Sample records for n-3-dimethylaminepropyl metacrylamide synthesis

  1. Whole-body DHA synthesis-secretion kinetics from plasma eicosapentaenoic acid and alpha-linolenic acid in the free-living rat.

    PubMed

    Metherel, Adam H; Domenichiello, Anthony F; Kitson, Alex P; Hopperton, Kathryn E; Bazinet, Richard P

    2016-09-01

    Whole body docosahexaenoic acid (DHA, 22:6n-3) synthesis from α-linolenic acid (ALA, 18:3n-3) is considered to be very low, however, the daily synthesis-secretion of DHA may be sufficient to supply the adult brain. The current study aims to assess whether whole body DHA synthesis-secretion kinetics are different when comparing plasma ALA versus eicosapentaenoic acid (EPA, 20:5n-3) as the precursor. Male Long Evans rats (n=6) were fed a 2% ALA in total fat diet for eight weeks, followed by surgery to implant a catheter into each of the jugular vein and carotid artery and 3h of steady-state infusion with a known amount of (2)H-ALA and (13)C-eicosapentaenoic acid (EPA, 20:5n3). Blood samples were collected at thirty-minute intervals and plasma enrichment of (2)H- and (13)C EPA, n-3 docosapentaenoic acid (DPAn-3, 22:5n-3) and DHA were determined for assessment of synthesis-secretion kinetic parameters. Results indicate a 13-fold higher synthesis-secretion coefficient for DHA from EPA as compared to ALA. However, after correcting for the 6.6 fold higher endogenous plasma ALA concentration, no significant differences in daily synthesis-secretion (nmol/day) of DHA (97.6±28.2 and 172±62), DPAn-3 (853±279 and 1139±484) or EPA (1587±592 and 1628±366) were observed from plasma unesterified ALA and EPA sources, respectively. These results suggest that typical diets which are significantly higher in ALA compared to EPA yield similar daily DHA synthesis-secretion despite a significantly higher synthesis-secretion coefficient from EPA. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Heterocycles Based on Group III, IV, and V Elements, Precursors for Novel Glasses and Ceramics

    DTIC Science & Technology

    1990-08-01

    OF TABLES v LIST OF FIGURES vi 1. ABSTRACT 1 2. INTRODUCTION 3 3. RESULTS AND DISCUSSION 5 3.1 Synthesis and Thermolysis of Aluminum...Chloride.Hexamethyldisilazane Adduct 5 3.2 Synthesis and Reactions of Bis(trimethylsilyl)- aminoaluminum Compounds 11 3.3 Reactions of Tris[bis(trimethylsilyl)amino...Et3N.C12AIN(SiMe3 )B(NH2 )NHSiMe3 , a processible precursor to AlN.BN ceramic. Attempts at synthesis of other AlN.BN precursors and AINP systems were

  3. Synthesis of G-N2-(CH2)3-N2-G Trimethylene DNA interstrand cross-links

    PubMed Central

    Gruppi, Francesca; Salyard, Tracy L. Johnson; Rizzo, Carmelo J.

    2014-01-01

    The synthesis of G-N2-(CH2)3-N2-G trimethylene DNA interstrand cross-links (ICLs) in a 5′-CG-3′ and 5′-GC-3′ sequence from oligodeoxynucleotides containing N2-(3-aminopropyl)-2′-deoxyguanosine and 2-fluoro-O6-(trimethylsilylethyl)inosine is presented. Automated solid-phase DNA synthesis was used for unmodified bases and modified nucleotides were incorporated via their corresponding phosphoramidite reagent by a manual coupling protocol. The preparation of the phosphoramidite reagents for incorporation of N2-(3-aminopropyl)-2′-deoxyguanosine is reported. The high-purity trimethylene DNA interstrand cross-link product is obtained through a nucleophilic aromatic substitution reaction between the N2-(3-aminopropyl)-2′-deoxyguanosine and 2-fluoro-O6-(trimethylsilylethyl)inosine containing oligodeoxynucleotides. PMID:25431636

  4. Asymmetric synthesis of N-allylic indoles via regio- and enantioselective allylation of aryl hydrazines

    PubMed Central

    Xu, Kun; Gilles, Thomas; Breit, Bernhard

    2015-01-01

    The asymmetric synthesis of N-allylic indoles is important for natural product synthesis and pharmaceutical research. The regio- and enantioselective N-allylation of indoles is a true challenge due to the favourable C3-allylation. We develop here a new strategy to the asymmetric synthesis of N-allylic indoles via rhodium-catalysed N-selective coupling of aryl hydrazines with allenes followed by Fischer indolization. The exclusive N-selectivities and good to excellent enantioselectivities are achieved applying a rhodium(I)/DTBM-Segphos or rhodium(I)/DTBM-Binap catalyst. This method permits the practical synthesis of valuable chiral N-allylated indoles, and avoids the N- or C-selectivity issue. PMID:26137886

  5. The role of fetal adrenal hormones in the switch from fetal to adult globin synthesis in the sheep.

    PubMed

    Wintour, E M; Smith, M B; Bell, R J; McDougall, J G; Cauchi, M N

    1985-01-01

    The switch from gamma (fetal) to beta (adult) globin production was studied by the analysis of globin synthesis in chronically cannulated ovine fetuses and newborn lambs. The gamma/alpha globin synthesis ratio decreased from 0.98 +/- 0.11 (S.D.) (n = 4 samples) at 100-120 days of gestation to 0.15 +/- 0.07 (n = 4) in lambs of 150-156 days post-conception, and the beta/alpha synthesis ratio increased from 0.04 +/- 0.06 (n = 4) to 1.13 +/- 0.21 (n = 4) over the same period. In bilaterally adrenalectomized fetuses, which survived in utero until 151-156 days, the gamma/alpha and beta/alpha synthesis ratios were 0.64 +/- 0.14 (n = 3) and 0.25 +/- 0.07 (n = 3) respectively in the 150- to 156-day period. Bilateral adrenalectomy did not affect the time of onset of beta globin synthesis, but significantly decreased the rate. In one bilaterally adrenalectomized fetus the infusion of increasing concentrations of cortisol restored the rate of beta globin synthesis to normal. Treatment of three intact fetuses with 100 micrograms cortisol/h for 3 weeks, from 100 to 121 days, did not affect the timing or rate of switch from gamma to beta globin synthesis. Thus fetal adrenal secretions, probably cortisol, affected the rate of change of gamma to beta globin synthesis but other factors must have been involved in the initiation of the switch.

  6. A modified approach to 2-(N-aryl)-1,3-oxazoles: application to the synthesis of the IMPDH inhibitor BMS-337197 and analogues.

    PubMed

    Dhar, T G Murali; Guo, Junqing; Shen, Zhongqi; Pitts, William J; Gu, Henry H; Chen, Bang-Chi; Zhao, Rulin; Bednarz, Mark S; Iwanowicz, Edwin J

    2002-06-13

    [structure: see text] A modified approach to the synthesis of 2-(N-aryl)-1,3-oxazoles, employing an optimized iminophosphorane/heterocumulene-mediated methodology, and its application to the synthesis of BMS-337197, a potent inhibitor of IMPDH, are described.

  7. Polymer support oligonucleotide synthesis XVIII: use of beta-cyanoethyl-N,N-dialkylamino-/N-morpholino phosphoramidite of deoxynucleosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product.

    PubMed Central

    Sinha, N D; Biernat, J; McManus, J; Köster, H

    1984-01-01

    Various 5'O-N-protected deoxynucleoside-3'-O-beta-cyanoethyl-N,N-dialkylamino-/N- morpholinophosphoramidites were prepared from beta-cyanoethyl monochlorophosphoramidites of N,N-dimethylamine, N,N-diisopropylamine and N-morpholine. These active deoxynucleoside phosphates have successfully been used for oligodeoxynucleotide synthesis on controlled pore glass as polymer support and are very suitable for automated DNA-synthesis due to their stability in solution. The intermediate dichloro-beta- cyanoethoxyphosphine can easily be prepared free from any PC1(3) contamination. The active monomers obtained from beta-cyanoethyl monochloro N,N- diisopropylaminophosphoramidites are favoured. Cleavage of the oligonucleotide chain from the polymer support, N-deacylation and deprotection of beta-cyanoethyl group from the phosphate triester moiety can be performed in one step with concentrated aqueous ammonia. Mixed oligodeoxynucleotides are characterized by the sequencing method of Maxam and Gilbert. Images PMID:6547529

  8. Synthesis of improved moisture resistant polymers

    NASA Technical Reports Server (NTRS)

    Scola, D. A.; Pater, R. H.

    1978-01-01

    The synthesis and characterization of novel moisture resistant aliphatic polyimides are described. Several novel aliphatic imides of diversified functionalities were synthesized, purified, and characterized, they include: (1) N-(12-aminododecyl)-5-norbornene-2,3-dicarboximide; (2) N,N'-2,2,2-trifluoro-1-(trifluoromethyl)ethylidene bis (1,3-dioxo-5,2-iosoindolinediyl)dodecamethylene di-5-norbornene-2,3-dicarboximide; (3) N,N'-dodecamethylenedi-5-nobornene-2,3-dicarbonoximide; (4) N,N'-dodecamethylenebis 5,6-epoxy-2,3-norbornanedicarboximide ; and (5) N,N'-Bis 12-(5-norbornene-2, 3-dicarboximidido)dodecyl - 1,2,3,4- butanetetracarboxylic 1,2:3,4-diimide. The structures of these compounds were established by elemental analysis, IR, NMR, and mass spectra.

  9. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)

    NASA Astrophysics Data System (ADS)

    Urbankowski, Patrick; Anasori, Babak; Makaryan, Taron; Er, Dequan; Kota, Sankalp; Walsh, Patrick L.; Zhao, Mengqiang; Shenoy, Vivek B.; Barsoum, Michel W.; Gogotsi, Yury

    2016-06-01

    We report on the synthesis of the first two-dimensional transition metal nitride, Ti4N3-based MXene. In contrast to the previously reported MXene synthesis methods - in which selective etching of a MAX phase precursor occurred in aqueous acidic solutions - here a molten fluoride salt is used to etch Al from a Ti4AlN3 powder precursor at 550 °C under an argon atmosphere. We further delaminated the resulting MXene to produce few-layered nanosheets and monolayers of Ti4N3Tx, where T is a surface termination (F, O, or OH). Density functional theory calculations of bare, non-terminated Ti4N3 and terminated Ti4N3Tx were performed to determine the most energetically stable form of this MXene. Bare and functionalized Ti4N3 are predicted to be metallic. Bare Ti4N3 is expected to show magnetism, which is significantly reduced in the presence of functional groups.We report on the synthesis of the first two-dimensional transition metal nitride, Ti4N3-based MXene. In contrast to the previously reported MXene synthesis methods - in which selective etching of a MAX phase precursor occurred in aqueous acidic solutions - here a molten fluoride salt is used to etch Al from a Ti4AlN3 powder precursor at 550 °C under an argon atmosphere. We further delaminated the resulting MXene to produce few-layered nanosheets and monolayers of Ti4N3Tx, where T is a surface termination (F, O, or OH). Density functional theory calculations of bare, non-terminated Ti4N3 and terminated Ti4N3Tx were performed to determine the most energetically stable form of this MXene. Bare and functionalized Ti4N3 are predicted to be metallic. Bare Ti4N3 is expected to show magnetism, which is significantly reduced in the presence of functional groups. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02253g

  10. Very High Performance High Nitrogen Energetic Ingredients and Energetic Polymers for Structural Components

    DTIC Science & Technology

    2011-12-31

    have developed a vastly improved procedure for synthesis of the n- propyl ester that gives essentially quantitative yield and uses concentrated... Synthesis of n- propyl 4-aminofurazan-3-carboxylate. We next turned our attention to the synthesis of the amide. Again, the literature procedure is... synthesis and chemistry of 3-hydroxymethyl-4-amino[1,2,5]oxadiazole and 5) work on energetic polymers for structural components. 15. SUBJECT TERMS

  11. The "Speedy" Synthesis of Atom-Specific (15)N Imino/Amido-Labeled RNA.

    PubMed

    Neuner, Sandro; Santner, Tobias; Kreutz, Christoph; Micura, Ronald

    2015-08-10

    Although numerous reports on the synthesis of atom-specific (15)N-labeled nucleosides exist, fast and facile access to the corresponding phosphoramidites for RNA solid-phase synthesis is still lacking. This situation represents a severe bottleneck for NMR spectroscopic investigations on functional RNAs. Here, we present optimized procedures to speed up the synthesis of (15)N(1) adenosine and (15)N(1) guanosine amidites, which are the much needed counterparts of the more straightforward-to-achieve (15)N(3) uridine and (15)N(3) cytidine amidites in order to tap full potential of (1)H/(15)N/(15)N-COSY experiments for directly monitoring individual Watson-Crick base pairs in RNA. Demonstrated for two preQ1 riboswitch systems, we exemplify a versatile concept for individual base-pair labeling in the analysis of conformationally flexible RNAs when competing structures and conformational dynamics are encountered. © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The “Speedy” Synthesis of Atom-Specific 15N Imino/Amido-Labeled RNA

    PubMed Central

    Kreutz, Christoph; Micura, Ronald

    2016-01-01

    Although numerous reports on the synthesis of atom-specific 15N-labeled nucleosides exist, fast and facile access to the corresponding phosphoramidites for RNA solid-phase synthesis is still lacking. This situation represents a severe bottleneck for NMR spectroscopic investigations on functional RNAs. Here, we present optimized procedures to speed up the synthesis of 15N(1) adenosine and 15N(1) guanosine amidites, which are the much needed counterparts of the more straightforward-to-achieve 15N(3) uridine and 15N(3) cytidine amidites in order to tap full potential of 1H/15N/15N-COSY experiments for directly monitoring individual Watson–Crick base pairs in RNA. Demonstrated for two preQ1 riboswitch systems, we exemplify a versatile concept for individual base-pair labeling in the analysis of conformationally flexible RNAs when competing structures and conformational dynamics are encountered. PMID:26237536

  13. Inhibition of protein synthesis by N-methyl-N-nitrosourea in vivo

    PubMed Central

    Kleihues, P.; Magee, P. N.

    1973-01-01

    1. The intraperitoneal injection of N-methyl-N-nitrosourea (100mg/kg) caused a partial inhibition of protein synthesis in several organs of the rat, the maximum effect occurring after 2–3h. 2. In the liver the inhibition of protein synthesis was paralleled by a marked disaggregation of polyribosomes and an increase in ribosome monomers and ribosomal subunits. No significant breakdown of polyribosomes was found in adult rat brains although N-methyl-N-nitrosourea inhibited cerebral and hepatic protein synthesis to a similar extent. In weanling rats N-methyl-N-nitrosourea caused a shift in the cerebral polyribosome profile similar to but less marked than that in rat liver. 3. Reaction of polyribosomal RNA with N-[14C]methyl-N-nitrosourea in vitro did not lead to a disaggregation of polyribosomes although the amounts of 7-methylguanine produced were up to twenty times higher than those found after administration of sublethal doses in vivo. 4. It was concluded that changes in the polyribosome profile induced by N-methyl-N-nitrosourea may reflect the mechanism of inhibition of protein synthesis rather than being a direct consequence of the methylation of polyribosomal mRNA. PMID:4774397

  14. Chemo-enzymatic synthesis of a glycosylated peptide containing a complex N-glycan based on unprotected oligosaccharides by using DMT-MM and Endo-M.

    PubMed

    Tomabechi, Yusuke; Katoh, Toshihiko; Kunishima, Munetaka; Inazu, Toshiyuki; Yamamoto, Kenji

    2017-08-01

    For chemo-enzymatic synthesis of a glycosylated peptide, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) was used for the synthesis of a N-acetylglucosaminyl peptide and a pseudoglycopeptide by solid-phase peptide synthesis without the requirement of protecting groups on the carbohydrate. We also performed transglycosylation of an N-glycan to the N-acetylglucosaminyl peptide using endo-β-N-acetylglucosaminidase from Mucor hiemalis (Endo-M) to synthesize a glycopeptide containing a complex N-glycan.

  15. An efficient synthesis of the constrained peptidomimetic 2-oxo-3-(N-9-fluorenyloxycarbonylamino)-1-azabicyclo[4.3.0]nonane-9-carboxylic acid from pyroglutamic acid.

    PubMed

    Mandal, Pijus Kumar; Kaluarachchi, Kumar K; Ogrin, Douglas; Bott, Simon G; McMurray, John S

    2005-11-25

    [reaction: see text] Azabicyclo[X.Y.0]alkane amino acids are rigid dipeptide mimetics that are useful tools for structure-activity studies in peptide-based drug discovery. Herein, we report an efficient synthesis of three diastereomers of 9-tert-butoxycarbonyl-2-oxo-3-(N-tert-butoxycarbonylamino)-1-azabicyclo[4.3.0]nonane (3S,6S,9S, 3S,6R,9R, and 3S,6R,9S). Methyl N-Boc-pyroglutamate is cleaved with vinylmagnesium bromide to produce an acyclic gamma-vinyl ketone. Michael addition of N-diphenylmethyleneglycine tert-butyl ester produces the N-Boc-delta-oxo-alpha,omega-diaminoazelate intermediate, which, on hydrogenloysis, gives the fused ring system. Acidolytic deprotection followed by Fmoc-protection provided building blocks suitable for solid-phase synthesis.

  16. Synthesis of 4-triazolopyrimidinone nucleotide and its application in synthesis of 5-methylcytosine-containing oligodeoxyribonucleotides.

    PubMed Central

    Sung, W L

    1981-01-01

    5'-0-Dimethoxytritylthymidine (2) was phosphorylated and base-modified simultaneously to yield the 4-triazolopyrimidinone nucleotide (3). Coupling between (3) and other common deoxyribonucleotides gave a fully protected nonamer (4). Deblocking under different conditions yielded the nonamer as phosphodiester with concomitant conversion of 4-triazolopyrimidinone to 5-methylcytosine (aqueous ammonia) or thymine (N1,N1,N3,N3-tetramethyl-guanidinium syn-4-nitrobenzaldoximate solution). Images PMID:7312633

  17. Influence of omega-3 fatty acids on skeletal muscle protein metabolism and mitochondrial bioenergetics in older adults.

    PubMed

    Lalia, Antigoni Z; Dasari, Surendra; Robinson, Matthew M; Abid, Hinnah; Morse, Dawn M; Klaus, Katherine A; Lanza, Ian R

    2017-04-01

    Omega-3 polyunsaturated fatty acids (n3-PUFA) are recognized for their anti-inflammatory effects and may be beneficial in the context of sarcopenia. We determined the influence of n3-PUFA on muscle mitochondrial physiology and protein metabolism in older adults. Twelve young (18-35 years) and older (65-85 years) men and women were studied at baseline. Older adults were studied again following n3-PUFA supplementation (3.9g/day, 16 weeks). Muscle biopsies were used to evaluate respiratory capacity (high resolution respirometry) and oxidant emissions (spectrofluorometry) in isolated mitochondria. Maximal respiration was significantly lower in older compared to young. n3-PUFA did not change respiration, but significantly reduced oxidant emissions. Participants performed a single bout of resistance exercise, followed by biopsies at 15 and 18 hours post exercise. Several genes involved in muscle protein turnover were significantly altered in older adults at baseline and following exercise, yet muscle protein synthesis was similar between age groups under both conditions. Following n3-PUFA supplementation, mixed muscle, mitochondrial, and sarcoplasmic protein synthesis rates were increased in older adults before exercise. n3-PUFA increased post-exercise mitochondrial and myofibrillar protein synthesis in older adults. These results demonstrate that n3-PUFA reduce mitochondrial oxidant emissions, increase postabsorptive muscle protein synthesis, and enhance anabolic responses to exercise in older adults.

  18. Influence of omega-3 fatty acids on skeletal muscle protein metabolism and mitochondrial bioenergetics in older adults

    PubMed Central

    Lalia, Antigoni Z.; Dasari, Surendra; Robinson, Matthew M.; Abid, Hinnah; Morse, Dawn M.; Klaus, Katherine A.; Lanza, Ian R.

    2017-01-01

    Omega-3 polyunsaturated fatty acids (n3-PUFA) are recognized for their anti-inflammatory effects and may be beneficial in the context of sarcopenia. We determined the influence of n3-PUFA on muscle mitochondrial physiology and protein metabolism in older adults. Twelve young (18-35 years) and older (65-85 years) men and women were studied at baseline. Older adults were studied again following n3-PUFA supplementation (3.9g/day, 16 weeks). Muscle biopsies were used to evaluate respiratory capacity (high resolution respirometry) and oxidant emissions (spectrofluorometry) in isolated mitochondria. Maximal respiration was significantly lower in older compared to young. n3-PUFA did not change respiration, but significantly reduced oxidant emissions. Participants performed a single bout of resistance exercise, followed by biopsies at 15 and 18 hours post exercise. Several genes involved in muscle protein turnover were significantly altered in older adults at baseline and following exercise, yet muscle protein synthesis was similar between age groups under both conditions. Following n3-PUFA supplementation, mixed muscle, mitochondrial, and sarcoplasmic protein synthesis rates were increased in older adults before exercise. n3-PUFA increased post-exercise mitochondrial and myofibrillar protein synthesis in older adults. These results demonstrate that n3-PUFA reduce mitochondrial oxidant emissions, increase postabsorptive muscle protein synthesis, and enhance anabolic responses to exercise in older adults. PMID:28379838

  19. Impact of diesel exhaust exposure on the liver of mice fed on omega-3 polyunsaturated fatty acids-deficient diet.

    PubMed

    Umezawa, Masakazu; Nakamura, Masayuki; El-Ghoneimy, Ashraf A; Onoda, Atsuto; Shaheen, Hazem M; Hori, Hiroshi; Shinkai, Yusuke; El-Sayed, Yasser S; El-Far, Ali H; Takeda, Ken

    2018-01-01

    Exposure to diesel exhaust (DE) exacerbates non-alcoholic fatty liver disease, and may systemically affect lipid metabolism. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have anti-inflammatory activity and suppresses hepatic triacylglycerol accumulation, but many daily diets are deficient in this nutrient. Therefore, the effect of DE exposure in mice fed n-3 PUFA-deficient diet was investigated. Mice were fed control chow or n-3 PUFA-deficient diet for 4 weeks, then exposed to clean air or DE by inhalation for further 4 weeks. Liver histology, plasma parameters, and expression of fatty acid synthesis-related genes were evaluated. N-3 PUFA-deficient diet increased hepatic lipid droplets accumulation and expression of genes promoting fatty acid synthesis: Acaca, Acacb, and Scd1. DE further increased the plasma leptin and the expression of fatty acid synthesis-related genes: Acacb, Fasn, and Scd1. N-3 PUFA-deficient diet and DE exposure potentially enhanced hepatic fatty acid synthesis and subsequently accumulation of lipid droplets. The combination of low-dose DE exposure and intake of n-3 PUFA-deficient diet may be an additional risk factor for the incidence of non-alcoholic fatty liver disease. The present study suggests an important mechanism for preventing toxicity of DE on the liver through the incorporation of n-3 PUFAs in the diet. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Synthesis of Ultra-incompressible sp 3 -Hybridized Carbon Nitride with 1:1 Stoichiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavrou, Elissaios; Lobanov, Sergey; Dong, Huafeng

    Search of materials with C-N composition hold a great promise in creating materials which would rival diamond hardness due to the very strong and relatively low-ionic C-N bond. Early experimental and theoretical works on C-N compounds were based on structural similarity with binary A 3B 4 structural types; however, the synthesis of C 3N 4 remains elusive. Here we explored an unbiased synthesis from the elemental materials at high pressures and temperatures. Using in situ synchrotron X-ray diffraction and Raman spectroscopy we demonstrate the synthesis of highly incompressible Pnnm CN compound with sp 3 hybridized carbon above 55 GPa andmore » 7000 K. This result is supported by first principles evolutionary search, which finds that Pnnm CN is the most stable compound above 10.9 GPa. On pressure release below 6 GPa the synthesized CN compound amorphizes reattaining its 1:1 stoichiometry as confirmed by Energy-Dispersive X-ray Spectroscopy. Here, this work underscores the importance of understanding of novel high-pressure chemistry rules and it opens a new route for synthesis of superhard materials.« less

  1. Synthesis of Ultra-incompressible sp 3 -Hybridized Carbon Nitride with 1:1 Stoichiometry

    DOE PAGES

    Stavrou, Elissaios; Lobanov, Sergey; Dong, Huafeng; ...

    2016-10-11

    Search of materials with C-N composition hold a great promise in creating materials which would rival diamond hardness due to the very strong and relatively low-ionic C-N bond. Early experimental and theoretical works on C-N compounds were based on structural similarity with binary A 3B 4 structural types; however, the synthesis of C 3N 4 remains elusive. Here we explored an unbiased synthesis from the elemental materials at high pressures and temperatures. Using in situ synchrotron X-ray diffraction and Raman spectroscopy we demonstrate the synthesis of highly incompressible Pnnm CN compound with sp 3 hybridized carbon above 55 GPa andmore » 7000 K. This result is supported by first principles evolutionary search, which finds that Pnnm CN is the most stable compound above 10.9 GPa. On pressure release below 6 GPa the synthesized CN compound amorphizes reattaining its 1:1 stoichiometry as confirmed by Energy-Dispersive X-ray Spectroscopy. Here, this work underscores the importance of understanding of novel high-pressure chemistry rules and it opens a new route for synthesis of superhard materials.« less

  2. Diels-Alder Synthesis of endo-cis-N-phenylbicyclo[2.2.2]oct-5-en-2,3-dicarboximide

    ERIC Educational Resources Information Center

    Baar, Marsha R.; Wustholz, Kristin

    2005-01-01

    A study investigated the Diels-Alder synthesis of endo-cis-N-phenylbicyclo [2.2.2]oct-5-en-2,3-dicarboximide. The amount of time taken by a reaction between the 1,3-cyclohexadiene and N-phenylmaleimide at room temperature and also whether the desired cycloadduct would precipitate directly from the reaction mixture was examined.

  3. Synthesis of N,N-Diethyl-3-Methylbenzamide (DEET): Two Ways to the Same Goal

    ERIC Educational Resources Information Center

    Habeck, Jean Christophe; Diop, Lamine; Dickman, Michael

    2010-01-01

    The laboratory synthesis of N,N-diethyl-3-methylbenzamide (DEET) is an effective way to combine organic chemistry teaching with a student's day-to-day life outside the classroom. Interest in DEET as a mosquito repellent has been heightened because of the rise of the West Nile virus across much of North America (1). To take advantage of the…

  4. An Efficient Synthesis of de novo Imidates via Aza-Claisen Rearrangements of N-Allyl Ynamides

    PubMed Central

    DeKorver, Kyle A.; North, Troy D.; Hsung, Richard P.

    2010-01-01

    A novel thermal 3-aza-Claisen rearrangement of N-allyl ynamides for the synthesis of α-allyl imidates is described. Also, a sequential aza-Claisen, Pd-catalyzed Overman rearrangement is described for the synthesis of azapine-2-ones. PMID:21278848

  5. Reaction of cytidine nucleotides with cyanoacetylene: support for the intermediacy of nucleoside-2',3'-cyclic phosphates in the prebiotic synthesis of RNA.

    PubMed

    Crowe, Michael A; Sutherland, John D

    2006-06-01

    A robust and prebiotically plausible synthesis of RNA is a key requirement of the "RNA World" hypothesis, but, to date, no such synthesis has been demonstrated. Monomer synthesis strategies involving attachment of preformed nucleobases to sugars have failed, and, even if activated 5'-nucleotides could be made, the hydrolysis of these intermediates in water makes their efficient oligomerisation appear unlikely. We recently reported a synthesis of cytidine-2',3'-cyclic phosphate 1 (C>p) in which the nucleobase was assembled in stages on a sugar-phosphate template. However, 2',3'-cyclic nucleotides (N>p's) also undergo hydrolysis, in this case giving a mixture of the 2'- and 3'-monophosphates. This hydrolysis has previously been seen as making the, otherwise promising, oligomerisation of N>p's seem as unlikely as that of the 5'-activated nucleotides. We now find that cyanoacetylene, the reagent used for the second stage of nucleobase assembly in the synthesis of C>p, also reverses the effect of the hydrolysis by driving efficient cyclisation of C2'p and C3'p back to C>p. Excess cyanoacetylene also derivatises the nucleobase, but this modification is reversible at neutral pH. These findings significantly strengthen the case for N>p's in a prebiotic synthesis of RNA.

  6. N-Allyl-N-Sulfonyl Ynamides as Synthetic Precursors to Amidines and Vinylogous Amidines. An Unexpected N-to-C 1,3-Sulfonyl Shift in Nitrile Synthesis

    PubMed Central

    DeKorver, Kyle A.; Johnson, Whitney L.; Zhang, Yu; Hsung, Richard P.; Dai, Huifang; Deng, Jun; Lohse, Andrew G.; Zhang, Yan-Shi

    2011-01-01

    A detailed study of amidine synthesis from N-allyl-N-sulfonyl ynamides is described here. Mechanistically, this is a fascinating reaction consisting of diverging pathways that could lead to deallylation or allyl transfer depending upon the oxidation state of palladium catalysts, the nucleophilicity of amines, and the nature of the ligands. It essentially constitutes a Pd(0)-catalyzed aza-Claisen rearrangement of N-allyl ynamides, which can also be accomplished thermally. An observation of N-to-C 1,3-sulfonyl shift was made when examining these aza-Claisen rearrangements thermally. This represents a useful approach to nitrile synthesis. While attempts to render this 1,3-sulfonyl shift stereoselective failed, we uncovered another set of tandem sigmatropic rearrangements, leading to vinyl imidate formation. Collectively, this work showcases the rich array of chemistry one can discover using these ynamides. PMID:21563776

  7. New 1,6-heptadienes with pyrimidine bases attached: Syntheses and spectroscopic analyses

    NASA Astrophysics Data System (ADS)

    Hammud, Hassan H.; Ghannoum, Amer M.; Fares, Fares A.; Abramian, Lara K.; Bouhadir, Kamal H.

    2008-06-01

    A simple, high yielding synthesis leading to the functionalization of some pyrimidine bases with a 1,6-heptadienyl moiety spaced from the N - 1 position by a methylene group is described. A key step in this synthesis involves a Mitsunobu reaction by coupling 3N-benzoyluracil and 3N-benzoylthymine to 2-allyl-pent-4-en-1-ol followed by alkaline hydrolysis of the 3N-benzoyl protecting groups. This protocol should eventually lend itself to the synthesis of a host of N-alkylated nucleoside analogs. The absorption and emission properties of these pyrimidine derivatives ( 3- 6) were studied in solvents of different physical properties. Computerized analysis and multiple regression techniques were applied to calculate the regression and correlation coefficients based on the equation that relates peak position λmax to the solvent parameters that depend on the H-bonding ability, refractive index, and dielectric constant of solvents.

  8. Laser-Activated Metal Deposition.

    DTIC Science & Technology

    1988-01-31

    Quartz F "" (0.1 Mm film thickness) AI-4N N APPENDIX 2 SYNTHESIS OF ORGANOMETALLIC COMPOUNDS p 1 . SYNTHESIS OF COPPER BIS HEXAFLUOROACETYLACETONATE...point. 2. SYNTHESIS OF CHROMIUM TRIS HEXAFLUOROACETYLACETONATE (Procedure of R. E. Sievers, et al., Inorg. Chem, 1 , 966 (1962)) A mixture of chromium...The precipi- tate was filtered and recrystallized in carbon tetrachloride to yield about 1 g of brownish-green crystals. 3. SYNTHESIS OF ALUMINUM

  9. Shaken not stirred: a facile synthesis of 1,4-bis(furo[2,3-d]-pyrimidine-2,4(1H,3H)-dione-5-yl)benzenes by one-pot reaction of isocyanides, N,N'-dimethylbarbituric acid, and terephthaldialdehyde.

    PubMed

    Teimouri, Mohammad Bagher; Bazhrang, Reihaneh

    2006-07-15

    A simple and efficient synthesis of 1,4-bis(furo[2,3-d]pyrimidine-2,4(1H,3H)-dione-5-yl)benzene derivatives was achieved via a one-pot three-component reaction of isocyanides, N,N'-dimethylbarbituric acid, and terephthaldialdehyde in DMF at room temperature for 30 min. These improved reaction conditions allow the preparation of highly substituted furopyrimidinones in high yields and purity under mild reaction conditions.

  10. Synthesis of 2,3-Disubstituted Quinolines via Ketenimine or Carbodiimide Intermediates.

    PubMed

    Zhao, Hongyang; Xing, Yanpeng; Lu, Ping; Wang, Yanguang

    2016-10-10

    Cyclopenta[b]quinolines and cyclohexa[b]quinolines were prepared via the reactions of α-diazo ketones with N-(2-cyclopropylidenemethylphenyl)phosphanimines and N-(2-cyclobutylidenemethylphenyl) phosphanimine, respectively. The reaction proceeds in a cascade involving ketenimine formation, 6 π-electron ring closure, and 1,3-alkyl shift. A similar approach was developed for the synthesis of dihydropyrrolo-[2,3-b]quinolines from N-(2-cyclopropylidenemethylphenyl)phosphanimines and isocyanates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Turbine Engine Control Synthesis. Volume 1. Optimal Controller Synthesis and Demonstration

    DTIC Science & Technology

    1975-03-01

    Nomenclature (Continued) Symbol Deseription M Matrix (of Table 12) M Mach number N Rotational speed, rpm N ’ Nonlinear rotational speed, rpm P Power lever... P Pressure, N /m 2; bfh/ft 2 PLA Power lever angle PR = PT3/PT2 Pressure ratio ( P Power, ft-lbf/sec Q Matrix (of Table 30) R Universal gas constant, 53...function, i = 1, 2, 3, ... in Inlet n Stage number designation out Outlet p Variable associated with particle s Static condition _se Static condition

  12. Calcium induced ATP synthesis: Isotope effect, magnetic parameters and mechanism

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. L.; Kuznetsov, D. A.; Breslavskaya, N. N.; Shchegoleva, L. N.; Arkhangelsky, S. E.

    2011-03-01

    ATP synthesis by creatine kinase with calcium ions is accompanied by 43Ca/ 40Ca isotope effect: the enzyme with 43Ca 2+ was found to be 2.0 ± 0.3 times more active than enzymes, in which Ca 2+ ions have nonmagnetic nuclei 40Ca. The effect demonstrates that primary reaction in ATP synthesis is electron transfer between reaction partners, Сa( HO)n2+ ( n ⩽ 3) and Ca 2+(ADP) 3-. It generates ion-radical pair, in which spin conversion results in the isotope effect. Magnetic parameters (g-factors and HFC constants a( 43Ca) and a( 31P)) confirm that namely terminal oxygen atom of the ADP ligand in the complex Ca 2+(ADP) 3- donates electron to the Ca( HO)n2+ ion.

  13. Automated synthesis of N-(2-[18 F]Fluoropropionyl)-l-glutamic acid as an amino acid tracer for tumor imaging on a modified [18 F]FDG synthesis module.

    PubMed

    Liu, Shaoyu; Sun, Aixia; Zhang, Zhanwen; Tang, Xiaolan; Nie, Dahong; Ma, Hui; Jiang, Shende; Tang, Ganghua

    2017-06-15

    N-(2-[ 18 F]Fluoropropionyl)-l-glutamic acid ([ 18 F]FPGLU) is a potential amino acid tracer for tumor imaging with positron emission tomography. However, due to the complicated multistep synthesis, the routine production of [ 18 F]FPGLU presents many challenging laboratory requirements. To simplify the synthesis process of this interesting radiopharmaceutical, an efficient automated synthesis of [ 18 F]FPGLU was performed on a modified commercial fluorodeoxyglucose synthesizer via a 2-step on-column hydrolysis procedure, including 18 F-fluorination and on-column hydrolysis reaction. [ 18 F]FPGLU was synthesized in 12 ± 2% (n = 10, uncorrected) radiochemical yield based on [ 18 F]fluoride using the tosylated precursor 2. The radiochemical purity was ≥98%, and the overall synthesis time was 35 minutes. To further optimize the radiosynthesis conditions of [ 18 F]FPGLU, a brominated precursor 3 was also used for the preparation of [ 18 F]FPGLU, and the improved radiochemical yield was up to 20 ± 3% (n = 10, uncorrected) in 35 minutes. Moreover, all these results were achieved using the similar on-column hydrolysis procedure on the modified fluorodeoxyglucose synthesis module. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Studies on the use of supercritical ammonia for ceramic nitride synthesis and fabrication

    NASA Technical Reports Server (NTRS)

    Cornell, Linda; Lin, Y. C.; Philipp, Warren H.

    1990-01-01

    The extractability of ammonia halides (including ammonium thiocyanate) formed as byproducts from the synthesis of Si(NH)2 via ammonolysis of the corresponding silicon tetrahalides using supercritical NH3 as the extraction medium was investigated. It was found that the NH4SCN byproduct of ammonolysis of Si(SCN)4 can be almost completely extracted from the insoluble Si(NH)2 forming a promising system for the synthesis of pure Si(NH)2, one of the best precursors for Si3N4. In addition it was found that Si3N4, AlN, BN, and Si(NH)2 are insoluble in SC ammonia. Also discussed are design considerations for a supercritical ammonia extraction unit.

  15. Synthesis and evaluation of novel N-H and N-substituted indole-2- and 3-carboxamide derivatives as antioxidants agents.

    PubMed

    Olgen, Süreyya; Kiliç, Zuhal; Ada, Ahmet O; Coban, Tulay

    2007-08-01

    We have previously reported on the synthesis of novel indole derivatives where some compounds showed significant antioxidant activity. Here, we report the synthesis of novel N-H and N-substituted indole-2- and 3-carboxamide derivatives and investigated their antioxidant role in order to identify structural characteristics responsible for activity. Although all compounds showed a strong inhibitory (95-100%) effect on superoxide anion (SOD) only compounds 4, 5 and 6 showed simliar potency for the inhibition of lipid peroxidation (81-94%) which revealed that compounds 4, 5 and 6 possessed highly potent antioxidant properties. Substitution in the 1-position of the indole ring caused the significant differences between the activity results regarding lipid peroxidation inhibition.

  16. α-Fluorovinyl Weinreb Amides and α- Fluoroenones from a Common Fluorinated Building Block

    PubMed Central

    Ghosh, Arun K.; Banerjee, Shaibal; Sinha, Saikat; Kang, Soon Bang; Zajc, Barbara

    2009-01-01

    Synthesis and reactivity of N-methoxy-N-methyl-(1,3-benzothiazol-2-ylsulfonyl)fluoroacetamide, a building block for Julia olefination, is reported. This reagent undergoes condensation reactions with aldehydes and cyclic ketones, to give α-fluorovinyl Weinreb amides. Olefination reactions proceed under mild, DBU-mediated conditions, or in the presence of NaH. DBU-mediated condensations proceed with either E or Z-selectivity, depending upon reaction conditions, whereas NaH-mediated reactions are ≥98% Z-stereoselective. Conversion of the Weinreb amide moiety in N-methoxy-N-methyl-(1,3-benzothiazol-2-ylsulfanyl)fluoroacetamide to ketones, followed by oxidation, resulted in another set of olefination reagents, namely (1,3-benzothiazol-2-ylsulfonyl)fluoromethyl phenyl and propyl ketones. In the presence of DBU, these compounds react with aldehydes tested to give α-fluoroenones with high Z-selectivity. The use of N-methoxy-N-methyl-(1,3-benzothiazol-2-ylsulfanyl)fluoroacetamide as a common fluorinated intermediate in the synthesis of α-fluorovinyl Weinreb amides and α-fluoroenones has been demonstrated. Application of the Weinreb amide to α-fluoro allyl amine synthesis is also shown. PMID:19361189

  17. Intramolecular B-B Linkage Between Polyhedral Cages in a Commo-Metallacarborane. Synthesis and Structure of a Fluxional Metal-Boron Cluster, (n(5)-C5(CH3)5)2Co3(CH3)4C4B8H7.

    DTIC Science & Technology

    1980-11-01

    FINSTER , E SINN, R N GRIMES N0001475--0305 UNCLASSIFIED TR-35 NL’ minimnmlhnnnhu ,IIIIIIIIIIIIIl hEIIIIIIIIEIII EEEEEEEEEEEL 1.8 MICROCOPY’ RESOLUTION...David C./ Finster Ekk/inn Russell . Grimes Department of Chemistry ",00t University ofLyirginla ’ Charlottesville, Va. 22901 Prepared for Publication In...a Commo-Metallacarborane. Synthesis and Structure of a Fluxi:. Metal-Boron Cluster, [n5C 5 (CCB3)512HCo3(C13)4C4B8H7 David C. Finster , Ekk Sinn, and

  18. Room-Temperature Synthesis of GaN Driven by Kinetic Energy beyond the Limit of Thermodynamics.

    PubMed

    Imaoka, Takane; Okada, Takeru; Samukawa, Seiji; Yamamoto, Kimihisa

    2017-12-06

    The nitridation reaction is significantly important to utilize the unique properties of nitrides and nitrogen-doped materials. However, nitridation generally requires a high temperature or highly reactive reagents (often explosive) because the energies of N-N bond cleavage and nitrogen anion formation (N 3- ) are very high. We demonstrate the first room-temperature synthesis of GaN directly from GaCl 3 by nanoscale atom exchange reaction. Nonequilibrium nitrogen molecules with very high translational energy were used as a chemically stable and safe nitrogen source. The irradiation of molecular nitrogen to the desired reaction area successfully provided a gallium nitride (GaN) nanosheet that exhibited a typical photoluminescence spectrum. Because this process retains the target substrate room temperature and does not involve any photon nor charged ion, it allows damage-less synthesis of the semiconducting metal nitrides, even directly on plastic substrates such as polyethylene terephthalate (PET).

  19. Nanocatalysis for Primary and Secondary High Energy Lithium Oxygen Cells

    DTIC Science & Technology

    2011-04-01

    Synthesis of sulfoxyphenyldiazonium Chloride 2.2.3 Assessment of -COOH and –SO3H surface groups on carbon .- Attempts to prepare sulfoxyphenyl...alumina column before used for electrolyte preparation. Synthesis of the electrolyte solvent, methyl n- propyl carbonate (MPC).- The ele- ctrolyte co...2 2.0 EXPERIMENTAL APPROACH AND PROCEDURES ............................ 3 2.1 Synthesis of the Hollow Carbon Sphere

  20. Establishment of process technology for the manufacture of dinitrogen pentoxide and its utility for the synthesis of most powerful explosive of today--CL-20.

    PubMed

    Talawar, M B; Sivabalan, R; Polke, B G; Nair, U R; Gore, G M; Asthana, S N

    2005-09-30

    This paper reviews the recent work done on the synthesis as well as characterization of dinitrogen pentoxide (DNPO). The physico-chemical characteristics of DNPO are also discussed. The review brings out the key aspects of N2O5 technology with relevance to realize modern and novel HEMs. The paper also includes the aspects related with establishing the synthesis facility of dinitrogen pentoxide at HEMRL by gas phase interaction of N2O4 with O3. The process parameters for the synthesis of N2O5 at 50 g/batch have been optimized. The synthesized dinitrogen pentoxide has been characterized by UV [204, 213, 258 nm (pi-->pi*) 378 and 384 nm (n-->pi*)] and IR (1428, 1266, 1249, 1206, 1044, 822, 750, 546 and 454 cm(-1)) spectroscopy. The DSC clearly showed the sublimation of N2O5 at 32 degrees C. The nitration studies on 2,6,8,12-tetraacetylhexaaza tetracyclo[5,5,0,0(3,11)0(5,9)]dodecane (TAIW) proved its viability in 2,4,6,8,10,12-hexanitro-2,4,6,8(10,12))-hexaazatetracyclo [5,5,0,0(3,11)0(5,9)]dodecane (CL-20) synthesis. The synthesized CL-20 and its precursors have also been subjected to hyphenated TG-FTIR studies to understand decomposition pattern.

  1. N,N-difluorotris(tert-butyl)silylamine-the first organosilyl difluoroamine. Synthesis and computational studies.

    PubMed

    Majumder, Utpal; Armantrout, John R; Williams, Richard Vaughan; Shreeve, Jean'ne M

    2002-11-29

    The synthesis and characterization of the first stable trialkyl(difluoroamino)silane, R3SiNF2, as well as of R3SiNHF and R3SiN(CH3)F in moderate yields are reported. The (difluoroamino)silane has promise as a new synthon for the introduction of the -NF2 group into a variety of electrophilic inorganic and organic substrates. Activation barriers and relative energies were calculated for the unimolecular decompositions of Me3SiCF3 and t-Bu3SiNF2 using density functional theory (B3LYP/6-31G). The calculated activation energies confirm the long-assumed kinetic stability of Me3SiCF3.

  2. Anti-NGF Local Therapy for Autonomic Dysreflexia in Spinal Cord Injury

    DTIC Science & Technology

    2012-10-01

    propyl ]-N,N,N trimethylammonium methylsulfate) were made by thin film hydration method and hydrated with nuclease free water with the final lipid...isolation method (Qiagen, Valencia CA). Synthesis of cDNA was performed as described previously (Takimoto et al., 2002). These primers were designed to...probe synthesis . Primers used for the cloning were as follows: Kv4.1 5’-cacagacgagctaactttcag-3′ and 5′-tcacagggaagagatcttgac-3′ (GenBank ID: 116695

  3. Synthesis and Characterization of Cellulose Derivatives for Water Repellent Properties

    USDA-ARS?s Scientific Manuscript database

    In this presentation, we will discuss the synthesis and structural characterizations of nitro-benzyl cellulose (1), amino-benzyl cellulose (2) and pentafluoro –benzyl cellulose (3). All cellulose derivatives are synthesized by etherification process in lithium chloride/N,N-dimethylacetamide homogene...

  4. Epidermal regulation of dermal fibroblast activity.

    PubMed

    Garner, W L

    1998-07-01

    Although the association between delayed burn wound healing and subsequent hypertrophic scar formation is well-established, the mechanism for this relationship is unknown. Unhealed burn wounds lack an epidermis, suggesting a possible regulatory role for the epidermis in controlling dermal fibroblast matrix synthesis. Therefore, we examined the effect of epidermal cells and media conditioned by epidermal cells on fibroblast collagen synthesis and replication. Purified fibroblast and keratinocyte cell strains were developed from discarded normal adult human skin. Conditioned media were created by incubation of cytokine-free and serum-free medium with either confluent fibroblast or keratinocyte cultures for 18 hours (n = 3). Nearly confluent fibroblast cultures were exposed for 48 hours to graded concentrations of either unconditioned medium (control), conditioned medium, or varying numbers of keratinocytes. Replication was quantified by the incorporation of 3H-thymidine. Collagen synthesis was measured by the incorporation of 3H-proline into collagenase-sensitive protein. Data were compared using analysis of variance (ANOVA) and linear regression. Keratinocyte conditioned medium induced a significant increase in replication (n = 3) (p = 0.004) and a decrease in collagen synthesis (n = 6) (p < 0.001). In contrast, neither fibroblast conditioned medium nor control medium had an effect on fibroblast replication or collagen synthesis. Co-culture of fibroblast with a graded number of keratinocytes similarly decreased collagen synthesis (n = 6) (p < 0.001). Dermal fibroblast collagen synthesis appears to be regulated by a soluble keratinocyte product. This result suggests a mechanism for the clinical observation that unhealed burn wounds, which lack the epidermis, demonstrate excess collagen production and scar. Clinical strategies to decrease hypertrophic scar should include an attempt at early wound closure with skin grafting or the application of cultured epithelial autografts.

  5. Efficient synthesis of ammonia from N2 and H2 alone in a ferroelectric packed-bed DBD reactor

    NASA Astrophysics Data System (ADS)

    Gómez-Ramírez, A.; Cotrino, J.; Lambert, R. M.; González-Elipe, A. R.

    2015-12-01

    A detailed study of ammonia synthesis from hydrogen and nitrogen in a planar dielectric barrier discharge (DBD) reactor was carried out. Electrical parameters were systematically varied, including applied voltage and frequency, electrode gap, and type of ferroelectric material (BaTiO3 versus PZT). For selected operating conditions, power consumption and plasma electron density were estimated from Lissajous diagrams and by application of the Bolsig  +  model, respectively. Optical emission spectroscopy was used to follow the evolution of plasma species (\\text{N}{{\\text{H}}*},{{\\text{N}}*},~{N}2+~\\text{and} ~{N}2* ) as a function of applied voltage with both types of ferroelectric material. PZT gave both greater energy efficiency and higher ammonia yield than BaTiO3: 0.9 g NH3 kWh-1 and 2.7% single pass N2 conversion, respectively. This performance is substantially superior to previously published findings on DBD synthesis of NH3 from N2 and H2 alone. The influence of electrical working parameters, the beneficial effect of PZT and the importance of controlling reactant residence time are rationalized in a reaction model that takes account of the principal process variables

  6. Some further studies on the synthesis of glycopeptide derivatives: 2-acetamido-2-deoxy-β-d-glucopyranosylamine derivatives

    PubMed Central

    Bolton, C. H.; Hough, L.; Khan, M. Y.

    1966-01-01

    1. The isolation, characterization and properties of two by-products in the preparation of 2-acetamido-3,4,6-tri-O- acetyl-2-deoxy-β-d-glucopyranosylamine are described. They are bis(2-acetamido-2-deoxy-d-glucopyranosyl)amines. 2. An independent synthesis of the bis-glycopyranosylamines is reported and conditions are given for their preparation in high yield. 3. Further improvements are given for the synthesis of 2-acetamido-1-N-(β-l- aspartyl)-2-deoxy-β-d-glucopyranosylamine and the α-l-aspartyl isomer. 4. The synthesis of 2-acetamido-1-N-acetyl-2-deoxy-β-d-glucopyranosylamine is described. PMID:5971780

  7. Protocol for the Synthesis of Ortho-trifluoromethoxylated Aniline Derivatives

    PubMed Central

    Feng, Pengju; Ngai, Ming-Yu

    2016-01-01

    Molecules bearing trifluoromethoxy (OCF3) group often show desired pharmacological and biological properties. However, facile synthesis of trifluoromethoxylated aromatic compounds remains a formidable challenge in organic synthesis. Conventional approaches often suffer from poor substrate scope, or require use of highly toxic, difficult-to-handle, and/or thermally labile reagents. Herein, we report a user-friendly protocol for the synthesis of methyl 4-acetamido-3-(trifluoromethoxy)benzoate using 1-trifluoromethyl-1,2-benziodoxol-3(1H)-one (Togni reagent II). Treating methyl 4-(N-hydroxyacetamido)benzoate (1a) with Togni reagent II in the presence of a catalytic amount of cesium carbonate (Cs2CO3) in chloroform at RT afforded methyl 4-(N-(trifluoromethoxy)acetamido)benzoate (2a). This intermediate was then converted to the final product methyl 4-acetamido-3-(trifluoromethoxy)benzoate (3a) in nitromethane at 120 °C. This procedure is general and can be applied to the synthesis of a broad spectrum of ortho-trifluoromethoxylated aniline derivatives, which could serve as useful synthetic building blocks for the discovery and development of new pharmaceuticals, agrochemicals, and functional materials. PMID:26862864

  8. Synthesis and characterization of hexaarylbenzenes with five or six different substituents enabled by programmed synthesis

    NASA Astrophysics Data System (ADS)

    Suzuki, Shin; Segawa, Yasutomo; Itami, Kenichiro; Yamaguchi, Junichiro

    2015-03-01

    Since its discovery in 1825, benzene has served as one of the most used and indispensable building blocks of chemical compounds, ranging from pharmaceuticals and agrochemicals to plastics and those used in organic electronic devices. Benzene has six hydrogen atoms that can each be replaced by different substituents, which means that the structural diversity of benzene derivatives is intrinsically extraordinary. The number of possible substituted benzenes from n different substituents is (2n + 2n2 + 4n3 + 3n4 + n6)/12. However, owing to a lack of general synthetic methods for making multisubstituted benzenes, this potentially huge structural diversity has not been fully exploited. Here, we describe a programmed synthesis of hexaarylbenzenes using C-H activation, cross-coupling and [4+2] cycloaddition reactions. The present method allows for the isolation and structure-property characterization of hexaarylbenzenes with distinctive aryl substituents at all positions for the first time. Moreover, the established protocol can be applied to the synthesis of tetraarylnaphthalenes and pentaarylpyridines.

  9. Synthesis of carbon-11-labeled imidazopyridine- and purine-thioacetamide derivatives as new potential PET tracers for imaging of nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1).

    PubMed

    Gao, Mingzhang; Wang, Min; Zheng, Qi-Huang

    2016-03-01

    The target tracer carbon-11-labeled imidazopyridine- and purine-thioacetamide derivatives, N-(3-[(11)C]methoxy-4-methoxyphenyl)-2-((5-methoxy-3H-imidazo[4,5-b]pyridin-2-yl)thio)acetamide (3-[(11)C]4a) and N-(4-[(11)C]methoxy-3-methoxyphenyl)-2-((5-methoxy-3H-imidazo[4,5-b]pyridin-2-yl)thio)acetamide (4-[(11)C]4a); 2-((6-amino-9H-purin-8-yl)thio)-N-(3-[(11)C]methoxy-4-methoxyphenyl)acetamide (3-[(11)C]8a) and 2-((6-amino-9H-purin-8-yl)thio)-N-(4-[(11)C]methoxy-3-methoxyphenyl)acetamide (4-[(11)C]8a), were prepared by O-[(11)C]methylation of their corresponding precursors with [(11)C]CH3OTf under basic condition (2N NaOH) and isolated by a simplified solid-phase extraction (SPE) method in 50-60% radiochemical yields based on [(11)C]CO2 and decay corrected to end of bombardment (EOB). The overall synthesis time from EOB was 23min, the radiochemical purity was >99%, and the specific activity at end of synthesis (EOS) was 185-555GBq/μmol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Synthesis and Characterization of Positively Charged Pentacationic [60]Fullerene Monoadducts for Antimicrobial Photodynamic Inactivation

    PubMed Central

    Thota, Sammaiah; Wang, Min; Jeon, Seaho; Maragani, Satyanarayana; Hamblin, Michael R.; Chiang, Long Y.

    2012-01-01

    We designed and synthesized two analogous pentacationic [60]fullerenyl monoadducts, C60(>ME1N6+C3) (1) and C60(>ME3N6+C3) (2), with variation of the methoxyethyleneglycol length. Each of these derivatives bears a well-defined number of cationic charges aimed to enhance and control their ability to target pathogenic Gram-positive and Gram-negative bacterial cells for allowing photodynamic inactivation. The synthesis was achieved by the use of a common synthon of pentacationic N,N’,N,N,N,N-hexapropyl-hexa(aminoethyl)amine arm (C3N6+) having six attached propyl groups, instead of methyl or ethyl groups, to provide a well-balanced hydrophobicity–hydrophilicity character of pentacationic precursor intermediates and better compatibility with the highly hydrophobic C60 cage moiety. We demonstrated two plausible synthetic routes for the preparation of 1 and 2 with the product characterization via various spectroscopic methods. PMID:22565476

  11. Probes for narcotic receptor mediated phenomena. 42. Synthesis and in vitro pharmacological characterization of the N-methyl and N-phenethyl analogues of the racemic ortho-c and para-c oxide-bridged phenylmorphans

    PubMed Central

    Kim, Jin-Hee; Deschamps, Jeffrey R.; Rothman, Richard B.; Dersch, Christina M.; Folk, John E.; Cheng, Kejun; Jacobson, Arthur E.; Rice, Kenner C.

    2011-01-01

    A new synthesis of N-methyl and N-phenethyl substituted ortho-c and para-c oxide-bridged phenylmorphans, using N-benzyl- rather than N-methyl-substituted intermediates, was used and the pharmacological properties of these compounds were determined. The N-phenethyl substituted ortho-c oxide-bridged phenylmorphan (rac-(3R,6aS,11aS)-2-phenethyl-2,3,4,5,6,11a-hexahydro-1H-3,6a-methanobenzofuro[2,3-c]azocin-10-ol (12)) was found to have the highest μ-opioid receptor affinity (Ki = 1.1 nM) of all of the a- through f-oxide-bridged phenylmorphans. Functional data ([35S]GTP-γ-S) showed that the racemate 12 was more than three times more potent than naloxone as an μ-opioid antagonist. PMID:21570305

  12. Guanidine-acylguanidine bioisosteric approach in the design of radioligands: synthesis of a tritium-labeled N(G)-propionylargininamide ([3H]-UR-MK114) as a highly potent and selective neuropeptide Y Y1 receptor antagonist.

    PubMed

    Keller, Max; Pop, Nathalie; Hutzler, Christoph; Beck-Sickinger, Annette G; Bernhardt, Günther; Buschauer, Armin

    2008-12-25

    Synthesis and characterization of (R)-N(alpha)-(2,2-diphenylacetyl)-N-(4-hydroxybenzyl)-N(omega)-([2,3-(3)H]-propanoyl)argininamide ([(3)H]-UR-MK114), an easily accessible tritium-labeled NPY Y(1) receptor (Y(1)R) antagonist (K(B): 0.8 nM, calcium assay, HEL cells) derived from the (R)-argininamide BIBP 3226, is reported. The radioligand binds with high affinity (K(D), saturation: 1.2 nM, kinetic experiments: 1.1 nM, SK-N-MC cells) and selectivity for Y(1)R over Y(2), Y(4), and Y(5) receptors. The title compound is a useful pharmacological tool for the determination of Y(1)R ligand affinities, quantification of Y(1)R binding sites, and autoradiography.

  13. One-Step Nickel Foam Assisted Synthesis of Holey G-Carbon Nitride Nanosheets for Efficient Visible-light Photocatalytic H2 Evolution.

    PubMed

    Fang, Zhenyuan; Hong, Yuanzhi; Li, Di; Luo, Bifu; Mao, Baodong; Shi, Weidong

    2018-06-01

    Graphitic carbon nitride (g-C3N4) with layered structure represents one of the most promising metal-free photocatalysts. As yet, the direct one-step synthesis of ultrathin g-C3N4 nanosheets remains a challenge. Here, few-layered holey g-C3N4 nanosheets (CNS) were fabricated by simply introducing a piece of nickel foam over the precursors during the heating process. The as-prepared CNS with unique structural advantages exhibited superior photocatalytic water splitting activity (1871.09 µmol h-1 g-1) than bulk g-C3N4 (BCN) under visible light (λ>420 nm) (≈31 fold). Its outstanding photocatalytic performance originated from the high specific surface area (240.34 m2 g-1) and mesoporous structure, which endows CNS with more active sites, efficient exciton dissociation and prolonged charge carrier lifetime. Moreover, the obvious up-shift of the conduction band leads to a larger thermodynamic driving force for photocatalytic proton reduction. This methodology not only had the advantages for the direct and green synthesis of g-C3N4 nanosheets, but also paved a new avenue to modify molecular structure and textural of g-C3N4 for advanced applications.

  14. Increased hepatic beta-oxidation of docosahexaenoic acid, elongation of eicosapentaenoic acid, and acylation of lysophosphatidate in rats fed a docosahexaenoic acid-enriched diet.

    PubMed

    Kanazawa, A; Shirota, Y; Fujimoto, K

    1997-07-01

    Rats were fed a diet supplemented with corn oil (n-3 deficient), soy oil, or a mixture containing 8% 22:6n-3 ethyl ester for 6 wk. The hepatic capacities for the beta-oxidation and synthesis of 22:6n-3, in addition to the acylation of lysophosphatidate, were tested in vitro. In rats that were fed a 22:6n-3-enriched diet, both the beta-oxidation of 22:6n-3 and elongation of 20:5n-3 were enhanced compared to those in rats fed the other diets. Acylation of lysophosphatidate was also enhanced in rats fed a 22:6n-3-enriched diet, while the rate of dephosphorylation of phosphatidate was not changed. The amount of 22:6n-3 in the liver was much less than that consumed in a docosahexaenoic acid-enriched diet. These results suggest that a significant amount of dietary 22:6n-3 was degraded via beta-oxidation, and that a portion of the retroconverted 20:5n-3 was recycled for the synthesis of 22:6n-3. The recycling of 20:5n-3 might contribute to the low level of 22:6n-3 in rats fed an n-3-deficient diet.

  15. Room-Temperature Synthesis of Thiostannates from {[Ni(tren)]2[Sn2S6]}n.

    PubMed

    Hilbert, Jessica; Näther, Christian; Weihrich, Richard; Bensch, Wolfgang

    2016-08-15

    The compound {[Ni(tren)]2[Sn2S6]}n (1) (tren = tris(2-aminoethyl)amine, C6H18N4) was successfully applied as source for the room-temperature synthesis of the new thiostannates [Ni(tren)(ma)(H2O)]2[Sn2S6]·4H2O (2) (ma = methylamine, CH5N) and [Ni(tren)(1,2-dap)]2[Sn2S6]·2H2O (3) (1,2-dap = 1,2-diaminopropane, C3H10N2). The Ni-S bonds in the Ni2S2N8 bioctahedron in the structure of 1 are analyzed with density functional theory calculations demonstrating significantly differing Ni-S bond strengths. Because of this asymmetry they are easily broken in the presence of an excess of ma or 1,2-dap immediately followed by Ni-N bond formation to N donor atoms of the amine ligands thus generating [Ni(tren)(amine)](2+) complexes. The chemical reactions are fast, and compounds 2 and 3 are formed within 1 h. The synthesis concept presented here opens hitherto unknown possibilities for preparation of new thiostannates.

  16. Docosahexaenoic acid antagonizes the boosting effect of palmitic acid on LPS inflammatory signaling by inhibiting gene transcription and ceramide synthesis

    PubMed Central

    Jin, Junfei; Lu, Zhongyang; Li, Yanchun; Cowart, L. Ashley; Lopes-Virella, Maria F.

    2018-01-01

    It is well known that saturated fatty acids (SFAs) and unsaturated fatty acid, in particular omega-3 polyunsaturated fatty acids (n-3 PUFAs), have different effects on inflammatory signaling: SFAs are pro-inflammatory but n-3 PUFAs have strong anti-inflammatory properties. We have reported that palmitic acid (PA), a saturated fatty acid, robustly amplifies lipopolysaccharide (LPS) signaling to upregulate proinflammatory gene expression in macrophages. We also reported that the increased production of ceramide (CER) via sphingomyelin (SM) hydrolysis and CER de novo synthesis plays a key role in the synergistic effect of LPS and PA on proinflammatory gene expression. However, it remains unclear if n-3 PUFAs are capable of antagonizing the synergistic effect of LPS and PA on gene expression and CER production. In this study, we employed the above macrophage culture system and lipidomical analysis to assess the effect of n-3 PUFAs on proinflammatory gene expression and CER production stimulated by LPS and PA. Results showed that DHA strongly inhibited the synergistic effect of LPS and PA on proinflammatory gene expression by targeting nuclear factor kappa B (NFκB)-dependent gene transcription. Results also showed that DHA inhibited the cooperative effect of LPS and PA on CER production by targeting CER de novo synthesis, but not SM hydrolysis. Furthermore, results showed that myriocin, a specific inhibitor of serine palmitoyltransferase, strongly inhibited both LPS-PA-stimulated CER synthesis and proinflammatory gene expression, indicating that CER synthesis is associated with proinflammatory gene expression and that inhibition of CER synthesis contributes to DHA-inhibited proinflammatory gene expression. Taken together, this study demonstrates that DHA antagonizes the boosting effect of PA on LPS signaling on proinflammatory gene expression by targeting both NFκB-dependent transcription and CER de novo synthesis in macrophages. PMID:29474492

  17. Docosahexaenoic acid antagonizes the boosting effect of palmitic acid on LPS inflammatory signaling by inhibiting gene transcription and ceramide synthesis.

    PubMed

    Jin, Junfei; Lu, Zhongyang; Li, Yanchun; Cowart, L Ashley; Lopes-Virella, Maria F; Huang, Yan

    2018-01-01

    It is well known that saturated fatty acids (SFAs) and unsaturated fatty acid, in particular omega-3 polyunsaturated fatty acids (n-3 PUFAs), have different effects on inflammatory signaling: SFAs are pro-inflammatory but n-3 PUFAs have strong anti-inflammatory properties. We have reported that palmitic acid (PA), a saturated fatty acid, robustly amplifies lipopolysaccharide (LPS) signaling to upregulate proinflammatory gene expression in macrophages. We also reported that the increased production of ceramide (CER) via sphingomyelin (SM) hydrolysis and CER de novo synthesis plays a key role in the synergistic effect of LPS and PA on proinflammatory gene expression. However, it remains unclear if n-3 PUFAs are capable of antagonizing the synergistic effect of LPS and PA on gene expression and CER production. In this study, we employed the above macrophage culture system and lipidomical analysis to assess the effect of n-3 PUFAs on proinflammatory gene expression and CER production stimulated by LPS and PA. Results showed that DHA strongly inhibited the synergistic effect of LPS and PA on proinflammatory gene expression by targeting nuclear factor kappa B (NFκB)-dependent gene transcription. Results also showed that DHA inhibited the cooperative effect of LPS and PA on CER production by targeting CER de novo synthesis, but not SM hydrolysis. Furthermore, results showed that myriocin, a specific inhibitor of serine palmitoyltransferase, strongly inhibited both LPS-PA-stimulated CER synthesis and proinflammatory gene expression, indicating that CER synthesis is associated with proinflammatory gene expression and that inhibition of CER synthesis contributes to DHA-inhibited proinflammatory gene expression. Taken together, this study demonstrates that DHA antagonizes the boosting effect of PA on LPS signaling on proinflammatory gene expression by targeting both NFκB-dependent transcription and CER de novo synthesis in macrophages.

  18. Three new europium(III) methanetriacetate metal-organic frameworks: the influence of synthesis on the product topology.

    PubMed

    Cañadillas-Delgado, Laura; Fabelo, Oscar; Pasán, Jorge; Déniz, Mariadel; Martínez-Benito, Carla; Díaz-Gallifa, Pau; Martín, Tomás; Ruiz-Pérez, Catalina

    2014-02-01

    Three new metal-organic framework structures containing Eu(III) and the little explored methanetriacetate (C7H7O6(3-), mta(3-)) ligand have been synthesized. Gel synthesis yields a two-dimensional framework with the formula [Eu(mta)(H2O)3]n·2nH2O, (I), while two polymorphs of the three-dimensional framework material [Eu(mta)(H2O)]n·nH2O, (II) and (III), are obtained through hydrothermal synthesis at either 423 or 443 K. Compounds (I) and (II) are isomorphous with previously reported Gd(III) compounds, but compound (III) constitutes a new phase. Compound (I) can be described in terms of dinuclear [Eu2(H2O)4](6+) units bonded through mta(3-) ligands to form a two-dimensional framework with topology corresponding to a (6,3)-connected binodal (4(3))(4(6)6(6)8(3))-kgd net, where the dinuclear [Eu2(H2O)4](6+) units are considered as a single node. Compounds (II) and (III) have distinct three-dimensional topologies, namely a (4(12)6(3))(4(9)6(6))-nia net for (II) and a (4(10)6(5))(4(11)6(4))-K2O2; 36641 net for (III). The crystal density of (III) is greater than that of (II), consistent with the increase of temperature, and thereby autogeneous pressure, in the hydrothermal synthesis.

  19. 4'-alpha-C-Branched N,O-nucleosides: synthesis and biological properties.

    PubMed

    Chiacchio, Ugo; Genovese, Filippo; Iannazzo, Daniela; Piperno, Anna; Quadrelli, Paolo; Antonino, Corsaro; Romeo, Roberto; Valveri, Vincenza; Mastino, Antonio

    2004-07-15

    The synthesis of 4'-alpha-C-branched N,O-nucleosides has been described, based on the 1,3-dipolar cycloaddition of nitrones with vinyl acetate followed by coupling with silylated nucleobases, The obtained compounds have been evaluated for their activity against HSV-1, HSV-2, HTLV-1. Cytotoxicity and apoptotic activity have been also investigated: compound 10c shows moderate apoptotic activity in Molt-3 cells.

  20. Synthesis, radiolabeling, and preliminary biological evaluation of [3H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine, a potent antagonist radioligand for the P2X7 receptor.

    PubMed

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Pavani, Maria Giovanna; Tabrizi, Mojgan Aghazadeh; Moorman, Allan R; Di Virgilio, Francesco; Cattabriga, Elena; Pancaldi, Cecilia; Gessi, Stefania; Borea, Pier Andrea

    2004-11-15

    The design, synthesis, and preliminary biological evaluation of the first potent radioligand antagonist for the P2X(7) receptor, named [(3)H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine (compound 13), are reported. This compound bound to human P2X(7) receptors expressed in HEK transfected cells with K(D) and B(max) value of 3.46+/-0.1 nM and 727+/-73 fmol/mg of protein, respectively. The high affinity and facile labeling makes it a promising radioligand for a further characterization of P2X(7) receptor subtype.

  1. Synthesis of TiN/a-Si3N4 thin film by using a Mather type dense plasma focus system

    NASA Astrophysics Data System (ADS)

    Hussain, T.; R., Ahmad; Khalid, N.; A. Umar, Z.; Hussnain, A.

    2013-05-01

    A 2.3 kJ Mather type pulsed plasma focus device was used for the synthesis of a TiN/a-Si3N4 thin film at room temperature. The film was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The XRD pattern confirms the growth of polycrystalline TiN thin film. The XPS results indicate that the synthesized film is non-stoichiometric and contains titanium nitride, silicon nitride, and a phase of silicon oxy-nitride. The SEM and AFM results reveal that the surface of the synthesized film is quite smooth with 0.59 nm roughness (root-mean-square).

  2. Synthesis and Characteristics of Radiation Curable Polyurethanes Containing Pendant Acrylate Groups.

    DTIC Science & Technology

    1986-10-09

    diethoxylacetophenone (DEAP) and N - methyldiethanolamine ( MDEA ). The films were left in a vacuum oven for one week at room temperature to remove residual solvent...LF.Ol4.er6OlSECURITY CLASSIFICATION OF THIS PAGE (ohen De Knieved) -. " N SYNTHESIS AND CHARACTERIZATION OF RADIATION CURABLE POLYURETHANES CONTAINING...butanone-2, N , N dimethylacetamide (DMA), and toluene were --..- purchased from Aldrich Chemical Company, and stored over molecular sieve (type 3A

  3. Preparation and Purification of Multigram Quantities of TAX and SEX.

    DTIC Science & Technology

    1981-12-01

    Synthesis Purification Nitrolysis 2L AS[TNIACT (Cletiloe -m powowe0m N noeaemy and Identify by block number) This final report describes the multigram... synthesis and purification of 3 kg of 1-acetylhexahydro-3,5-dinitro-1,3,5-triazine (TAX) and the feasibility of producing kilogram quantities of l...residual impurities; (3) demonstrate the feasibility of the synthesis approach on a one-pound batch reaction; and (4) provide a cost-plus-fixed-fee estimate

  4. Iodine-Mediated Intramolecular Dehydrogenative Coupling: Synthesis of N-Alkylindolo[3,2-c]- and -[2,3-c]quinoline Iodides.

    PubMed

    Volvoikar, Prajesh S; Tilve, Santosh G

    2016-03-04

    An I2/TBHP-mediated intramolecular dehydrogenative coupling reaction is developed for the synthesis of a library of medicinally important 5,11-dialkylindolo[3,2-c]quinoline salts and 5,7-dimethylindolo[2,3-c]quinoline salts. The annulation reaction is followed by aromatization to yield tetracycles in good yield. This protocol is also demonstrated for the synthesis of the naturally occurring isocryptolepine in salt form.

  5. Synthesis of NMP, a Fluoxetine (Prozac) Precursor, in the Introductory Organic Laboratory

    NASA Astrophysics Data System (ADS)

    Perrine, Daniel M.; Sabanayagam, Nathan R.; Reynolds, Kristy J.

    1998-10-01

    A synthesis of the immediate precursor of the widely used antidepressant fluoxetine (Prozac) is described. The procedure is short, safe, and simple enough to serve as a laboratory exercise for undergraduate students in the second semester of introductory organic chemistry and is one which will be particularly interesting to those planning a career in the health sciences. The compound synthesized is (°)-N,N-dimethyl-3-(p-trifluoromethylphenoxy)-3-phenylpropylamine, or "N-methyl Prozac" (NMP). The synthesis of NMP requires one two-hour period and a second three-hour period. In the first period, a common Mannich base, 3-dimethylaminopropiophenone, is reduced with sodium borohydride to form (°)-3-dimethylamino-1-phenylpropanol. In the second period, potassium t-butoxide is used to couple (°)-3-dimethylamino-1-phenylpropanol with p-chlorotrifluoromethylbenzene to form NMP, which is isolated as its oxalate salt. All processes use equipment and materials that are inexpensive and readily available in most undergraduate laboratories. Detailed physical data are given on NMP, including high-field DEPT 13C NMR.

  6. Rhodium(II)-Catalyzed and Thermally Induced Intramolecular Migration of N-Sulfonyl-1,2,3-triazoles: New Approaches to 1,2-Dihydroisoquinolines and 1-Indanones.

    PubMed

    Sun, Run; Jiang, Yu; Tang, Xiang-Ying; Shi, Min

    2016-04-11

    New rhodium(II)-catalyzed or thermally induced intramolecular alkoxy group migration of N-sulfonyl-1,2,3-triazoles has been developed, affording divergent synthesis of 1,2-dihydroisoquinoline and 1-indanone derivatives according to different conditions. N-Sulfonyl keteneimine is the key intermediate for the synthesis of dihydroisoquinoline, whereas the aza-vinyl carbene intermediate results in the formation of 1-indanone. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis and structural study of N-isopropenylbenzimidazolone

    NASA Astrophysics Data System (ADS)

    Mondieig, D.; Negrier, Ph.; Leger, J. M.; Lakhrissi, L.; El Assyry, A.; Lakhrissi, B.; Essassi, E. M.; Benali, B.; Boucetta, A.

    2015-05-01

    The synthesis and the crystal structure of the N-isopropenylbenzimidazolone (C10H10N2O) are presented. The synthesis was performed by Meth-Cohen method by reaction of o-phenylenediamine with ethyl acetoacetate in refluxed xylene. The single crystal structure was determined at room temperature by means of X-rays diffraction. The crystal system is monoclinic, with space group C2/c and eight molecules per unit cell. The unit cell dimensions are: a = 15.978(1) Å, b = 6.100(2) Å, c = 18.222(2) Å, β = 90.16(1)° and V = 1776.0(6) Å3.

  8. Docosahexaenoic Acid (DHA) and Hepatic Gene Transcription1,3

    PubMed Central

    Jump, Donald B.; Botolin, Daniela; Wang, Yun; Xu, Jinghua; Demeure, Olivier; Christian, Barbara

    2008-01-01

    The type and quantity of dietary fat ingested contributes to the onset and progression of chronic diseases, like diabetes and atherosclerosis. The liver plays a central role in whole body lipid metabolism and responds rapidly to changes in dietary fat composition. Polyunsaturated fatty acids (PUFA) play a key role in membrane composition and function, metabolism and the control of gene expression. Certain PUFA, like the n-3 PUFA, enhance hepatic fatty acid oxidation and inhibit fatty acid synthesis and VLDL secretion, in part, by regulating gene expression. Our studies have established that key transcription factors, like PPARα, SREBP-1, ChREBP and MLX, are regulated by n-3 PUFA, which in turn control levels of proteins involved in lipid and carbohydrate metabolism. Of the n-3 PUFA, 22:6,n-3 has recently been established as a key controller of hepatic lipid synthesis. 22:6,n-3 controls the 26S proteasomal degradation of the nuclear form of SREBP-1. SREBP-1 is a major transcription factor that controls the expression of multiple genes involved fatty acid synthesis and desaturation. 22:6,n-3 suppresses nuclear SREBP-1 which, in turn suppresses lipogenesis. This mechanism is achieved, in part, through control of the phosphorylation status of protein kinases. This review will examine both the general features of PUFA-regulated hepatic gene transcription and highlight the unique mechanisms by which 22:6,n-3 impacts gene expression. The outcome of this analysis will reveal that changes in hepatic 22:6,n-3 content has a major impact on hepatic lipid and carbohydrate metabolism. Moreover, the mechanisms involve 22:6,n-3 control of several well-known signaling pathways, such as Akt, Erk1/2, Gsk3β and PKC (novel or atypical). 22:6,n-3 control of these same signaling pathways in non-hepatic tissues may help explain the diverse actions of n-3 PUFA on such complex physiological processes as visual acuity and learning. PMID:18343222

  9. Irreversible Phase-Changes in Nanophase RE-doped M2O3 and their Optical Signatures

    DTIC Science & Technology

    2015-12-01

    T.; Eilers, H. Synthesis of silver /SiO2/Eu:Lu2O3 core- shell nanoparticles and their polymer nanocomposites. Powder Technol. 2011, 210, 157-166...Schwartz, J. Surface modification of Y2O3 nanoparticles . Langmuir 2007, 23, 9158-9161 (11) Imanaka, N.; Masui, T.; Mayama, Y.; Koyabu, K. Synthesis ... Synthesis and luminescence characteristics of Eu3+-doped ZrO2 nanoparticles . J. Lumin. 2007, 122, 855-857 (32) Ray, J. C.; Park, D. W.; Ahn, W. S

  10. Hydrothermal synthesis, characterization, and thermal properties of alumino silicate azide sodalite, Na8[AlSiO4]6(N3)2

    NASA Astrophysics Data System (ADS)

    Borhade, A. V.; Wakchaure, S. G.; Dholi, A. G.; Kshirsagar, T. A.

    2017-07-01

    First time we report the synthesis, structural characterization and thermal behavior of an unusual N3 - containing alumino-silicate sodalite mineral. Azide sodalite, Na8[AlSiO4]6(N3)2 has been synthesized under hydrothermal conditions at 433 K in steel lined Teflon autoclave. The structural and microstructural properties of azide sodalite mineral was characterized by various methods including FT-IR, XRD, SEM, TGA, and MAS NMR. Crystal structure have been refined by Rietveld method in P\\bar 43n space group, indicating that the N3 - sodalite has cubic in lattice. High temperature study was carried out to see the effect of thermal expansion on cell dimension ( a o) of azide sodalite. Thermal behavior of sodalite was also assessed by thermogravimetric method.

  11. Synthesis of [¹¹C]PBR170, a novel imidazopyridine, for imaging the translocator protein with PET.

    PubMed

    Bourdier, Thomas; Henderson, David; Fookes, Christopher J R; Lam, Peter; Mattner, Filomena; Fulham, Michael; Katsifis, Andrew

    2014-08-01

    The translocator protein (TSPO) ligand 2-(6,8-dichloro-2-(4-ethoxyphenyl)imidazo[1,2-a]pyridin-3-yl)-N-(2-fluoropyridin-3-yl)-N-methylacetamide (PBR170), is a novel imidazopyridineacetamide with high affinity (2.6 nm) and selectivity for the TSPO. The synthesis of [(11)C]PBR170 was accomplished by N-methylation of the corresponding desmethyl precursor with [(11)C]methyl iodide in the presence of sodium hydroxide in dimethylformamide. [(11)C]PBR170 was produced in 30-45% radiochemical yield (decay-corrected, based on [(11)C]methyl iodide) with a radiochemical purity >98% and a specific activity of 90-190 GBq/μmol after 35 min of synthesis time. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  12. A convenient allylsilane-N-acyliminium route toward indolizidine and quinolizidine alkaloids

    PubMed Central

    Remuson, Roland

    2007-01-01

    This review relates all the results that we obtained in the field of the total synthesis of indolizidine and quinolizidine alkaloids using a strategy of the addition of an allylsilane on an N-acyliminium ion. In this paper, we describe the synthesis of racemic indolizidine 167B and chiral indolizidines: (-)-indolizidines 167B, 195B, 223AB, (+)-monomorine, (-)-(3R,5S,8aS)-3-butyl-5-propylindolizidine and (-)-dendroprimine. Next, we relate the synthesis that we have developed in the quinolizidines field: (±)-myrtine and epimyrtine, (±)-lasubines I and II and chiral quinolizidines: (+)-myrtine, (-)-epimyrtine, (-)-lasubines I and II and (+)-subcosine II. PMID:17910752

  13. N-heterocyclic carbene catalyzed regioselective oxo-acyloxylation of alkenes with aromatic aldehydes: a high yield synthesis of α-acyloxy ketones and esters.

    PubMed

    Reddi, Rambabu N; Malekar, Pushpa V; Sudalai, Arumugam

    2013-10-14

    An N-heterocyclic carbene (NHC)-catalyzed reaction of alkenes with aromatic aldehydes providing for a high yield synthesis of α-acyloxy ketones and esters has been described. This unprecedented regioselective oxidative process employs NBS and Et3N in stoichiometric amounts and O2 (1 atm) as an oxidant under ambient conditions in DMSO as a solvent.

  14. Expected Detection Limits of Hydrazine-Based Rocket Fuels and Their Selected Oxidation Products by 12C16O2 Laser Spectroscopic Techniques.

    DTIC Science & Technology

    1980-08-15

    difficulties in meeting OSHA standards on allowable worker exposure to a carcinogenic reaction intermediate, N-nitrosodimethy- 3 lamine ( NDMA ), then used...in the UDMH synthesis. This particular problem should be alleviated by synthesis procedures that do not employ NDMA . However, the Air Force is also...compounds. For example, it has been found that N-nitroso- dimethylamine ( NDMA ), the same compound previously used in UDMH synthesis and one of the most

  15. Repercussion of Solid state vs. Liquid state synthesized p-n heterojunction RGO-copper phosphate on proton reduction potential in water.

    PubMed

    Samal, Alaka; Das, Dipti P; Madras, Giridhar

    2018-02-13

    The same copper phosphate catalysts were synthesized by obtaining the methods involving solid state as well as liquid state reactions in this work. And then the optimised p-n hybrid junction photocatalysts have been synthesized following the same solid/liquid reaction pathways. The synthesized copper phosphate photocatalyst has unique rod, flower, caramel-treat-like morphology. The Mott-Schottky behavior is in accordance with the expected behavior of n-type semiconductor and the carrier concentration was calculated using the M-S analysis for the photocatalyst. And for the p-n hybrid junction of 8RGO-Cu 3 (PO 4 ) 2 -PA (PA abbreviated for photoassisted synthesis method), 8RGO-Cu 3 (PO 4 ) 2 -EG(EG abbreviated for Ethylene Glycol based synthesis method), 8RGO-Cu 3 (PO 4 ) 2 -PEG (PEG abbreviated for Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol based synthesis method)the amount of H 2 synthesized was 7500, 6500 and 4500 µmol/h/g, respectively. The excited electrons resulting after the irradiation of visible light on the CB of p-type reduced graphene oxide (RGO) migrate easily to n-type Cu 3 (PO 4 ) 2 via. the p-n junction interfaces and hence great charge carrier separation was achieved.

  16. Synthesis and characterisation of new Schiff base monomers containing N-(alkyl and phenyl) pyrrole moieties

    NASA Astrophysics Data System (ADS)

    Amer, Ahcene Ait; Ilikti, Hocine; Maschke, Ulrich

    2017-11-01

    This article deals with the synthesis and characterisation of seven new functional Schiff base monomers, such as: M1: 1-(3-Pyrrole-1-yl-propylimino-methyl)-naphtalen-2-ol; M2: 2-(3-Pyrrole-1-yl-phenylimino-methyl)-phenol; M3: 1-(3-Pyrrole-1-yl-phenylimino-methyl)-naphtalen-2-ol; M4: N-(pyridin-2-yl-methylene)-2-(pyrrol-1-yl)-benzenamine; M5: N-(pyridin-2-yl-methylene)-3-(pyrrol-1-yl)-propan-1-amine; M6: 2-(3-pyrrol-1-yl-propylimino-methyl)-quinolin-8-ol; M7: 2-(3-pyrrol-1-yl-phenylimino-methyl)-quinolin-8-ol. Two series of compounds emerged from this study, N-propyl pyrrole derivatives (M1, M5, M6) and N-phenyl pyrrole compounds (M2, M3, M4, M7). All monomers were elaborated by condensation reactions between appropriate amines and aldehydes, and their molecular structures were confirmed by spectroscopic analysis methods like FT-IR, 1H NMR, 13C NMR, and GC-MS.

  17. Facile Atmospheric Pressure Synthesis of High Thermal Stability and Narrow-Band Red-Emitting SrLiAl3N4:Eu(2+) Phosphor for High Color Rendering Index White Light-Emitting Diodes.

    PubMed

    Zhang, Xuejie; Tsai, Yi-Ting; Wu, Shin-Mou; Lin, Yin-Chih; Lee, Jyh-Fu; Sheu, Hwo-Shuenn; Cheng, Bing-Ming; Liu, Ru-Shi

    2016-08-03

    Red phosphors (e.g., SrLiAl3N4:Eu(2+)) with high thermal stability and narrow-band properties are urgently explored to meet the next-generation high-power white light-emitting diodes (LEDs). However, to date, synthesis of such phosphors remains an arduous task. Herein, we report, for the first time, a facile method to synthesize SrLiAl3N4:Eu(2+) through Sr3N2, Li3N, Al, and EuN under atmospheric pressure. The as-synthesized narrow-band red-emitting phosphor exhibits excellent thermal stability, including small chromaticity shift and low thermal quenching. Intriguingly, the title phosphor shows an anomalous increase in theoretical lumen equivalent with the increase of temperature as a result of blue shift and band broadening of the emission band, which is crucial for high-power white LEDs. Utilizing the title phosphor, commercial YAG:Ce(3+), and InGaN-based blue LED chip, a proof-of-concept warm white LEDs with a color rendering index (CRI) of 91.1 and R9 = 68 is achieved. Therefore, our results highlight that this method, which is based on atmospheric pressure synthesis, may open a new means to explore narrow-band-emitting nitride phosphor. In addition, the underlying requirements to design Eu(2+)-doped narrow-band-emitting phosphors were also summarized.

  18. The spark discharge synthesis of amino acids from various hydrocarbons

    NASA Technical Reports Server (NTRS)

    Ring, D.; Miller, S. L.

    1984-01-01

    The spark discharge synthesis of amino acids using an atmosphere of CH4+N2+H2O+NH3 has been investigated with variable pNH3. The amino acids produced using higher hydrocarbons (ethane, ethylene, acetylene, propane, butane, and isobutane) instead of CH4 were also investigated. There was considerable range in the absolute yields of amino acids, but the yields relative to glycine (or alpha-amino-n-butyric acid) were more uniform. The relative yields of the C3 to C6 aliphatic alpha-amino acids are nearly the same (with a few exceptions) with all the hydrocarbons. The glycine yields are more variable. The precursors to the C3-C6 aliphatic amino acids seem to be produced in the same process, which is separate from the synthesis of glycine precursors. It may be possible to use these relative yields as a signature for a spark discharge synthesis provided corrections can be made for subsequent decomposition events (e.g. in the Murchison meteorite).

  19. Microwave-Assisted Piloty-Robinson Synthesis of 3,4-Disubstituted Pyrroles

    PubMed Central

    Milgram, Benjamin C.; Eskildsen, Katrine; Richter, Steven M.; Scheidt, W. Robert; Scheidt, Karl A.

    2007-01-01

    The synthesis of N-acyl 3,4-disubstituted pyrroles can be accomplished directly from hydrazine and an aldehyde via a Piloty-Robinson pyrrole synthesis. The use of microwave radiation for the cyclization and pyrrole formation greatly reduces the time necessary for this process and facilitates moderate to good yields from hydrazine for the corresponding 3,4-disubstituted products (5–12). By simple hydrolysis, the free N–H pyrroles can be accessed after the Piloty-Robinson reaction and then used directly in the synthesis of octaethylporphyrin (H2OEP, 14) and octaethyltetraphenylporphyrin (H2OETPP, 15). PMID:17432915

  20. Glutamine: precursor or nitrogen donor for citrulline synthesis?

    USDA-ARS?s Scientific Manuscript database

    Glutamine (Gln) is considered the main precursor for citrulline (Cit) synthesis, but no attempts have been made to differentiate the contribution of Gln carbon (Gln-C) skeleton vs. the nonspecific contribution through NH3 and CO2. To study the contribution of dietary Gln-N to the synthesis of Cit, t...

  1. The Pauson-Khand Reaction as a New Entry to the Synthesis of Bridged Bicyclic Heterocycles: Application to the Enantioselective Total Synthesis of (−)-Alstonerine

    PubMed Central

    Miller, Kenneth A.; Shanahan, Charles S.; Martin, Stephen F.

    2008-01-01

    The first application of the Pauson-Khand reaction (PKR) to the synthesis of azabridged bicyclic structures is described. Compounds containing azabicyclo[3.3.1]nonane and azabicyclo[3.2.1]octane rings fused to cyclopentenones were efficiently constructed via the PKR of cis-2,6-disubstituted N-acyl piperidine enyne substrates, many of which can be readily prepared from 4-methoxypyridine in a few steps. Moreover, the PKR of cis-2,6-disubstituted piperazine enynes allowed the preparation of diazabicyclo[3.3.1]nonanes fused to cyclopentenones. This new strategy for the synthesis of azabridged bicyclic frameworks was exploited as a key step in a concise, enantioselective total synthesis of the macroline alklaoid (−)-alstonerine. PMID:19122869

  2. The Pauson-Khand Reaction as a New Entry to the Synthesis of Bridged Bicyclic Heterocycles: Application to the Enantioselective Total Synthesis of (-)-Alstonerine.

    PubMed

    Miller, Kenneth A; Shanahan, Charles S; Martin, Stephen F

    2008-01-01

    The first application of the Pauson-Khand reaction (PKR) to the synthesis of azabridged bicyclic structures is described. Compounds containing azabicyclo[3.3.1]nonane and azabicyclo[3.2.1]octane rings fused to cyclopentenones were efficiently constructed via the PKR of cis-2,6-disubstituted N-acyl piperidine enyne substrates, many of which can be readily prepared from 4-methoxypyridine in a few steps. Moreover, the PKR of cis-2,6-disubstituted piperazine enynes allowed the preparation of diazabicyclo[3.3.1]nonanes fused to cyclopentenones. This new strategy for the synthesis of azabridged bicyclic frameworks was exploited as a key step in a concise, enantioselective total synthesis of the macroline alklaoid (-)-alstonerine.

  3. 15N-labeled glycine synthesis.

    PubMed

    Tavares, Claudinéia R O; Bendassolli, José A; Coelho, Fernando; Sant'ana Filho, Carlos R; Prestes, Clelber V

    2006-09-01

    This work describes a method for 15N-isotope-labeled glycine synthesis, as well as details about a recovery line for nitrogen residues. To that effect, amination of alpha-haloacids was performed, using carboxylic chloroacetic acid and labeled aqueous ammonia (15NH3). Special care was taken to avoid possible 15NH3 losses, since its production cost is high. In that respect, although the purchase cost of the 13N-labeled compound (radioactive) is lower, the stable tracer produced constitutes an important tool for N cycling studies in living organisms, also minimizing labor and environmental hazards, as well as time limitation problems in field studies. The tests were carried out with three replications, and variable 15NH3aq volumes in the reaction were used (50, 100, and 150 mL), in order to calibrate the best operational condition; glycine masses obtained were 1.7, 2, and 3.2 g, respectively. With the development of a system for 15NH3 recovery, it was possible to recover 71, 83, and 87% of the ammonia initially used in the synthesis. With the required adaptations, the same system was used to recover methanol, and 75% of the methanol initially used in the amino acid purification process were recovered.

  4. Mechanism for the Coupled Photochemistry of Ammonia and Acetylene: Implications for Giant Planets, Comets and Interstellar Organic Synthesis

    NASA Astrophysics Data System (ADS)

    Keane, Thomas C.

    2017-09-01

    Laboratory studies provide a fundamental understanding of photochemical processes in planetary atmospheres. Photochemical reactions taking place on giant planets like Jupiter and possibly comets and the interstellar medium are the subject of this research. Reaction pathways are proposed for the coupled photochemistry of NH3 (ammonia) and C2H2 (acetylene) within the context Jupiter's atmosphere. We then extend the discussion to the Great Red Spot, Extra-Solar Giant Planets, Comets and Interstellar Organic Synthesis. Reaction rates in the form of quantum yields were measured for the decomposition of reactants and the formation of products and stable intermediates: HCN (hydrogen cyanide), CH3CN (acetonitrile), CH3CH = N-N = CHCH3 (acetaldazine), CH3CH = N-NH2 (acetaldehyde hydrazone), C2H5NH2 (ethylamine), CH3NH2 (methylamine) and C2H4 (ethene) in the photolysis of NH3/C2H2 mixtures. Some of these compounds, formed in our investigation of pathways for HCN synthesis, were not encountered previously in observational, theoretical or laboratory photochemical studies. The quantum yields obtained allowed for the formulation of a reaction mechanism that attempts to explain the observed results under varying experimental conditions. In general, the results of this work are consistent with the initial observations of Ferris and Ishikawa (1988). However, their proposed reaction pathway which centers on the photolysis of CH3CH = N-N = CHCH3 does not explain all of the results obtained in this study. The formation of CH3CH = N-N = CHCH3 by a radical combination reaction of CH3CH = N• was shown in this work to be inconsistent with other experiments where the CH3CH = N• radical is thought to form but where no CH3CH = N-N = CHCH3 was detected. The importance of the role of H atom abstraction reactions was demonstrated and an alternative pathway for CH3CH = N-N = CHCH3 formation involving nucleophilic reaction between N2H4 and CH3CH = NH is advanced.

  5. Analysis of leukotrienes in cerebrospinal fluid of a reference population and patients with inborn errors of metabolism: further evidence for a pathognomonic profile in LTC(4)-synthesis deficiency.

    PubMed

    Mayatepek, E; Zelezny, R; Hoffmann, G F

    2000-02-25

    Cysteinyl leukotrienes (LTC(4), LTD(4), LTE(4)) are potent lipid mediators derived from arachidonate in the 5-lipoxygenase pathway. Recently, the first inborn error of leukotriene synthesis, LTC(4)-synthesis deficiency, has been identified in association with a fatal developmental syndrome. The absence of leukotrienes in cerebrospinal fluid was one of the most striking biochemical findings in this disorder. We analysed leukotrienes in cerebrospinal fluid of patients with a broad spectrum of other well-defined inborn errors of metabolism, including glutathione synthetase deficiency (n=2), Zellweger syndrome (n=3), mitochondrial disorders (n=8), fatty acid oxidation defects (n=7), organic acidurias (n=7), neurotransmitter defects (n=5) and patients with non-specific neurological symptoms, as a reference population (n=120). The concentrations of leukotrienes were not related to age. Representative percentiles were calculated as reference intervals of each leukotriene. In all patients with an inborn error of metabolism concentration of cysteinyl leukotrienes and LTB(4) did not differ from the reference group. Our results indicate that absence of cysteinyl leukotrienes (<5 pg/ml) in association with normal or increased LTB(4) (50.0-67.3 pg/ml) is pathognomonic for LTC(4)-synthesis deficiency. The unique profile of leukotrienes in cerebrospinal fluid in this new disorder is primarily related to the defect and represents a new diagnostic approach.

  6. Chemical stabilization and high pressure synthesis of Ba-free Hg-based superconductors, (Hg,M)Sr2Ca(n-1)Cu(n)O(y)(n=1 to approximately 3)

    NASA Technical Reports Server (NTRS)

    Kishio, K.; Shimoyama, J.; Hahakura, S.; Kitazawa, K.; Yamaura, K.; Hiroi, Z.; Takano, M.

    1995-01-01

    A homologous series of new Hg-based HTSC compounds, (Hg,M)Sr2Ca(n - 1)Cu(n)P(y) with n = 1 to 3, have been synthesized. The stabilization of the pure phases have been accomplished by chemical doping of third elements such as M = Cr, Mo and Re. While the Hgl2O1(n = 1) phase was readily obtained in this way, it was necessary to simultaneously dope Y into the Ca site to stabilize the Hg1212(n = 2) phase. On the other hand, single-phase Y-free Hg1212(n = 2) and Hg1223 (n = 3) samples were synthesized only under a high pressure of 6 GPa. In sharp contrast to the Ba containing compounds, all the samples prepared in the present study have been quite stable during the synthesis and no deterioration in air has been observed after the preparation.

  7. Generalized Self-Doping Engineering towards Ultrathin and Large-Sized Two-Dimensional Homologous Perovskites.

    PubMed

    Chen, Junnian; Wang, Yaguang; Gan, Lin; He, Yunbin; Li, Huiqiao; Zhai, Tianyou

    2017-11-20

    Two-dimensional (2D) homologous perovskites are arousing intense interest in photovoltaics and light-emitting fields, attributing to significantly improved stability and increasing optoelectronic performance. However, investigations on 2D homologous perovskites with ultrathin thickness and large lateral dimension have been seldom reported, being mainly hindered by challenges in synthesis. A generalized self-doping directed synthesis of ultrathin 2D homologous (BA) 2 (MA) n-1 Pb n Br 3n+1 (1

  8. Stereoselective synthesis of nicotinamide beta-riboside and nucleoside analogs.

    PubMed

    Franchetti, Palmarisa; Pasqualini, Michela; Petrelli, Riccardo; Ricciutelli, Massimo; Vita, Patrizia; Cappellacci, Loredana

    2004-09-20

    The beta-anomers of N-ribofuranosylnicotine-3-carboxamide (beta-NAR) and its nicotinic acid analog (beta-NaR) were obtained by stereoselective synthesis via glycosylation of the presilylated bases under Vorbruggen's protocol. A NAR analog, methylated in position 3 of the ribosylic moiety, is also reported.

  9. Studies on synthesis and anticancer activity of selected N-(2-fluoroethyl)-N-nitrosoureas.

    PubMed

    Johnston, T P; Kussner, C L; Carter, R L; Frye, J L; Lomax, N R; Plowman, J; Narayanan, V L

    1984-11-01

    An activated carbamate, 2-nitrophenyl (2-fluoroethyl)nitrosocarbamate (3), was used to advantage in the synthesis of the water-soluble (2-fluoroethyl)nitrosoureas 6a--d from 2-aminoethanol, (1 alpha, 2 beta, 3 alpha)-2-amino-1,3-cyclohexanediol, cis-2-hydroxycyclohexanol, and 2-amino-2-deoxy-D-glucose. In a variation of this method, 2,4,5-trichlorophenyl (2-fluoroethyl)carbamate (4) was used to prepare the urea from which the essentially water-insoluble N-(2,6-dioxo-3-piperidinyl)-N-(2-fluoroethyl)-N-nitrosourea (6e) was derived. The anticancer activity of these nitrosoureas was determined against the murine tumors B16 melanoma and Lewis lung carcinoma and found to be significant and comparable to their chloroethyl counterparts. On the basis of results from both systems, the dihydroxycyclohexyl derivative 6b may be the most effective.

  10. Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N 2 and H 2O in alkaline electrolytes

    DOE PAGES

    Mukherjee, Shreya; Cullen, David A.; Karakalos, Stavros; ...

    2018-03-23

    Ammonia (NH 3) is considered an important chemical for both agriculture fertilizer and renewable energy. The conventional Haber-Bosh process to produce NH 3 is energy intensive and leads to significant CO 2 emission. Alternatively, electrochemical synthesis of ammonia (ESA) through the nitrogen reduction reaction (NRR) by using renewable electricity has recently attracted significant attention. Herein, we report a metal-organic framework-derived nitrogen-doped nanoporous carbon as an electrocatalyst for the NRR. It exhibits a remarkable production rate of NH 3 up to 3.4 ×10 –6 mol cm –2 h –1 with a Faradaic efficiency (FE) of 10.2% at –0.3 V vs. RHEmore » under room temperature and ambient pressure using aqueous 0.1 M KOH electrolyte. Increasing the temperature to 60 °C further improves production rates to 7.3 × 10 –6 mol cm –2 h –1. The stability of the nitrogen-doped carbon electrocatalyst was demonstrated during an 18-h continuous test with constant production rates. First principles calculations were used to elucidate the possible active sites and reaction pathway. The moiety, which consists of three pyridinic N atoms (N 3) adjacent with one carbon vacancy embedded in a carbon layer, is able to strongly adsorb N 2 and further realize N≡N triple bond dissociation for the subsequent protonation process. The rate-determining step of the NRR is predicted to be the adsorption and bond activation of N 2 molecule. Increasing overpotentials is favorable for the protonation process during NH 3 generation. Further doping Fe into the nitrogen-doped carbon likely blocks the N 3 active sites and facilitates the hydrogen evolution reaction, a strong competitor to the NRR, thus yielding negative effect on ammonia production. Furthermore, this work provides a new insight into the rational design and synthesis of nitrogen-doped and defect-rich carbon as efficient NRR catalysts for NH 3 synthesis at ambient conditions.« less

  11. Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N 2 and H 2O in alkaline electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Shreya; Cullen, David A.; Karakalos, Stavros

    Ammonia (NH 3) is considered an important chemical for both agriculture fertilizer and renewable energy. The conventional Haber-Bosh process to produce NH 3 is energy intensive and leads to significant CO 2 emission. Alternatively, electrochemical synthesis of ammonia (ESA) through the nitrogen reduction reaction (NRR) by using renewable electricity has recently attracted significant attention. Herein, we report a metal-organic framework-derived nitrogen-doped nanoporous carbon as an electrocatalyst for the NRR. It exhibits a remarkable production rate of NH 3 up to 3.4 ×10 –6 mol cm –2 h –1 with a Faradaic efficiency (FE) of 10.2% at –0.3 V vs. RHEmore » under room temperature and ambient pressure using aqueous 0.1 M KOH electrolyte. Increasing the temperature to 60 °C further improves production rates to 7.3 × 10 –6 mol cm –2 h –1. The stability of the nitrogen-doped carbon electrocatalyst was demonstrated during an 18-h continuous test with constant production rates. First principles calculations were used to elucidate the possible active sites and reaction pathway. The moiety, which consists of three pyridinic N atoms (N 3) adjacent with one carbon vacancy embedded in a carbon layer, is able to strongly adsorb N 2 and further realize N≡N triple bond dissociation for the subsequent protonation process. The rate-determining step of the NRR is predicted to be the adsorption and bond activation of N 2 molecule. Increasing overpotentials is favorable for the protonation process during NH 3 generation. Further doping Fe into the nitrogen-doped carbon likely blocks the N 3 active sites and facilitates the hydrogen evolution reaction, a strong competitor to the NRR, thus yielding negative effect on ammonia production. Furthermore, this work provides a new insight into the rational design and synthesis of nitrogen-doped and defect-rich carbon as efficient NRR catalysts for NH 3 synthesis at ambient conditions.« less

  12. Chemically Adjusting Plasma Temperature, Energy and Reactivity (CAPTEAR) Method Using NOx and Combustion for Selective Synthesis of Sc3N@C80 Metallic Nitride Fullerenes

    PubMed Central

    Stevenson, Steven; Thompson, M. Corey; Coumbe, H. Louie; Mackey, Mary A.; Coumbe, Curtis E.; Phillips, J. Paige

    2008-01-01

    Goals are (1) to selectively synthesize MNFs in lieu of empty-cage fullerenes (e.g., C60, C70) without compromising MNF yield and (2) to test our hypothesis that MNFs possess a different set of optimal formation parameters than empty-cage fullerenes. In this work, we introduce a novel approach for the selective synthesis of metallic nitride fullerenes (MNFs). This new method is “Chemically Adjusting Plasma Temperature, Energy and Reactivity” (CAPTEAR). The CAPTEAR approach with copper nitrate hydrate uses NOx vapor from NOx generating solid reagents, air and combustion to “tune” the temperature, energy and reactivity of the plasma environment. The extent of temperature, energy and reactive environment is stoichiometrically varied until optimal conditions for selective MNF synthesis are achieved. Analysis of soot extracts indicate that percentages of C60 and Sc3N@C80 are inversely related, whereas the percentages of C70 and higher empty-cage C2n fullerenes are largely unaffected. Hence, there may be a “competitive link” in the formation and mechanism of C60 and Sc3N@C80. Using this CAPTEAR method, purified MNFs (96% Sc3N@C80, 12 mg) have been obtained in soot extracts without a significant penalty in milligram yield when compared to control soot extracts (4% Sc3N@C80, 13 mg Sc3N@C80). The CAPTEAR process with Cu(NO3)2·2.5 H2O uses an exothermic nitrate moiety to suppress empty-cage fullerene formation, whereas Cu functions as a catalyst additive to offset the reactive plasma environment and boost the Sc3N@C80 MNF production. PMID:18052069

  13. Direct Synthesis of Dimethyl Carbonate from Carbon Dioxide and Methanol at Room Temperature Using Imidazolium Hydrogen Carbonate Ionic Liquid as a Recyclable Catalyst and Dehydrant.

    PubMed

    Zhao, Tianxiang; Hu, Xingbang; Wu, Dongsheng; Li, Rui; Yang, Guoqiang; Wu, Youting

    2017-05-09

    The direct synthesis of dimethyl carbonate (DMC) from CO 2 and CH 3 OH was achieved at room temperature with 74 % CH 3 OH conversion in the presence of an imidazolium hydrogen carbonate ionic liquid ([C n C m Im][HCO 3 ]). Experimental and theoretical results reveal that [C n C m Im][HCO 3 ] can transform quickly into a CO 2 adduct, which serves as an effective catalyst and dehydrant. Its dehydration ability is reversible. The energy barrier of the rate-determining step for the DMC synthesis is only 21.7 kcal mol -1 . The ionic liquid can be reused easily without a significant loss of its catalytic and dehydrating ability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Mapping the Reactivity and Selectivity of 2-Azidofucosyl Donors for the Assembly of N-Acetylfucosamine-Containing Bacterial Oligosaccharides.

    PubMed

    Hagen, Bas; Ali, Sara; Overkleeft, Herman S; van der Marel, Gijsbert A; Codée, Jeroen D C

    2017-01-20

    The synthesis of complex oligosaccharides is often hindered by a lack of knowledge on the reactivity and selectivity of their constituent building blocks. We investigated the reactivity and selectivity of 2-azidofucosyl (FucN 3 ) donors, valuable synthons in the synthesis of 2-acetamido-2-deoxyfucose (FucNAc) containing oligosaccharides. Six FucN 3 donors, bearing benzyl, benzoyl, or tert-butyldimethylsilyl protecting groups at the C3-O and C4-O positions, were synthesized, and their reactivity was assessed in a series of glycosylations using acceptors of varying nucleophilicity and size. It was found that more reactive nucleophiles and electron-withdrawing benzoyl groups on the donor favor the formation of β-glycosides, while poorly reactive nucleophiles and electron-donating protecting groups on the donor favor α-glycosidic bond formation. Low-temperature NMR activation studies of Bn- and Bz-protected donors revealed the formation of covalent FucN 3 triflates and oxosulfonium triflates. From these results, a mechanistic explanation is offered in which more reactive acceptors preferentially react via an S N 2-like pathway, while less reactive acceptors react via an S N 1-like pathway. The knowledge obtained in this reactivity study was then applied in the construction of α-FucN 3 linkages relevant to bacterial saccharides. Finally, a modular synthesis of the Staphylococcus aureus type 5 capsular polysaccharide repeating unit, a trisaccharide consisting of two FucNAc units, is described.

  15. One-pot synthesis of ternary zero-valent iron/phosphotungstic acid/g-C3N4 composite and its high performance for removal of arsenic(V) from water

    NASA Astrophysics Data System (ADS)

    Chen, Chunhua; Xu, Jia; Yang, Zhihua; Zhang, Li; Cao, Chunhua; Xu, Zhihua; Liu, Jiyan

    2017-12-01

    Ternary zero-valent iron/phos photungstic acid/g-C3N4 composite (Fe0@PTA/g-C3N4) was synthesized via photoreduction of iron (II) ions assisted by phosphotungstic acid (PTA) over g-C3N4 flakes. The as-prepared Fe0@PTA/g-C3N4 was investigated for removal of As(III) and As(V) species from water. The result showed that Fe0@PTA/g-C3N4 exhibited a better performance for As(V) removal than As(III) species from water, and the maximum adsorption capacity for As(V) was 70.3 mg/g, much higher than most of the reported adsorbents. As(V) removal by the Fe0@PTA/g-C3N4 adsorbent is mainly via a chemical process, synergistically occurring of reduction of As(V) and oxidation of Fe0. Moreover, the Fe0@PTA/g-C3N4 adsorbent showed effective As(V) removal from the simulated industrial wastewater and underground water. This study demonstrates that Fe0@PTA/g-C3N4 can be a potential adsorbent for As(V) removal due to its high performance, and simple one-pot synthesis process.

  16. Synthesis and structural characterization of two half-sandwich nickel(II) complexes with the scorpionate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.-F., E-mail: wgf1979@126.com, E-mail: s-shuwen@163.com; Zhang, X., E-mail: zhangx@hit.edu.cn; Sun, S.-W.

    The synthesis and characterization of two new halfsandwich mononuclear nickel(II) complexes with the scorpionate ligands, [k{sup 3}-N, N',N''-Tp{sup t-Bu}, {sup Me}NiI] (1) and [k{sup 3}-N,N',N''-Tp{sup t-Bu}, {sup Me}NiNO{sub 3}] (2), are reported. These complexes have been fully characterized by elemental analyses and infrared spectra. Their molecular structures were determined by single crystal X-ray diffraction. The nickel(II) ion of complex 1 is in a four-coordinate environment, in which the donor atoms are provided by three nitrogen atoms of a hydrotris(pyrazolyl) borate ligand and one iodide atom, while that of complex 2 is in a five-coordinate environment with three nitrogen atoms frommore » a hydrotris(pyrazolyl)borate ligand and two oxygen atoms from a nitrate ion.« less

  17. Involvement of H- and N-Ras isoforms in transforming growth factor-{beta}1-induced proliferation and in collagen and fibronectin synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Salgado, Carlos; Fuentes-Calvo, Isabel; Instituto 'Reina Sofia' de Investigacion Nefrologica, Universidad de Salamanca, 37007 Salamanca

    2006-07-01

    Transforming growth factor {beta}1 (TGF-{beta}1) has a relevant role in the origin and maintenance of glomerulosclerosis and tubule-interstitial fibrosis. TGF-{beta} and Ras signaling pathways are closely related: TGF-{beta}1 overcomes Ras mitogenic effects and Ras counteracts TGF-{beta} signaling. Tubule-interstitial fibrosis is associated to increases in Ras, Erk, and Akt activation in a renal fibrosis model. We study the role of N- and H-Ras isoforms, and the involvement of the Ras effectors Erk and Akt, in TGF-{beta}1-mediated extracellular matrix (ECM) synthesis and proliferation, using embrionary fibroblasts from double knockout (KO) mice for H- and N-Ras (H-ras {sup -/-}/N-ras {sup -/-}) isoforms andmore » from heterozygote mice (H-ras {sup +/-}/N-ras {sup +/-}). ECM synthesis is increased in basal conditions in H-ras {sup -/-}/N-ras {sup -/-} fibroblasts, this increase being higher after stimulation with TGF-{beta}1. TGF-{beta}1-induced fibroblast proliferation is smaller in H-ras {sup -/-}/N-ras {sup -/-} than in H-ras {sup +/-}/N-ras {sup +/-} fibroblasts. Erk activation is decreased in H-ras {sup -/-}/N-ras {sup -/-} fibroblasts; inhibition of Erk activation reduces fibroblast proliferation. Akt activation is higher in double KO fibroblasts than in heterozygotes; inhibition of Akt activation also inhibits ECM synthesis. We suggest that H- and N-Ras isoforms downregulate ECM synthesis, and mediate proliferation, in part through MEK/Erk activation. PI3K-Akt pathway activation may be involved in the increase in ECM synthesis observed in the absence of H- and N-Ras.« less

  18. Reaction products from N-methyl-N-nitrosourea and deoxyribonucleic acid containing thymidine residues. Synthesis and identification of a new methylation product, O4-methyl-thymidine

    PubMed Central

    Lawley, P. D.; Orr, D. J.; Shah, S. A.; Farmer, P. B.; Jarman, M.

    1973-01-01

    1. DNA was treated with N-methyl-N-nitrosourea at pH7–8, 37°C, degraded to yield 3- and 7-methylpurines and deoxyribonucleosides and the reaction products were separated by chromatography on ion-exchange resins. The following methods for identification and determination of products were used: with unlabelled N-methyl-N-nitrosourea, u.v. absorption; use of methyl-14C-labelled N-methyl-N-nitrosourea and use of [14C]thymine-labelled DNA. 2. The synthesis of O4-methylthymidine and its identification by u.v. and mass spectroscopy are reported. 3. 3-Methylthymidine and O4-methylthymidine were found as methylation products from N-methyl-N-nitrosourea with thymidine and with DNA, in relatively small yields. Unidentified products containing thymine were found in enzymic digests of N-methyl-N-nitrosourea-treated DNA, which may be phosphotriesters. 4. The possible role of formation of methylthymines in mutagenesis by N-methyl-N-nitrosourea is discussed. PMID:4798180

  19. Studies on Aculeines: Synthetic Strategy to the Fully Protected Protoaculeine B, the N-Terminal Amino Acid of Aculeine B.

    PubMed

    Shiozaki, Hiroki; Miyahara, Masayoshi; Otsuka, Kazunori; Miyako, Kei; Honda, Akito; Takasaki, Yuichi; Takamizawa, Satoshi; Tukada, Hideyuki; Ishikawa, Yuichi; Sakai, Ryuichi; Oikawa, Masato

    2018-05-23

    A synthetic strategy for accessing protoaculeine B (1), the N-terminal amino acid of the highly modified peptide toxin aculeine, was developed via the synthesis of the fully protected natural homologue of 1 with a 12-mer poly(propanediamine). The synthesis of mono(propanediamine) analog 2, as well as core amino acid 3, was demonstrated by this strategy. New amino acid 3 induced convulsions in mice; however, compound 2 showed no such activity.

  20. One-Pot Synthesis of Fused Pyrroles via a Key Gold Catalysis-Triggered Cascade

    PubMed Central

    Zheng, Zhitong; Tu, Huangfei

    2014-01-01

    A two-step, one-pot synthesis of fused pyrroles is realized by firstly condensing N-alkynylhydroxammonium salt with readily enolizable ketone under mild basic condition and then subjecting the reaction mixture to a gold catalyst, which triggers a cascade reaction featured by a facile initial 3.3-sigmatropic rearrangement of the gold catalysis product, i.e., an N,O-dialkenylhydroxamine. The reaction provides a facile access to polycyclic pyrroles in moderate to good yields. PMID:24482098

  1. Access to 6a-Alkyl Aporphines: Synthesis of (±)-N-Methylguattescidine.

    PubMed

    Ku, Angela F; Cuny, Gregory D

    2016-10-21

    (-)-N-Methylguattescidine (3) is an alkaloid recently isolated from Fissistigma latifolium and assigned as a rare example of a 6a-alkyl aporphine. Herein, we report the synthesis of (±)-3 and the des-hydroxyl derivative 4 using our previously reported ortho-phenol arylation methodology mediated by the XPhos precatalyst as a key synthetic step. In addition, substituents on the aryl halide portion of the ortho-phenol arylation substrates significantly influenced the formation of an oxidized side product.

  2. Inhibitors of adhesion molecules expression; the synthesis and pharmacological properties of 10H-pyrazino[2,3-b][1,4]benzothiazine derivatives.

    PubMed

    Kaneko, Toshihiko; Clark, Richard S J; Ohi, Norihito; Kawahara, Tetsuya; Akamatsu, Hiroshi; Ozaki, Fumihiro; Kamada, Atsushi; Okano, Kazuo; Yokohama, Hiromitsu; Muramoto, Kenzo; Ohkuro, Masayoshi; Takenaka, Osamu; Kobayashi, Seiichi

    2002-07-01

    During a search for novel, orally-active inhibitors of upregulation of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1), we found a new series of 10H-pyrazino[2,3-b][1,4]benzothiazine derivatives to be potent ICAM-1 inhibitors. Of these compounds, N-[1-(10H-Pyrazino[2,3-b][1,4]benzothiazin-8-ylmethyl)piperidin-4-yl]-N',N'-dimethylsulfamide 7p showed the potent oral inhibitory activities against neutrophil migration in a murine interleukin-1 (IL-1) induced paw inflammation model. The synthesis and structure-activity relationships of these amide derivatives are described.

  3. Chemical looping of metal nitride catalysts: low-pressure ammonia synthesis for energy storage† †Electronic supplementary information (ESI) available: Experimental and computational details, free energy plots for the NH3 evolution and N2 reduction with Co3N/Co, Fe4N/Fe, Mn5N2/Mn4N, Mo2N/Mo, CrN/Cr2N, TaN/Ta2N, NbN/Nb2N, Li3N/LiH, Ba3N2/BaH2, Sr3N2/SrH2, and Ca3N2/CaH2, surface oxidation energetics, ΔGvac[NH*x, yH*] based on gas phase H2 as hydrogen source, NH3 evolution with Fe-doped Mn4N, NH3 evolution with Mn6N2.58, Ca3N2 and Sr2N after correcting for partial nitride hydrolysis, NH3 yield from Ca3N2vs. time and H2 gas flow rate. See DOI: 10.1039/c5sc00789e

    PubMed Central

    Avram, A. M.; Peterson, B. A.; Pfromm, P. H.; Peterson, A. A.

    2015-01-01

    The activity of many heterogeneous catalysts is limited by strong correlations between activation energies and adsorption energies of reaction intermediates. Although the reaction is thermodynamically favourable at ambient temperature and pressure, the catalytic synthesis of ammonia (NH3), a fertilizer and chemical fuel, from N2 and H2 requires some of the most extreme conditions of the chemical industry. We demonstrate how ammonia can be produced at ambient pressure from air, water, and concentrated sunlight as renewable source of process heat via nitrogen reduction with a looped metal nitride, followed by separate hydrogenation of the lattice nitrogen into ammonia. Separating ammonia synthesis into two reaction steps introduces an additional degree of freedom when designing catalysts with desirable activation and adsorption energies. We discuss the hydrogenation of alkali and alkaline earth metal nitrides and the reduction of transition metal nitrides to outline a promoting role of lattice hydrogen in ammonia evolution. This is rationalized via electronic structure calculations with the activity of nitrogen vacancies controlling the redox-intercalation of hydrogen and the formation and hydrogenation of adsorbed nitrogen species. The predicted trends are confirmed experimentally with evolution of 56.3, 80.7, and 128 μmol NH3 per mol metal per min at 1 bar and above 550 °C via reduction of Mn6N2.58 to Mn4N and hydrogenation of Ca3N2 and Sr2N to Ca2NH and SrH2, respectively. PMID:29218166

  4. Synthesis and Characterization of New Phosphazene Polymers.

    DTIC Science & Technology

    1988-01-21

    reaction of a poly( alkyl /arylphosphazene). In this study, one-half of the methyl groups in [Ph(Me)PN]n (chosen for its solubility in THF as opposed to...polymerization reaction ; and (5) the derivative chemistry of the preformed poly( alkyl /arylphosphazenes)., Synthesis of Poly( alkyl /arylphosphazenes) SC A... vessels , these phosphoranimines quantitatively eliminate the silyl ether byproduct, Me3SiOCH2CF 3 , to form the poly( alkyl /arylphosphazenes). The synthesis

  5. Biliary sphincterotomy does not relate to diarrhoea or major changes in bile acid synthesis or plasma lipids.

    PubMed

    Ung, Kjell-Arne; Mottacki, Nima; Rudling, Mats; Bajor, Antal

    2009-01-01

    Bile acid (BA) malabsorption may occur after cholecystectomy. Bile may flow more freely into the duodenum after endoscopic sphincterotomy (EST), in part resembling the situation after cholecystectomy. The (75)SeCHAT test used to diagnose BA malabsorption correlates inversely with synthesis and faecal excretion of BAs. The BA intermediate 7alpha-hydroxy-4-cholesten-3-one (C4) mirrors BA and lathosterol cholesterol synthesis. The aim was to study whether EST causes BA diarrhoea and alterations in BA synthesis or lipid profiles. Twelve patients underwent the (75)SeHCAT test prior to and 3 months after undergoing EST and a further 22 only after EST. The Gastrointestinal Symptom Rating Scale (GSRS), 1 week daily stool frequency and consistency, C4, lathosterol, cholesterol and triglycerides were investigated. The (75)SeHCAT values of 29 healthy subjects served as controls. Stool frequency (median 1/day, IQR (interquartile range): 0.7) and consistency (median: 3, IQR: 0.65) were normal and none reported diarrhoea after EST (n=34). The GSRS scores were normal. There was no significant change in (75)SeHCAT (median 22%, IQR 29% versus 19.5%, IQR 25, n=12). There was a trend towards lower (75)SeHCAT after EST compared with the controls (median 26%, IQR 32, n=34 versus median 38%, IQR 19.5, n=29, p=0.075) and higher lathosterol (median 47.1 mg/mole, IQR 32.7 versus median 52.5 mg/mole, IQR 35.6, n=14, p=0.055). The C4 and lipids did not change significantly. EST did not induce diarrhoea and in line with this BA synthesis and serum lipids are unaltered.

  6. Coordinated modulation of albumin synthesis and mRNA levels in cultured hepatoma cells by hydrocortisone and cyclic AMP analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, P.C.; Papaconstantinou, J.

    The treatment of Hepa-2 cells, a permanent mouse hepatoma cell line, for 72 h with hydrocortisone (10/sup -6/ M), N/sup 6/,O/sup 2/-dibutyryl cyclic AMP (10/sup -3/ M), or 8-bromo cyclic AMP(10/sup -3/ M) results in a 2-, 3-, or 4-fold increase, respectively, in rates of synthesis and secretion of mouse serum albumin. Simultaneous treatment with hydrocortisone and N/sup 6/,O/sup 2/-dibutyryl cyclic AMP results in a 10-fold stimulation in these parameters, an effect that is significantly more than additive for the two compounds tested. The number of albumin mRNA sequences, determined by hybridization of total cell RNA to albumin complementary DNA,more » was increased in direct proportion to the increases in albumin synthesis in all experiments. The relative rate of albumin synthesis approaches in vivo levels in cells treated simultaneously with hydrocortisone and N/sup 6/,O/sup 2/-dibutyryl cyclic AMP. We propose that these factors may be necessary to maintain the maximal level of differentiated function in the continuous culture of Hepa-2 cells.« less

  7. Synthesis and anticonvulsant activities of N-benzyl (2R)-2-acetamido-3-oxysubstituted propionamide derivatives

    PubMed Central

    Morieux, Pierre; Stables, James P.; Kohn, Harold

    2009-01-01

    Lacosamide has been submitted for regulatory approval in the United States and Europe for the treatment of epilepsy. Previous synthetic methods did not permit the elaboration of the structure–activity relationship (SAR) for the 3-oxy site in lacosamide. We report an expedient five-step stereospecific synthesis for N-benzyl (2R)-2-acetamido-3-oxysubstituted propionamide analogs beginning with d-serine methyl ester. The procedure incorporated alkyl (e.g. methyl, primary, secondary, and tertiary) and aryl groups at this position. The SAR for the 3-oxy site showed maximal activity in animal seizure models for small 3-alkoxy substituents. PMID:18789868

  8. Polymorphisms in genes involved in the triglyceride synthesis pathway and marine omega-3 polyunsaturated fatty acid supplementation modulate plasma triglyceride levels.

    PubMed

    Ouellette, Catherine; Cormier, Hubert; Rudkowska, Iwona; Guénard, Frédéric; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2013-01-01

    Marine omega-3 (n-3) polyunsaturated fatty acids (PUFA) reduce plasma triglyceride (TG) levels. Genetic factors such as single nucleotide polymorphisms (SNPs) could be responsible for the variability of the plasma TG response to n-3 PUFA supplementation. Previous studies have demonstrated that n-3 PUFA supplementation using fish oil modified the expression levels of three genes involved in the TG synthesis pathway (GPAM, AGPAT3 and AGPAT4) in peripheral blood mononuclear cells. A total of 210 subjects consumed 5 g/day of a fish oil supplement for 6 weeks. Plasma lipids were measured before and after the supplementation period. Three SNPs in GPAM, 13 SNPs in AGPAT3 and 35 SNPs in AGPAT4 were genotyped. In an ANOVA for repeated measures adjusted for age, sex and BMI, genotype effects on plasma TG levels were observed for rs1838452 in AGPAT3 as well as for rs746731 and rs2293286 in AGPAT4. Genotype × supplementation interaction effects on plasma TG levels were observed for rs2792751 and rs17129561 in GPAM as well as for rs3798943 and rs9458172 in AGPAT4 (p < 0.05). These results suggest that SNPs in genes involved in the TG synthesis pathway may influence plasma TG levels after n-3 PUFA supplementation. © 2014 S. Karger AG, Basel.

  9. Immunochemical Methods for Quantitation of Vitamin B6

    DTIC Science & Technology

    1981-09-30

    pANk K:E:: Z P a . LIST OF FIGURES Page Figure 1. Synthesis of N-Carboxymethylpyridoxine 15 Figure 2. Pyridoxine and N- Substituted Derivatives 16...Pyridoxine Substituted in the 3 Position 23 Figure 6. Synthesis of as -Pyridoxylformic Acid and as - 25 Pyridoxylacetic Acid Figure 7. Fluorogenic Galactosides...CH20 (Vill) (X Figure 2. Pyridoxine and N- Substituted Derivatives 16 hinder the formation of quaternary salts (Kirpal, 1910).’" We found this to be true

  10. In vitro anti-viral effect of β-santalol against influenza viral replication.

    PubMed

    Paulpandi, Manickam; Kannan, Soundarapandian; Thangam, Ramar; Kaveri, Krishnasamy; Gunasekaran, Palani; Rejeeth, Chandrababu

    2012-02-15

    The anti-influenza A/HK (H3N2) virus activity of β-santalol was evaluated in MDCK cells and investigated the effect of β-santalol on synthesis of viral mRNAs. β-Santalol was investigated for its antiviral activity against influenza A/HK (H3N2) virus using a cytopathic effect (CPE) reduction method. β-Santalol exhibited anti-influenza A/HK (H3N2) virus activity of 86% with no cytotoxicity at the concentration of 100 μg/ml reducing the formation of a visible CPE. Oseltamivir also showed moderate antiviral activity of about 83% against influenza A/HK (H3N2) virus at the concentration of 100 μg/ml. Furthermore, the mechanism of anti-influenza virus action in the inhibition of viral mRNA synthesis was analyzed by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR), and the data indicated an inhibitory effect in late viral RNA synthesis compared with oseltamivir in the presence of 100 μg/ml of β-santalol. β-Santalol should be further studied for therapeutic and prophylactic potential especially for influenza epidemics and pandemics. Copyright © 2011 Elsevier GmbH. All rights reserved.

  11. Facile synthesis of high surface area molybdenum nitride and carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Aaron; Serov, Alexey; Artyushkova, Kateryna

    2015-08-15

    The synthesis of high surface area γ-Mo{sub 2}N and α-Mo{sub 2}C is reported (116 and 120 m{sup 2}/g) without the temperature programmed reduction of MoO{sub 3}. γ-Mo{sub 2}N was prepared in an NH{sub 3}-free synthesis using forming gas (7 at% H{sub 2}, N{sub 2}-balance) as the reactive atmosphere. Three precursors were studied ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}·4H{sub 2}O, (NH{sub 4}){sub 2} Mg(MoO{sub 4}){sub 2}, and MgMoO{sub 4}) along with the sacrificial support method (SSM) as a means of reducing the particle size of Mo{sub 2}N and Mo{sub 2}C. In situ X-ray diffraction (XRD) studies were carried out to identify reactionmore » intermediates, the temperature at which various intermediates form, and the average domain size of the Mo{sub 2}N products. Materials were synthesized in bulk and further characterized by XRD, HRTEM, XPS, and BET. - Highlights: • Facile synthesis of γ-Mo2N and α-Mo2C with surface area exceeding 100 m{sup 2}/g. • Sacrificial support method was used to achieve these high surface areas. • Materials can serve as catalysts or supports in (electro)chemical processes.« less

  12. Elimination of both E1 and E2 from adenovirus vectors further improves prospects for in vivo human gene therapy.

    PubMed Central

    Gorziglia, M I; Kadan, M J; Yei, S; Lim, J; Lee, G M; Luthra, R; Trapnell, B C

    1996-01-01

    A novel recombinant adenovirus vector, Av3nBg, was constructed with deletions in adenovirus E1, E2a, and E3 regions and expressing a beta-galactosidase reporter gene. Av3nBg can be propagated at a high titer in a corresponding A549-derived cell line, AE1-2a, which contains the adenovirus E1 and E2a region genes inducibly expressed from separate glucocorticoid-responsive promoters. Av3nBg demonstrated gene transfer and expression comparable to that of Av1nBg, a first-generation adenovirus vector with deletions in E1 and E3. Several lines of evidence suggest that this vector is significantly more attenuated than E1 and E3 deletion vectors. Metabolic DNA labeling studies showed no detectable de novo vector DNA synthesis or accumulation, and metabolic protein labeling demonstrated no detectable de novo hexon protein synthesis for Av3nBg in naive A549 cells even at a multiplicity of infection of up to 3,000 PFU per cell. Additionally, naive A549 cells infected by Av3nBg did not accumulate infectious virions. In contrast, both Av1nBg and Av2Lu vectors showed DNA replication and hexon protein synthesis at multiplicities of infection of 500 PFU per cell. Av2Lu has a deletion in E1 and also carries a temperature-sensitive mutation in E2a. Thus, molecular characterization has demonstrated that the Av3nBg vector is improved with respect to the potential for vector DNA replication and hexon protein expression compared with both first-generation (Av1nBg) and second-generation (Av2Lu) adenoviral vectors. These observations may have important implications for potential use of adenovirus vectors in human gene therapy. PMID:8648763

  13. Encoding of contextual fear memory requires de novo proteins in the prelimbic cortex

    PubMed Central

    Rizzo, Valerio; Touzani, Khalid; Raveendra, Bindu L.; Swarnkar, Supriya; Lora, Joan; Kadakkuzha, Beena M.; Liu, Xin-An; Zhang, Chao; Betel, Doron; Stackman, Robert W.; Puthanveettil, Sathyanarayanan V.

    2016-01-01

    Background Despite our understanding of the significance of the prefrontal cortex in the consolidation of long-term memories (LTM), its role in the encoding of LTM remains elusive. Here we investigated the role of new protein synthesis in the mouse medial prefrontal cortex (mPFC) in encoding contextual fear memory. Methods Because a change in the association of mRNAs to polyribosomes is an indicator of new protein synthesis, we assessed the changes in polyribosome-associated mRNAs in the mPFC following contextual fear conditioning (CFC) in the mouse. Differential gene expression in mPFC was identified by polyribosome profiling (n = 18). The role of new protein synthesis in mPFC was determined by focal inhibition of protein synthesis (n = 131) and by intra-prelimbic cortex manipulation (n = 56) of Homer 3, a candidate identified from polyribosome profiling. Results We identified several mRNAs that are differentially and temporally recruited to polyribosomes in the mPFC following CFC. Inhibition of protein synthesis in the prelimbic (PL), but not in the anterior cingulate cortex (ACC) region of the mPFC immediately after CFC disrupted encoding of contextual fear memory. Intriguingly, inhibition of new protein synthesis in the PL 6 hours after CFC did not impair encoding. Furthermore, expression of Homer 3, an mRNA enriched in polyribosomes following CFC, in the PL constrained encoding of contextual fear memory. Conclusions Our studies identify several molecular substrates of new protein synthesis in the mPFC and establish that encoding of contextual fear memories require new protein synthesis in PL subregion of mPFC. PMID:28503670

  14. Synthesis, characterization and electrochemical studies of some Ni(II)Cu(II) heterobimetallic complexes derived from succinoyldihydrazones.

    PubMed

    Borthakur, R; Kumar, A; Lal, R A

    2015-10-05

    Synthesis, structural characterization and redox properties of three heterobimetallic complexes with formule {[NiCu(L(n))(CH3OH)3]·CH3OH} using [Cu(H2L(n))(H2O)] as metalloligand have been demonstrated in the present paper. Electronic spectroscopy suggests that the copper center has a pseudo square pyramidal stereochemistry in all the complexes while the nickel center has a distorted octahedral stereochemistry. The electron transfer reactions of the complexes have been investigated by cyclic voltammetry. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Carbene complexes of rhodium and iridium from tripodal N-heterocyclic carbene ligands: synthesis and catalytic properties.

    PubMed

    Mas-Marzá, Elena; Poyatos, Macarena; Sanaú, Mercedes; Peris, Eduardo

    2004-03-22

    Two tripodal trisimidazolium ligand precursors have been tested in the synthesis of new N-heterocyclic carbene rhodium and iridium complexes. [Tris(3-methylbenzimidazolium-1-yl)]methane sulfate gave products with coordination of the decomposed precursor. [1,1,1-Tris(3-butylimidazolium-1-yl)methyl]ethane trichloride (TIMEH(3)(Bu)) coordinated to the metal in a chelate and bridged-chelate form, depending on the reaction conditions. The crystal structures of two of the products are described. The compounds resulting from the coordination with TIME(Bu) were tested in the catalytic hydrosilylation of terminal alkynes.

  16. Inositol synthesis regulates activation of GSK-3α in neuronal cells

    PubMed Central

    Ye, Cunqi; Greenberg, Miriam L.

    2015-01-01

    The synthesis of inositol provides precursors of inositol lipids and inositol phosphates that are pivotal for cell signaling. Mood-stabilizers lithium and valproic acid (VPA), used for treating bipolar disorder, cause cellular inositol depletion, which has been proposed as a therapeutic mechanism of action of both drugs. Despite the importance of inositol, the requirement for inositol synthesis in neuronal cells is not well understood. Here, we examined inositol effects on proliferation of SK-N-SH neuroblastoma cells. The essential role of inositol synthesis in proliferation is underscored by the findings that exogenous inositol was dispensable for proliferation, and inhibition of inositol synthesis decreased proliferation. Interestingly, the inhibition of inositol synthesis by knocking down INO1, which encodes inositol-3-phosphate synthase, the rate-limiting enzyme of inositol synthesis, led to inactivation of GSK-3α by increasing the inhibitory phosphorylation of this kinase. Similarly, the mood-stabilizer VPA effected transient decreases in intracellular inositol, leading to inactivation of GSK-3α. As GSK-3 inhibition has been proposed as a likely therapeutic mechanism of action, the finding that inhibition of inositol synthesis results in inactivation of GSK-3α suggests a unifying hypothesis for mechanism of mood-stabilizing drugs. PMID:25345501

  17. Design, Synthesis and Testing of Novel Antimalarial

    DTIC Science & Technology

    2006-05-05

    U.S.N.A. --- Trident Scholar project report; no. 343 (2006) DESIGN, SYNTHESIS AND TESTING OF NOVEL ANTIMALARIAL COMPOUNDS by Midshipman 1/C...Certification of Adviser Approval Assistant Professor Clare E. Gutteridge Chemistry Department ____________________________________ (signature...Leave blank) 2. REPORT DATE 5 May 2006 3. REPORT TYPE AND DATE COVERED 4. TITLE AND SUBTITLE Design, synthesis and testing of

  18. Synthesis of 2-{(5-phenyl-1,3,4-Oxadiazol-2-yl)sulfanyl}-N-substituted acetamides as potential antimicrobial and hemolytic agents.

    PubMed

    Rehman, Aziz-ur; Abbasi, Muhammad Athar; Siddiqui, Sabahat Zahra; Ahmad, Irshad; Shahid, Muhammad; Subhani, Zinayyera

    2016-05-01

    A new series of N-substituted derivatives of 2-{(5-phenyl-1,3,4-Oxadiazol-2-yl)sulfanyl}acetamides was synthesized. The synthesis was carried out by converting benzoic acid (1) into ethyl benzoate (2), benzohydrazide (3) and then 5-pheny-1,3,4-Oxadiazol-2-thiol (4) step by st0ep. The target compounds 6a-p were synthesized by reaction of compound 4 with equimolar ratios of different N-alkyl/aryl substituted 2-bromoacetamide (5a-p) in the presence of DMF and sodium hydride (NaH). The spectral (EI-MS, IR, (1)H-NMR) characterization of all the synthesized compounds reveal their successful synthesis. The compounds were also screened for antimicrobial & hemolytic activity and most of them were found to be active against the selected microbial species at variable extent relative to reference standards. But 6h was the most active against the selected panel of microbes. This series showed less toxicity and may be considered for further biological screening and application trial except 6m, possessing higher cytotoxicity.

  19. The Synthesis and Isolation of N-Tert-Butyl-2-Phenylsuccinamic Acid and N-Tert-Butyl-3-Phenylsuccinamic Acid: An Undergraduate Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Cesare, Victor; Sadarangani, Ishwar; Rollins, Janet; Costello, Dennis

    2004-01-01

    The facile, high yielding synthesis of phenylsuccinamic acids is described and one of these syntheses, the reaction of phenylsuccinic anhydride with tert-butylamine, is successfully modified and adapted for use in the second-semester organic chemistry laboratory at St. John's University. Succinamic acids are compounds that contain both the amide…

  20. Efficient one-pot synthesis of indol-3-yl-glycines via uncatalyzed Friedel-Crafts reaction in water.

    PubMed

    Ghandi, Mehdi; Taheri, Abuzar

    2009-03-05

    The three component reaction of primary aliphatic amines, glyoxalic acid and indole or N-methylindole in water at ambient temperature affords indol-3-yl or N-methylindol-3-yl-glycine in almost quantitative yields.

  1. A role for PPARα in the regulation of arginine metabolism and nitric oxide synthesis.

    PubMed

    Guelzim, Najoua; Mariotti, François; Martin, Pascal G P; Lasserre, Frédéric; Pineau, Thierry; Hermier, Dominique

    2011-10-01

    The pleiotropic effects of PPARα may include the regulation of amino acid metabolism. Nitric oxide (NO) is a key player in vascular homeostasis. NO synthesis may be jeopardized by a differential channeling of arginine toward urea (via arginase) versus NO (via NO synthase, NOS). This was studied in wild-type (WT) and PPARα-null (KO) mice fed diets containing either saturated fatty acids (COCO diet) or 18:3 n-3 (LIN diet). Metabolic markers of arginine metabolism were assayed in urine and plasma. mRNA levels of arginases and NOS were determined in liver. Whole-body NO synthesis and the conversion of systemic arginine into urea were assessed by using (15)N(2)-guanido-arginine and measuring urinary (15)NO(3) and [(15)N]-urea. PPARα deficiency resulted in a markedly lower whole-body NO synthesis, whereas the conversion of systemic arginine into urea remained unaffected. PPARα deficiency also increased plasma arginine and decreased citrulline concentration in plasma. These changes could not be ascribed to a direct effect on hepatic target genes, since NOS mRNA levels were unaffected, and arginase mRNA levels decreased in KO mice. Despite the low level in the diet, the nature of the fatty acids modulated some effects of PPARα deficiency, including plasma arginine and urea, which increased more in KO mice fed the LIN diet than in those fed the COCO diet. In conclusion, PPARα is largely involved in normal whole-body NO synthesis. This warrants further study on the potential of PPARα activation to maintain NO synthesis in the initiation of the metabolic syndrome.

  2. Chemical stabilization and high pressure synthesis of Ba-free Hg-based superconductors, (Hg,M)Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub y}(N=1{approximately}3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishio, K.; Shimoyama, J.; Hahakura, S.

    1994-12-31

    A homologous series of new Hg-based HTSC compounds, (Hg,M)Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub y} with n=1 to 3, have been synthesized. The stabilization of the pure phases have been accomplished by chemical doping of third elements such as M=Cr, Mo and Re. While the Hg1201(n=1) phase was readily obtained in this way, it was necessary to simultaneously dope Y into the Ca site to stabilize the Hg1212(n=2) phase. On the other hand, single-phase Y-free Hg1212(n=2) and Hg1223(n=3) samples were synthesized only under a high pressure of 6 GPa. In sharp contrast to the Ba-containing compounds, all the samples prepared in themore » present study have been quite stable during the synthesis and no deterioration in air has been observed after the preparation.« less

  3. Synthesis of Nitrogen and Sulfur Co-doped Carbon Dots from Garlic for Selective Detection of Fe3+

    NASA Astrophysics Data System (ADS)

    Sun, Chun; Zhang, Yu; Wang, Peng; Yang, Yue; Wang, Yu; Xu, Jian; Wang, Yiding; Yu, William W.

    2016-02-01

    Garlic was used as a green source to synthesize carbon dots (CDs) with a systematic study of the optical and structure properties. Ethylenediamine was added into the synthesis to improve the photoluminescence quantum yield (PL QY) of the CDs. Detailed structural and composition studies demonstrated that the content of N and the formation of C-N and C=N were critical to improve the PL QY. The as-synthesized CDs exhibited excellent stability in a wide pH range and high NaCl concentrations, rendering them applicable in complicated and harsh conditions. Quenching the fluorescence of the CDs in the presence of Fe3+ ion made these CDs a luminescent probe for selective detection of Fe3+ ion.

  4. Synthesis of Nitrogen and Sulfur Co-doped Carbon Dots from Garlic for Selective Detection of Fe(3.).

    PubMed

    Sun, Chun; Zhang, Yu; Wang, Peng; Yang, Yue; Wang, Yu; Xu, Jian; Wang, Yiding; Yu, William W

    2016-12-01

    Garlic was used as a green source to synthesize carbon dots (CDs) with a systematic study of the optical and structure properties. Ethylenediamine was added into the synthesis to improve the photoluminescence quantum yield (PL QY) of the CDs. Detailed structural and composition studies demonstrated that the content of N and the formation of C-N and C=N were critical to improve the PL QY. The as-synthesized CDs exhibited excellent stability in a wide pH range and high NaCl concentrations, rendering them applicable in complicated and harsh conditions. Quenching the fluorescence of the CDs in the presence of Fe(3+) ion made these CDs a luminescent probe for selective detection of Fe(3+) ion.

  5. Formation of O2-methylthymine in poly(dA-dT) on methylation with N-methyl-N-nitrosourea and dimethyl sulphate. Evidence that O2-methylthymine does not miscode during DNA synthesis.

    PubMed Central

    Saffhill, R; Abbott, P J

    1978-01-01

    The alternating co-polymer has been methylated with either N methyl-N-nitrosourea (MNU) or dimethyl sulphate (DMS) and the levels of the various methylated thymidines (O2-methylthymidine, 3-methylthymidine and O4-methylthymidine) measured. MNU produced all three compounds whereas DMS only produced 3-methylthymidine and O2-methylthymidine at detectable levels. These results have been combined with our earlier results concerning the misincorporation of dGMP with E. coli DNA polymerase using MNU-methylated poly(dA-dT). These results indicate that O2-methylthymidine does not miscode during DNA synthesis. PMID:353735

  6. Growth of semiconducting GaN hollow spheres and nanotubes with very thin shells via a controllable liquid gallium-gas interface chemical reaction.

    PubMed

    Yin, Long-Wei; Bando, Yoshio; Li, Mu-Sen; Golberg, Dmitri

    2005-11-01

    An in situ liquid gallium-gas interface chemical reaction route has been developed to synthesize semiconducting hollow GaN nanospheres with very small shell size by carefully controlling the synthesis temperature and the ammonia reaction gas partial pressure. In this process the gallium droplet does not act as a catalyst but rather as a reactant and a template for the formation of hollow GaN structures. The diameter of the synthesized hollow GaN spheres is typically 20-25 nm and the shell thickness is 3.5-4.5 nm. The GaN nanotubes obtained at higher synthesis temperatures have a length of several hundreds of nanometers and a wall thickness of 3.5-5.0 nm. Both the hollow GaN spheres and nanotubes are polycrystalline and are composed of very fine GaN nanocrystalline particles with a diameter of 3.0-3.5 nm. The room-temperature photoluminescence (PL) spectra for the synthesized hollow GaN spheres and nanotubes, which have a narrow size distribution, display a sharp, blue-shifted band-edge emission peak at 3.52 eV (352 nm) due to quantum size effects.

  7. Novel endohedral derivatives of Sc3N C2n (n = 34, 40) and unique tether controlled bis-functionalization of fullerenes

    NASA Astrophysics Data System (ADS)

    Ceron Hernandez, Maira Raquel

    Since the discovery of fullerenes in 1985, their exohedral functionalization has been necessary to increase their solubility and explore their properties and potential applications in materials science and medicinal chemistry. This thesis provides a short overview of the importance of electronic, size and shape complementarity in determining the structures of specific endohedral fullerene compounds. This is followed by a description of a new method for the separation of scandium nitride endohedral fullerenes Sc3N C2n (n = 34, 39 and 40), and their monofunctionalization. We also present the regioselective synthesis of easily isolable bis-derivatives of C60, C70, and M3N Ih-C80 (M = Sc, Lu) using 1,3-dipolar, addition/elimination (Bingel reaction) and diazo cycloadditions. The following sections are composed of a brief introduction and a pre-peer reviewed version of the published article, each section follows its own nomenclature and numerical order. The experimental section in each section includes methods, synthesis and characterization of the most relevant compounds.

  8. Rapid synthesis of N, S co-doped carbon dots and their application for Fe3+ ion detection

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Wang, Junbin; Fu, Jinping; Fu, Xucheng; Gan, Wei; Hao, Hequn

    2018-02-01

    In this study, nitrogen and sulfur co-doped carbon dots (NSCDs) were fabricated by microwave-assisted one-pot synthesis using vitamin C and thiourea as precursors. The as-prepared NSCDs demonstrated excellent properties, including aqueous dispensability, strong fluorescence emission, excellent environmental stability, high selectivity, and sensitivity toward Fe3+ ions. The NSCD-based material can be used as a "turn off" fluorescent probe for detecting Fe3+ ions at a low detection limit (4.2 nM). In addition, the "turn off" and "turn on" of NSCD fluorescent probe could be modulated by adding Fe3+ and EDTA, indicating weak interaction between the Fe3+ ions and NSCDs.

  9. A one-pot synthesis of bis(phenylimino)thiazolidines from ketene N,S-acetals and [Formula: see text],[Formula: see text]-diphenyloxalimidoyl dichloride.

    PubMed

    Yavari, Issa; Zahedi, Nooshin; Baoosi, Leila; Skoulika, Stavroula

    2018-02-01

    A synthesis of functionalized 4,5-bis(phenylimino)-1,3-thiazolidine-2-ylidenes via a simple reaction between ketene [Formula: see text]-acetals (derived from isothiocyanates and acetonitrile derivatives) with N,[Formula: see text]-diphenyloxalimidoyl dichloride in the presence of KOH in DMF is described. When CS[Formula: see text] was used as the heterocumulene component, the reaction led to the formation of 4,5-bis(phenylimino)-1,3-dithiolan-2-ylidene derivatives, in moderate to good yields.

  10. Synthesis, cytotoxic effect and antiviral activity of 1-(beta-D-arabinofuranosyl)-5-bromo-N4-substituted cytosine and 1-(beta-D-arabinofuranosyl)-5-bromo-4-methoxypyrimidin-2(1H)-one derivatives.

    PubMed

    Saladino, R; Mezzetti, M; Mincione, E; Palamara, A T; Savini, P; Marini, S

    1999-01-01

    A convenient and mild synthesis of 5-bromo-N4-substituted-1-(beta-D-arabinofuranosyl)cytosine and 5-bromo-O4-methyl-1-(beta-D-arabinofuranosyl)pyrimidin-2(1H)-one derivatives by selective oxyfunctionalization of the corresponding 4-thionucleosides with 3,3-dimethyldioxirane is reported. The cytotoxicity and the antiviral activity against parainfluenza 1 (Sendai virus) of all new synthesized products are also reported.

  11. Operationally Simple Synthesis of N,N-Diethyl-3-Methylbenzamide (DEET) Using COMU as a Coupling Reagent

    ERIC Educational Resources Information Center

    Withey, Jonathan M.; Bajic, Andrea

    2015-01-01

    A novel procedure is described where students use COMU [(1-cyano-2-ethoxy-2-oxoethylidenaminooxy)dimethylamino-morpholino-carbenium hexafluorophosphate], as a nonhazardous partner, in the one-pot coupling of a carboxylic acid and amine producing N,N-diethyl-3-methylbenzamide (DEET). Fundamental principles of carbonyl reactivity are understood,…

  12. Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine

    PubMed Central

    Kim, Tae-Hee; Choi, Sooseok; Park, Dong-Wha

    2016-01-01

    Gallium nitride (GaN) nanopowder used as a blue fluorescent material was synthesized by using a direct current (DC) non-transferred arc plasma. Gallium nitrate hydrate (Ga(NO3)3∙xH2O) was used as a raw material and NH3 gas was used as a nitridation source. Additionally, melamine (C3H6N6) powder was injected into the plasma flame to prevent the oxidation of gallium to gallium oxide (Ga2O3). Argon thermal plasma was applied to synthesize GaN nanopowder. The synthesized GaN nanopowder by thermal plasma has low crystallinity and purity. It was improved to relatively high crystallinity and purity by annealing. The crystallinity is enhanced by the thermal treatment and the purity was increased by the elimination of residual C3H6N6. The combined process of thermal plasma and annealing was appropriate for synthesizing crystalline GaN nanopowder. The annealing process after the plasma synthesis of GaN nanopowder eliminated residual contamination and enhanced the crystallinity of GaN nanopowder. As a result, crystalline GaN nanopowder which has an average particle size of 30 nm was synthesized by the combination of thermal plasma treatment and annealing. PMID:28344295

  13. Plasma Glutamine Is a Minor Precursor for the Synthesis of Citrulline: A Multispecies Study1234

    PubMed Central

    Marini, Juan C; Agarwal, Umang; Didelija, Inka C; Azamian, Mahshid; Stoll, Barbara; Nagamani, Sandesh CS

    2017-01-01

    Background: Glutamine is considered the main precursor for citrulline synthesis in many species, including humans. The transfer of 15N from 2-[15N]-glutamine to citrulline has been used as evidence for this precursor-product relation. However, work in mice has shown that nitrogen and carbon tracers follow different moieties of glutamine and that glutamine contribution to the synthesis of citrulline is minor. It is unclear whether this small contribution of glutamine is also true in other species. Objective: The objective of the present work was to determine the contribution of glutamine to citrulline production by using nitrogen and carbon skeleton tracers in multiple species. Methods: Humans (n = 4), pigs (n = 5), rats (n = 6), and mice (n = 5) were infused with l-2-[15N]- and l-[2H5]-glutamine and l-5,5-[2H2]-citrulline. The contribution of glutamine to citrulline synthesis was calculated by using different ions and fragments: glutamine M+1 to citrulline M+1, 2-[15N]-glutamine to 2-[15N]-citrulline, and [2H5]-glutamine to [2H5]-citrulline. Results: Species-specific differences in glutamine and citrulline fluxes were found (P < 0.001), with rats having the largest fluxes, followed by mice, pigs, and humans (all P < 0.05). The contribution of glutamine to citrulline as estimated by using glutamine M+1 to citrulline M+1 ranged from 88% in humans to 46% in pigs. However, the use of 2-[15N]-glutamine and 2-[15N]-citrulline as precursor and product yielded values of 48% in humans and 28% in pigs. Furthermore, the use of [2H5]-glutamine to [2H5]-citrulline yielded lower values (P < 0.001), resulting in a contribution of glutamine to the synthesis of citrulline of ∼10% in humans and 3% in pigs. Conclusions: The recycling of the [15N]-glutamine label overestimates the contribution of glutamine to citrulline synthesis compared with a tracer that follows the carbon skeleton of glutamine. Glutamine is a minor precursor for the synthesis of citrulline in humans, pigs, rats, and mice. PMID:28275102

  14. Composition of fatty acids in plasma and erythrocytes and eicosanoids level in patients with metabolic syndrome

    PubMed Central

    2011-01-01

    Background Disturbances of the fatty acids composition in plasma and red blood cells and eicosanoid synthesis play an important role in the metabolic syndrome (MS) formation. Methods The observation group included 61 people with metabolic syndrome (30 patients with MS and normal levels of insulin, 31 people with MS and insulin resistance - IR). The parameters of carbohydrate and lipid metabolism in blood serum were examined. The composition of nonesterified fatty acids (NEFA), fatty acid (FA) of red blood cells lipids was analyzed by gas-liquid chromatography. Eicosanoids level in MS patients blood serum was studied by enzyme immunoassay. Results In MS patients in the absence of glucose-insulin homeostasis disturbances and in patients with IR the accumulation of polyunsaturated fatty acids (18:2 n6, 18:3 n3, 22:4 n6) and lower pool of saturated FA (12:0, 14:0, 16: 0, 17:0) in plasma were discovered. A deficit of polyunsaturated FA (18:3 n3, 20:4 n6) with a predominance of on-saturated FA (14:0, 18:0) in erythrocyte membranes was revealed. In MS patients regardless of the carbohydrate metabolism status high levels of leukotriene B4 and 6-keto-prostaglandin-F1α in serum were found. The development of IR in MS patients leads to increased synthesis of thromboxane A2. Conclusion The results revealed a disturbance in nonesterified fatty acids of plasma lipids and red blood cells, eicosanoid synthesis in MS patients. The breach of the plasma and cell membranes fatty acids compositions, synthesis of vasoactive and proinflammatory eicosanoids is an important pathogenetic part of the MS development. PMID:21595891

  15. Structural optimization of SadA, an Fe(II)- and α-ketoglutarate-dependent dioxygenase targeting biocatalytic synthesis of N-succinyl-L-threo-3,4-dimethoxyphenylserine.

    PubMed

    Qin, Hui-Min; Miyakawa, Takuya; Nakamura, Akira; Hibi, Makoto; Ogawa, Jun; Tanokura, Masaru

    2014-08-08

    L-threo-3,4-Dihydroxyphenylserine (l-DOPS, Droxidopa) is a psychoactive drug and synthetic amino acid precursor that acts as a prodrug to the neurotransmitters. SadA, a dioxygenase from Burkholderia ambifaria AMMD, is an Fe(II)- and α-ketoglutarate (KG)-dependent enzyme that catalyzes N-substituted branched-chain or aromatic l-amino acids. SadA is able to produce N-succinyl-l-threo-3,4-dimethoxyphenylserine (NSDOPS), which is a precursor of l-DOPS, by catalyzing the hydroxylation of N-succinyl-3,4-dimethoxyphenylalanine (NSDOPA). However, the catalytic activity of SadA toward NSDOPS is much lower than that toward N-succinyl branched-chain l-amino acids. Here, we report an improved biocatalytic synthesis of NSDOPS with SadA. Structure-based protein engineering was applied to improve the α-KG turnover activity for the synthesis of NSDOPS. The G79A, G79A/F261W or G79A/F261R mutant showed a more than 6-fold increase in activity compared to that of the wild-type enzyme. The results provide a new insight into the substrate specificity toward NSDOPA and will be useful for the rational design of SadA mutants as a target of industrial biocatalysts. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. All-benzene carbon nanocages: size-selective synthesis, photophysical properties, and crystal structure.

    PubMed

    Matsui, Katsuma; Segawa, Yasutomo; Itami, Kenichiro

    2014-11-19

    The design and synthesis of a series of carbon nanocages consisting solely of benzene rings are described. Carbon nanocages are appealing molecules not only because they represent junction unit structures of branched carbon nanotubes, but also because of their potential utilities as unique optoelectronic π-conjugated materials and guest-encapsulating hosts. Three sizes of strained, conjugated [n.n.n]carbon nanocages (1, n = 4; 2, n = 5; 3, n = 6) were synthesized with perfect size-selectivity. Cyclohexane-containing units and 1,3,5-trisubstituted benzene-containing units were assembled to yield the minimally strained bicyclic precursors, which were successfully converted into the corresponding carbon nanocages via acid-mediated aromatization. X-ray crystallography of 1 confirmed the cage-shaped structure with an approximately spherical void inside the cage molecule. The present studies revealed the unique properties of carbon nanocages, including strain energies, size-dependent absorption and fluorescence, as well as unique size-dependency for the electronic features of 1-3.

  17. An alanine residue in human parainfluenza virus type 3 phosphoprotein is critical for restricting excessive N0-P interaction and maintaining N solubility.

    PubMed

    Zhang, Shengwei; Cheng, Qi; Luo, Chenxi; Yin, Lei; Qin, Yali; Chen, Mingzhou

    2018-05-01

    The phosphoprotein (P) of human parainfluenza virus type 3 (HPIV3) plays a pivotal role in viral RNA synthesis, which interacts with the nucleoprotein (N) to form a soluble N 0 -P complex (N 0 , free of RNAs) to prevent the nonspecific RNA binding and illegitimate aggregation of N. Functional regions within P have been studied intensively. However, the precise site (s) within P directly involved in N 0 -P interaction still remains unclear. In this study, using a series of deleted and truncated mutants of P of HPIV3, we demonstrate that amino-terminal 40 amino acids (aa) of P restrict and regulate N 0 -P interaction. Furthermore, using in vivo HPIV3 minigenome replicon assay, we identify a critical P mutant (P A28P ) located in amino-terminal 40 aa, which fails to support RNA synthesis of HPIV3 minigenome replicon. Although P A28P maintains an enhanced N-P interaction, it is unable to form N 0 -P complex and keep N soluble, thus, resulting in aggregation and functional abolishment of N-P complex. Moreover, we found that recombinant HPIV3 with mutation of A28P in P failed to be rescued. Taken together, we identified a residue within the extreme amino-terminus of P, which plays a critical role in restricting the excessively N-P interaction and keeping a functional N 0 -P complex formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Part 1. Synthetic approaches to indole/imidazole marine alkaloids. Part 2. 1-cyanobenzotriazole as a cyanating agent. Part 3. Synthesis of potential molecular rectifiers

    NASA Astrophysics Data System (ADS)

    Hughes, Terry Vincent

    1999-12-01

    This dissertation consists of four chapters. The first chapter details the progress toward a total synthesis of securine A (1). Securine A is an indole/imidazole containing marine alkaloid which contains a 2,3-disubstituted indole ring and a 4,5- disubstituted imidazole ring with a 12-membered lactam connecting the two. The approach into the securine A ring system utilized the opening of a pyrano[3,4-b]indol-3-one ring system with a modified histamine derivative. Efforts in the synthesis of securine A were not successful, but the synthesis of a similar analogue, compound 53, which contained a 13-membered ring was achieved. Chapter two deals with the total synthesis of the indole/maleimide/imidazole containing marine alkaloids: the didemnimides A-D (84- 87). The total syntheses of didemnimide A-D were successful and utilized a base catalyzed condensation reaction of methyl indolyl-3-glyoxylate (102) and 1-trityl-4-imidazoleacetamide (104). Chapter three details a new and convenient synthesis of 1-cyanobenzotriazole (123) and efforts to use it as a source of +CN in carbon-carbon forming reactions. The synthesis is safer than previously reported methods and allows for 123 to be made in multi-gram scale rather inexpensively. It was demonstrated that 1-cyanobenzotriazole (123) is a good source of +CN in carbon-carbon forming reactions by reacting with a variety of sp3, Sp 2, and sp carbanions. Chapter four details a new synthesis of hexadecylquinolinium tricyanoquinodimethanide (171) which has been shown to be a molecular rectifier. In search of additional molecular rectifiers, this new methodology was applied to the synthesis of Z- β-(N-n -hexadecyl-2-benzothiazolium)-α-cyano-4-styryldicyanomethanide (181) as well as its selenium and tellurium analogues 190 and 200; respectively. Additionally, the synthesis of other T- D+-π-A- types of molecules was explored in search for other molecular rectifiers. However, of all the compounds synthesized herein, only 171 has been shown to rectify.

  19. Helicobacter pylori β1,3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans

    PubMed Central

    Peng, Wenjie; Pranskevich, Jennifer; Nycholat, Corwin; Gilbert, Michel; Wakarchuk, Warren; Paulson, James C; Razi, Nahid

    2012-01-01

    Poly-N-acetyllactosamine extensions on N- and O-linked glycans are increasingly recognized as biologically important structural features, but access to these structures has not been widely available. Here, we report a detailed substrate specificity and catalytic efficiency of the bacterial β3-N-acetylglucosaminyltransferase (β3GlcNAcT) from Helicobacter pylori that can be adapted to the synthesis of a rich diversity of glycans with poly-LacNAc extensions. This glycosyltransferase has surprisingly broad acceptor specificity toward type-1, -2, -3 and -4 galactoside motifs on both linear and branched glycans, found commonly on N-linked, O-linked and I-antigen glycans. This finding enables the production of complex ligands for glycan-binding studies. Although the enzyme shows preferential activity for type 2 (Galβ1-4GlcNAc) acceptors, it is capable of transferring N-acetylglucosamine (GlcNAc) in β1-3 linkage to type-1 (Galβ1-3GlcNAc) or type-3/4 (Galβ1-3GalNAcα/β) sequences. Thus, by alternating the use of the H. pylori β3GlcNAcT with galactosyltransferases that make the β1-4 or β1-3 linkages, various N-linked, O-linked and I-antigen acceptors could be elongated with type-2 and type-1 LacNAc repeats. Finally, one-pot incubation of di-LacNAc biantennary N-glycopeptide with the β3GlcNAcT and GalT-1 in the presence of uridine diphosphate (UDP)-GlcNAc and UDP-Gal, yielded products with 15 additional LacNAc units on the precursor, which was seen as a series of sequential ion peaks representing alternative additions of GlcNAc and Gal residues, on matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Overall, our data demonstrate a broader substrate specificity for the H. pylori β3GlcNAcT than previously recognized and demonstrate its ability as a potent resource for preparative chemo-enzymatic synthesis of complex glycans. PMID:22786570

  20. Facile synthesis of Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet as high-performance anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Dan; Li, Guangshe; Yu, Meijie; Fan, Jianming; Li, Baoyun; Li, Liping

    2018-04-01

    Iron nitrides are considered as highly promising anode materials for lithium-ion batteries because of their nontoxicity, high abundance, low cost, and higher electrical conductivity. Unfortunately, their limited synthesis routes are available and practical application is still hindered by their fast capacity decay. Herein, a facile and green route is developed to synthesize Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet composite. The size of Fe4N/Fe2O3/Fe particles is small (10-40 nm) and they are confined in porous N-doped carbon nanosheet. These features are conducive to accommodate volume change well, shorten the diffusion distance and further elevate electrical conductivity. When tested as anode material for lithium-ion batteries, a high discharge capacity of 554 mA h g-1 after 100 cycles at 100 mA g-1 and 389 mA h g-1 after 300 cycles at 1000 mA g-1 are retained. Even at 2000 mA g-1, a high capacity of 330 mA h g-1 can be achieved, demonstrating superior cycling stability and rate performance. New prospects will be brought by this work for the synthesis and the potential application of iron nitrides materials as an anode for LIBs.

  1. Novel Z-scheme BiOBr/reduced graphene oxide/protonated g-C3N4 photocatalyst: Synthesis, characterization, visible light photocatalytic activity and mechanism

    NASA Astrophysics Data System (ADS)

    Bao, Yongchao; Chen, Kezheng

    2018-04-01

    The novel BiOBr/reduced graphene oxide/protonated g-C3N4 (BiOBr/RGO/pg-C3N4) composites were successfully synthesized by using a facile solvothermal synthesis method. The structure, morphology, optical and electronic properties were explored by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DRS), and photoelectrochemical measurement. The photocatalytic activities of as-synthesized samples were evaluated by the degradation of Rhodamine B (Rh B) and tetracycline hydrochloride (TC) aqueous solution under visible light irradiation (λ > 420nm). Compared with BiOBr, protonated g-C3N4 (pg-C3N4), BiOBr/pg-C3N4 and RGO/pg-C3N4, BiOBr/RGO/pg-C3N4 composites exhibited higher photocatalytic activity. The total organic carbon (TOC) removal ratios of Rh B and TC over 10% BiOBr/RGO/pg-C3N4 were 88% and 59%, respectively. The excellent photcatalytic performance was investigated by photoluminescence spectroscopy (PL), the radical quenching and electron spin resonance experiments. A Z-scheme charge transfer mechanism was proposed, in which RGO acted as an electron transfer mediator. It was worth pointing out that the closely contacted two-dimensional interface among the BiOBr, the RGO and pg-C3N4 promoted the separation and transfer of photo-generated charge carriers, and thus enhanced the photocatalytic efficiency.

  2. Asymmetric synthesis of [2,3-(13)C(2),(15)N]-4-benzyloxy-5,6-diphenyl-2,3,5,6-tetrahydro-4H-oxazine-2-one via lipase TL-mediated kinetic resolution of benzoin: general procedure for the synthesis of [2,3-(13)C(2),(15)N]-L-alanine.

    PubMed

    Aoyagi, Y; Iijima, A; Williams, R M

    2001-11-30

    Lipase TL-mediated kinetic resolution of benzoin proceeded to give the corresponding optically pure (R)-benzoin (R)-1. On the other hand, (S)-benzoin O-acetate (S)-7 could be hydrolyzed without epimerization to give (S)-benzoin (S)-1 under alkaline conditions. Furthermore, both enantiomers of benzoin (1) were converted to [(15)N]-(1R,2S)- and (1S,2R)- 2-amino-1,2-diphenylethanol (3a and 3b), respectively, according to the procedure reported previously. [2,3-(13)C(2),(15)N]-(5S,6R)-4-benzyloxy-5,6-diphenyl-2,3,5,6-tetrahydro-4H-oxazine-2-one (10) was synthesized from ethyl [1,2-(13)C(2)]bromoacetate and (1R,2S)-2-amino-1,2-diphenylethanol (3b) in three steps. Finally, [2,3-(13)C(2),(15)N]-L-alanine (12) was prepared via alkylation of the lactone 10 and hydrogenation of the alkylated product 11.

  3. Solvothermal synthesis of N-doped graphene supported PtCo nanodendrites with highly catalytic activity for 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Fang; Zhu, Xiao-Yan; Feng, Jiu-Ju; Wang, Ai-Jun

    2018-01-01

    A simple solvothermal method was developed to prepare N-doped reduced graphene oxide supported homogeneous PtCo nanodendrites (PtCo NDs/N-rGO), where ethylene glycol (EG) served as the reducing agent and the solvent, and linagliptin as the structure-directing and stabilizing agent for PtCo NDs and dopant for rGO, respectively. Controlled researches showed that the dosage of linagliptin and the ratios of the two metal precursors were important in the current synthesis. The PtCo NDs/N-rGO nanocomposite exhibited higher catalytic activity towards the reduction of 4-nitrophnol (4-NP) in contrast with the referenced Pt1Co3 NCs/N-rGO, Pt3Co1 NCs/N-rGO and commercial Pt/C catalysts. More importantly, the constructed catalyst exhibited the superior stability without sacrificing the catalytic activity, showing great prospect for the reduction of 4-NP in practice.

  4. Determinants of positive cooperativity between strychnine-like allosteric modulators and N-methylscopolamine at muscarinic receptors.

    PubMed

    Jakubík, Jan; Dolezal, Vladimír

    2006-01-01

    It has been shown previously that the third extracellular loop (o3) and its vicinity play a critical role in allosteric modulation at muscarinic acetylcholine receptors (mAChRs) (Ellis et al., 1993; Krejçí and Tuçek, 2001; Buller et al., 2002). In this study interaction of four chemically related substances (strychnine, its dimethoxy derivate brucine, precursor for synthesis of strychnine Wieland-Gumlich aldehyde (WGA), and precursor for synthesis of alcuronium propargyl-WGA) with orthosteric antagonist N-methylscopolamine (NMS) was investigated on the M3 subtype of mAChRs mutated at the o3 loop.

  5. Synthesis of P,N-Heterocycles from ω-Amino-H-Phosphinates: Conformationally Restricted α-Amino Acid Analogs

    PubMed Central

    Queffelec, Clémence; Ribière, Patrice; Montchamp, Jean-Luc

    2009-01-01

    P,N-Heterocycles (3-hydroxy-1,3-azaphospholane and 3-hydroxy-1,3-azaphosphorinane-3-oxide) are synthesized in moderate yield from readily available ω-amino-H-phosphinates and aldehydes or ketones via an intramolecular Kabachnik-Fields reaction. The products are conformationally restricted phosphinic analogs of α-amino acids. The multi-gram scale syntheses of the H2N(CH2)nPO2H2 phosphinic precursors (n = 1, 2, 3) and some derivatives are also described. PMID:18855477

  6. A Rapid Microwave-Assisted Thermolysis Route to Highly Crystalline Carbon Nitrides for Efficient Hydrogen Generation.

    PubMed

    Guo, Yufei; Li, Jing; Yuan, Yupeng; Li, Lu; Zhang, Mingyi; Zhou, Chenyan; Lin, Zhiqun

    2016-11-14

    Highly crystalline graphitic carbon nitride (g-C 3 N 4 ) with decreased structural imperfections benefits from the suppression of electron-hole recombination, which enhances its hydrogen generation activity. However, producing such g-C 3 N 4 materials by conventional heating in an electric furnace has proven challenging. Herein, we report on the synthesis of high-quality g-C 3 N 4 with reduced structural defects by judiciously combining the implementation of melamine-cyanuric acid (MCA) supramolecular aggregates and microwave-assisted thermolysis. The g-C 3 N 4 material produced after optimizing the microwave reaction time can effectively generate H 2 under visible-light irradiation. The highest H 2 evolution rate achieved was 40.5 μmol h -1 , which is two times higher than that of a g-C 3 N 4 sample prepared by thermal polycondensation of the same supramolecular aggregates in an electric furnace. The microwave-assisted thermolysis strategy is simple, rapid, and robust, thereby providing a promising route for the synthesis of high-efficiency g-C 3 N 4 photocatalysts. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Methodology and Natural Product Syntehsis: (A) Novel Glycosyl Donors; (B) N-Sulfinyl Metallodienamines and Their Application to the Total Synthesis of (-)-Albocycline

    NASA Astrophysics Data System (ADS)

    Chatare, Vijay K.

    My research involved in two different areas, development of novel glycosylation methodology and scope in oligosaccharide synthesis. A new scaffold for antibiotic development targeting the bacterial cell wall: Total synthesis of Albocycline and its analogs to see the mechanism of action in cell wall biosynthesis. Developed novel gem-dimethyl analogs of Fraser-Reid's NPGs from 3,3-dimethyl 4-pentenol and 2,2-dimethyl 4-pentenol. These donors are stable toward acidic and basic conditions, which makes them step-efficient when compared to other glycosylating agents. The scope and reactivity of 3,3-dimethyl 4-pentenyl glycosides of glucose, mannose, galactose, and N-acetylglucosamine have been studied extensively for oligosaccharide synthesis. The donors are readily prepared from commercial starting materials and both glycosylation and hydrolysis yields are in the synthetically useful in oligosaccharide synthesis. NSMD methodology introduced a key step in albocycline synthesis, where (-)-albocycline has great biological activity against "superbug" methicillin-resistant Staphylococcus aureus (MRSA). We hypothesize that albocycline inhibits the first committed step in bacterial cell wall biosynthesis. We have successfully completed two generation syntheses of albocycline. Vinylogous aldol on the left-handed fragment, aldehyde to get selectively up alcohol at the C-8 position using Davis-Ellman sulfinylimine chemistry and then oxidation with Davis oxaziridine to access requisite stereochemistry at C-4 alcohol followed by Horner-Wadsworth-Emmons to access seco-acid. Finally, a Keck macrolactonization reaction provided access to desired (-)-Albocycline.

  8. Synthesis of 3,3-disubstituted oxindoles by visible-light-mediated radical reactions of aryl diazonium salts with N-arylacrylamides.

    PubMed

    Fu, Weijun; Xu, Fengjuan; Fu, Yuqin; Zhu, Mei; Yu, Jiaqi; Xu, Chen; Zou, Dapeng

    2013-12-06

    A mild and efficient visible-light-mediated diarylation of N-arylacrylamides with aryl diazonium salts under mild conditions has been developed. This method provides convenient access to a variety of useful 3,3-disubstituted oxindoles by constructing two C-C bonds in one step.

  9. Thermodynamic Routes to Novel Metastable Nitrogen-Rich Nitrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Wenhao; Holder, Aaron; Orvañanos, Bernardo

    Compared to oxides, the nitrides are relatively unexplored, making them a promising chemical space for novel materials discovery. Of particular interest are nitrogen-rich nitrides, which often possess useful semiconducting properties for electronic and optoelectronic applications. However, such nitrogen-rich compounds are generally metastable, and the lack of a guiding theory for their synthesis has limited their exploration. Here, we review the remarkable metastability of observed nitrides, and examine the thermodynamics of how reactive nitrogen precursors can stabilize metastable nitrogen-rich compositions during materials synthesis. We map these thermodynamic strategies onto a predictive computational search, training a data-mined ionic substitution algorithm specifically formore » nitride discovery, which we combine with grand-canonical DFT-SCAN phase stability calculations to compute stabilizing nitrogen chemical potentials. We identify several new nitrogen-rich binary nitrides for experimental investigation, notably the transition metal nitrides Mn3N4, Cr3N4, V3N4, and Nb3N5, the main group nitride SbN, and the pernitrides FeN2, CrN2, and Cu2N2. By formulating rational thermodynamic routes to metastable compounds, we expand the search space for functional technological materials beyond equilibrium phases and compositions.« less

  10. Thermodynamic Routes to Novel Metastable Nitrogen-Rich Nitrides

    DOE PAGES

    Sun, Wenhao; Holder, Aaron; Orvañanos, Bernardo; ...

    2017-07-17

    Compared to oxides, the nitrides are relatively unexplored, making them a promising chemical space for novel materials discovery. Of particular interest are nitrogen-rich nitrides, which often possess useful semiconducting properties for electronic and optoelectronic applications. However, such nitrogen-rich compounds are generally metastable, and the lack of a guiding theory for their synthesis has limited their exploration. Here, we review the remarkable metastability of observed nitrides, and examine the thermodynamics of how reactive nitrogen precursors can stabilize metastable nitrogen-rich compositions during materials synthesis. We map these thermodynamic strategies onto a predictive computational search, training a data-mined ionic substitution algorithm specifically formore » nitride discovery, which we combine with grand-canonical DFT-SCAN phase stability calculations to compute stabilizing nitrogen chemical potentials. We identify several new nitrogen-rich binary nitrides for experimental investigation, notably the transition metal nitrides Mn3N4, Cr3N4, V3N4, and Nb3N5, the main group nitride SbN, and the pernitrides FeN2, CrN2, and Cu2N2. By formulating rational thermodynamic routes to metastable compounds, we expand the search space for functional technological materials beyond equilibrium phases and compositions.« less

  11. Design, Synthesis and Biological Evaluation of 6-(2,6-Dichloro-3,5-dimethoxyphenyl)-4-substituted-1H-indazoles as Potent Fibroblast Growth Factor Receptor Inhibitors.

    PubMed

    Zhang, Zhen; Zhao, Dongmei; Dai, Yang; Cheng, Maosheng; Geng, Meiyu; Shen, Jingkang; Ma, Yuchi; Ai, Jing; Xiong, Bing

    2016-10-23

    Tyrosine kinase fibroblast growth factor receptor (FGFR), which is aberrant in various cancer types, is a promising target for cancer therapy. Here we reported the design, synthesis, and biological evaluation of a new series of 6-(2,6-dichloro-3,5-dimethoxyphenyl)-4-substituted-1 H -indazole derivatives as potent FGFR inhibitors. The compound 6-(2,6-dichloro-3,5-dimethoxyphenyl)- N -phenyl-1 H -indazole-4-carboxamide ( 10a ) was identified as a potent FGFR1 inhibitor, with good enzymatic inhibition. Further structure-based optimization revealed that 6-(2,6-dichloro-3,5-dimethoxyphenyl)- N -(3-(4-methylpiperazin-1-yl)phenyl)-1 H -indazole-4-carboxamide ( 13a ) is the most potent FGFR1 inhibitor in this series, with an enzyme inhibitory activity IC 50 value of about 30.2 nM.

  12. High-pressure synthesis of a pentazolate salt [High-pressure synthesis of condensed-phase pentazolate

    DOE PAGES

    Steele, Brad A.; Stavrou, Elissaios; Crowhurst, Jonathan C.; ...

    2016-12-06

    The pentazolates, the last all-nitrogen members of the azole series, have been notoriously elusive for the last hundred years despite enormous efforts to make these compounds in either gas or condensed phases. Here, we report a successful synthesis of a solid state compound consisting of isolated pentazolate anions N 5 –, which is achieved by compressing and laser heating cesium azide (CsN 3) mixed with N 2 cryogenic liquid in a diamond anvil cell. The experiment was guided by theory, which predicted the transformation of the mixture at high pressures to a new compound, cesium pentazolate salt (CsN 5). Electronmore » transfer from Cs atoms to N 5 rings enables both aromaticity in the pentazolates as well as ionic bonding in the CsN 5 crystal. As a result, this work provides critical insight into the role of extreme conditions in exploring unusual bonding routes that ultimately lead to the formation of novel high nitrogen content species.« less

  13. Synthesis of the Paralytic Shellfish Poisons (+)-Gonyautoxin 2, (+)-Gonyautoxin 3, and (+)-11,11-Dihydroxysaxitoxin.

    PubMed

    Mulcahy, John V; Walker, James R; Merit, Jeffrey E; Whitehead, Alan; Du Bois, J

    2016-05-11

    The paralytic shellfish poisons are a collection of guanidine-containing natural products that are biosynthesized by prokaryote and eukaryote marine organisms. These compounds bind and inhibit isoforms of the mammalian voltage-gated Na(+) ion channel at concentrations ranging from 10(-11) to 10(-5) M. Here, we describe the de novo synthesis of three paralytic shellfish poisons, gonyautoxin 2, gonyautoxin 3, and 11,11-dihydroxysaxitoxin. Key steps include a diastereoselective Pictet-Spengler reaction and an intramolecular amination of an N-guanidyl pyrrole by a sulfonyl guanidine. The IC50's of GTX 2, GTX 3, and 11,11-dhSTX have been measured against rat NaV1.4, and are found to be 22 nM, 15 nM, and 2.2 μM, respectively.

  14. Enantioselective Synthesis of SNAP-7941

    PubMed Central

    Goss, Jennifer M.; Schaus, Scott E.

    2009-01-01

    An enantioselective synthesis of SNAP-7941, a potent melanin concentrating hormone receptor antagonist, was achieved using two organocatalytic methods. The first method utilized to synthesize the enantioenriched dihydropyrimidone core was the Cinchona alkaloid-catalyzed Mannich reaction of β-keto esters to acyl imines and the second was chiral phosphoric acid-catalyzed Biginelli reaction. Completion of the synthesis was accomplished via selective urea formation at the N3 position of the dihydropyrimidone with the 3-(4-phenylpiperidin-1-yl)propyl amine side chain fragment. The synthesis of SNAP-7921 highlights the utility of asymmetric organocatalytic methods in the construction of an important class of chiral heterocycles. PMID:18767801

  15. Improved synthesis of ceramic superconductors with alkaline earth peroxides - Synthesis and processing of Ba2YCu3O(7-x)

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Gaier, J. R.; Philipp, W. H.; Warner, J. D.; Aron, P. R.; Pouch, J. J.

    1988-01-01

    Synthesis processes for the preparation of ceramic conductors Ba2YCu3O(7-x) from BaO2 or BaCO3 in flowing O2 or N2 are described, and the characteristics of the materials produced in these processes are compared. Results of EDAX, XRD, SEM, and dc resistivity analyses demonstrated that superconducting materials made from BaO2 were more homogeneous, denser, and more metallic than materials produced from BaCO3, because of the higher reactivity of BaO2. Potential applications of this processes are discussed.

  16. Early signaling, synthesis, transport and metabolism of ureides.

    PubMed

    Baral, Bikash; Teixeira da Silva, Jaime A; Izaguirre-Mayoral, Maria Luisa

    2016-04-01

    The symbiosis between α nitrogen (N2)-fixing Proteobacteria (family Rhizobiaceae) and legumes belonging to the Fabaceae (a single phylogenetic group comprising three subfamilies: Caesalpinioideae, Mimosoideae and Papilionoideae) results in the formation of a novel root structure called a nodule, where atmospheric N2 is fixed into NH3(+). In the determinate type of nodules harbored by Rhizobium-nodulated Fabaceae species, newly synthesized NH3(+) is finally converted into allantoin (C4H6N4O3) and allantoic acid (C4H8N4O4) (ureides) through complex pathways involving at least 20 different enzymes that act synchronously in two types of nodule cells with contrasting ultrastructure, including the tree nodule cell organelles. Newly synthesized ureides are loaded into the network of nodule-root xylem vessels and transported to aerial organs by the transpirational water current. Once inside the leaves, ureides undergo an enzymatically driven reverse process to yield NH4(+) that is used for growth. This supports the role of ureides as key nitrogen (N)-compounds for the growth and yield of legumes nodulated by Rhizobium that grow in soils with a low N content. Thus, a concrete understanding of the mechanisms underlying ureide biogenesis and catabolism in legumes may help agrobiologists to achieve greater agricultural discoveries. In this review we focus on the transmembranal and transorganellar symplastic and apoplastic movement of N-precursors within the nodules, as well as on the occurrence, localization and properties of enzymes and genes involved in the biogenesis and catabolism of ureides. The synthesis and transport of ureides are not unique events in Rhizobium-nodulated N2-fixing legumes. Thus, a brief description of the synthesis and catabolism of ureides in non-legumes was included for comparison. The establishment of the symbiosis, nodule organogenesis and the plant's control of nodule number, synthesis and translocation of ureides via feed-back inhibition mechanisms are also reviewed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Synthesis and biological screening by novel hybrid fluorocarbon hydrocarbon compounds for use as artificial blood substitutes

    NASA Technical Reports Server (NTRS)

    Moacanin, J.; Scherer, K.; Toronto, A.; Lawson, D.; Terranova, T.; Yavrouian, A.; Astle, L.; Harvey, S.; Kaaelble, D. H.

    1979-01-01

    A series of hybrid fluorochemicals of general structure R(1)R(2)R(3)CR(4) was prepared where the R(i)'s (i=1,2,3) is a saturated fluoroalkyl group of formula C sub N F sub 2n+1, and R(4) is an alkyl group C sub n H sub 2n+1 or a related moiety containing amino, ether, or ester functions but no CF bonds. Compounds of this class containing approximately eight to twenty carbons total have physical properties suitable for use as the oxygen carrying phase of fluorochemical emulsion artificial blood. The chemical synthesis, and physical and biological testing of pure single isomers of the proposed artificial blood candidate compounds are included. Significant results are given.

  18. The Syntheses and Structure of the First Vanadium(IV) and Vanadium(V) Binary Azides, V(N3)4, [V(N3)6]2- and [V(N3)6]- (Preprint)

    DTIC Science & Technology

    2009-11-17

    V(N3)3(N3S2)] 2- , [22] have been reported, and no binary vanadium(V) compounds had been known except for VF5, VF6 - and V2O5 . By analogy with...valves. Volatile materials were handled in a Pyrex glass or stainless steel/Teflon-FEP vacuum line. [31] All reaction vessels were passivated with ClF3...successful synthesis of the [V(N3)6] - anion, the only binary vanadium(V) compound known besides VF5, VF6 - and V2O5 . N1’ N8 N9 N1 N2 N3 V N4 N5 N6 N2

  19. Synthesis of regioselectively protected forms of cytidine based on enzyme-catalyzed deacetylation as the key step.

    PubMed

    Kuboki, A; Ishihara, T; Kobayashi, E; Ohta, H; Ishii, T; Inoue, A; Mitsuda, S; Miyazaki, T; Kajihara, Y; Sugai, T

    2000-02-01

    N4-Acetylcytidine (77%) and 2',3'-O, N4-triacetylcytidine (95%) were obtained from the hydrolysis of a common precursor, the peracetylated form of cytidine with Aspergillus niger lipase (Amano A) and Burkholderia cepacia esterase (SC esterase S), respectively, under very mild conditions. The experimental procedure for the conversion of triacetylcytidine to a corresponding phosphoramidite (82%), an intermediate for sugar nucleotide synthesis, is also elaborated.

  20. Synthesis and evaluation of borates derived from boric acid and diols for the protection of wood against fungal decay and thermal degradation

    Treesearch

    George C. Chen

    2004-01-01

    N,N-dimethyl amino carbinol catechol borate(1). N,N-dimethyl amino carbinol-4-methyl catechol borate(2), N,N-dimethyl amino carbinol-4-t- butyl catechol borate(3). N,N-dimethyl amino carbinol-2,3-naphthyl borate 4) were synthesized by refluxing boric acid and diol in DMF(N,N-dimethyl formamide). The borates were characterized by NMR. Wood impregnated with borate 1,2 or...

  1. Synthesis and characterization of water-soluble, heteronuclear ruthenium(III)/ferrocene complexes and their interactions with biomolecules.

    PubMed

    Anderson, Craig M; Jain, Swapan S; Silber, Lisa; Chen, Kody; Guha, Sumedha; Zhang, Wancong; McLaughlin, Emily C; Hu, Yongfeng; Tanski, Joseph M

    2015-04-01

    The reaction of Na[RuCl4(SO(CH3)2)2], 1, with one equivalent of FcCONHCH2C6H4N (Fc=FeC10H9), L1, FcCOOCH2CH2C3H3N2, L2, FcCOOC6H4N, L3, afforded the dinuclear species, Na[FcCONHCH2C6H4N[RuCl4(SO(CH3)2)

  2. Rh-Catalyzed annulations of N-methoxybenzamides with ketenimines: synthesis of 3-aminoisoindolinones and 3-diarylmethyleneisoindolinones with strong aggregation induced emission properties.

    PubMed

    Zhou, Xiaorong; Peng, Zhixing; Zhao, Hongyang; Zhang, Zhiyin; Lu, Ping; Wang, Yanguang

    2016-08-23

    Rhodium-catalyzed C-H activation/annulation reactions of ketenimines with N-methoxybenzamides furnished 3-aminoisoindolin-1-ones and 3-(diarylmethylene)isoindolin-1-ones. The synthesized 3-(diarylmethylene)isoindolin-1-ones exhibited aggregation induced emissions in aqueous tetrahydrofuran solution and strong green-yellow emissions in solids.

  3. Mechanism for the Coupled Photochemistry of Ammonia and Acetylene: Implications for Giant Planets, Comets and Interstellar Organic Synthesis.

    PubMed

    Keane, Thomas C

    2017-09-01

    Laboratory studies provide a fundamental understanding of photochemical processes in planetary atmospheres. Photochemical reactions taking place on giant planets like Jupiter and possibly comets and the interstellar medium are the subject of this research. Reaction pathways are proposed for the coupled photochemistry of NH 3 (ammonia) and C 2 H 2 (acetylene) within the context Jupiter's atmosphere. We then extend the discussion to the Great Red Spot, Extra-Solar Giant Planets, Comets and Interstellar Organic Synthesis. Reaction rates in the form of quantum yields were measured for the decomposition of reactants and the formation of products and stable intermediates: HCN (hydrogen cyanide), CH 3 CN (acetonitrile), CH 3 CH = N-N = CHCH 3 (acetaldazine), CH 3 CH = N-NH 2 (acetaldehyde hydrazone), C 2 H 5 NH 2 (ethylamine), CH 3 NH 2 (methylamine) and C 2 H 4 (ethene) in the photolysis of NH 3 /C 2 H 2 mixtures. Some of these compounds, formed in our investigation of pathways for HCN synthesis, were not encountered previously in observational, theoretical or laboratory photochemical studies. The quantum yields obtained allowed for the formulation of a reaction mechanism that attempts to explain the observed results under varying experimental conditions. In general, the results of this work are consistent with the initial observations of Ferris and Ishikawa (1988). However, their proposed reaction pathway which centers on the photolysis of CH 3 CH = N-N = CHCH 3 does not explain all of the results obtained in this study. The formation of CH 3 CH = N-N = CHCH 3 by a radical combination reaction of CH 3 CH = N• was shown in this work to be inconsistent with other experiments where the CH 3 CH = N• radical is thought to form but where no CH 3 CH = N-N = CHCH 3 was detected. The importance of the role of H atom abstraction reactions was demonstrated and an alternative pathway for CH 3 CH = N-N = CHCH 3 formation involving nucleophilic reaction between N 2 H 4 and CH 3 CH = NH is advanced.

  4. SYNTHESIS AND IN VITRO BIOLOGICAL EVALUATION OF NEW TETRACYCLIC PYRIDOTHIENOQUINOLINES AS POTENTIAL ANTIMICROBIAL AGENTS.

    PubMed

    Mohi El-Deen, Eman M; Abd El-Hameed, Eman K

    2017-05-01

    Synthesis of a series of novel 10-substituted-pyrido[3',2':4,5]thieno[3,2-b] quinoline derivatives 3-15, which contain a planar tetracyclic heteroring system, has been accomplished. The synthetic approaches for the target compounds included, condensation reaction of 10-amino derivatives 2 with triethyl orthoformate to give ethyl N-formimidate derivatives 3, which in turn reacted with different amines to give N-substituted formimidamide derivatives 4a,b. In addition, N-mustard derivative 6 was synthesized via treatment of 2,2'- azanediylbis(ethan-1-ol) derivative 5 with thionyl chloride. Meanwhile, the amino derivative 2 reacted with ethyl chloroacetate to give ethyl aminoacetae derivative 7, then the latter reacted with chlorosulfonyl isocyanate to produce sulfamoyl chloride derivative 8. On the other hand, the ester derivative-7 condensed with hydrazine hydrate to give acetohydrazide derivative 10, which utilized as a key intermediate for the synthesis of new compounds (11-15) conjugated with a variety of bioactive heterocyclic moieties at position-10. Antimicrobial evaluation for all the synthesized compounds, against Gram-positive bacteria; Gram-negative bacteria; and pathogenic fungi strains, showed that the majority of these compounds have potent antibacterial and antifungal activity compared with the standard drugs.

  5. Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst.

    PubMed

    Chen, Shiming; Perathoner, Siglinda; Ampelli, Claudio; Mebrahtu, Chalachew; Su, Dangsheng; Centi, Gabriele

    2017-03-01

    Ammonia is synthesized directly from water and N 2 at room temperature and atmospheric pressure in a flow electrochemical cell operating in gas phase (half-cell for the NH 3 synthesis). Iron supported on carbon nanotubes (CNTs) was used as the electrocatalyst in this half-cell. A rate of ammonia formation of 2.2×10 -3  gNH3  m -2  h -1 was obtained at room temperature and atmospheric pressure in a flow of N 2 , with stable behavior for at least 60 h of reaction, under an applied potential of -2.0 V. This value is higher than the rate of ammonia formation obtained using noble metals (Ru/C) under comparable reaction conditions. Furthermore, hydrogen gas with a total Faraday efficiency as high as 95.1 % was obtained. Data also indicate that the active sites in NH 3 electrocatalytic synthesis may be associated to specific carbon sites formed at the interface between iron particles and CNT and able to activate N 2 , making it more reactive towards hydrogenation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis of 7-azabicyclo[2.2.1]heptane and 2-oxa-4-azabicyclo[3.3.1]non-3-ene derivatives by base-promoted heterocyclization of alkyl N-(cis(trans)-3,trans(cis)-4-dibromocyclohex-1-yl)carbamates and N-(cis(trans)-3,trans(cis)-4-dibromocyclohex-1-yl)-2,2,2-trifluoroacetamides.

    PubMed

    Gómez-Sanchez, Elena; Soriano, Elena; Marco-Contelles, José

    2007-11-09

    We have studied the base-promoted heterocyclization of alkyl N-(cis(trans)-3,trans(cis)-4-dibromocyclohex-1-yl)carbamates and N-(cis(trans)-3,trans(cis)-4-dibromocyclohex-1-yl)-2,2,2-trifluoroacetamides, investigating the effect of the nitrogen protecting group and the relative configuration of the leaving group at C3 and C4 on the outcome of this reaction. We have observed that the sodium hydride-promoted heterocyclization of alkyl N-(cis-3,trans-4-dibromocyclohex-1-yl)carbamates (10, 12, 14, 16, 18) is a convenient method for the synthesis of 7-azabicyclo[2.2.1]heptane derivatives. For instance, the reaction of tert-butyl N-(cis-3,trans-4-dibromocyclohex-1-yl)carbamate (10) with sodium hydride in DMF at room temperature provides 2-bromo-7-[(tert-butoxy)carbonyl]-7-azabicyclo[2.2.1]heptane (2) (52% yield), whose t-BuOK-promoted hydrogen bromide elimination affords 7-[(tert-butoxy)carbonyl]-7-azabicyclo[2.2.1]hept-2-ene (31) in 78% yield, an intermediate in the total synthesis of epibatidine (1). However, the NaH/DMF-mediated heterocyclization of alkyl N-(trans-3,cis-4-dibromocyclohex-1-yl)carbamates (11, 13) is a more structure dependent reaction, where the nucleophilic attack of the oxygen atom of the protecting group controls the outcome of the reaction, giving rise to benzooxazolone and 2-oxa-4-azabicyclo[3.3.1]non-3-ene derivatives, respectively, from low to moderate yields, in complex reaction mixtures. Conversely, the NaH/DMF heterocyclizations of N-(cis-3,trans-4-dibromocyclohex-1-yl)-2,2,2-trifluoroacetamide (40) or N-(trans-3,cis-4-dibromocyclohex-1-yl)-2,2,2-trifluoroacetamide (42) are very clean reactions giving 7-azabicyclo[2.2.1]heptane or 2-oxa-4-azabicyclo[3.3.1]non-3-ene derivatives, respectively, in good yields. Finally, a mechanistic investigation, based on DFT calculations, has been carried out to rationalize the formation of the different adducts.

  7. Palladium-catalyzed one-pot three- or four-component coupling of aryl iodides, alkynes, and amines through C-N bond cleavage: efficient synthesis of indole derivatives.

    PubMed

    Hao, Wei; Geng, Weizhi; Zhang, Wen-Xiong; Xi, Zhenfeng

    2014-02-24

    An efficient synthesis of N-substituted indole derivatives was realized by combining the Pd-catalyzed one-pot multicomponent coupling approach with cleavage of the C(sp(3))-N bonds. Three or four components of aryl iodides, alkynes, and amines were involved in this coupling process. The cyclopentadiene-phosphine ligand showed high efficiency. A variety of aryl iodides, including cyclic and acyclic tertiary amino aryl iodides, and substituted 1-bromo-2-iodobenzene derivatives could be used. Both symmetric and unsymmetric alkynes substituted with alkyl, aryl, or trimethylsilyl groups could be applied. Cyclic secondary amines such as piperidine, morpholine, 4-methylpiperidine, 1-methylpiperazine, 2-methylpiperidine, and acyclic amines including secondary and primary amines all showed good reactivity. Further application of the resulting indole derivatives was demonstrated by the synthesis of benzosilolo[2,3-b]indole. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Solution-phase synthesis of a hindered N-methylated tetrapeptide using Bts-protected amino acid chlorides: efficient coupling and methylation steps allow purification by extraction.

    PubMed

    Vedejs, E; Kongkittingam, C

    2000-04-21

    N-Benzothiazole-2-sulfonyl (Bts)-protected amino acid chlorides were used to prepare the hindered cyclosporin 8-11 tetrapeptide subunit 1. The synthesis was performed via 3a and the deprotected amines 5a, 13, and 19, including three repeated cycles involving N-methylation using iodomethane/potassium carbonate, deprotection of the Bts group, and N-acylation with a N-Bts-amino acid chloride such as 9b or 9c. Among three Bts cleavage methods compared (H3PO2/THF; NaBH4/EtOH; PhSH/K2CO3), the third gave somewhat higher overall yields. N-Acylation of 5a with the Bts-protected N-methylamino acid chloride 10b followed by deprotection was also highly efficient and could be used as an alternative route to 11. Each of the deprotected amines was isolated without chromatography using simple extraction methods to remove neutral byproducts. The tetrapeptide 1 was obtained in analytically pure form as the monohydrate.

  9. Microwave assisted synthesis and structure-activity relationship of 4-hydroxy-N'-[1-phenylethylidene]-2H/2-methyl-1,2-benzothiazine-3-carbohydrazide 1,1-dioxides as anti-microbial agents.

    PubMed

    Ahmad, Naveed; Zia-ur-Rehman, Muhammad; Siddiqui, Hamid Latif; Ullah, Muhammad Fasih; Parvez, Masood

    2011-06-01

    A series of 4-hydroxy-N'-[1-phenylethylidene]-2H/2-methyl, 1,2-benzothiazine-3-carbohydrazide 1,1-dioxides was synthesized from commercially available sodium saccharin. Base catalyzed ring expansion of methyl (1,1-dioxido-3-oxo-1,2-benzisothiazol-2(3H)-yl)acetate followed by ultrasound mediated hydrazinolysis and subsequent reaction with 1-phenylethanones under the influence of microwaves yielded the title compounds. Besides, microwave assisted synthesis of 1,4-dihydropyrazolo[4,3-c][1,2]benzothiazin-3-ol 5,5-dioxide and 4-methyl-1,4-dihydropyrazolo[4,3-c][1,2]benzothiazin-3-ol 5,5-dioxide is also discussed. Most of the synthesized compounds were found to possess moderate to significant anti-microbial (anti-bacterial and anti-fungal) activities. It is found that compounds with greater lipophilicity (N-methyl analogues) possessed higher anti-bacterial activities. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  10. Stereodivergent Synthesis of N-Heterocycles by Catalyst-Controlled, Activity-Directed Tandem Annulation of Diazo Compounds with Amino Alkynes.

    PubMed

    Liu, Kai; Zhu, Chenghao; Min, Junxiang; Peng, Shiyong; Xu, Guangyang; Sun, Jiangtao

    2015-10-26

    A stereodivergent synthesis of five-membered N-heterocycles, such as 2,3-dihydropyrroles, and 2-methylene and 3-methylene pyrrolidines, has been developed through a tandem annulation of amino alkynes with diazo compounds and involves the trapping of in situ formed intermediates. Mechanistic investigations indicate that the copper-catalyzed tandem annulations proceed by allenoate formation and subsequent intramolecular hydroamination. In contrast, the rhodium-catalyzed protocol features a carbenoid insertion into the NH bond and subsequent Conia-ene cyclization. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Rhodium/Silver-Cocatalyzed Transannulation of N-Sulfonyl-1,2,3-triazoles with Vinyl Azides: Divergent Synthesis of Pyrroles and 2 H-Pyrazines.

    PubMed

    Zhang, Lin; Sun, Ge; Bi, Xihe

    2016-11-07

    The first cyclization reaction between vinyl azides and N-sulfonyl-1,2,3-triazoles is reported. A Rh/Ag binary metal catalyst system proved to be necessary for the successful cyclization. By varying the structure of vinyl azides, such reaction allows the divergent synthesis of pyrroles and 2H-pyrazines. The cyclization reactions feature a broad substrate scope, good functional group tolerance, high reaction efficiency, and good to high product yields. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis and evaluation of aminoborates derived from boric acid and diols for protecting wood against fungal and thermal degradation

    Treesearch

    George C. Chen

    2008-01-01

    N-methyl amino catechol borate (1), N-methyl amino-4-methyl catechol borate (2), N-methyl amino-4-t-butyl catechol borate (3), and N-methyl amino-2, 3-naphthyl borate (4) were synthesized by reflux of boric acid with a diol in solvent N,N-dimethyl formamide. The aminoborates were characterized by proton nuclear magnetic resonance spectroscopy, FTIR spectroscopy and...

  13. Gold-Catalyzed Solid-Phase Synthesis of 3,4-Dihydropyrazin-2(1H)-ones: Relevant Pharmacophores and Peptide Backbone Constraints.

    PubMed

    Přibylka, Adam; Krchňák, Viktor

    2017-11-13

    Here, we report the efficient solid-phase synthesis of N-propargyl peptides using Fmoc-amino acids and propargyl alcohol as key building blocks. Gold-catalyzed nucleophilic addition to the triple bond induced C-N bond formation, which triggered intramolecular cyclization, yielding 1,3,4-trisubstituted-5-methyl-3,4-dihydropyrazin-2(1H)-ones. Conformations of acyclic and constrained peptides were compared using a two-step conformer distribution analysis at the molecular mechanics level and density functional theory. The results indicated that the incorporation of heterocyclic molecular scaffold into a short peptide sequence adopted extended conformation of peptide chain. The amide bond adjacent to the constraint did not show significant preference for either cis or trans isomerism. Prepared model compounds demonstrate a proof of concept for gold-catalyzed polymer-supported synthesis of variously substituted 3,4-dihydropyrazin-2(1H)-ones for applications in drug discovery and peptide backbone constraints.

  14. Opto-EM and Devices Investigation

    DTIC Science & Technology

    1989-06-01

    value of bandwidth is used the signal to noise ratio of the UAM system becomes ( SNP )u z exp ’cr. 2P,\\ 3 .V N._ W/ 3.3 GAUSSIAN SHAPED MESSAGE SPECTRA...Unclassified N/A 2a. SECURITY CLASSIFICATION AUTHORITY 3 . DISTRIBUTION/AVAILABILITY OF REPORT N/A Approved for public release; 2b. DECLASSIFICATION...Synthesis, Single Crystal Growth, Purification and Characterization of Indium Phosphide 2. Deposition of Select Silicides Under High Vacuum Conditions 3 . Use

  15. Solvent/oxidant-switchable synthesis of multisubstituted quinazolines and benzimidazoles via metal-free selective oxidative annulation of arylamidines.

    PubMed

    Lin, Jian-Ping; Zhang, Feng-Hua; Long, Ya-Qiu

    2014-06-06

    A fast and simple divergent synthesis of multisubstituted quinazolines and benzimidazoles was developed from readily available amidines, via iodine(III)-promoted oxidative C(sp(3))-C(sp(2)) and C(sp(2))-N bond formation in nonpolar and polar solvents, respectively. Further selective synthesis of quinazolines in polar solvent was realized by TEMPO-catalyzed sp(3)C-H/sp(2)C-H direct coupling of the amidine with K2S2O8 as the oxidant. No metal, base, or other additives were needed.

  16. Exogenous fatty acids affect CDP-choline pathway to increase phosphatidylcholine synthesis in granular pneumocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chander, A.; Gullo, J.; Reicherter, J.

    1987-05-01

    Regulation of phosphatidylcholine (PC) synthesis in rat granular pneumocytes isolated by tryptic digestion of lungs and maintained in primary culture for 24 h was investigated by following effects of exogenous fatty acids on (/sup 3/H-methyl)choline incorporation into PC and disaturated PC (DSPC). At 0.1 mM choline, the rate of choline incorporation into PC and DSPC was 440 +/- and 380 +/- 50 pmol/h/ug Pi (mean +/- SE, n=3-5), respectively, and was linear for up to 3 h. PC synthesis was significantly increased by 0.1 mM each of palmitic, oleic, linoleic, or linolenic acid. However, synthesis of DSPC was increased onlymore » by palmitic acid and this increase was prevented by addition of oleic acid suggesting lack of effect on the remodeling pathway. Pulse-chase experiments with choline in absence or presence of palmitic or oleic acid showed that the label declined in choline phosphate and increased in PC more rapidly in presence of either of the fatty acids, suggesting rapid conversion of choline phosphate to PC. Microsomal choline phosphate cytidyltransferase activity in cells preincubated without or with palmitic acid for 3 h was 0.81 +/- 0.07 and 1.81 +/- 0.09 nmol choline phosphate converted/min/mg protein (n=4). These results suggest that in granular pneumocytes, exogenous fatty acids modulate PC synthesis by increasing choline phosphate cytidyltransferase activity.« less

  17. CO + H/sub 2/ reaction over nitrogen-modified iron catalysts. Quarterly technical progress report, October 1, 1983-December 30, 1983. [Denitriding of iron nitrides in both hydrogen and helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgass, W.N.

    1984-02-01

    The synthesis of epsilon-Fe/sub 2.7/N is confirmed by Moessbauer spectroscopy. Carburization of epsilon-iron nitride for 2.5 hours in 3H/sub 2//CO at 523 K starts the formation of a bulk structure similar to that seen during ..gamma..'-iron nitride carburization. Reaction of ..gamma..'-Fe/sub 4/N in 3CO/H/sub 2/ synthesis gas at 523 K shows a better bulk stability than reaction in 3H/sub 2//CO. Kinetic analysis of the product distribution at the higher CO ratio confirms greater activity and selectivity maintainance. The kinetics of denitriding in both He and H/sub 2/ was studied with a mass spectrometer. Extremely rapid nitrogen loss was observed frommore » both ..gamma..'-Fe/sub 4/N and epsilon-Fe/sub 2.7/N catalysts in H/sub 2/ at 523 K. In both cases a initial exposure to H/sub 2/ produced a significant amount of NH/sub 3/ which we ascribe to an active surface species. Hydrogenation of the bulk continued with a slow rise to a maximum about 90 seconds after the introduction of H/sub 2/. The denitriding activity of the epsilon-Fe/sub 2.7/N catalyst was significantly higher than that of the ..gamma..'-Fe/sub 4/N catalyst. In contrast, the denitriding rate of epsilon-Fe/sub 2.7/N in He was significantly slower than that in H/sub 2/ until high temperatures (773K) were reached. An overall activation energy of 41.5 kcal/mol was obtained for this process. Comparison of the denitriding rate of virgin epsilon-Fe/sub 2.7/N in H/sub 2/ with that of the same nitride after five minutes of carburization during the hydrocarbon synthesis reaction indicates large differences in the overall rate. The carburized nitride was some 300 times less active to bulk hydrogenation than the virgin catalyst, which is indicative of significant changes in the first few layers of the nitride during the initial minutes of the synthesis reaction. 17 references, 5 figures.« less

  18. Facile synthesis of nanorod-type graphitic carbon nitride/Fe{sub 2}O{sub 3} composite with enhanced photocatalytic performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiangpeng; Li, Changqing; Cong, Jingkun

    2016-06-15

    Here we report a facile synthesis of nanorod-type graphitic carbon nitride/Fe{sub 2}O{sub 3} composite (Fe{sub 2}O{sub 3}-g-C{sub 3}N{sub 4}) by using Fe-melamine supramolecular framework as precursor. The chemical and optical properties of the nanocomposites are well-characterized. The Fe{sub 2}O{sub 3}-g-C{sub 3}N{sub 4} nanocomposite demonstrated excellent photocatalytic activities under visible light due to the efficient utilization of sunlight and the construction of Z-scheme electron transfer pathway. The results indicated that it could be a promising approach for the preparation of efficient g-C{sub 3}N{sub 4} nanocomposites photocatalysts by using metal-melamine supramolecular framework as precursors. - Graphical abstract: Nanorod-type graphitic carbon nitride/Fe{sub 2}O{submore » 3} composite (Fe{sub 2}O{sub 3}-g-C{sub 3}N{sub 4}) was synthesized by using Fe-melamine supramolecular framework as precursor. The Fe{sub 2}O{sub 3}-g-C{sub 3}N{sub 4} nanocomposite demonstrated excellent photocatalytic activities under visible light. Display Omitted - Highlights: • Nanorod-type graphitic carbon nitride/Fe{sub 2}O{sub 3} composite (Fe{sub 2}O{sub 3}-g-C{sub 3}N{sub 4}) was synthesized. • Fe{sub 2}O{sub 3}-g-C{sub 3}N{sub 4} showed strong optical absorption in the visible-light region. • The Fe{sub 2}O{sub 3}-g-C{sub 3}N{sub 4} nanocomposite demonstrated excellent photocatalytic activities.« less

  19. Synthesis and potential cytotoxic activity of some new benzoxazoles, imidazoles, benzimidazoles and tetrazoles.

    PubMed

    Arulmurugan, Subramaniyan; Kavitha, Helen P

    2013-06-01

    2 The present work deals with the synthesis of some novel heterocyclic compounds such as benzoxazoles , 7, 13 and 19, imidazoles 3, 8, 14 and 20, benzimidazoles 4, 9, 15 and 21, and tetrazoles 10, 16, and 22. The synthesized compounds were characterized by IR, 1H NMR, mass spectrometry and elemental analysis. The compounds were evaluated for cytotoxicity against human cancer cell lines such as MCF-7 (breast cancer) and HT-29 (colon cancer) by the MTT assay method. Among the tested compounds, 4,4'-sulfonylbis(N-(2-(1H-benzo[d]imidazol- -2-yl)ethyl)aniline (9), N-bis(2-(benzo[d]oxazol-2-yl)-ethyl)- 6-phenyl-1,3,5-triazine-2,4-diamine (13), N-bis(2-(1H-benzo[ d]imidazol-2-yl)ethyl)-6-phenyl-1,3,5-triazine-2,4-diamine (15) and N-tris(2-1H-benzo[d]imidazol-2-yl)ethyl)- 1,3,5-triazine-2,4,6-triamine (21) showed potent cytotoxicity.

  20. N-acetyl cysteine inhibits lipopolysaccharide-mediated induction of interleukin-6 synthesis in MC3T3-E1 cells through the NF-kB signaling pathway.

    PubMed

    Guo, Ling; Zhang, Hui; Li, Wangyang; Zhan, Danting; Wang, Min

    2018-06-06

    Interleukin-6 (IL-6) is a potent stimulator of osteoclastic activity. Lipopolysaccharide (LPS) has been shown to regulate the expression of potent inflammatory factors, including TNF-α and IL-6. Currently, effective therapeutic treatments for bacteria-caused bone destruction are limited. N-acetyl cysteine (NAC) is an antioxidant small molecule that possibly modulates osteoblastic differentiation. However, whether NAC can affect the LPS-mediated reduction of IL-6 synthesis in MC3T3-E1 cells is still unknown. The aim of this study was to investigate the role of NAC in the LPS -mediated reduction of IL-6 synthesis by MC3T3-E1 cells and to explore the underlying molecular mechanisms. In addition, we aimed to determine the involvement of the NF-kB pathway in any changes in IL-6 expression observed in response to LPS and NAC. MC3T3-E1 cells (ATCC, CRL-2593) were cultured in α-minimum essential medium. Cells were stimulated using NAC or LPS at various concentrations. Cell proliferation was observed at multiple time points using a cell counting kit 8 (CCK-8). IL-6 mRNA expression and protein synthesis were determined using quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay analyses. NF-kB mRNA expression and protein synthesis was determined using qPCR and Western blots analyses. The results demonstrate that LPS induced IL-6 and NF-kB mRNA expression and protein synthesis in the cultured MC3T3-E1 cells. However, these effects were abolished following pre-treatment with NAC. Pretreatment with NAC (1 mmol/l) or BAY11-7082 (10 μmol/l) both significantly inhibited the NF-kB activity induced by LPS. NAC inhibits the LPS-mediated induction of IL-6 synthesis in MC3T3-E1 cells through the NF-kB pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Pharmacological characterization of ecstasy synthesis byproducts with recombinant human monoamine transporters.

    PubMed

    Pifl, Christian; Nagy, Gabor; Berényi, Sándor; Kattinger, Alexandra; Reither, Harald; Antus, Sándor

    2005-07-01

    Ecstasy samples often contain byproducts of the illegal, uncontrolled synthesis of N-methyl-3,4-methylenedioxy-amphetamine or 3,4-methylenedioxymethamphetamine (MDMA). MDMA and eight chemically defined byproducts of MDMA synthesis were investigated for their interaction with the primary sites of action of MDMA, namely the human plasmalemmal monamine transporters for norepinephrine, serotonin, and dopamine [(norepinephrine transporter (NET), serotonin transporter (SERT), and dopamine transporter (DAT)]. SK-N-MC neuroblastoma and human embryonic kidney cells stably transfected with the transporter cDNA were used for uptake and release experiments. Two of the eight compounds, 1,3-bis (3,4-methylenedioxyphenyl)-2-propanamine (12) and N-formyl-1,3-bis (3,4-methylenedioxyphenyl)-prop-2-yl-amine (13) had uptake inhibitory potencies with IC50 values in the low micromolar range similar to MDMA. Compounds with nitro instead of amino groups and a phenylethenyl instead of a phenylethyl structure or a formamide or acetamide modification had IC50 values beyond 100 microM. MDMA, 12, and 13 were examined for induction of carrier-mediated release by superfusion of transporter expressing cells preloaded with the metabolically inert transporter substrate [3H]1-methyl-4-phenylpyridinium. MDMA induced release mediated by NET, SERT, or DAT with EC50 values of 0.64, 1.12, and 3.24 microM, respectively. 12 weakly released from NET- and SERT-expressing cells with maximum effects less than one-tenth of that of MDMA and did not release from DAT cells. 13 had no releasing activity. 12 and 13 inhibited release induced by MDMA, and the concentration dependence of this effect correlated with their uptake inhibitory potency at the various transporters. These results do not support a neurotoxic potential of the examined ecstasy synthesis byproducts and provide interesting structure-activity relationships on the transporters.

  2. Strategies to indium nitride and gallium nitride nanoparticles: Low-temperature, solution-phase and precursor routes

    NASA Astrophysics Data System (ADS)

    Dingman, Sean Douglas

    I present new strategies to low-temperature solution-phase synthesis of indium and gallium nitride (InN and GaN) ceramic materials. The strategies include: direct conversion of precursor molecules to InN by pyrolysis, solution-phase synthesis of nanostructured InN fibers via molecular precursors and co-reactants, and synthesis of powders through reactions derived from molten-salt chemistry. Indium nitride powders are prepared by pyrolysis of the precursors R 2InN3 (R = t-Bu (1), i-Amyl(2), Et(3), i-Pr( 4)). The precursors are synthesized via azide-alkoxide exchange of R2InOMe with Me3SiN3. The precursors are coordination polymers containing five-coordinate indium centers. Pyrolysis of 1 and 2 under N2 at 400°C yields powders consisting primarily of InN with average crystal sizes of 15--35 nm. 1 yields nanocrystalline InN with average particle sizes of 7 nm at 250°C. 3 and 4 yield primarily In metal from pyrolysis. Refluxing 1 in diisopropylbenzene (203°C) in the presence of primary amines yields InN nanofibers 10--100 nm in length. InN nanofibers of up to 1 mum can be synthesized by treating 1 with 1,1-dimethylhydrazine (DMHy) The DMHy appears to control the fiber length by acting as a secondary source of active nitrogen in order to sustain fiber growth. The resulting fibers are attached to droplets of indium metal implying a solution-liquid-solid growth mechanism. Precursor 4 yields crystalline InN whiskers when reacted with DMHy. Reactions of 4 with reducing agents such as HSnBu3, yield InN nanoparticles with an average crystallite size of 16 nm. Gallium precursors R2GaN3 (R = t-Bu( 5), Me3SiCH2(6) and i-Pr( 7)), synthesized by azide-alkoxide exchange, are found to be inert toward solution decomposition and do not yield GaN. These compounds are molecular dimers and trimers unlike the indium analogs. Compound 6 displays a monomer-dimer equilibrium in benzene solution, but exists as a solid-state trimer. InN powders are also synthesized by reactions of InCl3 and LiNH2 in a molten alkali-halide eutectic, KBr: Liar (60:40), at 400°C. The molten salt acts as an appropriate recrystallization medium for InN. Large InN platelets up to 500 nm could be synthesized. This is a significant step in finding mild reaction conditions that yield large InN crystals.

  3. Cu-catalyzed aerobic oxidative cyclizations of 3-N-hydroxyamino-1,2-propadienes with alcohols, thiols, and amines to form α-O-, S-, and N-substituted 4-methylquinoline derivatives.

    PubMed

    Sharma, Pankaj; Liu, Rai-Shung

    2015-03-16

    A one-pot, two-step synthesis of α-O-, S-, and N-substituted 4-methylquinoline derivatives through Cu-catalyzed aerobic oxidations of N-hydroxyaminoallenes with alcohols, thiols, and amines is described. This reaction sequence involves an initial oxidation of N-hydroxyaminoallenes with NuH (Nu = OH, OR, NHR, and SR) to form 3-substituted 2-en-1-ones, followed by Brønsted acid catalyzed intramolecular cyclizations of the resulting products. Our mechanistic analysis suggests that the reactions proceed through a radical-type mechanism rather than a typical nitrone-intermediate route. The utility of this new Cu-catalyzed reaction is shown by its applicability to the synthesis of several 2-amino-4-methylquinoline derivatives, which are known to be key precursors to several bioactive molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Iron(II) cage complexes of N-heterocyclic amide and bis(trimethylsilyl)amide ligands: synthesis, structure, and magnetic properties.

    PubMed

    Sulway, Scott A; Collison, David; McDouall, Joseph J W; Tuna, Floriana; Layfield, Richard A

    2011-03-21

    Metallation of hexahydropyrimidopyrimidine (hppH) by [Fe{N(SiMe(3))(2)}(2)] (1) produces the trimetallic iron(II) amide cage complex [{(Me(3)Si)(2)NFe}(2)(hpp)(4)Fe] (2), which contains three iron(II) centers, each of which resides in a distorted tetrahedral environment. An alternative, one-pot route that avoids use of the highly air-sensitive complex 1 is described for the synthesis of the iron(II)-lithium complex [{(Me(3)Si)(2)N}(2)Fe{Li(bta)}](2) (3) (where btaH = benzotriazole), in which both iron(II) centers reside in 3-coordinated pyramidal environments. The structure of 3 is also interpreted in terms of the ring laddering principle developed for alkali metal amides. Magnetic susceptibility measurements reveal that both compounds display very weak antiferromagnetic exchange between the iron(II) centers, and that the iron(II) centers in 2 and 3 possess large negative axial zero-field splittings.

  5. Inhibition of DNA synthesis by chemical carcinogens in cultures of initiated and normal proliferating rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novicki, D.L.; Rosenberg, M.R.; Michalopoulos, G.

    1985-01-01

    Rat hepatocytes in primary culture can be stimulated to replicate under the influence of rat serum and sparse plating conditions. Higher replication rates are induced by serum from two-thirds partially hepatectomized rats. The effects of carcinogens and noncarcinogens on the ability of hepatocytes to synthesize DNA were examined by measuring the incorporation of (3H)thymidine by liquid scintillation counting and autoradiography. Hepatocyte DNA synthesis was not decreased by ethanol or dimethyl sulfoxide at concentrations less than 0.5%. No effect was observed when 0.1 mM ketamine, Nembutal, hypoxanthine, sucrose, ascorbic acid, or benzo(e)pyrene was added to cultures of replicating hepatocytes. Estrogen, testosterone,more » tryptophan, and vitamin E inhibited DNA synthesis by approximately 50% at 0.1 mM, a concentration at which toxicity was noticeable. Several carcinogens requiring metabolic activation as well as the direct-acting carcinogen N-methyl-N'-nitro-N-nitrosoguanidine interfered with DNA synthesis. Aflatoxin B1 inhibited DNA synthesis by 50% (ID50) at concentrations between 1 X 10(-8) and 1 X 10(-7) M. The ID50 for 2-acetylaminofluorene was between 1 X 10(-7) and 1 X 10(-6) M. Benzo(a)pyrene and 3'-methyl-4-dimethylaminoazobenzene inhibited DNA synthesis 50% between 1 X 10(-5) and 1 X 10(-4) M. Diethylnitrosamine and dimethylnitrosamine (ID50 between 1 X 10(-4) and 5 X 10(-4) M) and 1- and 2-naphthylamine (ID50 between 1 X 10(-5) and 5 X 10(-4) M) caused inhibition of DNA synthesis at concentrations which overlapped with concentrations that caused measurable toxicity.« less

  6. Three- and Two-Dimensional Tin and Lead Halide Perovskite Semiconductors: Synthesis and Application in Photovoltaics

    NASA Astrophysics Data System (ADS)

    Cao, Duyen Hanh

    Halide perovskites, AMX3 (A = monocation, B = Ge, Sn, or Pb, and X = halogen), present a versatile class of solution-processable semiconductors made from earth abundant materials with outstanding electrical and optical properties. Their solar cell efficiencies have dramatically increased from 9% to 22% in less than five years since 2012, a rate that has never been seen before in photovoltaic research. Critical to the final goal of commercializing perovskite solar cell technology is achieving device long-term stability and eliminating toxic elements in device components. This thesis uses 3D AMX 3 perovskites as a stand-in to develop a new class of lead-free, moisture stable, functional and highly tunable 2D Ruddlesden-Popper (BA) 2(MA)n-1SnnI3n+1 (n is an integer) perovskite semiconductors. Synthesis, thin film fabrication, extensive characterization, and solar cell device structure-performance relationships are presented throughout the entire thesis.

  7. Synthesis of Polyheterocyclic Pyrrolo[3,4-b]pyridin-5-ones via a One-Pot (Ugi-3CR/aza Diels-Alder/N-acylation/aromatization/SN2) Process. A Suitable Alternative towards Novel Aza-Analogues of Falipamil.

    PubMed

    Zamudio-Medina, Angel; García-González, Ailyn N; Herrera-Carrillo, Genesis K; Zárate-Zárate, Daniel; Benavides-Macías, Adriana; Tamariz, Joaquín; Ibarra, Ilich A; Islas-Jácome, Alejandro; González-Zamora, Eduardo

    2018-03-27

    We describe the one-pot synthesis of twenty polyheterocyclic pyrrolo[3,4- b ]pyridin-5-ones via a cascade process (Ugi-3CR/aza Diels-Alder/ N -acylation/aromatization) in 20 to 95% overall yields, as well as four pharmacologically promising analogues via an improved cascade process (Ugi-3CR/aza Diels-Alder/ N -acylation/aromatization/S N 2): two piperazine-linked pyrrolo[3,4- b ]pyridin-5-ones in 33 and 34%, and a couple of Falipamil aza-analogues in 30 and 35% overall yields. It is worth highlighting the good substrate scope found, because final products are furnished with alkyl, aryl, and heterocyclic substituents. The use of chain-ring tautomerizable isocyanides (as key reagents for the Ugi-type three component reaction) allowed for a rapid and efficient assembly of the polysubstituted oxindoles, which were used in situ toward the complex products, conferring features like robustness, sustainability, and the one-pot approach to this synthetic methodology.

  8. The synthesis and structure of a potential immunosuppressant: N-mycophenoyl malonic acid dimethyl ester

    NASA Astrophysics Data System (ADS)

    Siebert, Agnieszka; Cholewiński, Grzegorz; Garwolińska, Dorota; Olejnik, Adrian; Rachoń, Janusz; Chojnacki, Jarosław

    2018-01-01

    The synthesis of a potential immunosuppressant, i.e. dimethyl ester of N-mycophenoyl malonic acid was optimized in the reaction of mycophenolic acid (MPA) with amino malonic dimethyl ester in the presence of propanephosphonic anhydride (T3P) as a coupling reagent. The structural properties of the obtained MPA derivative were investigated by NMR, MS and single crystal X-ray diffraction methods. Theoretical considerations of conformational flexibility based on DFT calculations are presented.

  9. Phosphatidylethanolamine Synthesis by Castor Bean Endosperm 1

    PubMed Central

    Shin, Sungho; Moore, Thomas S.

    1990-01-01

    A base exchange reaction for synthesis of phosphatidylethanolamine by the endoplasmic reticulum of castor bean (Ricinus comminus L. var Hale) endosperm has been examined. The calculated Michaelis-Menten constant of the enzyme for ethanolamine was 5 micromolar and the optimal pH was 7.8 in the presence of 2 millimolar CaCl2. l-Serine, N-methylethanolamine and N,N-dimethylethanolamine all reduced ethanolamine incorporation, while d-serine and myo-inositol had little effect. These inhibitions of ethanolamine incorporation were found to be noncompetitive and ethanolamine also noncompetitively inhibited l-serine incorporation by exchange. The activity of the ethanolamine base exchange enzyme was affected by several detergents, with the best activity being obtained with the zwitterionic defjtergent 3-3-cholamidopropyl) dimethylammonio-2-hydroxyl-1-propanesulfonate. PMID:16667427

  10. Concurrent protein synthesis is required for in vivo chitin synthesis in postmolt blue crabs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horst, M.N.

    1990-12-01

    Chitin synthesis in crustaceans involves the deposition of a protein-polysaccharide complex at the apical surface of epithelial cells which secrete the cuticle or exoskeleton. The present study involves an examination of in vivo incorporation of radiolabeled amino acids and amino sugars into the cuticle of postmolt blue crabs, Callinectes sapidus. Rates of incorporation of both 3H leucine and 3H threonine were linear with respect to time of incubation. Incorporation of 3H threonine into the endocuticle was inhibited greater than 90% in the presence of the protein synthesis inhibitor, puromycin. Linear incorporation of 14C glucosamine into the cuticle was also demonstrated;more » a significant improvement of radiolabeling was achieved by using 14C-N-acetylglucosamine as the labeled precursor. Incorporation of 3H-N-acetylglucosamine into the cuticle of postmolt blue crabs was inhibited 89% by puromycin, indicating that concurrent protein synthesis is required for the deposition of chitin in the blue crab. Autoradiographic analysis of control vs. puromycin-treated crabs indicates that puromycin totally blocks labeling of the new endocuticle with 3H glucosamine. These results are consistent with the notion that crustacean chitin is synthesized as a protein-polysaccharide complex. Analysis of the postmolt and intermolt blue crab cuticle indicates that the exoskeleton contains about 60% protein and 40% chitin. The predominant amino acids are arginine, glutamic acid, alanine, aspartic acid, and threonine.« less

  11. Role of N-methyl-2-pyrrolidone for preparation of Fe3O4@SiO2 controlled the shell thickness

    NASA Astrophysics Data System (ADS)

    Wee, Sung-Bok; Oh, Hyeon-Cheol; Kim, Tae-Gyun; An, Gye-Seok; Choi, Sung-Churl

    2017-04-01

    We developed a simple and novel approach for the synthesis of Fe3O4@SiO2 nanoparticles with controlled shell thickness, and studied the mechanism. The introduction of N-methyl-2-pyrrolidone (NMP) led to trapping of monomer nuclei in single shell and controlled the shell thickness. Fe3O4@SiO2 controlled the shell thickness, showing a high magnetization value (64.47 emu/g). Our results reveal the role and change in the chemical structure of NMP during the core-shell synthesis process. NMP decomposed to 4-aminobutanoic acid in alkaline condition and decreased the hydrolysis rate of the silica coating process.

  12. Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions

    NASA Technical Reports Server (NTRS)

    McCollom, T. M.; Ritter, G.; Simoneit, B. R.

    1999-01-01

    Ever since their discovery in the late 1970's, mid-ocean-ridge hydrothermal systems have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge hydrothermal systems are postulated to have been sites where life could have originated or Mars and elsewhere as well). Because no modern-day terrestrial hydrothermal systems are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in hydrothermal systems. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 degrees C for 2-3 days and produces lipid compounds ranging from C2 to > C35 which consist of n-alkanols, n-alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.

  13. Lipid Synthesis Under Hydrothermal Conditions by Fischer- Tropsch-Type Reactions

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.; Ritter, Gilles; Simoneit, Bernd R. T.

    1999-03-01

    Ever since their discovery in the late 1970's, mid-ocean-ridge hydrothermal systems have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge hydrothermal systems are postulated to have been sites where life could have originated on Mars and elsewhere as well). Because no modern-day terrestrial hydrothermal systems are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in hydrothermal systems. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 °C for 2-3 days and produces lipid compounds ranging from C2 to >C35 which consist of n-alkanols, n- alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.

  14. Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions.

    PubMed

    McCollom, T M; Ritter, G; Simoneit, B R

    1999-03-01

    Ever since their discovery in the late 1970's, mid-ocean-ridge hydrothermal systems have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge hydrothermal systems are postulated to have been sites where life could have originated or Mars and elsewhere as well). Because no modern-day terrestrial hydrothermal systems are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in hydrothermal systems. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 degrees C for 2-3 days and produces lipid compounds ranging from C2 to > C35 which consist of n-alkanols, n-alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.

  15. Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers.

    PubMed

    Nagel, Lilly; Plattner, Carolin; Budke, Carsten; Majer, Zsuzsanna; DeVries, Arthur L; Berkemeier, Thomas; Koop, Thomas; Sewald, Norbert

    2011-08-01

    In Arctic and Antarctic marine regions, where the temperature declines below the colligative freezing point of physiological fluids, efficient biological antifreeze agents are crucial for the survival of polar fish. One group of such agents is classified as antifreeze glycoproteins (AFGP) that usually consist of a varying number (n = 4-55) of [AAT]( n )-repeating units. The threonine side chain of each unit is glycosidically linked to β-D: -galactosyl-(1 → 3)-α-N-acetyl-D: -galactosamine. These biopolymers can be considered as biological antifreeze foldamers. A preparative route for stepwise synthesis of AFGP allows for efficient synthesis. The diglycosylated threonine building block was introduced into the peptide using microwave-enhanced solid phase synthesis. By this versatile solid phase approach, glycosylated peptides of varying sequences and lengths could be obtained. Conformational studies of the synthetic AFGP analogs were performed by circular dichroism experiments (CD). Furthermore, the foldamers were analysed microphysically according to their inhibiting effect on ice recrystallization and influence on the crystal habit.

  16. Predicting the growth of S i3N4 nanowires by phase-equilibrium-dominated vapor-liquid-solid mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Yongliang; Cai, Jing; Yang, Lijun; Wu, Qiang; Wang, Xizhang; Hu, Zheng

    2017-09-01

    Nanomaterial synthesis is experiencing a profound evolution from empirical science ("cook-and-look") to prediction and design, which depends on the deep insight into the growth mechanism. Herein, we report a generalized prediction of the growth of S i3N4 nanowires by nitriding F e28S i72 alloy particles across different phase regions based on our finding of the phase-equilibrium-dominated vapor-liquid-solid (PED-VLS) mechanism. All the predictions about the growth of S i3N4 nanowires, and the associated evolutions of lattice parameters and geometries of the coexisting Fe -Si alloy phases, are experimentally confirmed quantitatively. This progress corroborates the general validity of the PED-VLS mechanism, which could be applied to the design and controllable synthesis of various one-dimensional nanomaterials.

  17. [beta]-Glucan Synthesis in the Cotton Fiber (III. Identification of UDP-Glucose-Binding Subunits of [beta]-Glucan Synthases by Photoaffinity Labeling with [[beta]-32P]5[prime]-N3-UDP-Glucose.

    PubMed Central

    Li, L.; Drake, R. R.; Clement, S.; Brown, R. M.

    1993-01-01

    Using differential product entrapment and photolabeling under specifying conditions, we identifIed a 37-kD polypeptide as the best candidate among the UDP-glucose-binding polypeptides for the catalytic subunit of cotton (Gossypium hirsutum) cellulose synthase. This polypeptide is enriched by entrapment under conditions favoring [beta]-1,4-glucan synthesis, and it is magnesium dependent and sensitive to unlabeled UDP-glucose. A 52-kD polypeptide was identified as the most likely candidate for the catalytic subunit of [beta]-1,3-glucan synthase because this polypeptide is the most abundant protein in the entrapment fraction obtained under conditions favoring [beta]-1,3-glucan synthesis, is coincident with [beta]-1,3-glucan synthase activity, and is calcium dependent. The possible involvement of other polypeptides in the synthesis of [beta]-1,3-glucan is discussed. PMID:12231766

  18. In situ one-step hydrothermal synthesis of oxygen-containing groups-modified g-C3N4 for the improved photocatalytic H2-evolution performance

    NASA Astrophysics Data System (ADS)

    Wu, Xinhe; Chen, Fengyun; Wang, Xuefei; Yu, Huogen

    2018-01-01

    Surface modification of g-C3N4 is one of the most effective strategies to boost its photocatalytic H2-evolution performance via promoting the interfacial catalytic reactions. In this study, an in situ one-step hydrothermal method was developed to prepare the oxygen-containing groups-modified g-C3N4 (OG/g-C3N4) by a facile and green hydrothermal treatment of bulk g-C3N4 in pure water without any additives. It was found that the hydrothermal treatment (180 °C) not only could greatly increase the specific surface area (from 2.3 to 69.8 m2 g-1), but also caused the formation of oxygen-containing groups (sbnd OH and Cdbnd O) on the OG/g-C3N4 surface, via the interlayer delamination and intralayer depolymerization of bulk g-C3N4. Photocatalytic experimental results indicated that after hydrothermal treatment, the resultant OG/g-C3N4 samples showed an obviously improved H2-evolution performance. Especially, when the hydrothermal time was 6 h, the resultant OG/g-C3N4(6 h) exhibited the highest photocatalytic activity, which was clearly higher than that of the bulk g-C3N4 by a factor of ca. 7. In addition to the higher specific surface area, the enhanced H2-evolution rate of OG/g-C3N4 photocatalysts can be mainly attributed to the formation of oxygen-containing groups, which possibly works as the effective H2-evolution active sites. Considering the facie and green synthesis method, the present work may provide a new insight for the development of highly efficient photocatalytic materials.

  19. Design and synthesis of potent, orally-active DGAT-1 inhibitors containing a dioxino[2,3-d]pyrimidine core.

    PubMed

    Dow, Robert L; Andrews, Melissa; Aspnes, Gary E; Balan, Gayatri; Michael Gibbs, E; Guzman-Perez, Angel; Karki, Kapil; Laperle, Jennifer L; Li, Jian-Cheng; Litchfield, John; Munchhof, Michael J; Perreault, Christian; Patel, Leena

    2011-10-15

    A novel series of potent DGAT-1 inhibitors was developed originating from the lactam-based clinical candidate PF-04620110. Incorporation of a dioxino[2,3-d]pyrimidine-based core afforded good alignment of pharmacophore features and resulted in improved passive permeability. Development of an efficient, homochiral synthesis of these targets facilitated confirmation of predictions regarding the stereochemical-dependence of DGAT-1 inhibition for this series. Compound 10 was shown to be a potent inhibitor of human DGAT-1 (10 nM) and to suppress triglyceride synthesis at oral doses of <3mg/kg. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Novel ternary g-C3N4/Ag3VO4/AgBr nanocomposites with excellent visible-light-driven photocatalytic performance for environmental applications

    NASA Astrophysics Data System (ADS)

    Barzegar, Javid; Habibi-Yangjeh, Aziz; Akhundi, Anise; Vadivel, S.

    2018-04-01

    Novel visible-light-induced photocatalysts were fabricated by integration of Ag3VO4 and AgBr semiconductors with graphitic carbon nitride (g-C3N4) through a facile refluxing method. The fabricated photocatalysts were extensively characterized by XRD, EDX, SEM, TEM, FT-IR, UV-vis DRS, BET, TGA, and PL instruments. The photocatalytic performance of these samples was studied by degradations of three dye contaminants under visible-light exposure. Among the ternary photocatalysts, the g-C3N4/Ag3VO4/AgBr (10%) nanocomposite displayed the maximum activity for RhB degradation with rate constant of 1366.6 × 10-4 min-1, which is 116, 7.23, and 38.5 times as high as those of the g-C3N4, g-C3N4/AgBr (10%), and g-C3N4/Ag3VO4 (30%) photocatalysts, respectively. The effects of synthesis time and calcination temperature were also investigated and discussed. Furthermore, according to the trapping experiments, it was found that superoxide anion radicals were the predominant reactive species in this system. Finally, the ternary photocatalyst displayed superlative activity in removal of the contaminants under visible-light exposure, displaying great potential of this ternary photocatalyst for environmental remediation, because of a facile synthesis route and outstanding photocatalytic performance.

  1. Design and synthesis of dihydroisoquinolones for fragment-based drug discovery (FBDD).

    PubMed

    Palmer, Nick; Peakman, Torren M; Norton, David; Rees, David C

    2016-02-07

    This study describes general synthesis aspects of fragments for FBDD, as illustrated by the dihydroisoquinolones 1-3. Previous Rh(III) methodology is extended to incorporate amines, heteroatoms (N and S), and substituents (halogen, ester) as potential binding groups and/or synthetic growth points for fragment-to-lead elaboration.

  2. The Preparation and Reaction of Phenyl-Substituted Pyrylium and Pyridinium Salts.

    ERIC Educational Resources Information Center

    Awartani, Radi; And Others

    1986-01-01

    Describes this reaction sequence involving reactivity and synthesis of heterocycles: (1) synthesis of 2,4,6-triphenylpyrylium tetrafluoroborate, II; (2) its reaction with nucleophiles; (3) reaction of pyrylium salt II with a primary amine (benzylamine, p-methoxybenzylamine, and furfurylamine) to form the N-substituted-2,4,6-triphenylpyridinium…

  3. The Synthesis and Study of New Ribavirin Derivatives and Related Nucleoside Azole Carboxamides as Agents Active against RNA Viruses.

    DTIC Science & Technology

    1981-09-01

    No other nucleoside product was detected. 26 When 4 was subjected to hydrogenation 3 7 with Pd/C (10%), a mixture of products was obtained even after...prolonged reduction. O2N N 02JC> ______H2 N A 3 PtO 2 0 Bz • + SzO 08 45 BOBz 3 NaOEt NH 3 O2N N N2H4H 2N N N NNN No O NO ON 6 7 The major product was...1,2,4-triazole. The minor product was found to be 3-amino-l-(2,3,3-tri-O-benzovl- 8-D-ribofuranosyl)-l,2,4-triazole (5, BJ-91120). In an effort to improve

  4. In vitro synthesis of intermediates involved in the assembly of enterobacterial common antigen (ECA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, K.; Wolski, S.; Kroto, J.

    1986-05-01

    ECA is a cell surface antigen found in all bacteria belonging to the family Enterobacteriaceae. The serological specificity of ECA is determined by a linear heteropolysaccharide comprised of trisaccharide repeat units; the component sugars are N-acetyl-D-glucosamine (GlcNAc), N-acetyl-D-mannosaminuronic acid (ManNAcUA), and 4-acetamido-D-fucose (Fuc4NAc). In vivo studies have suggested that GlcNAc-pyrophosphorylundecaprenol (GlcNAc-PP-lipid) is an intermediate in ECA synthesis. More recently, they have demonstrated UDP-GlcNAc:undecaprenylphosphate GlcNAc-1-phosphate transferase activity in cell envelope preparations of E. coli. Radioactivity from UDP-(/sup 3/H)Glc-NAc was incorporated into endogenous lipid acceptor, and the labeled product was characterized as GlcNAc-PP-lipid (lipid I). Transferase activity was inhibited by tunicamycin andmore » UMP, but it was unaffected by UDP. The reaction was reversible, and the synthesis of UDP-(/sup 3/H)GlcNAc from UMP and (/sup 3/H)GlcNAc-PP-lipid was also sensitive to tunicamycin. The simultaneous addition of UDP-(/sup 14/C)ManNAcUA and UDP-(/sup 3/H)GlcNAc to cell envelope preparations resulted in the synthesis of a more polar lipid (lipid II) that contained both labeled sugars in equimolar amounts. Synthesis of lipid II was dependent on prior synthesis of lipid I. Accordingly, (/sup 3/H)GlcNAc-PP-lipid that had been synthesized in vivo served as an acceptor in vitro of ManNAcUA residues from UDP-ManNAcUA. Lipid II has been tentatively identified as ManNAcUA-GlcNAc-pyrophosphorylundecaprenol.« less

  5. The catalytic potential of cosmic dust: implications for prebiotic chemistry in the solar nebula and other protoplanetary systems.

    PubMed

    Hill, Hugh G M; Nuth, Joseph A

    2003-01-01

    The synthesis of important prebiotic molecules is fundamentally reliant on basic starting ingredients: water, organic species [e.g., methane (CH(4))], and reduced nitrogen compounds [e.g., ammonia (NH(3)), methyl cyanide (CH(3)CN) etc.]. However, modern studies conclude that the primordial Earth's atmosphere was too rich in CO, CO(2), and water to permit efficient synthesis of such reduced molecules as envisioned by the classic Miller-Urey experiment. Other proposed sources of terrestrial nitrogen reduction, like those within submarine vent systems, also seem to be inadequate sources of chemically reduced C-H-O-N compounds. Here, we demonstrate that nebular dust analogs have impressive catalytic properties for synthesizing prebiotic molecules. Using a catalyst analogous to nebular iron silicate condensate, at temperatures ranging from 500K to 900K, we catalyzed both the Fischer-Tropsch conversion of CO and H(2) to methane and water, and the corresponding Haber-Bosch synthesis of ammonia from N(2) and H(2). Remarkably, when CO, N(2), and H(2) were allowed to react simultaneously, these syntheses also yielded nitrogen-containing organics such as methyl amine (CH(3)NH(2)), acetonitrile (CH(3)CN), and N-methyl methylene imine (H(3)CNCH(2)). A fundamental consequence of this work for astrobiology is the potential for a natural chemical pathway to produce complex chemical building blocks of life throughout our own Solar System and beyond.

  6. Methyl 3-amino-4-butanamido-5-methyl­benzoate

    PubMed Central

    Li, Xiang; Yuan, Lian-shan; Wang, Dan; Yao, Cheng

    2008-01-01

    The title compound, C13H18N2O3, is an inter­mediate in the synthesis of compounds with medicinial applications. The crystal structure is stabilized by inter­molecular N—H⋯O, C—H⋯N and C—H⋯O hydrogen bonds. PMID:21202582

  7. Regulation of Viral RNA Synthesis by the V Protein of Parainfluenza Virus 5

    PubMed Central

    Yang, Yang; Zengel, James; Sun, Minghao; Sleeman, Katrina; Timani, Khalid Amine; Aligo, Jason; Rota, Paul

    2015-01-01

    ABSTRACT Paramyxoviruses include many important animal and human pathogens. The genome of parainfluenza virus 5 (PIV5), a prototypical paramyxovirus, encodes a V protein that inhibits viral RNA synthesis. In this work, the mechanism of inhibition was investigated. Using mutational analysis and a minigenome system, we identified regions in the N and C termini of the V protein that inhibit viral RNA synthesis: one at the very N terminus of V and the second at the C terminus of V. Furthermore, we determined that residues L16 and I17 are critical for the inhibitory function of the N-terminal region of the V protein. Both regions interact with the nucleocapsid protein (NP), an essential component of the viral RNA genome complex (RNP). Mutations at L16 and I17 abolished the interaction between NP and the N-terminal domain of V. This suggests that the interaction between NP and the N-terminal domain plays a critical role in V inhibition of viral RNA synthesis by the N-terminal domain. Both the N- and C-terminal regions inhibited viral RNA replication. The C terminus inhibited viral RNA transcription, while the N-terminal domain enhanced viral RNA transcription, suggesting that the two domains affect viral RNA through different mechanisms. Interestingly, V also inhibited the synthesis of the RNA of other paramyxoviruses, such as Nipah virus (NiV), human parainfluenza virus 3 (HPIV3), measles virus (MeV), mumps virus (MuV), and respiratory syncytial virus (RSV). This suggests that a common host factor may be involved in the replication of these paramyxoviruses. IMPORTANCE We identified two regions of the V protein that interact with NP and determined that one of these regions enhances viral RNA transcription via its interaction with NP. Our data suggest that a common host factor may be involved in the regulation of paramyxovirus replication and could be a target for broad antiviral drug development. Understanding the regulation of paramyxovirus replication will enable the rational design of vaccines and potential antiviral drugs. PMID:26378167

  8. Ionothermal Synthesis and Magnetic Studies of Novel Two-Dimensional Metal-Formate Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calderone, P.; Feygenson, M.; Forster, P.M.

    2011-03-21

    Five novel two-dimensional frameworks containing formate-bridged metal-centered octahedra are synthesized ionothermally from two ionic liquids previously unused as solvents in hybrid synthesis, 2-hydroxyethylammonium (HEA) formate, and 1-hydroxy-3-proplyammonium (HPA) formate. Templating effects of the cation from each ionic liquid drive the formation of different structures. [NH{sub 3}C{sub 2}H{sub 4}OH]{sub 2}[M(CHO{sub 2}){sub 4}] (1: M = Co, 2: M = Ni) exhibit the same stoichiometry and connectivity as their manganese analogue (3: M = Mn), but the manganese form exhibits a different topology from 1 and 2. [NH{sub 3}C{sub 3}H6OH][M(CHO{sub 2}){sub 3}(H{sub 2}O)] (4: M = Co, 5: M = Mn) weremore » synthesized using the HPA formate ionic liquid with a metal-formate connectivity related to those of 1-3. Canted antiferromagnetic ordering occurs at low temperatures (1: T{sub N} = 7.0 K, 2: T{sub N} = 4.6 K, 3: T{sub N} = 8.0 K, 4: T{sub N} = 7.0 K, 5: T{sub N} = 9.2 K), similar to the magnetic properties previously reported for other metal-formate hybrid materials.« less

  9. The Synthesis, Characterization and Reactivity of a Series of Ruthenium N-triphos Ph Complexes.

    PubMed

    Phanopoulos, Andreas; Long, Nicholas; Miller, Philip

    2015-04-10

    Herein we report the synthesis of a tridentate phosphine ligand N(CH2PPh2)3 (N-triphos(Ph)) (1) via a phosphorus based Mannich reaction of the hydroxylmethylene phosphine precursor with ammonia in methanol under a nitrogen atmosphere. The N-triphos(Ph) ligand precipitates from the solution after approximately 1 hr of reflux and can be isolated analytically pure via simple cannula filtration procedure under nitrogen. Reaction of the N-triphos(Ph) ligand with [Ru3(CO)12] under reflux affords a deep red solution that show evolution of CO gas on ligand complexation. Orange crystals of the complex [Ru(CO)2{N(CH2PPh2)3}-κ(3)P] (2) were isolated on cooling to RT. The (31)P{(1)H} NMR spectrum showed a characteristic single peak at lower frequency compared to the free ligand. Reaction of a toluene solution of complex 2 with oxygen resulted in the instantaneous precipitation of the carbonate complex [Ru(CO3)(CO){N(CH2PPh2)3}-κ(3)P] (3) as an air stable orange solid. Subsequent hydrogenation of 3 under 15 bar of hydrogen in a high-pressure reactor gave the dihydride complex [RuH2(CO){N(CH2PPh2)3}-κ(3)P] (4), which was fully characterized by X-ray crystallography and NMR spectroscopy. Complexes 3 and 4 are potentially useful catalyst precursors for a range of hydrogenation reactions, including biomass-derived products such as levulinic acid (LA). Complex 4 was found to cleanly react with LA in the presence of the proton source additive NH4PF6 to give [Ru(CO){N(CH2PPh2)3}-κ(3)P{CH3CO(CH2)2CO2H}-κ(2)O](PF6) (6).

  10. The Synthesis, Characterization and Reactivity of a Series of Ruthenium N-triphosPh Complexes

    PubMed Central

    Phanopoulos, Andreas; Long, Nicholas; Miller, Philip

    2015-01-01

    Herein we report the synthesis of a tridentate phosphine ligand N(CH2PPh2)3 (N-triphosPh) (1) via a phosphorus based Mannich reaction of the hydroxylmethylene phosphine precursor with ammonia in methanol under a nitrogen atmosphere. The N-triphosPh ligand precipitates from the solution after approximately 1 hr of reflux and can be isolated analytically pure via simple cannula filtration procedure under nitrogen. Reaction of the N-triphosPh ligand with [Ru3(CO)12] under reflux affords a deep red solution that show evolution of CO gas on ligand complexation. Orange crystals of the complex [Ru(CO)2{N(CH2PPh2)3}-κ3P] (2) were isolated on cooling to RT. The 31P{1H} NMR spectrum showed a characteristic single peak at lower frequency compared to the free ligand. Reaction of a toluene solution of complex 2 with oxygen resulted in the instantaneous precipitation of the carbonate complex [Ru(CO3)(CO){N(CH2PPh2)3}-κ3P] (3) as an air stable orange solid. Subsequent hydrogenation of 3 under 15 bar of hydrogen in a high-pressure reactor gave the dihydride complex [RuH2(CO){N(CH2PPh2)3}-κ3P] (4), which was fully characterized by X-ray crystallography and NMR spectroscopy. Complexes 3 and 4 are potentially useful catalyst precursors for a range of hydrogenation reactions, including biomass-derived products such as levulinic acid (LA). Complex 4 was found to cleanly react with LA in the presence of the proton source additive NH4PF6 to give [Ru(CO){N(CH2PPh2)3}-κ3P{CH3CO(CH2)2CO2H}-κ2O](PF6) (6). PMID:25938678

  11. A2TiF 5· nH 2O ( A=K, Rb, or Cs; n=0 or 1): Synthesis, structure, characterization, and calculations of three new uni-dimensional titanium fluorides

    NASA Astrophysics Data System (ADS)

    Jo, Vinna; Woo Lee, Dong; Koo, Hyun-Joo; Ok, Kang Min

    2011-04-01

    Three new uni-dimensional alkali metal titanium fluoride materials, A2TiF 5· nH 2O ( A=K, Rb, or Cs; n=0 or 1) have been synthesized by hydrothermal reactions. The structures of A2TiF 5· nH 2O have been determined by single-crystal X-ray diffraction. The Ti 4+ cations have been reduced to Ti 3+ during the synthesis reactions. All three A2TiF 5· nH 2O materials contain novel 1-D chain structures that are composed of the slightly distorted Ti 3+F 6 corner-sharing octahedra attributable to the Jahn-Teller distortion. The coordination environment of the alkali metal cations plays an important role to determine the degree of turning in the chain structures. Complete structural analyses, Infrared and UV-vis diffuse reflectance spectra, and thermal analyses are presented, as are electronic structure calculations.

  12. Atomic-Oxygen Effects on POSS Polyimides in Low Earth Orbit

    DTIC Science & Technology

    2012-01-11

    one. Figure 2. Reaction scheme for the synthesis of the N-[(hepta-isobutylPOSS) propyl ]-3,5- diaminobenzamide monomer used to prepare side-chain (SC...atomic oxygen. Earlier results from laboratory- and space-based studies are given, as well as new information on the synthesis and in-space...methods.39,40 Polyimide synthesis and processing was pioneered by workers at Dupont in the 1950’s, with Kapton being the first commercially

  13. Photochemical synthesis of the Fe0/C3N4/MoS2 heterostructure as a highly active and reusable photocatalyst

    NASA Astrophysics Data System (ADS)

    Wang, Xiu; Zhou, Zhiming; Liang, Zhiyu; Zhuang, Zanyong; Yu, Yan

    2017-11-01

    The Fe0/C3N4/MoS2 heterostructure was fabricated through photochemical synthesis that was free of NaBH4. Specifically, the g-C3N4/MoS2 (GCNM) composite was used as the substrate. Visible light excited the electrons from the valence band of the GCNM in the substrate, and the excited electrons reduced the Fe2+ ions in the solution nearby GCNM to Fe0 and then created the Fe0/C3N4/MoS2 heterostructure. Small Fe0 (<9 nm) dots well dispersed on the GCNM surface were obtained, because the diffusion of the Fe ions in the solution and the diffusion of the electrons on the GCNM substrate restricted the growth of Fe0 nanoparticles. The smaller size of Fe0 provided a larger number of active metal centers and improved the carrier separation efficiency. As a result, the Fe0/C3N4/MoS2 heterostructure exhibited superior catalytic properties in the redox reactions of rhodamine B, Cr(VI), Pb(II), and Cd(II). It could also be readily recycled without severe loss of catalytic performance.

  14. Dapson in heterocyclic chemistry, part V: synthesis, molecular docking and anticancer activity of some novel sulfonylbiscompounds carrying biologically active dihydropyridine, dihydroisoquinoline, 1,3-dithiolan, 1,3-dithian, acrylamide, pyrazole, pyrazolopyrimidine and benzochromenemoieties.

    PubMed

    Ghorab, Mostafa Mohammed; Al-Said, Mansour Sulaiman; Nissan, Yassin Mohammed

    2012-01-01

    N,N'-(4,4'-Sulfonylbis(4,1-phenylene))bis(2-cyanoacetamid) 2 was utilized as a key intermediate for the synthesis of novel dihydropyridines 3, 4, 8, dihydroisoquinolines 5-7, dithiolan 10, dithian 11, acrylamide 12, benzochromenes 17 and 18 and chromenopyridones 19 and 20. Compound 2 was the starting material in the synthesis of the acrylamide derivative 14, the pyrazole derivative 15 and the pyrazolopyrimidine derivative 16. All the synthesized compounds were evaluated for their in vitro anticancer activity against human breast cancer cell line (MCF7). Compound 19 showed the best cytotoxic activity with IC(50) value 19.36 µM. In addition, molecular docking study of the synthesized compounds on the active sites of farnesyltransferase and arginine methyltransferase was performed in order to give a suggestion about the mechanism of action of their cytotoxic activity.

  15. Sustainable Ammonia Synthesis – Exploring the scientific challenges associated with discovering alternative, sustainable processes for ammonia production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nørskov, Jens; Chen, Jingguang; Miranda, Raul

    Ammonia (NH 3) is essential to all life on our planet. Until about 100 years ago, NH 3 produced by reduction of dinitrogen (N 2) in air came almost exclusively from bacteria containing the enzyme nitrogenase.. DOE convened a roundtable of experts on February 18, 2016. Participants in the Roundtable discussions concluded that the scientific basis for sustainable processes for ammonia synthesis is currently lacking, and it needs to be enhanced substantially before it can form the foundation for alternative processes. The Roundtable Panel identified an overarching grand challenge and several additional scientific grand challenges and research opportunities: -Discovery ofmore » active, selective, scalable, long-lived catalysts for sustainable ammonia synthesis. -Development of relatively low pressure (<10 atm) and relatively low temperature (<200 C) thermal processes. -Integration of knowledge from nature (enzyme catalysis), molecular/homogeneous and heterogeneous catalysis. -Development of electrochemical and photochemical routes for N 2 reduction based on proton and electron transfer -Development of biochemical routes to N 2 reduction -Development of chemical looping (solar thermochemical) approaches -Identification of descriptors of catalytic activity using a combination of theory and experiments -Characterization of surface adsorbates and catalyst structures (chemical, physical and electronic) under conditions relevant to ammonia synthesis.« less

  16. Phenylene bridged boron-nitrogen containing dendrimers.

    PubMed

    Proń, Agnieszka; Baumgarten, Martin; Müllen, Klaus

    2010-10-01

    The synthesis and characterization of novel phenylene bridged boron-nitrogen containing π-conjugated dendrimers N3B6 and N3B3, with peripheral boron atoms and 1,3,5-triaminobenzene moiety as a core, are presented. UV-vis absorption and emission measurements reveal that the optical properties of the resulting compounds can be controlled by changing the donor/acceptor ratio: a 1:1 ratio results in a more efficient charge transfer than the 1:2 ratio. This was proven by the red shift of the emission maxima and the stronger solvatochromic effect in N3B3 compared to N3B6.

  17. Diastereoselective Pyrrolidine Synthesis via Copper Promoted Intramolecular Aminooxygenation of Alkenes; Formal Synthesis of (+)-Monomorine

    PubMed Central

    Paderes, Monissa C; Chemler, Sherry R

    2009-01-01

    The diastereoselectivity of the copper-promoted intramolecular aminooxygenation of various alkene substrates was investigated. α-Substituted 4-pentenyl sulfonamides favor the formation of 2,5-cis-pyrrolidines (dr >20:1) giving excellent yields which range from 76–97% while γ-substituted substrates favor the 2,3-trans pyrrolidine adducts with moderate selectivity (ca. 3:1). A substrate whose N-substituent was directly tethered to the α-carbon exclusively yielded the 2,5-trans pyrrolidine. The synthetic utility of the method was demonstrated by a short and efficient formal synthesis of (+)-monomorine. PMID:19331361

  18. Syntheses, Characterization and Kinetics of Nickel-Tungsten Nitride Catalysts for Hydrotreating of Gas Oil

    NASA Astrophysics Data System (ADS)

    Botchwey, Christian

    This thesis summarizes the methods and major findings of Ni-W(P)/gamma-Al 2O3 nitride catalyst synthesis, characterization, hydrotreating activity, kinetic analysis and correlation of the catalysts' activities to their synthesis parameters and properties. The range of parameters for catalyst synthesis were W (15-40 wt%), Ni (0-8 wt%), P (0-5 wt%) and nitriding temperature (TN) (500-900 °C). Characterization techniques used included: N2 sorption studies, chemisorption, elemental analysis, temperature programmed studies, x-ray diffraction, scanning electron microscopy, energy dispersive x-ray, infrared spectroscopy, transmission electron microscopy and x-ray absorption near edge structure. Hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) were performed at: temperature (340-380 °C), pressure (6.2-9.0 MPa), liquid hourly space velocity (1-3 h-1) and hydrogen to oil ratio (600 ml/ml, STP). The predominant species on the catalyst surface were Ni3N, W2N and bimetallic Ni2W3N. The bimetallic Ni-W nitride species was more active than the individual activities of the Ni3N and W2N. P increased weak acid sites while nitriding temperature decreased amount of strong acid sites. Low nitriding temperature enhanced dispersion of metal particles. P interacted with Al 2O3 which increased the dispersion of metal nitrides on the catalyst surface. HDN activity increased with Ni and P loading but decreased with increase in nitriding temperature (optimum conversion; 60 wt%). HDS and HDA activities went through a maximum with increase in the synthesis parameters (optimum conversions; 88. wt% for HDS and 47 wt% for HDA). Increase in W loading led to increase in catalyst activity. The catalysts were stable to deactivation and had the nitride structure conserved during hydrotreating in the presence of hydrogen sulfide. The results showed good correlation between hydrotreating activities (HDS and HDN) and the catalyst nitrogen content, number of exposed active sites, catalyst particle size and BET surface area. HDS and HDN kinetic analyses, using Langmuir-Hinshelwood models, gave activation energies of 66 and 32 kJ/mol, respectively. There were no diffusion limitations in the reaction process. Two active sites were involved in HDS reaction while one site was used for HDN. HDS and HDN activities of the Ni-W(P)/gamma-Al 2O3 nitride catalysts were comparable to the corresponding sulfides.

  19. Synthesis of the first radiolabeled 188Re N-heterocyclic carbene complex and initial studies on its potential use in radiopharmaceutical applications

    PubMed Central

    Wagner, Thomas; Zeglis, Brian M.; Groveman, Sam; Hille, Claudia; Pöthig, Alexander; Francesconi, Lynn C.; Herrmann, Wolfgang A.; Kühn, Fritz E.; Reiner, Thomas

    2015-01-01

    A novel approach towards the synthesis of radiolabeled organometallic rhenium complexes is presented. We successfully synthesized and analyzed the first 188Re-labeled N-heterocyclic biscarbene complex, trans-dioxobis(1,1′-methylene-bis(3,3′-diisopropylimidazolium-2-ylidene))188rhenium(V) hexafluorophosphate (188Re-4) via transmetalation using an air-stable and moisture-stable silver(I) biscarbene complex. In order to assess the viability of this complex as a potential lead structure for in vivo applications, the stability of the 188Re-NHC complex was tested in physiologically relevant media. Ultimately, our studies illustrate that the complex we synthesized dissociates rapidly and is therefore unsuitable for use in radiopharmaceuticals. However, it is clear that the transmetalation approach we have developed is a rapid, robust, and mild method for the synthesis of new 188Re-labeled carbene complexes. PMID:24889257

  20. Control of crystallite and particle size in the synthesis of layered double hydroxides: Macromolecular insights and a complementary modeling tool.

    PubMed

    Galvão, Tiago L P; Neves, Cristina S; Caetano, Ana P F; Maia, Frederico; Mata, Diogo; Malheiro, Eliana; Ferreira, Maria J; Bastos, Alexandre C; Salak, Andrei N; Gomes, José R B; Tedim, João; Ferreira, Mário G S

    2016-04-15

    Zinc-aluminum layered double hydroxides with nitrate intercalated (Zn(n)Al-NO3, n=Zn/Al) is an intermediate material for the intercalation of different functional molecules used in a wide range of industrial applications. The synthesis of Zn(2)Al-NO3 was investigated considering the time and temperature of hydrothermal treatment. By examining the crystallite size in two different directions, hydrodynamic particle size, morphology, crystal structure and chemical species in solution, it was possible to understand the crystallization and dissolution processes involved in the mechanisms of crystallite and particle growth. In addition, hydrogeochemical modeling rendered insights on the speciation of different metal cations in solution. Therefore, this tool can be a promising solution to model and optimize the synthesis of layered double hydroxide-based materials for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Studies on the synthesis of isotopes of superheavy element Lv (Z = 116)

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Safoora, V.

    2017-11-01

    The probable projectile-target combinations for the synthesis of superheavy nucleus 296Lv found in the cold valley of 296Lv have been identified by studying the interaction barrier of the colliding nuclei, probability of compound nucleus formation, P_{CN}, and survival probability W_{sur}. At energies near and above the Coulomb barrier, the capture, fusion and evaporation residue (ER) cross sections for the probable combinations for the hot and cold fusion reactions are systematically investigated. By considering intensities of the projectile beams, availabilities of the targets and half lives of the colliding nuclei, the combination 48Ca+248Cm is found to be the most probable projectile-target pair for the synthesis of 296Lv. The calculated maximum value of 2n, 3n, 4n and 5n channel cross section for the reaction 48Ca+248Cm are 0.599 pb, 5.957 pb, 4.805 pb, and 0.065 pb, respectively. Moreover, the production cross sections for the synthesis of isotopes 291-295,298Lv using 48Ca projectile on 243-247,250Cm targets are calculated. Among these reactions, the reactions 48Ca+247Cm → 295Lv and 48Ca+250Cm → 298Lv have maximum production cross section in 3n (10.697 pb) and 4n (12.006 pb) channel, respectively. Our studies on the SHE Lv using the combinations 48Ca+245Cm → 293Lv and 48Ca+248Cm → 296Lv are compared with available experimental data and with other theoretical studies. Our studies are in agreement with experimental data and we hope that these studies will be a guide for the future experiments to synthesize the isotopes of Lv.

  2. Synthesis of protected 2-pyrrolylalanine for peptide chemistry and examination of its influence on prolyl amide isomer equilibrium.

    PubMed

    Dörr, Aurélie A; Lubell, William D

    2012-08-03

    Protected enantiopure 2-pyrrolylalanine was synthesized for application in peptide science as an electron-rich arylalanine (histidine) analog with π-donor capability. (2S)-N-(Boc)-N'-(Phenylsulfonyl)-, (2S)-N,N'-bis-(phenylsulfonyl)-, and (2S)-N,N'-bis-(Boc)-3-(2-pyrrolyl)alanines (10, 3, and 14, respectively) were made in 13-17% overall yields and six to seven steps from oxazolidine β-methyl ester 4. Homoallylic ketone 5 was prepared by a copper-catalyzed cascade addition of vinylmagnesium bromide to ester 4 and converted to pyrrolyl amino alcohol 7 by olefin oxidation and Paal-Knorr condensation. Protecting group shuffle and oxidation of the primary alcohol enabled the synthesis of pyrrolylalanines. The bis-Boc analog 14 proved useful in peptide chemistry and was employed to make N-acetyl-pyrrolylalaninyl-proline N''-methylamide 25. A study of the influence of the pyrrole moiety on the prolyl amide isomer equilibrium of 25 using (1)H NMR spectroscopy in chloroform, DMSO, and water demonstrated that the pyrrolylalanine peptide exhibited behavior and conformations different from those of other arylalanine analogs.

  3. Multivariate Statistical Analysis of Orthogonal Mass Spectral Data for the Identification of Chemical Attribution Signatures of 3-Methylfentanyl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, B. P.; Valdez, C. A.; DeHope, A. J.

    Critical to many modern forensic investigations is the chemical attribution of the origin of an illegal drug. This process greatly relies on identification of compounds indicative of its clandestine or commercial production. The results of these studies can yield detailed information on method of manufacture, sophistication of the synthesis operation, starting material source, and final product. In the present work, chemical attribution signatures (CAS) associated with the synthesis of the analgesic 3- methylfentanyl, N-(3-methyl-1-phenethylpiperidin-4-yl)-N-phenylpropanamide, were investigated. Six synthesis methods were studied in an effort to identify and classify route-specific signatures. These methods were chosen to minimize the use of scheduledmore » precursors, complicated laboratory equipment, number of overall steps, and demanding reaction conditions. Using gas and liquid chromatographies combined with mass spectrometric methods (GC-QTOF and LC-QTOF) in conjunction with inductivelycoupled plasma mass spectrometry (ICP-MS), over 240 distinct compounds and elements were monitored. As seen in our previous work with CAS of fentanyl synthesis the complexity of the resultant data matrix necessitated the use of multivariate statistical analysis. Using partial least squares discriminant analysis (PLS-DA), 62 statistically significant, route-specific CAS were identified. Statistical classification models using a variety of machine learning techniques were then developed with the ability to predict the method of 3-methylfentanyl synthesis from three blind crude samples generated by synthetic chemists without prior experience with these methods.« less

  4. Local ordering and magnetism in Ga{sub 0.9}Fe{sub 3.1}N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burghaus, Jens; Sougrati, Moulay T., E-mail: moulay-tahar.sougrati@univ-montp2.fr; Moechel, Anne

    Prior investigations of the ternary nitride series Ga{sub 1-x}Fe{sub 3+x}N (0{<=}x{<=}1) have indicated a transition from ferromagnetic {gamma}'-Fe{sub 4}N to antiferromagnetic 'GaFe{sub 3}N'. The ternary nitride 'GaFe{sub 3}N' has been magnetically and spectroscopically reinvestigated in order to explore the weakening of the ferromagnetic interactions through the gradual incorporation of gallium into {gamma}'-Fe{sub 4}N. A hysteretic loop at RT reveals the presence of a minority phase of only 0.1-0.2 at%, in accord with the sound two-step synthesis. The composition of the gallium-richest phase 'GaFe{sub 3}N' was clarified by Prompt Gamma-ray Activation Analysis and leads to the berthollide formula Ga{sub 0.91(1)}Fe{sub 3.09(10)}N{submore » 1.05(7)}. Magnetic measurements indicate a transition around 8 K, further supported by Moessbauer spectral data. The weakening of the ferromagnetic coupling through an increasing gallium concentration is explained by a simple Stoner argument. In Ga{sub 0.9}Fe{sub 3.1}N, the presence of iron on the gallium site affects the magnetism by the formation of 13-atom iron clusters. - Graphical Abstract: The crystal structure of GaFe{sub 3}N with green nitrogen atoms in the very center, red iron atoms at the face centers, and gray gallium atoms at the corner positions. Highlights: > Almost phase-pure synthesis of Ga{sub 0.9}Fe{sub 3.1}N. > Prompt gamma-ray activation analysis yields precise composition. > Magnetic ordering of the facial Fe atoms at the lowest temperatures. > Moessbauer spectroscopy suggests percolation or RKKY-type interaction. > Fe{sub 13} clusters due to berthollide character.« less

  5. A new family of metal borohydride guanidinate complexes: Synthesis, structures and hydrogen-storage properties

    NASA Astrophysics Data System (ADS)

    Wu, Hui; Zhou, Xiuquan; Rodriguez, Efrain E.; Zhou, Wei; Udovic, Terrence J.; Yildirim, Taner; Rush, John J.

    2016-10-01

    We report on a new class of complex hydrides: borohydride guanidinate complexes (MBH4·nCN3H5, M=Li, Mg, and Ca). They can be prepared via facile solid-state synthesis routes. Their crystal structures were successfully determined using a combination of X-ray diffraction, first-principles calculations and neutron vibrational spectroscopy. Among these compounds, Mg(BH4)2·6CN3H5 is composed of large complex Mg[CN3H5]62+ cations and surrounding BH4- ions, while Ca(BH4)2·2CN3H5 possesses layers of corner-sharing Ca[BH4]4(CN3H5)2 octahedra. Our dehydrogenation results show that ≈10 wt% hydrogen can be released from MBH4·nCN3H5 (M=Li, Mg, and Ca) at moderate temperatures with minimal ammonia and diborane contamination thanks to the synergistic effect of C-N bonds from guanidine and hydridic H from borohydrides leading to a weakening of the N-H bonds, thus impeding ammonia gas liberation. Further tuning the dehydrogenation with different cation species indicates that Mg(BH4)2·nCN3H5 can exhibit the optimum properties with nearly thermally neutral dehydrogenation and very high purity hydrogen release.

  6. σ-1 Receptor at the Mitochondrial-Associated Endoplasmic Reticulum Membrane Is Responsible for Mitochondrial Metabolic Regulation

    PubMed Central

    Marriott, Karla-Sue C.; Prasad, Manoj; Thapliyal, Veena

    2012-01-01

    The mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) is a small section of the outer mitochondrial membrane tethered to the ER by lipid and protein filaments. One such MAM protein is the σ-1 receptor, which contributes to multiple signaling pathways. We found that short interfering RNA-mediated knockdown of σ-1 reduced pregnenolone synthesis by 95% without affecting expression of the inner mitochondrial membrane resident enzyme, 3-β-hydroxysteroid dehydrogenase 2. To explore the underlying mechanism of this effect, we generated a series of σ-receptor ligands: 5,6-dimethoxy-3-methyl-N-phenyl-N-(3-(piperidin-1-yl)propyl)benzofuran-2-carboxamide (KSCM-1), 3-methyl-N-phenyl-N-(3-(piperidin-1-yl)propyl)benzofuran-2-carboxamide (KSCM-5), and 6-methoxy-3-methyl-N-phenyl-N-(3-(piperidin-1-yl) propyl)benzofuran-2-carboxamide (KSCM-11) specifically bound to σ-1 in the nanomolar range, whereas KSCM-5 and KSCM-11 also bound to σ-2. Treatment of cells with the KSCM ligands led to decreased cell viability, with KSCM-5 having the most potent effect followed by KSCM-11. KSCM-1 increased σ-1 expression by 4-fold and progesterone synthesis, whereas the other compounds decreased progesterone synthesis. These differences probably are caused by ligand molecular structure. For example, KSCM-1 has two methoxy substituents at C-5 and C-6 of the benzofuran ring, whereas KSCM-11 has one at C-6. KSCM ligands or σ-1 knockdown did not alter the expression of ER resident enzymes that synthesize steroids. However, coimmunoprecipitation of the σ-1 receptor pulled down voltage-dependent anion channel 2 (VDAC2), whose expression was enhanced by KSCM-1. VDAC2 plays a key role in cholesterol transport into the mitochondria, suggesting that the σ-1 receptor at the MAM coordinates with steroidogenic acute regulatory protein for cholesterol trafficking into the mitochondria for metabolic regulation. PMID:22923735

  7. Reusable ionic liquid-catalyzed oxidative coupling of azoles and benzylic compounds via sp(3) C-N bond formation under metal-free conditions.

    PubMed

    Liu, Wenbo; Liu, Chenjiang; Zhang, Yonghong; Sun, Yadong; Abdukadera, Ablimit; Wang, Bin; Li, He; Ma, Xuecheng; Zhang, Zengpeng

    2015-07-14

    The heterocyclic ionic liquid-catalyzed direct oxidative amination of benzylic sp(3) C-H bonds via intermolecular sp(3) C-N bond formation for the synthesis of N-alkylated azoles under metal-free conditions is reported for the first time. The catalyst 1-butylpyridinium iodide can be recycled and reused with similar efficacies for at least eight cycles.

  8. Effect of beta-ADrenergic Agonist on Cyclic AMP Synthesis in Chicken Skeletal Muscle Cells in Culture

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Because it seems logical that these agonists exert their action on muscle through stimulation of cAMP synthesis, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate cAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of cAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of cAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax levels were approximately 15-fold weaker than isoproterenol in stimulating the rate of cAMP synthesis. In addition, the EC50 values for isoproterenol, cimaterol, clenbuterol, epinephrine, and albuterol were 360 nM, 630 nM, 900 nM, 2,470 nM, and 3,650 nM, respectively. Finally, dose response curves show that the concentrations of cimaterol and clenbuterol in culture media at concentrations known to cause significant muscle hypertrophy in animals had no detectable effect on stimulation of CAMP accumulation in chicken skeletal muscle cells.

  9. Green synthesis of Fe0 and bimetallic Fe0 for oxidative catalysis and reduction applications

    EPA Science Inventory

    A single-step green approach to the synthesis of nanoscale zero valent iron (nZVI) and nanoscale bimetallic (Fe0/Pd) particles using tea (Camellia sinensis) polyphenols is described. The expedient reaction between polyphenols and ferric chloride (FeCl3) occurs within a minute at ...

  10. Response to Comment on "Synthesis and characterization of the pentazolate anion cyclo-N5- in (N5)6(H3O)3(NH4)4Cl".

    PubMed

    Jiang, Chao; Zhang, Lei; Sun, Chengguo; Zhang, Chong; Yang, Chen; Chen, Jun; Hu, Bingcheng

    2018-03-16

    Huang and Xu argue that the cyclo -N 5 - ion in (N 5 ) 6 (H 3 O) 3 (NH 4 ) 4 Cl we described in our report is theoretically unfavorable and is instead protonated. Their conclusion is invalid, as they use an improper method to assess the proton transfer in a solid crystal structure. We present an in-depth experimental and theoretical analysis of (N 5 ) 6 (H 3 O) 3 (NH 4 ) 4 Cl that supports the results in the original paper. Copyright © 2018, American Association for the Advancement of Science.

  11. Overexpression of SREBP1 (sterol regulatory element binding protein 1) promotes de novo fatty acid synthesis and triacylglycerol accumulation in goat mammary epithelial cells.

    PubMed

    Xu, H F; Luo, J; Zhao, W S; Yang, Y C; Tian, H B; Shi, H B; Bionaz, M

    2016-01-01

    Sterol regulatory element binding protein 1 (SREBP1; gene name SREBF1) is known to be the master regulator of lipid homeostasis in mammals, including milk fat synthesis. The major role of SREBP1 in controlling milk fat synthesis has been demonstrated in bovine mammary epithelial cells. Except for a demonstrated role in controlling the expression of FASN, a regulatory role of SREBP1 on milk fat synthesis is very likely, but has not yet been demonstrated in goat mammary epithelial cells (GMEC). To explore the regulatory function of SREBP1 on de novo fatty acids and triacylglycerol synthesis in GMEC, we overexpressed the mature form of SREBP1 (active NH2-terminal fragment) in GMEC using a recombinant adenovirus vector (Ad-nSREBP1), with Ad-GFP (recombinant adenovirus of green fluorescent protein) as control, and infected the GMEC for 48 h. In infected cells, we assessed the expression of 20 genes related to milk fat synthesis using real time-quantitative PCR, the protein abundance of SREBP1 and FASN by Western blot, the production of triacylglycerol, and the fatty acid profile. Expression of SREBF1 was modest in mammary compared with the other tissues in dairy goats but its expression increased approximately 30-fold from pregnancy to lactation. The overexpression of the mature form of SREBP1 was confirmed by >200-fold higher expression of SREBF1 in Ad-nSREBP1 compared with Ad-GFP. We observed no changes in amount of the precursor form of SREBP1 protein but a >10-fold increase of the mature form of SREBP1 protein with Ad-nSREBP1. Compared with Ad-GFP cells (control), Ad-nSREBP1 cells had a significant increase in expression of genes related to long-chain fatty acid activation (ACSL1), transport (FABP3), desaturation (SCD1), de novo synthesis of fatty acids (ACSS2, ACLY, IDH1, ACACA, FASN, and ELOVL6), and transcriptional factors (NR1H3 and PPARG). We observed a >10-fold increase in expression of INSIG1 but SCAP was downregulated by Ad-nSREBP1. Among genes related to milk fat synthesis and lipid droplet formation, only LPIN1 and DGAT1 were upregulated by Ad-nSREBP1. Compared with the Ad-GFP, the cellular triacylglycerol content was higher and the percentage of C16:0 and C18:1 increased, whereas that of C16:1, C18:0, and C18:2 decreased in Ad-nSREBP1 cells. Overall, the data provide strong support for a central role of SREBP1 in the regulation of milk fat synthesis in goat mammary cells. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Eco-friendly Synthesis of Organics and Nanomaterials ...

    EPA Pesticide Factsheets

    The presentation summarizes our recent activity in chemical synthesis involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a variety of name reactions2 are the primary beneficiaries as exemplified by the synthesis of N-aryl azacycloalkanes, isoindoles, and dihydropyrazoles, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles, 1,3-dioxanes, pyrazoles, catalyzed by basic water or polystyrene sulfonic acid (PSSA) in conjunction with microwave (MW) irradiation.2 Vitamins B1, B2, C, and tea and wine polyphenols which function both as reducing and capping agents, provide extremely simple, one-pot, green synthetic methods to bulk quantities of nanomaterials in water.3a Shape-controlled synthesis of noble nanostructures via MW-assisted spontaneous reduction of noble metal salts using sugars will be presented.3b A general method has been developed for the cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic systems; bimetallic systems,3c and SWNT, MWNT, and C-60.3d The strategy is extended to the formation of biodegradable carboxymethylcellulose (CMC) composite films with noble nanometals;3e such metal decoration and alignment of carbon nanotubes in CMC is possible using MW approach3f which also enables the shape-controlled bulk synthesis of Ag and Fe nanorods in poly (ethylene glycol).3g MW hydrothermal process delivers m

  13. Glucose metabolism in batch and continuous cultures of Gluconacetobacter diazotrophicus PAL 3.

    PubMed

    Luna, María F; Bernardelli, Cecilia E; Galar, María L; Boiardi, José L

    2006-03-01

    Periplasmic glucose oxidation (by way of a pyrrolo-quinoline-quinone [PQQ]-linked glucose dehydrogenase [GDH]) was observed in continuous cultures of Gluconacetobacter diazotrophicus regardless of the carbon source (glucose or gluconate) and the nitrogen source (N(2) or NH(3)). Its synthesis was stimulated by conditions of high energetic demand (i.e., N(2)-fixation) and/or C-limitation. Under C-excess conditions, PQQ-GDH synthesis increased with the glucose concentration in the culture medium. In batch cultures, PQQ-GDH was actively expressed in very early stages with higher activities under conditions of N(2)-fixation. Hexokinase activity was almost absent under any culture condition. Cytoplasmic nicotinamide adenine dinucleotide (NAD)-linked glucose dehydrogenase (GDH) was expressed in continuous cultures under all tested conditions, and its synthesis increased with the glucose concentration. In contrast, low activities of this enzyme were detected in batch cultures. Periplasmic oxidation, by way of PQQ-GDH, seems to be the principal pathway for metabolism of glucose in G. Diazotrophicus, and NAD-GDH is an alternative route under certain environmental conditions.

  14. Light-controlled synthesis of gold nanoparticles using a rigid, photoresponsive surfactant

    NASA Astrophysics Data System (ADS)

    Huang, Youju; Kim, Dong-Hwan

    2012-09-01

    We report a new strategy for shape control over the synthesis of gold nanoparticles (AuNPs) by using a photoresponsive surfactant based on a modified seed growth method. Owing to photoresponsive properties of the azo group, the designed surfactant, N1,N3,N5-tris[(4'-azobenzene-4-sulphonic acid)phenyl]benzene-1,3,5-tricarboxamide, exhibits a distinctive molecular configuration under light leading to different growth processes of AuNPs. As a result, the blackberry-like, spherical AuNPs and multilayered Au plates were successfully prepared in high yield under visible and UV light. The size and morphological control of Au nanocrystals are described and the synthesized Au nanocrystals are evaluated for SERS applications.We report a new strategy for shape control over the synthesis of gold nanoparticles (AuNPs) by using a photoresponsive surfactant based on a modified seed growth method. Owing to photoresponsive properties of the azo group, the designed surfactant, N1,N3,N5-tris[(4'-azobenzene-4-sulphonic acid)phenyl]benzene-1,3,5-tricarboxamide, exhibits a distinctive molecular configuration under light leading to different growth processes of AuNPs. As a result, the blackberry-like, spherical AuNPs and multilayered Au plates were successfully prepared in high yield under visible and UV light. The size and morphological control of Au nanocrystals are described and the synthesized Au nanocrystals are evaluated for SERS applications. Electronic supplementary information (ESI) available: The UV-vis spectra, representative field-emission scanning electron microscopy (FESEM) images and size distributions of Au seeds (18 nm) and spherical AuNPs (50 nm), photograph images of AuNPs solution and TEM images of blackberry-like AuNPs. See DOI: 10.1039/c2nr31717f

  15. Transition-metal-free synthesis of imidazo[2,1-b]thiazoles and thiazolo[3,2-a]benzimidazoles via an S-propargylation/5-exo-dig cyclization/isomerization sequence using propargyl tosylates as substrates.

    PubMed

    Omar, Mohamed A; Frey, Wolfgang; Conrad, Jürgen; Beifuss, Uwe

    2014-11-07

    A transition-metal-free route for the synthesis of several N-fused heterocycles, including thiazolo[3,2-a]benzimidazoles and imidazo[2,1-b]thiazoles, is reported. The reaction between propargyl tosylates and 2-mercaptobenzimidazoles under basic conditions results in 3-substituted thiazolo[3,2-a]benzimidazoles, in yields up to 92% in a single synthesis step. With 2-mercaptoimidazoles as the substrate, the corresponding imidazo[2,1-b]thiazoles were exclusively obtained. The transformation is considered to proceed as an intermolecular S-propargylation that is followed by 5-exo-dig ring closure and double-bond isomerization.

  16. Pathways of nitrogen assimilation in cowpea nodules studied using /sup 15/N/sub 2/ and allopurinol. [Vigna unguiculata L. Walp. cv Vita

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkins, C.A.; Storer, P.J.; Pate, J.S.

    1988-01-01

    In the presence of 0.5 millimolar allopurinol (4-hydroxypyrazolo (3,4-d)pyrimidine), an inhibitor of NAD:xanthine oxidoreductase (EC 1.2.3.2), intact attached nodules of cowpea (vigna unguiculata L. Walp. cv Vita 3) formed (/sup 15/N)xanthine from /sup 15/N/sub 2/ at rates equivalent to those of ureide synthesis, confirming the direct assimilation of fixed nitrogen into purines. Xanthine accumulated in nodules and was exported in increasing amounts in xylem of allopurinol-treated plants. Other intermediates of purine oxidation, de novo purine synthesis, and ammonia assimilation did not increase and, over the time course of experiments (4 hours), allopurinol had no effect on nitrogenase (EC 1.87.99.2) activity.more » Negligible /sup 15/N -labeling of asparagine from /sup 15/N/sub 2/ was observed, suggesting that the significant pool (up to 14 micromoles per gram of nodule fresh weight) of this amide in cowpea nodules was not formed directly from fixation but may have accumulated as a consequence of phloem delivery.« less

  17. Enhanced radiosyntheses of [¹¹C]raclopride and [¹¹C]DASB using ethanolic loop chemistry.

    PubMed

    Shao, Xia; Schnau, Paul L; Fawaz, Maria V; Scott, Peter J H

    2013-01-01

    To improve the synthesis and quality control of carbon-11 labeled radiopharmaceuticals, we report the fully automated loop syntheses of [¹¹C]raclopride and [¹¹C]DASB using ethanol as the only organic solvent for synthesis module cleaning, carbon-11 methylation, HPLC purification, and reformulation. Ethanolic loop chemistry is fully automated using a GE TRACERLab FX(C-Pro) synthesis module, and is readily adaptable to any other carbon-11 synthesis apparatus. Precursors (1 mg) were dissolved in ethanol (100 μL) and loaded into the HPLC loop. [¹¹C]MeOTf was passed through the HPLC loop and then the labeled products were purified by semi-preparative HPLC and reformulated into ethanolic saline. Both [¹¹C]raclopride (3.7% RCY; >95% RCP; SA=20831 Ci/mmol; n=64) and [¹¹C]DASB, both with (3.0% RCY; >95% RCP; SA=15152Ci/mmol; n=9) and without (3.0% RCY; >95% RCP; SA=10931 Ci/mmol; n=3) sodium ascorbate, have been successfully prepared using the described methodology. Doses are suitable for human use and the described methods are now employed for routine clinical production of both radiopharmaceuticals at the University of Michigan. Ethanolic loop chemistry is a powerful technique for preparing [¹¹C]raclopride and [¹¹C]DASB, and we are in the process of adapting it for other carbon-11 radiopharmaceuticals prepared in our laboratories ([¹¹C]PMP, [¹¹C]PBR28 etc.). Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Chitin synthesis in Saccharomyces cerevisiae in response to supplementation of growth medium with glucosamine and cell wall stress.

    PubMed

    Bulik, Dorota A; Olczak, Mariusz; Lucero, Hector A; Osmond, Barbara C; Robbins, Phillips W; Specht, Charles A

    2003-10-01

    In Saccharomyces cerevisiae most chitin is synthesized by Chs3p, which deposits chitin in the lateral cell wall and in the bud-neck region during cell division. We have recently found that addition of glucosamine (GlcN) to the growth medium leads to a three- to fourfold increase in cell wall chitin levels. We compared this result to the increases in cellular chitin levels associated with cell wall stress and with treatment of yeast with mating pheromone. Since all three phenomena lead to increases in precursors of chitin, we hypothesized that chitin synthesis is at least in part directly regulated by the size of this pool. This hypothesis was strengthened by our finding that addition of GlcN to the growth medium causes a rapid increase in chitin synthesis without any pronounced change in the expression of more than 6,000 genes monitored with Affymetrix gene expression chips. In other studies we found that the specific activity of Chs3p is higher in the total membrane fractions from cells grown in GlcN and from mutants with weakened cell walls. Sucrose gradient analysis shows that Chs3p is present in an inactive form in what may be Golgi compartments but as an active enzyme in other intracellular membrane-bound vesicles, as well as in the plasma membrane. We conclude that Chs3p-dependent chitin synthesis in S. cerevisiae is regulated both by the levels of intermediates of the UDP-GlcNAc biosynthetic pathway and by an increase in the activity of the enzyme in the plasma membrane.

  19. Crosslinking and degradation mechanisms in model sealant candidates

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Kaufman, J.; Kratzer, R. H.

    1974-01-01

    Heterocyclic ring systems were investigated, triazines and 1,2,4-oxadiazoles. Only a limited effort was extended to the preparation of triazoles. Compounds, n-perfluoroheptyl-s-triazine, a perfluoroether substituted triazine, C3F7OCF(CF3)CF2OCF(CF3) 3C3N3,1,4-bus (5-perfluoro-n-heptyl)-1,2,4-oxadiazolyl -benzene, its perfluoroalkylether substituded analogue, and 3,5-bis(perfluoro-n-heptyl)-1,2,4-oxadiazole were synthesized and characterized. To eliminate the effect due to a tertiary fluorine present in branched materials, the pure n-alkyl-compounds were prepared. The main starting material, perfluoro-n-octanonitrile, was obtained from commercially available perfluoro-n-octanoic acid via a three step synthesis.

  20. Valine but not leucine or isoleucine supports neurotransmitter glutamate synthesis during synaptic activity in cultured cerebellar neurons.

    PubMed

    Bak, Lasse K; Johansen, Maja L; Schousboe, Arne; Waagepetersen, Helle S

    2012-09-01

    Synthesis of neuronal glutamate from α-ketoglutarate for neurotransmission necessitates an amino group nitrogen donor; however, it is not clear which amino acid(s) serves this role. Thus, the ability of the three branched-chain amino acids (BCAAs), leucine, isoleucine, and valine, to act as amino group nitrogen donors for synthesis of vesicular neurotransmitter glutamate was investigated in cultured mouse cerebellar (primarily glutamatergic) neurons. The cultures were superfused in the presence of (15) N-labeled BCAAs, and synaptic activity was induced by pulses of N-methyl-D-aspartate (300 μM), which results in release of vesicular glutamate. At the end of the superfusion experiment, the vesicular pool of glutamate was released by treatment with α-latrotoxin (3 nM, 5 min). This experimental paradigm allows a separate analysis of the cytoplasmic and vesicular pools of glutamate. Amount and extent of (15) N labeling of intracellular amino acids plus vesicular glutamate were analyzed employing HPLC and LC-MS analysis. Only when [(15) N]valine served as precursor did the labeling of both cytoplasmic and vesicular glutamate increase after synaptic activity. In addition, only [(15) N]valine was able to maintain the amount of vesicular glutamate during synaptic activity. This indicates that, among the BCAAs, only valine supports the increased need for synthesis of vesicular glutamate. Copyright © 2012 Wiley Periodicals, Inc.

  1. Chemoenzymatic Syntheses of Sialylated Oligosaccharides Containing C5-Modified Neuraminic Acids for Dual Inhibition of Hemagglutinins and Neuraminidases.

    PubMed

    Birikaki, Lémonia; Pradeau, Stéphanie; Armand, Sylvie; Priem, Bernard; Márquez-Domínguez, Luis; Reyes-Leyva, Julio; Santos-López, Gerardo; Samain, Eric; Driguez, Hugues; Fort, Sébastien

    2015-07-20

    A fast chemoenzymatic synthesis of sialylated oligosaccharides containing C5-modified neuraminic acids is reported. Analogues of GM3 and GM2 ganglioside saccharidic portions where the acetyl group of NeuNAc has been replaced by a phenylacetyl (PhAc) or a propanoyl (Prop) moiety have been efficiently prepared with metabolically engineered E. coli bacteria. GM3 analogues were either obtained by chemoselective modification of biosynthetic N-acetyl-sialyllactoside (GM3 NAc) or by direct bacterial synthesis using C5-modified neuraminic acid precursors. The latter strategy proved to be very versatile as it led to an efficient synthesis of GM2 analogues. These glycomimetics were assessed against hemagglutinins and sialidases. In particular, the GM3 NPhAc displayed a binding affinity for Maackia amurensis agglutinin (MAA) similar to that of GM3 NAc, while being resistant to hydrolysis by Vibrio cholerae (VC) neuraminidase. A preliminary study with influenza viruses also confirmed a selective inhibition of N1 neuraminidase by GM3 NPhAc, suggesting potential developments for the detection of flu viruses and for fighting them. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synthesis and iron sequestration equilibria of novel exocyclic 3-hydroxy-2-pyridinone donor group siderophore mimics.

    PubMed

    Harrington, James M; Chittamuru, Sumathi; Dhungana, Suraj; Jacobs, Hollie K; Gopalan, Aravamudan S; Crumbliss, Alvin L

    2010-09-20

    The synthesis of a novel class of exocyclic bis- and tris-3,2-hydroxypyridinone (HOPO) chelators built on N(2) and N(3) aza-macrocyclic scaffolds and the thermodynamic solution characterization of their complexes with Fe(III) are described. The chelators for this study were prepared by reaction of either piperazine or N,N',N''-1,4,7-triazacyclononane with a novel electrophilic HOPO iminium salt in good yields. Subsequent removal of the benzyl protecting groups using HBr/acetic acid gave bis-HOPO chelators N(2)(etLH)(2) and N(2)(prLH)(2), and tris-HOPO chelator N(3)(etLH)(3) in excellent yields. Solution thermodynamic characterization of their complexes with Fe(III) was accomplished using spectrophotometric, potentiometric, and electrospray ionization-mass spectrometry (ESI-MS) methods. The pK(a)'s of N(2)(etLH)(2), N(2)(prLH)(2), and N(3)(etLH)(3), were determined spectrophotometrically and potentiometrically. The Fe(III) complex stability constants for the tetradentate N(2)(etLH)(2) and N(2)(prLH)(2), and hexadentate N(3)(etLH)(3), were measured by spectrophotometric and potentiometric titration, and by competition with ethylenediaminetetraacetic acid (EDTA). N(3)(etLH)(3) forms a 1:1 complex with Fe(III) with log β(110) = 27.34 ± 0.04. N(2)(prLH)(2) forms a 3:2 L:Fe complex with Fe(III) where log β(230) = 60.46 ± 0.04 and log β(110) = 20.39 ± 0.02. While N(2)(etLH)(2) also forms a 3:2 L:Fe complex with Fe(III), solubility problems precluded determining log β(230); log β(110) was found to be 20.45 ± 0.04. The pFe values of 26.5 for N(3)(etLH)(3) and 24.78 for N(2)(prLH)(2) are comparable to other siderophore molecules used in the treatment of iron overload, suggesting that these hydroxypyridinone ligands may be useful in the development of new chelation therapy agents.

  3. Compartmental modeling with nitrogen-15 to determine effects of degree of fat saturation on intraruminal N recycling.

    PubMed

    Oldick, B S; Firkins, J L; Kohn, R A

    2000-09-01

    Two- and three-compartment models were developed to describe N kinetics within the rumen using three Holstein heifers and one nonlactating Holstein cow fitted with ruminal and duodenal cannulas. A 4 x 4 Latin square design included a control diet containing no supplemental fat and diets containing 4.85% of diet dry matter as partially hydrogenated tallow (iodine value = 13), tallow (iodine value = 51), or animal-vegetable fat (iodine value = 110). Effects of fat on intraruminal N recycling and relationships between intraruminal N recycling and ruminal protozoa concentration or the efficiency of microbial protein synthesis were determined. A pulse dose of 15(NH4)2SO4 was introduced into the ruminal NH3 N pool, and samples were taken over time from the ruminal NH3 N and nonammonia N pools. For the three-compartment model, precipitates of nonammonia N after trichloroacetic acid and ethanol extraction were defined as slowly turning over nonammonia N; rapidly turning over nonammonia N was determined by difference. Curves of 15N enrichment were fit to models with two (NH3 N and nonammonia N) or three (NH3 N, rapidly turning over nonammonia N, and slowly turning over nonammonia N) compartments using the software SAAM II. Because the three-compartment model did not remove a small systematic bias or improve the fit of the data, the two-compartment model was used to provide measurements of intraruminal N recycling. Intraruminal NH3 N recycling (45% for control) decreased linearly as fat unsaturation increased (50.2, 43.0, and 41.7% for partially hydrogenated tallow, tallow, and animal-vegetable fat, respectively). Intraruminal nitrogen recycling was not correlated with efficiency of microbial protein synthesis or ruminal protozoa counts.

  4. Synthesis and biological evaluation of some novel 1-substituted fentanyl analogs in Swiss albino mice

    PubMed Central

    Yadav, Shiv Kumar; Maurya, Chandra Kant; Gupta, Pradeep Kumar; Jain, Ajai Kumar; Ganesan, Kumaran

    2014-01-01

    Fentanyl [N-(1-phenethyl-4-piperidinyl)propionanilide] is a potent opioid analgesic agent, but a has narrow therapeutic index. We reported earlier on the synthesis and bioefficacy of fentanyl and its 1-substituted analogs (1–4) in mice. Here we report the synthesis and biological evaluation of four additional analogs, viz. N-isopropyl-3-(4-(N-phenylpropionamido)piperidin-1-yl)propanamide (5), N-t-butyl-3-(4-(N-phenylpropionamido)piperidin-1-yl)propanamide (6), isopropyl 2-[4-(N-phenylpropionamido)piperidin-1-yl]propionate (7) and t-butyl 2-[4-(N-phenylpropionamido)piperidin-1-yl]propionate (8). The median lethal dose (LD50) determined by intravenous, intraperitoneal and oral routes suggests these analogs to be comparatively less toxic than fentanyl. On the basis of observational assessment on spontaneous activities of the central, peripheral, and autonomic nervous systems, all the analogs were found to be similar to fentanyl. Naloxone hydrochloride abolished the neurotoxic effects of these analogs, thereby ascertaining their opioid receptor-mediated effects. All the analogs displayed significant analgesic effects, measured by formalin-induced hind paw licking and tail immersion tests at their respective median effective dose (ED50). They also exhibited 8–12 fold increase in therapeutic index over fentanyl. However, 5 and 6 alone produced lower ED50 (20.5 and 21.0 µg/kg, respectively) and higher potency ratio (1.37 and 1.33, respectively) compared to fentanyl. They could thus be considered for further studies on pain management. PMID:26109885

  5. Synthesis and characterization of N-parinaroyl analogs of ganglioside GM3 and de-N-acetyl GM3. Interactions with the EGF receptor kinase

    NASA Technical Reports Server (NTRS)

    Song, W.; Welti, R.; Hafner-Strauss, S.; Rintoul, D. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    A specific plasma membrane glycosphingolipid, known as ganglioside GM3, can regulate the intrinsic tyrosyl kinase activity of the epidermal growth factor (EGF) receptor; this modulation is not associated with alterations in hormone binding to the receptor. GM3 inhibits EGF receptor tyrosyl kinase activity in detergent micelles, in plasma membrane vesicles, and in whole cells. In addition, immunoaffinity-purified EGF receptor preparations contain ganglioside GM3 (Hanai et al. (1988) J. Biol. Chem. 263, 10915-10921), implying that the glycosphingolipid is intimately associated with the receptor kinase in cell membranes. Both the nature of this association and the molecular mechanism of kinase inhibition remain to be elucidated. In this report, we describe the synthesis of a fluorescent analog of ganglioside GM3, in which the native fatty acid was replaced with trans-parinaric acid. This glycosphingolipid inhibited the receptor kinase activity in a manner similar to that of the native ganglioside. A modified fluorescent glycosphingolipid, N-trans-parinaroyl de-N-acetyl ganglioside GM3, was also prepared. This analog, like the nonfluorescent de-N-acetyl ganglioside GM3, had no effect on receptor kinase activity. Results from tryptophan fluorescence quenching and steady-state anisotropy measurements in membranes containing these fluorescent probes and the human EGF receptor were consistent with the notion that GM3, but not de-N-acetyl GM3, interacts specifically with the receptor in intact membranes.

  6. Synthesis and biological activity of a new class of insecticides: the N-(5-aryl-1,3,4-thiadiazol-2-yl)amides.

    PubMed

    Eckelbarger, Joseph D; Parker, Marshall H; Yap, Maurice Ch; Buysse, Ann M; Babcock, Jonathan M; Hunter, Ricky; Adelfinskaya, Yelena; Samaritoni, Jack G; Garizi, Negar; Trullinger, Tony K

    2017-04-01

    Optimization studies on a high-throughput screening (HTS) hit led to the discovery of a series of N-(6-arylpyridazin-3-yl)amides with insecticidal activity. It was hypothesized that the isosteric replacement of the pyridazine ring with a 1,3,4-thiadiazole ring could lead to more potent biological activity and/or a broader sap-feeding pest spectrum. The resulting N-(5-aryl-1,3,4-thiadiazol-2-yl)amides were explored as a new class of insecticides. Several methods for 2-amino-1,3,4-thiadiazole synthesis were used for the preparation of key synthetic intermediates. Subsequent coupling to variously substituted carboxylic acid building blocks furnished the final targets, which were tested for insecticidal activity against susceptible strains of Aphis gossypii (Glover) (cotton aphid), Myzus persicae (Sulzer) (green peach aphid) and Bemisia tabaci (Gennadius) (sweetpotato whitefly). Structure-activity relationship (SAR) studies on both the amide tail and the aryl A-ring of novel N-(5-aryl-1,3,4-thiadiazol-2-yl)amides led to a new class of insecticidal molecules active against sap-feeding insect pests. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Synthesis and properties of 4-alkoxy-2-[2-hydroxy-3-(4-o,m,p-halogenoaryl-1 -piperazinyl)propyl]-6-methyl-1H-pyrrolo-[3,4-c]pyridine-1,3(2H)-diones with analgesic and sedative activities.

    PubMed

    Sladowska, Helena; Sabiniarz, Aleksandra; Szkatuła, Dominika; Filipek, Barbara; Sapa, Jacek

    2006-01-01

    Synthesis of N-substituted derivatives of 4-alkoxy-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones (17-26) is described. The chlorides, containing OH group, used in the above synthesis can exist in two isomeric forms: chain (12, 14-16) and cyclic (12a, 14a-16a). All final imides studied exhibited analgesic activity in the "writhing syndrome" test which was superior than that of acetylsalicylic acid. In the "hot plate" test only two compounds (19, 20) were active as antinociceptive agents. Furthermore, all compounds tested significantly suppressed the spontaneous locomotor activity of mice.

  8. Standoff Detection of Explosives Using Luminescent Particles

    DTIC Science & Technology

    2011-01-28

    example, antioxidants, such as ascorbic acid,3d,9 n- propyl gallate,10 -mercaptoethanol,3d,11 and cysteine hydro- chloride ,12 are employed to trap...2008, 41, 8306-8308. Moslin, R. M.; Andrew, T. L.; Swager, T. M. “Anionic Oxidative Polymerization: The Synthesis of Poly(phenylenedicyanovinylene...PPCN2V)” J. Am. Chem. Soc. 2009, 131, 20-21. Moslin, R. M., Espino, C. G.; Swager, T. M. “ Synthesis of Conjugated Polymers Containing cis

  9. Dopamine D(3) receptor antagonists. 1. Synthesis and structure-activity relationships of 5,6-dimethoxy-N-alkyl- and N-alkylaryl-substituted 2-aminoindans.

    PubMed

    Haadsma-Svensson, S R; Cleek, K A; Dinh, D M; Duncan, J N; Haber, C L; Huff, R M; Lajiness, M E; Nichols, N F; Smith, M W; Svensson, K A; Zaya, M J; Carlsson, A; Lin, C H

    2001-12-20

    5,6-Dimethoxy-2-(N-dipropyl)-aminoindan (3, PNU-99194A) was found to be a selective dopamine D(3) receptor antagonist with potential antipsychotic properties in animal models. To investigate the effects of nitrogen substitution on structure-activity relationships, a series of 5,6-dimethoxy-N-alkyl- and N-alkylaryl-substituted 2-aminoindans were synthesized and evaluated in vitro for binding affinity and metabolic stability. The results indicate that substitution at the amine nitrogen of the 2-aminoindans is fairly limited to the di-N-propyl group in order to achieve selective D(3) antagonists. Thus, combinations of various alkyl groups were generally inactive at the D(3) receptor. Although substitution with an N-alkylaryl or N-alkylheteroaryl group yields compounds with potent D(3) binding affinity, the D(2) affinity is also enhanced, resulting in a less than 4-fold preference for the D(3) receptor site, and no improvements in metabolic stability were noted. A large-scale synthesis of the D(3) antagonist 3 has been developed that has proven to be reproducible with few purification steps. The improvements include the use of 3,4-dimethoxybenzaldehyde as a low-cost starting material to provide the desired 5,6-dimethoxy-1-indanone 5c in good overall yield (65%) and the formation of a soluble silyl oxime 17 that was reduced efficiently with BH(3).Me(2)S. The resulting amino alcohol was alkylated and then deoxygenated using a Lewis acid and Et(3)SiH to give the desired product 3 in good overall yield of ( approximately 65%) from the indanone 5c.

  10. Asymmetric Synthesis of All the Known Phlegmarine Alkaloids

    PubMed Central

    Wolfe, Bradley H.; Libby, Adam H.; Al-awar, Rima S.; Foti, Christopher J.; Comins, Daniel L.

    2010-01-01

    The asymmetric synthesis of all four of the known natural phlegmarines and one synthetic derivative has been accomplished in 19 to 22 steps from 4-methoxy-3-(triisopropylsilyl)pyridine. Chiral N-acylpyridinium salt chemistry was used twice to set the stereocenters at the C-9 and C-2′ positions of the phlegmarine skeleton. Key reactions include the use of a mixed Grignard reagent for the second N-acylpyridinium salt addition, zinc/acetic acid reduction of a complex dihydropyridone, and a von Braun cyanogen bromide N-demethylation of a late intermediate. These syntheses confirmed the absolute stereochemistry of all the known phlegmarines. PMID:21077636

  11. Synthesis and biological evaluation of glycogen synthase kinase 3 (GSK-3) inhibitors: an fast and atom efficient access to 1-aryl-3-benzylureas.

    PubMed

    Monte, Fabio Lo; Kramer, Thomas; Boländer, Alexander; Plotkin, Batya; Eldar-Finkelman, Hagit; Fuertes, Ana; Dominguez, Juan; Schmidt, Boris

    2011-09-15

    The glycogen synthase kinase 3 (GSK-3) is implicated in multiple cellular processes and has been linked to the pathogenesis of Alzheimer's disease (AD). In the course of our research topic we synthesized a library of potent GSK-3 inhibitors. We utilized the urea scaffold present in the potent and highly selective GSK-3 inhibitor AR-A014418 (AstraZeneca). This moiety suits both (a) a convergent approach utilizing readily accessible building blocks and (b) a divergent approach based on a microwave heating assisted Suzuki coupling. We established a chromatography-free purification method to generate products with sufficient purity for the biological assays. The structure-activity relationship of the library provided the rationale for the synthesis of the benzothiazolylurea 66 (IC(50)=140 nM) and the pyridylurea 62 (IC(50)=98 nM), which displayed two to threefold enhanced activity versus the reference compound 18 (AR-A014418: IC(50)=330 nM) in our assays. Copyright © 2011. Published by Elsevier Ltd.

  12. Iridium-catalyzed direct synthesis of tryptamine derivatives from indoles: exploiting n-protected β-amino alcohols as alkylating agents.

    PubMed

    Bartolucci, Silvia; Mari, Michele; Bedini, Annalida; Piersanti, Giovanni; Spadoni, Gilberto

    2015-03-20

    The selective C3-alkylation of indoles with N-protected ethanolamines involving the "borrowing hydrogen" strategy is described. This method provides convenient and sustainable access to several tryptamine derivatives.

  13. Synthesis of high quality phosphorothioate oligonucleotides as antisense drugs. Use of I-linker in the elimination of 3'-terminal phosphorothioate monoesters.

    PubMed

    Ravikumar, Vasulinga T; Kumar, R Krishna; Capaldi, Daniel C; Cole, Douglas L

    2003-01-01

    Detritylation of a 5'-O-DMT-2'-deoxyadenosine moiety attached to solid support under acidic condition leads to depurination during oligonucleotide synthesis. Deprotection followed by reversed phase HPLC purification leads to desired oligonucleotide contaminated with significant levels of 3'-terminal phosphorothiaote (3'-TPT) monoester (n-1)-mer. However, it is demonstrated that attachment of dA nucleoside through its exocyclic amino group to solid support leads to substantial reduction of 3'-TPT formation thereby improving the quality of oligonucleotide synthesized.

  14. One-pot Diels–Alder cycloaddition/gold(I)-catalyzed 6-endo-dig cyclization for the synthesis of the complex bicyclo[3.3.1]alkenone framework

    PubMed Central

    Sow, Boubacar; Bellavance, Gabriel; Barabé, Francis

    2011-01-01

    Summary The rapid synthesis of bicyclo[m.n.1]alkanone cores possessing quaternary carbon centers adjacent to a bridged ketone represents a significant synthetic challenge. This type of architectural feature is embedded in various complex biologically active compounds such as hyperforin and garsubellin A. Herein, we report a highly diastereoselective one-pot Diels–Alder reaction/Au(I)-catalyzed carbocyclization to generate bicyclo[3.3.1]alkanones in yields ranging from 48–93%. PMID:21915201

  15. Precision synthesis of colloidal inorganic nanocrystals using metal and metalloid amides

    NASA Astrophysics Data System (ADS)

    Yarema, Maksym; Caputo, Riccarda; Kovalenko, Maksym V.

    2013-08-01

    Rational selection of molecular precursors is the key consideration in the synthesis of inorganic nanocrystals and nanoparticles. This review highlights the state-of-the-art and future potential of metal amides as precursors in the solution-phase synthesis of monodisperse colloidal nanocrystals of metals and metal alloys, as well as metal oxides and chalcogenides. We exclusively focus on homoleptic metal and metalloid alkylamides M(NR2)n and silylamides M[N(SiMe3)2]n as predominant choice of element-nitrogen bonded precursors, which are often advantageous to commonly used metal-oxygen and metal-carbon bonded counterparts. In particular, these amides are highly reactive in oxidation, reduction and metathesis reactions; they are oxygen-free, easy-to-make and/or commercially available. A comprehensive literature review is complemented by our theoretical studies on the thermal stability of metal silylamides using molecular dynamics simulations.

  16. Synthesis of zinc sulfide nanoparticles during zinc oxidization by H2S and H2S/H2O supercritical fluids

    NASA Astrophysics Data System (ADS)

    Vostrikov, A. A.; Fedyaeva, O. N.; Sokol, M. Ya.; Shatrova, A. V.

    2014-12-01

    Formation of zinc sulfide nanoparticles was detected during interaction of bulk samples with hydrogen sulfide at supercritical parameters. Synthesis proceeds with liberation of H2 by the reaction nZn + nH2S = (ZnS) n + nH2. It has been found by the X-ray diffraction method, scanning electron microscopy, and mass spectrometry that the addition of water stimulates coupled reactions of nanoparticle synthesis nZn + nH2O = (ZnO) n + nH2 and (ZnO) n + nH2S = (ZnS) n + nH2O and brings about an increase in the synthesis rate and morphological changes of (ZnS) n nanoparticles.

  17. Molecular Pathways: Mucins and Drug Delivery in Cancer.

    PubMed

    Rao, Chinthalapally V; Janakiram, Naveena B; Mohammed, Altaf

    2017-03-15

    Over the past few decades, clinical and preclinical studies have clearly demonstrated the role of mucins in tumor development. It is well established that mucins form a barrier impeding drug access to target sites, leading to cancer chemoresistance. Recently gained knowledge regarding core enzyme synthesis has opened avenues to explore the possibility of disrupting mucin synthesis to improve drug efficacy. Cancer cells exploit aberrant mucin synthesis to efficiently mask the epithelial cells and ensure survival under hostile tumor microenvironment conditions. However, O-glycan synthesis enzyme core 2 beta 1,6 N-acetylglucosaminyltransferase (GCNT3/C2GnT-2) is overexpressed in Kras-driven mouse and human cancer, and inhibition of GCNT3 has been shown to disrupt mucin synthesis. This previously unrecognized developmental pathway might be responsible for aberrant mucin biosynthesis and chemoresistance. In this Molecular Pathways article, we briefly discuss the potential role of mucin synthesis in cancers, ways to improve drug delivery and disrupt mucin mesh to overcome chemoresistance by targeting mucin synthesis, and the unique opportunity to target the GCNT3 pathway for the prevention and treatment of cancers. Clin Cancer Res; 23(6); 1373-8. ©2016 AACR . ©2016 American Association for Cancer Research.

  18. Synthesis,and structural characterization of [(CH3(C5H4N))Ga(SCH2(CO)O)]-[(4-MepyH)]+, a novel Ga(III) five coordinate complex.

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Duraj, Stan A.; Fanwic, Phillp E.; Hepp, Aloysius F.; Martuch, Robert A.

    2003-01-01

    The synthesis and structural characterization of a novel ionic Ga(III) five coordinate complex [{CH3(C5H4N)}Ga(SCH2(CO)O)2]-[(4-MepyH)]+, (4-Mepy = CH3(C5H5N)) from the reaction between Ga2Cl4 with sodium mercapto-acetic acid in 4-methylpyridine is described. Under basic reaction conditions the mercapto ligand is found to behave as a 2e- bidentate ligand. Single crystal X-ray diffraction studies show the complex to have a distorted square pyramidal geometry with the [(-SCH2(CO)CO-)] ligands in a trans conformation. The compound crystallizes in the P2(sub 1)/c (No. 14) space group with a = 7.7413(6) A, b = 16.744(2) A, c = 14.459(2) A, V = 1987.1(6) A(sup 3), R(F) = 0.032 and R(sub w) = 0.038.

  19. Effect of preoperative antiplatelet drugs on vascular prostacyclin synthesis.

    PubMed

    Karwande, S V; Weksler, B B; Gay, W A; Subramanian, V A

    1987-03-01

    Patients undergoing aortocoronary bypass using autogenous saphenous veins were randomly divided into three comparable groups. Group 1 (n = 10) acted as a control, Group 2 (n = 14) received 80 mg of aspirin at midnight before the operation, and Group 3 (n = 12) received 80 mg of aspirin and 75 mg of dipyridamole at midnight and an additional 75-mg dose of dipyridamole at 6 AM. The purpose was to determine which regimen would maximally inhibit platelet function without depressing vascular prostacyclin synthesis. Serum thromboxane A2, saphenous vein wall and aortic wall prostacyclin, platelet aggregation, and bleeding time were measured in all patients. None was restarted on a regimen of aspirin or dipyridamole postoperatively. Aspirin alone and in combination with dipyridamole significantly inhibited thromboxane A2 and platelet aggregation in all treated patients but spared venous prostacyclin synthesis. Aortic prostacyclin synthesis was partially inhibited in both treated groups. Chest tube drainage was comparable in all three groups. These results indicate that the combination of aspirin and dipyridamole offers no measurable advantage over aspirin alone in the perioperative period.

  20. Effects of synchronization of carbohydrate and protein supply in total mixed ration with korean rice wine residue on ruminal fermentation, nitrogen metabolism and microbial protein synthesis in holstein steers.

    PubMed

    Piao, Min Yu; Kim, Hyun J; Seo, J K; Park, T S; Yoon, J S; Kim, K H; Ha, Jong K

    2012-11-01

    Three Holstein steers in the growing phase, each with a ruminal cannula, were used to test the hypothesis that the synchronization of the hourly rate of carbohydrate and nitrogen (N) released in the rumen would increase the amount of retained nitrogen for growth and thus improve the efficiency of microbial protein synthesis (EMPS). In Experiment 1, in situ degradability coefficients of carbohydrate and N in feeds including Korean rice wine residue (RWR) were determined. In Experiment 2, three total mixed ration (TMR) diets having different rates of carbohydrate and N release in the rumen were formulated using the in situ degradability of the feeds. All diets were made to contain similar contents of crude protein (CP) and neutral detergent fiber (NDF) but varied in their hourly pattern of nutrient release. The synchrony index of the three TMRs was 0.51 (LS), 0.77 (MS) and 0.95 (HS), respectively. The diets were fed at a restricted level (2% of the animal's body weight) in a 3×3 Latin-square design. Synchronizing the hourly supply of energy and N in the rumen did not significantly alter the digestibility of dry matter, organic matter, crude protein, NDF or acid detergent fiber (ADF) (p>0.05). The ruminal NH3-N content of the LS group at three hours after feeding was significantly higher (p<0.05) than that of the other groups; however, the mean values of ruminal NH3-N, pH and VFA concentration among the three groups were not significantly different (p>0.05). In addition, the purine derivative (PD) excretion in urine and microbial-N production (MN) among the three groups were not significantly different (p>0.05). In conclusion, synchronizing dietary energy and N supply to the rumen did not have a major effect on nutrient digestion or microbial protein synthesis (MPS) in Holstein steers.

  1. Synthesis and evaluation of new antimalarial analogues of quinoline alkaloids derived from Cinchona ledgeriana Moens ex Trimen.

    PubMed

    Park, Byeoung-Soo; Kim, Dae-Young; Rosenthal, Philip J; Huh, Sun-Chul; Lee, Belinda J; Park, Eun -u; Kim, Sung-Min; Kim, Jang-Eok; Kim, Mi-Hee; Huh, Tae-Lin; Choi, Young-Jae; Suh, Ki-Hyung; Choi, Won-Sik; Lee, Sung-Eun

    2002-05-20

    In the course of attempts to develop antimalarial drugs, we have designed and synthesized a series of quinoline alkaloide derivatives. Three of them, N-(4-methoxy-3,5-di-tert-butylbenzyl)cinchonidinium bromide (OSL-5), O-benzyl-N-(3,5-di-tert-butyl-4-methoxybenzyl)cinchonidinium bromide (OSL-7), and N-(3,5-di-tert-butyl-4-methoxybenzyl)quininium bromide (OSL-14) show potent activity against Plasmodium falciparum.

  2. Bacterial synthesis of N-hydroxycinnamoyl phenethylamines and tyramines.

    PubMed

    Sim, Geun Young; Yang, So-Mi; Kim, Bong Gyu; Ahn, Joong-Hoon

    2015-10-13

    Hydroxycinnamic acids (HCAs) including cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid, are C6-C3 phenolic compounds that are synthesized via the phenylpropanoid pathway. HCAs serve as precursors for the synthesis of lignins, flavonoids, anthocyanins, stilbenes and other phenolic compounds. HCAs can also be conjugated with diverse compounds including quinic acid, hydroxyl acids, and amines. Hydroxycinnamoyl (HC) amine conjugates such as N-HC tyramines and N-HC phenethylamines have been considered as potential starting materials to develop antiviral and anticancer drugs. We synthesized N-HC tyramines and N-HC phenethylamines using three different approaches in Escherichia coli. Five N-HC phenethylamines and eight N-HC tyramines were synthesized by feeding HCAs and phenethylamine or tyramine to E. coli harboring 4CL (encoding 4-coumarate CoA:ligase) and either SHT (encoding phenethylamine N-HC transferase) or THT (encoding tyramine N-HC transferase). Also, N-(p-coumaroyl) phenethylamine and N-(p-coumaroyl) tyramine were synthesized from p-coumaric acid using E. coli harboring an additional gene, PDC (encoding phenylalanine decarboxylase) or TDC (encoding tyrosine decarboxylase). Finally, we synthesized N-(p-coumaroyl) phenethylamine and N-(p-coumaroyl) tyramine from glucose by reconstructing the metabolic pathways for their synthesis in E. coli. Productivity was maximized by optimizing the cell concentration and incubation temperature. We reconstructed the metabolic pathways for synthesis of N-HC tyramines and N-HC phenethylamines by expressing several genes including 4CL, TST or SHT, PDC or TDC, and TAL (encoding tyrosine ammonia lyase) and engineering the shikimate metabolic pathway to increase endogenous tyrosine concentration in E. coli. Approximately 101.9 mg/L N-(p-coumaroyl) phenethylamine and 495.4 mg/L N-(p-coumaroyl) tyramine were synthesized from p-coumaric acid. Furthermore, 152.5 mg/L N-(p-coumaroyl) phenethylamine and 94.7 mg/L N-(p-coumaroyl) tyramine were synthesized from glucose.

  3. Solid-Phase Synthesis of Diverse Peptide Tertiary Amides By Reductive Amination

    PubMed Central

    Pels, Kevin; Kodadek, Thomas

    2015-01-01

    The synthesis of libraries of conformationally-constrained peptide-like oligomers is an important goal in combinatorial chemistry. In this regard an attractive building block is the N-alkylated peptide, also known as peptide tertiary amide (PTA). PTAs are strongly biased conformationally due to allylic 1,3 strain interactions. We report here an improved synthesis of these species on solid supports through the use of reductive amination chemistry using amino acid-terminated, bead-displayed oligomers and diverse aldehydes. The utility of this chemistry is demonstrated by the synthesis of a library of 10,000 mixed peptoid-PTA oligomers. PMID:25695359

  4. Solid-phase synthesis of diverse peptide tertiary amides by reductive amination.

    PubMed

    Pels, Kevin; Kodadek, Thomas

    2015-03-09

    The synthesis of libraries of conformationally constrained peptide-like oligomers is an important goal in combinatorial chemistry. In this regard an attractive building block is the N-alkylated peptide, also known as a peptide tertiary amide (PTA). PTAs are conformationally constrained because of allylic 1,3 strain interactions. We report here an improved synthesis of these species on solid supports through the use of reductive amination chemistry using amino acid-terminated, bead-displayed oligomers and diverse aldehydes. The utility of this chemistry is demonstrated by the synthesis of a library of 10,000 mixed peptoid-PTA oligomers.

  5. Synthesis, spectroscopic characterization, and determination of the solution association energy of the dimer [Co{N(SiMe3)2}2]2: magnetic studies of low-coordinate Co(II) silylamides [Co{N(SiMe3)2}2L] (L = PMe3, pyridine, and THF) and related species that reveal evidence of very large zero-field splittings.

    PubMed

    Bryan, Aimee M; Long, Gary J; Grandjean, Fernande; Power, Philip P

    2013-10-21

    The synthesis, magnetic, and spectroscopic characteristics of the synthetically useful dimeric cobalt(II) silylamide complex [Co{N(SiMe3)2}2]2 (1) and several of its Lewis base complexes have been investigated. Variable-temperature nuclear magnetic resonance (NMR) spectroscopy of 1 showed that it exists in a monomer-dimer equilibrium in benzene solution and has an association energy (ΔGreacn) of -0.30(20) kcal mol(-1) at 300 K. Magnetic data for the polycrystalline, red-brown [Co{N(SiMe3)2}2]2 (1) showed that it displays strong antiferromagnetic exchange coupling, expressed as -2JexS1S2, between the two S = (3)/2 cobalt(II) centers with a Jex value of -215(5) cm(-1), which is consistent with its bridged dimeric structure in the solid state. The electronic spectrum of 1 in solution is reported for the first time, and it is shown that earlier reports of the melting point, synthesis, electronic spectrum, and magnetic studies of the monomer "Co{N(SiMe3)2}2" are consistent with those of the bright green-colored tetrahydrofuran (THF) complex [Co{N(SiMe3)2}2(THF)] (4). Treatment of 1 with various Lewis bases yielded monomeric three-coordinated species-[Co{N(SiMe3)2}2(PMe3)] (2), and [Co{N(SiMe3)2}2(THF)] (4), as well as the previously reported [Co{N(SiMe3)2}2(py)] (3)-and the four-coordinated species [Co{N(SiMe3)2}2(py)2] (5) in good yields. The paramagnetic complexes 2-4 were characterized by electronic and (1)H NMR spectroscopy, and by X-ray crystallography in the case of 2 and 4. Magnetic studies of 2-5 and of the known three-coordinated cobalt(II) species [Na(12-crown-4)2][Co{N(SiMe3)2}3] (6) showed that they have considerably larger χMT products and, hence, magnetic moments, than the spin-only values of 1.875 emu K mol(-1) and 3.87 μB, which is indicative of a significant zero-field splitting and g-tensor anisotropy resulting from the pseudo-trigonal crystal field. A fit of χMT for 2-6 yields a large g-tensor anisotropy, large negative D-values (between -62 cm(-1) and -82 cm(-1)), and E-values between ±10 cm(-1) and ±21 cm(-1).

  6. Effect of total parenteral nutrition, systemic sepsis, and glutamine on gut mucosa in rats

    NASA Technical Reports Server (NTRS)

    Yoshida, S.; Leskiw, M. J.; Schluter, M. D.; Bush, K. T.; Nagele, R. G.; Lanza-Jacoby, S.; Stein, T. P.

    1992-01-01

    The effect of the combination of total parenteral nutrition (TPN) and systemic sepsis on mucosal morphology and protein synthesis was investigated. Rats were given a standard TPN mixture consisting of glucose (216 kcal.kg-1.day-1), lipid (24 kcal.kg-1.day-1), and amino acids (1.5 g N.kg-1.day-1) for 5 days. On the 5th day the rats (n = 37) were randomized into four groups according to diet as follows: 1) control nonseptic on standard TPN, 2) control nonseptic on TPN with glutamine, 3) septic on standard TPN, and 4) septic with the TPN supplemented with glutamine. Twenty hours after the injection of Escherichia coli, the rats were given a 4-h constant infusion of [U-14C]leucine to determine the mucosal fractional protein synthesis rates. The following results were obtained. 1) Histological examination showed that systemic sepsis caused tissue damage to the ileum and jejunum. 2) Glutamine supplementation attenuated these changes. 3) There were no visible changes to the colon either from glutamine supplementation or sepsis. 4) Sepsis was associated with an increase in mucosal protein synthesis and decreased muscle synthesis. 5) Addition of glutamine to the TPN mix further increased protein synthesis in the intestinal mucosa of septic rats.

  7. Overlapping and distinct roles of Aspergillus fumigatus UDP-glucose 4-epimerases in galactose metabolism and the synthesis of galactose-containing cell wall polysaccharides.

    PubMed

    Lee, Mark J; Gravelat, Fabrice N; Cerone, Robert P; Baptista, Stefanie D; Campoli, Paolo V; Choe, Se-In; Kravtsov, Ilia; Vinogradov, Evgeny; Creuzenet, Carole; Liu, Hong; Berghuis, Albert M; Latgé, Jean-Paul; Filler, Scott G; Fontaine, Thierry; Sheppard, Donald C

    2014-01-17

    The cell wall of Aspergillus fumigatus contains two galactose-containing polysaccharides, galactomannan and galactosaminogalactan, whose biosynthetic pathways are not well understood. The A. fumigatus genome contains three genes encoding putative UDP-glucose 4-epimerases, uge3, uge4, and uge5. We undertook this study to elucidate the function of these epimerases. We found that uge4 is minimally expressed and is not required for the synthesis of galactose-containing exopolysaccharides or galactose metabolism. Uge5 is the dominant UDP-glucose 4-epimerase in A. fumigatus and is essential for normal growth in galactose-based medium. Uge5 is required for synthesis of the galactofuranose (Galf) component of galactomannan and contributes galactose to the synthesis of galactosaminogalactan. Uge3 can mediate production of both UDP-galactose and UDP-N-acetylgalactosamine (GalNAc) and is required for the production of galactosaminogalactan but not galactomannan. In the absence of Uge5, Uge3 activity is sufficient for growth on galactose and the synthesis of galactosaminogalactan containing lower levels of galactose but not the synthesis of Galf. A double deletion of uge5 and uge3 blocked growth on galactose and synthesis of both Galf and galactosaminogalactan. This study is the first survey of glucose epimerases in A. fumigatus and contributes to our understanding of the role of these enzymes in metabolism and cell wall synthesis.

  8. Selective synthesis of vitamin K3 over mesoporous NbSBA-15 catalysts synthesized by an efficient hydrothermal method.

    PubMed

    Selvaraj, M; Park, D-W; Kim, I; Kawi, S; Ha, C S

    2012-08-28

    Well hexagonally ordered NbSBA-15 catalysts synthesized by an efficient hydrothermal method were used, for the first time, for the selective synthesis of vitamin K(3) by liquid-phase oxidation of 2-methyl-1-naphthol (2MN1-OH) under various reaction conditions. The recyclable NbSBA-15 catalysts were also reused to find their catalytic activities. To investigate the leaching of non-framework niobium species on the surface of silica networks, the results of original and recyclable NbSBA-15 catalysts were correlated and compared. To find an optimum condition for the selective synthesis of vitamin K(3), the washed NbSBA-15(2.2pH) was extensively used in this reaction with various reaction parameters such as temperature, time and ratios of reactant (2M1N-OH to H(2)O(2)), and the obtained results were also demonstrated. Additionally, the liquid-phase oxidation of 2M1N-OH was carried out with different solvents to find the best solvent with a good catalytic activity. Based on the all catalytic studies, the vitamin K(3) selectivity (97.3%) is higher in NbSBA-15(2.2pH) than that of other NbSBA-15 catalysts, and the NbSBA-15(2.2pH) is found to be a highly active and eco-friendly heterogeneous catalyst for the selective synthesis of vitamin K(3).

  9. The design and synthesis of novel N-hydroxyformamide inhibitors of ADAM-TS4 for the treatment of osteoarthritis.

    PubMed

    De Savi, Chris; Pape, Andrew; Cumming, John G; Ting, Attilla; Smith, Peter D; Burrows, Jeremy N; Mills, Mark; Davies, Chris; Lamont, Scott; Milne, David; Cook, Calum; Moore, Peter; Sawyer, Yvonne; Gerhardt, Stefan

    2011-03-01

    Two series of N-hydroxyformamide inhibitors of ADAM-TS4 were identified from screening compounds previously synthesised as inhibitors of matrix metalloproteinase-13 (collagenase-3). Understanding of the binding mode of this class of compound using ADAM-TS1 as a structural surrogate has led to the discovery of potent and very selective inhibitors with favourable DMPK properties. Synthesis, structure-activity relationships, and strategies to improve selectivity and lower in vivo metabolic clearance are described. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Pressure-reaction synthesis of titanium composite materials

    DOEpatents

    Oden, Laurance L.; Ochs, Thomas L.; Turner, Paul C.

    1993-01-01

    A pressure-reaction synthesis process for producing increased stiffness and improved strength-to-weight ratio titanium metal matrix composite materials comprising exothermically reacting a titanium powder or titanium powder alloys with non-metal powders or gas selected from the group consisting of C, B, N, BN, B.sub.4 C, SiC and Si.sub.3 N.sub.4 at temperatures from about 900.degree. to about 1300.degree. C., for about 5 to about 30 minutes in a forming die under pressures of from about 1000 to 5000 psi.

  11. Ingestion of Wheat Protein Increases In Vivo Muscle Protein Synthesis Rates in Healthy Older Men in a Randomized Trial.

    PubMed

    Gorissen, Stefan Hm; Horstman, Astrid Mh; Franssen, Rinske; Crombag, Julie Jr; Langer, Henning; Bierau, Jörgen; Respondek, Frederique; van Loon, Luc Jc

    2016-09-01

    Muscle mass maintenance is largely regulated by basal muscle protein synthesis and the capacity to stimulate muscle protein synthesis after food intake. The postprandial muscle protein synthetic response is modulated by the amount, source, and type of protein consumed. It has been suggested that plant-based proteins are less potent in stimulating postprandial muscle protein synthesis than animal-derived proteins. However, few data support this contention. We aimed to assess postprandial plasma amino acid concentrations and muscle protein synthesis rates after the ingestion of a substantial 35-g bolus of wheat protein hydrolysate compared with casein and whey protein. Sixty healthy older men [mean ± SEM age: 71 ± 1 y; body mass index (in kg/m(2)): 25.3 ± 0.3] received a primed continuous infusion of l-[ring-(13)C6]-phenylalanine and ingested 35 g wheat protein (n = 12), 35 g wheat protein hydrolysate (WPH-35; n = 12), 35 g micellar casein (MCas-35; n = 12), 35 g whey protein (Whey-35; n = 12), or 60 g wheat protein hydrolysate (WPH-60; n = 12). Plasma and muscle samples were collected at regular intervals. The postprandial increase in plasma essential amino acid concentrations was greater after ingesting Whey-35 (2.23 ± 0.07 mM) than after MCas-35 (1.53 ± 0.08 mM) and WPH-35 (1.50 ± 0.04 mM) (P < 0.01). Myofibrillar protein synthesis rates increased after ingesting MCas-35 (P < 0.01) and were higher after ingesting MCas-35 (0.050% ± 0.005%/h) than after WPH-35 (0.032% ± 0.004%/h) (P = 0.03). The postprandial increase in plasma leucine concentrations was greater after ingesting Whey-35 than after WPH-60 (peak value: 580 ± 18 compared with 378 ± 10 μM, respectively; P < 0.01), despite similar leucine contents (4.4 g leucine). Nevertheless, the ingestion of WPH-60 increased myofibrillar protein synthesis rates above basal rates (0.049% ± 0.007%/h; P = 0.02). The myofibrillar protein synthetic response to the ingestion of 35 g casein is greater than after an equal amount of wheat protein. Ingesting a larger amount of wheat protein (i.e., 60 g) substantially increases myofibrillar protein synthesis rates in healthy older men. This trial was registered at clinicaltrials.gov as NCT01952639. © 2016 American Society for Nutrition.

  12. Design, synthesis, X-ray studies, and biological evaluation of novel macrocyclic HIV-1 protease inhibitors involving the P1'-P2' ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Arun K.; Sean Fyvie, W.; Brindisi, Margherita

    Design, synthesis, and evaluation of a new class of HIV-1 protease inhibitors containing diverse flexible macrocyclic P1'-P2' tethers are reported. Inhibitor 5a with a pyrrolidinone-derived macrocycle exhibited favorable enzyme inhibitory and antiviral activity (Ki = 13.2 nM, IC50 = 22 nM). Further incorporation of heteroatoms in the macrocyclic skeleton provided macrocyclic inhibitors 5m and 5o. These compounds showed excellent HIV-1 protease inhibitory (Ki = 62 pM and 14 pM, respectively) and antiviral activity (IC50 = 5.3 nM and 2.0 nM, respectively). Inhibitor 5o also remained highly potent against a DRV-resistant HIV-1 variant.

  13. Responsive copolymers for enhanced petroleum recovery. Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, C.; Hester, R.

    1994-08-01

    A coordinated research program involving synthesis, characterization, and rheology has been undertaken to develop advanced polymer system which should be significantly more efficient than polymers presently used for mobility control and conformance. Unlike the relatively inefficient, traditional EOR polymers, these advanced polymer systems possess microstructural features responsive to temperature, electrolyte concentration, and shear conditions. Contents of this report include the following chapters. (1) First annual report responsive copolymers for enhanced oil recovery. (2) Copolymers of acrylamide and sodium 3-acrylamido-3-methylbutanoate. (3) Terpolymers of NaAMB, Am, and n-decylacrylamide. (4) Synthesis and characterization of electrolyte responsive terpolymers of acrylamide, N-(4-butyl)phenylacrylamide, and sodium acrylate,more » sodium-2-acrylamido-2-methylpropanesulphonate or sodium-3-acrylamido-3-methylbutanoate. (5) Synthesis and solution properties of associative acrylamido copolymers with pyrensulfonamide fluorescence labels. (6) Photophysical studies of the solution behavior of associative pyrenesulfonamide-labeled polyacrylamides. (7) Ampholytic copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate with [2-(acrylamido)-2-methypropyl]trimethylammonium chloride. (8) Ampholytic terpolymers of acrylamide with sodium 2-acrylamido-2-methylpropanesulphoante and 2-acrylamido-2-methylpropanetrimethyl-ammonium chloride and (9) Polymer solution extensional behavior in porous media.« less

  14. Synthesis and antitumoral activity of novel 3-(2-substituted-1,3,4-oxadiazol-5-yl) and 3-(5-substituted-1,2,4-triazol-3-yl) beta-carboline derivatives.

    PubMed

    Formagio, Anelise S Nazari; Tonin, Lilian T Düsman; Foglio, Mary Ann; Madjarof, Christiana; de Carvalho, João Ernesto; da Costa, Willian Ferreira; Cardoso, Flávia P; Sarragiotto, Maria Helena

    2008-11-15

    Several novel 1-substituted-phenyl beta-carbolines bearing the 2-substituted-1,3,4-oxadiazol-5-yl and 5-substituted-1,2,4-triazol-3-yl groups at C-3 were synthesized and evaluated for their in vitro anticancer activity. The assay results pointed thirteen compounds with growth inhibition effect (GI(50)<100 microM) for all eight different types of human cancer cell lines tested. The beta-carbolines 7a and 7h, bearing the 3-(2-metylthio-1,3,4-oxadiazol-5-yl) group, displayed high selectivity and potent anticancer activity against ovarian cell line with GI(50) values lying in the nanomolar concentration range (GI(50)=10 nM for both compounds). The 1-(N,N-dimethylaminophenyl)-3-(5-thioxo-1,2,4-triazol-3-yl) beta-carboline (8g) was the most active compound, showing particular effectiveness on lung (GI(50)=0.06 microM), ovarian and renal cell lines. The potent anticancer activity presented for synthesized compounds 7a, 7h, and 8g, together with their easiness of synthesis, makes these compounds promising anticancer agents.

  15. Efficient total synthesis of (S)-14-azacamptothecin.

    PubMed

    Liu, Guan-Sai; Yao, Yuan-Shan; Xu, Peng; Wang, Shaozhong; Yao, Zhu-Jun

    2010-06-01

    An efficient total synthesis of (S)-14-azacamptothecin has been accomplished in 10 steps and 56% overall yield from 5H-pyrano[4,3-d]pyrimidine 8. A mild Hendrickson reagent-triggered intramolecular cascade cyclization, a highly enantioselective dihydroxylation, and an efficient palladium-catalyzed transformation of an O-allyl into N-allyl group are the key steps in the synthesis. This work provides a much higher overall yield than the previous achievement and shows sound flexibility for the further applications that will lead to new bioactive analogues.

  16. Birth, Death and Transfiguration; The Synthesis of Preceramic Polymers, Their Pyrolysis and Their Conversion to Ceramics (Preprint)

    DTIC Science & Technology

    1989-05-31

    have been able to prepare preceramic polymers whose pyrolysis gives -99% SiC , -99.5% Si 3N 4 , or any mixture of the two by appropriate manipulation of...SYNTHESIS OF PRECERAMIC POLYMERS , THEIR PYROLYSIS AND THEIR CONVERSION TO CERAMICS by Dietmar Seyferth ELCTE D MAY 1 9 989 EEl To be published MAY U...CLASSIFICATION OF THIS PAGE All other editions are obsolete. BIRTH, DEATH AND TRANSFIGURATION: THE SYNTHESIS OF PRECERAMIC POLYMERS , THEIR PYROLYSIS

  17. Synthesis of Stable Microcapsules from Trematode Eggshell Components.

    DTIC Science & Technology

    1988-04-29

    8217 Arlington, VA 22217-5000 61153N RR4106 71,E ’Include Security Classification) (u) Synthesis of Stable Microcapsules from Trematode Eggshell Components 12...necessary and Identify by block number) 3RO~P SUB-P~iA Microcapsule , Dopa-proteins, trematode, crosslinks, eggshell 79 ABSTRAC7 ,Continue an reverse If...All other editions are obsolete. S ,.O 0 V po r t -A’X I T!L~-r ....7 KIT X - ~.W.:,iili Synthesis of Stable Microcapsules from Trematode Eggshell

  18. Synthesis, molecular modeling, and opioid receptor affinity of 9, 10-diazatricyclo[4.2.1.1(2,5)]decanes and 2,7-diazatricyclo[4.4.0. 0(3,8)]decanes structurally related to 3,8-diazabicyclo[3.2. 1]octanes.

    PubMed

    Vianello, P; Albinati, A; Pinna, G A; Lavecchia, A; Marinelli, L; Borea, P A; Gessi, S; Fadda, P; Tronci, S; Cignarella, G

    2000-06-01

    Various lines of evidence, including molecular modeling studies, imply that the endoethylenic bridge of 3,8-diazabicyclo[3.2. 1]octanes (DBO, 1) plays an essential role in modulating affinity toward mu opioid receptors. This hypothesis, together with the remarkable analgesic properties observed for N(3) propionyl, N(8) arylpropenyl derivatives (2) and of the reverted isomers (3), has prompted us to insert an additional endoethylenic bridge on the piperazine moiety in order to identify derivatives with increased potency toward this receptor class. In the present report, we describe the synthesis of the novel compounds 9,10-diazatricyclo[4.2. 1.1(2,5)]decane (4) and 2,7-diazatricyclo[4.4.0.0(3,8)]decane (5), as well as the representative derivatives functionalized at the two nitrogen atoms by propionyl and arylpropenyl groups (6a-e, 7a-d). Opioid receptor binding assays revealed that, among the compounds tested, the N-propionyl-N-cinnamyl derivatives 6a and 7a exhibited the highest mu-receptor affinity, and remarkably, compound 7a displayed in vivo (mice) an analgesic potency 6-fold that of morphine.

  19. Synthesis and Structural Characterization of CdFe2O4 Nanostructures

    NASA Astrophysics Data System (ADS)

    Kalpanadevi, K.; Sinduja, C. R.; Manimekalai, R.

    The synthesis of CdFe2O4 nanoparticles has been achieved by a simple thermal decomposition method from the inorganic precursor, [CdFe2(cin)3(N2H4)3], which was obtained by a simple precipitation method from the corresponding metal salts, cinnamic acid and hydrazine hydrate. The precursor was characterized by hydrazine and metal analyses, infrared spectral analysis and thermo gravimetric analysis. On appropriate annealing, [CdFe2(cin)3(N2H4)3] yielded CdFe2O4 nanoparticles. The XRD studies showed that the crystallite size of the particles was 13nm. The results of HRTEM studies also agreed well with those of XRD. SAED pattern of the sample established the polycrystalline nature of the nanoparticles. SEM images displayed a random distribution of grains in the sample.

  20. Synthesis of 3,5-Isoxazolidinediones and 1H-2,3-Benzoxazine-1,4(3H)-diones from Aliphatic Oximes and Dicarboxylic Acid Chlorides

    PubMed Central

    2015-01-01

    The synthesis of the title compounds was carried out by reacting dicarboxylic acid chlorides with oximes in the presence of excess triethylamine. Disubstituted malonyl chlorides gave 2-alkenyl-4,4-dialkyl-3,5-isoxazolidinediones (8a–f) and 2,2′-ethylidene-bis[4,4-dialkyl-3,5-isoxazolidinedione]s (9a–f). Compounds 9 were formed from 8 and its N-unsubstituted 3,5-isoxazolidinedione decomposition product. Phthaloyl chlorides reacted with acetone oxime to yield 3-(1-methylethenyl)-1H-2,3-benzoxazine-1,4(3H)-diones (16a–e). Products 16 spontaneously decomposed to give N-unsubstituted 1H-2,3-benzoxazine-1,4(3H)-diones (17a–e) at rates that were dependent on temperature and solvent. Kinetic studies showed that two of the compounds decomposed by zero-order kinetics under neutral conditions. Butanedioyl chloride did not produce a cyclic product. PMID:24620711

  1. Synthesis of 3,5-isoxazolidinediones and 1H-2,3-benzoxazine-1,4(3H)-diones from aliphatic oximes and dicarboxylic acid chlorides.

    PubMed

    Izydore, Robert A; Jones, Joseph T; Mogesa, Benjamin; Swain, Ira N; Davis-Ward, Ronda G; Daniels, Dwayne L; Kpakima, Felicia Frazier; Spaulding-Phifer, Sharnelle T

    2014-04-04

    The synthesis of the title compounds was carried out by reacting dicarboxylic acid chlorides with oximes in the presence of excess triethylamine. Disubstituted malonyl chlorides gave 2-alkenyl-4,4-dialkyl-3,5-isoxazolidinediones (8a-f) and 2,2'-ethylidene-bis[4,4-dialkyl-3,5-isoxazolidinedione]s (9a-f). Compounds 9 were formed from 8 and its N-unsubstituted 3,5-isoxazolidinedione decomposition product. Phthaloyl chlorides reacted with acetone oxime to yield 3-(1-methylethenyl)-1H-2,3-benzoxazine-1,4(3H)-diones (16a-e). Products 16 spontaneously decomposed to give N-unsubstituted 1H-2,3-benzoxazine-1,4(3H)-diones (17a-e) at rates that were dependent on temperature and solvent. Kinetic studies showed that two of the compounds decomposed by zero-order kinetics under neutral conditions. Butanedioyl chloride did not produce a cyclic product.

  2. Zinc(II) and lead(II) metal-organic networks driven by a multifunctional pyridine-carboxylate building block: Hydrothermal synthesis, structural and topological features, and luminescence properties

    NASA Astrophysics Data System (ADS)

    Yang, Ling; Li, Yu; You, Ao; Jiang, Juan; Zou, Xun-Zhong; Chen, Jin-Wei; Gu, Jin-Zhong; Kirillov, Alexander M.

    2016-09-01

    4-(5-Carboxypyridin-2-yl)isophthalic acid (H3L) was applied as a flexible, multifunctional N,O-building block for the hydrothermal self-assembly synthesis of two novel coordination compounds, namely 2D [Zn(μ3-HL)(H2O)]n·nH2O (1) and 3D [Pb2(μ5-HL)(μ6-HL)]n (2) coordination polymers (CPs). These compounds were obtained in aqueous medium from a mixture containing zinc(II) or lead(II) nitrate, H3L, and sodium hydroxide. The products were isolated as stable crystalline solids and were characterized by IR spectroscopy, elemental, thermogravimetric (TGA), powder (PXRD) and single-crystal X-ray diffraction analyses. Compound 1 possesses a 2D metal-organic layer with the fes topology, which is further extended into a 3D supramolecular framework via hydrogen bonds. In contrast, compound 2 features a very complex network structure, which was topologically classified as a binodal 5,6-connected net with the unique topology defined by the point symbol of (47.63)(49.66). Compounds 1 and 2 disclose an intense blue or green luminescent emission at room temperature.

  3. Synthesis and Nicotinic Acetylcholine Receptor In Vitro and In Vivo Pharmacological Properties of 2'-Fluoro-3'-(substituted phenyl)deschloroepibatidine Analogues of 2'-Fluoro-3'-(4-nitrophenyl)deschloroepibatidine (4-Nitro-PFEB or RTI-7527-102)

    PubMed Central

    Ondachi, Pauline; Castro, Ana; Luetje, Charles W.; Damaj, M. Imad; Mascarella, S. Wayne; Navarro, Hernán A.; Carroll, F. Ivy

    2012-01-01

    Herein, we report the synthesis and nicotinic acetylcholine receptor (nAChR) in vitro and in vivo pharmacological properties of 2'-fluoro-3'-(substituted phenyl)deschloroepibatidines 5b–g, analogues of 3'-(4-nitrophenyl) compound 5a. All compounds had high affinity for the α4β2-nAChR and low affinity for α7-nAChR. Initial electrophysiological studies showed that all analogues were antagonists at α4β2-, α3β4-, and α7-nAChRs. The 4-carbamoylphenyl analogue 5g was highly selective for α4β2-nAChR over α3β4- and α7-nAChRs. All the analogues were antagonists of nicotine-induced antinociception in the tail-flick test. Molecular modeling docking studies using agonist-bound form of the X-ray crystal structure of the acetylcholine binding protein suggested several different binding modes for epibatidine, varenicline, and 5a–5g. In particular, a unique binding mode for 5g was suggested by these docking simulations. The high binding affinity, in vitro efficacy, and selectivity of 5g for α4β2-nAChR combined with its nAChR functional antagonist properties suggest that 5g will be a valuable pharmacological tool for studying the nAChR and may have potential as a pharmacotherapy for addiction and other CNS disorders. PMID:22742586

  4. Synthesis and electrical characterization of intrinsic and in situ doped Si nanowires using a novel precursor

    PubMed Central

    Molnar, Wolfgang; Wojcik, Tomasz; Pongratz, Peter; Auner, Norbert; Bauch, Christian; Bertagnolli, Emmerich

    2012-01-01

    Summary Perchlorinated polysilanes were synthesized by polymerization of tetrachlorosilane under cold plasma conditions with hydrogen as a reducing agent. Subsequent selective cleavage of the resulting polymer yielded oligochlorosilanes SinCl2 n +2 (n = 2, 3) from which the octachlorotrisilane (n = 3, Cl8Si3, OCTS) was used as a novel precursor for the synthesis of single-crystalline Si nanowires (NW) by the well-established vapor–liquid–solid (VLS) mechanism. By adding doping agents, specifically BBr3 and PCl3, we achieved highly p- and n-type doped Si-NWs by means of atmospheric-pressure chemical vapor deposition (APCVD). These as grown NWs were investigated by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM), as well as electrical measurements of the NWs integrated in four-terminal and back-gated MOSFET modules. The intrinsic NWs appeared to be highly crystalline, with a preferred growth direction of [111] and a specific resistivity of ρ = 6 kΩ·cm. The doped NWs appeared to be [112] oriented with a specific resistivity of ρ = 198 mΩ·cm for p-type Si-NWs and ρ = 2.7 mΩ·cm for n-doped Si-NWs, revealing excellent dopant activation. PMID:23019552

  5. Synthesis of phase-pure U 2N 3 microspheres and its decomposition into UN

    DOE PAGES

    Silva, Chinthaka M.; Hunt, Rodney Dale; Snead, Lance Lewis; ...

    2014-12-12

    Uranium mononitride (UN) is important as a nuclear fuel. Fabrication of UN in its microspherical form also has its own merits since the advent of the concept of accident-tolerant fuel, where UN is being considered as a potential fuel in the form of TRISO particles. But, not many processes have been well established to synthesize kernels of UN. Therefore, a process for synthesis of microspherical UN with a minimum amount of carbon is discussed herein. First, a series of single-phased microspheres of uranium sesquinitride (U 2N 3) were synthesized by nitridation of UO 2+C microspheres at a few different temperatures.more » Resulting microspheres were of low-density U 2N 3 and decomposed into low-density UN. The variation of density of the synthesized sesquinitrides as a function of its chemical composition indicated the presence of extra (interstitial) nitrogen atoms corresponding to its hyperstoichiometry, which is normally indicated as α-U 2N 3. Average grain sizes of both U 2N 3 and UN varied in a range of 1–2.5 μm. In addition, these had a considerably large amount of pore spacing, indicating the potential sinterability of UN toward its use as a nuclear fuel.« less

  6. Synthetic procedure for N-Fmoc amino acyl-N-sulfanylethylaniline linker as crypto-peptide thioester precursor with application to native chemical ligation.

    PubMed

    Sakamoto, Ken; Sato, Kohei; Shigenaga, Akira; Tsuji, Kohei; Tsuda, Shugo; Hibino, Hajime; Nishiuchi, Yuji; Otaka, Akira

    2012-08-17

    N-sulfanylethylanilide (SEAlide) peptides 1, obtainable using Fmoc-based solid-phase peptide synthesis (Fmoc SPPS), function as crypto-thioesters in native chemical ligation (NCL), yielding a wide variety of peptides/proteins. Their acylating potential with N-terminal cysteinyl peptides 2 can be tuned by the presence or absence of phosphate salts, leading to one-pot/multifragment ligation, operating under kinetically controlled conditions. SEAlide peptides have already been shown to be promising for use in protein synthesis; however, a widely applicable method for the synthesis of N-Fmoc amino acyl-N-sulfanylethylaniline linkers 4, required for the preparation of SEAlide peptides, is unavailable. The present study addresses the development of efficient condensation protocols of 20 naturally occurring amino acid derivatives to the N-sulfanylethylaniline linker 5. N-Fmoc amino acyl aniline linkers 4 of practical use in NCL chemistry, except in the case of the proline- or aspartic acid-containing linker, were successfully synthesized by coupling of POCl(3)- or SOCl(2)-activated Fmoc amino acid derivatives with sodium anilide species 6, without accompanying racemization and loss of side-chain protection. Furthermore, SEAlide peptides 7 possessing various C-terminal amino acids (Gly, His, Phe, Ala, Asn, Ser, Glu, and Val) were shown to be of practical use in NCL chemistry.

  7. Synthesis and Initial in Vivo Studies with [11C]SB-216763: The First Radiolabeled Brain Penetrative Inhibitor of GSK-3

    PubMed Central

    2015-01-01

    Quantifying glycogen synthase kinase-3 (GSK-3) activity in vivo using positron emission tomography (PET) imaging is of interest because dysregulation of GSK-3 is implicated in numerous diseases and neurological disorders for which GSK-3 inhibitors are being considered as therapeutic strategies. Previous PET radiotracers for GSK-3 have been reported, but none of the published examples cross the blood–brain barrier. Therefore, we have an ongoing interest in developing a brain penetrating radiotracer for GSK-3. To this end, we were interested in synthesis and preclinical evaluation of [11C]SB-216763, a high-affinity inhibitor of GSK-3 (Ki = 9 nM; IC50 = 34 nM). Initial radiosyntheses of [11C]SB-216763 proved ineffective in our hands because of competing [3 + 3] sigmatropic shifts. Therefore, we have developed a novel one-pot two-step synthesis of [11C]SB-216763 from a 2,4-dimethoxybenzyl-protected maleimide precursor, which provided high specific activity [11C]SB-216763 in 1% noncorrected radiochemical yield (based upon [11C]CH3I) and 97–100% radiochemical purity (n = 7). Initial preclinical evaluation in rodent and nonhuman primate PET imaging studies revealed high initial brain uptake (peak rodent SUV = 2.5 @ 3 min postinjection; peak nonhuman primate SUV = 1.9 @ 5 min postinjection) followed by washout. Brain uptake was highest in thalamus, striatum, cortex, and cerebellum, areas known to be rich in GSK-3. These results make the arylindolemaleimide skeleton our lead scaffold for developing a PET radiotracer for quantification of GSK-3 density in vivo and ultimately translating it into clinical use. PMID:26005531

  8. Novel reaction of N,N'-bisarylmethanediamines with formaldehyde. Synthesis of some new 1,3,5-triaryl-1,3,5-hexahydrotriazines.

    PubMed

    Ghandi, Mehdi; Salimi, Farshid; Olyaei, Abolfazl

    2006-07-26

    The acid-catalyzed cyclocondensation of N,N'-bisaryl (aryl = 2-pyrimidinyl, 2-pyrazinyl and 4-nitrophenyl) methanediamines 5a-c with aqueous formaldehyde in refluxing acetonitrile leads to the formation of the corresponding 1,3,5-triaryl-1,3,5-hexa-hydrotriazines 6a-c. The stoichiometric reactions of 2-aminopyrimidine and 2-amino-pyrazine with aqueous formaldehyde in acetonitrile under reflux conditions also afforded 6a and 6b, respectively. Treatment of 2-aminopyrimidine with aqueous formaldehyde in a 3:2 ratio yielded N,N',N"-tris(2-pyrimidinyl)dimethylenetriamine (7a) as a sole product, which upon subsequent reaction with formaldehyde also afforded 6a. The reaction of N,N'-biphenylmethanediamine with formaldehyde was also investigated.

  9. N-terminal propeptide of type III procollagen as a biomarker of anabolic response to recombinant human GH and testosterone

    USDA-ARS?s Scientific Manuscript database

    Context: Biomarkers that predict musculoskeletal response to anabolic therapies should expedite drug development. During collagen synthesis in soft lean tissue, N-terminal propeptide of type III procollagen (P3NP) is released into circulation. We investigated P3NP as a biomarker of lean body mass (L...

  10. A tandem conjugate addition/cyclization protocol for the asymmetric synthesis of 2-aryl-4-aminotetrahydroquinoline-3-carboxylic acid derivatives.

    PubMed

    Davies, Stephen G; Mujtaba, Nadeam; Roberts, Paul M; Smith, Andrew D; Thomson, James E

    2009-05-07

    Condensation of tert-butyl (E)-3-(2'-aminophenyl)propenoate with a range of aromatic and heteroaromatic aldehydes gives the corresponding imines as single diastereoisomers (>98% de). Addition of lithium (R)-N-benzyl-N-(alpha-methylbenzyl)amide initiates a tandem conjugate addition/cyclization reaction to generate 2-aryl-4-aminotetrahydroquinoline-3-carboxylic acid derivatives in >98% de, >98% ee and high isolated yield. Hydrogenolysis of an N(1)-Boc protected derivative allows selective cleavage of the N-benzyl-N-alpha-methylbenzyl protecting groups without compromise of the diastereo- or enantiopurity.

  11. Palladium complexes with simple iminopyridines as catalysts for polyketone synthesis.

    PubMed

    Rosar, V; Dedeic, D; Nobile, T; Fini, F; Balducci, G; Alessio, E; Carfagna, C; Milani, B

    2016-10-07

    Four iminopyridines (N-N') differing in the nature of the substituents on the iminic carbon and on the ortho positions of the aryl ring (H or CH3) on the iminic nitrogen were used for the synthesis of neutral and monocationic palladium(ii) complexes of general formulae [Pd(CH3)Cl(N-N')] and [Pd(CH3)(NCCH3)(N-N')][PF6]. The detailed NMR characterization in solution highlighted that: (i) for both series of complexes, the Pd-CH3 signal is progressively shifted to a lower frequency on increasing the number of methyl groups on the ligand skeleton; (ii) for the neutral derivatives, the chemical shift of the (15)N NMR signals, determined through {(1)H,(15)N}-HMBC spectra, is significantly affected by the coordination to palladium; (iii) the coordination induced shift (CIS) of the nitrogen atom trans to the CH3 ligand is smaller than the other. The structure in the solid state for the neutral derivatives with all the four ligands was solved, pointing out that: (iv) the Pd-C bond distance increases with the basicity of the nitrogen-donor ligand; (v) the Pd-N bond distance correlates well with the CIS value. The combining of the solution and solid state structural features allows stating that: (vi) the Pd-CH3 singlet is a good probe for the electron donor capability of the ligand; (vii) the CIS value might be used as a probe for the strength of the Pd-N bond. All monocationic complexes generated active catalysts for the CO/vinyl arene copolymerization, leading to prevailingly syndiotactic polyketones. The catalyst performances, both in terms of catalyst productivity and polymer molecular weight, correlate well with the precatalyst structural features.

  12. Facile Synthesis and Proposed Mechanism of α,ω-Oxetanyl-Telechelic Poly(3-nitratomethyl-3-methyl oxetane) by an SN2(i) Nitrato Displacement Method in Basic Media

    NASA Astrophysics Data System (ADS)

    Desai, Hemant J.; Acheampong, Daniel O.; Hudson, Robert; Lacey, Richard; Stanley, Claire; Turner, Helen; Whitmore, Hannah; Torry, Simon; Golding, Peter; Erothu, Harikrishna; Topham, Paul

    2017-01-01

    The synthesis of a novel heterocyclic-telechelic polymer, α,ω-oxetanyl-telechelic poly(3-nitratomethyl-3-methyl oxetane), is described. Infrared spectroscopy (IR), gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) spectroscopy have been used to confirm the successful synthesis, demonstrating the presence of the telechelic-oxetanyl moieties. Synthesis of the terminal functionalities has been achieved via displacement of nitrato groups, in a manner similar to that employed with other leaving groups such as azido, bromo, and nitro, initiated by nucleophiles. In the present case, displacement occurs on the ends of a nitrato-functionalized polymer driven by the formation of sodium nitrate, which is supported by the polar aprotic solvent N,N-dimethyl formamide. The formation of an alkoxide at the polymer chain ends is favored and allows internal back-biting to the nearest carbon bearing the nitrato group, intrinsically in an SN2(i) reaction, leading to α,ω-oxetanyl functionalization. The telechelic-oxetanyl moieties have the potential to be cross-linked by chemical (e.g., acidic) or radiative (e.g., ultraviolet) curing methods without the use of high temperatures, usually below 100°C. This type of material was designed for future use as a contraband simulant, whereby it would form the predominant constituent of elastomeric composites comprising rubbery polymer with small quantities of solids, typically crystals of contraband substances, such as explosives or narcotics. This method also provides an alternative approach to ring closure and synthesis of heterocycles.

  13. Synthesis and Characterization of Selected 4,4'-Diaminoalkoxyazobenzenes

    EPA Science Inventory

    The role of the -N(CH2CH20H)2 group in producing a mutagenic response from 4-«3-(2h) Uroxyethoxy)4-amino)phenylazo)-N,N-bis(2-hydroxyethyl)-aniline has been investigated. To accomplish this goal, a group ofsubstituted 4,4'-diaminoazobenzene dyes was synthesized, and their struct...

  14. A confined "microreactor" synthesis strategy to three dimensional nitrogen-doped graphene for high-performance sodium ion battery anodes

    NASA Astrophysics Data System (ADS)

    Li, Jiajie; Zhang, Yumin; Gao, Tangling; Han, Jiecai; Wang, Xianjie; Hultman, Benjamin; Xu, Ping; Zhang, Zhihua; Wu, Gang; Song, Bo

    2018-02-01

    In virtue of abundant sodium resources, sodium ion batteries (SIBs) have been regarded as one of the most promising alternatives for large-scale energy storage applications. However, the absence of a suitable anode material makes it difficult to realize these applications. Here, we demonstrate an effective synthesis strategy of using a "microreactor" consisting of melamine fiber (inside) and graphene oxide (GO, outside) to fabricate three dimensional (3D) nitrogen doped (N-doped) graphene as high-performance anode materials for sodium ion batteries. Through a controlled pyrolysis, the inside melamine fiber and the outside GO layer has been converted into N-doped graphene and reduced graphene oxide (r-GO) respectively, and thus the "microreactor" is transformed into interconnected 3D N-doped graphene structures. Such highly desired 3D graphene structures show reversible sodium storage capacities up to ∼305 mA h g-1 after 500 cycles at a current density of 0.2 A g-1 and promising long cycling stability with a stable capacity of ∼198 mA h g-1 at 5 A g-1 after 5000 cycles. The high capacity and superior durability in combination with the facile synthesis procedure of the 3D graphene structure make it a promising anode material for SIBs and other energy storage applications.

  15. Synthesis of Unsymmetrical 3,4-Diaryl-3-pyrrolin-2-ones Utilizing Pyrrole Weinreb Amides

    PubMed Central

    Greger, Jessica G.; Yoon-Miller, Sarah J.P.; Bechtold, Nathan R.; Flewelling, Scott A.; MacDonald, Jacob P.; Downey, Catherine R.; Cohen, Eric A.; Pelkey, Erin T.

    2011-01-01

    A regiocontrolled synthesis of unsymmetrical 3,4-diaryl-3-pyrrolin-2-ones has been achieved in three steps from 1,2-diaryl-1-nitroethenes with pyrrole-2-carboxamides (pyrrole Weinreb amides) serving as the key linchpin intermediates. Two different methods for the preparation of the requisite nitroalkenes were investigated: (1) modified Henry reaction between arylnitromethanes and arylimines; and (2) Suzuki-Miyaura cross-coupling reaction of 2-aryl-1-bromo-1-nitroethenes with arylboronic acids. Some difficulty was encountered in the preparation of arylnitromethanes, thus leading to the exploration of a cross-coupling strategy that proved more useful. A Barton-Zard pyrrole cyclocondensation reaction between 1,2-diaryl-1-nitroethenes and N-methoxy-N-methyl-2-isocyanoacetamide gave the corresponding pyrrole Weinreb amides, which were then converted into the desired 3-pyrrolin-2-ones in two steps. Overall, this method allowed for the construction of 3,4-diaryl-3-pyrrolin-2-ones with complete regiocontrol of the substituents with respect to the lactam carbonyl. The utility of this synthetic methodology was demonstrated by the preparation of eight unsymmetrical and symmetrical 3,4-diaryl-3-pyrrolin-2-ones including the N-H lactam analog of the selective COX-II inhibitor, rofecoxib. PMID:21913662

  16. Effects of nitrate on metamorphosis, thyroid and iodothyronine deiodinases expression in Bufo gargarizans larvae.

    PubMed

    Wang, Ming; Chai, Lihong; Zhao, Hongfeng; Wu, Minyao; Wang, Hongyuan

    2015-11-01

    Chinese toad (Bufo gargarizans) tadpoles were exposed to nitrate (10, 50 and 100mg/L NO3-N) from the beginning of the larval period through metamorphic climax. We examined the effects of chronic nitrate exposure on metamorphosis, mortality, body size and thyroid gland. In addition, thyroid hormone (TH) levels, type II iodothyronine deiodinase (Dio2) and type III iodothyronine deiodinase (Dio3) mRNA levels were also measured to assess disruption of TH synthesis. Results showed that significant metamorphic delay and mortality increased were caused in larvae exposed to 100mg/L NO3-N. The larvae exposed to 100mg/L NO3-N clearly exhibited a greater reduction in thyroxine (T4) and 3,5,3'-triiodothyronine (T3) levels. Moreover, treatment with NO3-N induced down-regulation of Dio2 mRNA levels and up-regulation of Dio3 mRNA levels, reflecting the disruption of thyroid endocrine. It seems that increased mass and body size may be correlated with prolonged metamorphosis. Interestingly, we observed an exception that exposure to 100mg/L NO3-N did not exhibit remarkable alterations of thyroid gland size. Compared with control groups, 100mg/L NO3-N caused partial colloid depletion in the thyroid gland follicles. These results suggest that nitrate can act as a chemical stressor inducing retardation in development and metamorphosis. Therefore, we concluded that the presence of high concentrations nitrate can influence the growth, decline the survival, impair TH synthesis and induce metamorphosis retardation of B. gargarizans larvae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Nitrogen gas emissions and nitrate leaching dynamics under different tillage practices based on data synthesis and process-based modeling

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Ren, W.; Tao, B.; Zhu, X.

    2017-12-01

    Nitrogen losses from the agroecosystems have been of great concern to global changes due to the effects on global warming and water pollution in the form of nitrogen gas emissions (e.g., N2O) and mineral nitrogen leaching (e.g., NO3-), respectively. Conservation tillage, particularly no-tillage (NT), may enhance soil carbon sequestration, soil aggregation and moisture; therefore it has the potential of promoting N2O emissions and reducing NO3- leaching, comparing with conventional tillage (CT). However, associated processes are significantly affected by various factors, such as soil properties, climate, and crop types. How tillage management practices affect nitrogen transformations and fluxes is still far from clear, with inconsistent even opposite results from previous studies. To fill this knowledge gap, we quantitatively investigated gaseous and leaching nitrogen losses from NT and CT agroecosystems based on data synthesis and an improved process-based agroecosystem model. Our preliminary results suggest that NT management is more efficient in reducing NO3- leaching, and meanwhile it simultaneously increases N2O emissions by approximately 10% compared with CT. The effects of NT on N2O emissions and NO3- leaching are highly influenced by the placement of nitrogen fertilizer and are more pronounced in humid climate conditions. The effect of crop types is a less dominant factor in determining N2O and NO3- losses. Both our data synthesis and process-based modeling suggest that the enhanced carbon sequestration capacity from NT could be largely compromised by relevant NT-induced increases in N2O emissions. This study provides the comprehensive quantitative assessment of NT on the nitrogen emissions and leaching in agroecosystems. It provides scientific information for identifying proper management practices for ensuring food security and minimizing the adverse environmental impacts. The results also underscore the importance of suitable nitrogen management in the NT agroecosystems for climate adaptation and mitigation.

  18. The importance of antineuraminidase antibodies in resistance to influenza A and immunologic memory for their synthesis.

    PubMed Central

    Naikhin, A. N.; Tsaritsina, I. M.; Oleinikova, E. V.; Syrodoeva, L. G.; Korchanova, N. L.; Denisov, G. M.; Shvartsman YaS

    1983-01-01

    Eight hundred and seventy-seven sera from 360 adults aged 18-50 who were under permanent observation from October 1980 to March 1981 have been studied by haemagglutination-inhibition (HI) and erythrocyte elution-inhibition (EI) tests--a simplified method of antineuraminidase antibody titration. It was demonstrated in some subjects infected with influenza A H1N1 and H3N2 viruses that the antibody rise was to one of the surface antigens only--haemagglutinin or neuraminidase. These subjects made up 5.2-25.8% of all examinees. The protective effect of antibodies to neuraminidase was similar to that of antihaemagglutinins. Interaction of both types of antibodies was observed in protection against the disease. Data have been obtained on the influence of antineuraminidase antibodies in decreasing the severity of natural infection with influenza A. A study of heterologous immunologic responses to haemagglutinin and neuraminidase among persons immunized with live influenza A H1N1 and H3N2 vaccines and among children naturally infected with influenza A H3N2 demonstrated the presence of immunologic memory for antineuraminidase antibody synthesis. Thus, the suggestion of a common antigenic structure for neuraminidase N1 and N2 is made. PMID:6886409

  19. Synthesis, extraction and electronic structure of Ce@C2n

    NASA Astrophysics Data System (ADS)

    Liu, Bing-Bing; Zou, Guang-Tian; Yang, Hai-Bin; Yu, San; Lu, Jin-Shan; Liu, Zi-Yang; Liu, Shu-Ying; Xu, Wen-Guo

    1997-11-01

    In view of the growing interest in endohedral lanthanide fullerenes, Ce, as a typical+ 4 oxidation state lanthanide element, has been systematically studied. The synthesis, extraction and electronic structure of Ce @ C2n are investigated. Soot containing Ce@C2n was synthesized in high yield by carbonizing CeO2-containing graphite rods and are back-burning the CeC2-enriched cathode deposit in a DC arc plasma apparatus. Ce@C2n dominated by Ce@C82, can be efficiently extracted from the insoluble part of the soot after toluene Soxhlet extraction by pyridine at high temperature and high pressure in a closed vessel. About 60% Ce@C2n(2n = 82, 80, 78, 76) and 35% Ce@C82 can be enriched in the pyridine extract. This fact is identified by desorption electron impact mass spectrometry (DEI MS). The electronic structure of Ce@C2n is analyzed by using X-ray photoemission spectroscopy (XPS) of pyridine-free film. It is suggested that the encapsulated Ce atom is in a charge state close to+ 3 and was effectively protected from reaction with water and oxygen by the enclosing fullerene cage. Unlike theoretical expectation, the electronic state of Ce@C82 is formally described as Ce+3@C3-82.

  20. Synthesis of 2,2,4,4-tetramethyl-N,N'-bis(2,6-dimethylphenyl)cyclobutane-1,3-diimine , a unique compound from Arundo donax, and its analogues to test their antifeedant activity against the boll weevil, Anthonomus grandis.

    PubMed

    Mochizuki, K; Takikawa, H; Mori, K

    2000-03-01

    2,2,4,4-Tetramethyl-N,N'-bis(2,6-dimethylphenyl) cyclobutane-1,3-diimine (1), which was isolated from the Thai plant Arundo donax as an antifeedant against the boll weevil (Anthonomus grandis), and its analogues (9-13) were synthesized and shown to possess no remarkable antifeedant activity of practical interest.

  1. Synthesis of Fuels and Value-Added Nitrogen-Containing Compounds from N2

    DTIC Science & Technology

    2014-11-24

    The Haber - Bosch ammonia synthesis is one of the great technological achievements of the 20th century, having revolutionized agriculture and hence the...catalytic synthesis of ammonia or hydrazine compatible with renewable (CO2-free) hydrogen. N Ph N Ph N V Ar iPr iPr N THF N N Ph N Ph N V Ar Ar THF...atom transfer from renewable H2. Concurrent with these efforts, we have also been exploring related molybdenum platforms for ammonia oxidation. The

  2. Chitin Synthesis in Saccharomyces cerevisiae in Response to Supplementation of Growth Medium with Glucosamine and Cell Wall Stress

    PubMed Central

    Bulik, Dorota A.; Olczak, Mariusz; Lucero, Hector A.; Osmond, Barbara C.; Robbins, Phillips W.; Specht, Charles A.

    2003-01-01

    In Saccharomyces cerevisiae most chitin is synthesized by Chs3p, which deposits chitin in the lateral cell wall and in the bud-neck region during cell division. We have recently found that addition of glucosamine (GlcN) to the growth medium leads to a three- to fourfold increase in cell wall chitin levels. We compared this result to the increases in cellular chitin levels associated with cell wall stress and with treatment of yeast with mating pheromone. Since all three phenomena lead to increases in precursors of chitin, we hypothesized that chitin synthesis is at least in part directly regulated by the size of this pool. This hypothesis was strengthened by our finding that addition of GlcN to the growth medium causes a rapid increase in chitin synthesis without any pronounced change in the expression of more than 6,000 genes monitored with Affymetrix gene expression chips. In other studies we found that the specific activity of Chs3p is higher in the total membrane fractions from cells grown in GlcN and from mutants with weakened cell walls. Sucrose gradient analysis shows that Chs3p is present in an inactive form in what may be Golgi compartments but as an active enzyme in other intracellular membrane-bound vesicles, as well as in the plasma membrane. We conclude that Chs3p-dependent chitin synthesis in S. cerevisiae is regulated both by the levels of intermediates of the UDP-GlcNAc biosynthetic pathway and by an increase in the activity of the enzyme in the plasma membrane. PMID:14555471

  3. 3,7-Dideazaneplanocin: Synthesis and antiviral analysis.

    PubMed

    Yin, Xue-Qiang; Schneller, Stewart W

    2017-12-01

    Objective To synthesize 3,7-dideazaneplanocin and evaluate its antiviral potential. Methods The target 3,7-dideazaneplanocin has been prepared in five steps from a readily available cyclopentenol. A thorough in vitro antiviral analysis was conducted versus both DNA and RNA viruses. Results A rational synthesis of 3,7-dideazaneplanocin was conceived and successfully pursued in such a way that it can be adapted to various analogs of 3,7-dideazaneplanocin. Using standard antiviral assays, no activity for 3,7-dideazaneplanocn was found. Conclusion Two structural features are necessary for adenine-based carbocyclic nucleosides (like neplanocin) for potential antiviral properties: (i) inhibition of S-adenosylhomocysteine hydrolase and/or (ii) C-5' activation via the mono-nucleotide. These two requisite adenine structural features to fit these criteria are not present in in the target 3,7-dideazaneplanocin: (i) an N-7 is necessary for inhibition of the hydrolase and the N-3 is claimed to be essential for phosphorylation at C-5'. Thus, it is not surprising that 3,7-dideazaneplaoncin lacked antiviral properties.

  4. Palmitic acid (16:0) competes with omega-6 linoleic and omega-3 ɑ-linolenic acids for FADS2 mediated Δ6-desaturation.

    PubMed

    Park, Hui Gyu; Kothapalli, Kumar S D; Park, Woo Jung; DeAllie, Christian; Liu, Lei; Liang, Allison; Lawrence, Peter; Brenna, J Thomas

    2016-02-01

    Sapienic acid, 16:1n-10 is the most abundant unsaturated fatty acid on human skin where its synthesis is mediated by FADS2 in the sebaceous glands. The FADS2 product introduces a double bond at the Δ6, Δ4 and Δ8 positions by acting on at least ten substrates, including 16:0, 18:2n-6, and 18:3n-3. Our aim was to characterize the competition for accessing FADS2 mediated Δ6 desaturation between 16:0 and the most abundant polyunsaturated fatty acids (PUFA) in the human diet, 18:2n-6 and 18:3n-3, to evaluate whether competition may be relevant in other tissues and thus linked to metabolic abnormalities associated with FADS2 or fatty acid levels. MCF7 cells stably transformed with FADS2 biosynthesize 16:1n-10 from exogenous 16:0 in preference to 16:1n-7, the immediate product of SCD highly expressed in cancer cell lines, and 16:1n-9 via partial β-oxidation of 18:1n-9. Increasing availability of 18:2n-6 or 18:3n-3 resulted in decreased bioconversion of 16:0 to 16:1n-10, simultaneously increasing the levels of highly unsaturated products. FADS2 cells accumulate the desaturation-elongation products 20:3n-6 and 20:4n-3 in preference to the immediate desaturation products 18:3n-6 and 18:4n-3 implying prompt/coupled elongation of the nascent desaturation products. MCF7 cells incorporate newly synthesized 16:1n-10 into phospholipids. These data suggest that excess 16:0 due to, for instance, de novo lipogenesis from high carbohydrate or alcohol consumption, inhibits synthesis of highly unsaturated fatty acids, and may in part explain why supplemental preformed EPA and DHA in some studies improves insulin resistance and other factors related to diabetes and metabolic syndrome aggravated by excess calorie consumption. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Selective synthesis of cis- and trans-[(NHC(Me))2PtCl2] and [NHC(Me)Pt(cod)Cl][NHC(Me)PtCl3] using NHC(Me)SiCl4.

    PubMed

    Lewis-Alleyne, Lesley C; Bassil, Bassem S; Böttcher, Tobias; Röschenthaler, Gerd-Volker

    2014-11-14

    NHC(Me)SiCl4 (NHC(Me) = 1,3-dimethylimidazolidin-2-ylidene) was used to synthesise novel NHC(Me)-Pt(ii) complexes. An atypical trans-cis isomerisation process was also achieved for [(NHC(Me))2PtCl2], while the synthesis of the unique double-complex salt [(NHC(Me))Pt(cod)Cl] [(NHC(Me))PtCl3] (cod = 1,5-cyclooctadiene) revealed the first-ever N-heterocyclic carbene analogue of the Cossa's salt anion.

  6. Synthesis and Reactivity of a New (Methylene)Phosphine.

    DTIC Science & Technology

    1981-01-27

    the synthesis of a variety of alkyl(silylamino)- 8phosphines Similarly, if two equivalents of the silylmethyl Grignard reagent were used (eq 3), the...n-BuLi (hexane solution), and t-BuLi (pentane solution). The Grignard reagent Me 3SiCH2 MgCl was prepared in Et 0 2 2 solution from Me3SiCH 2C and Mg...trimethylsilyl)amino] (chloro)- (trimethylsilylmethyl)phosphine (1) was prepared by the "one-pot" Grignard method (eqs 1 and 2) which we have used previously for

  7. Synthesis and Electrochemical Properties Characterization of SnO2-coated LiNi1/3Co1/3Mn1/3O2 Cathode Material for Lithium Ion Batteries

    DTIC Science & Technology

    2009-01-01

    Synthesis and electrochemical properties characterization of SnO2-coated LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries Ping Yang...electrochemical properties characterization of SnO2-coated LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries 5a. CONTRACT NUMBER 5b. GRANT NUMBER...electrochemical reaction. References 1. N Yabuuchi, T Ohzuku, “Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium - ion batteries ”, J

  8. Synthesis and Deprotonation of Aminophosphane Complexes: First K/N(H)R Phosphinidenoid Complexes and Access to a Complex with a P2 N-Ring Ligand.

    PubMed

    Majhi, Paresh Kumar; Kyri, Andreas Wolfgang; Schmer, Alexander; Schnakenburg, Gregor; Streubel, Rainer

    2016-10-17

    Synthesis of 1,1'-bifunctional aminophosphane complexes 3 a-e was achieved by the reaction of Li/Cl phosphinidenoid complex 2 with various primary amines (R=Me, iPr, tBu, Cy, Ph). Deprotonation of complex 3 a (R=Me) with potassium hexamethyldisilazide yielded a mixture of K/NHMe phosphinidenoid complex 4 a and potassium phosphanylamido complex 4 a'. Treatment of complex 3 c (R=tBu) and e (R=Ph) with KHMDS afforded the first examples of K/NHR phosphinidenoid complexes 4 c and e. The reaction of complex 3 c with 2 molar equivalents of KHMDS followed by PhPCl 2 afforded complexes 5 c,c', which possess a P 2 N-ring ligand. All complexes were characterized by NMR, IR, MS, and microanalysis, and additionally, complexes 3 b-e and 5 c' were scrutinized by single-crystal X-ray crystallography. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cation Ordering within the Perovskite Block of a Six-layer Ruddlesden-Popper Oxide from Layer-by-layer Growth

    NASA Astrophysics Data System (ADS)

    Yan, Lei; Niu, H. J.; Rosseinsky, M. J.

    2011-03-01

    The (AO)(A BO3)n Ruddlesden-Popper structure is an archetypal complex oxide consisting of two distinct structural units, an (AO) rock salt layer separating an n-octahedra thick perovskite block. Conventional high-temperature oxide synthesis methods cannot access members with n > 3 , butlowtemperaturelayer - by - layerthinfilmmethodsallowthepreparationofmaterialswiththickerperovskiteblocks , exploitinghighsurfacemobilityandlatticematchingwiththesubstrate . Thispresentationdescribesthegrowthofann = 6 memberCaO / (ABO 3)n (ABO 3 : CaMnO 3 , La 0.67 Ca 0.33 MnO 3 orCa 0.85 Sm 0.15 MnO 3) epitaxialsinglecrystalfilmsonthe (001) SrTiO 3 substrates by pulsed laser deposition with the assistance of a reflection high energy electron diffraction (RHEED).

  10. Ambient Temperature Synthesis of High Enantiopurity N-Protected Peptidyl Ketones by Peptidyl Thiol Ester–Boronic Acid Cross-Coupling

    PubMed Central

    Yang, Hao; Li, Hao; Wittenberg, Rüdiger; Egi, Masahiro; Huang, Wenwei; Liebeskind, Lanny S.

    2009-01-01

    α-Amino acid thiol esters derived from N-protected mono-, di-, and tripeptides couple with aryl, π-electron-rich heteroaryl, or alkenyl boronic acids in the presence of stoichiometric Cu(I) thiophene-2-carboxylate (CuTC) and catalytic Pd2(dba)3/triethylphosphite to generate the corresponding N-protected peptidyl ketones in good to excellent yields and in high enantiopurity. Triethylphosphite plays a key role as a supporting ligand by mitigating an undesired palladium-catalyzed decarbonylation-β-elimination of the α-amino thiol esters. The peptidyl ketone synthesis proceeds at room temperature under non-basic conditions and demonstrates a high tolerance to functionality. PMID:17263394

  11. New Linear and Star-Shaped Thermogelling Poly([R]-3-hydroxybutyrate) Copolymers.

    PubMed

    Barouti, Ghislaine; Liow, Sing Shy; Dou, Qingqing; Ye, Hongye; Orione, Clément; Guillaume, Sophie M; Loh, Xian Jun

    2016-07-18

    The synthesis of multi-arm poly([R]-3-hydroxybutyrate) (PHB)-based triblock copolymers (poly([R]-3-hydroxybutyrate)-b-poly(N-isopropylacrylamide)-b-[[poly(methyl ether methacrylate)-g-poly(ethylene glycol)]-co-[poly(methacrylate)-g-poly(propylene glycol)

  12. Dynamic Compression Promotes the Matrix Synthesis of Nucleus Pulposus Cells Through Up-Regulating N-CDH Expression in a Perfusion Bioreactor Culture.

    PubMed

    Xu, Yichun; Yao, Hui; Li, Pei; Xu, Wenbin; Zhang, Junbin; Lv, Lulu; Teng, Haijun; Guo, Zhiliang; Zhao, Huiqing; Hou, Gang

    2018-01-01

    An adequate matrix production of nucleus pulposus (NP) cells is an important tissue engineering-based strategy to regenerate degenerative discs. Here, we mainly aimed to investigate the effects and mechanism of mechanical compression (i.e., static compression vs. dynamic compression) on the matrix synthesis of three-dimensional (3D) cultured NP cells in vitro. Rat NP cells seeded on small intestinal submucosa (SIS) cryogel scaffolds were cultured in the chambers of a self-developed, mechanically active bioreactor for 10 days. Meanwhile, the NP cells were subjected to compression (static compression or dynamic compression at a 10% scaffold deformation) for 6 hours once per day. Unloaded NP cells were used as controls. The cellular phenotype and matrix biosynthesis of NP cells were investigated by real-time PCR and Western blotting assays. Lentivirus-mediated N-cadherin (N-CDH) knockdown and an inhibitor, LY294002, were used to further investigate the role of N-CDH and the PI3K/Akt pathway in this process. Dynamic compression better maintained the expression of cell-specific markers (keratin-19, FOXF1 and PAX1) and matrix macromolecules (aggrecan and collagen II), as well as N-CDH expression and the activity of the PI3K/Akt pathway, in the 3D-cultured NP cells compared with those expression levels and activity in the cells grown under static compression. Further analysis showed that the N-CDH knockdown significantly down-regulated the expression of NP cell-specific markers and matrix macromolecules and inhibited the activation of the PI3K/Akt pathway under dynamic compression. However, inhibition of the PI3K/Akt pathway had no effects on N-CDH expression but down-regulated the expression of NP cell-specific markers and matrix macromolecules under dynamic compression. Dynamic compression increases the matrix synthesis of 3D-cultured NP cells compared with that of the cells under static compression, and the N-CDH-PI3K/Akt pathway is involved in this regulatory process. This study provides a promising strategy to promote the matrix deposition of tissue-engineered NP tissue in vitro prior to clinical transplantation. © 2018 The Author(s). Published by S. Karger AG, Basel.

  13. Protease Mediated Anti-Cancer Therapy

    DTIC Science & Technology

    2006-08-01

    P = 0.0249) compared with group 2 (Fig. 4C ). All other treated groups, including L-SR15 without light, free Ce6 with light, and PBS with light, showed... HRMS (ES+ of [M+H]+) calcd for C45H32N4O4: 693.2496, found: 693.2492. Arginine oligopeptide synthesis and R7–TPC conjugation (com- pound 3). Synthesis

  14. A Torquoselective Extrusion of Isoxazoline N-Oxides. Application to the Synthesis of Aryl Vinyl and Divinyl Ketones for Nazarov Cyclization

    PubMed Central

    Canterbury, Daniel P.; Herrick, Ildiko R.; Um, Joann; Houk, K. N.; Frontier, Alison J.

    2009-01-01

    A mild, convenient reaction sequence for the synthesis of Nazarov cyclization substrates is described. The [3+2] dipolar cycloaddition of a nitrone and an electron-deficient alkyne gives an isolable isoxazoline intermediate, which upon oxidation undergoes stereoselective extrusion of nitrosomethane to give aryl vinyl or divinyl ketones. PMID:20161228

  15. N-acetylcysteine stimulates protein synthesis in enterocytes independently of glutathione synthesis.

    PubMed

    Yi, Dan; Hou, Yongqing; Wang, Lei; Long, Minhui; Hu, Shengdi; Mei, Huimin; Yan, Liqiong; Hu, Chien-An Andy; Wu, Guoyao

    2016-02-01

    Dietary supplementation with N-acetylcysteine (NAC) has been reported to improve intestinal health and treat gastrointestinal diseases. However, the underlying mechanisms are not fully understood. According to previous reports, NAC was thought to exert its effect through glutathione synthesis. This study tested the hypothesis that NAC enhances enterocyte growth and protein synthesis independently of cellular glutathione synthesis. Intestinal porcine epithelial cells were cultured for 3 days in Dulbecco's modified Eagle medium containing 0 or 100 μM NAC. To determine a possible role for GSH (the reduced form of glutathione) in mediating the effect of NAC on cell growth and protein synthesis, additional experiments were conducted using culture medium containing 100 μM GSH, 100 μM GSH ethyl ester (GSHee), diethylmaleate (a GSH-depletion agent; 10 μM), or a GSH-synthesis inhibitor (buthionine sulfoximine, BSO; 20 μM). NAC increased cell proliferation, GSH concentration, and protein synthesis, while inhibiting proteolysis. GSHee enhanced cell proliferation and GSH concentration without affecting protein synthesis but inhibited proteolysis. Conversely, BSO or diethylmaleate reduced cell proliferation and GSH concentration without affecting protein synthesis, while promoting protein degradation. At the signaling level, NAC augmented the protein abundance of total mTOR, phosphorylated mTOR, and phosphorylated 70S6 kinase as well as mRNA levels for mTOR and p70S6 kinase in IPEC-1 cells. Collectively, these results indicate that NAC upregulates expression of mTOR signaling proteins to stimulate protein synthesis in enterocytes independently of GSH generation. Our findings provide a hitherto unrecognized biochemical mechanism for beneficial effects of NAC in intestinal cells.

  16. Synthesis of Fucosyl-N-Acetylglucosamine Disaccharides by Transfucosylation Using α-l-Fucosidases from Lactobacillus casei

    PubMed Central

    Rodríguez-Díaz, Jesús; Carbajo, Rodrigo J.; Pineda-Lucena, Antonio; Monedero, Vicente

    2013-01-01

    AlfB and AlfC α-l-fucosidases from Lactobacillus casei were used in transglycosylation reactions, and they showed high efficiency in synthesizing fucosyldisaccharides. AlfB and AlfC activities exclusively produced fucosyl-α-1,3-N-acetylglucosamine and fucosyl-α-1,6-N-acetylglucosamine, respectively. The reaction kinetics showed that AlfB can convert 23% p-nitrophenyl-α-l-fucopyranoside into fucosyl-α-1,3-N-acetylglucosamine and AlfC at up to 56% into fucosyl-α-1,6-N-acetylglucosamine. PMID:23542622

  17. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis

    DOE PAGES

    Kitano, Masaaki; Kanbara, Shinji; Inoue, Yasunori; ...

    2015-03-30

    We actively sough novel approaches to efficient ammonia synthesis at an ambient pressure so as to reduce the cost of ammonia production and to allow for compact production facilities. It is accepted that the key is the development of a high-performance catalyst that significantly enhances dissociation of the nitrogen-nitrogen triple bond, which is generally considered a rate-determining step. Here we examine the kinetics of nitrogen and hydrogen isotope exchange and hydrogen adsorption/desorption reactions for a recently discovered efficient catalyst for ammonia synthesis --ruthenium-loaded 12CaO∙7AI 2O 3 electride (Ru/C12A7:more » $$\\bar{e}$$ )--and find that the rate controlling step of ammonia synthesis over Ru/C12A7:$$\\bar{e}$$ is not dissociation of the nitrogen-nitrogen triple bond but the subsequent formation of N-H n species. A mechanism of ammonia synthesis involving reversible storage and release of hydrogen atoms on the Ru/C12A7:$$\\bar{e}$$ surface is proposed on the basis of observed hydrogen adsorption/desorption kinetics.« less

  18. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitano, Masaaki; Kanbara, Shinji; Inoue, Yasunori

    We actively sough novel approaches to efficient ammonia synthesis at an ambient pressure so as to reduce the cost of ammonia production and to allow for compact production facilities. It is accepted that the key is the development of a high-performance catalyst that significantly enhances dissociation of the nitrogen-nitrogen triple bond, which is generally considered a rate-determining step. Here we examine the kinetics of nitrogen and hydrogen isotope exchange and hydrogen adsorption/desorption reactions for a recently discovered efficient catalyst for ammonia synthesis --ruthenium-loaded 12CaO∙7AI 2O 3 electride (Ru/C12A7:more » $$\\bar{e}$$ )--and find that the rate controlling step of ammonia synthesis over Ru/C12A7:$$\\bar{e}$$ is not dissociation of the nitrogen-nitrogen triple bond but the subsequent formation of N-H n species. A mechanism of ammonia synthesis involving reversible storage and release of hydrogen atoms on the Ru/C12A7:$$\\bar{e}$$ surface is proposed on the basis of observed hydrogen adsorption/desorption kinetics.« less

  19. Influence of oxygen on the biosynthesis of polyunsaturated fatty acids in microalgae.

    PubMed

    Sun, Xiao-Man; Geng, Ling-Jun; Ren, Lu-Jing; Ji, Xiao-Jun; Hao, Ning; Chen, Ke-Quan; Huang, He

    2018-02-01

    As one of the most important environmental factors, oxygen is particularly important for synthesis of n-3 polyunsaturated fatty acids (n-3 PUFA) in microalgae. In general, a higher oxygen supply is beneficial for cell growth but obstructs PUFA synthesis. The generation of reactive oxygen species (ROS) under aerobic conditions, which leads to the peroxidation of lipids and especially PUFA, is an inevitable aspect of life, but is often ignored in fermentation processes. Irritability, microalgal cells are able to activate a number of anti-oxidative defenses, and the lipid profile of many species is reported to be altered under oxidative stress. In this review, the effects of oxygen on the PUFA synthesis, sources of oxidative damage, and anti-oxidative defense systems of microalgae were summarized and discussed. Moreover, this review summarizes the published reports on microalgal biotechnology involving direct/indirect oxygen regulation and new bioreactor designs that enable the improved production of PUFA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The Solid-Phase Synthesis of an Fe-N-C Electrocatalyst for High-Power Proton-Exchange Membrane Fuel Cells.

    PubMed

    Liu, Qingtao; Liu, Xiaofang; Zheng, Lirong; Shui, Jianglan

    2018-01-26

    The environmentally friendly synthesis of highly active Fe-N-C electrocatalysts for proton-exchange membrane fuel cells (PEMFCs) is desirable but remains challenging. A simple and scalable method is presented to fabricate Fe II -doped ZIF-8, which can be further pyrolyzed into Fe-N-C with 3 wt % of Fe exclusively in Fe-N 4 active moieties. Significantly, this Fe-N-C derived acidic PEMFC exhibits an unprecedented current density of 1.65 A cm -2 at 0.6 V and the highest power density of 1.14 W cm -2 compared with previously reported NPMCs. The excellent PEMFC performance can be attributed to the densely and atomically dispersed Fe-N 4 active moieties on the small and uniform catalyst nanoparticles. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis of GaN:ZnO solid solution by solution combustion method and characterization for photocatalytic application

    NASA Astrophysics Data System (ADS)

    Menon, Sumithra Sivadas; Anitha, R.; Gupta, Bhavana; Baskar, K.; Singh, Shubra

    2016-05-01

    GaN-ZnO solid solution has emerged as a successful and reproducible photocatalyst for overall water splitting by one-step photoexcitation, with a bandgap in visible region. When the solid solution is formed, some of the Zn and O ions are replaced by Ga and N ions respectively and there is a narrowing of bandgap which is hypothesized as due to Zn3d-N2p repulsion. The traditional method of synthesis of GaN-ZnO solid solution is by nitridation of the starting oxides under constant ammonia flow. Here we report a solution combustion technique for the synthesis of the solid solution at a temperature about 500 ° C in a muffle furnace with metal nitrates as precursors and urea as the fuel. The as prepared samples showed change in color with the increased concentration of ZnO in the solution. The structural, microstructural, morphological and optical properties of the samples were realized by Powder X ray diffraction, Scanning electron microscopy, Energy dispersive X ray analysis, Transmission electron microscopy and Photoluminescence. Finally the hydrogen production efficiency of the GaN-ZnO nanopowders by water splitting was found, using methanol as a scavenger. The apparent quantum yield (AQY) of 0.048% is obtained for GaN-ZnO solid solution.

  2. Occupational Exposure to Multi-Walled Carbon Nanotubes During Commercial Production Synthesis and Handling

    PubMed Central

    Kuijpers, Eelco; Bekker, Cindy; Fransman, Wouter; Brouwer, Derk; Tromp, Peter; Vlaanderen, Jelle; Godderis, Lode; Hoet, Peter; Lan, Qing; Silverman, Debra; Vermeulen, Roel; Pronk, Anjoeka

    2016-01-01

    The world-wide production of carbon nanotubes (CNTs) has increased substantially in the last decade, leading to occupational exposures. There is a paucity of exposure data of workers involved in the commercial production of CNTs. The goals of this study were to assess personal exposure to multi-walled carbon nanotubes (MWCNTs) during the synthesis and handling of MWCNTs in a commercial production facility and to link these exposure levels to specific activities. Personal full-shift filter-based samples were collected, during commercial production and handling of MWCNTs, R&D activities, and office work. The concentrations of MWCNT were evaluated on the basis of EC concentrations. Associations were studied between observed MWCNT exposure levels and location and activities. SEM analyses showed MWCNTs, present as agglomerates ranging between 200nm and 100 µm. Exposure levels of MWCNTs observed in the production area during the full scale synthesis of MWCNTs (N = 23) were comparable to levels observed during further handling of MWCNTs (N = 19): (GM (95% lower confidence limit–95% upper confidence limit)) 41 μg m−3 (20–88) versus 43 μg m−3 (22–86), respectively. In the R&D area (N = 11) and the office (N = 5), exposure levels of MWCNTs were significantly (P < 0.05) lower: 5 μg m−3 (2–11) and 7 μg m−3 (2–28), respectively. Bagging, maintenance of the reactor, and powder conditioning were associated with higher exposure levels in the production area, whereas increased exposure levels in the R&D area were related to handling of MWCNTs powder. PMID:26613611

  3. Controlled synthesis of AlN/GaN multiple quantum well nanowire structures and their optical properties.

    PubMed

    Qian, Fang; Brewster, Megan; Lim, Sung K; Ling, Yichuan; Greene, Christopher; Laboutin, Oleg; Johnson, Jerry W; Gradečak, Silvija; Cao, Yu; Li, Yat

    2012-06-13

    We report the controlled synthesis of AlN/GaN multi-quantum well (MQW) radial nanowire heterostructures by metal-organic chemical vapor deposition. The structure consists of a single-crystal GaN nanowire core and an epitaxially grown (AlN/GaN)(m) (m = 3, 13) MQW shell. Optical excitation of individual MQW nanowires yielded strong, blue-shifted photoluminescence in the range 340-360 nm, with respect to the GaN near band-edge emission at 368.8 nm. Cathodoluminescence analysis on the cross-sectional MQW nanowire samples showed that the blue-shifted ultraviolet luminescence originated from the GaN quantum wells, while the defect-associated yellow luminescence was emitted from the GaN core. Computational simulation provided a quantitative analysis of the mini-band energies in the AlN/GaN superlattices and suggested the observed blue-shifted emission corresponds to the interband transitions between the second subbands of GaN, as a result of quantum confinement and strain effect in these AlN/GaN MQW nanowire structures.

  4. Identification and functional characterisation of genes encoding the omega-3 polyunsaturated fatty acid biosynthetic pathway from the coccolithophore Emiliania huxleyi.

    PubMed

    Sayanova, Olga; Haslam, Richard P; Calerón, Monica Venegas; López, Noemi Ruiz; Worthy, Charlotte; Rooks, Paul; Allen, Michael J; Napier, Johnathan A

    2011-05-01

    The Prymnesiophyceae coccolithophore Emiliania huxleyi is one of the most abundant alga in our oceans and therefore plays a central role in marine foodwebs. E. huxleyi is notable for the synthesis and accumulation of the omega-3 long chain polyunsaturated fatty acid docosahexaenoic acid (DHA; 22:6Δ(4,7,10,13,16,19), n-3) which is accumulated in fish oils and known to have health-beneficial properties to humans, preventing cardiovascular disease and related pathologies. Here we describe the identification and functional characterisation of the five E. huxleyi genes which direct the synthesis of docosahexaenoic acid in this alga. Surprisingly, E. huxleyi does not use the conventional Δ6-pathway, instead using the alternative Δ8-desaturation route which has previously only been observed in a few unrelated microorganisms. Given that E. huxleyi accumulates significant levels of the Δ6-desaturated fatty acid stearidonic acid (18:4Δ(6,9,12,15), n-3), we infer that the biosynthesis of DHA is likely to be metabolically compartmentalised from the synthesis of stearidonic acid. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Hepatic amino nitrogen conversion and organ N-contents in hypothyroidism, with thyroxine replacement, and in hyperthyroid rats.

    PubMed

    Grøfte, T; Wolthers, T; Jensen, D S; Møller, N; Jørgensen, J O; Orskov, H; Vilstrup, H

    1997-02-01

    The role of thyroid hormones in the regulation of hepatic conversions of amino nitrogen to urea is unresolved. The present study was designed to assess ureagenesis in rats with experimentally well-established hypo- and hyperthyroidism. The possible role of propylthiuracil (PTU), used for induction of hypothyroidism, was ascertained during thyroxine replacement of PTU treated hypothyroid rats. Basal blood amino nitrogen concentrations (AAN), the urea nitrogen synthesis rate (UNSR) and the maximal hepatic capacity for urea nitrogen synthesis (CUNS) obtained during alanine infusion were determined together with N-contents in the soleus muscle and kidneys in experimentally hypothyroid rats (n = 19), upon thyroxine replacement (n = 14) and in experimentally hyperthyroid rats (n = 19). Hypothyroidism was induced by adding propylthiouracil (0.05%) to the drinking water for 5 weeks. Hyperthyroidism was induced by thyroxine 100 micrograms/100 g body weight. During hyperthyroidism, T3 fell to less than 10%, food intake was halved, and body weight fell by 13%. Basal blood AAN fell by 25% (p < 0.01), UNSR more than doubled (p < 0.01), and CUNS rose by 45% (p < 0.05). N-contents of the soleus muscle fell by 13% and by 20% in kidneys, respectively (p < 0.05). Thyroxine replacement normalized AAN, UNSR, CUNS and reduced N-loss to 7% in the soleus muscle (NS) and kidneys (p < 0.05), respectively. During hyperthyroidism, T3 rose five-fold, food intake rose by two thirds, and body weight fell by 10%. Basal AAN rose by 20% (p < 0.05), UNSR doubled (p < 0.01), and CUNS rose by 25% (p < 0.05). N-contents of the soleus muscle decreased by 19%, whereas kidney N-contents increased by 25% (p < 0.05). Overall liver function assessed by galactose elimination capacity did not differ among groups. Both conditions increased the rate of urea synthesis; in the hypothyroid state the hepatic waste of amino-N was limited by low blood concentration of amino-N, probably due to lower proteolysis. In the hyperthyroid state hepatic amino-N loss was aggravated by higher blood concentration of amino-N, probably due to higher proteolysis. This difference may explain the markedly different dietary nitrogen economy between the two groups. The findings suggest that distinct hepatic acceleration of urea synthesis may contribute to the protein loss seen in both myxedema and in thyrotoxicosis in humans.

  6. Hybrid calcium carbonate/polymer microparticles containing silver nanoparticles as antibacterial agents

    NASA Astrophysics Data System (ADS)

    Długosz, Maciej; Bulwan, Maria; Kania, Gabriela; Nowakowska, Maria; Zapotoczny, Szczepan

    2012-12-01

    We report here on synthesis and characterization of novel hybrid material consisting of silver nanoparticles (nAgs) embedded in calcium carbonate microparticles (μ-CaCO3) serving as carriers for sustained release. nAgs are commonly used as antimicrobial agents in many commercial products (textiles, cosmetics, and drugs). Although they are considered to be safe, their interactions with human organisms are still not fully understood; therefore it is important to apply them with caution and limit their presence in the environment. The synthesis of the new material was based on the co-precipitation of CaCO3 and nAg in the presence of poly(sodium 4-styrenesulfonate). Such designed system enables sustained release of nAg to the environment. This hybrid colloidal material (nAg/μ-CaCO3) was characterized by microscopic and spectroscopic methods. The release of nAg from μ-CaCO3 microparticles was followed in water at various pH values. Microbiological tests confirmed the effectiveness of these microparticles as an antibacterial agent. Importantly, the material can be stored as a dry powder and subsequently re-suspended in water without the risk of losing its antimicrobial activity. nAg/μ-CaCO3 was applied here to insure bacteriostatic properties of down feathers that may significantly prolong their lifetime in typical applications. Such microparticles may be also used as, e.g., components of coatings and paints protecting various surfaces against microorganism colonization.

  7. Synthesis of 3-iodoindoles by the Pd/Cu-catalyzed coupling of N,N-dialkyl-2-iodoanilines and terminal acetylenes, followed by electrophilic cyclization.

    PubMed

    Yue, Dawei; Yao, Tuanli; Larock, Richard C

    2006-01-06

    [reaction: see text] 3-Iodoindoles have been prepared in excellent yields by coupling terminal acetylenes with N,N-dialkyl-o-iodoanilines in the presence of a Pd/Cu catalyst, followed by an electrophilic cyclization of the resulting N,N-dialkyl-o-(1-alkynyl)anilines using I2 in CH2Cl2. Aryl-, vinylic-, alkyl-, and silyl-substituted terminal acetylenes undergo this process to produce excellent yields of 3-iodoindoles. The reactivity of the carbon-nitrogen bond cleavage during cyclization follows the following order: Me > n-Bu, Me > Ph, and cyclohexyl > Me. Subsequent palladium-catalyzed Sonogashira, Suzuki, and Heck reactions of the resulting 3-iodoindoles proceed smoothly in good yields.

  8. Synthesis of Imidazopyridines via Copper-Catalyzed, Formal Aza-[3 + 2] Cycloaddition Reaction of Pyridine Derivatives with α-Diazo Oxime Ethers.

    PubMed

    Park, Sangjune; Kim, Hyunseok; Son, Jeong-Yu; Um, Kyusik; Lee, Sooho; Baek, Yonghyeon; Seo, Boram; Lee, Phil Ho

    2017-10-06

    The Cu-catalyzed, formal aza-[3 + 2] cycloaddition reaction of pyridine derivatives with α-diazo oxime ethers in trifluoroethanol was used to synthesize imidazopyridines via the release of molecular nitrogen and elimination of alcohol. These methods enabled modular synthesis of a wide range of N-heterobicyclic compounds such as imidazopyridazines, imidazopyrimidines, and imidazopyrazines with an α-imino Cu-carbenoid generated from the α-diazo oxime ethers and copper.

  9. Synthesis and biological evaluation of some N-(3-(1H-tetrazol-5-yl) phenyl)acetamide derivatives as novel non-carboxylic PTP1B inhibitors designed through bioisosteric modulation.

    PubMed

    Maheshwari, Neelesh; Karthikeyan, Chandrabose; Bhadada, Shraddha V; Sahi, Chandan; Verma, Amit K; Hari Narayana Moorthy, N S; Trivedi, Piyush

    2018-06-08

    Described herein is the synthesis and biological evaluation of a series of non-carboxylic inhibitors of Protein Tyrosine Phosphatase 1B designed using bioisosteric replacement strategy. Six N-(3-(1H-tetrazol-5-yl)phenyl)acetamide derivatives designed employing the aforementioned strategy were synthesized and screened for PTP1B inhibitory activity. Among the synthesized compounds, compound NM-03 exhibited the most potent inhibitory activity with IC 50 value of 4.48 µM. Docking studies with NM-03 revealed the key interactions with desired amino acids in the binding site of PTP1B. Furthermore, compound NM-03 also elicited good in vivo activity. Taken together, the results of this study establish N-(3-(1H-tetrazole-5-yl)phenyl)-2-(benzo[d]oxazol-2-ylthio)acetamide (NM-03) as a valuable lead molecule with great potential for PTP1B inhibitor development targeting diabetes. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Using a lipidomics approach for nutritional phenotyping in response to a test meal containing gamma-linolenic acid

    USDA-ARS?s Scientific Manuscript database

    Plasma fatty acids are derived from preformed sources in the diet and de novo synthesis through the action of desaturase and elongase enzymes. This study was designed to examine the elongation of 18:3n6 into 20:3n6 over an eight-hour period using both targeted gas chromatography–flame ionization det...

  11. Oxidative tandem nitrosation/cyclization of N-aryl enamines with nitromethane toward 3-(trifluoromethyl)quinoxalines.

    PubMed

    Yang, Zhi-Jun; Liu, Chuan-Zhuo; Hu, Bo-Lun; Deng, Chen-Liang; Zhang, Xing-Guo

    2014-12-04

    A novel one-pot strategy for the synthesis of 3-trifluoromethylquinoxalines from N-aryl enamines and nitromethane was developed. The tandem reaction is achieved through nitrosation of alkenes, tautomerization and cyclization, which can be applicable to a wide range of enamines with excellent functional group tolerance and afford quinoxalines in moderate to good yields.

  12. Synthesis and property of solvatochromic fluorophore based on D-pi-A molecular system: 2-[[3-cyano-4-(N-ethyl-N-(2-hydroxyethyl)amino)styryl]-5,5-dimethylfuran-2(5H)-ylidene]malononitrile dye.

    PubMed

    Son, Young-A; Gwon, Seon-Yeong; Lee, Sue-Yoen; Kim, Sung-Hoon

    2010-01-01

    2-[[3-Cyano-4-(N-ethyl-N-(2-hydroxyethyl)amino)styryl]-5,5-dimethylfuran-2(5H)-ylidene]malononitrile styryl dye was prepared by the condensation of 4-[(2-hydroxy-ethyl)-methyl-amino]-benzaldehyde (donor moiety) with 2-cyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (acceptor moiety). The corresponding design, synthesis and solvatochromic characteristics of the intramolecular charge-transfer (ICT) dye chromophore were discussed and determined. Optical properties such as absorption and fluorescence emission spectra were monitored in several solvent media with different polarity. In this determination, the prepared dye chromophore showed positive solvatochromism effect and the resulting solvatochromic characteristics were studied with semiempirical calculations. The energy potentials of this dye chromophore such as HOMO and LUMO values were calculated by computational simulation approaches using Material Studio 4.3. Furthermore, the functions as a molecular switching sensor with pH stimulation of alkali-acid addition were determined in DMSO, which was operated by deprotonation/protonation effects based on intramolecular charge-transfer system. Copyright 2009 Elsevier B.V. All rights reserved.

  13. P[N(i-Bu)CH(2)CH(2)](3)N: nonionic Lewis base for promoting the room-temperature synthesis of α,β-unsaturated esters, fluorides, ketones, and nitriles using Wadsworth-Emmons phosphonates.

    PubMed

    Chintareddy, Venkat Reddy; Ellern, Arkady; Verkade, John G

    2010-11-05

    The bicyclic triaminophosphine P(RNCH(2)CH(2))(3)N (R = i-Bu, 1c) serves as an effective promoter for the room-temperature stereoselective synthesis of α,β-unsaturated esters, fluorides, and nitriles from a wide array of aromatic, aliphatic, heterocyclic, and cyclic aldehydes and ketones, using a range of Wadsworth-Emmons (WE) phosphonates. Among the analogues of 1c [R = Me (1a), i-Pr (1b), Bn (1d)], 1a and 1b performed well, although longer reaction times were involved, and 1d led to poorer yields than 1c. Functionalities such as cyano, chloro, bromo, methoxy, amino, ester, and nitro were well tolerated. We were able to isolate and characterize (by X-ray means; see above) the reactive WE intermediate species formed from 2b and 1c.

  14. Tidbits for the synthesis of bis(2-sulfanylethyl)amido (SEA) polystyrene resin, SEA peptides and peptide thioesters.

    PubMed

    Ollivier, Nathalie; Raibaut, Laurent; Blanpain, Annick; Desmet, Rémi; Dheur, Julien; Mhidia, Reda; Boll, Emmanuelle; Drobecq, Hervé; Pira, Silvain L; Melnyk, Oleg

    2014-02-01

    Protein total chemical synthesis enables the atom-by-atom control of the protein structure and therefore has a great potential for studying protein function. Native chemical ligation of C-terminal peptide thioesters with N-terminal cysteinyl peptides and related methodologies are central to the field of protein total synthesis. Consequently, methods enabling the facile synthesis of peptide thioesters using Fmoc-SPPS are of great value. Herein, we provide a detailed protocol for the preparation of bis(2-sulfanylethyl)amino polystyrene resin as a starting point for the synthesis of C-terminal bis(2-sulfanylethyl)amido peptides and of peptide thioesters derived from 3-mercaptopropionic acid. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.

  15. Stereo-, Temporal and Chemical Control through Photoactivation of Living Radical Polymerization: Synthesis of Block and Gradient Copolymers.

    PubMed

    Shanmugam, Sivaprakash; Boyer, Cyrille

    2015-08-12

    Nature has developed efficient polymerization processes, which allow the synthesis of complex macromolecules with a perfect control of tacticity as well as molecular weight, in response to a specific stimulus. In this contribution, we report the synthesis of various stereopolymers by combining a photoactivated living polymerization, named photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) with Lewis acid mediators. We initially investigated the tolerance of two different photoredox catalysts, i.e., Ir(ppy)3 and Ru(bpy)3, in the presence of a Lewis acid, i.e., Y(OTf)3 and Yb(OTf)3, to mediate the polymerization of N,N-dimethyl acrylamide (DMAA). An excellent control of tacticity as well as molecular weight and dispersity was observed when Ir(ppy)3 and Y(OTf)3 were employed in a methanol/toluene mixture, while no polymerization or poor control was observed with Ru(bpy)3. In comparison to a thermal system, a lower amount of Y(OTf)3 was required to achieve good control over the tacticity. Taking advantage of the temporal control inherent in our system, we were able to design complex macromolecular architectures, such as atactic block-isotactic and isotactic-block-atactic polymers in a one-pot polymerization approach. Furthermore, we discovered that we could modulate the degree of tacticity through a chemical stimulus, by varying [DMSO]0/[Y(OTf)3]0 ratio from 0 to 30 during the polymerization. The stereochemical control afforded by the addition of a low amount of DMSO in conjunction with the inherent temporal control enabled the synthesis of stereogradient polymer consisting of five different stereoblocks in one-pot polymerization.

  16. Growth of Single Crystals and Fabrication of GaN and AlN Wafers

    DTIC Science & Technology

    2006-03-01

    Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Synthesis and Decomposition of Ammonia ", 4, Elsevier Scientific Publishing Company...Solid Surfaces and Heterogeneous Catalysis, Synthesis and Decomposition of Ammonia ", 4, Elsevier Scientific Publishing Company, Amsterdam (1982). 119...GaN(s), (2) Ga(g) + _ N2(g) = GaN(s) 93 APPENDIX C: AMMONIA DECOMPOSITION Despite the apparent simplicity of the GaN synthesis from elemental Ga and

  17. Synthesis of Fe3O4@SiO2@OSi(CH2)3NHRN(CH2PPh2)2PdCl2 type nanocomposite complexes: Highly efficient and magnetically-recoverable catalysts in vitamin K3 synthesis.

    PubMed

    Uruş, Serhan

    2016-12-15

    The synthesis of aminomethylphosphine-metal complexes have opened a new perspective to the catalytic applications of organic compounds. Magnetic Fe3O4 nano-core was synthesized using the closed quartz tube with Teflon cover and microwaved 200°C for 1h with power controlled instrument set to max. 600W. Novel nano-composite supported; Fe3O4@SiO2(CH2)3NHArN(CH2PPh2)2 and Fe3O4@SiO2(CH2)3N(CH2PPh2)2 type bis(diphenylphosphinomethyl)amino ligands and their Pd(II) complexes have been synthesized and characterized with FT-IR, SEM, EDX, TEM, UV-Visible, XRD and TG/DTA techniques. All the complexes were used as heterogeneous catalysts in the oxidation of 2-methyl naphthalene (2MN) to 2-methyl-1, 4-naphthoquinone (vitamin K3, menadione, 2MNQ) in the presence of hydrogen peroxide and acetic acid. Selectivity reached about 55-60% with a conversion of 90-96% using the nano-magnetite supported aminomethylphosphine-Pd(II) complexes. The complexes were very active in three times in the catalytic recycling experiments in five catalytic cycles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Centrally acting serotonergic and dopaminergic agents. 1. Synthesis and structure-activity relationships of 2,3,3a,4,5,9b-hexahydro-1H-benz[e]indole derivatives.

    PubMed

    Lin, C H; Haadsma-Svensson, S R; Lahti, R A; McCall, R B; Piercey, M F; Schreur, P J; Von Voigtlander, P F; Smith, M W; Chidester, C G

    1993-04-16

    The synthesis and structure-activity relationships (SAR) of 2,3,3a,4,5,9b-hexahydro-1H-benz[e]indole derivatives (3) are described. These compounds are conformationally restricted, angular tricyclic analogs of 2-aminotetralin. The synthesis was achieved in several steps from the corresponding 2-tetralones. The enantiomers of the cis analogs were obtained from either fractional recrystallizations of the diastereomeric salts of di-p-toluoyl-L-(or D)-tartaric acid or an asymmetric synthesis using chiral (R)-alpha-methylbenzylamine. All analogs were evaluated in the in vitro 5-HT1A and D2 binding assays and selected analogs were investigated further in biochemical and behavioral tests. Analogs with 9-methoxy substitution (R1 in 3) showed mixed 5-HT1A agonist and dopamine antagonist activities whereas the corresponding 9-hydroxy analogs displayed selective 5-HT1A agonist activity. The cis analogs were found to be more potent than the corresponding trans analogs and in the cis series, the (3aR)-(-)-enantiomers displayed higher potency. Nitrogen substitution (R2 in 3) with either an n-propyl or an allyl group produced similar activities whereas replacement with a bulky alpha-methylbenzyl group resulted in loss of activity. Analogs without aromatic substitution (R1 = H in 3) still showed good 5-HT1A agonist activity, although less potent than the 9-methoxy series. In this case, the trans analogs possessed equal or higher in vitro 5-HT1A affinity than the corresponding cis analogs. Analogs with either 6-methoxy or 6-hydroxy substitution (R1 in 3) were found to display dopamine antagonist properties. However, only N-allyl analogs showed this activity. In the 6-methoxy-N-allyl series, the cis analog was found to be more potent than the trans analog. Again, between the pair of cis enantiomers, the (3aR)-(-)-enantiomer showed higher potency. Incorporation of an additional methyl group into 9-methoxy cis analogs at C-2 resulted in retention of potent 5-HT1A agonist activity.

  19. "Explosive" synthesis of metal-formate frameworks for methane capture: an experimental and computational study.

    PubMed

    Liu, Xiao-Wei; Guo, Ya; Tao, Andi; Fischer, Michael; Sun, Tian-Jun; Moghadam, Peyman Z; Fairen-Jimenez, David; Wang, Shu-Dong

    2017-10-17

    In this work, we show a solvent-free "explosive" synthesis (SFES) method for the ultrafast and low-cost synthesis of metal-formate frameworks (MFFs). A combination of experiments and in-depth molecular modelling analysis - using grand canonical Monte Carlo (GCMC) simulations - of the adsorption performance of the synthesized nickel-formate framework (Ni-FA) revealed extremely high quality products with permanent porosity, prominent CH 4 /N 2 selectivity (ca. 6.0), and good CH 4 adsorption capacity (ca. 0.80 mmol g -1 or 33.97 cm 3 cm -3 ) at 1 bar and 298 K. This performance is superior to those of many other state-of-the-art porous materials.

  20. Synthesis, structural characterization, and thermal stability studies of heteroleptic cadmium(II) dithiocarbamate with different pyridyl groups

    NASA Astrophysics Data System (ADS)

    Onwudiwe, Damian C.; Hosten, Eric C.

    2018-01-01

    The synthesis, characterization and crystal structures of three chloroform solvated adducts of cadmium with mixed ligands of N-alkyl-N-phenyldithiocarbamate and pyridine, 2,2-bipyridine and 1, 10 phenanthroline represented as [CdL1L2 (py)2]·CHCl3(1), [CdL1L2bpy]•CHCl3(2), and [CdL1L2phen]•CHCl3(3) (LI = N-methyl-N-phenyldithiocarbamate, L2 = N-ethyl-N-phenyldithiocarbamate, py = pyridine, bpy = 2,2-bipyridine and phen = 1,10-phenanthroline) respectively are reported. Complex 1, which crystallized in the monoclinic space group P-1, is a centrosymmetric dimeric structure where each Cd center is bonded to two monodentate pyridine, a bidentate terminal dithiocarbamate, and another bidentate bridging dithiocarbamate to form a four-membered ring. Complex 2 crystallized in the monoclinic space group P21/c, with four discrete monomeric molecules in the asymmetric unit. The structure presents a cadmium atom coordinated by two sulphur atoms of a dithiocarbamate ligand and two nitrogen atoms of the 2,2‧-bipyridine to form a CdS4N2 fragment, thus giving the structure around the Cd atom a distorted trigonal prism geometry. Complex 3 contains two discrete monomeric molecules of (phenanthroline) (N, N-methyl phenyl-N, N-ethyl phenyl dithiocarbamato)cadmium (II) per unit cell, and the complex crystallized in the triclinic space group P-1. The structure showed that the Cd atom is bonded to two bidentate dithiocarbamate ligands and to one bidentate phenanthroline ligand in a distorted trigonal prism geometry. All the compounds resulted in CdS as residue upon thermal decomposition process conducted under inert atmosphere.

  1. Azobenzene Pd(II) complexes with N^N- and N^O-type ligands

    NASA Astrophysics Data System (ADS)

    Nikolaeva, M. V.; Puzyk, An. M.; Puzyk, M. V.

    2017-05-01

    Methods of synthesis of cyclometalated azobenzene palladium(II) complexes of [Pd(N^N)Azb]ClO4 and [Pd(N^O)Azb]ClO4 types (where Azb- is the deprotonated form of azobenzene; N^N is 2NH3, ethylenediamine, or 2,2'-bipyridine; and (N^O)- is the deprotonated form of amino acid (glycine, α-alanine, β-alanine, tyrosine, or tryptophan)) are developed. The electronic absorption and the electrochemical properties of these complexes are studied.

  2. Design and synthesis of 3,3'-biscoumarin-based c-Met inhibitors.

    PubMed

    Xu, Jimin; Ai, Jing; Liu, Sheng; Peng, Xia; Yu, Linqian; Geng, Meiyu; Nan, Fajun

    2014-06-14

    A library of biscoumarin-based c-Met inhibitors was synthesized, based on optimization of 3,3'-biscoumarin hit 3, which was identified as a non-ATP competitive inhibitor of c-Met from a diverse library of coumarin derivatives. Among these compounds, 38 and 40 not only showed potent enzyme activities with IC50 values of 107 nM and 30 nM, respectively, but also inhibited c-Met phosphorylation in BaF3/TPR-Met and EBC-1 cells.

  3. Exocyclic Deoxyadenosine Adducts of 1,2,3,4-Diepoxybutane: Synthesis, Structural Elucidation, and Mechanistic Studies

    PubMed Central

    Seneviratne, Uthpala; Antsypovich, Sergey; Goggin, Melissa; Dorr, Danae Quirk; Guza, Rebecca; Moser, Adam; Thompson, Carrie; York, Darrin M.; Tretyakova, Natalia

    2009-01-01

    1,2,3,4-Diepoxybutane (DEB)1 is considered the ultimate carcinogenic metabolite of 1,3-butadiene, an important industrial chemical and environmental pollutant present in urban air. Although it preferentially modifies guanine within DNA, DEB induces a large number of A → T transversions, suggesting that it forms strongly mispairing lesions at adenine nucleobases. We now report the discovery of three potentially mispairing exocyclic adenine lesions of DEB: N6,N6-(2,3-dihydroxybutan-1,4-diyl)-2′-deoxyadenosine (compound 2), 1,N6-(2-hydroxy-3-hydroxymethylpropan-1,3-diyl)-2′-deoxyadenosine (compound 3), and 1,N6-(1-hydroxymethyl-2-hydroxypropan-1,3-diyl)-2′-deoxyadenosine (compound 4). The structures and stereochemistry of the novel DEB-dA adducts were determined by a combination of UV and NMR spectroscopy, tandem mass spectrometry, and independent synthesis. We found that synthetic N6-(2-hydroxy-3,4-epoxybut-1-yl)-2′-deoxyadenosine (compound 1) representing the product of N6-adenine alkylation by DEB spontaneously cyclizes to form 3 under aqueous conditions or 2 under anhydrous conditions in the presence of organic base. Compound 3 can be interconverted with 4 by a reversible unimolecular pericyclic reaction favoring 4 as a more thermodynamically stable product. Both 3 and 4 are present in double stranded DNA treated with DEB in vitro and in liver DNA of laboratory mice exposed to 1,3-butadiene by inhalation. We propose that in DNA under physiological conditions, DEB alkylates the N-1 position of adenine in DNA to form N1-(2-hydroxy-3,4-epoxybut-1-yl)-adenine adducts, which undergo an SN2-type intramolecular nucleophilic substitution and rearrangement to give 3 (minor) and 4 (major). Formation of exocyclic DEB-adenine lesions following exposure to 1,3-butadiene provides a possible mechanism of mutagenesis at the A:T base pairs. PMID:19883087

  4. A pseudoatom in a cage: trimetallofullerene Y(3)@C(80) mimics y(3)n@c(80) with nitrogen substituted by a pseudoatom.

    PubMed

    Popov, Alexey A; Zhang, Lin; Dunsch, Lothar

    2010-02-23

    Y(3)C(80) obtained in the synthesis of nitride clusterfullerenes Y(3)N@C(2n) (2n = 80-88) by the reactive atmosphere method is found to be a genuine trimetallofullerene, Y(3)@C(80), with low ionization potential and divalent state of yttrium atoms. DFT studies of the electronic structure of Y(3)@C(80) show that this molecule mimics Y(3)N@C(80) with the pseudoatom (PA) instead of the nitrogen atom. Topology analysis of the electron density and electron localization function show that yttrium atoms form Y-PA bonds rather than direct Y-Y bonds. Molecular dynamics simulations show that the Y(3)PA cluster is as rigid as Y(3)N and rotates inside the fullerene cage as a single entity.

  5. Wet chemical synthesis and luminescence in Ca5(PO4)3M:Eu2+ (M = Br, I) phosphors for solid state lighting

    NASA Astrophysics Data System (ADS)

    Mungmode, C. D.; Gahane, D. H.; Moharil, S. V.

    2018-05-01

    A simple wet chemical synthesis of Eu2+ activated Ca5(PO4)3Br and Ca5(PO4)3I phosphors and their photoluminescence is reported. Formation of Ca5(PO4)3Br is confirmed by X-ray diffraction (XRD). Synthesized phosphors are analyzed for photoluminescence (PL) spectrum. A bright blue emission is observed when phosphors are excited by near Ultra Violet (nUV) radiations. Photoluminescence emission spectrum for (Ca0.985Eu0.015)5(PO4)3Br is centered at 457 nm and for (Ca0.985Eu0.015)5(PO4)3 I it peaks at 455 nm when excited by 365 nm near UV radiation. Eu2+ luminescence in Ca5(PO4)3Br is reported for the first time. The phosphors can be efficiently excited by nUV radiations. This shows that phosphors may be used as blue phosphor in pcLED for Solid State Lighting.

  6. Pre-steady-state kinetic investigation of bypass of a bulky guanine lesion by human Y-family DNA polymerases.

    PubMed

    Tokarsky, E John; Gadkari, Varun V; Zahurancik, Walter J; Malik, Chanchal K; Basu, Ashis K; Suo, Zucai

    2016-10-01

    3-Nitrobenzanthrone (3-NBA), a byproduct of diesel exhaust, is highly present in the environment and poses a significant health risk. Exposure to 3-NBA results in formation of N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG C8- N -ABA ), a bulky DNA lesion that is of particular importance due to its mutagenic and carcinogenic potential. If not repaired or bypassed during genomic replication, dG C8- N -ABA can stall replication forks, leading to senescence and cell death. Here we used pre-steady-state kinetic methods to determine which of the four human Y-family DNA polymerases (hPolη, hPolκ, hPolι, or hRev1) are able to catalyze translesion synthesis of dG C8- N -ABA in vitro. Our studies demonstrated that hPolη and hPolκ most efficiently bypassed a site-specifically placed dG C8- N- ABA lesion, making them good candidates for catalyzing translesion synthesis (TLS) of this bulky lesion in vivo. Consistently, our publication (Biochemistry 53, 5323-31) in 2014 has shown that small interfering RNA-mediated knockdown of hPolη and hPolκ in HEK293T cells significantly reduces the efficiency of TLS of dG C8- N -ABA . In contrast, hPolι and hRev1 were severely stalled by dG C8- N -ABA and their potential role in vivo was discussed. Subsequently, we determined the kinetic parameters for correct and incorrect nucleotide incorporation catalyzed by hPolη at various positions upstream, opposite, and downstream from dG C8- N- ABA . Notably, nucleotide incorporation efficiency and fidelity both decreased significantly during dG C8- N -ABA bypass and the subsequent extension step, leading to polymerase pausing and error-prone DNA synthesis by hPolη. Furthermore, hPolη displayed nucleotide concentration-dependent biphasic kinetics at the two polymerase pause sites, suggesting that multiple enzyme•DNA complexes likely exist during nucleotide incorporation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Ice chemistry of acetaldehyde reveals competitive reactions in the first step of the Strecker synthesis of alanine: formation of HO-CH(CH3)-NH2 vs. HO-CH(CH3)-CN

    NASA Astrophysics Data System (ADS)

    Fresneau, Aurélien; Danger, Grégoire; Rimola, Albert; Duvernay, Fabrice; Theulé, Patrice; Chiavassa, Thierry

    2015-08-01

    The understanding of compound formation in laboratory simulated astrophysical environments is an important challenge in obtaining information on the chemistry occurring in these environments. We here investigate by means of both laboratory experiments and quantum chemical calculations the ice-based reactivity of acetaldehyde (CH3CHO) with ammonia (NH3) and hydrogen cyanide (HCN) in excess of water (H2O) promoted by temperature. A priori, this study should give information on alanine (2HN-CH(CH3)-COOH) formation (the simplest chiral amino acid detected in meteorites), since these reactions concern the first steps of its formation through the Strecker synthesis. However, infrared spectroscopy, mass spectrometry with HC14N or HC15N isotopologues and B3LYP-D3 results converge to indicate that an H2O-dominated ice containing CH3CHO, NH3 and HCN not only leads to the formation of α-aminoethanol (2HN-CH(CH3)-OH, the product compound of the first step of the Strecker mechanism) and its related polymers (2HN-(CH(CH3)-O)n-H) due to reaction between CH3CHO and NH3, but also to the 2-hydroxypropionitrile (HO­-CH(CH3)-CN) and its related polymers (H-(O-CH(CH3))n-CN) from direct reaction between CH3CHO and HCN. The ratio between these two species depends on the initial NH3/HCN ratio in the ice. Formation of α-aminoethanol is favoured when the NH3 concentration is larger than HCN. We also show that the presence of water is essential for the formation of HO­-CH(CH3)-CN, contrarily to 2HN-CH(CH3)-OH whose formation also takes place in absence of H2O ice. As in astrophysical ices NH3 is more abundant than HCN, formation of α-aminoethanol should consequently be favoured compared to 2-hydroxypropionitrile, thus pointing out α-aminoethanol as a plausible intermediate species for alanine synthesis through the Strecker mechanism in astrophysical ices.

  8. Ultrasound-assisted synthesis of nano-structured Zinc(II)-based metal-organic frameworks as precursors for the synthesis of ZnO nano-structures.

    PubMed

    Bigdeli, Fahime; Ghasempour, Hosein; Azhdari Tehrani, Alireza; Morsali, Ali; Hosseini-Monfared, Hassan

    2017-07-01

    A 3D, porous Zn(II)-based metal-organic framework {[Zn 2 (oba) 2 (4-bpmn)]·(DMF) 1.5 } n (TMU-21), (4-bpmn=N,N'-Bis-pyridin-4-ylmethylene-naphtalene-1,5-diamine, H 2 oba=4,4'-oxybis(benzoic acid)) with nano-rods morphology under ultrasonic irradiation at ambient temperature and atmospheric pressure was prepared and characterized by scanning electron microscopy. Sonication time and concentration of initial reagents effects on the size and morphology of nano-structured MOFs were studied. Also {[Zn 2 (oba) 2 (4-bpmn)] (TMU-21) and {[Zn 2 (oba) 2 (4-bpmb)] (TMU-6), 4-bpmb=N,N'-(1,4-phenylene)bis(1-(pyridin-4-yl)methanimine) were easily prepared by mechanochemical synthesis. Nanostructures of Zinc(II) oxide were obtained by calcination of these compounds and their de-solvated analogue as activated MOFs, at 550°C under air atmosphere. As a result of that, different Nanostructures of Zinc(II) oxide were obtained. The ZnO nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and FT-IR spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Synthesis and identification of major metabolites of environmental pollutant dibenzo[c,mno]chrysene.

    PubMed

    Sharma, Arun K; Amin, Shantu

    2005-09-01

    Dibenzo[c,mno]chrysene commonly known as naphtho[1,2-a]pyrene (N[1,2-a]P) is an environmental pollutant, recently identified in coal tar extract, in air-borne particulate matter, in marine sediment, and in cigarette-smoke condensate. We recently reported an efficient synthesis of N[1,2-a]P and examined its in vitro metabolism by male Sprague Dawley rat liver S9 fraction, which resulted in a number of dihydrodiol and phenolic metabolites. The synthesis of 10-hydroxy-N[1,2-a]P and fjord region N[1,2-a]P trans-9,10-dihydrodiol, which were identified among the various metabolites, was assigned earlier by comparing with the synthetic standards. The other major metabolites were separated by HPLC and, based on the 1H NMR analysis, were tentatively suggested to be the two K-region dihydrodiols, that is, N[1,2-a]P trans-4,5-dihydrodiol (6) and N[1,2-a]P trans-7,8-dihydrodiol (7), and the hydroxy derivatives of N[1,2-a]P. To unequivocally assign the structure to each of the peaks and to have them in larger amounts for toxicological studies, we have now synthesized the two K-region dihydrodiols and the 1-/3-hydroxy-N[1,2-a]P, short-listed based on the proton NMR of the collected peaks. The K-region dihydrodiols 6 and 7 were prepared by the treatment of N[1,2-a]P with OsO(4) to give a mixture of cis dihydrodiols 2 and 3, followed by pyridinium chlorochromate-assisted oxidation to quinones 4 and 5, and finally reduction with NaBH(4) to afford the dihydrodiols 6 and 7 with the desired trans stereochemistry. The 1-hydroxy-N[1,2-a]P (22) and 3-hydroxy-N[1,2-a]P (23) were synthesized using a photochemical approach. As expected, all the synthesized dihydrodiol and phenolic derivatives of N[1,2-a]P identified with those obtained from in vitro metabolism enabling the assignment of all the major metabolites.

  10. Stereoselective Synthesis of trans-Olefins by the Copper-Mediated SN2′ Reaction of Vinyl Oxazines with Grignard Reagents. Asymmetric Synthesis of D-threo-Sphingosines

    PubMed Central

    Singh, Om V.; Han, Hyunsoo

    2007-01-01

    The SN2′ reaction of 6-vinyl-5,6-dihydro-4H-[1,3]oxazines with Grignard reagents in the presence of CuCN was studied, and high trans selectivity for the formation of double bond was observed with a variety of RMgX. The SN2′ reaction, coupled with regioselective asymmetric aminohydroxylation reaction, provided a highly efficient route for the asymmetric synthesis of D-threo-N-acetylsphingosine. PMID:18958293

  11. Metal-organic coordination architectures of tetrazole heterocycle ligands bearing acetate groups: Synthesis, characterization and magnetic properties

    NASA Astrophysics Data System (ADS)

    Hu, Bo-Wen; Zheng, Xiang-Yu; Ding, Cheng

    2015-12-01

    Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L)2]n (1) and [Co3(L)4(N3)2·2MeOH]n (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (42.6)2(44.62.88.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co3] units. And the magnetic properties of 1 and 2 have been studied.

  12. Role of UDP-N-Acetylglucosamine (GlcNAc) and O-GlcNAcylation of Hyaluronan Synthase 2 in the Control of Chondroitin Sulfate and Hyaluronan Synthesis*

    PubMed Central

    Vigetti, Davide; Deleonibus, Sara; Moretto, Paola; Karousou, Eugenia; Viola, Manuela; Bartolini, Barbara; Hascall, Vincent C.; Tammi, Markku; De Luca, Giancarlo; Passi, Alberto

    2012-01-01

    Hyaluronan (HA) is a glycosaminoglycan present in most tissue microenvironments that can modulate many cell behaviors, including proliferation, migration, and adhesive proprieties. In contrast with other glycosaminoglycans, which are synthesized in the Golgi, HA is synthesized at the plasma membrane by one or more of the three HA synthases (HAS1–3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. Previous studies revealed the importance of UDP-sugars for regulating HA synthesis. Therefore, we analyzed the effect of UDP-GlcNAc availability and protein glycosylation with O-linked N-acetylglucosamine (O-GlcNAcylation) on HA and chondroitin sulfate synthesis in primary human aortic smooth muscle cells. Glucosamine treatment, which increases UDP-GlcNAc availability and protein O-GlcNAcylation, increased synthesis of both HA and chondroitin sulfate. However, increasing O-GlcNAcylation by stimulation with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate without a concomitant increase of UDP-GlcNAc increased only HA synthesis. We found that HAS2, the main synthase in aortic smooth muscle cells, can be O-GlcNAcylated on serine 221, which strongly increased its activity and its stability (t½ >5 h versus ∼17 min without O-GlcNAcylation). S221A mutation prevented HAS2 O-GlcNAcylation, which maintained the rapid turnover rate even in the presence of GlcN and increased UDP-GlcNAc. These findings could explain the elevated matrix HA observed in diabetic vessels that, in turn, could mediate cell dedifferentiation processes critical in vascular pathologies. PMID:22887999

  13. Myxospore Coat Synthesis in Myxococcus xanthus: In Vivo Incorporation of Acetate and Glycine

    PubMed Central

    Filer, D.; White, D.; Kindler, S. H.; Rosenberg, E.

    1977-01-01

    Myxospore coat synthesis in Myxococcus xanthus was studied by incorporation of [14C]acetate into intermediates in the biosynthesis of coat polysaccharide and into acid-insoluble material during vegetative growth and after glycerol induction of myxospores. During short labeling periods at 27°C, the radioactivity was shown to be located primarily in N-acetyl groups rather than sugar moieties. Two hours after glycerol induction, the pools of N-acetylglucosamine 6-phosphate and uridine 5′-diphosphate-N-acetylgalactosamine (UDPGalNAc) plus uridine 5′-diphosphate-N-glucosamine increased about twofold and were labeled at twice the rate measured for vegetative cells. The increased rate of synthesis of UDPGalNAc and its precursors could be correlated with increased enzyme activities measured in vitro. Controlled acid hydrolysis revealed that the galactosamine portion of the myxospore coat was N-acetylated. After glycerol induction, the incorporation of acetate into acid-insoluble material increased threefold. This enhanced incorporation was sensitive to neither penicillin nor d-cycloserine. In contrast, bacitracin inhibited the incorporation of [14C]acetate into acid-insoluble material more effectively 2 h after myxospore induction than during vegetative growth. Chloramphenicol added to cells 90 min after induction blocked further increase in the rate of [14C]acetate incorporation. Since the myxospore coat contains glycine, polymer synthesis was also measured by chloramphenicol-insensitive [14C]glycine incorporation into acid-insoluble material. Although protein synthesis decreased after glycerol induction, glycine incorporation increased. Two hours after induction, glycine incorporation was only 75% inhibited by chloramphenicol and rifampin. The chloramphenicol-insensitive rate of incorporation of [14C]glycine increased during the first hour after myxospore induction and reached a peak rate after 2 to 3 h. The chloramphenicol-resistant incorporation of [14C]glycine was resistant to penicillin but sensitive to bacitracin. PMID:408325

  14. The cell-specific pattern of cholecystokinin peptides in endocrine cells versus neurons is governed by the expression of prohormone convertases 1/3, 2, and 5/6.

    PubMed

    Rehfeld, Jens F; Bundgaard, Jens R; Hannibal, Jens; Zhu, Xiaorong; Norrbom, Christina; Steiner, Donald F; Friis-Hansen, Lennart

    2008-04-01

    Most peptide hormone genes are, in addition to endocrine cells, also expressed in neurons. The peptide hormone cholecystokinin (CCK) is expressed in different molecular forms in cerebral neurons and intestinal endocrine cells. To understand this difference, we examined the roles of the neuroendocrine prohormone convertases (PC) 1/3, PC2, and PC5/6 by measurement of proCCK, processing intermediates and bioactive, alpha-amidated, and O-sulfated CCK peptides in cerebral and jejunal extracts of null mice, controls, and in the PC5/6-expressing SK-N-MC cell-line. In PC1/3 null mice, the synthesis of bioactive CCK peptide in the gut was reduced to 3% of the translational product, all of which was in the form of alpha-amidated and tyrosine O-sulfated CCK-22, whereas the neuronal synthesis in the brain was largely unaffected. This is opposite to the PC2 null mice in which only the cerebral synthesis was affected. SK-N-MC cells, which express neither PC1/3 nor PC2, synthesized alone the processing intermediate, glycine-extended CCK-22. Immunocytochemistry confirmed that intestinal endocrine CCK cells in wild-type mice express PC1/3 but not PC2. In contrast, cerebral CCK neurons contain PC2 and only little, if any, PC1/3. Taken together, the data indicate that PC1/3 governs the endocrine and PC2 the neuronal processing of proCCK, whereas PC5/6 contributes only to a modest endocrine synthesis of CCK-22. The results suggest that the different peptide patterns in the brain and the gut are due to different expression of PCs.

  15. Effects of velvet antler polypeptide on sexual behavior and testosterone synthesis in aging male mice

    PubMed Central

    Zang, Zhi-Jun; Tang, Hong-Feng; Tuo, Ying; Xing, Wei-Jie; Ji, Su-Yun; Gao, Yong; Deng, Chun-Hua

    2016-01-01

    Twenty-four-month-old male C57BL/6 mice with low serum testosterone levels were used as a late-onset hypogonadism (LOH) animal model for examining the effects of velvet antler polypeptide (VAP) on sexual function and testosterone synthesis. These mice received VAP for 5 consecutive weeks by daily gavage at doses of 100, 200, or 300 mg kg−1 body weight per day (n = 10 mice per dose). Control animals (n = 10) received the same weight-based volume of vehicle. Sexual behavior and testosterone levels in serum and interstitial tissue of testis were measured after the last administration of VAP. Furthermore, to investigate the mechanisms of how VAP affects sexual behavior and testosterone synthesis in vivo, the expression of steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase (3β-HSD) in Leydig cells was also measured by immunofluorescence staining and quantitative real-time PCR. As a result, VAP produced a significant improvement in the sexual function of these aging male mice. Serum testosterone level and intratesticular testosterone (ITT) concentration also increased in the VAP-treated groups. The expression of StAR, P450scc, and 3β-HSD was also found to be enhanced in the VAP-treated groups compared with the control group. Our results suggested that VAP was effective in improving sexual function in aging male mice. The effect of velvet antler on sexual function was due to the increased expression of several rate-limiting enzymes of testosterone synthesis (StAR, P450scc, and 3β-HSD) and the following promotion of testosterone synthesis in vivo. PMID:26608944

  16. Effects of velvet antler polypeptide on sexual behavior and testosterone synthesis in aging male mice.

    PubMed

    Zang, Zhi-Jun; Tang, Hong-Feng; Tuo, Ying; Xing, Wei-Jie; Ji, Su-Yun; Gao, Yong; Deng, Chun-Hua

    2016-01-01

    Twenty-four-month-old male C57BL/6 mice with low serum testosterone levels were used as a late-onset hypogonadism (LOH) animal model for examining the effects of velvet antler polypeptide (VAP) on sexual function and testosterone synthesis. These mice received VAP for 5 consecutive weeks by daily gavage at doses of 100, 200, or 300 mg kg-1 body weight per day (n = 10 mice per dose). Control animals (n = 10) received the same weight-based volume of vehicle. Sexual behavior and testosterone levels in serum and interstitial tissue of testis were measured after the last administration of VAP. Furthermore, to investigate the mechanisms of how VAP affects sexual behavior and testosterone synthesis in vivo, the expression of steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase (3β-HSD) in Leydig cells was also measured by immunofluorescence staining and quantitative real-time PCR. As a result, VAP produced a significant improvement in the sexual function of these aging male mice. Serum testosterone level and intratesticular testosterone (ITT) concentration also increased in the VAP-treated groups. The expression of StAR, P450scc, and 3β-HSD was also found to be enhanced in the VAP-treated groups compared with the control group. Our results suggested that VAP was effective in improving sexual function in aging male mice. The effect of velvet antler on sexual function was due to the increased expression of several rate-limiting enzymes of testosterone synthesis (StAR, P450scc, and 3β-HSD) and the following promotion of testosterone synthesis in vivo.

  17. Synthesis of novel 4,1-benzoxazepine derivatives as squalene synthase inhibitors and their inhibition of cholesterol synthesis.

    PubMed

    Miki, Takashi; Kori, Masakuni; Mabuchi, Hiroshi; Tozawa, Ryu-ichi; Nishimoto, Tomoyuki; Sugiyama, Yasuo; Teshima, Koichiro; Yukimasa, Hidefumi

    2002-09-26

    Modification of the carboxyl group at the 3-position and introduction of protective groups to the hydroxy group of the 4,1-benzoxazepine derivative 2 (metabolite of 1) were carried out, and the inhibitory activity for squalene synthase and cholesterol synthesis in the liver was investigated. Among these compounds, the glycine derivative 3a and beta-alanine derivative 3f exhibited the most potent inhibition of squalene synthase prepared from HepG2 cells (IC(50) = 15 nM). On the other hand, the piperidine-4-acetic acid derivative 4a, which was prepared by acetylation of 3j, was the most effective inhibitor of cholesterol synthesis in rat liver (ED(50) = 2.9 mg/kg, po). After oral administration, 4a was absorbed and rapidly hydrolyzed to deacylated 3j. Compound 3j was detected mainly in the liver, but the plasma level of 3j was found to be low. Compounds 3j and 4a were found to be competitive inhibitors with respect to farnesyl pyrophosphate. Further evaluation of 4a as a cholesterol-lowering and antiatherosclerotic agent is underway.

  18. Synthesis of the antileukemic compound N,N(11)-[5-[bis(2-chloroethyl)amino]-1, 3-phenylene]bisurea.

    PubMed

    Denny, G H; Ryder, M A; DeMarco, A M; Babson, R D

    1976-03-01

    Conversion of 5-nitro-1, 3-benzenedicarboxylic acid (1) to the diamide 2 followed by hypochlorite rearrangement to the idamine 3 and subsequent reaction with acetic anhydride gave the bisacetamide 4. Reduction to the amine 5 followed by treatment with ethylene oxide formed the diol 6. The latter was converted to the bistosylate 7, which undrewent facile displacement with lithium chloride in acetone to give the mustard 8. Removal of the acetyl groups with hydrochloric acid gave 9, which reacted with potassium cyanate to provide the bisurea 10. In an alternative, but less satisfactory synthesis of 10, the compound (5-nitro-1, 3-phenylene) biscarbamic acid diphenyl ester (11), or the corresponding diethyl ester 12, was converted by ammonolysis to 13. The nitrodiurea 13 was next reduced to the amine 14, the hydrochloride of which reacted with ethylene oxide to give the diol 15. Treatment of the latter in dimethylformamide with N-chlorosuccinimide in the presence of triphenylphosphine gave 10 in low yield. The nitrogen mustards 8, 9 and 10 showed significant antitumor activities against P388 lymphocytic leukemia in mice.

  19. Hybrid Pd/Fe{sub 3}O{sub 4} nanowires: Fabrication, characterization, optical properties and application as magnetically reusable catalyst for the synthesis of N-monosubstituted ureas under ligand-free conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasrollahzadeh, Mahmoud, E-mail: mahmoudnasr81@gmail.com; Azarian, Abbas; Ehsani, Ali

    2014-07-01

    Highlights: • Preparation of Pd/Fe{sub 3}O{sub 4} nanowires as magnetically reusable catalysts. • The optical properties of the catalyst were studied using Gans theory. • N-arylation of benzylurea and in situ hydrogenolysis of 1-benzyl-3-arylureas. - Abstract: This paper reports the synthesis and use of Pd/Fe{sub 3}O{sub 4} nanowires, as magnetically separable catalysts for ligand-free amidation coupling reactions of aryl halides with benzylurea under microwave irradiation. Then, the in situ hydrogenolysis of the products was performed to afford the N-monosubstituted ureas from good to excellent yields. This method has the advantages of high yields, simple methodology and easy work up. Themore » catalyst can be recovered by using a magnet and reused several times without significant loss of its catalytic activity. The catalyst was characterized using the powder XRD, SEM, EDS and UV–vis spectroscopy. Experimental absorbance spectra was compared with results from the Gans theory.« less

  20. Rational design of mixed ionic and electronic conducting perovskite oxides for solid oxide fuel cell anode materials: A case study for doped SrTiO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suthirakun, Suwit; Xiao, Guoliang; Ammal, Salai Cheettu

    2014-01-01

    The effect of p- and n-type dopants on ionic and electronic conductivity of SrTiO3 based perovskites were investigated both computationally and experimentally. Specifically, we performed density functional theory (DFT) calculations of Na- and La-doped SrTiO3 and Na- and Nb-doped SrTiO3 systems. Constrained ab initio thermodynamic calculations were used to evaluate the phase stability and reducibility of doped SrTiO3 under both oxidizing and reducing synthesis conditions, as well as under anodic solid oxide fuel cell (SOFC) conditions. The density of states (DOS) of these materials was analyzed to study the effects of p- and n-doping on the electronic conductivity. Furthermore, Na-more » and La-doped SrTiO3 and Na- and Nb-doped SrTiO3 samples were experimentally prepared and the conductivity was measured to confirm our computational predictions. The experimental observations are in very good agreement with the theoretical predictions that doping n-doped SrTiO3 with small amounts of p-type dopants promotes both the ionic and electronic conductivity of the material. This doping strategy is valid independent of p- and n-doping site and permits the synthesis of perovskite based mixed ionic/electronic conductors.« less

  1. Synthesis and Characterization of Thin Film Lithium-Ion Batteries Using Polymer Electrolytes

    NASA Technical Reports Server (NTRS)

    Maranchi, Jeffrey P.; Kumta, Prashant N.; Hepp, Aloysius F.; Raffaelle, Ryne P.

    2002-01-01

    The present paper describes the integration of thin film electrodes with polymer electrolytes to form a complete thin film lithium-ion battery. Thin film batteries of the type, LiCoO2 [PAN, EC, PC, LiN(CF3SO2)2] SnO2 have been fabricated. The results of the synthesis and characterization studies will be presented and discussed.

  2. The patient-doctor relationship: a synthesis of the qualitative literature on patients' perspectives.

    PubMed

    Ridd, Matthew; Shaw, Alison; Lewis, Glyn; Salisbury, Chris

    2009-04-01

    The patient-doctor relationship is an important but poorly defined topic. In order to comprehensively assess its significance for patient care, a clearer understanding of the concept is required. To derive a conceptual framework of the factors that define patient-doctor relationships from the perspective of patients. Systematic review and thematic synthesis of qualitative studies. Medline, EMBASE, PsychINFO and Web of Science databases were searched. Studies were screened for relevance and appraised for quality. The findings were synthesised using a thematic approach. From 1985 abstracts, 11 studies from four countries were included in the final synthesis. They examined the patient-doctor relationship generally (n = 3), or in terms of loyalty (n = 3), personal care (n = 2), trust (n = 2), and continuity (n = 1). Longitudinal care (seeing the same doctor) and consultation experiences (patients' encounters with the doctor) were found to be the main processes by which patient-doctor relationships are promoted. The resulting depth of patient-doctor relationship comprises four main elements: knowledge, trust, loyalty, and regard. These elements have doctor and patient aspects to them, which may be reciprocally related. A framework is proposed that distinguishes between dynamic factors that develop or maintain the relationship, and characteristics that constitute an ongoing depth of relationship. Having identified the different elements involved, future research should examine for associations between longitudinal care, consultation experiences, and depth of patient-doctor relationship, and, in turn, their significance for patient care.

  3. Synthesis and structural characterisation of a novel phosphine-borane-stabilised dicarbanion and an unusual bis(phosphine-borane).

    PubMed

    Izod, Keith; McFarlane, William; Tyson, Brent V; Clegg, William; Harrington, Ross W

    2004-03-07

    The reaction between the phosphine-borane-substituted alkene [Pr(n)(2)P(BH(3))](Me(3)Si)C[double bond]CH(2) and elemental lithium in THF yields the complex [(pmdeta)Li[Pr(n)(2)P(BH(3))](Me(3)Si)CCH(2)](2)(2b) after recrystallisation; an X-ray crystallographic study of 2b reveals that the lithium is bound to the BH(3) hydrogens of the ligand, with no Li-C(carbanion) contact.

  4. The pulmonary pharmacology of [4-methoxy-N1-(4-trans-nitrooxycyclohexyl)-N3-(3-pyridinylmethyl)-1,3-benzenedicarboxamide] (2NTX-99), an anti-atherotrombotic compound with therapeutic potential in pathological conditions that target lung vasculature.

    PubMed

    Brivio, I; Buccellati, C; Fumagalli, F; Hodge, J; Casagrande, C; Folco, G C; Sala, A

    2012-08-01

    The pharmacological activity of 2NTX-99 ([4-methoxy-N1-(4-trans-nitrooxycyclohexyl)-N3-(3-pyridinylmethyl)-1,3-benzenedicarboxamide]) was investigated in vitro in the intact, rat pulmonary vasculature and in guinea pig airways. Rat lungs were perfused at constant flow and changes in vascular tone recorded. Challenge with the TXA₂ analogue 9,11-dideoxy-9α11α-methanoepoxy ProstaglandinF₂ (U46619, 0.5 μM) increased vessel tone (32.48±1.5 vs 13.13±0.56 mmHg; n=12). 2NTX-99 (0.1-100 μM; n=5), caused a concentration-dependent relaxation, prevented by 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, 10 μM, n=4), an inhibitor of soluble guanylate cyclase. Acetylcholine (0.1-10 μM; n=3) and a reference NO-donor, isosorbide-5-mononitrate (5-100 μM; n=4), were ineffective. Intraluminal perfusion of washed human platelets (2 × 10⁸ cells/ml) increased intravascular pressure after challenge with arachidonic acid (AA, 2 μM; n=5), an increase abolished by acetylsalicylic acid and significantly reduced by 2NTX-99 (40 μM; n=5). TXB₂ in the lung perfusate was detected after platelet activation, 2NTX-99 inhibited TXA₂ synthesis (6.45±0.6 and 1.10±0.2 ng/ml, respectively). 2NTX-99 did not alter central or peripheral airway responsiveness to Histamine (0.001-300 μM; n=6), U46619 (0.001-3 μM, n=3) or LTD₄ (1 pM-1 μM; n=6). 2NTX-99 vasodilates the pulmonary vasculature via the release of nitric oxide (NO) and reduces intraluminal, AA-induced, TXA₂ formation. The combined activity of 2NTX-99 as an NO-donor and a TXA₂-synthesis inhibitor provides strong support for its potential therapeutic use in pathologies of the pulmonary vascular bed (e.g. pulmonary hypertension). Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Restriction of dietary methyl donors limits methionine availability and affects the partitioning of dietary methionine for creatine and phosphatidylcholine synthesis in the neonatal piglet.

    PubMed

    Robinson, Jason L; McBreairty, Laura E; Randell, Edward W; Brunton, Janet A; Bertolo, Robert F

    2016-09-01

    Methionine is required for protein synthesis and provides a methyl group for >50 critical transmethylation reactions including creatine and phosphatidylcholine synthesis as well as DNA and protein methylation. However, the availability of methionine depends on dietary sources as well as remethylation of demethylated methionine (i.e., homocysteine) by the dietary methyl donors folate and choline (via betaine). By restricting dietary methyl supply, we aimed to determine the extent that dietary methyl donors contribute to methionine availability for protein synthesis and transmethylation reactions in neonatal piglets. Piglets 4-8 days of age were fed a diet deficient (MD-) (n=8) or sufficient (MS+) (n=7) in folate, choline and betaine. After 5 days, dietary methionine was reduced to 80% of requirement in both groups to elicit a response. On day 8, animals were fed [(3)H-methyl]methionine for 6h to measure methionine partitioning into hepatic protein, phosphatidylcholine, creatine and DNA. MD- feeding reduced plasma choline, betaine and folate (P<.05) and increased homocysteine ~3-fold (P<.05). With MD- feeding, hepatic phosphatidylcholine synthesis was 60% higher (P<.05) at the expense of creatine synthesis, which was 30% lower during MD- feeding (P<.05); protein synthesis as well as DNA and protein methylation were unchanged. In the liver, ~30% of dietary label was traced to phosphatidylcholine and creatine together, with ~50% traced to methylation of proteins and ~20% incorporated in synthesized protein. Dietary methyl donors are integral to neonatal methionine requirements and can affect methionine availability for transmethylation pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Synthesis and coordination chemistry of 1,1,1-tris-(pyrid-2-yl)ethane.

    PubMed

    Santoro, Amedeo; Sambiagio, Carlo; McGowan, Patrick C; Halcrow, Malcolm A

    2015-01-21

    A new synthesis of 1,1,1-tris(pyrid-2-yl)ethane (L), and a survey of its coordination chemistry, are reported. The complexes [ML2](n+) (M(n+) = Fe(2+), Co(2+), Co(3+), Cu(2+) and Ag(+)), [PdCl2L] and [CuI(L)] have all been crystallographically characterised. Noteworthy results include an unusual square planar silver(i) complex [Ag(L)2]X (X(-) = NO3(-) and SbF6(-)); the oxidative fixation of aerobic CO2 by [CuI(L)] to yield [Cu2I(L)2(μ-CO3)]2[CuI3] and [Cu(CO3)(L)]; and, water/carbonato tape and water/iodo layer hydrogen bonding networks in hydrate crystals of two of the copper(ii) complexes. Cyclic voltammetric data on [Fe(L)2](2+) and [Co(L)2](2+/3+) imply that the peripheral methyl substituent has a weak influence on the ligand field exerted by L onto a coordinated metal ion.

  7. Inorganic chemistry: Direct syntheses from pure liquid SO3 and from trivalent and pentavalent nitrogen derivatives

    NASA Technical Reports Server (NTRS)

    Vandorpe, B.; Heubel, J.

    1977-01-01

    From pure liquid SO3 direct synthesis reactions were carried out with N2O5, NO2Cl, NOCl which yielded N2O54SO3, 3SO3, 2SO3-NO2Cl2SO3-NOCl2SO3 and NOCl2SO3, the latter being obtained for the first time in the pure state. In all cases the crystallized product was obtained by separating the constituents of the mixture and then going through a single viscous liquid phase.

  8. Synthesis of ultrafine Si3N4 powder in RF-RF plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Michitaka; Nishio, Hiroaki

    1991-10-01

    A newly designed plasma-CVD apparatus mounted with the RF-RF type plasma torch was introduced to synthesize ultrafine powders of silicon nitride (Si3N4). The RF-RF plasma system (the combination of a main (lower) and controlling (upper) RF plasma) improved the stability of simple RF plasma and solved the impurity problem of dc-RF hybrid plasma. The reaction of SiCl4 and NH3, which were radially injected into the tail flames of the upper and lower plasmas, respectively, yielded near-stoichiometric amorphous powders of Si3N4. The nitrogen content in the products largely depended on the flow rate of the quenching gas, a mixture of NH3more » (reactant) and H2. The oxygen content and metal impurities are 2-3 wt pct and less than 200 ppm, respectively. The powder particles had an average diameter of about 15 nm with a narrow size distribution, and showed extreme air sensitivity. Conspicuous crystallazation and particle growth occurred when heated at temperatures above 1400 C. These results suggested that the RF-RF system was a potential reactor for the synthesis of ultrafine powders with excellent sinterability at relatively low temperatures. 9 refs.« less

  9. From synthesis to function via iterative assembly of N-methyliminodiacetic acid boronate building blocks.

    PubMed

    Li, Junqi; Grillo, Anthony S; Burke, Martin D

    2015-08-18

    The study and optimization of small molecule function is often impeded by the time-intensive and specialist-dependent process that is typically used to make such compounds. In contrast, general and automated platforms have been developed for making peptides, oligonucleotides, and increasingly oligosaccharides, where synthesis is simplified to iterative applications of the same reactions. Inspired by the way natural products are biosynthesized via the iterative assembly of a defined set of building blocks, we developed a platform for small molecule synthesis involving the iterative coupling of haloboronic acids protected as the corresponding N-methyliminodiacetic acid (MIDA) boronates. Here we summarize our efforts thus far to develop this platform into a generalized and automated approach for small molecule synthesis. We and others have employed this approach to access many polyene-based compounds, including the polyene motifs found in >75% of all polyene natural products. This platform further allowed us to derivatize amphotericin B, the powerful and resistance-evasive but also highly toxic last line of defense in treating systemic fungal infections, and thereby understand its mechanism of action. This synthesis-enabled mechanistic understanding has led us to develop less toxic derivatives currently under evaluation as improved antifungal agents. To access more Csp(3)-containing small molecules, we gained a stereocontrolled entry into chiral, non-racemic α-boryl aldehydes through the discovery of a chiral derivative of MIDA. These α-boryl aldehydes are versatile intermediates for the synthesis of many Csp(3) boronate building blocks that are otherwise difficult to access. In addition, we demonstrated the utility of these types of building blocks in accessing pharmaceutically relevant targets via an iterative Csp(3) cross-coupling cycle. We have further expanded the scope of the platform to include stereochemically complex macrocyclic and polycyclic molecules using a linear-to-cyclized strategy, in which Csp(3) boronate building blocks are iteratively assembled into linear precursors that are then cyclized into the cyclic frameworks found in many natural products and natural product-like structures. Enabled by the serendipitous discovery of a catch-and-release protocol for generally purifying MIDA boronate intermediates, the platform has been automated. The synthesis of 14 distinct classes of small molecules, including pharmaceuticals, materials components, and polycyclic natural products, has been achieved using this new synthesis machine. It is anticipated that the scope of small molecules accessible by this platform will continue to expand via further developments in building block synthesis, Csp(3) cross-coupling methodologies, and cyclization strategies. Achieving these goals will enable the more generalized synthesis of small molecules and thereby help shift the rate-limiting step in small molecule science from synthesis to function.

  10. Synthesis and Reaction Chemistry of Nanosize Monosodium Titanate

    PubMed Central

    Elvington, Mark C.; Taylor-Pashow, Kathryn M. L.; Tosten, Michael H.; Hobbs, David T.

    2016-01-01

    This paper describes the synthesis and peroxide-modification of nanosize monosodium titanate (nMST), along with an ion-exchange reaction to load the material with Au(III) ions. The synthesis method was derived from a sol-gel process used to produce micron-sized monosodium titanate (MST), with several key modifications, including altering reagent concentrations, omitting a particle seed step, and introducing a non-ionic surfactant to facilitate control of particle formation and growth. The resultant nMST material exhibits spherical-shaped particle morphology with a monodisperse distribution of particle diameters in the range from 100 to 150 nm. The nMST material was found to have a Brunauer-Emmett-Teller (BET) surface area of 285 m2g-1, which is more than an order of magnitude higher than the micron-sized MST. The isoelectric point of the nMST measured 3.34 pH units, which is a pH unit lower than that measured for the micron-size MST. The nMST material was found to serve as an effective ion exchanger under weakly acidic conditions for the preparation of an Au(III)-exchange nanotitanate. In addition, the formation of the corresponding peroxotitanate was demonstrated by reaction of the nMST with hydrogen peroxide. PMID:26967828

  11. Methodical thermolysis of [Ba2Ti2(thd)4(OnPr)8(nPrOH)2] under autogenous pressure followed by combustion for the synthesis of dielectric tetragonal BaTiO3 nanopowder.

    PubMed

    Pol, Vilas G; Thiyagarajan, P; Moreno, Jose M Calderon; Popa, Monica; Kessler, Vadim G; Gohil, Suresh; Seisenbaeva, Gulaim A

    2009-07-06

    The tetragonal BaTiO(3) nanopowder is synthesized in a solvent-less, efficient process by the thermolysis of a single [Ba(2)Ti(2)(thd)(4)(OnPr)(8)(nPrOH)(2)] precursor in a closed reactor at 700 degrees C under autogenous pressure, followed by combustion. This paper compiles the synthesis of the [Ba(2)Ti(2)(thd)(4)(OnPr)(8)(nPrOH)(2)] precursor, its analysis by mass spectrometry, and implementation for the fabrication of dielectric tetragonal BaTiO(3) nanopowder by controlled efficient thermal decomposition. The as-prepared, intermediate, and final forms of the obtained nanomaterials are systematically analysed by XRD, Raman, and EDS measurements to gain structural and compositional information. Employing HR-SEM, TEM, and HR-TEM techniques, the morphological changes during the structural evolution of all the phases are pursued. The mechanistic elucidation for the fabrication of BaTiO(3) nanopowder is developed on the basis of TGA and DTA data obtained for the initial [Ba(2)Ti(2)(thd)(4)(OnPr)(8)(nPrOH)(2)] reactant as well as the as-prepared BaCO(3) with amorphous Ti phase.

  12. Budesonide treatment is associated with increased bile acid absorption in collagenous colitis.

    PubMed

    Bajor, A; Kilander, A; Gälman, C; Rudling, M; Ung, K-A

    2006-12-01

    Bile acid malabsorption is frequent in collagenous colitis and harmful bile acids may play a pathophysiological role. Glucocorticoids increase ileal bile acid transport. Budesonide have its main effect in the terminal ileum. To evaluate whether the symptomatic effect of budesonide is linked to increased uptake of bile acids. Patients with collagenous colitis were treated with budesonide 9 mg daily for 12 weeks. Prior to and after 8 weeks of treatment, the (75)SeHCAT test, an indirect test for the active uptake of bile acid-s, measurements of serum 7alpha-hydroxy-4-cholesten-3-one, an indicator of hepatic bile acid synthesis, and registration of symptoms were performed. The median (75)SeHCAT retention increased from 18% to 35% (P < 0.001, n = 25) approaching the values of healthy controls (38%). The 7alpha-hydroxy-4-cholesten-3-one values decreased significantly among those with initially high synthesis (from 36 to 23 ng/mL, P = 0.04, n = 9); however, for the whole group the values were not altered (19 ng/mL vs. 13 ng/mL, P = 0.23, N.S., n = 19). The normalization of the (75)SeHCAT test and the reduction of bile acid synthesis in patients with initially high synthetic rate, suggests that the effect of budesonide in collagenous colitis may be in part due to decreased bile acid load on the colon.

  13. Synthesis and characterization of a novel porous titanium silicate/g-C{sub 3}N{sub 4} hybrid nanocomposite catalyst for environmental applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adepu, Ajay Kumar; Narayanan, Venkatathri, E-mail: venkatathrin@yahoo.com, E-mail: ajay.kumar553@gmail.com

    2016-04-13

    Herein we developed a novel porous Titanium silicate/g-C{sub 3}N{sub 4} (TSCN) hybrid composite with a inorganic-organic heterojunction. The synthesized porous TSCN were well characterized by various analytical techniques for structural and chemical properties evaluation. FESEM results shows the growth of finely distributed porous titanium silicate on the surface of the g-C{sub 3}N{sub 4}. Porous TSCN hybrid nanocomposite has a great influence on the electronic and optical properties.

  14. Synthesis of p-type nickel oxide nanosheets on n-type titanium dioxide nanorod arrays for p-n heterojunction-based UV photosensor

    NASA Astrophysics Data System (ADS)

    Yusoff, M. M.; Mamat, M. H.; Malek, M. F.; Abdullah, M. A. R.; Ismail, A. S.; Saidi, S. A.; Mohamed, R.; Suriani, A. B.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    Titanium dioxide (TiO2) nanorod arrays (TNAs) were synthesized and deposited on fluorine tin oxide (FTO)-coated glass substrate using a novel and facile immersion method in a glass container. The synthesis and deposition of p-type nickel oxide (NiO) nanosheets (NS) on the n-type TNAs was investigated in the p-n heterojunction photodiode (PD) for the application of ultraviolet (UV) photosensor. The fabricated TNAs/NiO NS based UV photosensor exhibited a highly increased photocurrent of 4.3 µA under UV radiation (365 nm, 750 µW/cm2) at 1.0 V reverse bias. In this study, the fabricated TNAs/NiO NS p-n heterojunction based photodiode showed potential applications for UV photosensor based on the stable photo-generated current attained under UV radiation.

  15. n-Type Conductivity of Cu2O Thin Film Prepared in Basic Aqueous Solution Under Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Ursu, Daniel; Miclau, Nicolae; Miclau, Marinela

    2018-03-01

    We report for the first time in situ hydrothermal synthesis of n-type Cu2O thin film using strong alkaline solution. The use of copper foil as substrate and precursor material, low synthesis temperature and short reaction time represent the arguments of a new, simple, inexpensive and high field synthesis method for the preparation of n-type Cu2O thin film. The donor concentration of n-type Cu2O thin film obtained at 2 h of reaction time has increased two orders of magnitude than previous reported values. We have demonstrated n-type conduction in Cu2O thin film prepared in strong alkaline solution, in the contradiction with the previous works. Based on experimental results, the synthesis mechanism and the origin of n-type photo-responsive behavior of Cu2O thin film were discussed. We have proposed that the unexpected n-type character could be explained by H doping of Cu2O thin film in during of the hydrothermal synthesis that caused the p-to-n conductivity-type conversion. Also, this work raises new questions about the origin of n-type conduction in Cu2O thin film, the influence of the synthesis method on the nature of the intrinsic defects and the electrical conduction behavior.

  16. Understanding Nitrogen Fixation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul J. Chirik

    The purpose of our program is to explore fundamental chemistry relevant to the discovery of energy efficient methods for the conversion of atmospheric nitrogen (N{sub 2}) into more value-added nitrogen-containing organic molecules. Such transformations are key for domestic energy security and the reduction of fossil fuel dependencies. With DOE support, we have synthesized families of zirconium and hafnium dinitrogen complexes with elongated and activated N-N bonds that exhibit rich N{sub 2} functionalization chemistry. Having elucidated new methods for N-H bond formation from dihydrogen, C-H bonds and Broensted acids, we have since turned our attention to N-C bond construction. These reactionsmore » are particularly important for the synthesis of amines, heterocycles and hydrazines with a range of applications in the fine and commodity chemicals industries and as fuels. One recent highlight was the discovery of a new N{sub 2} cleavage reaction upon addition of carbon monoxide which resulted in the synthesis of an important fertilizer, oxamide, from the diatomics with the two strongest bonds in chemistry. Nitrogen-carbon bonds form the backbone of many important organic molecules, especially those used in the fertilizer and pharamaceutical industries. During the past year, we have continued our work in the synthesis of hydrazines of various substitution patterns, many of which are important precursors for heterocycles. In most instances, the direct functionalization of N{sub 2} offers a more efficient synthetic route than traditional organic methods. In addition, we have also discovered a unique CO-induced N{sub 2} bond cleavage reaction that simultaneously cleaves the N-N bond of the metal dinitrogen compound and assembles new C-C bond and two new N-C bonds. Treatment of the CO-functionalized core with weak Broensted acids liberated oxamide, H{sub 2}NC(O)C(O)NH{sub 2}, an important slow release fertilizer that is of interest to replace urea in many applications. The synthesis of ammonia, NH{sub 3}, from its elements, H{sub 2} and N{sub 2}, via the venerable Haber-Bosch process is one of the most significant technological achievements of the past century. Our research program seeks to discover new transition metal reagents and catalysts to disrupt the strong N {triple_bond} N bond in N{sub 2} and create new, fundamental chemical linkages for the construction of molecules with application as fuels, fertilizers and fine chemicals. With DOE support, our group has discovered a mild method for ammonia synthesis in solution as well as new methods for the construction of nitrogen-carbon bonds directly from N{sub 2}. Ideally these achievements will evolve into more efficient nitrogen fixation schemes that circumvent the high energy demands of industrial ammonia synthesis. Industrially, atmospheric nitrogen enters the synthetic cycle by the well-established Haber-Bosch process whereby N{sub 2} is hydrogenated to ammonia at high temperature and pressure. The commercialization of this reaction represents one of the greatest technological achievements of the 20th century as Haber-Bosch ammonia is responsible for supporting approximately 50% of the world's population and serves as the source of half of the nitrogen in the human body. The extreme reaction conditions required for an economical process have significant energy consequences, consuming 1% of the world's energy supply mostly in the form of pollution-intensive coal. Moreover, industrial H{sub 2} synthesis via the water gas shift reaction and the steam reforming of methane is fossil fuel intensive and produces CO{sub 2} as a byproduct. New synthetic methods that promote this thermodynamically favored transformation ({Delta}G{sup o} = -4.1 kcal/mol) under milder conditions or completely obviate it are therefore desirable. Most nitrogen-containing organic molecules are derived from ammonia (and hence rely on the Haber-Bosch and H{sub 2} synthesis processes) and direct synthesis from atmospheric nitrogen could, in principle, be more energy-efficient. This is particularly attractive given the interest in direct hydrazine fuel cells.« less

  17. Room-temperature transition-metal-free one-pot synthesis of 3-aryl imidazo[1,2-a]pyridines via iodo-hemiaminal intermediate.

    PubMed

    Lee, Seul Ki; Park, Jin Kyoon

    2015-04-03

    A mild and efficient one-pot synthesis of 3-aryl imidazo[1,2-a]pyridines in up to 88% yield was developed. An adduct was formed after the simple mixing of 2-amino-4-methylpyridine, 2-phenylacetaldehyde, and N-iodosuccinimide in CH2Cl2, and the structure of the adduct was characterized by 2D NMR, IR, and high-resolution mass analysis. The adduct was readily cyclized by treatment with a saturated aqueous solution of NaHCO3. The reactions proceeded to completion after several hours at room temperature.

  18. Cellular Biochemistry and Cytogenetics in a Rat Lung Tumor Model

    DTIC Science & Technology

    1984-10-01

    lung tumor system the specific aims are: 1. To conduct studies of the effect of 3-methylchlanthrene (MCA) on DNA synthesis and cell proliferation in...alkylation of nucleic acids of the rat by N-methyl-N- nitrosourea , dimethylnitrosamine, dimethylsulfate, and methylmethanesulfonate. Biochem. J. 110:39-47

  19. Bridged bicyclic systems as acetylcholinesterase reactivators and pretreatment drugs. Annual report, 15 July 1988-14 July 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriarty, R.M.

    1990-03-30

    During the past year a large number substituted carbamates, thiocarbamates of various bridged aza bicyclic oximes and their methiodides and meth chlorides have been synthesized. Among these are: (i) O-(N-Substituted carbamoyl)-3-tropinone oxime methiodides and methchlorides, (ii) 0-(N-Substituted carbamoyl)-6-cyano trop-3-ene-2-one oxime methiodides, (iii) O-N-(2`,3`,4`, 6`-Tetra-0-acetyl- b-D-glucopyranosyl thiocarbamoyl)-3-tropinone oxime and its methiodide. Synthesis of 1,6-bis-N`,N`-dimethyl- 3`-oximino-0-carbamoyl tropanonium-N-y1 hexane diiodide and 2,5- bis-(N`N`-dimethyl- 3`-oximino-0-carbamoyl tropanonium-N-yl)-toluene diiodide have been achieved. From phencyclidine a series 4-phenyl-4-0-(N-substituted carbamoyl)-4`-piperidone oxime-1`-yl-1-methyl piperidone methiodides have been synthesized. Syntheses of 0-(N-substituted carbamoyl)-3-exo-dimethyl aminomethyl2-norbornone oximes and their methiodides have been accomplished.

  20. The influence of human neutrophils on N-nitrosodimethylamine (NDMA) synthesis.

    PubMed

    Jabłoński, Jakub; Jabłońska, Ewa; Iwanowska, Jolanta; Marcińczyk, Magda; Moniuszko-Jakoniuk, Janina

    2006-01-01

    N-nitrozodimethyloamine (NDMA) is a carcinogenic compound that can be formed in vivo. NDMA is synthesized from precursors-amines and nitrosating agents. Nitrosating agents are formed through the reaction of oxide, reactive oxygen species and nitric oxide (NO). Human neutrophils (PMN) are an important source of the most reactive oxygen species as well as of the nitric oxide. The increase in oxygen metabolism of PMN can lead to the increase nitrosating agent and nitroso-forms. Inflammatory process is associated with locally decreased pH that may favor nitrosation reaction. In the present study, we estimated the NDMA synthesis by LPS-stimulated PMN in the presence of the iNOS inhibitor--N-nitro-L-arginine methyl ester (L-NAME). In the nitrosation reaction dimethylamine (DMA) was used as substrat. The viability of the cells was measured by cytometric method. NDMA concentrations the culture media was measured by GCMS method. NO production was estimated by Griess's method. Expression of iNOS was determined by western blotting. Results obtained showed that DMA nitrosation is most effective in pH between 3-4.5. Nonstimulated PMN produced lower concentrations of NO than LPS-stimulated cells (1.27 microg/cm3 and 1.57 microg/cm3, respectively). In the culture of nonstimulated PMN supplemented with DMA, there was NDMA (mean--0.99 ng/cm3). In the culture of LPS-stimulated PMN in the presence of DMA, the concentration of NDMA was higher than in the culture of nonstimulated PMN (median--1.45 ng/cm3). In the supernatants of cells incubated without DMA and with DMA, LPS and L-NAME, no NDMA was detected. These results indicate that PMN can be one of sources of nitrosating agents and can play a role in endogenous NDMA synthesis. Stimulation of PMN can lead to the increase of NDMA concentration following the increase of NO production. Different pathological conditions associated with PMN activation as well as the decreased pH may favor endogenous NDMA synthesis.

  1. Synthesis of Selective Agonists for the α7 Nicotinic Acetylcholine Receptor with In Situ Click-Chemistry on Acetylcholine-Binding Protein Templates

    PubMed Central

    Yamauchi, John G.; Gomez, Kimberly; Grimster, Neil; Dufouil, Mikael; Nemecz, Ákos; Fotsing, Joseph R.; Ho, Kwok-Yiu; Talley, Todd T.; Sharpless, K. Barry; Fokin, Valery V.

    2012-01-01

    The acetylcholine-binding proteins (AChBPs), which serve as structural surrogates for the extracellular domain of nicotinic acetylcholine receptors (nAChRs), were used as reaction templates for in situ click-chemistry reactions to generate a congeneric series of triazoles from azide and alkyne building blocks. The catalysis of in situ azide-alkyne cycloaddition reactions at a dynamic subunit interface facilitated the synthesis of potentially selective compounds for nAChRs. We investigated compound sets generated in situ with soluble AChBP templates through pharmacological characterization with α7 and α4β2 nAChRs and 5-hydroxytryptamine type 3A receptors. Analysis of activity differences between the triazole 1,5-syn- and 1,4-anti-isomers showed a preference for the 1,4-anti-triazole regioisomers among nAChRs. To improve nAChR subtype selectivity, the highest-potency building block for α7 nAChRs, i.e., 3α-azido-N-methylammonium tropane, was used for additional in situ reactions with a mutated Aplysia californica AChBP that was made to resemble the ligand-binding domain of the α7 nAChR. Fourteen of 50 possible triazole products were identified, and their corresponding tertiary analogs were synthesized. Pharmacological assays revealed that the mutated binding protein template provided enhanced selectivity of ligands through in situ reactions. Discrete trends in pharmacological profiles were evident, with most compounds emerging as α7 nAChR agonists and α4β2 nAChR antagonists. Triazoles bearing quaternary tropanes and aromatic groups were most potent for α7 nAChRs. Pharmacological characterization of the in situ reaction products established that click-chemistry synthesis with surrogate receptor templates offered novel extensions of fragment-based drug design that were applicable to multisubunit ion channels. PMID:22784805

  2. Agile Response Coatings (ARC)

    DTIC Science & Technology

    2008-10-15

    the material efficiently , reducing This report lists only the major advances of the program and is NOT exhaustive. 9 Final Report • FA9550-05-1-0234...literature. This strong relationship between a number of variables and the optical properties of nanoparticle arrays has led to significant...Novel New electroluminescent polymers 1. Synthesis of 4,7-dibromo-2,l,3- benzothiadiazole N N N \\\\ // W // \\ / Br- \\ / A

  3. Mercury-Bridged Cobaltacarborane Complexes Containing B-Hg-B Three-Center Bonds. Synthesis and Structure of mu, mu’-((n5-C5R5)Co(CH3)2C2B3H4)Hg, mu-(n(5)-C5R5)Co(CH3)2C2B3H4)HgCl, (R=H, CH3) and Related Compounds.

    DTIC Science & Technology

    1980-11-01

    MERCURY-BRIDGED COBALTACARBORANE COMPLEXES CONTAINING B-HG-B TH--ETC(U) NOV 80 D C FINSTER . R N GRIMES N0 0 0 1 4-75-0305 UNCLASSXFIED TR󈧨 NL ILn...C5R5) Co 3)2C2B3 4 2 5 .- -C5R5 )Co(CH3)2C2B3H4 ]HgCl, (R=H, CH3 ) and Related Compounds, David C./ Finster -- Russell N./Grimes ( Department of Chemistry...Compounds 1 \\David C. Finster And Russell N. Grimes* Abstract. Reactions of the nid~p-cobaltacarborane anions 01CR )(C 3 )C BH and [n (H 1oC ihH~5n 5

  4. Combination of N149S and D171G mutations in Aeromonas caviae polyhydroxyalkanoate synthase and impact on polyhydroxyalkanoate biosynthesis.

    PubMed

    Tsuge, Takeharu; Watanabe, Shinko; Shimada, Daisuke; Abe, Hideki; Doi, Yoshiharu; Taguchi, Seiichi

    2007-12-01

    Aeromonas caviae polyhydroxyalkanoate synthase (PhaC(Ac)) is an important biocatalyst for the synthesis of practically useful two-component polyhydroxyalkanoate copolymer, poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)]. In a previous study, two PhaC(Ac) mutants that have a single amino acid substitution of either asparagine 149 by serine (N149S) or aspartate 171 by glycine (D171G) were isolated as higher active enzymes by means of evolutionary engineering. In this study, the synergistic effects of N149S and D171G double mutation (NSDG) in PhaC(Ac) on polyhydroxyalkanoate biosynthesis were investigated in recombinant Ralstonia eutropha. The PhaC(Ac) NSDG mutant showed enhanced incorporation of longer 3-hydroxyalkanoate (3HA) units into the polyhydroxyalkanoate copolymer from octanoate (3HA fraction: 18.5 mol%) and soybean oil (5.4 mol%) as a carbon source. Besides, the NSDG mutant synthesized P(3HB) homopolymer with a very high molecular weight (M(w)=368 x 10(4)) when fructose was used as a carbon source. Thus, a combination of the beneficial mutations synergistically altered enzymatic properties, leading to synthesis of a polyhydroxyalkanoate copolymer with enhanced 3HA fraction and increased molecular weight.

  5. USSR Report, Chemistry

    DTIC Science & Technology

    1985-10-02

    represents no particular problem. For instance, some are obtained in the process of Improving the quality of food products ( chlorogenic acid , protein...synthesis may prove to be promising fungicides and bactericides. We have already written about chlorogenic acid and its significance in the plant world...and N-C Bonds in Acid Hydrolysis of N-Nitrosoamines (V. N. Nikulin, V. N. Klochkova, et al.; KINETIKA I KATALIZ, No 3, May-Jun 85) 23 - d

  6. Theoretical Studies of Routes to Synthesis of Tetrahedral N4

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.

    2007-01-01

    A paper [Chem. Phys. Lett. 345, 295 (2001)] describes theoretical studies of excited electronic states of nitrogen molecules, with a view toward utilizing those states in synthesizing tetrahedral N4, or Td N4 a metastable substance under consideration as a high-energy-density rocket fuel. Several ab initio theoretical approaches were followed in these studies, including complete active space self-consistent field (CASSCF), state-averaged CASSCF (SA-CASSCF), singles configuration interaction (CIS), CIS with second-order and third-order correlation corrections [CIS(D) and CIS(3)], and linear response singles and doubles coupled-cluster (LRCCSD). Standard double zeta polarized and triple zeta double polarized one-particle basis sets were used. The CASSCF calculations overestimated the excitation energies, while SACASSCF calculations partly corrected these overestimates. The accuracy of the CIS calculations varied, depending on the particular state, while the CIS(D), CIS(3), and LRCCSD results were in generally good agreement. The energies of the lowest six excited singlet states of Td N4 as calculated by the LRCCSD were compared with the energies of possible excited states of N2 + N2 fragments, leading to the conclusion that the most likely route for synthesis of Td N4 would involve a combination of two bound quintet states of N2.

  7. A convenient synthesis of 1,1-disubstituted 1,2,3,4-tetrahydroisoquinolines via Pictet-Spengler reaction using titanium(IV) isopropoxide and acetic-formic anhydride.

    PubMed

    Horiguchi, Yoshie; Kodama, Hirokazu; Nakamura, Masayoshi; Yoshimura, Tsuyoshi; Hanezi, Kaori; Hamada, Hiroko; Saitoh, Toshiaki; Sano, Takehiro

    2002-02-01

    A synthesis of 1,1-disubstituted 1,2,3,4-tetrahydroisoquinolines (6) was achieved in a highly efficient manner via Pictet-Spengler reaction of arylethylamines (1) and acyclic and cyclic ketones (2) using titanium (IV) isopropoxide and acetic-formic anhydride. The cyclization of the in situ formed acyliminium ion (4) to N-formyl 1,2,3,4-tetrahydroisoquinoline (5) was greatly facilitated by using trifluoroacetic acid as an additional reagent. The Pictet-Spengler reaction was carried out by one pot procedure, providing a convenient and effective method for preparing various 1,2,3,4-tetrahydroisoquinolines.

  8. Follicle-stimulating hormone synthesis and fertility are intact in mice lacking SMAD3 DNA binding activity and SMAD2 in gonadotrope cells

    PubMed Central

    Fortin, Jérôme; Boehm, Ulrich; Weinstein, Michael B.; Graff, Jonathan M.; Bernard, Daniel J.

    2014-01-01

    The activin/inhibin system regulates follicle-stimulating hormone (FSH) synthesis and release by pituitary gonadotrope cells in mammals. In vitro cell line data suggest that activins stimulate FSH β-subunit (Fshb) transcription via complexes containing the receptor-regulated SMAD proteins SMAD2 and SMAD3. Here, we used a Cre-loxP approach to determine the necessity for SMAD2 and/or SMAD3 in FSH synthesis in vivo. Surprisingly, mice with conditional mutations in both Smad2 and Smad3 specifically in gonadotrope cells are fertile and produce FSH at quantitatively normal levels. Notably, however, we discovered that the recombined Smad3 allele produces a transcript that encodes the entirety of the SMAD3 C-terminal Mad homology 2 (MH2) domain. This protein behaves similarly to full-length SMAD3 in Fshb transcriptional assays. As the truncated protein lacks the N-terminal Mad homology 1 (MH1) domain, these results show that SMAD3 DNA-binding activity as well as SMAD2 are dispensable for normal FSH synthesis in vivo. Furthermore, the observation that deletion of proximal exons does not remove all SMAD3 function may facilitate interpretation of divergent phenotypes previously described in different Smad3 knockout mouse lines.—Fortin, J., Boehm, U., Weinstein, M. B., Graff, J. M., Bernard, D. J. Follicle-stimulating hormone synthesis and fertility are intact in mice lacking SMAD3 DNA binding activity and SMAD2 in gonadotrope cells. PMID:24308975

  9. Microwave assisted synthesis of a series of charge-transfer photosensitizers having quinoxaline-2(1H)-one as anchoring group onto TiO2 surface

    NASA Astrophysics Data System (ADS)

    Caicedo, Mauricio; Echeverry, Carlos A.; Guimarães, Robson R.; Ortiz, Alejandro; Araki, Koiti; Insuasty, Braulio

    2017-04-01

    In this work, we present the synthesis of novel donor-acceptor compounds based on 3-methylquinoxaline-2(1H)one which follow an easy synthetic route, involving Knoevenagel reaction with electron-donor groups such as N,N-dimethylaminobenzene, ferrocene, triphenylamine (TPA) and ((E)-4,4'-(ethene-1,2-diyl) bis (N,N-diphenylaniline). Additionally, the optical properties were measured by means of the absorption and emission spectroscopy suggesting a push-pull behavior which was further confirmed by electrochemical experiments. Finally, the quinoxaline-2(1H)one fragment not only bestow wide absorption, but also can chelate to titanium ions on the TiO2 surface, allowing a strong electron coupling between the excited-state energy level of the dyes and the conduction band of TiO2.

  10. Antimicrobial Treatment for Systemic Anthrax: Analysis of Cases from 1945–2014 Identified through Systematic Literature Review

    PubMed Central

    Pillai, Satish K.; Huang, Eileen; Guarnizo, Julie; Hoyle, Jamechia; Katharios-Lanwermeyer, Stefan; Turski, Theresa; Bower, William; Hendricks, Katherine; Meaney-Delman, Dana

    2015-01-01

    Background Systemic anthrax is associated with high mortality. Current national guidelines, developed for the individualized treatment of systemic anthrax, outline the use of combination intravenous antimicrobials for a minimum of two weeks; bactericidal and protein synthesis inhibitor antimicrobials for all cases of systemic anthrax; and at least 3 antimicrobials with good blood-brain barrier penetration for anthrax meningitis. However, in an anthrax mass casualty incident, large numbers of anthrax cases may create challenges in meeting antimicrobial needs. Methods To further inform our understanding of the role of antimicrobials in treating systemic anthrax, a systematic review of the English language literature was conducted to identify cases of systemic anthrax treated with antimicrobials for which a clinical outcome was recorded. Results A total of 149 cases of systemic anthrax were identified (cutaneous [n=59], gastrointestinal [n=28], inhalation [n=26], primary anthrax meningitis [n=19], multiple routes [n=9], and injection [n=8]). Among the identified 59 cases of cutaneous anthrax, 33 were complicated by meningitis (76% mortality), while 26 simply had evidence of the systemic inflammatory response syndrome (4% mortality); 21 of 26 (81%) of this latter group received monotherapy. Subsequent analysis regarding combination antimicrobial therapy was restricted to the remaining 123 cases of more severe anthrax (overall 67% mortality). Recipients of combination bactericidal and protein synthesis inhibitor therapy had a 45% survival versus 28% in the absence of combination therapy (p = 0.07). For meningitis cases (n=77), survival was greater for those receiving a total of ≥3 antimicrobials over the course of treatment (3 of 4; 75%), compared to receipt of 1 or 2 antimicrobials (12 of 73; 16%) (p = 0.02). Median parenteral antimicrobial duration was 14 days. Conclusion Combination bactericidal and protein synthesis inhibitor therapy may be appropriate in severe anthrax disease, particularly anthrax meningitis, in a mass casualty incident. PMID:26623698

  11. Phosphorescent heterobimetallic complexes involving platinum(iv) and rhenium(vii) centers connected by an unsupported μ-oxido bridge.

    PubMed

    Molaee, Hajar; Nabavizadeh, S Masoud; Jamshidi, Mahboubeh; Vilsmeier, Max; Pfitzner, Arno; Samandar Sangari, Mozhgan

    2017-11-28

    Heterobimetallic compounds [(C^N)LMe 2 Pt(μ-O)ReO 3 ] (C^N = ppy, L = PPh 3 , 2a; C^N = ppy, L = PMePh 2 , 2b; C^N = bhq, L = PPh 3 , 2c; C^N = bhq, L = PMePh 2 , 2d) containing a discrete unsupported Pt(iv)-O-Re(vii) bridge have been synthesized through a targeted synthesis route. The compounds have been prepared by a single-pot synthesis in which the Pt(iv) precursor [PtMe 2 I(C^N)L] complexes are allowed to react easily with AgReO 4 in which the iodide ligand of the starting Pt(iv) complex is replaced by an ReO 4 - anion. In these Pt-O-Re complexes, the Pt(iv) centers have an octahedral geometry, completed by a cyclometalated bidentate ligand (C^N), two methyl groups and a phosphine ligand, while the Re(vii) centers have a tetrahedral geometry. Elemental analysis, single crystal X-ray diffraction analysis and multinuclear NMR spectroscopy are used to establish their identities. The new complexes exhibit phosphorescence emission in the solid and solution states at 298 and 77 K, which is an uncommon property of platinum complexes with an oxidation state of +4. According to DFT calculations, we found that this emission behavior in the new complexes originates from ligand centered 3 LC (C^N) character with a slight amount of metal to ligand charge transfer ( 3 MLCT). The solid-state emission data of the corresponding cycloplatinated(iv) precursor complexes [PtMe 2 I(C^N)L], 1a-1d, pointed out that the replacement of I - by an ReO 4 - anion helps enhancing the emission efficiency besides shifting the emission wavelengths.

  12. Synthesis and characterization of trans-4-(4-chlorophenyl)pyrrolidine-3-carboxamides of piperazinecyclohexanes as ligands for the melanocortin-4 receptor.

    PubMed

    Chen, Caroline W; Tran, Joe A; Fleck, Beth A; Tucci, Fabio C; Jiang, Wanlong; Chen, Chen

    2007-12-15

    A series of trans-N-alkyl-4-(4-chlorophenyl)pyrrolidine-3-carboxamides of piperazinecyclohexanemethylamines was synthesized and characterized for binding and function at the melanocortin-4 receptor (MC4R), and several potent benzylamine derivatives were identified. Compound 18 v was found to bind MC4R with potent affinity (K(i)=0.5 nM) and high selectivity over the other melanocortin subtypes and behaved as a functional antagonist (IC(50)=48 nM).

  13. Effects of tunicamycin, mannosamine, and other inhibitors of glycoprotein processing on skeletal alkaline phosphatase in human osteoblast-like cells.

    PubMed

    Farley, J R; Magnusson, P

    2005-01-01

    Skeletal alkaline phosphatase (sALP) is a glycoprotein- approximately 20% carbohydrate by weight, with five presumptive sites for N-linked glycosylation, as well as a carboxy-terminal site for attachment of the glycolipid structure (glycosylphosphatidylinositol, GPI), which anchors sALP to the outer surface of osteoblasts. The current studies were intended to characterize the effects of inhibiting glycosylation and glycosyl-processing on the synthesis, plasma membrane attachment, cellular-extracellular distribution, and reaction kinetics of sALP in human osteosarcoma (SaOS-2) cells. sALP synthesis, glycosylation, and GPI-anchor attachment were assessed as total protein synthesis/immunospecific sALP synthesis, sialic acid content (i.e., wheat germ agglutinin precipitation), and insolubility (i.e., temperature-dependent phase-separation), respectively. sALP reaction kinetics were characterized by analysis of dose-dependent initial velocity data, with a phosphoryl substrate. The results of these studies revealed that the inhibition of either N-linked glycosylation or oligosaccharide synthesis for GPI-anchor addition could affect the synthesis and the distribution of sALP, but not the kinetics of the phosphatase reaction. Tunicamycin-which blocks N-linked glycosylation by inhibiting core oligosaccharide synthesis-decreased cell layer protein and the total amount of sALP in the cells, while increasing the relative level of sALP in the cell-conditioned culture medium (CM, i.e., the amount of sALP released). These effects were attributed to dose- and time-dependent decreases in sALP synthesis and N-linked glycosylation, and an increase in apoptotic cell death (P <0.001 for each). In contrast to the effects of tunicamycin on N-linked glycosylation, the effects of mannosamine, which inhibits GPI-anchor glycosylation/formation, included (1) an increase in cell layer protein; (2) decreases in sALP specific activity, in the cells and in the CM; and (3) increases in the percentages of both anchorless and wheat germ agglutinin (WGA)-soluble sALP in the medium, but not in the cells (P <0.005 for each). These effects of mannosamine were, presumably, a consequence of inhibiting the insertion/attachment of sALP to the outside of the plasma membrane surface. Neither mannosammine nor tunicamycin had any effect on the reaction kinetics of sALP or on the apparent affinity (the value of KM) for the phosphoryl substrate.

  14. Controlled synthesis of silver nanostructures stabilized by fluorescent polyarylene ether nitrile

    NASA Astrophysics Data System (ADS)

    Jia, Kun; Shou, Hongguo; Wang, Pan; Zhou, Xuefei; Liu, Xiaobo

    2016-07-01

    In this work, the intrinsically fluorescent polyarylene ether nitrile (PEN) was explored to realize the controlled synthesis of fluorescent silver nanostructures with different morphology for the first time. Specifically, it was found that silver nitrate (AgNO3) can be effectively reduced to silver nanoparticles using PEN as both reducing and surface capping agents in N, N-dimethylformamide (DMF). More interestingly, the morphology of obtained fluorescent silver nanostructures can be tuned from nanospheres to nanorods by simple variation of reaction time at 130 °C using a relative PEN:AgNO3 molar concentration ratio of 1:8. Meanwhile, the obtained Ag nanostructures exhibited both localized surface plasmon resonance (LSPR) band and fluorescent emission around 420 nm, which would find potential applications in biochemical sensing and optical devices fields.

  15. Design, Sustainable Synthesis, and Programmed Reactions of Templated N-Heteroaryl-Fused Vinyl Sultams.

    PubMed

    Laha, Joydev K; Sharma, Shubhra; Kirar, Seema; Banerjee, Uttam C

    2017-09-15

    A de novo design and synthesis of N-heteroaryl-fused vinyl sultams as templates for programming chemical reactions on vinyl sultam periphery or (hetero)aryl ring is described. The key features include rational designing and sustainable synthesis of the template, customized reactions of vinyl sultams at C═C bond or involving N-S bond cleavage, and reactions on the periphery of the heteroaryl ring for late-stage diversification. The simple, easy access to the template coupled with opportunities for the synthesis of diversely functionalized heterocyles from a single template constitutes a rare study in contemporary organic synthesis.

  16. A review on g-C3N4 for photocatalytic water splitting and CO2 reduction

    NASA Astrophysics Data System (ADS)

    Ye, Sheng; Wang, Rong; Wu, Ming-Zai; Yuan, Yu-Peng

    2015-12-01

    Solar fuel generation through water splitting and CO2 photoreduction is an ideal route to provide the renewable energy sources and mitigate global warming. The main challenge in photocatalysis is finding a low-cost photocatalyst that can work efficiently to split water into hydrogen and reduce CO2 to hydrocarbon fuels. Metal-free g-C3N4 photocatalyst shows great potentials for solar fuel production. In this mini review, we summarize the most current advances on novel design idea and new synthesis strategy for g-C3N4 preparation, insightful ideas on extending optical absorption of pristine g-C3N4, overall water splitting and CO2 photoreduction over g-C3N4 based systems. The research challenges and perspectives on g-C3N4 based photocatalysts were also suggested.

  17. [Synthesis and Properties of 1,11,15,25-Tetrahydroxy-4,8,18,22-Di (Bridged Dipropionate Carboxyl) Phthalocyanine Copper].

    PubMed

    Xia, Dao-cheng; Li, Wan-cheng; Li, Jie-jun; Wang, Gai-ping; Duan, Hong-wei; Ren, Xu-wen; Feng, Kai; Li, Pei-tao; Wang, Hui-fang; Pu, Gai-qin

    2015-08-01

    In this dissertation, we study the synthesis and character of new substituted Phthalocyanine. Due to the widely application of Pcs in the fields, such as the communication, medical treatment, chemical industry and so on, therefore, they have been a hot topic over several decades by scientists. Nowadays, scientists have prepared thousands of Pcs and their derivatives. However, along with the human society development and the progress in science and technology, the new phthalocyanine with novle characteristics are still the goal of the scientists. In this dissertion, the synthetic methods of the phthlocyanine is improved. The synthesis and characterization of 1,11,15,25-tetrahydroxy-4,8,18,22-di(bridged dipropionate carboxyl) phthalocyanines are reported in this paper. The mixtures of malonic acid and 3,6-dihydroxy-phthalonitrile was added to water under stiriing. Then, a catalyst amount of sulfuric acid was added. The first synthetic precursor, i. e., malonic acid 3,3'-bis(6-hydroxy phthalonitrile) butter, its molecular formula is C19H8N4O6. phthalocyanines was prepared by malonic acid 3,3'-bis(6-hydroxy phthalonitrile) butter and dihydrate zinc acetate, copper acetate monohydrate in n-amyl alcohol, using DBU as a catalyst under the 135 °C, molecular formula of phthalocyanine complexes is C38H16N8O12M. The product was characterized by Ultraviolet-visible (UV/Vis) Spectrum absorption and fluorescence, The results are agreement with the proposed structures. And electrochemical properties were studied.

  18. Microwave-Assisted Synthesis of a MK2 Inhibitor by Suzuki-Miyaura Coupling for Study in Werner Syndrome Cells.

    PubMed

    Bagley, Mark C; Baashen, Mohammed; Chuckowree, Irina; Dwyer, Jessica E; Kipling, David; Davis, Terence

    2015-06-03

    Microwave-assisted Suzuki-Miyaura cross-coupling reactions have been employed towards the synthesis of three different MAPKAPK2 (MK2) inhibitors to study accelerated aging in Werner syndrome (WS) cells, including the cross-coupling of a 2-chloroquinoline with a 3-pyridinylboronic acid, the coupling of an aryl bromide with an indolylboronic acid and the reaction of a 3-amino-4-bromopyrazole with 4-carbamoylphenylboronic acid. In all of these processes, the Suzuki-Miyaura reaction was fast and relatively efficient using a palladium catalyst under microwave irradiation. The process was incorporated into a rapid 3-step microwave-assisted method for the synthesis of a MK2 inhibitor involving 3-aminopyrazole formation, pyrazole C-4 bromination using N-bromosuccinimide (NBS), and Suzuki-Miyaura cross-coupling of the pyrazolyl bromide with 4-carbamoylphenylboronic acid to give the target 4-arylpyrazole in 35% overall yield, suitable for study in WS cells.

  19. Synthesis of nanostructured iron oxides and new magnetic ceramics using sol-gel and SPS techniques

    NASA Astrophysics Data System (ADS)

    Papynov, E. K.; Shichalin, O. O.; Belov, A. A.; Portnyagin, A. S.; Mayorov, V. Yu.; Gridasova, E. A.; Golub, A. V.; Nepomnyashii, A. S.; Tananaev, I. G.; Avramenko, V. A.

    2017-02-01

    The original way of synthesis of nanostructured iron oxides and based on them magnetic ceramics via sequential combination of sol-gel and SPS technologies has been suggested. High quality of nanostructured iron oxides is defined by porous structure (Sspec up to 47,3 n2/g) and by phase composition of mixed and individual crystal phases (γ-Fe2O3/Fe3O4 i α-Fe2O3), depending on synthesis conditions. High-temperature SPS consolidation of nanostructured hematite powder, resulting in magnetic ceramics of high mechanical strength (fracture strength 249 MPa) has been investigated. Peculiarities of change of phase composition and composite's microstructure in the range of SPS temperatures from 700 to 900 °C have been revealed. Magnetic properties have been studied and regularities of change of magnetization (Ms) and coercive force (Hc) values of the ceramics with respect to SPS sintering temperature have been described.

  20. Synthesis of GaN:ZnO solid solution by solution combustion method and characterization for photocatalytic application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menon, Sumithra Sivadas; Anitha, R.; Baskar, K.

    2016-05-23

    GaN-ZnO solid solution has emerged as a successful and reproducible photocatalyst for overall water splitting by one-step photoexcitation, with a bandgap in visible region. When the solid solution is formed, some of the Zn and O ions are replaced by Ga and N ions respectively and there is a narrowing of bandgap which is hypothesized as due to Zn3d-N2p repulsion. The traditional method of synthesis of GaN-ZnO solid solution is by nitridation of the starting oxides under constant ammonia flow. Here we report a solution combustion technique for the synthesis of the solid solution at a temperature about 500 °more » C in a muffle furnace with metal nitrates as precursors and urea as the fuel. The as prepared samples showed change in color with the increased concentration of ZnO in the solution. The structural, microstructural, morphological and optical properties of the samples were realized by Powder X ray diffraction, Scanning electron microscopy, Energy dispersive X ray analysis, Transmission electron microscopy and Photoluminescence. Finally the hydrogen production efficiency of the GaN-ZnO nanopowders by water splitting was found, using methanol as a scavenger. The apparent quantum yield (AQY) of 0.048% is obtained for GaN-ZnO solid solution.« less

  1. Synthesis of carbon-11-labeled 5-HT6R antagonists as new candidate PET radioligands for imaging of Alzheimer's disease.

    PubMed

    Wang, Xiaohong; Dong, Fugui; Miao, Caihong; Li, Wei; Wang, Min; Gao, Mingzhang; Zheng, Qi-Huang; Xu, Zhidong

    2018-06-01

    Carbon-11-labeled serotonin (5-hydroxytryptamine) 6 receptor (5-HT 6 R) antagonists, 1-[(2-bromophenyl)sulfonyl]-5-[ 11 C]methoxy-3-[(4-methyl-1-piperazinyl)methyl]-1H-indole (O-[ 11 C]2a) and 1-[(2-bromophenyl)sulfonyl]-5-methoxy-3-[(4-[ 11 C]methyl-1-piperazinyl)methyl]-1H-indole (N-[ 11 C]2a), 5-[ 11 C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1-(phenylsulfonyl)-1H-indole (O-[ 11 C]2b) and 5-methoxy-3-((4-[ 11 C]methylpiperazin-1-yl)methyl)-1-(phenylsulfonyl)-1H-indole (N-[ 11 C]2b), 1-((4-isopropylphenyl)sulfonyl)-5-[ 11 C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1H-indole (O-[ 11 C]2c) and 1-((4-isopropylphenyl)sulfonyl)-5-methoxy-3-((4-[ 11 C]methylpiperazin-1-yl)methyl)-1H-indole (N-[ 11 C]2c), 1-((4-fluorophenyl)sulfonyl)-5-[ 11 C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1H-indole (O-[ 11 C]2d) and 1-((4-fluorophenyl)sulfonyl)-5-methoxy-3-((4-[ 11 C]methylpiperazin-1-yl)methyl)-1H-indole (N-[ 11 C]2d), were prepared from their O- or N-desmethylated precursors with [ 11 C]CH 3 OTf through O- or N-[ 11 C]methylation and isolated by HPLC combined with SPE in 40-50% radiochemical yield, based on [ 11 C]CO 2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the molar activity (MA) at EOB was 370-740 GBq/μmol with a total synthesis time of ∼40-min from EOB. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Rational synthesis of high nuclearity Mo/Fe/S clusters: the reductive coupling approach in the convenient synthesis of (Cl(4)-cat)(2)Mo(2)Fe(6)S(8)(PR(3))(6) [R = Et, (n)Pr, (n)Bu] and the new [(Cl(4)-cat)(2)Mo(2)Fe(2)S(3)O(PEt(3))(3)Cl]-1/2(Fe(PEt(3))(2)(MeCN)(4)) and (Cl(4)-cat)(2)Mo(2)Fe(3)S(5)(PEt(3))(5) clusters.

    PubMed

    Han, J; Koutmos, M; Ahmad, S A; Coucouvanis, D

    2001-11-05

    A general method for the synthesis of high nuclearity Mo/Fe/S clusters is presented and involves the reductive coupling of the (Et(4)N)(2)[(Cl(4)-cat)MoOFeS(2)Cl(2)] (I) and (Et(4)N)(2)[Fe(2)S(2)Cl(4)] (II) clusters. The reaction of I and II with Fe(PR(3))(2)Cl(2) or sodium salts of noncoordinating anions such as NaPF(6) or NaBPh(4) in the presence of PR(3) (R = Et, (n)Pr, or (n)Bu) affords (Cl(4)-cat)(2)Mo(2)Fe(6)S(8)(PR(3))(6) [R = Et (IIIa), (n)Pr (IIIb), (n)Bu (IIIc)], Fe(6)S(6)(PEt(3))(4)Cl(2) (IV) and (PF(6))[Fe(6)S(8)(P(n)Pr(3))(6)] (V) as byproducts. The isolation of (Et(4)N)[Fe(PEt(3))Cl(3)] (VI), NaCl, and SPEt(3) supports a reductive coupling mechanism. Cluster IV and V also have been synthesized by the reductive self-coupling of compound II. The reductive coupling reaction between I and II by PEt(3) and NaPF(6) in a 1:1 ratio produces the (Et(4)N)(2)[(Cl(4)-cat)Mo(L)Fe(3)S(4)Cl(3)] clusters [L = MeCN (VIIa), THF (VIIb)]. The hitherto unknown [(Cl(4)-cat)(2)Mo(2)Fe(2)S(3)O(PEt(3))(3)Cl](+) cluster (VIII) has been isolated as the 2:1 salt of the (Fe(PEt(3))(2)(MeCN)(4))(2+) cation after the reductive self-coupling reaction of I in the presence of Fe(PEt(3))(2)Cl(2). Cluster VIII crystallizes in the monoclinic space group P2(1)/c with a = 11.098(3) A, b = 22.827(6) A, c = 25.855(6) A, beta = 91.680(4) degrees, and Z = 4. The formal oxidation states of metal atoms in VIII have been assigned as Mo(III), Mo(IV), Fe(II), and Fe(III) on the basis of zero-field Mössbauer spectra. The Fe(PEt(3))(2)(MeCN)(4) cation of VIII is also synthesized independently, isolated as the BPh(4)(-) salt (IX), and has been structurally characterized. The reductive coupling of compound I also affords in low yield the new (Cl(4)-cat)(2)Mo(2)Fe(3)S(5)(PEt(3))(5) cluster (X) as a byproduct. Cluster X crystallizes in the monoclinic space group P2(1)/n with a = 14.811(3) A, b = 22.188(4) A, c = 21.864(4) A, beta = 100.124(3) degrees, and Z = 4 and the structure shows very short Mo-Fe, Fe-Fe, Mo-S, Fe-S bonds. The oxidation states of the metal atoms in this neutral cluster (X) have been assigned as Mo(IV)Mo(III)Fe(II)Fe(II)Fe(III) based on zero-field Mössbauer and magnetic measurement. All Fe atoms are high spin and two of the three Fe-Fe distances are found at 2.4683(9) A and 2.4721(9) A.

  3. A four-component coupling reaction of carbon dioxide, amines, cyclic ethers and 3-triflyloxybenzynes for the synthesis of functionalized carbamates.

    PubMed

    Xiong, Wenfang; Qi, Chaorong; Cheng, Ruixiang; Zhang, Hao; Wang, Lu; Yan, Donghao; Jiang, Huanfeng

    2018-04-27

    A novel four-component coupling reaction of carbon dioxide, amines, cyclic ethers and 3-triflyloxybenzynes has been developed for the first time, providing an efficient method for the synthesis of a series of functionalized carbamate derivatives in moderate to high yields. The process proceeds under mild, transition metal-free and fluoride-free conditions, leading to the formation of two new C-O bonds, one new C-N bond and one C-H bond in a single step.

  4. Metal–organic coordination architectures of tetrazole heterocycle ligands bearing acetate groups: Synthesis, characterization and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Bo-Wen, E-mail: bowenhu@hit.edu.cn; Zheng, Xiang-Yu; Ding, Cheng

    2015-12-15

    Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L){sub 2}]{sub n} (1) and [Co{sub 3}(L){sub 4}(N{sub 3}){sub 2}·2MeOH]{sub n} (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 2}.8{sup 8}.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co{sub 3}] units. And the magnetic properties of 1 and 2 have been studied. - Graphical abstract: The synthesis, crystal structure, and magnetic properties of the new coordination complexes with tetrazole heterocycle ligands bearing acetate groupsmore » are reported. - Highlights: • Two novel Cobalt(II) complexes with tetrazole acetate ligands were synthesized. • The magnetic properties of two complexes were studied. • Azide as co-ligand resulted in different structures and magnetic properties. • The new coordination mode of tetrazole acetate ligand was obtained.« less

  5. Synthesis of a Chloroamide-Hyperbranched Polymer Additive for Self-Decontaminating Surfaces

    DTIC Science & Technology

    2012-04-01

    dissolved in dichloromethane (DCM) (30 mL) and the solution was dried with anhydrous sodium sulfate (Na2SO4) before being used in the next step...infrared spectroscopy N2 nitrogen Na2SO4 anhydrous sodium sulfate NMP 1-methyl-2-pyrrolidinone PFOA perfluorinated octanoic acid PMMA poly(methyl...16 3.6.1 Synthesis and Characterization of Chlorinated 5,5-Dimethylhydantoin Sodium Salt

  6. Synthesis and monitored selection of nucleotide surrogates for binding T:A base pairs in homopurine-homopyrimidine DNA triple helices.

    PubMed

    Mokhir, A A; Connors, W H; Richert, C

    2001-09-01

    A total of 16 oligodeoxyribonucleotides of general sequence 5'-TCTTCTZTCTTTCT-3', where Z denotes an N-acyl-N-(2-hydroxyethyl)glycine residue, were prepared via solid phase synthesis. The ability of these oligonucleotides to form triplexes with the duplex 5'-AGAAGATAGAAAGA-HEG-TCTTTCTATCTTCT-3', where HEG is a hexaethylene glycol linker, was tested. In these triplexes, an 'interrupting' T:A base pair faces the Z residue in the third strand. Among the acyl moieties of Z tested, an anthraquinone carboxylic acid residue linked via a glycinyl group gave the most stable triplex, whose UV melting point was 8.4 degrees C higher than that of the triplex with 5'-TCTTCTGTCTTTCT-3' as the third strand. The results from exploratory nuclease selection experiments suggest that a combinatorial search for strands capable of recognizing mixed sequences by triple helix formation is feasible.

  7. Synthesis and Tribological Performance of Different Particle-Sized Nickel-Ion-Exchanged α-Zirconium Phosphates

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaosheng; Xu, Hong; Dong, Jinxiang

    2018-03-01

    Nickel-ion-exchanged α-zirconium phosphate (Ni-α-ZrP) was synthesized by a mild hydrothermal synthesis method. Different raw material ratios (NaF/H3PO4/Ni(CH3COO)2·4H2O) influence the particle size of the Ni-α-ZrP samples. The grain size could be controlled and distributed from 20 to 600 nm. Ni-α-ZrP was evaluated as an additive in lithium grease in a four-ball test. A 3.0 wt.% addition of Ni-α-ZrP to lithium grease yielded maximum non-seizure load values of 1235 N, and the wear scar diameter on the lower balls is 0.42 mm at 294 N. Compared with smaller particles, the addition of Ni-α-ZrP with a larger particle size to grease yields a better load-carrying capacity.

  8. Synthesis and Antimicrobial Evaluation of Some Novel Thiazole, Pyridone, Pyrazole, Chromene, Hydrazone Derivatives Bearing a Biologically Active Sulfonamide Moiety

    PubMed Central

    Darwish, Elham S.; Abdel Fattah, Azza M.; Attaby, Fawzy A.; Al-Shayea, Oqba N.

    2014-01-01

    This study aimed for the synthesis of new heterocyclic compounds incorporating sulfamoyl moiety suitable for use as antimicrobial agents via a versatile, readily accessible N-[4-(aminosulfonyl)phenyl]-2-cyanoacetamide (3). The 2-pyridone derivatives were obtained via reaction of cyanoacetamide with acetylacetone or arylidenes malononitrile. Cycloaddition reaction of cyanoacetamide with salicyaldehyde furnished chromene derivatives. Diazotization of 3 with the desired diazonium chloride gave the hydrazone derivatives 13a–e. Also, the reactivity of the hydrazone towards hydrazine hydrate to give Pyrazole derivatives was studied. In addition, treatment of 3 with elemental sulfur and phenyl isothiocyanate or malononitrile furnished thiazole and thiophene derivatives respectively. Reaction of 3 with phenyl isothiocyanate and KOH in DMF afforded the intermediate salt 17 which reacted in situ with 3-(2-bromoacetyl)-2H-chromen-2-one and methyl iodide afforded the thiazole and ketene N,S-acetal derivatives respectively. Finally, reaction of 3 with carbon disulfide and 1,3-dibromopropane afforded the N-[4-(aminosulfonyl) phenyl]-2-cyano-2-(1,3-dithian-2-ylidene)acetamide product 22. All newly synthesized compounds were elucidated by considering the data of both elemental and spectral analysis. The compounds were evaluated for both their in vitro antibacterial and antifungal activities and showed promising results. PMID:24445259

  9. Synthesis ofN-(2-chloro-5-methylthiophenyl)-N'-(3-methyl-thiophenyl)-N'-[3H3]methylguanidine, l brace [3H3]CNS-5161 r brace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Andrew R.; Morimoto, Hiromi; VanBrocklin, Henry F.

    2001-09-28

    The preparation of the title compound, [{sup 3}H{sub 3}]CNS-5161, was accomplished in three steps starting with the production of [{sup 3}H{sub 3}]iodomethane (CT{sub 3}I). The intermediate N-[{sup 3}H{sub 3}]methyl-3-(thiomethylphenyl)cyanamide was prepared in 77% yield by the addition of CT{sub 3}I to 3-(thiomethylphenyl)cyanamide, previously treated with sodium hydride. Reaction of this tritiated intermediate with 2-chloro-5-thiomethylaniline hydrochloride formed the guanidine compound [{sup 3}H{sub 3}]CNS-5161. Purification by HPLC gave the desired labeled product in an overall yield of 9% with greater than 96% radiochemical purity and a final specific activity of 66 Ci mmol{sup -1}.

  10. Solid-phase synthesis and insights into structure-activity relationships of safinamide analogues as potent and selective inhibitors of type B monoamine oxidase.

    PubMed

    Leonetti, Francesco; Capaldi, Carmelida; Pisani, Leonardo; Nicolotti, Orazio; Muncipinto, Giovanni; Stefanachi, Angela; Cellamare, Saverio; Caccia, Carla; Carotti, Angelo

    2007-10-04

    Safinamide, (S)-N2-{4-[(3-fluorobenzyl)oxy]benzyl}alaninamide methanesulfonate, which is in phase III clinical trials as an anti-Parkinson drug, and a library of alkanamidic analogues were prepared through an expeditious solid-phase synthesis and evaluated for their monoamine oxidase B (MAO-B) and monoamine oxidase A (MAO-A) inhibitory activity and selectivity. (S)-3-Chlorobenzyloxyalaninamide (8) and (S)-3-chlorobenzyloxyserinamide (13) derivatives proved to be more potent MAO-B inhibitors than safinamide (IC50 = 33 and 43 nM, respectively, vs 98 nM) but with a lower MAO-B selectivity (SI = 3455 and 1967, respectively, vs 5918). The highest MAO-B inhibitory potency (IC50 = 17 nM) and a good selectivity (SI = 2941) were displayed by (R)-21, a tetrahydroisoquinoline analogue of safinamide. Structure-affinity relationships and docking simulations pointed out strong negative steric effects of alpha-aminoamide side chains and para substituents of the benzyloxy groups and favorable hydrophobic interactions of meta substituents. The significantly diverse MAO-B affinities of a number of R and S alpha-aminoamide enantiomers, including the two rigid analogues (21) of safinamide, indicated likely enantioselective interactions at the enzymatic binding sites.

  11. High pressure synthesis and magnetic studies of quasi one dimensional systems Sr(n-1)Cu(n+1)O(2n) (n=3,5)

    NASA Technical Reports Server (NTRS)

    Azuma, M.; Hiroi, Z.; Takano, M.; Ishida, K.; Kitaoka, Y.

    1995-01-01

    SrCu2O3 and Sr2Cu3O5 containing two-leg and three-leg S = 1/2 ladders made of antiferromagnetic Cu-O-Cu linear bonds, respectively, were synthesized at high pressure, and their crystallographic and magnetic properties were investigated. Both susceptibility and T(1) data of NMR (nuclear magnetic resonance) revealed the existence of a large spin gap only for SrCu2O3. Superconductivity, which had been predicted theoretically for carrier-doped SrCu2O3 could not be realized although partial substitution of La(3+) for Sr(2+) seemed to be carried out successfully. Electron carriers injected seems to remain localized.

  12. Penicillins and other acylamino compounds synthesized by the cell-bound penicillin acylase of Escherichia coli

    PubMed Central

    Cole, M.

    1969-01-01

    1. The penicillin acylase of Eschericha coli N.C.I.B. 8743 is a reversible enzyme. Reaction rates for the two directions have been determined. 2. Measurements of the rates of enzymic synthesis of penicillins from 6-aminopenicillanic acid and various carboxylic acids revealed that p-hydroxyphenylacetic acid was the best substrate, followed by phenylacetic, 2-thienylacetic, substituted phenylacetic, 3-hexenoic and n-hexanoic acids. 3. The rate of synthesis of penicillin improved when amides or N-acylglycines were used; α-aminobenzylpenicillin and phenoxymethylpenicillin were only synthesized when using these more energy-rich compounds. 4. Phenyl-acetylglycine was the best substrate for the synthesis of benzylpenicillin compared with other derivatives of phenylacetic acid. 5. The enzyme was specific for acyl-l-amino acids, benzylpenicillin being synthesized from phenylacetyl-l-α-aminophenylacetic acid but not from phenylacetyl-d-α-aminophenylacetic acid. 6. α-Phenoxyethylpenicillin was synthesized from 6-aminopenicillanic acid and α-phenoxypropionylthioglycollic acid non-enzymically, but the rate was faster in the presence of the enzyme. 7. The E. coli acylase catalysed the acylation of hydroxylamine by acids or amides to give hydroxamic acids, the phenylacetyl group being the most suitable acyl group. The enzyme also catalysed other acyl-group transfers. PMID:4982418

  13. DMSO/Tf2O-mediated cross-coupling of tryptamine with substituted aniline to access C3a-N1'-linked pyrroloindoline alkaloids.

    PubMed

    Tayu, Masanori; Ishizaki, Takako; Higuchi, Kazuhiro; Kawasaki, Tomomi

    2015-04-07

    The cross-coupling of tryptamine with substituted aniline to access C3a-nitrogen-linked pyrroloindolines has been developed via the consecutive cyclization of tryptamine with DMSO/Tf2O and the substitution of 3a-pyrroloindolylthionium intermediate with aniline. The use of 2,3-dihydrotryptamine instead of aniline enabled easy access to 3a-(1-indolyl)pyrroloindoline and the concise synthesis of C3a-N1'-linked pyrroloindoline alkaloid (±)-psychotriasine was accomplished.

  14. The properties of LaSrМnO3 powders synthesized at various regimes

    NASA Astrophysics Data System (ADS)

    Mikhailov, M.; Sokolovskiy, A.; Vlasov, V.; Smolin, A.

    2017-09-01

    For the first time the concentration of ferromagnetic and paramagnetic phases in LaSrMnO3 compounds has been defined using diffuse reflection and absorption spectra in the visible and near-infrared regions. The compounds as powders were synthesized by heating La2O3/SrCO3/МnСO3 mixtures at 1200 °C which is less than their sintering temperature. The possibility to obtain LaSrMnO3 powders by solid state synthesis for smart coatings was shown.

  15. Dual Roles of β-Oxodithioesters in the Copper-Catalyzed Synthesis of Benzo[e]pyrazolo[1,5-c][1,3]thiazine Derivatives.

    PubMed

    Wen, Li-Rong; Yuan, Wen-Kui; Li, Ming

    2015-05-15

    A facile and efficient method for the chemoselective synthesis of benzo[e]pyrazolo[1,5-c][1,3]thiazine derivatives has been developed by tandem Ullmann coupling reactions of β-oxodithioesters (ODEs) with 3-(2-bromoaryl)-1H-pyrazoles in C-S bond formation manner, in which ODEs play dual roles as both a substrate and a ligand. A series of benzo[e]pyrazolo[1,5-c][1,3]thiazine derivatives were provided in good to excellent yields with CuI as the copper source in the presence of NaOH in CH3CN at 80 °C under a N2 atmosphere.

  16. N,N-Dimethyl-N-propyl-propan-1-aminium chloride monohydrate.

    PubMed

    Kärnä, Minna; Lahtinen, Manu; Valkonen, Jussi

    2008-10-11

    The title compound, C(8)H(20)N(+)·Cl(-)·H(2)O, has been prepared by a simple one-pot synthesis route followed by anion exchange using resin. In the crystal structure, the cations are packed in such a way that channels exist parallel to the b axis. These channels are filled by the anions and water mol-ecules, which inter-act via O-H⋯Cl hydrogen bonds [O⋯Cl = 3.285 (3) and 3.239 (3) Å] to form helical chains. The cations are involved in weak inter-molecular C-H⋯Cl and C-H⋯O hydrogen bonds. The title compound is not isomorphous with the bromo or iodo analogues.

  17. Prebiotic Organic Synthesis under Hydrothermal Conditions - An Overview

    NASA Astrophysics Data System (ADS)

    Simoneit, B.

    Organic compounds which are obviously synthesized from inorganic precursors (e.g., CO) by hydrothermal activity are currently a research topic in prebiotic chemistry leading to the origin of life. However, such de novo products would be overwhelmed in present Earth environments, by an excess of thermal alteration (pyrolysis) products formed from contemporary life (e.g., hydrocarbons, alkanoic acids, etc.). Thus, organic syntheses must be demonstrated and distinguished from organic matter alteration initially in the laboratory and then in the field. Organic synthesis under hydrothermal conditions is theoretically possible and various established industrial processes are used to synthesize organic compounds from inorganic substrates with the aid of catalysts. A set of Strecker-type synthesis experiments has been carried out under hydrothermal conditions (150°C), producing various amino acids. The formation of lipid compounds during an aqueous organic synthesis (Fischer-Tropsch-type) reaction was reported, using solutions of oxalic acid (also formic acid) as the carbon and hydrogen sources, and heating at discrete temperatures (50° intervals) from 100- 400°C. The maximum lipid yield, especially for oxygenated compounds was in the window of 150-250°C. The compounds range from C6 to >C3 3 , including n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanones, and n-alkanes, all with no carbon number preferences. These lipid compounds, especially the acids, can form lipid bilayers or micelles, potential precursors for membranes. Reductive condensation (i.e., dehydration) reactions also occur under simulated hydrothermal conditions and form amide, nitrile and ester bonds. The chemistry and kinetics of the condensation reactions are under further study and have the potential for oligomerization of acid-amides in aqueous medium. Abiotic organic compounds are not biomarkers per se because they do not originate from biosynthesis. Thus, they should be regarded as a distinctly separate group, termed prebiotic or synthetic organic compounds, in explorations for evidence of life.

  18. Copper cluster size effect in methanol synthesis from CO 2

    DOE PAGES

    Yang, Bing; Liu, Cong; Halder, Avik; ...

    2017-05-08

    Here, size-selected Cu n catalysts ( n = 3, 4, 20) were synthesized on Al 2O 3 thin films using mass-selected cluster deposition. A systematic study of size and support effects was carried out for CO 2 hydrogenation at atmospheric pressure using a combination of in situ grazing incidence X-ray absorption spectroscopy, catalytic activity measurement, and first-principles calculations. The catalytic activity for methanol synthesis is found to strongly vary as a function of the cluster size; the Cu 4/Al 2O 3 catalyst shows the highest turnover rate for CH 3OH production. With only one atom less than Cu 4, Cumore » 3 showed less than 50% activity. Density functional theory calculations predict that the activities of the gas-phase Cu clusters increase as the cluster size decreases; however, the stronger charge transfer interaction with Al 2O 3 support for Cu 3 than for Cu 4 leads to remarkably reduced binding strength between the adsorbed intermediates and supported Cu 3, which subsequently results in a less favorable energetic pathway to transform carbon dioxide to methanol.« less

  19. Synthesis, Biodistribution and In vitro Evaluation of Brain Permeable High Affinity Type 2 Cannabinoid Receptor Agonists [11C]MA2 and [18F]MA3.

    PubMed

    Ahamed, Muneer; van Veghel, Daisy; Ullmer, Christoph; Van Laere, Koen; Verbruggen, Alfons; Bormans, Guy M

    2016-01-01

    The type 2 cannabinoid receptor (CB2) is a member of the endocannabinoid system and is known for its important role in (neuro)inflammation. A PET-imaging agent that allows in vivo visualization of CB2 expression may thus allow quantification of neuroinflammation. In this paper, we report the synthesis, radiosynthesis, biodistribution and in vitro evaluation of a carbon-11 ([ 11 C]MA2) and a fluorine-18 ([ 18 F]MA3) labeled analog of a highly potent N -arylamide oxadiazole CB2 agonist (EC 50 = 0.015 nM). MA2 and MA3 behaved as potent CB2 agonist (EC 50 : 3 nM and 0.1 nM, respectively) and their in vitro binding affinity for h CB2 was found to be 87 nM and 0.8 nM, respectively. Also MA3 (substituted with a fluoro ethyl group) was found to have higher binding affinity and EC 50 values when compared to the originally reported trifluoromethyl analog 12 . [ 11 C]MA2 and [ 18 F]MA3 were successfully synthesized with good radiochemical yield, high radiochemical purity and high specific activity. In mice, both tracers were efficiently cleared from blood and all major organs by the hepatobiliary pathway and importantly these compounds showed high brain uptake. In conclusion, [ 11 C]MA2 and [ 18 F]MA3 are shown to be high potent CB2 agonists with good brain uptake, these favorable characteristics makes them potential PET probes for in vivo imaging of brain CB2 receptors. However, in view of its higher affinity and selectivity, further detailed evaluation of MA3 as a PET tracer for CB2 is warranted.

  20. Synthesis, Biodistribution and In vitro Evaluation of Brain Permeable High Affinity Type 2 Cannabinoid Receptor Agonists [11C]MA2 and [18F]MA3

    PubMed Central

    Ahamed, Muneer; van Veghel, Daisy; Ullmer, Christoph; Van Laere, Koen; Verbruggen, Alfons; Bormans, Guy M.

    2016-01-01

    The type 2 cannabinoid receptor (CB2) is a member of the endocannabinoid system and is known for its important role in (neuro)inflammation. A PET-imaging agent that allows in vivo visualization of CB2 expression may thus allow quantification of neuroinflammation. In this paper, we report the synthesis, radiosynthesis, biodistribution and in vitro evaluation of a carbon-11 ([11C]MA2) and a fluorine-18 ([18F]MA3) labeled analog of a highly potent N-arylamide oxadiazole CB2 agonist (EC50 = 0.015 nM). MA2 and MA3 behaved as potent CB2 agonist (EC50: 3 nM and 0.1 nM, respectively) and their in vitro binding affinity for hCB2 was found to be 87 nM and 0.8 nM, respectively. Also MA3 (substituted with a fluoro ethyl group) was found to have higher binding affinity and EC50 values when compared to the originally reported trifluoromethyl analog 12. [11C]MA2 and [18F]MA3 were successfully synthesized with good radiochemical yield, high radiochemical purity and high specific activity. In mice, both tracers were efficiently cleared from blood and all major organs by the hepatobiliary pathway and importantly these compounds showed high brain uptake. In conclusion, [11C]MA2 and [18F]MA3 are shown to be high potent CB2 agonists with good brain uptake, these favorable characteristics makes them potential PET probes for in vivo imaging of brain CB2 receptors. However, in view of its higher affinity and selectivity, further detailed evaluation of MA3 as a PET tracer for CB2 is warranted. PMID:27713686

  1. Synthesis of MAX Phases in the Zr-Ti-Al-C System.

    PubMed

    Tunca, Bensu; Lapauw, Thomas; Karakulina, Olesia M; Batuk, Maria; Cabioc'h, Thierry; Hadermann, Joke; Delville, Rémi; Lambrinou, Konstantina; Vleugels, Jozef

    2017-03-20

    This study reports on the synthesis and characterization of MAX phases in the (Zr,Ti) n+1 AlC n system. The MAX phases were synthesized by reactive hot pressing and pressureless sintering in the 1350-1700 °C temperature range. The produced ceramics contained large fractions of 211 and 312 (n = 1, 2) MAX phases, while strong evidence of a 413 (n = 3) stacking was found. Moreover, (Zr,Ti)C, ZrAl 2 , ZrAl 3 , and Zr 2 Al 3 were present as secondary phases. In general, the lattice parameters of the hexagonal 211 and 312 phases followed Vegard's law over the complete Zr-Ti solid solution range, but the 312 phase showed a non-negligible deviation from Vegard's law around the (Zr 0.33 ,Ti 0.67 ) 3 Al 1.2 C 1.6 stoichiometry. High-resolution scanning transmission electron microscopy combined with X-ray diffraction demonstrated ordering of the Zr and Ti atoms in the 312 phase, whereby Zr atoms occupied preferentially the central position in the close-packed M 6 X octahedral layers. The same ordering was also observed in 413 stackings present within the 312 phase. The decomposition of the secondary (Zr,Ti)C phase was attributed to the miscibility gap in the ZrC-TiC system.

  2. Polysaccharides of Aloe vera induce MMP-3 and TIMP-2 gene expression during the skin wound repair of rat.

    PubMed

    Tabandeh, Mohammad Reza; Oryan, Ahmad; Mohammadalipour, Adel

    2014-04-01

    Polysaccharides are the main macromolecules of Aloe vera gel but no data about their effect on extracellular matrix (ECM) elements are available. Here, mannose rich Aloe vera polysaccharides (AVP) with molecular weight between 50 and 250 kDa were isolated and characterized. Open cutaneous wounds on the back of 45 rats (control and treated) were daily treated with 25mg (n=15) and 50 mg (n=15) AVP for 30 days. The levels of MMP-3 and TIMP-2 gene expression were analyzed using real time PCR. The levels of n-acetyl glucosamine (NAGA), n-acetyl galactosamine (NAGLA) and collagen contents were also measured using standard biochemical methods. Faster wound closure was observed at day 15 post wounding in AVP treated animals in comparison with untreated group. At day 10 post wounding, AVP inhibited MMP-3 gene expression, while afterwards MMP-3 gene expression was upregulated. AVP enhanced TIMP-2 gene expression, collagen, NAGLA and NAGA synthesis in relation to untreated wounds. Our results suggest that AVP has positive effects on the regulation of ECM factor synthesis, which open up new perspectives for the wound repair activity of Aloe vera polysaccharide at molecular level. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Divergent Pathways Involving 1,3-Dipolar Addition and N-N Bond Splitting of an Organic Azide across a Zirconium Methylidene.

    PubMed

    Kurogi, Takashi; Mane, Manoj V; Zheng, Shuai; Carroll, Patrick J; Baik, Mu-Hyun; Mindiola, Daniel J

    2018-02-12

    The zirconium methylidene (PNP)Zr=CH 2 (OAr) (1) reacts with N 3 Ad to give two products (PNP)Zr=NAd(OAr) (2) and (PNP)Zr(η 2 -N=NAd)(N=CH 2 )(OAr) (3), both resulting from a common cycloaddition intermediate (PNP)Zr(CH 2 N 3 Ad)(OAr) (A). Using a series of control experiments in combination with DFT calculations, it was found that 2 results from a nitrene by a carbene metathesis reaction in which N 2 acts as a delivery vehicle and forms N 2 CH 2 as a side product. In the case of 3, N-N bond splitting of the azide at the α-position allowed the isolation of a rare example of a parent ketimide complex of zirconium. Isotopic labeling studies and solid-state X-ray analysis are presented for 2 and 3, in addition to an independent synthesis for the former. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. μ+SR Study on Layered Chromium Perovskites: Srn+1CrnO3n+1 (n = 1-3)

    NASA Astrophysics Data System (ADS)

    Nozaki, Hiroshi; Sakurai, Hiroya; Umegaki, Izumi; Ansaldo, Eduardo J.; Morris, Gerald D.; Hitti, Bassam; Arseneau, Donald J.; Andreica, Daniel; Amato, Alex; Månsson, Martin; Sugiyama, Jun

    The magnetic nature of layered chromium perovskites, Srn+1CrnO3n+1 (n = 1-3) was studied by μ+SR using powder samples prepared by a high pressure synthesis technique. According to the weak transverse field measurements, each sample entered a magnetically ordered state below 110, 200, and 90 K for the n = 1, 2, and 3 samples, respectively. Zero field (ZF) spectra below the transition temperature exhibited a clear oscillation due to the formation of quasi-static magnetic order. The Fourier transform frequency-spectrum for the ZF time-spectrum indicated the existence of the multiple oscillation components. The frequencies for the multiple oscillatory signals showed a complex temperature dependence, implying the occurrence of structural change/transitions below TN.

  5. Large scale 2D/3D hybrids based on gallium nitride and transition metal dichalcogenides.

    PubMed

    Zhang, Kehao; Jariwala, Bhakti; Li, Jun; Briggs, Natalie C; Wang, Baoming; Ruzmetov, Dmitry; Burke, Robert A; Lerach, Jordan O; Ivanov, Tony G; Haque, Md; Feenstra, Randall M; Robinson, Joshua A

    2017-12-21

    Two and three-dimensional (2D/3D) hybrid materials have the potential to advance communication and sensing technologies by enabling new or improved device functionality. To date, most 2D/3D hybrid devices utilize mechanical exfoliation or post-synthesis transfer, which can be fundamentally different from directly synthesized layers that are compatible with large scale industrial needs. Therefore, understanding the process/property relationship of synthetic heterostructures is priority for industrially relevant material architectures. Here we demonstrate the scalable synthesis of molybdenum disulfide (MoS 2 ) and tungsten diselenide (WSe 2 ) via metal organic chemical vapor deposition (MOCVD) on gallium nitride (GaN), and elucidate the structure, chemistry, and vertical transport properties of the 2D/3D hybrid. We find that the 2D layer thickness and transition metal dichalcogenide (TMD) choice plays an important role in the transport properties of the hybrid structure, where monolayer TMDs exhibit direct tunneling through the layer, while transport in few layer TMDs on GaN is dominated by p-n diode behavior and varies with the 2D/3D hybrid structure. Kelvin probe force microscopy (KPFM), low energy electron microscopy (LEEM) and X-ray photoelectron spectroscopy (XPS) reveal a strong intrinsic dipole and charge transfer between n-MoS 2 and p-GaN, leading to a degraded interface and high p-type leakage current. Finally, we demonstrate integration of heterogeneous 2D layer stacks of MoS 2 /WSe 2 on GaN with atomically sharp interface. Monolayer MoS 2 /WSe 2 /n-GaN stacks lead to near Ohmic transport due to the tunneling and non-degenerated doping, while few layer stacking is Schottky barrier dominated.

  6. Synthesis of Benzo[a]carbazoles and an Indolo[2,3-a]carbazole from 3-Aryltetramic Acids.

    PubMed

    Truax, Nathanyal J; Banales Mejia, Fernando; Kwansare, Deborah O; Lafferty, Megan M; Kean, Maeve H; Pelkey, Erin T

    2016-08-05

    A simple and flexible approach to 3-pyrrolin-2-one fused carbazoles is disclosed. The key step involves the BF3-mediated electrophilic substitution of indoles with N-alkyl-substituted 3-aryltetramic acids, which provides access to indole-substituted 3-pyrrolin-2-ones. Scholl-type oxidative cyclizations of these materials led to the formation of the corresponding 3-pyrrolin-2-one-fused benzo[a]carbazoles and indolo[2,3-a]carbazoles. This work represents the first synthesis of the benzo[a]pyrrolo[3,4-c]carbazol-3(8H)-one ring system, while the indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-one ring system is found in a number of biologically active compounds including the protein kinase C (PKC) inhibitor, staurosporine.

  7. Regulation of hyaluronan secretion into rabbit synovial joints in vivo by protein kinase C

    PubMed Central

    Anggiansah, C L; Scott, D; Poli, A; Coleman, P J; Badrick, E; Mason, R M; Levick, J R

    2003-01-01

    Hyaluronan (HA) is important for joint cavitation, lubrication, volume regulation and synovial fluid drainage but little is known about the regulation of joint HA synthesis/secretion in vivo. We investigated whether HA secretion into joints in vivo can be regulated by protein kinase C (PKC). Secretion into the knee joint cavity of anaesthetised rabbits was measured over 6 h by washout and chromatography. Joints received intra-articular injections of Ringer vehicle (control) or an activator of classical PKC isoforms, phorbol-12-myristate-13-acetate (PMA), at 20–2000 ng ml−1. The effects of PKC inhibition by bisindolylmaleimide (BIM) and protein synthesis inhibition by cycloheximide (CX) on basal and stimulated HA secretion were also studied. The endogenous HA mass, 181 ± 8 μg (n = 26, mean ± s.e.m.), and basal secretion rate, 4.4 ± 0.4 μg h−1, indicated a turnover time of 41 h. Secretion rate showed a dose-dependent response to PMA (n = 30), rising 5-fold to 21.7 ± 5.0 μg h−1 (n = 5) at 2000 ng ml−1 PMA (P < 0.0001, one-way ANOVA). PMA-induced stimulation was partially suppressed by CX (HA secretion: 5.8 ± 1.7 μg h−1, n = 8, P < 0.01) and totally blocked by BIM (HA secretion: 3.2 ± 0.6 μg h−1, n = 9, P < 0.001). Basal HA secretion was unaffected by CX over 6 h (4.2 ± 0.7 μg h−1, n = 8) but was reduced by 29 % by BIM (3.1 ± 0.6 μg h−1, n = 10, P = 0.03). It is concluded that: (1) PKC can stimulate HA secretion into joints in vivo through mechanisms involving protein synthesis de novo as well as phosphorylation; (2) basal HA secretion is only partially PKC dependent; and (3) hyaluronan synthase turnover time is > 6 h in vivo, which is slower than in vitro (< 2–3 h). PMID:12766248

  8. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop.

    PubMed

    Ruiz-Lopez, Noemi; Haslam, Richard P; Napier, Johnathan A; Sayanova, Olga

    2014-01-01

    Omega-3 (also called n-3) long-chain polyunsaturated fatty acids (≥C20; LC-PUFAs) are of considerable interest, based on clear evidence of dietary health benefits and the concurrent decline of global sources (fish oils). Generating alternative transgenic plant sources of omega-3 LC-PUFAs, i.e. eicosapentaenoic acid (20:5 n-3, EPA) and docosahexaenoic acid (22:6 n-3, DHA) has previously proved problematic. Here we describe a set of heterologous genes capable of efficiently directing synthesis of these fatty acids in the seed oil of the crop Camelina sativa, while simultaneously avoiding accumulation of undesirable intermediate fatty acids. We describe two iterations: RRes_EPA in which seeds contain EPA levels of up to 31% (mean 24%), and RRes_DHA, in which seeds accumulate up to 12% EPA and 14% DHA (mean 11% EPA and 8% DHA). These omega-3 LC-PUFA levels are equivalent to those in fish oils, and represent a sustainable, terrestrial source of these fatty acids. We also describe the distribution of these non-native fatty acids within C. sativa seed lipids, and consider these data in the context of our current understanding of acyl exchange during seed oil synthesis. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  9. Curcumin: Synthesis optimization and in silico interaction with cyclin dependent kinase.

    PubMed

    Ahmed, Mahmood; Abdul Qadir, Muhammad; Imtiaz Shafiq, Muhammad; Muddassar, Muhammad; Hameed, Abdul; Nadeem Arshad, Muhammad; Asiri, Abdullah M

    2017-09-01

    Curcumin is a natural product with enormous biological potential. In this study, curcumin synthesis was revisited using different reaction solvents, a catalyst (n-butylamine) and a water scavenger [(n-BuO)3B], to develop the optimal procedure for its rapid acquisition. During synthesis, solvent choice was found to be an important parameter for better curcumin yield and high purity. In a typical reaction, acetyl acetone was treated with boron trioxide, followed by condensation with vanillin in the presence of tri-n-butyl borate as water scavenger and n-butylamine as catalyst at 80 °C in ethyl acetate to afford curcumin. Moreover, curcumin was also extracted from turmeric powder and spectroscopic properties such as IR, MS, 1H NMR and 13C NMR with synthetic curcumin were established to identify any impurity. The purity of synthetic and extracted curcumin was also checked by TLC and HPLC-DAD. To computationally assess its therapeutic potential against cyclin dependent kinases (CDKs), curcumin was docked in different isoforms of CDKs. It was observed that it did not dock at the active sites of CDK2 and CDK6. However, it could enter into weak interactions with CDK4 protein.

  10. Synthesis of the 3-sulfates of N-acetylcysteine conjugated bile acids (BA-NACs) and their transient formation from BA-NACs and subsequent hydrolysis by a rat liver cytosolic fraction as shown by liquid chromatography/electrospray ionization-mass spectrometry.

    PubMed

    Mitamura, Kuniko; Sakai, Toshihiro; Nakai, Risa; Wakamiya, Tateaki; Iida, Takashi; Hofmann, Alan F; Ikegawa, Shigeo

    2011-06-01

    Previous work from this laboratory has reported the chemical synthesis of N-acetylcysteine (NAC) conjugates of natural bile acids (BAs) and shown that such novel conjugates can be formed in vivo in rats to which NAC has been administered. The subsequent fate of such novel conjugates is not known. One possible biotransformation is sulfation, a major pathway for BAs N-acylamidates in patients with cholestatic liver disease. Here, we report the chemical synthesis of the 3-sulfates of the S-acyl NAC conjugates of five natural BAs (cholic, chenodeoxycholic, deoxycholic, ursodeoxycholic, and lithocholic). We also measured the sulfation of N-acetylcysteine-natural bile acid (BA-NAC) conjugates when they were incubated with a rat liver cytosolic fraction. The chemical structures of the BA-NAC 3-sulfates were confirmed by proton nuclear magnetic resonance, as well as by means of electrospray ionization-linear ion trap mass spectrometry with negative-ion detection. Upon collision-induced dissociation of singly and doubly charged deprotonated molecules, structurally informative product ions were observed. Using a triple-stage quadrupole instrument, selected reaction monitoring analyses by monitoring characteristic transition ions allowed the achievement of a highly sensitive and specific assay. When BA-NACs were incubated with a rat liver cytosolic fraction to which 3'-phosphoadenosine 5'-phosphosulfate was added, sulfation occurred, but the dominant reaction was hydrolysis of the S-acyl linkage to form the unconjugated BAs. Subsequent sulfation occurred at C-3 on the unconjugated BAs that had been formed from the BA-NACs. Such sulfation was proportional to the hydrophobicity of the unconjugated bile acid. Thus, NAC conjugates of BAs as well as their C-3 sulfates if formed in vivo are rapidly hydrolyzed by cytosolic enzymes.

  11. Sulfonyl fluoride-based prosthetic compounds as potential 18F labelling agents.

    PubMed

    Inkster, James A H; Liu, Kate; Ait-Mohand, Samia; Schaffer, Paul; Guérin, Brigitte; Ruth, Thomas J; Storr, Tim

    2012-08-27

    Nucleophilic incorporation of [(18)F]F(-) under aqueous conditions holds several advantages in radiopharmaceutical development, especially with the advent of complex biological pharmacophores. Sulfonyl fluorides can be prepared in water at room temperature, yet they have not been assayed as a potential means to (18)F-labelled biomarkers for PET chemistry. We developed a general route to prepare bifunctional 4-formyl-, 3-formyl-, 4-maleimido- and 4-oxylalkynl-arylsulfonyl [(18)F]fluorides from their sulfonyl chloride analogues in 1:1 mixtures of acetonitrile, THF, or tBuOH and Cs[(18)F]F/Cs(2)CO(3(aq.)) in a reaction time of 15 min at room temperature. With the exception of 4-N-maleimide-benzenesulfonyl fluoride (3), pyridine could be used to simplify radiotracer purification by selectively degrading the precursor without significantly affecting observed yields. The addition of pyridine at the start of [(18)F]fluorination (1:1:0.8 tBuOH/Cs(2)CO(3(aq.))/pyridine) did not negatively affect yields of 3-formyl-2,4,6-trimethylbenzenesulfonyl [(18)F]fluoride (2) and dramatically improved the yields of 4-(prop-2-ynyloxy)benzenesulfonyl [(18)F]fluoride (4). The N-arylsulfonyl-4-dimethylaminopyridinium derivative of 4 (14) can be prepared and incorporates (18)F efficiently in solutions of 100 % aqueous Cs(2)CO(3) (10 mg mL(-1)). As proof-of-principle, [(18)F]2 was synthesised in a preparative fashion [88(±8) % decay corrected (n=6) from start-of-synthesis] and used to radioactively label an oxyamino-modified bombesin(6-14) analogue [35(±6) % decay corrected (n=4) from start-of-synthesis]. Total preparation time was 105-109 min from start-of-synthesis. Although the (18)F-peptide exhibited evidence of proteolytic defluorination and modification, our study is the first step in developing an aqueous, room temperature (18)F labelling strategy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Eosin Y-catalyzed visible-light-mediated aerobic oxidative cyclization of N,N-dimethylanilines with maleimides.

    PubMed

    Liang, Zhongwei; Xu, Song; Tian, Wenyan; Zhang, Ronghua

    2015-01-01

    A novel and simple strategy for the efficient synthesis of the corresponding tetrahydroquinolines from N,N-dimethylanilines and maleimides using visible light in an air atmosphere in the presence of Eosin Y as a photocatalyst has been developed. The metal-free protocol involves aerobic oxidative cyclization via sp(3) C-H bond functionalization process to afford good yields in a one-pot procedure under mild conditions.

  13. Pilot Study Examining the Influence of Potassium Bicarbonate Supplementation on Nitrogen Balance and Whole-Body Ammonia and Urea Turnover Following Short-Term Energy Restriction in Older Men

    PubMed Central

    Margolis, Lee M.; Ceglia, Lisa; Rivas, Donato A.; Dawson-Hughes, Bess; Fielding, Roger A.

    2018-01-01

    With aging there is a chronic low-grade metabolic-acidosis that may exacerbate negative protein balance during weight loss. The objective of this randomized pilot study was to assess the impact of 90 mmol∙day−1 potassium bicarbonate (KHCO3) versus a placebo (PLA) on 24-h urinary net acid excretion (NAE), nitrogen balance (NBAL), and whole-body ammonia and urea turnover following short-term diet-induced weight loss. Sixteen (KHCO3; n = 8, PLA; n = 8) older (64 ± 4 years) overweight (BMI: 28.5 ± 2.1 kg∙day−1) men completed a 35-day controlled feeding study, with a 7-day weight-maintenance phase followed by a 28-day 30% energy-restriction phase. KHCO3 or PLA supplementation began during energy restriction. NAE, NBAL, and whole-body ammonia and urea turnover (15N-glycine) were measured at the end of the weight-maintenance and energy-restriction phases. Following energy restriction, NAE was −9.8 ± 27.8 mmol∙day−1 in KHCO3 and 43.9 ± 27.8 mmol∙day−1 in PLA (p < 0.05). No significant group or time differences were observed in NBAL or ammonia and urea turnover. Ammonia synthesis and breakdown tended (p = 0.09) to be higher in KHCO3 vs. PLA following energy restriction, and NAE was inversely associated (r = −0.522; p < 0.05) with urea synthesis in all subjects. This pilot study suggests some benefit may exist with KHCO3 supplementation following energy restriction as lower NAE indicated higher urea synthesis. PMID:29772642

  14. Synthesis of N4-(Substituted phenyl)-N4-alkyl/desalkyl-9H-pyrimido[4,5-b]indole-2,4-diamines and Identification of New Microtubule Disrupting Compounds that are Effective against Multidrug Resistant Cells1

    PubMed Central

    Gangjee, Aleem; Zaware, Nilesh; Devambatla, Ravi Kumar Vyas; Raghavan, Sudhir; Westbrook, Cara D.; Dybdal-Hargreaves, Nicholas F.; Hamel, Ernest; Mooberry, Susan L.

    2013-01-01

    A series of fourteen N4-(substituted phenyl)-N4-methyl/desmethyl-9H-pyrimido[4,5-b]indole-2,4-diamines was synthesized as potential microtubule targeting agents. The synthesis involved a Fisher indole cyclization of 2-amino-6-hydrazinylpyrimidin-4(3H)-one with cyclohexanone, followed by oxidation, chlorination and displacement with appropriate anilines. Compounds 6, 14 and 15 had low nanomolar potency against MDA-MB-435 tumor cells and depolymerized microtubules. Compound 6 additionally had nanomolar GI50 values against 57 of the NCI 60-tumor panel cell lines. Mechanistic studies showed that 6 inhibited tubulin polymerization and [3H]colchicine binding to tubulin. The most potent compounds were all effective in cells expressing P-glycoprotein or the βIII isotype of tubulin, which have been associated with clinical drug reisistence. Modeling studies provided the potential interactions of 6, 14 and 15 within the colchicine site. PMID:23332369

  15. N/S Co-Doped 3 D Porous Carbon Nanosheet Networks Enhancing Anode Performance of Sodium-Ion Batteries.

    PubMed

    Zou, Lei; Lai, Yanqing; Hu, Hongxing; Wang, Mengran; Zhang, Kai; Zhang, Peng; Fang, Jing; Li, Jie

    2017-10-12

    A facile and scalable method is realized for the in situ synthesis of N/S co-doped 3 D porous carbon nanosheet networks (NSPCNNs) as anode materials for sodium-ion batteries. During the synthesis, NaCl is used as a template to prepare porous carbon nanosheet networks. In the resultant architecture, the unique 3 D porous architecture ensures a large specific surface area and fast diffusion paths of both electrons and ions. In addition, the import of N/S produces abundant defects, increased interlayer spacings, more active sites, and high electronic conductivity. The obtained products deliver a high specific capacity and excellent long-term cycling performance, specifically, a capacity of 336.2 mA h g -1 at 0.05 A g -1 , remaining as large as 214.9 mA h g -1 after 2000 charge/discharge cycles at 0.5 A g -1 . This material has great prospects for future applications of scalable, low-cost, and environmentally friendly sodium-ion batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis and characterization of a novel long-alkyl-chain ester-substituted benzimidazole gelator and its octan-1-ol solvate.

    PubMed

    Geiger, H Cristina; Zick, Patricia L; Roberts, William R; Geiger, David K

    2017-04-01

    The synthesis of a novel benzimidazole derivative with a long-chain-ester substituent, namely methyl 8-[4-(1H-benzimidazol-2-yl)phenoxy]octanoate, (3), is reported. Ester (3) shows evidence of aggregation in solution and weak gelation ability with toluene. The octan-1-ol solvate, methyl 8-[4-(1H-benzimidazol-2-yl)phenoxy]octanoate octan-1-ol monosolvate, C 22 H 26 N 2 O 3 ·C 8 H 18 O, (4), exhibits a four-molecule hydrogen-bonded motif in the solid state, with N-H...O hydrogen bonds between benzimidazole molecules and O-H...N hydrogen bonds between the octan-1-ol solvent molecules and the benzimidazole unit. The alkyl chains of the ester and the octan-1-ol molecules are in unfolded conformations. The phenylene ring is canted by 10.27 (6)° from the plane of the benzimidazole ring system. H...C contacts make up 20.7% of the Hirshfeld surface coverage. Weak C-H...π interactions involving the benzimidazole alkyl chain and three aromatic rings are observed.

  17. [Synthesis of new nitrosoureas].

    PubMed

    Papadaki-Valiraki, A; Siatra-Papastaikoudi, T; Skaltsounis, A L; Roussakis, C

    1989-01-01

    Two chemical pathways were used for the synthesis of three new N'-(2-chloroethyl)-N-[2-(4-alkoxyphenylthio)ethyl]-N'-nitrosoureas and two new N'-(2-chloroethyl)-N)[2-(4-alkoxyphenyl-thio)ethyl]-N-nitrosoureas . The study of the cytotoxicity of the three N'-nitrosoureas, was carried out in two experimental models (P 388 and NSCLCN6).

  18. Prediction of Chain Propagation Rate Constants of Polymerization Reactions in Aqueous NIPAM/BIS and VCL/BIS Systems.

    PubMed

    Kröger, Leif C; Kopp, Wassja A; Leonhard, Kai

    2017-04-06

    Microgels have a wide range of possible applications and are therefore studied with increasing interest. Nonetheless, the microgel synthesis process and some of the resulting properties of the microgels, such as the cross-linker distribution within the microgels, are not yet fully understood. An in-depth understanding of the synthesis process is crucial for designing tailored microgels with desired properties. In this work, rate constants and reaction enthalpies of chain propagation reactions in aqueous N-isopropylacrylamide/N,N'-methylenebisacrylamide and aqueous N-vinylcaprolactam/N,N'-methylenebisacrylamide systems are calculated to identify the possible sources of an inhomogeneous cross-linker distribution in the resulting microgels. Gas-phase reaction rate constants are calculated from B2PLYPD3/aug-cc-pVTZ energies and B3LYPD3/tzvp geometries and frequencies. Then, solvation effects based on COSMO-RS are incorporated into the rate constants to obtain the desired liquid-phase reaction rate constants. The rate constants agree with experiments within a factor of 2-10, and the reaction enthalpies deviate less than 5 kJ/mol. Further, the effect of rate constants on the microgel growth process is analyzed, and it is shown that differences in the magnitude of the reaction rate constants are a source of an inhomogeneous cross-linker distribution within the resulting microgel.

  19. Novel, one-step synthesis of zwitterionic polymer nanoparticles via distillation-precipitation polymerization and its application for dye removal membrane.

    PubMed

    Ibrahim, G P Syed; Isloor, Arun M; Inamuddin; Asiri, Abdullah M; Ismail, Norafiqah; Ismail, Ahmed Fauzi; Ashraf, Ghulam Md

    2017-11-21

    In this work, poly(MBAAm-co-SBMA) zwitterionic polymer nanoparticles were synthesized in one-step via distillation-precipitation polymerization (DPP) and were characterized. [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) as monomer and N, N'-methylene bis(acrylamide) (MBAAm) as cross-linker are used for the synthesis of nanoparticles. As  far as our knowledge, this is the first such report on the synthesis of poly(MBAAm-co-SBMA) nanoparticles via DPP. The newly synthesized nanoparticles were further employed for the surface modification of polysulfone (PSF) hollow fiber membranes for dye removal. The modified hollow fiber membrane exhibited the improved permeability (56 L/ m 2 h bar) and dye removal (>98% of Reactive Black 5 and >80.7% of Reactive orange 16) with the high permeation of salts. Therefore, the as-prepared membrane can have potential application in textile and industrial wastewater treatment.

  20. SCF-KIT signaling induces endothelin-3 synthesis and secretion: Thereby activates and regulates endothelin-B-receptor for generating temporally- and spatially-precise nitric oxide to modulate SCF- and or KIT-expressing cell functions.

    PubMed

    Chen, Lei L; Zhu, Jing; Schumacher, Jonathan; Wei, Chongjuan; Ramdas, Latha; Prieto, Victor G; Jimenez, Arnie; Velasco, Marco A; Tripp, Sheryl R; Andtbacka, Robert H I; Gouw, Launce; Rodgers, George M; Zhang, Liansheng; Chan, Benjamin K; Cassidy, Pamela B; Benjamin, Robert S; Leachman, Sancy A; Frazier, Marsha L

    2017-01-01

    We demonstrate that SCF-KIT signaling induces synthesis and secretion of endothelin-3 (ET3) in human umbilical vein endothelial cells and melanoma cells in vitro, gastrointestinal stromal tumors, human sun-exposed skin, and myenteric plexus of human colon post-fasting in vivo. This is the first report of a physiological mechanism of ET3 induction. Integrating our finding with supporting data from literature leads us to discover a previously unreported pathway of nitric oxide (NO) generation derived from physiological endothelial NO synthase (eNOS) or neuronal NOS (nNOS) activation (referred to as the KIT-ET3-NO pathway). It involves: (1) SCF-expressing cells communicate with neighboring KIT-expressing cells directly or indirectly (cleaved soluble SCF). (2) SCF-KIT signaling induces timely local ET3 synthesis and secretion. (3) ET3 binds to ETBR on both sides of intercellular space. (4) ET3-binding-initiated-ETBR activation increases cytosolic Ca2+, activates cell-specific eNOS or nNOS. (5) Temporally- and spatially-precise NO generation. NO diffuses into neighboring cells, thus acts in both SCF- and KIT-expressing cells. (6) NO modulates diverse cell-specific functions by NO/cGMP pathway, controlling transcriptional factors, or other mechanisms. We demonstrate the critical physiological role of the KIT-ET3-NO pathway in fulfilling high demand (exceeding basal level) of endothelium-dependent NO generation for coping with atherosclerosis, pregnancy, and aging. The KIT-ET3-NO pathway most likely also play critical roles in other cell functions that involve dual requirement of SCF-KIT signaling and NO. New strategies (e.g. enhancing the KIT-ET3-NO pathway) to harness the benefit of endogenous eNOS and nNOS activation and precise NO generation for correcting pathophysiology and restoring functions warrant investigation.

  1. SCF-KIT signaling induces endothelin-3 synthesis and secretion: Thereby activates and regulates endothelin-B-receptor for generating temporally- and spatially-precise nitric oxide to modulate SCF- and or KIT-expressing cell functions

    PubMed Central

    Zhu, Jing; Schumacher, Jonathan; Wei, Chongjuan; Ramdas, Latha; Prieto, Victor G.; Jimenez, Arnie; Velasco, Marco A.; Tripp, Sheryl R.; Andtbacka, Robert H. I.; Gouw, Launce; Rodgers, George M.; Zhang, Liansheng; Chan, Benjamin K.; Cassidy, Pamela B.; Benjamin, Robert S.; Leachman, Sancy A.; Frazier, Marsha L.

    2017-01-01

    We demonstrate that SCF-KIT signaling induces synthesis and secretion of endothelin-3 (ET3) in human umbilical vein endothelial cells and melanoma cells in vitro, gastrointestinal stromal tumors, human sun-exposed skin, and myenteric plexus of human colon post-fasting in vivo. This is the first report of a physiological mechanism of ET3 induction. Integrating our finding with supporting data from literature leads us to discover a previously unreported pathway of nitric oxide (NO) generation derived from physiological endothelial NO synthase (eNOS) or neuronal NOS (nNOS) activation (referred to as the KIT-ET3-NO pathway). It involves: (1) SCF-expressing cells communicate with neighboring KIT-expressing cells directly or indirectly (cleaved soluble SCF). (2) SCF-KIT signaling induces timely local ET3 synthesis and secretion. (3) ET3 binds to ETBR on both sides of intercellular space. (4) ET3-binding-initiated-ETBR activation increases cytosolic Ca2+, activates cell-specific eNOS or nNOS. (5) Temporally- and spatially-precise NO generation. NO diffuses into neighboring cells, thus acts in both SCF- and KIT-expressing cells. (6) NO modulates diverse cell-specific functions by NO/cGMP pathway, controlling transcriptional factors, or other mechanisms. We demonstrate the critical physiological role of the KIT-ET3-NO pathway in fulfilling high demand (exceeding basal level) of endothelium-dependent NO generation for coping with atherosclerosis, pregnancy, and aging. The KIT-ET3-NO pathway most likely also play critical roles in other cell functions that involve dual requirement of SCF-KIT signaling and NO. New strategies (e.g. enhancing the KIT-ET3-NO pathway) to harness the benefit of endogenous eNOS and nNOS activation and precise NO generation for correcting pathophysiology and restoring functions warrant investigation. PMID:28880927

  2. Metal and base free synthesis of primary amines via ipso amination of organoboronic acids mediated by [bis(trifluoroacetoxy)iodo]benzene (PIFA).

    PubMed

    Chatterjee, Nachiketa; Goswami, Avijit

    2015-08-07

    A metal and base free synthesis of primary amines has been developed at ambient temperature through ipso amination of diversely functionalized organoboronic acids, employing a combination of [bis(trifluoroacetoxy)iodo]benzene (PIFA)-N-bromosuccinimide (NBS) and methoxyamine hydrochloride as the aminating reagent. The amines were primarily obtained as their trifluoroacetate salts which on subsequent aqueous alkaline work up provided the corresponding free amines. The combination of PIFA-NBS is found to be the mildest choice compared to the commonly used strong bases (e.g. n-BuLi, Cs2CO3) for activating the aminating agent. The reaction is expected to proceed via activation of the aminating reagent followed by B-N 1,2-aryl migration.

  3. Biphalin analogs containing β(3)-homo-amino acids at the 4,4' positions: Synthesis and opioid activity profiles.

    PubMed

    Frączak, Oliwia; Lasota, Anika; Kosson, Piotr; Leśniak, Anna; Muchowska, Adriana; Lipkowski, Andrzej W; Olma, Aleksandra

    2015-04-01

    Biphalin, a synthetic opioid octapeptide with a palindromic sequence has high analgesic activity. Biphalin displays a strong affinity for μ and δ-opioid receptors, and a significant to κ-receptor. The paper reports the synthesis of novel analogs of biphalin containing β(3)-homo-amino acid residues at the 4,4' positions and a hydrazine or 1,2-phenylenediamine linker. The potency and selectivity of the peptides were evaluated by a competitive receptor-binding assay in rat brain homogenate using [(3)H]DAMGO (a μ ligand) and [(3)H]DELT (a δ ligand). Analogs with β(3)-h-p-NO2Phe in positions 4 and 4' are the most active compounds. Selectivity depends on the degree of freedom between the two pharmacophore moieties. Analogs with a hydrazine linker show noticeable binding selectivity to μ receptors (IC50(μ)=0.72nM; IC50(δ)=4.66nM), while the peptides with a 1,2-phenylenediamine linker show slight δ selectivity (IC50(μ)=10.97nM; IC50(δ)=1.99nM). Tyr-d-Ala-Gly-β(3)-h-p-NO2PheNHNH-β(3)-h-p-NO2Phe (1) and (Tyr-d-Ala-Gly-β(3)-h-p-NO2PheNH)2 (2) produced greater antinociceptive effect compared to morphine after i.t. administration. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Highly regioselective synthesis of N-3 organophosphorous derivatives of 3,4-dihydropyrimidin-2(1H)-ones and their calcium channel binding studies.

    PubMed

    Singh, Kamaljit; Singh, Kawaljit; Trappanese, Danielle M; Moreland, Robert S

    2012-08-01

    A series of novel N-3 substituted 3,4-dihydropyrimidin-2(1H)-ones derivatives bearing diaminophosphinyl, phosphonate and phosphorous containing heterocycles were obtained from 3,4-dihydropyrimidinones (DHPMs) in a regioselective manner through an efficient reaction protocol, tolerant to substitutional variation at the key diversity positions around the DHPM core. None of the representative compounds screened for calcium channel blocking activity was found to have significant activity compared to nifedipine. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  5. Efficient synthesis of tungsten oxide hydrate-based nanocomposites for applications in bifunctional electrochromic-energy storage devices

    NASA Astrophysics Data System (ADS)

    Chang, Xueting; Hu, Ruirui; Sun, Shibin; Lu, Tong; Liu, Tao; Lei, Yanhua; Dong, Lihua; Yin, Yansheng; Zhu, Yanqiu

    2018-05-01

    In this work, we realized the large-scale synthesis of WO3 · H2O nanoflakes (NFs), g-C3N4/WO3 · H2O nanocomposite (NC) and graphene (G)/WO3 · H2O NC via a sonochemical process with tungsten salt as the precursor, g-C3N4 or G sheets as the supports, and distilled water as the solvent. Both the g-C3N4/WO3 · H2O NC and G/WO3 · H2O NC exhibited much better electrochromic (EC) performance (higher coloration efficiencies and faster response times) than that of the WO3 · H2O NFs. Using the WO3 · H2O-based materials as electrode materials, EC batteries that integrate the energy storage and EC functions in one device have been assembled. The energy status of the EC batteries could be visually indicated by the reversible color variations. Compared with the plain WO3 · H2O-based EC batteries, the NC-based EC batteries possessed a lower color contrast between the charged and discharged conditions but much longer discharge durations. The EC batteries could be quickly charged in a few seconds by adding H2O2, and the charged batteries exhibited significantly-enhanced discharging durations in comparison with the initial ones. The g-C3N4/WO3 · H2O NC-EC batteries charged by a small amount of H2O2 could produce a long discharging duration up to 760 min.

  6. Phototherapy up-regulates dentin matrix proteins expression and synthesis by stem cells from human-exfoliated deciduous teeth.

    PubMed

    Turrioni, Ana Paula S; Basso, Fernanda G; Montoro, Liege A; Almeida, Leopoldina de Fátima D de; Costa, Carlos A de Souza; Hebling, Josimeri

    2014-10-01

    The aim of this study was to evaluate the effects of infrared LED (850nm) irradiation on dentin matrix proteins expression and synthesis by cultured stem cells from human exfoliated deciduous teeth (SHED). Near-exfoliation primary teeth were extracted (n=3), and SHED cultures were characterized by immunofluorescence using STRO-1, CD44, CD146, Nanog and OCT3/4 antibodies, before experimental protocol. The SHEDs were seeded (3×10(4) cells/cm(2)) with DMEM containing 10% FBS. After 24-h incubation, the culture medium was replaced by osteogenic differentiation medium, and the cells were irradiated with LED light at energy densities (EDs) of 0 (control), 2, or 4J/cm(2) (n=8). The irradiated SHEDs were then evaluated for alkaline phosphatase (ALP) activity, total protein (TP) production, and collagen synthesis (SIRCOL™ Assay), as well as ALP, collagen type I (Col I), dentin sialophosphoprotein (DSPP), and dentin matrix acidic phosphoprotein (DMP-1) gene expression (qPCR). Data were analyzed by Kruskal-Wallis and Mann-Whitney tests (α=0.05). Increased ALP activity and collagen synthesis, as well as gene expression of DSPP and ALP, were observed for both EDs compared with non-irradiated cells. The ED of 4J/cm(2) also increased gene expression of COL I and DMP-1. In conclusion, infrared LED irradiation was capable of biostimulating SHEDs by increasing the expression and synthesis of proteins related with mineralized tissue formation, with overall better results for the energy dose of 4J/cm(2). Phototherapy is an additional approach for the clinical application of LED in Restorative Dentistry. Infrared LED irradiation of the cavity's floor could biostimulate subjacent pulp cells, improving local tissue healing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Synthesis and Properties of Hexachloromolybdates(V) and Related Species.

    DTIC Science & Technology

    1983-11-04

    2 1 6200 EC N ) t2ICoC 1 3 14400 - 311 699 3134 solid state 4A2 4 TI (F) 14900 - 15750 - 4890 4 5210 44 A2 "." T1( P ) 5470 [Et4N32 £CoCI4 3 6080 in...g T19( P ) transition with the*! l i! Fir 5* E tro n1ic spctra o f coba t(I) ino eta he d r ql enviro n .’en ts9 9 Inset: CoC] in Al Ci 23 I’% I�...3A 2g T2g 6400 NiC12 in 3A 2g- T Ig(F) 10800 640 aluminium chloride 3A2g 3 Tlg ( P ) 21000 (ref. 45) 3A2g 3 T 2g 6670 11220 EEt4 N 2ECoCl4 3 A2g TIg

  8. Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberger, Florian, E-mail: f.weinberger@uke.de; Mehrkens, Dennis, E-mail: dennis.mehrkens@uk-koeln.de; Starbatty, Jutta, E-mail: starbatty@uke.uni-hamburg.de

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activitymore » and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.« less

  9. Biocatalytic Asymmetric Synthesis of (1R, 2S)-N-Boc-vinyl-ACCA Ethyl Ester with a Newly Isolated Sphingomonas aquatilis.

    PubMed

    Zhu, Shaozhou; Shi, Ying; Zhang, Xinyu; Zheng, Guojun

    2018-02-01

    1-amino cyclopropane-1-carboxylic acid (ACCA) and its derivatives are essential pharmacophoric unit that widely used in drug research and development. Specifically, (1R, 2S)-N-Boc-vinyl-ACCA ethyl ester (vinyl-ACCA) is a key chiral intermediate in the synthesis of highly potent hepatitis C virus (HCV) NS3/4A protease inhibitors such as asunaprevir and simeprevir. Developing strategies for the asymmetric synthesis of vinyl-ACCA is thus extremely high demand. In this study, 378 bacterial strains were isolated from soil samples using N-Boc-vinyl-ACCA ethyl ester as the sole carbon source and were screened for esterase activity. Fourteen of which worked effectively for the asymmetric synthesis of (1R, 2S)-N-Boc-1-vinyl ACCA ethyl ester. The strain CY-2, identified as Sphingomonas aquatilis, which showed the highest stability and enantioselectivity was selected as whole cell biocatalyst for further study. A systematic study of all factors influencing the enzymatic hydrolysis was performed. Under optimized conditions, resolution of rac-vinyl-ACCA to (1R, 2S)-N-Boc-1-vinyl ACCA ethyl ester with 88.2% ee and 62.4% conversion (E = 9) was achieved. Besides, S. aquatilis was also used to transform other 10 different substrates. Notably, it was found that 7 of them could be stereoselectively hydrolyzed, especially for (1R,2S)-1-amino-vinyl-ACCA ethyl ester hydrochloride (99.6% ee, E>200). Our investigations provide a new efficient whole cell biocatalyst for resolution of ACCA and might be developed for industry application.

  10. Probing the mer- to fac-isomerization of tris-cyclometallated homo- and heteroleptic (C,N)3 iridium(III) complexes.

    PubMed

    McDonald, Aidan R; Lutz, Martin; von Chrzanowski, Lars S; van Klink, Gerard P M; Spek, Anthony L; van Koten, Gerard

    2008-08-04

    We have developed techniques which allow for covalent tethering, via a "hetero" cyclometallating ligand, of heteroleptic tris-cyclometallated iridium(III) complexes to polymeric supports (for application in light-emitting diode technologies). This involved the selective synthesis and thorough characterization of heteroleptic [Ir(C,N) 2(C',N')] tris-cyclometallated iridium(III) complexes. Furthermore, the synthesis and characterization of heteroleptic [Ir(C,N) 2OR] complexes is presented. Under standard thermal conditions for the synthesis of the facial ( fac) isomer of tris-cyclometallated complexes, it was not possible to synthesize pure heteroleptic complexes of the form [Ir(C,N) 2(C',N')]. Instead, a mixture of homo- and heteroleptic complexes was acquired. It was found that a stepwise procedure involving the synthesis of a pure meridonial ( mer) isomer followed by photochemical isomerization of this mer to the fac isomer was necessary to synthesize pure fac-[Ir(C,N) 2(C',N')] complexes. Under thermal isomerization conditions, the conversion of mer-[Ir(C,N) 2(C',N')] to fac-[Ir(C,N) 2(C',N')] was also not a clean reaction, with again a mixture of homo- and heteroleptic complexes acquired. An investigation into the thermal mer to fac isomerization of both homo- and heteroleptic tris-cyclometallated complexes is presented. It was found that the process is an alcohol-catalyzed reaction with the formation of an iridium alkoxide [Ir(C,N) 2OR] intermediate in the isomerization process. This catalyzed reaction can be carried out between 50 and 100 degrees C, the first such example of low-temperature mer-fac thermal isomerization. We have synthesized analogous complexes and have shown that they do indeed react so as to give fac-tris-cyclometallated products. A detailed explanation of the intermediates (and all of their stereoisomers, in particular when systems of the generic formula [M(a,b) 2(a',b')] are synthesized) formed in the mer to fac isomerization process is presented, including how the formed intermediates react further, and the stereoisomeric products they yield.

  11. Design, synthesis and activity as acid ceramidase inhibitors of 2-oxooctanoyl and N-oleoylethanolamine analogues.

    PubMed

    Grijalvo, Santiago; Bedia, Carmen; Triola, Gemma; Casas, Josefina; Llebaria, Amadeu; Teixidó, Jordi; Rabal, Obdulia; Levade, Thierry; Delgado, Antonio; Fabriàs, Gemma

    2006-10-01

    The synthesis of novel N-acylethanolamines and their use as inhibitors of the aCDase is reported here. The compounds are either 2-oxooctanamides or oleamides of sphingosine analogs featuring a 3-hydroxy-4,5-hexadecenyl tail replaced by ether or thioether moieties. It appears that, within the 2-oxooctanamide family, the C3-OH group of the sphingosine molecule is required for inhibition both in vitro and in cultured cells. Furthermore, although the (E)-4 double bond is not essential for inhibitory activity, the (E) configuration is required, since the analogue with a (Z)-4 unsaturation was not inhibitory. None of the oleamides inhibited the aCDase in vitro. Conversely, with the exception of N-oleoylethanolamine and its analogs with S-decyl and S-hexadecyl substituents, all the synthesized oleamides inhibited the aCDase in cultured cells, although with a relatively low potency. We conclude that novel aCDase inhibitors can evolve from N-acylation of sphingoid bases with electron deficient-acyl groups. In contrast, chemical modification of the N-oleoylsphingosine backbone does not seem to offer an appropriate strategy to obtain aCDase inhibitors.

  12. Identification, synthesis and regulatory function of the N-acylated homoserine lactone signals produced by Pseudomonas chlororaphis HT66.

    PubMed

    Peng, Huasong; Ouyang, Yi; Bilal, Muhammad; Wang, Wei; Hu, Hongbo; Zhang, Xuehong

    2018-01-22

    Pseudomonas chlororaphis HT66 isolated from the rice rhizosphere is an important plant growth-promoting rhizobacteria that produce phenazine-1-carboxamide (PCN) in high yield. Phenazine production is regulated by a quorum sensing (QS) system that involves the N-acylated homoserine lactones (AHLs)-a prevalent type of QS molecule. Three QS signals were detected by thin layer chromatography (TLC) and high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS), which identified to be N-(3-hydroxy hexanoyl)-L-homoserine lactone (3-OH-C6-HSL), N-(3-hydroxy octanoyl)-L-homoserine lactone (3-OH-C8-HSL) and N-(3-hydroxy decanoyl)-L-homoserine lactone (3-OH-C10-HSL). The signal types and methods of synthesis were different from that in other phenazine-producing Pseudomonas strains. By non-scar deletion and heterologous expression techniques, the biosynthesis of the AHL-signals was confirmed to be only catalyzed by PhzI, while other AHLs synthases i.e., CsaI and HdtS were not involved in strain HT66. In comparison to wild-type HT66, PCN production was 2.3-folds improved by over-expression of phzI, however, phzI or phzR mutant did not produce PCN. The cell growth of HT66∆phzI mutant was significantly decreased, and the biofilm formation in phzI or phzR inactivated strains of HT66 decreased to various extents. In conclusion, the results demonstrate that PhzI-PhzR system plays a critical role in numerous biological processes including phenazine production.

  13. A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis† †Electronic supplementary information (ESI) available: Detailed procedures for each method, catalytic performance, STEM-EDX images, detailed characterization. See DOI: 10.1039/c6sc02382g Click here for additional data file.

    PubMed Central

    Imamura, Kazuya; Kawano, Yukiko; Miyahara, Shin-ichiro; Yamamoto, Tomokazu; Matsumura, Syo

    2017-01-01

    Ammonia is a crucial chemical feedstock for fertilizer production and is a potential energy carrier. However, the current method of synthesizing ammonia, the Haber–Bosch process, consumes a great deal of energy. To reduce energy consumption, a process and a substance that can catalyze ammonia synthesis under mild conditions (low temperature and low pressure) are strongly needed. Here we show that Ru/Pr2O3 without any dopant catalyzes ammonia synthesis under mild conditions at 1.8 times the rates reported with other highly active catalysts. Scanning transmission electron micrograph observations and energy dispersive X-ray analyses revealed the formation of low-crystalline nano-layers of ruthenium on the surface of Pr2O3. Furthermore, CO2 temperature-programmed desorption revealed that the catalyst was strongly basic. These unique structural and electronic characteristics are considered to synergistically accelerate the rate-determining step of NH3 synthesis, cleavage of the N 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 N bond. We expect that the use of this catalyst will be a starting point for achieving efficient ammonia synthesis. PMID:28451216

  14. Synthesis and molecular structures of phenylamides of magnesium, calcium, strontium, and barium--from molecular to polymeric structures.

    PubMed

    Gärtner, Martin; Görls, Helmar; Westerhausen, Matthias

    2007-09-03

    Several preparative procedures for the synthesis of the THF complexes of the alkaline earth metal bis(phenylamides) of Mg (1), Ca (2), Sr (3), and Ba (4) are presented such as metalation of aniline with strontium and barium, metathesis reactions of MI2 with KN(H)Ph, and metalation of aniline with arylcalcium compounds or dialkylmagnesium. The THF content of these compounds is rather low and an increasing aggregation is observed with the size of the metal atom. Thus, tetrameric [(THF)2Ca{mu-N(H)Ph}2]4 (2) and polymeric [(THF)2Sr{mu-N(H)Ph}2]infinity and {[(THF)2Ba{mu-N(H)Ph}2]2[(THF)Ba{mu-N(H)Ph}2]2}infinity show six-coordinate metal atoms with increasing interactions to the pi systems of the phenyl groups with increasing the radius of the alkaline earth metal atom.

  15. Synthesis of o,p-EDDHA and its detection as the main impurity in o,o-EDDHA commercial iron chelates.

    PubMed

    Gómez-Gallego, Mar; Sierra, Miguel A; Alcázar, Roberto; Ramírez, Pedro; Piñar, Carmen; Mancheño, María José; García-Marco, Sonia; Yunta, Felipe; Lucena, Juan José

    2002-10-23

    Ethylenediamine-N,N'bis(o-hydroxyphenyl)acetic acid (o,o-EDDHA) is one of the most efficient iron chelates employed to relieve iron chlorosis in plants. However, the presence of positional isomers of EDDHA in commercial iron chelates has been recently demonstrated, and among them, it has been claimed that ethylenediamine-N(o-hydroxyphenylacetic)-N'(p-hydroxyphenylacetic) acid (o,p-EDDHA) is the main impurity present in EDDHA fertilizers. Here we report the preparation of o,p-EDDHA, a compound whose synthesis had not been previously reported. The synthetic o,p-EDDHA is able to form ferric complexes, and it has been used as a standard in the analysis of the impurities of commercial iron fertilizers. The presence of o,p-EDDHA/Fe(3+) in commercial samples has been unambiguously demonstrated by HPLC.

  16. Synthesis, molecular modeling and biological evaluation of PSB as targeted antibiotics.

    PubMed

    Cheng, Kui; Zheng, Qing-Zhong; Hou, Jin; Zhou, Yang; Liu, Chang-Hong; Zhao, Jing; Zhu, Hai-Liang

    2010-04-01

    We described here the design, synthesis, molecular modeling, and biological evaluation of a series of peptide and Schiff bases (PSB) small molecules, inhibitors of Escherichia coli beta-Ketoacyl-acyl carrier protein synthase III (ecKAS III). The initial lead compound was reported by us previously, we continued to carry out structure-activity relationship studies and optimize the lead structure to potent inhibitors in this research. The results demonstrated that both N-(2-(3,5-dichloro-2-hydroxybenzylideneamino)propyl)-2-hydroxybenzamide (1f) and 2-hydroxy-N-(2-(2-hydroxy-5-iodobenzylideneamino)propyl)-4-methylbenzamide (3e) posses good ecKAS III inhibitory activity and well binding affinities by bonding Gly152/Gly209 of ecKAS III and fit into the mouth of the substrate tunnel, and can be as potential antibiotics agent, displaying minimal inhibitory concentration values in the range 0.20-3.13microg/mL and 0.39-3.13microg/mL against various bacteria. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Microwave-assisted synthesis of 3,6-di(pyridin-2-yl)pyridazines: unexpected ketone and aldehyde cycloadditions.

    PubMed

    Hoogenboom, Richard; Moore, Brian C; Schubert, Ulrich S

    2006-06-23

    3,6-Di(pyridin-2-yl)pyridazines are an interesting class of compounds because of their metal-coordinating ability resulting in the self-assembly into [2x2] gridlike metal complexes with copper(I) or silver(I) ions. These and other substituted pyridazines can be prepared by the inverse-electron-demand Diels-Alder reactions between acetylenes and 1,2,4,5-tetrazines. In this contribution, the effect of (superheated) microwave conditions on these generally slow cycloadditions is described. The cycloaddition of acetylenes to 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine could be accelerated from several days reflux in toluene or N,N-dimethylformamide to several hours in dichloromethane at 150 degrees C. In addition, the unexpected cycloaddition of the enol tautomers of various ketones and aldehydes to 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine is described in detail providing an alternative route for the synthesis of (substituted) pyridazines.

  18. An efficient preparation of isosteric phosphonate analogues of sphingolipids by opening of oxirane and cyclic sulfamidate intermediates with alpha-lithiated alkylphosphonic esters.

    PubMed

    Sun, Chaode; Bittman, Robert

    2004-10-29

    D-erythro-(2S,3R,4E)-Sphingosine-1-phosphonate (1), the isosteric phosphonate analogue of naturally occurring sphingosine 1-phosphate (1a), and D-ribo-phytosphingosine 1-phosphonate (2), the isosteric phosphonate analogue of D-ribo-phytosphingosine-1-phosphate (2a), were synthesized starting with methyl 2,3-O-isopropylidene-d-glycerate (4) and D-ribo-phytosphingosine (3), respectively. Oxirane 12 was formed in eight steps from 4, and cyclic sulfamidate 22 was formed in five steps from 3. The phosphonate group was introduced via regioselective ring-opening reactions of oxirane 12 and cyclic sulfamidate 22 with lithium dialkyl methylphosphonate, affording 13 and 23, respectively. The synthesis of 1 was completed by S(N)2 displacement of chloromesylate intermediate 14b with azide ion, followed by conversion of the resulting azido group to a NHBoc group and deprotection. The synthesis of 2 was completed by cleavage of the acetal, N-benzyl, and alkyl phosphonate ester groups.

  19. Azido and tetrazolo 1,2,4,5-tetrazine N-oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, David E.; Parrish, Damon A.; Mitchell, Lauren

    2017-02-23

    This paper presents the synthesis and characterization of the oxidation products of 3,6-diazido-1,2,4,5-tetrazine (1) and 6-amino-[1,5-b]tetrazolo-1,2,4,5-tetrazine (2). 3,6-Diazido-1,2,4,5-tetrazine-1,4-dioxide was produced from oxidation with peroxytrifluoroacetic acid, and more effectively using hypofluorous acid, and 2 can be oxidized to two different products, 6-amino-[1,5-b]tetrazolo-1,2,4,5-tetrazine mono-N-oxide and di-N-oxide. These N-oxide compounds display promising performance properties as energetic materials.

  20. Surface Properties of the IN SITU Formed Ceramics Reinforced Composite Coatings on TI-3AL-2V Alloys

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Guo, Wei; Hu, Dakui; Luo, Hui; Zhang, Yuanbin

    2012-04-01

    The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ-(Fe, Ni), FeAl, Ti3Al, TiC, TiNi, TiC0.3N0.7, Ti2N, SiC, Ti5Si3 and TiNi. Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was observed for this composite coating.

  1. Synthesis of Sr2Si5N8:Ce3+ phosphors for white LEDs via an efficient chemical deposition

    PubMed Central

    Yang, Che-Yuan; Som, Sudipta; Das, Subrata; Lu, Chung-Hsin

    2017-01-01

    Novel chemical vapor deposition (CVD) process was successfully developed for the growth of Sr2Si5N8:Ce3+ phosphors with elevated luminescent properties. Metallic strontium was used as a vapor source for producing Sr3N2 vapor to react with Si3N4 powder via a homogeneous gas-solid reaction. The phosphors prepared via the CVD process showed high crystallinity, homogeneous particle size ranging from 8 to 10 μm, and high luminescence properties. In contrast, the phosphors prepared via the conventional solid-state reaction process exhibited relative low crystallinity, non-uniform particle size in the range of 0.5–5 μm and relatively lower luminescent properties than the phosphors synthesized via the CVD process. Upon the blue light excitation, Sr2−xCexSi5N8 phosphors exhibited a broad yellow band. A red shift of the emission band from 535 to 556 nm was observed with the increment in the doping amount of Ce3+ ions from x = 0.02 to x = 0.10. The maximum emission was observed at x = 0.06, and the external and internal quantum efficiencies were calculated to be 51% and 71%, respectively. Furthermore, the CVD derived optimum Sr1.94Ce0.06Si5N8 phosphor exhibited sufficient thermal stability for blue-LEDs and the activation energy was calculated to be 0.33 eV. The results demonstrate a potential synthesis process for nitride phosphors suitable for light emitting diodes. PMID:28361999

  2. Synthesis of Sr2Si5N8:Ce3+ phosphors for white LEDs via an efficient chemical deposition

    NASA Astrophysics Data System (ADS)

    Yang, Che-Yuan; Som, Sudipta; Das, Subrata; Lu, Chung-Hsin

    2017-03-01

    Novel chemical vapor deposition (CVD) process was successfully developed for the growth of Sr2Si5N8:Ce3+ phosphors with elevated luminescent properties. Metallic strontium was used as a vapor source for producing Sr3N2 vapor to react with Si3N4 powder via a homogeneous gas-solid reaction. The phosphors prepared via the CVD process showed high crystallinity, homogeneous particle size ranging from 8 to 10 μm, and high luminescence properties. In contrast, the phosphors prepared via the conventional solid-state reaction process exhibited relative low crystallinity, non-uniform particle size in the range of 0.5-5 μm and relatively lower luminescent properties than the phosphors synthesized via the CVD process. Upon the blue light excitation, Sr2-xCexSi5N8 phosphors exhibited a broad yellow band. A red shift of the emission band from 535 to 556 nm was observed with the increment in the doping amount of Ce3+ ions from x = 0.02 to x = 0.10. The maximum emission was observed at x = 0.06, and the external and internal quantum efficiencies were calculated to be 51% and 71%, respectively. Furthermore, the CVD derived optimum Sr1.94Ce0.06Si5N8 phosphor exhibited sufficient thermal stability for blue-LEDs and the activation energy was calculated to be 0.33 eV. The results demonstrate a potential synthesis process for nitride phosphors suitable for light emitting diodes.

  3. Identification, isolation, and synthesis of seven novel impurities of anti-diabetic drug Repaglinide.

    PubMed

    Kancherla, Prasad; Keesari, Srinivas; Alegete, Pallavi; Khagga, Mukkanti; Das, Parthasarathi

    2018-01-01

    Seven unknown impurities in Repaglinide bulk drug batches at below 0.1% (ranging from 0.05 to 0.10%) were detected by an ultra-performance liquid chromatographic (UPLC) method. These impurities were isolated from the crude sample of Repaglinide using preparative high performance liquid chromatography (prep-HPLC). Based on liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI/MS) study, the chemical structures of seven new impurities (8, 9, 10, 11, 13, 14, and 16) were presumed and characterized as 4-(cyanomethyl)-2-ethoxybenzoic acid (8), 4-(cyanomethyl)-2-ethoxy-N-(3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl)benzamide (9), 4-(2-amino-2-oxoethyl)-2-ethoxy-N-(3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl) benzamide (10) and 2-(3-ethoxy-4-((3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl) carbamoyl) phenyl) acetic acid (11) and 4-(cyanomethyl)-N-cyclohexyl-2-ethoxybenzamide (13), 2-(4-(cyclohexylcarbamoyl)-3-ethoxyphenyl) acetic acid (14) and N-cyclohexyl-4-(2-(cyclohexylamino)-2-oxoethyl)-2-ethoxybenzamide (16). The complete spectral analysis, proton nuclear magnetic resonance ( 1 H NMR), 13 C NMR, MS, and infrared (IR) confirmed the proposed chemical structures of impurities. Identification, structural characterization, formation, and their synthesis was first reported in this study. The impurity 11 was crystallized and structure was solved by single crystal X-ray diffraction. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. A new molybdenum nitride catalyst with rhombohedral MoS 2 structure for hydrogenation applications

    DOE PAGES

    Wang, Shanmin; Ge, Hui; Sun, Shouli; ...

    2015-03-23

    Here, nitrogen–rich transition–metal nitrides hold great promise to be the next–generation catalysts for clean and renewable energy applications. However, incorporation of nitrogen into the crystalline lattices of transition metals is thermodynamically unfavorable at atmospheric pressure; most of the known transition metal nitrides are nitrogen–deficient with molar ratios of N : metal less than a unity. In this work, we have formulated a high–pressure route for the synthesis of a nitrogen–rich molybdenum nitride through a solid–state ion–exchange reaction. The newly discovered nitride, 3R–MoN 2, adopts a rhombohedral R3m structure, isotypic with MoS 2. This new nitride exhibits catalytic activities that aremore » three times more active than the traditional catalyst MoS 2 for the hydrodesulfurization of dibenzothiophene and more than twice higher in the selectivity to hydrogenation. The nitride is also catalytically active in sour methanation of syngas with >80% CO and H 2 conversion at 723 K. Our formulated route for the synthesis of 3R–MoN 2 is at a moderate pressure of 3.5 GPa and is thus feasible for industrial–scale catalyst production.« less

  5. A new molybdenum nitride catalyst with rhombohedral MoS2 structure for hydrogenation applications.

    PubMed

    Wang, Shanmin; Ge, Hui; Sun, Shouli; Zhang, Jianzhong; Liu, Fangming; Wen, Xiaodong; Yu, Xiaohui; Wang, Liping; Zhang, Yi; Xu, Hongwu; Neuefeind, Joerg C; Qin, Zhangfeng; Chen, Changfeng; Jin, Changqin; Li, Yongwang; He, Duanwei; Zhao, Yusheng

    2015-04-15

    Nitrogen-rich transition-metal nitrides hold great promise to be the next-generation catalysts for clean and renewable energy applications. However, incorporation of nitrogen into the crystalline lattices of transition metals is thermodynamically unfavorable at atmospheric pressure; most of the known transition metal nitrides are nitrogen-deficient with molar ratios of N:metal less than a unity. In this work, we have formulated a high-pressure route for the synthesis of a nitrogen-rich molybdenum nitride through a solid-state ion-exchange reaction. The newly discovered nitride, 3R-MoN2, adopts a rhombohedral R3m structure, isotypic with MoS2. This new nitride exhibits catalytic activities that are three times more active than the traditional catalyst MoS2 for the hydrodesulfurization of dibenzothiophene and more than twice as high in the selectivity to hydrogenation. The nitride is also catalytically active in sour methanation of syngas with >80% CO and H2 conversion at 723 K. Our formulated route for the synthesis of 3R-MoN2 is at a moderate pressure of 3.5 GPa and, thus, is feasible for industrial-scale catalyst production.

  6. Thermally Induced Denitrogenative Annulation for the Synthesis of Dihydroquinolinimines and Chroman-4-imines.

    PubMed

    Chou, Chih-Hung; Chen, Ying-Yu; Rajagopal, Basker; Tu, Hsiu-Chung; Chen, Kuan-Lin; Wang, Sheng-Fu; Liang, Chien-Fu; Tyan, Yu-Chang; Lin, Po-Chiao

    2016-03-04

    A rapid growth in synthetic methods for the preparation of diverse organic molecules using N-sulfonyl-1,2,3-triazoles is of great interest in organic synthesis. Transition metals are generally used to activate the α-imino diazo intermediates. Metal-free methods have not been studied in detail, but can be a good complement to transition metal catalysis in the mild reaction conditions. We herein report a novel method for the preparation of 2,3-dihydroquinolin-4-imine and chroman-4-imine analogs from their corresponding N-sulfonyl-1,2,3-triazoles in the absence of metal catalysts. To achieve intramolecular annulation, the introduction of an electron-donating group is required at the meta position of N-sulfonyl-1,2,3-triazole methyl anilines. The inclusion of tailored substituents on the aniline moieties and nitrogen atoms enhances the nucleophilicity of the phenyl π-electrons, thus allowing them to undergo a Friedel-Crafts-type reaction with the highly electrophilic ketenimines. This metal-free method was carefully optimized to generate a variety of dihydroquinolin-4-imines and chroman-4-imines in moderate-to-good yields. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis and Mesomorphic Behavior of Poly((2S, 3S)-(+)-2-Chloro-3- Methylpentyl 4’-(Omega-Vinyloxyalkyloxy)biphenyl-4-Carboxylate)s with Ethyl and Propyl Alkyl Groups

    DTIC Science & Technology

    1994-06-30

    1 . Synthesis of (2S, 3S)-(+)-2-chloro-3-methyl-pentyl 4’-(2-vinyloxyethyloxy) biphenyl-4-carboxylate (15-2...CH2)2-),7.65 (d, 3=8.3Hz, 2 ArH, m to -COO-), 8.11 (d, J=7.4Hz, 2 ArH, o to -COO-). 3-Chloroprop~yl- 1 -vinyl ether (13-3) The mixture of 3- chloropropan ...VA .% fo - " A’* *i f’. - % .oL.,ae- a * 1 nOl-6..io. Ocw. ’•.1ý’ ..a.. :l•t :...•.t ;,,31 -. 1 " 1 . 2 . 10 1 -- Of , • l 0’ i’*J.. e t *no suaqetg

  8. Synthesis and conformation analysis of 3-substituted derivatives of 1H,3H-pyrido[2,3-d] pyrimidin-4-one of expected depressive nervous system. Part III.

    PubMed

    Chodkowski, Andrzej; Herold, Franciszek; Kleps, Jerzy

    2004-01-01

    Four series of new 1-aryl (heteroaryl) piperazinylacetyl derivatives of 1H,3H-pyrido[2,3-d] pyrimidin-4-one VIIa-o were synthesised. Substrates for the synthesis of VIa-d were obtained from the respective 3H-pyrido[2.3-d]pyrimidines IVa-d in the reaction with NaBH4. Compounds VIa-d were prepared by chloroacetylation. The obtained 1-chloroacetyl derivatives in the reaction with respective aryl (heteroaryl) piperazine formed 1-aminoacetyl derivatives of 2-phenyl-1 H.3H-pyrido[2.3-d]pyrimidin-4-one compounds VII1a-n. The structure ol compounds was analysed by 1H, 13C NMR spectroscopy.

  9. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats.

    PubMed

    Domenichiello, Anthony F; Chen, Chuck T; Trepanier, Marc-Olivier; Stavro, P Mark; Bazinet, Richard P

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain.

  10. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats[S

    PubMed Central

    Domenichiello, Anthony F.; Chen, Chuck T.; Trepanier, Marc-Olivier; Stavro, P. Mark; Bazinet, Richard P.

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain. PMID:24212299

  11. [Effect of fruit and vegetable juices on the changes in the production of carcinogenic N-nitroso compounds in human gastric juice].

    PubMed

    Ilńitskiĭ, A P; Iurchenko, V A

    1993-01-01

    The study was made of the effect of apple, grapefruit, orange and beet juices on in vitro formation of N-nitrosodimethylamine (NDMA) from sodium nitrite and amidopirin in human gastric juice (GJ). Experimental samples of GJ from outpatients attending the outpatient department of the AMS Cancer Research Center were used. The patients had various forms of gastritis and gastric cancer. It was found that fruit and beet juices may inhibit or enhance NDMA formation depending on the GJ composition, pH in particular. In acid medium (pH-1.3-3.4) there was a trend to inhibition of NDMA synthesis, while in neutral and alkaline (pH = 7.4-8.5) medium NDMA synthesis is activated. Practical implications of the findings are discussed.

  12. N-methyldiethanolamine: a multifunctional structure-directing agent for the synthesis of SAPO and AlPO molecular sieves.

    PubMed

    Wang, Dehua; Tian, Peng; Fan, Dong; Yang, Miao; Gao, Beibei; Qiao, Yuyan; Wang, Chan; Liu, Zhongmin

    2015-05-01

    In the present study, N-methyldiethanolamine (MDEA) is demonstrated to be a multifunctional structure-directing agent for the synthesis of aluminophosphate-based molecular sieves. Four types of molecular sieves, including SAPO-34, -35, AlPO-9 and -22, are for the first time acquired with MDEA as a novel template. The phase selectivity of the present synthesis is found to be condition-dependent. SAPO-34 (CHA) crystallizes from a conventional hydrothermal system with a higher MDEA concentration. When using MDEA as both the template and solvent, pure SAPO-35 (LEV) is obtained from the synthetic gel with a high P2O5/Al2O3 ratio of (2-3), in which the concentration of MDEA could be varied in a wide range. AlPO-9 and AlPO-22 (AWW) are synthesized under the similar conditions to SAPO-35, except without the addition of Si source. The physicochemical properties of the obtained samples are investigated by XRD, XRF, SEM, N2 physisorption, TG-DSC, and various NMR spectra ((13)C, (29)Si, (27)Al and (31)P). Both SAPO-34 and SAPO-35 show good thermal stability, large surface area, and high pore volume. The catalytic performance of SAPO-34 is evaluated by the methanol-to-olefins (MTO) reaction and a good (C2H4+C3H6) selectivity of 82.7% has been achieved. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Translesion synthesis DNA polymerases promote error-free replication through the minor-groove DNA adduct 3-deaza-3-methyladenine.

    PubMed

    Yoon, Jung-Hoon; Roy Choudhury, Jayati; Park, Jeseong; Prakash, Satya; Prakash, Louise

    2017-11-10

    N3-Methyladenine (3-MeA) is formed in DNA by reaction with S -adenosylmethionine, the reactive methyl donor, and by reaction with alkylating agents. 3-MeA protrudes into the DNA minor groove and strongly blocks synthesis by replicative DNA polymerases (Pols). However, the mechanisms for replicating through this lesion in human cells remain unidentified. Here we analyzed the roles of translesion synthesis (TLS) Pols in the replication of 3-MeA-damaged DNA in human cells. Because 3-MeA has a short half-life in vitro , we used the stable 3-deaza analog, 3-deaza-3-methyladenine (3-dMeA), which blocks the DNA minor groove similarly to 3-MeA. We found that replication through the 3-dMeA adduct is mediated via three different pathways, dependent upon Polι/Polκ, Polθ, and Polζ. As inferred from biochemical studies, in the Polι/Polκ pathway, Polι inserts a nucleotide (nt) opposite 3-dMeA and Polκ extends synthesis from the inserted nt. In the Polθ pathway, Polθ carries out both the insertion and extension steps of TLS opposite 3-dMeA, and in the Polζ pathway, Polζ extends synthesis following nt insertion by an as yet unidentified Pol. Steady-state kinetic analyses indicated that Polι and Polθ insert the correct nt T opposite 3-dMeA with a much reduced catalytic efficiency and that both Pols exhibit a high propensity for inserting a wrong nt opposite this adduct. However, despite their low fidelity of synthesis opposite 3-dMeA, TLS opposite this lesion replicates DNA in a highly error-free manner in human cells. We discuss the implications of these observations for TLS mechanisms in human cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Neutral Fe(IV) alkylidenes, including some that bind dinitrogen.

    PubMed

    Lindley, Brian M; Jacobs, Brian P; MacMillan, Samantha N; Wolczanski, Peter T

    2016-03-11

    Neutral, formally Fe(IV) alkylidene species are sought as plausible olefin metathesis catalysts, and the synthesis of several is described herein. The complexes are prepared via nucleophilic attack (Nu = MeLi, PhCH2K, 2-picolyllithium, Me2PCH2Li, MePhPCH2Li, Ph2PCH2Li) at the imine of cationic [mer-{κ-C,N,C-(C6H4-yl)-2-CH=N(2-C6H4-C(iPr)=)}Fe(PMe3)3][B(3,5-CF3-C6H3)4]. In contrast, MeMgCl and mesityllithium displaced and deprotonated bound PMe3, respectively. Structural details are provided for mer-{κ-C,N,C-(C6H4-yl)-2-CH(Bn)N(2-C6H4-C(iPr))}Fe{trans-(PMe3)2}N2 and {κ-C,N,C,P-(C6H4-yl)-2-CH(CH2PMe2)N(2-C6H4-C(iPr)=)}Fe(PMe3)2.

  15. Mechanisms whereby insulin increases diacylglycerol in BC3H-1 myocytes.

    PubMed Central

    Farese, R V; Cooper, D R; Konda, T S; Nair, G; Standaert, M L; Davis, J S; Pollet, R J

    1988-01-01

    We previously suggested that insulin increases diacylglycerol (DAG) in BC3H-1 myocytes, both by increases in synthesis de novo of phosphatidic acid (PA) and by hydrolysis of non-inositol-containing phospholipids, such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE). We have now evaluated these insulin effects more thoroughly, and several potential mechanisms for their induction. In studies of the effect on PA synthesis de novo, insulin stimulated [2-3H]glycerol incorporation into PA, DAG, PC/PE and total glycerolipids of BC3H-1 myocytes, regardless of whether insulin was added simultaneously with, or after 2 h or 3 or 10 days of prelabelling with, [2-3H]glycerol. In prelabelled cells, time-related changes in [2-3H]glycerol labelling of DAG correlated well with increases in DAG content: both were maximal in 30-60 s and persisted for 20-30 min. [2-3H]Glycerol labelling of glycerol 3-phosphate, on the other hand, was decreased by insulin, presumably reflecting increased utilization for PA synthesis. Glycerol 3-phosphate concentrations were 0.36 and 0.38 mM before and 1 min after insulin treatment, and insulin effects could not be explained by increases in glycerol 3-phosphate specific radioactivity. In addition to that of [2-3H]glycerol, insulin increased [U-14C]glucose and [1,2,3-3H]glycerol incorporation into DAG and other glycerolipids. Effects of insulin on [2-3H]glycerol incorporation into DAG and other glycerolipids were half-maximal and maximal at 2 nM- and 20 nM-insulin respectively, and were not dependent on glucose concentration in the medium, extracellular Ca2+ or protein synthesis. Despite good correlation between [3H]DAG and DAG content, calculated increases in DAG content from glycerol 3-phosphate specific radioactivity (i.e. via the pathway of PA synthesis de novo) could account for only 15-30% of the observed increases in DAG content. In addition to increases in [3H]glycerol labelling of PC/PE, insulin rapidly (within 30 s) increased PC/PE labelling by [3H]arachidonic acid, [3H]myristic acid, and [14C]choline. Phenylephrine, ionophore A23187 and phorbol esters did not increase [2-3H]glycerol incorporation into DAG or other glycerolipids in 2-h-prelabelling experiments; thus activation of the phospholipase C which hydrolyses phosphatidylinositol, its mono- and bis-phosphate, Ca2+ mobilization, and protein kinase C activation, appear to be ruled out as mechanisms to explain the insulin effect on synthesis de novo of PA, DAG and PC.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3146971

  16. Synthesis of 2-Amino-3-hydroxy-3H-indoles via Palladium-Catalyzed One-Pot Reaction of Isonitriles, Oxygen, and N-Tosylhydrazones Derived from 2-Acylanilines.

    PubMed

    Chu, Haoke; Dai, Qiang; Jiang, Yan; Cheng, Jiang

    2017-08-04

    A cyanide-free one-pot procedure was developed to access 2-amino-3-hydroxy-3H-indoles, which involved: (1) in situ formation of ketenimines by the reaction of N'-(1-(2-aminophenyl)ethylidene)-p-tosylhydrazones with isonitriles; (2) the intramolecular nucleophilic attack of ketenimines by the amino in phenyl furnishing the ring closure leading to 2-aminoindoles; (3) the oxidation of 2-aminoindoles by O 2 leading to 2-amino-3-hydroxy-3H-indoles. This strategy represents not only a key compliment to the sporadic synthetic methods toward 2-amino-3-hydroxy-3H-indoles but also progress in N-tosylhydrazone, isonitrile, and ketenimine chemistry.

  17. N1-Alkylated 3,4-dihydropyrimidine-2(1H)-ones: Convenient one-pot selective synthesis and evaluation of their calcium channel blocking activity.

    PubMed

    Singh, Kamaljit; Arora, Divya; Poremsky, Elizabeth; Lowery, Jazmyne; Moreland, Robert S

    2009-05-01

    It has been found that selective N1-alkylation of 3,4-dihydropyrimidine-2(1H)-ones can be achieved under solvent-less, mild phase transfer catalytic (PTC) conditions with tetrabutylammonium hydrogen sulfate and 50% aqueous NaOH as the catalyst and base, respectively. The procedure is tolerant to substitutional variation at key diversity points on the pyrimidinone moiety.

  18. Rhenium(V) Oxo Complexes of Novel N(2)S(2) Dithiourea (DTU) Chelate Ligands: Synthesis and Structural Characterization.

    PubMed

    Lipowska, Malgorzata; Hayes, Brittany L.; Hansen, Lory; Taylor, Andrew; Marzilli, Luigi G.

    1996-07-03

    The compounds RNHC(=S)NH(CH(2))(n)()NHC(=S)NHR were prepared in a search for new, relatively small N(2)S(2) ligands. These dithiourea (DTU) ligands are the first chelates containing two potentially bidentate thiourea moieties. A one-step reaction of 1,3-diaminopropane (1) with aryl or alkyl isothiocyanates or of 1,2-diaminoethane (2) with phenyl isothiocyanate afforded the target ligands in excellent yields (95-98%). The Re(V)=O complexes of RNHC(=S)NH(CH(2))(3)NHC(=S)NHR ligands were obtained through ligand exchange reactions with Re(V) precursors. The chemistry required neither protection of the sulfur atoms for ligand synthesis nor deprotection prior to metal complexation. The structure of (1-phenyl-3-(3-phenylthioureido)propyl]thioureato)oxorhenium(V) (7a), determined by X-ray diffraction methods, revealed the expected pseudo-square-pyramidal geometry with an N(2)S(2) basal and an apical oxo donor set. Both coordinated N's (N(c)) were deprotonated. One uncoordinated N (N(u)) was deprotonated, producing a neutral complex containing an unexpected new type of dianionic, four-membered N,S chelate. In the crystal, the N(u) atoms, N(3)H and N(4), of one complex each formed an H-bond with N(4) and N(3)H, respectively, of a symmetry-related complex. The N(c)-C-S bond angles (106.1(6) and 101.5(6) degrees ) were severely distorted from the 120 degrees expected for an sp(2)-hybridized C. However, these small bite angles and the large N-Re-N bond angle (86.1(3) degrees ) allowed for the formation of two four-membered chelate rings with normal Re-N and Re-S bond distances. Attempts to prepare complexes with the PhNHC(=S)NH(CH(2))(2)NHC(=S)NHPh ligand were unsuccessful. These results suggest that a central five-membered chelate ring is too small to accommodate bidentate coordination of both thiourea moieties. NMR studies in methanol established that the neutral complex with one uncoordinated N deprotonated was the favored form in neutral and basic solutions. However, under acidic conditions, a cationic form with both uncoordinated N's protonated was favored.

  19. Transition metal-free one-pot cascade synthesis of 7-oxa-2-azatricyclo[7.4.0.0(2,6)]trideca-1(9),10,12-trien-3-ones from biomass-derived levulinic acid under mild conditions.

    PubMed

    Jha, Amitabh; Naidu, Ajaya B; Abdelkhalik, Ashraf M

    2013-11-21

    An efficient, environmentally benign, transition-metal free, tandem C-N, C-O bond formation reaction is developed for the synthesis of tricyclic 7-oxa-2-azatricyclo[7.4.0.0(2,6)]trideca-1(9),10,12-trien-3-ones and their homologs from easily available starting materials, including renewable levulinic acid, a keto acid. The reaction of keto acids with methyl chloroformate and variously substituted o-aminobenzyl alcohols using triethylamine as a base in toluene at room temperature gave good to excellent yields. This newly developed protocol was successfully utilized for the synthesis of a variety of polycyclic 7-oxa-2-azatricyclo[7.4.0.0(2,6)]trideca-1(9),10,12-trien-3-ones and related compounds.

  20. Soil N transformations and its controlling factors in temperate grasslands in China: A study from 15N tracing experiment to literature synthesis

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Wang, Liang; Feng, Xiaojuan; Hu, Huifeng; Cai, Zucong; Müller, Christoph; Zhang, Jinbo

    2016-12-01

    Temperate grasslands in arid and semiarid regions cover about 40% of the total land area in China. So far, only a few studies have studied the N transformations in these important ecosystems. In the present study, soil gross N transformation rates in Inner Mongolia temperate grasslands in China were determined using a 15N tracing experiment and combined with a literature synthesis to identify the soil N transformation characteristics and their controlling factors in a global perspective. Our results showed that the rates of gross N mineralization and immobilization NH4+ were significantly lower, while autotrophic nitrification rates were significantly higher in Chinese temperate grassland soils compared to other regions in the world. In particular, the primary mineral N consumption processes, i.e., immobilization of NO3- and NH4+, and dissimilatory nitrate reduction to ammonium, were on average much lower in temperate grassland soils in China, compared to other temperate grassland regions. The reduced heterotrophic activity and microbial growth associated with lower soil organic carbon and arid climate (e.g., mean annual precipitation) were identified as the main factors regulating soil N cycling in the studied regions in China. To restrict NO3- accumulation and associated high risks of N losses in these arid and semiarid ecosystems in China, it is important to develop the regimes of soil organic C and water management that promote the retention of N in these grassland ecosystems.

  1. A facile synthesis of pyrrolo[2,3-b]quinolines via a Rh(I)-catalyzed carbodiimide-Pauson-Khand-type reaction.

    PubMed

    Saito, Takao; Furukawa, Naoki; Otani, Takashi

    2010-03-07

    A new straightforward synthetic method for 2,3-dihydro-1H-pyrrolo[2,3-b]quinolin-2-ones via a [RhCl(CO)(2)](2)-dppp catalyzed Pauson-Khand-type reaction of N-[2-(2-alkyn-1-yl)phenyl]carbodiimides is reported.

  2. Synthesis, characterization stereochemistry and anti-bacterial evaluation of certain N-acyl-c-3,t-3-dimethyl-r-2,c-6-diphenylpiperidin-4-ones

    NASA Astrophysics Data System (ADS)

    Ponnuswamy, S.; Kayalvizhi, R.; Jamesh, M.; Uma Maheswari, J.; Thenmozhi, M.; Ponnuswamy, M. N.

    2016-09-01

    A new series of N-acyl-c-3,t-3-dimethyl-r-2,c-6-diphenylpiperidin-4-ones 2-6 has been synthesized and characterized using IR, mass, 1H, 13C, DEPT and 2D (COSY and HSQC) NMR spectral techniques. The NMR spectral data indicate that the N-acylpiperidin-4-ones 2-6 prefer to exist in a distorted boat conformation B1 with coplanar orientation of N-C=O moiety. The stereodynamics of these systems have been studied by recording the dynamic 1H NMR spectra of compound 4, and the energy barrier for N-CO rotation is determined to be 52.75 kJ/mol. Furthermore the compounds 1-5 show significant antibacterial activity.

  3. Synthesis of novel ganglioside GM4 analogues containing N-deacetylated and lactamized sialic acid: probes for searching new ligand structures for human L-selectin.

    PubMed

    Otsubo, N; Ishida, H; Kiso, M

    2001-01-15

    Novel ganglioside GM4 analogues, which contain N-deacetylated or lactamized sialic acid instead of usual N-acetylneuraminic acid, were synthesized in a highly efficient manner. (Methyl 4,7,8,9-tetra-O-acetyl-3,5-dideoxy-5-trifluoroacetamido-D-glycero-alpha-D-galacto-2-nonulopyranosylonate)-(2-->3)-4,6-di-O-acetyl-2-O-benzoyl-D-galactopyranosyl trichloroacetimidate was coupled with 2-(tetradecyl)hexadecanol to give the desired beta-glycoside in high yield. Successive O- and N-deacylation, and saponification of the methyl ester group afforded the N-deacetylated sialyl derivative that was converted by treatment with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride in Me2SO into the lactamized sialic acid-containing ganglioside GM4 analogue.

  4. Aβ-Induced Insulin Resistance and the Effects of Insulin on the Cholesterol Synthesis Pathway and Aβ Secretion in Neural Cells.

    PubMed

    Najem, Dema; Bamji-Mirza, Michelle; Yang, Ze; Zhang, Wandong

    2016-06-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) toxicity, tau pathology, insulin resistance, neuroinflammation, and dysregulation of cholesterol homeostasis, all of which play roles in neurodegeneration. Insulin has polytrophic effects on neurons and may be at the center of these pathophysiological changes. In this study, we investigated possible relationships among insulin signaling and cholesterol biosynthesis, along with the effects of Aβ42 on these pathways in vitro. We found that neuroblastoma 2a (N2a) cells transfected with the human gene encoding amyloid-β protein precursor (AβPP) (N2a-AβPP) produced Aβ and exhibited insulin resistance by reduced p-Akt and a suppressed cholesterol-synthesis pathway following insulin treatment, and by increased phosphorylation of insulin receptor subunit-1 at serine 612 (p-IRS-S612) as compared to parental N2a cells. Treatment of human neuroblastoma SH-SY5Y cells with Aβ42 also increased p-IRS-S612, suggesting that Aβ42 is responsible for insulin resistance. The insulin resistance was alleviated when N2a-AβPP cells were treated with higher insulin concentrations. Insulin increased Aβ release from N2a-AβPP cells, by which it may promote Aβ clearance. Insulin increased cholesterol-synthesis gene expression in SH-SY5Y and N2a cells, including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) through sterol-regulatory element-binding protein-2 (SREBP2). While Aβ42-treated SH-SY5Y cells exhibited increased HMGCR expression and c-Jun phosphorylation as pro-inflammatory responses, they also showed down-regulation of neuro-protective/anti-inflammatory DHCR24. These results suggest that Aβ42 may cause insulin resistance, activate JNK for c-Jun phosphorylation, and lead to dysregulation of cholesterol homeostasis, and that enhancing insulin signaling may relieve the insulin-resistant phenotype and the dysregulated cholesterol-synthesis pathway to promote Aβ release for clearance from neural cells.

  5. N-terminally truncated GADD34 proteins are convenient translation enhancers in a human cell-derived in vitro protein synthesis system.

    PubMed

    Mikami, Satoshi; Kobayashi, Tominari; Machida, Kodai; Masutani, Mamiko; Yokoyama, Shigeyuki; Imataka, Hiroaki

    2010-07-01

    Human cell-derived in vitro protein synthesis systems are useful for the production of recombinant proteins. Productivity can be increased by supplementation with GADD34, a protein that is difficult to express in and purify from E. coli. Deletion of the N-terminal 120 or 240 amino acids of GADD34 improves recovery of this protein from E. coli without compromising its ability to boost protein synthesis in an in vitro protein synthesis system. The use of N-terminally truncated GADD34 proteins in place of full-length GADD34 should improve the utility of human cell-based cell-free protein synthesis systems.

  6. Power and Thermal Technologies for Air and Space - Scientific Research Program. Delivery Order 0020: Advanced Conductors and Thermal Science

    DTIC Science & Technology

    2014-03-01

    4.31. Thermal conductivity of CNT/Carbon foam substrate 4.4.3.3 Post-growth Nickel Coating Plating CNTs/carbon foam samples with nickel provides a...will be necessary to conduct large scale synthesis of textured Ca-Co-O on the amorphous- buffered n-type oxide substrate using sol-gel spin- coating and... Conductors and Thermal Science Evan L. Thomas, Qiuhong N. Zhang, Helen Shen, Serhiy N. Leontsev, John P. Murphy, Jack L. Burke, Lyle Brunke, and

  7. Synthesis of some N-substituted indole derivatives and their biological activities.

    PubMed

    el-Diwani, H; Nakkady, S S; Hishmat, O H; el-Shabrawy, O A; Mahmoud, S S

    1992-03-01

    Acylation of 2,3-diphenyl-5-methoxy-indole using ethyl chloroformate or chloroacetyl chloride in dimethylformamide and sodium hydride yielded the N-substituted derivatives 1 and 2, respectively. While Friedel-Crafts acylation using chloroacetyl chloride afforded di-4,6-chloroacetyl derivative 3, the reaction of the N-chloroacetyl derivative 2 with amines, hydrazines, urea, semicarbazide hydrochloride, thiophenol, benzimidazole-2-thiol, thiosemicarbazide, 2-mercaptoethanol and thioglycolic acid was studied. Several of the compounds were tested for their effect on arterial blood pressure, antiinflammatory and ulcerogenic activities.

  8. Computational screening of a single transition metal atom supported on the C2N monolayer for electrochemical ammonia synthesis.

    PubMed

    Wang, Zhongxu; Yu, Zhigang; Zhao, Jingxiang

    2018-05-09

    The nitrogen reduction reaction (NRR) under ambient conditions using renewable energy is a green and sustainable strategy for the synthesis of NH3, which is one of the most important chemicals and carbon-free carriers. Thus, the search for low-cost, highly efficient, and stable NRR electrocatalysts is critical to achieve this goal. Herein, using comprehensive density functional theory (DFT) computations, we design a new class of NRR electrocatalysts based on a single transition metal (TM) atom supported on the experimentally feasible two-dimensional C2N monolayer (TM@C2N). Based on the computed free energies of each elementary pathway, Mo@C2N is predicted to exhibit the best catalytic activity among the TM@C2N, in which the proton-coupled electron transfer of the NH2* species to NH3(g) is the potential-determining step. Especially, the computed onset potential of the NRR on Mo@C2N is -0.17 V, which is even lower than that for the well-established stepped Ru(0001) surface (-0.43 V). Furthermore, the NRR catalytic performance of these TM@C2N can be well explained by their adsorption strength with N2H* species. Our findings open a new avenue for optimizing the TM catalytic performance for the NRR with the lowest number of metal atoms on porous low-dimensional materials.

  9. Synthesis, modelling, and mu-opioid receptor affinity of N-3(9)-arylpropenyl-N-9(3)-propionyl-3,9-diazabicycl.

    PubMed

    Pinna, G A; Murineddu, G; Curzu, M M; Villa, S; Vianello, P; Borea, P A; Gessi, S; Toma, L; Colombo, D; Cignarella, G

    2000-08-01

    A series of N-3-arylpropenyl-N-9-propionyl-3,9-diazabicyclo[3.3.1]nonanes (1a-g) and of reverted N-3-propionyl-N-9-arylpropenyl isomers (2a-g), as homologues of the previously reported analgesic 3,8-diazabicyclo[3.2.1]octanes (I-II), were synthesized and evaluated for the binding affinity towards opioid receptor subtypes mu, delta and kappa. Compounds 1a-g and 2a-g exhibited a strong selective mu-affinity with Ki values in the nanomolar range, which favourably compared with those of I and II. In addition, contrary to the trend observed for DBO-I, II, the mu-affinity of series 2 is markedly higher than that of the isomeric series 1. This aspect was discussed on the basis of the conformational studies performed on DBN which allowed hypotheses on the mode of interaction of these compounds with the mu receptor.

  10. Synthesis, Crystal Structure, and Luminescent Properties of Ag(I) Coordination Polymer with Tricarboxylic Acid and Flexible N-donor Ligand

    NASA Astrophysics Data System (ADS)

    Lu, J. F.; Xu, Y. H.; Li, P. A.; Jin, L. X.; Zhao, C. B.; Guoand, X. H.; Ge, H. G.

    2017-12-01

    The reaction of AgNO3 with combinations of 1,3-bis(4-pyridyl)propane ( bpp) and 1,3,5-benzenetricarboxylic acid (H3btc) in aqueous alcohol/ammonia at room temperature produces crystals of {[Ag6(H2O)2( bpp)6] · ( btc)2 · 25H2O} n (Ι). Single crystal X-ray diffraction analysis reveals that the complex Ι consists of 1D infinite cationic chains of [Ag( bpp)] n n+ and [Ag(H2O)( bpp)] n n+ which are further linked into the cation layer of [Ag( bpp)] n n+ by Ag···π interactions. The noncoordinated btc 3- serves as template driving surrounding water molecules to aggregate into the anionic water layer. The neighboring anionic water layer and cationic layer were further alternately joined into a 3D sandwich-like framework by hydrogen bonding. In addition, the luminescent properties of Ι were investigated.

  11. Hydrogen bonds directed 2D → 3D interdigitated Cd(II) compound: Synthesis, crystal structure and dual-emission luminescent properties

    NASA Astrophysics Data System (ADS)

    Yu, Yuanyuan

    2017-06-01

    A new Cd(II) compound, namely [Cd2(btc)(phen)2Cl]n·n(H2O)·n(DMA) (1, H3btc = 1, 3, 5-benzenetricarboxylic acid, phen = 1,10-phenanthroline, DMA = N,N'-dimethylacetamide) has been synthesized and structurally characterized by single-crystal X-ray diffraction analysis. This compound crystallizes in monoclinic P21/n space group with a = 13.5729(7) Å, b = 20.1049(7) Å, c = 13.9450(6) Å, β = 104.671(4)°, Z = 4. Single-crystal X-ray diffraction analysis reveals that compound 1 features a 2D → 3D interdigitated framework directed by the intermolecular hydrogen bonds. In addition, the luminescent properties of compound 1 were also investigated in the solid state at room temperature.

  12. Optically active molecular magnets

    NASA Astrophysics Data System (ADS)

    Gruselle, Michel; Malezieux, Bernard; Train, Cyrille; Guyard-Duhayon, Carine; Clement, Rene; Benard, Sophie; Gredin, Patrick; Tonsuaadu, Kaia

    2005-08-01

    We describe the synthesis of two-dimensional {[MnIICrIII(C2O4)3]C} bimetallic networks that include as template cations C stilbazolium salts 4-[4-(N,N-dimethylamino)-α-styryl]-N-alkylpyridinium with alkyl = methyl (DAMS), 4-[4-methoxy- α-styryll-N-isopentylpyridinium (MIPS), and DAZOP, which is a DAMS analogue with the central [C=C] core replaced by an azo N=N] moiety. These networks are obtained in their optically active forms, using the resolved - or Λ- [CrIII(C204)3]3- anionic bricks as chiral-inducing reagents. The UV-visible properties of the networks and their natural circular dichroism (Cotton effects) demonstrate that the MIPS, DAZOP, and DAMS become chiral in [MnIICrIII(C204)3]- anionic matrices. The absolute configurations of the template cations inside the anionic framework depend on the configuration of the starting anionic reagent.

  13. Synthesis and Evaluation of Eight- and Four-membered Iminosugar Analogues as Inhibitors of Testicular Ceramide-specific Glucosyltransferase, Testicular β-Glucosidase 2, and other Glycosidases

    PubMed Central

    Lee, Jae Chul; Francis, Subhashree; Dutta, Dinah; Gupta, Vijayalaxmi; Yang, Yan; Zhu, Jin-Yi; Tash, Joseph S.; Schönbrunn, Ernst

    2012-01-01

    Eight- and four-membered analogues of N-butyldeoxynojirimycin (NB-DNJ), a reversible male contraceptive in mice, were prepared and tested. A chiral pool approach was used for the synthesis of the target compounds. Key steps for the synthesis of the eight-membered analogues involve: ringclosing metathesis and Sharpless asymmetric dihydroxylation, and for the four-membered analogues: Sharpless epoxidation, epoxide ring opening (azide), and Mitsunobu reaction to form the four-membered ring. (3S,4R,5S,6R,7R)-1-Nonylazocane-3,4,5,6,7-pentaol (6), was moderately active against rat-derived ceramide-specific glucosyltransferase and four of the other eight-membered analogues were weakly active against rat-derived β-glucosidase 2. Among the four-membered analogues, ((2R,3s,4S)-3-hydroxy-1-nonylazetidine-2,4-diyl)dimethanol (25), displayed selective inhibitory activity against mouse-derived ceramide-specific glucosyltransferase and was about half as potent as NB-DNJ against the rat-derived enzyme. ((2S,4S)-3-Hydroxy-1-nonyl-azetidine-2,4-diyl)dimethanol (27) was found to be a selective inhibitor of β-glucosidase 2, with potency similar to NB-DNJ. Additional glycosidase assays were performed to identify potential other therapeutic applications. The eight-membered iminosugars exhibited specificity for almond-derived β-glucosidase and the 1-nonylazetidine 25 inhibited α-glucosidase (Saccharomyces cerevisiae) with an IC50 of 600 nM and β-glucosidase (almond) with an IC50 of 20 µM. Only N-nonyl derivatives were active, emphasizing the importance of a long lipophilic side chain for inhibitory activity of the analogues studied. PMID:22432895

  14. Nitrogen-doped graphene catalysts: High energy wet ball milling synthesis and characterizations of functional groups and particle size variation with time and speed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, Shiqiang; Nunna, Bharath Babu; Boscoboinik, Jorge Anibal

    Nitrogen-doped graphene (N-G) catalyst emerges as one of the promising non-platinum group metal (non-PGM) catalysts with the advantages of low cost, high oxygen reduction reaction (ORR) activity, stability, and selectivity to replace expensive PGM catalysts in electrochemical systems. This research investigated nanoscale high energy wet (NHEW) ball milling for the synthesis of N-G catalysts to make conventional problems such as sintering or localized overheating issues negligible. The successful synthesis of N-G catalysts with comparable catalytic performance to 10 wt% Pt/C by using this method has been published. This paper focuses on understanding the effect of grinding speed and grinding timemore » on the particle size and chemical state of N-G catalysts through the physical and chemical characterization. The research result shows that (1) the final particle size, nitrogen doping percentage, and nitrogen bonding composition of synthesized N-G catalysts are predictable and controllable by adjusting the grinding time, the grinding speed, and other relative experimental parameters; (2) the final particle size of N-G catalysts could be estimated from the derived relation between the cracking energy density and the particle size of ground material in the NHEW ball milling process with specified experimental parameters; and (3) the chemical composition of N-G catalysts synthesized by NHEW ball milling is controllable by adjusting the grinding time and grinding speed.« less

  15. Nitrogen-doped graphene catalysts: High energy wet ball milling synthesis and characterizations of functional groups and particle size variation with time and speed

    DOE PAGES

    Zhuang, Shiqiang; Nunna, Bharath Babu; Boscoboinik, Jorge Anibal; ...

    2017-07-26

    Nitrogen-doped graphene (N-G) catalyst emerges as one of the promising non-platinum group metal (non-PGM) catalysts with the advantages of low cost, high oxygen reduction reaction (ORR) activity, stability, and selectivity to replace expensive PGM catalysts in electrochemical systems. This research investigated nanoscale high energy wet (NHEW) ball milling for the synthesis of N-G catalysts to make conventional problems such as sintering or localized overheating issues negligible. The successful synthesis of N-G catalysts with comparable catalytic performance to 10 wt% Pt/C by using this method has been published. This paper focuses on understanding the effect of grinding speed and grinding timemore » on the particle size and chemical state of N-G catalysts through the physical and chemical characterization. The research result shows that (1) the final particle size, nitrogen doping percentage, and nitrogen bonding composition of synthesized N-G catalysts are predictable and controllable by adjusting the grinding time, the grinding speed, and other relative experimental parameters; (2) the final particle size of N-G catalysts could be estimated from the derived relation between the cracking energy density and the particle size of ground material in the NHEW ball milling process with specified experimental parameters; and (3) the chemical composition of N-G catalysts synthesized by NHEW ball milling is controllable by adjusting the grinding time and grinding speed.« less

  16. Design and synthesis of tetranuclear cluster monophosphine-cyclopalladated ferrocenylpyrimidinone complexes from the palladium-catalyzed hydroxylation of chloropyrimidine.

    PubMed

    Xu, Chen; Zhang, Ya-Peng; Wang, Zhi-Qiang; Fu, Wei-Jun; Hao, Xin-Qi; Xu, Yan; Ji, Bao-Ming

    2010-09-28

    Hydroxylation of a monomeric triphenylphosphine-cyclopalladated ferrocenylchloropyrimidine [PdCl{[(eta(5)-C(5)H(5))]Fe[(eta(5)-C(5)H(3))-N(2)C(4)H(2)-Cl]}(PPh(3))] with KOH gave the first example of a tetranuclear cluster monophosphine-palladacycle [Pd{[(eta(5)-C(5)H(5))]Fe[(eta(5)-C(5)H(3))-N(2)C(4)H(2)O]}(PPh(3))](4). Additionally, the analogous tricyclohexylphosphine tetranuclear cluster palladacycle has also been successfully synthesized by the same method.

  17. Two unexpected promiscuous activities of the iron-sulfur protein IspH in production of isoprene and isoamylene.

    PubMed

    Ge, Deyong; Xue, Yanfen; Ma, Yanhe

    2016-05-11

    Bacillus species, possessing the methylerythritol phosphate (MEP) pathway for the synthesis of isoprenoid feedstock, are the highest producers of isoprene among bacteria; however, the enzyme responsible for isoprene synthesis has not been identified. The iron-sulfur protein IspH is the final enzyme of the MEP pathway and catalyses the reductive dehydration of (E)-4-hydroxy-3-methyl-2-butenyl diphosphate (HMBPP) to form isopentenyl diphosphate and dimethylallyl diphosphate (DMAPP). In this study, we demonstrated two unexpected promiscuous activities of IspH from alkaliphilic Bacillus sp. N16-5, which can produce high levels of isoprene. Bacillus sp. N16-5 IspH could catalyse the formation of isoprene from HMBPP and the conversion of DMAPP into a mixture of 2-methyl-2-butene and 3-methyl-1-butene. Both reactions require an electron transfer system, such as that used for HMBPP dehydration. Isoprene and isoamylene synthesis in Bacillus sp. N16-5 was investigated and the reaction system was reconstituted in vitro, including IspH, ferredoxin and ferredoxin-NADP(+)-reductase proteins and NADPH. The roles of specific IspH protein residues were also investigated by site-directed mutagenesis experiments; two variants (H131N and E133Q) were found to have lost the HMBPP reductase activity but could still catalyse the formation of isoprene. Overexpression of IspH H131N in Bacillus sp. N16-5 resulted in a twofold enhancement of isoprene production, and the yield of isoprene from the strain expressing E133Q was increased 300% compared with the wild-type strain. IspH from Bacillus sp. N16-5 is a promiscuous enzyme that can catalyse formation of isoprene and isoamylene. This enzyme, especially the H131N and E133Q variants, could be used for the production of isoprene from HMBPP.

  18. Synthesis and Anti-microbial Activity of Novel Phosphatidylethanolamine-N-amino Acid Derivatives.

    PubMed

    Vijeetha, Tadla; Balakrishna, Marrapu; Karuna, Mallampalli Sri Lakshmi; Surya Koppeswara Rao, Bhamidipati Venkata; Prasad, Rachapudi Badari Narayana; Kumar, Koochana Pranay; Surya Narayana Murthy, Upadyaula

    2015-01-01

    The study involved synthesis of five novel amino acid derivatives of phosphatidylethanolamine isolated from egg yolk lecithin employing a three step procedure i) N-protection of L-amino acids with BOC anhydride in alkaline medium ii) condensation of - CO2H group of N-protected amino acid with free -NH2 of PE by a peptide linkage and iii) deprotection of N-protected group of amino acids to obtain phosphatidylethanolamine-N-amino acid derivatives in 60-75% yield. The five L-amino acids used were L glycine, L-valine, L-leucine, L-isoleucine and L-phenylalanine. The amino acid derivatives were screened for anti-baterial activity against B. subtilis, S. aureus, P. aeroginosa and E. coli taking Streptomycin as reference compound and anti-fungal activity against C. albicans, S. cervisiae, A. niger taking AmphotericinB as reference compound. All the amino acid derivatives exhibited extraordinary anti-bacterial activities about 3 folds or comparable to Streptomycin and moderate or no anti-fungal activity against Amphotericin-B.

  19. Chemical synthesis of hexagonal indium nitride nanocrystallines at low temperature

    NASA Astrophysics Data System (ADS)

    Wang, Liangbiao; Shen, Qianli; Zhao, Dejian; Lu, Juanjuan; Liu, Weiqiao; Zhang, Junhao; Bao, Keyan; Zhou, Quanfa

    2017-08-01

    In this study, hexagonal indium nitride nanocystallines with high crystallinity have been prepared by the reaction of InCl3·4H2O, sulfur and NaNH2 in an autoclave at 160 °C. The crystal structures and morphologies of the obtained InN sample are characterized by X-ray diffraction and scanning electron microscope. As InCl3·4H2O is substituted by In(NO3)3·4.5H2O, InN nanocrystallines could also be obtained by using the similar method. The photoluminescence spectrum shows that the InN emits a broad peak positioned at 2.3 eV.

  20. Study of Synthesis of N-Nitroborazine Compounds. I. Nitryl Chloride as Nitrating Agent.

    DTIC Science & Technology

    dinitrogen tetroxide (N2O4) as the solid complexes of boron trifluoride (BF3). Nearly water-white nitryl chloride was obtained in this manner. A tinge of...yellow was attributed to the presence of chlorine . The reaction of nitryl chloride with a model compound, lithium dimethylamide, was found to yield

Top