which included a (E,E)-2,4-heptadienal appropriate marker, via lipid oxidation in the n-3 PUFA rich oil.

  15. Protective effects of n-6 fatty acids-enriched diet on intestinal ischaemia/reperfusion injury involve lipoxin A4 and its receptor

    PubMed Central

    Gobbetti, T; Ducheix, S; le Faouder, P; Perez, T; Riols, F; Boue, J; Bertrand-Michel, J; Dubourdeau, M; Guillou, H; Perretti, M; Vergnolle, N; Cenac, N

    2015-01-01

    Background and Purpose Long-term intake of dietary fatty acids is known to predispose to chronic inflammation, but their effects on acute intestinal ischaemia/reperfusion (I/R) injury is unknown. The aim of this study was to determine the consequences of a diet rich in n-3 or n-6 polyunsaturated fatty acids (PUFA) on intestinal I/R-induced damage. Experimental Approach Mice were fed three different isocaloric diets: a balanced diet used as a control and two different PUFA-enriched diets, providing either high levels of n-3 or of n-6 PUFA. Intestinal injury was evaluated after intestinal I/R. PUFA metabolites were quantitated in intestinal tissues by LC-MS/MS. Key Results In control diet-fed mice, intestinal I/R caused inflammation and increased COX and lipoxygenase-derived metabolites compared with sham-operated animals. Lipoxin A4 (LxA4) was significantly and selectively increased after ischaemia. Animals fed a high n-3 diet did not display a different inflammatory profile following intestinal I/R compared with control diet-fed animals. In contrast, intestinal inflammation was decreased in the I/R group fed with high n-6 diet and level of LxA4 was increased post-ischaemia compared with control diet-fed mice. Blockade of the LxA4 receptor (Fpr2), prevented the anti-inflammatory effects associated with the n-6 rich diet. Conclusions and Implications This study indicates that high levels of dietary n-6, but not n-3, PUFAs provides significant protection against intestinal I/R-induced damage and demonstrates that the endogenous production of LxA4 can be influenced by diet. PMID:25296998

  16. A lipidomic study on the regulation of inflammation and oxidative stress targeted by marine ω-3 PUFA and polyphenols in high-fat high-sucrose diets.

    PubMed

    Dasilva, Gabriel; Pazos, Manuel; García-Egido, Eduardo; Gallardo, José M; Ramos-Romero, Sara; Torres, Josep Lluís; Romeu, Marta; Nogués, María-Rosa; Medina, Isabel

    2017-05-01

    The ability of polyphenols to ameliorate potential oxidative damage of ω-3 PUFAs when they are consumed together and then, to enhance their potentially individual effects on metabolic health is discussed through the modulation of fatty acids profiling and the production of lipid mediators. For that, the effects of the combined consumption of fish oils and grape seed procyanidins on the inflammatory response and redox unbalance triggered by high-fat high-sucrose (HFHS) diets were studied in an animal model of Wistar rats. A standard diet was used as control. Results suggested that fish oils produced a replacement of ω-6 by ω-3 PUFAs in membranes and tissues, and consequently they improved inflammatory and oxidative stress parameters: favored the activity of 12/15-lipoxygenases on ω-3 PUFAs, enhanced glutathione peroxidases activity, modulated proinflammatory lipid mediators synthesis through the cyclooxygenase (COX) pathways and down-regulated the synthesis de novo of ARA leaded by Δ5 desaturase. Although polyphenols exerted an antioxidative and antiinflammatory effect in the standard diet, they were less effective to reduce inflammation in the HFHS dietary model. Contrary to the effect observed in the standard diet, polyphenols up-regulated COX pathways toward ω-6 proinflammatory eicosanoids as PGE 2 and 11-HETE and decreased the detoxification of ω-3 hydroperoxides in the HFHS diet. As a result, additive effects between fish oils and polyphenols were found in the standard diet in terms of reducing inflammation and oxidative stress. However, in the HFHS diets, fish oils seem to be the one responsible for the positive effects found in the combined group. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. n-3 PUFA esterified to glycerol or as ethyl esters reduce non-fasting plasma triacylglycerol in subjects with hypertriglyceridemia: a randomized trial.

    PubMed

    Hedengran, Anne; Szecsi, Pal B; Dyerberg, Jørn; Harris, William S; Stender, Steen

    2015-02-01

    To date, treatment of hypertriglyceridemia with long-chain n-3 polyunsaturated fatty acids (n-3 PUFA) has been investigated solely in fasting and postprandial subjects. However, non-fasting triacylglycerols are more strongly associated with risk of cardiovascular disease. The objective of this study was to investigate the effect of long-chain n-3 PUFA on non-fasting triacylglycerol levels and to compare the effects of n-3 PUFA formulated as acylglycerol (AG-PUFA) or ethyl esters (EE-PUFA). The study was a double-blinded randomized placebo-controlled interventional trial, and included 120 subjects with non-fasting plasma triacylglycerol levels of 1.7-5.65 mmol/L (150-500 mg/dL). The participants received approximately 3 g/day of AG-PUFA, EE-PUFA, or placebo for a period of eight weeks. The levels of non-fasting plasma triacylglycerols decreased 28% in the AG-PUFA group and 22% in the EE-PUFA group (P < 0.001 vs. placebo), with no significant difference between the two groups. The triacylglycerol lowering effect was evident after four weeks, and was inversely correlated with the omega-3 index (EPA + DHA content in erythrocyte membranes). The omega-3 index increased 63.2% in the AG-PUFA group and 58.5% in the EE-PUFA group (P < 0.001). Overall, the heart rate in the AG-PUFA group decreased by three beats per minute (P = 0.045). High-density lipoprotein (HDL) cholesterol increased in the AG-PUFA group (P < 0.001). Neither total nor non-HDL cholesterol changed in any group. Lipoprotein-associated phospholipase A2 (LpPLA2) decreased in the EE-PUFA group (P = 0.001). No serious adverse events were observed. Supplementation with long-chain n-3 PUFA lowered non-fasting triacylglycerol levels, suggestive of a reduction in cardiovascular risk. Regardless of the different effects on heart rate, HDL, and LpPLA2 that were observed, compared to placebo, AG-PUFA, and EE-PUFA are equally effective in reducing non-fasting triacylglycerol levels.

  18. Fish, a Mediterranean source of n-3 PUFA: benefits do not justify limiting consumption.

    PubMed

    Gil, Angel; Gil, Fernando

    2015-04-01

    Fish is an important source of energy, high-quality proteins, fat, vitamins and minerals. Within lipids, n-3 long-chain PUFA (n-3 LC PUFA), mainly EPA and DHA, play an important role in health promotion and disease prevention. In contrast to the potential health benefits of dietary fish intake, certain chemical pollutants, namely heavy metals and some organic compounds, contained in seafood have emerged as an issue of concern, particularly for frequent fish consumers and sensitive groups of populations. The present review summarises the health benefits and risks of fish consumption. n-3 LC-PUFA are key compounds of cell membranes and play an important role in human health from conception through every stage of human development, maturation and ageing. DHA has a major role in the development of brain and retina during fetal development and the first 2 years of life and positively influences neurodevelopment, mainly visual acuity and cognitive functions. n-3 LC-PUFA are also effective in preventing cardiovascular events (mainly stroke and acute myocardial infarction) especially in persons with high cardiovascular risk. By contrast, there is convincing evidence of adverse neurological/neurodevelopmental outcomes in infants and young children associated with methylmercury exposure during fetal development due to maternal fish consumption during pregnancy. Dioxins and polychlorinated biphenyls present in contaminated fish may also develop a risk for both infants and adults. However, for major health outcomes among adults, the vast majority of epidemiological studies have proven that the benefits of fish intake exceed the potential risks with the exception of a few selected species in sensitive populations.

  19. Effects of Chinese Dietary Pattern of Fat Content, n-6/n-3 Polyunsaturated Fatty Acid Ratio, and Cholesterol Content on Lipid Profile in Rats

    PubMed Central

    Zou, Xian-Guo; Huang, Yu-Hua; Xu, Tong-Cheng; Fan, Ya-Wei; Li, Jing

    2018-01-01

    This study aims to investigate the effect of Chinese diet pattern of fat content (30% or 36.06%), n-6/n-3 polyunsaturated fatty acid (PUFA) ratio (5 : 1 or 9 : 1), and cholesterol content (0.04 or 0.057 g/kg total diet) on lipid profile using a rat model. Results showed that rats' body weights (BWs) were controlled by the simultaneous intakes of cholesterol level of 0.04 g/kg total diet and n-6/n-3 ratio of 5 : 1. In addition, under high-fat diet, increased cholesterol feeding led to increased total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) levels and decreased triacylglycerols (TG) in rats' plasma. However, high density lipoprotein cholesterol (HDL-C) level and the ratios of HDL-C/LDL-C and HDL-C/TC in rats' plasma increased in response to simultaneous intakes of low n-6/n-3 ratio (5 : 1) and cholesterol (0.04 g/kg total diet) even under high-fat diet. Moreover, as the n-6/n-3 PUFA ratio in the diet decreased, the proportion of n-3 PUFAs increased in plasma, liver, and muscle and resulted in the decrease of n-6/n-3 PUFA ratio. PMID:29744358

  20. Beneficial effect of an omega-6 PUFA-rich diet in non-steroidal anti-inflammatory drug-induced mucosal damage in the murine small intestine.

    PubMed

    Ueda, Toshihide; Hokari, Ryota; Higashiyama, Masaaki; Yasutake, Yuichi; Maruta, Koji; Kurihara, Chie; Tomita, Kengo; Komoto, Shunsuke; Okada, Yoshikiyo; Watanabe, Chikako; Usui, Shingo; Nagao, Shigeaki; Miura, Soichiro

    2015-01-07

    To investigate the effect of a fat rich diet on non-steroidal anti-inflammatory drug (NSAID)-induced mucosal damage in the murine small intestine. C57BL6 mice were fed 4 types of diets with or without indomethacin. One group was fed standard laboratory chow. The other groups were fed a fat diet consisting of 8% w/w fat, beef tallow (rich in SFA), fish oil, (rich in omega-3 PUFA), or safflower oil (rich in omega-6 PUFA). Indomethacin (3 mg/kg) was injected intraperitoneally from day 8 to day 10. On day 11, intestines and adhesions to submucosal microvessels were examined. In the indomethacin-treated groups, mucosal damage was exacerbated by diets containing beef tallow and fish oil, and was accompanied by leukocyte infiltration (P < 0.05). The mucosal damage induced by indomethacin was significantly lower in mice fed the safflower oil diet than in mice fed the beef tallow or fish oil diet (P < 0.05). Indomethacin increased monocyte and platelet migration to the intestinal mucosa, whereas safflower oil significantly decreased monocyte and platelet recruitment (P < 0.05). A diet rich in SFA and omega-3 PUFA exacerbated NSAID-induced small intestinal damage via increased leukocyte infiltration. Importantly, a diet rich in omega-6-PUFA did not aggravate inflammation as monocyte migration was blocked.

  1. Beneficial effect of an omega-6 PUFA-rich diet in non-steroidal anti-inflammatory drug-induced mucosal damage in the murine small intestine

    PubMed Central

    Ueda, Toshihide; Hokari, Ryota; Higashiyama, Masaaki; Yasutake, Yuichi; Maruta, Koji; Kurihara, Chie; Tomita, Kengo; Komoto, Shunsuke; Okada, Yoshikiyo; Watanabe, Chikako; Usui, Shingo; Nagao, Shigeaki; Miura, Soichiro

    2015-01-01

    AIM: To investigate the effect of a fat rich diet on non-steroidal anti-inflammatory drug (NSAID)-induced mucosal damage in the murine small intestine. METHODS: C57BL6 mice were fed 4 types of diets with or without indomethacin. One group was fed standard laboratory chow. The other groups were fed a fat diet consisting of 8% w/w fat, beef tallow (rich in SFA), fish oil, (rich in omega-3 PUFA), or safflower oil (rich in omega-6 PUFA). Indomethacin (3 mg/kg) was injected intraperitoneally from day 8 to day 10. On day 11, intestines and adhesions to submucosal microvessels were examined. RESULTS: In the indomethacin-treated groups, mucosal damage was exacerbated by diets containing beef tallow and fish oil, and was accompanied by leukocyte infiltration (P < 0.05). The mucosal damage induced by indomethacin was significantly lower in mice fed the safflower oil diet than in mice fed the beef tallow or fish oil diet (P < 0.05). Indomethacin increased monocyte and platelet migration to the intestinal mucosa, whereas safflower oil significantly decreased monocyte and platelet recruitment (P < 0.05). CONCLUSION: A diet rich in SFA and omega-3 PUFA exacerbated NSAID-induced small intestinal damage via increased leukocyte infiltration. Importantly, a diet rich in omega-6-PUFA did not aggravate inflammation as monocyte migration was blocked. PMID:25574090

  2. Restoration of fillet n-3 long-chain polyunsaturated fatty acid is improved by a modified fish oil finishing diet strategy for atlantic salmon (Salmo salar L.) smolts fed palm fatty acid distillate.

    PubMed

    Codabaccus, Mohamed B; Bridle, Andrew R; Nichols, Peter D; Carter, Chris G

    2012-01-11

    Reducing the lipid content in fish prior to feeding a fish oil finishing diet (FOFD) has the potential to improve n-3 long-chain (≥ C(20)) polyunsaturated fatty acid (LC-PUFA) restoration. This study had two main objectives: (1) determine whether feeding Atlantic salmon smolt a 75% palm fatty acid distillate diet (75PFAD) improves the apparent digestibility (AD) of saturated fatty acids (SFA) and (2) examine whether a food deprivation period after growth on 75PFAD leads to higher n-3 LC-PUFA restoration in the fillet when applying a FOFD. The AD of SFA was higher for 75PFAD compared to that of a fish oil (FO) diet. The relative level (as % total fatty acids (FA)) of n-3 LC-PUFA was higher in unfed fish compared to that in continuously fed fish after 21 and 28 day FOFD periods, respectively. Our results suggest that a food deprivation period prior to feeding a FOFD improves the efficiency of n-3 LC-PUFA restoration in the fillet of Atlantic salmon smolt.

  3. Inadequate daily intakes of n-3 polyunsaturated fatty acids (PUFA) in the general French population of children (3-10 years) and adolescents (11-17 years): the INCA2 survey.

    PubMed

    Guesnet, Philippe; Tressou, Jessica; Buaud, Benjamin; Simon, Noëmie; Pasteau, Stéphane

    2018-04-23

    This paper deals with the dietary daily intakes of main polyunsaturated fatty acids (PUFA) in French children and adolescents. Dietary intakes of main PUFA were determined from a general French population of 1500 children (3-10 years) and adolescents (11-17 years) by using the most recent set of national robust data on food (National Survey INCA 2 performed in 2006 and 2007). Main results showed that mean daily intakes of total fat and n-6 PUFA linoleic acid (LA, 18:2n-6) were close to current recommended values for children and adolescent populations. However, 80% (children) to 90% (adolescents) of our French populations not only ingested low quantities of n-3 long-chain PUFA (docosahexaenoic (22:6n-3) and eicosapentaenoic (20:5n-3) acids) but also very low quantities of alpha-linolenic acid (ALA, 18:3n-3) at the origin of a non-balanced n-6/n-3 ratio. Inadequate consumption of EPA + DHA was also observed in subgroups of infants and adolescent who consumed more than two servings/week of fish. Such disequilibrium in PUFA dietary intakes in favor of n-6 PUFA could have adverse impact on cell membrane incorporation of long-chain n-3 PUFA and deleterious impacts on the health of children and adolescents. Promoting the consumption of both vegetable oils and margarines rich in ALA, and oily fish rich in long-chain n-3 PUFA might improve such PUFA disequilibrium.

  4. Effects of dietary saturated and n-6 polyunsaturated fatty acids on the incorporation of long-chain n-3 polyunsaturated fatty acids into blood lipids.

    PubMed

    Dias, C B; Wood, L G; Garg, M L

    2016-07-01

    Omega-3 polyunsaturated fatty acids (n-3PUFA) are better absorbed when they are combined with high-fat meals. However, the role of different dietary fats in modulating the incorporation of n-3PUFA in blood lipids in humans has not been previously explored. Omega-6 polyunsaturated fatty acids (n-6PUFA) are known to compete with n-3PUFA in the metabolic pathways and for the incorporation into phospholipids, whereas saturated fats (SFA) may enhance n-3PUFA incorporation into tissues. In a randomized parallel-design trial, we aimed to investigate the long-term effects of n-3PUFA supplementation in subjects consuming a diet enriched with either SFA or n-6PUFA on fatty acid incorporation into plasma and erythrocytes and on blood lipid profiles (total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides). Dietary supplementation with n-3PUFA co-administered with SFA for 6 weeks resulted in a significant rise in total cholesterol (0.46±0.60 mmol/L; P=0.020) and LDL-C (0.48±0.48 mmol/L; P=0.011) in comparison with combination with n-6PUFA. The diet enriched with SFA also induced a greater increase in eicosapentaenoic acid (2.07±0.79 vs 1.15±0.53; P=0.004), a smaller decrease in docosapentaenoic acid (-0.12±0.23 vs -0.30±0.20; P=0.034) and a similar increase in docosahexaenoic acid (3.85±1.14 vs 3.10±1.07; P=0.128) percentage in plasma compared with the diet enriched with n-6PUFA. A similar effect was seen in erythrocytes. N-3PUFA supplementation resulted in similar changes in HDL-C and triglyceride levels. The results suggest that dietary substitution of SFA with n-6PUFA, despite maintaining low levels of circulating cholesterol, hinders n-3PUFA incorporation into plasma and tissue lipids.

  5. Dietary n-6:n-3 Fatty Acid Ratios Alter Rumen Fermentation Parameters and Microbial Populations in Goats.

    PubMed

    Ebrahimi, Mahdi; Rajion, Mohamed Ali; Adeyemi, Kazeem Dauda; Jafari, Saeid; Jahromi, Mohammad Faseleh; Oskoueian, Ehsan; Meng, Goh Yong; Ghaffari, Morteza Hosseini

    2017-02-01

    Revealing the ruminal fermentation patterns and microbial populations as affected by dietary n-6:n-3 PUFA ratio would be useful for further clarifying the role of the rumen in the lipid metabolism of ruminants. The objective of the present study was to investigate the effects of dietary n-6:n-3 PUFA ratios on fermentation characteristics, fatty acid (FA) profiles, and microbial populations in the rumen of goats. A total of twenty-one goats were randomly assigned to three dietary treatments with different n-6:n-3 PUFA ratios of 2.27:1 (low ratio, LR), 5.01:1 (medium ratio, MR), and 10.38:1 (high ratio, HR). After 100 days of feeding, all goats were slaughtered. Dietary n-6:n-3 PUFA ratios had no effect (P > 0.05) on rumen pH and NH 3 N concentration. Goats fed HR diet had lower (P < 0.05) propionate and total volatile fatty acids and higher (P < 0.05) butyrate compared with those fed the MR and LR diets. The proportion of C18:0 decreased (P < 0.05) as dietary n-6:n-3 PUFA ratios increased. The proportions of C18:1 trans-11, C18:2n-6, cis-9 trans-11 CLA, and C20:4n-6 were greater in the HR goats compared with the MR and LR goats. Lowering dietary n-6:n-3 PUFA ratios enhanced (P < 0.05) the proportion of C18:3n-3 and total n-3 PUFA in the rumen fluid of goats. The populations of R. albus and R. flavefaciens decreased (P < 0.05) as the n-6:n-3 PUFA ratios increased in diet. Diet had no effect (P > 0.05) on the ruminal populations of F. succinogenes, total bacteria, methanogens, total protozoa, Entiodinium, and Holotrich. The population of B. fibrisolvens was lower (P < 0.05) in the LR goats compared with the MR and HR goats. It was concluded that HR would increase the concentration of cis-9 trans-11 CLA and C18:1 trans-11 in the rumen. However, LR whould decrease the B. fibrisolvens population, which is involved in the BH process in the rumen. Further research is needed to evaluate the potential role and contribution of rumen microbiome in the metabolism of FA in the

  6. Dietary (n-6 : n-3) Fatty Acids Alter Plasma and Tissue Fatty Acid Composition in Pregnant Sprague Dawley Rats

    PubMed Central

    Kassem, Amira Abdulbari; Abu Bakar, Md Zuki; Yong Meng, Goh; Mustapha, Noordin Mohamed

    2012-01-01

    The objective of this paper is to study the effects of varying dietary levels of n-6 : n-3 fatty acid ratio on plasma and tissue fatty acid composition in rat. The treatment groups included control rats fed chow diet only, rats fed 50% soybean oil (SBO): 50% cod liver oil (CLO) (1 : 1), 84% SBO: 16% CLO (6 : 1), 96% SBO: 4% CLO (30 : 1). Blood samples were taken at day 15 of pregnancy, and the plasma and tissue were analyzed for fatty acid profile. The n-3 PUFA in plasma of Diet 1 : 1 group was significantly higher than the other diet groups, while the total n-6 PUFA in plasma was significantly higher in Diet 30 : 1 group as compared to the control and Diet 1 : 1 groups. The Diet 1 : 1 group showed significantly greater percentages of total n-3 PUFA and docosahexaenoic acid in adipose and liver tissue, and this clearly reflected the contribution of n-3 fatty acids from CLO. The total n-6 PUFA, linoleic acid, and arachidonic acid were significantly difference in Diet 30 : 1 as compared to Diet 1 : 1 and control group. These results demonstrated that the dietary ratio of n-6 : n-3 fatty acid ratio significantly affected plasma and tissue fatty acids profile in pregnant rat. PMID:22489205

  7. Genetic variant modifies the effect of N3 PUFAs on DNA methylation of IL6 in the Genetics of Lipid Lowering Drugs and Diet Network study

    USDA-ARS?s Scientific Manuscript database

    N3 polyunsaturated fatty acids (N3 PUFAs) ameliorate inflammation status with specific regulation on interleukin-6 (IL6) expression. However, the molecular mechanism for this regulation is unclear. Using both cell lines data from Encyclopedia of DNA Elements (ENCODE) consortium and population data f...

  8. Polyunsaturated fat in the methionine-choline-deficient diet influences hepatic inflammation but not hepatocellular injury.

    PubMed

    Lee, Gene S; Yan, Jim S; Ng, Raymond K; Kakar, Sanjay; Maher, Jacquelyn J

    2007-08-01

    Methionine-choline-deficient (MCD) diets that cause steatohepatitis in rodents are typically enriched in polyunsaturated fat. To determine whether the fat composition of the MCD formula influences the development of liver disease, we manufactured custom MCD formulas with fats ranging in PUFA content from 2% to 59% and tested them for their ability to induce steatohepatitis. All modified-fat MCD formulas caused identical degrees of hepatic steatosis and resulted in a similar distribution of fat within individual hepatic lipid compartments. The fatty acid composition of hepatic lipids, however, reflected the fat composition of the diet. Mice fed a PUFA-rich MCD formula showed extensive hepatic lipid peroxidation, induction of proinflammatory genes, and histologic inflammation. When PUFAs were substituted with more saturated fats, lipid peroxidation, proinflammatory gene induction, and hepatic inflammation all declined significantly. Despite the close relationship between PUFAs and hepatic inflammation in mice fed MCD formulas, dietary fat had no impact on MCD-mediated damage to hepatocytes. Indeed, histologic apoptosis and serum alanine aminotransferase levels were comparable in all MCD-fed mice regardless of dietary fat content. Together, these results indicate that dietary PUFAs promote hepatic inflammation but not hepatotoxicity in the MCD model of liver disease. These findings emphasize that individual dietary nutrients can make specific contributions to steatohepatitis.

  9. Long-chain n-3 PUFA: plant v. marine sources.

    PubMed

    Williams, Christine M; Burdge, Graham

    2006-02-01

    Increasing recognition of the importance of the long-chain n-3 PUFA, EPA and DHA, to cardiovascular health, and in the case of DHA to normal neurological development in the fetus and the newborn, has focused greater attention on the dietary supply of these fatty acids. The reason for low intakes of EPA and DHA in most developed countries (0.1-0.5 g/d) is the low consumption of oily fish, the richest dietary source of these fatty acids. An important question is whether dietary intake of the precursor n-3 fatty acid, alpha-linolenic acid (alphaLNA), can provide sufficient amounts of tissue EPA and DHA by conversion through the n-3 PUFA elongation-desaturation pathway. alphaLNA is present in marked amounts in plant sources, including green leafy vegetables and commonly-consumed oils such as rape-seed and soyabean oils, so that increased intake of this fatty acid would be easier to achieve than via increased fish consumption. However, alphaLNA-feeding studies and stable-isotope studies using alphaLNA, which have addressed the question of bioconversion of alphaLNA to EPA and DHA, have concluded that in adult men conversion to EPA is limited (approximately 8%) and conversion to DHA is extremely low (<0.1%). In women fractional conversion to DHA appears to be greater (9%), which may partly be a result of a lower rate of utilisation of alphaLNA for beta-oxidation in women. However, up-regulation of the conversion of EPA to DHA has also been suggested, as a result of the actions of oestrogen on Delta6-desaturase, and may be of particular importance in maintaining adequate provision of DHA in pregnancy. The effect of oestrogen on DHA concentration in pregnant and lactating women awaits confirmation.

  10. A diet with 3% of energy from a mixture of Omega-3 fatty acids significantly increases in vivo lipid peroxidation in postmenopausal women

    USDA-ARS?s Scientific Manuscript database

    Dietary omega-3 polyunsaturated fatty acids (n-3 PUFA) are recommended by public health organizations to reduce the risk of disease. However, n-3 PUFA are susceptible to an increase in lipid peroxidation in the human body. As part of a crossover dietary intervention study of a diet (20% of energy ...

  11. Dietary n-6 PUFA, carbohydrate:protein ratio and change in body weight and waist circumference: a follow-up study.

    PubMed

    Jakobsen, Marianne U; Madsen, Lise; Dethlefsen, Claus; Due, Karen M; Halkjær, Jytte; Sørensen, Thorkild I A; Kristiansen, Karsten; Overvad, Kim

    2015-05-01

    To investigate the association between the intake of n-6 PUFA and subsequent change in body weight and waist circumference at different levels of the carbohydrate:protein ratio. Follow-up study with anthropometric measurements at recruitment and on average 5·3 years later. Dietary intake was determined at recruitment by using an FFQ that was designed for the study and validated. We applied linear regression models with 5-year change in weight or waist circumference as outcome and including a two-way interaction term between n-6 PUFA and carbohydrate intakes, lower-order terms, protein intake, long-chain n-3 PUFA intake and other potential confounders. Due to adjustment for intake of protein, levels of carbohydrate indirectly reflect levels of the carbohydrate:protein ratio. Diet, Cancer and Health follow-up study, Denmark. Women and men (n 29 152) aged 55 years. For a high intake of n-6 PUFA (6·9 % of energy) v. a low intake of n-6 PUFA (3·4 % of energy), the difference in 5-year weight change was -189·7 g (95 % CI -636·8, 257·4 g) at a low carbohydrate:protein ratio and -86·7 g (95 % CI -502·9, 329·6 g) at a high carbohydrate:protein ratio; the differences in 5-year waist circumference change were 0·26 cm (95 % CI -0·47, 0·98 cm) and -0·52 cm (95 % CI -1·19, 0·15 cm), respectively. Inclusion of the dietary glycaemic index did not change the results. No consistent associations between the intake of n-6 PUFA and change in body weight or waist circumference at different levels of the carbohydrate:protein ratio were observed.

  12. Dietary flavonoids increase plasma very long-chain (n-3) fatty acids in rats.

    PubMed

    Toufektsian, Marie-Claire; Salen, Patricia; Laporte, François; Tonelli, Chiara; de Lorgeril, Michel

    2011-01-01

    Flavonoids probably contribute to the health benefits associated with the consumption of fruit and vegetables. However, the mechanisms by which they exert their effects are not fully elucidated. PUFA of the (n-3) series also have health benefits. Epidemiological and clinical studies have suggested that wine flavonoids may interact with the metabolism of (n-3) PUFA and increase their blood and cell levels. The present studies in rats were designed to assess whether flavonoids actually increase plasma levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the main very long-chain (n-3) PUFA. Rats were fed a corn-derived anthocyanin (ACN)-rich (ACN-rich) or ACN-free diet with constant intakes of plant and marine (n-3) PUFA for 8 wk (Expt. 1). Plasma fatty acids were measured by GC. The ACN-rich diet contained ~0.24 ± 0.01 mg of ACN/g pellets. There were no significant differences between groups in the main saturated, monounsaturated, and (n-6) fatty acids. In contrast, plasma EPA and DHA were greater in the ACN-rich diet group than in the ACN-free diet group (P < 0.05). We obtained similar results in 2 subsequent experiments in which rats were administered palm oil (80 μL/d) and consumed the ACN-rich or ACN-free diet (Expt. 2) or were supplemented with fish oil (60 mg/d, providing 35 mg DHA and 12 mg EPA) and consumed the ACN-rich or ACN-free diet (Expt. 3). In both experiments, plasma EPA and DHA were significantly greater in the ACN-rich diet group. These studies demonstrate that the consumption of flavonoids increases plasma very long-chain (n-3) PUFA levels. These data confirm previous clinical and epidemiological studies and provide new insights into the health benefits of flavonoids.

  13. Survey of n-3 and n-6 polyunsaturated fatty acids in fish and fish products

    PubMed Central

    2012-01-01

    Background The imbalance of the n-3/n-6 ratio in the Western diet is characterised by a low intake of n-3 long-chain (LC) PUFA and a concurrent high intake of n-6 PUFA. Fish, in particular marine fish, is a unique source of n-3 LC PUFA. However, FA composition of consumed fish changed, due to the increasing usage of n-6 PUFA-rich vegetable oils in aquaculture feed and in fish processing (frying) which both lead to a further shift in n-6 PUFA to the detriment of n-3 LC PUFA. The aim of this study was to determine the ratio of n-3/n-6 including the contents of EPA and DHA in fish fillets and fish products from the German market (n=123). Furthermore, the study focussed on the FA content in farmed salmon compared to wild salmon as well as in processed Alaska pollock fillet, e.g., fish fingers. Results Total fat and FA content in fish products varied considerably depending on fish species, feed management, and food processing. Mackerel, herring and trout fillets characteristically contained adequate dietary amounts of absolute EPA and DHA, due to their high fat contents. However, despite a lower fat content, tuna, pollock, and Alaska pollock can contribute considerable amounts of EPA and DHA to the human supply. Farmed salmon are an appropriate source of EPA and DHA owing to their higher fat content compared to wild salmon (12.3 vs. 2.1 wt %), however with elevated SFA, n-9 and n-6 FA contents representing the use of vegetable oils and oilseeds in aquaculture feed. The n-3/n-6 ratio was deteriorated (2.9 vs. 12.4) but still acceptable. Compared to pure fish fillets, breaded and pre-fried Alaska pollock fillet contained extraordinarily high fat and n-6 PUFA levels. Conclusions Since fish species vary with respect to their n-3 LC PUFA contents, eating a variety of fish is advisable. High n-6 PUFA containing pre-fried fish support the imbalance of n-3/n-6 ratio in the Western diet. Thus, consumption of pure fish fillets is to be favoured. The lower n-3 PUFA portion in

  14. Survey of n-3 and n-6 polyunsaturated fatty acids in fish and fish products.

    PubMed

    Strobel, Claudia; Jahreis, Gerhard; Kuhnt, Katrin

    2012-10-30

    The imbalance of the n-3/n-6 ratio in the Western diet is characterised by a low intake of n-3 long-chain (LC) PUFA and a concurrent high intake of n-6 PUFA. Fish, in particular marine fish, is a unique source of n-3 LC PUFA. However, FA composition of consumed fish changed, due to the increasing usage of n-6 PUFA-rich vegetable oils in aquaculture feed and in fish processing (frying) which both lead to a further shift in n-6 PUFA to the detriment of n-3 LC PUFA.The aim of this study was to determine the ratio of n-3/n-6 including the contents of EPA and DHA in fish fillets and fish products from the German market (n=123). Furthermore, the study focussed on the FA content in farmed salmon compared to wild salmon as well as in processed Alaska pollock fillet, e.g., fish fingers. Total fat and FA content in fish products varied considerably depending on fish species, feed management, and food processing. Mackerel, herring and trout fillets characteristically contained adequate dietary amounts of absolute EPA and DHA, due to their high fat contents. However, despite a lower fat content, tuna, pollock, and Alaska pollock can contribute considerable amounts of EPA and DHA to the human supply.Farmed salmon are an appropriate source of EPA and DHA owing to their higher fat content compared to wild salmon (12.3 vs. 2.1 wt %), however with elevated SFA, n-9 and n-6 FA contents representing the use of vegetable oils and oilseeds in aquaculture feed. The n-3/n-6 ratio was deteriorated (2.9 vs. 12.4) but still acceptable. Compared to pure fish fillets, breaded and pre-fried Alaska pollock fillet contained extraordinarily high fat and n-6 PUFA levels. Since fish species vary with respect to their n-3 LC PUFA contents, eating a variety of fish is advisable. High n-6 PUFA containing pre-fried fish support the imbalance of n-3/n-6 ratio in the Western diet. Thus, consumption of pure fish fillets is to be favoured. The lower n-3 PUFA portion in farmed fish can be offset by the

  15. Modulation of the endogenous omega-3 fatty acid and oxylipin profile in vivo-A comparison of the fat-1 transgenic mouse with C57BL/6 wildtype mice on an omega-3 fatty acid enriched diet.

    PubMed

    Ostermann, Annika I; Waindok, Patrick; Schmidt, Moritz J; Chiu, Cheng-Ying; Smyl, Christopher; Rohwer, Nadine; Weylandt, Karsten-H; Schebb, Nils Helge

    2017-01-01

    Dietary intervention and genetic fat-1 mice are two models for the investigation of effects associated with omega-3 polyunsaturated fatty acids (n3-PUFA). In order to assess their power to modulate the fatty acid and oxylipin pattern, we thoroughly compared fat-1 and wild-type C57BL/6 mice on a sunflower oil diet with wild-type mice on the same diet enriched with 1% EPA and 1% DHA for 0, 7, 14, 30 and 45 days. Feeding led after 14-30 days to a high steady state of n3-PUFA in all tissues at the expense of n6-PUFAs. Levels of n3-PUFA achieved by feeding were higher compared to fat-1 mice, particularly for EPA (max. 1.7% in whole blood of fat-1 vs. 7.8% following feeding). Changes in PUFAs were reflected in most oxylipins in plasma, brain and colon: Compared to wild-type mice on a standard diet, arachidonic acid metabolites were overall decreased while EPA and DHA oxylipins increased with feeding more than in fat-1 mice. In plasma of n3-PUFA fed animals, EPA and DHA metabolites from the lipoxygenase and cytochrome P450 pathways dominated over ARA derived counterparts.Fat-1 mice show n3-PUFA level which can be reached by dietary interventions, supporting the applicability of this model in n3-PUFA research. However, for specific questions, e.g. the role of EPA derived mediators or concentration dependent effects of (individual) PUFA, feeding studies are necessary.

  16. Understanding diet and modeling changes in the omega-3 and omega-6 fatty acid composition of U.S. garrison foods for active duty personnel.

    PubMed

    Marriott, Bernadette P; Yu, Karina; Majchrzak-Hong, Sharon; Johnson, Jeremiah; Hibbeln, Joseph R

    2014-11-01

    Research indicates that dietary omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are important in reducing the risk of mental illness. We used the DoD Survey of Health Related Behaviors among Active Duty Military Personnel (HRBS) to assess current military dietary patterns and meal locations. We used the Lands Equation to model PUFAs in a sample Garrison diet and the nutritional impact of substitution of foods higher in omega-3 PUFAs and lower in omega-6 PUFAs on tissue composition. The military diet was very poor quality compared to 2010 Healthy People Guidelines. A representative Garrison diet does not meet our estimated healthy n-3 HUFA intake at 3.5 g/d, corresponding with a tissue composition of 60% n-3 in HUFA (i.e., 40% n-6 in HUFA). Substitution of n-3 rich eggs, poultry, pork and other food commodities, combined with use on low linoleic acid oils, may contribute significantly to attaining healthier n-6/n-3 proportions in the tissue. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  17. Nutritional skewing of conceptus sex in sheep: effects of a maternal diet enriched in rumen-protected polyunsaturated fatty acids (PUFA).

    PubMed

    Green, Mark P; Spate, Lee D; Parks, Tina E; Kimura, Koji; Murphy, Clifton N; Williams, Jim E; Kerley, Monty S; Green, Jonathan A; Keisler, Duane H; Roberts, R Michael

    2008-06-09

    Evolutionary theory suggests that in polygynous mammalian species females in better body condition should produce more sons than daughters. Few controlled studies have however tested this hypothesis and controversy exists as to whether body condition score or maternal diet is in fact the determining factor of offspring sex. Here, we examined whether maternal diet, specifically increased n-6 polyunsaturated fatty acid (PUFA) intake, of ewes with a constant body condition score around the time of conception influenced sex ratio. Ewes (n = 44) maintained in similar body condition throughout the study were assigned either a control (C) diet or one (F) enriched in rumen-protected PUFA, but otherwise essentially equivalent, from four weeks prior to breeding until d13 post-estrus. On d13, conceptuses were recovered, measured, cultured to assess their capacity for interferon-tau (IFNT) production and their sex determined. The experiment was repeated with all ewes being fed the F diet to remove any effects of parity order on sex ratio. Maternal body condition score (BCS), plasma hormone and metabolite concentrations were also assessed throughout the study and related to diet. In total 129 conceptuses were recovered. Ewes on the F diet produced significantly more male than female conceptuses (proportion male = 0.69; deviation from expected ratio of 0.5, P < 0.001). Conceptus IFNT production was unaffected by diet (P > 0.1), but positively correlated with maternal body condition score (P < 0.05), and was higher (P < 0.05) in female than male conceptuses after 4 h culture. Maternal plasma hormone and metabolite concentrations, especially progesterone and fatty acid, were also modulated by diet. These results provide evidence that maternal diet, in the form of increased amounts of rumen-protected PUFA fed around conception, rather than maternal body condition, can skew the sex ratio towards males. These observations may have implications to the livestock industry and animal

  18. Nutritional skewing of conceptus sex in sheep: effects of a maternal diet enriched in rumen-protected polyunsaturated fatty acids (PUFA)

    PubMed Central

    Green, Mark P; Spate, Lee D; Parks, Tina E; Kimura, Koji; Murphy, Clifton N; Williams, Jim E; Kerley, Monty S; Green, Jonathan A; Keisler, Duane H; Roberts, R Michael

    2008-01-01

    Background Evolutionary theory suggests that in polygynous mammalian species females in better body condition should produce more sons than daughters. Few controlled studies have however tested this hypothesis and controversy exists as to whether body condition score or maternal diet is in fact the determining factor of offspring sex. Here, we examined whether maternal diet, specifically increased n-6 polyunsaturated fatty acid (PUFA) intake, of ewes with a constant body condition score around the time of conception influenced sex ratio. Methods Ewes (n = 44) maintained in similar body condition throughout the study were assigned either a control (C) diet or one (F) enriched in rumen-protected PUFA, but otherwise essentially equivalent, from four weeks prior to breeding until d13 post-estrus. On d13, conceptuses were recovered, measured, cultured to assess their capacity for interferon-tau (IFNT) production and their sex determined. The experiment was repeated with all ewes being fed the F diet to remove any effects of parity order on sex ratio. Maternal body condition score (BCS), plasma hormone and metabolite concentrations were also assessed throughout the study and related to diet. Results In total 129 conceptuses were recovered. Ewes on the F diet produced significantly more male than female conceptuses (proportion male = 0.69; deviation from expected ratio of 0.5, P < 0.001). Conceptus IFNT production was unaffected by diet (P > 0.1), but positively correlated with maternal body condition score (P < 0.05), and was higher (P < 0.05) in female than male conceptuses after 4 h culture. Maternal plasma hormone and metabolite concentrations, especially progesterone and fatty acid, were also modulated by diet. Conclusion These results provide evidence that maternal diet, in the form of increased amounts of rumen-protected PUFA fed around conception, rather than maternal body condition, can skew the sex ratio towards males. These observations may have implications to

  19. Combined deficiency of iron and (n-3) fatty acids in male rats disrupts brain monoamine metabolism and produces greater memory deficits than iron deficiency or (n-3) fatty acid deficiency alone.

    PubMed

    Baumgartner, Jeannine; Smuts, Cornelius M; Malan, Linda; Arnold, Myrtha; Yee, Benjamin K; Bianco, Laura E; Boekschoten, Mark V; Müller, Michael; Langhans, Wolfgang; Hurrell, Richard F; Zimmermann, Michael B

    2012-08-01

    Deficiencies of iron (Fe) (ID) and (n-3) fatty acids (FA) [(n-3)FAD] may impair brain development and function through shared mechanisms. However, little is known about the potential interactions between these 2 common deficiencies. We studied the effects of ID and (n-3)FAD, alone and in combination, on brain monoamine pathways (by measuring monoamines and related gene expression) and spatial working and reference memory (by Morris water maze testing). Using a 2 × 2 design, male rats were fed an ID, (n-3)FAD, ID+(n-3)FAD, or control diet for 5 wk postweaning (postnatal d 21-56) after (n-3)FAD had been induced over 2 generations. The (n-3)FAD and ID diets decreased brain (n-3) FA by 70-76% and Fe by 20-32%, respectively. ID and (n-3)FAD significantly increased dopamine (DA) concentrations in the olfactory bulb (OB) and striatum, with an additive 1- to 2-fold increase in ID+(n-3)FAD rats compared with controls (P < 0.05). ID decreased serotonin (5-HT) levels in OB, with a significant decrease in ID+(n-3)FAD rats. Furthermore, norepinephrine concentrations were increased 2-fold in the frontal cortex (FC) of (n-3)FAD rats (P < 0.05). Dopa decarboxylase was downregulated in the hippocampus of ID and ID+(n-3)FAD rats (fold-change = -1.33; P < 0.05). ID and (n-3)FAD significantly impaired working memory performance and the impairment positively correlated with DA concentrations in FC (r = 0.39; P = 0.026). Reference memory was impaired in the ID+(n-3)FAD rats (P < 0.05) and was negatively associated with 5-HT in FC (r = -0.42; P = 0.018). These results suggest that the combined deficiencies of Fe and (n-3) FA disrupt brain monoamine metabolism and produce greater deficits in reference memory than ID or (n-3)FAD alone.

  20. The anxiolytic activity of n-3 PUFAs enriched egg yolk phospholipids in rat behavioral studies.

    PubMed

    Rutkowska, M; Słupski, W; Trocha, M; Szandruk, M; Rymaszewska, J

    2016-11-02

    Phospholipids play an important role in the biochemical and physiological processes of cells. An association between disturbed phospholipids metabolism in neuronal tissue and anxiety it was shown. The aim of this study was to examine the anxiolytic properties of phospholipids obtained from a new generation of eggs enriched in n-3 PUFA and its effect on locomotor activity in rat behavioral studies N-3 PUFA-enriched egg yolk phospholipids ("super lecithin") were added to the standard feed. Rats were fed by chow without (control group) or with (experimental group) addition of phospholipids. After six weeks of supplementation, the effect of phospholipids on locomotor activity in the open field test and anxiolytic properties in elevated plus maze and Vogel conflict test were examined. In the open field test the total distance traveled in the experimental group was similar to the control group. In the elevated plus maze test a six weeks phospholipids' administration significantly prolonged the time spent on the open arms by rats from experimental group compared to control group. The number of entries into the open arms was also increased but the difference was not statistically significant. The number of punished drinking water in the Vogel conflict test increased significantly in experimental versus control group. The obtained results suggest that the phospholipids isolated from n-3 PUFA enriched egg yolk have a specific anxiolytic effect, without general sedative influence.

  1. Glucokinase Regulatory Protein Genetic Variant Interacts with Omega-3 PUFA to Influence Insulin Resistance and Inflammation in Metabolic Syndrome

    PubMed Central

    Garcia-Rios, Antonio; Mc Monagle, Jolene; Gulseth, Hanne L.; Ordovas, Jose M.; Shaw, Danielle I.; Karlström, Brita; Kiec-Wilk, Beata; Blaak, Ellen E.; Helal, Olfa; Malczewska-Malec, Małgorzata; Defoort, Catherine; Risérus, Ulf; Saris, Wim H. M.; Lovegrove, Julie A.; Drevon, Christian A.; Roche, Helen M.; Lopez-Miranda, Jose

    2011-01-01

    Glucokinase Regulatory Protein (GCKR) plays a central role regulating both hepatic triglyceride and glucose metabolism. Fatty acids are key metabolic regulators, which interact with genetic factors and influence glucose metabolism and other metabolic traits. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been of considerable interest, due to their potential to reduce metabolic syndrome (MetS) risk. Objective To examine whether genetic variability at the GCKR gene locus was associated with the degree of insulin resistance, plasma concentrations of C-reactive protein (CRP) and n-3 PUFA in MetS subjects. Design Homeostasis model assessment of insulin resistance (HOMA-IR), HOMA-B, plasma concentrations of C-peptide, CRP, fatty acid composition and the GCKR rs1260326-P446L polymorphism, were determined in a cross-sectional analysis of 379 subjects with MetS participating in the LIPGENE dietary cohort. Results Among subjects with n-3 PUFA levels below the population median, carriers of the common C/C genotype had higher plasma concentrations of fasting insulin (P = 0.019), C-peptide (P = 0.004), HOMA-IR (P = 0.008) and CRP (P = 0.032) as compared with subjects carrying the minor T-allele (Leu446). In contrast, homozygous C/C carriers with n-3 PUFA levels above the median showed lower plasma concentrations of fasting insulin, peptide C, HOMA-IR and CRP, as compared with individuals with the T-allele. Conclusions We have demonstrated a significant interaction between the GCKR rs1260326-P446L polymorphism and plasma n-3 PUFA levels modulating insulin resistance and inflammatory markers in MetS subjects. Further studies are needed to confirm this gene-diet interaction in the general population and whether targeted dietary recommendations can prevent MetS in genetically susceptible individuals. Trial Registration ClinicalTrials.gov NCT00429195 PMID:21674002

  2. Association between polymorphisms in phospholipase A2 genes and the plasma triglyceride response to an n-3 PUFA supplementation: a clinical trial.

    PubMed

    Tremblay, Bénédicte L; Cormier, Hubert; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2015-02-21

    Fish oil-derived long-chain omega-3 (n-3) polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), reduce plasma triglyceride (TG) levels. Genetic factors such as single-nucleotide polymorphisms (SNPs) found in genes involved in metabolic pathways of n-3 PUFA could be responsible for well-recognized heterogeneity in plasma TG response to n-3 PUFA supplementation. Previous studies have shown that genes in the glycerophospholipid metabolism such as phospholipase A2 (PLA2) group II, IV, and VI, demonstrate changes in their expression levels in peripheral blood mononuclear cells (PBMCs) after n-3 PUFA supplementation. A total of 208 subjects consumed 3 g/day of n-3 PUFA for 6 weeks. Plasma lipids were measured before and after the supplementation period. Five SNPs in PLA2G2A, six in PLA2G2C, eight in PLA2G2D, six in PLA2G2F, 22 in PLA2G4A, five in PLA2G6, and nine in PLA2G7 were genotyped. The MIXED Procedure for repeated measures adjusted for age, sex, BMI, and energy intake was used in order to test whether the genotype, supplementation or interaction (genotype by supplementation) were associated with plasma TG levels. The n-3 PUFA supplementation had an independent effect on plasma TG levels. Genotype effects on plasma TG levels were observed for rs2301475 in PLA2G2C, rs818571 in PLA2G2F, and rs1569480 in PLA2G4A. Genotype x supplementation interaction effects on plasma TG levels were observed for rs1805018 in PLA2G7 as well as for rs10752979, rs10737277, rs7540602, and rs3820185 in PLA2G4A. These results suggest that, SNPs in PLA2 genes may influence plasma TG levels during a supplementation with n-3 PUFA. This trial was registered at clinicaltrials.gov as NCT01343342.

  3. Impact of Lactobacillus fermentum and dairy lipids in the maternal diet on the fatty acid composition of pups' brain and peripheral tissues.

    PubMed

    Joffre, C; Dinel, A L; Aubert, A; Fressange-Mazda, C; Le Ruyet, P; Layé, S

    2016-12-01

    The aim of the study was to determine the effect of maternal diets administered since day 1 of gestation and containing dairy lipids or vegetable oils differing in the supply of n-3 polyunsaturated fatty acids (n-3 PUFAs) (equilibrated or deficient) and of Lactobacillus fermentum (L. fermentum) on the docosahexaenoic acid (DHA) accretion in the pups at postnatal day 14 in the prefrontal cortex (PFC) and hippocampus (HC) for brain structures and in the liver and adipose tissue for peripheral tissues. Maternal milk fatty acid composition was also assessed by analyzing the fatty acid composition of the gastric content of the pups. DHA was higher in mice supplemented with L. fermentum than in mice in the deficient group in HC and PFC and also in liver and adipose tissue. This increase could be linked to the slight but significant increase in C18:3n-3 in the maternal milk. This proportion was comparable in the dairy lipid group for which the brain DHA level was the highest. L. fermentum may have a key role in the protection of the brain during the perinatal period via the neuronal accretion of n-3 PUFAs, especially during n-3 PUFA deficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Rapid effects of essential fatty acid deficiency on growth and development parameters and transcription of key fatty acid metabolism genes in juvenile barramundi (Lates calcarifer).

    PubMed

    Salini, Michael J; Turchini, Giovanni M; Wade, Nicholas M; Glencross, Brett D

    2015-12-14

    Barramundi (Lates calcarifer), a catadromous teleost of significant and growing commercial importance, are reported to have limited fatty acid bioconversion capability and therefore require preformed long-chain PUFA (LC-PUFA) as dietary essential fatty acid (EFA). In this study, the response of juvenile barramundi (47·0 g/fish initial weight) fed isolipidic and isoenergetic diets with 8·2% added oil was tested. The experimental test diets were either devoid of fish oil (FO), and thus with no n-3 LC-PUFA (FO FREE diet), or with a low inclusion of FO (FO LOW diet). These were compared against a control diet containing only FO (FO CTRL diet) as the added lipid source, over an 8-week period. Interim samples and measurements were taken fortnightly during the trial in order to define the aetiology of the onset and progression of EFA deficiency. After 2 weeks, the fish fed the FO FREE and FO LOW diets had significantly lower live-weights, and after 8 weeks significant differences were detected for all performance parameters. The fish fed the FO FREE diet also had a significantly higher incidence of external abnormalities. The transcription of several genes involved in fatty acid metabolism was affected after 2 weeks of feeding, showing a rapid nutritional regulation. This experiment documents the aetiology of the onset and the progression of EFA deficiency in juvenile barramundi and demonstrates that such deficiencies can be detected within 2 weeks in juvenile fish.

  5. Inhibition of neuroblastoma cell proliferation with omega-3 fatty acids and treatment of a murine model of human neuroblastoma using a diet enriched with omega-3 fatty acids in combination with sunitinib.

    PubMed

    Barnés, Carmen M; Prox, Daniela; Christison-Lagay, Emily A; Le, Hau D; Short, Sarah; Cassiola, Flavia; Panigrahy, Dipak; Chaponis, Deviney; Butterfield, Catherine; Nehra, Deepika; Fallon, Erica M; Kieran, Mark; Folkman, Judah; Puder, Mark

    2012-02-01

    We investigated the use of dietary omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) in the treatment of neuroblastoma both as a sole agent and in combination with sunitinib, a broad-spectrum tyrosine kinase receptor inhibitor. Substitution of all dietary fat with menhaden oil (ω-3 PUFA rich) resulted in a 40-70% inhibition of tumor growth and a statistically significant difference in the levels of several PUFAs (18:2 ω-6, 20:4 ω-6, 22:4 ω-6, 20:5 ω-3) as compared with a control diet. Furthermore, tumors from animals on the ω-3 fatty acid (FA)-enriched diet had an elevated triene/tetraene ratio suggestive of a change in local eicosanoid metabolism in these tissues similar to that seen with essential fatty acid deficiency. The ω-3 FA-enriched diet also decreased tumor-associated inflammatory cells and induced mitochondrial changes suggestive of mitochondrial damage. Combination treatment with sunitinib resulted in further reduction in tumor proliferation and microvessel density. These findings suggest a potential role for ω-3 PUFAs in the combination treatment of neuroblastoma. We used a murine model of orthotopic and subcutaneous human neuroblastoma and diets that differ in the FA content to define the optimal dietary ω-3/omega-6 (ω-6) FA ratio required for the inhibition of these tumors.

  6. The Fatty Acid Profile and Oxidative Stability of Meat from Turkeys Fed Diets Enriched with n-3 Polyunsaturated Fatty Acids and Dried Fruit Pomaces as a Source of Polyphenols.

    PubMed

    Juskiewicz, Jerzy; Jankowski, Jan; Zielinski, Henryk; Zdunczyk, Zenon; Mikulski, Dariusz; Antoszkiewicz, Zofia; Kosmala, Monika; Zdunczyk, Przemyslaw

    2017-01-01

    The aim of this study was to determine the efficacy of different dietary fruit pomaces in reducing lipid oxidation in the meat of turkeys fed diets with a high content of n-3 polyunsaturated fatty acids (PUFAs). Over a period of 4 weeks before slaughter, turkeys were fed diets with the addition of 5% dried apple, blackcurrant, strawberry and seedless strawberry pomaces (groups AP, BP, SP and SSP, respectively) and 2.5% linseed oil. Pomaces differed in the content (from 5.5 in AP to 43.1 mg/g in SSP) and composition of polyphenols Proanthocyanidins were the main polyphenolic fraction in all pomaces, AP contained flavone glycosides and dihydrochalcones, BP contained anthocyanins, and SP and SSP-ellagitannins. The n-6/n-3 PUFA ratio in all diets was comparable and lower than 2:1. In comparison with groups C and AP, the percentage of n-3 PUFAs in the total fatty acid pool of white meat from the breast muscles of turkeys in groups BP, SP and SSP was significantly higher, proportionally to the higher content of α-linolenic acid in berry pomaces. The fatty acid profile of dark meat from thigh muscles, including the n-6/n-3 PUFA ratio, was similar and lower than 3:1 in all groups. Vitamin A levels in raw breast muscles were higher in group AP than in groups C and BP (P<0.05). The addition of fruit pomaces to turkey diets lowered vitamin E concentrations (P = 0.001) in raw breast muscles relative to group C. Diets supplemented with fruit pomaces significantly lowered the concentration of thiobarbituric acid reactive substances (TBARS) in raw, frozen and cooked meat. Our results indicate that the dietary application of dried fruit pomaces increases the oxidative stability of meat from turkeys fed linseed oil, and strawberry pomace exerted the most desirable effects due to its highest polyphenol content and antioxidant potential.

  7. The Fatty Acid Profile and Oxidative Stability of Meat from Turkeys Fed Diets Enriched with n-3 Polyunsaturated Fatty Acids and Dried Fruit Pomaces as a Source of Polyphenols

    PubMed Central

    Juskiewicz, Jerzy; Jankowski, Jan; Zielinski, Henryk; Zdunczyk, Zenon; Mikulski, Dariusz; Antoszkiewicz, Zofia; Kosmala, Monika; Zdunczyk, Przemyslaw

    2017-01-01

    The aim of this study was to determine the efficacy of different dietary fruit pomaces in reducing lipid oxidation in the meat of turkeys fed diets with a high content of n-3 polyunsaturated fatty acids (PUFAs). Over a period of 4 weeks before slaughter, turkeys were fed diets with the addition of 5% dried apple, blackcurrant, strawberry and seedless strawberry pomaces (groups AP, BP, SP and SSP, respectively) and 2.5% linseed oil. Pomaces differed in the content (from 5.5 in AP to 43.1 mg/g in SSP) and composition of polyphenols Proanthocyanidins were the main polyphenolic fraction in all pomaces, AP contained flavone glycosides and dihydrochalcones, BP contained anthocyanins, and SP and SSP—ellagitannins. The n-6/n-3 PUFA ratio in all diets was comparable and lower than 2:1. In comparison with groups C and AP, the percentage of n-3 PUFAs in the total fatty acid pool of white meat from the breast muscles of turkeys in groups BP, SP and SSP was significantly higher, proportionally to the higher content of α-linolenic acid in berry pomaces. The fatty acid profile of dark meat from thigh muscles, including the n-6/n-3 PUFA ratio, was similar and lower than 3:1 in all groups. Vitamin A levels in raw breast muscles were higher in group AP than in groups C and BP (P<0.05). The addition of fruit pomaces to turkey diets lowered vitamin E concentrations (P = 0.001) in raw breast muscles relative to group C. Diets supplemented with fruit pomaces significantly lowered the concentration of thiobarbituric acid reactive substances (TBARS) in raw, frozen and cooked meat. Our results indicate that the dietary application of dried fruit pomaces increases the oxidative stability of meat from turkeys fed linseed oil, and strawberry pomace exerted the most desirable effects due to its highest polyphenol content and antioxidant potential. PMID:28076425

  8. Dietary n-3 polyunsaturated fatty acids affect the development of renovascular hypertension in rats

    NASA Technical Reports Server (NTRS)

    Rousseau, D.; Helies-Toussaint, C.; Raederstorff, D.; Moreau, D.; Grynberg, A.

    2001-01-01

    The consequences of a dietary n-3 PUFA supply was investigated on the blood pressure (BP) increase elicited by left renal artery stenosis in rats distributed in 3 groups (n = 8) fed for 8 weeks a semi-purified diet either as control diet or enriched diets (docosahexaenoic acid, DHA, or eicosapentaenoic acid, EPA). The PUFA intake induced large alterations in heart and kidney phospholipid fatty acid profile, but did not influence body weight, cardiac hypertrophy, renal left atrophy and right hypertrophy. Within 4 weeks, BP raised from 120-180 +/- 2 mm Hg in the control group, but only to 165 +/- 3 mm Hg in the n-3 PUFA groups. After stabilization of BP in the 3 groups, the rats received a short administration of increasing dose of perindopril. The lower dose (0.5 mg/kg) moderately decreased BP only in the control group. With higher doses (1, 5 and 10 mg/kg) BP was normalized in the 3 groups, with a higher amplitude of the BP lowering effect in the control group. A moderate n-3 PUFA intake can contribute to prevent the development of peripheral hypertension in rats by a mechanism that may involve angiotensin converting enzyme.

  9. Dietary n-3 polyunsaturated fatty acids affect the development of renovascular hypertension in rats.

    PubMed

    Rousseau, D; Héliès-Toussaint, C; Raederstorff, D; Moreau, D; Grynberg, A

    2001-09-01

    The consequences of a dietary n-3 PUFA supply was investigated on the blood pressure (BP) increase elicited by left renal artery stenosis in rats distributed in 3 groups (n = 8) fed for 8 weeks a semi-purified diet either as control diet or enriched diets (docosahexaenoic acid, DHA, or eicosapentaenoic acid, EPA). The PUFA intake induced large alterations in heart and kidney phospholipid fatty acid profile, but did not influence body weight, cardiac hypertrophy, renal left atrophy and right hypertrophy. Within 4 weeks, BP raised from 120-180 +/- 2 mm Hg in the control group, but only to 165 +/- 3 mm Hg in the n-3 PUFA groups. After stabilization of BP in the 3 groups, the rats received a short administration of increasing dose of perindopril. The lower dose (0.5 mg/kg) moderately decreased BP only in the control group. With higher doses (1, 5 and 10 mg/kg) BP was normalized in the 3 groups, with a higher amplitude of the BP lowering effect in the control group. A moderate n-3 PUFA intake can contribute to prevent the development of peripheral hypertension in rats by a mechanism that may involve angiotensin converting enzyme.

  10. Heterologous expression of C. elegans fat-1 decreases the n-6/n-3 fatty acid ratio and inhibits adipogenesis in 3T3-L1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Lei, E-mail: anleim@yahoo.com.cn; Pang, Yun-Wei, E-mail: yunweipang@126.com; Gao, Hong-Mei, E-mail: Gaohongmei_123@yahoo.cn

    Highlights: Black-Right-Pointing-Pointer Expression of C. elegans fat-1 reduces the n-6/n-3 PUFA ratio in 3T3-L1 cells. Black-Right-Pointing-Pointer fat-1 inhibits the proliferation and differentiation of 3T3-L1 preadipocytes. Black-Right-Pointing-Pointer fat-1 reduces lipid deposition in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer The lower n-6/n-3 ratio induces apoptosis in 3T3-L1 adipocytes. -- Abstract: In general, a diet enriched in polyunsaturated fatty acids (PUFAs) inhibits the development of obesity and decreases adipose tissue. The specific impacts of n-3 and n-6 PUFAs on adipogenesis, however, have not been definitively determined. Traditional in vivo and in vitro supplementation studies have yielded inconsistent or even contradictory results, which likely reflect insufficiently controlledmore » experimental systems. Caenorhabditiselegans fat-1 gene encodes an n-3 fatty acid desaturase, and its heterologous expression represents an effective method both for altering the n-6/n-3 PUFA ratio and for evaluating the biological effects of n-3 and n-6 PUFAs. We sought to determine whether a reduced n-6/n-3 ratio could influence adipogenesis in 3T3-L1 cells. Lentivirus-mediated introduction of the fat-1 gene into 3T3-L1 preadipocytes significantly reduced the n-6/n-3 ratio and inhibited preadipocyte proliferation and differentiation. In mature adipocytes, fat-1 expression reduced lipid deposition, as measured by Oil Red O staining, and induced apoptosis. Our results indicate that a reduced n-6/n-3 ratio inhibits adipogenesis through several mechanisms and that n-3 PUFAs more effectively inhibit adipogenesis (but not lipogenesis) than do n-6 PUFAs.« less

  11. Protective effect of dietary long-chain n-3 polyunsaturated fatty acids on bone loss in gonad-intact middle-aged male rats.

    PubMed

    Shen, Chwan-Li; Yeh, James K; Rasty, Jahan; Li, Yong; Watkins, Bruce A

    2006-03-01

    This study evaluated the effect of a fat blend containing long-chain (LC) n-3 PUFA on bone mineral density (BMD) and bone metabolism in gonad-intact middle-aged male rats (12 months old, n 28). Seven rats were killed on day 0 of dietary intervention to determine the baseline BMD. The remaining rats (seven per group) were fed a diet with one of the following dietary lipid treatments (g/kg diet): 167 g safflower oil + 33 g menhaden oil (N6 + N3 diet, control), 200 g safflower oil (N6 diet, almost devoid of LC n-3 PUFA), or 190 g menhaden oil + 10 g corn oil (N3 diet, rich in LC n-3 PUFA) for 20 weeks. After 20 weeks, all dietary treatment groups had a lower BMD compared with the baseline reference. However, rats fed the N3 diet had the highest bone mineral content and cortical + subcortical BMD compared with those fed the N6 and control N6 + N3 diet. Compared with the control (N6 + N3) group, rats fed the N3 diet had higher values for serum insulin-like growth factor-I, parathyroid hormone, 1,25-(OH)2 vitamin D3 and bone-specific alkaline phosphatase activity, but lower bone NO production and urinary Ca, whereas rats fed the N6 diet had higher bone prostaglandin E2 production and serum pyridinoline. These findings indicate a protective action of LC n-3 PUFA on ageing-induced bone loss in gonad-intact middle-aged male rats through a modulation of local factors and systemic calcitrophic hormones.

  12. Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids.

    PubMed

    Gibson, R A; Neumann, M A; Lien, E L; Boyd, K A; Tu, W C

    2013-01-01

    The conversion of the plant-derived omega-3 (n-3) α-linolenic acid (ALA, 18:3n-3) to the long-chain eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) can be increased by ALA sufficient diets compared to ALA deficient diets. Diets containing ALA above an optimal level result in no further increase in DHA levels in animals and humans. The present study evaluates means of maximizing plasma DHA accumulation by systematically varying both linoleic acid (LA, 18:2n-6) and ALA dietary level. Weanling rats were fed one of 54 diets for three weeks. The diets varied in the percentage of energy (en%) of LA (0.07-17.1 en%) and ALA (0.02-12.1 en%) by manipulating both the fat content and the balance of vegetable oils. The peak of plasma phospholipid DHA (>8% total fatty acids) was attained as a result of feeding a narrow dietary range of 1-3 en% ALA and 1-2 en% LA but was suppressed to basal levels (∼2% total fatty acids) at dietary intakes of total polyunsaturated fatty acids (PUFA) above 3 en%. We conclude it is possible to enhance the DHA status of rats fed diets containing ALA as the only source of n-3 fatty acids but only when the level of dietary PUFA is low (<3 en%). Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Effects of baked and raw salmon fillet on lipids and n-3 PUFAs in serum and tissues in Zucker fa/fa rats​​​​​​​​​​​​​​​​​​​​.

    PubMed

    Vikøren, Linn A; Drotningsvik, Aslaug; Bergseth, Marthe T; Mjøs, Svein A; Mola, Nazanin; Leh, Sabine; Mellgren, Gunnar; Gudbrandsen, Oddrun A

    2017-01-01

    Knowledge of the health impact of consuming heat-treated versus raw fish fillet is limited. To investigate effects of baked or raw salmon fillet intake on lipids and n-3 PUFAs in serum and tissues, obese Zucker fa/fa rats were fed diets containing 25% of protein from baked or raw salmon fillet and 75% of protein from casein, or casein as the sole protein source (control group) for four weeks. Salmon diets had similar composition of amino and fatty acids. Growth and energy intake were similar in all groups. Amounts of lipids and n-3 PUFAs in serum, liver and skeletal muscle were similar between rats fed baked or raw salmon fillet. When compared to the control group, rats fed baked salmon had lower serum total and LDL cholesterol and higher serum triacylglycerol levels. Both raw and baked salmon groups had lower HDL cholesterol level when compared to control rats. In conclusion, baking as a preparation method does not alter protein and fat qualities of salmon fillets, and intake of baked and raw salmon fillets gave similar effects on lipids and n-3 PUFAs in serum and tissues from rats.

  14. Effects of baked and raw salmon fillet on lipids and n-3 PUFAs in serum and tissues in Zucker fa/fa rats​​​​​​​​​​​​​​​​​​​​

    PubMed Central

    Vikøren, Linn A.; Drotningsvik, Aslaug; Bergseth, Marthe T.; Mjøs, Svein A.; Mola, Nazanin; Leh, Sabine; Mellgren, Gunnar; Gudbrandsen, Oddrun A.

    2017-01-01

    ABSTRACT Knowledge of the health impact of consuming heat-treated versus raw fish fillet is limited. To investigate effects of baked or raw salmon fillet intake on lipids and n-3 PUFAs in serum and tissues, obese Zucker fa/fa rats were fed diets containing 25% of protein from baked or raw salmon fillet and 75% of protein from casein, or casein as the sole protein source (control group) for four weeks. Salmon diets had similar composition of amino and fatty acids. Growth and energy intake were similar in all groups. Amounts of lipids and n-3 PUFAs in serum, liver and skeletal muscle were similar between rats fed baked or raw salmon fillet. When compared to the control group, rats fed baked salmon had lower serum total and LDL cholesterol and higher serum triacylglycerol levels. Both raw and baked salmon groups had lower HDL cholesterol level when compared to control rats. In conclusion, baking as a preparation method does not alter protein and fat qualities of salmon fillets, and intake of baked and raw salmon fillets gave similar effects on lipids and n-3 PUFAs in serum and tissues from rats. PMID:28659746

  15. Effects of Different Ratio of n-6/n-3 Polyunsaturated Fatty Acids on the PI3K/Akt Pathway in Rats with Reflux Esophagitis.

    PubMed

    Zhuang, Jia-Yuan; Chen, Zhi-Yao; Zhang, Tao; Tang, Du-Peng; Jiang, Xiao-Yin; Zhuang, Ze-Hao

    2017-01-30

    BACKGROUND We designed this study to investigate the influence of different ratios of n-6/n-3 polyunsaturated fatty acid in the diet of reflux esophagitis (RE) rats' and the effect on the PI3K/Akt pathway. MATERIAL AND METHODS RE rats were randomly divided into a sham group and modeling groups of different concentrations of n-6/n-3 polyunsaturated fatty acid (PUFA): 12:1 group, 10:1 group, 5:1 group, and 1:1 group. RT-PCR and Western-blot were used to detect the expression of PI3K, Akt, p-Akt, NF-κBp50, and NF-κBp65 proteins in esophageal tissue. RESULTS In the n-6/n-3 PUFAs groups the expression of PI3K, Akt, p-Akt, nf-κbp50, and NF-κBp65 mRNA decreased with the decrease in n-6/n-3 ratios in the diet. The lowest expression of each indicator occurred in the 1:1 n-6/n-3 group compared with other n-6/n-3 groups, the difference was statistically significant (p<0.05). CONCLUSIONS The inhibition of n-3 PUFAs in the development of esophageal inflammation in rats with RE was attributed to the function of PI3K/Akt-NF-κB signaling pathway.

  16. All n-3 PUFA are not the same: MD simulations reveal differences in membrane organization for EPA, DHA and DPA.

    PubMed

    Leng, Xiaoling; Kinnun, Jacob J; Cavazos, Andres T; Canner, Samuel W; Shaikh, Saame Raza; Feller, Scott E; Wassall, Stephen R

    2018-05-01

    Eicosapentaenoic (EPA, 20:5), docosahexaenoic (DHA, 22:6) and docosapentaenoic (DPA, 22:5) acids are omega-3 polyunsaturated fatty acids (n-3 PUFA) obtained from dietary consumption of fish oils that potentially alleviate the symptoms of a range of chronic diseases. We focus here on the plasma membrane as a site of action and investigate how they affect molecular organization when taken up into a phospholipid. All atom MD simulations were performed to compare 1-stearoyl-2-eicosapentaenoylphosphatylcholine (EPA-PC, 18:0-20:5PC), 1-stearoyl-2-docosahexaenoylphosphatylcholine (DHA-PC, 18:0-22:6PC), 1-stearoyl-2-docosapentaenoylphosphatylcholine (DPA-PC, 18:0-22:5PC) and, as a monounsaturated control, 1-stearoyl-2-oleoylphosphatidylcholine (OA-PC, 18:0-18:1PC) bilayers. They were run in the absence and presence of 20mol% cholesterol. Multiple double bonds confer high disorder on all three n-3 PUFA. The different number of double bonds and chain length for each n-3 PUFA moderates the reduction in membrane order exerted (compared to OA-PC, S¯ CD =0.152). EPA-PC (S¯ CD =0.131) is most disordered, while DPA-PC (S¯ CD =0.140) is least disordered. DHA-PC (S¯ CD =0.139) is, within uncertainty, the same as DPA-PC. Following the addition of cholesterol, order in EPA-PC (S¯ CD =0.169), DHA-PC (S¯ CD =0.178) and DPA-PC (S¯ CD =0.182) is increased less than in OA-PC (S¯ CD =0.214). The high disorder of n-3 PUFA is responsible, preventing the n-3 PUFA-containing phospholipids from packing as close to the rigid sterol as the monounsaturated control. Our findings establish that EPA, DHA and DPA are not equivalent in their interactions within membranes, which possibly contributes to differences in clinical efficacy. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Association between polymorphisms in the fatty acid desaturase gene cluster and the plasma triacylglycerol response to an n-3 PUFA supplementation.

    PubMed

    Cormier, Hubert; Rudkowska, Iwona; Paradis, Ann-Marie; Thifault, Elisabeth; Garneau, Véronique; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2012-08-01

    Eicosapentaenoic and docosahexaenoic acids have been reported to have a variety of beneficial effects on cardiovascular disease risk factors. However, a large inter-individual variability in the plasma lipid response to an omega-3 (n-3) polyunsaturated fatty acid (PUFA) supplementation is observed in different studies. Genetic variations may influence plasma lipid responsiveness. The aim of the present study was to examine the effects of a supplementation with n-3 PUFA on the plasma lipid profile in relation to the presence of single-nucleotide polymorphisms (SNPs) in the fatty acid desaturase (FADS) gene cluster. A total of 208 subjects from Quebec City area were supplemented with 3 g/day of n-3 PUFA, during six weeks. In a statistical model including the effect of the genotype, the supplementation and the genotype by supplementation interaction, SNP rs174546 was significantly associated (p = 0.02) with plasma triglyceride (TG) levels, pre- and post-supplementation. The n-3 supplementation had an independent effect on plasma TG levels and no significant genotype by supplementation interaction effects were observed. In summary, our data support the notion that the FADS gene cluster is a major determinant of plasma TG levels. SNP rs174546 may be an important SNP associated with plasma TG levels and FADS1 gene expression independently of a nutritional intervention with n-3 PUFA.

  18. Association between Polymorphisms in the Fatty Acid Desaturase Gene Cluster and the Plasma Triacylglycerol Response to an n-3 PUFA Supplementation

    PubMed Central

    Cormier, Hubert; Rudkowska, Iwona; Paradis, Ann-Marie; Thifault, Elisabeth; Garneau, Véronique; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2012-01-01

    Eicosapentaenoic and docosahexaenoic acids have been reported to have a variety of beneficial effects on cardiovascular disease risk factors. However, a large inter-individual variability in the plasma lipid response to an omega-3 (n-3) polyunsaturated fatty acid (PUFA) supplementation is observed in different studies. Genetic variations may influence plasma lipid responsiveness. The aim of the present study was to examine the effects of a supplementation with n-3 PUFA on the plasma lipid profile in relation to the presence of single-nucleotide polymorphisms (SNPs) in the fatty acid desaturase (FADS) gene cluster. A total of 208 subjects from Quebec City area were supplemented with 3 g/day of n-3 PUFA, during six weeks. In a statistical model including the effect of the genotype, the supplementation and the genotype by supplementation interaction, SNP rs174546 was significantly associated (p = 0.02) with plasma triglyceride (TG) levels, pre- and post-supplementation. The n-3 supplementation had an independent effect on plasma TG levels and no significant genotype by supplementation interaction effects were observed. In summary, our data support the notion that the FADS gene cluster is a major determinant of plasma TG levels. SNP rs174546 may be an important SNP associated with plasma TG levels and FADS1 gene expression independently of a nutritional intervention with n-3 PUFA. PMID:23016130

  19. n-3 fatty acid enrichment of edible tissue of poultry: a review.

    PubMed

    Rymer, C; Givens, D I

    2005-02-01

    There is clear evidence of the nutritional benefits of consuming long-chain n-3 PUFA, which are found predominantly in oily fish. However, oily fish consumption, particularly in the United Kingdom, is declining, as is the consumption of all meats with the exception of poultry, which has increased in consumption by 73% in the last 30 yr. This pattern, if less marked, is reflected throughout Europe, and therefore one means of increasing long-chain n-3 PUFA consumption would be to increase the long-chain n-3 PUFA content in the edible tissues of poultry. This review considers the feasibility of doing this, concentrating particularly on chickens and turkeys. It begins by summarizing the benefits to human health of consuming greater quantities of n-3 FA and the sources of n-3 PUFA in the human diet. The literature on altering the FA composition of poultry meat is then reviewed, and the factors affecting the incorporation of n-3 PUFA into edible tissues of poultry are investigated. The concentration of alpha-linolenic acid (ALA) in the edible tissues of poultry is readily increased by increasing the concentration of ALA in the birds' diet (particularly meat with skin, and dark meat to a greater extent than white meat). The concentration of EPA in both white and dark meat is also increased when the birds' diet is supplemented with EPA, although supplementing the diet with the precursor (ALA) does not result in a noticeable increase in EPA content in the edible tissues. Although supplementing the birds' diets with relatively high concentrations of DHA does result in an increased concentration of DHA in the tissues, the relationship between dietary and tissue concentrations of DHA is much weaker than that observed with ALA and EPA. The impact that altering the FA composition of edible poultry tissue may have on the organoleptic and storage qualities of poultry products is also considered.

  20. Effect of omega-3 and omega-6 polyunsaturated fatty acid enriched diet on plasma IGF-1 and testosterone concentration, puberty and semen quality in male buffalo.

    PubMed

    Tran, L V; Malla, B A; Sharma, A N; Kumar, Sachin; Tyagi, Nitin; Tyagi, A K

    2016-10-01

    The objective of the present study was to evaluate the effect of omega-3 and omega-6 PUFA enriched diet on plasma IGF-1 and testosterone concentrations, puberty, sperm fatty acid profile and semen quality in male buffalo. Eighteen male buffalo calves were distributed randomly in three different groups and fed concentrate mixture along with green fodder and wheat straw in 50:40:10 ratios as per requirements. Basis ration of animals in group I was supplemented with 4% of prilled fat (PFA), while in group II and group III were added 4.67% of Calcium salt from Soybean (CaSFA) and Linseed oil (CaLFA), respectively. Male buffalo fed omega-3 PUFA high diet significantly increased concentrations of IGF-1 and testosterone in plasma as compared to two other diets (p<0.05). The age of puberty and scrotal circumference significantly increased by dietary fat effect (p<0.05) of which n-3 PUFA enriched diet (CaLFA) had the largest influence as compared to other diets (PFA and CaSFA). Feeding of n-3 PUFA rich diet significantly increased the DHA (C22:6n-3) content in sperm (p<0.05), which contributed to increased fluidity of plasma membrane, elevated quality of sperm (motility, viability) and in vitro fertility (plasma membrane integrity, acrosome integrity) in both fresh and post-thawing semen. These findings indicate that feeding of n-3 PUFA enriched diet increased IGF-1 and testosterone secretion, reduced pubertal age and improved both fresh and post-thawing semen quality in male buffalo. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Differential response to an algae supplement high in DHA mediated by maternal periconceptional diet: intergenerational effects of n-6 fatty acids.

    PubMed

    Clayton, Edward H; Lamb, Tracy A; Refshauge, Gordon; Kerr, Matthew J; Bailes, Kristy L; Ponnampalam, Eric N; Friend, Michael A; Hopkins, David L

    2014-08-01

    Algae high in docosahexaenoic acid (DHA) may provide a source of long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) for inclusion in the diet of lambs to improve the LCn-3PUFA status of meat. The effect of background LCn-3PUFA status on the metabolism of high DHA algae is, however, unknown. The aim of the current study was to determine whether the response to a high in DHA algae supplement fed to lambs for six weeks prior to slaughter was mediated by a maternal periconceptional diet. Forty Poll Dorset × Border Leicester × Merino weaner lambs were allocated to receive either a ration based on oat grain, lupin grain, and chopped lucerne (control) or the control ration with DHA-Gold™ algae included at 1.92 % DM (Algae) based on whether the dams of lambs had previously been fed a diet high in n-3 or n-6 around conception. LCn-3PUFA concentration was determined in plasma and red blood cells (RBC) prior to and following feeding. The concentrations of EPA and DHA in the plasma and RBC of lambs receiving the control ration were significantly (p < 0.001) lower when lambs received the ration for 14 days compared with pre-feeding concentrations. The concentrations of EPA and DHA were also significantly (p < 0.001) higher when lambs consumed the Algae ration compared with the control ration for 42 days. The increase in EPA and DHA was, however, significantly (p < 0.05) lower if lamb dams had previously been fed a diet high in n-6 at conception. Assessing the previous nutrition and n-3 status of lambs may allow producers to more accurately predict the likely response to supplements high in LCn-3PUFA, particularly, DHA.

  2. Metabolism, health and fillet nutritional quality in Atlantic salmon (Salmo salar) fed diets containing n-3-rich microalgae.

    PubMed

    Kousoulaki, Katerina; Østbye, Tone-Kari Knutsdatter; Krasnov, Aleksei; Torgersen, Jacob Seilø; Mørkøre, Turid; Sweetman, John

    2015-01-01

    Microalgae, as primary producers of EPA and DHA, are among the most prominent alternative sources to fish oil for n-3 long-chain PUFA in animal and human nutrition. The present study aimed to assess technical, nutritional and fish health aspects of producing n-3-rich Atlantic salmon (Salmo salar) fish fillets by dietary supplementation of increasing levels of a DHA-producing Schizochytrium sp. and reduced or without use of supplemental fish oil. Atlantic salmon smolt were fed diets with graded levels of microalgae for 12 weeks, during which all fish showed high feed intake rates with postprandial plasma leptin levels inversely correlating with final mean fish body weights. Fish performance was optimal in all experimental treatments (thermal growth coefficient about 4·0 and feed conversion ratio 0·8-0·9), protein digestibility was equal in all diets, whereas dietary lipid digestibility inversely correlated with the dietary levels of the SFA 16 : 0. Fillet quality was good and similar to the control in all treatments in terms of n-3 long-chain PUFA content, gaping, texture and liquid losses during thawing. Histological fluorescence staining and immunofluorescence analysis of salmon intestines (midgut: base of intestine and villi) revealed significant effects on slime, goblet cell production and inducible nitric oxide synthase (iNOS) activity with increasing levels of dietary Schizochytrium sp. supplementation. Microarray analysis did not reveal any signs of toxicity, stress, inflammation or any other negative effects from Schizochytrium sp. supplementation in diets for Atlantic salmon.

  3. Higher Plasma Phospholipid n–3 PUFAs, but Lower n–6 PUFAs, Are Associated with Lower Pulse Wave Velocity among Older Adults123

    PubMed Central

    Reinders, Ilse; Murphy, Rachel A; Song, Xiaoling; Mitchell, Gary F; Visser, Marjolein; Cotch, Mary Frances; Garcia, Melissa E; Launer, Lenore J; Eiriksdottir, Gudny; Gudnason, Vilmundur; Harris, Tamara B; Brouwer, Ingeborg A

    2015-01-01

    Background: Higher intake of polyunsaturated fatty acids (PUFAs) and higher circulating PUFAs are associated with lower cardiovascular disease (CVD) risk. The positive influence of PUFAs might be via lowering arterial stiffness, resulting in a better CVD risk profile; however, studies investigating circulating PUFAs in relation to arterial stiffness in a general population are limited. Objective: We investigated the associations of plasma phospholipid n–3 (ω-3) and n–6 PUFAs and fish oil intake with arterial stiffness. Methods: We used data from a subgroup of the Age, Gene/Environment Susceptibility–Reykjavik (AGES-Reykjavik) Study (n = 501, 75.0 ± 4.96 y, 46% men), a population-based study of community-dwelling older adults. Plasma phospholipid PUFAs were measured by GC at baseline, and fish oil intake was assessed at 3 time points: early life (ages 14–19 y), midlife (ages 40–50 y), and late life (ages 66–96 y, AGES-Reykjavik baseline) with the use of a validated food-frequency questionnaire. Arterial stiffness was determined as carotid–femoral pulse wave velocity (cf-PWV) with the use of an electrocardiogram after a mean follow-up of 5.2 ± 0.3 y. Regression coefficients (95% CIs), adjusted for demographics, follow-up time, risk factors, cholesterol, triglycerides, and serum vitamin D, were calculated by linear regression per SD increment in PUFAs. Results: Plasma total n–3 PUFAs, eicosapentaenoic acid, and docosahexaenoic acid were associated with lower cf-PWV [β (95% CI): −0.036 (−0.064, −0.008); −0.031 (−0.059, −0.003); −0.036 (−0.064, −0.009), respectively]. In contrast, plasma total n–6 PUFAs and linoleic acid were associated with higher cf-PWV [0.035 (0.009, 0.061) and 0.034 (0.008, 0.059)]. Regular fish oil consumption at early-, mid-, and late-life was not associated with cf-PWV. Conclusions: Our results show a positive association between plasma n–6 PUFAs and arterial stiffness, and suggest that higher

  4. Clinical Benefits of n-3 PUFA and ɤ-Linolenic Acid in Patients with Rheumatoid Arthritis.

    PubMed

    Veselinovic, Mirjana; Vasiljevic, Dragan; Vucic, Vesna; Arsic, Aleksandra; Petrovic, Snjezana; Tomic-Lucic, Aleksandra; Savic, Maja; Zivanovic, Sandra; Stojic, Vladislava; Jakovljevic, Vladimir

    2017-03-25

    (1) Background: Marine n -3 polyunsaturated fatty acids (PUFA) and ɤ-linolenic acid (GLA) are well-known anti-inflammatory agents that may help in the treatment of inflammatory disorders. Their effects were examined in patients with rheumatoid arthritis; (2) Methods: Sixty patients with active rheumatoid arthritis were involved in a prospective, randomized trial of a 12 week supplementation with fish oil (group I), fish oil with primrose evening oil (group II), or with no supplementation (group III). Clinical and laboratory evaluations were done at the beginning and at the end of the study; (3) Results: The Disease Activity Score 28 (DAS 28 score), number of tender joints and visual analogue scale (VAS) score decreased notably after supplementation in groups I and II ( p < 0.001). In plasma phospholipids the n -6/ n -3 fatty acids ratio declined from 15.47 ± 5.51 to 10.62 ± 5.07 ( p = 0.005), and from 18.15 ± 5.04 to 13.50 ± 4.81 ( p = 0.005) in groups I and II respectively. The combination of n -3 PUFA and GLA (group II) increased ɤ-linolenic acid (0.00 ± 0.00 to 0.13 ± 0.11, p < 0.001), which was undetectable in all groups before the treatments; (4) Conclusion: Daily supplementation with n -3 fatty acids alone or in combination with GLA exerted significant clinical benefits and certain changes in disease activity.

  5. Dimethylethanolamine does not prevent liver failure in phosphatidylethanolamine N-methyltransferase-deficient mice fed a choline-deficient diet.

    PubMed

    Waite, Kristin A; Vance, Dennis E

    2004-03-22

    Mice that lack phosphatidylethanolamine-N-methyltransferase (PEMT) and are fed a choline-deficient (CD) diet suffer severe liver damage and do not survive. Since phosphatidyldimethylethanolamine (PDME) has physical properties similar to those of phosphatidylcholine (PC), we hypothesized that dimethylethanolamine (DME) would be converted into PDME that might substitute for PC, and therefore abrogate the liver damage in the Pemt -/- mice fed a CD diet. We fed Pemt -/- mice either a CD diet, a CD diet supplemented with choline, or a CD diet supplemented with DME (CD + DME). Pemt -/- mice fed the CD diet developed severe liver failure by 4 days while CD + DME-fed mice developed severe liver failure by 5 days. The hepatic PC level in choline-supplemented (CS) mice was 67 +/- 4 nmol/mg protein, whereas the PC content was reduced in CD- and CD + DME-fed mice (49 +/- 3 and 30 +/- 3 nmol/mg protein, respectively). Upon supplementation of the CD diet with DME the amount of hepatic PDME was 81 +/- 9 nmol/mg protein so that the hepatic content of PC + PDME combined was 111 nmol/mg protein. Moreover, plasma apolipoprotein B100 and Al levels were markedly lower in mice fed the CD + DME diet compared to mice fed the CS diet, as was the plasma content of PC. Thus, despite replacement of the deficit in hepatic PC with PDME in Pemt -/- mice fed a CD diet, normal liver function was not restored. We conclude that although PC and PDME exhibit similar physical properties, the three methyl groups of choline are required for hepatic function in mice.

  6. Precision Nutrition and Omega-3 Polyunsaturated Fatty Acids: A Case for Personalized Supplementation Approaches for the Prevention and Management of Human Diseases

    PubMed Central

    Chilton, Floyd H.; Dutta, Rahul; Reynolds, Lindsay M.; Sergeant, Susan; Mathias, Rasika A.; Seeds, Michael C.

    2017-01-01

    Background: Dietary essential omega-6 (n-6) and omega-3 (n-3) 18 carbon (18C-) polyunsaturated fatty acids (PUFA), linoleic acid (LA) and α-linolenic acid (ALA), can be converted (utilizing desaturase and elongase enzymes encoded by FADS and ELOVL genes) to biologically-active long chain (LC; >20)-PUFAs by numerous cells and tissues. These n-6 and n-3 LC-PUFAs and their metabolites (ex, eicosanoids and endocannabinoids) play critical signaling and structural roles in almost all physiologic and pathophysiologic processes. Methods: This review summarizes: (1) the biosynthesis, metabolism and roles of LC-PUFAs; (2) the potential impact of rapidly altering the intake of dietary LA and ALA; (3) the genetics and evolution of LC-PUFA biosynthesis; (4) Gene–diet interactions that may lead to excess levels of n-6 LC-PUFAs and deficiencies of n-3 LC-PUFAs; and (5) opportunities for precision nutrition approaches to personalize n-3 LC-PUFA supplementation for individuals and populations. Conclusions: The rapid nature of transitions in 18C-PUFA exposure together with the genetic variation in the LC-PUFA biosynthetic pathway found in different populations make mal-adaptations a likely outcome of our current nutritional environment. Understanding this genetic variation in the context of 18C-PUFA dietary exposure should enable the development of individualized n-3 LC-PUFA supplementation regimens to prevent and manage human disease. PMID:29068398

  7. Dietary Omega-3 Polyunsaturated Fatty Acids Prevent Vascular Dysfunction and Attenuate Cytochrome P4501A1 Expression by 2,3,7,8-Tetrachlorodibenzo-P-Dioxin.

    PubMed

    Wiest, Elani F; Walsh-Wilcox, Mary T; Rothe, Michael; Schunck, Wolf-Hagen; Walker, Mary K

    2016-11-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) found in fish protect against cardiovascular morbidity and mortality; however, many individuals avoid fish consumption due to concerns about pollutants. We tested the hypothesis that n-3 PUFAs would prevent vascular dysfunction induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). C57Bl/6 male mice were fed a chow or n-3 PUFA diet for 10 weeks and were exposed to vehicle or 300 ng/kg/d TCDD during the final 2 weeks on each diet. Aortic vasoconstriction mediated by arachidonic acid (AA) ± SKF525 (P450 inhibitor) or SQ29548 (thromboxane/prostanoid [TP] receptor antagonist) was assessed. RBC fatty acids and expression of n-3 and n-6 PUFA metabolites were analyzed. Cytochrome P4501A1 (CYP1A1), CYP1B1, and aryl hydrocarbon receptor (AHR) expression was measured. TCDD significantly increased AA-mediated vasoconstriction on a chow diet by increasing the contribution of P450s and TP receptor to the constriction response. In contrast, the n-3 PUFA diet prevented the TCDD-induced increase in AA vasoconstriction and normalized the contribution of P450s and TP receptor. Although TCDD increased the levels of AA vasoconstrictors on the chow diet, this increase was prevent by the n-3 PUFA diet. Additionally, the n-3 PUFA diet significantly increased the levels of n-3 PUFA-derived vasodilators and TCDD increased these levels further. Interestingly, the n-3 PUFA diet significantly attenuated CYP1A1 induction by TCDD without a significant effect on AHR expression. These data suggest that n-3 PUFAs can prevent TCDD-induced vascular dysfunction by decreasing vasoconstrictors, increasing vasodilators, and attenuating CYP1A1 induction, which has been shown previously to contribute to TCDD-induced vascular dysfunction. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Application of Silver Ion High-Performance Liquid Chromatography for Quantitative Analysis of Selected n-3 and n-6 PUFA in Oil Supplements.

    PubMed

    Czajkowska-Mysłek, Anna; Siekierko, Urszula; Gajewska, Magdalena

    2016-04-01

    The aim of this study was to develop a simple method for simultaneous determination of selected cis/cis PUFA-LNA (18:2), ALA (18:3), GLA (18:3), EPA (20:5), and DHA (22:6) by silver ion high-performance liquid chromatography coupled to a diode array detector (Ag-HPLC-DAD). The separation was performed on three Luna SCX Silver Loaded columns connected in series maintained at 10 °C with isocratic elution by 1% acetonitrile in n-hexane. The applied chromatographic system allowed a baseline separation of standard mixture of n-3 and n-6 fatty acid methyl esters containing LNA, DHA, and EPA and partial separation of ALA and GLA positional isomers. The method was validated by means of linearity, precision, stability, and recovery. Limits of detection (LOD) for considered PUFA standard solutions ranged from 0.27 to 0.43 mg L(-1). The developed method was used to evaluate of n-3 and n-6 fatty acids contents in plant and fish softgel oil capsules, results were compared with reference GC-FID based method.

  9. [Risk-benefit of some mollusks and processed fishes in the renal patient's diet].

    PubMed

    Castro-González, M I; Miranda-Becerra, D; Pérez-Gil, R F

    2010-03-01

    The renal diet must include limited amounts of high quality protein, phosphorus P and potassium K. n-3 polyunsaturated fatty acids (n-3PUFA EPA and DHA), present in fishes and mollusks, render beneficial properties against progression of renal damage. The aim of this study was to evaluate protein PR, phosphorus P, potassium K, calcium Ca and n-3PUFA in processed fishes and mollusks as an alimentary option for renal patients. Canned tuna (water AA and oil AC), sardine in tomate sauce ST and chipotle SC and smoked salmon SA, fresh jumbo flying squid CA, common octopus PU and oyster OS were evaluated. Significant difference was detected (p <.0.05) for K between different types of fish. SA contained 38g/100g PR, 307 mg/100g of P, 371 mg/ 100g K and 106 mg/100g n-3PUFA. Sardines contained (279-304 mg/100g of P and 283-322 mg/100g K and tunas 142-160 mg/100g P and 141-154 mg/100g K. Tunas and sardines had elevated concentration of n-3PUFA (4114 and 4790 mg/ 100g respectively), P:n-3PUFA and K:n-3PUFA ratio was low in tunas (0.03) and sardines (0.06). AA and AC contained (10.1 and 11.1 mgP/gPR), while ST and SC provided 26.4-19.1 mg/P/gPR. n-3PUFA/gPR were similar for tunas and sardines (302-424mg/gPR). Mollusks: CA presented the highest values of P and PR (2.4 mg/100g and 18.4g/100g). n-3PUFA ranged from 4.3 to 79 mg/100g in PU and OS respectively. Among processed fishes, only canned tunas are recommended for the diet of renal patients, in an individualized basis. The risk-benefit ratio of sardines in the renal diet should be evaluated, due to their high content of P and n-3PUFA. Salmon and mollusks are not recommended for the renal diet.

  10. Regulation of osteoarthritis by omega-3 (n-3) polyunsaturated fatty acids in a naturally occurring model of disease

    PubMed Central

    Knott, L.; Avery, N.C.; Hollander, A.P.; Tarlton, J.F.

    2011-01-01

    Summary Objective To examine effects of high omega-3 (n-3) polyunsaturated fatty acid (PUFA) diets on development of osteoarthritis (OA) in a spontaneous guinea pig model, and to further characterise pathogenesis in this model. Modern diets low in n-3 PUFAs have been linked with increases in inflammatory disorders, possibly including OA. However, n-3 is also thought to increases bone density, which is a possible contributing factor in OA. Therefore we aim to determine the net influence of n-3 in disease development. Method OA-prone Dunkin-Hartley (DH) Guinea pigs were compared with OA-resistant Bristol Strain-2s (BS2) each fed a standard or an n-3 diet from 10 to 30 weeks (10/group). We examined cartilage and subchondral bone pathology by histology, and biochemistry, including collagen cross-links, matrix metalloproteinases (MMPs), alkaline phosphatase, glycosaminoglycan (GAG), and denatured type II collagen. Results Dietary n-3 reduced disease in OA-prone animals. Most cartilage parameters were modified by n-3 diet towards those seen in the non-pathological BS2 strain – significantly active MMP-2, lysyl-pyridinoline and total collagen cross-links – the only exception being pro MMP-9 which was lower in the BS2, yet increased with n-3. GAG content was higher and denatured type II lower in the n-3 group. Subchondral bone parameters in the DH n-3 group also changed towards those seen in the non-pathological strain, significantly calcium:phosphate ratios and epiphyseal bone density. Conclusion Dietary n-3 PUFA reduced OA in the prone strain, and most disease markers were modified towards those of the non-OA strain, though not all significantly so. Omega-3 did not increase markers of pathology in either strain. PMID:21723952

  11. Dietary omega-6 fatty acid lowering increases bioavailability of omega-3 polyunsaturated fatty acids in human plasma lipid pools.

    PubMed

    Taha, Ameer Y; Cheon, Yewon; Faurot, Keturah F; Macintosh, Beth; Majchrzak-Hong, Sharon F; Mann, J Douglas; Hibbeln, Joseph R; Ringel, Amit; Ramsden, Christopher E

    2014-05-01

    Dietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations. To evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, alters unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache. Secondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3-L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet. Compared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3-L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations. Dietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFAs for 12 weeks further increases n-3 PUFA plasma concentrations and reduces AA. Published by Elsevier Ltd.

  12. Dietary omega-6 fatty acid lowering increases bioavailability of omega-3 polyunsaturated fatty acids in human plasma lipid pools

    PubMed Central

    Taha, Ameer Y.; Cheon, Yewon; Faurot, Keturah F.; MacIntosh, Beth; Majchrzak-Hong, Sharon F.; Mann, J. Douglas; Hibbeln, Joseph R.; Ringel, Amit; Ramsden, Christopher E.

    2014-01-01

    Background Dietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations. Objective To evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, change unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache. Design Secondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to: (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3-L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet. Results Compared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3-L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations. Conclusion Dietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFA for 12 weeks further increases n-3 PUFA plasma concentrations, but also reduces AA. PMID:24675168

  13. Omega-3 Index and Anti-Arrhythmic Potential of Omega-3 PUFAs

    PubMed Central

    Tribulova, Narcis; Szeiffova Bacova, Barbara; Egan Benova, Tamara; Knezl, Vladimir; Barancik, Miroslav; Slezak, Jan

    2017-01-01

    Omega-3 polyunsaturated fatty acids (PUFAs), namely eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are permanent subjects of interest in relation to the protection of cardiovascular health and the prevention of the incidence of both ventricular and atrial arrhythmias. The purpose of this updated review is to focus on the novel cellular and molecular effects of omega-3 PUFAs, in the context of the mechanisms and factors involved in the development of cardiac arrhythmias; to provide results of the most recent studies on the omega-3 PUFA anti-arrhythmic efficacy and to discuss the lack of the benefit in relation to omega-3 PUFA status. The evidence is in the favor of omega-3 PUFA acute and long-term treatment, perhaps with mitochondria-targeted antioxidants. However, for a more objective evaluation of the anti-arrhythmic potential of omega-3 PUFAs in clinical trials, it is necessary to monitor the basal pre-interventional omega-3 status of individuals, i.e., red blood cell content, omega-3 index and free plasma levels. In the view of evidence-based medicine, it seems to be crucial to aim to establish new approaches in the prevention of cardiac arrhythmias and associated morbidity and mortality that comes with these conditions. PMID:29084142

  14. Omega-3 Index and Anti-Arrhythmic Potential of Omega-3 PUFAs.

    PubMed

    Tribulova, Narcis; Szeiffova Bacova, Barbara; Egan Benova, Tamara; Knezl, Vladimir; Barancik, Miroslav; Slezak, Jan

    2017-10-30

    Omega-3 polyunsaturated fatty acids (PUFAs), namely eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are permanent subjects of interest in relation to the protection of cardiovascular health and the prevention of the incidence of both ventricular and atrial arrhythmias. The purpose of this updated review is to focus on the novel cellular and molecular effects of omega-3 PUFAs, in the context of the mechanisms and factors involved in the development of cardiac arrhythmias; to provide results of the most recent studies on the omega-3 PUFA anti-arrhythmic efficacy and to discuss the lack of the benefit in relation to omega-3 PUFA status. The evidence is in the favor of omega-3 PUFA acute and long-term treatment, perhaps with mitochondria-targeted antioxidants. However, for a more objective evaluation of the anti-arrhythmic potential of omega-3 PUFAs in clinical trials, it is necessary to monitor the basal pre-interventional omega-3 status of individuals, i.e., red blood cell content, omega-3 index and free plasma levels. In the view of evidence-based medicine, it seems to be crucial to aim to establish new approaches in the prevention of cardiac arrhythmias and associated morbidity and mortality that comes with these conditions.

  15. High-protein-PUFA supplementation, red blood cell membranes, and plasma antioxidant activity in volleyball athletes.

    PubMed

    Malaguti, Marco; Baldini, Marta; Angeloni, Cristina; Biagi, Pierluigi; Hrelia, Silvana

    2008-06-01

    The authors evaluated the role of a high-protein, low-calorie, polyunsaturated fatty-acid (PUFA) -supplemented diet on anthropometric parameters, erythrocyte-membrane fatty-acid composition, and plasma antioxidant defenses of nonprofessional volleyball athletes. The athletes were divided in two groups: One (n = 5) followed the Mediterranean diet, and the other (n = 6) followed a high-protein, low-calorie diet with a 3-g/day fish-oil supplementation. All the athletes had anthropometric measurements taken, both at the beginning and at the end of the study, which lasted for 2 months. Body-mass index and total body fat were significantly diminished in the second group, while they remained unchanged in the first. Plasma total antioxidant activity (TAA) was significantly increased in the plasma of both groups, with no differences between the groups, suggesting that physical activity, not the different diets, is the main contributor to the increase of plasma TAA. The second group showed a significant increase in erythrocyte-membrane PUFA content and in the unsaturation index value (UI) because of the fish-oil supplementation.A high-protein, low-carbohydrate, fish-oil-supplemented diet seems to be useful only when the aim of the diet is to obtain weight loss in a short-term period. The significant increase in the UI of erythrocyte membranes indicates the potential for harm, because a high intake of PUFA might increase susceptibility to lipid peroxidation not counterbalanced by a higher increase in TAA. Adherence to the Mediterranean diet seems to be the better choice.

  16. The Role of n-3 Polyunsaturated Fatty Acids in the Prevention and Treatment of Breast Cancer

    PubMed Central

    Liu, Jiajie; Ma, David W. L.

    2014-01-01

    Breast cancer (BC) is the most common cancer among women worldwide. Dietary fatty acids, especially n-3 polyunsaturated fatty acids (PUFA), are believed to play a role in reducing BC risk. Evidence has shown that fish consumption or intake of long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial for inhibiting mammary carcinogenesis. The evidence regarding α-linolenic acid (ALA), however, remains equivocal. It is essential to clarify the relation between ALA and cancer since ALA is the principal source of n-3 PUFA in the Western diet and the conversion of ALA to EPA and DHA is not efficient in humans. In addition, the specific anticancer roles of individual n-3 PUFA, alone, have not yet been identified. Therefore, the present review evaluates ALA, EPA and DHA consumed individually as well as in n-3 PUFA mixtures. Also, their role in the prevention of BC and potential anticancer mechanisms of action are examined. Overall, this review suggests that each n-3 PUFA has promising anticancer effects and warrants further research. PMID:25412153

  17. Role of CYP1A1 in modulating the vascular and blood pressure benefits of omega-3 polyunsaturated fatty acids.

    PubMed

    Agbor, Larry N; Wiest, Elani F; Rothe, Michael; Schunck, Wolf-Hagen; Walker, Mary K

    2014-12-01

    The mechanisms that mediate the cardiovascular protective effects of omega 3 (n-3) polyunsaturated fatty acids (PUFAs) have not been fully elucidated. Cytochrome P450 1A1 efficiently metabolizes n-3 PUFAs to potent vasodilators. Thus, we hypothesized that dietary n-3 PUFAs increase nitric oxide (NO)-dependent blood pressure regulation and vasodilation in a CYP1A1-dependent manner. CYP1A1 wild-type (WT) and knockout (KO) mice were fed an n-3 or n-6 PUFA-enriched diet for 8 weeks and were analyzed for tissue fatty acids and metabolites, NO-dependent blood pressure regulation, NO-dependent vasodilation of acetylcholine (ACh) in mesenteric resistance arterioles, and endothelial NO synthase (eNOS) and phospho-Ser1177-eNOS expression in the aorta. All mice fed the n-3 PUFA diet showed significantly higher levels of n-3 PUFAs and their metabolites, and significantly lower levels of n-6 PUFAs and their metabolites. In addition, KO mice on the n-3 PUFA diet accumulated significantly higher levels of n-3 PUFAs in the aorta and kidney without a parallel increase in the levels of their metabolites. Moreover, KO mice exhibited significantly less NO-dependent regulation of blood pressure on the n-3 PUFA diet and significantly less NO-dependent, ACh-mediated vasodilation in mesenteric arterioles on both diets. Finally, the n-3 PUFA diet significantly increased aortic phospho-Ser1177-eNOS/eNOS ratio in the WT compared with KO mice. These data demonstrate that CYP1A1 contributes to eNOS activation, NO bioavailability, and NO-dependent blood pressure regulation mediated by dietary n-3 PUFAs. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Red blood cell n-3 polyunsaturated fatty acids in first trimester of pregnancy are inversely associated with placental weight.

    PubMed

    Magnusardottir, Anna R; Steingrimsdottir, Laufey; Thorgeirsdottir, Holmfridur; Hauksson, Arnar; Skuladottir, Gudrun V

    2009-01-01

    To investigate pregnancy outcome in relation to red blood cell (RBC) level of long-chain n-3 polyunsaturated fatty acids (PUFA) in the first trimester of pregnancy and the influence of lifestyle factors on the RBC level of long-chain n-3 PUFA. Observational study in a community with traditional fish and cod liver oil consumption. Seventy-seven healthy pregnant women. The PUFA composition of RBC was measured in the 11th to 15th week of pregnancy. The women answered food frequency and lifestyle questionnaires. Information on pregnancy outcome was collected from birth records. Placental weight, long-chain n-3 PUFA in diet and RBC, smoking. Of all the pregnancy outcome variables tested, placental weight was the only one associated with long-chain n-3 PUFA in RBC. Inverse association was found between the proportion of long-chain n-3 PUFA in RBC and placental weight, adjusted for birthweight (p=0.035). The proportion of long-chain n-3 PUFA in RBC was positively related to long-chain n-3 PUFA intake (p<0.001) and negatively related to smoking (p=0.011). The human fetus relies on maternal supply and placental delivery of long-chain n-3 PUFA for optimal development and function, particularly of the central nervous system. Given the importance of dietary n-3 PUFA during pregnancy, further studies are warranted to investigate the relationship between placental weight, maternal long-chain n-3 PUFA status and smoking.

  19. N-3 fatty acids reduced trans fatty acids retention and increased docosahexaenoic acid levels in the brain.

    PubMed

    Lavandera, Jimena Verónica; Saín, Juliana; Fariña, Ana Clara; Bernal, Claudio Adrián; González, Marcela Aída

    2017-09-01

    The levels of docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) are critical for the normal structure and function of the brain. Trans fatty acids (TFA) and the source of the dietary fatty acids (FA) interfere with long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis. The aim of this study was to investigate the effect of TFA supplementation in diets containing different proportions of n-9, n-6, and n-3 FA on the brain FA profile, including the retention of TFA, LC-PUFA levels, and n-6/n-3 PUFA ratios. These parameters were also investigated in the liver, considering that LC-PUFA are mainly bioconverted from their dietary precursors in this tissue and transported by serum to the brain. Also, stearoyl-CoA desaturase-1 (SCD1) and sterol regulatory element-binding protein-1c (SREBP-1c) gene expressions were evaluated. Male CF1 mice were fed (16 weeks) diets containing different oils (olive, corn, and rapeseed) with distinct proportions of n-9, n-6, and n-3 FA (55.2/17.2/0.7, 32.0/51.3/0.9, and 61.1/18.4/8.6), respectively, substituted or not with 0.75% of TFA. FA composition of the brain, liver, and serum was assessed by gas chromatography. TFA were incorporated into, and therefore retained in the brain, liver, and serum. However, the magnitude of retention was dependent on the tissue and type of isomer. In the brain, total TFA retention was lower than 1% in all diets. Dietary n-3 PUFA decreased TFA retention and increased DHA accretion in the brain. The results underscore the importance of the type of dietary FA on the retention of TFA in the brain and also on the changes of the FA profile.

  20. Fish or n3-PUFA intake and body composition: a systematic review and meta-analysis.

    PubMed

    Bender, N; Portmann, M; Heg, Z; Hofmann, K; Zwahlen, M; Egger, M

    2014-08-01

    Obesity is a major public health issue and an important contributor to the global burden of chronic disease and disability. Studies indicate that fish and omega-3 polyunsaturated fatty acids (n3-PUFA) supplements may help prevent cardiovascular and metabolic diseases. However, the effect of fish oil on body composition is still uncertain, so we performed a systematic review of randomized controlled trials and the first meta-analysis on the association between fish or fish oil intake and body composition measures. We found evidence that participants taking fish or fish oil lost 0.59 kg more body weight than controls (95% confidence interval [CI]: -0.96 to -0.21). Treatment groups lost 0.24 kg m(-2) (body mass index) more than controls (-0.40 to -0.08), and 0.49 % more body fat than controls (-0.97 to -0.01). Fish or fish oil reduced waist circumference by 0.81 cm (-1.34 to -0.28) compared with control. There was no difference for fat mass and lean body mass. Further research is needed to confirm or refute our findings and to reveal possible mechanisms by which n3-PUFAs might reduce weight. © 2014 The Authors. obesity reviews © 2014 World Obesity.

  1. In ovo exposure to omega-3 fatty acids does not enhance omega-3 long-chain polyunsaturated fatty acid metabolism in broiler chickens.

    PubMed

    Kanakri, K; Carragher, J; Muhlhausler, B; Hughes, R; Gibson, R

    2017-10-01

    The content of omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) in chicken meat can be boosted by feeding broilers a diet containing α-linolenic acid (ALA, from flaxseed oil), some of which is converted by hepatic enzymes to n-3 LCPUFA. However, most of the accumulated n-3 polyunsaturated fatty acid (PUFA) in meat tissues is still in the form of ALA. Despite this, the levels of chicken diets are being enhanced by the inclusion of vegetable and marine sources of omega-3 fats. This study investigated whether the capacity of chicken for n-3 LCPUFA accumulation could be enhanced or inhibited by exposure to an increased supply of ALA or n-3 LCPUFA in ovo. Breeder hens were fed either flaxseed oil (High-ALA), fish oil (high n-3 LCPUFA) or tallow- (low n-3 PUFA, Control) based diets. The newly hatched chicks in each group were fed either the High-ALA or the Control diets until harvest at 42 days' post-hatch. The n-3 PUFA content of egg yolk and day-old chick meat closely matched the n-3 PUFA composition of the maternal diet. In contrast, the n-3 PUFA composition of breast and leg meat tissues of the 42-day-old offspring closely matched the diet fed post-hatch, with no significant effect of maternal diet. Indeed, there was an inhibition of n-3 LCPUFA accumulation in meat of the broilers from the maternal Fish-Oil diet group when fed the post-hatch High-ALA diet. Therefore, this approach is not valid to elevate n-3 LCPUFA in chicken meat.

  2. The effect of feeding modified soyabean oil enriched with C18 : 4 n-3 to broilers on the deposition of n-3 fatty acids in chicken meat.

    PubMed

    Rymer, C; Hartnell, G F; Givens, D I

    2011-03-01

    Supplementing broiler diets with conventional vegetable oils has little effect on the long-chain n-3 PUFA (LC n-3 PUFA) content of the meat. The present study investigated the effect on fatty acid composition and sensory characteristics of chicken meat when broilers were fed oil extracted from soyabeans (SDASOY) that had been genetically engineered to produce C18 : 4n-3 (stearidonic acid (SDA), 240 mg/g oil). Three diets were fed to 120 birds (eight replicate pens of five birds) from 15 d to slaughter (41-50 d). Diets were identical apart from the oil added to them (45 and 50 g/kg as fed in the grower and finisher phases, respectively), which was either SDASOY, near-isogenic soya (CON) or fish oil (FISH). The LC n-3 PUFA content of the meat increased in the order CON, SDASOY and FISH. In breast meat with skin, the SDA concentration was 522, 13 and 37 (sem 14·4) mg/100 g meat for SDASOY, CON and FISH, respectively. Equivalent values for C20 : 5n-3 (EPA) were 53, 13 and 140 (sem 8·4); for C22 : 5n-3 (docosapentaenoic acid (DPA)) 65, 15 and 101 (sem 3·5); for C22 : 6n-3 (DHA) 19, 9 and 181 (sem 4·4). Leg meat (with skin) values for SDA were 861, 23 and 68 (sem 30·1); for EPA 87, 9 and 258 (sem 7·5); for DPA 95, 20 and 165 (sem 5·0); for DHA 29, 10 and 278 (sem 8·4). Aroma, taste and aftertaste of freshly cooked breast meat were not affected. Fishy aromas, tastes and aftertastes were associated with LC n-3 PUFA content of the meat, being most noticeable in the FISH leg meat (both freshly cooked and reheated) and in the reheated SDASOY leg meat.

  3. Enriched endogenous n-3 polyunsaturated fatty acids alleviate cognitive and behavioral deficits in a mice model of Alzheimer's disease.

    PubMed

    Wu, Kefeng; Gao, Xiang; Shi, Baoyan; Chen, Shiyu; Zhou, Xin; Li, Zhidong; Gan, Yuhong; Cui, Liao; Kang, Jing Xuan; Li, Wende; Huang, Ren

    2016-10-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder that accompanied by memory deficits and neuropsychiatric dysfunction. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have seemly therapeutic potential in AD, but the benefit of n-3 PUFAs is still in debates. Here, we employed a transgenic mice carry fat-1 gene to encode n-3 desaturase from Caenorhabditis elegans, which increase endogenous n-3 PUFAs by converting n-6 PUFAs to n-3 PUFAs crossed with amyloid precursor protein (APP) Tg mice to evaluate the protective effects of endogenous n-3 PUFAs on cognitive and behavioral deficits of APP Tg mice. We fed APP, APP/fat-1 and fat-1 mice with n-6 PUFAs rich diet. Brain tissues were collected at 3, 9 and 12 months for fatty acid and gene expression analysis, histology and protein assays. Morris Water Maze Test, open field test and elevated plus maze test were performed to measure the behavior capability. From the results, the expression of fat-1 transgene increased cortical n-3: n-6 PUFAs ratio and n-3 PUFAs concentrations, and sensorimotor dysfunction and cognitive deficits in AD were significantly less severe in APP/fat-1 mice with endogenous n-3 PUFAs than in APP mice controls. The protection against disturbance of spontaneous motor activity and cognitive deficits in AD was strongly correlated with increased n-3: n-6 PUFAs ratio and endogenous n-3 PUFAs, reduced APP generation, inhibited amyloid β peptide aggregation, suppressed nuclear factor-kappa B and astroglia activation, and reduced death of neurons in the cortex of APP/fat-1 mice compared with APP mice controls. In conclusion, our study demonstrates that an available medication with the maintenance of enriched n-3 PUFAs in the brain could slow down cognitive decline and prevent neuropsychological disorder in AD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Development of rabbit meat products fortified with n-3 polyunsaturated fatty acids.

    PubMed

    Petracci, Massimiliano; Bianchi, Maurizio; Cavani, Claudio

    2009-02-01

    Rabbit meat is a highly digestible, tasty, low-calorie food, often recommended by nutritionists over other meats. Currently research in the rabbit sector is interested in developing feeding strategies aiming to further increase the nutritional value of rabbit meat as a "functional food" by including n-3 polyunsaturated fatty acids (n-3 PUFA), conjugated linoleic acid (CLA), vitamins and antioxidants in rabbit diets and assessing their effects on both raw and stored/processed meat quality properties. Our recent studies indicate that the dietary inclusion from 3 to 6% of linseed might be considered as a way to achieve the enrichment of the meat with α-linolenic acid and to guarantee satisfactory product stability during further processing and storage. Considering that 6% dietary linseed corresponds to a n-3 PUFA content of 8.5% of the total fatty acids and a lipid content of 4.7 g/100 g of leg meat, a content of 396 mg n-3 PUFA/100g meat can be estimated, which represents about 19% of the recommended daily allowance (RDA) for n-3 PUFA.

  5. Development of Rabbit Meat Products Fortified With n-3 Polyunsaturated Fatty Acids

    PubMed Central

    Petracci, Massimiliano; Bianchi, Maurizio; Cavani, Claudio

    2009-01-01

    Rabbit meat is a highly digestible, tasty, low-calorie food, often recommended by nutritionists over other meats. Currently research in the rabbit sector is interested in developing feeding strategies aiming to further increase the nutritional value of rabbit meat as a “functional food” by including n-3 polyunsaturated fatty acids (n-3 PUFA), conjugated linoleic acid (CLA), vitamins and antioxidants in rabbit diets and assessing their effects on both raw and stored/processed meat quality properties. Our recent studies indicate that the dietary inclusion from 3 to 6% of linseed might be considered as a way to achieve the enrichment of the meat with α-linolenic acid and to guarantee satisfactory product stability during further processing and storage. Considering that 6% dietary linseed corresponds to a n-3 PUFA content of 8.5% of the total fatty acids and a lipid content of 4.7 g/100 g of leg meat, a content of 396 mg n-3 PUFA/100g meat can be estimated, which represents about 19% of the recommended daily allowance (RDA) for n-3 PUFA. PMID:22253971

  6. Characterisation of the vasodilation effects of DHA and EPA, n-3 PUFAs (fish oils), in rat aorta and mesenteric resistance arteries.

    PubMed

    Limbu, Roshan; Cottrell, Graeme S; McNeish, Alister J

    2018-01-01

    Increasing evidence suggests that the omega-3 polyunsaturated acids (n-3 PUFA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are beneficial to cardiovascular health, promoting relaxation of vascular smooth muscle cells and vasodilation. Numerous studies have attempted to study these responses, but to date there has not been a systematic characterisation of both DHA and EPA mediated vasodilation in conduit and resistance arteries. Therefore, we aimed to fully characterise the n-3 PUFA-induced vasodilation pathways in rat aorta and mesenteric artery. Wire myography was used to measure the vasomotor responses of freshly dissected rat mesenteric artery and aorta. Arteries were pre-constricted with U46619 and cumulative concentrations of either DHA or EPA (10 nM-30 μM) were added. The mechanisms by which n-3 PUFA relaxed arteries were investigated using inhibitors of vasodilator pathways, which include: nitric oxide synthase (NOS; L-NAME), cycloxygenase (COX; indomethacin), cytochrome P450 epoxygenase (CYP450; clotrimazole); and calcium-activated potassium channels (KCa), SKCa (apamin), IKCa (TRAM-34) and BKCa (paxilline). Both DHA- and EPA-induced relaxations were partially inhibited following endothelium removal in rat mesenteric arteries. Similarly, in aorta EPA-induced relaxation was partially suppressed due to endothelium removal. CYP450 also contributed to EPA-induced relaxation in mesenteric artery. Inhibition of IKCa partially attenuated DHA-induced relaxation in aorta and mesenteric artery along with EPA-induced relaxation in mesenteric artery. Furthermore, this inhibition of DHA- and EPA-induced relaxation was increased following the additional blockade of BKCa in these arteries. This study provides evidence of heterogeneity in the vasodilation mechanisms of DHA and EPA in different vascular beds. Our data also demonstrates that endothelium removal has little effect on relaxations produced by either PUFA. We demonstrate IKCa and BKCa are

  7. Characterisation of the vasodilation effects of DHA and EPA, n-3 PUFAs (fish oils), in rat aorta and mesenteric resistance arteries

    PubMed Central

    Limbu, Roshan; Cottrell, Graeme S.

    2018-01-01

    Background and purpose Increasing evidence suggests that the omega-3 polyunsaturated acids (n-3 PUFA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are beneficial to cardiovascular health, promoting relaxation of vascular smooth muscle cells and vasodilation. Numerous studies have attempted to study these responses, but to date there has not been a systematic characterisation of both DHA and EPA mediated vasodilation in conduit and resistance arteries. Therefore, we aimed to fully characterise the n-3 PUFA-induced vasodilation pathways in rat aorta and mesenteric artery. Methods Wire myography was used to measure the vasomotor responses of freshly dissected rat mesenteric artery and aorta. Arteries were pre-constricted with U46619 and cumulative concentrations of either DHA or EPA (10 nM-30 μM) were added. The mechanisms by which n-3 PUFA relaxed arteries were investigated using inhibitors of vasodilator pathways, which include: nitric oxide synthase (NOS; L-NAME), cycloxygenase (COX; indomethacin), cytochrome P450 epoxygenase (CYP450; clotrimazole); and calcium-activated potassium channels (KCa), SKCa (apamin), IKCa (TRAM-34) and BKCa (paxilline). Results Both DHA- and EPA-induced relaxations were partially inhibited following endothelium removal in rat mesenteric arteries. Similarly, in aorta EPA-induced relaxation was partially suppressed due to endothelium removal. CYP450 also contributed to EPA-induced relaxation in mesenteric artery. Inhibition of IKCa partially attenuated DHA-induced relaxation in aorta and mesenteric artery along with EPA-induced relaxation in mesenteric artery. Furthermore, this inhibition of DHA- and EPA-induced relaxation was increased following the additional blockade of BKCa in these arteries. Conclusions This study provides evidence of heterogeneity in the vasodilation mechanisms of DHA and EPA in different vascular beds. Our data also demonstrates that endothelium removal has little effect on relaxations produced by

  8. Higher PUFA and n-3 PUFA, conjugated linoleic acid, α-tocopherol and iron, but lower iodine and selenium concentrations in organic milk: a systematic literature review and meta- and redundancy analyses.

    PubMed

    Średnicka-Tober, Dominika; Barański, Marcin; Seal, Chris J; Sanderson, Roy; Benbrook, Charles; Steinshamn, Håvard; Gromadzka-Ostrowska, Joanna; Rembiałkowska, Ewa; Skwarło-Sońta, Krystyna; Eyre, Mick; Cozzi, Giulio; Larsen, Mette Krogh; Jordon, Teresa; Niggli, Urs; Sakowski, Tomasz; Calder, Philip C; Burdge, Graham C; Sotiraki, Smaragda; Stefanakis, Alexandros; Stergiadis, Sokratis; Yolcu, Halil; Chatzidimitriou, Eleni; Butler, Gillian; Stewart, Gavin; Leifert, Carlo

    2016-03-28

    Demand for organic milk is partially driven by consumer perceptions that it is more nutritious. However, there is still considerable uncertainty over whether the use of organic production standards affects milk quality. Here we report results of meta-analyses based on 170 published studies comparing the nutrient content of organic and conventional bovine milk. There were no significant differences in total SFA and MUFA concentrations between organic and conventional milk. However, concentrations of total PUFA and n-3 PUFA were significantly higher in organic milk, by an estimated 7 (95 % CI -1, 15) % and 56 (95 % CI 38, 74) %, respectively. Concentrations of α-linolenic acid (ALA), very long-chain n-3 fatty acids (EPA+DPA+DHA) and conjugated linoleic acid were also significantly higher in organic milk, by an 69 (95 % CI 53, 84) %, 57 (95 % CI 27, 87) % and 41 (95 % CI 14, 68) %, respectively. As there were no significant differences in total n-6 PUFA and linoleic acid (LA) concentrations, the n-6:n-3 and LA:ALA ratios were lower in organic milk, by an estimated 71 (95 % CI -122, -20) % and 93 (95 % CI -116, -70) %. It is concluded that organic bovine milk has a more desirable fatty acid composition than conventional milk. Meta-analyses also showed that organic milk has significantly higher α-tocopherol and Fe, but lower I and Se concentrations. Redundancy analysis of data from a large cross-European milk quality survey indicates that the higher grazing/conserved forage intakes in organic systems were the main reason for milk composition differences.

  9. Spatial and visual discrimination reversals in adult and geriatric rats exposed during gestation to methylmercury and n-3 polyunsaturated fatty acids

    PubMed Central

    Paletz, Elliott M.; Day, Jeremy J.; Craig-Schmidt, Margaret C.; Newland, M. Christopher

    2007-01-01

    Fish contain essential long chain polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid (DHA), an omega-3 (or n-3) PUFA, but are also the main source of exposure to methylmercury (MeHg), a potent developmental neurotoxicant. Since n-3 PUFAs support neural development and function, benefits deriving from a diet rich in n-3s have been hypothesized to protect against deleterious effects of gestational MeHg exposure. To determine whether protection occurs at the behavioral level, female Long-Evans rats were exposed, in utero, to 0, 0.5, or 5 ppm of Hg as MeHg via drinking water, approximating exposures of 0, 40, and 400 μg Hg/kg/day and producing 0, 0.29, and 5.50 ppm of total Hg in the brains of siblings at birth. They also received pre- and postnatal exposure to one of two diets, both based on the AIN-93 semipurified formulation. A “fish-oil” diet was high in, and a “coconut-oil” diet was devoid of, DHA. Diets were approximately equal in α-linolenic acid and n-6 PUFAs. As adults, the rats were first assessed with a spatial discrimination reversal (SDR) procedure and later with a visual (nonspatial) discrimination reversal (VDR) procedure. MeHg increased the number of errors to criterion for both SDR and VDR during the first reversal, but effects were smaller or nonexistent on the original discrimination and on later reversals. No such MeHg-related deficits were seen when the rats were retested on SDR after two years of age. These results are consistent with previous reports and hypotheses that gestational MeHg exposure produces perseverative responding. No interactions between Diet and MeHg were found, suggesting that n-3 PUFAs do not guard against these behavioral effects. Brain Hg concentrations did not differ between the diets, either. In geriatric rats, failures to respond were less common and response latencies were shorter for rats fed the fish oil diet, suggesting that exposure to a diet rich in n-3s may lessen the impact of age

  10. Cardioprotective Effects of ω-3 PUFAs in Chronic Kidney Disease

    PubMed Central

    Lee, Su Mi

    2013-01-01

    The prevalence rate of chronic kidney disease (CKD) is increasing worldwide, and cardiovascular disease (CVD) is a main cause of death in patients with CKD. The high incidence of CVD in CKD patients is related to chronic inflammation, dyslipidemia, malnutrition, atherosclerosis, and vascular calcification. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have been shown to reduce the risk of CVD. In this paper, we review the beneficial effects of ω-3 PUFAs on CVD and the possible cardioprotective mechanisms of ω-3 PUFAs in CKD patients by determining the effect of ω-3 PUFAs in the general population. ω-3 PUFAs have several cardioprotective benefits, such as reducing inflammation, decreasing oxidative stress, inhibiting platelet activity, exerting antiarrhythmic effects, and improving triglyceride levels, in the general population and patients with CKD. Modifications of erythrocyte membrane fatty acid content, including an increased ω-3 index and decreased oleic acid, after ω-3 PUFAs supplementation are important changes related to CVD risk reduction in the general population and patients with CKD. Further basic and clinical studies are essential to confirm the effects of ω-3 PUFAs on vitamin D activation, vascular calcification prevention, cardiovascular events, and mortality in CKD patients. PMID:23653897

  11. Low-grade chronic inflammation perpetuated by modern diet as a promoter of obesity and osteoporosis.

    PubMed

    Ilich, Jasminka Z; Kelly, Owen J; Kim, Youjin; Spicer, Maria T

    2014-06-01

    Some of the universal characteristics of pre-agricultural hominin diets are strikingly different from the modern human diet. Hominin dietary choices were limited to wild plant and wild animal foods, while the modern diet includes more than 70 % of energy consumed from refined sugars, refined vegetable oils, and highly processed cereals and dairy products. The modern diet, with higher intake of fat has also resulted in a higher ratio of omega-6 (n-6) to omega-3 (n-3) polyunsaturated fatty acids (PUFA), contributing to low-grade chronic inflammation (LGCI) and thus promoting the development of many chronic diseases, including obesity and osteoporosis. In this review, we describe the changes in modern diet, focusing on the kind and amount of consumed fat; explain the shortcomings of the modern diet with regard to inflammatory processes; and delineate the reciprocity between adiposity and inflammatory processes, with inflammation being a common link between obesity and osteoporosis. We present the evidence that overconsumption of n-6 PUFA coupled with under-consumption of n-3 PUFA results in LGCI and, along with the increased presence of reactive oxygen species, leads to a shift in mesenchymal stem cells (precursors for both osteoblasts and adipocytes) lineage commitment toward increased adipogenesis and suppressed osteoblastogenesis. In turn, high n-6 to n-3 PUFA ratios in the modern diet, coupled with increased synthesis of pro-inflammatory cytokines due to adiposity, propagate obesity and osteoporosis by increasing or maintaining LGCI.

  12. The effect of n-3 PUFAs on circulating adiponectin and leptin in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Farimani, Azam Rezaei; Hariri, Mitra; Azimi-Nezhad, Mohsen; Borji, Abasalt; Zarei, Sadegh; Hooshmand, Elham

    2018-02-16

    N-3 PUFAs can potentially influence levels of inflammatory and non-inflammatory adipokines. Given the contradictory effects of n-3 PUFAs on serum levels of adipokines in type 2 diabetes, we conducted a systematic review and meta-analysis study of randomized placebo-controlled clinical trials that examined the effects of n-3 PUFAs on serum levels of leptin and adiponectin in patients with type 2 diabetes. The electronic databases, without regard to language restrictions including PubMed/Medline, Google Scholar, SCOPUS and ISI Web of Science until August 2017, were used to identify randomized controlled trials that assessed the effect of n-3 PUFAs on serum leptin and adiponectin concentrations in type 2 diabetes. Outcomes were extracted based on the mean ± SD as effect size at baseline and end of the intervention. Between-study heterogeneity was evaluated by the I 2 estimates and their 95% CIs. Funnel plot asymmetry was used to investigate the existence of publication bias. Stata software and Review Manager were used for statistical data analysis. Data from 10 eligible articles involved 494 subjects with type 2 diabetes mellitus (intervention groups = 254 and control groups = 240), with age between 44 and 70 years, treated with doses of 0.52-7.4 g/day n-3 PUFAs. Adiponectin concentration nonsignificantly increased by a MD = 0.17 µg/mL (95% CI - 0.11, 0.44). Also, leptin concentration nonsignificantly reduced by a MD = - 0.31 ng/mL (95% CI - 0.69, 0.07). Plant and marine sources of n-3 PUFAs can modify serum leptin and adiponectin levels by increasing adiponectin and decreasing leptin levels in patients with type 2 diabetes. Due to some limitations in this study, further studies are needed to reach a definitive conclusion about the effect of n-3 PUFAs on the levels of leptin and adiponectin in T2DM.

  13. Microencapsulated krill and tuna oil blend raises plasma long-chain n-3 polyunsaturated fatty acid levels compared to tuna oil with similar increases in ileal contractility in rats.

    PubMed

    Patten, Glen S; Sanguansri, Luz; Augustin, Mary Ann; Abeywardena, Mahinda Y; Bird, Anthony R; Patch, Craig S; Belobrajdic, Damien P

    2017-03-01

    Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) may be more bioavailable from krill oil compared to fish oil due to their phospholipid structure. We tested whether a microencapsulated krill and tuna oil blend (ME-TOKO) provided greater LC n-3 PUFA bioavailability, improved blood lipid profiles and increased intestinal contractility compared to microencapsulated tuna oil (ME-TO). Rats were divided into three groups to receive isocaloric diets containing ME-TO, ME-TOKO and microencapsulated olive oil (ME-OO) at 0.3 or 2 g/100 g for 4 weeks. Final body and organ weights, feed intake and waste output were similar. ME-TOKO rats had higher plasma total LC n-3 PUFA levels compared to ME-TO, but liver LC n-3 PUFA levels and plasma triglyceride and cholesterol levels were similar in non-fasted rats. Diets containing 2% ME-TO and ME-TOKO also showed similar increases in ileal contractility. In summary, ME-TO bioavailability of LC n-3 PUFA was similar to ME-TOKO.

  14. Influence of high-fat diet from differential dietary sources on bone mineral density, bone strength, and bone fatty acid composition in rats.

    PubMed

    Lau, Beatrice Y; Fajardo, Val Andrew; McMeekin, Lauren; Sacco, Sandra M; Ward, Wendy E; Roy, Brian D; Peters, Sandra J; Leblanc, Paul J

    2010-10-01

    Previous studies have suggested that high-fat diets adversely affect bone development. However, these studies included other dietary manipulations, including low calcium, folic acid, and fibre, and (or) high sucrose or cholesterol, and did not directly compare several common sources of dietary fat. Thus, the overall objective of this study was to investigate the effect of high-fat diets that differ in fat quality, representing diets high in saturated fatty acids (SFA), n-3 polyunsaturated fatty acids (PUFA), or n-6 PUFA, on femur bone mineral density (BMD), strength, and fatty acid composition. Forty-day-old male Sprague-Dawley rats were maintained for 65 days on high-fat diets (20% by weight), containing coconut oil (SFA; n = 10), flaxseed oil (n-3 PUFA; n = 10), or safflower oil (n-6 PUFA; n = 11). Chow-fed rats (n = 10), at 105 days of age, were included to represent animals on a control diet. Rats fed high-fat diets had higher body weights than the chow-fed rats (p < 0.001). Among all high-fat groups, there were no differences in femur BMD (p > 0.05) or biomechanical strength properties (p > 0.05). Femurs of groups fed either the high n-3 or high n-6 PUFA diets were stronger (as measured by peak load) than those of the chow-fed group, after adjustment for significant differences in body weight (p = 0.001). As expected, the femur fatty acid profile reflected the fatty acid composition of the diet consumed. These results suggest that high-fat diets, containing high levels of PUFA in the form of flaxseed or safflower oil, have a positive effect on bone strength when fed to male rats 6 to 15 weeks of age.

  15. Chemistry and biology of ω-3 PUFA peroxidation-derived compounds.

    PubMed

    Wang, Weicang; Yang, Haixia; Johnson, David; Gensler, Catherine; Decker, Eric; Zhang, Guodong

    2017-09-01

    The ω-3 polyunsaturated fatty acids (PUFAs) are among the most popular dietary supplements in the US, but they are chemically unstable and highly prone to lipid peroxidation. Many studies performed in different countries demonstrate that the majority of ω-3 PUFA products on the market are oxidized, suggesting that the resulting ω-3 PUFA peroxidation-derived compounds could be widely consumed by the general public. Therefore, it is of practical importance to understand the effects of these oxidized lipid compounds on human health. In this review, we summarize and discuss the chemical structures and biological activities of ω-3 PUFA peroxidation-derived compounds, and emphasize the importance to better understand the role of lipid peroxidation in biological activities of ω-3 PUFAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Effect of dietary n - 3 polyunsaturated fatty acids on oxidant/antioxidant status in macrosomic offspring of diabetic rats.

    PubMed

    Guermouche, B; Soulimane-Mokhtari, N A; Bouanane, S; Merzouk, H; Merzouk, S; Narce, M

    2014-01-01

    The aim of this work was to determine the effect of dietary n - 3 PUFA on oxidant/antioxidant status, in vitro very low and low density lipoprotein (VLDL-LDL), and VLDL-LDL-fatty acid composition in macrosomic pups of diabetic mothers. We hypothesized that n - 3 PUFA would improve oxidative stress in macrosomia. Diabetes was induced in female Wistar rats fed with the ISIO diet (control) or with the EPAX diet (enriched in n - 3 PUFAs), by streptozotocin. The macrosomic pups were killed at birth (day 0) and at adulthood (day 90). Lipid parameters and VLDL-LDL-fatty acid composition were investigated. The oxidant/antioxidant status was determined by measuring plasma oxygen radical absorbance capacity (ORAC), hydroperoxides, carbonyl proteins, and VLDL-LDL oxidation. Macrosomic rats of ISIO fed diabetic mothers showed an increase in plasma and VLDL-LDL-triglycerides and VLDL-LDL-cholesterol levels and altered VLDL-LDL-fatty acid composition. Plasma ORAC was low with high hydroperoxide and carbonyl protein levels. The in vitro oxidizability of VLDL-LDL was enhanced in these macrosomic rats. The EPAX diet corrected lipid parameters and improved oxidant/antioxidant status but increased VLDL-LDL susceptibility to oxidation. Macrosomia is associated with lipid abnormalities and oxidative stress. n - 3 PUFA exerts favorable effects on lipid metabolism and on the oxidant/antioxidant status of macrosomic rats. However, there are no evident effects on VLDL-LDL oxidation.

  17. Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice

    PubMed Central

    Merkel, Martin; Velez-Carrasco, Wanda; Hudgins, Lisa C.; Breslow, Jan L.

    2001-01-01

    Heart-healthy dietary recommendations include decreasing the intake of saturated fatty acids (SFA). However, the relative benefit of replacing SFA with monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), or carbohydrates (CARB) is still being debated. We have used two mouse models of atherosclerosis, low density lipoprotein receptor-deficient (LDLRKO) and apolipoprotein E-deficient (apoEKO) mice to measure the effects of four isocaloric diets enriched with either SFA, MUFA, PUFA, or CARB on atherosclerotic lesion area and lipoprotein levels. In LDLRKO mice, compared with the SFA diet, the MUFA and CARB diets significantly increased atherosclerosis in both sexes, but the PUFA diet had no effect. The MUFA and CARB diets also increased very low density lipoprotein-cholesterol (VLDL-C) and LDL-cholesterol (LDL-C) in males and VLDL-C levels in females. Analysis of data from LDLRKO mice on all diets showed that atherosclerotic lesion area correlated positively with VLDL-C levels (males: r = 0.47, P < 0.005; females: r = 0.52, P < 0.001). In contrast, in apoEKO mice there were no significant dietary effects on atherosclerosis in either sex. Compared with the SFA diet, the CARB diet significantly decreased VLDL-C in males and the MUFA, PUFA, and CARB diets decreased VLDL-C and the CARB diet decreased LDL-C in females. In summary, in LDLRKO mice the replacement of dietary SFA by either MUFA or CARB causes a proportionate increase in both atherosclerotic lesion area and VLDL-C. There were no significant dietary effects on atherosclerotic lesion area in apoEKO mice. These results are surprising and suggest that, depending on the underlying genotype, dietary MUFA and CARB can actually increase atherosclerosis susceptibility, probably by raising VLDL-C levels through a non-LDL receptor, apoE-dependent pathway. PMID:11606787

  18. Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice.

    PubMed

    Merkel, M; Velez-Carrasco, W; Hudgins, L C; Breslow, J L

    2001-11-06

    Heart-healthy dietary recommendations include decreasing the intake of saturated fatty acids (SFA). However, the relative benefit of replacing SFA with monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), or carbohydrates (CARB) is still being debated. We have used two mouse models of atherosclerosis, low density lipoprotein receptor-deficient (LDLRKO) and apolipoprotein E-deficient (apoEKO) mice to measure the effects of four isocaloric diets enriched with either SFA, MUFA, PUFA, or CARB on atherosclerotic lesion area and lipoprotein levels. In LDLRKO mice, compared with the SFA diet, the MUFA and CARB diets significantly increased atherosclerosis in both sexes, but the PUFA diet had no effect. The MUFA and CARB diets also increased very low density lipoprotein-cholesterol (VLDL-C) and LDL-cholesterol (LDL-C) in males and VLDL-C levels in females. Analysis of data from LDLRKO mice on all diets showed that atherosclerotic lesion area correlated positively with VLDL-C levels (males: r = 0.47, P < 0.005; females: r = 0.52, P < 0.001). In contrast, in apoEKO mice there were no significant dietary effects on atherosclerosis in either sex. Compared with the SFA diet, the CARB diet significantly decreased VLDL-C in males and the MUFA, PUFA, and CARB diets decreased VLDL-C and the CARB diet decreased LDL-C in females. In summary, in LDLRKO mice the replacement of dietary SFA by either MUFA or CARB causes a proportionate increase in both atherosclerotic lesion area and VLDL-C. There were no significant dietary effects on atherosclerotic lesion area in apoEKO mice. These results are surprising and suggest that, depending on the underlying genotype, dietary MUFA and CARB can actually increase atherosclerosis susceptibility, probably by raising VLDL-C levels through a non-LDL receptor, apoE-dependent pathway.

  19. Mind-body interface: the role of n-3 fatty acids in psychoneuroimmunology, somatic presentation, and medical illness comorbidity of depression.

    PubMed

    Su, Kuan-Pin

    2008-01-01

    With the unsatisfaction of monoamine-based pharmacotherapy and the high comorbidity of other medical illness in depression, the serotonin hypothesis seems to fail in approaching the aetiology of depression. Based upon the evidence from epidemiological data, case-control studies of phospholipid polyunsaturated fatty acids (PUFAs) levels in human tissues, and antidepressant effect in clinical trials, PUFAs have shed a light to discover the unsolved of depression and connect the mind and body. Briefly, the deficit of n-3 PUFAs has been reported to be associated with neurological, cardiovascular, cerebrovascular, autoimmune, metabolic diseases and cancers. Recent studies revealed that the deficit of n-3 PUFAs is also associated with depression. For example, societies that consume a small amount of omega-3 PUFAs appear to have a higher prevalence of major depressive disorder. In addition, depressive patients had showed a lower level of omega-3 PUFAs; and the antidepressant effect of PUFAs had been reported in a number of clinical trials. The PUFAs are classified into n-3 (or omega-3) and n-6 (or omega-6) groups. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the major bioactive components of n-3 PUFAs, are not synthesized in human body and can only be obtained directly from the diet, particularly by consuming fish. DHA deficit is associated with dysfunctions of neuronal membrane stability and transmission of serotonin, norepinephrine and dopamine, which might connect to the aetiology of mood and cognitive dysfunction of depression. On the other hand, EPA is important in balancing the immune function and physical healthy by reducing arachidonic acid (AA, an n-6 PUFA) level on cell membrane and prostaglandin E2 (PGE2) synthesis. Interestingly, animals fed with high AA diet or treated with PGE2 were observed to present sickness behaviours of anorexia, low activity, change in sleep pattern and attention, which are similar to somatic symptoms of depression in

  20. Dietary omega-3 polyunsaturated fatty acids improve the neurolipidome and restore the DHA status while promoting functional recovery after experimental spinal cord injury.

    PubMed

    Figueroa, Johnny D; Cordero, Kathia; Llán, Miguel S; De Leon, Marino

    2013-05-15

    Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) confer multiple health benefits and decrease the risk of neurological disorders. Studies are needed, however, to identify promising cellular targets and to assess their prophylactic value against neurodegeneration. The present study (1) examined the efficacy of a preventive diet enriched with ω-3 PUFAs to reduce dysfunction in a well-established spinal cord injury (SCI) animal model and (2) used a novel metabolomics data analysis to identify potential neurolipidomic targets. Rats were fed with either control chow or chow enriched with ω-3 PUFAs (750 mg/kg/day) for 8 weeks before being subjected to a sham or a contusion SCI operation. We report new evidence showing that rats subjected to SCI after being pre-treated with a diet enriched with ω-3 PUFAs exhibit significantly better functional outcomes. Pre-treated animals exhibited lower sensory deficits, autonomic bladder recovery, and early improvements in locomotion that persisted for at least 8 weeks after trauma. We found that SCI triggers a robust alteration in the cord PUFA neurolipidome, which was characterized by a marked docosahexaenoic acid (DHA) deficiency. This DHA deficiency was associated with dysfunction and corrected with the ω-3 PUFA-enriched diet. Multivariate data analyses revealed that the spinal cord of animals consuming the ω-3 PUFA-enriched diet had a fundamentally distinct neurolipidome, particularly increasing the levels of essential and long chain ω-3 fatty acids and lysolipids at the expense of ω-6 fatty acids and its metabolites. Altogether, dietary ω-3 PUFAs prophylaxis confers resiliency to SCI mediated, at least in part, by generating a neuroprotective and restorative neurolipidome.

  1. Dietary Omega-3 Polyunsaturated Fatty Acids Improve the Neurolipidome and Restore the DHA Status while Promoting Functional Recovery after Experimental Spinal Cord Injury

    PubMed Central

    Figueroa, Johnny D.; Cordero, Kathia; llán, Miguel S.

    2013-01-01

    Abstract Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) confer multiple health benefits and decrease the risk of neurological disorders. Studies are needed, however, to identify promising cellular targets and to assess their prophylactic value against neurodegeneration. The present study (1) examined the efficacy of a preventive diet enriched with ω-3 PUFAs to reduce dysfunction in a well-established spinal cord injury (SCI) animal model and (2) used a novel metabolomics data analysis to identify potential neurolipidomic targets. Rats were fed with either control chow or chow enriched with ω-3 PUFAs (750 mg/kg/day) for 8 weeks before being subjected to a sham or a contusion SCI operation. We report new evidence showing that rats subjected to SCI after being pre-treated with a diet enriched with ω-3 PUFAs exhibit significantly better functional outcomes. Pre-treated animals exhibited lower sensory deficits, autonomic bladder recovery, and early improvements in locomotion that persisted for at least 8 weeks after trauma. We found that SCI triggers a robust alteration in the cord PUFA neurolipidome, which was characterized by a marked docosahexaenoic acid (DHA) deficiency. This DHA deficiency was associated with dysfunction and corrected with the ω-3 PUFA-enriched diet. Multivariate data analyses revealed that the spinal cord of animals consuming the ω-3 PUFA-enriched diet had a fundamentally distinct neurolipidome, particularly increasing the levels of essential and long chain ω-3 fatty acids and lysolipids at the expense of ω-6 fatty acids and its metabolites. Altogether, dietary ω-3 PUFAs prophylaxis confers resiliency to SCI mediated, at least in part, by generating a neuroprotective and restorative neurolipidome. PMID:23294084

  2. Transgenic expression of omega-3 PUFA synthesis genes improves zebrafish survival during Vibrio vulnificus infection.

    PubMed

    Cheng, Chih-Lun; Huang, Shin-Jie; Wu, Chih-Lu; Gong, Hong-Yi; Ken, Chuian-Fu; Hu, Shao-Yang; Wu, Jen-Leih

    2015-11-17

    Highly desaturated n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are synthesized by desaturases and elongase. They exert hepatoprotective effects to prevent alcoholic fatty liver syndrome or cholestatic liver injury. However, it is unclear how n-3 PUFAs improve immune function in liver. Vibrio vulnificus, a gram-negative bacterial pathogen, causes high mortality of aquaculture fishes upon infection. Humans can become infected with V. vulnificus through open wounds or by eating raw seafood, and such infections may result in systemic septicemia. Moreover, patients with liver diseases are vulnerable to infection, and are more likely than healthy persons to present with liver inflammation following infection. This study quantified n-3 PUFAs and their anti-bacterial effects in Fadsd6 and Elvol5a transgenic zebrafish. Two transgenic zebrafish strains with strong liver specific expression of Fadsd6 and Elvol5a (driven by the zebrafish Fabp10 promoter) were established using the Tol2 system. Synthesis of n-3 PUFAs in these strains were increased by 2.5-fold as compared to wild type (Wt) fish. The survival rate in 24 h following challenge with V. vulnificus was 20 % in Wt, but 70 % in the transgenic strains. In addition, the bacteria counts in transgenic fish strains were significantly decreased. The expression levels of pro-inflammatory genes, such as TNF-α, IL-1β, and NF-κB, were suppressed between 9 and 12 h after challenge. This study confirms the anti-bacterial function of n-3 PUFAs in a transgenic zebrafish model. Fadsd6 and Elvol5a transgenic zebrafish are more resistant to V. vulnificus infection, and enhance survival by diminishing the attendant inflammatory response.

  3. Dietary Omega-3 Fatty Acids Prevented Adipocyte Hypertrophy by Downregulating DGAT-2 and FABP-4 in a Sex-Dependent Fashion.

    PubMed

    Balogun, Kayode A; Cheema, Sukhinder K

    2016-01-01

    Obesity is characterized by an increase in fat mass primarily as a result of adipocyte hypertrophy. Diets enriched in omega (n)-3 polyunsaturated fatty acids (PUFA) are suggested to reduce obesity, however, the mechanisms are not well understood. We investigated the effect of n-3 PUFA on adipocyte hypertrophy and the key genes involved in adipocyte hypertrophy. Female C57BL/6 mice were fed semi-purified diets (20 % w/w fat) containing high n-3 PUFA before mating, during pregnancy, and until weaning. Male and female offspring were continued on high n-3 PUFA (10 % w/w), medium n-3 PUFA (4 % w/w), or low n-3 PUFA (2 % w/w) diet for 16 weeks postweaning. Adipocyte area was quantified using microscopy, and gonadal mRNA expression of acyl CoA:diacylglycerol acyltransferase-2 (DGAT-2), fatty acid binding protein-4 (FABP-4) and leptin were measured. The high n-3 PUFA group showed higher levels of total n-3 PUFA in gonadal TAG compared to the medium and low n-3 PUFA groups (P < 0.001). The high n-3 PUFA male group had a lower adipocyte area compared to the medium and low n-3 PUFA group (P < 0.001); however, no difference was observed in females. The high n-3 PUFA male group showed lower mRNA expression of FABP-4, DGAT-2 and leptin compared to the low n-3 PUFA group, with no difference in females. Plasma lipid levels were lower in the high n-3 PUFA group compared to the other groups. Our findings show for the first time that n-3 PUFA prevents adipocyte hypertrophy by downregulating FABP-4, DGAT-2 and leptin; the effects are however sex-specific.

  4. Stability of omega-3 LC-PUFA-rich photoautotrophic microalgal oils compared to commercially available omega-3 LC-PUFA oils.

    PubMed

    Ryckebosch, Eline; Bruneel, Charlotte; Termote-Verhalle, Romina; Lemahieu, Charlotte; Muylaert, Koenraad; Van Durme, Jim; Goiris, Koen; Foubert, Imogen

    2013-10-23

    Microalgae are the primary producers of omega-3 LC-PUFA, which are known for their health benefits. Their oil may thus be a potential alternative for fish oil. However, oxidative and hydrolytic stability of omega-3 LC-PUFA oils are important parameters. The purpose of this work was therefore to evaluate these parameters in oils from photoautotrophic microalgae (Isochrysis, Phaeodactylum, Nannochloropsis gaditana, and Nannochloropsis sp.) obtained with hexane/isopropanol (HI) and hexane (H) and compare them with commercial omega-3 LC-PUFA oils. When the results of both the primary and secondary oxidation parameters were put together, it was clear that fish, tuna, and heterotrophic microalgae oil are the least oxidatively stable oils, whereas krill oil and the microalgae oils performed better. The microalgal HI oils were shown to be more oxidatively stable than the microalgal H oils. The hydrolytic stability was shown not to be a problem during the storage of any of the oils.

  5. Effect of the vegetarian diet on non-communicable diseases.

    PubMed

    Li, Duo

    2014-01-30

    A vegetarian diet generally includes plenty of vegetables and fruits, which are rich in phytochemicals, antioxidants, fiber, magnesium, vitamins C and E, Fe³⁺, folic acid and n-6 polyunsaturated fatty acid (PUFA), and is low in cholesterol, total fat and saturated fatty acid, sodium, Fe²⁺, zinc, vitamin A, B₁₂ and D, and especially n-3 PUFA. Mortality from all-cause, ischemic heart disease, and circulatory and cerebrovascular diseases was significantly lower in vegetarians than in omnivorous populations. Compared with omnivores, the incidence of cancer and type 2 diabetes was also significantly lower in vegetarians. However, vegetarians have a number of increased risk factors for non-communicable diseases such as increased plasma homocysteine, mean platelet volume and platelet aggregability compared with omnivores, which are associated with low intake of vitamin B₁₂ and n-3 PUFA. Based on the present data, it would seem appropriate for vegetarians to carefully design their diet, specifically focusing on increasing their intake of vitamin B₁₂ and n-3 PUFA to further reduce already low mortality and morbidity from non-communicable diseases. © 2013 Society of Chemical Industry.

  6. Effects of dietary polyunsaturated fatty acids and nucleotides on tissue fatty acid profiles of rats with carbon tetrachloride-induced liver damage.

    PubMed

    Fontana, L; Moreira, E; Torres, M I; Periago, J L; Sánchez de Medina, F; Gil, A

    1999-04-01

    The deficiency of polyunsaturated fatty acids (PUFA) that occurs in plasma of patients with liver cirrhosis has been assessed in rats with severe steatosis and mild liver necrosis induced by repeated administration of low doses of carbon tetrachloride (CCl(4)). The contribution of both dietary (n-3) long-chain PUFA and nucleotides to the recovery of the altered fatty acid profiles of tissue lipids of these rats has also been studied. Two groups of rats were used. The first was intraperitoneally injected 0.15 ml of a 10% (v/v) CCl(4)solution in paraffin per 100 g of body weight, three times a week for 9 weeks; the second received paraffin alone. After the treatment, six rats of each group were killed. Afterwards, the remaining controls were fed a semipurified diet (SPD) for 3 weeks, and the remaining rats in the CCl(4)group were divided into three new groups: the first was fed the SP diet; the second was fed the SP diet supplemented with 1% (n-3) polyunsaturated fatty acids (PUFA diet); and the third was fed the SP diet supplemented with 250 mg nucleotides per 100 g diet (NT diet). Fatty acids of plasma, erythrocyte membranes and liver microsomes were analyzed. Decreases in linoleic and arachidonic acids in both total plasma lipids and liver microsomal phospholipids were the main findings due to CCl(4)treatment. The rats that received CCl(4)and the PUFA diet showed the lowest levels of (n-6) PUFA and the highest levels of (n-3) PUFA in liver microsomal phospholipids, as well as a significant increase of (n-3) PUFAs in total plasma lipids. The animals that received the NT diet showed no signs of fatty infiltration and exhibited the highest levels of (n-6) PUFAs in liver microsomal phospholipids. These results show that CCl(4)affects fatty acid metabolism which is accordingly reflected in altered tissue fatty acid profiles, and that balanced diets containing PUFA and nucleotides are important for the recovery of the damaged liver in rats. Copyright 1999 Harcourt

  7. Requirements of n-3 very long-chain PUFA in Atlantic salmon (Salmo salar L): effects of different dietary levels of EPA and DHA on fish performance and tissue composition and integrity.

    PubMed

    Bou, Marta; Berge, Gerd M; Baeverfjord, Grete; Sigholt, Trygve; Østbye, Tone-Kari; Romarheim, Odd Helge; Hatlen, Bjarne; Leeuwis, Robin; Venegas, Claudia; Ruyter, Bente

    2017-01-01

    Farmed salmon feeds have changed from purely marine-based diets with high levels of EPA and DHA in the 1990s to the current 70 % plant-based diets with low levels of these fatty acids (FA). The aim of this study was to establish the impacts of low dietary EPA and DHA levels on performance and tissue integrity of Atlantic salmon (Salmo salar). Atlantic salmon (50 g) in seawater were fed fourteen experimental diets, containing five levels (0, 0·5, 1·0, 1·5 and 2·0 %) of EPA, DHA or a 1:1 EPA+DHA plus control close to a commercial diet, to a final weight of 400 g. Lack of EPA and DHA did not influence mortality, but the n-3-deficient group exhibited moderately slower growth than those fed levels above 0·5 %. The heart and brain conserved EPA and DHA levels better than skeletal muscle, liver, skin and intestine. Decreased EPA and DHA favoured deposition of pro-inflammatory 20 : 4n-6 and 20 : 3n-6 FA in membrane phospholipids in all tissues. When DHA was excluded from diets, 18 : 3n-3 and EPA were to a large extent converted to DHA. Liver, skeletal and cardiac muscle morphology was normal in all groups, with the exception of cytoplasm packed with large or foamy vacuoles and sometimes swollen enterocytes of intestine in both deficient and EPA groups. DHA supplementation supported normal intestinal structure, and 2·0 % EPA+DHA alleviated deficiency symptoms. Thus, EPA and DHA dietary requirements cannot be based exclusively on growth; tissue integrity and fish health also need to be considered.

  8. Cardiac catecholamines in rats fed copper deficient or copper adequate diets containing fructose or starch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholfield, D.J.; Fields, M.; Beal, T.

    1989-02-09

    The symptoms of copper (Cu) deficiency are known to be more severe when rats are fed a diet with fructose (F) as the principal carbohydrate. Mortality, in males, due to cardiac abnormalities usually occurs after five weeks of a 62% F, 0.6 ppm Cu deficient diet. These effects are not observed if cornstarch (CS) is the carbohydrate (CHO) source. Studies with F containing diets have shown increased catecholamine (C) turnover rates while diets deficient in Cu result in decreased norepinephrine (N) levels in tissues. Dopamine B-hydroxylase (EC 1.14.17.1) is a Cu dependent enzyme which catalyzes the conversion of dopamine (D)more » to N. An experiment was designed to investigate the effects of CHO and dietary Cu on levels of three C in cardiac tissue. Thirty-two male and female Sprague-Dawley rats were fed Cu deficient or adequate diets with 60% of calories from F or CS for 6 weeks. N, epinephrine (E) and D were measured by HPLC. Statistical analysis indicates that Cu deficiency tends to decrease N levels, while having the reverse effect on E. D did not appear to change. These findings indicate that Cu deficiency but not dietary CHO can affect the concentration of N and E in rat cardiac tissue.« less

  9. Omega-3 polyunsaturated fatty acids preserve retinal function in type 2 diabetic mice.

    PubMed

    Sapieha, P; Chen, J; Stahl, A; Seaward, M R; Favazza, T L; Juan, A M; Hatton, C J; Joyal, J-S; Krah, N M; Dennison, R J; Tang, J; Kern, T S; Akula, J D; Smith, L E H

    2012-07-23

    Diabetic retinopathy (DR) is associated with hyperglycemia-driven microvascular pathology and neuronal compromise in the retina. However, DR is also linked to dyslipidemia. As omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are protective in proliferative retinopathy, we investigated the capacity of ω-3PUFAs to preserve retinal function in a mouse model of type 2 diabetes mellitus (T2DM). Male leptin-receptor-deficient (db/db) mice were maintained for 22 weeks (4 weeks-26 weeks of life) on calorically and compositionally matched diets, except for 2% enrichment in either ω-3 or ω-6PUFAs. Visual function was assessed at 9, 14 and 26 weeks by electroretinography. Retinal capillary and neuronal integrity, as well as glucose challenge responses, were assessed on each diet. The ω-3PUFA diet significantly preserved retinal function in the mouse model of T2DM to levels similar to those observed in nondiabetic control mice on normal chow. Conversely, retinal function gradually deteriorated in db/db mice on a ω-6PUFA-rich diet. There was also an enhanced ability of ω-3PUFA-fed mice to respond to glucose challenge. The protection of visual function appeared to be independent of cytoprotective or anti-inflammatory effects of ω-3PUFAs. This study identifies beneficial effects of dietary ω-3PUFAs on visual function in T2DM. The data are consistent with dyslipidemia negatively impacting retinal function. As ω-3PUFA lipid dietary interventions are readily available, safe and inexpensive, increasing ω-3PUFA intake in diabetic patients may slow the progression of vision loss in T2DM.

  10. Omega-3 polyunsaturated fatty acids preserve retinal function in type 2 diabetic mice

    PubMed Central

    Sapieha, P; Chen, J; Stahl, A; Seaward, M R; Favazza, T L; Juan, A M; Hatton, C J; Joyal, J-S; Krah, N M; Dennison, R J; Tang, J; Kern, T S; Akula, J D; Smith, L E H

    2012-01-01

    Objective: Diabetic retinopathy (DR) is associated with hyperglycemia-driven microvascular pathology and neuronal compromise in the retina. However, DR is also linked to dyslipidemia. As omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are protective in proliferative retinopathy, we investigated the capacity of ω-3PUFAs to preserve retinal function in a mouse model of type 2 diabetes mellitus (T2DM). Design: Male leptin-receptor-deficient (db/db) mice were maintained for 22 weeks (4 weeks–26 weeks of life) on calorically and compositionally matched diets, except for 2% enrichment in either ω-3 or ω-6PUFAs. Visual function was assessed at 9, 14 and 26 weeks by electroretinography. Retinal capillary and neuronal integrity, as well as glucose challenge responses, were assessed on each diet. Results: The ω-3PUFA diet significantly preserved retinal function in the mouse model of T2DM to levels similar to those observed in nondiabetic control mice on normal chow. Conversely, retinal function gradually deteriorated in db/db mice on a ω-6PUFA-rich diet. There was also an enhanced ability of ω-3PUFA-fed mice to respond to glucose challenge. The protection of visual function appeared to be independent of cytoprotective or anti-inflammatory effects of ω-3PUFAs. Conclusion: This study identifies beneficial effects of dietary ω-3PUFAs on visual function in T2DM. The data are consistent with dyslipidemia negatively impacting retinal function. As ω-3PUFA lipid dietary interventions are readily available, safe and inexpensive, increasing ω-3PUFA intake in diabetic patients may slow the progression of vision loss in T2DM. PMID:23448719

  11. Dietary PUFA and flavonoids as deterrents for environmental pollutants.

    PubMed

    Watkins, Bruce A; Hannon, Kevin; Ferruzzi, Mario; Li, Yong

    2007-03-01

    Various nutrients and plant-derived phytochemicals are associated with a reduced risk of many diet-related chronic diseases including cardiovascular disease, cancer, diabetes, arthritis and osteoporosis. A common theme that links many chronic diseases is uncontrolled inflammation. The long-chain (LC) omega-3 polyunsaturated fatty acids (PUFA) and flavonoids are known to possess anti-inflammatory actions in cell cultures, animal models and humans. Minimizing the condition of persistent inflammation has been a primary aim for drug development, but understanding how food components attenuate this process is at the nexus for improving the human condition. The prevalence of environmental toxins such as heavy metals and organics that contribute to diminished levels of antioxidants likely aggravates inflammatory states when intakes of omega-3 PUFA and flavonoids are marginal. Scientists at Purdue University have formed a collaboration to better understand the metabolism and physiology of flavonoids. This new effort is focused on determining how candidate flavonoids and their metabolites affect gene targets of inflammation in cell culture and animal models. The challenge of this research is to understand how LC omega-3 PUFA and flavonoids affect the biology of inflammation. The goal is to determine how nutrients and phytochemicals attenuate chronic inflammation associated with a number of diet-related diseases that occur throughout the life cycle. The experimental approach involves molecular, biochemical and physiological endpoints of aging, cancer, obesity and musculoskeletal diseases. Examples include investigations on the combined effects of PUFA and cyanidins on inflammatory markers in cultures of human cancer cells. The actions of catechins and PUFA on muscle loss and osteopenia are being studied in a rodent model of disuse atrophy to explain how muscle and bone communicate to prevent tissue loss associated with injury, disease and aging. The purpose of this review is

  12. A diet enriched with Mugil cephalus processed roes modulates the tissue lipid profile in healthy rats: a biochemical and chemometric assessment.

    PubMed

    Rosa, A; Atzeri, A; Putzu, D; Scano, P

    2016-01-01

    The effect of a diet enriched with mullet bottarga on the lipid profile (total lipids, total cholesterol, unsaturated fatty acids, α-tocopherol, and hydroperoxides) of plasma, liver, kidney, brain, and perirenal adipose tissues of healthy rats was investigated. Rats fed a 10% bottarga enriched-diet for 5 days showed body weights and tissue total lipid and cholesterol levels similar to those of animals fed control diet. Univariate and multivariate results showed that bottarga enriched-diet modified the fatty acid profile in all tissues, except brain. Significant increases of n-3 PUFA, particularly EPA, were observed together with a 20:4 n-6 decrease in plasma, liver, and kidney. Perirenal adipose tissue showed a fat accumulation that reflected the diet composition. The overall data suggest that mullet bottarga may be considered as a natural bioavailable source of n-3 PUFA and qualify it as a traditional food product with functional properties and a potential functional ingredient for preparation of n-3 PUFA enriched foods.

  13. A fish-based diet intervention improves endothelial function in postmenopausal women with type 2 diabetes mellitus: a randomized crossover trial.

    PubMed

    Kondo, Keiko; Morino, Katsutaro; Nishio, Yoshihiko; Kondo, Motoyuki; Nakao, Keiko; Nakagawa, Fumiyuki; Ishikado, Atsushi; Sekine, Osamu; Yoshizaki, Takeshi; Kashiwagi, Atsunori; Ugi, Satoshi; Maegawa, Hiroshi

    2014-07-01

    The beneficial effects of fish and n-3 polyunsaturated fatty acids (PUFAs) consumption on atherosclerosis have been reported in numerous epidemiological studies. However, to the best of our knowledge, the effects of a fish-based diet intervention on endothelial function have not been investigated. Therefore, we studied these effects in postmenopausal women with type 2 diabetes mellitus (T2DM). Twenty-three postmenopausal women with T2DM were assigned to two four-week periods of either a fish-based diet (n-3 PUFAs3.0 g/day) or a control diet in a randomized crossover design. Endothelial function was measured with reactive hyperemia using strain-gauge plethysmography and compared with the serum levels of fatty acids and their metabolites. Endothelial function was determined with peak forearm blood flow (Peak), duration of reactive hyperemia (Duration) and flow debt repayment (FDR). A fish-based dietary intervention improved Peak by 63.7%, Duration by 27.9% and FDR by 70.7%, compared to the control diet. Serum n-3 PUFA levels increased after the fish-based diet period and decreased after the control diet, compared with the baseline (1.49 vs. 0.97 vs. 1.19 mmol/l, p < 0.0001). There was no correlation between serum n-3 PUFA levels and endothelial function. An increased ratio of epoxyeicosatrienoic acid/dihydroxyeicosatrienoic acid was observed after a fish-based diet intervention, possibly due to the inhibition of the activity of soluble epoxide hydrolase. A fish-based dietary intervention improves endothelial function in postmenopausal women with T2DM. Dissociation between the serum n-3 PUFA concentration and endothelial function suggests that the other factors may contribute to this phenomenon. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Dietary protein deficiency affects n-3 and n-6 polyunsaturated fatty acids hepatic storage and very low density lipoprotein transport in rats on different diets.

    PubMed

    Bouziane, M; Prost, J; Belleville, J

    1994-04-01

    Fatty livers and the similarity between the skin lesions in kwashiorkor and those described in experimental essential fatty acid (EFA) deficiency have led to the hypothesis that protein and EFA deficiencies may both occur in chronic malnutrition. The relationship between serum very low density lipoprotein (VLDL) and hepatic lipid composition was studied after 28 d of protein depletion to determine the interactions between dietary protein levels and EFA availability. Rats were fed purified diets containing 20 or 2% casein and 5% fat as either soybean oil rich in EFA, or salmon oil rich in eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, or hydrogenated coconut oil poor in EFA. Animals were divided into six groups, SOC (20% casein + 5% soybean oil), SOd (2% casein + 5% soybean oil), COC (20% casein + 5% hydrogenated coconut oil), COd (2% casein + 5% hydrogenated coconut oil), SAC (20% casein + 5% salmon oil) and SAd (2% casein + 5% salmon oil). After 28 d, liver steatosis and reduced VLDL-phospholipid contents (P < 0.001) were observed in protein-deficient rats. In protein deficiency, triacylglycerol and phospholipid fatty acid compositions in both liver and VLDL showed a decreased polyunsaturated-to-saturated fatty acid ratio. This ratio was higher with the salmon oil diets and lower with the hydrogenated coconut oil diets. Furthermore, independent of the oil in the diet, protein deficiency decreased linoleic and arachidonic acids in VLDL phospholipids. Conversely, despite decreased proportions of EPA at low protein levels, DHA levels remained higher in rats fed salmon oil diets.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Hunger and satiety responses to high-fat meals after a high-polyunsaturated fat diet: A randomized trial.

    PubMed

    Stevenson, Jada L; Paton, Chad M; Cooper, Jamie A

    2017-09-01

    Previous studies have shown that polyunsaturated fats (PUFAs) elicit a greater response in satiety after a single-meal challenge compared with other types of fats. The long-term effects of PUFAs on satiety, however, remain unknown. The aim of this study was to determine subjective and physiological hunger and satiety responses to high-fat (HF) meals before and after a 7-d PUFA-rich diet. Twenty-six, healthy weight (body mass index 18-24.9 kg/m 2 ), sedentary adults were randomly assigned to either a 7-d PUFA-rich diet (n = 8 men and n = 8 women) or a 7-d control diet (n = 5 men and n = 5 women). After a 3-d lead-in diet, participants reported for the baseline visit where anthropometrics, fasting visual analog scale (VAS) measurements, and a fasting blood sample were collected. Then, two HF meals (breakfast and lunch) were consumed. Postprandial blood draws and VAS measures were collected approximately every 30 min for 4 h after each meal, for a total of 8 h. From pre- to post-PUFA-rich diet, there was a decrease in fasting ghrelin (P < 0.05) and an increase in fasting peptide YY (PYY; P < 0.05); however, there were no changes in fasting insulin or leptin concentrations. The postprandial response for PYY was higher after the PUFA-rich diet visit compared to baseline (P < 0.01). However, there were no differences in the postprandial response for ghrelin, insulin, leptin, or VAS measures from pre- to post-diet in either the PUFA-rich diet or control (ns). A PUFA-rich diet consumed for 7 d favorably altered fasting and postprandial physiological markers of hunger and satiety; yet, did not alter subjective ratings of hunger or fullness. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effects of vitamin E and fish oil inclusion in broiler diets on meat fatty acid composition and on the flavour of a composite sample of breast meat.

    PubMed

    Rymer, Caroline; Givens, D Ian

    2010-08-15

    Enriching poultry meat with long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) can increase low population intakes of LC n-3 PUFA, but fishy taints can spoil reheated meat. This experiment determined the effect of different amounts of LC n-3 PUFA and vitamin E in the broiler diet on the fatty acid composition and sensory characteristics of the breast meat. Ross 308 broilers (120) were randomly allocated to one of five treatments from 21 to 42 days of age. Diets contained (g kg(-1)) 0, 9 or 18 LC n-3 PUFA (0LC, 9LC, 18LC), and 100, 150 or 200 mg LD-alpha-tocopherol acetate kg(-1) (E). The five diets were 0LC100E, 9LC100E, 18LC100E, 18LC150E, 18LC200E, with four pens per diet, except 18LC100E (eight pens). Breast meat was analysed for fatty acids (uncooked) and sensory analysis by R-index (reheated). LC n-3 PUFA content (mg kg(-1) meat) was 514 (0LC100E) and 2236 (9LC and 18LC). Compared with 0LC100E, meat from 18LC100E and 18LC150E tasted significantly different, while 23% of panellists detected fishy taints in 9LC100E and 18LC200E. Chicken meat can be enriched with nutritionally meaningful amounts of LC n-3 PUFA, but > 100 mg dl-alpha-tocopherol acetate kg(-1) broiler diet is needed to protect reheated meat from oxidative deterioration. Copyright (c) 2010 Society of Chemical Industry.

  17. Randomized controlled trial of oral omega-3 PUFA in solar-simulated radiation-induced suppression of human cutaneous immune responses.

    PubMed

    Pilkington, Suzanne M; Massey, Karen A; Bennett, Susan P; Al-Aasswad, Naser Mi; Roshdy, Khaled; Gibbs, Neil K; Friedmann, Peter S; Nicolaou, Anna; Rhodes, Lesley E

    2013-03-01

    Skin cancer is a major public health concern, and the majority of cases are caused by solar ultraviolet radiation (UVR) exposure, which suppresses skin immunity. Omega-3 (n-3) PUFAs protect against photoimmunosuppression and skin cancer in mice, but the impact in humans is unknown. We hypothesized that EPA-rich n-3 PUFA would abrogate photoimmunosuppression in humans. Therefore, a nutritional study was performed to assess the effect on UVR suppression of cutaneous cell-mediated immunity (CMI) reflected by nickel contact hypersensitivity (CHS). In a double-blind, randomized controlled study, 79 volunteers (nickel-allergic women, 22-60 y old, with phototype I or II) took 5 g n-3 PUFA-containing lipid (70% EPA plus 10% DHA) or a control lipid daily for 3 mo. After supplementation, nickel was applied to 3 skin sites preexposed on 3 consecutive days to 1.9, 3.8, or 7.6 J/cm(2) of solar-simulated radiation (SSR) and to 3 unexposed control sites. Nickel CHS responses were quantified after 72 h and the percentage of immunosuppression by SSR was calculated. Erythrocyte [red blood cell (RBC)] EPA was measured by using gas chromatography. SSR dose-related suppression of the nickel CHS response was observed in both groups. Photoimmunosuppression appeared less in the n-3 PUFA group than in the control group (not statistically significant [mean difference (95% CI): 6.9% (-2.1%, 15.9%)]). The difference was greatest at 3.8 J/cm(2) SSR [mean difference: 11% (95% CI: 0.5%, 21.4%)]. Postsupplementation RBC EPA was 4-fold higher in the n-3 PUFA group than in the control group (mean difference: 2.69% (95% CI: 2.23%, 3.14%), which confirmed the EPA bioavailability. Oral n-3 PUFAs appear to abrogate photoimmunosuppression in human skin, providing additional support for their chemopreventive role; verification of study findings is required. This trial was registered at clinicaltrials.gov as NCT01032343.

  18. Supplementation with n-3, n-6, n-9 fatty acids in an insulin-resistance animal model: does it improve VLDL quality?

    PubMed

    Lucero, D; Olano, C; Bursztyn, M; Morales, C; Stranges, A; Friedman, S; Macri, E V; Schreier, L; Zago, V

    2017-05-24

    Insulin-resistance (IR), of increased cardiovascular risk, is characterized by the production of altered VLDL with greater atherogenicity. Dietary fatty acids influence the type of circulating VLDL. But, it is not clear how dietary fatty acids impact VLDL characteristics in IR. to evaluate the effects of n-3, n-6 and n-9 fatty acid supplementation on preventing atherogenic alterations in VLDL, in a diet-induced IR rat model. Male Wistar rats (180-200 g) were fed: standard diet (control, n = 8) and a sucrose rich diet (30% sucrose in water/12 weeks, SRD; n = 24). Simultaneously, SRD was subdivided into SRD-C (standard diet), and three other groups supplemented (15% w/w) with: fish oil (SRD-n3), sunflower oil (SRD-n6) and high oleic sunflower oil (SRD-n9). Lipid profile, free fatty acids, glucose, and insulin were measured. Isolated VLDL (d < 1.006 g ml -1 ) was characterized by chemical composition and size (size exclusion-HPLC). In comparison with SRD-C: SRD-n3 showed an improved lipoprotein profile (p < 0.01), with lower levels of insulin and HOMA-IR (p < 0.05). SRD-n6 showed increased levels of HDL-cholesterol and lower insulin levels. SRD-n9 did not exhibit differences in lipid and IR profile, and even favored weight gain and visceral fat. Only SRD-n3 prevented the alterations in VLDL-TG% (54.2 ± 4.4% vs. 68.6 ± 8.2, p < 0.05) and showed lower large VLDL-% (22.5[19.7-35.6] vs. 49.1[15.5-82.0], p < 0.05), while SRD-n6 and SRD-n9 did not show effects. In IR, while n-3 PUFA showed expected favorable effects, supplementation with n-6 PUFA and n-9 MUFA did not prevent atherogenic alterations of VLDL. Thus, the recommendations of supplementation with these fatty acids in general diet should be revised.

  19. Effect of caloric restriction with or without n-3 polyunsaturated fatty acids on insulin sensitivity in obese subjects: A randomized placebo controlled trial.

    PubMed

    Razny, Urszula; Kiec-Wilk, Beata; Polus, Anna; Goralska, Joanna; Malczewska-Malec, Malgorzata; Wnek, Dominika; Zdzienicka, Anna; Gruca, Anna; Childs, Caroline E; Kapusta, Maria; Slowinska-Solnica, Krystyna; Calder, Philip C; Dembinska-Kiec, Aldona

    2015-12-01

    Caloric restriction and n-3 polyunsaturated fatty acid (PUFA) supplementation protect from some of the metabolic complications. The aim of this study was to assess the influence of a low calorie diet with or without n-3 PUFA supplementation on glucose dependent insulinotropic polypeptide (GIP) output and insulin sensitivity markers in obese subjects. Obese, non-diabetic subjects (BMI 30-40 kg/m(2)) and aged 25-65 yr. were put on low calorie diet (1200-1500 kcal/day) supplemented with either 1.8 g/day n-3 PUFA (DHA/EPA, 5:1) (n = 24) or placebo capsules (n = 24) for three months in a randomized placebo controlled trial. Insulin resistance markers and GIP levels were analysed from samples obtained at fasting and during an oral glucose tolerance test (OGTT). Caloric restriction with n-3 PUFA led to a decrease of insulin resistance index (HOMA-IR) and a significant reduction of insulin output as well as decreased GIP secretion during the OGTT. These effects were not seen with caloric restriction alone. Changes in GIP output were inversely associated with changes in red blood cell EPA content whereas fasting GIP level positively correlated with HOMA-IR index. Blood triglyceride level was lowered by caloric restriction with a greater effect when n-3 PUFA were included and correlated positively with fasting GIP level. Three months of caloric restriction with DHA + EPA supplementation exerts beneficial effects on insulin resistance, GIP and triglycerides. Combining caloric restriction and n-3 PUFA improves insulin sensitivity, which may be related to a decrease of GIP levels.

  20. Increase of EPA-derived hydroxy, epoxy and dihydroxy fatty acid levels in human plasma after a single dose of long-chain omega-3 PUFA.

    PubMed

    Schuchardt, Jan Philipp; Schneider, Inga; Willenberg, Ina; Yang, Jun; Hammock, Bruce D; Hahn, Andreas; Schebb, Nils Helge

    2014-06-01

    Several supplementation studies with long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) describe an increase of EPA-derived hydroxy, epoxy and dihydroxy fatty acids in blood, while changes in levels of other LC n-3 and n-6 PUFA-derived oxylipins were minor. In order to investigate the kinetics of changes in oxylipin levels in response to LC n-3 PUFA ingestion, we conducted a single dose treatment study with healthy subjects. In the present kinetic study, we compared patterns of hydroxy, epoxy and dihydroxy fatty acids in plasma of 6 healthy men before and after 6, 8, 24, and 48h of fish oil (1008mg EPA and 672mg DHA) ingestion. Levels of EPA- as well as other LC PUFA-derived hydroxy, epoxy and dihydroxy fatty acids were analyzed in plasma by LC-MS. Additionally, levels of these oxylipins were compared with their parent PUFA levels in plasma phospholipids. All EPA-derived oxylipin levels were significantly increased 6h after LC n-3 PUFA ingestion and gradually drop thereafter reaching the baseline levels about 48h after treatment. The relative increase in EPA plasma phospholipid levels highly correlated with the increase of plasma EPA-derived oxylipin levels at different time points. In contrast, plasma levels of arachidonic acid- and DHA-derived oxylipins as well as parent PUFA levels in plasma phospholipids were hardly changed. Our findings demonstrate that a single dose of LC n-3 PUFAs can rapidly induce a shift in the EPA oxylipin profile of healthy subjects within a few hours. Taking the high biological activity of the EPA-derived epoxy fatty acids into account, even short-term treatment with LC n-3 PUFAs may cause systemic effects, which warrant further investigation. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. N-3 polyunsaturated fatty acids and 17β-estradiol injection induce antidepressant-like effects through regulation of serotonergic neurotransmission in ovariectomized rats.

    PubMed

    Jin, Youri; Park, Yongsoon

    2015-09-01

    Previous studies have suggested that estrogen and n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have antidepressant-like effects. The purpose of the present study was to determine the interaction between n-3 PUFAs and estrogen, and their neurotrophic mechanism in rats after the forced swimming test (FST). Rats were fed a modified American Institute of Nutrition 93G diet with 0%, 1% or 2% EPA+DHA relative to the total energy intake during 12 weeks. At 8 weeks, rats were ovariectomized and injected with either 17β-estradiol-3-benzoate (E2) or corn oil during the last 3 weeks. Both n-3 PUFA supplementation and E2 injection increased climbing and decreased immobility during the FST. Serum serotonin concentration was also increased by both n-3 PUFA and E2. N-3 PUFA and E2 decreased hippocampal expressions of interleukin (IL)-6 and tumor necrosis factor-α, and increased cAMP response element binding protein (CREB), phosphorylated CREB and brain-derived neurotrophic factor (BDNF). N-3 PUFA supplementation decreased hippocampal expression of IL-1β only in rats injected with E2. Both n-3 PUFA supplementation and E2 injection increased estrogen receptor (ER)-α in the hippocampus, but ER-β was increased only by E2 injection. Additionally, there was a significant interaction between n-3 PUFA supplementation and E2 injection on the hippocampal expression of pCREB, suggesting membrane-mediated interaction of n-3 PUFAs and E2. In conclusion, both n-3 PUFA and E2 had antidepressant-like effects by regulating serotonergic neurotransmission through BDNF and inflammatory cytokines. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Apolipoprotein C-III, n-3 polyunsaturated fatty acids, and "insulin-resistant" T-455C APOC3 gene polymorphism in heart disease patients: example of gene-diet interaction.

    PubMed

    Olivieri, Oliviero; Martinelli, Nicola; Sandri, Marco; Bassi, Antonella; Guarini, Patrizia; Trabetti, Elisabetta; Pizzolo, Francesca; Girelli, Domenico; Friso, Simonetta; Pignatti, Pier Franco; Corrocher, Roberto

    2005-02-01

    Apolipoprotein C-III (apo C-III) is a marker of cardiovascular disease risk associated with triglyceride (TG)-rich lipoproteins. The T-455C polymorphism in the insulin-responsive element of the APOC3 gene influences TG and apo C-III concentrations. Long-chain n-3 polyunsaturated fatty acids (PUFAs) contained in fish have well-known apo C-III-lowering properties. We investigated the possibility of an interactive effect between the APOC3 gene variant and erythrocyte n-3 PUFAs, suitable markers of dietary intake of fatty acids, on apo C-III concentrations in a population of 848 heart disease patients who had coronary angiography. In the population as a whole, apo C-III concentrations were significantly inversely correlated with total erythrocyte PUFAs, but the correlation was not significant when only -455CC homozygous individuals were taken into account. In the total population and in subgroups with the -455TT and -455CT genotypes, the relative proportions of individuals presenting with increased apo C-III (i.e., above the 75th percentile value calculated on the entire population after exclusion of individuals taking lipids-lowering medications) decreased progressively as the n-3 PUFA and docosahexaenoic acid concentrations increased. The opposite situation was observed in the homozygous -455CC subgroup, in whom increasing erythrocyte n-3 PUFA and docosahexaenoic acid concentrations were associated with higher proportions of individuals with high apo C-III. A formal interactive effect between genotype and n-3 PUFAs was confirmed even after adjustment for possible confounding variables [age, sex, body mass index, smoking, coronary artery disease (CAD)/CAD-free status, or use of lipid-lowering medications] by logistic models. Patients homozygous for the -455C APOC3 variant are poorly responsive to the apo C-III-lowering effects of n-3 PUFAs.

  3. High saturated fat diet alters the lipid composition of triacylglycerol and polar lipids in the femur of dam and offspring rats.

    PubMed

    Miotto, Paula M; Castelli, Laura M; Amoye, Foyinsola; Ward, Wendy E; LeBlanc, Paul J

    2015-06-01

    Previous work has shown that dietary lipids alter femur lipid composition. Specifically, we have shown that exposure to high saturated fatty acid (SFA) diets in utero, during suckling, or post-weaning alters femur total lipid composition, resulting in higher percent bone mass in males and females and bone mineral density (BMD) in female offspring with no effect on bone mineral outcomes in dams. Comparatively, high n-3 polyunsaturated fatty acid (PUFA) diets increase femur polar (PL) lipid n-3 content, which has been associated with increased bone mineral content and strength. However, the extent that PL or triacylglycerol (TAG) lipids change with high SFA diets is unknown. The current investigation examined the influence of a high SFA diet (20 % lard by weight) on femur PL and TAG lipid composition in 5-month old female Wistar rats (fed high SFA diet from age 28 days onwards; dams) and their 19-day old offspring (exposed to high SFA in utero and during suckling; pups). High SFA exposure resulted in increased monounsaturates and decreased n-3 and n-6 PUFA in the TAG fraction in both dams and pups, and higher SFA and n-6:n-3 ratio in dams only. The PL fraction showed decreased n-6 PUFA in both dams and pups. The magnitude of the diet-mediated responses, specifically TAG 18:1 and PL n-6 PUFA, may have contributed to the previously reported altered BMD, which was supported with correlation analysis. Future research should investigate the relationship of diet-induced changes in bone lipids on bone structure, as quantified through micro-computed tomography.

  4. [Nutritional assessment of gluten-free diet. Is gluten-free diet deficient in some nutrient?].

    PubMed

    Salazar Quero, J C; Espín Jaime, B; Rodríguez Martínez, A; Argüelles Martín, F; García Jiménez, R; Rubio Murillo, M; Pizarro Martín, A

    2015-07-01

    The gluten-free diet has traditionally been accepted as a healthy diet, but there are articles advocating that it may have some nutritional deficiencies. The current study assesses whether there was any change in the contributions of calories, essential elements, proportion of fatty acids, vitamins, minerals and fiber in children who were diagnosed with celiac diseases, comparing the diet with gluten prior one year after diagnosis with the diet without gluten to the year of diagnosis. The level of clinical or analytical impact that nutritional deficits could have was also assessed. A prospective,descriptive, observational study in which information was collected from a dietary survey, anthropometric and analytical data at pre-diagnosis of celiac disease and following a gluten diet and one year after celiac disease diagnosis, under gluten-free diet. A total of 37 patients meet the study criteria. A decrease in the intake of saturated fatty acids was found, with an increase of monounsaturated fatty acids and an increase in the intake of phosphorus in the diet without gluten. A deficient intake of vitamin D was found in both diets. Clinically, at year of gluten-free diet there was an improvement in weight and size. Analytically, there was an improvement in hemoglobin, ferritin, vitamin D, and parathyroid hormone in plasma. The gluten-free diet has minimal deficiencies, similar to those present in the diet with gluten, with an improvement in the lipid profile by increasing the proportion of monounsaturated fatty acids to the detriment of saturated fatty acids. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  5. Role of n-3 Polyunsaturated Fatty Acids in Ameliorating the Obesity-Induced Metabolic Syndrome in Animal Models and Humans

    PubMed Central

    Huang, Chao-Wei; Chien, Yi-Shan; Chen, Yu-Jen; Ajuwon, Kolapo M.; Mersmann, Harry M.; Ding, Shih-Torng

    2016-01-01

    The incidence of obesity and its comorbidities, such as insulin resistance and type II diabetes, are increasing dramatically, perhaps caused by the change in the fatty acid composition of common human diets. Adipose tissue plays a role as the major energy reservoir in the body. An excess of adipose mass accumulation caused by chronic positive energy balance results in obesity. The n-3 polyunsaturated fatty acids (n-3 PUFA), DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) exert numerous beneficial effects to maintain physiological homeostasis. In the current review, the physiology of n-3 PUFA effects in the body is delineated from studies conducted in both human and animal experiments. Although mechanistic studies in human are limited, numerous studies conducted in animals and models in vitro provide potential molecular mechanisms of the effects of these fatty acids. Three aspects of n-3 PUFA in adipocyte regulation are discussed: (1) lipid metabolism, including adipocyte differentiation, lipolysis and lipogenesis; (2) energy expenditure, such as mitochondrial and peroxisomal fatty acid β-oxidation; and (3) inflammation, including adipokines and specialized pro-resolving lipid mediators. Additionally, the mechanisms by which n-3 PUFA regulate gene expression are highlighted. The beneficial effects of n-3 PUFA may help to reduce the incidence of obesity and its comorbidities. PMID:27735847

  6. Plasma n-3 and n-6 fatty acids and inflammatory markers in Chinese vegetarians.

    PubMed

    Yu, Xiaomei; Huang, Tao; Weng, Xiumei; Shou, Tianxing; Wang, Qiang; Zhou, Xiaoqiong; Hu, Qinxin; Li, Duo

    2014-09-29

    Polyunsaturated fatty acid (PUFA) intake favorably affects chronic inflammatory-related diseases such as cardiovascular disease; however, the relationship between the PUFA and inflammatory factors in the healthy vegetarians were not clear. We aimed to investigate the plasma fatty acids status, and its association with plasma inflammatory factors in Chinese vegetarians and omnivores. A total of 89 male vegetarians and 106 male omnivores were participated the study. Plasma concentrations of inflammatory factors were detected by ELISA, and as standard methods fatty acids were extracted and determined by chromatography. Compared with omnivores, vegetarians have significant higher interleukin-6 (IL-6), plasma n-6 PUFA, n-6/n-3, and 18:3n-3; while they have significant lower leukotriene B4 (LTB4), cyclo-oxygenase-2 (COX2) and prostaglandin E2 (PGE2), 20:5n-3, 22:5n-3, 22:6n-3, and n-3 PUFA. In vegetarians, plasma 20:4n-6 was significant positively related to TNF-α. LTB4 was significantly positively related to plasma 22:6n-3, and negatively associated with n-6 PUFA. Vegetarians have higher plasma n-6 PUFA and IL-6, but lower LTB4, n-3 PUFA, 22:6n-3, COX2 and PGE2 levels. It would seem appropriate for vegetarians to increase their dietary n-3 PUFA, while reduce dietary n-6 PUFA and thus reduce the risk of chronic inflammatory-related diseases.

  7. Long-Term Selenium-Deficient Diet Induces Liver Damage by Altering Hepatocyte Ultrastructure and MMP1/3 and TIMP1/3 Expression in Growing Rats.

    PubMed

    Han, Jing; Liang, Hua; Yi, Jianhua; Tan, Wuhong; He, Shulan; Wang, Sen; Li, Feng; Wu, Xiaofang; Ma, Jing; Shi, Xiaowei; Guo, Xiong; Bai, Chuanyi

    2017-02-01

    The effects of selenium (Se)-deficient diet on the liver were evaluated by using growing rats which were fed with normal and Se-deficient diets, respectively, for 109 days. The results showed that rats fed with Se-deficient diet led to a decrease in Se concentration in the liver, particularly among male rats from the low-Se group. This causes alterations to the ultrastructure of hepatocytes with condensed chromatin and swelling mitochondria observed after low Se intake. Meanwhile, pathological changes and increased fibrosis in hepatic periportal were detected by hematoxylin and eosin and Masson's trichrome staining in low-Se group. Furthermore, through immunohistochemistry (IHC) staining, higher expressions of metalloproteinases (MMP1/3) and their tissue inhibitors of metalloproteinases (TIMP1/3) were observed in the hepatic periportal of rats from the low-Se group. However, higher expressions of MMP1/3 and lower expressions of TIMP1/3 were detected in hepatic central vein and hepatic sinusoid. In addition, upregulated expressions of MMP1/3 and downregulated expressions of TIMP1/3 at the messenger RNA (mRNA) and protein levels also appeared to be relevant to low Se intake. In conclusion, Se-deficient diet could cause low Se concentration in the liver, alterations of hepatocyte ultrastructure, differential expressions of MMP1/3 and TIMP1/3 as well as fibrosis in the liver hepatic periportal.

  8. Maternal PUFA omega-3 supplementation prevents hyperoxia-induced pulmonary hypertension in the offspring.

    PubMed

    Zhong, Ying; Catheline, Daniel; Houeijeh, Ali; Sharma, Dyuti; Du, Li-Zhong; Besengez, Capucine; Deruelle, Philippe; Legrand, Philippe; Storme, Laurent

    2018-03-29

    Pulmonary hypertension (PH) and right ventricular hypertrophy (RVH) affect 16-25% of premature infants with bronchopulmonary dysplasia (BPD), contributing significantly to perinatal morbidity and mortality. Polyunsaturated fatty acids ω-3 (PUFA ω-3) can improve vascular remodeling, angiogenesis, and inflammation under pathophysiological conditions. However, the effects of PUFA ω-3 supplementation in BPD-associated PH are unknown. The present study aimed to evaluate the effects of PUFA ω-3 on pulmonary vascular remodeling, angiogenesis, and inflammatory response in a hyperoxia-induced rat model of PH. From embryonic day 15, pregnant Spague-Dawley rats were supplemented daily with PUFA ω-3, PUFA ω-6, or normal saline (0.2 ml/day). After birth, pups were pooled, assigned as 12 per litter, and randomly to either in air or continuous oxygen exposure (FiO2 = 85%) for 20 days, then sacrificed for pulmonary hemodynamic and morphometric analysis. We found that PUFA ω-3 supplementation improved survival, decreased right ventricular systolic pressure and RVH caused by hyperoxia, and significantly improved alveolarization, vascular remodeling, and vascular density. PUFA ω-3 supplementation produced a higher level of total ω-3 in lung tissue and breast milk, and was found reversing the reduced levels of VEGFA, VEGFR-2, ANGPT-1, TIE-2, eNOS, and NO concentrations in lung tissue, and the increased ANGPT-2 levels in hyperoxia-exposed rats. The beneficial effects of PUFA ω-3 in improving lung injuries were also associated with an inhibition of leukocyte infiltration, and reduced expression of proinflammatory cytokines IL-1β, IL-6 and TNF-α. These data indicated that maternal PUFA ω-3 supplementation strategies could effectively protect against infant PH induced by hyperoxia.

  9. Atrophy and neuron loss: effects of a protein-deficient diet on sympathetic neurons.

    PubMed

    Gomes, Silvio Pires; Nyengaard, Jens Randel; Misawa, Rúbia; Girotti, Priscila Azevedo; Castelucci, Patrìcia; Blazquez, Francisco Hernandez Javier; de Melo, Mariana Pereira; Ribeiro, Antonio Augusto Coppi

    2009-12-01

    Protein deficiency is one of the biggest public health problems in the world, accounting for about 30-40% of hospital admissions in developing countries. Nutritional deficiencies lead to alterations in the peripheral nervous system and in the digestive system. Most studies have focused on the effects of protein-deficient diets on the enteric neurons, but not on sympathetic ganglia, which supply extrinsic sympathetic input to the digestive system. Hence, in this study, we investigated whether a protein-restricted diet would affect the quantitative structure of rat coeliac ganglion neurons. Five male Wistar rats (undernourished group) were given a pre- and postnatal hypoproteinic diet receiving 5% casein, whereas the nourished group (n = 5) was fed with 20% casein (normoproteinic diet). Blood tests were carried out on the animals, e.g., glucose, leptin, and triglyceride plasma concentrations. The main structural findings in this study were that a protein-deficient diet (5% casein) caused coeliac ganglion (78%) and coeliac ganglion neurons (24%) to atrophy and led to neuron loss (63%). Therefore, the fall in the total number of coeliac ganglion neurons in protein-restricted rats contrasts strongly with no neuron losses previously described for the enteric neurons of animals subjected to similar protein-restriction diets. Discrepancies between our figures and the data for enteric neurons (using very similar protein-restriction protocols) may be attributable to the counting method used. In light of this, further systematic investigations comparing 2-D and 3-D quantitative methods are warranted to provide even more advanced data on the effects that a protein-deficient diet may exert on sympathetic neurons. (c) 2009 Wiley-Liss, Inc. Copyright 2009 Wiley-Liss, Inc.

  10. Early development of essential fatty acid deficiency in rats: Fat-free vs. hydrogenated coconut oil diet

    PubMed Central

    Ling, Pei-Ra; De Leon, Charlotte E.; Le, Hau; Puder, Mark; Bistrian, Bruce R.

    2011-01-01

    This study examined the effects of feeding an essential fatty acid deficient (EFAD) diet either without fat or with added hydrogenated coconut oil (HCO) on fatty acid profiles in rats. Both diets induced equivalent biochemical evidence of EFAD reflected by the triene/tetraene ratio in plasma phospholipids within 2 weeks. However, the HCO diet led to larger increases of 16:1n7 and 18:1n9 in muscle but smaller increases in fat tissue and plasma triglycerides than the fat-free diet, suggesting greater increases in hepatic de novo lipogenesis with the latter. In addition, the HCO diet led to larger decreases of some 18:3n3 metabolites, particularly 22:6n3, in muscle, fat and brain tissues than the fat-free diet, presumably related to lesser stimulation of elongation and desaturation. Thus, these secondary effects of an EFAD diet on fatty acid metabolism can be modified by the saturated fat in the diet while the primary impact of both diets on development of EFAD is unaffected. PMID:20675109

  11. Protective Effects of ω-3 PUFA in Anthracycline-Induced Cardiotoxicity: A Critical Review.

    PubMed

    Serini, Simona; Ottes Vasconcelos, Renata; Nascimento Gomes, Renata; Calviello, Gabriella

    2017-12-12

    It has been demonstrated that ω-3 polyunsaturated fatty acids (ω-3 PUFA) may exert a beneficial role as adjuvants in the prevention and treatment of many disorders, including cardiovascular diseases and cancer. Particularly, several in vitro and in vivo preclinical studies have shown the antitumor activity of ω-3 PUFA in different kinds of cancers, and several human studies have shown that ω-3 PUFA are able to decrease the risk of a series of cardiovascular diseases. Several mechanisms have been proposed to explain their pleiotropic beneficial effects. ω-3 PUFA have also been shown to prevent harmful side-effects (including cardiotoxicity and heart failure) induced by conventional and innovative anti-cancer drugs in both animals and patients. The available literature regarding the possible protective effects of ω-3 PUFA against anthracycline-induced cardiotoxicity, as well as the mechanisms involved, will be critically discussed herein. The study will analyze the critical role of different levels of ω-3 PUFA intake in determining the results of the combinatory studies with anthracyclines. Suggestions for future research will also be considered.

  12. Mandibular bone remodeling under a choline-deficient diet: a histomorphometric study in rats.

    PubMed

    Gorustovich, Alejandro A; Espósito, María A; Guglielmotti, María B; Giglio, Máximo J

    2003-06-01

    A deficiency of lipotropic factors in the rat induces renal, hepatic, and/or hematic damage. The aim of the present study was to evaluate the effect of a choline-deficient diet and refeeding on mandibular bone remodeling. Fifty Wistar rats were divided into 5 groups: group 1 (G1): control diet for 15 days; group 2 (G2): choline-deficient diet for 15 days; group 3 (G3): control diet for 30 days; group 4 (G4): choline-deficient diet for 30 days; and group 5 (G5): choline-deficient diet for 15 days and control diet for 15 days. All animals were sacrificed by ether overdose. The mandibles were resected, radiographed, decalcified, processed, and embedded in paraffin. Bucco-lingually oriented sections were obtained at the level of the interradicular bone of the medial roots of the left first molar, and stained with hematoxylin and eosin (H & E). Bone tissue density and bone remodeling were determined histomorphometrically. Body weight, food intake, hematocrit, and hemoglobinemia were also recorded. Microscopic observation revealed that osteogenesis was lower in rats fed a choline-deficient diet, at both 15 and 30 days, and that this decrease did not revert with a control diet. Histomorphometric evaluation showed 37% and 27% reduction in bone tissue density at 15 and 30 days, respectively, and a 30% decrease in bone formation at 30 days, compared to controls. In this experimental model, a choline-deficient diet led to altered bone remodeling as observed by a marked reduction in osteogenesis.

  13. Effects of probiotics on methionine choline deficient diet-induced steatohepatitis in rats.

    PubMed

    Karahan, Nermin; Işler, Mehmet; Koyu, Ahmet; Karahan, Aynur G; Başyığıt Kiliç, Gülden; Cırış, Ibrahim Metin; Sütçü, Recep; Onaran, Ibrahim; Cam, Hakan; Keskın, Muharrem

    2012-04-01

    Intestinal bacteria induce endogenous signals that play a pathogenic role in hepatic insulin resistance and non-alcoholic fatty liver disease. Probiotics could modulate the gut flora and could influence the gut-liver axis. We aimed to investigate the preventive effect of two probiotic mixtures on the methionine choline-deficient diet-induced non-alcoholic steatohepatitis model in rats. Two studies, short-term (2 weeks) and long-term (6 weeks), were carried out using 60 male Wistar rats. The 2-week study included six groups. Rats were fed with methionine choline-deficient diet or pair-fed control diet and were given a placebo or one of two probiotic mixtures (Pro-1 and Pro-2) by orogastric gavage. In the 6-week study, rats were allocated into four groups and were fed with methionine choline-deficient diet or pair-fed control diet and given a placebo or Pro-2. At the end of the 2- and 6-week periods, blood samples were obtained, the animals were sacrificed, and liver tissues were removed. Serum alanine aminotransferase activity was determined; histologic and immunohistochemical analysis was performed for steatosis, inflammation, protein expression of tumor necrosis factor-α, and apoptosis markers. In both studies, methionine choline-deficient diet caused an elevation of serum alanine aminotransferase activity, which was slightly reduced by Pro-1 and Pro-2. In the 2- and 6-week studies, feeding with methionine choline-deficient diet resulted in steatosis and inflammation, but not fibrosis, in all rats. In the 2-week study, in rats fed with methionine choline-deficient diet and given Pro-1, steatosis and inflammation were present in 2 of 6 rats. In rats fed with methionine choline-deficient diet and given Pro-2, steatosis was detected in 3 of 6 rats, while inflammation was present in 2 of 6 rats. In the 6-week study, in rats fed with methionine choline-deficient diet and given Pro-2, steatosis and inflammation were present in 3 of 6 rat livers. In both the 2- and 6

  14. Higher n3-fatty acid status is associated with lower risk of iron depletion among food insecure Canadian Inuit women.

    PubMed

    Jamieson, Jennifer A; Kuhnlein, Harriet V; Weiler, Hope A; Egeland, Grace M

    2013-04-02

    High rates of iron deficiency and anemia are common among Inuit and Arctic women despite a traditional diet based on animal source foods. However, representative data on iron status and relevant determinants for this population are lacking. The objectives were to determine the prevalence of anemia and depletion of iron stores, then to identify correlates of iron status in non-pregnant Canadian Inuit women. In a cross-sectional survey of 1550 women in the International Polar Year Inuit Health Survey, 2007-2008, hemoglobin, serum ferritin, soluble transferrin receptor (on a subset), C-reactive protein (CRP), RBC fatty acid composition, and H pylori serology were analyzed on fasting venous blood. Sociodemographic, food security status, anthropometric, dietary, and health data were collected. Correlates of iron status were assessed with multivariate linear and logistic models. Anemia was observed in 21.7% and iron deficient erythropoiesis in 3.3% of women. For women with CRP ≤ 10 mg/L (n = 1260) 29.4% had depleted iron stores. Inadequate iron intakes were observed in 16% of premenopausal and <1% of postmenopausal women. Among food insecure women, higher long-chain (n-3) polyunsaturated fatty acid (LC-PUFA) status, which reflects a more traditional food pattern, was associated with reduced risk of iron depletion. Iron depletion and anemia are a concern for Inuit women despite adequate total dietary iron intake primarily from heme sources. The high prevalence of H. pylori exposure, together with dietary iron adequacy, suggests an inflammation-driven iron deficiency and mild anemia. The anti-inflammatory properties of LC-PUFA may be important for iron status in this population.

  15. Long-chain n-3 PUFA supplementation decreases physical activity during class time in iron-deficient South African school children.

    PubMed

    Smuts, Cornelius M; Greeff, Jani; Kvalsvig, Jane; Zimmermann, Michael B; Baumgartner, Jeannine

    2015-01-28

    Both Fe deficiency and poor n-3 fatty acid status have been associated with behavioural changes in children. In the present study, we investigated the effects of Fe and DHA+EPA supplementation, alone or in combination, on physical activity during school days and on teacher-rated behaviour in healthy Fe-deficient school children. In a 2 × 2 factorial design, children (n 98, 6-11 years) were randomly assigned to receive (1) Fe (50 mg) plus DHA (420 mg)+EPA (80 mg), (2) Fe plus placebo, (3) placebo plus DHA+EPA or (4) placebo plus placebo as oral supplements (4 d/week) for 8.5 months. Physical activity was measured during four school days at baseline and endpoint using accelerometers, and data were stratified into morning class time (08.00-10.29 hours), break time (10.30-11.00 hours) and after-break class time (11.01-12.00 hours) for analysis. Classroom behaviour was assessed at endpoint using Conners' Teacher Rating Scales. DHA+EPA supplementation decreased physical activity counts during morning class time, increased sedentary physical activity, and decreased light- and moderate-intensity physical activities. Consistently, DHA+EPA supplementation increased sedentary physical activity and decreased light-intensity physical activity during after-break class time. Even though there were no treatment effects found on teacher-rated behaviour, lower physical activity during morning class time was associated with lower levels of teacher-rated hyperactivity and oppositional behaviour at endpoint. Despite a positive association between Fe status and physical activity during break time at baseline, Fe supplementation did not affect physical activity during break time and class time. Our findings suggest that DHA+EPA supplementation may decrease physical activity levels during class time, and further indicate that accelerometry might be a useful tool to assess classroom behaviour in healthy children.

  16. The combined action of omega-3 polyunsaturated fatty acids and grape proanthocyanidins on a rat model of diet-induced metabolic alterations.

    PubMed

    Ramos-Romero, Sara; Molinar-Toribio, Eunice; Pérez-Jiménez, Jara; Taltavull, Núria; Dasilva, Gabriel; Romeu, Marta; Medina, Isabel; Torres, Josep Lluís

    2016-08-10

    It has been suggested that food components such as ω-3 polyunsaturated fatty acids (ω-3 PUFAs) and (poly)phenols counteract diet-induced metabolic alterations by common or complementary mechanisms. To examine the effects of a combination of ω-3 PUFAs and (poly)phenols on such alterations, adult Wistar-Kyoto rats were fed an obesogenic high-fat high-sucrose diet supplemented, or not, for 24 weeks with: eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) 1 : 1 (16.6 g kg(-1) feed); proanthocyanidin-rich grape seed extract (GSE, 0.8 g kg(-1) feed); or EPA/DHA 1 : 1 + GSE. Body weight, feed intake, and plasma glucose were evaluated every 6 weeks, while adipose tissue weight, insulin, glucagon, ghrelin, leptin, adiponectin, cholesterol, and triglycerides were evaluated at the end of the experiment. ω-3 PUFAs reduced plasma leptin and cholesterol levels, but did not modify diet-induced perigonadal fat or plasma insulin levels; while GSE increased plasma triglyceride levels. The combined action of ω-3 PUFAs and the proanthocyanidins reduced plasma insulin and leptin, as well as partially prevented perigonadal fat accumulation. While separate supplementation with ω-3 PUFAs or grape proanthocyanidins may not counteract all the key metabolic changes induced by a high-energy-dense diet, the combination of both supplements reverts altered insulin, leptin and triglyceride levels to normal.

  17. Effect of high fat diet enriched with unsaturated and diet rich in saturated fatty acids on sphingolipid metabolism in rat skeletal muscle.

    PubMed

    Blachnio-Zabielska, Agnieszka; Baranowski, Marcin; Zabielski, Piotr; Gorski, Jan

    2010-11-01

    Consumption of high fat diet leads to muscle lipid accumulation which is an important factor involved in induction of insulin resistance. Ceramide is likely to partially inhibit insulin signaling cascade. The aim of this study was to examine the effect of different high fat diets on ceramide metabolism in rat skeletal muscles. The experiments were carried out on rats fed for 5 weeks: (1) a standard chow and (2) high fat diet rich in polyunsaturated fatty acids (PUFA) and (3) diet enriched with saturated fatty acids (SAT). Assays were performed on three types of muscles: slow-twitch oxidative (soleus), fast-twitch oxidative-glycolytic, and fast-twitch glycolytic (red and white section of the gastrocnemius, respectively). The activity of serine palmitoyltransferase (SPT), neutral and acid sphingomyelinase (n- and aSMase), and neutral and alkaline ceramidase (n- and alCDase) was examined. The content of ceramide, sphinganine, sphingosine, and sphingosine-1-phosphate was also measured. The ceramide content did not change in any muscle from PUFA diet group but increased in the SAT diet group by 46% and 52% in the soleus and red section of the gastrocnemius, respectively. Elevated ceramide content in the SAT diet group could be a result of increased SPT activity and simultaneously decreased activity of nCDase. Unchanged ceramide content in the PUFA diet group might be a result of increased activity of SPT and alCDase and simultaneously decreased activity of SMases. We conclude that regulation of muscle ceramide level depends on the diet and type of skeletal muscle. © 2010 Wiley-Liss, Inc.

  18. Does consumption of LC omega-3 PUFA enhance cognitive performance in healthy school-aged children and throughout adulthood? Evidence from clinical trials.

    PubMed

    Stonehouse, Welma

    2014-07-22

    Long-chain (LC) omega-3 PUFA derived from marine sources may play an important role in cognitive performance throughout all life stages. Docosahexaenoic acid (DHA), the dominant omega-3 in the brain, is a major component of neuronal cell membranes and affects various neurological pathways and processess. Despite its critical role in brain function, human's capacity to synthesize DHA de novo is limited and its consumption through the diet is important. However, many individuals do not or rarely consume seafood. The aim of this review is to critically evaluate the current evidence from randomised controlled trials (RCT) in healthy school-aged children, younger and older adults to determine whether consumption of LC omega-3 PUFA improves cognitive performance and to make recommendations for future research. Current evidence suggests that consumption of LC omega-3 PUFA, particularly DHA, may enhance cognitive performance relating to learning, cognitive development, memory and speed of performing cognitive tasks. Those who habitually consume diets low in DHA, children with low literacy ability and malnourished and older adults with age-related cognitive decline and mild cognitive impairment seem to benefit most. However, study design limitations in many RCTs hamper firm conclusions. The measurement of a uniform biomarker, e.g., % DHA in red blood cells, is essential to establish baseline DHA-status, to determine targets for cognitive performance and to facilitate dosage recommendations. It is recommended that future studies be at least 16 weeks in duration, account for potential interaction effects of gender, age and apolipoprotein E genotype, include vegan/vegetarian populations, include measures of speed of cognitive performance and include brain imaging technologies as supportive information on working mechanisms of LC omega-3 PUFA.

  19. Perinatal ω-3 polyunsaturated fatty acid supply modifies brain zinc homeostasis during adulthood

    PubMed Central

    Jayasooriya, Anura P.; Ackland, M. Leigh; Mathai, Michael L.; Sinclair, Andrew J.; Weisinger, Harrison S.; Weisinger, Richard S.; Halver, John E.; Kitajka, Klára; Puskás, László G.

    2005-01-01

    Dietary ω-3 polyunsaturated fatty acid (PUFA) influences the expression of a number of genes in the brain. Zinc transporter (ZnT) 3 has been identified as a putative transporter of zinc into synaptic vesicles of neurons and is found in brain areas such as hippocampus and cortex. Neuronal zinc is involved in the formation of amyloid plaques, a major characteristic of Alzheimer's disease. The present study evaluated the influence of dietary ω-3 PUFA on the expression of the ZnT3 gene in the brains of adult male Sprague-Dawley rats. The rats were raised and/or maintained on a control (CON) diet that contained ω-3 PUFA or a diet deficient (DEF) in ω-3 PUFA. ZnT3 gene expression was analyzed by using real-time PCR, free zinc in brain tissue was determined by zinquin staining, and total zinc concentrations in plasma and cerebrospinal fluid were determined by atomic absorption spectrophotometry. Compared with CON-raised animals, DEF-raised animals had increased expression of ZnT3 in the brain that was associated with an increased level of free zinc in the hippocampus. In addition, compared with CON-raised animals, DEF-raised animals had decreased plasma zinc level. No difference in cerebrospinal fluid zinc level was observed. The results suggest that overexpression of ZnT3 due to a perinatal ω-3 PUFA deficiency caused abnormal zinc metabolism in the brain. Conceivably, the influence of dietary ω-3 PUFA on brain zinc metabolism could explain the observation made in population studies that the consumption of fish is associated with a reduced risk of dementia and Alzheimer's disease. PMID:15883362

  20. Perinatal omega-3 polyunsaturated fatty acid supply modifies brain zinc homeostasis during adulthood.

    PubMed

    Jayasooriya, Anura P; Ackland, M Leigh; Mathai, Michael L; Sinclair, Andrew J; Weisinger, Harrison S; Weisinger, Richard S; Halver, John E; Kitajka, Klára; Puskás, László G

    2005-05-17

    Dietary omega-3 polyunsaturated fatty acid (PUFA) influences the expression of a number of genes in the brain. Zinc transporter (ZnT) 3 has been identified as a putative transporter of zinc into synaptic vesicles of neurons and is found in brain areas such as hippocampus and cortex. Neuronal zinc is involved in the formation of amyloid plaques, a major characteristic of Alzheimer's disease. The present study evaluated the influence of dietary omega-3 PUFA on the expression of the ZnT3 gene in the brains of adult male Sprague-Dawley rats. The rats were raised and/or maintained on a control (CON) diet that contained omega-3 PUFA or a diet deficient (DEF) in omega-3 PUFA. ZnT3 gene expression was analyzed by using real-time PCR, free zinc in brain tissue was determined by zinquin staining, and total zinc concentrations in plasma and cerebrospinal fluid were determined by atomic absorption spectrophotometry. Compared with CON-raised animals, DEF-raised animals had increased expression of ZnT3 in the brain that was associated with an increased level of free zinc in the hippocampus. In addition, compared with CON-raised animals, DEF-raised animals had decreased plasma zinc level. No difference in cerebrospinal fluid zinc level was observed. The results suggest that overexpression of ZnT3 due to a perinatal omega-3 PUFA deficiency caused abnormal zinc metabolism in the brain. Conceivably, the influence of dietary omega-3 PUFA on brain zinc metabolism could explain the observation made in population studies that the consumption of fish is associated with a reduced risk of dementia and Alzheimer's disease.

  1. Influence of oilseed supplement ranging in n-6/n-3 ratio on fatty acid composition and Δ5-, Δ6-desaturase protein expression in steer muscles.

    PubMed

    Turner, T D; Mitchell, A; Duynisveld, J; Pickova, J; Doran, O; McNiven, M A

    2012-12-01

    This study investigated effects of roasted or extruded oilseed supplementation ranging in n-6/n-3 ratios from 0.3 to 5.0 on the fatty acid composition and expression of delta-5 desaturase (Δ5d) and Δ6-desaturase (Δ6d) protein in commercial steer cheek (m. masseter) and diaphragm (pars costalis diaphragmatis) muscles. In general, the n-6/n-3 ratio of the diet had a subsequent effect on the muscle n-6/n-3 ratio (P < 0.05), with muscle 18:2n-6 and 18:3n-3 content relating to proportion of dietary soya bean and linseed (P < 0.01). Compared with canola, pure linseed and soya bean diets reduced 14:1c-9 and 16:1c-9 (P < 0.05) but increased 18:1t-11 and c-9,t-11 conjugated linoleic acid (CLA) content (P < 0.01). Oilseed processing had a minor influence but extruded oilseeds increase 18:1t-11 and c-9,t-11 CLA compared with roasted (P < 0.05). Polar lipid 18:3n-3 and n-3 long-chain polyunsaturated fatty acid (LC, ⩾20 carbons PUFA) derivative content increased in relation to dietary linseed supplementation in the diaphragm (P < 0.01), whereas only 18:3n-3 was increased in the cheek (P < 0.01). Protein expression did not differ between diets; however, in each muscle the Δ5d protein expression had a stronger association with the desaturase products rather than the precursors. The relationship between Δ5d protein expression and the muscle LC n-6/n-3 ratio was negative in both muscles (P < 0.05). The relationship between Δ6d protein expression and the LC n-6/n-3 ratio was positive in the cheek (P < 0.001) and negative in the diaphragm (P < 0.05). In conclusion, diet n-6/n-3 ratio affected muscle 18:2n-6 and 18:3n-3 deposition, whereas the Δ5d and Δ6d protein expression had some influence on the polar lipid LC-PUFA profile. Results reaffirm that processed oilseeds can be used to increase the proportion of fatty acids potentially beneficial for human health, by influencing the formation of LC-PUFA and reducing the n-6/n-3 ratio.

  2. Lipid content in hepatic and gonadal adipose tissue parallel aortic cholesterol accumulation in mice fed diets with different omega-6 PUFA to EPA plus DHA ratios.

    PubMed

    Wang, Shu; Matthan, Nirupa R; Wu, Dayong; Reed, Debra B; Bapat, Priyanka; Yin, Xiangling; Grammas, Paula; Shen, Chwan-Li; Lichtenstein, Alice H

    2014-04-01

    Diets with low omega (ω)-6 polyunsaturated fatty acids (PUFA) to eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) ratios have been shown to decrease aortic cholesterol accumulation and have been suggested to promote weight loss. The involvement of the liver and gonadal adipose tissue (GAT) in mediating these effects is not well understood. LDL receptor null mice were used to assess the effect of an atherogenic diet with different ω-6:EPA+DHA ratios on weight gain, hepatic and GAT lipid accumulation, and their relationship to atherosclerosis. Four groups of mice were fed a high saturated fat and cholesterol diet (HSF ω-6) alone, or with ω-6 PUFA to EPA+DHA ratios up to 1:1 for 32 weeks. Liver and GAT were collected for lipid and gene expression analysis. The fatty acid profile of liver and GAT reflected the diets. All diets resulted in similar weight gains. Compared to HSF ω-6 diet, the 1:1 ratio diet resulted in lower hepatic total cholesterol (TC) content. Aortic TC was positively correlated with hepatic and GAT TC and triglyceride. These differences were accompanied by significantly lower expression of CD36, ATP-transporter cassette A1, scavenger receptor B class 1, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), acetyl-CoA carboxylase alpha, acyl-CoA synthetase long-chain family member 5, and stearoyl-coenzyme A desaturase 1 (SCD1) in GAT, and HMGCR, SCD1 and cytochrome P450 7A1 in liver. Dietary ω-6:EPA+DHA ratios did not affect body weight, but lower ω-6:EPA+DHA ratio diets decreased liver lipid accumulation, which possibly contributed to the lower aortic cholesterol accumulation. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  3. Does Consumption of LC Omega-3 PUFA Enhance Cognitive Performance in Healthy School-Aged Children and throughout Adulthood? Evidence from Clinical Trials

    PubMed Central

    Stonehouse, Welma

    2014-01-01

    Long-chain (LC) omega-3 PUFA derived from marine sources may play an important role in cognitive performance throughout all life stages. Docosahexaenoic acid (DHA), the dominant omega-3 in the brain, is a major component of neuronal cell membranes and affects various neurological pathways and processess. Despite its critical role in brain function, human’s capacity to synthesize DHA de novo is limited and its consumption through the diet is important. However, many individuals do not or rarely consume seafood. The aim of this review is to critically evaluate the current evidence from randomised controlled trials (RCT) in healthy school-aged children, younger and older adults to determine whether consumption of LC omega-3 PUFA improves cognitive performance and to make recommendations for future research. Current evidence suggests that consumption of LC omega-3 PUFA, particularly DHA, may enhance cognitive performance relating to learning, cognitive development, memory and speed of performing cognitive tasks. Those who habitually consume diets low in DHA, children with low literacy ability and malnourished and older adults with age-related cognitive decline and mild cognitive impairment seem to benefit most. However, study design limitations in many RCTs hamper firm conclusions. The measurement of a uniform biomarker, e.g., % DHA in red blood cells, is essential to establish baseline DHA-status, to determine targets for cognitive performance and to facilitate dosage recommendations. It is recommended that future studies be at least 16 weeks in duration, account for potential interaction effects of gender, age and apolipoprotein E genotype, include vegan/vegetarian populations, include measures of speed of cognitive performance and include brain imaging technologies as supportive information on working mechanisms of LC omega-3 PUFA. PMID:25054550

  4. Ketone Bodies as a Possible Adjuvant to Ketogenic Diet in PDHc Deficiency but Not in GLUT1 Deficiency.

    PubMed

    Habarou, F; Bahi-Buisson, N; Lebigot, E; Pontoizeau, C; Abi-Warde, M T; Brassier, A; Le Quan Sang, K H; Broissand, C; Vuillaumier-Barrot, S; Roubertie, A; Boutron, A; Ottolenghi, C; de Lonlay, P

    2018-01-01

    Ketogenic diet is the first line therapy for neurological symptoms associated with pyruvate dehydrogenase deficiency (PDHD) and intractable seizures in a number of disorders, including GLUT1 deficiency syndrome (GLUT1-DS). Because high-fat diet raises serious compliance issues, we investigated if oral L,D-3-hydroxybutyrate administration could be as effective as ketogenic diet in PDHD and GLUT1-DS. We designed a partial or total progressive substitution of KD with L,D-3-hydroxybutyrate in three GLUT1-DS and two PDHD patients. In GLUT1-DS patients, we observed clinical deterioration including increased frequency of seizures and myoclonus. In parallel, ketone bodies in CSF decreased after introducing 3-hydroxybutyrate. By contrast, two patients with PDHD showed clinical improvement as dystonic crises and fatigability decreased under basal metabolic conditions. In one of the two PDHD children, 3-hydroxybutyrate has largely replaced the ketogenic diet, with the latter that is mostly resumed only during febrile illness. Positive direct effects on energy metabolism in PDHD patients were suggested by negative correlation between ketonemia and lactatemia (r 2  = 0.59). Moreover, in cultured PDHc-deficient fibroblasts, the increase of CO 2 production after 14 C-labeled 3-hydroxybutyrate supplementation was consistent with improved Krebs cycle activity. However, except in one patient, ketonemia tended to be lower with 3-hydroxybutyrate administration compared to ketogenic diet. 3-hydroxybutyrate may be an adjuvant treatment to ketogenic diet in PDHD but not in GLUT1-DS under basal metabolic conditions. Nevertheless, ketogenic diet is still necessary in PDHD patients during febrile illness.

  5. In male rats with concurrent iron and (n-3) fatty acid deficiency, provision of either iron or (n-3) fatty acids alone alters monoamine metabolism and exacerbates the cognitive deficits associated with combined deficiency.

    PubMed

    Baumgartner, Jeannine; Smuts, Cornelius M; Malan, Linda; Arnold, Myrtha; Yee, Benjamin K; Bianco, Laura E; Boekschoten, Mark V; Müller, Michael; Langhans, Wolfgang; Hurrell, Richard F; Zimmermann, Michael B

    2012-08-01

    Concurrent deficiencies of iron (Fe) (ID) and (n-3) fatty acids [(n-3)FAD)] in rats can alter brain monoamine pathways and impair learning and memory. We examined whether repletion with Fe and DHA/EPA, alone and in combination, corrects the deficits in brain monoamine activity (by measuring monoamines and related gene expression) and spatial working and reference memory [by Morris water maze (MWM) testing] associated with deficiency. Using a 2 × 2 design, male rats with concurrent ID and (n-3)FAD [ID+(n-3)FAD] were fed an Fe+DHA/EPA, Fe+(n-3)FAD, ID+DHA/EPA, or ID+(n-3)FAD diet for 5 wk [postnatal d 56-91]. Biochemical measures and MWM performance after repletion were compared to age-matched control rats. The provision of Fe in combination with DHA/EPA synergistically increased Fe concentrations in the olfactory bulb (OB) (Fe x DHA/EPA interaction). Similarly, provision of DHA/EPA in combination with Fe resulted in higher brain DHA concentrations than provision of DHA alone in the frontal cortex (FC) and OB (P < 0.05). Dopamine (DA) receptor D1 was upregulated in the hippocampus of Fe+DHA/EPA rats (fold-change = 1.25; P < 0.05) and there were significant Fe x DHA/EPA interactions on serotonin (5-HT) in the OB and on the DA metabolite dihydroxyphenylacetic acid in the FC and striatum. Working memory performance was impaired in ID+DHA/EPA rats compared with controls (P < 0.05). In the reference memory task, Fe+DHA/EPA improved learning behavior, but Fe or DHA/EPA alone did not. These findings suggest that feeding either Fe or DHA/EPA alone to adult rats with both ID and (n-3)FAD affects the DA and 5-HT pathways differently than combined repletion and exacerbates the cognitive deficits associated with combined deficiency.

  6. Rumen-protected lysine, methionine, and histidine increase milk protein yield in dairy cows fed a metabolizable protein-deficient diet.

    PubMed

    Lee, C; Hristov, A N; Cassidy, T W; Heyler, K S; Lapierre, H; Varga, G A; de Veth, M J; Patton, R A; Parys, C

    2012-10-01

    The objective of this experiment was to evaluate the effect of supplementing a metabolizable protein (MP)-deficient diet with rumen-protected (RP) Lys, Met, and specifically His on dairy cow performance. The experiment was conducted for 12 wk with 48 Holstein cows. Following a 2-wk covariate period, cows were blocked by DIM and milk yield and randomly assigned to 1 of 4 diets, based on corn silage and alfalfa haylage: control, MP-adequate diet (ADMP; MP balance: +9 g/d); MP-deficient diet (DMP; MP balance: -317 g/d); DMP supplemented with RPLys (AminoShure-L, Balchem Corp., New Hampton, NY) and RPMet (Mepron; Evonik Industries AG, Hanau, Germany; DMPLM); and DMPLM supplemented with an experimental RPHis preparation (DMPLMH). The analyzed crude protein content of the ADMP and DMP diets was 15.7 and 13.5 to 13.6%, respectively. The apparent total-tract digestibility of all measured nutrients, plasma urea-N, and urinary N excretion were decreased by the DMP diets compared with ADMP. Milk N secretion as a proportion of N intake was greater for the DMP diets compared with ADMP. Compared with ADMP, dry matter intake (DMI) tended to be lower for DMP, but was similar for DMPLM and DMPLMH (24.5, 23.0, 23.7, and 24.3 kg/d, respectively). Milk yield was decreased by DMP (35.2 kg/d), but was similar to ADMP (38.8 kg/d) for DMPLM and DMPLMH (36.9 and 38.5kg/d, respectively), paralleling the trend in DMI. The National Research Council 2001model underpredicted milk yield of the DMP cows by an average (±SE) of 10.3 ± 0.75 kg/d. Milk fat and true protein content did not differ among treatments, but milk protein yield was increased by DMPLM and DMPLMH compared with DMP and was not different from ADMP. Plasma essential amino acids (AA), Lys, and His were lower for DMP compared with ADMP. Supplementation of the DMP diets with RP AA increased plasma Lys, Met, and His. In conclusion, MP deficiency, approximately 15% below the National Research Council requirements from 2001, decreased

  7. Omega 3 and omega 6 fatty acids in human and animal health: an African perspective.

    PubMed

    Dunbar, B S; Bosire, R V; Deckelbaum, R J

    2014-12-01

    Lipids are essential for plant and animal development, growth and nutrition and play critical roles in health and reproduction. The dramatic increase in the human population has put increasing pressure on human food sources, especially of those sources of food which contain adequate levels of polyunsaturated fatty acids (PUFAs) and more importantly, sources of food which have favorable ratios of the n-3 (18-carbon, α-linolenic acid, ALA) to n-6 (18-carbon linoleic acid, LA) PUFAs. Recent studies have demonstrated the beneficial effects of the n-3 PUFAs in diets as well as potentially negative effects of excessive levels of n-6 PUFAs in diets. This review discusses these human health issues relating to changes in diets based on environmental and industrial changes as well as strategies in East Africa for improving lipid composition of food using indigenous sources. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Long-term dietary supplementation with saury oil attenuates metabolic abnormalities in mice fed a high-fat diet: combined beneficial effect of omega-3 fatty acids and long-chain monounsaturated fatty acids.

    PubMed

    Yang, Zhi-Hong; Inoue, Seika; Taniguchi, Yasuko; Miyahara, Hiroko; Iwasaki, Yusuke; Takeo, Jiro; Sakaue, Hiroshi; Nakaya, Yutaka

    2015-12-01

    Pacific saury is a common dietary component in East Asia. Saury oil contains considerable levels of n-3 unsaturated fatty acids (PUFA) and long-chain monounsaturated fatty acids (LCMUFA) with aliphatic tails longer than 18 carbons. In our previous study, consumption of saury oil for 4 to 6 wk improved insulin sensitivity and the plasma lipid profile in mice. However, the long-term effects of saury oil on metabolic syndrome (MetS) risk factors remain to be demonstrated. In the current study, we examined the long-term effects of saury oil on mice fed a high-fat diet, and compared the effect of n-3 PUFA EPA and LCMUFA on MetS risk factor in diet-induced obese mice. In Experiment 1, male C57BL/6 J mice were fed either a 32% lard diet (control) or a diet containing 22% lard plus 10% saury oil (saury oil group) for 18 weeks. Although no differences were found in body weight and energy expenditure between the control and saury oil groups, the saury oil diet decreased plasma insulin, non-HDL cholesterol, hepatic steatosis, and adipocyte size, and altered levels of mRNA transcribed from genes involved in insulin signaling and inflammation in adipose tissue. Organ and plasma fatty acid profile analysis revealed that consumption of saury oil increased n-3 PUFA and LCMUFA (especially n-11 LCMUFA) levels in multiple organs, and decreased the fatty acid desaturation index (C16:1/C16:0; C18:1/C18:0) in liver and adipose tissue. In Experiment 2, male C57BL/6 J mice were fed a 32% lard diet (control), a diet containing 28% lard plus 4% EPA (EPA group), or a diet containing 20% lard plus 12% LCMUFA concentrate (LCMUFA group) for 8 weeks. EPA or LCMUFA intake increased organ levels of EPA and LCMUFA, respectively. Consumption of EPA reduced plasma lipid levels and hepatic lipid deposition, and decreased the fatty acid desaturation index in liver and adipose tissue. Consumption of LCMUFA decreased plasma non-HDL cholesterol, improved hyperinsulinemia, and decreased the fatty acid

  9. Diet and asthma: an update.

    PubMed

    Han, Yueh-Ying; Forno, Erick; Holguin, Fernando; Celedón, Juan C

    2015-08-01

    Our objective was to provide an overview and discussion of recent experimental studies, epidemiologic studies, and clinical trials of diet and asthma. We focus on dietary sources and vitamins with antioxidant properties [vitamins (A, C, and E), folate, and omega-3 and omega-6 polyunsaturated fatty acids (n-3 and n-6 PUFAs)]. Current evidence does not support the use of vitamin A, vitamin C, vitamin E, or PUFAs for the prevention or treatment of asthma or allergies. Current guidelines for prenatal use of folate to prevent neural tube defects should be followed, as there is no evidence of major effects of this practice on asthma or allergies. Consumption of a balanced diet that is rich in sources of antioxidants (e.g. fruits and vegetables) may be beneficial in the primary prevention of asthma. None of the vitamins or nutrients examined is consistently associated with asthma or allergies. In some cases, further studies of the effects of a vitamin or nutrient on specific asthma phenotypes (e.g. vitamin C to prevent viral-induced exacerbations) are warranted. Clinical trials of 'whole diet' interventions to prevent asthma are advisable on the basis of existing evidence.

  10. Corn oil versus lard: Metabolic effects of omega-3 fatty acids in mice fed obesogenic diets with different fatty acid composition.

    PubMed

    Pavlisova, Jana; Bardova, Kristina; Stankova, Barbora; Tvrzicka, Eva; Kopecky, Jan; Rossmeisl, Martin

    2016-05-01

    Mixed results have been obtained regarding the level of insulin resistance induced by high-fat diets rich in saturated fatty acids (SFA) when compared to those enriched by polyunsaturated fatty acids (PUFA), and how metabolic effects of marine PUFA of n-3 series, i.e. docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), depend on dietary lipid background. Here we compared two high-fat diets, in which the major lipid constituent was based either on SFA in the form of pork lard (LHF diet) or PUFA of n-6 series (Omega-6) as corn oil (cHF diet). Both cHF and LHF parental diets were also supplemented with EPA+DHA (∼30 g/kg diet) to produce cHF+F and LHF+F diet, respectively. Male C57BL/6N mice were fed the experimental diets for 8 weeks. Insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamps in mice fed LHF and cHF diets, and then metabolic effects of cHF+F and LHF+F diets were assessed focusing on the liver and epididymal white adipose tissue (eWAT). Both LHF and cHF induced comparable weight gain and the level of insulin resistance, however LHF-fed mice showed increased hepatic steatosis associated with elevated activity of stearoyl-CoA desaturase-1 (SCD1), and lower plasma triacylglycerol levels when compared to cHF. Despite lowering hepatic SCD1 activity, which was concomitant with reduced hepatic steatosis reaching the level observed in cHF+F mice, LHF+F did not decrease adiposity and the weight of eWAT, and rather further impaired insulin sensitivity relative to cHF+F, that tended to improve it. In conclusion, high-fat diets containing as much as ∼35 weight% as lipids induce similar weight gain and impairment of insulin sensitivity irrespective whether they are based on SFA or Omega-6. Although the SFA-rich diet containing EPA+DHA efficiently reduced hepatic steatosis, it did so without a corresponding improvement in insulin sensitivity and in the absence of effect on adiposity. Copyright © 2015 Elsevier B.V. and Société Fran

  11. Impaired de novo choline synthesis explains why phosphatidylethanolamine N-methyltransferase-deficient mice are protected from diet-induced obesity.

    PubMed

    Jacobs, René L; Zhao, Yang; Koonen, Debby P Y; Sletten, Torunn; Su, Brian; Lingrell, Susanne; Cao, Guoqing; Peake, David A; Kuo, Ming-Shang; Proctor, Spencer D; Kennedy, Brian P; Dyck, Jason R B; Vance, Dennis E

    2010-07-16

    Phosphatidylcholine (PC) is synthesized from choline via the CDP-choline pathway. Liver cells can also synthesize PC via the sequential methylation of phosphatidylethanolamine, catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). The current study investigates whether or not hepatic PC biosynthesis is linked to diet-induced obesity. Pemt(+/+) mice fed a high fat diet for 10 weeks increased in body mass by 60% and displayed insulin resistance, whereas Pemt(-/-) mice did not. Compared with Pemt(+/+) mice, Pemt(-/-) mice had increased energy expenditure and maintained normal peripheral insulin sensitivity; however, they developed hepatomegaly and steatosis. In contrast, mice with impaired biosynthesis of PC via the CDP-choline pathway in liver became obese when fed a high fat diet. We, therefore, hypothesized that insufficient choline, rather than decreased hepatic phosphatidylcholine, was responsible for the lack of weight gain in Pemt(-/-) mice despite the presence of 1.3 g of choline/kg high fat diet. Supplementation with an additional 2.7 g of choline (but not betaine)/kg of diet normalized energy metabolism, weight gain, and insulin resistance in high fat diet-fed Pemt(-/-) mice. Furthermore, Pemt(+/+) mice that were fed a choline-deficient diet had increased oxygen consumption, had improved glucose tolerance, and gained less weight. Thus, de novo synthesis of choline via PEMT has a previously unappreciated role in regulating whole body energy metabolism.

  12. Changes in Fatty Acid Composition and Distribution of N-3 Fatty Acids in Goat Tissues Fed Different Levels of Whole Linseed

    PubMed Central

    Zakaria, Md. Zuki Abu Bakar; Meng, Goh Yong; Sazili, Awis Qurni

    2014-01-01

    The effects of feeding different levels of whole linseed on fatty acid (FA) composition of muscles and adipose tissues of goat were investigated. Twenty-four Crossed Boer bucks were assigned randomly into three treatment diets: L0, L10, or L20, containing 0%, 10%, or 20% whole linseed, respectively. The goats were slaughtered after 110 days of feeding. Samples from the longissimus dorsi, supraspinatus, semitendinosus, and subcutaneous fat (SF) and perirenal fat (PF) were taken for FA analyses. In muscles, the average increments in α-linolenic (ALA) and total n-3 PUFA were 6.48 and 3.4, and 11.48 and 4.78 for L10 and L20, respectively. In the adipose tissues, the increments in ALA and total n-3 PUFA were 3.07- and 6.92-fold and 3.00- and 7.54-fold in SF and PF for L10 and L20, respectively. The n-6 : n-3 ratio of the muscles was decreased from up to 8.86 in L0 to 2 or less in L10 and L20. The PUFA : SFA ratio was increased in all the tissues of L20 compared to L0. It is concluded that both inclusion levels (10% and 20%) of whole linseed in goat diets resulted in producing meat highly enriched with n-3 PUFA with desirable n-6 : n-3 ratio. PMID:25478601

  13. Intake levels of dietary long-chain PUFAs modify the association between genetic variation in FADS and LDL-C.

    PubMed

    Hellstrand, S; Sonestedt, E; Ericson, U; Gullberg, B; Wirfält, E; Hedblad, B; Orho-Melander, M

    2012-06-01

    Polymorphisms of the FA desaturase (FADS) gene cluster have been associated with LDL, HDL, and triglyceride concentrations. Because FADS converts α-linolenic acid (ALA) and linoleic acid into PUFAs, we investigated the interaction between different PUFA intakes and the FADS polymorphism rs174547 (T>C) on fasting blood lipid and lipoprotein concentrations. We included 4,635 individuals (60% females, 45-68 years) from the Swedish population-based Malmö Diet and Cancer cohort. Dietary intakes were assessed by a modified diet history method including 7-day registration of cooked meals. The C-allele of rs174547 was associated with lower LDL concentration (P = 0.03). We observed significant interaction between rs174547 and long-chain ω-3 PUFA intakes on LDL (P = 0.01); the C-allele was only associated with lower LDL among individuals in the lowest tertile of long-chain ω-3 PUFA intakes (P < 0.001). In addition, significant interaction was observed between rs174547 and the ratio of ALA and linoleic FA intakes on HDL (P = 0.03). However, no significant associations between the C-allele and HDL were detected within the intake tertiles of the ratio. Our findings suggest that dietary intake levels of different PUFAs modify the associated effect of genetic variation in FADS on LDL and HDL.

  14. Smad3 Deficiency in Mice Protects Against Insulin Resistance and Obesity Induced by a High-Fat Diet

    PubMed Central

    Tan, Chek Kun; Leuenberger, Nicolas; Tan, Ming Jie; Yan, Yew Wai; Chen, Yinghui; Kambadur, Ravi; Wahli, Walter; Tan, Nguan Soon

    2011-01-01

    OBJECTIVE Obesity and associated pathologies are major global health problems. Transforming growth factor-β/Smad3 signaling has been implicated in various metabolic processes, including adipogenesis, insulin expression, and pancreatic β-cell function. However, the systemic effects of Smad3 deficiency on adiposity and insulin resistance in vivo remain elusive. This study investigated the effects of Smad3 deficiency on whole-body glucose and lipid homeostasis and its contribution to the development of obesity and type 2 diabetes. RESEARCH DESIGN AND METHODS We compared various metabolic profiles of Smad3-knockout and wild-type mice. We also determined the mechanism by which Smad3 deficiency affects the expression of genes involved in adipogenesis and metabolism. Mice were then challenged with a high-fat diet to study the impact of Smad3 deficiency on the development of obesity and insulin resistance. RESULTS Smad3-knockout mice exhibited diminished adiposity with improved glucose tolerance and insulin sensitivity. Chromatin immunoprecipitation assay revealed that Smad3 deficiency increased CCAAT/enhancer-binding protein β-C/EBP homologous protein 10 interaction and exerted a differential regulation on proliferator-activated receptor β/δ and proliferator-activated receptor γ expression in adipocytes. Focused gene expression profiling revealed an altered expression of genes involved in adipogenesis, lipid accumulation, and fatty acid β-oxidation, indicative of altered adipose physiology. Despite reduced physical activity with no modification in food intake, these mutant mice were resistant to obesity and insulin resistance induced by a high-fat diet. CONCLUSIONS Smad3 is a multifaceted regulator in adipose physiology and the pathogenesis of obesity and type 2 diabetes, suggesting that Smad3 may be a potential target for the treatment of obesity and its associated disorders. PMID:21270259

  15. Different Dietary Protein and PUFA Interventions Alter the Fatty Acid Concentrations, but Not the Meat Quality, of Porcine Muscle

    PubMed Central

    Dannenberger, Dirk; Nuernberg, Karin; Nuernberg, Gerd; Priepke, Antje

    2012-01-01

    The present study investigated the effect of a reduced protein diet in combination with different vegetable oils (sunflower seed oil or linseed oil) on carcass traits, meat quality and fatty acid profile in porcine muscle. Forty male Landrace pigs were allocated into four experimental groups (each n = 8) and one control group (n = 8) at a live weight of approximately 60 kg. The pigs were fed ad libitum from 60 kg to 100 kg live weight and restricted to 2.8 kg/day until they reached 120 kg. In contrast to other studies, the intramuscular fat content (IMF) did not increase in animals of groups fed a reduced protein diet and vegetable oils. The IMF ranged between 1.2% and 1.4%. The growth performance and meat quality of the longissimus muscle was not affected by the diet, but the average daily gain (ADG) and drip loss were affected. The muscle fatty acid concentrations were significantly affected by the diet, resulting in higher n-3 FA concentrations up to 113 mg/100 g muscle and lower n-6/n-3 PUFA ratio for pigs fed linseed oil-containing high- and reduced protein diets, compared to sunflower seed oil-containing diets. PMID:23112912

  16. Effects of n-3 long-chain PUFA supplementation to lactating mothers and their breastfed children on child growth and morbidity: a 2 × 2 factorial randomized controlled trial in rural Ethiopia.

    PubMed

    Argaw, Alemayehu; Wondafrash, Mekitie; Bouckaert, Kimberley P; Kolsteren, Patrick; Lachat, Carl; Belachew, Tefera; De Meulenaer, Bruno; Huybregts, Lieven

    2018-03-01

    Recurrent infections and inflammation contribute to growth faltering in low-income countries. n-3 (ω-3) Long-chain polyunsaturated fatty-acids (LC-PUFAs) may improve immune maturation, resistance to infections, and growth in young children who are at risk. We evaluated the independent and combined effects of fish oil (500 mg n-3 LC-PUFAs/d) supplementation to lactating mothers and their breastfed children, aged 6-24 mo, on child morbidity, systemic inflammation, and growth in southwest Ethiopia. A 4-arm double-blind randomized controlled trial was conducted by enrolling 360 mother-infant pairs with infants 6-12 mo old. Study arms were both the lactating mother and child receiving fish oil intervention (MCI), only the lactating mother receiving fish oil intervention and child receiving placebo control (MI), only the child receiving intervention and mother receiving placebo control (CI), and both mother and child receiving a placebo supplement or control (C). The primary study outcome was linear growth using monthly changes in length-for-age z score. Anthropometric measurements were taken monthly, and hemoglobin, C-reactive protein, and blood LC-PUFAs were measured at baseline and after 6 and 12 mo of follow-up. Weekly morbidity surveillance was conducted throughout the study. Fish-oil supplementation significantly increased blood n-3 LC-PUFA concentration (P < 0.01) and decreased the arachidonic acid:(docosahexaenoic acid + eicosapentaenoic acid) ratio (P < 0.001) in all intervention arms. No significant intervention effect was found on linear growth, morbidity, or systemic inflammation. Compared to the control group, a small positive effect on monthly changes in weight-for-length z scores was found in the CI arm (effect size: 0.022/mo; 95% CI: 0.005, 0.039/mo; P = 0.012) and the MCI arm (effect size: 0.018/mo; 95% CI: 0.001, 0.034/mo; P = 0.041). n-3 LC-PUFA supplementation of lactating mothers and children did not affect child linear growth and

  17. Consumption of a low-carbohydrate and high-fat diet (the ketogenic diet) exaggerates biotin deficiency in mice.

    PubMed

    Yuasa, Masahiro; Matsui, Tomoyoshi; Ando, Saori; Ishii, Yoshie; Sawamura, Hiromi; Ebara, Shuhei; Watanabe, Toshiaki

    2013-10-01

    Biotin is a water-soluble vitamin that acts as a cofactor for several carboxylases. The ketogenic diet, a low-carbohydrate, high-fat diet, is used to treat drug-resistant epilepsy and promote weight loss. In Japan, the infant version of the ketogenic diet is known as the "ketone formula." However, as the special infant formulas used in Japan, including the ketone formula, do not contain sufficient amounts of biotin, biotin deficiency can develop in infants who consume the ketone formula. Therefore, the aim of this study was to evaluate the effects of the ketogenic diet on biotin status in mice. Male mice (N = 32) were divided into the following groups: control diet group, biotin-deficient (BD) diet group, ketogenic control diet group, and ketogenic biotin-deficient (KBD) diet group. Eight mice were used in each group. At 9 wk, the typical symptoms of biotin deficiency such as hair loss and dermatitis had only developed in the KBD diet group. The total protein expression level of biotin-dependent carboxylases and the total tissue biotin content were significantly decreased in the KBD and BD diet groups. However, these changes were more severe in the KBD diet group. These findings demonstrated that the ketogenic diet increases biotin bioavailability and consumption, and hence, promotes energy production by gluconeogenesis and branched-chain amino acid metabolism, which results in exaggerated biotin deficiency in biotin-deficient mice. Therefore, biotin supplementation is important for mice that consume the ketogenic diet. It is suggested that individuals that consume the ketogenic diet have an increased biotin requirement. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. The effects of omega-3 polyunsaturated Fatty Acid consumption on mammary carcinogenesis.

    PubMed

    Witte, Theodore R; Hardman, W Elaine

    2015-05-01

    The consumption of omega-3 polyunsaturated fatty acids (n-3 PUFA) is associated with a reduced risk of breast cancer. Studies in animals and in vitro have demonstrated mechanisms that could explain this apparent effect, but clinical and epidemiological studies have returned conflicting results on the practical benefits of dietary n-3 PUFA for prevention of breast cancer. Effects are often only significant within a population when comparing the highest n-3 PUFA consumption group to the lowest n-3 group or highest n-6 group. The beneficial effects of n-3 PUFA eicosapentaenoic and docosahexaenoic on the risk of breast cancer are dose dependent and are negatively affected by total n-6 consumption. The majority of the world population, including the most highly developed regions, consumes insufficient n-3 PUFA to significantly reduce breast cancer risk. This review discusses the physiological and dietary context in which reduction of breast cancer risk may occur, some proposed mechanisms of action and meaningful recommendations for consumption of n-3 PUFA in the diet of developed regions.

  19. n-3 Polyunsaturated fatty acids in animal models with neuroinflammation.

    PubMed

    Orr, Sarah K; Trépanier, Marc-Olivier; Bazinet, Richard P

    2013-01-01

    Neuroinflammation is present in the majority of acute and chronic neurological disorders. Excess or prolonged inflammation in the brain is thought to exacerbate neuronal damage and loss. Identifying modulators of neuroinflammation is an active area of study since it may lead to novel therapies. Omega-3 polyunsaturated fatty acids (n-3 PUFA) are anti-inflammatory in many non-neural tissues; their role in neuroinflammation is less studied. This review summarizes the relationship between n-3 PUFA and brain inflammation in animal models of brain injury and aging. Evidence by and large shows protective effects of n-3 PUFA in models of sickness behavior, stroke, aging, depression, Parkinson's disease, diabetes, and cytokine- and irradiation-induced cognitive impairments. However, rigorous studies that test the direct effects of n-3 PUFA in neuroinflammation in vivo are lacking. Future research in this area is necessary to determine if, and if so which, n-3 PUFA directly target brain inflammatory pathways. n-3 PUFA bioactive metabolites may provide novel therapeutic targets for neurological disorders with a neuroinflammatory component. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Effect of Omega-3 PUFAs Supplementation with Lifestyle Modification on Anthropometric Indices and Vo2 max in Overweight Women.

    PubMed

    Haghravan, Simin; Keshavarz, Seyed Ali; Mazaheri, Reza; Alizadeh, Zahra; Mansournia, Mohammad Ali

    2016-05-01

    Despite the fact that the recommendations of counteracting obesity advocate for changing lifestyle and physical activity habits, the prevalence of obesity continues to rise. The aim of the study was to investigate the effect of omega-3 PUFAs supplementation with lifestyle modification on anthropometric indices and Vo2max in overweight women. Fifty overweight women aged between 20 to 45 years were recruited in this interventional study. Women randomly were divided into two experimental groups (n = 25). Group 1 received omega-3 supplement, aerobic exercise program, and a healthy diet education. Group 2 was similar to group 1, except in that patients received placebo instead of omega-3 capsules. Experimental and placebo group subjects were asked to take one supplementary capsule every day, for 8 weeks. Anthropometric indices were measured in the fourth and eighth weeks of the trial. The maximum aerobic capacity (Vo2max) was determined using a gas analysis device. The level of significance for comparing the results before and after the trial was considered at P < 0.05. According to the data, body weight, body fat percentage, waist circumference, and abdominal skinfold thickness significantly reduced in the omega-3 treated group compared to the control group during 8 weeks after the initiation of the study (P < 0.05). In addition, supplementation of omega-3, significantly improved the VO2max outcome compared to that of the control group (P = 0.03). According to the results, it seems that omega-3 PUFAS supplementation with lifestyle modification has positive effects on anthropometric indices and Vo2max in overweight women.

  1. Ethiopian pre-school children consuming a predominantly unrefined plant-based diet have low prevalence of iron-deficiency anaemia.

    PubMed

    Gashu, Dawd; Stoecker, Barbara J; Adish, Abdulaziz; Haki, Gulelat D; Bougma, Karim; Marquis, Grace S

    2016-07-01

    Children from low-income countries consuming predominantly plant-based diets but little animal products are considered to be at risk of Fe deficiency. The present study determined the Fe status of children from resource-limited rural households. A cross-sectional study. Twenty six kebeles (the smallest administrative unit) from six zones of the Amhara region, Ethiopia. Children aged 54-60 months (n 628). Grain, roots or tubers were the main dietary components consumed by 100 % of the study participants, followed by pulses, legumes or nuts (66·6 %). Consumption of fruit and vegetables (19·3 %) and meat, poultry and fish (2·2 %) was low. Children had a mean dietary diversity score of 2·1 (sd 0·8). Most children (74·8 %, n 470) were in the lowest dietary diversity group (1-2 food groups). Rate of any morbidity in the preceding 14 d was 22·9 % (n 114). Infection or inflammation (α1-acid glycoprotein >1·2 g/l) was present in 30·2 % (n 184) of children. Children had a high rate of stunting (43·2 %). Of the total sample, 13·6 % (n 82) of children were anaemic, 9·1 % (n 57) were Fe deficient and 5·3 % (n 32) had Fe-deficiency anaemia. Fe-deficiency erythropoiesis was present in 14·2 % (n 60) of children. Despite consuming a predominantly plant-based diet and little animal-source foods, there was a low prevalence of Fe-deficiency anaemia. This illustrates that dietary patterns can be inharmonious with Fe biochemical status; thus, Fe-related interventions require biochemical screening.

  2. Omega 3 polyunsaturated fatty acid improves spatial learning and hippocampal Peroxisome Proliferator Activated Receptors (PPARα and PPARγ) gene expression in rats

    PubMed Central

    2012-01-01

    Background This study examined the effects of dietary polyunsaturated fatty acids (PUFA) as different n-6: n-3 ratios on spatial learning and gene expression of peroxisome- proliferator-activated receptors (PPARs) in the hippocampus of rats. Thirty male Sprague–Dawley rats were randomly allotted into 3 groups of ten animals each and received experimental diets with different n-6: n-3 PUFA ratios of either 65:1, 22:1 or 4.5:1. After 10 weeks, the spatial memory of the animals was assessed using the Morris Water Maze test. The expression of PPARα and PPARγ genes were determined using real-time PCR. Results Decreasing dietary n-6: n-3 PUFA ratios improved the cognitive performance of animals in the Morris water maze test along with the upregulation of PPARα and PPARγ gene expression. The animals with the lowest dietary n-6: n-3 PUFA ratio presented the highest spatial learning improvement and PPAR gene expression. Conclusion It can be concluded that modulation of n-6: n-3 PUFA ratios in the diet may lead to increased hippocampal PPAR gene expression and consequently improved spatial learning and memory in rats. PMID:22989138

  3. PUFA-induced cell death is mediated by Yca1p-dependent and -independent pathways, and is reduced by vitamin C in yeast.

    PubMed

    Johansson, Magnus; Chen, Xin; Milanova, Stefina; Santos, Cristiano; Petranovic, Dina

    2016-03-01

    Polyunsaturated fatty acids (PUFA) such as linoleic acid (LA, n-6, C18:2) and γ-linolenic acid (GLA, n-6, C18:3) are essential and must be obtained from the diet. There has been a growing interest in establishing a bio-sustainable production of PUFA in several microorganisms, e.g. in yeast Saccharomyces cerevisiae. However, PUFAs can also be toxic to cells because of their susceptibility to peroxidation. Here we investigated the negative effects of LA and GLA production on S. cerevisiae by characterizing a strain expressing active Δ6 and Δ12 desaturases from the fungus Mucor rouxii. Previously, we showed that the PUFA-producing strain has low viability, down-regulated genes for oxidative stress response, and decreased proteasome activity. Here we show that the PUFA strain accumulates high levels of reactive oxygen species (ROS) and lipid peroxides, and accumulates damaged proteins. The PUFA strain also showed great increase in metacaspase Yca1p activity, suggesting cells could die by caspase-mediated cell death. When treated with antioxidant vitamin C, ROS, lipid peroxidation and protein carbonylation were greatly reduced, and the activity of the metacaspase was significantly decreased too, ultimately doubling the lifespan of the PUFA strain. When deleting YCA1, the caspase-like activity and the oxidative stress decreased and although the lifespan was slightly prolonged, the phenotype could not be fully reversed, pointing that Yca1p was not the main executor of cell death. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Changes in cholesterol homeostasis modify the response of F1B hamsters to dietary very long chain n-3 and n-6 polyunsaturated fatty acids

    USDA-ARS?s Scientific Manuscript database

    The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC) n-3 PUFA is paradoxical to that observed in humans. This anomaly is attributed, in part, to low lipoprotein lipase activity and dependent on cholesterol status. To further elucidate the mechanism(...

  5. Fish Oil-Derived Long-Chain n-3 Polyunsaturated Fatty Acids Reduce Expression of M1-Associated Macrophage Markers in an ex vivo Adipose Tissue Culture Model, in Part through Adiponectin.

    PubMed

    De Boer, Anna A; Monk, Jennifer M; Liddle, Danyelle M; Power, Krista A; Ma, David W L; Robinson, Lindsay E

    2015-01-01

    Adipose tissue (AT) macrophages (ATM) play a key role in obesity-associated pathologies, and their phenotype can be influenced by the local tissue microenvironment. Interestingly, long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) and the LC n-3 PUFA-upregulated adipokine, adiponectin (Ad), may mitigate excessive ATM inflammatory M1-polarization responses. However, to what extent LC n-3 PUFA and Ad work in concert to affect macrophage phenotype has not been examined. Thus, we used an established ex vivo AT organ culture model using visceral AT from mice fed a control (CON; 10% w/w safflower oil) n-6 PUFA-rich diet or an isocaloric fish oil (FO; 3% w/w menhaden oil + 7% w/w safflower oil)-derived LC n-3 PUFA-rich diet to generate AT conditioned media (ACM). We then evaluated if CON or FO ACM affected macrophage polarization markers in a model designed to mimic acute [18 h ACM plus lipopolysaccharide (LPS) for the last 6 h] or chronic (macrophages treated with LPS-challenged CON or FO ACM for 24 h) inflammation ± Ad-neutralizing antibody and the LPS-neutralizing agent, polymyxin B. In the acute inflammation model, macrophages treated with FO ACM had decreased lipid uptake and mRNA expression of M1 markers (Nos2, Nfκb, Il6, Il18, Ccl2, and Ccl5) compared with CON ACM (p ≤ 0.05); however, these effects were largely attenuated when Ad was neutralized (p > 0.05). Furthermore, in the chronic inflammation model, macrophages treated with FO ACM had decreased mRNA expression of M1 markers (Nos2, Tnfα, Ccl2, and Il1β) and IL-6 and CCL2 secretion (p ≤ 0.05); however, some of these effects were lost when Ad was neutralized, and were further exacerbated when both Ad and LPS were neutralized. Taken together, this work shows that LC n-3 PUFA and Ad work in concert to suppress certain M1 macrophage responses. Thus, future strategies to modulate the ATM phenotype should consider the role of both LC n-3 PUFA and Ad in mitigating obese AT

  6. Fish Oil-Derived Long-Chain n-3 Polyunsaturated Fatty Acids Reduce Expression of M1-Associated Macrophage Markers in an ex vivo Adipose Tissue Culture Model, in Part through Adiponectin

    PubMed Central

    De Boer, Anna A.; Monk, Jennifer M.; Liddle, Danyelle M.; Power, Krista A.; Ma, David W. L.; Robinson, Lindsay E.

    2015-01-01

    Adipose tissue (AT) macrophages (ATM) play a key role in obesity-associated pathologies, and their phenotype can be influenced by the local tissue microenvironment. Interestingly, long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) and the LC n-3 PUFA-upregulated adipokine, adiponectin (Ad), may mitigate excessive ATM inflammatory M1-polarization responses. However, to what extent LC n-3 PUFA and Ad work in concert to affect macrophage phenotype has not been examined. Thus, we used an established ex vivo AT organ culture model using visceral AT from mice fed a control (CON; 10% w/w safflower oil) n-6 PUFA-rich diet or an isocaloric fish oil (FO; 3% w/w menhaden oil + 7% w/w safflower oil)-derived LC n-3 PUFA-rich diet to generate AT conditioned media (ACM). We then evaluated if CON or FO ACM affected macrophage polarization markers in a model designed to mimic acute [18 h ACM plus lipopolysaccharide (LPS) for the last 6 h] or chronic (macrophages treated with LPS-challenged CON or FO ACM for 24 h) inflammation ± Ad-neutralizing antibody and the LPS-neutralizing agent, polymyxin B. In the acute inflammation model, macrophages treated with FO ACM had decreased lipid uptake and mRNA expression of M1 markers (Nos2, Nfκb, Il6, Il18, Ccl2, and Ccl5) compared with CON ACM (p ≤ 0.05); however, these effects were largely attenuated when Ad was neutralized (p > 0.05). Furthermore, in the chronic inflammation model, macrophages treated with FO ACM had decreased mRNA expression of M1 markers (Nos2, Tnfα, Ccl2, and Il1β) and IL-6 and CCL2 secretion (p ≤ 0.05); however, some of these effects were lost when Ad was neutralized, and were further exacerbated when both Ad and LPS were neutralized. Taken together, this work shows that LC n-3 PUFA and Ad work in concert to suppress certain M1 macrophage responses. Thus, future strategies to modulate the ATM phenotype should consider the role of both LC n-3 PUFA and Ad in mitigating obese AT

  7. Diets derived from maize monoculture cause maternal infanticides in the endangered European hamster due to a vitamin B3 deficiency

    PubMed Central

    Handrich, Yves; Dallongeville, Odeline; Robin, Jean-Patrice; Habold, Caroline

    2017-01-01

    From 1735 to 1940, maize-based diets led to the death of hundreds of thousands of people from pellagra, a complex disease caused by tryptophan and vitamin B3 deficiencies. The current cereal monoculture trend restricts farmland animals to similarly monotonous diets. However, few studies have distinguished the effects of crop nutritional properties on the reproduction of these species from those of other detrimental factors such as pesticide toxicity or agricultural ploughing. This study shows that maize-based diets cause high rates of maternal infanticides in the European hamster, a farmland species on the verge of extinction in Western Europe. Vitamin B3 supplementation is shown to effectively restore reproductive success in maize-fed females. This study pinpoints how nutritional deficiencies caused by maize monoculture could affect farmland animal reproduction and hence their fitness. PMID:28100816

  8. Diets derived from maize monoculture cause maternal infanticides in the endangered European hamster due to a vitamin B3 deficiency.

    PubMed

    Tissier, Mathilde L; Handrich, Yves; Dallongeville, Odeline; Robin, Jean-Patrice; Habold, Caroline

    2017-01-25

    From 1735 to 1940, maize-based diets led to the death of hundreds of thousands of people from pellagra, a complex disease caused by tryptophan and vitamin B3 deficiencies. The current cereal monoculture trend restricts farmland animals to similarly monotonous diets. However, few studies have distinguished the effects of crop nutritional properties on the reproduction of these species from those of other detrimental factors such as pesticide toxicity or agricultural ploughing. This study shows that maize-based diets cause high rates of maternal infanticides in the European hamster, a farmland species on the verge of extinction in Western Europe. Vitamin B3 supplementation is shown to effectively restore reproductive success in maize-fed females. This study pinpoints how nutritional deficiencies caused by maize monoculture could affect farmland animal reproduction and hence their fitness. © 2017 The Author(s).

  9. Effect of PUFA on patients with hypertension: A hospital based study

    PubMed Central

    Shantakumari, Nisha; Eldeeb, Rasha Ali; Mabrouk Ibrahim, Salwa Abdelzaher; Sreedharan, Jayadevan; Otoum, Sufian

    2014-01-01

    Introduction Hypertension affects more than a quarter of the global adult population. Studies conducted worldwide suggest an overall small, yet useful, role of omega-3 PUFAs in reducing blood pressure in hypertensive patients. However there is no substantial data in this regard from population based in Middle East and Asia. Objectives To determine the effects of (omega-3) PUFA supplementation on the blood pressure of hypertensive patient. To identify if male and female hypertensive patients respond differently to PUFA. To identify if response of hypertensive patients to PUFA varies with the duration of hypertension and co-existence of diabetes/dyslipidemia. Materials and methods This observational study was conducted among hypertensive patients visiting OPD of the Gulf Medical College Hospital, Ajman, UAE, during the period Jan–Dec 2012. A total of 100 hypertensive patients on treatment with their antihypertensive medications, 50 of whom were taking n-3 PUFA supplementation, were followed up for a period of 3 months. Comparisons were drawn between the BP recordings at the time of enrollment in the study and their follow up values 3 months after enrollment. Results There was a statistically significant reduction in both the systolic and diastolic blood pressures after 3 months of PUFA therapy. The BP lowering effect of PUFA was more in males. A statistically significant reduction in BP was noted in non-diabetic patients and patients with long standing hypertension. Conclusion Findings of the study suggest that omega-3 PUFA dietary supplements augment the benefits of pharmacotherapy in hypertension. PMID:25173198

  10. Expression of proinflammatory, proatherogenic genes is reduced by the Mediterranean diet in elderly people.

    PubMed

    Camargo, Antonio; Delgado-Lista, Javier; Garcia-Rios, Antonio; Cruz-Teno, Cristina; Yubero-Serrano, Elena M; Perez-Martinez, Pablo; Gutierrez-Mariscal, Francisco M; Lora-Aguilar, Pilar; Rodriguez-Cantalejo, Fernando; Fuentes-Jimenez, Francisco; Tinahones, Francisco Jose; Malagon, Maria M; Perez-Jimenez, Francisco; Lopez-Miranda, Jose

    2012-08-01

    Ageing is an important determinant of atherosclerosis development rate, mainly by the creation of a chronic low-grade inflammation. Diet, and particularly its fat content, modulates the inflammatory response in the fasting and postprandial states. Our aim was to study the effects of dietary fat on the expression of genes related to inflammation (NF-κB, monocyte chemoattractant protein 1 (MCP-1), TNF-α and IL-6) and plaque stability (matrix metalloproteinase 9, MMP-9) during the postprandial state of twenty healthy, elderly people who followed three diets for 3 weeks each: (1) Mediterranean diet (Med Diet) enriched in MUFA with virgin olive oil; (2) SFA-rich diet; and (3) low-fat, high-carbohydrate diet enriched in n-3 PUFA (CHO-PUFA diet) by a randomised crossover design. At the end of each period, after a 12-h fast, the subjects received a breakfast with a composition similar to the one when the dietary period ended. In the fasting state, the Med Diet consumption induced a lower gene expression of the p65 subunit of NF-κB compared with the SFA-rich diet (P = 0·019). The ingestion of the Med Diet induced a lower gene postprandial expression of p65 (P = 0·033), MCP-1 (P = 0·0229) and MMP-9 (P = 0·041) compared with the SFA-rich diet, and a lower gene postprandial expression of p65 (P = 0·027) and TNF-α (P = 0·047) compared with the CHO-PUFA diet. Direct plasma quantification mostly reproduced the findings. Our data suggest that consumption of a Med Diet reduces the postprandial inflammatory response in mononuclear cells compared with the SFA-rich and CHO-PUFA diets in elderly people. These findings may be partly responsible for the lower CVD risk found in populations with a high adherence to the Med Diet.

  11. Ratio of Dietary n-6/n-3 Polyunsaturated Fatty Acids Independently Related to Muscle Mass Decline in Hemodialysis Patients.

    PubMed

    Wong, Te-Chih; Chen, Yu-Tong; Wu, Pei-Yu; Chen, Tzen-Wen; Chen, Hsi-Hsien; Chen, Tso-Hsiao; Yang, Shwu-Huey

    2015-01-01

    n-3 polyunsaturated fatty acids (PUFAs) might be useful nutritional strategy for treating patients with sarcopenia. We evaluated the effect of the intake of dietary n-3 PUFAs on the skeletal muscle mass (SMM), appendicular skeletal muscle mass (ASM), and its determinants in patients receiving standard hemodialysis (HD) treatment for the management of end stage renal disease. In this cross-sectional study, data of 111 HD patients were analyzed. Anthropometric and bioelectrical impedance measurements used to estimate the muscle mass were performed the day of dialysis immediately after the dialysis session. Routine laboratory and 3-day dietary data were also collected. The cutoff value of adequate intake (AI) for both n-3 PUFAs and alpha-linolenic acid (ALA) was 1.6 g/day and 1.1 g/day for men and women, respectively. The mean age, mean dietary n-3 PUFAs intake, ALA intake, ratio of n-6/n-3 PUFAs intake, SMM, and ASM of patients were 61.4 ± 10.4 years, 2.0 ± 1.3 g/day, 1.5 ± 1.0 g/day, 9.5 ± 6.7 g/day, 23.9 ± 5.5 kg, and 17.5 ± 4.5 kg, respectively. A higher SMM and ASM significantly observed in patients who achieved an AI of n-3 PUFAs. Similar trends appeared to be observed among those patients who achieved the AI of ALA, but the difference was not significantly, except for ASM (P = 0.047). No relevant differences in demographics, laboratory and nutritional parameters were observed, regardless of whether the patients achieved an AI of n-3 PUFAs. Multivariate analysis showed that the BMI and equilibrated Kt/V were independent determinants of the muscle mass. Moreover, the ratio of n-6/n-3 PUFAs was an independent risk determinant of reduced ASM in HD patients. Patients with an AI of n-3 PUFAs had better total-body SMM and ASM. A higher dietary ratio of n-6/n-3 PUFAs seemed to be associated with a reduced muscle mass in HD patients.

  12. Methionine- and choline-deficient diet induces hepatic changes characteristic of non-alcoholic steatohepatitis.

    PubMed

    Marcolin, Eder; Forgiarini, Luiz Felipe; Tieppo, Juliana; Dias, Alexandre Simões; Freitas, Luiz Antonio Rodrigues de; Marroni, Norma Possa

    2011-01-01

    Non-alcoholic steatohepatitis is a disease with a high incidence, difficult diagnosis, and as yet no effective treatment. So, the use of experimental models for non-alcoholic steatohepatitis induction and the study of its routes of development have been studied. This study was designed to develop an experimental model of non-alcoholic steatohepatitis based on a methionine- and choline-deficient diet that is manufactured in Brazil so as to evaluate the liver alterations resulting from the disorder. Thirty male C57BL6 mice divided in two groups (n = 15) were used: the experimental group fed a methionine- and choline-deficient diet manufactured by Brazilian company PragSoluções®, and the control group fed a normal diet, for a period of 2 weeks. The animals were then killed by exsanguination to sample blood for systemic biochemical analyses, and subsequently submitted to laparotomy with total hepatectomy and preparation of the material for histological analysis. The statistical analysis was done using the Student's t-test for independent samples, with significance level of 5%. The mice that received the methionine- and choline-deficient diet showed weight loss and significant increase in hepatic damage enzymes, as well as decreased systemic levels of glycemia, triglycerides, total cholesterol, HDL and VLDL. The diagnosis of non-alcoholic steatohepatitis was performed in 100% of the mice that were fed the methionine- and choline-deficient diet. All non-alcoholic steatohepatitis animals showed some degree of macrovesicular steatosis, ballooning, and inflammatory process. None of the animals which were fed the control diet presented histological alterations. All non-alcoholic steatohepatitis animals showed significantly increased lipoperoxidation and antioxidant enzyme GSH activity. The low cost and easily accessible methionine- and choline-deficient diet explored in this study is highly effective in inducing steatosis and steatohepatitis in animal model, alterations

  13. Milk fatty acid profile of Peruvian Criollo and Brown Swiss cows in response to different diet qualities fed at low and high altitude.

    PubMed

    Bartl, Karin; Gomez, Carlos A; García, Miriam; Aufdermauer, Tony; Kreuzer, Michael; Hess, Hans Dieter; Wettstein, Hans-Rudolf

    2008-12-01

    Two identical experimental protocols were followed at 200 and 3,600 m above sea level (a.s.l.) determining the changes of the milk fatty acid (FA) profile of Brown Swiss (BS) and indigenous Peruvian Criollo cows (CR) as a response to diets which were designed to cover the variation in feed quality caused by season. At each site (altitude), six BS and six CR cows, adapted to > 3,500 m a.s.l., were fed three dietary treatments (DS, dry-season forage; RS rainy-season forage; OC, diet optimised to meet the cow's requirements) in a 2 x 2 x 3-factorial arrangement. Intakes of FA and milk yield increased from diet DS (low quality diet) to RS and OC (high quality diet) for both cow types. Milk fat proportions of conjugated linoleic acid (CLA), C18:3 c9,c12,c15, total n-3 and polyunsaturated FA (PUFA) were highest (p < 0.05) with diet OC and higher in the lowlands than in the highlands. Low intakes of diet DS obviously resulted in a ruminal energy deficiency and body lipid mobilisation. The ruminal energy deficiency with diet DS was especially pronounced in BS, apparently reducing biohydrogenation rate and leading to lower proportions of C18:0 and higher proportions of C18:3 c9,c12,c15 in milk fat (p < 0.05). Especially C18:3 c9,c12,c15 intake did not concur with its proportion in milk fat, suggesting a strong dependence on energy status. Milk yield and FA excretion with milk were higher for BS than for CR (p < 0.05) with all three diets although milk fat content was lower (p < 0.05) for BS than CR. Milk fat of BS was richer in CLA and PUFA than milk fat of CR (p < 0.05). The desaturase indices for 18 FA were also higher for BS than CR (p < 0.05), suggesting a slightly higher delta9-desaturase activity for BS, especially with diet DS. Milk fat content was generally higher at the high altitude than at the lowland site (p < 0.05), whereas the FA profile was unexpectedly similar across sites. Various interactions were found among diet type, cow type and altitude (site

  14. Different sources of omega-3 polyunsaturated fatty acids affects apparent digestibility, tissue deposition, and tissue oxidative stability in growing female rats.

    PubMed

    Tou, Janet C; Altman, Stephanie N; Gigliotti, Joseph C; Benedito, Vagner A; Cordonier, Elizabeth L

    2011-10-14

    Numerous health benefits associated with increased omega-3 polyunsaturated fatty acid (n-3 PUFA) consumption has lead to an increasing variety of available n-3 PUFA sources. However, sources differ in the type, amount, and structural form of the n-3 PUFAs. Therefore, the objective of this study was to determine the effect of different sources of ω-3 PUFAs on digestibility, tissue deposition, eicosanoid metabolism, and oxidative stability. Female Sprague-Dawley rats (age 28 d) were randomly assigned (n = 10/group) to be fed a high fat 12% (wt) diet consisting of either corn oil (CO) or n-3 PUFA rich flaxseed (FO), krill (KO), menhaden (MO), salmon (SO) or tuna (TO) oil for 8 weeks. Rats were individually housed in metabolic cages to determine fatty acid digestibility. Diet and tissue fatty acid composition was analyzed by gas chromatography and lipid classes using thin layer chromatography. Eicosanoid metabolism was determined by measuring urinary metabolites of 2-series prostaglandins (PGs) and thromoboxanes (TXBs) using enzyme immunoassays. Oxidative stability was assessed by measuring thiobarbituric acid reactive substances (TBARS) and total antioxidant capacity (TAC) using colorimetric assays. Gene expression of antioxidant defense enzymes was determined by real time quantitative polymerase chain reaction (RT-qPCR). Rats fed KO had significantly lower DHA digestibility and brain DHA incorporation than SO and TO-fed rats. Of the n-3 PUFA sources, rats fed SO and TO had the highest n-3 PUFAs digestibility and in turn, tissue accretion. Higher tissue n-3 LC-PUFAs had no significant effect on 2-series PG and TXB metabolites. Despite higher tissue n-3 LC-PUFA deposition, there was no increase in oxidation susceptibility indicated by no significant increase in TBARS or decrease in TAC and gene expression of antioxidant defense enzymes, in SO or TO-fed rats. On the basis that the optimal n-3 PUFA sources should provide high digestibility and efficient tissue

  15. Dietary fish oil supplements increase tissue n-3 fatty acid composition and expression of delta-6 desaturase and elongase-2 in Jade Tiger hybrid abalone.

    PubMed

    Mateos, Hintsa T; Lewandowski, Paul A; Su, Xiao Q

    2011-08-01

    This study was conducted to investigate the effects of fish oil (FO) supplements on fatty acid composition and the expression of ∆6 desaturase and elongase 2 genes in Jade Tiger abalone. Five test diets were formulated to contain 0.5, 1.0, 1.5, 2.0 and 2.5% of FO respectively, and the control diet was the normal commercial abalone diet with no additional FO supplement. The muscle, gonad and digestive glands (DG) of abalone fed with all of the five test diets showed significantly high levels of total n-3 polyunsaturated fatty acid (PUFA), eicosapentaenoic acid (EPA), docosapentaenoic acid n-3 (DPAn-3), and docosahexaenoic acid (DHA) than the control group. In all three types of tissue, abalone fed diet supplemented with 1.5% FO showed the highest level of these fatty acids (P < 0.05). For DPAn-3 the higher level was also found in muscle and gonad of abalone fed diet supplemented with 2% FO (P < 0.05). Elongase 2 expression was markedly higher in the muscle of abalone fed diet supplemented with 1.5% FO (P < 0.05), followed by the diet containing 2% FO supplement. For ∆6 desaturase, significantly higher expression was observed in muscle of abalone fed with diet containing 0.5% FO supplement (P < 0.05). Supplementation with FO in the normal commercial diet can significantly improve long chain n-3 PUFA level in cultured abalone, with 1.5% being the most effective supplementation level.

  16. Maternal dietary omega-3 fatty acid supplementation reduces placental oxidative stress and increases fetal and placental growth in the rat.

    PubMed

    Jones, Megan L; Mark, Peter J; Mori, Trevor A; Keelan, Jeffrey A; Waddell, Brendan J

    2013-02-01

    Placental oxidative stress plays a key role in the pathophysiology of several placenta-related disorders including intrauterine growth restriction. Oxidative stress occurs when accumulation of reactive oxygen species damages DNA, proteins, and lipids, an outcome normally limited by antioxidant defenses. Dietary supplementation with omega-3 polyunsaturated fatty acids (n-3 PUFAs) may limit oxidative stress by increasing antioxidant capacity, but n-3 PUFAs are also highly susceptible to lipid peroxidation; so n-3 PUFA supplementation is potentially harmful. Here we examined the effect of n-3 PUFAs on placental oxidative stress and on placental and fetal growth in the rat. We also investigated whether diet-induced changes in maternal plasma fatty acid profiles are associated with comparable changes in placental and fetal tissues. Rats were fed either standard or high n-3 PUFA diets from Day 1 of pregnancy, and tissues were collected on Day 17 or 22 (term = Day 23). Dietary supplementation with n-3 PUFAs increased fetal (6%) and placental (12%) weights at Day 22, the latter attributable primarily to growth of the labyrinth zone (LZ). Increased LZ weight was accompanied by reduced LZ F(2)-isoprostanes (by 31% and 11% at Days 17 and 22, respectively), a marker of oxidative damage. Maternal plasma PUFA profiles were altered by dietary fatty acid intake and were strongly predictive of corresponding profiles in placental and fetal tissues. Our data indicate that n-3 PUFA supplementation reduces placental oxidative stress and enhances placental and fetal growth. Moreover, fatty acid profiles in the mother, placenta, and fetus are highly dependent on dietary fatty acid intake.

  17. Fish oil LC-PUFAs do not affect blood coagulation parameters and bleeding manifestations: Analysis of 8 clinical studies with selected patient groups on omega-3-enriched medical nutrition.

    PubMed

    Jeansen, Stephanie; Witkamp, Renger F; Garthoff, Jossie A; van Helvoort, Ardy; Calder, Philip C

    2018-06-01

    The increased consumption of fish oil enriched-products exposes a wide diversity of people, including elderly and those with impaired health to relatively high amounts of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs). There is an ongoing debate around the possible adverse effects of n-3 LC-PUFAs on bleeding risk, particularly relevant in people with a medical history of cardiovascular events or using antithrombotic drugs. This analysis of 8 clinical intervention studies conducted with enteral medical nutrition products containing fish oil as a source of n-3 LC-PUFAs addresses the occurrence of bleeding-related adverse events and effects on key coagulation parameters (Prothrombin Time [PT], (activated) and Partial Thromboplastin Time [(a)PTT]). In all the patients considered (over 600 subjects treated with the active product in total), with moderate to severe disease, with or without concomitant use of antithrombotic agents, at home or in an Intensive Care Unit (ICU), no evidence of increased risk of bleeding with use of n-3 LC-PUFAs was observed. Furthermore there were no statistically significant changes from baseline in measured coagulation parameters. These findings further support the safe consumption of n-3 LC-PUFAs, even at short-term doses up to 10 g/day of eicosapentaenoic acid + docosahexaenoic acid (EPA + DHA) or consumed for up to 52 weeks above 1.5 g/day, in selected vulnerable and sensitive populations such as subjects with gastrointestinal cancer or patients in an ICU. We found no evidence to support any concern raised with regards to the application of n-3 LC-PUFAs and the potentially increased risk for the occurrence of adverse bleeding manifestations in these selected patient populations consuming fish oil enriched medical nutrition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. [Effects of the diet ratio of polyunsaturated fatty acids ω-3/ω-6 on experimental colitis in mice].

    PubMed

    Tian, Yu; Tian, Yu-ling; Li, Jun-xia; Dai, Yun; Wang, Hua-hong; Liu, Xin-guang

    2013-04-18

    To investigate the effect of changed ratio of polyunsaturated fatty acids (PUFA) on dextran sulfate sodium (DSS)-induced colitis in mice. Thirty-two male BALB/c mice were randomly divided into two groups: control group and PUFA group, PUFA group was continuously divided into 3 sub-groups: PUFA ω-3/ω-6 1:3 group, PUFA ω-3/ω-6 1:15 group and PUFA ω-3/ω-6 1:30 group. According to the difference in the sub-groups, PUFA group mice were fed with the corresponding modified diet. The control group was fed with the common diet, whose ratio of PUFA ω-3/ω-6 was 1:15. After eight weeks of different diets, experimental colitis in the three sub-groups of PUFA group was induced by DSS exposure. The mice were placed on three five-day cycles of 30 g/L DSS with ten days of recovery after each cycle, then were sacrificed after the final ten-day period. Overall symptomatic score and histopathological score were evaluated. And levels of mucosal prostaglandin E2 (PGE2) in the proximal and distal colon were measured respectively by enzyme immunoassay. The changed ratio of PUFA ω-3/ω-6 had no effect on the weight gain of the growing mice. Although there were no significant differences among the PUFA groups from the three separate aspects: weight gain, stool character and blood in the stool, there were significant differences among the three groups in overall symptomatic scores. A further comparison showed the overall symptomatic score of 1:3 group was significantly lower than that of the 1:30 group (P<0.05). There were significant differences among the PUFA groups in the histopathological score. The following comparison between the sub-groups showed the histopathological score of the 1:3 group was significantly lower than that of the 1:30 group (P<0.05). One mouse in the 1:30 group died of severe hemorrhage and one mouse also in this group had a huge dysplastic adenomatous polyp. The mucosal PGE2 which could reflect the level of intestinal inflammation showed that in the distal

  19. Dietary n-3 long chain polyunsaturated fatty acids in allergy prevention and asthma treatment.

    PubMed

    Willemsen, Linette E M

    2016-08-15

    The rise in non-communicable diseases, such as allergies, in westernized countries links to changes in lifestyle and diet. N-3 long chain polyunsaturated fatty acids (LCPUFA) present in marine oils facilitate a favorable milieu for immune maturation and may contribute to allergy prevention. N-3 LCPUFA can suppress innate and adaptive immune activation and induce epigenetic changes. Murine studies convincingly show protective effects of fish oil, a source of n-3 LCPUFA, in food allergy and asthma models. Observational studies in human indicate that high dietary intake of n-3 LCPUFA and low intake of n-6 PUFA may protect against the development of allergic disease early in life. High n-6 PUFA intake is also associated with an increased asthma risk while n-3 LCPUFA may be protective and reduce symptoms. The quality of the marine oil used has impact on efficacy of allergy prevention and several observations link in particular n-3 LCPUFA DHA to allergy suppression. Randomized controlled trials indicate that optimal timing, duration and dosage of n-3 LC-PUFA is required to exert an allergy protective effect. Supplementation during early pregnancy and lactation has shown promising results regarding allergy prevention. However these findings should be confirmed in a larger cohort. Although clinical trials in asthma patients reveal no consistent clinical benefits of n-3 LCPUFA supplementation on lung function, it can suppress airway inflammation. Future food-pharma approaches may reveal whether adjunct therapy with dietary n-3 LCPUFA can improve allergy prevention or immunotherapy via support of allergen specific oral tolerance induction or contribute to the efficacy of drug therapy for asthma patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effect of dietary supplementation of omega-3 polyunsaturated fatty acid (PUFA) rich fish oil on reproductive performance of the goat (Capra hircus).

    PubMed

    Mahla, Ajit Singh; Chaudhari, Ravjibhai K; Verma, Atul Kumar; Singh, Amit Kumar; Singh, Sanjay Kumar; Singh, Gyanendra; Sarkar, Mihir; Dutta, Narayan; Kumar, Harendra; Krishnaswamy, Narayanan

    2017-09-01

    Dietary supplementation of n-3 PUFA decreases the luteolytic PGF 2α and improves the pregnancy rate in the dairy cow. However, its effect in the goat is not known. Accordingly, we studied the effect of supplementation of n-3 PUFA rich Fish oil (FO) on different reproductive events in the goat. Cycling goats (n = 30) were divided into two equal groups and fed an isocaloric and isonitrogenous diet supplemented with either FO (TRT; n = 15) or palm oil (PO) (CON; n = 15) @ 0.6 mL/kg body weight for 72 days during the breeding season. Estrus synchronization was done on day 25 and 36 of supplementation using two PG regimen and the goats in estrus were bred. Mean interval from PGF 2α administration to the onset of estrus was 12 h longer (P < 0.05) in the TRT group than that of CON. The number of preovulatory follicles (POF) and ovulation rate was significantly higher in FO supplemented goats (P < 0.05) by 39.64 and 41.35%, respectively. Though the corpus luteum diameter was significantly higher (P < 0.05) on day 5, 8 and 11 post-breeding in the TRT group, mean serum progesterone (P 4 ) did not differ significantly (P > 0.05). Mean concentration of serum estradiol (E 2 ) was significantly (P < 0.01) lower in the FO supplemented group during day 0-60 post-breeding which could be due to significantly low serum cholesterol (P < 0.01). Though the serum concentration of PGF 2α metabolite (PGFM) and PGE 2 metabolite (PGEM) in the pregnant goats was significantly (P < 0.05) lower in the TRT group on day 16 and 17 post-breeding, the ratio of PGEM to PGFM remained unaffected suggesting a favourable effect of FO supplementation on the early pregnancy. The number of embryos, twinning rate and kidding rate were high in FO supplemented group though it was non-significant. However, gestation length, birth weight of kids and neonatal behaviour were comparable between the groups (P > 0.05). In conclusion, supplementation of n-3 PUFA rich FO significantly

  1. Regulation of Rat Hepatic L-Pyruvate Kinase Promoter Composition and Activity by Glucose, n-3 Polyunsaturated Fatty Acids, and Peroxisome Proliferator-activated Receptor-α Agonist*S

    PubMed Central

    Xu, Jinghua; Christian, Barbara; Jump, Donald B.

    2009-01-01

    Carbohydrate regulatory element-binding protein (ChREBP), MAX-like factor X(MLX), and hepatic nuclear factor-4α (HNF-4α)are key transcription factors involved in the glucose-mediated induction of hepatic L-type pyruvate kinase (L-PK) gene transcription. n-3 polyunsaturated fatty acids (PUFA) and WY14643 (peroxisome proliferator-activated receptor α (PPARα) agonist) interfere with glucose-stimulated L-PK gene transcription in vivo and in rat primary hepatocytes. Feeding rats a diet containing n-3 PUFA or WY14643 suppressed hepatic mRNAL-PK but did not suppress hepatic ChREBP or HNF-4α nuclear abundance. Hepatic MLX nuclear abundance, however, was suppressed by n-3 PUFA but not WY14643. In rat primary hepatocytes, glucose-stimulated accumulation of mRNALPK and L-PK promoter activity correlated with increased ChREBP nuclear abundance. This treatment also increased L-PK promoter occupancy by RNA polymerase II (RNA pol II), acetylated histone H3 (Ac-H3), and acetylated histone H4 (Ac-H4) but did not significantly impact L-PK promoter occupancy by ChREBP or HNF-4α. Inhibition of L-PK promoter activity by n-3 PUFA correlated with suppressed RNA pol II, Ac-H3, and Ac-H4 occupancy on the L-PK promoter. Although n-3 PUFA transiently suppressed ChREBP and MLX nuclear abundance, this treatment did not impact ChREBP-LPK promoter interaction. HNF4α-LPK promoter interaction was transiently suppressed by n-3 PUFA. Inhibition of L-PK promoter activity by WY14643 correlated with a transient decline in ChREBP nuclear abundance and decreased Ac-H4 interaction with the L-PK promoter. WY14643, however, had no impact on MLX nuclear abundance or HNF4α-LPK promoter interaction. Although overexpressed ChREBP or HNF-4α did not relieve n-3 PUFA suppression of L-PK gene expression, overexpressed MLX fully abrogated n-3 PUFA suppression of L-PK promoter activity and mRNAL-PK abundance. Overexpressed ChREBP, but not MLX, relieved the WY14643 inhibition of L-PK. In conclusion, n-3 PUFA

  2. Enriched dairy fat matrix diet prevents early life lipopolysaccharide-induced spatial memory impairment at adulthood.

    PubMed

    Dinel, A L; Rey, C; Baudry, C; Fressange-Mazda, C; Le Ruyet, P; Nadjar, A; Pallet, P; Joffre, C; Layé, S

    2016-10-01

    Polyunsaturated fatty acids (PUFAs) are essential fatty acids, which are critical for brain development and later life cognitive functions. The main brain PUFAs are docosahexaenoic acid (DHA) for the n-3 family and arachidonic acid (ARA) for the n-6 family, which are provided to the post-natal brain by breast milk or infant formula. Recently, the use of dairy lipids (DL) in replacement of vegetable lipids (VL) was revealed to potently promote the accretion of DHA in the developing brain. Brain DHA, in addition to be a key component of brain development, display potent anti-inflammatory activities, which protect the brain from adverse inflammatory events. In this work, we evaluated the protective effect of partial replacement of VL by DL, supplemented or not with DHA and ARA, on post-natal inflammation and its consequence on memory. Mice were fed with diets poor in vegetal n-3 PUFA (Def VL), balanced in vegetal n-3/n-6 PUFA (Bal VL), balanced in dairy lipids (Bal DL) or enriched in DHA and ARA (Supp VL; Supp DL) from the first day of gestation until adulthood. At post-natal day 14 (PND14), pups received a single administration of the endotoxin lipopolysaccharide (LPS) and brain cytokine expression, microglia phenotype and neurogenesis were measured. In a second set of experiments, memory and neurogenesis were measured at adulthood. Overall, our data showed that lipid quality of the diet modulates early life LPS effect on microglia phenotype, brain cytokine expression and neurogenesis at PND14 and memory at adulthood. In particular, Bal DL diet protects from the adverse effect of early life LPS exposure on PND14 neurogenesis and adult spatial memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Food Elimination Diet and Nutritional Deficiency in Patients with Inflammatory Bowel Disease.

    PubMed

    Lim, Hee-Sook; Kim, Soon-Kyung; Hong, Su-Jin

    2018-01-01

    Certain types of foods are common trigger for bowel symptoms such as abdominal discomfort or pain in patients with inflammatory bowel disease (IBD). But indiscriminate food exclusions from their diet can lead extensive nutritional deficiencies. The aim of this study was to investigate nutritional status, food restriction and nutrient intake status in IBD patients. A total 104 patients (food exclusion group: n = 49; food non-exclusion group: n = 55) participated in the survey. The contents were examined by 3 categories: 1) anthropometric and nutritional status; 2) diet beliefs and food restriction; and 3) nutrient intake. The malnutrition rate was significantly higher in the food exclusion group (p = 0.007) compared to food non-exclusion group. Fifty-nine percent of patients in the food exclusion group held dietary beliefs and reported modifying their intake according to their dietary belief. The most common restricted food was milk, dairy products (32.7%), raw fish (24.5%), deep-spicy foods (22.4%), and ramen (18.4%). The mean daily intake of calcium (p = 0.002), vitamin A (p < 0.001), and zinc (p = 0.001) were significantly lower in the food exclusion group. Considering malnutrition in IBD patients, nutrition education by trained dietitians is necessary for the patients to acquire disease-related knowledge and overall balanced nutrition as part of strategies in treating and preventing nutrition deficiencies.

  4. Dietary choline and phospholipid supplementation enhanced docosahexaenoic acid enrichment in egg yolk of laying hens fed a 2% Schizochytrium powder-added diet.

    PubMed

    Wang, H; Zhang, H J; Wang, X C; Wu, S G; Wang, J; Xu, L; Qi, G H

    2017-08-01

    The aim of this study was to evaluate the effect of dietary phospholipid supplementation on laying hen performance, egg quality, and the fatty acid profile of egg yolks from hens fed a 2% Schizochytrium powder diet. Three-hundred-sixty 28-wk-old Hy-line W-36 laying hens were randomly allocated to one of the 5 dietary treatments, each treatment with 6 replicates of 12 birds each. All diets included 2% Schizochytrium powder (docosahexaenoic acid [DHA], 137.09 mg/g). The control group was not supplemented with any additional phospholipids, whereas the other 4 experimental diets were supplemented with 1,000 mg/kg choline (CHO), 1,000 mg/kg monoethanolamine (MEA), 1,000 mg/kg lysophosphatidylcholine (LPC), or 500 mg/kg LPC + 500 mg/kg MEA (LPC + MEA). The experimental diets were isocaloric (metabolizable energy, 11.15 MJ/kg) and isonitrogenous (crude protein, 16.60%). The feeding trial lasted 28 days. Laying hen performance and egg quality were not affected (P > 0.05) by the diets used. The monounsaturated fatty acid (MUFA) level was reduced in the LPC group at d 28 (P < 0.01), whereas the polyunsaturated fatty acid (PUFA) level was increased (P < 0.05). The omega-6 (n-6) PUFA level of the egg yolks in the LPC group had a trend to increase in comparison to the control (P = 0.07). The CHO and LPC groups had higher omega-3 (n-3) PUFA and DHA levels and lower n-6/n-3 ratios than the other groups at d 28 (P < 0.01). The DHA content in egg yolk reached a plateau after the laying hens consumed the experimental diets for 14 days, and higher yolk DHA contents were observed in the CHO and LPC groups as compared with the other groups at d 14. It was concluded that dietary choline supplementation for more than 14 d enhanced egg yolk enrichment with n-3 PUFA and DHA when laying hen diets were supplemented with 2% Schizochytrium powder. All the diets had no adverse effect on hen performance, egg quality, or egg components under the experimental condition. © 2017 Poultry Science

  5. A Difference in Fatty Acid Composition of Isocaloric High-Fat Diets Alters Metabolic Flexibility in Male C57BL/6JOlaHsd Mice

    PubMed Central

    Duivenvoorde, Loes P. M.; van Schothorst, Evert M.; Swarts, Hans M.; Kuda, Ondrej; Steenbergh, Esther; Termeulen, Sander; Kopecky, Jan; Keijer, Jaap

    2015-01-01

    Poly-unsaturated fatty acids (PUFAs) are considered to be healthier than saturated fatty acids (SFAs), but others postulate that especially the ratio of omega-6 to omega-3 PUFAs (n6/n3 ratio) determines health. Health can be determined with biomarkers, but functional health status is likely better reflected by challenge tests that assess metabolic flexibility. The aim of this study was to determine the effect of high-fat diets with different fatty acid compositions, but similar n6/n3 ratio, on metabolic flexibility. Therefore, adult male mice received isocaloric high-fat diets with either predominantly PUFAs (HFpu diet) or predominantly SFAs (HFs diet) but similar n6/n3 ratio for six months, during and after which several biomarkers for health were measured. Metabolic flexibility was assessed by the response to an oral glucose tolerance test, a fasting and re-feeding test and an oxygen restriction test (OxR; normobaric hypoxia). The latter two are non-invasive, indirect calorimetry-based tests that measure the adaptive capacity of the body as a whole. We found that the HFs diet, compared to the HFpu diet, increased mean adipocyte size, liver damage, and ectopic lipid storage in liver and muscle; although, we did not find differences in body weight, total adiposity, adipose tissue health, serum adipokines, whole body energy balance, or circadian rhythm between HFs and HFpu mice. HFs mice were, furthermore, less flexible in their response to both fasting- re-feeding and OxR, while glucose tolerance was indistinguishable. To conclude, the HFs versus the HFpu diet increased ectopic fat storage, liver damage, and mean adipocyte size and reduced metabolic flexibility in male mice. This study underscores the physiological relevance of indirect calorimetry-based challenge tests. PMID:26098756

  6. A safflower oil based high-fat/high-sucrose diet modulates the gut microbiota and liver phospholipid profiles associated with early glucose intolerance in the absence of tissue inflammation.

    PubMed

    Danneskiold-Samsøe, Niels Banhos; Andersen, Daniel; Radulescu, Ilinca Daria; Normann-Hansen, Ann; Brejnrod, Asker; Kragh, Marie; Madsen, Tobias; Nielsen, Christian; Josefsen, Knud; Fretté, Xavier; Fjaere, Even; Madsen, Lise; Hellgren, Lars I; Brix, Susanne; Kristiansen, Karsten

    2017-05-01

    Omega-6 (n-6) PUFA-rich diets are generally considered obesogenic in rodents. Here, we examined how long-term intake of a high-fat/high-sucrose (HF/HS) diet based on safflower oil affected metabolism, inflammation, and gut microbiota composition. We fed male C57BL/6J mice a HF/HS diet based on safflower oil-rich in n-6 PUFAs-or a low-fat/low-sucrose diet for 40 wk. Compared to the low-fat/low-sucrose diet, intake of the safflower-based HF/HS diet only led to moderate weight gain, while glucose intolerance developed at week 5 prior to signs of inflammation, but concurrent with increased levels of linoleic acid and arachidonic acid in hepatic phospholipids. Intake of the HF/HS diet resulted in early changes in the gut microbiota, including an increased abundance of Blautia, while late changes coincided with altered inflammatory profiles and increased fasting plasma insulin. Analysis of immune cells in visceral fat and liver revealed no differences between diets before week 40, where the number of immune cells decreased in the liver of HF/HS-fed mice. We suggest that a diet-dependent increase in the n-6 to omega-3 (n-3) PUFA ratio in hepatic phospholipids together with gut microbiota changes contributed to early development of glucose intolerance without signs of inflammation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Differential effects of n-3 polyunsaturated fatty acids on metabolic control and vascular reactivity in the type 2 diabetic ob/ob mouse.

    PubMed

    Mustad, Vikkie A; Demichele, Stephen; Huang, Yung-Sheng; Mika, Amanda; Lubbers, Nathan; Berthiaume, Nathalie; Polakowski, Jim; Zinker, Brad

    2006-10-01

    Diets rich in monounsaturated fatty acids (MUFA) are recommended for individuals with type 2 diabetes mellitus (T2DM). The American Heart Association recommends increasing intakes of n-3 polyunsaturated fatty acids (PUFA) to reduce the risk of vascular disease in high-risk individuals; however, the long-term effects of these bioactive fatty acids on glucose metabolism in insulin resistance are controversial. The present studies were conducted to evaluate the effects of diets rich in both MUFA and alpha linolenic acid (C18:3n-3, ALA), eicosapentaenoic acid (C20:5n-3, EPA), or docosahexaenoic acid (C22:6n-3, DHA), on glycemic control and other parameters related to vascular health in a mouse model of T2DM and insulin resistance. Male ob/ob mice (n = 15 per treatment) were fed 1 of 4 lipid-modified formula diets (LFDs) for 4 weeks: (1) MUFA control, (2) ALA blend, (3) EPA blend, and (4) DHA blend. A portion of a MUFA-rich lipid blend in the control LFD was replaced with 11% to 14% energy as n-3 PUFA. After 4 weeks, plasma glucose response to a standard meal (1.5 g carbohydrate/kg body weight) and insulin challenge (2 U/kg body weight, IP) was assessed, and samples were collected for analysis of glucose, insulin, and lipids. Vascular reactivity of isolated aortic rings was assessed in an identical follow-up study. The results showed that insulin-resistant mice fed an LFD with EPA and/or DHA blends had significantly (P < .05) lower triglycerides and free fatty acids, but insulin sensitivity and fasting plasma glucose were not improved. However, mice fed with the ALA blend had significantly improved insulin sensitivity when compared to those fed with other LFD (P < .05). Animals fed an LFD with n-3 PUFA from marine or plant sources showed significantly improved vascular responses as compared with the MUFA-rich LFD (E(max), P < .05) and ob/ob reference mice consuming chow (E(max) and pEC(50), P < .05). In summary, long-term consumption of LFD with n-3 PUFAs improved blood

  8. n-3 Fatty Acids Induce Neurogenesis of Predominantly POMC-Expressing Cells in the Hypothalamus.

    PubMed

    Nascimento, Lucas F R; Souza, Gabriela F P; Morari, Joseane; Barbosa, Guilherme O; Solon, Carina; Moura, Rodrigo F; Victório, Sheila C; Ignácio-Souza, Letícia M; Razolli, Daniela S; Carvalho, Hernandes F; Velloso, Lício A

    2016-03-01

    Apoptosis of hypothalamic neurons is believed to play an important role in the development and perpetuation of obesity. Similar to the hippocampus, the hypothalamus presents constitutive and stimulated neurogenesis, suggesting that obesity-associated hypothalamic dysfunction can be repaired. Here, we explored the hypothesis that n-3 polyunsaturated fatty acids (PUFAs) induce hypothalamic neurogenesis. Both in the diet and injected directly into the hypothalamus, PUFAs were capable of increasing hypothalamic neurogenesis to levels similar or superior to the effect of brain-derived neurotrophic factor (BDNF). Most of the neurogenic activity induced by PUFAs resulted in increased numbers of proopiomelanocortin but not NPY neurons and was accompanied by increased expression of BDNF and G-protein-coupled receptor 40 (GPR40). The inhibition of GPR40 was capable of reducing the neurogenic effect of a PUFA, while the inhibition of BDNF resulted in the reduction of global hypothalamic cell. Thus, PUFAs emerge as a potential dietary approach to correct obesity-associated hypothalamic neuronal loss. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  9. [Fat component in the diet and providing with fat-soluble vitamins].

    PubMed

    Kodentsova, V M; Kochetkova, A A; Smirnova, E A; Sarkisyan, V A; Bessonov, V V

    2014-01-01

    Information about the content of polyunsaturated fats (PUFAs) and vitamin E and D in fish, vegetable oils, trend data on consumption of the main fat products, the consumption of saturated and polyunsaturated fatty acids by patients with diseases which risk factor is the excessive consumption of fat and insufficient content of PUFA omega-3 in the diet. Nutrition of the Russian population is characterized by excessive consumption of fat, including saturated fatty acids. Despite increased consumption of PUFA at the present time the ratio of omega-6 and omega-3 fatty acids in the diet is not optimal. This is due to high consumption of vegetable oils (mainly sunflower oil), that are the major source of alpha-lino- lenic acid, only a small portion of which is converted in the body into DHA and EPA, and insufficient consumption offish and seafood containing a high level of DHA and EPA. Taking into account the data that inadequate intake of PUFA omega-3 is a risk factor for many nutrition-related diseases, there is no doubt necessary to modify the fat component of the diet. But the problems arise how to select the source of PUFA and avoid possible unwanted effects. Enrichment of the diet with PUFA omega-3 by inclusion offish oil and/ or linseed oil in the diet may lead to a deterioration of sufficiency with vitamin E. The way out of this situation is to create a fat module containing several fats and tocopherol, that will prevent the peroxidation of fat components of the product and prevent the deterioration of sufficiency with vitamin E.

  10. Gene-diet interactions with polymorphisms of the MGLL gene on plasma low-density lipoprotein cholesterol and size following an omega-3 polyunsaturated fatty acid supplementation: a clinical trial.

    PubMed

    Ouellette, Catherine; Rudkowska, Iwona; Lemieux, Simone; Lamarche, Benoit; Couture, Patrick; Vohl, Marie-Claude

    2014-05-24

    Omega-3 (n-3) polyunsaturated fatty acid (PUFA) consumption increases low-density lipoprotein (LDL) cholesterol (C) concentrations and particle size. Studies showed that individuals with large, buoyant LDL particles have decreased risk of cardiovascular diseases. However, a large inter-individual variability is observed in LDL particle size. Genetic factors may explain the variability of LDL-C concentrations and particle size after an n-3 PUFA supplementation. The monoglyceride lipase (MGLL) enzyme, encoded by the MGLL gene, plays an important role in lipid metabolism, especially lipoprotein metabolism. The aim of this study was to investigate if polymorphisms (SNPs) of the MGLL gene influence the variability of LDL-C and LDL particle size in response to an n-3 PUFA supplementation. 210 subjects completed the study. They consumed 5 g/d of a fish oil supplement (1.9-2.2 g eicosapentaenoic acid and 1.1 g docosaexaenoic acid) during 6 weeks. Plasma lipids were measured before and after the supplementation period and 18 SNPs of the MGLL gene, covering 100% of common genetic variations (minor allele frequency ≥0.05), have been genotyped using TaqMan technology (Life Technologies Inc., Burlington, ON, CA). Following the n-3 PUFA supplementation, 55% of subjects increased their LDL-C levels. In a model including the supplementation, genotype and supplementation*genotype effects, gene-diet interaction effects on LDL-C concentrations (rs782440, rs6776142, rs555183, rs6780384, rs6787155 and rs1466571) and LDL particle size (rs9877819 and rs13076593) were observed for the MGLL gene SNPs (p < 0.05). SNPs within the MGLL gene may modulate plasma LDL-C levels and particle size following an n-3 PUFA supplementation. This trial was registered at clinicaltrials.gov as NCT01343342.

  11. Supplementation of arachidonic acid rich oil in European sea bass juveniles (Dicentrarchus labrax) diets: Effects on leucocytes and plasma fatty acid profiles, selected immune parameters and circulating prostaglandins levels.

    PubMed

    Torrecillas, S; Román, L; Rivero-Ramírez, F; Caballero, M J; Pascual, C; Robaina, L; Izquierdo, M S; Acosta, F; Montero, D

    2017-05-01

    The main objective of this study was to assess the effects of graded levels of dietary arachidonic acid (ARA), supplemented from alternative sources, on fatty acid composition of plasma and head kidney leucocytes of European sea bass (Dicentrarchus labrax). For that purpose, sea bass juveniles were fed four diets containing graded levels of ARA as follows: 0.5% (ARA0.5), 1% (ARA1), 2% (ARA2) and 4% (ARA4) during 60 days. At the end of the feeding trial fatty acid profiles of plasma and head kidney leucocytes were analyzed. Besides, plasma prostaglandins levels, head kidney leucocytes respiratory burst activity; peroxidase activity and phagocytic index were assayed. Reducing dietary ARA levels below 1% markedly reduced European sea bass growth performance. However, fish fed diet ARA0.5 tried to compensate this dietary ARA deficiency by a selective deposition of ARA on plasma and head kidney leucocytes, reaching similar levels to those fish fed diet ARA1 after 60 days of feeding. Nevertheless, head kidney phagocytic capacity was reduced as dietary ARA content in relation not only to variations on membrane composition but also to changes on fish basal prostaglandins levels. Results obtained demonstrated the importance to supply the necessary quantity n-6 LC-PUFA, and not only n-3 LC-PUFA levels, in European sea bass diets, in relation to not only growth performance but also immune system function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effects of supplementing different ratios of omega-3 and omega-6 fatty acids in western-style diets on cow's milk protein allergy in a mouse model.

    PubMed

    Thang, Cin L; Boye, Joyce I; Shi, Hai Ning; Zhao, Xin

    2013-11-01

    This study investigated the effects of supplementing different ratios of omega-6 and omega-3 fatty acids (O6H = 10:1, O3O6 = 4:1, and O3H = 1:4) to western-style diets on cow β-lactoglobulin (BLG) induced allergic reactions in Balb/c mice. Three-week-old mice were randomly assigned to three diet groups (n = 20/group). At 9 wk of age, half of the mice from each dietary treatment (n = 10) were intraperitoneally (i.p.) sensitized with three weekly doses of BLG and alum while the remaining half from each group was sham sensitized (controls). One week after the final sensitization, all mice were orally challenged with BLG. Elevated BLG-specific serum Igs were observed in all sensitized and challenged mice. IFN-γ, MCP-1, and IL-12p40 concentrations from lymphocytes of mesenteric lymph nodes were highest in O3H mice, compared to O3O6 and O6H mice. O6H mice had the highest IL-4 concentrations from splenic lymphocytes and a significantly lower rectal temperature after the challenge in comparison to O3O6 and O3H mice. Our results suggest that the ω-3 PUFA rich diets alleviated the severity of allergic reactions, and may modulate immune response toward T helper cell (Th)1-favoured immune response while the ω-6 PUFA rich diet exhibited no allergy alleviation with a stronger Th2 polarized immune response. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Lipid content in hepatic and gonadal adipose tissue parallel aortic cholesterol accumulation in mice fed diets with different omega-6 PUFA to EPA plus DHA ratios

    USDA-ARS?s Scientific Manuscript database

    Diets with low omega (u)-6 polyunsaturated fatty acids (PUFA) to eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) ratios have been shown to decrease aortic cholesterol accumulation and have been suggested to promote weight loss. The involvement of the liver and gonadal adipose tissue (GAT...

  14. The dietary n6:n3 fatty acid ratio during pregnancy is inversely associated with child neurodevelopment in the EDEN mother-child cohort.

    PubMed

    Bernard, Jonathan Y; De Agostini, Maria; Forhan, Anne; de Lauzon-Guillain, Blandine; Charles, Marie-Aline; Heude, Barbara

    2013-09-01

    Long-chain polyunsaturated fatty acids (LC-PUFAs) of the n6 (ω6) and n3 series are essential for the development of a child's brain. Fetal LC-PUFA exposure as well as infant exposure via breast milk depend on the maternal intake of these LC-PUFAs and of their respective dietary precursors (PUFAs). We aimed to investigate the associations between maternal LC-PUFA and PUFA [(LC)PUFA] dietary intake during pregnancy and child neurodevelopment at ages 2 and 3 y. In 1335 mother-child pairs from the EDEN cohort, we evaluated associations between daily maternal (LC)PUFA intake during the last 3 months of pregnancy with the child's language at age 2 y and with different assessments of development at age 3 y. Associations were investigated separately in breastfed and never-breastfed children. We examined interactions between the ratios of n6 and n3 (LC)PUFA intakes (n6:n3 fatty acid ratio) and duration of breastfeeding. Breastfeeding mothers had a lower n6:n3 fatty acid ratio (8.4 vs. 8.8; P = 0.02). Among never-breastfed children (n = 338), we found negative associations between maternal dietary n6:n3 fatty acid ratios and neurodevelopment, as reflected by the child's language at age 2 y (β ± SE = -2.1 ± 0.7; P = 0.001) and development assessed with the Ages and Stages Questionnaire at age 3 y (-1.5 ± 0.8; P = 0.05). Among mothers with a high n6:n3 fatty acid ratio only, breastfeeding duration was positively associated with language at age 2 y (P-interaction < 0.05). This suggests that the ratio between maternal dietary n6 and n3 (LC)PUFA intake possibly influences the child's brain development during fetal life but not during or by breastfeeding. However, breastfeeding might compensate for prenatal imbalance in maternal dietary n6:n3 fatty acid ratio.

  15. Different sources of omega-3 polyunsaturated fatty acids affects apparent digestibility, tissue deposition, and tissue oxidative stability in growing female rats

    PubMed Central

    2011-01-01

    Background Numerous health benefits associated with increased omega-3 polyunsaturated fatty acid (n-3 PUFA) consumption has lead to an increasing variety of available n-3 PUFA sources. However, sources differ in the type, amount, and structural form of the n-3 PUFAs. Therefore, the objective of this study was to determine the effect of different sources of ω-3 PUFAs on digestibility, tissue deposition, eicosanoid metabolism, and oxidative stability. Methods Female Sprague-Dawley rats (age 28 d) were randomly assigned (n = 10/group) to be fed a high fat 12% (wt) diet consisting of either corn oil (CO) or n-3 PUFA rich flaxseed (FO), krill (KO), menhaden (MO), salmon (SO) or tuna (TO) oil for 8 weeks. Rats were individually housed in metabolic cages to determine fatty acid digestibility. Diet and tissue fatty acid composition was analyzed by gas chromatography and lipid classes using thin layer chromatography. Eicosanoid metabolism was determined by measuring urinary metabolites of 2-series prostaglandins (PGs) and thromoboxanes (TXBs) using enzyme immunoassays. Oxidative stability was assessed by measuring thiobarbituric acid reactive substances (TBARS) and total antioxidant capacity (TAC) using colorimetric assays. Gene expression of antioxidant defense enzymes was determined by real time quantitative polymerase chain reaction (RT-qPCR). Results Rats fed KO had significantly lower DHA digestibility and brain DHA incorporation than SO and TO-fed rats. Of the n-3 PUFA sources, rats fed SO and TO had the highest n-3 PUFAs digestibility and in turn, tissue accretion. Higher tissue n-3 LC-PUFAs had no significant effect on 2-series PG and TXB metabolites. Despite higher tissue n-3 LC-PUFA deposition, there was no increase in oxidation susceptibility indicated by no significant increase in TBARS or decrease in TAC and gene expression of antioxidant defense enzymes, in SO or TO-fed rats. Conclusions On the basis that the optimal n-3 PUFA sources should provide high

  16. Effects of dietary n-3 fatty acids on the phospholipid molecular species of monkey brain.

    PubMed

    Lin, D S; Connor, W E; Anderson, G J; Neuringer, M

    1990-10-01

    We examined the changes in the molecular species of brain ethanolamine glycerophospholipids of monkeys fed diets containing widely ranging amounts of n-3 fatty acids. Two groups of rhesus monkeys were fed pre- and postnatally either a control diet (soy oil; containing 8% of fatty acids as 18:3n-3) or a deficient diet (safflower oil; containing less than 0.3% 18:3n-3). The brains of these animals were analyzed at 22 months of age. A third group of monkeys was fed the safflower oil diet to 22 months of age and then switched to a fish oil diet (28% long-chain n-3 fatty acids) for 1-2 years before autopsy. The molecular species of the diacyl, alkylacyl, and alkenylacyl ethanolamine glycerophospholipids from frontal cortex were separated by HPLC. A total of 24 molecular species were identified. Fatty acids in the sn-2 position differed markedly among the diet groups, but the sn-1 position always contained only 16:0, 18:0, or 18:1. In the diacyl subclass of the control brain, the n-3 molecular species represented 41% of total and the n-6 species 45%, whereas in the deficient brain the n-3 molecular species decreased to 9% and n-6 molecular species increased to 77%. The fatty acid 22:5n-6 did not replace 22:6n-3 in a symmetrical fashion in the molecular species of the deficient brain. In the brains of the fish oil-fed monkeys, the n-3 molecular species amounted to 61% and n-6 molecular species were reduced to 25%. The species 18:1-22:6, 16:0-22:6, and 18:0-22:6 generally changed proportionally in response to diet.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Postprandial lipid responses do not differ following consumption of butter or vegetable oil when consumed with omega-3 polyunsaturated fatty acids.

    PubMed

    Dias, Cintia B; Phang, Melinda; Wood, Lisa G; Garg, Manohar L

    2015-04-01

    Dietary saturated fat (SFA) intake has been associated with elevated blood lipid levels and increased risk for the development of chronic diseases. However, some animal studies have demonstrated that dietary SFA may not raise blood lipid levels when the diet is sufficient in omega-3 polyunsaturated fatty acids (n-3PUFA). Therefore, in a randomised cross-over design, we investigated the postprandial effects of feeding meals rich in either SFA (butter) or vegetable oil rich in omega-6 polyunsaturated fatty acids (n-6PUFA), in conjunction with n-3PUFA, on blood lipid profiles [total cholesterol, low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) and triacylglycerol (TAG)] and n-3PUFA incorporation into plasma lipids over a 6-h period. The incremental area under the curve for plasma cholesterol, LDL-C, HDL-C, TAG and n-3PUFA levels over 6 h was similar in the n-6PUFA compared to SFA group. The postprandial lipemic response to saturated fat is comparable to that of n-6PUFA when consumed with n-3PUFA; however, sex-differences in response to dietary fat type are worthy of further attention.

  18. Therapeutic potential of n-3 polyunsaturated fatty acids in disease.

    PubMed

    Fetterman, James W; Zdanowicz, Martin M

    2009-07-01

    The potential therapeutic benefits of supplementation with n-3 polyunsaturated fatty acids (PUFAs) in various diseases are reviewed, and the antiinflammatory actions, activity, and potential drug interactions and adverse effects of n-3 PUFAs are discussed. Fish oils are an excellent source of long-chain n-3 PUFAs, such as eicosapentaenoic acid and docosahexaenoic acid. After consumption, n-3 PUFAs can be incorporated into cell membranes and reduce the amount of arachidonic acid available for the synthesis of proinflammatory eicosanoids (e.g., prostaglandins, leukotrienes). Likewise, n-3 PUFAs can also reduce the production of inflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1, and interleukin-6. Considerable research has been conducted to evaluate the potential therapeutic effects of fish oils in numerous conditions, including arthritis, coronary artery disease, inflammatory bowel disease, asthma, and sepsis, all of which have inflammation as a key component of their pathology. Additional investigations into the use of supplementation with fish oils in patients with neural injury, cancer, ocular diseases, and critical illness have recently been conducted. The most commonly reported adverse effects of fish oil supplements are a fishy aftertaste and gastrointestinal upset. When recommending an n-3 PUFA, clinicians should be aware of any possible adverse effect or drug interaction that, although not necessarily clinically significant, may occur, especially for patients who may be susceptible to increased bleeding (e.g., patients taking warfarin). The n-3 PUFAs have been shown to be efficacious in treating and preventing various diseases. The wide variation in dosages and formulations used in studies makes it difficult to recommend dosages for specific treatment goals.

  19. Phytosterol-deficient and high-phytosterol diets developed for controlled feeding studies

    PubMed Central

    Racette, Susan B.; Spearie, Catherine Anderson; Phillips, Katherine M.; Lin, Xiaobo; Ma, Lina; Ostlund, Richard E.

    2010-01-01

    Phytosterols reduce cholesterol absorption and low-density lipoprotein (LDL) cholesterol concentrations, but the quantity and physiological significance of phytosterols in common diets are generally unknown because nutrient databases do not contain comprehensive phytosterol data. The primary aim of this study was to design prototype phytosterol-deficient and high-phytosterol diets for use in controlled feeding studies of the influence of phytosterols on health. A second aim was to quantify the phytosterol content of these prototype diets and three other diets consumed in the United States. This study was conducted from June, 2001 to September, 2008 and involved designing, preparing, and then analyzing five different diets: an experimental phytosterol-deficient ‘control’ diet, a relatively high-phytosterol diet based on the Dietary Approaches to Stop Hypertension (DASH) diet, American Heart Association (AHA) diet, Atkins® lifetime maintenance plan, and a vegan diet. A single day of meals for each diet was homogenized and the resulting composites were analyzed for free, esterified, and glycosylated phytosterols by gas chromatography. Independent samples t tests were used to compare the diets’ total phytosterol content. The total phytosterol content of the experimental phytosterol-deficient diet was 64 mg/2000 kcal, with progressively larger quantities in Atkins®, AHA, vegan, and the high-phytosterol DASH diet (163, 340, 445 and 500 mg/2000 kcal, respectively). Glycosylated phytosterols, which are often excluded from phytosterol analyses, comprised 15.9 ± 5.9% (mean±SD) of total phytosterols. In summary, phytosterol-deficient and high-phytosterol diets that conform to recommended macronutrient guidelines and are palatable can now be used in controlled feeding studies. PMID:19942022

  20. Olfactory discrimination ability and brain expression of c-fos, Gir and Glut1 mRNA are altered in n-3 fatty acid-depleted rats.

    PubMed

    Hichami, Aziz; Datiche, Frédérique; Ullah, Sana; Liénard, Fabienne; Chardigny, Jean-Michel; Cattarelli, Martine; Khan, Naim Akhtar

    2007-11-22

    The long-chain polyunsaturated n-3 fatty acids (n-3 PUFA), particularly docosahexaenoic acid (DHA), are abundantly present in the central nervous system and play an important role in cognitive functions such as learning and memory. We, therefore, investigated the effects of n-3 PUFA-depletion in rats (F2 generation) on the learning of an olfactory discrimination task, progressively acquired within a four-arm maze, and on the mRNA expression of some candidate genes, i.e., c-fos, Gir and glucose transporter (Glut1), which could reflect the level of cerebral activity. We observed that DHA contents were dramatically decreased in the olfactory bulb, the piriform cortex and the neocortex of n-3-depleted rats. Furthermore, the n-3 deficiency resulted in a mild olfactory learning impairment as these rats required more days to master the olfactory task compared to control rats. Real-time RT-PCR experiments revealed that the training induced the expression of c-fos mRNA in all the three regions of the brain whereas Gir and Glut1 mRNA were induced only in olfactory bulb and neocortex. However, such an increase was less marked in the n-3-deficient rats. Taken together, these results allow us to assume that the behavioural impairment in n-3-deficient rats is linked to the depletion of n-3 fatty acids in brain regions processing olfactory cues. Data are discussed in view of the possible role of some of these genes in learning-induced neuronal olfactory plasticity.

  1. Zinc Deficiency Augments Leptin Production and Exacerbates Macrophage Infiltration into Adipose Tissue in Mice Fed a High-Fat Diet123

    PubMed Central

    Liu, Ming-Jie; Bao, Shengying; Bolin, Eric R.; Burris, Dara L.; Xu, Xiaohua; Sun, Qinghua; Killilea, David W.; Shen, Qiwen; Ziouzenkova, Ouliana; Belury, Martha A.; Failla, Mark L.; Knoell, Daren L.

    2013-01-01

    Zinc (Zn) deficiency and obesity are global public health problems. Zn deficiency is associated with obesity and comorbid conditions that include insulin resistance and type 2 diabetes. However, the function of Zn in obesity remains unclear. Using a mouse model of combined high-fat and low-Zn intake (0.5–1.5 mg/kg), we investigated whether Zn deficiency exacerbates the extent of adiposity as well as perturbations in metabolic and immune function. C57BL/6 mice were randomly assigned to receive either a high-fat diet (HFD) or a control (C) diet for 6 wk, followed by further subdivision into 2 additional groups fed Zn-deficient diets (C-Zn, HFD-Zn), along with a C diet and an HFD, for 3 wk (n = 8–9 mice/group). The extent of visceral fat, insulin resistance, or systemic inflammation was unaffected by Zn deficiency. Strikingly, Zn deficiency significantly augmented circulating leptin concentrations (HFD-Zn vs. HFD: 3.15 ± 0.16 vs. 2.59 ± 0.12 μg/L, respectively) and leptin signaling in the liver of obese mice. Furthermore, gene expression of macrophage-specific markers ADAM8 (A disintegrin and metalloproteinase domain-containing protein 8) and CD68 (cluster of differentiation 68) was significantly greater in adipose tissue in the HFD-Zn group than in the HFD group, as confirmed by CD68 protein analysis, indicative of increased macrophage infiltration. Inspection of Zn content and mRNA profiles of all Zn transporters in the adipose tissue revealed alterations of Zn metabolism to obesity and Zn deficiency. Our results demonstrate that Zn deficiency increases leptin production and exacerbates macrophage infiltration into adipose tissue in obese mice, indicating the importance of Zn in metabolic and immune dysregulation in obesity. PMID:23700340

  2. Biofortification of safflower: an oil seed crop engineered for ALA-targeting better sustainability and plant based omega-3 fatty acids.

    PubMed

    Rani, Arti; Panwar, Asha; Sathe, Manjary; Chandrashekhara, Karunakara Alageri; Kush, Anil

    2018-05-11

    Alpha-linolenic acid (ALA) deficiency and a skewed n6:n3 fatty acid ratio in the diet is a major explanation for the prevalence of cardiovascular diseases and inflammatory/autoimmune diseases. There is mounting evidence of the health benefits associated with omega-3 long chain polyunsaturated fatty acids (LC PUFA's). Although present in abundance in fish, a number of factors limit our consumption of fish based omega-3 PUFA's. To name a few, overexploitation of wild fish stocks has reduced their sustainability due to increased demand of aquaculture for fish oil and meal; the pollution of marine food webs has raised concerns over the ingestion of toxic substances such as heavy metals and dioxins; vegetarians do not consider fish-based sources for supplemental nutrition. Thus alternative sources are being sought and one approach to the sustainable supply of LC-PUFAs is the metabolic engineering of transgenic plants with the capacity to synthesize n3 LC-PUFAs. The present investigation was carried out with the goal of developing transgenic safflower capable of producing pharmaceutically important alpha-linolenic acid (ALA, C18:3, n3). This crop was selected as the seeds accumulate ~ 78% of the total fatty acids as linoleic acid (LA, C18:2, n6), the immediate precursor of ALA. In the present work, ALA production was achieved successfully in safflower seeds by transforming safflower hypocotyls with Arabidopsis specific delta 15 desaturase (FAD3) driven by truncated seed specific promoter. Transgenic safflower fortified with ALA is not only potentially valuable nutritional superior novel oil but also has reduced ratio of LA to ALA which is required for good health.

  3. Dietary Supplementation with n-3 Polyunsaturated Fatty Acids Reduces Torpor Use in a Tropical Daily Heterotherm.

    PubMed

    Vuarin, Pauline; Henry, Pierre-Yves; Perret, Martine; Pifferi, Fabien

    Polyunsaturated fatty acids (PUFAs) are involved in a variety of physiological mechanisms, including heterothermy preparation and expression. However, the effects of the two major classes of PUFAs, n-6 and n-3, can differ substantially. While n-6 PUFAs enhance torpor expression, n-3 PUFAs reduce the ability to decrease body temperature. This negative impact of n-3 PUFAs has been revealed in temperate hibernators only. Yet because tropical heterotherms generally experience higher ambient temperature and exhibit higher minimum body temperature during heterothermy, they may not be affected as much by PUFAs as their temperate counterparts. We tested whether n-3 PUFAs constrain torpor use in a tropical daily heterotherm (Microcebus murinus). We expected dietary n-3 PUFA supplementation to induce a reduction in torpor use and for this effect to appear rapidly given the time required for dietary fatty acids to be assimilated into phospholipids. n-3 PUFA supplementation reduced torpor use, and its effect appeared in the first days of the experiment. Within 2 wk, control animals progressively deepened their torpor bouts, whereas supplemented ones never entered torpor but rather expressed only constant, shallow reductions in body temperature. For the rest of the experiment, the effect of n-3 PUFA supplementation on torpor use remained constant through time. Even though supplemented animals also started to express torpor, they exhibited higher minimum body temperature by 2°-3°C and spent two fewer hours in a torpid state per day than control individuals, on average. Our study supports the view that a higher dietary content in n-3 PUFAs negatively affects torpor use in general, not only in cold-acclimated hibernators.

  4. [Comparative study on the effect of antiatherosclerotic diet enriched with polyunsaturated omega-3 fatty acids of plant and animal origin on the level of natural antibodies against catecholamines in patients with cardiovascular diseases].

    PubMed

    Pogozheva, A V; Rozanova, I A; Miagkova, M A; Sorokovoĭ, K V; Panchenko, O N; Trubacheva, Zh N

    1998-01-01

    The levels of natural antibodies against catecholamines in 138 patients with cardiovascular diseases was studied and the comparative analysis of influence of antiatherosclerotic diets with different origin of PUFA omega-3 on dynamic of these parameters was made. For the first time discovered universal action of diets with PUFA omega-3 vegetable and animal origin on parameters of humoral immunity: in case of primary excess of norm of the contents of natural antibodies to adrenaline, noradrenaline and dopamine as a result of treatment these parameters were reduced or did not change; and at is primary a low their level--parameters increased in most cases. The greatest immunocorrection effect was rendered by diet, enriched PUFA omega-3 of freshwater fishes fat.

  5. Hepatic fat accumulation is modulated by the interaction between the rs738409 variant in the PNPLA3 gene and the dietary omega6/omega3 PUFA intake.

    PubMed

    Santoro, Nicola; Savoye, Mary; Kim, Grace; Marotto, Katie; Shaw, Melissa M; Pierpont, Bridget; Caprio, Sonia

    2012-01-01

    A single nucleotide polymorphism (SNP), the rs738409, in the patatin like phospholipase 3 gene (PNPLA3) has been recently associated with increased hepatic steatosis and ALT levels in adults and children. Given the potential role of PNPLA3 in fatty liver development, we aimed to explore whether the influence of PNPLA3 genotype on hepatic fat in obese youth might be modulated by dietary factors such as essential omega polyunsaturated fatty acids (PUFA) intake. We studied 127 children and adolescents (56 boys, 71 girls; 58 Caucasians; 30 African Americans and 39 Hispanics; mean age 14.7±3.3; mean BMI 30.7±7.2). The dietary composition was assessed by the Nutrition Data System for Research (NDS-R version 2011). The patients underwent a MRI study to assess the liver fat content (HFF%), ALT measurement and the genotyping of the rs738409 SNP by automatic sequencing. As previously observed, HFF% and ALT levels varied according to the genotype in each ethnicity. ALT levels and HFF% were significantly influenced by the interaction between genotype and omega-6/omega-3 PUFA ratio (n-6/n-3), p = 0.003 and p = 0.002, respectively. HFF% and ALT levels were, in fact, related to the n-6/n-3 consumption only in subjects homozygote for the G allele of the rs738409 (r2 = 0.45, p =  0.001 and r2 = 0.40, p = 0.006, respectively). These findings suggest that the association of a high dietary n-6/n-3 PUFA with fatty liver and liver damage in obese youths may be driven by a predisposing genotype.

  6. Dietary omega-3 PUFA and health: stearidonic acid-containing seed oils as effective and sustainable alternatives to traditional marine oils.

    PubMed

    Surette, Marc E

    2013-05-01

    The daily consumption of dietary omega-3 PUFA is recommended by governmental agencies in several countries and by a number of health organizations. The molecular mechanisms by which these dietary PUFA affect health involve the enrichment of cellular membranes with long-chain 20- and 22-carbon omega-3 PUFA that impacts tissues by altering membrane protein functions, cell signaling, and gene expression profiles. These changes are recognized to have health benefits in humans, especially relating to cardiovascular outcomes. Cellular membrane enrichment and health benefits are associated with the consumption of long-chain omega-3 PUFA found in marine oils, but are not generally linked with the consumption of alpha-linolenic acid, the 18-carbon omega-3 PUFA found in plant seed oils. However, the supply of omega-3 PUFA from marine sources is limited and may not be sustainable. New plant-derived sources of omega-3 PUFA like stearidonic acid-soy oil from genetically modified soybeans and Ahiflower oil from Buglossoides arvensis seeds that are enriched in the 18-carbon omega-3 PUFA stearidonic acid are being developed and show promise to become effective as well as sustainable sources of omega-3 PUFA. An example of changes in tissue lipid profiles associated with the consumption of Ahiflower oil is presented in a mouse feeding study. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Excessive vitamin D content of a standard iron-deficient diet for rats.

    PubMed

    Triggs, S M; Bailey-Wood, R

    1976-03-01

    1. The observation that thyroid C cell hyperplasia occurred in rats given the iron-deficient diet described by McCall, Newman, O'Brien, Valberg & Witts (1962) prompted a closer study of the preparation and constituents of this diet. 2. It became apparent that there was a discrepancy between the amounts of fat-soluble vitamins in the dietary formulation reported and the supposed final content of the diet. A diet prepared as described by McCall et al. (1962) contains 1000 mug (40 000 i.u.) ergocalciferol and 10 mug (14 500 i.u.) retinyl palmitate/kg. 3. An experiment was designed to study the effect of Fe-deficient and Fe-supplemented, high-vitamin-D diets, and an Fe-supplemented, normal-vitamin-D diet, on thyroid C cell volume and serum calcium concentration. 4. Thyroid C cell volumes and serum Ca concentrations were significantly higher in both groups given excess vitamin D than in the group given the Fe-supplemented, normal-vitamin-D diet. It is evident therefore, that hypervitaminosis D was the cause of the morphological and biochemical changes found in rats given the McCall et al. (1962) diet.

  8. Polyunsaturated Fatty Acids and Recurrent Mood Disorders: Phenomenology, Mechanisms, and Clinical Application

    PubMed Central

    Messamore, Erik; Almeida, Daniel M.; Jandacek, Ronald J.; McNamara, Robert K.

    2017-01-01

    A body of evidence has implicated dietary deficiency in omega-3 polyunsaturated fatty acids (n-3 PUFA), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in the pathophysiology and etiology of recurrent mood disorders including major depressive disorder (MDD) and bipolar disorder. Cross-national and cross-sectional evidence suggests that greater habitual intake of n-3 PUFA is associated with reduced risk for developing mood symptoms. Meta-analyses provide strong evidence that patients with mood disorders exhibit low blood n-3 PUFA levels which are associated with increased risk for the initial development of mood symptoms in response to inflammation. While the etiology of this n-3 PUFA deficit may be multifactorial, n-3 PUFA supplementation is sufficient to correct this deficit and may also have antidepressant effects. Rodent studies suggest that n-3 PUFA deficiency during perinatal development can recapitulate key neuropathological, neurochemical, and behavioral features associated with mood disorders. Clinical neuroimaging studies suggest that low n-3 PUFA biostatus is associated with abnormalities in cortical structure and function also observed in mood disorders. Collectively, these findings implicate dietary n-3 PUFA insufficiency, particularly during development, in the pathophysiology of mood dysregulation, and support implementation of routine screening for and treatment of n-3 PUFA deficiency in patients with mood disorders. PMID:28069365

  9. Genetic variation in FADS genes is associated with maternal long-chain PUFA status but not with cognitive development of infants in a high fish-eating observational study.

    PubMed

    Yeates, Alison J; Love, Tanzy M; Engström, Karin; Mulhern, Maria S; McSorley, Emeir M; Grzesik, Katherine; Alhamdow, Ayman; Wahlberg, Karin; Thurston, Sally W; Davidson, Philip W; van Wijngaarden, Edwin; Watson, Gene E; Shamlaye, Conrad F; Myers, G J; Strain, J J; Broberg, Karin

    2015-12-01

    Long-chain n-6 and n-3 PUFA (LC-PUFA), arachidonic acid (AA) (20:4n-6) and DHA (22:6n-3), are critical for optimal brain development. These fatty acids can be consumed directly from the diet, or synthesized endogenously from precursor PUFA by Δ-5 (encoded by FADS1) and Δ-6 desaturases (encoded by FADS2). The aim of this study was to determine the potential importance of maternal genetic variability in FADS1 and FADS2 genes to maternal LC-PUFA status and infant neurodevelopment in populations with high fish intakes. The Nutrition Cohorts 1 (NC1) and 2 (NC2) are longitudinal observational mother-child cohorts in the Republic of Seychelles. Maternal serum LC-PUFA was measured at 28 weeks gestation and genotyping for rs174537 (FADS1), rs174561 (FADS1), rs3834458 (FADS1-FADS2) and rs174575 (FADS2) was performed in both cohorts. The children completed the Bayley Scales of Infant Development II (BSID-II) at 30 months in NC1 and at 20 months in NC2. Complete data were available for 221 and 1310 mothers from NC1 and NC2 respectively. With increasing number of rs3834458 minor alleles, maternal concentrations of AA were significantly decreased (NC1 p=0.004; NC2 p<0.001) and precursor:product ratios for linoleic acid (LA) (18:2n-6)-to-AA (NC1 p<0.001; NC2 p<0.001) and α-linolenic acid (ALA) (18:3n-3)-to-DHA were increased (NC2 p=0.028). There were no significant associations between maternal FADS genotype and BSID-II scores in either cohort. A trend for improved PDI was found among infants born to mothers with the minor rs3834458 allele.In these high fish-eating cohorts, genetic variability in FADS genes was associated with maternal AA status measured in serum and a subtle association of the FADS genotype was found with neurodevelopment. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Diet and asthma: an update

    PubMed Central

    Han, Yueh-Ying; Forno, Erick; Holguin, Fernando; Celedón, Juan C.

    2015-01-01

    Purpose of review Our objective is to provide an overview and discussion of recent experimental studies, epidemiologic studies, and clinical trials of diet and asthma. We focus on dietary sources and vitamins with antioxidant properties (vitamins (A, C, and E), folate, and omega-3 and omega-6 polyunsaturated fatty acids (n-3 and n-6 PUFAs). Recent findings Current evidence does not support the use of vitamin A, vitamin C, vitamin E or PUFAs for the prevention or treatment of asthma or allergies. Current guidelines for prenatal use of folate to prevent neural tube defects should be followed, as there is no evidence of major effects of this practice on asthma or allergies. Consumption of a balanced diet that is rich in sources of antioxidants (e.g. fruits and vegetables) may be beneficial in the primary prevention of asthma. Summary None of the vitamins or nutrients examined is consistently associated with asthma or allergies. In some cases, further studies of the effects of a vitamin or nutrient on specific asthma phenotypes (e.g. vitamin C to prevent viral-induced exacerbations) are warranted. Clinical trials of “whole diet” interventions to prevent asthma are advisable on the basis of existing evidence. PMID:26110689

  11. The effects of n-3 fatty acid deficiency and repletion upon the fatty acid composition and function of the brain and retina.

    PubMed

    Connor, W E; Neuringer, M

    1988-01-01

    It is now apparent that both n-6 and n-3 fatty acids are essential for normal development in mammals, and that each has specific functions in the body. N-6 fatty acids are necessary primarily for growth, reproduction, and the maintenance of skin integrity, whereas n-3 fatty acids are involved in the development and function of the retina and cerebral cortex and perhaps other organs such as the testes. Fetal life and infancy are particularly critical for the nervous tissue development. Therefore, with respect to human nutrition, adequate amounts of omega-3 fatty acids should be provided during pregnancy, lactation and infancy, but probably throughout life. We estimate that adequate levels are provided by diets containing 6-8% kcals from linoleic acid and 1% from n-3 fatty acids (alpha-linolenic acid, EPA and DHA), resulting in a ratio of n-6 to n-3 fatty acids of 4:1 to 10:1. The essentiality of n-3 fatty acids resides in their presence as DHA in vital membranes of the photoreceptors of the retina and the synaptosomes and other subcellular membranes of the brain. The replacement of DHA in deficient animals by the n-6 fatty acid, 22:5, results in abnormal functioning of the membranes for reasons as yet to be ascertained. Most significant is the lability of fatty acid composition in the retinal and brain of deficient animals. Dietary fish oil, which contains EPA and DHA, will readily lead to a change in the composition of the membrane of retina and brain, fatty acids, with DHA replacing the n-6 fatty acid, 22:5. The interrelationships between the chemistry of neural and retinal membranes as affected by diet and their biological functioning provides an exciting prospect for future investigations.

  12. Bioavailability of long-chain n-3 fatty acids from enriched meals and from microencapsulated powder.

    PubMed

    Hinriksdottir, H H; Jonsdottir, V L; Sveinsdottir, K; Martinsdottir, E; Ramel, A

    2015-03-01

    Despite the potential benefits of long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs), intake is often low because of low consumption of oily seafood. Microencapsulated fish oil powder can improve tolerance and acceptance of LC n-3 PUFAs. Bioavailability is important to achieve efficacy. We investigated the bioavailability of LC n-3 PUFAs from microencapsulated powder in comparison with meals enriched with liquid fish oil. Participants (N=99, age⩾50 years) of this 4-week double-blinded dietary intervention were randomized into three groups. Group 1 (n=38) received 1.5 g/d eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) as ready-to-eat meals enriched with liquid fish oil; group 2 (n=30) received the same amount of these LC n-3 PUFAs as microencapsulated fish oil powder and regular meals; and group 3 (n=31) was the control group, which received placebo powder and regular meals. Blood samples were taken from fingertips at baseline and at the end point. Seventy-seven subjects (77.8%) completed the study. The amount of EPA in blood doubled in both groups that received LC n-3 PUFAs (P<0.05), but it did not change in the control group. The changes in DHA were less but still significant in both intervention groups. According to multivariate analysis, both intervention groups had higher end-point LC n-3 PUFA concentrations compared with placebo, but differences between intervention groups were not significant. Bioavailability of LC n-3 PUFAs in encapsulated powder is very similar to the bioavailability of LC n-3 PUFAs in ready-to-eat meals enriched with liquid fish oil. Thus, encapsulated powder can be considered useful to increase LC n-3 PUFA concentrations in blood.

  13. Fatty acids in mountain gorilla diets: implications for primate nutrition and health.

    PubMed

    Reiner, Whitney B; Petzinger, Christina; Power, Michael L; Hyeroba, David; Rothman, Jessica M

    2014-03-01

    Little is known about the fatty acid composition of foods eaten by wild primates. A total of 18 staple foods that comprise 97% of the annual dietary intake of the mountain gorilla (Gorilla beringei) were analyzed for fatty acid concentrations. Fruits and herbaceous leaves comprise the majority of the diet, with fruits generally having a higher mean percentage of fat (of dry matter; DM), as measured by ether extract (EE), than herbaceous leaves (13.0% ± SD 13.0% vs. 2.3 ± SD 0.8%). The mean daily EE intake by gorillas was 3.1% (DM). Fat provided ≈14% of the total dietary energy intake, and ≈22% of the dietary non-protein energy intake. Saturated fatty acids accounted for 32.4% of the total fatty acids in the diet, while monounsaturated fatty acids accounted for 12.5% and polyunsaturated fatty acids (PUFA) accounted for 54.6%. Both of the two essential PUFA, linoleic acid (LA, n-6) and α-linolenic acid (ALA, n-3), were found in all of the 17 staple foods containing crude fat and were among the three most predominant fatty acids in the diet: LA (C18:2n-6) (30.3%), palmitic acid (C16:0) (23.9%), and ALA (C18:3n-3) (21.2%). Herbaceous leaves had higher concentrations of ALA, while fruit was higher in LA. Fruits provided high amounts of fatty acids, especially LA, in proportion to their intake due to the higher fat concentrations; despite being low in fat, herbaceous leaves provided sufficient ALA due to the high intake of these foods. As expected, we found that wild mountain gorillas consume a diet lower in EE, than modern humans. The ratio of LA:ALA was 1.44, closer to agricultural paleolithic diets than to modern human diets. © 2013 Wiley Periodicals, Inc.

  14. The marine n-3 PUFA DHA evokes cytoprotection against oxidative stress and protein misfolding by inducing autophagy and NFE2L2 in human retinal pigment epithelial cells

    PubMed Central

    Johansson, Ida; Monsen, Vivi Talstad; Pettersen, Kristine; Mildenberger, Jennifer; Misund, Kristine; Kaarniranta, Kai; Schønberg, Svanhild; Bjørkøy, Geir

    2015-01-01

    Accumulation and aggregation of misfolded proteins is a hallmark of several diseases collectively known as proteinopathies. Autophagy has a cytoprotective role in diseases associated with protein aggregates. Age-related macular degeneration (AMD) is the most common neurodegenerative eye disease that evokes blindness in elderly. AMD is characterized by degeneration of retinal pigment epithelial (RPE) cells and leads to loss of photoreceptor cells and central vision. The initial phase associates with accumulation of intracellular lipofuscin and extracellular deposits called drusen. Epidemiological studies have suggested an inverse correlation between dietary intake of marine n-3 polyunsaturated fatty acids (PUFAs) and the risk of developing neurodegenerative diseases, including AMD. However, the disease-preventive mechanism(s) mobilized by n-3 PUFAs is not completely understood. In human retinal pigment epithelial cells we find that physiologically relevant doses of the n-3 PUFA docosahexaenoic acid (DHA) induce a transient increase in cellular reactive oxygen species (ROS) levels that activates the oxidative stress response regulator NFE2L2/NRF2 (nuclear factor, erythroid derived 2, like 2). Simultaneously, there is a transient increase in intracellular protein aggregates containing SQSTM1/p62 (sequestosome 1) and an increase in autophagy. Pretreatment with DHA rescues the cells from cell cycle arrest induced by misfolded proteins or oxidative stress. Cells with a downregulated oxidative stress response, or autophagy, respond with reduced cell growth and survival after DHA supplementation. These results suggest that DHA both induces endogenous antioxidants and mobilizes selective autophagy of misfolded proteins. Both mechanisms could be relevant to reduce the risk of developing aggregate-associate diseases such as AMD. PMID:26237736

  15. [Analysis of the fatty acid profile of vegetarian and non-vegetarian diet in the context of some diet-related diseases prevention].

    PubMed

    Kornek, Agata; Kucharska, Alicja; Kamela, Katarzyna

    2016-01-01

    Research increasingly provide evidence that vegetarian diet can have a positive impact on health. The aim of this study was to analyze the fatty acid profile of vegetarian and non-vegetarian diet and prove which of them is more optimal in the context of some diet-related diseases prevention. The study involved 83 women (47 vegetarians and 36 non-vegetarians). Estimates of the supply of individual fatty acids in the diet was based on analysis of 3-day dietary records (calculations in a computer program DIETA 5). Found: - in vegan diet significantly lower percentage of energy from SFA than in lactoovovegetarian diet and non-vegetarian diet (5,2% vs 11,2% i 11,9%), - in vegan and lactoovovegetarian diet - significantly higher percentage of energy from PUFA than in non-vegetarian diet (9,2% i 7,8% vs 5,0%), - in vegan and lactoovovegetarian diet - significantly higher percentage of energy from LA than in non-vegetarian diet (6,7% i 5,5% vs 3,9%), - in vegan and lactoovovegetarian diet - significantly higher percentage of energy from ALA than in non-vegetarian diet (1,3% i 1,2% vs. 0,8%) - in vegan and lactoovovegetarian diet - significantly lower intake of EPA+DHA than in non-vegetarian diet (0 mg i 15 mg vs 76 mg), - only 25% of non-vegetarian diets fulfilled recommendations on the content of EPA + DHA Conclusions: Vegetarian, particularly vegan, nutrition may promote good balancing of the fatty acids in the diet, except for the long chain polyunsaturated omega-3, which are also deficient in the case of conventional diet.

  16. [Analysis of the fatty acid profile of vegetarian and non-vegetarian diet in the context of some diet-related diseases prevention].

    PubMed

    Kornek, Agata; Kucharska, Alicja; Kamela, Katarzyna

    Research increasingly provide evidence that vegetarian diet can have a positive impact on health. The aim of this study was to analyze the fatty acid profile of vegetarian and non-vegetarian diet and prove which of them is more optimal in the context of some diet-related diseases prevention. The study involved 83 women (47 vegetarians and 36 non-vegetarians). Estimates of the supply of individual fatty acids in the diet was based on analysis of 3-day dietary records (calculations in a computer program DIETA 5). Found: - in vegan diet significantly lower percentage of energy from SFA than in lactoovovegetarian diet and non-vegetarian diet (5,2% vs 11,2% i 11,9%), - in vegan and lactoovovegetarian diet - significantly higher percentage of energy from PUFA than in non-vegetarian diet (9,2% i 7,8% vs 5,0%), - in vegan and lactoovovegetarian diet - significantly higher percentage of energy from LA than in non-vegetarian diet (6,7% i 5,5% vs 3,9%), - in vegan and lactoovovegetarian diet - significantly higher percentage of energy from ALA than in non-vegetarian diet (1,3% i 1,2% vs. 0,8%) - in vegan and lactoovovegetarian diet - significantly lower intake of EPA+DHA than in non-vegetarian diet (0 mg i 15 mg vs 76 mg), - only 25% of non-vegetarian diets fulfilled recommendations on the content of EPA + DHA Conclusions: Vegetarian, particularly vegan, nutrition may promote good balancing of the fatty acids in the diet, except for the long chain polyunsaturated omega-3, which are also deficient in the case of conventional diet.

  17. Alterations in neuronal morphology and synaptophysin expression in the rat brain as a result of changes in dietary n-6: n-3 fatty acid ratios.

    PubMed

    Hajjar, Toktam; Goh, Yong Meng; Rajion, Mohamed Ali; Vidyadaran, Sharmili; Li, Tan Ai; Ebrahimi, Mahdi

    2013-07-26

    Polyunsaturated fatty acids (PUFA) play important roles in brain fatty acid composition and behavior through their effects on neuronal properties and gene expression. The hippocampus plays an important role in the formation of memory, especially spatial memory and navigation. This study was conducted to examine the effects of PUFA and specifically different dietary n-6: n-3 fatty acid ratios (FAR) on the number and size of hippocampal neurons and the expression of synaptophysin protein in the hippocampus of rats. Forty 3-week old male Sprague-Dawley rats were allotted into 4 groups. The animals received experimental diets with different n-6: n-3 FAR of either 65:1, 26.5:1, 22:1 or 4.5:1 for 14 weeks. The results showed that a lowering dietary n-6: n-3 FAR supplementation can increase the number and size of neurons. Moreover, lowering the dietary n-6: n-3 FAR led to an increase in the expression of the pre-synaptic protein synaptophysin in the CA1 hippocampal subregion of the rat brain. These findings support the notion that decreasing the dietary n-6: n-3 FAR will lead to an intensified hippocampal synaptophysin expression and increased neuron size and proliferation in the rat brain.

  18. Effects of EPA and lipoic acid supplementation on circulating FGF21 and the fatty acid profile in overweight/obese women following a hypocaloric diet.

    PubMed

    Escoté, Xavier; Félix-Soriano, Elisa; Gayoso, Lucía; Huerta, Ana Elsa; Alvarado, María Antonella; Ansorena, Diana; Astiasarán, Iciar; Martínez, J Alfredo; Moreno-Aliaga, María Jesús

    2018-05-23

    FGF21 has emerged as a key metabolism and energy homeostasis regulator. Dietary supplementation with eicosapentaenoic acid (EPA) and/or α-lipoic acid (LIP) has shown beneficial effects on obesity. In this study, we evaluated EPA and/or LIP effects on plasma FGF21 and the fatty acid (FA) profile in overweight/obese women following hypocaloric diets. At the baseline, FGF21 levels were negatively related to the AST/ALT ratio and HMW adiponectin. The weight loss did not cause any significant changes in FGF21 levels, but after the intervention FGF21 increased in EPA-supplemented groups compared to non-EPA-supplemented groups. EPA supplementation decreased the plasma n-6-PUFA content and increased n-3-PUFAs, mainly EPA and DPA, but not DHA. In the LIP-alone supplemented group a decrease in the total SFA and n-6-PUFA content was observed after the supplementation. Furthermore, EPA affected the desaturase activity, lowering Δ4D and raising Δ5/6D. These effects were not observed in the LIP-supplemented groups. Besides, the changes in FGF21 levels were associated with the changes in EPA, n-3-PUFAs, Δ5/6D, and n-6/n-3 PUFA ratio. Altogether, our study suggests that n-3-PUFAs influence FGF21 levels in obesity, although the specific mechanisms implicated remain to be elucidated.

  19. Deficiency of Lipoprotein Lipase in Neurons Decreases AMPA Receptor Phosphorylation and Leads to Neurobehavioral Abnormalities in Mice

    PubMed Central

    Yu, Tian; Taussig, Matthew D.; DiPatrizio, Nicholas V.; Astarita, Giuseppe; Piomelli, Daniele; Bergman, Bryan C.; Dell’Acqua, Mark L.; Eckel, Robert H.; Wang, Hong

    2015-01-01

    Alterations in lipid metabolism have been found in several neurodegenerative disorders, including Alzheimer’s disease. Lipoprotein lipase (LPL) hydrolyzes triacylglycerides in lipoproteins and regulates lipid metabolism in multiple organs and tissues, including the central nervous system (CNS). Though many brain regions express LPL, the functions of this lipase in the CNS remain largely unknown. We developed mice with neuron-specific LPL deficiency that became obese on chow by 16 wks in homozygous mutant mice (NEXLPL-/-) and 10 mo in heterozygous mice (NEXLPL+/-). In the present study, we show that 21 mo NEXLPL+/- mice display substantial cognitive function decline including poorer learning and memory, and increased anxiety with no difference in general motor activities and exploratory behavior. These neurobehavioral abnormalities are associated with a reduction in the 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid (AMPA) receptor subunit GluA1 and its phosphorylation, without any alterations in amyloid β accumulation. Importantly, a marked deficit in omega-3 and omega-6 polyunsaturated fatty acids (PUFA) in the hippocampus precedes the development of the neurobehavioral phenotype of NEXLPL+/- mice. And, a diet supplemented with n-3 PUFA can improve the learning and memory of NEXLPL+/- mice at both 10 mo and 21 mo of age. We interpret these findings to indicate that LPL regulates the availability of PUFA in the CNS and, this in turn, impacts the strength of synaptic plasticity in the brain of aging mice through the modification of AMPA receptor and its phosphorylation. PMID:26263173

  20. Sea Buckthorn Pomace Supplementation in the Diet of Growing Pigs-Effects on Fatty Acid Metabolism, HPA Activity and Immune Status.

    PubMed

    Dannenberger, Dirk; Tuchscherer, Margret; Nürnberg, Gerd; Schmicke, Marion; Kanitz, Ellen

    2018-02-21

    There is evidence that sea buckthorn, as a source of n -3 polyunsaturated fatty acids ( n -3 PUFA), possesses health-enhancing properties and may modulate neuroendocrine and immune functions. In the present study, we investigated the effect of sea buckthorn pomace (SBP) supplementation in the diet of growing German Landrace pigs on fatty acids in the blood and hypothalamus, peripheral immune parameters and mRNA expression of corticotropin-releasing hormone (CRH), mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the hypothalamus and spleen. Pigs were fed diets supplemented with 12% of dried SBP or 0% SBP (control group) over an intervention period of eight weeks. The fatty acid profiles in blood plasma were significantly affected by SBP supplementation only for C18:2 n -6 and n -6/ n -3 PUFA ratio compared with the control group. SBP supplementation did not significantly affect the fatty acid concentrations in the hypothalamus. Furthermore, there were no significant differences in mRNA expression of CRH, MR and GR in the hypothalamus or of GR mRNA expression in the spleen. Concerning the immune status, the plasma IgG levels tended to be higher in SBP pigs, whereas the leukocyte distribution, mitogen-stimulated lymphocyte proliferation, and serum IgM levels remained unchanged. In conclusion, the SBP supplementation of the diet only caused moderate effects on fatty acid metabolism, but no significant effects on hypothalamic-pituitary-adrenal (HPA) activity and immunity in growing pigs. It seems that a beneficial effect of dietary n -3 PUFA on health and welfare is more likely to be expected during stressful situations.

  1. Hepatic Fat Accumulation Is Modulated by the Interaction between the rs738409 Variant in the PNPLA3 Gene and the Dietary Omega6/Omega3 PUFA Intake

    PubMed Central

    Santoro, Nicola; Savoye, Mary; Kim, Grace; Marotto, Katie; Shaw, Melissa M.; Pierpont, Bridget; Caprio, Sonia

    2012-01-01

    Background A single nucleotide polymorphism (SNP), the rs738409, in the patatin like phospholipase 3 gene (PNPLA3) has been recently associated with increased hepatic steatosis and ALT levels in adults and children. Given the potential role of PNPLA3 in fatty liver development, we aimed to explore whether the influence of PNPLA3 genotype on hepatic fat in obese youth might be modulated by dietary factors such as essential omega polyunsaturated fatty acids (PUFA) intake. Materials and Methods We studied 127 children and adolescents (56 boys, 71 girls; 58 Caucasians; 30 African Americans and 39 Hispanics; mean age 14.7±3.3; mean BMI 30.7±7.2). The dietary composition was assessed by the Nutrition Data System for Research (NDS-R version 2011). The patients underwent a MRI study to assess the liver fat content (HFF%), ALT measurement and the genotyping of the rs738409 SNP by automatic sequencing. Results As previously observed, HFF% and ALT levels varied according to the genotype in each ethnicity. ALT levels and HFF% were significantly influenced by the interaction between genotype and omega-6/omega-3 PUFA ratio (n-6/n-3), p = 0.003 and p = 0.002, respectively. HFF% and ALT levels were, in fact, related to the n-6/n-3 consumption only in subjects homozygote for the G allele of the rs738409 (r2 = 0.45, p =  0.001 and r2 = 0.40, p = 0.006, respectively). Conclusions These findings suggest that the association of a high dietary n-6/n-3 PUFA with fatty liver and liver damage in obese youths may be driven by a predisposing genotype. PMID:22629460

  2. [Correction of the combined vitamin deficiency in growing rats fed fiber enriched diets with different doses of vitamins].

    PubMed

    Beketova, N A; Kodentsova, V M; Vrzhesinskaia, O A; Kosheleva, O V; Pereverzeva, O G; Sokol'nikov, A A; Aksenov, I V

    2014-01-01

    The effect of 5% dietary wheat bran (WB) on the correction of combined vitamin deficiency by two doses of vitamins (physiological and enhanced) has been analyzed using a rat model (8 groups, n = 8/group). Vitamin deficiency in male weanling Wistar rats (58.1 ± 0.5 g) was induced by 5-fold reduction of vitamin mixture amount in the feed and complete vitamin E, B1 and B2 exclusion from the mixture for 30 days, then deficit was corrected within 5 days. Rats from control group were fed a complete semisynthetic diet containing microcrystalline cellulose 2%. Vitamin deficient diet for 35 days resulted in reduced (p < 0.05) levels of vitamin A in the liver by 25 fold, vitamin E and B1--2.0-2.3 fold, vitamin B2--by 40%, 25(OH)D blood plasma concentration--by 21% compared with the control. Feed consumption of the animals treated with vitamin deficient diet and WB was higher by 43% than in rats with vitamin deficit. Their rate of weight occupied the intermediate position between the rates of weight in deficit and in control animals, and they could not serve a full control to evaluate the WB impact on vitamin sufficiency. After filling the vitamin diet content to an adequate level vitamin E liver content was fully restored. To restore vitamins B1 and B2 liver level higher doses of vitamins (120-160% of adequate content) were required, and to restore the reduced levels of vitamin A in rat liver even 2-fold increased dose of vitamin A was insufficient. The diet enrichment with WB had no effect on vitamin B1 and B2 liver content, regardless of the amount of vitamins in the diet. Adding fiber to the diet of animals adequately provided with vitamins resulted in significantly 1,3-fold increase of 25(OH)D blood plasma concentration and a slight but significant decrease of α-tocopherol liver level by 16% as compared to rats not receiving WB. The enrichment of rat diet with dietary fibers worsened restoration of the reduced vitamin E status not only by filling vitamin content in the

  3. Different Effects of Eicosapentaenoic and Docosahexaenoic Acids on Atherogenic High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice.

    PubMed

    Suzuki-Kemuriyama, Noriko; Matsuzaka, Takashi; Kuba, Motoko; Ohno, Hiroshi; Han, Song-Iee; Takeuchi, Yoshinori; Isaka, Masaaki; Kobayashi, Kazuto; Iwasaki, Hitoshi; Yatoh, Shigeru; Suzuki, Hiroaki; Miyajima, Katsuhiro; Nakae, Dai; Yahagi, Naoya; Nakagawa, Yoshimi; Sone, Hirohito; Yamada, Nobuhiro; Shimano, Hitoshi

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of metabolic syndrome, can progress to steatohepatitis (NASH) and advanced liver damage, such as that from liver cirrhosis and cancer. Recent studies have shown the benefits of consuming n-3 polyunsaturated fatty acids (PUFAs) for the treatment of NAFLD. In the present study, we investigated and compared the effects of the major n-3 PUFAs-eicosapentaenoic acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6)-in preventing atherogenic high-fat (AHF) diet-induced NAFLD. Mice were fed the AHF diet supplemented with or without EPA or DHA for four weeks. Both EPA and DHA reduced the pathological features of AHF diet-induced NASH pathologies such as hepatic lobular inflammation and elevated serum transaminase activity. Intriguingly, EPA had a greater hepatic triacylglycerol (TG)-reducing effect than DHA. In contrast, DHA had a greater suppressive effect than EPA on AHF diet-induced hepatic inflammation and ROS generation, but no difference in fibrosis. Both EPA and DHA could be effective for treatment of NAFLD and NASH. Meanwhile, the two major n-3 polyunsaturated fatty acids might differ in a relative contribution to pathological intermediate steps towards liver fibrosis.

  4. Omega-3 Fatty Acid Deficiency Augments Risperidone-Induced Hepatic Steatosis in Rats: Positive Association with Stearoyl-CoA Desaturase

    PubMed Central

    McNamara, Robert K.; Magrisso, I. Jack; Hofacer, Rylon; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Benoit, Stephen C.

    2012-01-01

    Psychiatric patients frequently exhibit long-chain n-3 (LCn-3) fatty acid deficits and elevated triglyceride (TAG) production following chronic exposure to second generation antipsychotics (SGA). Emerging evidence suggests that SGAs and LCn-3 fatty acids have opposing effects on stearoyl-CoA desaturase-1 (SCD1), which plays a pivotal role in TAG biosynthesis. Here we evaluated whether low LCn-3 fatty acid status would augment elevations in rat liver and plasma TAG concentrations following chronic treatment with the SGA risperidone (RSP), and evaluated relationships with hepatic SCD1 expression and activity indices. In rats maintained on the n-3 fatty acid-fortified (control) diet, chronic RSP treatment significantly increased liver SCD1 mRNA and activity indices (18:1/18:0 and 16:1/16:0 ratios), and significantly increased liver, but not plasma, TAG concentrations. Rats maintained on the n-3 deficient diet exhibited significantly lower liver and erythrocyte LCn-3 fatty acid levels, and associated elevations in LCn-6/LCn-3 ratio. In n-3 deficient rats, RSP-induced elevations in liver SCD1 mRNA and activity indices (18:1/18:0 and 16:1/16:0 ratios) and liver and plasma TAG concentrations were significantly greater than those observed in RSP-treated controls. Plasma glucose levels were not altered by diet or RSP, and body weight was lower in RSP- and VEH-treated n-3 deficient rats. These preclinical data support the hypothesis that low n-3 fatty acid status exacerbates RSP-induced hepatic steatosis by augmenting SCD1 expression and activity. PMID:22750665

  5. Human Milk Plasmalogens Are Highly Enriched in Long-Chain PUFAs.

    PubMed

    Moukarzel, Sara; Dyer, Roger A; Keller, Bernd O; Elango, Rajavel; Innis, Sheila M

    2016-11-01

    Human milk contains unique glycerophospholipids, including ethanolamine-containing plasmalogens (Pls-PEs) in the milk fat globule membrane, which have been implicated in infant brain development. Brain Pls-PEs accumulate postnatally and are enriched in long-chain polyunsaturated fatty acids (LC-PUFAs), particularly docosahexaenoic acid (DHA). Fatty acid (FA) composition of Pls-PEs in milk is poorly understood because of the analytical challenges in separating Pls-PEs from other phospholipids in the predominating presence of triacylglycerols. The variability of Pls-PE FAs and the potential role of maternal diet remain unknown. Our primary objectives were to establish improved methodology for extracting Pls-PEs from human milk, enabling FA analysis, and to compare FA composition between Pls-PEs and 2 major milk phospholipids, phosphatidylcholine and phosphatidylethanolamine. Our secondary objective was to explore associations between maternal DHA intake and DHA in milk phospholipids and variability in phospholipid-DHA within a woman. Mature milk was collected from 25 women, with 4 providing 3 milk samples on 3 separate days. Lipids were extracted, and phospholipids were removed by solid phase extraction. Pls-PEs were separated by using normal-phase HPLC, recovered and analyzed for FAs by GLC. Diet was assessed by using a validated food-frequency questionnaire. Pls-PE concentration in human milk was significantly higher in LC-PUFAs than phosphatidylethanolamine and phosphatidylcholine, including arachidonic acid (AA) and DHA. The mean ± SD concentration of AAs in Pls-PEs was ∼2.5-fold higher than in phosphatidylethanolamine (10.5 ± 1.71 and 3.82 ± 0.92 g/100 g, respectively). DHA in Pls-PEs varied across women (0.95-6.51 g/100 g), likely independent of maternal DHA intake. Pls-PE DHA also varied within a woman across days (CV ranged from 9.8% to 28%). Human milk provides the infant with LC-PUFAs from multiple lipid pools, including a source from Pls-PEs. The

  6. Botanical oils enriched in n-6 and n-3 FADS2 products are equally effective in preventing atherosclerosis and fatty liver.

    PubMed

    Shewale, Swapnil V; Boudyguina, Elena; Zhu, Xuewei; Shen, Lulu; Hutchins, Patrick M; Barkley, Robert M; Murphy, Robert C; Parks, John S

    2015-06-01

    Echium oil (EO), which is enriched in 18:4 n-3, the immediate product of fatty acid desaturase 2 (FADS2) desaturation of 18:3 n-3, is as atheroprotective as fish oil (FO). The objective of this study was to determine whether botanical oils enriched in the FADS2 products 18:3 n-6 versus 18:4 n-3 are equally atheroprotective. LDL receptor KO mice were fed one of four atherogenic diets containing 0.2% cholesterol and 10% calories as palm oil (PO) plus 10% calories as: 1) PO; 2) borage oil (BO; 18:3 n-6 enriched); 3) EO (18:4 n-3 enriched); or 4) FO for 16 weeks. Mice fed BO, EO, and FO versus PO had significantly lower plasma total and VLDL cholesterol concentrations; hepatic neutral lipid content and inflammation, aortic CE content, aortic root intimal area and macrophage content; and peritoneal macrophage inflammation, CE content, and ex vivo chemotaxis. Atheromas lacked oxidized CEs despite abundant generation of macrophage 12/15 lipooxygenase-derived metabolites. We conclude that botanical oils enriched in 18:3 n-6 and 18:4 n-3 PUFAs beyond the rate-limiting FADS2 enzyme are equally effective in preventing atherosclerosis and hepatosteatosis compared with saturated/monounsaturated fat due to cellular enrichment of ≥20 PUFAs, reduced plasma VLDL, and attenuated macrophage inflammation. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  7. A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet.

    PubMed

    Raubenheimer, Peter J; Nyirenda, Moffat J; Walker, Brian R

    2006-07-01

    Liver fat accumulation is proposed to link obesity and insulin resistance. To dissect the role of liver fat in the insulin resistance of diet-induced obesity, we altered liver fat using a choline-deficient diet. C57Bl/6 mice were fed a low-fat (10% of calories) or high-fat (45% of calories) diet for 8 weeks; during the final 4 weeks, diets were either choline deficient or choline supplemented. In choline replete animals, high-fat feeding induced weight gain, elevated liver triglycerides (171%), hyperinsulinemia, and glucose intolerance. Choline deficiency did not affect body or adipose depot weights but amplified liver fat accumulation with high-fat diet (281%, P < 0.01). However, choline deficiency lowered fasting plasma insulin (from 983 +/- 175 to 433 +/- 36 pmol/l, P < 0.01) and improved glucose tolerance on a high-fat diet. In mice on 30% fat diet, choline deficiency increased liver mRNA levels of the rate-limiting enzyme in phosphatidylcholine synthesis and of enzymes involved in free fatty acid esterification, without affecting those of de novo lipogenesis or fatty acid oxidation. We conclude that liver fat accumulation per se does not cause insulin resistance during high-fat feeding and that choline deficiency may shunt potentially toxic free fatty acids toward innocuous storage triglyceride in the liver.

  8. Cognitive antecedents of consumers' willingness to purchase fish rich in polyunsaturated fatty acids (PUFA).

    PubMed

    Foxall, G; Leek, S; Maddock, S

    1998-12-01

    A sample of UK consumers (N = 311) was interviewed in order to identify the attitudinal, cognitive and involvement characteristics of probable early adopters of polyunsaturated fatty acid (PUFA) fed fish. Attitude to fish significantly influenced PUFA fish, premium price PUFA fish, PUFA salmon, PUFA eel and PUFA sturgeon purchase. Involvement in healthy eating influenced PUFA fish, premium price PUFA fish and PUFA salmon purchase. Cognitive style did not influence PUFA fish and premium price PUFA fish purchase; nor, contrary to earlier research, did cognitive style and involvement interact to influence intended PUFA fish purchases.

  9. ω-3 PUFAs ameliorate liver fibrosis and inhibit hepatic stellate cells proliferation and activation by promoting YAP/TAZ degradation.

    PubMed

    Zhang, Kun; Chang, Yanan; Shi, Zhemin; Han, Xiaohui; Han, Yawei; Yao, Qingbin; Hu, Zhimei; Cui, Hongmei; Zheng, Lina; Han, Tao; Hong, Wei

    2016-07-20

    Elevated levels of the transcriptional regulators Yes-associated protein (YAP) and transcriptional coactivators with PDZ-binding motif (TAZ), key effectors of the Hippo pathway, have been shown to play essential roles in controlling liver cell fate and the activation of hepatic stellate cells (HSCs). The dietary intake of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) has been positively associated with a number of health benefits including prevention and reduction of cardiovascular diseases, inflammation and cancers. However, little is known about the impact of ω-3 PUFAs on liver fibrosis. In this study, we used CCl4-induced liver fibrosis mouse model and found that YAP/TAZ is over-expressed in the fibrotic liver and activated HSCs. Fish oil administration to the model mouse attenuates CCl4-induced liver fibrosis. Further study revealed that ω-3 PUFAs down-regulate the expression of pro-fibrogenic genes in activated HSCs and fibrotic liver, and the down-regulation is mediated via YAP, thus identifying YAP as a target of ω-3 PUFAs. Moreover, ω-3 PUFAs promote YAP/TAZ degradation in a proteasome-dependent manner. Our data have identified a mechanism of ω-3 PUFAs in ameliorating liver fibrosis.

  10. Choline deficiency increases lymphocyte apoptosis and DNA damage in humans2,3

    PubMed Central

    da Costa, Kerry-Ann; Niculescu, Mihai D; Craciunescu, Corneliu N; Fischer, Leslie M; Zeisel, Steven H

    2008-01-01

    Background: Whereas deficiency of the essential nutrient choline is associated with DNA damage and apoptosis in cell and rodent models, it has not been shown in humans. Objective: The objective was to ascertain whether lymphocytes from choline-deficient humans had greater DNA damage and apoptosis than did those from choline-sufficient humans. Design: Fifty-one men and women aged 18–70 y were fed a diet containing the recommended adequate intake of choline (control) for 10 d. They then were fed a choline-deficient diet for up to 42 d before repletion with 138–550 mg choline/d. Blood was collected at the end of each phase, and peripheral lymphocytes were isolated. DNA damage and apoptosis were then assessed by activation of caspase-3, terminal deoxynucleotide transferase–mediated dUTP nick end-labeling, and single-cell gel electrophoresis (COMET) assays. Results: All subjects fed the choline-deficient diet had lymphocyte DNA damage, as assessed by COMET assay, twice that found when they were fed the control diet. The subjects who developed organ dysfunction (liver or muscle) when fed the choline-deficient diet had significantly more apoptotic lymphocytes, as assessed by the activated caspase-3 assay, than when fed the control diet. Conclusions: A choline-deficient diet increased DNA damage in humans. Subjects in whom these diets induced liver or muscle dys-function also had higher rates of apoptosis in their peripheral lymphocytes than did subjects who did not develop organ dysfunction. Assessment of DNA damage and apoptosis in lymphocytes appears to be a clinically useful measure in humans (such as those receiving parenteral nutrition) in whom choline deficiency is suspected. PMID:16825685

  11. Health benefits of n-3 polyunsaturated fatty acids: eicosapentaenoic acid and docosahexaenoic acid.

    PubMed

    Siriwardhana, Nalin; Kalupahana, Nishan S; Moustaid-Moussa, Naima

    2012-01-01

    Marine-based fish and fish oil are the most popular and well-known sources of n-3 polyunsaturated fatty acids (PUFAs), namely, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These n-3 PUFAs are known to have variety of health benefits against cardiovascular diseases (CVDs) including well-established hypotriglyceridemic and anti-inflammatory effects. Also, various studies indicate promising antihypertensive, anticancer, antioxidant, antidepression, antiaging, and antiarthritis effects. Moreover, recent studies also indicate anti-inflammatory and insulin-sensitizing effects of these fatty acids in metabolic disorders. Classically, n-3 PUFAs mediate some of these effects by antagonizing n-6 PUFA (arachidonic acid)-induced proinflammatory prostaglandin E₂ (PGE₂) formation. Another well-known mechanism by which n-3 PUFAs impart their anti-inflammatory effects is via reduction of nuclear factor-κB activation. This transcription factor is a potent inducer of proinflammatory cytokine production, including interleukin 6 and tumor necrosis factor-α, both of which are decreased by EPA and DHA. Other evidence also demonstrates that n-3 PUFAs repress lipogenesis and increase resolvins and protectin generation, ultimately leading to reduced inflammation. Finally, beneficial effects of EPA and DHA in insulin resistance include their ability to increase secretion of adiponectin, an anti-inflammatory adipokine. In summary, n-3 PUFAs have multiple health benefits mediated at least in part by their anti-inflammatory actions; thus their consumption, especially from dietary sources, should be encouraged. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. [Model of experimental nonalcoholic steatohepatitis from use of methionine and choline deficient diet].

    PubMed

    Zamin, Idilio; Mattos, Angelo Alves de; Mattos, Angelo Zambam de; Migon, Eduardo; Soares, Ernesto; Perry, Marcos Luiz Santos

    2009-01-01

    There are still many unknown aspects about nonalcoholic steatohepatitis, especially regarding its pathophysiology and pharmacological treatment. Thus, experimental models are important for a better understanding of this disease and the evaluation of the effects of drugs. To develop a model of experimental nonalcoholic steatohepatitis from use of methionine and choline deficient diet. Fifty Wistar male rats were studied. A methionine and choline deficient diet has been processed in a craft. A group of 40 animals received the deficient diet for 90 days, and a group of 10 rats (control group) received the standardized ration in the same period. After, the animals were killed by decapitation, and laparotomy was performed. Hepatectomy was performed and the liver was studied by macroscopy and microscopy. The level of significance considered was of 0,05. The rats that received the deficient diet showed significant loss of weight with findings from malnutrition and all of them had at least some degree of macrovesicular steatosis. The diagnosis of nonalcoholic steatohepatitis was performed in 27 (70%) of the 39 rats that received this deficient diet (1 rat died during the study). None of the 10 rats that received the standardized diet had histological abnormalities. The diet restricted in methionine and choline induced steatosis and steatohepatitis in an animal model with low cost.

  13. Kinetics of eicosapentaenoic acid in brain, heart and liver of conscious rats fed a high n-3 PUFA containing diet

    PubMed Central

    Igarashi, Miki; Chang, Lisa; Ma, Kaizong; Rapoport, Stanley I.

    2018-01-01

    Eicosapentaenoic acid (EPA, 20:5n-3), a precursor of docosahexaenoic acid (DHA), may benefit cardiovascular and brain health. Quantifying EPA’s in vivo kinetics might elucidate these effects. [1-14C] EPA was infused i.v. for 5 min in unanesthetized male rats fed a standard EPA–DHA diet. Plasma and microwaved tissue were analyzed. Kinetic parameters were calculated using our compartmental model. At 5 min, 31–48% of labeled EPA in brain and heart was oxidized, 7% in liver. EPA incorporation rates from brain and liver precursor EPA–CoA pools into lipids, mainly phospholipids, were 36 and 2529 nmol/s/g × 10−4, insignificant for heart. Deacylation–reacylation half-lives were 22 h and 38–128 min. Conversion rates to DHA equaled 0.65 and 25.1 nmol/s/g × 10−4, respectively. The low brain concentration and incorporation rate and high oxidation of EPA suggest that, if EPA has a beneficial effect in brain, it might result from its suppression of peripheral inflammation and hepatic conversion to bioactive DHA. PMID:24209500

  14. Kinetics of eicosapentaenoic acid in brain, heart and liver of conscious rats fed a high n-3 PUFA containing diet.

    PubMed

    Igarashi, Miki; Chang, Lisa; Ma, Kaizong; Rapoport, Stanley I

    2013-01-01

    Eicosapentaenoic acid (EPA, 20:5n-3), a precursor of docosahexaenoic acid (DHA), may benefit cardiovascular and brain health. Quantifying EPA's in vivo kinetics might elucidate these effects. [1-(14)C]EPA was infused i.v. for 5min in unanesthetized male rats fed a standard EPA-DHA diet. Plasma and microwaved tissue were analyzed. Kinetic parameters were calculated using our compartmental model. At 5min, 31-48% of labeled EPA in brain and heart was oxidized, 7% in liver. EPA incorporation rates from brain and liver precursor EPA-CoA pools into lipids, mainly phospholipids, were 36 and 2529nmol/s/g×10(-4), insignificant for heart. Deacylation-reacylation half-lives were 22h and 38-128min. Conversion rates to DHA equaled 0.65 and 25.1nmol/s/g×10(-4), respectively. The low brain concentration and incorporation rate and high oxidation of EPA suggest that, if EPA has a beneficial effect in brain, it might result from its suppression of peripheral inflammation and hepatic conversion to bioactive DHA. © 2013 Published by Elsevier Ltd.

  15. Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1.

    PubMed

    Zhang, Meijuan; Wang, Suping; Mao, Leilei; Leak, Rehana K; Shi, Yejie; Zhang, Wenting; Hu, Xiaoming; Sun, Baoliang; Cao, Guodong; Gao, Yanqin; Xu, Yun; Chen, Jun; Zhang, Feng

    2014-01-29

    Ischemic stroke is a debilitating clinical disorder that affects millions of people, yet lacks effective neuroprotective treatments. Fish oil is known to exert beneficial effects against cerebral ischemia. However, the underlying protective mechanisms are not fully understood. The present study tests the hypothesis that omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate ischemic neuronal injury by activating nuclear factor E2-related factor 2 (Nrf2) and upregulating heme oxygenase-1 (HO-1) in both in vitro and in vivo models. We observed that pretreatment of rat primary neurons with docosahexaenoic acid (DHA) significantly reduced neuronal death following oxygen-glucose deprivation. This protection was associated with increased Nrf2 activation and HO-1 upregulation. Inhibition of HO-1 activity with tin protoporphyrin IX attenuated the protective effects of DHA. Further studies showed that 4-hydroxy-2E-hexenal (4-HHE), an end-product of peroxidation of n-3 PUFAs, was a more potent Nrf2 inducer than 4-hydroxy-2E-nonenal derived from n-6 PUFAs. In an in vivo setting, transgenic mice overexpressing fatty acid metabolism-1, an enzyme that converts n-6 PUFAs to n-3 PUFAs, were remarkably resistant to focal cerebral ischemia compared with their wild-type littermates. Regular mice fed with a fish oil-enhanced diet also demonstrated significant resistance to ischemia compared with mice fed with a regular diet. As expected, the protection was associated with HO-1 upregulation, Nrf2 activation, and 4-HHE generation. Together, our data demonstrate that n-3 PUFAs are highly effective in protecting the brain, and that the protective mechanisms involve Nrf2 activation and HO-1 upregulation by 4-HHE. Further investigation of n-3 PUFA neuroprotective mechanisms may accelerate the development of stroke therapies.

  16. High levels of retinal membrane docosahexaenoic acid increase susceptibility to stress-induced degenerations⃞

    PubMed Central

    Tanito, Masaki; Brush, Richard S.; Elliott, Michael H.; Wicker, Lea D.; Henry, Kimberly R.; Anderson, Robert E.

    2009-01-01

    The fat-1 gene cloned from C. elegans encodes an n-3 fatty acid desaturase that converts n-6 to n-3 PUFA. Mice carrying the fat-1 transgene and wild-type controls were fed an n-3-deficient/n-6-enriched diet [fat-1- safflower oil (SFO) and wt-SFO, respectively]. Fatty acid profiles of rod outer segments (ROS), cerebellum, plasma, and liver demonstrated significantly lower n-6/n-3 ratios and higher docosahexaenoic acid (DHA) levels in fat-1-SFO compared with wt-SFO. When mice were exposed to light stress: 1) the outer nuclear layer (ONL) thickness was reduced; 2) amplitudes of the electroretinogram (ERG) were lower; 3) the number of apoptotic photoreceptor cells was greater; and 4) modification of retinal proteins by 4-hydroxyhexenal (4-HHE), an end-product of n-3 PUFA oxidation was increased in both fat-1-SFO and wt mice fed a regular lab chow diet compared with wt-SFO. The results indicate a positive correlation between the level of DHA, the degree of n-3 PUFA lipid peroxidation, and the vulnerability of the retina to photooxidative stress. In mice not exposed to intense light, the reduction in DHA resulted in reduced efficacy in phototransduction gain steps, while no differences in the retinal morphology or retinal biochemistry. These results highlight the dual roles of DHA in cellular physiology and pathology. PMID:19023138

  17. Whole Blood ω-3 Fatty Acids Are Inversely Associated with Carotid Intima-Media Thickness in Indigenous Mexican Women.

    PubMed

    Monge, Adriana; Harris, William S; Ortiz-Panozo, Eduardo; Yunes, Elsa; Cantu-Brito, Carlos; Catzin-Kuhlmann, Andres; López-Ridaura, Ruy; Lajous, Martín

    2016-07-01

    Long-chain ω-3 (n-3) polyunsaturated fatty acids (PUFAs) may reduce the risk of atherosclerosis. The association between n-3 PUFAs and cardiovascular disease may vary across different populations, and there is limited information on Hispanic individuals with mixed Amerindian and European origin. We evaluated the cross-sectional relations between whole blood n-3 PUFAs and carotid intima-media thickness (IMT) in Mexican women living in Mexico and assessed whether this relation was different in women who spoke an indigenous language compared with women who did not. In 2012-2013, we assessed the association between blood n-3 PUFAs and IMT in 1306 women free of disease in Chiapas and Yucatan, Mexico. We categorized blood n-3 PUFAs (% of total FAs) in quartiles and adjusted linear regression models by age, indigenous language, site, socioeconomic status, education, smoking, menopause, diabetes, hypertension, hypercholesterolemia, body mass index, physical activity, and diet. We stratified analyses by indigenous/nonindigenous language speakers (n = 315 of 991). Whole blood n-3 PUFAs (means ± SDs) were 3.58% ± 0.78% of total FAs. We did not observe a significant association between n-3 PUFAs and IMT in the overall study population. However, the adjusted mean difference of IMT was -6.5% (95% CI: -10.7%, -2.3%; P-trend < 0.0001) for indigenous women in the highest quartile compared with the lowest quartile of blood n-3 PUFAs. In nonindigenous women, we did not observe an association (-0.6%; 95% CI: -3.0%, 1.8%, comparing extreme quartiles; P-trend = 1.00). Overall, circulating n-3 PUFAs were not associated with IMT. However, we observed a strong statistically significant inverse association with IMT in indigenous Mexican women. Future studies should evaluate genetic markers that may reflect differences in n-3 PUFA metabolism across populations. © 2016 American Society for Nutrition.

  18. Evaluation of phosphorus, protein, and n-3 fatty-acid content in 15 marine fish species identifies the species most beneficial to renal patients.

    PubMed

    Castro-Gonzalez, Isabel; Miranda-Becerra, Daniela; Montano-Benavides, Sara

    2009-11-01

    Among 15 marine fish species, we sought to identify those most beneficial to renal patients by evaluating their phosphorus (P), protein (PC), and n-3 fatty-acid (n-3 PUFA) content. These 15 species are all edible. They were obtained and sampled randomly, and were filleted to obtain 100g, enabling us to perform the analysis in triplicate. Crude protein was analyzed with a Kjeltec, and minerals were analyzed using atomic absorption spectrophotometry. The PC values (g/100g) ranged from 14.3 (blue runner; BR) to 22.8 (California butterfly ray). The fish with the highest P (mg/100g) content were spotted sea trout (ST), gafftopsail fish (CF) (289), and BR (274), followed by smalltail shark (272). The species with the lowest ratio of P:n-3 PUFA was dollar fish (DF) (0.28), followed by BR, ST, and vermilion snapper (range, 0.28 to 0.67). The highest ratio of P:n-3 PUFA was found in the small-tail shark (11.6). Fish with a high n-3 PUFA/g PC content were DF (41.7), BR (38.05), ST (34.8), and CF (22.5). There was a tendency of P to increase as muscle fat increased (mg P/100g), i.e., lean fish (194), semifatty fish (239), and fatty fish (262). The regular inclusion in the diet, at least three times a week, of the species DF, BR, CF, ST, caitipa mojarra, vermillion snapper, and pot snapper can be considered beneficial to the general health status of renal patients.

  19. Hypothalamic fatty acid sensing in Senegalese sole (Solea senegalensis): response to long-chain saturated, monounsaturated, and polyunsaturated (n-3) fatty acids.

    PubMed

    Conde-Sieira, Marta; Bonacic, Kruno; Velasco, Cristina; Valente, Luisa M P; Morais, Sofia; Soengas, José L

    2015-12-15

    We assessed the presence of fatty acid (FA)-sensing mechanisms in hypothalamus of Senegalese sole (Solea senegalensis) and investigated their sensitivity to FA chain length and/or level of unsaturation. Stearate (SA, saturated FA), oleate (OA, monounsaturated FA of the same chain length), α-linolenate [ALA, a n-3 polyunsaturated fatty acid (PUFA) of the same chain length], and eicosapentanoate (EPA, a n-3 PUFA of a larger chain length) were injected intraperitoneally. Parameters related to FA sensing and neuropeptide expression in the hypothalamus were assessed after 3 h and changes in accumulated food intake after 4, 24, and 48 h. Three FA sensing systems characterized in rainbow trout were also found in Senegalese sole and were activated by OA in a way similar to that previously characterized in rainbow trout and mammals. These hypothalamic FA sensing systems were also activated by ALA, differing from mammals, where n-3 PUFAs do not seem to activate FA sensors. This might suggest additional roles and highlights the importance of n-3 PUFA in fish diets, especially in marine species. The activation of FA sensing seems to be partially dependent on acyl chain length and degree of saturation, as no major changes were observed after treating fish with SA or EPA. The activation of FA sensing systems by OA and ALA, but not SA or EPA, is further reflected in the expression of hypothalamic neuropeptides involved in the control of food intake. Both OA and ALA enhanced anorexigenic capacity compatible with the activation of FA sensing systems. Copyright © 2015 the American Physiological Society.

  20. Sea Buckthorn Pomace Supplementation in the Diet of Growing Pigs—Effects on Fatty Acid Metabolism, HPA Activity and Immune Status

    PubMed Central

    Dannenberger, Dirk; Tuchscherer, Margret; Nürnberg, Gerd; Kanitz, Ellen

    2018-01-01

    There is evidence that sea buckthorn, as a source of n-3 polyunsaturated fatty acids (n-3 PUFA), possesses health-enhancing properties and may modulate neuroendocrine and immune functions. In the present study, we investigated the effect of sea buckthorn pomace (SBP) supplementation in the diet of growing German Landrace pigs on fatty acids in the blood and hypothalamus, peripheral immune parameters and mRNA expression of corticotropin-releasing hormone (CRH), mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the hypothalamus and spleen. Pigs were fed diets supplemented with 12% of dried SBP or 0% SBP (control group) over an intervention period of eight weeks. The fatty acid profiles in blood plasma were significantly affected by SBP supplementation only for C18:2n-6 and n-6/n-3 PUFA ratio compared with the control group. SBP supplementation did not significantly affect the fatty acid concentrations in the hypothalamus. Furthermore, there were no significant differences in mRNA expression of CRH, MR and GR in the hypothalamus or of GR mRNA expression in the spleen. Concerning the immune status, the plasma IgG levels tended to be higher in SBP pigs, whereas the leukocyte distribution, mitogen-stimulated lymphocyte proliferation, and serum IgM levels remained unchanged. In conclusion, the SBP supplementation of the diet only caused moderate effects on fatty acid metabolism, but no significant effects on hypothalamic–pituitary–adrenal (HPA) activity and immunity in growing pigs. It seems that a beneficial effect of dietary n-3 PUFA on health and welfare is more likely to be expected during stressful situations. PMID:29466282

  1. Omega-3 Fatty Acids, Oxidative Stress, and Leukocyte Telomere Length: A Randomized Controlled Trial

    PubMed Central

    Kiecolt-Glaser, Janice K.; Epel, Elissa S.; Belury, Martha A.; Andridge, Rebecca; Lin, Jue; Glaser, Ronald; Malarkey, William B.; Hwang, Beom Seuk; Blackburn, Elizabeth

    2012-01-01

    Shorter telomeres have been associated with poor health behaviors, age-related diseases, and early mortality. Telomere length is regulated by the enzyme telomerase, and is linked to exposure to proinflammatory cytokines and oxidative stress. In our recent randomized controlled trial, omega-3 (n-3) polyunsaturated fatty acid (PUFA) supplementation lowered the concentration of serum proinflammatory cytokines. This study assessed whether n-3 PUFA supplementation also affected leukocyte telomere length, telomerase, and oxidative stress. In addition to testing for group differences, changes in the continuous n-6:n-3 PUFA ratio were assessed to account for individual differences in adherence, absorption, and metabolism. The double-blind 4-month trial included 106 healthy sedentary overweight middle-aged and older adults who received (1) 2.5 g/day n-3 PUFAs, (2) l.25 g/day n-3 PUFAs, or (3) placebo capsules that mirrored the proportions of fatty acids in the typical American diet. Supplementation significantly lowered oxidative stress as measured by F2-isoprostanes (p=0.02). The estimated geometric mean log-F2-isoprostanes values were 15% lower in the two supplemented groups compared to placebo. Although group differences for telomerase and telomere length were nonsignificant, changes in the n-6:n-3 PUFA plasma ratios helped clarify the intervention’s impact: telomere length increased with decreasing n-6:n-3 ratios, p=0.02. The data suggest that lower n-6:n-3 PUFA ratios can impact cell aging. The triad of inflammation, oxidative stress, and immune cell aging represents important pre-disease mechanisms that may be ameliorated through nutritional interventions. This translational research broadens our understanding of the potential impact of the n-6:n-3 PUFA balance. ClinicalTrials.gov identifier: NCT00385723 PMID:23010452

  2. The interaction between maternal and post-hatch n-3 fatty acid supplementation in broiler diets.

    PubMed

    Koppenol, A; Delezie, E; Buyse, J; Everaert, N

    2015-10-01

    This study investigated whether offspring from n-3-supplemented breeders have an enhanced performance and immune organ weight when fed a post-hatch n-3-enriched diet in comparison with their control-fed counterparts and the importance of timing of omega-3 supplementation. Therefore, 480 Ross-308 broiler breeder hens were fed one of four different diets (120/treatment). The control diet (CON) was a basal diet, rich in n-6 fatty acids (FA). The three other diets were enriched in n-3 FA, formulated to obtain a different EPA/DHA ratio of 1/1 (EPA = DHA), 1/2 (DHA) or 2/1 (EPA). At 33 weeks of age, eggs were incubated to obtain 1440 offspring. They were set up according to their maternal diet and sex in 48 pens of 30 chicks each (12 pens per maternal treatment: six male and six female). Half of the offspring were given a post-hatch control diet, whereas to other half received an n-3-supplemented diet. Zootechnical performance was followed for starter, grower and finisher phase, and at the end of each phase two, chicks per pen were sacrificed to determine the weight of the immune organs. No interaction was found between maternal and post-hatch n-3 treatment for zootechnical performance. An interaction arose between the maternal and post-hatch n-3 supplementation for proportional bursa weight at day 1 and day 14 and proportional liver weight at day 14, but effects on immune organ weight were rather limited. Offspring post-hatch n-3 supplementation did not enhance maternal n-3 supplementation. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  3. Alternative Sources of n-3 Long-Chain Polyunsaturated Fatty Acids in Marine Microalgae

    PubMed Central

    Martins, Dulce Alves; Custódio, Luísa; Barreira, Luísa; Pereira, Hugo; Ben-Hamadou, Radhouan; Varela, João; Abu-Salah, Khalid M.

    2013-01-01

    The main source of n-3 long-chain polyunsaturated fatty acids (LC-PUFA) in human nutrition is currently seafood, especially oily fish. Nonetheless, due to cultural or individual preferences, convenience, geographic location, or awareness of risks associated to fatty fish consumption, the intake of fatty fish is far from supplying the recommended dietary levels. The end result observed in most western countries is not only a low supply of n-3 LC-PUFA, but also an unbalance towards the intake of n-6 fatty acids, resulting mostly from the consumption of vegetable oils. Awareness of the benefits of LC-PUFA in human health has led to the use of fish oils as food supplements. However, there is a need to explore alternatives sources of LC-PUFA, especially those of microbial origin. Microalgae species with potential to accumulate lipids in high amounts and to present elevated levels of n-3 LC-PUFA are known in marine phytoplankton. This review focuses on sources of n-3 LC-PUFA, namely eicosapentaenoic and docosahexaenoic acids, in marine microalgae, as alternatives to fish oils. Based on current literature, examples of marketed products and potentially new species for commercial exploitation are presented. PMID:23807546

  4. Light Intensity Regulates LC-PUFA Incorporation into Lipids of Pavlova lutheri and the Final Desaturase and Elongase Activities Involved in Their Biosynthesis.

    PubMed

    Guihéneuf, Freddy; Mimouni, Virginie; Tremblin, Gérard; Ulmann, Lionel

    2015-02-04

    The microalga Pavlova lutheri is a candidate for the production of omega-3 long-chain polyunsaturated fatty acid (LC-PUFA), due to its ability to accumulate both eicosapentaenoic (EPA) and docosahexaenoic acids. Outstanding questions need to be solved to understand the complexity of n-3 LC-PUFA synthesis and partitioning into lipids, especially its metabolic regulation, and which enzymes and/or abiotic factors control their biosynthesis. In this study, the radioactivity of 14 C-labeled arachidonic acid incorporated into the total lipids of P. lutheri grown under different light intensities and its conversion into labeled LC-PUFA were monitored. The results highlighted for the first time the light-dependent incorporation of LC-PUFA into lipids and the light-dependent activity of the final desaturation and elongation steps required to synthesize and accumulate n-3 C20/C22 LC-PUFA. The incorporation of arachidonic acid into lipids under low light and the related Δ17-desaturation activity measured explain the variations in fatty acid profile of P. lutheri, especially the accumulation of n-3 LC-PUFA such as EPA under low light conditions.

  5. Liver phospholipids fatty acids composition in response to different types of diets in rats of both sexes.

    PubMed

    Ranković, Slavica; Popović, Tamara; Martačić, Jasmina Debeljak; Petrović, Snježana; Tomić, Mirko; Ignjatović, Đurđica; Tovilović-Kovačević, Gordana; Glibetić, Maria

    2017-05-19

    Dietary intake influence changes in fatty acids (FA) profiles in liver which plays a central role in fatty acid metabolism, triacylglycerol synthesis and energy homeostasis. We investigated the effects of 4-weeks treatment with milk- and fish-based diet, on plasma biochemical parameters and FA composition of liver phospholipids (PL) in rats of both sexes. Adult, 4 months old, Wistar rats of both sexes, were fed with different types of diets: standard, milk-based and fish-based, during 4 weeks. Analytical characterization of different foods was done. Biochemical parameters in plasma were determined. Fatty acid composition was analyzed by gas-chromatography. Statistical significance of FA levels was tested with two-way analysis of variance (ANOVA) using the sex of animals and treatment (type of diet) as factors on logarithmic or trigonometric transformed data. Our results showed that both, milk- and fish-based diet, changed the composition and ratio of rat liver phospholipids FA, in gender-specific manner. Initially present sex differences appear to be dietary modulated. Although, applied diets changed the ratio of total saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), and effects were gender specific. Milk-based diet lowered SFA and elevated MUFA in males and increased PUFA in females vs. standard diet. The same diet decreased n-3, increased n-6 and n-6/n-3 ratio in males. Fish-based diet increased n-3, decreased n-6 and n-6/n-3 ratio vs. standard and milk-based diet in females. However, the ratio of individual FA in liver PL was also dietary-influenced, but with gender specific manner. While in females fish-based diet decreased AA (arachidonic acid) increased level of EPA (eicosapentaenoic acid), DPA (docosapentaenoic acid) and DHA (docosahexaenoic acid), the same diet elevated only DHA levels in males. Gender related variations in FA composition of rat liver PL were observed, and results have shown that

  6. Estimated macronutrient and fatty acid intakes from an East African Paleolithic diet.

    PubMed

    Kuipers, Remko S; Luxwolda, Martine F; Dijck-Brouwer, D A Janneke; Eaton, S Boyd; Crawford, Michael A; Cordain, Loren; Muskiet, Frits A J

    2010-12-01

    Our genome adapts slowly to changing conditions of existence. Many diseases of civilisation result from mismatches between our Paleolithic genome and the rapidly changing environment, including our diet. The objective of the present study was to reconstruct multiple Paleolithic diets to estimate the ranges of nutrient intakes upon which humanity evolved. A database of, predominantly East African, plant and animal foods (meat/fish) was used to model multiple Paleolithic diets, using two pathophysiological constraints (i.e. protein < 35 energy % (en%) and linoleic acid (LA) >1.0 en%), at known hunter-gatherer plant/animal food intake ratios (range 70/30-30/70 en%/en%). We investigated selective and non-selective savannah, savannah/aquatic and aquatic hunter-gatherer/scavenger foraging strategies. We found (range of medians in en%) intakes of moderate-to-high protein (25-29), moderate-to-high fat (30-39) and moderate carbohydrates (39-40). The fatty acid composition was SFA (11.4-12.0), MUFA (5.6-18.5) and PUFA (8.6-15.2). The latter was high in α-linolenic acid (ALA) (3.7-4.7 en%), low in LA (2.3-3.6 en%), and high in long-chain PUFA (LCP; 4.75-25.8 g/d), LCP n-3 (2.26-17.0 g/d), LCP n-6 (2.54-8.84 g/d), ALA/LA ratio (1.12-1.64 g/g) and LCP n-3/LCP n-6 ratio (0.84-1.92 g/g). Consistent with the wide range of employed variables, nutrient intakes showed wide ranges. We conclude that compared with Western diets, Paleolithic diets contained consistently higher protein and LCP, and lower LA. These are likely to contribute to the known beneficial effects of Paleolithic-like diets, e.g. through increased satiety/satiation. Disparities between Paleolithic, contemporary and recommended intakes might be important factors underlying the aetiology of common Western diseases. Data on Paleolithic diets and lifestyle, rather than the investigation of single nutrients, might be useful for the rational design of clinical trials.

  7. Correlates of whole-blood polyunsaturated fatty acids among young children with moderate acute malnutrition.

    PubMed

    Yaméogo, C W; Cichon, B; Fabiansen, C; Rytter, M J H; Faurholt-Jepsen, D; Stark, K D; Briend, A; Shepherd, S; Traoré, A S; Christensen, V B; Michaelsen, K F; Friis, H; Lauritzen, L

    2017-07-13

    Severe acute malnutrition (SAM) has been associated with low polyunsaturated fatty acid (PUFA) status. However, investigations regarding PUFA status and correlates in children with moderate acute malnutrition (MAM) from low-income countries are scarce. The aim of this study was to describe whole-blood PUFA levels in children with moderate acute malnutrition (MAM) and to identify correlates of PUFAs. We conducted a cross-sectional study using baseline data from a prospective nutritional intervention trial among 1609 children with MAM aged 6-23 months in Burkina Faso,West Africa. Whole-blood PUFAs were measured by gas chromatography and expressed as percent of total whole-blood fatty acids (FA%). Potential correlates of PUFAs including infection, inflammation, hemoglobin, anthropometry (difference between children diagnosed as having MAM based on low mid-upper-arm-circumference (MUAC) only, low MUAC and weight-for-height z-score (WHZ), or low WHZ only) and diet were assessed by linear regression adjusted for age and sex. Children with MAM had low concentrations of whole-blood PUFAs, particularly n-3 PUFAs. Moreover, children diagnosed with MAM based only on low MUAC had 0.32 (95% confidence interval (CI), 0.14; 0.50) and 0.40 (95% CI, 0.16; 0.63) FA% lower arachidonic acid (AA) than those recruited based on both low WHZ as well as low MUAC and those recruited with low WHZ only, respectively. Infection and inflammation were associated with low levels of all long-chain (LC)-PUFAs, while hemoglobin was positively associated with whole-blood LC-PUFAs. While PUFA deficiency was not a general problem, overall whole-blood PUFA concentrations, especially of n-3 PUFAs, were low. Infection, inflammation, hemoglobin, anthropometry and diet were correlates of PUFAs concentrations in children with MAM. The trial is registered at http://www.isrctn.com ( ISRCTN42569496 ).

  8. Low DHA and plasmalogens associated with a precise PUFA-rich diet devoid of DHA.

    PubMed

    Glick, Norris R; Fischer, Milton H

    2010-11-01

    Fatty acids, being multi-functional and partially diet-dependent, are crucial for health yet optimal dietary composition remains controversial. Previous work suggests that nutritionally-dependent populations live with significant fatty acid abnormalities despite abundant polyunsaturated fatty acid intake. An analysis of fasting plasma phospholipids, including plasmalogens, and total fatty acids was conducted on twelve tube-fed people receiving a uniform diet which meets current polyunsaturated fatty acid intake recommendations, specifically, linoleic acid as 8.1% of energy and alpha-linolenic acid as 1.3% of energy for at least two years. Eicosapentaenoic- and docosahexaenoic acid-related phospholipids were low. In addition, C16:0- and C18:0-related plasmalogens, components of phospholipids, were low. Essential fatty acid deficiency as classically defined was not present. Based upon extensive clinical investigations in neuro-typical people, abnormalities of these key cell-membrane components may have undesirable clinical consequences. In particular, docosahexaenoic acid sufficiency needs to be assured. Comprehensive re-evaluation of current recommendations may be necessary. Copyright © 2010 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  9. Stearidonic and γ-linolenic acids in echium oil improves glucose disposal in insulin resistant monkeys.

    PubMed

    Kavanagh, K; Flynn, D M; Jenkins, K A; Wilson, M D; Chilton, F H

    2013-07-01

    Echium oil (EO) contains stearidonic acid (18:4), a n-3 polyunsaturated fatty acids (PUFAs), and gamma-linolenic acids (18:3), a n-6 PUFA that can be converted to long chain (LC)-PUFAs. We aimed to compare a safflower oil (SO)-enriched diet to EO- and fish oil (FO)-enriched diets on circulating and tissue PUFAs levels and glycemic, inflammatory, and cardiovascular health biomarkers in insulin resistant African green monkeys. In a Latin-square cross-over study, eight monkeys consumed matched diets for 6 weeks with 3-week washout periods. Monkeys consuming FO had significantly higher levels of n-3 LC-PUFAs and EO supplementation resulted in higher levels of circulating n-3 LC-PUFAs and a significant increase in dihomo-gamma linolenic acid (DGLA) in red blood cells and muscle. Glucose disposal was improved after EO consumption. These data suggest that PUFAs in EO supplementation have the capacity to alter circulating, RBC and muscle LC-PUFA levels and improve glucose tolerance in insulin-resistant monkeys. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Effect of n-3 PUFA supplementation at different EPA:DHA ratios on the spontaneously hypertensive obese rat model of the metabolic syndrome.

    PubMed

    Molinar-Toribio, Eunice; Pérez-Jiménez, Jara; Ramos-Romero, Sara; Romeu, Marta; Giralt, Montserrat; Taltavull, Núria; Muñoz-Cortes, Mònica; Jáuregui, Olga; Méndez, Lucía; Medina, Isabel; Torres, Josep Lluís

    2015-03-28

    The increasing incidence of the metabolic syndrome (MetS), a combination of risk factors before the onset of CVD and type 2 diabetes, encourages studies on the role of functional food components such as long-chain n-3 PUFA as preventive agents. In the present study, we explore the effect of EPA and DHA supplementation in different proportions on spontaneously hypertensive obese (SHROB) rats, a model for the MetS in a prediabetic state with mild oxidative stress. SHROB rats were randomised into four groups (n 7), each supplemented with EPA/DHA at ratios of 1:1, 2:1 and 1:2, or soyabean oil as the control for 13 weeks. The results showed that in all the proportions tested, EPA/DHA supplementation significantly lowered total and LDL-cholesterol concentrations, compared with those of the control group. EPA/DHA supplementation at the ratios of 1:1 and 2:1 significantly decreased inflammation (C-reactive protein levels) and lowered oxidative stress (decreased excretion of urinary isoprostanes), mainly at the ratio of 1:2. The activity of antioxidant enzymes increased in erythrocytes, abdominal fat and kidneys, with magnitudes depending on the EPA:DHA ratio. PUFA mixtures from fish affected different MetS markers of CVD risk factors in SHROB rats, depending on the ratios of EPA/DHA supplementation. The activation of endogenous defence systems may be related to the reduction of inflammation and oxidative stress.

  11. Biotin-deficient diet induces chromosome misalignment and spindle defects in mouse oocytes.

    PubMed

    Tsuji, Ai; Nakamura, Toshinobu; Shibata, Katsumi

    2015-01-01

    Increased abnormal oocytes due to meiotic chromosome misalignment and spindle defects lead to elevated rates of infertility, miscarriage, and trisomic conceptions. Here, we investigated the effect of biotin deficiency on oocyte quality. Three-week-old female ICR mice were fed a biotin-deficient or control diet (0, 0.004 g biotin/kg diet) for 21 days. On day 22, these mouse oocytes were analyzed by immunofluorescence. Due to biotin, undernutrition increased the frequency of abnormal oocytes (the biotin deficient vs. control: 40 vs. 16%). Next, the remaining mice in the biotin-deficient group were fed a control or biotin-deficient diet from day 22 to 42. Although biotin nutritional status in the recovery group was restored, the frequency of abnormal oocytes in the recovery group was still higher than that in the control group (48 vs. 18%). Our results indicate that steady, sufficient biotin intake is required for the production of high-quality oocytes in mice.

  12. Production and Dietary Uptake of PUFA by Piezophilic Bacteria, Implications for Marine Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Fang, J.; Chan, O.; Agarkar, N.; Kato, C.; Sato, T.

    2003-12-01

    Polyunsaturated fatty acids (PUFAs) have been used extensively as proxies for determining the source and preservation of organic matter in marine sediments. However, the origin of polyunsaturated fatty acids in deep-sea sediments is not well understood; the ultimate source of PUFAs is only partially constrained. At issue is whether PUFAs in deep-sea sediments are derived from the primary production of the photic zone or from the in situ piezophilic bacterial production in the deep-sea, or both. In this study, we tested three deep-sea piezophilic strains, Shewanella violacea DSS12, Shewanella benthica DB21MT-2, Moritella yayanosii DB21MT-5, in biosynthesis and dietary uptake of PUFAs. These piezophilic bacteria were characterized by high abundance of unsaturated fatty acids (62-73% of total fatty acids). In particularly, polyunsaturated fatty acids (PUFA) were detected in all piezophiles examined, ranging from 8 to 27% of total fatty acids. M. japonica DSK1 produced 22:6n-3 (cis-4,7,10,13,16,19-docosahexaenoic acid, DHA), whereas the three Shewanella strains produced 20:5n-3 (cis-5,8,11,14,17-eicosapentaenoic acid, EPA) with trace amounts of DHA. The total concentrations of PLFA were higher in strains grown at low pressure (DSK1, 10 Megapascal or MPa, 26,983μ g/g dry wt cells; DSS12, 50 MPa, 23,986 μ g/g), and lower in strains grown at high pressure (DB6705, 85 MPa, 1,901μ g/g; DB21MT-2, 100 MPa, 3,014 μ g/g). When growth media were supplemented with arachidonic acid (AA; C20:4n-6), there was active uptake and cellular incorporation of AA in the hyperpiezophilic bacteria DB21MT-2 (14.7%) and DB21MT-5 (1.4%). No uptake was observed in DSS12. When cells were treated with antibiotic cerulenin, all three strains incorporated AA into cell membranes (13 to 19%). These results suggest that piezophilic bacteria can be an important contributor in producing and reworking of PUFAs in the deep sea, and that that caution must be exercised in using PUFAs in deducing sources

  13. PUFA diets alter the microRNA expression profiles in an inflammation rat model.

    PubMed

    Zheng, Zheng; Ge, Yinlin; Zhang, Jinyu; Xue, Meilan; Li, Quan; Lin, Dongliang; Ma, Wenhui

    2015-06-01

    Omega‑3 and ‑6 polyunsaturated fatty acids (PUFAs) can directly or indirectly regulate immune homeostasis via inflammatory pathways, and components of these pathways are crucial targets of microRNAs (miRNAs). However, no study has examined the changes in the miRNA transcriptome during PUFA‑regulated inflammatory processes. Here, we established PUFA diet‑induced autoimmune‑prone (AP) and autoimmune‑averse (AA) rat models, and studied their physical characteristics and immune status. Additionally, miRNA expression patterns in the rat models were compared using microarray assays and bioinformatic methods. A total of 54 miRNAs were differentially expressed in common between the AP and the AA rats, and the changes in rno‑miR‑19b‑3p, ‑146b‑5p and ‑183‑5p expression were validated using stem‑loop reverse transcription‑quantitative polymerase chain reaction. To better understand the mechanisms underlying PUFA‑regulated miRNA changes during inflammation, computational algorithms and biological databases were used to identify the target genes of the three validated miRNAs. Furthermore, Gene Ontology (GO) term annotation and KEGG pathway analyses of the miRNA targets further allowed to explore the potential implication of the miRNAs in inflammatory pathways. The predicted PUFA‑regulated inflammatory pathways included the Toll‑like receptor (TLR), T cell receptor (TCR), NOD‑like receptor (NLR), RIG‑I‑like receptor (RLR), mitogen‑activated protein kinase (MAPK) and the transforming growth factor‑β (TGF‑β) pathway. This study is the first report, to the best of our knowledge, on in vivo comparative profiling of miRNA transcriptomes in PUFA diet‑induced inflammatory rat models using a microarray approach. The results provide a useful resource for future investigation of the role of PUFA‑regulated miRNAs in immune homeostasis.

  14. Association of plasma n-6 and n-3 polyunsaturated fatty acids with synovitis in the knee: the MOST study

    USDA-ARS?s Scientific Manuscript database

    In osteoarthritis (OA) the synovium is often inflamed and inflammatory cytokines contribute to cartilage damage. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have anti-inflammatory effects whereas omega-6 polyunsaturated fatty acids (n-6 PUFAs) have, on balance, proinflammatory effects. The goal ...

  15. Changes in cholesterol homeostasis modify the response of F1B hamsters to dietary very long chain n-3 and n-6 polyunsaturated fatty acids

    PubMed Central

    2011-01-01

    Background The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC) n-3 polyunsaturated fatty acids (PUFA) is paradoxical to that observed in humans. This anomaly is attributed, in part, to low lipoprotein lipase activity and is dependent on cholesterol status. To further elucidate the mechanism(s) for these responses, hamsters were fed diets containing supplemental fish oil (VLC n-3 PUFA) or safflower oil (n-6 PUFA) (both 10% [w/w]) and either cholesterol-supplemented (0.1% cholesterol [w/w]) or cholesterol-depleted (0.01% cholesterol [w/w] and 10 days prior to killing fed 0.15% lovastatin+2% cholestyramine [w/w]). Results Cholesterol-supplemented hamsters fed fish oil, relative to safflower oil, had higher non-high density lipoprotein (HDL) cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic low density lipoprotein (LDL) receptor, sterol regulatory element binding protein (SREBP)-1c and acyl-CoA: cholesterol acyl transferase-2 (ACAT) mRNA and protein (p < 0.05), and higher hepatic apolipoprotein (apo) B-100 and apo E protein levels. In contrast, cholesterol-depleted hamsters fed fish oil, relative to safflower oil, had lower non-HDL cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic SREBP-1c (p < 0.05) but not apo B-100, apo E or ACAT-2 mRNA or protein levels. Independent of cholesterol status, fish oil fed hamsters had lower HDL cholesterol concentrations (p < 0.001), which were associated with lower hepatic apoA-I protein levels (p < 0.05). Conclusion These data suggest disturbing cholesterol homeostasis in F1B hamsters alters their response to dietary fatty acids, which is reflected in altered plasma lipoprotein patterns and regulation of genes associated with their metabolism. PMID:22018327

  16. Changes in cholesterol homeostasis modify the response of F1B hamsters to dietary very long chain n-3 and n-6 polyunsaturated fatty acids.

    PubMed

    Lecker, Jaime L; Matthan, Nirupa R; Billheimer, Jeffrey T; Rader, Daniel J; Lichtenstein, Alice H

    2011-10-21

    The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC) n-3 polyunsaturated fatty acids (PUFA) is paradoxical to that observed in humans. This anomaly is attributed, in part, to low lipoprotein lipase activity and is dependent on cholesterol status. To further elucidate the mechanism(s) for these responses, hamsters were fed diets containing supplemental fish oil (VLC n-3 PUFA) or safflower oil (n-6 PUFA) (both 10% [w/w]) and either cholesterol-supplemented (0.1% cholesterol [w/w]) or cholesterol-depleted (0.01% cholesterol [w/w] and 10 days prior to killing fed 0.15% lovastatin+2% cholestyramine [w/w]). Cholesterol-supplemented hamsters fed fish oil, relative to safflower oil, had higher non-high density lipoprotein (HDL) cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic low density lipoprotein (LDL) receptor, sterol regulatory element binding protein (SREBP)-1c and acyl-CoA: cholesterol acyl transferase-2 (ACAT) mRNA and protein (p < 0.05), and higher hepatic apolipoprotein (apo) B-100 and apo E protein levels. In contrast, cholesterol-depleted hamsters fed fish oil, relative to safflower oil, had lower non-HDL cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic SREBP-1c (p < 0.05) but not apo B-100, apo E or ACAT-2 mRNA or protein levels. Independent of cholesterol status, fish oil fed hamsters had lower HDL cholesterol concentrations (p < 0.001), which were associated with lower hepatic apoA-I protein levels (p < 0.05). These data suggest disturbing cholesterol homeostasis in F1B hamsters alters their response to dietary fatty acids, which is reflected in altered plasma lipoprotein patterns and regulation of genes associated with their metabolism.

  17. Polyunsaturated fatty acids (PUFAs) for children with specific learning disorders.

    PubMed

    Tan, May Loong; Ho, Jacqueline J; Teh, Keng Hwang

    2012-12-12

    About 5% of schoolchildren have a specific learning disorder, defined as an unexpected failure to acquire adequate abilities in reading, writing or mathematic skills not as a result of reduced intellectual ability, inadequate teaching or social deprivation. Of these, 80% are reading disorders. Polyunsaturated fatty acids (PUFAs), in particular omega-3 and omega-6 fatty acids, which are found abundantly in the brain and retina are important for learning. Some children with specific learning disorders have been found to be deficient in these PUFAs, and it is argued that supplementation of PUFAs may help these children improve their learning abilities. To assess the effects of polyunsaturated fatty acids (PUFAs) supplementation for children with specific learning disorders, on learning outcomes. We searched the following databases in April 2012: CENTRAL (2012, Issue 4), MEDLINE (1948 to April Week 2 2012), EMBASE (1980 to 2012 Week 16), PsycINFO (1806 to April 2012), ERIC (1966 to April 2012), Science Citation Index (1970 to 20 April 2012), Social Science Citation Index (1970 to 20 April 2012), Conference Proceedings Citation Index-Science (1970 to 20 April 2012), Conference Proceedings Citation Index-Social Sciences and Humanites (1970 to 20 April 2012), Cochrane Database of Systematic Reviews (2012, Issue 4), DARE (2012, Issue 2) , ZETOC (24 April 2012) and WorldCat (24 April 2012). We searched the WHO International Clinical Trials Registry Platform and ClinicalTrials.gov on 24 April 2012. We also searched the reference lists of relevant articles identified by the searches. Randomised or quasi-randomised controlled trials comparing polyunsaturated fatty acids (PUFAs) with placebo or no treatment in children aged below 18 years with specific learning disabilities diagnosed using DSM-IV, ICD-10 or equivalent criteria. We intended to include participants with co-existing developmental disorders such as attention deficit hyperactivity disorder (ADHD) or autism. Two

  18. Three-year breeding cycle of rainbow trout (Oncorhynchus mykiss) fed a plant-based diet, totally free of marine resources: consequences for reproduction, fatty acid composition and progeny survival.

    PubMed

    Lazzarotto, Viviana; Corraze, Geneviève; Leprevost, Amandine; Quillet, Edwige; Dupont-Nivet, Mathilde; Médale, Françoise

    2015-01-01

    Terrestrial plant resources are increasingly used as substitutes for fish meal and fish oil in fish feed in order to reduce the reliance of aquaculture on marine fishery resources. Although many studies have been conducted to assess the effects of such nutritional transition, no whole breeding cycles of fish fed diets free from marine resources has been reported to date. We therefore studied the reproductive performance of trout after a complete cycle of breeding while consuming a diet totally devoid of marine ingredients and thus of n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs) that play a major role in the formation of ova. Two groups of female rainbow trout were fed from first feeding either a commercial diet (C, marine and plant ingredients), or a 100% plant-based diet (V, blend of plant proteins and vegetable oils). Livers, viscera, carcasses and ova were sampled at spawning and analyzed for lipids and fatty acids. Although the V-diet was devoid of n-3 LC-PUFAs, significant amounts of EPA and DHA were found in livers and ova, demonstrating efficient bioconversion of linolenic acid and selective orientation towards the ova. Some ova were fertilized to assess the reproductive performance and offspring survival. We observed for the first time that trout fed a 100% plant-based diet over a 3-year breeding cycle were able to produce ova and viable alevins, although the ova were smaller. The survival of offspring from V-fed females was lower (-22%) at first spawning, but not at the second. Our study showed that, in addition to being able to grow on a plant-based diet, rainbow trout reared entirely on such a diet can successfully produce ova in which neo-synthesized n-3 LC-PUFAs are accumulated, leading to viable offspring. However, further adjustment of the feed formula is still needed to optimize reproductive performance.

  19. Three-Year Breeding Cycle of Rainbow Trout (Oncorhynchus mykiss) Fed a Plant-Based Diet, Totally Free of Marine Resources: Consequences for Reproduction, Fatty Acid Composition and Progeny Survival

    PubMed Central

    Lazzarotto, Viviana; Corraze, Geneviève; Leprevost, Amandine; Quillet, Edwige; Dupont-Nivet, Mathilde; Médale, Françoise

    2015-01-01

    Terrestrial plant resources are increasingly used as substitutes for fish meal and fish oil in fish feed in order to reduce the reliance of aquaculture on marine fishery resources. Although many studies have been conducted to assess the effects of such nutritional transition, no whole breeding cycles of fish fed diets free from marine resources has been reported to date. We therefore studied the reproductive performance of trout after a complete cycle of breeding while consuming a diet totally devoid of marine ingredients and thus of n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs) that play a major role in the formation of ova. Two groups of female rainbow trout were fed from first feeding either a commercial diet (C, marine and plant ingredients), or a 100% plant-based diet (V, blend of plant proteins and vegetable oils). Livers, viscera, carcasses and ova were sampled at spawning and analyzed for lipids and fatty acids. Although the V-diet was devoid of n-3 LC-PUFAs, significant amounts of EPA and DHA were found in livers and ova, demonstrating efficient bioconversion of linolenic acid and selective orientation towards the ova. Some ova were fertilized to assess the reproductive performance and offspring survival. We observed for the first time that trout fed a 100% plant-based diet over a 3-year breeding cycle were able to produce ova and viable alevins, although the ova were smaller. The survival of offspring from V-fed females was lower (-22%) at first spawning, but not at the second. Our study showed that, in addition to being able to grow on a plant-based diet, rainbow trout reared entirely on such a diet can successfully produce ova in which neo-synthesized n-3 LC-PUFAs are accumulated, leading to viable offspring. However, further adjustment of the feed formula is still needed to optimize reproductive performance. PMID:25658483

  20. Genetic Variants of the FADS Gene Cluster Are Associated with Erythrocyte Membrane LC PUFA Levels in Patients with Mild Cognitive Impairment.

    PubMed

    Schuchardt, J P; Köbe, T; Witte, V; Willers, J; Gingrich, A; Tesky, V; Pantel, J; Rujescu, D; Illig, T; Flöel, A; Hahn, A

    2016-01-01

    Long-chain (> 20 C-atoms) polyunsaturated fatty acids (LC PUFAs) of both the omega-6 (n-6) and omega-3 (n-3) series are important for the functional integrity of brain and thereby cognition, memory and mood. Clinical studies observed associations between altered LC PUFA levels and neurodegenerative diseases such as Alzheimer´s disease and its prodromal stage, mild cognitive impairment (MCI). The present study examined the LC PUFA status of MCI patients with specific view on the relative LC n-3 PUFA levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in erythrocyte membranes (omega-3 index). 12 single nucleotide polymorphisms (SNPs) of the FADS1, FADS2, and FADS3 gene clusters were genotyped in 111 MCI patients and evaluated associations with PUFA levels in erythrocyte membranes (primary outcome). In addition, the associations between FADS SNPs and LC PUFA levels with serum lipid levels as well as depressive symptoms were examined (secondary outcomes). Minor allele carrier of rs174546, rs174548 (FADS1), rs3834458, rs1535, rs174574, rs174575, rs174576, and rs174578 (FADS2) showed significant higher n-6 and n-3 precursor PUFA levels (linoleic acid, and alpha-linolenic acid, respectively) and lower arachidonic acid (AA) levels in erythrocyte membranes compared to the major allele carriers. Differences in EPA and DHA levels were not significant. Minor allele carriers of rs174574, rs174576 and rs174578 (FADS2) and rs174455 (FADS3) exhibited significant higher triglyceride levels, whereas minor allele carriers for rs174449 and rs174455 (FADS3) exhibited significant higher total- and LDL-cholesterol levels compared to the more common variant. The mean omega-3 index of the study cohort was 6.19 ± 1.55 %. In more than 85 % of the patients, the omega-3 index was below 8 % and in 23 % below 5 %. Moreover, it was shown that a low DHA status and omega-3 index was associated with depressive symptoms (Beck's depression-inventory). These findings indicate an

  1. [The effect of diet ratio of polyunsaturated fatty acids of omega-3 and omega-6 families on activity of aminotransferases and gamma-glutamyltransferase in rat blood serum].

    PubMed

    Ketsa, O V; Marchenko, M M

    2014-01-01

    The effect of diet fat compositions with various ratio of omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) on alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyltransferase (GGT) activities in blood serum of 45 white mongrel rats weighing 90-110 g (9 animals in group) has been investigated. Fat components in the semi-synthetic diet, compiled on the basis of AIN-93 diet, and sources of omega-6 and omega-3 PUFA were presented by sunflower oil, soybean oil and fish oil. It has been shown that four-week inclusion of linoleic acid (LA) and alpha-linolenic acid (alpha-LNA) in a ratio of 7:1 into the diet (soybean oil) as well as use of only omega-6 PUFA (sunflower oil) has lead to an increase in the activity of ALT and GGT in rat blood serum compared to control animals treated with the complex of linolenic, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid through the mixture of sunflower oil and fish oil (9:1) with the ratio of omega-6 and omega-3 PUFA 7:1. Along with this, the AST:ALT ratio (de Ritis ratio) was lower (p < 0.05) as compared with the control group of rat, amounting respectively 0.92 +/- 0.08 and 0.79 +/- 0.12 vs 1.26 +/- 0.10. The use of high doses of omega-3 fatty acids (600 mg EPA and 400 mg DHA per kg of animal weight per day coming through fish oil) did not affect the activity of ALT and GGT, but increased AST serum activity (0.47 +/- 0.04 micromoles/min per mg protein) and the de Ritis ratio (2.53 +/- 0.23). The diet deprived with fat increased enzyme activity of ALT, AST and GGT in rat blood serum.

  2. Genetic loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium.

    PubMed

    Lemaitre, Rozenn N; Tanaka, Toshiko; Tang, Weihong; Manichaikul, Ani; Foy, Millennia; Kabagambe, Edmond K; Nettleton, Jennifer A; King, Irena B; Weng, Lu-Chen; Bhattacharya, Sayanti; Bandinelli, Stefania; Bis, Joshua C; Rich, Stephen S; Jacobs, David R; Cherubini, Antonio; McKnight, Barbara; Liang, Shuang; Gu, Xiangjun; Rice, Kenneth; Laurie, Cathy C; Lumley, Thomas; Browning, Brian L; Psaty, Bruce M; Chen, Yii-Der I; Friedlander, Yechiel; Djousse, Luc; Wu, Jason H Y; Siscovick, David S; Uitterlinden, André G; Arnett, Donna K; Ferrucci, Luigi; Fornage, Myriam; Tsai, Michael Y; Mozaffarian, Dariush; Steffen, Lyn M

    2011-07-01

    Long-chain n-3 polyunsaturated fatty acids (PUFAs) can derive from diet or from α-linolenic acid (ALA) by elongation and desaturation. We investigated the association of common genetic variation with plasma phospholipid levels of the four major n-3 PUFAs by performing genome-wide association studies in five population-based cohorts comprising 8,866 subjects of European ancestry. Minor alleles of SNPs in FADS1 and FADS2 (desaturases) were associated with higher levels of ALA (p = 3 x 10⁻⁶⁴) and lower levels of eicosapentaenoic acid (EPA, p = 5 x 10⁻⁵⁸) and docosapentaenoic acid (DPA, p = 4 x 10⁻¹⁵⁴). Minor alleles of SNPs in ELOVL2 (elongase) were associated with higher EPA (p = 2 x 10⁻¹²) and DPA (p = 1 x 10⁻⁴³) and lower docosahexaenoic acid (DHA, p = 1 x 10⁻¹⁵). In addition to genes in the n-3 pathway, we identified a novel association of DPA with several SNPs in GCKR (glucokinase regulator, p = 1 x 10⁻⁸). We observed a weaker association between ALA and EPA among carriers of the minor allele of a representative SNP in FADS2 (rs1535), suggesting a lower rate of ALA-to-EPA conversion in these subjects. In samples of African, Chinese, and Hispanic ancestry, associations of n-3 PUFAs were similar with a representative SNP in FADS1 but less consistent with a representative SNP in ELOVL2. Our findings show that common variation in n-3 metabolic pathway genes and in GCKR influences plasma phospholipid levels of n-3 PUFAs in populations of European ancestry and, for FADS1, in other ancestries.

  3. Genetic Loci Associated with Plasma Phospholipid n-3 Fatty Acids: A Meta-Analysis of Genome-Wide Association Studies from the CHARGE Consortium

    PubMed Central

    Kabagambe, Edmond K.; Nettleton, Jennifer A.; King, Irena B.; Weng, Lu-Chen; Bhattacharya, Sayanti; Bandinelli, Stefania; Bis, Joshua C.; Rich, Stephen S.; Jacobs, David R.; Cherubini, Antonio; McKnight, Barbara; Liang, Shuang; Gu, Xiangjun; Rice, Kenneth; Laurie, Cathy C.; Lumley, Thomas; Browning, Brian L.; Psaty, Bruce M.; Chen, Yii-Der I.; Friedlander, Yechiel; Djousse, Luc; Wu, Jason H. Y.; Siscovick, David S.; Uitterlinden, André G.; Arnett, Donna K.; Ferrucci, Luigi; Fornage, Myriam; Tsai, Michael Y.; Mozaffarian, Dariush; Steffen, Lyn M.

    2011-01-01

    Long-chain n-3 polyunsaturated fatty acids (PUFAs) can derive from diet or from α-linolenic acid (ALA) by elongation and desaturation. We investigated the association of common genetic variation with plasma phospholipid levels of the four major n-3 PUFAs by performing genome-wide association studies in five population-based cohorts comprising 8,866 subjects of European ancestry. Minor alleles of SNPs in FADS1 and FADS2 (desaturases) were associated with higher levels of ALA (p = 3×10−64) and lower levels of eicosapentaenoic acid (EPA, p = 5×10−58) and docosapentaenoic acid (DPA, p = 4×10−154). Minor alleles of SNPs in ELOVL2 (elongase) were associated with higher EPA (p = 2×10−12) and DPA (p = 1×10−43) and lower docosahexaenoic acid (DHA, p = 1×10−15). In addition to genes in the n-3 pathway, we identified a novel association of DPA with several SNPs in GCKR (glucokinase regulator, p = 1×10−8). We observed a weaker association between ALA and EPA among carriers of the minor allele of a representative SNP in FADS2 (rs1535), suggesting a lower rate of ALA-to-EPA conversion in these subjects. In samples of African, Chinese, and Hispanic ancestry, associations of n-3 PUFAs were similar with a representative SNP in FADS1 but less consistent with a representative SNP in ELOVL2. Our findings show that common variation in n-3 metabolic pathway genes and in GCKR influences plasma phospholipid levels of n-3 PUFAs in populations of European ancestry and, for FADS1, in other ancestries. PMID:21829377

  4. Omega-3 polyunsaturated fatty acids provided during embryonic development improve the growth performance and welfare of Muscovy ducks (Cairina moschata).

    PubMed

    Baéza, E; Chartrin, P; Bordeau, T; Lessire, M; Thoby, J M; Gigaud, V; Blanchet, M; Alinier, A; Leterrier, C

    2017-09-01

    The welfare of ducks can be affected by unwanted behaviors such as excessive reactivity and feather pecking. Providing long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) during gestation and early life has been shown to improve the brain development and function of human and rodent offspring. The aim of this study was to test whether the pecking behavior of Muscovy ducks during rearing could be reduced by providing LC n-3 PUFA during embryonic and/or post-hatching development of ducklings. Enrichment of eggs, and consequently embryos, with LC n-3 PUFA was achieved by feeding female ducks (n-3F) a diet containing docosahexaenoic (DHA) and linolenic acids (microalgae and linseed oil). A control group of female ducks (CF) was fed a diet containing linoleic acid (soybean oil). Offspring from both groups were fed starter and grower diets enriched with DHA and linolenic acid or only linoleic acid, resulting in four treatment groups with 48 ducklings in each. Several behavioral tests were performed between 1 and 3 weeks of age to analyze the adaptation ability of ducklings. The growth performance, time budget, social interactions, feather growth, and pecking behavior of ducklings were recorded regularly during the rearing period. No significant interaction between maternal and duckling feeding was found. Ducklings from n-3F ducks had a higher body weight at day 0, 28, and 56, a lower feed conversion ratio during the growth period, and lower reactivity to stress than ducklings from CF ducks. Ducklings from n-3F ducks also exhibited a significantly reduced feather pecking frequency at 49 and 56 days of age and for the whole rearing period. Moreover, consumption of diets enriched with n-3 PUFA during the starter and grower post-hatching periods significantly improved the tibia mineralization of ducklings and the fatty acid composition of thigh muscles at 84 days of age by increasing the n-3 FA content. © 2017 Poultry Science Association Inc.

  5. N-3 Polyunsaturated Fatty Acids and Inflammation in Obesity: Local Effect and Systemic Benefit

    PubMed Central

    Huang, Feiruo

    2015-01-01

    Overwhelming consensus emerges among countless evidences that obesity is characterized by a chronic low-grade inflammation in the adipose tissue (AT), which subsequently develops into a systemic inflammatory state contributing to obesity-associated diseases. N-3 Polyunsaturated fatty acids (n-3 PUFA), known as important modulators participating in inflammatory process, turn out to be an effective mitigating strategy dealing with local and systemic inflammation observed in obesity. Some of the effects of n-3 PUFA are brought about by regulation of gene expression through interacting with nuclear receptors and transcription factors; other effects are elicited by modulation of the amount and type of mediator derived from PUFAs. The metabolic effects of n-3 PUFA mainly result from their interactions with several organ systems, not limited to AT. Notably, the attenuation of inflammation in hard-hit AT, in turn, contributes to reducing circulating concentrations of proinflammatory cytokines and detrimental metabolic derivatives, which is beneficial for the function of other involved organs. The present review highlights a bridging mechanism between n-3 PUFA-mediated inflammation relief in AT and systemic benefits. PMID:26339623

  6. N-3 Polyunsaturated Fatty Acids and Inflammation in Obesity: Local Effect and Systemic Benefit.

    PubMed

    Wang, Yue; Huang, Feiruo

    2015-01-01

    Overwhelming consensus emerges among countless evidences that obesity is characterized by a chronic low-grade inflammation in the adipose tissue (AT), which subsequently develops into a systemic inflammatory state contributing to obesity-associated diseases. N-3 Polyunsaturated fatty acids (n-3 PUFA), known as important modulators participating in inflammatory process, turn out to be an effective mitigating strategy dealing with local and systemic inflammation observed in obesity. Some of the effects of n-3 PUFA are brought about by regulation of gene expression through interacting with nuclear receptors and transcription factors; other effects are elicited by modulation of the amount and type of mediator derived from PUFAs. The metabolic effects of n-3 PUFA mainly result from their interactions with several organ systems, not limited to AT. Notably, the attenuation of inflammation in hard-hit AT, in turn, contributes to reducing circulating concentrations of proinflammatory cytokines and detrimental metabolic derivatives, which is beneficial for the function of other involved organs. The present review highlights a bridging mechanism between n-3 PUFA-mediated inflammation relief in AT and systemic benefits.

  7. Fatty acid patterns of dog erythrocyte membranes after feeding of a fish-oil based DHA-rich supplement with a base diet low in n-3 fatty acids versus a diet containing added n-3 fatty acids.

    PubMed

    Stoeckel, Katja; Nielsen, Leif Højvang; Fuhrmann, Herbert; Bachmann, Lisa

    2011-10-24

    In dogs, increasing the tissue n-3 fatty acid (FA) content is associated with potential benefit in some medical conditions, e.g. atopic dermatitis, cancer or heart disease. Therefore effectively and conveniently increasing tissue n-3 FA levels in dogs is of interest. Incorporation of dietary n-3 FA into cell membranes may be studied by FA analysis of erythrocyte membranes (EM), because of the correlation of its FA composition with the FA composition of other cells. Aim of the study was to determine whether an n-3 FA additive added to a control diet is as effective in increasing EM n-3 FA content as feeding an n-3 FA enriched diet. Furthermore the time course of the incorporation of dietary n-3 FA into canine EM was investigated. Thirty dogs were randomly divided into three dietary groups with ten dogs per group. CONT got a dry dog food diet which did not contain EPA or DHA. FO got a dry dog food diet with a high EPA and DHA content. ADD got the CONT diet combined with an n-3 FA additive rich in DHA and EPA. After a feeding period of 12 weeks the additive was discontinued in ADD and these dogs were fed CONT diet for another four weeks to observe washout effects. Erythrocyte lipids were extracted from venous blood samples and their FA composition was determined by gas chromatography. The Mann-Whitney-U-test was used to detect significant differences between the different groups and time points. After one week the proportions of n-3 FA, DHA and EPA were already significantly increased in ADD and FO, apparently reaching a plateau within eight weeks. In our study DHA and not EPA was preferably incorporated into the EM. After discontinuing the administration of the additive in ADD, the n-3 FA values declined slowly without reaching baseline levels within four weeks. In dogs, an increase of dietary n-3 FA content leads to a rapid inclusion of n-3 FA into EM, regardless of whether the n-3 FA are offered as an enriched diet or as a normal diet supplemented with an n-3 FA

  8. Fatty acid patterns of dog erythrocyte membranes after feeding of a fish-oil based DHA-rich supplement with a base diet low in n-3 fatty acids versus a diet containing added n-3 fatty acids

    PubMed Central

    2011-01-01

    Background In dogs, increasing the tissue n-3 fatty acid (FA) content is associated with potential benefit in some medical conditions, e.g. atopic dermatitis, cancer or heart disease. Therefore effectively and conveniently increasing tissue n-3 FA levels in dogs is of interest. Incorporation of dietary n-3 FA into cell membranes may be studied by FA analysis of erythrocyte membranes (EM), because of the correlation of its FA composition with the FA composition of other cells. Aim of the study was to determine whether an n-3 FA additive added to a control diet is as effective in increasing EM n-3 FA content as feeding an n-3 FA enriched diet. Furthermore the time course of the incorporation of dietary n-3 FA into canine EM was investigated. Methods Thirty dogs were randomly divided into three dietary groups with ten dogs per group. CONT got a dry dog food diet which did not contain EPA or DHA. FO got a dry dog food diet with a high EPA and DHA content. ADD got the CONT diet combined with an n-3 FA additive rich in DHA and EPA. After a feeding period of 12 weeks the additive was discontinued in ADD and these dogs were fed CONT diet for another four weeks to observe washout effects. Erythrocyte lipids were extracted from venous blood samples and their FA composition was determined by gas chromatography. The Mann-Whitney-U-test was used to detect significant differences between the different groups and time points. Results After one week the proportions of n-3 FA, DHA and EPA were already significantly increased in ADD and FO, apparently reaching a plateau within eight weeks. In our study DHA and not EPA was preferably incorporated into the EM. After discontinuing the administration of the additive in ADD, the n-3 FA values declined slowly without reaching baseline levels within four weeks. Conclusions In dogs, an increase of dietary n-3 FA content leads to a rapid inclusion of n-3 FA into EM, regardless of whether the n-3 FA are offered as an enriched diet or as a

  9. A histomorphometric study of alveolar bone modelling and remodelling in mice fed a boron-deficient diet.

    PubMed

    Gorustovich, Alejandro A; Steimetz, Tammy; Nielsen, Forrest H; Guglielmotti, María B

    2008-07-01

    Emerging evidence indicates that boron (B) plays a role in bone formation and maintenance. Thus, a study was performed to determine whether dietary B-deficiency affects periodontal alveolar bone modelling and remodelling. Weanling Swiss mice (n=30) were divided into three groups: control diet (GI, 3mg B/kg); B-deficient diet (GII, 0.07 mg B/kg); and pair-fed with GII (GIII). The animals were maintained on their respective diets for 9 weeks and then sacrificed. The guidelines of the NIH for the care and use of laboratory animals were observed. The mandibles were resected, fixed, decalcified in 10% EDTA and embedded in paraffin. Buccolingually oriented sections were obtained at the level of the mesial root of the first lower molar and stained with H-E. Histomorphometric studies were performed separately on the buccal and lingual sides of the periodontal alveolar bone. Percentages of osteoblast surfaces (ObSs), eroded surfaces (ESs), and quiescent surfaces (QSs) were determined. No statistically significant differences in food intake and body weight were observed between the groups. When compared with GI and GIII mice, GII mice (B-deficient) had 63% and 48% reductions in ObS and 58% and 73% increases in QS in buccal and lingual plates, respectively. ES were not affected by B nutriture. The results are evidence that dietary boron deprivation in mice alters periodontal alveolar bone modelling and remodelling by inhibiting bone formation.

  10. Synthesis and characterization of nano-sized CaCO3 in purified diet

    NASA Astrophysics Data System (ADS)

    Mulyaningsih, N. N.; Tresnasari, D. R.; Ramahwati, M. R.; Juwono, A. L.; Soejoko, D. S.; Astuti, D. A.

    2017-07-01

    The growth and development of animals depend strongly on the balanced nutrition in the diet. This research aims is to characterize the weight variations of nano-sized calcium carbonate (CaCO3) in purified diet that to be fed to animal model of rat. The nano-sized CaCO3 was prepared by milling the calcium carbonate particles for 20 hours at a rotation speed of 1000 rpm and resulting particle size in a range of 2-50 nm. Nano-sized CaCO3 added to purified diet to the four formulas that were identified as normal diet (N), deficiency calcium (DC), rich in calcium (RC), and poor calcium (PC) with containing in nano-sized CaCO3 much as 0.50 %, 0.00 %, 0.75 % and 0.25 % respectively. The nutritional content of the purified diet was proximate analyzed, it resulted as followed moisture, ash, fat, protein, crude fiber. The quantities of chemical element were analyzed by atomic absorption spectrometry (AAS), it resulted iron, magnesium, potassium and calcium. The results showed that N diet (Ca: 16,914.29 ppm) were suggested for healthy rats and RC diet (Ca: 33,696.13 ppm) for conditioned osteoporosis rats. The crystalline phases of the samples that were examined by X-ray diffraction showed that crystalline phase increased with the increasing concentration of CaCO3.

  11. Long-term supplementation with eicosapentaenoic acid salvages cardiomyocytes from hypoxia/reoxygenation-induced injury in rats fed with fish-oil-deprived diet.

    PubMed

    Nasa, Y; Hayashi, M; Sasaki, H; Hayashi, J; Takeo, S

    1998-06-01

    Dietary supplementation of fish oil containing eicosapentaenoic acid (C20:5 n-3, EPA) and docosahexaenoic acid (C22:6 n-3, DHA) has been shown to exert protective effects on ischemic/reperfused hearts. We determined whether deprivation of fish oil from the diet paradoxically enhances susceptibility of cardiomyocytes to hypoxia/reoxygenation-induced injury and whether supplementation with either EPA or DHA overcomes such alterations. Rats were fed with fish-oil-rich (FOR) diet, fish-oil-deprived (FOD) diet alone, FOD diet with EPA (1 g/kg/day), or FOD diet with DHA (1 g/kg/day) for 4 weeks. The FOD diet reduced n-3 polyunsaturated fatty acids (PUFAs) and increased n-6 PUFAs such as linoleic (C18:2) and arachidonic acids (C20:4) in myocardial phospholipids. EPA or DHA supplementation increased its incorporation into phospholipid pools. Cardiomyocytes isolated by treatment with collagenase were subjected to 150 min of hypoxia and subsequent reoxygenation for 15 min. In the FOD diet group, the number of surviving rod-shaped cells after hypoxia and reoxygenation was smaller than that of the FOR group. Supplementation with EPA did not affect the number of rod-shaped cells, but attenuated reoxygenation-induced reduction in the number of square-shaped cells. In contrast, DHA supplementation did not afford any protection. The results suggest that deprivation of fish oil from dietary intake enhances the susceptibility of cardiomyocytes to hypoxic injury, and EPA, but not DHA, is capable of salvaging cardiomyocytes from hypoxia/reoxygenation-induced damage.

  12. Intentions to consume omega-3 fatty acids: a comparison of protection motivation theory and ordered protection motivation theory.

    PubMed

    Calder, Samuel Christian; Davidson, Graham R; Ho, Robert

    2011-06-01

    There has been limited research to date into methods for increasing people's intentions to use omega-3 polyunsaturated fatty acids (n-3 PUFA), which have been linked with decreased risk of suffering from numerous major diseases. The present study employed a cross-sectional design with 380 university students, employees, and visitors to investigate the efficacy of the protection motivation (PM) theory and the ordered protection motivation (OPM) theory, to predict behavioral intention to consume omega-3 rich foods and dietary supplements. Analysis of model fit indicated that both the PM model and the OPM model adequately represented the structural relationships between the cognitive variables and intention to consume n-3 PUFA. Further evaluation of relative fit of the two competing models suggested that the PM model might provide a better representation of decision-making following evaluation of the health threat of n-3 PUFA deficiency. Path analysis indicated that the component of coping appraisal was significantly associated with the behavioral intention to consume n-3 PUFA. Threat appraisal was found to be significantly associated with behavioral intention to consume n-3 PUFA only for the OPM model. Overall, the findings contribute to a better understanding of the roles that cognitive appraisal processes play in young and healthy individuals' protective health decision-making regarding consumption of n-3 PUFA. Implications of the findings and recommendations, which include (a) encouraging the consumption of n-3 PUFA as an effective barrier against the incidence of disease, and (b) effective health messaging that focuses on beliefs about the effectiveness of n-3 PUFA in reducing health risks, are discussed.

  13. 11β-hydroxysteroid dehydrogenase-1 deficiency alters the gut microbiome response to Western diet.

    PubMed

    Johnson, Jethro S; Opiyo, Monica N; Thomson, Marian; Gharbi, Karim; Seckl, Jonathan R; Heger, Andreas; Chapman, Karen E

    2017-02-01

    The enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) interconverts active glucocorticoids and their intrinsically inert 11-keto forms. The type 1 isozyme, 11β-HSD1, predominantly reactivates glucocorticoids in vivo and can also metabolise bile acids. 11β-HSD1-deficient mice show altered inflammatory responses and are protected against the adverse metabolic effects of a high-fat diet. However, the impact of 11β-HSD1 on the composition of the gut microbiome has not previously been investigated. We used high-throughput 16S rDNA amplicon sequencing to characterise the gut microbiome of 11β-HSD1-deficient and C57Bl/6 control mice, fed either a standard chow diet or a cholesterol- and fat-enriched 'Western' diet. 11β-HSD1 deficiency significantly altered the composition of the gut microbiome, and did so in a diet-specific manner. On a Western diet, 11β-HSD1 deficiency increased the relative abundance of the family Bacteroidaceae, and on a chow diet, it altered relative abundance of the family Prevotellaceae Our results demonstrate that (i) genetic effects on host-microbiome interactions can depend upon diet and (ii) that alterations in the composition of the gut microbiome may contribute to the aspects of the metabolic and/or inflammatory phenotype observed with 11β-HSD1 deficiency. © 2017 The authors.

  14. 11β-hydroxysteroid dehydrogenase-1 deficiency alters the gut microbiome response to Western diet

    PubMed Central

    Johnson, Jethro S; Opiyo, Monica N; Thomson, Marian; Gharbi, Karim; Seckl, Jonathan R; Heger, Andreas

    2016-01-01

    The enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) interconverts active glucocorticoids and their intrinsically inert 11-keto forms. The type 1 isozyme, 11β-HSD1, predominantly reactivates glucocorticoids in vivo and can also metabolise bile acids. 11β-HSD1-deficient mice show altered inflammatory responses and are protected against the adverse metabolic effects of a high-fat diet. However, the impact of 11β-HSD1 on the composition of the gut microbiome has not previously been investigated. We used high-throughput 16S rDNA amplicon sequencing to characterise the gut microbiome of 11β-HSD1-deficient and C57Bl/6 control mice, fed either a standard chow diet or a cholesterol- and fat-enriched ‘Western’ diet. 11β-HSD1 deficiency significantly altered the composition of the gut microbiome, and did so in a diet-specific manner. On a Western diet, 11β-HSD1 deficiency increased the relative abundance of the family Bacteroidaceae, and on a chow diet, it altered relative abundance of the family Prevotellaceae. Our results demonstrate that (i) genetic effects on host–microbiome interactions can depend upon diet and (ii) that alterations in the composition of the gut microbiome may contribute to the aspects of the metabolic and/or inflammatory phenotype observed with 11β-HSD1 deficiency. PMID:27885053

  15. The effects of omega-3 polyunsaturated fatty acids and genetic variants on methylation levels of the interleukin-6 gene promoter

    PubMed Central

    Ma, Yiyi; Smith, Caren E.; Lai, Chao-Qiang; Irvin, Marguerite R.; Parnell, Laurence D.; Lee, Yu-Chi; Pham, Lucia D.; Aslibekyan, Stella; Claas, Steven A.; Tsai, Michael Y.; Borecki, Ingrid B.; Kabagambe, Edmond K.; Ordovás, José M.; Absher, Devin M.; Arnett, Donna K.

    2016-01-01

    Scope Omega-3 PUFAs (n-3 PUFAs) reduce IL-6 gene expression, but their effects on transcription regulatory mechanisms are unknown. We aimed to conduct an integrated analysis with both population and in vitro studies to systematically explore the relationships among n-3 PUFA, DNA methylation, single nucleotide polymorphisms (SNPs), gene expression, and protein concentration of IL6. Methods and results Using data in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study and the Encyclopedia of DNA Elements (ENCODE) consortium, we found that higher methylation of IL6 promoter cg01770232 was associated with higher IL-6 plasma concentration (p = 0.03) and greater IL6 gene expression (p = 0.0005). Higher circulating total n-3 PUFA was associated with lower cg01770232 methylation (p = 0.007) and lower IL-6 concentration (p = 0.02). Moreover, an allele of IL6 rs2961298 was associated with higher cg01770232 methylation (p = 2.55 × 10−7). The association between n-3 PUFA and cg01770232 methylation was dependent on rs2961298 genotype (p = 0.02), but higher total n-3 PUFA was associated with lower cg01770232 methylation in the heterozygotes (p = 0.04) not in the homozygotes. Conclusion Higher n-3 PUFA is associated with lower methylation at IL6 promoter, which may be modified by IL6 SNPs. PMID:26518637

  16. The effects of omega-3 polyunsaturated fatty acids and genetic variants on methylation levels of the interleukin-6 gene promoter.

    PubMed

    Ma, Yiyi; Smith, Caren E; Lai, Chao-Qiang; Irvin, Marguerite R; Parnell, Laurence D; Lee, Yu-Chi; Pham, Lucia D; Aslibekyan, Stella; Claas, Steven A; Tsai, Michael Y; Borecki, Ingrid B; Kabagambe, Edmond K; Ordovás, José M; Absher, Devin M; Arnett, Donna K

    2016-02-01

    Omega-3 PUFAs (n-3 PUFAs) reduce IL-6 gene expression, but their effects on transcription regulatory mechanisms are unknown. We aimed to conduct an integrated analysis with both population and in vitro studies to systematically explore the relationships among n-3 PUFA, DNA methylation, single nucleotide polymorphisms (SNPs), gene expression, and protein concentration of IL6. Using data in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study and the Encyclopedia of DNA Elements (ENCODE) consortium, we found that higher methylation of IL6 promoter cg01770232 was associated with higher IL-6 plasma concentration (p = 0.03) and greater IL6 gene expression (p = 0.0005). Higher circulating total n-3 PUFA was associated with lower cg01770232 methylation (p = 0.007) and lower IL-6 concentration (p = 0.02). Moreover, an allele of IL6 rs2961298 was associated with higher cg01770232 methylation (p = 2.55 × 10(-7) ). The association between n-3 PUFA and cg01770232 methylation was dependent on rs2961298 genotype (p = 0.02), but higher total n-3 PUFA was associated with lower cg01770232 methylation in the heterozygotes (p = 0.04) not in the homozygotes. Higher n-3 PUFA is associated with lower methylation at IL6 promoter, which may be modified by IL6 SNPs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Experimental Copper Deficiency, Chromium Deficiency and Additional Molybdenum Supplementation in Goats – Pathological Findings

    PubMed Central

    Aupperle, H; Schoon, HA; Frank, A

    2001-01-01

    Secondary copper (Cu) deficiency, chromium (Cr) deficiency and molybdenosis (Mo) has been suggested to cause the "mysterious" moose disease in the southwest of Sweden. The present experiment was performed on goats to investigate the clinical, chemical, and pathological alterations after 20 months feeding of a semi-synthetic diet deficient in Cu and Cr. Four groups were included in the study: control group (n = 4), Cu-deficient group (group 1, n = 4), Cr-deficient group (group 2, n = 2) and Cu+Cr-deficient group (group 3, n = 3). Group 3 was additionally supplemented with tetrathiomolybdate during the last 2 months of the experiment. Main histopathological findings in groups 1 and 3 were the lesions in the liver, characterised by a severe active fibrosis, bile duct proliferation, haemosiderosis and mild necroses. Additionally, degenerative alterations of the exocrine pancreas were prominent in groups 1 and 3. Lesions in group 3 were more pronounced than in group 1. In group 3, the skin showed an atrophic dermatosis, while in group 2 a crusty dermatitis caused by Candida spp. was observed. This study shows that liver, pancreas and skin are mainly affected by a long term deficiency of copper and the findings are complicated by molybdenum application while chromium deficiency produced no histomorphological effects in our study. PMID:11887391

  18. N-3 polyunsaturated fatty acids intake and risk of colorectal cancer: meta-analysis of prospective studies.

    PubMed

    Chen, Guo-Chong; Qin, Li-Qiang; Lu, Da-Bing; Han, Tie-Mei; Zheng, Yan; Xu, Guo-Zhang; Wang, Xiao-Huai

    2015-01-01

    Growing body of laboratory evidence supports the beneficial effects of n-3 polyunsaturated fatty acids (PUFAs) on colorectal cancer (CRC) prevention. Epidemiologic studies investigating the relationship between n-3 PUFAs intake and risk of CRC, however, have been inconsistent. We aimed to clarify the relation by conducting a meta-analysis of prospective studies. Eligible studies were identified by searching PubMed database and by carefully reviewing bibliographies of retrieved publications. Summary relative risks (RRs) with their 95 % confidence intervals (CIs) were computed with a random-effects model. Subgroup, meta-regression, and dose-response analyses were performed to explore potential sources of heterogeneity. A total of 14 prospective studies involving 8,775 cancer cases were included in the final analysis. Overall, total n-3 or marine PUFAs intake was not associated with risk of CRC (RR 0.99 and 1.00). However, there was a trend toward reduced risk of proximal colon cancer (total n-3 PUFAs: RR 0.83, 95 % CI 0.66-1.05; marine PUFAs: RR 0.81, 95 % CI 0.59-1.10) and a significant increased risk of distal colon cancer (total n-3 PUFAs: RR 1.26, 95 % CI 1.06-1.50; marine PUFAs: RR 1.38, 95 % CI 1.11-1.71). Furthermore, marine PUFAs intake accessed longer before diagnosis was associated 21 % reduced risk of CRC (RR 0.79, 95 % CI 0.63-1.00). Overall, this meta-analysis finds no relation between n-3 PUFAs intake and risk of CRC. The observed subsite heterogeneity within colon cancer and the possible effect modification by latency time merit further studies.

  19. Intestinal anti-inflammatory activity of combined quercitrin and dietary olive oil supplemented with fish oil, rich in EPA and DHA (n-3) polyunsaturated fatty acids, in rats with DSS-induced colitis.

    PubMed

    Camuesco, D; Comalada, M; Concha, A; Nieto, A; Sierra, S; Xaus, J; Zarzuelo, A; Gálvez, J

    2006-06-01

    Previous studies have described the intestinal anti-inflammatory effects exerted by the bioflavonoid quercitrin (QR) and by an n-3 polyunsaturated fatty acids (PUFA)-enriched diet in experimental models of rat colitis. The aim of the present study was to test if the combination of both treatments would result in an improvement in the intestinal anti-inflammatory effect achieved separately. Colitis was induced in female Wistar rats by incorporating dextran sodium sulfate (DSS) in drinking water at 5% (w/v) for 5 days and at 2% (w/v) for the following 10 days. Five groups of rats (n=10) were used: two of them received an olive-oil-based diet with fish oil, rich in n-3 PUFA (FO diet) for 2 weeks before colitis induction and until the end of the experiment, and one of those also was administered daily QR (1mg/kg, PO), starting when DSS concentration was changed. DSS colitis was induced in other two groups fed with standard rat diet, one of them being administered QR as before. A non-colitic group fed standard diet was also included. After that period, the rats were sacrificed and colonic damage was assessed both histologically and biochemically. The concurrent administration of FO diet and QR exhibited an intestinal anti-inflammatory effect, as evidenced by a significant improvement of all biochemical parameters of colonic inflammation assayed in comparison with non-treated colitic rats. Thus, both colonic myeloperoxidase (MPO) and alkaline phosphatase (AP) activities were significantly reduced compared with untreated colitic rats. In addition, a complete restoration of colonic glutathione content, which was depleted as a consequence of the colonic insult, was obtained in rats treated with QR plus FO diet; this content was even higher than that obtained when colitic rats were treated with FO diet alone. When compared with the control colitic group, the combined treatment was also associated with a lower colonic nitric oxide synthase and cyclooxygenase-2 expression as

  20. Maternal PUFA status but not prenatal methylmercury exposure is associated with children's language functions at age five years in the Seychelles.

    PubMed

    Strain, J J; Davidson, Philip W; Thurston, Sally W; Harrington, Donald; Mulhern, Maria S; McAfee, Alison J; van Wijngaarden, Edwin; Shamlaye, Conrad F; Henderson, Juliette; Watson, Gene E; Zareba, Grazyna; Cory-Slechta, Deborah A; Lynch, Miranda; Wallace, Julie M W; McSorley, Emeir M; Bonham, Maxine P; Stokes-Riner, Abbie; Sloane-Reeves, Jean; Janciuras, Joanne; Wong, Rosa; Clarkson, Thomas W; Myers, Gary J

    2012-11-01

    Evidence from the Seychelles Child Development Nutrition Study suggests that maternal nutritional status can modulate the relationship between prenatal methylmercury (MeHg) exposure and developmental outcomes in children. The aim of this study was to investigate whether maternal PUFA status was a confounding factor in any possible associations between prenatal MeHg exposure and developmental outcomes at 5 y of age in the Republic of Seychelles. Maternal status of (n-3) and (n-6) PUFA were measured in serum collected at 28 wk gestation and delivery. Prenatal MeHg exposure was determined in maternal hair collected at delivery. At 5 y of age, the children completed a comprehensive range of sensitive developmental assessments. Complete data from 225 mothers and their children were available for analysis. Multiple linear regression analyses revealed Preschool Language Scale scores of the children improved with increasing maternal serum DHA [22:6(n-3)] concentrations and decreased with increasing arachidonic acid [20:4(n-6)] concentrations, albeit verbal intelligence improved with increasing (n-6) PUFA concentrations in maternal serum. There were no adverse associations between MeHg exposure and developmental outcomes. These findings suggest that higher fish consumption, resulting in higher maternal (n-3) PUFA status, during pregnancy is associated with beneficial developmental effects rather than detrimental effects resulting from the higher concomitant exposures of the fetus to MeHg. The association of maternal (n-3) PUFA status with improved child language development may partially explain the authors' previous finding of improving language scores, as prenatal MeHg exposure increased in an earlier mother-child cohort in the Seychelles where maternal PUFA status was not measured.

  1. Metabolic Effects of n-3 PUFA as Phospholipids Are Superior to Triglycerides in Mice Fed a High-Fat Diet: Possible Role of Endocannabinoids

    PubMed Central

    Rossmeisl, Martin; Macek Jilkova, Zuzana; Kuda, Ondrej; Jelenik, Tomas; Medrikova, Dasa; Stankova, Barbora; Kristinsson, Björn; Haraldsson, Gudmundur G.; Svensen, Harald; Stoknes, Iren; Sjövall, Peter; Magnusson, Ylva; Balvers, Michiel G. J.; Verhoeckx, Kitty C. M.; Tvrzicka, Eva; Bryhn, Morten; Kopecky, Jan

    2012-01-01

    Background n-3 polyunsaturated fatty acids, namely docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), reduce the risk of cardiovascular disease and can ameliorate many of obesity-associated disorders. We hypothesised that the latter effect will be more pronounced when DHA/EPA is supplemented as phospholipids rather than as triglycerides. Methodology/Principal Findings In a ‘prevention study’, C57BL/6J mice were fed for 9 weeks on either a corn oil-based high-fat obesogenic diet (cHF; lipids ∼35% wt/wt), or cHF-based diets in which corn oil was partially replaced by DHA/EPA, admixed either as phospholipids or triglycerides from marine fish. The reversal of obesity was studied in mice subjected to the preceding cHF-feeding for 4 months. DHA/EPA administered as phospholipids prevented glucose intolerance and tended to reduce obesity better than triglycerides. Lipemia and hepatosteatosis were suppressed more in response to dietary phospholipids, in correlation with better bioavailability of DHA and EPA, and a higher DHA accumulation in the liver, white adipose tissue (WAT), and muscle phospholipids. In dietary obese mice, both DHA/EPA concentrates prevented a further weight gain, reduced plasma lipid levels to a similar extent, and tended to improve glucose tolerance. Importantly, only the phospholipid form reduced plasma insulin and adipocyte hypertrophy, while being more effective in reducing hepatic steatosis and low-grade inflammation of WAT. These beneficial effects were correlated with changes of endocannabinoid metabolome in WAT, where phospholipids reduced 2-arachidonoylglycerol, and were more effective in increasing anti-inflammatory lipids such as N-docosahexaenoylethanolamine. Conclusions/Significance Compared with triglycerides, dietary DHA/EPA administered as phospholipids are superior in preserving a healthy metabolic profile under obesogenic conditions, possibly reflecting better bioavalability and improved modulation of the

  2. Ketogenic diet in pyruvate dehydrogenase complex deficiency: short- and long-term outcomes.

    PubMed

    Sofou, Kalliopi; Dahlin, Maria; Hallböök, Tove; Lindefeldt, Marie; Viggedal, Gerd; Darin, Niklas

    2017-03-01

    Our aime was to study the short- and long-term effects of ketogenic diet on the disease course and disease-related outcomes in patients with pyruvate dehydrogenase complex deficiency, the metabolic factors implicated in treatment outcomes, and potential safety and compliance issues. Pediatric patients diagnosed with pyruvate dehydrogenase complex deficiency in Sweden and treated with ketogenic diet were evaluated. Study assessments at specific time points included developmental and neurocognitive testing, patient log books, and investigator and parental questionnaires. A systematic literature review was also performed. Nineteen patients were assessed, the majority having prenatal disease onset. Patients were treated with ketogenic diet for a median of 2.9 years. All patients alive at the time of data registration at a median age of 6 years. The treatment had a positive effect mainly in the areas of epilepsy, ataxia, sleep disturbance, speech/language development, social functioning, and frequency of hospitalizations. It was also safe-except in one patient who discontinued because of acute pancreatitis. The median plasma concentration of ketone bodies (3-hydroxybutyric acid) was 3.3 mmol/l. Poor dietary compliance was associated with relapsing ataxia and stagnation of motor and neurocognitive development. Results of neurocognitive testing are reported for 12 of 19 patients. Ketogenic diet was an effective and safe treatment for the majority of patients. Treatment effect was mainly determined by disease phenotype and attainment and maintenance of ketosis.

  3. Attenuated progression of diet-induced steatohepatitis in glutathione-deficient mice

    PubMed Central

    Haque, Jamil A; McMahan, Ryan S; Campbell, Jean S; Shimizu-Albergine, Masami; Wilson, Angela M; Botta, Dianne; Bammler, Theo K; Beyer, Richard P; Montine, Thomas J; Yeh, Matthew M; Kavanagh, Terrance J; Fausto, Nelson

    2011-01-01

    In nonalcoholic fatty liver disease (NAFLD), depletion of hepatic antioxidants may contribute to the progression of steatosis to nonalcoholic steatohepatitis (NASH) by increasing oxidative stress that produces lipid peroxidation, inflammation, and fibrosis. We investigated whether depletion of glutathione (GSH) increases NASH-associated hepatic pathology in mice fed a diet deficient in methionine and choline (MCD diet). Wild-type (wt) mice and genetically GSH-deficient mice lacking the modifier subunit of glutamate cysteine ligase (Gclm null mice), the rate-limiting enzyme for de novo synthesis of GSH, were fed the MCD diet, a methionine/choline-sufficient diet, or standard chow for 21 days. We assessed NASH-associated hepatic pathology, including steatosis, fibrosis, inflammation, and hepatocyte ballooning, and used the NAFLD Scoring System to evaluate the extent of changes. We measured triglyceride levels, determined the level of lipid peroxidation products, and measured by qPCR the expression of mRNAs for several proteins associated with lipid metabolism, oxidative stress, and fibrosis. MCD-fed GSH-deficient Gclm null mice were to a large extent protected from MCD diet-induced excessive fat accumulation, hepatocyte injury, inflammation, and fibrosis. Compared with wt animals, MCD-fed Gclm null mice had much lower levels of F2-isoprostanes, lower expression of acyl-CoA oxidase, carnitine palmitoyltransferase 1a, uncoupling protein-2, stearoyl-coenzyme A desaturase-1, transforming growth factor-β, and plas-minogen activator inhibitor-1 mRNAs, and higher activity of catalase, indicative of low oxidative stress, inhibition of triglyceride synthesis, and lower expression of profibrotic proteins. Global gene analysis of hepatic RNA showed that compared with wt mice, the livers of Gclm null mice have a high capacity to metabolize endogenous and exogenous compounds, have lower levels of lipogenic proteins, and increased antioxidant activity. Thus, metabolic adaptations

  4. Omega-3 Fatty Acid Deficiency Increases Stearoyl-CoA Desaturase Expression and Activity Indices in Rat Liver: Positive Association with Non-Fasting Plasma Triglyceride Levels

    PubMed Central

    Hofacer, Rylon; Magrisso, I. Jack; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Benoit, Stephen C.; McNamara, Robert K.

    2011-01-01

    Although omega-3 (n-3) fatty acids negatively regulate triglyceride biosynthesis, the mechanisms mediating this effect are poorly understood, and emerging evidence suggests that stearoyl-CoA desaturase (Scd1) is required for de novo triglyceride biosynthesis. To investigate this mechanism, we determined the effects of perinatal n-3 deficiency and postnatal repletion on rat liver Scd1 mRNA expression and activity indices (liver 16:1/16:0 & 18:1/18:0 ratios), and determined relationships with postprandial (non-fasting) plasma triglyceride levels. Rats were fed conventional diets with or without the n-3 fatty acid precursor α-linolenic acid (ALA, 18:3n-3) during perinatal development (E0-P100), and a subset of rats fed the ALA− diet were switched to the ALA+ diet post-weaning (P21-P100, repletion). Compared with controls, rats fed the ALA− diet exhibited significantly lower liver long-chain n-3 fatty acid compositions and elevations in monounsaturated fatty acid composition, both of which were normalized in repleted rats. Liver Scd1 mRNA expression and activity indices (16:1/16:0 & 18:1/18:0 ratios) were significantly greater in n-3 deficient rats compared with controls and repleted rats. Among all rats, liver Scd1 mRNA expression was positively correlated with liver 18:1/18:0 and 16:1/16:0 ratios. Plasma triglyceride levels, but not glucose or insulin levels, were significantly greater in n-3 deficient rats compared with controls and repleted rats. Liver Scd1 mRNA expression and activity indices were positively correlated with plasma triglyceride levels. These preclinical findings demonstrate that n-3 fatty acid status is an important determinant of liver Scd1 mRNA expression and activity, and suggest that down-regulation of Scd1 is a mechanism by which n-3 fatty acids repress constitutive triglyceride biosynthesis. PMID:22047910

  5. High-fat diets rich in ω-3 or ω-6 polyunsaturated fatty acids have distinct effects on lipid profiles and lipid peroxidation in mice selected for either high body weight or leanness.

    PubMed

    Dannenberger, Dirk; Nuernberg, Gerd; Renne, Ulla; Nuernberg, Karin; Langhammer, Martina; Huber, Korinna; Breier, Bernhard

    2013-05-01

    The aim of the study is to determine the response of muscle lipid peroxidation and the fatty-acid profile of three groups of mice-high body weight (DU6) obesity-prone mice, high treadmill performance (DUhTP) lean mice, and unselected control mice (DUK) fed high-fat diets (HFDs) rich in ω-3 or ω-6 polyunsaturated fatty acids (PUFA). The isocaloric HFDs were enriched with either ω-3 PUFA (27% fish oil, ω-3 HFD) or ω-6 PUFA (27% sunflower oil, ω-6 HFD), and the control group was fed standard chow (7.2% fat). Statistical calculations were done with procedure GLM of SAS. As expected, the ω-3 and ω-6 PUFA-rich HFDs showed significant effects on fatty-acid concentrations of skeletal muscle in all three lines of mice compared with the standard chow. The investigations of muscle lipid peroxidation revealed that the ω-3 PUFA-rich HFD caused the highest lipid peroxidation values in muscle of lean DUhTP mice and unselected control DUK mice. However, lower lipid peroxidation levels were observed in the obesity-prone DU6 mice. In contrast, the ω-6 PUFA-rich HFD did not influence lipid peroxidation in muscle of any of the different lines of mice. The present study suggests that a higher overall antioxidant capacity in the muscle tissue of obesity-prone DU6 mice may lead to lower levels of reactive oxygen species formation by ω-3 PUFA-rich HFDs in comparison with lean DUhTP mice. These studies raise the possibility that obesity per se may be protective against oxidative damage when high ω-3 PUFA diets are used. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Role of white adipose lipolysis in the development of NASH induced by methionine-and choline-deficient diet

    PubMed Central

    Tanaka, Naoki; Takahashi, Shogo; Fang, Zhong-Ze; Matsubara, Tsutomu; Krausz, Kristopher W.; Qu, Aijuan; Gonzalez, Frank J.

    2014-01-01

    Methionine- and choline-deficient diet (MCD) is a model for nonalcoholic steatohepatitis (NASH) in rodents. However, the mechanism of NASH development by dietary methionine/choline deficiency remains undetermined. To elucidate the early metabolic changes associated with MCD-NASH, serum metabolomic analysis was performed using mice treated with MCD and control diet for three days and one week, revealing significant increases in oleic and linoleic acids after MCD treatment. These increases were correlated with reduced body weight and white adipose tissue (WAT) mass, increased phosphorylation of hormone-sensitive lipase, and up-regulation of genes encoding carboxylesterase 3 and β2-adrenergic receptor in WAT, indicating accelerated lipolysis in adipocytes. The changes in serum fatty acids and WAT by MCD treatment were reversed by methionine supplementation, and similar alterations were detected in mice fed a methionine-deficient diet (MD), thus demonstrating that dietary methionine deficiency enhances lipolysis in WAT. MD treatment decreased glucose and increased fibroblast growth factor 21 in serum, thus exhibiting a similar metabolic phenotype as the fasting response. Comparison between MCD and choline-deficient diet (CD) treatments suggested that the addition of MD-induced metabolic alterations, such as WAT lipolysis, to CD-induced hepatic steatosis promotes liver injury. Collectively, these results demonstrate an important role for dietary methionine deficiency and WAT lipolysis in the development of MCD-NASH. PMID:25178843

  7. Providing male rats deficient in iron and n-3 fatty acids with iron and alpha-linolenic acid alone affects brain serotonin and cognition differently from combined provision.

    PubMed

    Baumgartner, Jeannine; Smuts, Cornelius M; Zimmermann, Michael B

    2014-06-13

    We recently showed that a combined deficiency of iron (ID) and n-3 fatty acids (n-3 FAD) in rats disrupts brain monoamine metabolism and produces greater memory deficits than ID or n-3 FAD alone. Providing these double-deficient rats with either iron (Fe) or preformed docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) alone affected brain monoamine pathways differently from combined repletion and even exacerbated cognitive deficits associated with double-deficiency. Iron is a co-factor of the enzymes responsible for the conversion of alpha-linolenic acid (ALA) to EPA and DHA, thus, the provision of ALA with Fe might be more effective in restoring brain EPA and DHA and improving cognition in double-deficient rats than ALA alone. In this study we examined whether providing double-deficient rats with ALA and Fe, alone or in combination, can correct deficits in monoamine metabolism and cognition associated with double-deficiency. Using a 2 × 2 design, male rats with concurrent ID and n-3 FAD were fed an Fe + ALA, Fe + n-3 FAD, ID + ALA, or ID + n-3 FAD diet for 5 weeks (postnatal day 56-91). Biochemical measures, and spatial working and reference memory (using the Morris water maze) were compared to age-matched controls. In the hippocampus, we found a significant Fe × ALA interaction on DHA: Compared to the group receiving ALA alone, DHA was significantly higher in the Fe + ALA group. In the brain, we found significant antagonistic Fe × ALA interactions on serotonin concentrations. Provision of ALA alone impaired working memory compared with age-matched controls, while in the reference memory task ALA provided with Fe significantly improved performance. These results indicate that providing either iron or ALA alone to double-deficient rats affects serotonin pathways and cognitive performance differently from combined provision. This may be partly explained by the enhancing effect of Fe on the conversion of ALA to EPA and DHA.

  8. Providing male rats deficient in iron and n-3 fatty acids with iron and alpha-linolenic acid alone affects brain serotonin and cognition differently from combined provision

    PubMed Central

    2014-01-01

    Background We recently showed that a combined deficiency of iron (ID) and n-3 fatty acids (n-3 FAD) in rats disrupts brain monoamine metabolism and produces greater memory deficits than ID or n-3 FAD alone. Providing these double-deficient rats with either iron (Fe) or preformed docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) alone affected brain monoamine pathways differently from combined repletion and even exacerbated cognitive deficits associated with double-deficiency. Iron is a co-factor of the enzymes responsible for the conversion of alpha-linolenic acid (ALA) to EPA and DHA, thus, the provision of ALA with Fe might be more effective in restoring brain EPA and DHA and improving cognition in double-deficient rats than ALA alone. Methods In this study we examined whether providing double-deficient rats with ALA and Fe, alone or in combination, can correct deficits in monoamine metabolism and cognition associated with double-deficiency. Using a 2 × 2 design, male rats with concurrent ID and n-3 FAD were fed an Fe + ALA, Fe + n-3 FAD, ID + ALA, or ID + n-3 FAD diet for 5 weeks (postnatal day 56–91). Biochemical measures, and spatial working and reference memory (using the Morris water maze) were compared to age-matched controls. Results In the hippocampus, we found a significant Fe × ALA interaction on DHA: Compared to the group receiving ALA alone, DHA was significantly higher in the Fe + ALA group. In the brain, we found significant antagonistic Fe × ALA interactions on serotonin concentrations. Provision of ALA alone impaired working memory compared with age-matched controls, while in the reference memory task ALA provided with Fe significantly improved performance. Conclusion These results indicate that providing either iron or ALA alone to double-deficient rats affects serotonin pathways and cognitive performance differently from combined provision. This may be partly explained by the enhancing effect of Fe on

  9. N-3 poly-unsaturated fatty acids shift estrogen signaling to inhibit human breast cancer cell growth.

    PubMed

    Cao, Wenqing; Ma, ZhiFan; Rasenick, Mark M; Yeh, ShuYan; Yu, JiangZhou

    2012-01-01

    Although evidence has shown the regulating effect of n-3 poly-unsaturated fatty acid (n-3 PUFA) on cell signaling transduction, it remains unknown whether n-3 PUFA treatment modulates estrogen signaling. The current study showed that docosahexaenoic acid (DHA, C22:6), eicosapentaenoic acid (EPA, C20:5) shifted the pro-survival and proliferative effect of estrogen to a pro-apoptotic effect in human breast cancer (BCa) MCF-7 and T47D cells. 17 β-estradiol (E2) enhanced the inhibitory effect of n-3 PUFAs on BCa cell growth. The IC50 of DHA or EPA in MCF-7 cells decreased when combined with E2 (10 nM) treatment (from 173 µM for DHA only to 113 µM for DHA+E2, and from 187 µm for EPA only to 130 µm for EPA+E2). E2 also augmented apoptosis in n-3 PUFA-treated BCa cells. In contrast, in cells treated with stearic acid (SA, C18:0) as well as cells not treated with fatty acid, E2 promoted breast cancer cell growth. Classical (nuclear) estrogen receptors may not be involved in the pro-apoptotic effects of E2 on the n-3 PUFA-treated BCa cells because ERα agonist failed to elicit, and ERα knockdown failed to block E2 pro-apoptotic effects. Subsequent studies reveal that G protein coupled estrogen receptor 1 (GPER1) may mediate the pro-apoptotic effect of estrogen. N-3 PUFA treatment initiated the pro-apoptotic signaling of estrogen by increasing GPER1-cAMP-PKA signaling response, and blunting EGFR, Erk 1/2, and AKT activity. These findings may not only provide the evidence to link n-3 PUFAs biologic effects and the pro-apoptotic signaling of estrogen in breast cancer cells, but also shed new insight into the potential application of n-3 PUFAs in BCa treatment.

  10. Replacement of dietary fish oils by alpha-linolenic acid-rich oils lowers omega 3 content in tilapia flesh.

    PubMed

    Karapanagiotidis, Ioannis T; Bell, Michael V; Little, David C; Yakupitiyage, Amararatne

    2007-06-01

    A 20-week feeding trial was conducted to determine whether increasing linolenic acid (18:3n-3) in vegetable oil (VO) based diets would lead to increased tissue deposition of 22:6n-3 in Nile tilapia (Oreochromis niloticus). Five isonitrogenous and isoenergetic diets were supplemented with 3% of either linseed oil (LO), a mixture of linseed oil with refined palm olein oil (PO) (LO-PO 2:1) and a mixture of refined palm olein oil with linseed oil (PO-LO 3:2) or with fish oil (FO) or corn oil (CO) as controls. The PO-LO, LO-PO and LO diets supplied a similar amount of 18:2n-6 (0.5% of diet by dry weight) and 0.5, 0.7 and 1.1% of 18:3n-3, respectively. Increased dietary 18:3n-3 caused commensurate increases in longer-chain n-3 PUFA and decreases in longer-chain n-6 PUFA in the muscle lipids of tilapia. However, the biosynthetic activities of fish fed the LO-based diets were not sufficient to raise the tissue concentrations of 20:5n-3, 22:5n-3 and 22:6n-3 to those of fish fed FO. The study suggests that tilapia (O. niloticus) has a limited capacity to synthesise 20:5n-3 and 22:6n-3 from dietary 18:3n-3. The replacement of FO in the diet of farmed tilapia with vegetable oils could therefore lower tissue concentrations of 20:5n-3 and 22:6n-3, and consequently produce an aquaculture product of lower lipid nutritional value for the consumer.

  11. Effects of zinc-deficient diets on the cardiovascular system in rabbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, J.W.; Koo, S.I.

    1986-03-05

    The authors used male New Zealand white rabbits to study the effects of zinc-deficient diets on the cardiovascular system. These 10 week-old rabbits were fed semi-purified diets containing either 50 ppm or less than 1 ppm zinc for 12 weeks. Serum samples were analyzed at 3,6,9 and 12 weeks. Body weight and food consumption were measured weekly. At necropsy the liver and heart were removed and weighed. Then the heart was perfused at 100 mm Hg with 10% buffered formalin via the ascending aorta. Coronary arteries were block-dissected and processed for light microscopy. Food consumption and body weights were notmore » significantly altered throughout the study. Relative heart weights were not different; however, the relative liver weight of the zinc-deficient group was elevated by 11%. Neither total serum cholesterol or HDL-cholesterol were changed at any time. After 6 weeks treatment, serum zinc levels were depressed by 29% in the zinc-deficient group; no changes were observed for serum copper or calcium. Morphometric analysis of coronary arteries revealed a decreased combined thickness of the tunica intima and tunica media and a decreased area per unit length in the left coronary circumflex arteries of zinc-deficient rabbits. Significant changes reported here are probably related to possible alterations in lipoproteins metabolism and will be investigated in future studies.« less

  12. Lower limb explosive strength capacity in elderly women: effects of resistance training and healthy diet.

    PubMed

    Edholm, Peter; Strandberg, Emelie; Kadi, Fawzi

    2017-07-01

    The effects of 24 wk of resistance training combined with a healthy diet on lower limb explosive strength capacity were investigated in a population of healthy elderly women. Participants ( n = 63; 67.5 ± 0.4 yr) were randomized into three groups; resistance training (RT), resistance training and healthy diet (RT-HD), and control (CON). Progressive resistance training was performed at a load of 75-85% one-repetition maximum. A major adjustment in the healthy dietary approach was an n-6/n-3 polyunsaturated fatty acid (PUFA) ratio below 2. Lower limb maximal strength, explosive force capacity during dynamic and isometric movements, whole body lean mass, and physical function were assessed. Whole body lean mass significantly increased by 1.5 ± 0.5% in RT-HD only. Isometric strength performance during knee extension as well as the performance in the five sit-to-stand and single-leg-stance tests increased similarly in RT and RT-HD. Improvements in dynamic peak power and time to reach peak power (i.e shorter time) during knee extension occurred in both RT (+15.7 ± 2.6 and -11.0 ± 3.8%, respectively) and RT-HD (+24.6 ± 2.6 and -20.3 ± 2.7%, respectively); however, changes were significantly larger in RT-HD. Similarly, changes in peak force and rate of force development during squat jump were higher in RT-HD (+58.5 ± 8.4 and +185.4 ± 32.9%, respectively) compared with RT (+35.7 ± 6.9 and +105.4 ± 22.4%, respectively). In conclusion, a healthy diet rich in n-3 PUFA can optimize the effects of resistance training on dynamic explosive strength capacity during isolated lower limb movements and multijoint exercises in healthy elderly women. NEW & NOTEWORTHY Age-related decline in lower limb explosive strength leads to impaired ability to perform daily living tasks. The present randomized controlled trial demonstrates that a healthy diet rich in n-3 polyunsaturated fatty acid (n-3 PUFA) enhances resistance training-induced gains in dynamic explosive strength

  13. Anthocyanins do not influence long-chain n-3 fatty acid status: studies in cells, rodents and humans.

    PubMed

    Vauzour, David; Tejera, Noemi; O'Neill, Colette; Booz, Valeria; Jude, Baptiste; Wolf, Insa M A; Rigby, Neil; Silvan, Jose Manuel; Curtis, Peter J; Cassidy, Aedin; de Pascual-Teresa, Sonia; Rimbach, Gerald; Minihane, Anne Marie

    2015-03-01

    Increased tissue status of the long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) is associated with cardiovascular and cognitive benefits. Limited epidemiological and animal data suggest that flavonoids, and specifically anthocyanins, may increase EPA and DHA levels, potentially by increasing their synthesis from the shorter-chain n-3 PUFA, α-linolenic acid. Using complimentary cell, rodent and human studies we investigated the impact of anthocyanins and anthocyanin-rich foods/extracts on plasma and tissue EPA and DHA levels and on the expression of fatty acid desaturase 2 (FADS2), which represents the rate limiting enzymes in EPA and DHA synthesis. In experiment 1, rats were fed a standard diet containing either palm oil or rapeseed oil supplemented with pure anthocyanins for 8 weeks. Retrospective fatty acid analysis was conducted on plasma samples collected from a human randomized controlled trial where participants consumed an elderberry extract for 12 weeks (experiment 2). HepG2 cells were cultured with α-linolenic acid with or without select anthocyanins and their in vivo metabolites for 24 h and 48 h (experiment 3). The fatty acid composition of the cell membranes, plasma and liver tissues were analyzed by gas chromatography. Anthocyanins and anthocyanin-rich food intake had no significant impact on EPA or DHA status or FADS2 gene expression in any model system. These data indicate little impact of dietary anthocyanins on n-3 PUFA distribution and suggest that the increasingly recognized benefits of anthocyanins are unlikely to be the result of a beneficial impact on tissue fatty acid status. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Anthocyanins do not influence long-chain n-3 fatty acid status: studies in cells, rodents and humans☆

    PubMed Central

    Vauzour, David; Tejera, Noemi; O'Neill, Colette; Booz, Valeria; Jude, Baptiste; Wolf, Insa M.A.; Rigby, Neil; Silvan, Jose Manuel; Curtis, Peter J.; Cassidy, Aedin; de Pascual-Teresa, Sonia; Rimbach, Gerald; Minihane, Anne Marie

    2015-01-01

    Increased tissue status of the long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) is associated with cardiovascular and cognitive benefits. Limited epidemiological and animal data suggest that flavonoids, and specifically anthocyanins, may increase EPA and DHA levels, potentially by increasing their synthesis from the shorter-chain n-3 PUFA, α-linolenic acid. Using complimentary cell, rodent and human studies we investigated the impact of anthocyanins and anthocyanin-rich foods/extracts on plasma and tissue EPA and DHA levels and on the expression of fatty acid desaturase 2 (FADS2), which represents the rate limiting enzymes in EPA and DHA synthesis. In experiment 1, rats were fed a standard diet containing either palm oil or rapeseed oil supplemented with pure anthocyanins for 8 weeks. Retrospective fatty acid analysis was conducted on plasma samples collected from a human randomized controlled trial where participants consumed an elderberry extract for 12 weeks (experiment 2). HepG2 cells were cultured with α-linolenic acid with or without select anthocyanins and their in vivo metabolites for 24 h and 48 h (experiment 3). The fatty acid composition of the cell membranes, plasma and liver tissues were analyzed by gas chromatography. Anthocyanins and anthocyanin-rich food intake had no significant impact on EPA or DHA status or FADS2 gene expression in any model system. These data indicate little impact of dietary anthocyanins on n-3 PUFA distribution and suggest that the increasingly recognized benefits of anthocyanins are unlikely to be the result of a beneficial impact on tissue fatty acid status. PMID:25573539

  15. Vulnerability imposed by diet and brain trauma for anxiety-like phenotype: implications for post-traumatic stress disorders.

    PubMed

    Tyagi, Ethika; Agrawal, Rahul; Zhuang, Yumei; Abad, Catalina; Waschek, James A; Gomez-Pinilla, Fernando

    2013-01-01

    Mild traumatic brain injury (mTBI, cerebral concussion) is a risk factor for the development of psychiatric illness such as posttraumatic stress disorder (PTSD). We sought to evaluate how omega-3 fatty acids during brain maturation can influence challenges incurred during adulthood (transitioning to unhealthy diet and mTBI) and predispose the brain to a PTSD-like pathobiology. Rats exposed to diets enriched or deficient in omega-3 fatty acids (n-3) during their brain maturation period, were transitioned to a western diet (WD) when becoming adult and then subjected to mTBI. TBI resulted in an increase in anxiety-like behavior and its molecular counterpart NPY1R, a hallmark of PTSD, but these effects were more pronounced in the animals exposed to n-3 deficient diet and switched to WD. The n-3 deficiency followed by WD disrupted BDNF signaling and the activation of elements of BDNF signaling pathway (TrkB, CaMKII, Akt and CREB) in frontal cortex. TBI worsened these effects and more prominently in combination with the n-3 deficiency condition. Moreover, the n-3 deficiency primed the immune system to the challenges imposed by the WD and brain trauma as evidenced by results showing that the WD or mTBI affected brain IL1β levels and peripheral Th17 and Treg subsets only in animals previously conditioned to the n-3 deficient diet. These results provide novel evidence for the capacity of maladaptive dietary habits to lower the threshold for neurological disorders in response to challenges.

  16. Vulnerability Imposed by Diet and Brain Trauma for Anxiety-Like Phenotype: Implications for Post-Traumatic Stress Disorders

    PubMed Central

    Tyagi, Ethika; Agrawal, Rahul; Zhuang, Yumei; Abad, Catalina; Waschek, James A.; Gomez-Pinilla, Fernando

    2013-01-01

    Mild traumatic brain injury (mTBI, cerebral concussion) is a risk factor for the development of psychiatric illness such as posttraumatic stress disorder (PTSD). We sought to evaluate how omega-3 fatty acids during brain maturation can influence challenges incurred during adulthood (transitioning to unhealthy diet and mTBI) and predispose the brain to a PTSD-like pathobiology. Rats exposed to diets enriched or deficient in omega-3 fatty acids (n-3) during their brain maturation period, were transitioned to a western diet (WD) when becoming adult and then subjected to mTBI. TBI resulted in an increase in anxiety-like behavior and its molecular counterpart NPY1R, a hallmark of PTSD, but these effects were more pronounced in the animals exposed to n-3 deficient diet and switched to WD. The n-3 deficiency followed by WD disrupted BDNF signaling and the activation of elements of BDNF signaling pathway (TrkB, CaMKII, Akt and CREB) in frontal cortex. TBI worsened these effects and more prominently in combination with the n-3 deficiency condition. Moreover, the n-3 deficiency primed the immune system to the challenges imposed by the WD and brain trauma as evidenced by results showing that the WD or mTBI affected brain IL1β levels and peripheral Th17 and Treg subsets only in animals previously conditioned to the n-3 deficient diet. These results provide novel evidence for the capacity of maladaptive dietary habits to lower the threshold for neurological disorders in response to challenges. PMID:23483949

  17. Polymorphisms in Fatty Acid Desaturase (FADS) Gene Cluster: Effects on Glycemic Controls Following an Omega-3 Polyunsaturated Fatty Acids (PUFA) Supplementation.

    PubMed

    Cormier, Hubert; Rudkowska, Iwona; Thifault, Elisabeth; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2013-09-10

    Changes in desaturase activity are associated with insulin sensitivity and may be associated with type 2 diabetes mellitus (T2DM). Polymorphisms (SNPs) in the fatty acid desaturase (FADS) gene cluster have been associated with the homeostasis model assessment of insulin sensitivity (HOMA-IS) and serum fatty acid composition. To investigate whether common genetic variations in the FADS gene cluster influence fasting glucose (FG) and fasting insulin (FI) responses following a 6-week n-3 polyunsaturated fatty acids (PUFA) supplementation. 210 subjects completed a 2-week run-in period followed by a 6-week supplementation with 5 g/d of fish oil (providing 1.9 g-2.2 g of EPA + 1.1 g of DHA). Genotyping of 18 SNPs of the FADS gene cluster covering 90% of all common genetic variations (minor allele frequency ≥ 0.03) was performed. Carriers of the minor allele for rs482548 (FADS2) had increased plasma FG levels after the n-3 PUFA supplementation in a model adjusted for FG levels at baseline, age, sex, and BMI. A significant genotype*supplementation interaction effect on FG levels was observed for rs482548 (p = 0.008). For FI levels, a genotype effect was observed with one SNP (rs174456). For HOMA-IS, several genotype*supplementation interaction effects were observed for rs7394871, rs174602, rs174570, rs7482316 and rs482548 (p = 0.03, p = 0.01, p = 0.03, p = 0.05 and p = 0.07; respectively). RESULTS suggest that SNPs in the FADS gene cluster may modulate plasma FG, FI and HOMA-IS levels in response to n-3 PUFA supplementation.

  18. Polymorphisms in Fatty Acid Desaturase (FADS) Gene Cluster: Effects on Glycemic Controls Following an Omega-3 Polyunsaturated Fatty Acids (PUFA) Supplementation

    PubMed Central

    Cormier, Hubert; Rudkowska, Iwona; Thifault, Elisabeth; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2013-01-01

    Changes in desaturase activity are associated with insulin sensitivity and may be associated with type 2 diabetes mellitus (T2DM). Polymorphisms (SNPs) in the fatty acid desaturase (FADS) gene cluster have been associated with the homeostasis model assessment of insulin sensitivity (HOMA-IS) and serum fatty acid composition. Objective: To investigate whether common genetic variations in the FADS gene cluster influence fasting glucose (FG) and fasting insulin (FI) responses following a 6-week n-3 polyunsaturated fatty acids (PUFA) supplementation. Methods: 210 subjects completed a 2-week run-in period followed by a 6-week supplementation with 5 g/d of fish oil (providing 1.9 g–2.2 g of EPA + 1.1 g of DHA). Genotyping of 18 SNPs of the FADS gene cluster covering 90% of all common genetic variations (minor allele frequency ≥ 0.03) was performed. Results: Carriers of the minor allele for rs482548 (FADS2) had increased plasma FG levels after the n-3 PUFA supplementation in a model adjusted for FG levels at baseline, age, sex, and BMI. A significant genotype*supplementation interaction effect on FG levels was observed for rs482548 (p = 0.008). For FI levels, a genotype effect was observed with one SNP (rs174456). For HOMA-IS, several genotype*supplementation interaction effects were observed for rs7394871, rs174602, rs174570, rs7482316 and rs482548 (p = 0.03, p = 0.01, p = 0.03, p = 0.05 and p = 0.07; respectively). Conclusion: Results suggest that SNPs in the FADS gene cluster may modulate plasma FG, FI and HOMA-IS levels in response to n-3 PUFA supplementation. PMID:24705214

  19. Consumption of high ω-3 fatty acid diet suppressed prostate tumorigenesis in C3(1) Tag mice.

    PubMed

    Akinsete, Juliana A; Ion, Gabriela; Witte, Theodore R; Hardman, W Elaine

    2012-01-01

    Prostate cancer incidence and mortality are high in the Western world and high ω-6/ω-3 PUFA in the Western diet may be a contributing factor. We investigated whether changing from a diet that approximates ω-6 fat content of the Western diet to a high ω-3 fat diet at adulthood might reduce prostate cancer risk. Female SV 129 mice that had consumed a high ω-6 diet containing corn oil for 2 weeks were bred with homozygous C3(1)Tag transgenic male mice. All male offspring were weaned to the corn oil diet (CO) until postpuberty when half of the male offspring were transferred to a high ω-3 diet containing canola oil and fish oil concentrate (FS). High ω-3 diet increased ω-3 and decreased ω-6 fat content of mice tissues. Average weights of prostate and genitourinary bloc were significantly lower in mice consuming high ω-3 diet at adulthood (CO-FS) than mice fed a lifetime high ω-6 diet (CO-CO). There was slower progression of tumorigenesis in dorsalateral prostate of CO-FS than in CO-CO mice. CO-FS mice had slightly lower plasma testosterone level at 24 and 40 weeks, significantly lower estradiol level at 40 weeks and significantly less expressed androgen receptor (AR) in the dorsalateral prostate at 40 weeks than CO-CO mice. Consumption of high ω-3 diet lowered the expression of genes expected to increase proliferation and decrease apoptosis in dorsalateral prostate. Our results suggest that consumption of high ω-3 diet slows down prostate tumorigenesis by lowering estradiol, testosterone and AR levels, promoting apoptosis and suppressing cell proliferation in C3(1)Tag mice.

  20. Consumption of high ω-3 fatty acid diet suppressed prostate tumorigenesis in C3(1) Tag mice

    PubMed Central

    Ion, Gabriela; Witte, Theodore R.; Hardman, W.Elaine

    2012-01-01

    Prostate cancer incidence and mortality are high in the Western world and high ω-6/ω-3 PUFA in the Western diet may be a contributing factor. We investigated whether changing from a diet that approximates ω-6 fat content of the Western diet to a high ω-3 fat diet at adulthood might reduce prostate cancer risk. Female SV 129 mice that had consumed a high ω-6 diet containing corn oil for 2 weeks were bred with homozygous C3(1)Tag transgenic male mice. All male offspring were weaned to the corn oil diet (CO) until postpuberty when half of the male offspring were transferred to a high ω-3 diet containing canola oil and fish oil concentrate (FS). High ω-3 diet increased ω-3 and decreased ω-6 fat content of mice tissues. Average weights of prostate and genitourinary bloc were significantly lower in mice consuming high ω-3 diet at adulthood (CO-FS) than mice fed a lifetime high ω-6 diet (CO–CO). There was slower progression of tumorigenesis in dorsalateral prostate of CO-FS than in CO–CO mice. CO-FS mice had slightly lower plasma testosterone level at 24 and 40 weeks, significantly lower estradiol level at 40 weeks and significantly less expressed androgen receptor (AR) in the dorsalateral prostate at 40 weeks than CO–CO mice. Consumption of high ω-3 diet lowered the expression of genes expected to increase proliferation and decrease apoptosis in dorsalateral prostate. Our results suggest that consumption of high ω-3 diet slows down prostate tumorigenesis by lowering estradiol, testosterone and AR levels, promoting apoptosis and suppressing cell proliferation in C3(1)Tag mice. PMID:22045025

  1. Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs12

    PubMed Central

    Gabbs, Melissa; Leng, Shan; Devassy, Jessay G; Monirujjaman, Md; Aukema, Harold M

    2015-01-01

    Oxylipins formed from polyunsaturated fatty acids (PUFAs) are the main mediators of PUFA effects in the body. They are formed via cyclooxygenase, lipoxygenase, and cytochrome P450 pathways, resulting in the formation of prostaglandins, thromboxanes, mono-, di-, and tri-hydroxy fatty acids (FAs), epoxy FAs, lipoxins, eoxins, hepoxilins, resolvins, protectins (also called neuroprotectins in the brain), and maresins. In addition to the well-known eicosanoids derived from arachidonic acid, recent developments in lipidomic methodologies have raised awareness of and interest in the large number of oxylipins formed from other PUFAs, including those from the essential FAs and the longer-chain n–3 (ω-3) PUFAs. Oxylipins have essential roles in normal physiology and function, but can also have detrimental effects. Compared with the oxylipins derived from n–3 PUFAs, oxylipins from n–6 PUFAs generally have greater activity and more inflammatory, vasoconstrictory, and proliferative effects, although there are notable exceptions. Because PUFA composition does not necessarily reflect oxylipin composition, comprehensive analysis of the oxylipin profile is necessary to understand the overall physiologic effects of PUFAs mediated through their oxylipins. These analyses should include oxylipins derived from linoleic and α-linolenic acids, because these largely unexplored bioactive oxylipins constitute more than one-half of oxylipins present in tissues. Because collated information on oxylipins formed from different PUFAs is currently unavailable, this review provides a detailed compilation of the main oxylipins formed from PUFAs and describes their functions. Much remains to be elucidated in this emerging field, including the discovery of more oxylipins, and the understanding of the differing biological potencies, kinetics, and isomer-specific activities of these novel PUFA metabolites. PMID:26374175

  2. Dietary supplementation with arachidonic acid but not eicosapentaenoic or docosahexaenoic acids alter lipids metabolism in C57BL/6J mice.

    PubMed

    Magdeldin, Sameh; Elewa, Yaser; Ikeda, Takako; Ikei, Junko; Zhang, Ying; Xu, Bo; Nameta, Masaaki; Fujinaka, Hidehiko; Yoshida, Yutaka; Yaoita, Eishin; Yamamoto, Tadashi

    2009-09-01

    In order to investigate the effects of dietary supplementation rich in omega 3 and omega 6 fatty acids, we set up an experiment of twenty four C57BL/6J male mice segregated into 3 groups: normal diet (ND), omega 3 polyunsaturated fatty acid (n-3 PUFA,) and omega 6 (n-6 PUFA). At the end of the experiment that lasted for 1 month, food consumption of ND and n-3 PUFA were similar while it decreased in n-6 PUFA group. Total cholesterol, triglycerides, free fatty acids, and phospholipids profiles were increased in n-6 PUFA. LDL decreased in n-3 PUFA while increased in n-6 PUFA fed mice comparing to control group. On the other hand, there was no difference between treatments in HDL and glucose levels. Expression of leptin (ob) gene transcripts in epididymal fat were significantly elevated in n-6 PUFA mice compared to ND and n-3 PUFA groups while hypothalamic ob receptor A (obRa) mRNA did not changed in response to diet regimes. Transmission and scanning electron microscopy showed different degrees in fatty changes in the liver of both PUFA groups including lipid droplet infiltration and Ito cells with over accumulated lipids. In conclusion, under PUFA dietary supplementation, the hyperlipidemic status and elevated ob expression of n-6 PUFA but not n-3 PUFA fed mice suggests altered lipid metabolism between PUFA groups and/or different endocrine involvement. Moreover, the coincidently structural changes observed in liver of this group direct us to call for further studies to investigate the anti-obesity effect and safety of these PUFA under high supplementation condition.

  3. Vitamin A-Deficient Diet Accelerated Atherogenesis in Apolipoprotein E−/− Mice and Dietary β-Carotene Prevents This Consequence

    PubMed Central

    Relevy, Noa Zolberg; Harats, Dror; Harari, Ayelet; Ben-Amotz, Ami; Bitzur, Rafael; Rühl, Ralph; Shaish, Aviv

    2015-01-01

    Vitamin A is involved in regulation of glucose concentrations, lipid metabolism, and inflammation, which are major risk factors for atherogenesis. However, the effect of vitamin A deficiency on atherogenesis has not been investigated. Therefore, the objective of the current study was to examine whether vitamin A deficiency accelerates atherogenesis in apolipoprotein E-deficient mice (apoE−/−). ApoE−/− mice were allocated into the following groups: control, fed vitamin A-containing chow diet; BC, fed chow diet fortified with Dunaliella powder containing βc isomers; VAD, fed vitamin A-deficient diet; and VAD-BC group, fed vitamin A-deficient diet fortified with a Dunaliella powder. Following 15 weeks of treatment, liver retinol concentration had decreased significantly in the VAD group to about 30% that of control group. Vitamin A-deficient diet significantly increased both plasma cholesterol concentrations and the atherosclerotic lesion area at the aortic sinus (+61%) compared to the control group. Dietary βc fortification inhibited the elevation in plasma cholesterol and retarded atherogenesis in mice fed the vitamin A-deficient diet. The results imply that dietary vitamin A deficiency should be examined as a risk factor for atherosclerosis and that dietary βc, as a sole source of retinoids, can compensate for vitamin A deficiency. PMID:25802864

  4. The effect of n-3/n-6 polyunsaturated fatty acids on acute reflux esophagitis in rats.

    PubMed

    Zhuang, Ze-Hao; Xie, Jing-Jing; Wei, Jing-Jing; Tang, Du-Peng; Yang, Li-Yong

    2016-10-04

    Polyunsaturated fatty acids (PUFAs) play various roles in inflammation. However, the effect of PUFAs in the development of reflux esophagitis (RE) is unclear. This study is to investigate the potential effect of n-3/n-6 PUFAs on acute RE in rats along with the underlying protective mechanisms. Forty Sprague Dawley rats were randomly divided into four groups (n = 10 in each group). RE model was established by pyloric clip and section ligation. Fish oil- and soybean oil-based fatty emulsion (n-3 and n-6 groups), or normal saline (control and sham operation groups) was injected intraperitoneally 2 h prior to surgery and 24 h postoperatively (2 mL/kg, respectively). The expressions of interleukin (IL)-1β, IL-8, IL-6 and myeloid differentiation primary response gene 88 (MyD88) in esophageal tissues were evaluated by Western blot and immunohistochemistry after 72 h. The malondialdehyde (MDA) and superoxide dismutase (SOD) expression in the esophageal tissues were determined to assess the oxidative stress. The mildest macroscopic/microscopic esophagitis was found in the n-3 group (P < 0.05). The expression of IL-1β, IL-8, IL-6 and MyD88 were increased in all RE groups, while the lowest and highest expression were found in n-3 and n-6 group, respectively (P < 0.05). The MDA levels were increased in all groups (P < 0.05), in an ascending trend from n-3, n-6 groups to control group. The lowest and highest SOD levels were found in the control and n-3 group, respectively (P < 0.05). n-3 PUFAs may reduce acute RE in rats, which may be due to inhibition of the MyD88-NF-kB pathway and limit oxidative damage.

  5. Transcriptomic Analysis of the Effects of a Fish Oil Enriched Diet on Murine Brains

    DTIC Science & Technology

    2014-03-14

    concerns associated with psychological bias due to the handling with variable frequency [43]. Possible bias due to the rodents’ potential favoring of... tested herein. Discussion A multitude of in vitro results suggests potential benefits of n-3 PUFA enriched diets typically supplemented by fish oil, but...101–103]. 4.3 Potential therapeutic efficacy of FD treating neurodegenarative disorders The motivation of testing fish oil as the dietary

  6. Tongue Abnormalities Are Associated to a Maternal Folic Acid Deficient Diet in Mice

    PubMed Central

    Maldonado, Estela; López-Gordillo, Yamila; Varela-Moreiras, Gregorio; Martínez-Álvarez, Concepción; Pérez-Miguelsanz, Juliana

    2017-01-01

    It is widely accepted that maternal folic acid (FA) deficiency during pregnancy is a risk factor for abnormal development. The tongue, with multiple genes working together in a coordinated cascade in time and place, has emerged as a target organ for testing the effect of FA during development. A FA-deficient (FAD) diet was administered to eight-week-old C57/BL/6J mouse females for 2–16 weeks. Pregnant dams were sacrificed at gestational day 17 (E17). The tongues and heads of 15 control and 210 experimental fetuses were studied. In the tongues, the maximum width, base width, height and area were compared with width, height and area of the head. All measurements decreased from 10% to 38% with increasing number of weeks on maternal FAD diet. Decreased head and tongue areas showed a harmonic reduction (Spearman nonparametric correlation, Rho = 0.802) with respect to weeks on a maternal FAD diet. Tongue congenital abnormalities showed a 10.9% prevalence, divided in aglossia (3.3%) and microglossia (7.6%), always accompanied by agnathia (5.6%) or micrognathia (5.2%). This is the first time that tongue alterations have been related experimentally to maternal FAD diet in mice. We propose that the tongue should be included in the list of FA-sensitive birth defect organs due to its relevance in several key food and nutrition processes. PMID:29283374

  7. Tongue Abnormalities Are Associated to a Maternal Folic Acid Deficient Diet in Mice.

    PubMed

    Maldonado, Estela; López-Gordillo, Yamila; Partearroyo, Teresa; Varela-Moreiras, Gregorio; Martínez-Álvarez, Concepción; Pérez-Miguelsanz, Juliana

    2017-12-28

    It is widely accepted that maternal folic acid (FA) deficiency during pregnancy is a risk factor for abnormal development. The tongue, with multiple genes working together in a coordinated cascade in time and place, has emerged as a target organ for testing the effect of FA during development. A FA-deficient (FAD) diet was administered to eight-week-old C57/BL/6J mouse females for 2-16 weeks. Pregnant dams were sacrificed at gestational day 17 (E17). The tongues and heads of 15 control and 210 experimental fetuses were studied. In the tongues, the maximum width, base width, height and area were compared with width, height and area of the head. All measurements decreased from 10% to 38% with increasing number of weeks on maternal FAD diet. Decreased head and tongue areas showed a harmonic reduction (Spearman nonparametric correlation, Rho = 0.802) with respect to weeks on a maternal FAD diet. Tongue congenital abnormalities showed a 10.9% prevalence, divided in aglossia (3.3%) and microglossia (7.6%), always accompanied by agnathia (5.6%) or micrognathia (5.2%). This is the first time that tongue alterations have been related experimentally to maternal FAD diet in mice. We propose that the tongue should be included in the list of FA-sensitive birth defect organs due to its relevance in several key food and nutrition processes.

  8. Maternal intake of seafood and supplementary long chain n-3 poly-unsaturated fatty acids and preterm delivery.

    PubMed

    Brantsæter, Anne Lise; Englund-Ögge, Linda; Haugen, Margareta; Birgisdottir, Bryndis Eva; Knutsen, Helle Katrine; Sengpiel, Verena; Myhre, Ronny; Alexander, Jan; Nilsen, Roy M; Jacobsson, Bo; Meltzer, Helle Margrete

    2017-01-19

    Preterm delivery increases the risk of neonatal morbidity and mortality. Studies suggest that maternal diet may affect the prevalence of preterm delivery. The aim of this study was to assess whether maternal intakes of seafood and marine long chain n-3 polyunsaturated fatty acids (LCn-3PUFA) from supplements were associated with preterm delivery. The study population included 67,007 women from the Norwegian Mother and Child Cohort Study. Maternal food and supplement intakes were assessed by a validated self-reported food frequency questionnaire in mid-pregnancy. Information about gestational duration was obtained from the Medical Birth Registry of Norway. We used Cox regression to estimate hazard ratios (HR) with 95% confidence intervals (CI) for associations between total seafood, lean fish, fatty fish, and LCn-3PUFA intakes and preterm delivery. Preterm was defined as any onset of delivery before gestational week 37, and as spontaneous or iatrogenic deliveries and as preterm delivery at early, moderate, and late preterm gestations. Lean fish constituted 56%, fatty fish 34% and shellfish 10% of seafood intake. Any intake of seafood above no/rare intake (>5 g/d) was associated with lower prevalence of preterm delivery. Adjusted HRs were 0.76 (CI: 0.66, 0.88) for 1-2 servings/week (20-40 g/d), 0.72 (CI: 0.62, 0.83) for 2-3 servings/week (40-60 g/d), and 0.72 (CI: 0.61, 0.85) for ≥3 servings/week (>60 g/d), p-trend <0.001. The association was seen for lean fish (p-trend: 0.005) but not for fatty fish (p-trend: 0.411). The intake of supplementary LCn-3PUFA was associated only with lower prevalence of early preterm delivery (before 32 gestational weeks), while increasing intake of LCn-3PUFA from food was associated with lower prevalence of overall preterm delivery (p-trend: 0.002). Any seafood intake above no/rare was associated with lower prevalence of both spontaneous and iatrogenic preterm delivery, and with lower prevalence of late preterm delivery. Any

  9. Acetaminophen-induced liver injury is attenuated in transgenic fat-1 mice endogenously synthesizing long-chain n-3 fatty acids.

    PubMed

    Feng, Ruibing; Wang, Yang; Liu, Conghui; Yan, Chunyan; Zhang, Hang; Su, Huanxing; Kang, Jing X; Shang, Chang-Zhen; Wan, Jian-Bo

    2018-04-18

    Acetaminophen (APAP) overdose-induced hepatotoxicity is the most commonly cause of drug-induced liver failure characterized by oxidative stress, mitochondrial dysfunction, and cell damage. Therapeutic efficacy of omega-3 polyunsaturated fatty acids (n-3 PUFA) in several models of liver disease is well documented. However, the impacts of n-3 PUFA on APAP hepatotoxicity are not adequately addressed. In this study, the fat-1 transgenic mice that synthesize endogenous n-3 PUFA and wild type (WT) littermates were injected intraperitoneally with APAP at the dose of 400 mg/kg to induce liver injury, and euthanized at 0 h, 2 h, 4 h and 6 h post APAP injection for sampling. APAP overdose caused severe liver injury in WT mice as indicated by serum parameters, histopathological changes and hepatocyte apoptosis, which were remarkably ameliorated in fat-1 mice. These protective effects of n-3 PUFA were associated with regulation of the prolonged JNK activation via inhibition of apoptosis signal-regulating kinase 1 (ASK1)/mitogen-activated protein kinase kinase 4 (MKK4) pathway. Additionally, the augment of endogenous n-3 PUFA reduced nuclear factor kappa B (NF-κB) - mediated inflammation response induced by APAP treatment in the liver. These findings indicate that n-3 PUFA has potent protective effects against APAP-induced acute liver injury, suggesting that n-3 dietary supplement with n-3 PUFA may be a potential therapeutic strategy for the treatment of hepatotoxicity induced by APAP overdose. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Distinct effects of dietary ALA, EPA and DHA on rat adipose oxylipins vary by depot location and sex.

    PubMed

    Mendonça, Anne M; Cayer, Lucien G J; Pauls, Samantha D; Winter, Tanja; Leng, Shan; Taylor, Carla G; Zahradka, Peter; Aukema, Harold M

    2018-02-01

    Dietary EPA and DHA given together alter oxylipins in adipose tissue. To compare the separate effects of individual dietary n-3 PUFA on oxylipins in different adipose depots (gonadal, mesenteric, perirenal, subcutaneous) in males and females, rats were provided diets containing higher levels of α-linolenic acid (ALA), EPA or DHA. Each n-3 PUFA enhanced its respective oxylipins the most, while effects on other n-3 oxylipins varied. For example: in perirenal and subcutaneous depots, more DHA oxylipins were higher with dietary ALA than with EPA; dietary EPA uniquely decreased 14-hydroxy-docosahexaenoic acid, in contrast to increasing many other DHA oxylipins. The n-3 PUFAs also reduced oxylipins from n-6 PUFAs in order of effectiveness: DHA > EPA > ALA. Diet by sex interactions in all depots except the perirenal depot resulted in higher oxylipins in males given DHA, and higher oxylipins in females given the other diets. Diet and sex effects on oxylipins did not necessarily reflect effects on either their tissue phospholipid or neutral lipid PUFA precursors. These varying diet and sex effects on oxylipins in the different adipose sites indicate that they may have distinct effects on adipose function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Various dietary fats differentially change the gene expression of neuropeptides involved in body weight regulation in rats.

    PubMed

    Dziedzic, B; Szemraj, J; Bartkowiak, J; Walczewska, A

    2007-05-01

    Various high-fat diets are obesogenic but not to the same extent. The aim of the present study was to investigate the effects of saturated fat n-6 and n-3 polyunsaturated fatty acids (PUFAs) on the central neuropeptidergic system in adult rats. Using reverse transcriptase-polymerase chain reaction and in situ hybridisation, we evaluated the net effect of feeding in these fats, comparing the effects of a high- to low-fat diet, and the diversity of the effects of these fats in the same amount within the diet. We also determined plasma lipids, glucose, insulin and leptin concentrations. Six-week feeding with high-saturated fat evoked hyperpahagia and the largest weight gain compared to both high-PUFA diets. Rats fed high-saturated fat were found to have decreased neuropeptide Y (NPY) mRNA expression in the arcuate nucleus (ARC) and the compact zone of the dorsomedial nucleus (DMHc), unchanged pro-opiomelanocortin (POMC), galanin-like peptide (GALP) mRNA expression in the ARC, as well as melanin-concentrating hormone (MCH) and prepro-orexin (preORX) mRNA expression in the lateral hypothalamus, compared to low-saturated fed rats. By contrast, feeding with both high-PUFA diets increased POMC and GALP mRNA expression in the ARC compared to the corresponding low-fat diet and the high-saturated fat diet. Furthermore, feeding with both low-PUFA diets reduced NPY mRNA expression compared to the low-saturated fat diet exclusively in the DMHc. Uniquely, the high n-3 PUFA feeding halved MCH and preORX mRNA expression in the lateral hypothalamus compared to the other high-fat and low n-3 PUFA diets. In rats fed three high-fat diets, plasma insulin and leptin concentrations were significantly increased and the type of fat had no effect on these hormone levels. Rats fed high-saturated fat had both hyperglycaemia and hypertriacylglycerolemia and rats fed high n-3 PUFA only had hyperglycaemia. The present study demonstrates that various forms of dietary fat differentially change the

  12. Fish Oil and Microalga Omega-3 as Dietary Supplements: A Comparative Study on Cardiovascular Risk Factors in High-Fat Fed Rats.

    PubMed

    Haimeur, Adil; Mimouni, Virginie; Ulmann, Lionel; Martineau, Anne-Sophie; Messaouri, Hafida; Pineau-Vincent, Fabienne; Tremblin, Gérard; Meskini, Nadia

    2016-09-01

    Dietary supplementation with marine omega-3 polyunsaturated fatty acids (n-3 PUFA) can have beneficial effects on a number of risk factors for cardiovascular disease (CVD). We compared the effects of two n-3 PUFA rich food supplements (freeze-dried Odontella aurita and fish oil) on risk factors for CVD. Male rats were randomly divided into four groups of six animals each and fed with the following diets: control group (C) received a standard diet containing 7 % lipids; second group (HF high fat) was fed with a high-fat diet containing 40 % lipids; third group (HFFO high fat+fish oil) was fed with the high-fat diet supplemented with 0.5 % fish oil; and fourth group (HFOA high fat+O. aurita) received the high-fat diet supplemented with 12 % of freeze-dried O. aurita. After 8 weeks rats fed with the high-fat diet supplemented with O. aurita displayed a significantly lower bodyweight than those in the other groups. Both the microalga and the fish oil significantly reduced insulinemia and serum lipid levels. O. aurita was more effective than the fish oil in reducing hepatic triacyglycerol levels and in preventing high-fat diet-induced steatosis. O. aurita and fish oil also reduced platelet aggregation and oxidative status induced by high fat intake. After an OA supplementation, the adipocytes in the HFOA group were smaller than those in the HF group. Freeze-dried O. aurita showed similar or even greater biological effects than the fish oil. This could be explained by a potential effect of the n-3 PUFA but also other bioactive compounds of the microalgae.

  13. Increased F3-Isoprostanes in the Canadian Inuit Population Could Be Cardioprotective by Limiting F2-Isoprostane Production.

    PubMed

    Alkazemi, Dalal; Jackson, Robert L; Chan, Hing Man; Kubow, Stan

    2016-09-01

    F3-isoprostanes (F3-IsoPs), derived from peroxidation of eicosapentaenoic acid (C20:5n-3), could be cardioprotective by limiting production of F2-isoprostanes (F2-IsoPs), a cardiovascular disease risk factor. The objective of the study was to determine whether the n-3-polyunsaturated (PUFA)-rich Inuit diet is associated with a lower plasma ratio of F2-IsoPs to F3-IsoPs. This was a cross-sectional observational study. The study was conducted in 36 Canadian Arctic Inuit communities. Participants included a random subset (n = 233) of Inuit adults taken from a population-based survey. Plasma F2-IsoPs and F3-IsoPs, cardiometabolic risk factors (blood lipids, C-reactive protein, blood pressure, fasting glucose) and markers of dietary exposure (erythrocyte n-3 and n-6 PUFA, blood levels of Se, mercury, polychlorinated biphenyls) were measured. Inuit aged 40 years old and older vs younger Inuit showed higher concentrations of plasma F3-IsoPs and erythrocyte n-3 PUFA and lower plasma F2-IsoPs concentrations despite having higher blood lipids, fasting glucose, systolic blood pressure, and percentage body fat. Plasma F3-IsoPs were not associated with any cardiometabolic measures. When subjects were categorized into tertiles according to total n-3 PUFA erythrocyte concentrations, F3-IsoPs increased with increasing tertiles, whereas the F2-IsoP to F3-IsoP ratio was lowest at the highest n-3 tertile. The F2-IsoP to F3-IsoP ratio was significantly predicted by C20:5n-3 (β= -.365, P = .002); C20:4n-6:C20:5n-3 (β = .056, P = .006), blood mercury (β = -.812, P =.015), blood Se (β = -1.95, P = .015), and smoking (β = .745, P = .025). Plasma F3-IsoPs were not associated with cardiometabolic risk factors previously seen with F2-IsoPs. Higher n-3 fatty acid status was associated with lower plasma F2-IsoPs and higher plasma F3-IsoPs, which provides partial explanation to the cardioprotective effects of the n-3 PUFA-rich Inuit diet.

  14. Linking diet to acne metabolomics, inflammation, and comedogenesis: an update.

    PubMed

    Melnik, Bodo C

    2015-01-01

    Acne vulgaris, an epidemic inflammatory skin disease of adolescence, is closely related to Western diet. Three major food classes that promote acne are: 1) hyperglycemic carbohydrates, 2) milk and dairy products, 3) saturated fats including trans-fats and deficient ω-3 polyunsaturated fatty acids (PUFAs). Diet-induced insulin/insulin-like growth factor (IGF-1)-signaling is superimposed on elevated IGF-1 levels during puberty, thereby unmasking the impact of aberrant nutrigenomics on sebaceous gland homeostasis. Western diet provides abundant branched-chain amino acids (BCAAs), glutamine, and palmitic acid. Insulin and IGF-1 suppress the activity of the metabolic transcription factor forkhead box O1 (FoxO1). Insulin, IGF-1, BCAAs, glutamine, and palmitate activate the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), the key regulator of anabolism and lipogenesis. FoxO1 is a negative coregulator of androgen receptor, peroxisome proliferator-activated receptor-γ (PPARγ), liver X receptor-α, and sterol response element binding protein-1c (SREBP-1c), crucial transcription factors of sebaceous lipogenesis. mTORC1 stimulates the expression of PPARγ and SREBP-1c, promoting sebum production. SREBP-1c upregulates stearoyl-CoA- and Δ6-desaturase, enhancing the proportion of monounsaturated fatty acids in sebum triglycerides. Diet-mediated aberrations in sebum quantity (hyperseborrhea) and composition (dysseborrhea) promote Propionibacterium acnes overgrowth and biofilm formation with overexpression of the virulence factor triglyceride lipase increasing follicular levels of free palmitate and oleate. Free palmitate functions as a "danger signal," stimulating toll-like receptor-2-mediated inflammasome activation with interleukin-1β release, Th17 differentiation, and interleukin-17-mediated keratinocyte proliferation. Oleate stimulates P. acnes adhesion, keratinocyte proliferation, and comedogenesis via interleukin-1α release. Thus, diet

  15. Linking diet to acne metabolomics, inflammation, and comedogenesis: an update

    PubMed Central

    Melnik, Bodo C

    2015-01-01

    Acne vulgaris, an epidemic inflammatory skin disease of adolescence, is closely related to Western diet. Three major food classes that promote acne are: 1) hyperglycemic carbohydrates, 2) milk and dairy products, 3) saturated fats including trans-fats and deficient ω-3 polyunsaturated fatty acids (PUFAs). Diet-induced insulin/insulin-like growth factor (IGF-1)-signaling is superimposed on elevated IGF-1 levels during puberty, thereby unmasking the impact of aberrant nutrigenomics on sebaceous gland homeostasis. Western diet provides abundant branched-chain amino acids (BCAAs), glutamine, and palmitic acid. Insulin and IGF-1 suppress the activity of the metabolic transcription factor forkhead box O1 (FoxO1). Insulin, IGF-1, BCAAs, glutamine, and palmitate activate the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), the key regulator of anabolism and lipogenesis. FoxO1 is a negative coregulator of androgen receptor, peroxisome proliferator-activated receptor-γ (PPARγ), liver X receptor-α, and sterol response element binding protein-1c (SREBP-1c), crucial transcription factors of sebaceous lipogenesis. mTORC1 stimulates the expression of PPARγ and SREBP-1c, promoting sebum production. SREBP-1c upregulates stearoyl-CoA- and Δ6-desaturase, enhancing the proportion of monounsaturated fatty acids in sebum triglycerides. Diet-mediated aberrations in sebum quantity (hyperseborrhea) and composition (dysseborrhea) promote Propionibacterium acnes overgrowth and biofilm formation with overexpression of the virulence factor triglyceride lipase increasing follicular levels of free palmitate and oleate. Free palmitate functions as a “danger signal,” stimulating toll-like receptor-2-mediated inflammasome activation with interleukin-1β release, Th17 differentiation, and interleukin-17-mediated keratinocyte proliferation. Oleate stimulates P. acnes adhesion, keratinocyte proliferation, and comedogenesis via interleukin-1α release. Thus, diet

  16. Food sources and intake of n-6 and n-3 fatty acids in low-income countries with emphasis on infants, young children (6-24 months), and pregnant and lactating women.

    PubMed

    Michaelsen, Kim F; Dewey, Kathryn G; Perez-Exposito, Ana B; Nurhasan, Mulia; Lauritzen, Lotte; Roos, Nanna

    2011-04-01

    With increasing interest in the potential effects of n-6 and n-3 fatty acids in early life, there is a need for data on the dietary intake of polyunsaturated fatty acids (PUFA) in low-income countries. This review compiles information on the content in breast milk and in foods that are important in the diets of low-income countries from the few studies available. We also estimate the availability of fat and fatty acids in 13 low-income and middle-income countries based on national food balance sheets from the United Nations' Food and Agriculture Organization Statistical Database (FOASTAT). Breast milk docosahexaenoic acid content is very low in populations living mainly on a plant-based diet, but higher in fish-eating countries. Per capita supply of fat and n-3 fatty acids increases markedly with increasing gross domestic product (GDP). In most of the 13 countries, 70-80% of the supply of PUFA comes from cereals and vegetable oils, some of which have very low α-linolenic acid (ALA) content. The total n-3 fatty acid supply is below or close to the lower end of the recommended intake range [0.4%E (percentage of energy supply)] for infants and young children, and below the minimum recommended level (0.5%E) for pregnant and lactating women in the nine countries with the lowest GDP. Fish is important as a source of long-chain n-3 fatty acids, but intake is low in many countries. The supply of n-3 fatty acids can be increased by using vegetable oils with higher ALA content (e.g. soybean or rapeseed oil) and by increasing fish production (e.g. through fish farming). © 2011 Blackwell Publishing Ltd.

  17. Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat.

    PubMed

    El Khassawna, Thaqif; Böcker, Wolfgang; Govindarajan, Parameswari; Schliefke, Nathalie; Hürter, Britta; Kampschulte, Marian; Schlewitz, Gudrun; Alt, Volker; Lips, Katrin Susanne; Faulenbach, Miriam; Möllmann, Henriette; Zahner, Daniel; Dürselen, Lutz; Ignatius, Anita; Bauer, Natali; Wenisch, Sabine; Langheinrich, Alexander Claus; Schnettler, Reinhard; Heiss, Christian

    2013-01-01

    Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus). 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX) and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8) were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs and growth factors

  18. Effects of Multi-Deficiencies-Diet on Bone Parameters of Peripheral Bone in Ovariectomized Mature Rat

    PubMed Central

    El Khassawna, Thaqif; Böcker, Wolfgang; Govindarajan, Parameswari; Schliefke, Nathalie; Hürter, Britta; Kampschulte, Marian; Schlewitz, Gudrun; Alt, Volker; Lips, Katrin Susanne; Faulenbach, Miriam; Möllmann, Henriette; Zahner, Daniel; Dürselen, Lutz; Ignatius, Anita; Bauer, Natali; Wenisch, Sabine; Langheinrich, Alexander Claus; Schnettler, Reinhard; Heiss, Christian

    2013-01-01

    Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus). 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX) and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8) were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs and growth factors

  19. Low breast milk levels of long-chain n-3 fatty acids in allergic women, despite frequent fish intake.

    PubMed

    Johansson, S; Wold, A E; Sandberg, A-S

    2011-04-01

    Long-chain n-3 polyunsaturated fatty acids (PUFAs) have immune regulating and anti-inflammatory effects. However, their role in allergic disease is unclear. Allergic diseases are immunologically heterogeneous, and we hypothesized that n-3 fatty acid composition in serum and breast milk may vary according to clinical manifestations. Further, animal studies have shown reduction of serum-PUFA levels during allergic inflammation. To investigate fatty acid composition in breast milk and serum from women with different atopic disease manifestations. Secondly, to determine whether low PUFA levels reflected insufficient intakes. Fatty acids were analysed in breast milk and serum of women with atopic eczema and respiratory allergy (n=16), only respiratory allergy (n=7), as well as healthy women (n=22). Dietary intake of foods expected to affect long-chain n-3 PUFA levels were estimated by food-frequency questionnaire. The fatty acid pattern was related to diagnostic group and intake of relevant food items using a multivariate pattern recognition method (partial least squares projections to latent structures and discriminant analysis). Results Women with a combination of eczema and respiratory allergy had lower breast milk levels of several PUFAs (arachidonic acid, eicosapentaenoic acid, EPA, docosahexaenoic acid, DHA, and docosapentaenoic acid, DPA), and a lower ratio of long-chain n-3 PUFAs/n-6 PUFAs. Their PUFA levels differed not only from that of healthy women, but also from that of women with only respiratory allergy. The latter had a fatty acid pattern similar to that of healthy women. Despite low EPA, DHA and DPA levels women with eczema and respiratory allergy consumed no less fish than did healthy women. Our data suggest that reduced levels of long-chain n-3 fatty acids in serum and breast milk characterize women with extensive allergic disease including eczema, and are not related to low fish intake. Consumption of PUFAs during the allergic process may explain

  20. Dietary vitamin D3 deficiency exacerbates sinonasal inflammation and alters local 25(OH)D3 metabolism.

    PubMed

    Mulligan, Jennifer K; Pasquini, Whitney N; Carroll, William W; Williamson, Tucker; Reaves, Nicholas; Patel, Kunal J; Mappus, Elliott; Schlosser, Rodney J; Atkinson, Carl

    2017-01-01

    Patients with chronic rhinosinusitis with nasal polyps (CRSwNP) have been shown to be vitamin D3 (VD3) deficient, which is associated with more severe disease and increased polyp size. To gain mechanistic insights into these observational studies, we examined the impact of VD3 deficiency on inflammation and VD3 metabolism in an Aspergillus fumigatus (Af) mouse model of chronic rhinosinusitis (Af-CRS). Balb/c mice were fed control or VD3 deficient diet for 4 weeks. Mice were then sensitized with intraperitoneal Af, and one week later given Af intranasally every three days for four weeks while being maintained on control or VD3 deficient diet. Airway function, sinonasal immune cell infiltrate and sinonasal VD3 metabolism profiles were then examined. Mice with VD3 deficiency had increased Penh and sRaw values as compared to controls as well as exacerbated changes in sRaw when coupled with Af-CRS. As compared to controls, VD3 deficient and Af-CRS mice had reduced sinonasal 1α-hydroxylase and the active VD3 metabolite, 1,25(OH)2D3. Differential analysis of nasal lavage samples showed that VD3 deficiency alone and in combination with Af-CRS profoundly upregulated eosinophil, neutrophil and lymphocyte numbers. VD3 deficiency exacerbated increases in monocyte-derived dendritic cell (DC) associated with Af-CRS. Conversely, T-regulatory cells were decreased in both Af-CRS mice and VD3 deficient mice, though coupling VD3 deficiency with Af-CRS did not exacerbate CD4 or T-regulatory cells numbers. Lastly, VD3 deficiency had a modifying or exacerbating impact on nasal lavage levels of IFN-γ, IL-6, IL-10 and TNF-α, but had no impact on IL-17A. VD3 deficiency causes changes in sinonasal immunity, which in many ways mirrors the changes observed in Af-CRS mice, while selectively exacerbating inflammation. Furthermore, both VD3 deficiency and Af-CRS were associated with altered sinonasal VD3 metabolism causing reductions in local levels of the active VD3 metabolite, 1,25(OH)2D3

  1. Polyunsaturated fatty acids (PUFAs) for children with specific learning disorders.

    PubMed

    Tan, May Loong; Ho, Jacqueline J; Teh, Keng Hwang

    2016-09-28

    About 5% of school children have a specific learning disorder, defined as unexpected failure to acquire adequate abilities in reading, writing or mathematics that is not a result of reduced intellectual ability, inadequate teaching or social deprivation. Of these events, 80% are reading disorders. Polyunsaturated fatty acids (PUFAs), in particular, omega-3 and omega-6 fatty acids, which normally are abundant in the brain and in the retina, are important for learning. Some children with specific learning disorders have been found to be deficient in these PUFAs, and it is argued that supplementation of PUFAs may help these children improve their learning abilities. 1. To assess effects on learning outcomes of supplementation of polyunsaturated fatty acids (PUFAs) for children with specific learning disorders.2. To determine whether adverse effects of supplementation of PUFAs are reported in these children. In November 2015, we searched CENTRAL, Ovid MEDLINE, Embase, PsycINFO, 10 other databases and two trials registers. We also searched the reference lists of relevant articles. Randomised controlled trials (RCTs) or quasi-RCTs comparing PUFAs with placebo or no treatment in children younger than 18 years with specific learning disabilities, as diagnosed in accordance with the fifth (or earlier) edition of theDiagnostic and Statistical Manual of Mental Disorders (DSM-5), or the 10th (or earlier) revision of the International Classification of Diseases (ICD-10) or equivalent criteria. We included children with coexisting developmental disorders such as attention deficit hyperactivity disorder (ADHD) or autism. Two review authors (MLT and KHT) independently screened the titles and abstracts of articles identified by the search and eliminated all studies that did not meet the inclusion criteria. We contacted study authors to ask for missing information and clarification, when needed. We used the GRADE approach to assess the quality of evidence. Two small studies

  2. Leptin Deficiency and Diet-Induced Obesity Reduce Hypothalamic Kisspeptin Expression in Mice

    PubMed Central

    Howell, Christopher S.; Roa, Juan; Augustine, Rachael A.; Grattan, David R.; Anderson, Greg M.

    2011-01-01

    The hormone leptin modulates a diverse range of biological functions, including energy homeostasis and reproduction. Leptin promotes GnRH function via an indirect action on forebrain neurons. We tested whether leptin deficiency or leptin resistance due to a high-fat diet (HFD) can regulate the potent reproductive neuropeptide kisspeptin. In mice with normalized levels of estradiol, leptin deficiency markedly reduced kisspeptin gene expression, particularly in the arcuate nucleus (ARC), and kisspeptin immunoreactive cell numbers in the rostral periventricular region of the third ventricle (RP3V). The HFD model was used to determine the effects of diet-induced obesity and central leptin resistance on kisspeptin cell number and gene expression. DBA/2J mice, which are prone to HFD-induced infertility, showed a marked decrease in kisspeptin expression in both the RP3V and ARC and cell numbers in the RP3V after HFD. This is the first evidence that kisspeptin can be regulated by HFD and/or increased body weight. Next we demonstrated that leptin does not signal (via signal transducer and activator of transcription 3 or 5, or mammalian target of rapamycin) directly on kisspeptin-expressing neurons in the RP3V. Lastly, in leptin receptor-deficient mice, neither GnRH nor kisspeptin neurons were activated during a preovulatory-like GnRH/LH surge induction regime, indicating that leptin's actions on GnRH may be upstream of kisspeptin neurons. These data provide evidence that leptin's effects on reproductive function are regulated by kisspeptin neurons in both the ARC and RP3V, although in the latter site the effects are likely to be indirect. PMID:21325051

  3. Leptin deficiency and diet-induced obesity reduce hypothalamic kisspeptin expression in mice.

    PubMed

    Quennell, Janette H; Howell, Christopher S; Roa, Juan; Augustine, Rachael A; Grattan, David R; Anderson, Greg M

    2011-04-01

    The hormone leptin modulates a diverse range of biological functions, including energy homeostasis and reproduction. Leptin promotes GnRH function via an indirect action on forebrain neurons. We tested whether leptin deficiency or leptin resistance due to a high-fat diet (HFD) can regulate the potent reproductive neuropeptide kisspeptin. In mice with normalized levels of estradiol, leptin deficiency markedly reduced kisspeptin gene expression, particularly in the arcuate nucleus (ARC), and kisspeptin immunoreactive cell numbers in the rostral periventricular region of the third ventricle (RP3V). The HFD model was used to determine the effects of diet-induced obesity and central leptin resistance on kisspeptin cell number and gene expression. DBA/2J mice, which are prone to HFD-induced infertility, showed a marked decrease in kisspeptin expression in both the RP3V and ARC and cell numbers in the RP3V after HFD. This is the first evidence that kisspeptin can be regulated by HFD and/or increased body weight. Next we demonstrated that leptin does not signal (via signal transducer and activator of transcription 3 or 5, or mammalian target of rapamycin) directly on kisspeptin-expressing neurons in the RP3V. Lastly, in leptin receptor-deficient mice, neither GnRH nor kisspeptin neurons were activated during a preovulatory-like GnRH/LH surge induction regime, indicating that leptin's actions on GnRH may be upstream of kisspeptin neurons. These data provide evidence that leptin's effects on reproductive function are regulated by kisspeptin neurons in both the ARC and RP3V, although in the latter site the effects are likely to be indirect.

  4. Repeated whiskey binges promote liver injury in rats fed a choline-deficient diet.

    PubMed

    Nieto, Natalia; Rojkind, Marcos

    2007-02-01

    Alcoholic liver disease is associated with nutritional deficiency and it may aggravate within the context of fatty liver. We investigated the relationship between alcohol intake (whiskey binge drinking) and a choline-deficient diet (CD) and assessed whether stellate cells could contribute to liver injury in this model. Rats fed the CD diet plus whiskey showed increased liver damage compared to rats fed the CD diet, as demonstrated by H&E staining, elevated transaminases, steatosis, TNF-alpha levels, enhanced CYP2E1 activity, impaired antioxidant defense, elevated lipid peroxidation, and protein carbonyls. The combined treatment triggered an apoptotic response as determined by elevated Bax, caspase-3 activity, cytochrome-c release, and decreased Bcl-2 and Bcl-XL. Stellate cells were activated as increased expression of alpha-Sma was observed over that by the CD diet alone. The combined treatment shifted extracellular matrix remodeling towards a pro-fibrogenic response due to up-regulation of collagen I, TIMP1, and Hsp47 proteins, along with down-regulation of MMP13, MMP2, and MMP9 expression, proteases which degrade collagen I. These events were accompanied by increased phosphorylation of p38, a kinase that elevates collagen I. Repeated alcohol binges in the context of mild steatosis may promote activation of stellate cells and contribute to liver injury.

  5. Lipid oxidation of stored eggs enriched with very long chain n-3 fatty acids, as affected by dietary olive leaves (Olea europea L.) or α-tocopheryl acetate supplementation.

    PubMed

    Botsoglou, E; Govaris, A; Fletouris, D; Botsoglou, N

    2012-09-15

    The antioxidant potential of dietary olive leaves or α-tocopheryl acetate supplementation on lipid oxidation of refrigerated stored hen eggs enriched with very long-chain n-3 fatty acids, was investigated. Ninety-six brown Lohmann laying hens, were equally assigned into three groups. Hens within the control group were given a typical diet containing 3% fish oil, whereas other groups were given the same diet further supplemented with 10 g ground olive leaves/kg feed or 200mg α-tocopheryl acetate/kg feed. Results showed that α-tocopheryl acetate or olive leaves supplementation had no significant effect on the fatty acid composition and malondialdehyde (MDA) levels of fresh eggs but reduced their lipid hydroperoxide levels compared to controls. Storage for 60 d decreased the proportions of polyunsaturated fatty acids (PUFAs) but increased those of monounsaturated fatty acids (MUFAs) in eggs from the control group, while had no effect on the fatty acid composition of the eggs from the other two groups, which showed decreased levels of lipid hydroperoxides and MDA. Therefore, the very long chain n-3 PUFAs in eggs were protected from undergoing deterioration partly by olive leaves supplementation and totally by α-tocopheryl acetate supplementation. In addition, incorporating tocopherols into eggs might also provide a source of tocopherols for the human diet. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Impact of Diet-Induced Obesity and Testosterone Deficiency on the Cardiovascular System: A Novel Rodent Model Representative of Males with Testosterone-Deficient Metabolic Syndrome (TDMetS)

    PubMed Central

    Donner, Daniel G.; Elliott, Grace E.; Beck, Belinda R.; Bulmer, Andrew C.; Du Toit, Eugene F.

    2015-01-01

    Introduction Current models of obesity utilise normogonadic animals and neglect the strong relationships between obesity-associated metabolic syndrome (MetS) and male testosterone deficiency (TD). The joint presentation of these conditions has complex implications for the cardiovascular system that are not well understood. We have characterised and investigated three models in male rats: one of diet-induced obesity with the MetS; a second using orchiectomised rats mimicking TD; and a third combining MetS with TD which we propose is representative of males with testosterone deficiency and the metabolic syndrome (TDMetS). Methods Male Wistar rats (n = 24) were randomly assigned to two groups and provided ad libitum access to normal rat chow (CTRL) or a high fat/high sugar/low protein “obesogenic” diet (OGD) for 28 weeks (n = 12/group). These groups were further sub-divided into sham-operated or orchiectomised (ORX) animals to mimic hypogonadism, with and without diet-induced obesity (n = 6/group). Serum lipids, glucose, insulin and sex hormone concentrations were determined. Body composition, cardiovascular structure and function; and myocardial tolerance to ischemia-reperfusion were assessed. Results OGD-fed animals had 72% greater fat mass; 2.4-fold greater serum cholesterol; 2.3-fold greater serum triglycerides and 3-fold greater fasting glucose (indicative of diabetes mellitus) compared to CTRLs (all p<0.05). The ORX animals had reduced serum testosterone and left ventricle mass (p<0.05). In addition to the combined differences observed in each of the isolated models, the OGD, ORX and OGD+ORX models each had greater CK-MB levels following in vivo cardiac ischemia-reperfusion insult compared to CTRLs (p<0.05). Conclusion Our findings provide evidence to support that the MetS and TD independently impair myocardial tolerance to ischemia-reperfusion. The combined OGD+ORX phenotype described in this study is a novel animal model with associated cardiovascular risk

  7. Dietary omega-3 polyunsaturated fatty acids induce plasminogen activator activity and DNA damage in rabbit spermatozoa.

    PubMed

    Kokoli, A N; Lavrentiadou, S N; Zervos, I A; Tsantarliotou, M P; Georgiadis, M P; Nikolaidis, E A; Botsoglou, N; Boscos, C M; Taitzoglou, I A

    2017-12-01

    The aim of this study was to determine the effect(s) of dietary omega-3 polyunsaturated fatty acids (ω-3 PUFA) on rabbit semen. Adult rabbit bucks were assigned to two groups that were given two diets, a standard diet (control) and a diet supplemented with ω-3 PUFA. Sperm samples were collected from all bucks with the use of an artificial vagina in 20-day intervals, for a total period of 120 days. The enrichment of membranes in ω-3 PUFA was manifested by the elevation of the 22:5 ω-3 (docosapentaenoic acid [DPA]) levels within 40 days. This increase in DPA content did not affect semen characteristics (i.e., concentration, motility and viability). However, it was associated with the induction of lipid peroxidation in spermatozoa, as determined on the basis of the malondialdehyde content. Lipid peroxidation was associated with DNA fragmentation in ω-3 PUFA-enriched spermatozoa and a concomitant increase in plasminogen activator (PA) activity. The effects of ω-3 PUFA on sperm cells were evident within 40 days of ω-3 PUFA dietary intake and exhibited peack values on day 120. Our findings suggest that an ω-3 PUFA-rich diet may not affect semen characteristics; however, it may have a negative impact on the oxidative status and DNA integrity of the spermatozoa, which was associated with an induction of PAs activity. © 2017 Blackwell Verlag GmbH.

  8. Mead acid (20:3n-9) and n-3 polyunsaturated fatty acids are not associated with risk of posterior longitudinal ligament ossification: results of a case-control study.

    PubMed

    Hamazaki, Kei; Kawaguchi, Yoshiharu; Nakano, Masato; Yasuda, Taketoshi; Seki, Shoji; Hori, Takeshi; Hamazaki, Tomohito; Kimura, Tomoatsu

    2015-05-01

    Ossification of the posterior longitudinal ligament (OPLL) involves the replacement of ligamentous tissue with ectopic bone. Although genetics and heritability appear to be involved in the development of OPLL, its pathogenesis remains to be elucidated. Given previous findings that 5,8,11-eicosatrienoic acid [20:3n-9, Mead acid (MA)] has depressive effects on osteoblastic activity and anti-angiogenic effects, and that n-3 polyunsaturated fatty acids (PUFAs) have a preventive effect on heterotopic ossification, we hypothesized that both fatty acids would be involved in OPLL development. To examine the biological significance of these and other fatty acids in OPLL, we conducted this case-control study involving 106 patients with cervical OPLL and 109 age matched controls. Fatty acid composition was determined from plasma samples by gas chromatography. Associations between fatty acid levels and incident OPLL were evaluated by logistic regression. Contrary to our expectations, we found no significant differences between patients and controls in the levels of MA or n-3 PUFAs (e.g., eicosapentaenoic acid and docosahexaenoic acid). Logistic regression analysis did not reveal any associations with OPLL risk for MA or n-3 PUFAs. In conclusion, no potential role was found for MA or n-3 PUFAs in ectopic bone formation in the spinal canal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A Paleolithic-type diet results in iodine deficiency: a 2-year randomized trial in postmenopausal obese women.

    PubMed

    Manousou, S; Stål, M; Larsson, C; Mellberg, C; Lindahl, B; Eggertsen, R; Hulthén, L; Olsson, T; Ryberg, M; Sandberg, S; Nyström, H F

    2018-01-01

    Different diets are used for weight loss. A Paleolithic-type diet (PD) has beneficial metabolic effects, but two of the largest iodine sources, table salt and dairy products, are excluded. The objectives of this study were to compare 24-h urinary iodine concentration (24-UIC) in subjects on PD with 24-UIC in subjects on a diet according to the Nordic Nutrition Recommendations (NNR) and to study if PD results in a higher risk of developing iodine deficiency (ID), than NNR diet. A 2-year prospective randomized trial in a tertiary referral center where healthy postmenopausal overweight or obese women were randomized to either PD (n=35) or NNR diet (n=35). Dietary iodine intake, 24-UIC, 24-h urinary iodine excretion (24-UIE), free thyroxin (FT4), free triiodothyronine (FT3) and thyrotropin (TSH) were measured at baseline, 6 and 24 months. Completeness of urine sampling was monitored by para-aminobenzoic acid and salt intake by urinary sodium. At baseline, median 24-UIC (71.0 μg/l) and 24-UIE (134.0 μg/d) were similar in the PD and NNR groups. After 6 months, 24-UIC had decreased to 36.0 μg/l (P=0.001) and 24-UIE to 77.0 μg/d (P=0.001) in the PD group; in the NNR group, levels were unaltered. FT4, TSH and FT3 were similar in both groups, except for FT3 at 6 months being lower in PD than in NNR group. A PD results in a higher risk of developing ID, than a diet according to the NNR. Therefore, we suggest iodine supplementation should be considered when on a PD.

  10. fat-1 mice prevent high-fat plus high-sugar diet-induced non-alcoholic fatty liver disease.

    PubMed

    Guo, Xiao-Fei; Gao, Jin-Long; Li, Jiao-Mei; Li, Duo

    2017-11-15

    High-fat and high-sugar (HFS) diets have been suggested to play a causal role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). This study aimed to investigate whether fat-1 transgenic mice with a higher tissue content of n-3 polyunsaturated fatty acids (PUFAs) could prevent HFS diet-induced NAFLD, compared with wild-type mice. The fat-1 and wild-type littermates had free access to a 15% fructose solution plus high-fat diet, a 15% glucose solution plus high-fat diet, or a 15% sucrose solution plus high-fat diet, respectively. Caloric intake, weight gain, biochemical parameters, histology, and gene and protein expression levels were measured after 8 weeks of intervention. Liquid intake in glucose- or sucrose-fed mice was about 2-fold compared with that in fructose-fed mice. The wild-type mice given glucose showed the highest total caloric intake and weight gain compared to the other groups. The serum concentrations of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and alanine transaminase (ALT) were significantly lowered in fat-1 groups compared with their paired wild-type groups. Histological analysis showed that the wild-type groups fed the HFS diets developed hepatic lipid accumulation and steatosis, compared with the fat-1 groups. The gene and protein expression levels involved in fatty acid synthesis and the toll-like receptor (TLR)-4 signaling pathway were significantly inhibited in the fat-1 groups compared with the wild-type groups. The endogenously synthesized n-3 PUFAs of the three fat-1 groups, which inhibit fatty acid synthesis and the TLR-4 signaling pathway, prevent HFS diet-induced NAFLD.

  11. Effect of betaine and arginine in lysine-deficient diets on growth, carcass traits, and pork quality.

    PubMed

    Madeira, M S; Alfaia, C M; Costa, P; Lopes, P A; Martins, S V; Lemos, J P C; Moreira, O; Santos-Silva, J; Bessa, R J B; Prates, J A M

    2015-10-01

    Forty entire male pigs from a commercial crossbreed (Duroc × Large White × Landrace) were used to investigate the individual or combined effects of betaine and Arg supplementation in Lys-deficient diets on growth performance, carcass traits, and pork quality. Pigs with 59.9 ± 1.65 kg BW were randomly assigned to 1 of 5 dietary treatments ( = 8). The 5 dietary treatments were normal Lys and CP diet (0.51% Lys and 16% CP; control), reduced Lys and CP diet (0.35% Lys and 13% CP), reduced Lys and CP diet with betaine supplementation (0.33%), reduced Lys and CP diet with Arg supplementation (1.5%), and reduced Lys and CP diet with betaine and Arg supplementation (0.33% betaine and 1.5% Arg). Pigs were slaughtered at 92.7 ± 2.54 kg BW. The Lys-deficient diets (-35% Lys) increased intramuscular fat (IMF) content by 25% ( = 0.041) and meat juiciness by 12% ( = 0.041) but had a negative effect on growth performance ( < 0.05) of pigs. In addition, Lys-deficient diets increased L* ( = 0.005) and b* ( = 0.010) muscle color parameters and perirenal fat deposition ( < 0.001) and decreased both HCW ( = 0.015) and loin weight ( = 0.023). Betaine and Arg supplementation of Lys-deficient diets had no effect on IMF content but increased ( < 0.05) overall pork acceptability. Arginine supplementation also increased ( = 0.003) meat tenderness. Differences in fatty acid composition of pork were not detected among dietary treatment groups. However, oleic acid was positively correlated ( < 0.05) with IMF content, juiciness, flavor, and overall acceptability of meat. Data confirm that dietary CP reduction enhances pork eating quality but negatively affects pigs' growth performance. Moreover, it is suggested that betaine and Arg supplementation of Lys-deficient diets does not further increase IMF content but improves some pork sensory traits, including overall acceptability.

  12. Effect of replacing grass silage with red clover silage on nutrient digestion, nitrogen metabolism, and milk fat composition in lactating cows fed diets containing a 60:40 forage-to-concentrate ratio.

    PubMed

    Halmemies-Beauchet-Filleau, A; Vanhatalo, A; Toivonen, V; Heikkilä, T; Lee, M R F; Shingfield, K J

    2014-01-01

    Diets based on red clover silage (RCS) typically increase the concentration of polyunsaturated fatty acids (PUFA) in ruminant meat and milk and lower the efficiency of N utilization compared with grass silages (GS). Four multiparous Finnish Ayrshire cows (108 d postpartum) fitted with rumen cannulas were used in a 4 × 4 Latin square design with 21-d periods to evaluate the effect of incremental replacement of GS with RCS on milk production, nutrient digestion, whole-body N metabolism, and milk fatty acid composition. Treatments comprised total mixed rations offered ad libitum, containing 600 g of forage/kg of diet dry matter (DM), with RCS replacing GS in ratios of 0:100, 33:67, 67:33, and 100:0 on a DM basis. Intake of DM and milk yield tended to be higher when RCS and GS were offered as a mixture than when fed alone. Forage species had no influence on the concentration or secretion of total milk fat, whereas replacing GS with RCS tended to decrease milk protein concentration and yield. Substitution of GS with RCS decreased linearly whole-tract apparent organic matter, fiber, and N digestion. Forage species had no effect on total nonammonia N at the omasum, whereas the flow of most AA at the omasum was higher for diets based on a mixture of forages. Replacing GS with RCS progressively lowered protein degradation in the rumen, increased linearly ruminal escape of dietary protein, and decreased linearly microbial protein synthesis. Incremental inclusion of RCS in the diet tended to lower whole-body N balance, increased linearly the proportion of dietary N excreted in feces and urine, and decreased linearly the utilization of dietary N for milk protein synthesis. Furthermore, replacing GS with RCS decreased linearly milk fat 4:0 to 8:0, 14:0, and 16:0 concentrations and increased linearly 18:2n-6 and 18:3n-3 concentrations, in the absence of changes in cis-9 18:1, cis-9, trans-11 18:2, or total trans fatty acid concentration. Inclusion of RCS in the diet

  13. n-3 Polyunsaturated Fatty Acids Reduce Neonatal Hypoxic/Ischemic Brain Injury by Promoting Phosphatidylserine Formation and Akt Signaling.

    PubMed

    Zhang, Wenting; Liu, Jia; Hu, Xiaoming; Li, Peiying; Leak, Rehana K; Gao, Yanqin; Chen, Jun

    2015-10-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate neonatal hypoxic/ischemic (H/I) brain damage, but the underlying mechanisms are not fully understood. This study tested the hypothesis that n-3 PUFAs enhance Akt-dependent prosurvival signaling by promoting the biosynthesis of phosphatidylserine in neuronal cell membranes. Dietary n-3 PUFA supplementation was initiated on the second day of pregnancy in dams. H/I was induced in 7-day-old rat pups by ipsilateral common carotid artery occlusion followed by hypoxia (8% oxygen for 2.5 hours). Neurological outcomes, brain tissue loss, cell death, and the activation of signaling events were assessed after H/I. The effects of n-3 PUFAs (docosahexaenoic acid and eicosapentaenoic acid) on oxygen-glucose deprivation-induced cell death and the underlying mechanism of protection were also examined in primary cortical neuron cultures. n-3 PUFAs reduced brain tissue loss at 7 days after H/I and improved neurological outcomes, whereas inhibition of PI3K/Akt signaling by LY294002 partially abrogated this neuroprotective effect. Docosahexaenoic acid/eicosapentaenoic acid also prevented ischemic neuronal death through the Akt prosurvival pathway in vitro. Furthermore, docosahexaenoic acid/eicosapentaenoic acid increased the production of phosphatidylserine, the major membrane-bound phospholipids, after ischemia both in vitro and in vivo. A reduction in membrane phosphatidylserine by shRNA-mediated knockdown of phosphatidylserine synthetase-1 attenuated Akt activation and neuronal survival after docosahexaenoic acid/eicosapentaenoic acid treatment in the oxygen-glucose deprivation model. n-3 PUFAs robustly protect against H/I-induced brain damage in neonates by activating Akt prosurvival pathway in compromised neurons. In addition, n-3 PUFAs promote the formation of membrane phosphatidylserine, thereby promoting Akt activity and improving cellular survival. © 2015 American Heart Association, Inc.

  14. Choline and Cystine Deficient Diets in Animal Models with Hepatocellular Injury: Evaluation of Oxidative Stress and Expression of RAGE, TNF-α, and IL-1β.

    PubMed

    Santos, Juliana Célia F; de Araújo, Orlando R P; Valentim, Iara B; de Andrade, Kívia Queiroz; Moura, Fabiana Andréa; Smaniotto, Salete; dos Santos, John Marques; Gasparotto, Juciano; Gelain, Daniel P; Goulart, Marília O F

    2015-01-01

    This study aims to evaluate the effects of diets deficient in choline and/or cystine on hepatocellular injury in animal models (young male Wistar rats, aged 21 days), by monitoring some of the oxidative stress biomarkers and the expression of RAGE, TNF-α, and IL-1β. The animals were divided into 6 groups (n = 10) and submitted to different diets over 30 days: AIN-93 diet (standard, St), AIN-93 choline deficient (CD) diet and AIN-93 choline and cystine deficient (CCD) diet, in the pellet (pl) and powder (pw) diet forms. Independently of the diet form, AIN-93 diet already led to hepatic steatosis and CD/CCD diets provoked hepatic damage. The increase of lipid peroxidation, represented by the evaluation of thiobarbituric acid reactive species, associated with the decrease of levels of antioxidant enzymes, were the parameters with higher significance toward redox profile in this model of hepatic injury. Regarding inflammation, in relation to TNF-α, higher levels were evidenced in CD(pl), while, for IL-1β, no significant alteration was detected. RAGE expression was practically the same in all groups, with exception of CCD(pw) versus CCD(pl). These results together confirm that AIN-93 causes hepatic steatosis and choline and/or cysteine deficiencies produce important hepatic injury associated with oxidative stress and inflammatory profiles.

  15. Impulsivity-based thrifty eating phenotype and the protective role of n-3 PUFAs intake in adolescents.

    PubMed

    Reis, R S; Dalle Molle, R; Machado, T D; Mucellini, A B; Rodrigues, D M; Bortoluzzi, A; Bigonha, S M; Toazza, R; Salum, G A; Minuzzi, L; Buchweitz, A; Franco, A R; Pelúzio, M C G; Manfro, G G; Silveira, P P

    2016-03-15

    The goal of the present study was to investigate whether intrauterine growth restriction (IUGR) affects brain responses to palatable foods and whether docosahexaenoic acid (DHA, an omega-3 fatty acid that is a primary structural component of the human brain) serum levels moderate the association between IUGR and brain and behavioral responses to palatable foods. Brain responses to palatable foods were investigated using a functional magnetic resonance imaging task in which participants were shown palatable foods, neutral foods and non-food items. Serum DHA was quantified in blood samples, and birth weight ratio (BWR) was used as a proxy for IUGR. The Dutch Eating Behavior Questionnaire (DEBQ) was used to evaluate eating behaviors. In the contrast palatable food > neutral items, we found an activation in the right superior frontal gyrus with BWR as the most important predictor; the lower the BWR (indicative of IUGR), the greater the activation of this region involved in impulse control/decision making facing the viewing of palatable food pictures versus neutral items. At the behavioral level, a general linear model predicting external eating using the DEBQ showed a significant interaction between DHA and IUGR status; in IUGR individuals, the higher the serum DHA, the lower is external eating. In conclusion, we suggest that IUGR moderates brain responses when facing stimuli related to palatable foods, activating an area related to impulse control. Moreover, higher intake of n-3 PUFAs can protect IUGR individuals from developing inappropriate eating behaviors, the putative mechanism of protection would involve decreasing intake in response to external food cues in adolescents/young adults.

  16. Impulsivity-based thrifty eating phenotype and the protective role of n-3 PUFAs intake in adolescents

    PubMed Central

    Reis, R S; Dalle Molle, R; Machado, T D; Mucellini, A B; Rodrigues, D M; Bortoluzzi, A; Bigonha, S M; Toazza, R; Salum, G A; Minuzzi, L; Buchweitz, A; Franco, A R; Pelúzio, M C G; Manfro, G G; Silveira, P P

    2016-01-01

    The goal of the present study was to investigate whether intrauterine growth restriction (IUGR) affects brain responses to palatable foods and whether docosahexaenoic acid (DHA, an omega-3 fatty acid that is a primary structural component of the human brain) serum levels moderate the association between IUGR and brain and behavioral responses to palatable foods. Brain responses to palatable foods were investigated using a functional magnetic resonance imaging task in which participants were shown palatable foods, neutral foods and non-food items. Serum DHA was quantified in blood samples, and birth weight ratio (BWR) was used as a proxy for IUGR. The Dutch Eating Behavior Questionnaire (DEBQ) was used to evaluate eating behaviors. In the contrast palatable food > neutral items, we found an activation in the right superior frontal gyrus with BWR as the most important predictor; the lower the BWR (indicative of IUGR), the greater the activation of this region involved in impulse control/decision making facing the viewing of palatable food pictures versus neutral items. At the behavioral level, a general linear model predicting external eating using the DEBQ showed a significant interaction between DHA and IUGR status; in IUGR individuals, the higher the serum DHA, the lower is external eating. In conclusion, we suggest that IUGR moderates brain responses when facing stimuli related to palatable foods, activating an area related to impulse control. Moreover, higher intake of n-3 PUFAs can protect IUGR individuals from developing inappropriate eating behaviors, the putative mechanism of protection would involve decreasing intake in response to external food cues in adolescents/young adults. PMID:26978737

  17. The synchronized trial on expectant mothers with depressive symptoms by omega-3 PUFAs (SYNCHRO): Study protocol for a randomized controlled trial.

    PubMed

    Nishi, Daisuke; Su, Kuan-Pin; Usuda, Kentaro; Chiang, Yi-Ju Jill; Guu, Tai-Wei; Hamazaki, Kei; Nakaya, Naoki; Sone, Toshimasa; Sano, Yo; Tachibana, Yoshiyuki; Ito, Hiroe; Isaka, Keiich; Hashimoto, Kenji; Hamazaki, Tomohito; Matsuoka, Yutaka J

    2016-09-15

    Maternal depression can be harmful to both mothers and their children. Omega-3 polyunsaturated fatty acid (PUFA) supplementation has been investigated as an alternative intervention for pregnant women with depressive symptoms because of the supporting evidence from clinical trials in major depression, the safety advantage, and its anti-inflammatory and neuroplasticity effects. This study examines the efficacy of omega-3 PUFA supplementation for pregnant women with depressive symptoms in Taiwan and Japan, to provide evidence available for Asia. The rationale and protocol of this trial are reported here. The Synchronized Trial on Expectant Mothers with Depressive Symptoms by Omega-3 PUFAs (SYNCHRO) is a multicenter, double-blind, parallel group, randomized controlled trial. Participants will be randomized to either the omega-3 PUFAs arm (1,200 mg eicosapentaenoic acid and 600 mg docosahexaenoic acid daily) or placebo arm. Primary outcome is total score on the Hamilton Rating Scale for Depression (HAMD) at 12 weeks after the start of the intervention. We will randomize 56 participants to have 90 % power to detect a 4.7-point difference in mean HAMD scores with omega-3 PUFAs compared with placebo. Because seafood consumption varies across countries and this may have a major effect on the efficacy of omega-3 PUFA supplementation, 56 participants will be recruited at each site in Taiwan and Japan, for a total number of 112 participants. Secondary outcomes include depressive symptoms at 1 month after childbirth, diagnosis of major depressive disorder, changes in omega-3 PUFAs concentrations and levels of biomarkers at baseline and at 12 weeks' follow-up, and standard obstetric outcomes. Data analyses will be by intention to treat. The trial was started in June 2014 and is scheduled to end in February 2018. The trial is expected to provide evidence that can contribute to promoting mental health among mothers and children in Asian populations. Clinicaltrials.gov: NCT

  18. Peripubertal Vitamin D3 Deficiency Delays Puberty and Disrupts the Estrous Cycle in Adult Female Mice1

    PubMed Central

    Dicken, Cary L.; Israel, Davelene D.; Davis, Joe B.; Sun, Yan; Shu, Jun; Hardin, John; Neal-Perry, Genevieve

    2012-01-01

    ABSTRACT The mechanism(s) by which vitamin D3 regulates female reproduction is minimally understood. We tested the hypothesis that peripubertal vitamin D3 deficiency disrupts hypothalamic-pituitary-ovarian physiology. To test this hypothesis, we used wild-type mice and Cyp27b1 (the rate-limiting enzyme in the synthesis of 1,25-dihydroxyvitamin D3) null mice to study the effect of vitamin D3 deficiency on puberty and reproductive physiology. At the time of weaning, mice were randomized to a vitamin D3-replete or -deficient diet supplemented with calcium. We assessed the age of vaginal opening and first estrus (puberty markers), gonadotropin levels, ovarian histology, ovarian responsiveness to exogenous gonadotropins, and estrous cyclicity. Peripubertal vitamin D3 deficiency significantly delayed vaginal opening without affecting the number of GnRH-immunopositive neurons or estradiol-negative feedback on gonadotropin levels during diestrus. Young adult females maintained on a vitamin D3-deficient diet after puberty had arrested follicular development and prolonged estrous cycles characterized by extended periods of diestrus. Ovaries of vitamin D3-deficient Cyp27b1 null mice responded to exogenous gonadotropins and deposited significantly more oocytes into the oviducts than mice maintained on a vitamin D3-replete diet. Estrous cycles were restored when vitamin D3-deficient Cyp27b1 null young adult females were transferred to a vitamin D3-replete diet. This study is the first to demonstrate that peripubertal vitamin D3 sufficiency is important for an appropriately timed pubertal transition and maintenance of normal female reproductive physiology. These data suggest vitamin D3 is a key regulator of neuroendocrine and ovarian physiology. PMID:22572998

  19. Cloning and Characterization of Lxr and Srebp1, and Their Potential Roles in Regulation of LC-PUFA Biosynthesis in Rabbitfish Siganus canaliculatus.

    PubMed

    Zhang, Qinghao; You, Cuihong; Liu, Fang; Zhu, Wendi; Wang, Shuqi; Xie, Dizhi; Monroig, Óscar; Tocher, Douglas R; Li, Yuanyou

    2016-09-01

    Rabbitfish Siganus canaliculatus was the first marine teleost demonstrated to have the ability to biosynthesize C20-22 long-chain polyunsaturated fatty acid (LC-PUFA) from C18 PUFA precursors, which is generally absent or low in marine teleosts. Thus, understanding the molecular basis of LC-PUFA biosynthesis in rabbitfish will contribute to efforts aimed at optimizing LC-PUFA biosynthesis in teleosts, especially marine species. In the present study, the importance of the transcription factors liver X receptor (Lxr) and sterol regulatory element-binding protein 1 (Srebp1) in regulation of LC-PUFA biosynthesis in rabbitfish was investigated. First, full-length cDNA of Lxr and Srebp1 were cloned and characterized. The Lxr mRNA displayed a ubiquitous tissue expression pattern while Srebp1 was highly expressed in eyes, brain and intestine. In rabbitfish primary hepatocytes treated with Lxr agonist T0901317, the expression of Lxr and Srebp1 was activated, accompanied by elevated mRNA levels of Δ4 and Δ6/Δ5 fatty acyl desaturase (Fad), key enzymes of LC-PUFA biosynthesis, as well as peroxisome proliferator-activated receptor γ (PPARγ). In addition, Srebp1 displayed higher expression levels in liver of rabbitfish fed a vegetable oil diet or reared at 10 ppt salinity, which were conditions reported to increase the liver expression of Δ4 and Δ6/Δ5 Fad and LC-PUFA biosynthetic ability, than fish fed a fish oil diet or reared at 32 ppt, respectively. These results suggested that Lxr and Srebp1 are involved in regulation of LC-PUFA biosynthesis probably by promoting the expression of two Fad in rabbitfish liver, which, to our knowledge, is the first report in marine teleosts.

  20. Enteral diets enriched with medium-chain triglycerides and N-3 fatty acids prevent chemically induced experimental colitis in rats.

    PubMed

    Kono, Hiroshi; Fujii, Hideki; Ogiku, Masahito; Tsuchiya, Masato; Ishii, Kenichi; Hara, Michio

    2010-11-01

    The specific purpose of this study was to evaluate the significant effects of medium-chain triglycerides (MCTs) and N-3 fatty acids on chemically induced experimental colitis induced by 2,4,6-trinitrobenzene sulphonic acid (TNBS) in rats. Male Wistar rats were fed liquid diets enriched with N-6 fatty acid (control diets), N-3 fatty acid (MCT- diets), and N-3 fatty acid and MCT (MCT+ diets) for 2 weeks and then were given an intracolonic injection of TNBS. Serum and tissue samples were collected 5 days after ethanol or TNBS enema. The severity of colitis was evaluated pathologically, and tissue myeloperoxidase activity was measured in colonic tissues. Furthermore, protein levels for inflammatory cytokines and a chemokine were assessed by an enzyme-linked immunosorbent assay in colonic tissues. Induction of proinflammatory cytokines tumor necrosis factor-α and interleukin-1β in the colon by TNBS enema was markedly attenuated by the MCT+ diet among the 3 diets studied. Furthermore, the induction of chemokines macrophage inflammatory protein-2 and monocyte chemotactic protein-1 also was blunted significantly in animals fed the MCT+ diets. As a result, MPO activities in the colonic tissue also were blunted significantly in animals fed the MCT+ diets compared with those fed the control diets or the MCT- diets. Furthermore, the MCT+ diet improved chemically induced colitis significantly among the 3 diets studied. Diets enriched with both MCTs and N-3 fatty acids may be effective for the therapy of inflammatory bowel disease as antiinflammatory immunomodulating nutrients. Copyright © 2010 Mosby, Inc. All rights reserved.

  1. Ability of the gut microbiota to produce PUFA-derived bacterial metabolites: Proof of concept in germ-free versus conventionalized mice.

    PubMed

    Druart, Céline; Bindels, Laure B; Schmaltz, Robert; Neyrinck, Audrey M; Cani, Patrice D; Walter, Jens; Ramer-Tait, Amanda E; Delzenne, Nathalie M

    2015-08-01

    The gut microbiota is able to modulate host physiology through the production of bioactive metabolites. Our recent studies suggest that changes in gut microbiota composition upon prebiotics supplementation alter tissue levels of PUFA-derived metabolites in mice. However, in vivo evidence that gut microbes produces PUFA-derived metabolites is lacking. This study aimed to decipher the contribution of gut microbes versus that of the host in PUFA-derived metabolite production. To achieve this goal, we compared the proportion of PUFA-derived metabolites and the expression of fatty acid desaturases in germ-free (GF) and conventionalized (CONV) mice fed either a low fat or Western diet. Higher concentrations of PUFA-derived metabolites were found in the colonic contents of conventionalized mice (CONV) mice compared to GF mice. The abundance of these metabolites in host tissues was modulated by dietary treatments but not by microbial status. Although microbial status did significantly influence desaturase expression, no correlations between host enzymes and tissue PUFA-derived metabolite levels were observed. Together, these results highlight the ability of the gut microbiota to produce PUFA-derived metabolites from dietary PUFA. However, microbial production of these metabolites in colonic contents is not necessarily associated with modifications of their concentration in host tissues. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Greenlandic Inuit show genetic signatures of diet and climate adaptation.

    PubMed

    Fumagalli, Matteo; Moltke, Ida; Grarup, Niels; Racimo, Fernando; Bjerregaard, Peter; Jørgensen, Marit E; Korneliussen, Thorfinn S; Gerbault, Pascale; Skotte, Line; Linneberg, Allan; Christensen, Cramer; Brandslund, Ivan; Jørgensen, Torben; Huerta-Sánchez, Emilia; Schmidt, Erik B; Pedersen, Oluf; Hansen, Torben; Albrechtsen, Anders; Nielsen, Rasmus

    2015-09-18

    The indigenous people of Greenland, the Inuit, have lived for a long time in the extreme conditions of the Arctic, including low annual temperatures, and with a specialized diet rich in protein and fatty acids, particularly omega-3 polyunsaturated fatty acids (PUFAs). A scan of Inuit genomes for signatures of adaptation revealed signals at several loci, with the strongest signal located in a cluster of fatty acid desaturases that determine PUFA levels. The selected alleles are associated with multiple metabolic and anthropometric phenotypes and have large effect sizes for weight and height, with the effect on height replicated in Europeans. By analyzing membrane lipids, we found that the selected alleles modulate fatty acid composition, which may affect the regulation of growth hormones. Thus, the Inuit have genetic and physiological adaptations to a diet rich in PUFAs. Copyright © 2015, American Association for the Advancement of Science.

  3. Bone matrix, cellularity, and structural changes in a rat model with high-turnover osteoporosis induced by combined ovariectomy and a multiple-deficient diet.

    PubMed

    Govindarajan, Parameswari; Böcker, Wolfgang; El Khassawna, Thaqif; Kampschulte, Marian; Schlewitz, Gudrun; Huerter, Britta; Sommer, Ursula; Dürselen, Lutz; Ignatius, Anita; Bauer, Natali; Szalay, Gabor; Wenisch, Sabine; Lips, Katrin S; Schnettler, Reinhard; Langheinrich, Alexander; Heiss, Christian

    2014-03-01

    In estrogen-deficient, postmenopausal women, vitamin D and calcium deficiency increase osteoporotic fracture risk. Therefore, a new rat model of combined ovariectomy and multiple-deficient diet was established to mimic human postmenopausal osteoporotic conditions under nutrient deficiency. Sprague-Dawley rats were untreated (control), laparatomized (sham), or ovariectomized and received a deficient diet (OVX-Diet). Multiple analyses involving structure (micro-computed tomography and biomechanics), cellularity (osteoblasts and osteoclasts), bone matrix (mRNA expression and IHC), and mineralization were investigated for a detailed characterization of osteoporosis. The study involved long-term observation up to 14 months (M14) after laparotomy or after OVX-Diet, with intermediate time points at M3 and M12. OVX-Diet rats showed enhanced osteoblastogenesis and osteoclastogenesis. Bone matrix markers (biglycan, COL1A1, tenascin C, and fibronectin) and low-density lipoprotein-5 (bone mass marker) were down-regulated at M12 in OVX-Diet rats. However, up-regulation of matrix markers and existence of unmineralized osteoid were seen at M3 and M14. Osteoclast markers (matrix metallopeptidase 9 and cathepsin K) were up-regulated at M14. Micro-computed tomography and biomechanics confirmed bone fragility of OVX-Diet rats, and quantitative RT-PCR revealed a higher turnover rate in the humerus than in lumbar vertebrae, suggesting enhanced bone formation and resorption in OVX-Diet rats. Such bone remodeling caused disturbed bone mineralization and severe bone loss, as reported in patients with high-turnover, postmenopausal osteoporosis. Therefore, this rat model may serve as a suitable tool to evaluate osteoporotic drugs and new biomaterials or fracture implants. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Lamp-2 deficiency prevents high-fat diet-induced obese diabetes via enhancing energy expenditure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasuda-Yamahara, Mako; Kume, Shinji, E-mail: skume@belle.shiga-med.ac.jp; Yamahara, Kosuke

    Autophagy process is essential for maintaining intracellular homeostasis and consists of autophagosome formation and subsequent fusion with lysosome for degradation. Although the role of autophagosome formation in the pathogenesis of diabetes has been recently documented, the role of the latter process remains unclear. This study analyzed high-fat diet (HFD)-fed mice lacking lysosome-associated membrane protein-2 (lamp-2), which is essential for the fusion with lysosome and subsequent degradation of autophagosomes. Although lamp-2 deficient mice showed little alteration in glucose metabolism under normal diet feeding, they showed a resistance against high-fat diet (HFD)-induced obesity, hyperinsulinemic hyperglycemia and tissues lipid accumulation, accompanied with highermore » energy expenditure. The expression levels of thermogenic genes in brown adipose tissue were significantly increased in HFD-fed lamp-2-deficient mice. Of some serum factors related to energy expenditure, the serum level of fibroblast growth factor (FGF) 21 and its mRNA expression level in the liver were significantly higher in HFD-fed lamp-2-deficient mice in an ER stress-, but not PPARα-, dependent manner. In conclusion, a lamp-2-depenedent fusion and degradation process of autophagosomes is involved in the pathogenesis of obese diabetes, providing a novel insight into autophagy and diabetes. - Highlights: • Lamp-2 is essential for autophagosome fusion with lysosome and its degradation. • Lamp-2 deficiency lead to a resistance to diet-induced obese diabetes in mice. • Lamp-2 deficiency increased whole body energy expenditure under HFD-feeding. • Lamp-2 deficiency elevated the serum level of FGF21 under HFD-feeding.« less

  5. Dietary n-3 polyunsaturated fatty acids and the paradox of their health benefits and potential harmful effects.

    PubMed

    Serini, Simona; Fasano, Elena; Piccioni, Elisabetta; Cittadini, Achille R M; Calviello, Gabriella

    2011-12-19

    There is some evidence to support the toxicity of polyunsaturated fatty acids (PUFAs) and their oxidative products, suggesting their involvement in the pathogenesis of different chronic diseases, including cancer. It has been shown that products of PUFA oxidation may exert a carcinogenic action by forming mutagenic adducts with DNA. However, a large amount of evidence accumulated over several decades has indicated the beneficial effects of administration of n-3 PUFAs in the prevention and therapy of a series of diseases. In particular, there is much evidence that n-3 PUFAs exert anti-inflammatory and antineoplastic effects, whereas n-6 PUFAs promote inflammation and carcinogenesis. In our tissues, both of the two classes of PUFAs can be converted into bioactive products, incorporated into membrane phospholipids or bound to membrane receptors, where they may alter, often in opposite ways, transduction pathways and affect important biological processes, such as cell death and survival, inflammation, and neo-angiogenesis. In the present review, we intend to shed light on the paradox of the coexisting healthy and toxic effects of n-3 PUFAs, focusing on their possible pro-oxidant cytotoxic and carcinogenic effect, in order to understand if their increased intake, recommended by a number of health agencies worldwide and promoted by nutraceutical producers, may or may not represent a hazard to human health. © 2011 American Chemical Society

  6. Systematic Review on N-3 and N-6 Polyunsaturated Fatty Acid Intake in European Countries in Light of the Current Recommendations - Focus on Specific Population Groups.

    PubMed

    Sioen, Isabelle; van Lieshout, Lilou; Eilander, Ans; Fleith, Mathilde; Lohner, Szimonetta; Szommer, Alíz; Petisca, Catarina; Eussen, Simone; Forsyth, Stewart; Calder, Philip C; Campoy, Cristina; Mensink, Ronald P

    2017-01-01

    Earlier reviews indicated that in many countries adults, children and adolescents consume on an average less polyunsaturated fatty acids (PUFAs) than recommended by the Food and Agriculture Organisation/World Health Organisation. The intake of total and individual n-3 and n-6 PUFAs in European infants, children, adolescents, elderly and pregnant/lactating women was evaluated systematically. The evaluations were done against recommendations of the European Food Safety Authority. Key Messages: Fifty-three studies from 17 different European countries reported an intake of total n-3 and n-6 PUFAs and/or individual n-3 or n-6 PUFAs in at least one of the specific population groups: 10 in pregnant women, 4 in lactating women, 3 in infants 6-12 months, 6 in children 1-3 years, 11 in children 4-9 years, 8 in adolescents 10-18 years and 11 in elderly >65 years. Mean linoleic acid intake was within the recommendation (4 energy percentage [E%]) in 52% of the countries, with inadequate intakes more likely in lactating women, adolescents and elderly. Mean α-linolenic acid intake was within the recommendation (0.5 E%) in 77% of the countries. In 26% of the countries, mean eicosapentaenoic acid and/or docosahexaenoic acid intake was as recommended. These results indicate that intake of n-3 and n-6 PUFAs may be suboptimal in specific population groups in Europe. © 2017 S. Karger AG, Basel.

  7. Lifelong imbalanced LA/ALA intake impairs emotional and cognitive behavior via changes in brain endocannabinoid system

    PubMed Central

    Zamberletti, Erica; Piscitelli, Fabiana; De Castro, Valentina; Murru, Elisabetta; Gabaglio, Marina; Colucci, Paola; Fanali, Chiara; Prini, Pamela; Bisogno, Tiziana; Maccarrone, Mauro; Campolongo, Patrizia; Banni, Sebastiano; Rubino, Tiziana; Parolaro, Daniela

    2017-01-01

    Imbalanced dietary n-3 and n-6 PUFA content has been associated with a number of neurological conditions. Endocannabinoids are n-6 PUFA derivatives, whose brain concentrations are sensitive to modifications of fatty acid composition of the diet and play a central role in the regulation of mood and cognition. As such, the endocannabinoid system appears to be an ideal candidate for mediating the effects of dietary fatty acids on mood and cognition. Lifelong administration of isocaloric α-linolenic acid (ALA)-deficient and -enriched diets induced short-term memory deficits, whereas only dietary ALA enrichment altered emotional reactivity in adult male rats compared with animals fed a standard diet that was balanced in ALA/linoleic acid (LA) ratio. In the prefrontal cortex, both diets reduced 2-AG levels and increased MAG lipase expression, whereas only the enriched diet reduced AEA levels, simultaneously increasing FAAH expression. In the hippocampus, an ALA-enriched diet decreased AEA content and NAPE-PLD expression, and reduced 2-AG content while increasing MAG lipase expression. These findings highlight the importance of a diet balanced in fatty acid content for normal brain functions and to support a link between dietary ALA, the brain endocannabinoid system, and behavior, which indicates that dietary ALA intake is a sufficient condition for altering the endocannabinoid system in brain regions modulating mood and cognition. PMID:27903595

  8. ADAM17_i33708A>G polymorphism interacts with dietary n-6 polyunsaturated fatty acids to modulate obesity risk in the Genetics of Lipid Lowering Drugs and Diet Network study

    PubMed Central

    Junyent, Mireia; Parnell, Laurence D.; Lai, Chao-Qiang; Arnett, Donna K.; Tsai, Michael Y.; Kabagambe, Edmond K.; Straka, Robert J.; Province, Michael; An, Ping; Smith, Caren E.; Lee, Yu-Chi; Borecki, Ingrid; Ordovás, Jose M.

    2015-01-01

    Background and aims The disintegrin and metalloproteinase ADAM17, also known as tumor necrosis factor alpha converting enzyme, is expressed in adipocytes. Importantly, elevated levels of ADAM17 expression have been linked to obesity and insulin resistance. Therefore, the aim of this study was to evaluate the association of six ADAM17 single nucleotide polymorphisms (SNPs) (m1254A>G, i14121C>A, i33708A>G, i48827A>C, i53440C>T, and i62781G>T) with insulin-resistance phenotypes and obesity risk, and their potential interactions with dietary polyunsaturated fatty acids (PUFA). Methods and results ADAM17 SNPs were genotyped in 936 subjects (448 men/488 women) who participated in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study. Anthropometrical and biochemical measurements were determined by standard procedures. PUFA intake was estimated using a validated questionnaire. G allele carriers at the ADAM17_m1254A>G polymorphism exhibited significantly higher risk of obesity (P=0.003), were shorter (P=0.017), had higher insulin (P=0.016), and lower HDL-C concentrations (P=0.027) than AA subjects. For the ADAM17_i33708A>G SNP, homozygotes for the A allele displayed higher risk of obesity (P=0.001), were heavier (P=0.011), had higher BMI (P=0.005), and higher waist measurements (P=0.023) than GG subjects. A significant gene-diet interaction was found (P=0.030), in which the deleterious association of the i33708A allele with obesity was observed in subjects with low intakes from (n-6) PUFA (P<0.001), whereas no differences in obesity risk were seen among subjects with high (n-6) PUFA intake (P>0.5) Conclusion These findings support that ADAM17 (m1254A>G and i33708A>G) SNPs may contribute to obesity risk. For the ADAM17_i33708A>G SNP, this risk may be further modulated by (n-6) PUFA intake. PMID:19819120

  9. ADAM17_i33708A>G polymorphism interacts with dietary n-6 polyunsaturated fatty acids to modulate obesity risk in the Genetics of Lipid Lowering Drugs and Diet Network study.

    PubMed

    Junyent, M; Parnell, L D; Lai, C-Q; Arnett, D K; Tsai, M Y; Kabagambe, E K; Straka, R J; Province, M; An, P; Smith, C E; Lee, Y-C; Borecki, I; Ordovás, J M

    2010-12-01

    The disintegrin and metalloproteinase ADAM17, also known as tumor necrosis factor alpha converting enzyme, is expressed in adipocytes. Importantly, elevated levels of ADAM17 expression have been linked to obesity and insulin resistance. Therefore, the aim of this study was to evaluate the association of six ADAM17 single nucleotide polymorphisms (SNPs) (m1254A>G, i14121C>A, i33708A>G, i48827A>C, i53440C>T, and i62781G>T) with insulin-resistance phenotypes and obesity risk, and their potential interactions with dietary polyunsaturated fatty acids (PUFA). ADAM17 SNPs were genotyped in 936 subjects (448 men/488 women) who participated in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study. Anthropometrical and biochemical measurements were determined by standard procedures. PUFA intake was estimated using a validated questionnaire. G allele carriers at the ADAM17_m1254A>G polymorphism exhibited significantly higher risk of obesity (P=0.003), were shorter (P=0.017), had higher insulin (P=0.016), and lower HDL-C concentrations (P=0.027) than AA subjects. For the ADAM17_i33708A>G SNP, homozygotes for the A allele displayed higher risk of obesity (P=0.001), were heavier (P=0.011), had higher BMI (P=0.005), and higher waist measurements (P=0.023) than GG subjects. A significant gene-diet interaction was found (P=0.030), in which the deleterious association of the i33708A allele with obesity was observed in subjects with low intakes from (n-6) PUFA (P<0.001), whereas no differences in obesity risk were seen among subjects with high (n-6) PUFA intake (P>0.5) These findings support that ADAM17 (m1254A>G and i33708A>G) SNPs may contribute to obesity risk. For the ADAM17_i33708A>G SNP, this risk may be further modulated by (n-6) PUFA intake. Copyright © 2009 Elsevier B.V. All rights reserved.

  10. Linkage and association analysis of obesity traits reveals novel loci and interactions with dietary n-3 fatty acids in an Alaska Native (Yup’ik) population

    PubMed Central

    Vaughan, Laura Kelly; Wiener, Howard W.; Aslibekyan, Stella; Allison, David B.; Havel, Peter J.; Stanhope, Kimber L.; O’Brien, Diane M.; Hopkins, Scarlett E.; Lemas, Dominick J.; Boyer, Bert B.; Tiwari, Hemant K.

    2015-01-01

    Objective To identify novel genetic markers of obesity-related traits and to identify gene-diet interactions with n-3 polyunsaturated fatty acid (n-3 PUFA) intake in Yup’ik people. Material and Methods We measured body composition, plasma adipokines and ghrelin in 982 participants enrolled in the Center for Alaska Native Health Research (CANHR) Study. We conducted a genome-wide SNP linkage scan and targeted association analysis, fitting additional models to investigate putative gene-diet interactions. Finally, we performed bioinformatic analysis to uncover likely candidate genes within the identified linkage peaks. Results We observed evidence of linkage for all obesity-related traits, replicating previous results and identifying novel regions of interest for adiponectin (10q26.13-2) and thigh circumference (8q21.11-13). Bioinformatic analysis revealed DOCK1, PTPRE (10q26.13-2) and FABP4 (8q21.11-13) as putative candidate genes in the newly identified regions. Targeted SNP analysis under the linkage peaks identified associations between three SNPs and obesity-related traits: rs1007750 on chromosome 8 and thigh circumference (P=0.0005), rs878953 on chromosome 5 and thigh skinfold (P=0.0004), and rs1596854 on chromosome 11 for waist circumference (P=0.0003). Finally, we showed that n-3 PUFA modified the association between obesity related traits and two additional variants (rs2048417 on chromosome 3 for adiponectin, P for interaction=0.0006 and rs730414 on chromosome 11 for percentage body fat, P for interaction=0.0004). Conclusions This study presents evidence of novel genomic regions and gene-diet interactions that may contribute to the pathophysiology of obesity-related traits among Yup’ik people. PMID:25772781

  11. Linkage and association analysis of obesity traits reveals novel loci and interactions with dietary n-3 fatty acids in an Alaska Native (Yup'ik) population.

    PubMed

    Vaughan, Laura Kelly; Wiener, Howard W; Aslibekyan, Stella; Allison, David B; Havel, Peter J; Stanhope, Kimber L; O'Brien, Diane M; Hopkins, Scarlett E; Lemas, Dominick J; Boyer, Bert B; Tiwari, Hemant K

    2015-06-01

    To identify novel genetic markers of obesity-related traits and to identify gene-diet interactions with n-3 polyunsaturated fatty acid (n-3 PUFA) intake in Yup'ik people. We measured body composition, plasma adipokines and ghrelin in 982 participants enrolled in the Center for Alaska Native Health Research (CANHR) Study. We conducted a genome-wide SNP linkage scan and targeted association analysis, fitting additional models to investigate putative gene-diet interactions. Finally, we performed bioinformatic analysis to uncover likely candidate genes within the identified linkage peaks. We observed evidence of linkage for all obesity-related traits, replicating previous results and identifying novel regions of interest for adiponectin (10q26.13-2) and thigh circumference (8q21.11-13). Bioinformatic analysis revealed DOCK1, PTPRE (10q26.13-2) and FABP4 (8q21.11-13) as putative candidate genes in the newly identified regions. Targeted SNP analysis under the linkage peaks identified associations between three SNPs and obesity-related traits: rs1007750 on chromosome 8 and thigh circumference (P=0.0005), rs878953 on chromosome 5 and thigh skinfold (P=0.0004), and rs1596854 on chromosome 11 for waist circumference (P=0.0003). Finally, we showed that n-3 PUFA modified the association between obesity related traits and two additional variants (rs2048417 on chromosome 3 for adiponectin, P for interaction=0.0006 and rs730414 on chromosome 11 for percentage body fat, P for interaction=0.0004). This study presents evidence of novel genomic regions and gene-diet interactions that may contribute to the pathophysiology of obesity-related traits among Yup'ik people. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Blood pressure-lowering effects of long chain n-3 fatty acids from meals enriched with liquid fish oil and from microencapsulated powder.

    PubMed

    Sveinsdottir, Kolbrun; Martinsdottir, Emilia; Ramel, Alfons

    2016-12-01

    Diet plays an important role in the etiology of hypertension. Blood pressure (BP)-lowering properties of long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) are promising. The aim was to investigate whether different formulations of fish oil differently affect blood pressure in community-dwelling adults. The hypothesis was that fish oil formulations would improve BP in comparison with a placebo. In this 4-week randomized, placebo-controlled, doubly-blinded dietary intervention study, participants (N = 99, >50 years) from the capital area of Iceland were randomized into three groups. Group 1 (n = 38) received 6 meals/week fortified with a liquid fish oil and placebo powder. Group 2 (n = 30) received conventional (unfortified) meals and microencapsulated powder. Group 3 (n = 31) was the control group which received conventional meals and placebo powder. Calculated on a weekly basis, the amount of EPA + DHA provided was 1.5 g/d. Systolic (SBP) and diastolic BP (DBP) were measured before and after the intervention period. Seventy-seven subjects finished the study (77.8%). Drop-out rates were not different between groups. According to multivariate statistics, endpoint SBP was lower in Group 1 (-7.0 mmHg, p = 0.037) and in Group 2 (-7.2 mmHg, p = 0.037) as compared with Group 3. There was no significant difference in DBP between the groups. Our study shows that LC n-3 PUFA from microencapsulated powder are equally effective to meaningfully reduce SBP as LC n-3 PUFA from meals enriched with liquid fish oil in comparison with a control group.

  13. Does Diet Matter? The Use of Polyunsaturated Fatty Acids (PUFAs) and Other Dietary Supplements in Inflammation-Associated Depression.

    PubMed

    Hastings, Caitlín N M; Sheridan, Hannah; Pariante, Carmine M; Mondelli, Valeria

    2017-01-01

    An increasingly pertinent issue in psychiatry in recent years is that of the limitations of conventional antidepressants, which are not effective in a large number of patients with major depressive disorder (MDD). Coupled with emerging hypotheses about the role of inflammation in depression, it would appear that it is time to look for alternative treatments for these symptoms.This review will examine an emerging area in psychiatry, that of dietary supplements and the diet in general to treat depressive symptoms, and inflammation in depression. In particular, polyunsaturated fatty acids (PUFAs), probiotics and folic acid are three supplements that demonstrate the ability to target inflammation and other underlying systems in depression. While there is a definite need for more research in all these supplements to determine true efficacy, dosage and target populations, they can be used as mono- or adjunctive therapies to good effect, and show superior safety profiles when compared with more traditional alternatives.

  14. Omega-3 PUFA concentration by a novel PVDF nano-composite membrane filled with nano-porous silica particles.

    PubMed

    Ghasemian, Samaneh; Sahari, Mohammad Ali; Barzegar, Mohsen; Ahmadi Gavlighi, Hasan

    2017-09-01

    In this study, polyvinylidene fluoride (PVDF) and nano-porous silica particle were used to fabricate an asymmetric nano-composite membrane. Silica particles enhanced the thermal stability of PVDF/SiO 2 membranes; increasing the decomposition temperature from 371°C to 408°C. Cross sectional morphology showed that silica particles were dispersed in polymer matrix uniformly. However, particle agglomeration was found at higher loading of silica (i.e., 20 by weight%). The separation performance of nano-composite membranes was also evaluated using the omega-3 polyunsaturated fatty acids (PUFA) concentration at a temperature and pressure of 30°C and 4bar, respectively. Silica particle increased the omega-3PUFA concentration from 34.8 by weight% in neat PVDF to 53.9 by weight% in PVDF with 15 by weight% of silica. Moreover, PVDF/SiO 2 nano-composite membranes exhibited enhanced anti-fouling property compared to neat PVDF membrane. Fouling mechanism analysis revealed that complete pore blocking was the predominant mechanism occurring in oil filtration. The concentration of omega-3 polyunsaturated fatty acids (PUFA) is important in the oil industries. While the current methods demand high energy consumptions in concentrating the omega-3, membrane separation technology offers noticeable advantages in producing pure omega-3 PUFA. Moreover, concentrating omega-3 via membrane separation produces products in the triacylglycerol form which possess better oxidative stability. In this work, the detailed mechanisms of fouling which limits the performance of membrane separation were investigated. Incorporating silica particles to polymeric membrane resulted in the formation of mixed matrix membrane with improved anti-fouling behaviour compared to the neat polymeric membrane. Hence, the industrial potential of membrane processing to concentrate omega-3 fatty acids is enhanced. Copyright © 2017. Published by Elsevier Ltd.

  15. Systematic Review on N-3 and N-6 Polyunsaturated Fatty Acid Intake in European Countries in Light of the Current Recommendations – Focus on Specific Population Groups

    PubMed Central

    Sioen, Isabelle; van Lieshout, Lilou; Eilander, Ans; Fleith, Mathilde; Lohner, Szimonetta; Szommer, Alíz; Petisca, Catarina; Eussen, Simone; Forsyth, Stewart; Calder, Philip C.; Campoy, Cristina; Mensink, Ronald P.

    2017-01-01

    Background Earlier reviews indicated that in many countries adults, children and adolescents consume on an average less polyunsaturated fatty acids (PUFAs) than recommended by the Food and Agriculture Organisation/World Health Organisation. Summary The intake of total and individual n-3 and n-6 PUFAs in European infants, children, adolescents, elderly and pregnant/lactating women was evaluated systematically. Results The evaluations were done against recommendations of the European Food Safety Authority. Key Messages Fifty-three studies from 17 different European countries reported an intake of total n-3 and n-6 PUFAs and/or individual n-3 or n-6 PUFAs in at least one of the specific population groups: 10 in pregnant women, 4 in lactating women, 3 in infants 6–12 months, 6 in children 1–3 years, 11 in children 4–9 years, 8 in adolescents 10–18 years and 11 in elderly >65 years. Mean linoleic acid intake was within the recommendation (4 energy percentage [E%]) in 52% of the countries, with inadequate intakes more likely in lactating women, adolescents and elderly. Mean α-linolenic acid intake was within the recommendation (0.5 E%) in 77% of the countries. In 26% of the countries, mean eicosapentaenoic acid and/or docosahexaenoic acid intake was as recommended. These results indicate that intake of n-3 and n-6 PUFAs may be suboptimal in specific population groups in Europe. PMID:28190013

  16. Dietary fructose but not starch is responsible for hyperlipidemia associated with copper deficiency in rats: effect of high-fat diet.

    PubMed

    Fields, M; Lewis, C G

    1999-02-01

    To test the hypothesis that copper deficiency in rats may be hyperlipidemic only when the diets consumed contain nutrients which contribute to blood lipids such as fructose and high fat. Weanling male Sprague Dawley rats were fed diets which contained either starch or fructose as their sole carbohydrate source. The diets were either inadequate (0.6 microg Cu/g) or adequate (6.0 microg Cu/g) in copper and contained either high (300 g/kg) or low (60 g/kg) fat. At the end of the 4th week the rats were killed. Livers were analyzed for copper content. Plasma was analyzed for cholesterol and triglyceride concentrations. High-fat diet did not increase blood lipids in rats fed a copper-deficient diet containing starch. In contrast, the combination of high-fat diet with fructose increased blood triglycerides and fructose with copper deficiency resulted in a significant increases in blood cholesterol. Hyperlipidemia of copper deficiency in rats is dependent on synergistic effects between dietary fructose and copper deficiency and fructose and amount of dietary fat. Hyperlipidemia does not develop if starch is the main source of dietary carbohydrate in a copper-deficient diet even if a high-fat diet is fed.

  17. Micronutrient deficiency in obese subjects undergoing low calorie diet

    PubMed Central

    2012-01-01

    Background The prevalence of micronutrient deficiencies is higher in obese individuals compared to normal-weight people, probably because of inadequate eating habits but also due to increased demands among overweight persons, which are underestimated by dietary reference intakes (DRI) intended for the general population. We therefore evaluated the dietary micronutrient intake in obese individuals compared to a reference population and DRI recommendations. Furthermore, we determined the micronutrient status in obese subjects undergoing a standardized DRI-covering low-calorie formula diet to analyze if the DRI meet the micronutrient requirements of obese individuals. Methods In 104 subjects baseline micronutrient intake was determined by dietary record collection. A randomly assigned subgroup of subjects (n = 32) underwent a standardized DRI-covering low-calorie formula diet over a period of three months. Pre- and post-interventional intracellular micronutrient status in buccal mucosa cells (BMC) was analyzed, as well as additional micronutrient serum concentrations in 14 of the subjects. Results Prior to dietetic intervention, nutrition was calorie-rich and micronutrient-poor. Baseline deficiencies in serum concentrations were observed for 25-hydroxyvitamin-D, vitamin C, selenium, iron, as well as ß-carotene, vitamin C, and lycopene in BMC. After a three-month period of formula diet even more subjects had reduced micronutrient levels of vitamin C (serum, BMC), zinc, and lycopene. There was a significant negative correlation between lipophilic serum vitamin concentrations and body fat, as well as between iron and C-reactive protein. Conclusions The present pilot study shows that micronutrient deficiency occurring in obese individuals is not corrected by protein-rich formula diet containing vitamins and minerals according to DRI. In contrast, micronutrient levels remain low or become even lower, which might be explained by insufficient intake, increased demand

  18. Whey protein gel composites in the diet of goats increased the omega-3 and omega-6 content of milk fat.

    PubMed

    Weinstein, J A; Taylor, S J; Rosenberg, M; DePeters, E J

    2016-08-01

    Previously, feeding whey protein gels containing polyunsaturated fatty acids (PUFA) reduced their rumen biohydrogenation and increased their concentration in milk fat of Holstein cows. Our objective was to test the efficacy of whey protein isolate (WPI) gels produced in a steam tunnel as a method to alter the fatty acid (FA) composition of the milk lipids. Four primiparous Lamancha goats in midlactation were fed three diets in a 3 × 4 Latin square design. The WPI gels were added to a basal concentrate mix that contained one of three lipid sources: (i) 100% soya bean oil (S) to create (WPI/S), (ii) a 1:1 (wt/wt) mixture of S and linseed (L) oil to create (WPI/SL), or (iii) 100% L to create (WPI/L). Periods were 22 days with the first 10 days used as an adjustment phase followed by a 12-day experimental phase. During the adjustment phase, all goats received a rumen available source of lipid, yellow grease, to provide a baseline for milk FA composition. During the experimental phase, each goat received its assigned WPI. Milk FA concentration of C18:2 n-6 and C18:3 n-3 reached 9.3 and 1.64 g/100 g FA, respectively, when goats were fed WPI/S. Feeding WPI/SL increased the C18:2 n-6 and C18:3 n-3 concentration to 6.22 and 4.36 g/100 g FA, and WPI/L increased C18:2 n-6 and C18:3 n-3 to 3.96 and 6.13 g/100 g FA respectively. The adjusted transfer efficiency (%) of C18:3 n-3 to milk FA decreased significantly as dietary C18:3 n-3 intake increased. Adjusted transfer efficiency for C18:2 n-6 did not change with increasing intake of C18:2 n-6. The WPI gels were effective at reducing rumen biohydrogenation of PUFA; however, we observed a change in the proportion increase of C18:3 n-3 in milk FA suggesting possible regulation of n-3 FA to the lactating caprine mammary gland. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  19. PUFA Status and Methylmercury Exposure Are Not Associated with Leukocyte Telomere Length in Mothers or Their Children in the Seychelles Child Development Study.

    PubMed

    Yeates, Alison J; Thurston, Sally W; Li, Huiqi; Mulhern, Maria S; McSorley, Emeir M; Watson, Gene E; Shamlaye, Conrad F; Strain, J J; Myers, Gary J; Davidson, Philip W; van Wijngaarden, Edwin; Broberg, Karin

    2017-11-01

    Background: Leukocyte telomere length (TL) is associated with age-related diseases and early mortality, but there is a lack of data on the determinants of TL in early life. Evidence suggests that dietary intake of marine n-3 (ω-3) polyunsaturated fatty acids (PUFAs) is protective of telomere attrition, yet the effect of methylmercury exposure, also found in fish, on TL is unknown. Objective: The aim of this study was to investigate the associations between prenatal PUFA status, methylmercury exposure, and TL in mothers and children in the SCDS (Seychelles Child Development Study), for whom fish consumption is high. Methods: Blood samples collected from 229 mothers (at 28 wk gestation and delivery) and children (at 5 y of age) in the SCDS first nutrition cohort were analyzed for PUFA concentrations. Prenatal mercury was measured in maternal hair collected at delivery. Postnatal mercury was also measured in children's hair samples with the use of a cumulative metric derived from values obtained at 3-5 y of age. Relative TL was measured in blood obtained from mothers at delivery, in cord blood, and in children at 5 y of age by quantitative polymerase chain reaction. Linear regression models were used to investigate the associations between PUFA status, methylmercury exposure, and TL. Results: Neither prenatal PUFA status or methylmercury exposure was associated with TL of the mother or child or with TL attrition rate. However, a higher prenatal n-6:n-3 PUFA ratio was significantly associated with longer TLs in the mothers (β = 0.001, P = 0.048). Child PUFA status and methylmercury exposure were not associated with child TL. However, higher family Hollingshead socioeconomic status (SES) scores at 9 mo of age were significantly associated with longer TLs in cord blood (β = 0.005, P = 0.03). Conclusions: We found no evidence that PUFA status or methylmercury exposure are determinants of TL in either the mother or child. However, our results support the hypothesis that

  20. Low levels of very-long-chain n-3 PUFA in Atlantic salmon (Salmo salar) diet reduce fish robustness under challenging conditions in sea cages.

    PubMed

    Bou, Marta; Berge, Gerd M; Baeverfjord, Grete; Sigholt, Trygve; Østbye, Tone-Kari; Ruyter, Bente

    2017-01-01

    The present study aimed to determine the minimum requirements of the essential n -3 fatty acids EPA and DHA in Atlantic salmon ( Salmo salar ) that can secure their health under challenging conditions in sea cages. Individually tagged Atlantic salmon were fed 2, 10 and 17 g/kg of EPA + DHA from 400 g until slaughter size (about 3·5 kg). The experimental fish reared in sea cages were subjected to the challenging conditions typically experienced under commercial production. Salmon receiving the lowest EPA + DHA levels showed lower growth rates in the earlier life stages, but no significant difference in final weights at slaughter. The fatty acid composition of various tissues and organs had remarkably changed. The decreased EPA + DHA in the different tissue membrane phospholipids were typically replaced by pro-inflammatory n -6 fatty acids, most markedly in the skin. The EPA + DHA levels were maintained at a higher level in the liver and erythrocytes than in the muscle, intestine and skin. After delousing at high water temperatures, the mortality rates were 63, 52 and 16 % in the salmon fed 2, 10 and 17 g/kg EPA + DHA. Low EPA + DHA levels also increased the liver, intestinal and visceral fat amount, reduced intervertebral space and caused mid-intestinal hyper-vacuolisation. Thus, 10 g/kg EPA + DHA in the Atlantic salmon diet, a level previously regarded as sufficient, was found to be too low to maintain fish health under demanding environmental conditions in sea cages.

  1. Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: a 6-month randomised controlled trial.

    PubMed

    Sinn, Natalie; Milte, Catherine M; Street, Steven J; Buckley, Jonathan D; Coates, Alison M; Petkov, John; Howe, Peter R C

    2012-06-01

    Depressive symptoms may increase the risk of progressing from mild cognitive impairment (MCI) to dementia. Consumption of n-3 PUFA may alleviate both cognitive decline and depression. The aim of the present study was to investigate the benefits of supplementing a diet with n-3 PUFA, DHA and EPA, for depressive symptoms, quality of life (QOL) and cognition in elderly people with MCI. We conducted a 6-month double-blind, randomised controlled trial. A total of fifty people aged >65 years with MCI were allocated to receive a supplement rich in EPA (1·67 g EPA + 0·16 g DHA/d; n 17), DHA (1·55 g DHA + 0·40 g EPA/d; n 18) or the n-6 PUFA linoleic acid (LA; 2·2 g/d; n 15). Treatment allocation was by minimisation based on age, sex and depressive symptoms (Geriatric Depression Scale, GDS). Physiological and cognitive assessments, questionnaires and fatty acid composition of erythrocytes were obtained at baseline and 6 months (completers: n 40; EPA n 13, DHA n 16, LA n 11). Compared with the LA group, GDS scores improved in the EPA (P=0·04) and DHA (P=0·01) groups and verbal fluency (Initial Letter Fluency) in the DHA group (P=0·04). Improved GDS scores were correlated with increased DHA plus EPA (r 0·39, P=0·02). Improved self-reported physical health was associated with increased DHA. There were no treatment effects on other cognitive or QOL parameters. Increased intakes of DHA and EPA benefited mental health in older people with MCI. Increasing n-3 PUFA intakes may reduce depressive symptoms and the risk of progressing to dementia. This needs to be investigated in larger, depressed samples with MCI.

  2. Nutritional Evaluation of an EPA-DHA Oil from Transgenic Camelina sativa in Feeds for Post-Smolt Atlantic Salmon (Salmo salar L.).

    PubMed

    Betancor, Mónica B; Sprague, Matthew; Sayanova, Olga; Usher, Sarah; Metochis, Christoforos; Campbell, Patrick J; Napier, Johnathan A; Tocher, Douglas R

    2016-01-01

    Vegetable oils (VO) are possible substitutes for fish oil in aquafeeds but their use is limited by their lack of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA). However, oilseed crops can be modified to produce n-3 LC-PUFA such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, representing a potential option to fill the gap between supply and demand of these important nutrients. Camelina sativa was metabolically engineered to produce a seed oil with around 15% total n-3 LC-PUFA to potentially substitute for fish oil in salmon feeds. Post-smolt Atlantic salmon (Salmo salar) were fed for 11-weeks with one of three experimental diets containing either fish oil (FO), wild-type Camelina oil (WCO) or transgenic Camelina oil (DCO) as added lipid source to evaluate fish performance, nutrient digestibility, tissue n-3 LC-PUFA, and metabolic impact determined by liver transcriptome analysis. The DCO diet did not affect any of the performance or health parameters studied and enhanced apparent digestibility of EPA and DHA compared to the WCO diet. The level of total n-3 LC-PUFA was higher in all the tissues of DCO-fed fish than in WCO-fed fish with levels in liver similar to those in fish fed FO. Endogenous LC-PUFA biosynthetic activity was observed in fish fed both the Camelina oil diets as indicated by the liver transcriptome and levels of intermediate metabolites such as docosapentaenoic acid, with data suggesting that the dietary combination of EPA and DHA inhibited desaturation and elongation activities. Expression of genes involved in phospholipid and triacylglycerol metabolism followed a similar pattern in fish fed DCO and WCO despite the difference in n-3 LC-PUFA contents.

  3. Nutritional Evaluation of an EPA-DHA Oil from Transgenic Camelina sativa in Feeds for Post-Smolt Atlantic Salmon (Salmo salar L.)

    PubMed Central

    Betancor, Mónica B.; Sprague, Matthew; Sayanova, Olga; Usher, Sarah; Metochis, Christoforos; Campbell, Patrick J.; Napier, Johnathan A.; Tocher, Douglas R.

    2016-01-01

    Vegetable oils (VO) are possible substitutes for fish oil in aquafeeds but their use is limited by their lack of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA). However, oilseed crops can be modified to produce n-3 LC-PUFA such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, representing a potential option to fill the gap between supply and demand of these important nutrients. Camelina sativa was metabolically engineered to produce a seed oil with around 15% total n-3 LC-PUFA to potentially substitute for fish oil in salmon feeds. Post-smolt Atlantic salmon (Salmo salar) were fed for 11-weeks with one of three experimental diets containing either fish oil (FO), wild-type Camelina oil (WCO) or transgenic Camelina oil (DCO) as added lipid source to evaluate fish performance, nutrient digestibility, tissue n-3 LC-PUFA, and metabolic impact determined by liver transcriptome analysis. The DCO diet did not affect any of the performance or health parameters studied and enhanced apparent digestibility of EPA and DHA compared to the WCO diet. The level of total n-3 LC-PUFA was higher in all the tissues of DCO-fed fish than in WCO-fed fish with levels in liver similar to those in fish fed FO. Endogenous LC-PUFA biosynthetic activity was observed in fish fed both the Camelina oil diets as indicated by the liver transcriptome and levels of intermediate metabolites such as docosapentaenoic acid, with data suggesting that the dietary combination of EPA and DHA inhibited desaturation and elongation activities. Expression of genes involved in phospholipid and triacylglycerol metabolism followed a similar pattern in fish fed DCO and WCO despite the difference in n-3 LC-PUFA contents. PMID:27454884

  4. Hematological changes in nephritis in poultry induced by diets high in protein, high in calcium, containing urea, or deficient in vitamin A.

    PubMed

    Chandra, M; Singh, B; Singh, N; Ahuja, S P

    1984-04-01

    Nephritis was induced in 300, 18-day-old male Arbor Acre broiler chicks by feeding diets high (42.28%) in protein, high (3.27%) in calcium, containing urea (5%), or deficient in vitamin A. Various hematological parameters were studied at weekly intervals. Normocytic-normochromic anemia, characterized by a decrease in total erythrocyte counts, hemoglobin, packed cell volume, and an increase in erythrocyte sedimentation rate, was evident in the birds kept on diets high in protein, high in calcium, or deficient in vitamin A. Increased total erythrocytes, hemoglobin packed cell volume, and erythrocyte sedimentation rate was observed in birds fed urea. Differential leucocyte counts revealed lymphopenia, heterophilia and monocytosis in birds kept on diets high in protein, containing urea, or deficient in vitamin A. However, lymphocytosis, heteropenia , and monocytosis were recorded in birds fed the high calcium diet.

  5. Salmon diet in patients with active ulcerative colitis reduced the simple clinical colitis activity index and increased the anti-inflammatory fatty acid index--a pilot study.

    PubMed

    Grimstad, Tore; Berge, Rolf K; Bohov, Pavol; Skorve, Jon; Gøransson, Lasse; Omdal, Roald; Aasprong, Ole G; Haugen, Margaretha; Meltzer, Helle M; Hausken, Trygve

    2011-02-01

    Data concerning the anti-inflammatory effect of dietary n-3 polyunsaturated fatty acids (PUFAs) in patients with ulcerative colitis (UC) are inconsistent. Salmon fillet contains n-3 PUFAs and bioactive peptides that may improve its effects compared to fish oil alone. We assessed the efficacy of a salmon-rich diet in patients with mild ulcerative colitis. An 8-week intervention pilot study was designed to assess the effects of 600 grams Atlantic salmon consumption weekly in 12 UC patients. Simple clinical colitis activity index (SCCAI), a dietary questionnaire, sigmoidoscopy, selected serum inflammatory markers, fecal calprotectin, and plasma and rectal biopsy fatty acid profiles were assessed before and after intervention. The levels of C20:4n-6 arachidonic acid in biopsies after dietary intervention were correlated with histology and endoscopy scores. The concentrations of n-3 PUFAs, C20:5n-3 eicosapentaenoic acid, C22:6n-3 docosahexaenoic acid, and the n-3/n-6 ratio increased in plasma and rectal biopsies. The anti-inflammatory fatty acid index (AIFAI) increased both in biopsies and plasma accompanied with a significantly reduced SCCAI. Based on evidence of SCCAI and AIFAI and a tendency of decreased levels of CRP and homocysteine, intake of Atlantic salmon may have beneficial effects on disease activity in patients with mild ulcerative colitis.

  6. Ovarian Function Modulates the Effects of Long-Chain Polyunsaturated Fatty Acids on the Mouse Cerebral Cortex.

    PubMed

    Herrera, Jose L; Ordoñez-Gutierrez, Lara; Fabrias, Gemma; Casas, Josefina; Morales, Araceli; Hernandez, Guadalberto; Acosta, Nieves G; Rodriguez, Covadonga; Prieto-Valiente, Luis; Garcia-Segura, Luis M; Alonso, Rafael; Wandosell, Francisco G

    2018-01-01

    Different dietary ratios of n -6/ n -3 long-chain polyunsaturated fatty acids (LC-PUFAs) may alter brain lipid profile, neural activity, and brain cognitive function. To determine whether ovarian hormones influence the effect of diet on the brain, ovariectomized and sham-operated mice continuously treated with placebo or estradiol were fed for 3 months with diets containing low or high n -6/ n -3 LC-PUFA ratios. The fatty acid (FA) profile and expression of key neuronal proteins were analyzed in the cerebral cortex, with intact female mice on standard diet serving as internal controls of brain lipidome composition. Diets containing different concentrations of LC-PUFAs greatly modified total FAs, sphingolipids, and gangliosides in the cerebral cortex. Some of these changes were dependent on ovarian hormones, as they were not detected in ovariectomized animals, and in the case of complex lipids, the effect of ovariectomy was partially or totally reversed by continuous administration of estradiol. However, even though differential dietary LC-PUFA content modified the expression of neuronal proteins such as synapsin and its phosphorylation level, PSD-95, amyloid precursor protein (APP), or glial proteins such as glial fibrillary acidic protein (GFAP), an effect also dependent on the presence of the ovary, chronic estradiol treatment was unable to revert the dietary effects on brain cortex synaptic proteins. These results suggest that, in addition to stable estradiol levels, other ovarian hormones such as progesterone and/or cyclic ovarian secretory activity could play a physiological role in the modulation of dietary LC-PUFAs on the cerebral cortex, which may have clinical implications for post-menopausal women on diets enriched with different proportions of n -3 and n -6 LC-PUFAs.

  7. Green tea polyphenol epigallocatechin-3-gallate increases atherosclerotic plaque stability in apolipoprotein E-deficient mice fed a high-fat diet.

    PubMed

    Wang, Qiming; Zhang, Jian; Li, Yafei; Shi, Haojie; Wang, Hao; Chen, Bingrui; Wang, Fang; Wang, Zemu; Yang, Zhijian; Wang, Liansheng

    2018-06-04

    Epigallocatechin-3-gallate (EGCG), which is the principal component of green tea, has been shown to prevent the formation of atherosclerosis. However, the effect of EGCG on atherosclerotic plaque stability remains unknown. This study aimed to assess whether EGCG can enhance atherosclerotic plaque stability and to investigate the underlying mechanisms. Apolipoprotein E-deficient mice fed a high-fat diet were injected intraperitoneally with EGCG (10 mg/kg ) for 16 weeks. Cross sections of the brachiocephalic arteries were stained with hematoxylin and eosin (HE) for morphometric analyses or Masson's trichrome for collagen content analyses. Immunohistochemistry was performed to evaluate the percentage of macrophages and smooth muscle cells (SMCs). Protein expression and matrix metalloproteinase (MMP) activity were assayed by Western blot and gelatin zymography, respectively. Serum inflammatory cytokine levels were quantified by enzyme-linked immunosorbent assay. After 16 weeks of feeding the high-fat diet, there was clear atherosclerosis formation in the proximal brachiocephalic artery segments according to HE staining. EGCG treatment significantly increased the thickness of the fibrous cap. In the atherosclerotic plaques of the EGCG group, the relative macrophage content was decreased, whereas the relative SMC and collagen contents were increased. The expression levels of MMP-2, MMP-9 and extracellular matrix metalloproteinase inducer (EMMPRIN) were significantly decreased by EGCG treatment. In addition, EGCG treatment decreased the circulating TNF-a, IL-6, MCP-1 and IFN-γ levels in apolipoprotein E-deficient mice. EGCG promotes atherosclerotic lesion stability in apolipoprotein E-deficient mice. Potentially, these effects are mediated through the inhibition of inflammatory cytokine, MMPs and EMMPRIN expression.

  8. White bass (Morone chrysops) preferentially retain n-3 PUFA in ova when fed prepared diets with varying FA content

    USDA-ARS?s Scientific Manuscript database

    We evaluated the fatty acid composition of broodstock white bass ova fed one of the following commercial diets for four and eight weeks prior to sampling: Zeigler BassBrood-45/15, Bio-Oregon BioBrood™-48/20, Cargill AquaFeed™-45/12, Cargill AquaFeed™-48/18, Skretting Extruded Steelhead-45/16, and Sk...

  9. Methyl donor-deficient diet during development can affect fear and anxiety in adulthood in C57BL/6J mice.

    PubMed

    Ishii, Daisuke; Matsuzawa, Daisuke; Matsuda, Shingo; Tomizawa, Haruna; Sutoh, Chihiro; Shimizu, Eiji

    2014-01-01

    DNA methylation is one of the essential factors in the control of gene expression. Folic acid, methionine and choline (methyl donors)--all nutrients related to one-carbon metabolism--are known as important mediators of DNA methylation. A previous study has shown that long-term administration of a diet lacking in methyl donors caused global DNA hypermethylation in the brain (Pogribny et al., 2008). However, no study has investigated the effects of a diet lacking in methyl donors during the developmental period on emotional behaviors such as fear and anxiety-like behavior in association with gene expressions in the brain. In addition, it has not been elucidated whether a diet supplemented with methyl donors later in life can reverse these changes. Therefore, we examined the effects of methyl donor deficiency during the developmental period on fear memory acquisition/extinction and anxiety-like behavior, and the relevant gene expressions in the hippocampus in juvenile (6-wk) and adult (12-wk) mice. We found that juvenile mice fed a methyl-donor-deficient diet had impaired fear memory acquisition along with decreases in the gene expressions of Dnmt3a and Dnmt3b. In addition, reduced anxiety-like behavior with decreased gene expressions of Grin2b and Gabar2 was observed in both the methyl-donor-deficient group and the body-weight-matched food-restriction group. After being fed a diet supplemented with methyl donors ad libitum, adult mice reversed the alteration of gene expression of Dnmt3a, Dnmt3b, Grin2b and Gabar2, but anxiety-like behavior became elevated. In addition, impaired fear-memory formation was observed in the adult mice fed the methyl-donor-deficient diet during the developmental period. Our study suggested that developmental alterations in the one-carbon metabolic pathway in the brain could have effects on emotional behavior and memory formation that last into adulthood.

  10. Methyl Donor-Deficient Diet during Development Can Affect Fear and Anxiety in Adulthood in C57BL/6J Mice

    PubMed Central

    Ishii, Daisuke; Matsuzawa, Daisuke; Matsuda, Shingo; Tomizawa, Haruna; Sutoh, Chihiro; Shimizu, Eiji

    2014-01-01

    DNA methylation is one of the essential factors in the control of gene expression. Folic acid, methionine and choline (methyl donors)–all nutrients related to one-carbon metabolism–are known as important mediators of DNA methylation. A previous study has shown that long-term administration of a diet lacking in methyl donors caused global DNA hypermethylation in the brain (Pogribny et al., 2008). However, no study has investigated the effects of a diet lacking in methyl donors during the developmental period on emotional behaviors such as fear and anxiety-like behavior in association with gene expressions in the brain. In addition, it has not been elucidated whether a diet supplemented with methyl donors later in life can reverse these changes. Therefore, we examined the effects of methyl donor deficiency during the developmental period on fear memory acquisition/extinction and anxiety-like behavior, and the relevant gene expressions in the hippocampus in juvenile (6-wk) and adult (12-wk) mice. We found that juvenile mice fed a methyl-donor-deficient diet had impaired fear memory acquisition along with decreases in the gene expressions of Dnmt3a and Dnmt3b. In addition, reduced anxiety-like behavior with decreased gene expressions of Grin2b and Gabar2 was observed in both the methyl-donor-deficient group and the body-weight-matched food-restriction group. After being fed a diet supplemented with methyl donors ad libitum, adult mice reversed the alteration of gene expression of Dnmt3a, Dnmt3b, Grin2b and Gabar2, but anxiety-like behavior became elevated. In addition, impaired fear-memory formation was observed in the adult mice fed the methyl-donor-deficient diet during the developmental period. Our study suggested that developmental alterations in the one-carbon metabolic pathway in the brain could have effects on emotional behavior and memory formation that last into adulthood. PMID:25144567

  11. Characterization of protected designation of origin Italian meat products obtained from heavy pigs fed barley-based diets.

    PubMed

    Prandini, A; Sigolo, S; Gallo, A; Faeti, V; Della Casa, G

    2015-09-01

    A study was conducted to evaluate the quality and sensory properties of protected designation of origin (PDO) Parma ham and Piacentina neck obtained from heavy pigs (Italian Duroc × Italian Large White) fed barley-based diets. Four diets were tested: 1) a corn-based diet (control), 2) the control diet with 80% of a normal-amylose hulled barley variety (Cometa), 3) the control diet with 80% of a normal-amylose hulless barley variety (Astartis), and 4) the control diet with 80% of a low-amylose hulless barley variety (Alamo). All the meat products were analyzed for physicochemical and color parameters. The dry-cured hams and necks were also evaluated for sensory properties. The data of physicochemical, color, and sensory parameters were separately analyzed by multivariate factor analysis, and interpretation of each extracted factor was based on specific original variables loading on each one. The meat products obtained from pigs fed the barley-based diets differed from those obtained from the control pigs on the PUFA factors characterized by C18:2-6 and omega-3:omega-6 ratio. In particular, the meat products obtained from pigs fed the barley-based diets had a lower content of C18:2-6 and a higher omega-3:omega-6 ratio ( < 0.05) than the control. In fresh hams, iodine number and SFA (C16:0 and C18:0) in addition to PUFA and omega-3:omega-6 ratio loaded on the PUFA/SFA factor. The fresh hams produced from pigs fed the barley-based diets had subcutaneous fat (SC) with a lower iodine number and a higher SFA level compared with those produced from the control pigs ( < 0.05). A sex effect was measured for PUFA/SFA and oleic acid factors. In particular, the barrow SC had a lower SFA content, higher PUFA and C18:1-9 levels, and a higher iodine number ( < 0.05) than the gilt SC. There were no appreciable differences in the color and sensory properties of meat products obtained from pigs fed the different diets. The hams from barrows differed from those obtained from gilts on

  12. Effects of glucose-6-phosphate dehydrogenase deficiency on the metabolic and cardiac responses to obesogenic or high-fructose diets.

    PubMed

    Hecker, Peter A; Mapanga, Rudo F; Kimar, Charlene P; Ribeiro, Rogerio F; Brown, Bethany H; O'Connell, Kelly A; Cox, James W; Shekar, Kadambari C; Asemu, Girma; Essop, M Faadiel; Stanley, William C

    2012-10-15

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common human enzymopathy that affects cellular redox status and may lower flux into nonoxidative pathways of glucose metabolism. Oxidative stress may worsen systemic glucose tolerance and cardiometabolic syndrome. We hypothesized that G6PD deficiency exacerbates diet-induced systemic metabolic dysfunction by increasing oxidative stress but in myocardium prevents diet-induced oxidative stress and pathology. WT and G6PD-deficient (G6PDX) mice received a standard high-starch diet, a high-fat/high-sucrose diet to induce obesity (DIO), or a high-fructose diet. After 31 wk, DIO increased adipose and body mass compared with the high-starch diet but to a greater extent in G6PDX than WT mice (24 and 20% lower, respectively). Serum free fatty acids were increased by 77% and triglycerides by 90% in G6PDX mice, but not in WT mice, by DIO and high-fructose intake. G6PD deficiency did not affect glucose tolerance or the increased insulin levels seen in WT mice. There was no diet-induced hypertension or cardiac dysfunction in either mouse strain. However, G6PD deficiency increased aconitase activity by 42% and blunted markers of nonoxidative glucose pathway activation in myocardium, including the hexosamine biosynthetic pathway activation and advanced glycation end product formation. These results reveal a complex interplay between diet-induced metabolic effects and G6PD deficiency, where G6PD deficiency decreases weight gain and hyperinsulinemia with DIO, but elevates serum free fatty acids, without affecting glucose tolerance. On the other hand, it modestly suppressed indexes of glucose flux into nonoxidative pathways in myocardium, suggesting potential protective effects.

  13. Effects of glucose-6-phosphate dehydrogenase deficiency on the metabolic and cardiac responses to obesogenic or high-fructose diets

    PubMed Central

    Hecker, Peter A.; Mapanga, Rudo F.; Kimar, Charlene P.; Ribeiro, Rogerio F.; Brown, Bethany H.; O'Connell, Kelly A.; Cox, James W.; Shekar, Kadambari C.; Asemu, Girma; Essop, M. Faadiel

    2012-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common human enzymopathy that affects cellular redox status and may lower flux into nonoxidative pathways of glucose metabolism. Oxidative stress may worsen systemic glucose tolerance and cardiometabolic syndrome. We hypothesized that G6PD deficiency exacerbates diet-induced systemic metabolic dysfunction by increasing oxidative stress but in myocardium prevents diet-induced oxidative stress and pathology. WT and G6PD-deficient (G6PDX) mice received a standard high-starch diet, a high-fat/high-sucrose diet to induce obesity (DIO), or a high-fructose diet. After 31 wk, DIO increased adipose and body mass compared with the high-starch diet but to a greater extent in G6PDX than WT mice (24 and 20% lower, respectively). Serum free fatty acids were increased by 77% and triglycerides by 90% in G6PDX mice, but not in WT mice, by DIO and high-fructose intake. G6PD deficiency did not affect glucose tolerance or the increased insulin levels seen in WT mice. There was no diet-induced hypertension or cardiac dysfunction in either mouse strain. However, G6PD deficiency increased aconitase activity by 42% and blunted markers of nonoxidative glucose pathway activation in myocardium, including the hexosamine biosynthetic pathway activation and advanced glycation end product formation. These results reveal a complex interplay between diet-induced metabolic effects and G6PD deficiency, where G6PD deficiency decreases weight gain and hyperinsulinemia with DIO, but elevates serum free fatty acids, without affecting glucose tolerance. On the other hand, it modestly suppressed indexes of glucose flux into nonoxidative pathways in myocardium, suggesting potential protective effects. PMID:22829586

  14. Dietary polyunsaturated fatty acids and adaptation to chronic hypoxia alter acyl composition of serum and heart lipids.

    PubMed

    Balková, Patricie; Jezková, Jana; Hlavácková, Markéta; Neckár, Jan; Stanková, Barbora; Kolár, Frantisek; Novák, Frantisek; Nováková, Olga

    2009-11-01

    The effects of dietary supplementation with fat of different fatty acid profile and chronic intermittent hypoxia (CIH) on the fatty acid composition of serum and heart lipids were analysed. Adult male Wistar rats were fed a standard non-fat diet enriched with 10 % of lard, fish oil (n-3 PUFA) or maize oil (n-6 PUFA) for 10 weeks. After 4 weeks on the diets, each group was divided in two subgroups, either exposed to CIH in a barochamber (7000 m, twenty-five exposures) or kept at normoxia. In normoxic rats, the fish oil diet increased the level of conjugated dienes. The n-6:n-3 PUFA ratio in serum TAG, phospholipids (PL), cholesteryl esters (CE) and heart TAG, PL and diacylglycerols (DAG) followed the ratio in the fed diet (in the sequence maize oil>lard>fish oil). In heart TAG, PL and DAG, 20 : 4n-6 and 18 : 2n-6 were replaced by 22 : 6n-3 in the fish oil group. The main fatty acid in CE was 20 : 4n-6 in the lard and maize oil groups whereas in the fish oil group, half of 20 : 4n-6 was replaced by 20 : 5n-3. CIH further increased 20 : 5n-3 in CE in the fish oil group. CIH decreased the n-6:n-3 PUFA ratio in serum CE, heart TAG, PL and DAG in all dietary groups and stimulated the activity of catalase in the maize and fish oil groups. In conclusion, PUFA diets and CIH, both interventions considered to be cardioprotective, distinctly modified the fatty acid profile in serum and heart lipids with specific effects on conjugated diene production and catalase activity.

  15. Dietary enrichment with medium chain triglycerides (AC-1203) elevates polyunsaturated fatty acids in the parietal cortex of aged dogs: implications for treating age-related cognitive decline.

    PubMed

    Taha, Ameer Y; Henderson, Samuel T; Burnham, W M

    2009-09-01

    Dogs demonstrate an age-related cognitive decline, which may be related to a decrease in the concentration of omega-3 polyunsaturated fatty acids (n-3 PUFA) in the brain. Medium chain triglycerides (MCT) increase fatty acid oxidation, and it has been suggested that this may raise brain n-3 PUFA levels by increasing mobilization of n-3 PUFA from adipose tissue to the brain. The goal of the present study was to determine whether dietary MCT would raise n-3 PUFA concentrations in the brains of aged dogs. Eight Beagle dogs were randomized to a control diet (n = 4) or an MCT (AC-1203) enriched diet (n = 4) for 2 months. The animals were then euthanized and the parietal cortex was removed for phospholipid, cholesterol and fatty acid determinations by gas-chromatography. Dietary enrichment with MCT (AC-1203) resulted in a significant increase in brain phospholipid and total lipid concentrations (P < 0.05). In particular, n-3 PUFA within the phospholipid, unesterified fatty acid, and total lipid fractions were elevated in AC-1203 treated subjects as compared to controls (P < 0.05). Brain cholesterol concentrations did not differ significantly between the groups (P > 0.05). These results indicate that dietary enrichment with MCT, raises n-3 PUFA concentrations in the parietal cortex of aged dogs.

  16. Pantothenic acid deficiency may increase the urinary excretion of 2-oxo acids and nicotinamide catabolites in rats.

    PubMed

    Shibata, Katsumi; Inomoto, Kasumi; Nakata, Chifumi; Fukuwatari, Tsutomu

    2013-01-01

    Pantothenic acid (PaA) is involved in the metabolism of amino acids as well as fatty acid. We investigated the systemic metabolism of amino acids in PaA-deficient rats. For this purpose, urine samples were collected and 2-oxo acids and L-tryptophan (L-Trp) and its metabolites including nicotinamide were measured. Group 1 was freely fed a conventional chemically-defined complete diet and used as an ad lib-fed control, which group was used for showing reference values. Group 2 was freely fed the complete diet without PaA (PaA-free diet) and used as a PaA-deficient group. Group 3 was fed the complete diet, but the daily food amount was equal to the amount of the PaA-deficient group and used as a pair-fed control group. All rats were orally administered 100 mg of L-Trp/kg body weight at 09:00 on day 34 of the experiment and the following 24-h urine samples were collected. The urinary excretion of the sum of pyruvic acid and oxaloacetic acid was higher in rats fed the PaA-free diets than in the rats fed pair-fed the complete diet. PaA deficiency elicited the increased urinary excretion of anthranilic acid and kynurenic acid, while the urinary excretion of xanthurenic acid decreased. The urinary excretion of L-Trp itself, 3-hydroxyanthranilic acid, and quinolinic acid revealed no differences between the rats fed the PaA-free and pair-fed the complete diets. PaA deficiency elicited the increased excretion of N(1)-methylnicotinamide, N(1)-methyl-2-pyridone-5-carboxamide, and N(1)-methyl-4-pyridone-3-carboxamide. These findings suggest that PaA deficiency disturbs the amino acid catabolism.

  17. Perinatal supplementation with omega-3 polyunsaturated fatty acids improves sevoflurane-induced neurodegeneration and memory impairment in neonatal rats.

    PubMed

    Lei, Xi; Zhang, Wenting; Liu, Tengyuan; Xiao, Hongyan; Liang, Weimin; Xia, Weiliang; Zhang, Jun

    2013-01-01

    To investigate if perinatal Omega-3 polyunsaturated fatty acids (n-3 PUFAs) supplementation can improve sevoflurane-induced neurotoxicity and cognitive impairment in neonatal rats. Female Sprague-Dawley rats (n = 3 each group) were treated with or without an n-3 PUFAs (fish oil) enriched diet from the second day of pregnancy to 14 days after parturition. The offspring rats (P7) were treated with six hours sevoflurane administration (one group without sevoflurane/prenatal n-3 PUFAs supplement as control). The 5-bromodeoxyuridine (Brdu) was injected intraperitoneally during and after sevoflurane anesthesia to assess dentate gyrus (DG) progenitor proliferation. Brain tissues were harvested and subjected to Western blot and immunohistochemistry respectively. Morris water maze spatial reference memory, fear conditioning, and Morris water maze memory consolidation were tested at P35, P63 and P70 (n = 9), respectively. Six hours 3% sevoflurane administration increased the cleaved caspase-3 in the thalamus, parietal cortex but not hippocampus of neonatal rat brain. Sevoflurane anesthesia also decreased the neuronal precursor proliferation of DG in rat hippocampus. However, perinatal n-3 PUFAs supplement could decrease the cleaved caspase-3 in the cerebral cortex of neonatal rats, and mitigate the decrease in neuronal proliferation in their hippocampus. In neurobehavioral studies, compared with control and n-3 PUFAs supplement groups, we did not find significant spatial cognitive deficit and early long-term memory impairment in sevoflurane anesthetized neonatal rats at their adulthood. However, sevoflurane could impair the immediate fear response and working memory and short-term memory. And n-3 PUFAs could improve neurocognitive function in later life after neonatal sevoflurane exposure. Our study demonstrated that neonatal exposure to prolonged sevoflurane could impair the immediate fear response, working memory and short-term memory of rats at their adulthood

  18. Replacing dietary nonessential amino acids with ammonia nitrogen does not alter amino acid profile of deposited protein in the carcass of growing pigs fed a diet deficient in nonessential amino acid nitrogen.

    PubMed

    Mansilla, W D; Htoo, J K; de Lange, C F M

    2017-10-01

    Amino acid usage for protein retention, and, consequently, the AA profile of retained protein, is the main factor for determining AA requirements in growing animals. The objective of the present study was to determine the effect of supplementing ammonia N on whole-body N retention and the AA profile of retained protein in growing pigs fed a diet deficient in nonessential AA (NEAA) N. In total, 48 barrows with a mean initial BW of 13.6 kg (SD 0.7) were used. At the beginning of the study, 8 pigs were euthanized for determination of initial protein mass. The remaining animals were individually housed and fed 1 of 5 dietary treatments. A common basal diet (95% of experimental diets) was formulated to meet the requirements for all essential AA (EAA) but to be deficient in NEAA N (CP = 8.01%). The basal diet was supplemented (5%) with cornstarch (negative control) or 2 N sources (ammonia or NEAA) at 2 levels each to supply 1.35 or 2.70% extra CP. The final standardized ileal digestible (SID) NEAA content in the high-NEAA-supplemented diet (positive control) was based on the NEAA profile of whole-body protein of 20-kg pigs, and it was expected to reduce the endogenous synthesis of NEAA. Pigs were fed at 3.0 times maintenance energy requirements for ME in 3 equal meals daily. At the end of a 3-wk period, pigs were euthanized and the carcass and visceral organs were weighed, frozen, and ground for determination of protein mass. From pigs in the initial, negative control, high-ammonia, and high-NEAA groups, AA contents in the carcass and pooled visceral organs were analyzed to determine the total and deposited protein AA profile, dietary EAA efficiencies, and minimal de novo synthesis of NEAA. Carcass weight and whole-body N retention linearly increased ( < 0.05) with N supplementation. The AA profile of protein and deposited protein in the carcass was not different ( > 0.10) between N sources, but Cys content increased ( < 0.05) with NEAA compared with ammonia in visceral

  19. Dietary DHA during development affects depression-like behaviors and biomarkers that emerge after puberty in adolescent rats

    PubMed Central

    Weiser, Michael J.; Wynalda, Kelly; Salem, Norman; Butt, Christopher M.

    2015-01-01

    DHA is an important omega-3 PUFA that confers neurodevelopmental benefits. Sufficient omega-3 PUFA intake has been associated with improved mood-associated measures in adult humans and rodents, but it is unknown whether DHA specifically influences these benefits. Furthermore, the extent to which development and puberty interact with the maternal diet and the offspring diet to affect mood-related behaviors in adolescence is poorly understood. We sought to address these questions by 1) feeding pregnant rats with diets sufficient or deficient in DHA during gestation and lactation; 2) weaning their male offspring to diets that were sufficient or deficient in DHA; and 3) assessing depression-related behaviors (forced swim test), plasma biomarkers [brain-derived neurotrophic factor (BDNF), serotonin, and melatonin], and brain biomarkers (BDNF) in the offspring before and after puberty. No dietary effects were detected when the offspring were evaluated before puberty. In contrast, after puberty depressive-like behavior and its associated biomarkers were worse in DHA-deficient offspring compared with animals with sufficient levels of DHA. The findings reported here suggest that maintaining sufficient DHA levels throughout development (both pre- and postweaning) may increase resiliency to emotional stressors and decrease susceptibility to mood disorders that commonly arise during adolescence. PMID:25411442

  20. The pathogenesis of ethanol versus methionine and choline deficient diet-induced liver injury.

    PubMed

    Gyamfi, Maxwell Afari; Damjanov, Ivan; French, Samuel; Wan, Yu-Jui Yvonne

    2008-02-15

    The differences and similarities of the pathogenesis of alcoholic (ASH) and non-alcoholic steatohepatitis (NASH) were examined. Mice (six/group) received one of four Lieber-Decarli liquid diets for 6 weeks: (1) paired-fed control diet; (2) control diet with ethanol (ethanol); (3) paired-fed methionine/choline deficient (MCD) diet; and (4) MCD plus ethanol (combination). Hepatotoxicity, histology, and gene expression changes were examined. Both MCD and ethanol induced macrovesicular steatosis. However, the combination diet produced massive steatosis with minor necrosis and inflammation. MCD and combination diets, but not ethanol, induced serum ALT levels by 1.6- and 10-fold, respectively. MCD diet, but not ethanol, also induced serum alkaline phosphatase levels suggesting bile duct injury. Ethanol increased liver fatty acid binding protein (L-FABP) mRNA and protein levels. In contrast, the combination diet decreased L-FABP mRNA and protein levels and increased hepatic free fatty acid and lipid peroxide levels. Ethanol, but not MCD, reduced hepatic S-adenosylmethionine (SAM) and GSH levels. Hepatic TNFalpha protein levels were increased in all treatment groups, however, IL-6, a hepatoprotective cytokine which promotes liver regeneration was increased in ethanol-fed mice (2-fold), but decreased in the combination diet-treated mice. In addition, the combination diet reduced phosphorylated STAT3 and Bcl-2 levels. While MCD diet might cause bile duct injury and cholestasis, ethanol preferentially interferes with the SAM-GSH oxidative stress pathway. The exacerbated liver injury induced by the combination diet might be explained by reduced L-FABP, increased free fatty acids, oxidative stress, and decreased IL-6 protein levels. The combination diet is an efficient model of steatohepatitis.

  1. Effect of PUFAs Oral Administration on the Amount of Apoptotic Caspases Enzymes in Gastric Cancer Patients Undergoing Chemotherapy.

    PubMed

    Dolatkhah, Homayun; Movahedian, Ahmad; Somi, Mohammad-Hossein; Aghaei, Mahmud; Samadi, Naser; Mirza-Aghazade, Ahmad; Esfahani, Ali

    2017-01-01

    in individuals' mitochondria-dependent apoptosis. As PUFAs enhances caspase-3 and 9 genes expression levels, which is an important induce the mitochondrial dependent apoptosis process. The study was registered in Iran clinical trials registry center under No. IRCT2014031016922N1.

  2. Long-chain n-3 PUFA in vegetarian women: a metabolic perspective.

    PubMed

    Burdge, Graham C; Tan, Sze-Yen; Henry, Christiani Jeyakumar

    2017-01-01

    Vegetarian diets have been associated with health benefits, but paradoxically are low in EPA and DHA which are important for development, particularly of the central nervous system, and for health. Humans have limited capacity for synthesis of EPA and DHA from α-linolenic acid, although this is greater in women than men. Oily fish and, to a lesser extent, dairy foods and meat are the primary sources of EPA and DHA in the diet. Exclusion of these foods from the diet by vegetarians is associated consistently with lower EPA and DHA status in vegetarian women compared with omnivores. The purpose of the present review was to assess the impact of low EPA and DHA status in vegetarian pregnancies on the development and health of children. EPA and DHA status was lower in breast milk and in infants of vegetarian mothers than those born to omnivore mothers, which suggests that in the absence of pre-formed dietary EPA and DHA, synthesis from α-linolenic acid is an important process in determining maternal EPA and DHA status in pregnancy. However, there have been no studies that have investigated the effect of low maternal DHA status in vegetarians on cognitive function in children. It is important to address this gap in knowledge in order to be confident that vegetarian and vegan diets during pregnancy are safe in the context of child development.

  3. ANALYSIS OF ω-3 FATTY ACID CONTENT OF POLISH FISH OIL DRUG AND DIETARY SUPPLEMENTS.

    PubMed

    Osadnik, Kamila; Jaworska, Joanna

    2016-07-01

    Study results indicate that a diet rich in polyunsaturated fatty acids ω-3 (PUFA n-3) exerts favorable effect on human health, accounting for reduced cardiovascular morbidity and mortality. PUFA n-3 contained in marine fish oils, particularly eicosapentaenoic (EPA, 20:5 n-3) and docosahexaenoic (DHA, 22:6 n-3) acids, are attributed antithrombotic, anti-inflammatory, anti-atherosclerotic and anti-arrhythmic effects. They have also beneficial effects on cognitive functions and immunological mechanisms of an organism. Considering the fact that marine fish are not abundant in Western diet, the pharmaceutical industry reacts with a broad selection of PUFA n-3 containing dietary supplements and drugs. Increased consumers' interest with those products has been observed recently. Therefore, their quality, understood as reliability of manufacturer's declaration of composition of offered dietary supplements, is highly important. We have tested 22 products available in pharmacies and supermarkets, manufacturers of which declared content of n-3 fatty acids (21 dietary supplements and I drug). Identity and content of DHA and EPA were assessed using ¹H NMR spectroscopy, based on characteristic signals from protons in methylene groups. Almost one in five of the examined dietary supplements contains < 89% of the PUFA n-3 amount declared by its manufacturer. For a majority of tested products the manufacturer-declared information regarding DHA (58%) and EPA (74%) content was consistent with the actual composition. It is notable that more cases of discrepancy between the declared and the actual content regarded DHA than EPA, which indicates a less favorable balance, considering the pro-health effect of those acids. Over a half of tested products provides the supplementary dose (250 mg/day) with one capsule taken daily, and in 27% of cases the daily dosage should be doubled. Only 10% of those products ensure the appropriate dose for cardiovascular patients (1 g/day) with the use of

  4. Maternal folic acid-deficient diet causes congenital malformations in the mouse eye.

    PubMed

    Maestro-de-las-Casas, Carmen; Pérez-Miguelsanz, Juliana; López-Gordillo, Yamila; Maldonado, Estela; Partearroyo, Teresa; Varela-Moreiras, Gregorio; Martínez-Álvarez, Concepción

    2013-09-01

    The eye is a very complex structure derived from the neural tube, surface ectoderm, and migratory mesenchyme from a neural crest origin. Because structures that evolve from the neural tube may be affected by a folate/folic acid (FA) deficiency, the aim of this work was to investigate whether a maternal folic acid-deficient diet may cause developmental alterations in the mouse eye. Female C57BL/6J mice (8 weeks old) were assigned into two different folic acid groups for periods ranging between 2 and 16 weeks. Animals were killed at gestation day 17. Hepatic folate was analyzed, and the eyes from 287 fetuses were macroscopically studied, sectioned and immunolabeled with anti-transforming growth factor (TGF)-β2 and anti-TGF-βRII. Mice exposed to a FA-deficient diet exhibited numerous eye macroscopic anomalies, such as anophthalmia and microphthalmia. Microscopically, the eye was the most affected organ (43.7% of the fetuses). The highest incidence of malformations occurred from the 8th week onward. A statistically significant linear association between the number of maternal weeks on the FA-deficient diet and embryonic microscopic eye malformations was observed. The optic cup derivatives and structures forming the eye anterior segment showed severe abnormalities. In addition, TGF-β2 and TGF-βRII expression in the eye was also altered. This study suggests that an adequate folic acid/folate status plays a key role in the formation of ocular tissues and structures, whereas a vitamin deficiency is negatively associated with a normal eye development even after a short-term exposure. Copyright © 2013 Wiley Periodicals, Inc.

  5. Effect of cooking method on the fatty acid content of reduced-fat and PUFA-enriched pork patties formulated with a konjac-based oil bulking system.

    PubMed

    Salcedo-Sandoval, Lorena; Cofrades, Susana; Ruiz-Capillas, Claudia; Jiménez-Colmenero, Francisco

    2014-12-01

    The effect of cooking methods (electric grilling and pan-frying in olive oil) on the composition of reduced-fat and reduced-fat/PUFA enriched pork patties was studied. Fat reduction was performed by replacing pork backfat (38% and 100%) with konjac gel and PUFA-enrichment by replacing pork backfat (49%) with a konjac-based oil bulking system stabilizing a healthier oil combination (olive, linseed and fish oils). Cooking losses (13%-27%) were affected (p<0.05) by formulation and cooking procedure. Compared with raw products, cooked samples had higher (p<0.05) concentrations of MUFAs and PUFAs (both n-3 and n-6); the difference was greater (p<0.05) in the pan-fried patties. Fatty acid retention was generally better in pan-fried than in grilled samples. When cooked, the PUFA levels in the medium-fat/improved sample containing the oil bulking system ranged between 1.4 and 1.6g/100g (0.47-0.51 from n-3 PUFAs), with EPA+DHA concentrations of around 75mg/100g. Konjac materials were successfully used to produce pork patties with a better lipid composition. Copyright © 2014. Published by Elsevier Ltd.

  6. Renal and biochemical changes produced in broilers by high-protein, high-calcium, urea-containing, and vitamin-A-deficient diets.

    PubMed

    Chandra, M; Singh, B; Soni, G L; Ahuja, S P

    1984-01-01

    Three hundred 18-day-old male chicks (Arbor Acre) were divided into five groups of 60 each and given high-protein (42.28%), high-calcium (3.37%), urea-containing (5%), vitamin-A-deficient, or control diets to study the effect of nutritional imbalances on the development of nephritis and related biochemical changes over 15 weeks. The first four diets increased the levels of glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, uric acid, and nonprotein nitrogen in serum. Blood urea was increased by only the urea diet. Hypoglycemia and a decrease in hepatic glucose-6-phosphatase were also observed in chicks fed the first four diets. The vitamin-A-deficient diet resulted in a depletion of vitamin A in the liver and kidneys. These changes were directly correlated with the prolonged feeding of experimental diets and also with the severity of nephritis and degenerative changes in various organs. It was concluded that increasing the intake of nitrogen or calcium in order to increase production may in fact have the opposite effect, leading to degenerative changes in various tissues and to nephritis.

  7. Polyunsaturated Fatty Acids of Marine Macroalgae: Potential for Nutritional and Pharmaceutical Applications

    PubMed Central

    Pereira, Hugo; Barreira, Luísa; Figueiredo, Filipe; Custódio, Luísa; Vizetto-Duarte, Catarina; Polo, Cristina; Rešek, Eva; Engelen, Aschwin; Varela, João

    2012-01-01

    As mammals are unable to synthesize essential polyunsaturated fatty acids (PUFA), these compounds need to be taken in through diet. Nowadays, obtaining essential PUFA in diet is becoming increasingly difficult; therefore this work investigated the suitability of using macroalgae as novel dietary sources of PUFA. Hence, 17 macroalgal species from three different phyla (Chlorophyta, Phaeophyta and Rhodophyta) were analyzed and their fatty acid methyl esters (FAME) profile was assessed. Each phylum presented a characteristic fatty acid signature as evidenced by clustering of PUFA profiles of algae belonging to the same phylum in a Principal Components Analysis. The major PUFA detected in all phyla were C18 and C20, namely linoleic, arachidonic and eicosapentaenoic acids. The obtained data showed that rhodophytes and phaeophytes have higher concentrations of PUFA, particularly from the n-3 series, thereby being a better source of these compounds. Moreover, rhodophytes and phaeophytes presented “healthier” ∑n-6/∑n-3 and PUFA/saturated fatty acid ratios than chlorophytes. Ulva was an exception within the Chlorophyta, as it presented high concentrations of n-3 PUFA, α-linolenic acid in particular. In conclusion, macroalgae can be considered as a potential source for large-scale production of essential PUFA with wide applications in the nutraceutical and pharmacological industries. PMID:23118712

  8. Isolation and Characterization of the Diatom Phaeodactylum Δ5-Elongase Gene for Transgenic LC-PUFA Production in Pichia pastoris

    PubMed Central

    Jiang, Mulan; Guo, Bing; Wan, Xia; Gong, Yangmin; Zhang, Yinbo; Hu, Chuanjiong

    2014-01-01

    The diatom Phaeodactylum tricornutum can accumulate eicosapentaenoic acid (EPA) up to 30% of the total fatty acids. This species has been targeted for isolating gene encoding desaturases and elongases for long-chain polyunsaturated fatty acid (LC-PUFA) metabolic engineering. Here we first report the cloning and characterization of Δ5-elongase gene in P. tricornutum. A full-length cDNA sequence, designated PhtELO5, was shown to contain a 1110 bp open reading frame encoding a 369 amino acid polypeptide. The putative protein contains seven transmembrane regions and two elongase characteristic motifs of FLHXYHH and MYSYY, the latter being typical for microalgal Δ5-elongases. Phylogenetic analysis indicated that PhtELO5 belongs to the ELO5 group, tightly clustered with the counterpart of Thalassiosira pseudonana. Heterologous expression of PhtELO5 in Pichia pastoris confirmed that it encodes a specific Δ5-elongase capable of elongating arachidonic acid and eicosapentaenoic acid. Co-expression of PhtELO5 and IsFAD4 (a ∆4-desaturase from Isochrysis sphaerica) demonstrated that the high-efficiency biosynthetic pathway of docosahexaenoic acid was assembled in the transgenic yeast. Substrate competition revealed that PhtELO5 exhibited higher activity towards n-3 PUFA than n-6 PUFA. It is hypothesized that Phaeodactylum ELO5 may preferentially participate in biosynthesis of transgenic LC-PUFA via a n-3 pathway in the yeast host. PMID:24608969

  9. Effect of High-Carbohydrate Diet on Plasma Metabolome in Mice with Mitochondrial Respiratory Chain Complex III Deficiency

    PubMed Central

    Rajendran, Jayasimman; Tomašić, Nikica; Kotarsky, Heike; Hansson, Eva; Velagapudi, Vidya; Kallijärvi, Jukka; Fellman, Vineta

    2016-01-01

    Mitochondrial disorders cause energy failure and metabolic derangements. Metabolome profiling in patients and animal models may identify affected metabolic pathways and reveal new biomarkers of disease progression. Using liver metabolomics we have shown a starvation-like condition in a knock-in (Bcs1lc.232A>G) mouse model of GRACILE syndrome, a neonatal lethal respiratory chain complex III dysfunction with hepatopathy. Here, we hypothesized that a high-carbohydrate diet (HCD, 60% dextrose) will alleviate the hypoglycemia and promote survival of the sick mice. However, when fed HCD the homozygotes had shorter survival (mean ± SD, 29 ± 2.5 days, n = 21) than those on standard diet (33 ± 3.8 days, n = 30), and no improvement in hypoglycemia or liver glycogen depletion. We investigated the plasma metabolome of the HCD- and control diet-fed mice and found that several amino acids and urea cycle intermediates were increased, and arginine, carnitines, succinate, and purine catabolites decreased in the homozygotes. Despite reduced survival the increase in aromatic amino acids, an indicator of liver mitochondrial dysfunction, was normalized on HCD. Quantitative enrichment analysis revealed that glycine, serine and threonine metabolism, phenylalanine and tyrosine metabolism, and urea cycle were also partly normalized on HCD. This dietary intervention revealed an unexpected adverse effect of high-glucose diet in complex III deficiency, and suggests that plasma metabolomics is a valuable tool in evaluation of therapies in mitochondrial disorders. PMID:27809283

  10. Different mutation patterns of mitochondrial DNA displacement-loop in hepatocellular carcinomas induced by N-nitrosodiethylamine and a choline-deficient l-amino acid-defined diet in rats.

    PubMed

    Onishi, Mariko; Sokuza, Yui; Nishikawa, Tomoki; Mori, Chiharu; Uwataki, Kimiko; Honoki, Kanya; Tsujiuchi, Toshifumi

    2007-10-12

    Mutations of the mitochondria DNA (mtDNA) displacement loop (D-loop) were investigated to clarify different changes of exogenous and endogenous liver carcinogenesis in rats. We induced hepatocellular carcinomas (HCCs) in rats with N-nitrosodiethylamine (DEN) and a choline-deficient l-amino acid-defined (CDAA) diet. DNAs were extracted from 10 HCCs induced by DEN and 10 HCCs induced by the CDAA diet. To identify mutations in mtDNA D-loop, polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) analysis, followed by nucleotide sequencing, was performed. Mutations were detected in 5 out of 10 HCCs (50%) induced by DEN. Four out of 5 mutations were G/C to A/T transitions at positions 15707, 15717, 15930, and 16087, and one T/A to C/G transition at position 15559. By contrast, no mutations were found in 10 HCCs induced by the CDAA diet. These results demonstrated that mutations in mtDNA D-loop occur in rat HCCs induced by DEN but not by the CDAA diet, suggesting that mtDNA D-loop is a target of exogenous liver carcinogenesis in rats.

  11. Beneficial effects of omega-3 fatty acids in the proteome of high-density lipoprotein proteome

    PubMed Central

    2012-01-01

    Background Omega-3 poly-unsaturated fatty acids (ω-3 PUFAs) have demonstrated to be beneficial in the prevention of cardiovascular disease, however, the mechanisms by which they perform their cardiovascular protection have not been clarified. Intriguingly, some of these protective effects have also been linked to HDL. The hypothesis of this study was that ω-3 PUFAs could modify the protein cargo of HDL particle in a triglyceride non-dependent mode. The objective of the study was to compare the proteome of HDL before and after ω-3 PUFAs supplemented diet. Methods A comparative proteomic analysis in 6 smoker subjects HDL before and after a 5 weeks ω-3 PUFAs enriched diet has been performed. Results Among the altered proteins, clusterin, paraoxonase, and apoAI were found to increase, while fibronectin, α-1-antitrypsin, complement C1r subcomponent and complement factor H decreased after diet supplementation with ω-3 PUFAs. Immunodetection assays confirmed these results. The up-regulated proteins are related to anti-oxidant, anti-inflammatory and anti-atherosclerotic properties of HDL, while the down-regulated proteins are related to regulation of complement activation and acute phase response. Conclusions Despite the low number of subjects included in the study, our findings demonstrate that ω-3 PUFAs supplementation modifies lipoprotein containing apoAI (LpAI) proteome and suggest that these protein changes improve the functionality of the particle. PMID:22978374

  12. Modification of the fatty acid composition of an obesogenic diet improves the maternal and placental metabolic environment in obese pregnant mice.

    PubMed

    Gimpfl, Martina; Rozman, Jan; Dahlhoff, Maik; Kübeck, Raphaela; Blutke, Andreas; Rathkolb, Birgit; Klingenspor, Martin; Hrabě de Angelis, Martin; Öner-Sieben, Soner; Seibt, Annette; Roscher, Adelbert A; Wolf, Eckhard; Ensenauer, Regina

    2017-06-01

    Peri-conceptional exposure to maternal obesogenic nutrition is associated with in utero programming of later-life overweight and metabolic disease in the offspring. We aimed to investigate whether dietary intervention with a modified fatty acid quality in an obesogenic high-calorie (HC) diet during the preconception and gestational phases can improve unfavourable effects of an adipogenic maternal environment. In NMRI mice, peri-conceptional and gestational obesity was induced by feeding a HC diet (controls), and they were compared with dams on a fat-modified (Fat-mod) HC diet of the same energy content but enriched with medium-chain fatty acids (MCFAs) and adjusted to a decreased ratio of n-6 to n-3 long-chain polyunsaturated fatty acids (LC-PUFAs). Effects on maternal and placental outcomes at delivery (day 17.5 post coitum) were investigated. Despite comparable energy assimilation between the two groups of dams, the altered fatty acid composition of the Fat-mod HC diet induced lower maternal body weight, weights of fat depots, adipocyte size, and hepatic fat accumulation compared to the unmodified HC diet group. Further, there was a trend towards lower fasting glucose, insulin and leptin concentrations in dams fed the Fat-mod HC diet. Phenotypic changes were accompanied by inhibition of transcript and protein expression of genes involved in hepatic de novo lipogenesis comprising PPARG2 and its target genes Fasn, Acaca, and Fabp4, whereas regulation of other lipogenic factors (Srebf1, Nr1h3, Abca1) appeared to be more complex. The modified diet led to a sex-specific placental response by upregulating PPARG-dependent fatty acid transport gene expression in female versus male placentae. Qualitative modification of the fatty acid spectrum of a high-energy maternal diet, using a combination of both MCFAs and n-3 LC-PUFAs, seems to be a promising interventional approach to ameliorate the adipogenic milieu of mice before and during gestation. Copyright © 2017 Elsevier

  13. Modulation of fear memory by dietary polyunsaturated fatty acids via cannabinoid receptors.

    PubMed

    Yamada, Daisuke; Takeo, Jiro; Koppensteiner, Peter; Wada, Keiji; Sekiguchi, Masayuki

    2014-07-01

    Although the underlying mechanism remains unknown, several studies have suggested benefits of n-3 long-chain polyunsaturated fatty acid (PUFA) for patients with anxiety disorders. Elevated fear is thought to contribute to the pathogenesis of particular anxiety disorders. The aim of the present study was to evaluate whether the dietary n-3 to n-6 PUFA (3:6) ratio influences fear memory. For this purpose, the effects of various dietary 3:6 ratios on fear memory were examined in mice using contextual fear conditioning, and the effects of these diets on central synaptic transmission were examined to elucidate the mechanism of action of PUFA. We found that fear memory correlated negatively with dietary, serum, and brain 3:6 ratios in mice. The low fear memory in mice fed a high 3:6 ratio diet was increased by the cannabinoid CB1 receptor antagonist rimonabant, reaching a level seen in mice fed a low 3:6 ratio diet. The agonist sensitivity of CB1 receptor was enhanced in the basolateral nucleus of the amygdala (BLA) of mice fed a high 3:6 ratio diet, compared with that of mice fed a low 3:6 ratio diet. Similar enhancement was induced by pharmacological expulsion of cholesterol in the neuronal membrane of brain slices from mice fed a low 3:6 ratio diet. CB1 receptor-mediated short-term synaptic plasticity was facilitated in pyramidal neurons of the BLA in mice fed a high 3:6 ratio diet. These results suggest that the ratio of n-3 to n-6 PUFA is a factor regulating fear memory via cannabinoid CB1 receptors.

  14. [A study on the effects of a Mg-deficient diet on blood pressure and various hormonal systems in Wistar rats and spontaneously hypertensive rats].

    PubMed

    Honda, M; Izumi, Y; Hatano, M

    1988-08-20

    The influence of a Mg-deficient diet on blood pressure and various hormonal systems was examined in Wistar rats (WR) and spontaneously hypertensive rats (SHR). The WR and SHR were individually divided into 2 groups. The Mg-deficient diet was given to one group, and a Mg-containing diet was given to the other group for 3 weeks. During this experimental period, the body weight, blood pressure, urine volume, blood and urinary electrolytes, plasma steroid hormones, plasma renin activity (PRA), and urinary hormones [kinin, prostaglandin E2 (PGE2), 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), and noradrenaline] were examined. Although no significant difference in body weight was observed between the Mg-deficient and Mg-containing diet groups in either the WR or SHR (because the experiments were performed in a pair-fed fashion in both kinds of rat), the blood pressure was increased in the Mg-containing diet group but was unchanged in the Mg-deficient diet group. As regards changes in electrolytes, a decreased urinary excretion of Mg and significantly increased urinary excretion of P were observed in the Mg-deficient diet group in both the WR and SHR. Furthermore, decreased levels of serum Mg and P and increased levels of serum Ca were also noted. In the WR group, the urinary excretion of noradrenaline was significantly increased in the Mg-deficient diet group as compared to the Mg-containing diet group. However, the change was reversed in the SHR group. The plasma steroid hormones and PRA were both significantly low in the Mg-deficient diet group in both the WR and SHR. The urinary excretions of PGE2, 6-keto-PGF1 alpha, and kinin showed no significant differences between the two diet groups. The above results indicate that blood pressure is not affected by the Mg-deficient diet in either the WR or SHR, and the possible participation of the sympathetic nervous system in the mechanism of control of blood pressure may differ somewhat between the WR and SHR. In addition

  15. Lifelong imbalanced LA/ALA intake impairs emotional and cognitive behavior via changes in brain endocannabinoid system.

    PubMed

    Zamberletti, Erica; Piscitelli, Fabiana; De Castro, Valentina; Murru, Elisabetta; Gabaglio, Marina; Colucci, Paola; Fanali, Chiara; Prini, Pamela; Bisogno, Tiziana; Maccarrone, Mauro; Campolongo, Patrizia; Banni, Sebastiano; Rubino, Tiziana; Parolaro, Daniela

    2017-02-01

    Imbalanced dietary n-3 and n-6 PUFA content has been associated with a number of neurological conditions. Endocannabinoids are n-6 PUFA derivatives, whose brain concentrations are sensitive to modifications of fatty acid composition of the diet and play a central role in the regulation of mood and cognition. As such, the endocannabinoid system appears to be an ideal candidate for mediating the effects of dietary fatty acids on mood and cognition. Lifelong administration of isocaloric α-linolenic acid (ALA)-deficient and -enriched diets induced short-term memory deficits, whereas only dietary ALA enrichment altered emotional reactivity in adult male rats compared with animals fed a standard diet that was balanced in ALA/linoleic acid (LA) ratio. In the prefrontal cortex, both diets reduced 2-AG levels and increased MAG lipase expression, whereas only the enriched diet reduced AEA levels, simultaneously increasing FAAH expression. In the hippocampus, an ALA-enriched diet decreased AEA content and NAPE-PLD expression, and reduced 2-AG content while increasing MAG lipase expression. These findings highlight the importance of a diet balanced in fatty acid content for normal brain functions and to support a link between dietary ALA, the brain endocannabinoid system, and behavior, which indicates that dietary ALA intake is a sufficient condition for altering the endocannabinoid system in brain regions modulating mood and cognition. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  16. The role of dietary fats for preventing cardiovascular disease. A review.

    PubMed

    Szostak-Wegierek, Dorota; Kłosiewicz-Latoszek, Longina; Szostak, Wiktor B; Cybulska, Barbara

    2013-01-01

    At the present, there is a pandemic of chronic non-communicable disease (NCD) affecting most countries of the world. The World Health Organisation (WHO) has identified the main contributing determinants to be cardiovascular disease (CVD), diabetes, malignant cancer and chronic disease of the respiratory system. Unhealthy nutrition, as well as other adverse lifestyle health behaviour are recognised to be part of the prime factors responsible. According to WHO guidelines, a healthy lifestyle should include substituting saturated fatty acids (SFAs) with polyunsaturated fatty acids (PUFAs) together with eliminating trans-fatty acids from the diet and limiting the intake of refined carbohydrates in conjunction with increasing the consumption of fruit, vegetables, nuts and wholegrain cereal products. Recent studies on the relations between CVD prevention and dietary fats have been however unclear. The present study thus aims to provide a review of current evidence and opinion on the type of dietary fat most appropriate for preventing arteriosclerosis. The adoption of dated recommendations on the need to increase dietary PUFA in both Northern Europe and America has led to n-6 PUFAs being predominant in diets as compared to n-3 PUFAs. This disproportion may have caused mortality to rise, due to CVD, as a result of arteriosclerosis in these countries. In contrast, a traditional Mediterranean diet yields a PUFA n-6/n-3 ratio of 2:1, which is much lower than for the aforementioned northern countries. Some authors however consider that assessing this ratio is irrelevant and that decreasing n-6 PUFA may be harmful. Such differences of opinion leads to confusion in adopting an effective approach for arteriosclerosis management regarding dietary n-6/n-3 ratios. Moreover, recent studies have added much controversy to the notion that the characteristics of SFAs are responsible for arteriosclerosis. These found that replacing dietary SFAs with carbohydrates did not reduce the risk

  17. Divergent shifts in lipid mediator profile following supplementation with n-3 docosapentaenoic acid and eicosapentaenoic acid.

    PubMed

    Markworth, James F; Kaur, Gunveen; Miller, Eliza G; Larsen, Amy E; Sinclair, Andrew J; Maddipati, Krishna Rao; Cameron-Smith, David

    2016-11-01

    In contrast to the well-characterized effects of specialized proresolving lipid mediators (SPMs) derived from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), little is known about the metabolic fate of the intermediary long-chain (LC) n-3 polyunsaturated fatty acid (PUFA) docosapentaenoic acid (DPA). In this double blind crossover study, shifts in circulating levels of n-3 and n-6 PUFA-derived bioactive lipid mediators were quantified by an unbiased liquid chromatography-tandem mass spectrometry lipidomic approach. Plasma was obtained from human subjects before and after 7 d of supplementation with pure n-3 DPA, n-3 EPA or placebo (olive oil). DPA supplementation increased the SPM resolvin D5 n -3DPA (RvD5 n -3DPA ) and maresin (MaR)-1, the DHA vicinal diol 19,20-dihydroxy-DPA and n-6 PUFA derived 15-keto-PG E 2 (15-keto-PGE 2 ). EPA supplementation had no effect on any plasma DPA or DHA derived mediators, but markedly elevated monohydroxy-eicosapentaenoic acids (HEPEs), including the e-series resolvin (RvE) precursor 18-HEPE; effects not observed with DPA supplementation. These data show that dietary n-3 DPA and EPA have highly divergent effects on human lipid mediator profile, with no overlap in PUFA metabolites formed. The recently uncovered biologic activity of n-3 DPA docosanoids and their marked modulation by dietary DPA intake reveals a unique and specific role of n-3 DPA in human physiology.-Markworth, J. F., Kaur, G., Miller, E. G., Larsen, A. E., Sinclair, A. J., Maddipati, K. R., Cameron-Smith, D. Divergent shifts in lipid mediator profile following supplementation with n-3 docosapentaenoic acid and eicosapentaenoic acid. © FASEB.

  18. High-fat diet enhances and plasminogen activator inhibitor-1 deficiency attenuates bone loss in mice with Lewis Lung carcinoma

    USDA-ARS?s Scientific Manuscript database

    This study determined the effects of a high-fat diet and plasminogen activator inhibitor-1 deficiency (PAI-1-/-) on bone structure in mice bearing Lewis lung carcinoma (LLC) in lungs. Reduction in bone volume fraction (BV/TV) by 22% and 21%, trabecular number (Tb.N) by 8% and 4% and bone mineral de...

  19. Maternal folic acid supplementation to dams on marginal protein level alters brain fatty acid levels of their adult offspring.

    PubMed

    Rao, Shobha; Joshi, Sadhana; Kale, Anvita; Hegde, Mahabaleshwar; Mahadik, Sahebarao

    2006-05-01

    Studies on fetal programming of adult diseases have highlighted the importance of maternal nutrition during pregnancy. Folic acid and long-chain essential polyunsaturated fatty acids (LC-PUFAs) have independent effects on fetal growth. However, folic acid effects may also involve alteration of LC-PUFA metabolism. Because marginal deficiency of LC-PUFAs during critical periods of brain growth and development is associated with risks for adult diseases, it is highly relevant to investigate how maternal supplementation of such nutrients can alter brain fatty acid levels. We examined the impact of folic acid supplementation, conventionally used in maternal intervention, on brain essential fatty acid levels and plasma corticosterone concentrations in adult offspring at 11 months of age. Pregnant female rats from 4 groups (6 in each) were fed with casein diets either with 18 g protein/100 g diet (control diet) or treatment diets that were marginal in protein (MP), such as 12 g protein/100 g diet supplemented with 8 mg folic acid (FAS/MP), 12 g protein/100 g diet without folic acid (FAD/MP), or 12 g protein/100 g diet (MP) with 2 mg folic acid. Pups were weaned to a standard laboratory diet with 18 g protein/100 g diet. All male adult offspring in the FAS/MP group showed lower docosahexaenoic acid (P<.05) as compared with control adult offspring (6.04+/-2.28 vs 10.33+/-0.86 g/100 g fatty acids) and higher n-6/n-3 ratio (P<.05). Docosahexaenoic acid levels in FAS/MP adult offspring were also lower (P<.05) when compared with the MP group. Plasma corticosterone concentrations were higher (P<.05) in male adult offspring from the FAS/MP group compared with control as well as the MP adult offspring. Results suggest that maternal folic acid supplementation at MP intake decreased brain docosahexaenoic acid levels probably involving corticosterone increase.

  20. Choline-Deficient-Diet-Induced Fatty Liver Is a Metastasis-Resistant Microenvironment.

    PubMed

    Nakamura, Miki; Suetsugu, Atsushi; Hasegawa, Kosuke; Matsumoto, Takuro; Aoki, Hitomi; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Hoffman, Robert M

    2017-07-01

    Fatty liver disease is increasing in the developed and developing world. Liver metastasis from malignant lymphoma in the fatty liver is poorly understood. In a previous report, we developed color-coded imaging of the tumor microenvironment (TME) of the murine EL4-RFP malignant lymphoma during metastasis, including the lung. In the present report, we investigated the potential and microenvironment of the fatty liver induced by a choline-deficient diet as a metastatic site in this mouse lymphoma model. C57BL/6-GFP transgenic mice were fed with a choline-deficient diet in order to establish a fatty liver model. EL4-RFP cells were injected in the spleen of normal mice and fatty-liver mice. Metastases in mice with fatty liver or normal liver were imaged with the Olympus SZX7 microscope and the Olympus FV1000 confocal microscope. Metastases of EL4-RFP were observed in the liver, ascites and bone marrow. Primary tumors were imaged in the spleen at the injection site. The fewest metastases were observed in the fatty liver. In addition, the fewest cancer-associated fibroblasts (CAFs) were observed in the fatty liver. The relative metastatic resistance of the fatty liver may be due to the reduced number of CAFs in the fatty livers. The mechanism of the effect of the choline-deficient diet is discussed. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Enhanced increase of omega-3 index in healthy individuals with response to 4-week n-3 fatty acid supplementation from krill oil versus fish oil.

    PubMed

    Ramprasath, Vanu R; Eyal, Inbal; Zchut, Sigalit; Jones, Peter J H

    2013-12-05

    Due to structural differences, bioavailability of krill oil, a phospholipid based oil, could be higher than fish oil, a triglyceride-based oil, conferring properties that render it more effective than fish oil in increasing omega-3 index and thereby, reducing cardiovascular disease (CVD) risk. The objective was to assess the effects of krill oil compared with fish oil or a placebo control on plasma and red blood cell (RBC) fatty acid profile in healthy volunteers. Twenty four healthy volunteers were recruited for a double blinded, randomized, placebo-controlled, crossover trial. The study consisted of three treatment phases including krill or fish oil each providing 600 mg of n-3 polyunsaturated fatty acids (PUFA) or placebo control, corn oil in capsule form. Each treatment lasted 4 wk and was separated by 8 wk washout phases. Krill oil consumption increased plasma (p = 0.0043) and RBC (p = 0.0011) n-3 PUFA concentrations, including EPA and DHA, and reduced n-6:n-3 PUFA ratios (plasma: p = 0.0043, RBC: p = 0.0143) compared with fish oil consumption. Sum of EPA and DHA concentrations in RBC, the omega-3 index, was increased following krill oil supplementation compared with fish oil (p = 0.0143) and control (p < 0.0001). Serum triglycerides and HDL cholesterol concentrations did not change with any of the treatments. However, total and LDL cholesterol concentrations were increased following krill (TC: p = 0.0067, LDL: p = 0.0143) and fish oil supplementation (TC: p = 0.0028, LDL: p = 0.0143) compared with control. Consumption of krill oil was well tolerated with no adverse events. Results indicate that krill oil could be more effective than fish oil in increasing n-3 PUFA, reducing n-6:n-3 PUFA ratio, and improving the omega-3 index. ClinicalTrials.gov, NCT01323036.

  2. Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology.

    PubMed

    Layé, Sophie; Nadjar, Agnès; Joffre, Corinne; Bazinet, Richard P

    2018-01-01

    Classically, polyunsaturated fatty acids (PUFA) were largely thought to be relatively inert structural components of brain, largely important for the formation of cellular membranes. Over the past 10 years, a host of bioactive lipid mediators that are enzymatically derived from arachidonic acid, the main n-6 PUFA, and docosahexaenoic acid, the main n-3 PUFA in the brain, known to regulate peripheral immune function, have been detected in the brain and shown to regulate microglia activation. Recent advances have focused on how PUFA regulate the molecular signaling of microglia, especially in the context of neuroinflammation and behavior. Several active drugs regulate brain lipid signaling and provide proof of concept for targeting the brain. Because brain lipid metabolism relies on a complex integration of diet, peripheral metabolism, including the liver and blood, which supply the brain with PUFAs that can be altered by genetics, sex, and aging, there are many pathways that can be disrupted, leading to altered brain lipid homeostasis. Brain lipid signaling pathways are altered in neurologic disorders and may be viable targets for the development of novel therapeutics. In this study, we discuss in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Increased hepatic beta-oxidation of docosahexaenoic acid, elongation of eicosapentaenoic acid, and acylation of lysophosphatidate in rats fed a docosahexaenoic acid-enriched diet.

    PubMed

    Kanazawa, A; Shirota, Y; Fujimoto, K

    1997-07-01

    Rats were fed a diet supplemented with corn oil (n-3 deficient), soy oil, or a mixture containing 8% 22:6n-3 ethyl ester for 6 wk. The hepatic capacities for the beta-oxidation and synthesis of 22:6n-3, in addition to the acylation of lysophosphatidate, were tested in vitro. In rats that were fed a 22:6n-3-enriched diet, both the beta-oxidation of 22:6n-3 and elongation of 20:5n-3 were enhanced compared to those in rats fed the other diets. Acylation of lysophosphatidate was also enhanced in rats fed a 22:6n-3-enriched diet, while the rate of dephosphorylation of phosphatidate was not changed. The amount of 22:6n-3 in the liver was much less than that consumed in a docosahexaenoic acid-enriched diet. These results suggest that a significant amount of dietary 22:6n-3 was degraded via beta-oxidation, and that a portion of the retroconverted 20:5n-3 was recycled for the synthesis of 22:6n-3. The recycling of 20:5n-3 might contribute to the low level of 22:6n-3 in rats fed an n-3-deficient diet.

  4. Biochemical phenotyping unravels novel metabolic abnormalities and potential biomarkers associated with treatment of GLUT1 deficiency with ketogenic diet.

    PubMed

    Cappuccio, Gerarda; Pinelli, Michele; Alagia, Marianna; Donti, Taraka; Day-Salvatore, Debra-Lynn; Veggiotti, Pierangelo; De Giorgis, Valentina; Lunghi, Simona; Vari, Maria Stella; Striano, Pasquale; Brunetti-Pierri, Nicola; Kennedy, Adam D; Elsea, Sarah H

    2017-01-01

    Global metabolomic profiling offers novel opportunities for the discovery of biomarkers and for the elucidation of pathogenic mechanisms that might lead to the development of novel therapies. GLUT1 deficiency syndrome (GLUT1-DS) is an inborn error of metabolism due to reduced function of glucose transporter type 1. Clinical presentation of GLUT1-DS is heterogeneous and the disorder mirrors patients with epilepsy, movement disorders, or any paroxysmal events or unexplained neurological manifestation triggered by exercise or fasting. The diagnostic biochemical hallmark of the disease is a reduced cerebrospinal fluid (CSF)/blood glucose ratio and the only available treatment is ketogenic diet. This study aimed at advancing our understanding of the biochemical perturbations in GLUT1-DS pathogenesis through biochemical phenotyping and the treatment of GLUT1-DS with a ketogenic diet. Metabolomic analysis of three CSF samples from GLUT1-DS patients not on ketogenic diet was feasible inasmuch as CSF sampling was used for diagnosis before to start with ketogenic diet. The analysis of plasma and urine samples obtained from GLUT1-DS patients treated with a ketogenic diet showed alterations in lipid and amino acid profiles. While subtle, these were consistent findings across the patients with GLUT1-DS on ketogenic diet, suggesting impacts on mitochondrial physiology. Moreover, low levels of free carnitine were present suggesting its consumption in GLUT1-DS on ketogenic diet. 3-hydroxybutyrate, 3-hydroxybutyrylcarnitine, 3-methyladipate, and N-acetylglycine were identified as potential biomarkers of GLUT1-DS on ketogenic diet. This is the first study to identify CSF, plasma, and urine metabolites associated with GLUT1-DS, as well as biochemical changes impacted by a ketogenic diet. Potential biomarkers and metabolic insights deserve further investigation.

  5. Biochemical phenotyping unravels novel metabolic abnormalities and potential biomarkers associated with treatment of GLUT1 deficiency with ketogenic diet

    PubMed Central

    Cappuccio, Gerarda; Pinelli, Michele; Alagia, Marianna; Donti, Taraka; Day-Salvatore, Debra-Lynn; Veggiotti, Pierangelo; De Giorgis, Valentina; Lunghi, Simona; Vari, Maria Stella; Striano, Pasquale; Brunetti-Pierri, Nicola; Kennedy, Adam D.

    2017-01-01

    Global metabolomic profiling offers novel opportunities for the discovery of biomarkers and for the elucidation of pathogenic mechanisms that might lead to the development of novel therapies. GLUT1 deficiency syndrome (GLUT1-DS) is an inborn error of metabolism due to reduced function of glucose transporter type 1. Clinical presentation of GLUT1-DS is heterogeneous and the disorder mirrors patients with epilepsy, movement disorders, or any paroxysmal events or unexplained neurological manifestation triggered by exercise or fasting. The diagnostic biochemical hallmark of the disease is a reduced cerebrospinal fluid (CSF)/blood glucose ratio and the only available treatment is ketogenic diet. This study aimed at advancing our understanding of the biochemical perturbations in GLUT1-DS pathogenesis through biochemical phenotyping and the treatment of GLUT1-DS with a ketogenic diet. Metabolomic analysis of three CSF samples from GLUT1-DS patients not on ketogenic diet was feasible inasmuch as CSF sampling was used for diagnosis before to start with ketogenic diet. The analysis of plasma and urine samples obtained from GLUT1-DS patients treated with a ketogenic diet showed alterations in lipid and amino acid profiles. While subtle, these were consistent findings across the patients with GLUT1-DS on ketogenic diet, suggesting impacts on mitochondrial physiology. Moreover, low levels of free carnitine were present suggesting its consumption in GLUT1-DS on ketogenic diet. 3-hydroxybutyrate, 3-hydroxybutyrylcarnitine, 3-methyladipate, and N-acetylglycine were identified as potential biomarkers of GLUT1-DS on ketogenic diet. This is the first study to identify CSF, plasma, and urine metabolites associated with GLUT1-DS, as well as biochemical changes impacted by a ketogenic diet. Potential biomarkers and metabolic insights deserve further investigation. PMID:28961260

  6. Effect of heat treatment on the n-3/n-6 ratio and content of polyunsaturated fatty acids in fish tissues.

    PubMed

    Schneedorferová, Ivana; Tomčala, Aleš; Valterová, Irena

    2015-06-01

    The aim of this study was to compare the effect of different heat treatments (pan-frying, oven-baking, and grilling) on the contents of polyunsaturated fatty acids (PUFAs) in fish tissue. Four fish species were examined: pike, carp, cod, and herring. High performance liquid chromatography, coupled with electrospray ionization and mass spectrometric detection (HPLC/ESI/MS), was employed for determination of intact lipid molecules containing n-3 and n-6 PUFAs. Although mostly non-polar lipids (triacylglycerols, TGs) were present in the fish tissue, the PUFAs were present preferentially in the phospholipid fraction. Omnivorous fish species (carp, herring) contained more TGs than did predatory ones (pike, cod). Higher amounts of PUFAs were detected in the marine species than in the freshwater ones. The impact of heat treatments on the lipid composition in the fish tissue seems to be species-specific, as indicated by multivariate data analysis. Herring tissue is most heat-stable, and the mildest heat treatment for PUFA preservation was oven-baking. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The inclusion of functional foods enriched in fibre, calcium, iodine, fat-soluble vitamins and n-3 fatty acids in a conventional diet improves the nutrient profile according to the Spanish reference intake.

    PubMed

    Berasategi, Izaskun; Cuervo, Marta; de Las Heras, Arantza Ruiz; Santiago, Susana; Martínez, J Alfredo; Astiasarán, Iciar; Ansorena, Diana

    2011-03-01

    The growing interest in maintaining good health status through optimal nutrition has boosted the launch of a number of functional foods on the market. The objective of the present study was to theoretically evaluate the nutritional relevance of incorporating selected enriched foods in the diet. A 28 d dietary plan, designed to be balanced under the recommended macronutrients criteria, was used as a basal diet. Some conventional foods were exchanged with foods enriched in fibre, calcium, iodine, vitamins A, D, E or n-3 fatty acids. Nutritional composition of basal and modified diets was derived and compared to the Spanish recommended intakes (RI). The basal diet covered the recommendations for fibre and calcium with mean intake of 28 g and 1241 mg, respectively. The current intake of salt, if iodized, or bread elaborated with this salt, allowed reaching the daily intake of iodine every day, with a mean supply of 216 μg/d and 278 μg/d, respectively. The deficient supply of vitamin E in the basal diet (mean = 8 mg/d) was covered by including enriched margarine and dairy products (mean = 15 mg/d). The low n-3 fatty acids intake in the basal diet (1·1 g/d) increased up to 1·9 g/d after the use of enriched margarine, butter and biscuits and soya drink instead of milk. In order to improve the accomplishment of the RI iodine, vitamin E and n-3 fatty acids, interesting strategies dealing with the incorporation of enriched foods in the diet were successfully initiated.

  8. Socio-economic factors associated with a healthy diet: results from the E3N study.

    PubMed

    Affret, Aurélie; Severi, Gianluca; Dow, Courtney; Rey, Grégoire; Delpierre, Cyrille; Boutron-Ruault, Marie-Christine; Clavel-Chapelon, Françoise; Fagherazzi, Guy

    2017-06-01

    To identify individual and contextual socio-economic factors associated with a healthy diet. Dietary data from a large cohort study were used to derive two mutually exclusive dietary patterns through a latent class analysis. Associations between dietary patterns and socio-economic factors were studied with logistic regression. E3N, a French prospective cohort study composed of women recruited from a national health insurance plan covering people working in the national education system. E3N participants (n 73 031) with dietary and socio-economic data available. The 'Healthy' pattern was characterized by a large consumption of fruits and vegetables and the 'Less Healthy' pattern by a large consumption of pizza and processed meat. When all socio-economic factors were analysed together, all of the individual factors considered were associated with a healthy diet (e.g. women with three or more children were less likely to follow a healthy diet v. women with no children, OR (95 % CI): 0·70 (0·66, 0·75)) while the contextual factors associated with a healthy diet included the size of the agglomeration of residence and the area of birth and residence (e.g. women living in the West of France were less likely to follow a healthy diet v. those living in the South of France: 0·78 (0·72, 0·83)). We demonstrated that individual and contextual factors are both associated with diet. Rather than focusing only on individual factors, we recommend future studies or public health and nutritional strategies on diet to consider both types of factors.

  9. Feeding soy protein isolate and oils rich in omega-3 polyunsaturated fatty acids affected mineral balance, but not bone in a rat model of autosomal recessive polycystic kidney disease.

    PubMed

    Maditz, Kaitlin H; Smith, Brenda J; Miller, Matthew; Oldaker, Chris; Tou, Janet C

    2015-02-10

    Polycystic kidney disease (PKD), a genetic disorder characterized by multiple cysts and renal failure at an early age. In children, kidney disease is often accompanied by disordered mineral metabolism, failure to achieve peak bone mass, and reduced adult height. Optimizing bone health during the growth stage may preserve against bone loss associated with early renal dysfunction in PKD. Dietary soy protein and omega-3 polyunsaturated fatty acid (n-3 PUFA) have been reported to ameliorate PKD and to promote bone health. The study objective was to determine the bone effects of feeding soy protein and/or n-3 PUFAs in a rat model of PKD. Weanling female PCK rats (n = 12/group) were randomly assigned to casein + corn oil (Casein + CO), casein + soybean oil (Casein + SO), soy protein isolate + soybean oil (SPI + SO) or soy protein isolate + 1:1 soybean oil:salmon oil blend (SPI + SB) for 12 weeks. Rats fed SPI + SO diet had shorter (P = 0.001) femur length than casein-fed rats. Rats fed SPI + SO and SPI + SB diet had higher (P = 0.04) calcium (Ca) and phosphorus (P) retention. However, there were no significant differences in femur and tibial Ca, P or bone mass between diet groups. There were also no significant difference in bone microarchitecture measured by micro-computed tomography or bone strength determined by three-point bending test between diet groups. Early diet management of PKD using SPI and/or n-3 PUFAs influenced bone longitudinal growth and mineral balance, but neither worsened nor enhanced bone mineralization, microarchitecture or strength.

  10. Omega 3 Fatty Acids Promote Macrophage Reverse Cholesterol Transport in Hamster Fed High Fat Diet

    PubMed Central

    Kasbi Chadli, Fatima; Nazih, Hassane; Krempf, Michel; Nguyen, Patrick; Ouguerram, Khadija

    2013-01-01

    The aim of this study was to investigate macrophage reverse cholesterol transport (RCT) in hamster, a CETP-expressing species, fed omega 3 fatty acids (ω3PUFA) supplemented high fat diet (HFD). Three groups of hamsters (n = 6/group) were studied for 20 weeks: 1) control diet: Control, 2) HFD group: HF and 3) HFD group supplemented with ω3PUFA (EPA and DHA): HFω3. In vivo macrophage-to-feces RCT was assessed after an intraperitoneal injection of 3H-cholesterol-labelled hamster primary macrophages. Compared to Control, HF presented significant (p<0.05) increase in body weight, plasma TG (p<0.01) and cholesterol (p<0.001) with an increase in VLDL TG and in VLDL and LDL cholesterol (p<0.001). Compared to HF, HFω3 presented significant decrease in body weight. HFω3 showed less plasma TG (p<0.001) and cholesterol (p<0.001) related to a decrease in VLDL TG and HDL cholesterol respectively and higher LCAT activity (p<0.05) compared to HF. HFω3 showed a higher fecal bile acid excretion (p<0.05) compared to Control and HF groups and higher fecal cholesterol excretion (p<0.05) compared to HF. This increase was related to higher gene expression of ABCG5, ABCA1 and SR-B1 in HFω3 compared to Control and HF groups (<0.05) and in ABCG1 and CYP7A1 compared to HF group (p<0.05). A higher plasma efflux capacity was also measured in HFω3 using 3H- cholesterol labeled Fu5AH cells. In conclusion, EPA and DHA supplementation improved macrophage to feces reverse cholesterol transport in hamster fed HFD. This change was related to the higher cholesterol and fecal bile acids excretion and to the activation of major genes involved in RCT. PMID:23613796

  11. Lipid phosphate phosphatase 3 regulates adipocyte sphingolipid synthesis, but not developmental adipogenesis or diet-induced obesity in mice.

    PubMed

    Federico, Lorenzo; Yang, Liping; Brandon, Jason; Panchatcharam, Manikandan; Ren, Hongmei; Mueller, Paul; Sunkara, Manjula; Escalante-Alcalde, Diana; Morris, Andrew J; Smyth, Susan S

    2018-01-01

    Dephosphorylation of phosphatidic acid (PA) is the penultimate step in triglyceride synthesis. Adipocytes express soluble intracellular PA-specific phosphatases (Lipins) and broader specificity membrane-associated lipid phosphate phosphatases (LPPs) that can also dephosphorylate PA. Inactivation of lipin1 causes lipodystrophy in mice due to defective developmental adipogenesis. Triglyceride synthesis is diminished but not ablated by inactivation of lipin1 in differentiated adipocytes implicating other PA phosphatases in this process. To investigate the possible role of LPPs in adipocyte lipid metabolism and signaling we made mice with adipocyte-targeted inactivation of LPP3 encoded by the Plpp3(Ppap2b) gene. Adipocyte LPP3 deficiency resulted in blunted ceramide and sphingomyelin accumulation during diet-induced adipose tissue expansion, accumulation of the LPP3 substrate sphingosine 1- phosphate, and reduced expression of serine palmitoyl transferase. However, adiposity was unaffected by LPP3 deficiency on standard, high fat diet or Western diets, although Western diet-fed mice with adipocyte LPP3 deficiency exhibited improved glucose tolerance. Our results demonstrate functional compartmentalization of lipid phosphatase activity in adipocytes and identify an unexpected role for LPP3 in the regulation of diet-dependent sphingolipid synthesis that may impact on insulin signaling.

  12. Umbilical cord PUFA are determined by maternal and child fatty acid desaturase (FADS) genetic variants in the Avon Longitudinal Study of Parents and Children (ALSPAC)

    PubMed Central

    Lattka, Eva; Koletzko, Berthold; Zeilinger, Sonja; Hibbeln, Joseph R.; Klopp, Norman; Ring, Susan M.; Steer, Colin D.

    2012-01-01

    Fetal supply with long-chain PUFA (LC-PUFA) during pregnancy is important for brain growth and visual and cognitive development and is provided by materno–fetal placental transfer. We recently showed that maternal fatty acid desaturase (FADS) genotypes modulate the amounts of LC-PUFA in maternal blood. Whether FADS genotypes influence the amounts of umbilical cord fatty acids has not been investigated until now. The aim of the present study was to investigate the influence of maternal and child FADS genotypes on the amounts of LC-PUFA in umbilical cord venous plasma as an indicator of fetal fatty acid supply during pregnancy. A total of eleven cord plasma n-6 and n-3 fatty acids were analysed for association with seventeen FADS gene cluster SNP in over 2000 mothers and children from the Avon Longitudinal Study of Parents and Children. In a multivariable analysis, the maternal genotype effect was adjusted for the child genotype and vice versa to estimate which of the two has the stronger influence on cord plasma fatty acids. Both maternal and child FADS genotypes and haplotypes influenced amounts of cord plasma LC-PUFA and fatty acid ratios. Specifically, most analysed maternal SNP were associated with cord plasma levels of the precursor n-6 PUFA, whereas the child genotypes were mainly associated with more highly desaturated n-6 LC-PUFA. This first study on FADS genotypes and cord fatty acids suggests that fetal LC-PUFA status is determined to some extent by fetal fatty acid conversion. Associations of particular haplotypes suggest specific effects of SNP rs498793 and rs968567 on fatty acid metabolism. PMID:22877655

  13. Umbilical cord PUFA are determined by maternal and child fatty acid desaturase (FADS) genetic variants in the Avon Longitudinal Study of Parents and Children (ALSPAC).

    PubMed

    Lattka, Eva; Koletzko, Berthold; Zeilinger, Sonja; Hibbeln, Joseph R; Klopp, Norman; Ring, Susan M; Steer, Colin D

    2013-04-14

    Fetal supply with long-chain PUFA (LC-PUFA) during pregnancy is important for brain growth and visual and cognitive development and is provided by materno-fetal placental transfer. We recently showed that maternal fatty acid desaturase (FADS) genotypes modulate the amounts of LC-PUFA in maternal blood. Whether FADS genotypes influence the amounts of umbilical cord fatty acids has not been investigated until now. The aim of the present study was to investigate the influence of maternal and child FADS genotypes on the amounts of LC-PUFA in umbilical cord venous plasma as an indicator of fetal fatty acid supply during pregnancy. A total of eleven cord plasma n-6 and n-3 fatty acids were analysed for association with seventeen FADS gene cluster SNP in over 2000 mothers and children from the Avon Longitudinal Study of Parents and Children. In a multivariable analysis, the maternal genotype effect was adjusted for the child genotype and vice versa to estimate which of the two has the stronger influence on cord plasma fatty acids. Both maternal and child FADS genotypes and haplotypes influenced amounts of cord plasma LC-PUFA and fatty acid ratios. Specifically, most analysed maternal SNP were associated with cord plasma levels of the precursor n-6 PUFA, whereas the child genotypes were mainly associated with more highly desaturated n-6 LC-PUFA. This first study on FADS genotypes and cord fatty acids suggests that fetal LC-PUFA status is determined to some extent by fetal fatty acid conversion. Associations of particular haplotypes suggest specific effects of SNP rs498793 and rs968567 on fatty acid metabolism.

  14. Dietary docosahexaenoic acid and trans-10, cis-12-conjugated linoleic acid alter oxylipins profiles in mouse adipose tissue

    USDA-ARS?s Scientific Manuscript database

    Diets containing high amounts of n-3 polyunsaturated fatty acids (PUFA) decrease inflammation and the incidence of chronic diseases including cardiovascular disease and nonalcoholic fatty liver disease while trans-fatty acids (TFA) intake increases the incidence of these conditions. Some n-3 PUFA-a...

  15. Dietary Echium Oil Increases Long-Chain n–3 PUFAs, Including Docosapentaenoic Acid, in Blood Fractions and Alters Biochemical Markers for Cardiovascular Disease Independently of Age, Sex, and Metabolic Syndrome12

    PubMed Central

    Kuhnt, Katrin; Fuhrmann, Claudia; Köhler, Melanie; Kiehntopf, Michael; Jahreis, Gerhard

    2014-01-01

    Dietary supplementation with echium oil (EO) containing stearidonic acid (SDA) is a plant-based strategy to improve long-chain (LC) n–3 (ω-3) polyunsaturated fatty acid (PUFA) status in humans. We investigated the effect of EO on LC n–3 PUFA accumulation in blood and biochemical markers with respect to age, sex, and metabolic syndrome. This double-blind, parallel-arm, randomized controlled study started with a 2-wk run-in period, during which participants (n = 80) were administered 17 g/d run-in oil. Normal-weight individuals from 2 age groups (20–35 and 49–69 y) were allotted to EO or fish oil (FO; control) groups. During the 8-wk intervention, participants were administered either 17 g/d EO (2 g SDA; n = 59) or FO [1.9 g eicosapentaenoic acid (EPA); n = 19]. Overweight individuals with metabolic syndrome (n = 19) were recruited for EO treatment only. During the 10-wk study, the participants followed a dietary n–3 PUFA restriction, e.g., no fish. After the 8-wk EO treatment, increases in the LC n–3 metabolites EPA (168% and 79%) and docosapentaenoic acid [DPA (68% and 39%)] were observed, whereas docosahexaenoic acid (DHA) decreased (−5% and −23%) in plasma and peripheral blood mononuclear cells, respectively. Compared with FO, the efficacy of EO to increase EPA and DPA in blood was significantly lower (∼25% and ∼50%, respectively). A higher body mass index (BMI) was associated with lower relative and net increases in EPA and DPA. Compared with baseline, EO significantly reduced serum cholesterol, LDL cholesterol, oxidized LDL, and triglyceride (TG), but also HDL cholesterol, regardless of age and BMI. In the FO group, only TG decreased. Overall, daily intake of 15–20 g EO increased EPA and DPA in blood but had no influence on DHA. EO lowered cardiovascular risk markers, e.g., serum TG, which is particularly relevant for individuals with metabolic syndrome. Natural EO could be a noteworthy source of n–3 PUFA in human nutrition. This trial

  16. Stearoyl-CoA desaturase indexes and n-6/n-3 fatty acids ratio as biomarkers of cardiometabolic risk factors in normal-weight rabbits fed high fat diets.

    PubMed

    Alarcón, Gabriela; Roco, Julieta; Medina, Analia; Van Nieuwenhove, Carina; Medina, Mirta; Jerez, Susana

    2016-01-20

    Biomarkers for cardiometabolic risk (CMR) factors would be important tools to maximize the effectiveness of dietary interventions to prevent cardiovascular diseases. Thus, the aim of this work was to analyze stearoyl-CoA desaturase (SCD) indexes and n-6/n-3 fatty acids (FA) ratio as biomarkers of CMR induced by feeding rabbits on high fat diets (HFDs). Rabbits were fed either regular diet or 18 % fat in regular diet (HFD) or 1 % cholesterol diet (HD) or diet containing 1 % cholesterol and 18 % fat (HFD-HD) during 6 weeks. Body weights (BW), blood pressure, visceral abdominal fat (VAF) and glucose tolerance test were determined. Total cholesterol (TC), low density lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C), triglycerides (TG), fasting glucose (FG), and FA levels from plasma were measured. SCD indexes were calculated as product/precursor ratios of individual FA. BW was similar in all diet groups. HD increased TC, LDL-C, HDL-C, and TG. HFD increased TG, VAF and FG, and decreased HDL-C. The addition of HFD to HD joined to dyslipidemia increased VAF and FG. SCD indexes were increased and n-6/n-3 was unchanged in HD. SCD indexes were reduced and n-6/n-3 FA ratio was increased in HFD and HFD-HD. CMR factors were correlated positively with n-6/n-3 FA ratio. Although VAF had a stronger correlation with n-6/n-3 FA ratio than with SCD indexes, VAF was associated independently to both markers. HFD simulating lipid composition of the average Western-style diet induced experimental rabbit models of normal-weight metabolic syndrome (MS). SCD indexes and n-6/n-3 were modified according to the type of dietary fat. Considering that VAF and CMR factors appear to be stronger associated to n-6/n-3 FA ratio than to SCD indexes, n-6/n-3 FA ratio may be a better biomarker of MS and CMR in normal-weight subjects than SCD indexes.

  17. Reduced dietary omega-6 to omega-3 fatty acid ratio and 12/15-lipoxygenase deficiency are protective against chronic high fat diet-induced steatohepatitis.

    PubMed

    Lazic, Milos; Inzaugarat, Maria Eugenia; Povero, Davide; Zhao, Iris C; Chen, Mark; Nalbandian, Madlena; Miller, Yury I; Cherñavsky, Alejandra C; Feldstein, Ariel E; Sears, Dorothy D

    2014-01-01

    Obesity is associated with metabolic perturbations including liver and adipose tissue inflammation, insulin resistance, and type 2 diabetes. Omega-6 fatty acids (ω6) promote and omega-3 fatty acids (ω3) reduce inflammation as they can be metabolized to pro- and anti-inflammatory eicosanoids, respectively. 12/15-lipoxygenase (12/15-LO) enzymatically produces some of these metabolites and is induced by high fat (HF) diet. We investigated the effects of altering dietary ω6/ω3 ratio and 12/15-LO deficiency on HF diet-induced tissue inflammation and insulin resistance. We examined how these conditions affect circulating concentrations of oxidized metabolites of ω6 arachidonic and linoleic acids and innate and adaptive immune system activity in the liver. For 15 weeks, wild-type (WT) mice were fed either a soybean oil-enriched HF diet with high dietary ω6/ω3 ratio (11∶1, HFH), similar to Western-style diet, or a fat Kcal-matched, fish oil-enriched HF diet with a low dietary ω6/ω3 ratio of 2.7∶1 (HFL). Importantly, the total saturated, monounsaturated and polyunsaturated fat content was matched in the two HF diets, which is unlike most published fish oil studies in mice. Despite modestly increased food intake, WT mice fed HFL were protected from HFH-diet induced steatohepatitis, evidenced by decreased hepatic mRNA expression of pro-inflammatory genes and genes involved in lymphocyte homing, and reduced deposition of hepatic triglyceride. Furthermore, oxidized metabolites of ω6 arachidonic acid were decreased in the plasma of WT HFL compared to WT HFH-fed mice. 12/15-LO knockout (KO) mice were also protected from HFH-induced fatty liver and elevated mRNA markers of inflammation and lymphocyte homing. 12/15-LOKO mice were protected from HFH-induced insulin resistance but reducing dietary ω6/ω3 ratio in WT mice did not ameliorate insulin resistance or adipose tissue inflammation. In conclusion, lowering dietary ω6/ω3 ratio in HF diet significantly reduces

  18. Lipid Emulsion Enriched in Omega-3 PUFA Accelerates Wound Healing: A Placebo-Controlled Animal Study.

    PubMed

    Peng, Yi-Chi; Yang, Fwu-Lin; Subeq, Yi-Maun; Tien, Chin-Chieh; Chao, Yann-Fen C; Lee, Ru-Ping

    2018-06-01

    The Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) generate bioactive lipid mediators that reduce inflammation. The present study evaluated the effect of SMOFlipid containing ω-3 PUFAs on wound healing. Rats were divided into a SMOFlipid (SMOF) group and a 0.9% saline (placebo) group, with eight rats in each group. Wound excision was performed on the dorsal surface of each rat. In the SMOF group, 1 gm/kg SMOFlipid was dissolved in 3 mL saline as a treatment; in the placebo group, 3 mL saline was prepared as a treatment. The treatments were administered intravenously at an initial rate of 0.2 mL/kg body weight/h immediately after wounding, for 72 h. Blood samples were collected for white blood cell, tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 measurements at the baseline and at 1, 6, 12, 24, 48, and 72 h after intervention. Wound areas were measured over a 2-week period after excision, and a histological examination was performed. Compared with the placebo group, SMOFlipid supplementation engendered significant decreases in the wound area on day 3 (78.28 ± 5.25 vs. 105.86 ± 8.89%), day 5 (72.20 ± 4.31 vs. 96.39 ± 4.72%), day 10 (20.78 ± 1.28 vs. 39.80 ± 10.38%), and day 14 (7.56 ± 0.61 vs. 15.10 ± 2.42%). The placebo group had a higher TNF-α level than the SMOF group at 72 h. The IL-10 level was higher in the SMOF group than in the placebo group at 48 h. Histological analysis revealed a higher rate of fibroblast distribution and collagen fiber organization in the SMOF group (P = 0.01). SMOFlipid enriched in ω-3 PUFA accelerates wound healing.

  19. Dietary intake of fish and n-3 polyunsaturated fatty acids and risks of perinatal depression: The Japan Environment and Children's Study (JECS).

    PubMed

    Hamazaki, Kei; Takamori, Ayako; Tsuchida, Akiko; Kigawa, Mika; Tanaka, Tomomi; Ito, Mika; Adachi, Yuichi; Saito, Shigeru; Origasa, Hideki; Inadera, Hidekuni

    2018-03-01

    The results of several epidemiological studies and clinical trials investigating the effects of n-3 polyunsaturated fatty acids (PUFAs) on antenatal and postnatal depression remain controversial. We investigated the possible association of dietary intake of fish and n-3 PUFAs with the risks of maternal and paternal psychological distress during pregnancy and of maternal postpartum depression in Japan. From a dataset comprising 104,102 maternal registrations and 52,426 paternal registrations in The Japan Environment and Children's Study, this study analyzed complete data on questionnaires for 75,139, 79,346, and 77,661 women during early pregnancy, mid-late pregnancy, and after pregnancy, respectively, and for 41,506 male partners. Multivariable logistic regression showed reduced risk of psychological distress in the second and third quintiles for fish intake in early pregnancy and in the second to fifth quintile in mid-late pregnancy. No reductions were observed for n-3 PUFA intake in early pregnancy but in the second to fourth quintile in mid-late pregnancy. For postpartum depression, reductions were observed in the second to fourth quintile for fish intake but only in the first quintile for n-3 PUFA intake. As for paternal psychological distress, only the fourth quintile for fish intake showed a significant reduced risk but none were shown for n-3 PUFA intake. In conclusion, fish intake was associated with some reduced risk of psychological distress during pregnancy, even for male partners. The associations were weaker for n-3 PUFA intake than for fish intake. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet.

    PubMed

    Kong, Bo; Luyendyk, James P; Tawfik, Ossama; Guo, Grace L

    2009-01-01

    Nonalcoholic steatohepatitis (NASH) comprises dysregulation of lipid metabolism and inflammation. Identification of the various genetic and environmental susceptibility factors for NASH may provide novel treatments to limit inflammation and fibrosis in patients. This study utilized a mouse model of hypercholesterolemia, low-density lipoprotein receptor knockout (LDLr(-/-)) mice fed a high-fat diet for 5 months, to test the hypothesis that farnesoid X receptor (FXR) deficiency contributed to NASH development. Either the high-fat diet or FXR deficiency increased serum alanine aminotransferase activity, whereas only FXR deficiency increased bile acid and alkaline phosphatase levels. FXR deficiency and high-fat feeding increased serum cholesterol and triglycerides. Although high fat led to macrosteatosis and hepatocyte ballooning in livers of mice regardless of genotype, no inflammatory infiltrate was observed in the livers of LDLr(-/-) mice. In contrast, in the livers of LDLr(-/-)/FXR(-/-) mice, foci of inflammatory cells were observed occasionally when fed the control diet and were greatly increased when fed the high-fat diet. Consistent with enhanced inflammatory cells, hepatic levels of tumor necrosis factor alpha and intercellular adhesion molecule-1 mRNA were increased by the high-fat diet in LDLr(-/-)/FXR(-/-) mice. In agreement with elevated levels of procollagen 1 alpha 1 and TGF-beta mRNA, type 1 collagen protein levels were increased in livers of LDLr(-/-)/FXR(-/-) mice fed a high-fat diet. In conclusion, FXR deficiency induces pathologic manifestations required for NASH diagnosis in a mouse model of hypercholesterolemia, including macrosteatosis, hepatocyte ballooning, and inflammation, which suggest a combination of FXR deficiency and high-fat diet is a risk factor for NASH development, and activation of FXR may be a therapeutic intervention in the treatment of NASH.

  1. Reduction of the n-6:n-3 long-chain PUFA ratio during pregnancy and lactation on offspring body composition: follow-up results from a randomized controlled trial up to 5 y of age.

    PubMed

    Brei, Christina; Stecher, Lynne; Much, Daniela; Karla, Marie-Theres; Amann-Gassner, Ulrike; Shen, Jun; Ganter, Carl; Karampinos, Dimitrios C; Brunner, Stefanie; Hauner, Hans

    2016-06-01

    It has been hypothesized that the n-6:n-3 (ω-6:ω-3) long-chain polyunsaturated fatty acid (LCPUFA) ratio in the maternal diet during the prenatal and early postnatal phase positively affects the body composition of the offspring. However, only limited data from prospective human intervention studies with long-term follow-up are available. We assessed the long-term effects of a reduced n-6:n-3 LCPUFA ratio in the diets of pregnant and lactating women [1020 mg docosahexaenoic acid (DHA) plus 180 mg eicosapentaenoic acid (EPA)/d together with an arachidonic acid-balanced diet compared with a control diet] on the body weights and compositions of their offspring from 2 to 5 y of age with a focus on the 5-y results. Participants in the randomized controlled trial received follow-up assessments with annual body-composition measurements including skinfold thickness (SFT) measurements (primary outcome), a sonographic assessment of abdominal subcutaneous and preperitoneal fat, and child growth. In addition, abdominal MRI was performed in a subgroup of 5-y-old children. For the statistical analysis, mixed models for repeated measures (MMRMs) were fit with the use of data from each visit since birth (except for MRI). Maternal LCPUFA supplementation did not significantly influence the children's sum of 4 SFTs [means ± SDs at 5 y of age: intervention, 23.9 ± 4.7 mm (n = 57); control, 24.5 ± 5.0 mm (n = 55); adjusted mean difference, -0.5 (95% CI: -2.2, 1.2)], growth, or ultrasonography measures at any time point in the adjusted MMRM model (all P values < 0.05). Results were consistent with abdominal MRI measurements (n = 44) at 5 y of age, which showed no significant differences in subcutaneous and visceral adipose tissue volumes and ratios. The current study provides no evidence that a dietary reduction of the n-6:n-3 LCPUFA ratio in the maternal diet during pregnancy and lactation is a useful early preventive strategy against obesity at preschool age. This trial was

  2. Effects of maternal dietary EPA and DHA supplementation and breeder age on embryonic and post-hatch performance of broiler offspring: age and n-3 pufa affect embryonic and post-hatch performance.

    PubMed

    Koppenol, A; Delezie, E; Wang, Y; Franssens, L; Willems, E; Ampe, B; Buyse, J; Everaert, N

    2015-04-01

    Breeder age and nutrition are amongst the most important factors affecting progeny growth and development. The present experiment was carried out to evaluate the effects of n-3 fatty acid (FA), with special emphasis on the ratio of eicosapentaenoic (EPA, 20:5 n-3) and docosahexaenoic (DHA, 22:6 n-3) acid, provided to the diet of ageing broiler breeder hens at different ratios, on the incubation parameters and the performance of the offspring. Four hundred and eighty Ross-308 broiler breeder hens were fed one of four different diets (120/treatment), with an equal fat content. The control diet was a basal diet, rich in n-6 FAs (CON). Blends of fish oil were used to enrich the three other diets in n-3 FA and to obtain different EPA/DHA ratios of 1/1 (EPA=DHA), 1/2 (DHA) or 2/1 (EPA). Every 5 weeks, incubation parameters were assessed. Every 15 weeks, offspring was reared until slaughter age on a standard diet. Breeder age affected almost all incubation and post-hatch parameters, whereas n-3 FA treatment only lowered egg weight (p < 0.0001) and consequently hatched chick weight (p < 0.0001). Supplementation of EPA resulted in a higher proportional liver weight (p = 0.0219) at hatch, a lower body weight up to 28 days post-hatch (p = 0.0418), a lower daily weight gain (p = 0.0498) and a higher feed conversion ratio (p = 0.0395) during the starter period (p = 0.0498), resulting in a higher overall offspring feed conversion ratio (p = 0.0317) compared to the control diet. DHA supplementation, on the other hand, resulted in a lower residual yolk weight (p = 0.0220) and a higher overall offspring mortality (p = 0.0125). In conclusion, supplementation of n-3 FA could not counter the adverse effect of breeder flock age, but did not harm incubation or improve post-hatch performance, either. EPA and DHA affected offspring development differently during early post-hatch life. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  3. Effects of a dietary antioxidant blend and vitamin E on fatty acid profile, liver function, and inflammatory response in broiler chickens fed a diet high in oxidants.

    PubMed

    Lu, T; Harper, A F; Zhao, J; Corl, B A; LeRoith, T; Dalloul, R A

    2014-07-01

    The aim of the current study was to determine the effects of a dietary antioxidant blend and vitamin E on fatty acid profile, inflammatory response, and liver function. Cobb 500 male broilers (n = 1,200, d 0) were randomly distributed into 6 treatments with 10 replicate floor pens. Treatments included (1) a high-oxidant diet, with vitamin E at 10 IU/kg, 3% oxidized oil, 3% polyunsaturated fatty acids (PUFA) source (HO); (2) the HO diet with vitamin E at 200 IU/kg (VE); (3) the HO diet with an antioxidant blend at 135 mg/kg (AOX); (4) the HO diet with both vitamin E at 200 IU/kg and an antioxidant blend at 135 mg/kg (VE+AOX); (5) standard control (SC); and (6) a positive control, which was the SC diet with an antioxidant blend at 135 mg/kg. The concentrations of 20:4, 20:5, 22:5, 22:6, and all the n-3 fatty acids were greater in the abdominal fat of HO, VE, AOX, and VE+AOX birds than SC and positive control birds on d 21 and 42 (P < 0.001). Compared with HO treatment, AOX and VE+AOX preserved the deposition of PUFA better (P < 0.001). The HO birds had greater concentrations of aspartate aminotransferase on d 21 and 42, and γ-glutamyl transferase on d 21, whereas AOX and VE+AOX chickens had restored γ-glutamyl transferase concentration (P < 0.01). The inflammation scores of abdominal fat of AOX and VE+AOX birds were lower than the HO on d 21 (P < 0.001). Compared with SC, the VE and VE+AOX birds exhibited greater vacuole scores on d 21 and 42 (P < 0.01). The lower vacuoles score in SC was associated with a greater expression of peroxisome proliferator activated receptor -γ and -α (P < 0.05). The expression of inflammatory genes in the liver did not differ among treatments. In conclusion, the AOX and AOX+VE diets were effective in preserving PUFA in the abdominal fat, moderately improved liver function, and reduced inflammation in fat. © 2014 Poultry Science Association Inc.

  4. Dynamic alterations in the gut microbiota and metabolome during the development of methionine-choline-deficient diet-induced nonalcoholic steatohepatitis.

    PubMed

    Ye, Jian-Zhong; Li, Ya-Ting; Wu, Wen-Rui; Shi, Ding; Fang, Dai-Qiong; Yang, Li-Ya; Bian, Xiao-Yuan; Wu, Jing-Jing; Wang, Qing; Jiang, Xian-Wan; Peng, Cong-Gao; Ye, Wan-Chun; Xia, Peng-Cheng; Li, Lan-Juan

    2018-06-21

    To investigate changes in gut microbiota and metabolism during nonalcoholic steatohepatitis (NASH) development in mice fed a methionine-choline-deficient (MCD) diet. Twenty-four male C57BL/6J mice were equally divided into four groups and fed a methionine-choline-sufficient diet for 2 wk (Control 2w group, n = 6) or 4 wk (Control 4w group, n = 6) or the MCD diet for 2 wk (MCD 2w group, n = 6) or 4 wk (MCD 4w group, n = 6). Liver injury, fibrosis, and intestinal barrier function were evaluated after 2 and 4 wk of feeding. The fecal microbiome and metabolome were studied using 16s rRNA deep sequencing and gas chromatography-mass spectrometry. The mice fed the MCD diet presented with simple hepatic steatosis and slight intestinal barrier deterioration after 2 wk. After 4 wk of feeding with the MCD diet, however, the mice developed prominent NASH with liver fibrosis, and the intestinal barrier was more impaired. Compared with the control diet, the MCD diet induced gradual gut microbiota dysbiosis, as evidenced by a marked decrease in the abundance of Alistipes and the ( Eubacterium ) coprostanoligenes group ( P < 0.001 and P < 0.05, respectively) and a significant increase in Ruminococcaceae UCG 014 abundance ( P < 0.05) after 2 wk. At 4 wk, the MCD diet significantly reduced the promising probiotic Bifidobacterium levels and markedly promoted Bacteroides abundance ( P < 0.05, and P < 0.01, respectively). The fecal metabolomic profile was also substantially altered by the MCD diet: At 2 wk, arachidic acid, hexadecane, palmitic acid, and tetracosane were selected as potential biomarkers that were significantly different in the corresponding control group, and at 4 wk, cholic acid, cholesterol, arachidic acid, tetracosane, and stearic acid were selected. The MCD diet induced persistent alterations in the gut microbiota and metabolome.

  5. Dynamic alterations in the gut microbiota and metabolome during the development of methionine-choline-deficient diet-induced nonalcoholic steatohepatitis

    PubMed Central

    Ye, Jian-Zhong; Li, Ya-Ting; Wu, Wen-Rui; Shi, Ding; Fang, Dai-Qiong; Yang, Li-Ya; Bian, Xiao-Yuan; Wu, Jing-Jing; Wang, Qing; Jiang, Xian-Wan; Peng, Cong-Gao; Ye, Wan-Chun; Xia, Peng-Cheng; Li, Lan-Juan

    2018-01-01

    AIM To investigate changes in gut microbiota and metabolism during nonalcoholic steatohepatitis (NASH) development in mice fed a methionine-choline-deficient (MCD) diet. METHODS Twenty-four male C57BL/6J mice were equally divided into four groups and fed a methionine-choline-sufficient diet for 2 wk (Control 2w group, n = 6) or 4 wk (Control 4w group, n = 6) or the MCD diet for 2 wk (MCD 2w group, n = 6) or 4 wk (MCD 4w group, n = 6). Liver injury, fibrosis, and intestinal barrier function were evaluated after 2 and 4 wk of feeding. The fecal microbiome and metabolome were studied using 16s rRNA deep sequencing and gas chromatography-mass spectrometry. RESULTS The mice fed the MCD diet presented with simple hepatic steatosis and slight intestinal barrier deterioration after 2 wk. After 4 wk of feeding with the MCD diet, however, the mice developed prominent NASH with liver fibrosis, and the intestinal barrier was more impaired. Compared with the control diet, the MCD diet induced gradual gut microbiota dysbiosis, as evidenced by a marked decrease in the abundance of Alistipes and the (Eubacterium) coprostanoligenes group (P < 0.001 and P < 0.05, respectively) and a significant increase in Ruminococcaceae UCG 014 abundance (P < 0.05) after 2 wk. At 4 wk, the MCD diet significantly reduced the promising probiotic Bifidobacterium levels and markedly promoted Bacteroides abundance (P < 0.05, and P < 0.01, respectively). The fecal metabolomic profile was also substantially altered by the MCD diet: At 2 wk, arachidic acid, hexadecane, palmitic acid, and tetracosane were selected as potential biomarkers that were significantly different in the corresponding control group, and at 4 wk, cholic acid, cholesterol, arachidic acid, tetracosane, and stearic acid were selected. CONCLUSION The MCD diet induced persistent alterations in the gut microbiota and metabolome. PMID:29930468

  6. Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma.

    PubMed

    Yan, Lin; Nielsen, Forrest H; Sundaram, Sneha; Cao, Jay

    2017-04-04

    Bone loss occurs in obesity and cancer-associated complications including wasting. This study determined whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects in male C57BL/6 mice with Lewis lung carcinoma (LLC) metastases in lungs. Compared to non-tumor-bearing mice, LLC reduced bone volume fraction, connectivity density, trabecular number, trabecular thickness and bone mineral density and increased trabecular separation in femurs. Similar changes occurred in vertebrae. The high-fat diet compared to the AIN93G diet exacerbated LLC-induced detrimental structural changes; the exacerbation was greater in femurs than in vertebrae. Mice deficient in MCP-1 compared to wild-type mice exhibited increases in bone volume fraction, connectivity density, trabecular number and decreases in trabecular separation in both femurs and vertebrae, and increases in trabecular thickness and bone mineral density and a decrease in structure model index in vertebrae. Lewis lung carcinoma significantly decreased osteocalcin but increased tartrate-resistant acid phosphatase 5b (TRAP 5b) in plasma. In LLC-bearing mice, the high-fat diet increased and MCP-1 deficiency decreased plasma TRAP 5b; neither the high-fat diet nor MCP-1 deficiency resulted in significant changes in plasma concentration of osteocalcin. In conclusion, pulmonary metastasis of LLC is accompanied by detrimental bone structural changes; MCP-1 deficiency attenuates and high-fat diet exacerbates the metastasis-associated bone wasting.

  7. n-3 polyunsaturated fatty acid supplementation reduces insulin resistance in hepatitis C virus infected patients: a randomised controlled trial.

    PubMed

    Freire, T O; Boulhosa, R S S B; Oliveira, L P M; de Jesus, R P; Cavalcante, L N; Lemaire, D C; Toralles, M B P; Lyra, L G C; Lyra, A C

    2016-06-01

    Insulin resistance promotes liver disease progression and may be associated with a lower response rate in treated hepatitis C virus (HCV) infected patients. n-3 polyunsaturated fatty acid (PUFA) supplementation may reduce insulin resistance. The present study aimed to evaluate the effect of n-3 PUFA supplementation on insulin resistance in these patients. In a randomised, double-blind clinical trial, 154 patients were screened. After applying inclusion criteria, 52 patients [homeostasis model assessment index of insulin resistance (HOMA-IR ≥2.5)] were randomly divided into two groups: n-3 PUFA (n = 25/6000 mg day(-1) of fish oil) or control (n = 27/6000 mg day(-1) of soybean oil). Both groups were supplemented for 12 weeks and underwent monthly nutritional consultation. Biochemical tests were performed at baseline and after intervention. Statistical analysis was performed using the Wilcoxon Mann-Whitney test for comparisons and the Wilcoxon test for paired data. Statistical package r, version 3.02 (The R Project for Statistical Computing) was used and P < 0.05 (two-tailed) was considered statistically significant. Comparisons between groups showed that n-3 PUFA supplementation was more effective than the control for reducing HOMA-IR (P = 0.015) and serum insulin (P = 0.016). The n-3 PUFA group not only showed a significant reduction in HOMA-IR 3.8 (3.2-5.0) versus 2.4 (1.8-3.3) (P = 0.002); serum insulin 17.1 (13.8-20.6) μIU mL(-1) versus 10.9 (8.6-14.6) μIU mL(-1) (P = 0.001); and glycated haemoglobin 5.4% (5.0-5.7%) versus 5.1% (4.8-5.6%) (P = 0.011), but also presented an increase in interleukin-1 97.5 (0.0-199.8) pg mL(-1) versus 192.4 (102.2-266.8) pg mL(-1) (P = 0.003) and tumour necrosis factor 121.2 (0.0-171.3) pg mL(-1) versus 185.7 (98.0-246.9) pg mL(-1) (P = 0.003). n-3 PUFA supplementation reduces insulin resistance in genotype 1 HCV infected patients. © 2015 The British Dietetic Association Ltd.

  8. Comparison of inferred fractions of n-3 and n-6 polyunsaturated fatty acids in feral domestic cat diets with those in commercial feline extruded diets.

    PubMed

    Backus, Robert C; Thomas, David G; Fritsche, Kevin L

    2013-04-01

    To compare presumed fatty acid content in natural diets of feral domestic cats (inferred from body fat polyunsatrated fatty acids content) with polyunsaturated fatty acid content of commercial feline extruded diets. Subcutaneous and intra-abdominal adipose tissue samples (approx 1 g) from previously frozen cadavers of 7 adult feral domestic cats trapped in habitats remote from human activity and triplicate samples (200 g each) of 7 commercial extruded diets representing 68% of market share obtained from retail stores. Lipid, triacylglycerol, and phospholipid fractions in adipose tissue samples and ether extracts of diet samples were determined by gas chromatography of methyl esters. Triacylglycerol and phospholipid fractions in the adipose tissue were isolated by thin-layer chromatography. Diet samples were also analyzed for proximate contents. For the adipose tissue samples, with few exceptions, fatty acids fractions varied only moderately with lipid fraction and site from which tissue samples were obtained. Linoleic, α-linolenic, arachidonic, eicosapentaenoic, and docosahexaenoic acid fractions were 15.0% to 28.2%, 4.5% to 18.7%, 0.9% to 5.0%, < 0.1% to 0.2%, and 0.6% to 1.7%, respectively. As inferred from the adipose findings, dietary fractions of docosahexaenoic and α-linolenic acid were significantly greater than those in the commercial feline diets, but those for linoleic and eicosapentaenoic acids were not significantly different. The fatty acid content of commercial extruded feline diets differed from the inferred content of natural feral cat diets, in which dietary n-3 and possibly n-6 polyunsaturated fatty acids were more abundant. The impact of this difference on the health of pet cats is not known.

  9. Differences in omega-3 and omega-6 polyunsaturated fatty acid consumption in people at ultra-high risk of psychosis, first-episode schizophrenia, and in healthy controls.

    PubMed

    Pawełczyk, Tomasz; Trafalska, Elżbieta; Pawełczyk, Agnieszka; Kotlicka-Antczak, Magdalena

    2017-12-01

    Supplementation with omega-3 PUFA showed efficacy in reducing the risk of transition into psychosis in UHR individuals. It is uncertain whether dietary patterns can be partly responsible for n-3 deficiencies observed in susceptible participants before the diagnosis of schizophrenia. The study was designed to assess differences in omega-3 and omega-6 PUFA consumption in healthy controls (HC), UHR participants and FES patients as well as to verify the hypothesis that dietary changes in PUFA consumption are present before active psychosis develops, that is, in UHR individuals. Dietary habits during the previous year were assessed in 34 patients at UHR of psychosis, 33 patients diagnosed with FES and 33 HC participants using a validated Food-Frequency Questionnaire and the Polish Food Composition Tables. Significant differences in omega-3 and omega-6 PUFA intake were observed between study groups. UHR and FES groups reported significantly higher consumption of omega-6 PUFA in comparison with HC. FES patients also reported a higher consumption of alpha-linolenic acid (omega-3) in comparison with HC. No significant differences were seen in consumption of long-chain marine PUFA. Differences in omega-6 and omega-3 PUFA consumption exist before development of psychotic symptoms, fulfilling the criteria of schizophrenia. © 2015 Wiley Publishing Asia Pty Ltd.

  10. Association between very long chain fatty acids in the meibomian gland and dry eye resulting from n-3 fatty acid deficiency.

    PubMed

    Tanaka, Hideko; Harauma, Akiko; Takimoto, Mao; Moriguchi, Toru

    2015-06-01

    In our previously study, we reported lower tear volume in with an n-3 fatty acid deficient mice and that the docosahexaenoic acid and total n-3 fatty acid levels in these mice are significantly reduced in the meibomian gland, which secretes an oily tear product. Furthermore, we noted very long chain fatty acids (≥25 carbons) in the meibomian gland. To verify the detailed mechanism of the low tear volume in the n-3 fatty acid-deficient mice, we identified the very long chain fatty acids in the meibomian gland, measured the fatty acid composition in the tear product. Very long chain fatty acids were found to exist as monoesters. In particular, very long chain fatty acids with 25-29 carbons existed for the most part as iso or anteiso branched-chain fatty acids. n-3 fatty acid deficiency was decreased the amount of meibum secretion from meibomian gland without change of fatty acid composition. These results suggest that the n-3 fatty acid deficiency causes the enhancement of evaporation of tear film by reducing oily tear secretion along with the decrease of meibomian gland function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effects of n-3 polyunsaturated fatty acids and vitamin E on colonic mucosal leukotriene generation, lipid peroxidation, and microcirculation in rats with experimental colitis.

    PubMed

    Shimizu, T; Igarashi, J; Ohtuka, Y; Oguchi, S; Kaneko, K; Yamashiro, Y

    2001-01-01

    We investigated the effect of n-3 polyunsaturated fatty acids (PUFAs) on mucosal levels of leukotrienes (LTs) and lipid peroxide (LPO), and on mucosal microcirculation, in rats with experimental colitis induced by dextran sulfate sodium (DSS). We fed Wistar rats a perilla oil-enriched diet containing alpha-linolenic acid (63.2% of total fatty acids) with various doses of vitamin E for 4 weeks, with 4% DSS added to the drinking water during the last week. Control rats were fed a diet produced from soybean oil containing alpha-linolenic acid (5.1% of total fatty acids). Colonic mucosal blood flow was measured with a laser Doppler flowmeter. The mucosal level of arachidonic acid was significantly lower and that of eicosapentaenoic acid was significantly higher in the experimental group. The mucosal level of LPO in the experimental group fed a trace or ordinary dose of vitamin E was significantly higher than that of the controls. The production of LTB(4) and LTC(4) from the colonic mucosa in the experimental group was significantly lower than that in controls. However, only the experimental group fed a vitamin E dose 4-fold higher than that given to the controls showed a significant increase in mucosal blood flow. These results suggest that n-3 PUFAs increase mucosal blood flow by inhibiting LT production when there is sufficient vitamin E to inhibit lipid peroxidation in rats with experimental colitis. Copyright 2001 S. Karger AG, Basel

  12. Cardiometabolic risk factors are influenced by Stearoyl-CoA Desaturase (SCD) -1 gene polymorphisms and n-3 polyunsaturated fatty acid supplementation.

    PubMed

    Rudkowska, Iwona; Julien, Pierre; Couture, Patrick; Lemieux, Simone; Tchernof, André; Barbier, Olivier; Vohl, Marie-Claude

    2014-05-01

    To determine if single nucleotide polymorphisms (SNPs) in stearoyl-CoA desaturase (SCD)-1 gene that encodes a key enzyme for fatty acid metabolism are associated with the response of cardiometabolic risk factors to n-3 PUFA supplementation. Two hundred and ten subjects completed a 2-week run-in period followed by 6-week supplementation with 5 g of fish oil (1.9-2.2 g eicosapentaenoic acid and 1.1 g docosahexaenoic acid). Risk factors were measured pre and post n-3 supplementation. Fatty acid composition of plasma phospholipids was analyzed by GC and the desaturase indices SCD16 (16:1n-7/16:0) and SCD18 (18:1n-9/18:0) were calculated. Genotyping of eight SNPs of the SCD1 gene was performed. N-3 PUFA supplementation decreased plasma triglycerides, as well as SCD16 and SCD18 indices, but increased fasting plasma glucose concentrations. SNPs in SCD1-modified cardiometabolic risk factors pre and post n-3 PUFA supplementation: triglyceride (rs508384, p = 0.0086), IL6 (rs3071, p = 0.0485), C-reactive protein (rs3829160, p = 0.0489), and SCD18 indices (rs2234970, p = 0.0337). A significant interaction effect between the SNP and n-3 PUFA supplementation was also observed for fasting plasma glucose levels (rs508384, p = 0.0262). These results suggest that cardiometabolic risk factors are modulated by genetic variations in the SCD1 gene alone or in combination with n-3 PUFA supplementation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Reversed-phase high-performance liquid chromatography purification of methyl esters of C(16)-C(28) polyunsaturated fatty acids in microalgae, including octacosaoctaenoic acid [28:8(n-3)].

    PubMed

    Mansour, Maged P

    2005-12-02

    A preparative reversed-phase (RP; C(18)) high-performance liquid chromatography (HPLC) method with gradient elution using acetonitrile (MeCN)-chloroform (CHCl(3)) (or dichloromethane (DCM)) and evaporative light-scattering detection (ELSD) with automatic multiple injection and fraction collection was used to purify milligram quantities of microalgal polyunsaturated fatty acids (PUFA), separated as methyl esters (ME). PUFA-ME purified included methyl esters of docosahexaenoic acid (DHA; 22:6(n-3)), eicosapentaenoic acid (EPA; 20:5(n-3)) and the unusual very long-chain (C(28)) highly unsaturated fatty acid (VLC-HUFA), octacosaoctaenoic acid [28:8(n-3)(4, 7, 10, 13, 16, 19, 22, 25)] from the marine dinoflagellate Scrippsiella sp. CS-295/c. Other PUFA purified from various microalgae using this RP-HPLC method to greater than 95% purity included 16:3(n-4), 16:4(n-3), 16:4(n-1) and 18:5(n-3). The number of injections required was variable and depended on the abundance of the desired PUFA-ME, and resolution from closely eluting PUFA-ME, which determined the maximum loading. The purity of these fatty acids was determined by electron impact (EI) GC-MS and the chain length and location of double bonds was determined by EI GC-MS of 4,4-dimethyl oxazoline (DMOX) derivatives formed using a low temperature method. Advantages over silver-ion HPLC for purifying PUFA-ME is that separation occurs according to chain length as well as degree of unsaturation enabling separation of PUFA-ME with the same degree of unsaturation but different chain length (i.e. between 18:5(n-3) and 20:5(n-3)). In addition, PUFA-ME are not strongly adsorbed, but elute earlier than their more saturated corresponding FAME of the same chain length. This method is robust, simple, and requires only a short re-equilibration time. It is a useful tool for preparing milligram quantities of pure PUFA-ME for bioactive screening (as free fatty acids), although many multiple injections may be required for minor PUFA

  14. Balancing the benefits of n-3 polyunsaturated fatty acids and the risks of methylmercury exposure from fish consumption

    PubMed Central

    Mahaffey, Kathryn R; Sunderland, Elsie M; Chan, Hing Man; Choi, Anna L; Grandjean, Philippe; Mariën, Koenraad; Oken, Emily; Sakamoto, Mineshi; Schoeny, Rita; Weihe, Pál; Yan, Chong-Huai; Yasutake, Akira

    2011-01-01

    Fish and shellfish are widely available foods that provide important nutrients, particularly n-3 polyunsaturated fatty acids (n-3 PUFAs), to many populations globally. These nutrients, especially docosahexaenoic acid, confer benefits to brain and visual system development in infants and reduce risks of certain forms of heart disease in adults. However, fish and shellfish can also be a major source of methylmercury (MeHg), a known neurotoxicant that is particularly harmful to fetal brain development. This review documents the latest knowledge on the risks and benefits of seafood consumption for perinatal development of infants. It is possible to choose fish species that are both high in n-3 PUFAs and low in MeHg. A framework for providing dietary advice for women of childbearing age on how to maximize the dietary intake of n-3 PUFAs while minimizing MeHg exposures is suggested. PMID:21884130

  15. Omega 3 Consumption and Anxiety Disorders: A Cross-Sectional Analysis of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil).

    PubMed

    Natacci, Lara; M Marchioni, Dirce; C Goulart, Alessandra; Nunes, Maria Angélica; B Moreno, Arlinda; O Cardoso, Letícia; Giatti, Luana; B Molina, Maria Del Carmen; S Santos, Itamar; R Brunoni, André; A Lotufo, Paulo; M Bensenor, Isabela

    2018-05-24

    Few studies have evaluated the association between diet and mental disorders, and it has been established that ω-3 ( n -3) fatty acids may have a beneficial effect for sufferers of anxiety disorders. This study is part of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil)—a population-based cohort study on diet and mental health—and searched for associations between anxiety disorders and consumption of n -3 polyunsaturated fatty acids (PUFA). The study had a cross-sectional design, with a total sample of 12,268 adults. Dietary exposure was measured by a quantitative food-frequency questionnaire, and mental diagnoses were assessed by the Clinical Interview Schedule—Revised Version and diagnosed according to the International Classification of Diseases (ICD-10). Logistic regression models were built using quintiles of n -3, ω 6 ( n -6), n -6/ n -3 ratio, and PUFA, using the 1st quintile as reference. Anxiety disorders were identified in 15.4% of the sample. After adjusting for sociodemographic variables, cardiovascular risk factors, diet variables, and depression, intakes in the 5th quintile were inversely associated with anxiety disorders for EPA (OR = 0.82, 95% CI = 0.69⁻0.98), DHA (OR = 0.83, 95% CI = 0.69⁻0.98), and DPA (OR = 0.82, 95% CI = 0.69⁻0.98). Participants in the fifth quintile of n -6/ n -3 ratio had a positive association with anxiety disorders. Although results suggest a possible protective effect of n -3 fatty acids against anxiety, all associations lost significance after adjustment for multiple comparisons.

  16. Diet-Independent Remodeling of Cellular Membranes Precedes Seasonally Changing Body Temperature in a Hibernator

    PubMed Central

    Arnold, Walter; Ruf, Thomas; Frey-Roos, Fredy

    2011-01-01

    Polyunsaturated fatty acids (PUFA) have a multitude of health effects. Their incorporation into membrane phospholipids (PL) is generally believed to depend directly on dietary influx. PL influence transmembrane protein activity and thus can compensate temperature effects; e.g. PL n-6 PUFA are thought to stabilize heart function at low body temperature (Tb), whereas long chain (>C18) n-3 PUFA may boost oxidative capacity. We found substantial remodeling of membranes in free-living alpine marmots which was largely independent of direct dietary supply. Organ PL n-6 PUFA and n-6 to n-3 ratios were highest at onset and end of hibernation after rapid increases during a brief transitional period prior to hibernation. In contrast, longer chain PL n-3 PUFA content was low at end of summer but maximal at end of hibernation. After termination of hibernation in spring, these changes in PL composition were rapidly reversed. Our results demonstrate selective trafficking of PUFA within the body, probably governed by a circannual endogenous rhythm, as hibernating marmots were in winter burrows isolated for seven months from food and external cues signaling the approaching spring. High concentrations of PL n-6 PUFA throughout hibernation are in line with their hypothesized function of boosting SERCA 2a activity at low Tb. Furthermore, we found increasing rate of rewarming from torpor during winter indicating increasing oxidative capacity that could be explained by the accumulation of long-chain PL n-3 PUFA. It may serve to minimize the time necessary for rewarming despite the increasing temperature range to be covered, because rewarming is a period of highest metabolic rate and hence production of reactive oxygen species. Considering the importance of PUFA for health our results may have important biomedical implications, as seasonal changes of Tb and associated remodeling of membranes are not restricted to hibernators but presumably common among endothermic organisms. PMID

  17. Diet-independent remodeling of cellular membranes precedes seasonally changing body temperature in a hibernator.

    PubMed

    Arnold, Walter; Ruf, Thomas; Frey-Roos, Fredy; Bruns, Ute

    2011-04-13

    Polyunsaturated fatty acids (PUFA) have a multitude of health effects. Their incorporation into membrane phospholipids (PL) is generally believed to depend directly on dietary influx. PL influence transmembrane protein activity and thus can compensate temperature effects; e.g. PL n-6 PUFA are thought to stabilize heart function at low body temperature (T(b)), whereas long chain (>C18) n-3 PUFA may boost oxidative capacity. We found substantial remodeling of membranes in free-living alpine marmots which was largely independent of direct dietary supply. Organ PL n-6 PUFA and n-6 to n-3 ratios were highest at onset and end of hibernation after rapid increases during a brief transitional period prior to hibernation. In contrast, longer chain PL n-3 PUFA content was low at end of summer but maximal at end of hibernation. After termination of hibernation in spring, these changes in PL composition were rapidly reversed. Our results demonstrate selective trafficking of PUFA within the body, probably governed by a circannual endogenous rhythm, as hibernating marmots were in winter burrows isolated for seven months from food and external cues signaling the approaching spring. High concentrations of PL n-6 PUFA throughout hibernation are in line with their hypothesized function of boosting SERCA 2a activity at low T(b). Furthermore, we found increasing rate of rewarming from torpor during winter indicating increasing oxidative capacity that could be explained by the accumulation of long-chain PL n-3 PUFA. It may serve to minimize the time necessary for rewarming despite the increasing temperature range to be covered, because rewarming is a period of highest metabolic rate and hence production of reactive oxygen species. Considering the importance of PUFA for health our results may have important biomedical implications, as seasonal changes of T(b) and associated remodeling of membranes are not restricted to hibernators but presumably common among endothermic organisms.

  18. Minimum Selenium Requirements Increase When Repleting Second-Generation Selenium-Deficient Rats but Are Not Further Altered by Vitamin E Deficiency.

    PubMed

    Sunde, Roger A; Thompson, Kevin M; Fritsche, Kevin L; Evenson, Jacqueline K

    2017-05-01

    Second-generation selenium-deficient weanling rats fed graded levels of dietary Se were used (a) to study the impact of initial Se deficiency on dietary Se requirements; (b) to determine if further decreases in selenoperoxidase expression, especially glutathione peroxidase 4 (Gpx4), affect growth or gross disease; and (c) to examine the impact of vitamin E deficiency on biochemical and molecular biomarkers of Se status. Rats were fed a vitamin E-deficient and Se-deficient crystalline amino acid diet (3 ng Se/g diet) or that diet supplemented with 100 μg/g all-rac-α-tocopheryl acetate and/or 0, 0.02, 0.05, 0.075, 0.1, or 0.2 μg Se/g diet as Na 2 SeO 3 for 28 days. Se-supplemented rats grew 6.91 g/day as compared to 2.17 and 3.87 g/day for vitamin E-deficient/Se-deficient and vitamin E-supplemented/Se-deficient groups, respectively. In Se-deficient rats, liver Se, plasma Gpx3, red blood cell Gpx1, liver Gpx1 and Gpx4 activities, and liver Gpx1 mRNA levels decreased to <1, <1, 21, 1.6, 49, and 11 %, respectively, of levels in rats fed 0.2 μg Se/g diet. For all biomarkers, ANOVA indicated significant effects of dietary Se, but no significant effects of vitamin E or vitamin E × Se interaction, showing that vitamin E deficiency, even in severely Se-deficient rat pups, does not result in compensatory changes in these biochemical and molecular biomarkers of selenoprotein expression. Se requirements determined in this study, however, were >50 % higher than in previous studies that started with Se-adequate rats, demonstrating that dietary Se requirements determined using initially Se-deficient animals can result in overestimation of Se requirements.

  19. Marginal biotin deficiency can be induced experimentally in humans using a cost-effective outpatient design.

    PubMed

    Stratton, Shawna L; Henrich, Cindy L; Matthews, Nell I; Bogusiewicz, Anna; Dawson, Amanda M; Horvath, Thomas D; Owen, Suzanne N; Boysen, Gunnar; Moran, Jeffery H; Mock, Donald M

    2012-01-01

    To date, marginal, asymptomatic biotin deficiency has been successfully induced experimentally by the use of labor-intensive inpatient designs requiring rigorous dietary control. We sought to determine if marginal biotin deficiency could be induced in humans in a less expensive outpatient design incorporating a self-selected, mixed general diet. We sought to examine the efficacy of three outpatient study designs: two based on oral avidin dosing and one based on a diet high in undenatured egg white for a period of 28 d. In study design 1, participants (n = 4; 3 women) received avidin in capsules with a biotin binding capacity of 7 times the estimated dietary biotin intake of a typical self-selected diet. In study design 2, participants (n = 2; 2 women) received double the amount of avidin capsules (14 times the estimated dietary biotin intake). In study design 3, participants (n = 5; 3 women) consumed egg-white beverages containing avidin with a biotin binding capacity of 7 times the estimated dietary biotin intake. Established indices of biotin status [lymphocyte propionyl-CoA carboxylase activity; urinary excretion of 3-hydroxyisovaleric acid, 3-hydroxyisovaleryl carnitine (3HIA-carnitine), and biotin; and plasma concentration of 3HIA-carnitine] indicated that study designs 1 and 2 were not effective in inducing marginal biotin deficiency, but study design 3 was as effective as previous inpatient study designs that induced deficiency by egg-white beverage. Marginal biotin deficiency can be induced experimentally by using a cost-effective outpatient design by avidin delivery in egg-white beverages. This design should be useful to the broader nutritional research community.

  20. Toddler diets in the UK: deficiencies and imbalances. 2. Relationship of toddler diet to later health.

    PubMed

    Lanigan, Julie; Turnbull, Bianca; Singhal, Atul

    2007-01-01

    Establishing a healthy diet during the toddler years is important for both short- and long-term health. During the second year of life the toddler gains independence and seeks a degree of dietary autonomy. Dietary habits adopted at this time are important because they will be taken forward into later childhood and adult life. Part 2 of this two-part review explores the relationship between the diets of toddlers and short- and long-term health, focusing particularly on obesity, dental health and constipation. Meals plans are included. This paper follows on from Part 1 (Journal of Family Health Care 2007; 17(5): 167-170) which reviewed the risks of micronutrient deficiencies.