Imabayashi, Yuki; Suzuki, Shun'ichi; Kawasaki, Hisashi; Nakamatsu, Tsuyoshi
2016-01-01
For the production of enantiopure β-amino acids, enantioselective resolution of N-acyl β-amino acids using acylases, especially those recognizing N-acetyl-β-amino acids, is one of the most attractive methods. Burkholderia sp. AJ110349 had been reported to exhibit either (R)- or (S)-enantiomer selective N-acetyl-β-Phe amidohydrolyzing activity, and in this study, both (R)- and (S)-enantioselective N-acetyl-β-Phe acylases were purified to be electrophoretically pure and determined the sequences, respectively. They were quite different in terms of enantioselectivities and in their amino acids sequences and molecular weights. Although both the purified acylases were confirmed to catalyze N-acetyl hydrolyzing activities, neither of them show sequence similarities to the N-acetyl-α-amino acid acylases reported thus far. Both (R)- and (S)-enantioselective N-acetyl-β-Phe acylase were expressed in Escherichia coli. Using these recombinant strains, enantiomerically pure (R)-β-Phe (>99% ee) and (S)-β-Phe (>99% ee) were obtained from the racemic substrate.
Takenaka, Shinji; Ozeki, Takahiro; Tanaka, Kosei; Yoshida, Ken-Ichi
2017-11-01
To predict the amino acid residues playing important roles in acetyl-CoA and substrate binding and to study the acetyl group transfer mechanism of Chryseobacterium sp. 5-3B N-acetyltransferase (5-3B NatA). A 3-dimensional homology model of 5-3B NatA was constructed to compare the theoretical structure of this compound with the structures of previously reported proteins belonging to the bacterial GCN5 N-acetyltransferase family. Homology modeling of the 5-3B NatA structure and a characterization of the enzyme's kinetic parameters identified the essential amino acid residues involved in binding and acetyl-group transfer. 126 Leu, 132 Leu, and 135 Lys were implicated in the binding of phosphopantothenic acid, and 100 Tyr and 131 Lys in that of adenosyl biphosphate. The data supported the participation of 83 Glu and 133 Tyr in catalyzing acetyl-group transfer to L-2-phenylglycine. 5-3B NatA catalyzes the enantioselective N-acetylation of L-2-phenylglycine via a ternary complex comprising the enzyme, acetyl-CoA, and the substrate.
1992-01-01
DISTRIBUTION C OOt .APPROVED FOR PUPLIC RELEASE: DISTRIBUTION UNLIMITED Ii. A STRA T (Minls.m200oids N-Acetylated-a- 1 n (’ed acidic dip cpL,2ase (N...aspartate (NAA) and the excitatory amino acid , glutamate (CLU). Although there is evidence that NAAG might be a neurotransmitter, this dipoptide could...Genetics; Itippocampus: E-ctlsatlltmt pilepsy-, Glutamate: N-Acetylated-o-1 inked acidic dipeptidasc-: Enrniatic: IIrosz:NAAG: Aspartalc N-Acetylated-a
Yow, Geok-Yong; Uo, Takuma; Yoshimura, Tohru; Esaki, Nobuyoshi
2006-03-01
Saccharomyces cerevisiae is sensitive to D-amino acids: those corresponding to almost all proteinous L-amino acids inhibit the growth of yeast even at low concentrations (e.g. 0.1 mM). We have determined that D-amino acid-N-acetyltransferase (DNT) of the yeast is involved in the detoxification of D-amino acids on the basis of the following findings. When the DNT gene was disrupted, the resulting mutant was far less tolerant to D-amino acids than the wild type. However, when the gene was overexpressed with a vector plasmid p426Gal1 in the wild type or the mutant S. cerevisiae as a host, the recombinant yeast, which was found to show more than 100 times higher DNT activity than the wild type, was much more tolerant to D-amino acids than the wild type. We further confirmed that, upon cultivation with D-phenylalanine, N-acetyl-D-phenylalanine was accumulated in the culture but not in the wild type and hpa3Delta cells overproducing DNT cells. Thus, D-amino acids are toxic to S. cerevisiae but are detoxified with DNT by N-acetylation preceding removal from yeast cells.
Mahmoudi, Leila; Kissner, Reinhard; Nauser, Thomas; Koppenol, Willem H
2016-05-24
Electrode potentials for aromatic amino acid radical/amino acid couples were deduced from cyclic voltammograms and pulse radiolysis experiments. The amino acids investigated were l-tryptophan, l-tyrosine, N-acetyl-l-tyrosine methyl ester, N-acetyl-3-nitro-l-tyrosine ethyl ester, N-acetyl-2,3-difluoro-l-tyrosine methyl ester, and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester. Conditional potentials were determined at pH 7.4 for all compounds listed; furthermore, Pourbaix diagrams for l-tryptophan, l-tyrosine, and N-acetyl-3-nitro-l-tyrosine ethyl ester were obtained. Electron transfer accompanied by proton transfer is reversible, as confirmed by detailed analysis of the current waves, and because the slopes of the Pourbaix diagrams obey Nernst's law. E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) at pH 7 are 0.99 ± 0.01 and 0.97 ± 0.01 V, respectively. Pulse radiolysis studies of two dipeptides that contain both amino acids indicate a difference in E°' of approximately 0.06 V. Thus, in small peptides, we recommend values of 1.00 and 0.96 V for E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH), respectively. The electrode potential of N-acetyl-3-nitro-l-tyrosine ethyl ester is higher, while because of mesomeric stabilization of the radical, those of N-acetyl-2,3-difluoro-l-tyrosine methyl ester and N-acetyl-2,3,5-trifluoro-l-tyrosine methyl ester are lower than that of tyrosine. Given that the electrode potentials at pH 7 of E°'(Trp(•),H(+)/TrpH) and E°'(TyrO(•),H(+)/TyrOH) are nearly equal, they would be, in principle, interchangeable. Proton-coupled electron transfer pathways in proteins that use TrpH and TyrOH are thus nearly thermoneutral.
Amino acid analyses of Apollo 14 samples.
NASA Technical Reports Server (NTRS)
Gehrke, C. W.; Zumwalt, R. W.; Kuo, K.; Aue, W. A.; Stalling, D. L.; Kvenvolden, K. A.; Ponnamperuma, C.
1972-01-01
Detection limits were between 300 pg and 1 ng for different amino acids, in an analysis by gas-liquid chromatography of water extracts from Apollo 14 lunar fines in which amino acids were converted to their N-trifluoro-acetyl-n-butyl esters. Initial analyses of water and HCl extracts of sample 14240 and 14298 samples showed no amino acids above background levels.
Molecular Characterization of a Novel N-Acetyltransferase from Chryseobacterium sp.
Yoshida, Kenji; Tanaka, Kosei; Yoshida, Ken-ichi
2014-01-01
N-Acetyltransferase from Chryseobacterium sp. strain 5-3B is an acetyl coenzyme A (acetyl-CoA)-dependent enzyme that catalyzes the enantioselective transfer of an acetyl group from acetyl-CoA to the amino group of l-2-phenylglycine to produce (2S)-2-acetylamino-2-phenylacetic acid. We purified the enzyme from strain 5-3B and deduced the N-terminal amino acid sequence. The gene, designated natA, was cloned with two other hypothetical protein genes; the three genes probably form a 2.5-kb operon. The deduced amino acid sequence of NatA showed high levels of identity to sequences of putative N-acetyltransferases of Chryseobacterium spp. but not to other known arylamine and arylalkylamine N-acetyltransferases. Phylogenetic analysis indicated that NatA forms a distinct lineage from known N-acetyltransferases. We heterologously expressed recombinant NatA (rNatA) in Escherichia coli and purified it. rNatA showed high activity for l-2-phenylglycine and its chloro- and hydroxyl-derivatives. The Km and Vmax values for l-2-phenylglycine were 0.145 ± 0.026 mM and 43.6 ± 2.39 μmol · min−1 · mg protein−1, respectively. The enzyme showed low activity for 5-aminosalicylic acid and 5-hydroxytryptamine, which are reported as good substrates of a known arylamine N-acetyltransferase and an arylalkylamine N-acetyltransferase. rNatA had a comparatively broad acyl donor specificity, transferring acyl groups to l-2-phenylglycine and producing the corresponding 2-acetylamino-2-phenylacetic acids (relative activity with acetyl donors acetyl-CoA, propanoyl-CoA, butanoyl-CoA, pentanoyl-CoA, and hexanoyl-CoA, 100:108:122:10:<1). PMID:24375143
Infrared and Raman spectra of N-acetyl- L-amino acid methylamides with aromatic side groups
NASA Astrophysics Data System (ADS)
Matsuura, Hiroatsu; Hasegawa, Kodo; Miyazawa, Tatsuo
Infrared and Raman spectra of N-acetyl- L-phenylalanine methylamide, N-acetyl- L-tyrosine methylamide and N-acetyl- L-tryptophan methylamide, as model compounds of aromatic amino acid residues in proteins, were measured in the solid state and in methanol solutions. Vibrational assignments of the spectra were made by utilizing the deuteration effect and by comparison with the spectra of related compounds which include toluene, p-cresol and 3-methylindole. The amide I, III and IV bands were strong in Raman scattering, but other characteristic amide bands were ill-defined. In the Raman spectra of methanol solutions, only the bands due to the aromatic side group vibrations were markedly observed, but those due to the peptide backbone vibrations were very weak, suggesting the coexistence of various molecular conformations in solution.
NASA Technical Reports Server (NTRS)
Wickramasinghe, N. S.; Lacey, J. C. Jr; Lacey JC, J. r. (Principal Investigator)
1992-01-01
We recently reported that esterification of 5'-AMP with N-acetyl amino acids proceeds with a preference for D-amino acids, and the D/L ratio in products declines as the hydrophobicity of the amino acid declines. Using one amino acid, Ac-Val, we now show that esterification of all four nucleotides proceeds with a preference for the D-isomer and the preference declines as the hydrophobicity of the nucleotide declines. So, in both types of experiments, the preferences seem determined by hydrophobic interactions.
Alexander, Jennifer M; Clark, Joanna L; Brett, Tom J; Stezowski, John J
2002-04-16
In a systematic study of molecular recognition of amino acid derivatives in solid-state beta-cyclodextrin (beta-CD) complexes, we have determined crystal structures for complexes of beta-cyclodextrin/N-acetyl-L-phenylalanine at 298 and 20 K and for N-acetyl-D-phenylalanine at 298 K. The crystal structures for the N-acetyl-L-phenylalanine complex present disordered inclusion complexes for which the distribution of guest molecules at room temperature is not resolvable; however, they can be located with considerable confidence at low temperature. In contrast, the complex with N-acetyl-D-phenylalanine is well ordered at room temperature. The latter complex presents an example of a complex in this series in which a water molecule is included deeply in the hydrophobic torus of the extended dimer host. In an effort to understand the mechanisms of molecular recognition giving rise to the dramatic differences in crystallographic order in these crystal structures, we have examined the intermolecular interactions in detail and have examined insertion of the enantiomer of the D-complex into the chiral beta-CD complex crystal lattice.
Radiolysis of N-acetyl amino acids as model compounds for radiation degradation of polypeptides
NASA Astrophysics Data System (ADS)
Wayne Garrett, R.; Hill, David J. T.; Ho, Sook-Ying; O'Donnell, James H.; O'Sullivan, Paul W.; Pomery, Peter J.
Radiation chemical yields of (i) the volatile radiolysis products and (ii) the trapped free radicals from the y-radiolysis of the N-acetyl derivatives of glycine, L-valine, L-phenylalanine and L-tyrosine in the polycrystalline state have been determined at room temperature (303 K). Carbon dioxide was found to be the major molecular product for all these compounds with G(CO 2) varying from 0.36 for N-acetyl-L-tyrosine to 8 for N-acetyl-L-valine. There was evidence for some scission of the N-C α bond, indicated by the production of acetamide and the corresponding aliphatic acid, but the determination reaction was found to be of much lesser importance than the decarboxylation reaction. A protective effect of the aromatic ring in N-acetyl-L-phenylalanine and in N-acetyl-L-tyrosine was indicated by the lower yields of volatile products for these compounds. The yields of trapped free radicals were found to vary with the nature of the amino acid side chain, increasing with chain length and chain branching. The radical yields were decreased by incorporation of an aromatic moiety in the side chain, this effect being greater for the tyrosyl side chain than for the phenyl side chain. The G(R·) values showed a good correlation with G(CO 2) indicating that a common reaction may be involved in radical production and carbon dioxide formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
More, Chaitali V., E-mail: chaitalimore89@gmail.com; Lokhande, Rajkumar M.; Pawar, Pravina P., E-mail: pravinapawar4@gmail.com
Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σ{sub a,en}) and average atomic energy-absorption cross sections (μ{sub en}/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.
NASA Astrophysics Data System (ADS)
More, Chaitali V.; Lokhande, Rajkumar M.; Pawar, Pravina P.
2016-08-01
Photon attenuation coefficient calculation methods have been widely used to accurately study the properties of amino acids such as n-acetyl-L-tryptophan, n-acetyl-L-tyrosine, D-tryptophan, n-acetyl-L-glutamic acid, D-phenylalanine, and D-threonine. In this study, mass attenuation coefficients (μm) of these amino acids for 0.122-, 0.356-, 0.511-, 0.662-, 0.884-, 1.170, 1.275-, 1.330-MeV photons are determined using the radio-nuclides Co57, Ba133, Cs137, Na22, Mn54, and Co60. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The calculated attenuation coefficient values were then used to determine total atomic cross sections (σt), molar extinction coefficients (ε), electronic cross sections (σe), effective atomic numbers (Zeff), and effective electron densities (Neff) of the amino acids. Theoretical values were calculated based on the XCOM data. Theoretical and experimental values are found to be in a good agreement (error<5%). The variations of μm, σt, ε, σe, Zeff, and Neff with energy are shown graphically. The values of μm, σt, ε, σe are higher at lower energies, and they decrease sharply as energy increases; by contrast, Zeff and Neff were found to be almost constant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cummings, J.; Fedorov, A; Xu, C
The catalytic activities of three members of the amidohydrolase superfamily were discovered using amino acid substrate libraries. Bb3285 from Bordetella bronchiseptica, Gox1177 from Gluconobacter oxidans, and Sco4986 from Streptomyces coelicolor are currently annotated as d-aminoacylases or N-acetyl-d-glutamate deacetylases. These three enzymes are 22-34% identical to one another in amino acid sequence. Substrate libraries containing nearly all combinations of N-formyl-d-Xaa, N-acetyl-d-Xaa, N-succinyl-d-Xaa, and l-Xaa-d-Xaa were used to establish the substrate profiles for these enzymes. It was demonstrated that Bb3285 is restricted to the hydrolysis of N-acyl-substituted derivatives of d-glutamate. The best substrates for this enzyme are N-formyl-d-glutamate (k{sub cat}/K{sub m} =more » 5.8 x 10{sup 6} M{sup -1} s{sup -1}), N-acetyl-d-glutamate (k{sub cat}/K{sub m} = 5.2 x 10{sup 6} M{sup -1} s{sup -1}), and l-methionine-d-glutamate (k{sub cat}/K{sub m} = 3.4 x 10{sup 5} M{sup -1} s{sup -1}). Gox1177 and Sco4986 preferentially hydrolyze N-acyl-substituted derivatives of hydrophobic d-amino acids. The best substrates for Gox1177 are N-acetyl-d-leucine (k{sub cat}/K{sub m} = 3.2 x 104 M{sup -1} s-1), N-acetyl-d-tryptophan (kcat/Km = 4.1 x 104 M-1 s-1), and l-tyrosine-d-leucine (kcat/Km = 1.5 x 104 M-1 s-1). A fourth protein, Bb2785 from B. bronchiseptica, did not have d-aminoacylase activity. The best substrates for Sco4986 are N-acetyl-d-phenylalanine and N-acetyl-d-tryptophan. The three-dimensional structures of Bb3285 in the presence of the product acetate or a potent mimic of the tetrahedral intermediate were determined by X-ray diffraction methods. The side chain of the d-glutamate moiety of the inhibitor is ion-paired to Arg-295, while the {alpha}-carboxylate is ion-paired with Lys-250 and Arg-376. These results have revealed the chemical and structural determinants for substrate specificity in this protein. Bioinformatic analyses of an additional {approx}250 sequences identified as members of this group suggest that there are no simple motifs that allow prediction of substrate specificity for most of these unknowns, highlighting the challenges for computational annotation of some groups of homologous proteins.« less
Acetyl transfer in arylamine metabolism
Booth, J.
1966-01-01
1. N-Hydroxyacetamidoaryl compounds (hydroxamic acids) are metabolites of arylamides, and an enzyme that transfers the acetyl group from these derivatives to arylamines has been found in rat tissues. The reaction products were identified by thin-layer chromatography and a spectrophotometric method, with 4-amino-azobenzene as acetyl acceptor, was used to measure enzyme activity. 2. The acetyltransferase was in the soluble fraction of rat liver, required a thiol for maximum activity and had a pH optimum between 6·0 and 7·5. 3. The soluble fractions of various rat tissues showed decreasing activity in the following order: liver, adrenal, kidney, lung, spleen, testis, heart; brain was inactive. 4. With the exception of aniline and aniline derivatives all the arylamines tested were effective as acetyl acceptors but aromatic compounds with side-chain amino groups were inactive. 5. The N-hydroxyacetamido derivatives of 2-naphthylamine, 4-amino-biphenyl and 2-aminofluorene were active acetyl donors but N-hydroxyacetanilide showed only slight activity. Acetyl-CoA was not a donor. 6. Some properties of the enzyme are compared with those of other acetyltransferases. PMID:5969287
Azuma, Kazuo; Osaki, Tomohiro; Tsuka, Takeshi; Imagawa, Tomohiro; Okamoto, Yoshiharu; Takamori, Yoshimori; Minami, Saburo
2011-01-01
We examined the effects of oral glucosamine hydrochloride (GlcN), N-acetyl-d-glucosamine (GlcNAc) and d-glucose (Glc) administration on plasma total free amino acid (PFAA) concentrations in dogs. The PFAA concentrations increased in the control group and the GlcNAc group at one hour after feeding, and each amino acid concentration increased. On the other hand, in the GlcN group and the Glc group PFAA concentrations decreased at one hour after feeding. A significant decrease in amino acid concentration was observed for glutamate, glycine and alanine. Our results suggest the existence of differences in PFAA dynamics after oral administration of GlcN and GlcNAc in dogs. PMID:21673884
Oxidative peptide /and amide/ formation from Schiff base complexes
NASA Technical Reports Server (NTRS)
Strehler, B. L.; Li, M. P.; Martin, K.; Fliss, H.; Schmid, P.
1982-01-01
One hypothesis of the origin of pre-modern forms of life is that the original replicating molecules were specific polypeptides which acted as templates for the assembly of poly-Schiff bases complementary to the template, and that these polymers were then oxidized to peptide linkages, probably by photo-produced oxidants. A double cycle of such anti-parallel complementary replication would yield the original peptide polymer. If this model were valid, the Schiff base between an N-acyl alpha mino aldehyde and an amino acid should yield a dipeptide in aqueous solution in the presence of an appropriate oxidant. In the present study it is shown that the substituted dipeptide, N-acetyl-tyrosyl-tyrosine, is produced in high yield in aqueous solution at pH 9 through the action of H2O2 on the Schiff-base complex between N-acetyl-tyrosinal and tyrosine and that a great variety of N-acyl amino acids are formed from amino acids and aliphatic aldehydes under similar conditions.
NASA Astrophysics Data System (ADS)
Pizzarello, Sandra; Cooper, George W.
2001-07-01
The varied organic suite extracted from the Murchison meteorite contains several amino acids that are common to the biosphere. Some of these have been found to be non-racemic, but the indigenous nature of their L-enantiomeric excesses has been subject to debate in view of possible terrestrial contamination. We have investigated two amino acids of common terrestrial and meteoritic occurrence, alanine and glutamic acid, and assessed their indigenous enantiomeric ratios in the Murchison and Murray meteorites through the ratios of some of their derivatives. Analyzed were: N-acetyl alanine, ??imino propioacetic acid, N-acetyl glutamic acid and pyroglutamic acid. Both alanine derivatives were found to be racemic, while those of glutamic acid showed L-enantiomeric excesses varying from 16% to 47.2% for pyroglutamic acid, and from 8.6% to 41% for N-acetyl glutamic acid. The ?13C was determined for the two enantiomers of Murchison pyroglutamic acid both before and after acid hydrolysis of the lactam to glutamic acid. The values of +27.7 (D-pyro), +10.0 (L-pyro), +32.2 (D-glu) and +14.6 (L-glu) were obtained. The racemic nature of alanine derivatives strongly suggests that alanine itself, as indigenous to the meteorite, is racemic. The explanation of the L-enantiomeric excesses found for glutamic acid derivatives is less direct; however, the variability of the enantiomeric ratios for these compounds and the distinctly lower ?13C values determined for pyroglutamic L-enantiomer point to a terrestrial contamination, possibly dating to the time of fall.
Mukherjee, J J; Dekker, E E
1987-10-25
Starting with 100 g (wet weight) of a mutant of Escherichia coli K-12 forced to grow on L-threonine as sole carbon source, we developed a 6-step procedure that provides 30-40 mg of homogeneous 2-amino-3-ketobutyrate CoA ligase (also called aminoacetone synthetase or synthase). This ligase, which catalyzes the cleavage/condensation reaction between 2-amino-3-ketobutyrate (the presumed product of the L-threonine dehydrogenase-catalyzed reaction) and glycine + acetyl-CoA, has an apparent molecular weight approximately equal to 85,000 and consists of two identical (or nearly identical) subunits with Mr = 42,000. Computer analysis of amino acid composition data, which gives the best fit nearest integer ratio for each residue, indicates a total of 387 amino acids/subunit with a calculated Mr = 42,093. Stepwise Edman degradation provided the N-terminal sequence of the first 21 amino acids. It is a pyridoxal phosphate-dependent enzyme since (a) several carbonyl reagents caused greater than 90% loss of activity, (b) dialysis against buffer containing hydroxylamine resulted in 89% loss of activity coincident with an 86% decrease in absorptivity at 428 nm, (c) incubation of the apoenzyme with 20 microM pyridoxal phosphate showed a parallel recovery (greater than 90%) of activity and 428-nm absorptivity, and (d) reduction of the holoenzyme with NaBH4 resulted in complete inactivation, disappearance of a new absorption maximum at 333 nm. Strict specificity for glycine is shown but acetyl-CoA (100%), n-propionyl-CoA (127%), or n-butyryl-CoA (16%) is utilized in the condensation reaction. Apparent Km values for acetyl-CoA, n-propionyl-CoA, and glycine are 59 microM, 80 microM, and 12 mM, respectively; the pH optimum = 7.5. Added divalent metal ions or sulfhydryl compounds inhibited catalysis of the condensation reaction.
Hofmann, D; Gehre, M; Jung, K
2003-09-01
In order to identify natural nitrogen isotope variations of biologically important amino acids four derivatization reactions (t-butylmethylsilylation, esterification with subsequent trifluoroacetylation, acetylation and pivaloylation) were tested with standard mixtures of 17 proteinogenic amino acids and plant (moss) samples using GC-C-IRMS. The possible fractionation of the nitrogen isotopes, caused for instance by the formation of multiple reaction products, was investigated. For biological samples, the esterification of the amino acids with subsequent trifluoroacetylation is recommended for nitrogen isotope ratio analysis. A sample preparation technique is described for the isotope ratio mass spectrometric analysis of amino acids from the non-protein (NPN) fraction of terrestrial moss. 14N/15N ratios from moss (Scleropodium spec.) samples from different anthropogenically polluted areas were studied with respect to ecotoxicologal bioindication.
Acetylation contributes to hypertrophy-caused maturational delay of cardiac energy metabolism.
Fukushima, Arata; Zhang, Liyan; Huqi, Alda; Lam, Victoria H; Rawat, Sonia; Altamimi, Tariq; Wagg, Cory S; Dhaliwal, Khushmol K; Hornberger, Lisa K; Kantor, Paul F; Rebeyka, Ivan M; Lopaschuk, Gary D
2018-05-17
A dramatic increase in cardiac fatty acid oxidation occurs following birth. However, cardiac hypertrophy secondary to congenital heart diseases (CHDs) delays this process, thereby decreasing cardiac energetic capacity and function. Cardiac lysine acetylation is involved in modulating fatty acid oxidation. We thus investigated what effect cardiac hypertrophy has on protein acetylation during maturation. Eighty-four right ventricular biopsies were collected from CHD patients and stratified according to age and the absence (n = 44) or presence of hypertrophy (n = 40). A maturational increase in protein acetylation was evident in nonhypertrophied hearts but not in hypertrophied hearts. The fatty acid β-oxidation enzymes, long-chain acyl CoA dehydrogenase (LCAD) and β-hydroxyacyl CoA dehydrogenase (βHAD), were hyperacetylated and their activities positively correlated with their acetylation after birth in nonhypertrophied hearts but not hypertrophied hearts. In line with this, decreased cardiac fatty acid oxidation and reduced acetylation of LCAD and βHAD occurred in newborn rabbits subjected to cardiac hypertrophy due to an aortocaval shunt. Silencing the mRNA of general control of amino acid synthesis 5-like protein 1 reduced acetylation of LCAD and βHAD as well as fatty acid oxidation rates in cardiomyocytes. Thus, hypertrophy in CHDs prevents the postnatal increase in myocardial acetylation, resulting in a delayed maturation of cardiac fatty acid oxidation.
Characterization of a Glucosamine/Glucosaminide N-Acetyltransferase of Clostridium acetobutylicum▿†
Reith, Jan; Mayer, Christoph
2011-01-01
Many bacteria, in particular Gram-positive bacteria, contain high proportions of non-N-acetylated amino sugars, i.e., glucosamine (GlcN) and/or muramic acid, in the peptidoglycan of their cell wall, thereby acquiring resistance to lysozyme. However, muramidases with specificity for non-N-acetylated peptidoglycan have been characterized as part of autolytic systems such as of Clostridium acetobutylicum. We aim to elucidate the recovery pathway for non-N-acetylated peptidoglycan fragments and present here the identification and characterization of an acetyltransferase of novel specificity from C. acetobutylicum, named GlmA (for glucosamine/glucosaminide N-acetyltransferase). The enzyme catalyzes the specific transfer of an acetyl group from acetyl coenzyme A to the primary amino group of GlcN, thereby generating N-acetylglucosamine. GlmA is also able to N-acetylate GlcN residues at the nonreducing end of glycosides such as (partially) non-N-acetylated peptidoglycan fragments and β-1,4-glycosidically linked chitosan oligomers. Km values of 114, 64, and 39 μM were determined for GlcN, (GlcN)2, and (GlcN)3, respectively, and a 3- to 4-fold higher catalytic efficiency was determined for the di- and trisaccharides. GlmA is the first cloned and biochemically characterized glucosamine/glucosaminide N-acetyltransferase and a member of the large GCN5-related N-acetyltransferases (GNAT) superfamily of acetyltransferases. We suggest that GlmA is required for the recovery of non-N-acetylated muropeptides during cell wall rescue in C. acetobutylicum. PMID:21784938
Thiolsubtilisin acts as an acetyltransferase in organic solvents.
Tai, Dar Fu; Liaw, Wen Chen
2002-04-24
The catalytic mechanism of arylamine N-acetyltransferase has been proposed to involve Cys-His-Asp as its catalytic triad. Thiolsubtilisin, a chemically modified enzyme that has a catalytic triad of Cys-His-Asp at the active site, mimics the catalysis of arylamine N-acetyltransferase, serotonin N-acetyltransferase, histone N-acetyltransferase and amino acid N-acetyltransferase. Thiolsubtilisin not only can catalyze amino acid transacetylation, but is also able to catalyze amine transacetylation. Ethyl acetate was used as the acylating reagent to form N-acetyl amino acids and amines in organic solvents with moderate yield. Hence, these findings broaden our understanding of the structural features required for N-acetyltransferases activity as well as provide a structural relationship between cysteine protease and other N-acyltransferases.
Tul'skaya, Elena M; Shashkov, Alexander S; Streshinskaya, Galina M; Potekhina, Natalia V; Evtushenko, Ludmila I
2014-12-01
The structures of the cell wall teichoic acids (TA) from some species of the genus Nocardiopsis were established by chemical and NMR spectroscopic methods. The cell walls of Nocardiopsis synnemataformans VKM Ac-2518(T) and Nocardiopsis halotolerans VKM Ac-2519(T) both contain two TA with unique structures-poly(polyol phosphate-glycosylpolyol phosphate)-belonging to the type IV TA. In both organisms, the minor TA have identical structures: poly(glycerol phosphate-N-acetyl-β-galactosaminylglycerol phosphate) with the phosphodiester bond between C-3 of glycerol and C-4 of the amino sugar. This structure is found for the first time. The major TA of N. halotolerans has a hitherto unknown structure: poly(glycerol phosphate-N-acetyl-β-galactosaminylglycerol phosphate), the N-acetyl-β-galactosamine being acetalated with pyruvic acid at positions 4 and 6. The major TA of N. synnemataformans is a poly(glycerol phosphate-N-acetyl-β-galactosaminylglycerol phosphate) with the phosphodiester bond between C-3 of glycerol and C-3 of the amino sugar. The cell walls of Nocardiopsis composta VKM Ac-2520 and N. composta VKM Ac-2521(T) contain only one TA, namely 1,3-poly(glycerol phosphate) partially substituted with N-acetyl-α-glucosamine. The cell wall of Nocardiopsis metallicus VKM Ac-2522(T) contains two TA. The major TA is 1,5-poly(ribitol phosphate), each ribitol unit carrying a pyruvate ketal group at positions 2 and 4. The structure of the minor TA is the same as that of N. composta. The results presented correlate well with the phylogenetic grouping of strains and confirm the species and strain specific features of cell wall TA in members of the genus Nocardiopsis.
Doll, Mark A.; Zang, Yu; Moeller, Timothy
2010-01-01
Human populations exhibit genetic polymorphism in N-acetylation capacity, catalyzed by N-acetyltransferase 2 (NAT2). We investigated the relationship between NAT2 acetylator genotype and phenotype in cryopreserved human hepatocytes. NAT2 genotypes determined in 256 human samples were assigned as rapid (two rapid alleles), intermediate (one rapid and one slow allele), or slow (two slow alleles) acetylator phenotypes based on functional characterization of the NAT2 alleles reported previously in recombinant expression systems. A robust and significant relationship was observed between deduced NAT2 phenotype (rapid, intermediate, or slow) and N-acetyltransferase activity toward sulfamethazine (p < 0.0001) and 4-aminobiphenyl (p < 0.0001) and for O-acetyltransferase-catalyzed metabolic activation of N-hydroxy-4-aminobiphenyl (p < 0.0001), N-hydroxy-2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (p < 0.01), and N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (p < 0.0001). NAT2-specific protein levels also significantly associated with the rapid, intermediate, and slow NAT2 acetylator phenotypes (p < 0.0001). As a negative control, p-aminobenzoic acid (an N-acetyltransferase 1-selective substrate) N-acetyltransferase activities from the same samples did not correlate with the three NAT2 acetylator phenotypes (p > 0.05). These results clearly document codominant expression of human NAT2 alleles resulting in rapid, intermediate, and slow acetylator phenotypes. The three phenotypes reflect levels of NAT2 protein catalyzing both N- and O-acetylation. Our results suggest a significant role of NAT2 acetylation polymorphism in arylamine-induced cancers and are consistent with differential cancer risk and/or drug efficacy/toxicity in intermediate compared with rapid or slow NAT2 acetylator phenotypes. PMID:20430842
Organic influences on inorganic patterns of diffusion-controlled precipitation in gels
NASA Astrophysics Data System (ADS)
Barge, Laura M.; Nealson, Kenneth H.; Petruska, John
2010-06-01
The well-known AgNO 3/K 2CrO 4 reaction-diffusion system produces periodic bands of silver chromate precipitate in gelatin, but only randomly oriented crystals in agarose gel. We show that comparable bands can be produced in agarose gel by adding small amounts of simple organic acids (e.g., acetic acid, N-acetyl glycine, and N-acetyl alanine) that suppress crystal growth and promote formation of rounded particles of precipitate. These results indicate that α-carboxyl groups of amino acids or short peptides in gelatin under mildly acidic conditions can induce periodic band patterns in diffusion-controlled silver chromate precipitates.
2005-05-01
modifications: peptide N-terminal glutamine to pyroglutamic transformation, oxidation of methionine, acetylation of protein N-terminus, and...or identical with human tripeptidyl peptidase II (TPPII) with a sequence of 1249 amino acids , accession number CAH72179, GI:55661755, derived from the...34In- Gel" Digestion Procedure for the Micropreparation of Internal Protein Fragments for Amino Acid Sequencing. Anal. Biochem., 224, 451-455. Osmulski
Acetylation of aromatic cysteine conjugates by recombinant human N-acetyltransferase 8.
Deol, Reema; Josephy, P David
2017-03-01
1. The mercapturic acid (MA) pathway is a metabolic route for the processing of glutathione conjugates to MA (N-acetylcysteine conjugates). An N-acetyltransferase enzyme, NAT8, catalyzes the transfer of an acetyl group from acetyl-CoA to the cysteine amino group, producing a MA, which is excreted in the urine. We expressed human NAT8 in HEK293T cells and developed an HPLC-MS method for the quantitation of the S-aryl-substituted cysteine conjugates and their MA. 2. We measured the activity of the enzyme for acetylation of benzyl-, 4-nitrobenzyl-, and 1-menaphthylcysteine substrates. 3. NAT8 catalyzed the acetylation of all three cysteine conjugates with similar Michaelis-Menten kinetics.
Rational design of aminoacyl-tRNA synthetase specific for p-acetyl-L-phenylalanine.
Sun, Renhua; Zheng, Heng; Fang, Zhengzhi; Yao, Wenbing
2010-01-01
The Methanococcus jannaschii tRNA(Tyr)/tyrosyl-tRNA synthetase pair has been engineered to incorporate unnatural amino acids into proteins in Escherichia coli site-specifically. In order to add other unnatural amino acids into proteins by this approach, the amino acid binding site of M. jannaschii tyrosyl-tRNA synthetase need to be mutated. The crystal structures of M. jannaschii tyrosyl-tRNA synthetase and its mutations were determined, which provided an opportunity to design aminoacyl-tRNA synthetases specific for other unnatural amino acids. In our study, we attempted to design aminoacyl-tRNA synthetases being able to deliver p-acetyl-L-phenylalanine into proteins. p-Acetyl-L-phenylalanine was superimposed on tyrosyl in M. jannaschii tyrosyl-tRNA synthetase-tyrosine complex. Tyr32 needed to be changed to non-polar amino acid with shorter side chain, Val, Leu, Ile, Gly or Ala, in order to reduce steric clash and provide hydrophobic environment to acetyl on p-acetyl-L-phenylalanine. Asp158 and Ile159 would be changed to specific amino acids for the same reason. So we designed 60 aminoacyl-tRNA synthetases. Binding of these aminoacyl-tRNA synthetases with p-acetyl-L-phenylalanine indicated that only 15 of them turned out to be able to bind p-acetyl-L-phenylalanine with reasonable poses. Binding affinity computation proved that the mutation of Tyr32Leu and Asp158Gly benefited p-acetyl-L-phenylalanine binding. And two of the designed aminoacyl-tRNA synthetases had considerable binding affinities. They seemed to be very promising to be able to incorporate p-acetyl-L-phenylalanine into proteins in E. coli. The results show that the combination of homology modeling and molecular docking is a feasible method to filter inappropriate mutations in molecular design and point out beneficial mutations. Copyright 2009 Elsevier Inc. All rights reserved.
A reexamination of amino acids in lunar soil
NASA Technical Reports Server (NTRS)
Brinton, K. L. F.; Bada, J. L.; Arnold, J. R.
1993-01-01
Amino acids in lunar soils provide an important indicator of the level of prebiotic organic compounds on the moon. The results provide insight into the chemistry of amino acid precursors, and furthermore, given the flux of carbonaceous material to the moon, we can evaluate the survival of organics upon impact. The amino acid contents of both hydrolyzed and unhydrolyzed hot-water extracts of Apollo 17 lunar soil were determined using ophthaldialdehyde/N-acetyl cysteine (OPA/NAC) derivatization followed by HPLC analysis. Previous studies of lunar amino acids were inconclusive, as the technique used (derivatization with ninhydrin followed by HPLC analysis) was unable to discriminate between cosmogenic amino acids and terrestrial contaminants. Cosmogenic amino acids are racemic, and many of the amino acids found in carbonaceous meteorites such as Murchison, i.e., alpha-amino-i-butyric acid (aib), are extremely rare on Earth. The ninhydrin method does not distinguish amino acid enantiomers, nor does it detect alpha-alkyl amino acids such as aib, whereas the OPA/NAC technique does both.
Martínez-Gómez, A I; Andújar-Sánchez, M; Clemente-Jiménez, J M; Neira, J L; Rodríguez-Vico, F; Martínez-Rodríguez, S; Las Heras-Vázquez, F J
2011-11-01
The availability of enzymes with a high promiscuity/specificity relationship permits the hydrolysis of several substrates with a view to obtaining a certain product or using one enzyme for several productive lines. N-Carbamoyl-β-alanine amidohydrolase from Agrobacterium tumefaciens (Atβcar) has shown high versatility to hydrolyze different N-carbamoyl-, N-acetyl- and N-formyl-amino acids to produce different α, β, γ and δ amino acids. We have calculated the promiscuity index for the enzyme, obtaining a value of 0.54, which indicates that it is a modestly promiscuous enzyme. Atβcar presented the highest probability of hydrolysis for N-carbamoyl-amino acids, being the enzyme more efficient for the production of α-amino acids. We have also demonstrated by mutagenesis, modelling, kinetic and binding experiments that W218 and A359 indirectly influence the plasticity of the enzyme due to interaction with the environment of R291, the key residue for catalytic activity. Copyright © 2011 Elsevier B.V. All rights reserved.
Jefferson, Felicia A.; Xiao, Gong H.; Hein, David W.
2009-01-01
Aromatic and heterocyclic amine carcinogens present in the diet and in cigarette smoke induce breast tumors in rats. N-acetyltransferase 1 (NAT1) and N-acetyltransferase 2 (NAT2) enzymes have important roles in their metabolic activation and deactivation. Human epidemiological studies suggest that genetic polymorphisms in NAT1 and/or NAT2 modify breast cancer risk in women exposed to these carcinogens. p-Aminobenzoic acid (selective for rat NAT2) and sulfamethazine (SMZ; selective for rat NAT1) N-acetyltransferase catalytic activities were both expressed in primary cultures of rat mammary epithelial cells. PABA, 2-aminofluorene, and 4-aminobiphenyl N-acetyltransferase and N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine and N-hydroxy-2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline O-acetyltransferase activities were two- to threefold higher in mammary epithelial cell cultures from rapid than slow acetylator rats. In contrast, SMZ (a rat NAT1-selective substrate) N-acetyltransferase activity did not differ between rapid and slow acetylators. Rat mammary cells cultured in the medium supplemented 24 h with 10μM ABP showed downregulation in the N-and O-acetylation of all substrates tested except for the NAT1-selective substrate SMZ. This downregulation was comparable in rapid and slow NAT2 acetylators. These studies clearly show NAT2 acetylator genotype–dependent N- and O-acetylation of aromatic and heterocyclic amine carcinogens in rat mammary epithelial cell cultures to be subject to downregulation by the arylamine carcinogen ABP. PMID:18842621
Enantiomeric Excesses of Acid Labile Amino Acid Precursors of the Murchison Meteorite
NASA Astrophysics Data System (ADS)
Pizzarello, Sandra
1998-10-01
Amino acids present in carbonaceous chondrite are extracted in water in part as free compounds and in approximately equal part as acid labile precursors. On the assumption that they would be free of contamination, the precursors of two Murchison amino acids that have terrestrial occurrence, alanine and glutamic acid, have been targeted for analysis of their enantiomeric ratios. Pyroglutamic acid, the precursor of glutamic acid, was found with an L-enantiomeric excess comparable to that of the free acid, while alanine's precursor, N-acetyl alanine, appears approximately racemic. Also alpha-imino propioacetic acid, a proposed end product of alanine synthesis in the meteorite, was analyzed and found racemic.
Enantiomeric Excesses of Acid Labile Amino Acid Precursors of the Murchison Meteorite
NASA Technical Reports Server (NTRS)
Pizzarello, Sandra
1998-01-01
Amino acids present in carbonaceous chondrite are extracted in water in part as free compounds and in approximately equal part as acid labile precursors. On the assumption that they would be free of contamination, the precursors of two Murchison amino acids that have terrestrial occurrence, alanine and glutamic acid, have been targeted for analysis of their enantiomeric ratios. Pyroglutamic acid, the precursor of glutamic acid, was found with an L-enantiomeric excess comparable to that of the free acid, while alanine's precursor, N-acetyl alanine, appears approximately racemic. Also alpha-imino propioacetic acid, a proposed end product of alanine synthesis in the meteorite, was analyzed and found racemic.
Mutations in ACY1, the Gene Encoding Aminoacylase 1, Cause a Novel Inborn Error of Metabolism
Sass, Jörn Oliver; Mohr, Verena; Olbrich, Heike; Engelke, Udo; Horvath, Judit; Fliegauf, Manfred; Loges, Niki Tomas; Schweitzer-Krantz, Susanne; Moebus, Ralf; Weiler, Polly; Kispert, Andreas; Superti-Furga, Andrea; Wevers, Ron A.; Omran, Heymut
2006-01-01
N-terminal acetylation of proteins is a widespread and highly conserved process. Aminoacylase 1 (ACY1; EC 3.5.14) is the most abundant of the aminoacylases, a class of enzymes involved in hydrolysis of N-acetylated proteins. Here, we present four children with genetic deficiency of ACY1. They were identified through organic acid analyses using gas chromatography–mass spectrometry, revealing increased urinary excretion of several N-acetylated amino acids, including the derivatives of methionine, glutamic acid, alanine, leucine, glycine, valine, and isoleucine. Nuclear magnetic resonance spectroscopy analysis of urine samples detected a distinct pattern of N-acetylated metabolites, consistent with ACY1 dysfunction. Functional analyses of patients’ lymphoblasts demonstrated ACY1 deficiency. Mutation analysis uncovered recessive loss-of-function or missense ACY1 mutations in all four individuals affected. We conclude that ACY1 mutations in these children led to functional ACY1 deficiency and excretion of N-acetylated amino acids. Questions remain, however, as to the clinical significance of ACY1 deficiency. The ACY1-deficient individuals were ascertained through urine metabolic screening because of unspecific psychomotor delay (one subject), psychomotor delay with atrophy of the vermis and syringomyelia (one subject), marked muscular hypotonia (one subject), and follow-up for early treated biotinidase deficiency and normal clinical findings (one subject). Because ACY1 is evolutionarily conserved in fish, frog, mouse, and human and is expressed in the central nervous system (CNS) in human, a role in CNS function or development is conceivable but has yet to be demonstrated. Thus, at this point, we cannot state whether ACY1 deficiency has pathogenic significance with pleiotropic clinical expression or is simply a biochemical variant. Awareness of this new genetic entity may help both in delineating its clinical significance and in avoiding erroneous diagnoses. PMID:16465618
2004-01-01
The putative diamine N-acetyltransferase D2023.4 has been cloned from the model nematode Caenorhabditis elegans. The 483 bp open reading frame of the cDNA encodes a deduced polypeptide of 18.6 kDa. Accordingly, the recombinantly expressed His6-tagged protein forms an enzymically active homodimer with a molecular mass of approx. 44000 Da. The protein belongs to the GNAT (GCN5-related N-acetyltransferase) superfamily, and its amino acid sequence exhibits considerable similarity to mammalian spermidine/spermine-N1-acetyltransferases. However, neither the polyamines spermidine and spermine nor the diamines putrescine and cadaverine were efficiently acetylated by the protein. The smaller diamines diaminopropane and ethylenediamine, as well as L-lysine, represent better substrates, but, surprisingly, the enzyme most efficiently catalyses the N-acetylation of amino acids analogous with L-lysine. As determined by the kcat/Km values, the C. elegans N-acetyltransferase prefers thialysine [S-(2-aminoethyl)-L-cysteine], followed by O-(2-aminoethyl)-L-serine and S-(2-aminoethyl)-D,L-homocysteine. Reversed-phase HPLC and mass spectrometric analyses revealed that N-acetylation of L-lysine and L-thialysine occurs exclusively at the amino moiety of the side chain. Remarkably, heterologous expression of C. elegans N-acetyltransferase D2023.4 in Escherichia coli, which does not possess a homologous gene, results in a pronounced resistance against the anti-metabolite thialysine. Furthermore, C. elegans N-acetyltransferase D2023.4 exhibits the highest homology with a number of GNATs found in numerous genomes from bacteria to mammals that have not been biochemically characterized so far, suggesting a novel group of GNAT enzymes closely related to spermidine/spermine-N1-acetyltransferase, but with a distinct substrate specificity. Taken together, we propose to name the enzyme ‘thialysine Nε-acetyltransferase’. PMID:15283700
Amino acid derivatives of 5-ASA as novel prodrugs for intestinal drug delivery.
Clerici, C; Gentili, G; Boschetti, E; Santucci, C; Aburbeh, A G; Natalini, B; Pellicciari, R; Morelli, A
1994-12-01
In an attempt to obtain site-specific delivery of 5-ASA in the intestinal tract, we have determined the extent of absorption and metabolism of a number of novel 5-ASA derivatives, namely, (N-L-glutamyl)-amino-2-salicylic acid (1), (N-L-aspartyl)-amino-2-salicylic-acid (2), 5-aminosalicyl-L-proline-L-leucine (3), and 5-(N-L-glutamyl)-aminosalicyl-L-proline-L-leucine (4), which are selectively cleaved by intestinal brush border aminopeptidase A and carboxypeptidases. These novel prodrugs, 5-ASA, and sulfasalazine were administered to adult Fisher rats (N = 30) and to animals that had undergone prior colostomy (N = 30). Urine and feces were collected at timed intervals for 48 hr and the metabolites, 5-ASA, and N-acetyl-5-ASA were measured by high-performance liquid chromatography. The absorption and metabolism of all compounds were essentially identical in colostomized and normal animals. 5-ASA exhibited a rapid proximal intestinal absorption as evidenced by the high cumulative urinary excretion (> 65%) and low fecal excretion. Sulfasalazine, as expected, exhibited a lower urinary recovery (< 35%) and higher fecal excretion of 5-ASA and its metabolite. The novel glutamate and aspartate derivatives (1 and 2) behaved similarly to sulfasalazine, while administration of the proline-leucine derivative (3) resulted in urinary and fecal recovery values intermediate with respect to those observed with 5-ASA and sulfasalazine. 5-(N-L-Glutamyl)-aminosalicyl-L-proline-L-leucine yielded the highest fecal recovery of 5-ASA and its N-acetyl derivative, indicating a more efficient delivery to the distal bowel. Amino acid derivatives of 5-ASA appear to be potentially useful prodrugs for the site-specific delivery of 5-ASA to different regions of the intestinal tract.
Hatakeyama, T; Hatakeyama, T
1990-07-06
The complete amino acid sequences of the ribosomal proteins HL30 and HmaL5 from the archaebacterium Halobacterium marismortui were determined. Protein HL30 was found to be acetylated at its N-terminal amino acid and shows homology to the eukaryotic ribosomal proteins YL34 from yeast and RL31 from rat. Protein HmaL5 was homologous to the protein L5 from Escherichia coli and Bacillus stearothermophilus as well as to YL16 from yeast. HmaL5 shows more similarities to its eukaryotic counterpart than to eubacterial ones.
Goris, Marianne; Magin, Robert S; Foyn, Håvard; Myklebust, Line M; Varland, Sylvia; Ree, Rasmus; Drazic, Adrian; Bhambra, Parminder; Støve, Svein I; Baumann, Markus; Haug, Bengt Erik; Marmorstein, Ronen; Arnesen, Thomas
2018-04-24
N-terminal (Nt) acetylation is a major protein modification catalyzed by N-terminal acetyltransferases (NATs). Methionine acidic N termini, including actin, are cotranslationally Nt acetylated by NatB in all eukaryotes, but animal actins containing acidic N termini, are additionally posttranslationally Nt acetylated by NAA80. Actin Nt acetylation was found to regulate cytoskeletal dynamics and motility, thus making NAA80 a potential target for cell migration regulation. In this work, we developed potent and selective bisubstrate inhibitors for NAA80 and determined the crystal structure of NAA80 in complex with such an inhibitor, revealing that NAA80 adopts a fold similar to other NAT enzymes but with a more open substrate binding region. Furthermore, in contrast to most other NATs, the substrate specificity of NAA80 is mainly derived through interactions between the enzyme and the acidic amino acids at positions 2 and 3 of the actin substrate and not residues 1 and 2. A yeast model revealed that ectopic expression of NAA80 in a strain lacking NatB activity partially restored Nt acetylation of NatB substrates, including yeast actin. Thus, NAA80 holds intrinsic capacity to posttranslationally Nt acetylate NatB-type substrates in vivo. In sum, the presence of a dominant cotranslational NatB in all eukaryotes, the specific posttranslational actin methionine removal in animals, and finally, the unique structural features of NAA80 leave only the processed actins as in vivo substrates of NAA80. Together, this study reveals the molecular and cellular basis of NAA80 Nt acetylation and provides a scaffold for development of inhibitors for the regulation of cytoskeletal properties. Copyright © 2018 the Author(s). Published by PNAS.
Ud-Din, Abu I; Liu, Yu C; Roujeinikova, Anna
2015-01-01
Helicobacter pylori infection is the common cause of gastroduodenal diseases linked to a higher risk of the development of gastric cancer. Persistent infection requires functional flagella that are heavily glycosylated with 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (pseudaminic acid). Pseudaminic acid biosynthesis protein H (PseH) catalyzes the third step in its biosynthetic pathway, producing UDP-2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranose. It belongs to the GCN5-related N-acetyltransferase (GNAT) superfamily. The crystal structure of the PseH complex with cofactor acetyl-CoA has been determined at 2.3 Å resolution. This is the first crystal structure of the GNAT superfamily member with specificity to UDP-4-amino-4,6-dideoxy-β-L-AltNAc. PseH is a homodimer in the crystal, each subunit of which has a central twisted β-sheet flanked by five α-helices and is structurally homologous to those of other GNAT superfamily enzymes. Interestingly, PseH is more similar to the GNAT enzymes that utilize amino acid sulfamoyl adenosine or protein as a substrate than a different GNAT-superfamily bacterial nucleotide-sugar N-acetyltransferase of the known structure, WecD. Analysis of the complex of PseH with acetyl-CoA revealed the location of the cofactor-binding site between the splayed strands β4 and β5. The structure of PseH, together with the conservation of the active-site general acid among GNAT superfamily transferases, are consistent with a common catalytic mechanism for this enzyme that involves direct acetyl transfer from AcCoA without an acetylated enzyme intermediate. Based on structural homology with microcin C7 acetyltransferase MccE and WecD, the Michaelis complex can be modeled. The model suggests that the nucleotide- and 4-amino-4,6-dideoxy-β-L-AltNAc-binding pockets form extensive interactions with the substrate and are thus the most significant determinants of substrate specificity. A hydrophobic pocket accommodating the 6'-methyl group of the altrose dictates preference to the methyl over the hydroxyl group and thus to contributes to substrate specificity of PseH.
Jorge, João M P; Nguyen, Anh Q D; Pérez-García, Fernando; Kind, Stefanie; Wendisch, Volker F
2017-04-01
Gamma-aminobutyric acid (GABA) is a non-protein amino acid widespread in Nature. Among the various uses of GABA, its lactam form 2-pyrrolidone can be chemically converted to the biodegradable plastic polyamide-4. In metabolism, GABA can be synthesized either by decarboxylation of l-glutamate or by a pathway that starts with the transamination of putrescine. Fermentative production of GABA from glucose by recombinant Corynebacterium glutamicum has been described via both routes. Putrescine-based GABA production was characterized by accumulation of by-products such as N-acetyl-putrescine. Their formation was abolished by deletion of the spermi(di)ne N-acetyl-transferase gene snaA. To improve provision of l-glutamate as precursor 2-oxoglutarate dehydrogenase activity was reduced by changing the translational start codon of the chromosomal gene for 2-oxoglutarate dehydrogenase subunit E1o to the less preferred TTG and by maintaining the inhibitory protein OdhI in its inhibitory form by changing amino acid residue 15 from threonine to alanine. Putrescine-based GABA production by the strains described here led to GABA titers up to 63.2 g L -1 in fed-batch cultivation at maximum volumetric productivities up to 1.34 g L -1 h -1 , the highest volumetric productivity for fermentative GABA production reported to date. Moreover, GABA production from the carbon sources xylose, glucosamine, and N-acetyl-glucosamine that do not have competing uses in the food or feed industries was established. Biotechnol. Bioeng. 2017;114: 862-873. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Non-specific activities of the major herbicide-resistance gene BAR.
Christ, Bastien; Hochstrasser, Ramon; Guyer, Luzia; Francisco, Rita; Aubry, Sylvain; Hörtensteiner, Stefan; Weng, Jing-Ke
2017-12-01
Bialaphos resistance (BAR) and phosphinothricin acetyltransferase (PAT) genes, which convey resistance to the broad-spectrum herbicide phosphinothricin (also known as glufosinate) via N-acetylation, have been globally used in basic plant research and genetically engineered crops 1-4 . Although early in vitro enzyme assays showed that recombinant BAR and PAT exhibit substrate preference toward phosphinothricin over the 20 proteinogenic amino acids 1 , indirect effects of BAR-containing transgenes in planta, including modified amino acid levels, have been seen but without the identification of their direct causes 5,6 . Combining metabolomics, plant genetics and biochemical approaches, we show that transgenic BAR indeed converts two plant endogenous amino acids, aminoadipate and tryptophan, to their respective N-acetylated products in several plant species. We report the crystal structures of BAR, and further delineate structural basis for its substrate selectivity and catalytic mechanism. Through structure-guided protein engineering, we generated several BAR variants that display significantly reduced non-specific activities compared with its wild-type counterpart in vivo. The transgenic expression of enzymes can result in unintended off-target metabolism arising from enzyme promiscuity. Understanding such phenomena at the mechanistic level can facilitate the design of maximally insulated systems featuring heterologously expressed enzymes.
Hein, David W; Doll, Mark A
2017-09-01
The rabbit was the initial animal model to investigate the acetylation polymorphism expressed in humans. Use of the rabbit model is compromised by lack of a rapid non-invasive method for determining acetylator phenotype. Slow acetylator phenotype in the rabbit results from deletion of the N-acetyltransferase 2 (NAT2) gene. A relatively quick and non-invasive method for identifying the gene deletion was developed and acetylator phenotypes confirmed by measurement of N- and O-acetyltransferase activities in hepatic cytosols. Rabbit liver cytosols catalyzed the N-acetylation of sulfamethazine (p = 0.0014), benzidine (p = 0.0257), 4-aminobiphenyl (p = 0.0012), and the O-acetylation of N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP; p = 0.002) at rates significantly higher in rabbits possessing NAT2 gene than rabbits with NAT2 gene deleted. In contrast, hepatic cytosols catalyzed the N-acetylation of p-aminobenzoic acid (an N-acetyltransferase 1 selective substrate) at rates that did not differ significantly (p > 0.05) between rabbits positive and negative for NAT2. The new NAT2 genotyping method facilitates use of the rabbit model to investigate the role of acetylator polymorphism in the metabolism of aromatic and heterocyclic amine drugs and carcinogens.
USDA-ARS?s Scientific Manuscript database
Dietary acrylamide is largely derived from heat-induced reactions between the amino group of the free amino acid asparagine and carbonyl groups of glucose and fructose during heat processing (baking, frying) of plant-derived foods such as potato fries and cereals. After consumption, acrylamide is a...
Nitrogen isotopic analyses by isotope-ratio-monitoring gas chromatography/mass spectrometry
NASA Technical Reports Server (NTRS)
Merritt, D. A.; Hayes, J. M.
1994-01-01
Amino acids containing natural-abundance levels of 15N were derivatized and analyzed isotopically using a technique in which individual compounds are separated by gas chromatography, combusted on-line, and the product stream sent directly to an isotope-ratio mass spectrometer. For samples of N2 gas, standard deviations of ratio measurement were better than 0.1% (Units for delta are parts per thousand or per million (%).) for samples larger than 400 pmol and better than 0.5% for samples larger than 25 pmol (0.1% 15N is equivalent to 0.00004 atom % 15N). Results duplicated those of conventional, batchwise analyses to within 0.05%. For combustion of organic compounds yielding CO2/N2 ratios between 14 and 28, in particular for N-acetyl n-propyl derivatives of amino acids, delta values were within 0.25% of results obtained using conventional techniques and standard deviations were better than 0.35%. Pooled data for measurements of all amino acids produced an accuracy and precision of 0.04 and 0.23%, respectively, when 2 nmol of each amino acid was injected on column and 20% of the stream of combustion products was delivered to the mass spectrometer.
2012-01-01
Four compounds that contained the N-benzyl 2-amino-3-methoxypropionamide unit were evaluated for their ability to modulate Na+ currents in catecholamine A differentiated CAD neuronal cells. The compounds differed by the absence or presence of either a terminal N-acetyl group or a (3-fluoro)benzyloxy moiety positioned at the 4′-benzylamide site. Analysis of whole-cell patch-clamp electrophysiology data showed that the incorporation of the (3-fluoro)benzyloxy unit, to give the (3-fluoro)benzyloxyphenyl pharmacophore, dramatically enhanced the magnitude of Na+ channel slow inactivation. In addition, N-acetylation markedly increased the stereoselectivity for Na+ channel slow inactivation. Furthermore, we observed that Na+ channel frequency (use)-dependent block was maintained upon inclusion of this pharmacophore. Confirmation of the importance of the (3-fluoro)benzyloxyphenyl pharmacophore was shown by examining compounds where the N-benzyl 2-amino-3-methoxypropionamide unit was replaced by a N-benzyl 2-amino-3-methylpropionamide moiety, as well as examining a series of compounds that did not contain an amino acid group but retained the pharmacophore unit. Collectively, the data indicated that the (3-fluoro)benzyloxyphenyl unit is a novel pharmacophore for the modulation of Na+ currents. PMID:23259039
Tran, Tam N T; Shelton, Jennifer; Brown, Susan; Durrett, Timothy P
2017-10-01
Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) catalyzes the transfer of an acetyl group from acetyl-CoA to the sn-3 position of diacylglycerol to form 3-acetyl-1,2-diacyl-sn-glycerol (acetyl-TAG). EaDAcT belongs to a small, plant-specific subfamily of the membrane bound O-acyltransferases (MBOAT) that acylate different lipid substrates. Sucrose gradient density centrifugation revealed that EaDAcT colocalizes to the same fractions as an endoplasmic reticulum (ER)-specific marker. By mapping the membrane topology of EaDAcT, we obtained an experimentally determined topology model for a plant MBOAT. The EaDAcT model contains four transmembrane domains (TMDs), with both the N- and C-termini orientated toward the lumen of the ER. In addition, there is a large cytoplasmic loop between the first and second TMDs, with the MBOAT signature region of the protein embedded in the third TMD close to the interface between the membrane and the cytoplasm. During topology mapping, we discovered two cysteine residues (C187 and C293) located on opposite sides of the membrane that are important for enzyme activity. In order to identify additional amino acid residues important for acetyltransferase activity, we isolated and characterized acetyltransferases from other acetyl-TAG-producing plants. Among them, the acetyltransferase from Euonymus fortunei possessed the highest activity in vivo and in vitro. Mutagenesis of conserved amino acids revealed that S253, H257, D258 and V263 are essential for EaDAcT activity. Alteration of residues unique to the acetyltransferases did not alter the unique acyl donor specificity of EaDAcT, suggesting that multiple amino acids are important for substrate recognition. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Lacey, J. C. Jr; Wickramasinghe, N. S.; Sabatini, R. S.
1992-01-01
We have studied the chemistry of aminoacyl AMP to model reactions at the 3' terminus of aminoacyl tRNA for the purpose of understanding the origin of protein synthesis. The present studies relate to the D, L preference in the esterification of 5'-AMP. All N-acetyl amino acids we studied showed faster reaction of the D-isomer, with a generally decreasing preference for D-isomer as the hydrophobicity of the amino acid decreased. The beta-branched amino acids, Ile and Val, showed an extreme preference for D-isomer. Ac-Leu, the gamma-branched amino acid, showed a slightly low D/L ratio relative to its hydrophobicity. The molecular basis for these preferences for D-isomer is understandable in the light of our previous studies and seems to be due to preferential hydrophobic interaction of the D-isomer with adenine. The preference for hydrophobic D-amino acids can be decreased by addition of an organic solvent to the reaction medium. Conversely, peptidylation with Ac-PhePhe shows a preference for the LL isomer over the DD isomer.
Oh, Seung-Il; Park, Jin-Kook; Park, Sang-Kyu
2015-01-01
OBJECTIVE: This study was performed to determine the effect of N-acetyl-L-cysteine, a modified sulfur-containing amino acid that acts as a strong cellular antioxidant, on the response to environmental stressors and on aging in C. elegans. METHOD: The survival of worms under oxidative stress conditions induced by paraquat was evaluated with and without in vivo N-acetyl-L-cysteine treatment. The effect of N-acetyl-L-cysteine on the response to other environmental stressors, including heat stress and ultraviolet irradiation (UV), was also monitored. To investigate the effect on aging, we examined changes in lifespan, fertility, and expression of age-related biomarkers in C. elegans after N-acetyl-L-cysteine treatment. RESULTS: Dietary N-acetyl-L-cysteine supplementation significantly increased resistance to oxidative stress, heat stress, and UV irradiation in C. elegans. In addition, N-acetyl-L-cysteine supplementation significantly extended both the mean and maximum lifespan of C. elegans. The mean lifespan was extended by up to 30.5% with 5 mM N-acetyl-L-cysteine treatment, and the maximum lifespan was increased by 8 days. N-acetyl-L-cysteine supplementation also increased the total number of progeny produced and extended the gravid period of C. elegans. The green fluorescent protein reporter assay revealed that expression of the stress-responsive genes, sod-3 and hsp-16.2, increased significantly following N-acetyl-L-cysteine treatment. CONCLUSION: N-acetyl-L-cysteine supplementation confers a longevity phenotype in C. elegans, possibly through increased resistance to environmental stressors. PMID:26039957
Production of Nα-acetylated thymosin α1 in Escherichia coli
2011-01-01
Background Thymosin α1 (Tα1), a 28-amino acid Nα-acetylated peptide, has a powerful general immunostimulating activity. Although biosynthesis is an attractive means of large-scale manufacture, to date, Tα1 can only be chemosynthesized because of two obstacles to its biosynthesis: the difficulties in expressing small peptides and obtaining Nα-acetylation. In this study, we describe a novel production process for Nα-acetylated Tα1 in Escherichia coli. Results To obtain recombinant Nα-acetylated Tα1 efficiently, a fusion protein, Tα1-Intein, was constructed, in which Tα1 was fused to the N-terminus of the smallest mini-intein, Spl DnaX (136 amino acids long, from Spirulina platensis), and a His tag was added at the C-terminus. Because Tα1 was placed at the N-terminus of the Tα1-Intein fusion protein, Tα1 could be fully acetylated when the Tα1-Intein fusion protein was co-expressed with RimJ (a known prokaryotic Nα-acetyltransferase) in Escherichia coli. After purification by Ni-Sepharose affinity chromatography, the Tα1-Intein fusion protein was induced by the thiols β-mercaptoethanol or d,l-dithiothreitol, or by increasing the temperature, to release Tα1 through intein-mediated N-terminal cleavage. Under the optimal conditions, more than 90% of the Tα1-Intein fusion protein was thiolyzed, and 24.5 mg Tα1 was obtained from 1 L of culture media. The purity was 98% after a series of chromatographic purification steps. The molecular weight of recombinant Tα1 was determined to be 3107.44 Da by mass spectrometry, which was nearly identical to that of the synthetic version (3107.42 Da). The whole sequence of recombinant Tα1 was identified by tandem mass spectrometry and its N-terminal serine residue was shown to be acetylated. Conclusions The present data demonstrate that Nα-acetylated Tα1 can be efficiently produced in recombinant E. coli. This bioprocess could be used as an alternative to chemosynthesis for the production of Tα1. The described methodologies may also be helpful for the biosynthesis of similar peptides. PMID:21513520
A critical examination of Escherichia coli esterase activity.
Antonczak, Alicja K; Simova, Zuzana; Tippmann, Eric M
2009-10-16
The ability of Escherichia coli to grow on a series of acetylated and glycosylated compounds has been investigated. It is surmised that E. coli maintains low levels of nonspecific esterase activity. This observation may have ramifications for previous reports that relied on nonspecific esterases from E. coli to genetically encode nonnatural amino acids. It had been reported that nonspecific esterases from E. coli deacetylate tri-acetyl O-linked glycosylated serine and threonine in vivo. The glycosylated amino acids were reported to have been genetically encoded into proteins in response to the amber stop codon. However, it is our contention that such amino acids are not utilized in this manner within E. coli. The current results report in vitro analysis of the original enzyme and an in vivo analysis of a glycosylated amino acid. It is concluded that the amber suppression method with nonnatural amino acids may require a caveat for use in certain instances.
A Critical Examination of Escherichia coli Esterase Activity*
Antonczak, Alicja K.; Simova, Zuzana; Tippmann, Eric M.
2009-01-01
The ability of Escherichia coli to grow on a series of acetylated and glycosylated compounds has been investigated. It is surmised that E. coli maintains low levels of nonspecific esterase activity. This observation may have ramifications for previous reports that relied on nonspecific esterases from E. coli to genetically encode nonnatural amino acids. It had been reported that nonspecific esterases from E. coli deacetylate tri-acetyl O-linked glycosylated serine and threonine in vivo. The glycosylated amino acids were reported to have been genetically encoded into proteins in response to the amber stop codon. However, it is our contention that such amino acids are not utilized in this manner within E. coli. The current results report in vitro analysis of the original enzyme and an in vivo analysis of a glycosylated amino acid. It is concluded that the amber suppression method with nonnatural amino acids may require a caveat for use in certain instances. PMID:19666472
NASA Technical Reports Server (NTRS)
Zhoa, Meixun; Bada, Jeffrey L.
1995-01-01
Derivatization with (omicron)-phthaldialdehyde (OPA) and the chiral thiol N-acetyl-L-cysteine (NAC) is a convenient and sensitive technique for the HPLC detection and resolution of protein amino acid enantiomers. The kinetics of the reaction of OPA-NAC with (alpha)-dialkylamino acids was investigated. The fluorescence yield of (alpha)-dialkylamino acids was only about 10% of that of protein amino acids when the derivatization was carried out at room temperature for 1-2 min, which is the procedure generally used for protein amino acid analyses. The fluorescence yield of (alpha)-dialkylamino acids can be enhanced by up to ten-fold when the derivatization reaction time is increased to 15 min at room temperature. The OPA-NAC technique was optimized for the detection and enantiomeric resolution of a-dialkylamino acids in geological samples which contain a large excess of protein amino acids. The estimated detection limit for a-dialkylamino acids is 1-2 pmol, comparable to that for protein amino acids.
Tada, Tatsuya; Miyoshi-Akiyama, Tohru; Shimada, Kayo; Dahal, Rajan K; Mishra, Shyam K; Ohara, Hiroshi; Kirikae, Teruo; Pokhrel, Bharat M
2016-03-01
Serratia marcescens IOMTU115 has a novel 6'-N-aminoglycoside acetyltransferase-encoding gene, aac(6')-Ial. The encoded protein AAC(6')-Ial has 146 amino acids, with 91.8% identity to the amino acid sequence of AAC(6')-Ic in S. marcescens SM16 and 97.3% identity to the amino acid sequence of AAC(6')-Iap in S. marcescens WW4. The minimum inhibitory concentrations of aminoglycosides for Escherichia coli expressing AAC(6')-Ial were similar to those for E. coli expressing AAC(6')-Ic or AAC(6')-Iap. Thin-layer chromatography showed that AAC(6')-Ial, AAC(6')-Ic, or AAC(6')-Iap acetylated all the aminoglycosides tested, except for apramycin, gentamicin, and lividomycin. Kinetics assays revealed that AAC(6')-Ial is a functional acetyltransferase against aminoglycosides. The aac(6')-Ial gene was located on chromosomal DNA.
Cloete, Ruben; Akurugu, Wisdom A; Werely, Cedric J; van Helden, Paul D; Christoffels, Alan
2017-08-01
The human arylamine N-acetyltransferase 1 (NAT1) enzyme plays a vital role in determining the duration of action of amine-containing drugs such as para-aminobenzoic acid (PABA) by influencing the balance between detoxification and metabolic activation of these drugs. Recently, four novel single nucleotide polymorphisms (SNPs) were identified within a South African mixed ancestry population. Modeling the effects of these SNPs within the structural protein was done to assess possible structure and function changes in the enzyme. The use of molecular dynamics simulations and stability predictions indicated less thermodynamically stable protein structures containing E264K and V231G, while the N245I change showed a stabilizing effect. Coincidently the N245I change displayed a similar free energy landscape profile to the known R64W amino acid substitution (slow acetylator), while the R242M displayed a similar profile to the published variant, I263V (proposed fast acetylator), and the wild type protein structure. Similarly, principal component analysis indicated that two amino acid substitutions (E264K and V231G) occupied less conformational clusters of folded states as compared to the WT and were found to be destabilizing (may affect protein function). However, two of the four novel SNPs that result in amino acid changes: (V231G and N245I) were predicted by both SIFT and POLYPHEN-2 algorithms to affect NAT1 protein function, while two other SNPs that result in R242M and E264K substitutions showed contradictory results based on SIFT and POLYPHEN-2 analysis. In conclusion, the structural methods were able to verify that two non-synonymous substitutions (E264K and V231G) can destabilize the protein structure, and are in agreement with mCSM predictions, and should therefore be experimentally tested for NAT1 activity. These findings could inform a strategy of incorporating genotypic data (i.e., functional SNP alleles) with phenotypic information (slow or fast acetylator) to better prescribe effective treatment using drugs metabolized by NAT1. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Molecular dynamics simulations of trans- and cis- N-acetyl- N'-methylamides of XaaPro dipeptides
NASA Astrophysics Data System (ADS)
Hoon Choi, Seung; Yun Yu, Jeong; Kwang Shin, Jae; Shik Jhon, Mu
1994-07-01
The occurrence of cis imide bonds in proteins is much higher than that of cis amide bonds due to the unique properties of proline. In order to examine the relationship between the high occurrence of these cis imide bonds and the residues preceding the proline, we perform molecular dynamics simulations of trans- and cis- N-acetyl- N'-methylamides of XaaPro dipeptides (AcXaaProNHMe). We investigate the conformational energies and structures of trans- and cis-AcXaa where Xaa has 12 amino acids in the vacuum state and 5 amino acids in the solution state. It is found that the occurrence of the cis imide bonds is strongly affected by the residue preceding the proline, and the dihedral angles (φ,ψ) of the backbone in AcXaaProNHMe are influenced by the configuration of the imide bond. We also find that the equilibrium properties of XaaPro in solution simulations are more similar to the statistics of X-ray crystallographic data than are those in vacuum simulations and solvation causes a remarkable change in the conformation of the pyrrolidine ring from the endo to the exo form.
[Characterization and comparison of interferon reference standards using UPLC-MS].
Tao, Lei; Pei, De-ning; Han, Chun-mei; Chen, Wei; Rao, Chun-ming; Wang, Jun-zhi
2015-01-01
The study aims to characterize and compare interferon reference standards from 5 manufacturers. By testing molecular mass and trypsin-digested peptide mass mapping, the amino acid sequence was verified and post-translational modifications such as disulfide bond were identified. Results show that the molecular mass and amino acid sequence were consistent with theory; the disulfide bonds of 4 lots of interferon were Cys1-Cys98/Cys29-Cys138, 1 lot was Cys29-Cys139/Cys86-Cys99; N-terminal "+Met", acetyl N-terminal and Met oxidation were identified in part of the sample. UPLC-MS can be used to characterize and compare interferon reference standards from different manufacturers.
Meher, Hari Charan; Gajbhiye, Vijay T; Singh, Ghanendra
2011-01-01
A gas chromatograph with electron capture detection method for estimation of selected metabolites--amino acids (free and bound), gamma-aminobutyric acid (GABA), salicylic acid (SA), and acetyl salicylic acid (ASA) from tomato--is reported. The method is based on nitrophenylation of the metabolites by 1-fluoro-2, 4-dinitrobenzene under aqueous alkaline conditions to form dinitophenyl derivatives. The derivatives were stable under the operating conditions of GC. Analysis of bound amino acids comprised perchloric acid precipitation of protein, alkylation (carboxymethylation) with iodoacetic acid, vapor-phase hydrolysis, and derivatization with 1-fluoro-2,4-dinitrobenzene in that order. The metabolites were resolved in 35 min, using a temperature-programmed run. The method is rapid, sensitive, and precise. It easily measured the typical amino acids (aspartate, asparagine, glutamate, glutamine, alanine, leucine, lysine, and phenylalanine) used for identification and quantification of a protein, resolved amino acids of the same mass (leucine and isoleucine), satisfactorily measured sulfur amino acid (methionine, cystine, and cysteine), and quantified GABA, SA, and ASA, as well. The developed method was validated for specificity, linearity, and precision. It has been applied and recommended for estimation of 25 metabolites from Solanum lycopersicum (L.).
Metabolomic Analysis of Blood Plasma after Oral Administration of N-acetyl-d-Glucosamine in Dogs
Osaki, Tomohiro; Kurozumi, Seiji; Sato, Kimihiko; Terashi, Taro; Azuma, Kazuo; Murahata, Yusuke; Tsuka, Takeshi; Ito, Norihiko; Imagawa, Tomohiro; Minami, Saburo; Okamoto, Yoshiharu
2015-01-01
N-acetyl-d-glucosamine (GlcNAc) is a monosaccharide that polymerizes linearly through (1,4)-β-linkages. GlcNAc is the monomeric unit of the polymer chitin. GlcNAc is a basic component of hyaluronic acid and keratin sulfate found on the cell surface. The aim of this study was to examine amino acid metabolism after oral GlcNAc administration in dogs. Results showed that plasma levels of ectoine were significantly higher after oral administration of GlcNAc than prior to administration (p < 0.001). To our knowledge, there have been no reports of increased ectoine concentrations in the plasma. The mechanism by which GlcNAc administration leads to increased ectoine plasma concentration remains unclear; future studies are required to clarify this mechanism. PMID:26262626
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hung,M.; Rangarajan, E.; Munger, C.
2006-01-01
Enterobacterial common antigen (ECA) is a polysaccharide found on the outer membrane of virtually all gram-negative enteric bacteria and consists of three sugars, N-acetyl-D-glucosamine, N-acetyl-D-mannosaminuronic acid, and 4-acetamido-4,6-dideoxy-D-galactose, organized into trisaccharide repeating units having the sequence {yields}(3)-{alpha}-D-Fuc4NAc-(1{yields}4)-{beta}-D-ManNAcA-(1{yields}4)-{alpha}-D-GlcNAc-(1{yields}). While the precise function of ECA is unknown, it has been linked to the resistance of Shiga-toxin-producing Escherichia coli (STEC) O157:H7 to organic acids and the resistance of Salmonella enterica to bile salts. The final step in the synthesis of 4-acetamido-4,6-dideoxy-D-galactose, the acetyl-coenzyme A (CoA)-dependent acetylation of the 4-amino group, is carried out by TDP-fucosamine acetyltransferase (WecD). We have determined the crystal structuremore » of WecD in apo form at a 1.95-Angstroms resolution and bound to acetyl-CoA at a 1.66-Angstroms resolution. WecD is a dimeric enzyme, with each monomer adopting the GNAT N-acetyltransferase fold, common to a number of enzymes involved in acetylation of histones, aminoglycoside antibiotics, serotonin, and sugars. The crystal structure of WecD, however, represents the first structure of a GNAT family member that acts on nucleotide sugars. Based on this cocrystal structure, we have used flexible docking to generate a WecD-bound model of the acetyl-CoA-TDP-fucosamine tetrahedral intermediate, representing the structure during acetyl transfer. Our structural data show that WecD does not possess a residue that directly functions as a catalytic base, although Tyr208 is well positioned to function as a general acid by protonating the thiolate anion of coenzyme A.« less
Takenaka, Shinji; Cheng, Minyi; Mulyono; Koshiya, Atsushi; Murakami, Shuichiro; Aoki, Kenji
2009-01-01
Bacillus cereus strain 10-L-2 synthesizes two arylamine N-acetyltransferases (Nat-a and Nat-b) with broad substrate specificities toward aniline and its derivatives. In southern blot analysis using probes encoding the NH2-terminus of Nat-b and a conserved region of N-acetyltransferases, digested total DNA of strain 10-L-2 showed one positive band. We cloned and sequenced the gene encoding Nat-b. The NH2-terminal amino acid sequence predicted from the open reading frame (768 base pairs) corresponded to that of purified Nat-b. The cloned Nat-b gene was expressed in Escherichia coli. The expressed enzyme (BcNAT) from the recombinant strain was partially purified and characterized. Nat-b from strain 10-L-2 and BcNAT from the recombinant strain were slightly different from each others in substrate specificity and thermo-stability. We examined the biotransformations of 2-aminophenols and phenylenediamines by the whole cells of the recombinant strain. The cells converted these compounds into their corresponding acetanilides. Only one amino group of phenylenediamines was acetylated. The cells utilized 4-nitroacetanilide as an acetyl donor instead of acetyl-CoA. 4-Aminoacetanilide was produced and 4-nitroaniline was released almost stoichiometrically.
Polyspecific pyrrolysyl-tRNA synthetases from directed evolution.
Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M; Wong, Margaret; Kiessling, Laura L; Steitz, Thomas A; O'Donoghue, Patrick; Söll, Dieter
2014-11-25
Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA(Pyl) have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate N(ε)-acetyl-Lys (AcK) onto tRNA(Pyl). Here, we examine an N(ε)-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids.
Leenheer, J.A.; Rostad, C.E.; Barber, L.B.; Schroeder, R.A.; Anders, R.; Davisson, M.L.
2001-01-01
The nature and chlorine reactivity of organic constituents in reclaimed water (tertiary-treated municipal wastewater) before, during, and after recharge into groundwater at the Montebello Forebay in Los Angeles County, CA, was the focus of this study. Dissolved organic matter (DOM) in reclaimed water from this site is primarily a mixture of aromatic sulfonates from anionic surfactant degradation, N-acetyl amino sugars and proteins from bacterial activity, and natural fulvic acid, whereas DOM from native groundwaters in the aquifer to which reclaimed water was recharged consists of natural fulvic acids. The hydrophilic neutral N-acetyl amino sugars that constitute 40% of the DOM in reclaimed water are removed during the first 3 m of vertical infiltration in the recharge basin. Groundwater age dating with 3H and 3He isotopes, and determinations of organic and inorganic C isotopes, enabled clear differentiation of recent recharged water from older native groundwater. Phenol structures in natural fulvic acids in DOM isolated from groundwater produced significant trihalomethanes (THM) and total organic halogen (TOX) yields upon chlorination, and these structures also were responsible for the enhanced SUVA and specific fluorescence characteristics relative to DOM in reclaimed water. Aromatic sulfonates and fulvic acids in reclaimed water DOM produced minimal THM and TOX yields.
Mesnard, F; Azaroual, N; Marty, D; Fliniaux, M A; Robins, R J; Vermeersch, G; Monti, J P
2000-02-01
Nitrogen metabolism was monitored in suspension cultured cells of Nicotiana plumbaginifolia Viv. using nuclear magnetic resonance (NMR) spectroscopy following the feeding of (15NH4)2SO4 and K15NO3. By using two-dimensional 15N-1H NMR with heteronuclear single-quantum-coherence spectroscopy and heteronuclear multiple-bond-coherence spectroscopy sequences, an enhanced resolution of the incorporation of 15N label into a range of compounds could be detected. Thus, in addition to the amino acids normally observed in one-dimensional 15N NMR (glutamine, aspartate, alanine), several other amino acids could be resolved, notably serine, glycine and proline. Furthermore, it was found that the peak normally assigned to the non-protein amino-acid gamma-aminobutyric acid in the one-dimensional 15N NMR spectrum was resolved into a several components. A peak of N-acetylated compounds was resolved, probably composed of the intermediates in arginine biosynthesis, N-acetylglutamate and N-acetylornithine and, possibly, the intermediate of putrescine degradation into gamma-aminobutyric acid, N-acetylputrescine. The occurrence of 15N-label in agmatine and the low detection of labelled putrescine indicate that crucial intermediates of the pathway from glutamate to polyamines and/or the tobacco alkaloids could be monitored. For the first time, labelling of the peptide glutathione and of the nucleotide uridine could be seen.
Tsikas, Dimitrios; Schwedhelm, Kathrin S; Surdacki, Andrzej; Giustarini, Daniela; Rossi, Ranieri; Kukoc-Modun, Lea; Kedia, George; Ückert, Stefan
2018-02-01
S -Nitrosothiols or thionitrites with the general formula RSNO are formally composed of the nitrosyl cation (NO + ) and a thiolate (RS - ), the base of the corresponding acids RSH. The smallest S -nitrosothiol is HSNO and derives from hydrogen sulfide (HSH, H 2 S). The most common physiological S -nitrosothiols are derived from the amino acid L-cysteine (CysSH). Thus, the simplest S -nitrosothiol is S -nitroso-L-cysteine (CysSNO). CysSNO is a spontaneous potent donor of nitric oxide (NO) which activates soluble guanylyl cyclase to form cyclic guanosine monophosphate (cGMP). This activation is associated with multiple biological actions that include relaxation of smooth muscle cells and inhibition of platelet aggregation. Like NO, CysSNO is a short-lived species and occurs physiologically at concentrations around 1 nM in human blood. CysSNO can be formed from CysSH and higher oxides of NO including nitrous acid (HONO) and its anhydride (N 2 O 3 ). The most characteristic feature of RSNO is the S-transnitrosation reaction by which the NO + group is reversibly transferred to another thiolate. By this way numerous RSNO can be formed such as the low-molecular-mass S -nitroso- N -acetyl-L-cysteine (SNAC) and S -nitroso-glutathione (GSNO), and the high-molecular-mass S -nitrosol-L-cysteine hemoglobin (HbCysSNO) present in erythrocytes and S -nitrosol-L-cysteine albumin (AlbCysSNO) present in plasma at concentrations of the order of 200 nM. All above mentioned RSNO exert NO-related biological activity, but they must be administered intravenously. This important drawback can be overcome by lipophilic charge-free RSNO. Thus, we prepared the ethyl ester of SNAC, the S -nitroso- N -acetyl-L-cysteine ethyl ester (SNACET), from synthetic N -acetyl-L-cysteine ethyl ester (NACET). Both NACET and SNACET have improved pharmacological features over N -acetyl-L-cysteine (NAC) and S -nitroso- N -acetyl-L-cysteine (SNAC), respectively, including higher oral bioavailability. SNACET exerts NO-related activities which can be utilized in the urogenital tract and in the cardiovascular system. NACET, with high oral bioavailability, is a strong antioxidant and abundant precursor of GSH, unlike its free acid N -acetyl-L-cysteine (NAC). Here, we review the chemical and pharmacological properties of SNACET and NACET as well as their analytical chemistry. We also report new results from the ingestion of S -[ 15 N]nitroso- N -acetyl-L-cysteine ethyl ester (S 15 NACET) demonstrating the favorable pharmacological profile of SNACET.
Cuartas, Viviana; Insuasty, Braulio; Cobo, Justo; Glidewell, Christopher
2017-10-01
The reaction of 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde and N-benzylmethylamine under microwave irradiation gives 5-[benzyl(methyl)amino]-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde, C 19 H 19 N 3 O, (I). Subsequent reactions under basic conditions, between (I) and a range of acetophenones, yield the corresponding chalcones. These undergo cyclocondensation reactions with hydrazine to produce reduced bipyrazoles which can be N-formylated with formic acid or N-acetylated with acetic anhydride. The structures of (I) and of representative examples from this reaction sequence are reported, namely the chalcone (E)-3-{5-[benzyl(methyl)amino]-3-methyl-1-phenyl-1H-pyrazol-4-yl}-1-(4-bromophenyl)prop-2-en-1-one, C 27 H 24 BrN 3 O, (II), the N-formyl derivative (3RS)-5'-[benzyl(methyl)amino]-3'-methyl-1',5-diphenyl-3,4-dihydro-1'H,2H-[3,4'-bipyrazole]-2-carbaldehyde, C 28 H 27 N 5 O, (III), and the N-acetyl derivative (3RS)-2-acetyl-5'-[benzyl(methyl)amino]-5-(4-methoxyphenyl)-3'-methyl-1'-phenyl-3,4-dihydro-1'H,2H-[3,4'-bipyrazole], which crystallizes as the ethanol 0.945-solvate, C 30 H 31 N 5 O 2 ·0.945C 2 H 6 O, (IV). There is significant delocalization of charge from the benzyl(methyl)amino substituent onto the carbonyl group in (I), but not in (II). In each of (III) and (IV), the reduced pyrazole ring is modestly puckered into an envelope conformation. The molecules of (I) are linked by a combination of C-H...N and C-H...π(arene) hydrogen bonds to form a simple chain of rings; those of (III) are linked by a combination of C-H...O and C-H...N hydrogen bonds to form sheets of R 2 2 (8) and R 6 6 (42) rings, and those of (IV) are linked by a combination of O-H...N and C-H...O hydrogen bonds to form a ribbon of edge-fused R 2 4 (16) and R 4 4 (24) rings.
Min, Jun Zhe; Tomiyasu, Yuki; Morotomi, Takashi; Jiang, Ying-Zi; Li, Gao; Shi, Qing; Yu, Hai-Fu; Inoue, Koichi; Todoroki, Kenichiro; Toyo'oka, Toshimasa
2015-04-15
Type 2 diabetes patients (DP) have significantly higher plasma levels of valine, leucine, isoleucine and alanine than the controls. Specific amino acids may acutely and chronically regulate insulin secretion from the pancreatic β-cells. We recently identified a metabolic signature of N-acetyl leucine (Ac-Leu) that strongly predicts diabetes development in mice hair. The Ac-Leu appears to be a potential biomarker candidate related to diabetes. However, the determination of Ac-Leu in human hair has not been reported. We measured the Ac-Leu, and its structure is similar to N-acetyl isoleucine (Ac-Ile) in human hair by ultra-performance liquid chromatography (UPLC) with electrospray ionization tandem mass spectrometry (ESI-MS/MS). The developed method was applied to the determination of Ac-Leu and Ac-Ile in the hair of healthy volunteers (HV) and DP. Ac-Leu, Ac-Ile and N-acetyl norleucine (Ac-Nle, IS) were extracted from human hair samples by a micropulverized extraction procedure, then separated on a C18 column by isocratic elution of acetonitrile-0.1% formic acid in water:0.1% formic acid (14:86, vol./vol.). MRM using the fragmentation transitions of m/z 174.1→86.1 in the positive ESI mode was performed to quantify the N-acetyl leucine, N-acetyl isoleucine and IS. Ac-Leu, Ac-Ile and Ac-Nle in the human hair samples were completely separated by isocratic elution of a 5.0 min duration wash program using a reversed-phase column, and sensitively detected by LC-MS/MS in the ESI(+) MRM mode. The amounts of Ac-Leu and Ac-Ile in the hairs of HV and DP were determined. When comparing the concentrations between DP and those from HV, a statistically significant correlation was observed for the Ac-Leu (p<0.001) and Ac-Ile (p<0.01). The proposed method is useful for the determination of Ac-Leu and Ac-Ile in the hairs of DP and HV. Human hair may serve as a noninvasive biosample for the diagnosis of diabetes. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Nanoflow Separation of Amino Acids for the Analysis of Cosmic Dust
NASA Technical Reports Server (NTRS)
Martin, M. P.; Glavin, D. P.; Dworkin, Jason P.
2008-01-01
The delivery of amino acids to the early Earth by interplanetary dust particles, comets, and carbonaceous meteorites could have been a significant source of the early Earth's prebiotic organic inventory. Amino acids are central to modern terrestrial biochemistry as major components of proteins and enzymes and were probably vital in the origin of life. A variety of amino acids have been detected in the CM carbonaceous meteorite Murchison, many of which are exceptionally rare in the terrestrial biosphere including a-aminoisobutyric acid (AIB) and isovaline. AIB has also been detected in a small percentage of Antarctic micrometeorite grains believed to be related to the CM meteorites We report on progress in optimizing a nanoflow liquid chromatography separation system with dual detection via laser-induced-fluorescence time of flight mass spectrometry (nLC-LIF/ToF-MS) for the analysis of o-phthaldialdehydelN-acetyl-L-cysteine (OPA/NAC) labeled amino acids in cosmic dust grains. The very low flow rates (<3 micro-L/min) of nLC over analytical LC (>0.1 ml/min) combined with <2 micron column bead sizes has the potential to produce efficient analyte ionizations andchromatograms with very sharp peaks; both increase sensitivity. The combination of the selectivity (only primary amines are derivatized), sensitivity (>4 orders of magnitude lower than traditional GC-MS techniques), and specificity (compounds identities are determined by both retention time and exact mass) makes this a compelling technique. However, the development of an analytical method to achieve separation of compounds as structurally similar as amino acid monomers and produce the sharp peaks required for maximum sensitivity is challenging.
Dempsey, Daniel R; Jeffries, Kristen A; Handa, Sumit; Carpenter, Anne-Marie; Rodriguez-Ospina, Santiago; Breydo, Leonid; Merkler, David J
2015-04-28
Arylalkylamine N-acetyltransferase like 7 (AANATL7) catalyzes the formation of N-acetylarylalkylamides and N-acetylhistamine from acetyl-CoA and the corresponding amine substrate. AANATL7 is a member of the GNAT superfamily of >10000 GCN5-related N-acetyltransferases, many members being linked to important roles in both human metabolism and disease. Drosophila melanogaster utilizes the N-acetylation of biogenic amines for the inactivation of neurotransmitters, the biosynthesis of melatonin, and the sclerotization of the cuticle. We have expressed and purified D. melanogaster AANATL7 in Escherichia coli and used the purified enzyme to define the substrate specificity for acyl-CoA and amine substrates. Information about the substrate specificity provides insight into the potential contribution made by AANATL7 to fatty acid amide biosynthesis because D. melanogaster has emerged as an important model system contributing to our understanding of fatty acid amide metabolism. Characterization of the kinetic mechanism of AANATL7 identified an ordered sequential mechanism, with acetyl-CoA binding first followed by histamine to generate an AANATL7·acetyl-CoA·histamine ternary complex prior to catalysis. Successive pH-activity profiling and site-directed mutagenesis experiments identified two ionizable groups: one with a pKa of 7.1 that is assigned to Glu-26 as a general base and a second pKa of 9.5 that is assigned to the protonation of the thiolate of the coenzyme A product. Using the data generated herein, we propose a chemical mechanism for AANATL7 and define functions for other important amino acid residues involved in substrate binding and regulation of catalysis.
Scarfe, G B; Nicholson, J K; Lindon, J C; Wilson, I D; Taylor, S; Clayton, E; Wright, B
2002-04-01
1. The urinary excretion of 4-bromoaniline and its [carbonyl-(13)C]-labelled N-acetanilide, together with their corresponding metabolites, have been investigated in the rat following i.p. administration at 50 mg kg(-1). 2. Metabolite profiling was performed by reversed-phase HPLC with UV detection, whilst identification was performed using a combination of enzymic hydrolysis and directly coupled HPLC-NMR-MS analysis. The urinary metabolite profile was quantitatively and qualitatively similar for both compounds with little of either excreted unchanged. 3. The major metabolite present in urine was 2-amino-5-bromophenylsulphate, but, in addition, a number of metabolites with modification of the N-acetyl moiety were identified (from both the [(13)C]-acetanilide or produced following acetylation of the free bromoaniline). 4. For 4-bromoacetanilide, N-deacetylation was a major route of metabolism, but despite the detection of the acetanilide following the administration of the free aniline, there was no evidence of reacetylation (futile deacetylation). 5. Metabolites resulting from the oxidation of the acetyl group included a novel glucuronide of an N-glycolanilide, an unusual N-oxanilic acid and a novel N-acetyl cysteine conjugate.
Diverse point mutations in the human gene for polymorphic N-acetyltransferase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vatsis, K.P.; Martell, K.J.; Weber, W.W.
1991-07-15
Classification of humans as rapid or slow acetylators is based on hereditary differences in rates of N-acetylation of therapeutic and carcinogenic agents, but N-acetylation of certain arylamine drugs displays no genetic variation. Two highly homologous human genes for N-acetyltransferase NAT1 and NAT2, presumably code for the genetically invariant and variant NAT proteins, respectively. In the present investigation, 1.9-kilobase human genomic EcoRI fragments encoding NAT2 were generated by the polymerase chain reaction with liver and leukocyte DNA from seven subjects phenotyped as homozygous and heterozygous acetylators. Direct sequencing revealed multiple point mutations in the coding region of two distinct NAT2 variants.more » One of these was derived from leukocytes of a slow acetylator and was distinguished by a silent mutation (coden 94) and a separate G {r arrow} A transition (position 590) leading to replacement of Arg-197 by Gln; the mutated guanine was part of a CpG dinucleotide and a Taq I site. The second NAT2 variant originated from liver with low N-acetylation activity. It was characterized by three nucleotide transitions giving rise to a silent mutation (codon 161), accompanied by obliteration of the sole Kpn I site, and two amino acid substitutions. The results show conclusively that the genetically variant NAT is encoded by NAT2.« less
Brockhausen, Inka; Nair, Dileep G; Chen, Min; Yang, Xiaojing; Allingham, John S; Szarek, Walter A; Anastassiades, Tassos
2016-04-01
Glucosamine-6-phosphate N-acetyltransferase1 (GNA1) catalyses the transfer of an acetyl group from acetyl coenzyme A (AcCoA) to glucosamine-6-phosphate (GlcN6P) to form N-acetylglucosamine-6-phosphate (GlcNAc6P), which is an essential intermediate in UDP-GlcNAc biosynthesis. An analog of GlcNAc, N-butyrylglucosamine (GlcNBu) has shown healing properties for bone and articular cartilage in animal models of arthritis. The goal of this work was to examine whether GNA1 has the ability to transfer a butyryl group from butyryl-CoA to GlcN6P to form GlcNBu6P, which can then be converted to GlcNBu. We developed fluorescent and radioactive assays and examined the donor specificity of human GNA1. Acetyl, propionyl, n-butyryl, and isobutyryl groups were all transferred to GlcN6P, but isovaleryl-CoA and decanoyl-CoA did not serve as donor substrates. Site-specific mutants were produced to examine the role of amino acids potentially affecting the size and properties of the AcCoA binding pocket. All of the wild type and mutant enzymes showed activities of both acetyl and butyryl transfer and can therefore be used for the enzymatic synthesis of GlcNBu for biomedical applications.
Freas, Nicholas; Newton, Peter; Perozich, John
2016-01-01
UDP-glucose dehydrogenase (UDPGDH), UDP-N-acetyl-mannosamine dehydrogenase (UDPNAMDH) and GDP-mannose dehydrogenase (GDPMDH) belong to a family of NAD (+)-linked 4-electron-transfering oxidoreductases called nucleotide diphosphate sugar dehydrogenases (NDP-SDHs). UDPGDH is an enzyme responsible for converting UDP-d-glucose to UDP-d-glucuronic acid, a product that has different roles depending on the organism in which it is found. UDPNAMDH and GDPMDH convert UDP-N-acetyl-mannosamine to UDP-N-acetyl-mannosaminuronic acid and GDP-mannose to GDP-mannuronic acid, respectively, by a similar mechanism to UDPGDH. Their products are used as essential building blocks for the exopolysaccharides found in organisms like Pseudomonas aeruginosa and Staphylococcus aureus. Few studies have investigated the relationships between these enzymes. This study reveals the relationships between the three enzymes by analysing 229 amino acid sequences. Eighteen invariant and several other highly conserved residues were identified, each serving critical roles in maintaining enzyme structure, coenzyme binding or catalytic function. Also, 10 conserved motifs that included most of the conserved residues were identified and their roles proposed. A phylogenetic tree demonstrated relationships between each group and verified group assignment. Finally, group entropy analysis identified novel conservations unique to each NDP-SDH group, including residue positions critical to NDP-sugar substrate interaction, enzyme structure and intersubunit contact. These positions may serve as targets for future research. UDP-glucose dehydrogenase (UDPGDH, EC 1.1.1.22).
Sulphur-containing Amino Acids: Protective Role Against Free Radicals and Heavy Metals.
Colovic, Mirjana B; Vasic, Vesna M; Djuric, Dragan M; Krstic, Danijela Z
2018-01-30
Sulphur is an abundant element in biological systems, which plays an important role in processes essential for life as a constituent of proteins, vitamins and other crucial biomolecules. The major source of sulphur for humans is plants being able to use inorganic sulphur in the purpose of sulphur-containing amino acids synthesis. Sulphur-containing amino acids include methionine, cysteine, homocysteine, and taurine. Methionine and cysteine are classified as proteinogenic, canonic amino acids incorporated in protein structure. Sulphur amino acids are involved in the synthesis of intracellular antioxidants such as glutathione and N-acetyl cysteine. Moreover, naturally occurring sulphur-containing ligands are effective and safe detoxifying agents, often used in order to prevent toxic metal ions effects and their accumulation in human body. Literature search for peer-reviewed articles was performed using PubMed and Scopus databases, and utilizing appropriate keywords. This review is focused on sulphur-containing amino acids - methionine, cysteine, taurine, and their derivatives - glutathione and N-acetylcysteine, and their defense effects as antioxidant agents against free radicals. Additionally, the protective effects of sulphur-containing ligands against the toxic effects of heavy and transition metal ions, and their reactivation role towards the enzyme inhibition are described. Sulphur-containing amino acids represent a powerful part of cell antioxidant system. Thus, they are essential in the maintenance of normal cellular functions and health. In addition to their worthy antioxidant action, sulphur-containing amino acids may offer a chelating site for heavy metals. Accordingly, they may be supplemented during chelating therapy, providing beneficial effects in eliminating toxic metals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Nakayoshi, Tomoki; Fukuyoshi, Shuichi; Takahashi, Ohgi; Oda, Akifumi
2018-03-01
Although nearly all of the amino acids that constitute proteins are l-amino acids, d-amino acid residues in human proteins have been recently reported. d-amino acid residues cause a change in the three-dimensional structure of proteins, and d-aspartic acid (Asp) residues are considered to be one of the causes of age-related diseases. The stereoinversion of Asp residues in peptides and proteins is thought to proceed via a succinimide intermediate; however, it has been reported that stereoinversion can occur even under conditions where a succinimide intermediate cannot be formed. In order to elucidate the non-succinimide-mediated stereoinversion pathway, we investigated the stereoinversion of l-Asp to d-Asp catalysed by phosphate and estimated the activation barrier using B3LYP/6-31+G(d,p) density functional theory (DFT) calculations. For the DFT calculations, a model compound in which the Asp residue is capped with acetyl and methyl-amino groups on the N- and C-termini, respectively, was used. The calculated activation barrier was not excessively high for the stereoinversion to occur in vivo. Therefore, this stereoinversion mechanism may compete with the succinimide-mediated mechanism.
Carvalho, Filipa; Duarte, Joao; Simoes, Ana Rita; Cruz, Pedro F.; Jones, John G.
2013-01-01
The 13C-isotopomer enrichment of hepatic cytosolic acetyl-CoA of overnight-fed mice whose drinking water was supplemented with [U-13C]fructose, and [1-13C]glucose and p-amino benzoic acid (PABA) was quantified by 13C NMR analysis of urinary N-acetyl-PABA. Four mice were given normal chow plus drinking water supplemented with 5% [1-13C]glucose, 2.5% [U-13C]fructose, and 2.5% fructose (Solution 1) overnight. Four were given chow and water containing 17.5% [1-13C]glucose, 8.75% [U-13C]fructose and 8.75% fructose (Solution 2). PABA (0.25%) was present in both studies. Urinary N-acetyl-PABA was analyzed by 13C NMR. In addition to [2-13C]- and [1,2-13C]acetyl isotopomers from catabolism of [U-13C]fructose and [1-13C]glucose to acetyl-CoA, [1-13C]acetyl was also found indicating pyruvate recycling activity. This precluded precise estimates of [1-13C]glucose contribution to acetyl-CoA while that of [U-13C]fructose was unaffected. The fructose contribution to acetyl-CoA from Solutions 1 and 2 was 4.0 ± 0.4% and 10.6 ± 0.6%, respectively, indicating that it contributed to a minor fraction of lipogenic acetyl-CoA under these conditions. PMID:23841082
Edwards, Adam B; Anderton, Ryan S; Knuckey, Neville W; Meloni, Bruno P
2017-02-01
In a recent study, we highlighted the importance of cationic charge and arginine residues for the neuroprotective properties of poly-arginine and arginine-rich peptides. In this study, using cortical neuronal cultures and an in vitro glutamic acid excitotoxicity model, we examined the neuroprotective efficacy of different modifications to the poly-arginine-9 peptide (R9). We compared an unmodified R9 peptide with R9 peptides containing the following modifications: (i) C-terminal amidation (R9-NH2); (ii) N-terminal acetylation (Ac-R9); (iii) C-terminal amidation with N-terminal acetylation (Ac-R9-NH2); and (iv) C-terminal amidation with D-amino acids (R9D-NH2). The three C-terminal amidated peptides (R9-NH2, Ac-R9-NH2, and R9D-NH2) displayed neuroprotective effects greater than the unmodified R9 peptide, while the N-terminal acetylated peptide (Ac-R9) had reduced efficacy. Using the R9-NH2 peptide, neuroprotection could be induced with a 10 min peptide pre-treatment, 1-6 h before glutamic acid insult, or when added to neuronal cultures up to 45 min post-insult. In addition, all peptides were capable of reducing glutamic acid-mediated neuronal intracellular calcium influx, in a manner that reflected their neuroprotective efficacy. This study further highlights the neuroprotective properties of poly-arginine peptides and provides insight into peptide modifications that affect efficacy.
Homann, Vanessa V; Sandy, Moriah; Tincu, J. Andy; Templeton, Alexis S.; Tebo, Bradley M.; Butler, Alison
2009-01-01
A suite of amphiphilic siderophores, loihichelins A-F, were isolated from cultures of the marine bacterium Halomonas sp. LOB-5. This heterotrophic Mn(II)-oxidizing bacterium was recently isolated from the partially weathered surfaces of submarine glassy pillow basalts and associated hydrothermal flocs of iron oxides collected from the southern rift zone of Loihi Seamount east of Hawai’i. The loihichelins contain a hydrophilic head group consisting of an octapeptide comprised of D-threo-β-hydroxyaspartic acid, D-serine, L-glutamine, L-serine, L-N(δ)-acetyl-N(δ)-hydroxy ornithine, dehydroamino-2-butyric acid, D-serine and cyclic N(δ)-hydroxy-D-ornithine, appended by one of a series of fatty acids ranging from decanoic acid to tetradecanoic acid. The structure of loihichelin C was determined by a combination of amino acid and fatty acid analyses, tandem mass spectrometry and NMR spectroscopy. The structures of the other loihichelins were inferred from the amino acid and fatty acid analyses, and tandem mass spectrometry. The role of these siderophores in sequestering Fe(III) released during basaltic rock weathering, as well as their potential role in the promotion of Mn(II) and Fe(II) oxidation, is of considerable interest. PMID:19320498
Gerrits, Bertran; Roschitzki, Bernd; Mohanty, Sonali; Niederer, Eva M.; Laczko, Endre; Timmerman, Evy; Lange, Vinzenz; Hafen, Ernst; Aebersold, Ruedi; Vandekerckhove, Joël; Basler, Konrad; Ahrens, Christian H.; Gevaert, Kris; Brunner, Erich
2009-01-01
Protein modifications play a major role for most biological processes in living organisms. Amino-terminal acetylation of proteins is a common modification found throughout the tree of life: the N-terminus of a nascent polypeptide chain becomes co-translationally acetylated, often after the removal of the initiating methionine residue. While the enzymes and protein complexes involved in these processes have been extensively studied, only little is known about the biological function of such N-terminal modification events. To identify common principles of N-terminal acetylation, we analyzed the amino-terminal peptides from proteins extracted from Drosophila Kc167 cells. We detected more than 1,200 mature protein N-termini and could show that N-terminal acetylation occurs in insects with a similar frequency as in humans. As the sole true determinant for N-terminal acetylation we could extract the (X)PX rule that indicates the prevention of acetylation under all circumstances. We could show that this rule can be used to genetically engineer a protein to study the biological relevance of the presence or absence of an acetyl group, thereby generating a generic assay to probe the functional importance of N-terminal acetylation. We applied the assay by expressing mutated proteins as transgenes in cell lines and in flies. Here, we present a straightforward strategy to systematically study the functional relevance of N-terminal acetylations in cells and whole organisms. Since the (X)PX rule seems to be of general validity in lower as well as higher eukaryotes, we propose that it can be used to study the function of N-terminal acetylation in all species. PMID:19885390
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thoden, James B.; Holden, Hazel M.
2010-09-08
The pathogenic bacteria Pseudomonas aeruginosa and Bordetella pertussis contain in their outer membranes the rare sugar 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid. Five enzymes are required for the biosynthesis of this sugar starting from UDP-N-acetylglucosamine. One of these, referred to as WlbB, is an N-acetyltransferase that converts UDP-2-acetamido-3-amino-2,3-dideoxy-D-glucuronic acid (UDP-GlcNAc3NA) to UDP-2,3-diacetamido-2,3-dideoxy-D-glucuronic acid (UDP-GlcNAc3NAcA). Here we report the three-dimensional structure of WlbB from Bordetella petrii. For this analysis, two ternary structures were determined to 1.43 {angstrom} resolution: one in which the protein was complexed with acetyl-CoA and UDP and the second in which the protein contained bound CoA and UDP-GlcNAc3NA. WlbB adopts a trimericmore » quaternary structure and belongs to the L{beta}H superfamily of N-acyltransferases. Each subunit contains 27 {beta}-strands, 23 of which form the canonical left-handed {beta}-helix. There are only two hydrogen bonds that occur between the protein and the GlcNAc3NA moiety, one between O{sup {delta}1} of Asn 84 and the sugar C-3{prime} amino group and the second between the backbone amide group of Arg 94 and the sugar C-5{prime} carboxylate. The sugar C-3{prime} amino group is ideally positioned in the active site to attack the si face of acetyl-CoA. Given that there are no protein side chains that can function as general bases within the GlcNAc3NA binding pocket, a reaction mechanism is proposed for WlbB whereby the sulfur of CoA ultimately functions as the proton acceptor required for catalysis.« less
Crystal structure of bacillus subtilis YdaF protein : a putative ribosomal N-acetyltransferase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunzelle, J. S.; Wu, R.; Korolev, S. V.
2004-12-01
Comparative sequence analysis suggests that the ydaF gene encodes a protein (YdaF) that functions as an N-acetyltransferase, more specifically, a ribosomal N-acetyltransferase. Sequence analysis using basic local alignment search tool (BLAST) suggests that YdaF belongs to a large family of proteins (199 proteins found in 88 unique species of bacteria, archaea, and eukaryotes). YdaF also belongs to the COG1670, which includes the Escherichia coli RimL protein that is known to acetylate ribosomal protein L12. N-acetylation (NAT) has been found in all kingdoms. NAT enzymes catalyze the transfer of an acetyl group from acetyl-CoA (AcCoA) to a primary amino group. Formore » example, NATs can acetylate the N-terminal {alpha}-amino group, the {epsilon}-amino group of lysine residues, aminoglycoside antibiotics, spermine/speridine, or arylalkylamines such as serotonin. The crystal structure of the alleged ribosomal NAT protein, YdaF, from Bacillus subtilis presented here was determined as a part of the Midwest Center for Structural Genomics. The structure maintains the conserved tertiary structure of other known NATs and a high sequence similarity in the presumed AcCoA binding pocket in spite of a very low overall level of sequence identity to other NATs of known structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goebel, C.; Hewitt, N.J.; Kunze, G.
2009-02-15
4-Amino-2-hydroxytolune (AHT) is an aromatic amine ingredient in oxidative hair colouring products. As skin contact occurs during hair dyeing, characterisation of dermal metabolism is important for the safety assessment of this chemical class. We have compared the metabolism of AHT in the human keratinocyte cell line HaCaT with that observed ex-vivo in human skin and in vivo (topical application versus oral (p.o.) and intravenous (i.v.) route). Three major metabolites of AHT were excreted, i.e. N-acetyl-AHT, AHT-sulfate and AHT-glucuronide. When 12.5 mg/kg AHT was applied topically, the relative amounts of each metabolite were altered such that N-acetyl-AHT product was the majormore » metabolite (66% of the dose in comparison with 37% and 32% of the same applied dose after i.v. and p.o. administration, respectively). N-acetylated products were the only metabolites detected in HaCaT cells and ex-vivo whole human skin discs for AHT and p-aminophenol (PAP), an aromatic amine known to undergo N-acetylation in vivo. Since N-acetyltransferase 1 (NAT1) is the responsible enzyme, kinetics of AHT was further compared to the standard NAT1 substrate p-aminobenzoic acid (PABA) in the HaCaT model revealing similar values for K{sub m} and V{sub max}. In conclusion NAT1 dependent dermal N-acetylation of AHT represents a 'first-pass' metabolism effect in the skin prior to entering the systemic circulation. Since the HaCaT cell model represents a suitable in vitro assay for addressing the qualitative contribution of the skin to the metabolism of topically-applied aromatic amines it may contribute to a reduction in animal testing.« less
Free energy landscapes of peptides by enhanced conformational sampling.
Nakajima, N; Higo, J; Kidera, A; Nakamura, H
2000-02-11
The free energy landscapes of peptide conformations in water have been observed by the enhanced conformational sampling method, applying the selectively enhanced multicanonical molecular dynamics simulations. The conformations of the peptide dimers, -Gly-Gly-, -Gly-Ala-, -Gly-Ser-, -Ala-Gly-, -Asn-Gly-, -Pro-Gly-, -Pro-Ala-, and -Ala-Ala-, which were all blocked with N-terminal acetyl and C-terminal N-methyl groups, were individually sampled with the explicit TIP3P water molecules. From each simulation trajectory, we obtained the canonical ensemble at 300 K, from which the individual three-dimensional landscape was drawn by the potential of mean force using the three reaction coordinates: the backbone dihedral angle, psi, of the first amino acid, the backbone dihedral angle, phi, of the second amino acid, and the distance between the carbonyl oxygen of the N-terminal acetyl group and the C-terminal amide proton. The most stable state and several meta-stable states correspond to extended conformations and typical beta-turn conformations, and their free energy values were accounted for from the potentials of mean force at the states. In addition, the contributions from the intra-molecular energies of peptides and those from the hydration effects were analyzed. Consequently, the stable beta-turn conformations in the free energy landscape were consistent with the empirically preferred beta-turn types for each amino acid sequence. The thermodynamic values for the hydration effect were decomposed and they correlated well with the empirical values estimated from the solvent accessible surface area of each molecular conformation during the trajectories. The origin of the architecture of protein local fragments was analyzed from the viewpoint of the free energy and its decomposed factors. Copyright 2000 Academic Press.
1989-05-31
toxin lj-chain Adjuvant materials MOP-Lys - aminocaproic murabutide 6-O-succinyl murabutide Experimental Methods and Results 5 HPLC Analysis Dosage of...containing other E.coli antigens as suggested by Ahren and Svennerholm. (49). The amino acid sequence of CFA1 is now available (50) as well as the...MOP. The method of Reissig (56) has been used. It allows to evaluate specifically the N-acetyl group substituted in the 2-position of the muramic acid
Popowska, Magdalena; Osińska, Magdalena; Rzeczkowska, Magdalena
2012-04-01
The main aim of our study was to determine the physiological function of NagA enzyme in the Listeria monocytogenes cell. The primary structure of the murein of L. monocytogenes is very similar to that of Escherichia coli, the main differences being amidation of diaminopimelic acid and partial de-N-acetylation of glucosamine residues. NagA is needed for the deacetylation of N-acetyl-glucosamine-6 phosphate to glucosamine-6 phosphate and acetate. Analysis of the L. monocytogenes genome reveals the presence of two proteins with NagA domain, Lmo0956 and Lmo2108, which are cytoplasmic putative proteins. We introduced independent mutations into the structural genes for the two proteins. In-depth characterization of one of these mutants, MN1, deficient in protein Lmo0956 revealed strikingly altered cell morphology, strongly reduced cell wall murein content and decreased sensitivity to cell wall hydrolase, mutanolysin and peptide antibiotic, colistin. The gene products of operon 150, consisting of three genes: lmo0956, lmo0957, and lmo0958, are necessary for the cytosolic steps of the amino-sugar-recycling pathway. The cytoplasmic de-N-acetylase Lmo0956 of L. monocytogenes is required for cell wall peptidoglycan and teichoic acid biosynthesis and is also essential for bacterial cell growth, cell division, and sensitivity to cell wall hydrolases and peptide antibiotics.
A Core Facility for the Study of Neurotoxins of Biological Origin
1992-02-15
a somewhat different approach was used. TVL was incubated with or without N-acetyl-g- glucosamine (1 x 10-1 M) for 30 min. This mixture was then...galactosamine, N-acetyl-0-galactosamine, N-acetyl-cz ,lucosamine and N-acetyl-3- glucosamine . None of these lectins was a potent antagonist of botulinum...sialic acid, whereas TVL has affinity for both N-acetyl-,6- glucosamine and N-acetyl-a-sialic acid. However, the fact that the lectin from Datora
Rose, K; Kocher, H P; Blumberg, B M; Kolakofsky, D
1984-01-01
A modification to a previously described procedure [Gray & del Valle (1970) Biochemistry 9, 2134-2137; Rose, Simona & Offord (1983) Biochem. J. 215, 261-272] for mass-spectral identification of the N-terminal regions of proteins is shown to be useful in cases where the N-terminus is blocked. Three proteins were studied: vesicular-stomatitis-virus N protein, Sendai-virus NP protein, and a rabbit immunoglobulin lambda-light chain. These proteins, found to be blocked at the N-terminus with either the acetyl group or a pyroglutamic acid residue, had all failed to yield to attempted Edman degradation, in one case even after attempted enzymic removal of the pyroglutamic acid residue. The N-terminal regions of all three proteins were sequenced by using the new procedure. PMID:6421284
Minchin, Rodney F; Butcher, Neville J
2015-04-01
The arylamine N-acetyltransferases (NATs) catalyze the acetylation of aromatic and heterocyclic amines as well as hydrazines. All proteins in this family of enzymes utilize acetyl coenzyme A (AcCoA) as an acetyl donor, which initially binds to the enzyme and transfers an acetyl group to an active site cysteine. Here, we have investigated the role of a highly conserved amino acid (Lys(100)) in the enzymatic activity of human NAT1. Mutation of Lys(100) to either a glutamine or a leucine significantly increased the Ka for AcCoA without changing the Kb for the acetyl acceptor p-aminobenzoic acid. In addition, substrate inhibition was more marked with the mutant enzymes. Steady state kinetic analyzes suggested that mutation of Lys(100) to either leucine or glutamine resulted in a less stable enzyme-cofactor complex, which was not seen with a positively charged arginine at this position. When p-nitrophenylacetate was used as acetyl donor, no differences were seen between the wild-type and mutant enzymes because p-nitrophenylacetate is too small to interact with Lys(100) when bound to the active site. Using 3'-dephospho-AcCoA as the acetyl donor, kinetic data confirmed that Ly(100) interacts with the 3'-phosphoanion to stabilize the enzyme-cofactor complex. Mutation of Lys(100) decreases the affinity of AcCoA for the protein and increases the rate of CoA release. Crystal structures of several other unrelated acetyltransferases show a lysine or arginine residue within 3Å of the 3'-phosphoanion of AcCoA, suggesting that this mechanism for stabilizing the complex by the formation of a salt bridge may be widely applicable in nature. Copyright © 2015 Elsevier Inc. All rights reserved.
Bacterial conversion of phenylalanine and aromatic carboxylic acids into dihydrodiols.
Wegst, W; Tittmann, U; Eberspächer, J; Lingens, F
1981-01-01
Strain E of chloridazon-degrading bacteria, when grown on L-phenylalanine accumulates cis-2,3-dihydro-2,3-dihydroxyphenylalanine. In experiments with resting cells and during growth the bacterium converts the aromatic carboxylic acids phenylacetate, phenylpropionate, phenylbutyrate and phenyl-lactate into the corresponding cis-2,3-dihydrodiol compounds. The amino acids L-phenylalanine, N-acetyl-L-phenylalanine and t-butyloxycarbonyl-L-phenylalanine were also transformed into dihydrodiols. All seven dihydrodiols, thus obtained, were characterized both by conventional analytical techniques and by the ability to serve as substrates for a cis-dihydrodiol dehydrogenase. PMID:7306016
ERIC Educational Resources Information Center
Harada, Masafumi; Taki, Masako M.; Nose, Ayumi; Kubo, Hitoshi; Mori, Kenji; Nishitani, Hiromu; Matsuda, Tsuyoshi
2011-01-01
Amino acids related to neurotransmitters and the GABAergic/glutamatergic system were measured using a 3 T-MRI instrument in 12 patients with autism and 10 normal controls. All measurements were performed in the frontal lobe (FL) and lenticular nuclei (LN) using a conventional sequence for n-acetyl aspartate (NAA) and glutamate (Glu), and the…
Recent studies on the antimicrobial peptides lactoferricin and lactoferrampin.
Yin, C; Wong, J H; Ng, T B
2014-01-01
Lactoferricin and lactoferrampin, peptides derived from the whey protein lactoferrin, are antimicrobial agents with a promising prospect and are currently one of the research focuses. In this review, a basic introduction including location and solution structures of these two peptides is given. Their biological activities encompassing antiviral, antibacterial, antifungal and anti-inflammatory activities with possible mechanisms are mentioned. In terms of modification studies, research about identification of their active derivatives and crucial amino acid residues is also discussed. Various attempts at modification of lactoferricin and lactoferrampin such as introducing big hydrophobic side-chains; employing special amino acids for synthesis; N-acetylization, amidation, cyclization and peptide chimera are summarized. The studies on lactoferricin-lactoferrampin chimera are discussed in detail. Future prospects of lactoferricin and lactoferrampin are covered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayden, P.J.; McCann, D.J.; Stevens, J.L.
1991-06-18
{sup 19}F NMR spectorscopy was used in conjunction with isotopic labeling to demonstrate that difluorothionoacetyl-protein adducts are formed by metabolites of the nephrotoxic cysteine conjugate S(1,1,2,2-tetrafluoroethyl)-L-cysteine (TFEC). To determine which amino acid residues can be involved in adduct formation, the reactivity of TFEC metabolites with a variety of N-acetyl amino acids was also investigated. An N{sup {alpha}}-acetyl-N{sup {epsilon}}-(difluorothionoacetyl)lysine (DFTAL) adduct was isolated and characterized by {sup 19}F and {sup 13}C NMR spectroscopy and mass spectrometry. N{sup {alpha}}-Acetylhistidine and N-acetyltyrosine were found to act as nucleophilic catalysts to facilitate the formation of both the protein and DFTAL adducts. Adduct formation wasmore » greatly reduced when lysyl-modified protein was used as the substrate, indicating that lysyl residues are primary sites of adduct formation. However, N{sup a}-acetyllysine, at concentrations of >100-fold in excess compared to protein lysyl residues, was not effective in preventing binding of metabolites to protein. Therefore, nucleophilic catalysis at the surface of the protein may be an important mechanism for the binding of TFEC metabolites to specific lysyl residues in protein. TFEC metabolites were very reactive with the thiol nucleophiles glutathione and N-acetylcysteine. However, the predicted difluorodithioesters could not be isolated. Bothe stable difluorothioacetamide and less stable difluorodithioester protein adducts may play a role in TFEC-mediated enphrotoxicity.« less
Vermeij, T A; Edelbroek, P M
1998-09-25
A rapid and simple method is presented for the determination of vigabatrin enantiomers in human serum by high-performance liquid chromatography. Serum is deproteinized with trichloroacetic acid and aliquots of the supernatant are precolumn derivatized with o-phthaldialdehyde and N-acetyl-L-cysteine, resulting in the formation of diastereomeric isoindoles. Separation was achieved on a Spherisorb 3ODS2 column using a gradient solvent program and the column eluent is monitored using fluorescence detection. L-Homoarginine was used as an internal standard. Within-day precisions (C.V.; n=8) were 2.8 and 1.1%, respectively, for the (R)-(-)- and (S)-(+)-enantiomer in serum containing 15.4 mg/l (RS)-vigabatrin. The method was linear in the 0-45 mg/l range for both enantiomers and the minimum quantitation limit was 0.20 mg/l for (R)-(-)-vigabatrin and 0.14 mg/l for (S)-(+)-vigabatrin. No interferences were found from commonly co-administered antiepileptic drugs and from endogenous amino acids. The method is suitable for routine therapeutic drug monitoring and for pharmacokinetic studies.
Optimization of Clonazepam Therapy Adjusted to Patient’s CYP3A Status and NAT2 Genotype
Tóth, Katalin; Csukly, Gábor; Sirok, Dávid; Belic, Ales; Kiss, Ádám; Háfra, Edit; Déri, Máté; Menus, Ádám; Bitter, István
2016-01-01
Background: The shortcomings of clonazepam therapy include tolerance, withdrawal symptoms, and adverse effects such as drowsiness, dizziness, and confusion leading to increased risk of falls. Inter-individual variability in the incidence of adverse events in patients partly originates from the differences in clonazepam metabolism due to genetic and nongenetic factors. Methods: Since the prominent role in clonazepam nitro-reduction and acetylation of 7-amino-clonazepam is assigned to CYP3A and N-acetyl transferase 2 enzymes, respectively, the association between the patients’ CYP3A status (CYP3A5 genotype, CYP3A4 expression) or N-acetyl transferase 2 acetylator phenotype and clonazepam metabolism (plasma concentrations of clonazepam and 7-amino-clonazepam) was evaluated in 98 psychiatric patients suffering from schizophrenia or bipolar disorders. Results: The patients’ CYP3A4 expression was found to be the major determinant of clonazepam plasma concentrations normalized by the dose and bodyweight (1263.5±482.9 and 558.5±202.4ng/mL per mg/kg bodyweight in low and normal expressers, respectively, P<.0001). Consequently, the dose requirement for the therapeutic concentration of clonazepam was substantially lower in low-CYP3A4 expresser patients than in normal expressers (0.029±0.011 vs 0.058±0.024mg/kg bodyweight, P<.0001). Furthermore, significantly higher (about 2-fold) plasma concentration ratio of 7-amino-clonazepam and clonazepam was observed in the patients displaying normal CYP3A4 expression and slower N-acetylation than all the others. Conclusion: Prospective assaying of CYP3A4 expression and N-acetyl transferase 2 acetylator phenotype can better identify the patients with higher risk of adverse reactions and can facilitate the improvement of personalized clonazepam therapy and withdrawal regimen. PMID:27639091
Bódalo, A; Gómez, J L.; Gómez, E; Bastida, J; Máximo, M F.; Montiel, M C.
2001-03-08
In this paper the possibility of continuous resolution of DL-phenylalanine, catalyzed by L-aminoacylase in a ultrafiltration membrane reactor (UFMR) is presented. A simple design model, based on previous kinetic studies, has been demonstrated to be capable of describing the behavior of the experimental system. The model has been used to determine the optimal experimental conditions to carry out the asymmetrical hydrolysis of N-acetyl-DL-phenylalanine.
Andres, H H; Kolb, H J; Schreiber, R J; Weiss, L
1983-08-16
It could be demonstrated that a sulfhydryl group is involved in the catalysis of acetyl-CoA:arylamine N-acetyltransferase from pigeon liver (EC 2.3.1.5). From ping-pong kinetics it was concluded that there is a covalent acetyl-enzyme intermediate. The respective intermediate could be isolated and chemically characterized as a cysteinyl thioester. Electrophoretically homogeneous acetyl-CoA:acylamine N-acetyltransferase from pigeon liver was able to acetylate a broad variety of aromatic and aliphatic amines from different acetyldonors such as acetyl-CoA, p-nitroacetanilide and p-nitrophenylacetate. Apparent Km values were determined for a number of acetyl donors and acetyl acceptors. Additionally, Ki values were evaluated for CoA, 3',5'-ADP and AMP. Correlation studies of basicity of acceptor amines and acetylation rate demonstrated that there is a limit of the pKa value (about pKa = 1) where the covalently-bound acetyl-enzyme intermediate can still be saponified. Testing crude liver homogenates of several animals including turkey, duck, chicken, cow, pig, horse, sheep, carp, trout and herring the outstanding nature of the pigeon liver enzyme in acetylating very weakly basic amines could be demonstrated. It is shown that the enzyme is quite flexible concerning sterically different acceptor amines, because arylamines whose amino group was effected by large o-substituents could be quantitatively acetylated. After enzymatic acetylation of the first amino group, 1,2-phenylendiamine formed the heterocyclic compound 2-methylbenzimidazole by a spontaneous condensation reaction. There is evidence that with distinct amines formation of heterocyclic compounds may also occur in vivo.
NASA Astrophysics Data System (ADS)
Wu, Zhaoguan; Li, Henghui; Zhang, Qiwei; Liu, Xin; Zheng, Qi; Li, Jianjun
2017-04-01
O-Acetylation of sialic acid in protein N-glycans is an important modification and can occur at either 4-, 7-, 8- or 9-position in various combinations. This modification is usually labile under alkaline reaction conditions. Consequently, a permethylation-based analytical method, which has been widely used in glycomics studies, is not suitable for profiling O-acetylation of sialic acids due to the harsh reaction conditions. Alternatively, methylamidation can be used for N-glycan analysis without affecting the base-labile modification of sialic acid. In this report, we applied both permethylation and methylamidation approaches to the analysis of O-acetylation in sialic acids. It has been demonstrated that methylamidation not only stabilizes sialic acids during MALDI processing but also allow for characterization of their O-acetylation pattern. In addition, LC-MS/MS experiments were carried out to distinguish between the O-acetylated glycans with potential isomeric structures. The repeatability of methylamidation was examined to evaluate the applicability of the approach to profiling of O-acetylation in sialic acids. In conclusion, the combination of methylamidation and permethylation methodology is a powerful MALDI-TOF MS-based tool for profiling O-acetylation in sialic acids applicable to screening of N-glycans.
Major antigenic determinants of F and ColB2 pili.
Finlay, B B; Frost, L S; Paranchych, W; Parker, J M; Hodges, R S
1985-01-01
F-like conjugative pili are expressed by plasmids with closely related transfer systems. They are tubular filaments that are composed of repeating pilin subunits arranged in a helical array. Both F and ColB2 pilin have nearly identical protein sequences, and both contain an acetylated amino-terminal alanine residue. However, they differ by a few amino acid residues at their amino termini. Rabbit antisera raised against purified F and ColB2 pili are immunologically cross-reactive by only 25%, as measured by a competition enzyme-linked immunosorbent assay (ELISA). A tryptic peptide corresponding to the first 15 amino acid residues of ColB2 pilin was isolated and found to remove nearly 80% of ColB2 pilus-directed rabbit antibodies. The corresponding tryptic peptide from F pilin, which reacted with anti-F pilus antibodies to remove 80%, was less than 20% reactive with anti-ColB2 pilus antiserum. Cleavage of these peptides with cyanogen bromide (at a methionine residue approximately in the middle of the peptide) did not affect the antigenicity of these peptides. Synthetic N alpha-acetylated peptides corresponding to the first eight amino acids of F pilin (Ac-Ala-Gly-Ser-Ser-Gly-Gln-Asp-Leu-COOH) and the first six amino acids of ColB2 pilin (Ac-Ala-Gln-Gly-Gln-Asp-Leu-COOH) were prepared and tested by competition ELISA with homologous and heterologous anti-pilus antisera. The F peptide F(1-8) inhibited the interaction of F pili and anti-F pilus antiserum to 80%, while the ColB2 peptide ColB2(1-6) inhibited anti-ColB2 pilus antiserum reacting with ColB2 pili by greater than 60%. The two peptides F(1-8) and ColB2(1-6) were inactive by competition ELISAs with heterologous antisera. These results suggest that the major antigenic determinant of both F and ColB2 pili is at the amino terminus of the pilin subunit and that 80% of antibodies raised against these pili are specific for this region of the pilin molecule. PMID:2409073
Enrichment of the amino acid l-isovaline by aqueous alteration on CI and CM meteorite parent bodies
Glavin, Daniel P.; Dworkin, Jason P.
2009-01-01
The distribution and enantiomeric composition of the 5-carbon (C5) amino acids found in CI-, CM-, and CR-type carbonaceous meteorites were investigated by using liquid chromatography fluorescence detection/TOF-MS coupled with o-phthaldialdehyde/N-acetyl-l-cysteine derivatization. A large l-enantiomeric excess (ee) of the α-methyl amino acid isovaline was found in the CM meteorite Murchison (lee = 18.5 ± 2.6%) and the CI meteorite Orgueil (lee = 15.2 ± 4.0%). The measured value for Murchison is the largest enantiomeric excess in any meteorite reported to date, and the Orgueil measurement of an isovaline excess has not been reported previously for this or any CI meteorite. The l-isovaline enrichments in these two carbonaceous meteorites cannot be the result of interference from other C5 amino acid isomers present in the samples, analytical biases, or terrestrial amino acid contamination. We observed no l-isovaline enrichment for the most primitive unaltered Antarctic CR meteorites EET 92042 and QUE 99177. These results are inconsistent with UV circularly polarized light as the primary mechanism for l-isovaline enrichment and indicate that amplification of a small initial isovaline asymmetry in Murchison and Orgueil occurred during an extended aqueous alteration phase on the meteorite parent bodies. The large asymmetry in isovaline and other α-dialkyl amino acids found in altered CI and CM meteorites suggests that amino acids delivered by asteroids, comets, and their fragments would have biased the Earth's prebiotic organic inventory with left-handed molecules before the origin of life. PMID:19289826
Muik, Barbara; Edelmann, Andrea; Lendl, Bernhard; Ayora-Cañada, María José
2002-09-01
An automated method for measuring the primary amino acid concentration in wine fermentations by sequential injection analysis with spectrophotometric detection was developed. Isoindole-derivatives from the primary amino acid were formed by reaction with o-phthaldialdehyde and N-acetyl- L-cysteine and measured at 334 nm with respect to a baseline point at 700 nm to compensate the observed Schlieren effect. As the reaction kinetic was strongly matrix dependent the analytical readout at the final reaction equilibrium has been evaluated. Therefore four parallel reaction coils were included in the flow system to be capable of processing four samples simultaneously. Using isoleucine as the representative primary amino acid in wine fermentations a linear calibration curve from 2 to 10 mM isoleucine, corresponding to 28 to 140 mg nitrogen/L (N/L) was obtained. The coefficient of variation of the method was 1.5% at a throughput of 12 samples per hour. The developed method was successfully used to monitor two wine fermentations during alcoholic fermentation. The results were in agreement with an external reference method based on high performance liquid chromatography. A mean-t-test showed no significant differences between the two methods at a confidence level of 95%.
Kostić, Sanja; Mićovic, Žarko; Andrejević, Lazar; Cvetković, Saša; Stamenković, Aleksandra; Stanković, Sanja; Obrenović, Radmila; Labudović-Borović, Milica; Hrnčić, Dragan; Jakovljević, Vladimir; Djurić, Dragan
2018-06-23
Methionine is the precursor of homocysteine, a sulfur amino acid intermediate in the methylation and transsulfuration pathways; methionine-rich diets were used to induce hyperhomocysteinemia, and cardiovascular pathology was often observed. Other sulfur amino acids interfere with this metabolism, i.e., L-cysteine (Cys) and N-aceyl-L-cysteine (NAC), and probably also affect cardiovascular system. Their effects are controversial due to their ability to act both as anti- or pro-oxidant. Thus, this study aimed to elucidate their influence on levels of homocysteine, folate and vitamin B12, levels of different haemostatic parameters (fibrinogen, D-dimer, vWF Ag, vWF Ac) in rat serum or plasma as well as their effects on cardiac and aortic tissue histology in subchronically methionine-treated rats. Wistar albino rats were divided into 4 experimental groups: (a) control group (0.9% sodium chloride 0.1-0.2 mL/day) (n = 10) (K); (b) DL-methionine (0.8 mmol/kg/bw/day) (n = 10) (M); (c) DL-methionine (0.8 mmol/kg/bw/day) + L-cysteine (7 mg/kg/bw/day) (n = 8) (C); (d) DL-methionine (0.8 mmol/ kg/bw/day) + N-acetyl-L-cysteine (50 mg/kg/bw/day) (n = 8) (N). All substances were applied i.p., treatment duration 3 weeks. Lower levels of vitamin B12 in all the groups were found. Folate was reduced only in N group. Decreased fibrinogen was noted in C and N groups and increased D-dimer only in C. VWF activity was reduced in M and C groups. Deleterious effects in heart were observed, especially after Cys and NAC application. Aortic tissue remained unchanged. In conclusion, it could be said that sulfur amino acids have the significant impact on cardiovascular system in subchronically methionine-treated rats. This study points out the relevance of their complex interactions and deleterious effects mediated by either direct influence or procoagulant properties.
Bathena, Sai P; Huang, Jiangeng; Epstein, Adrian A; Gendelman, Howard E; Boska, Michael D; Alnouti, Yazen
2012-04-15
Amino acids and myo-inositol have long been proposed as putative biomarkers for neurodegenerative diseases. Accurate measures and stability have precluded their selective use. To this end, a sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method based on multiple reaction monitoring was developed to simultaneously quantify glutamine, glutamate, γ-aminobutyric acid (GABA), aspartic acid, N-acetyl aspartic acid, taurine, choline, creatine, phosphocholine and myo-inositol in mouse brain by methanol extractions. Chromatography was performed using a hydrophilic interaction chromatography silica column within in a total run time of 15 min. The validated method is selective, sensitive, accurate, and precise. The method has a limit of quantification ranging from 2.5 to 20 ng/ml for a range of analytes and a dynamic range from 2.5-20 to 500-4000 ng/ml. This LC-MS/MS method was validated for biomarker discovery in models of human neurological disorders. Copyright © 2012 Elsevier B.V. All rights reserved.
Advances in protein-amino acid nutrition of poultry.
Baker, David H
2009-05-01
The ideal protein concept has allowed progress in defining requirements as well as the limiting order of amino acids in corn, soybean meal, and a corn-soybean meal mixture for growth of young chicks. Recent evidence suggests that glycine (or serine) is a key limiting amino acid in reduced protein [23% crude protein (CP) reduced to 16% CP] corn-soybean meal diets for broiler chicks. Research with sulfur amino acids has revealed that small excesses of cysteine are growth depressing in chicks fed methionine-deficient diets. Moreover, high ratios of cysteine:methionine impair utilization of the hydroxy analog of methionine, but not of methionine itself. A high level of dietary L: -cysteine (2.5% or higher) is lethal for young chicks, but a similar level of DL: -methionine, L: -cystine or N-acetyl-L: -cysteine causes no mortality. A supplemental dietary level of 3.0% L: -cysteine (7x requirement) causes acute metabolic acidosis that is characterized by a striking increase in plasma sulfate and decrease in plasma bicarbonate. S-Methylmethionine, an analog of S-adenosylmethionine, has been shown to have choline-sparing activity, but it only spares methionine when diets are deficient in choline and(or) betaine. Creatine, or its precursor guanidinoacetic acid, can spare dietary arginine in chicks.
Becker, Sidnei; Soares, Cíntia; Porto, Luismar Marques
2009-07-01
Groups of genes that produce exopolysaccharide with a N-acetyl-D-glucosamine monomer are in the genome of several pathogenic bacteria. Chromobacterium violaceum, an opportunistic pathogen, has the operon hmsHFR-CV2940, whose proteins can synthesize such polysaccharide. In this work, multiple alignments among proteins from bacteria that synthesize such polysaccharide were used to verify the existence of amino acids that might be critical for pathogen activity. Three-dimensional models were generated for spatial visualization of these amino acid residues. The analysis carried out showed that the protein HmsR preserves the amino acids D135, D228, Q264 and R267, considered critical for the formation of biofilms and, furthermore, that these amino acids are close to each other. The protein HmsF of C. violaceum preserves the residues D86, D87, H156 and W115. It was also shown that these residues are also close to each other in their spatial arrangement. For the proteins HmsH and CV2940 there is evidence of conservation of the residues R104 and W94, respectively. Conservation and favorable spatial location of those critical amino acids that constitute the proteins of the operon indicates that they preserve the same enzymatic function in biofilm synthesis. This is an indicator that the operon hmsHFR-CV2940 is a possible target in C. violaceum pathogenicity.
Ptolemy, Adam S; Tran, Lara; Britz-McKibbin, Philip
2006-07-15
Capillary electrophoresis (CE) represents a versatile platform for integrating sample pretreatment with chemical analysis because of its ability to tune analyte electromigration and band dispersion properties in discontinuous electrolyte systems. In this article, a single-step method that combines on-line sample preconcentration with in-capillary chemical derivatization is developed for rapid, sensitive, and enantioselective analysis of micromolar levels of amino acids that lack intrinsic chromophores by CE with UV detection. Time-resolved electrophoretic studies revealed two distinct stages of amino acid band narrowing within the original long sample injection plug occurring both prior to and after in-capillary labeling via zone passing by ortho-phthalaldehyde/N-acetyl l-cysteine (OPA/NAC). This technique enabled direct analysis of d-amino acids in a 95% enantiomeric excess mixture with sub-micromolar detection limits and minimal sample handling, where the capillary functions as a preconcentrator, microreactor, and chiral selector. On-line sample preconcentration with chemical derivatization CE (SPCD-CE) was applied to study the enantioselective amino acid flux in Escherichia coli bacteria cultures, which demonstrated a unique l-Ala efflux into the extracellular medium. New strategies for high-throughput analyses of low-abundance metabolites are important for understanding fundamental physiological processes in bacteria required for screening the efficacy of new classes of antibiotics as well as altered metabolism in genetically modified mutant strains.
Kots, Ekaterina D; Lushchekina, Sofya V; Varfolomeev, Sergey D; Nemukhin, Alexander V
2017-08-28
The results of molecular modeling suggest a mechanism of allosteric inhibition upon hydrolysis of N-acetyl-aspartate (NAA), one of the most abundant amino acid derivatives in brain, by human aspartoacylase (hAsp). Details of this reaction are important to suggest the practical ways to control the enzyme activity. Search for allosteric sites using the Allosite web server and SiteMap analysis allowed us to identify substrate binding pockets located at the interface between the subunits of the hAsp dimer molecule. Molecular docking of NAA to the pointed areas at the dimer interface predicted a specific site, in which the substrate molecule interacts with the Gly237, Arg233, Glu290, and Lys292 residues. Analysis of multiple long-scaled molecular dynamics trajectories (the total simulation time exceeded 1.5 μs) showed that binding of NAA to the identified allosteric site induced significant rigidity to the protein loops with the amino acid side chains forming gates to the enzyme active site. Application of the protein dynamical network algorithms showed that substantial reorganization of the signal propagation pathways of intersubunit communication in the dimer occurred upon allosteric NAA binding to the remote site. The modeling approaches provide an explanation to the observed decrease of the reaction rate of NAA hydrolysis by hAsp at high substrate concentrations.
A Proteomic Approach to Analyze the Aspirin-mediated Lysine Acetylome*
Tatham, Michael H.; Cole, Christian; Scullion, Paul; Wilkie, Ross; Westwood, Nicholas J.; Stark, Lesley A.; Hay, Ronald T.
2017-01-01
Aspirin, or acetylsalicylic acid is widely used to control pain, inflammation and fever. Important to this function is its ability to irreversibly acetylate cyclooxygenases at active site serines. Aspirin has the potential to acetylate other amino acid side-chains, leading to the possibility that aspirin-mediated lysine acetylation could explain some of its as-yet unexplained drug actions or side-effects. Using isotopically labeled aspirin-d3, in combination with acetylated lysine purification and LC-MS/MS, we identified over 12000 sites of lysine acetylation from cultured human cells. Although aspirin amplifies endogenous acetylation signals at the majority of detectable endogenous sites, cells tolerate aspirin mediated acetylation very well unless cellular deacetylases are inhibited. Although most endogenous acetylations are amplified by orders of magnitude, lysine acetylation site occupancies remain very low even after high doses of aspirin. This work shows that while aspirin has enormous potential to alter protein function, in the majority of cases aspirin-mediated acetylations do not accumulate to levels likely to elicit biological effects. These findings are consistent with an emerging model for cellular acetylation whereby stoichiometry correlates with biological relevance, and deacetylases act to minimize the biological consequences of nonspecific chemical acetylations. PMID:27913581
Mechanistic and Structural Analysis of Drosophila melanogaster Arylalkylamine N-Acetyltransferases
2015-01-01
Arylalkylamine N-acetyltransferase (AANAT) catalyzes the penultimate step in the biosynthesis of melatonin and other N-acetylarylalkylamides from the corresponding arylalkylamine and acetyl-CoA. The N-acetylation of arylalkylamines is a critical step in Drosophila melanogaster for the inactivation of the bioactive amines and the sclerotization of the cuticle. Two AANAT variants (AANATA and AANATB) have been identified in D. melanogaster, in which AANATA differs from AANATB by the truncation of 35 amino acids from the N-terminus. We have expressed and purified both D. melanogaster AANAT variants (AANATA and AANATB) in Escherichia coli and used the purified enzymes to demonstrate that this N-terminal truncation does not affect the activity of the enzyme. Subsequent characterization of the kinetic and chemical mechanism of AANATA identified an ordered sequential mechanism, with acetyl-CoA binding first, followed by tyramine. We used a combination of pH–activity profiling and site-directed mutagenesis to study prospective residues believed to function in AANATA catalysis. These data led to an assignment of Glu-47 as the general base in catalysis with an apparent pKa of 7.0. Using the data generated for the kinetic mechanism, structure–function relationships, pH–rate profiles, and site-directed mutagenesis, we propose a chemical mechanism for AANATA. PMID:25406072
[Human drug metabolizing enzymes. II. Conjugation enzymes].
Vereczkey, L; Jemnitz, K; Gregus, Z
1998-09-01
In this review we focus on human conjugation enzymes (UDP-glucuronyltransferases, methyl-trasferases, N-acetyl-transferases, O-acetyl-transferases, Amidases/carboxyesterases, sulfotransferases, Glutation-S-transferases and the enzymes involved in the conjugation with amino acids) that participate in the metabolism of xenobiotics. Although conjugation reactions in most of the cases result in detoxication, more and more publications prove that the reactions catalysed by these enzymes very often lead to activated molecules that may attack macromolecules (proteins, RNAs, DNAs), resulting in toxicity (liver, neuro-, embryotoxicity, allergy, carcinogenecity). We have summarised the data available on these enzymes concerning their catalytic profile and specificity, inhibition, induction properties, their possible role in the generation of toxic compounds, their importance in clinical practice and drug development.
León, I; Alonso, E R; Mata, S; Cabezas, C; Rodríguez, M A; Grabow, J-U; Alonso, J L
2017-09-20
The steric effects imposed by the isopropyl group of valine in the conformational stabilization of the capped dipeptide N-acetyl-l-valinamide (Ac-Val-NH 2 ) have been studied by laser ablation molecular beam Fourier transform microwave (LA-MB-FTMW) spectroscopy. The rotational and quadrupole coupling constants of the two 14 N nuclei determined in this work show that this dipeptide exists as a mixture of C 7 and C 5 conformers in the supersonic expansion. The conformers are stabilized by a C[double bond, length as m-dash]OH-N intramolecular hydrogen bond closing a seven- or a five-membered ring, respectively. The observation of both conformers is in good agreement with previous results on the related dipeptides containing different residues, confirming that the polarity/non-polarity of the side chains of the amino acid is responsible for the conformational locking/unlocking. The voluminous isopropyl group is not able to prevent the less stable C 5 conformer from forming but it destabilizes the C[double bond, length as m-dash]OH-N interaction.
Utilization of carbon sources by clinical isolates of Aeromonas.
Prediger, Karoline C; Surek, Monica; Dallagassa, Cibelle B; Assis, Flávia E A; Piantavini, Mario S; Souza, Emanuel M; Pedrosa, Fábio O; Farah, Sônia M S S; Alberton, Dayane; Fadel-Picheth, Cyntia M T
2017-04-01
Bacteria in the genus Aeromonas are primarily aquatic organisms; however, some species can cause diseases in humans, ranging from wound infections to septicemia, of which diarrhea is the most common condition. The ability to use a variety of carbon substrates is advantageous for pathogenic bacteria. Therefore, we used Biolog GN2 microplates to analyze the ability of 103 clinical, predominantly diarrheal, isolates of Aeromonas to use various carbon sources, and we verified whether, among the substrates metabolized by these strains, there were some endogenous to the human intestine. The results indicate that Aeromonas present great diversity in the utilization of carbon sources, and that they preferentially use carbohydrates and amino acids as carbon sources. Among the carbon sources metabolized by Aeromonas in vitro, some were found to be components of intestinal mucin, including aspartic acid, glutamic acid, l-serine, galactose, N-acetyl-glucosamine, and glucose, which were used by all strains tested. Additionally, mannose, d-serine, proline, threonine, and N-acetyl-galactosamine were used by several strains. The potential to metabolize substrates endogenous to the intestine may contribute to Aeromonas' capacity to grow in and colonize the intestine. We speculate that this may help explain the ability of Aeromonas to cause diarrhea.
DeWitt, D L; Smith, W L
1988-01-01
Prostaglandin G/H synthase (8,11,14-icosatrienoate, hydrogen-donor:oxygen oxidoreductase, EC 1.14.99.1) catalyzes the first step in the formation of prostaglandins and thromboxanes, the conversion of arachidonic acid to prostaglandin endoperoxides G and H. This enzyme is the site of action of nonsteroidal anti-inflammatory drugs. We have isolated a 2.7-kilobase complementary DNA (cDNA) encompassing the entire coding region of prostaglandin G/H synthase from sheep vesicular glands. This cDNA, cloned from a lambda gt 10 library prepared from poly(A)+ RNA of vesicular glands, hybridizes with a single 2.75-kilobase mRNA species. The cDNA clone was selected using oligonucleotide probes modeled from amino acid sequences of tryptic peptides prepared from the purified enzyme. The full-length cDNA encodes a protein of 600 amino acids, including a signal sequence of 24 amino acids. Identification of the cDNA as coding for prostaglandin G/H synthase is based on comparison of amino acid sequences of seven peptides comprising 103 amino acids with the amino acid sequence deduced from the nucleotide sequence of the cDNA. The molecular weight of the unglycosylated enzyme lacking the signal peptide is 65,621. The synthase is a glycoprotein, and there are three potential sites for N-glycosylation, two of them in the amino-terminal half of the molecule. The serine reported to be acetylated by aspirin is at position 530, near the carboxyl terminus. There is no significant similarity between the sequence of the synthase and that of any other protein in amino acid or nucleotide sequence libraries, and a heme binding site(s) is not apparent from the amino acid sequence. The availability of a full-length cDNA clone coding for prostaglandin G/H synthase should facilitate studies of the regulation of expression of this enzyme and the structural features important for catalysis and for interaction with anti-inflammatory drugs. Images PMID:3125548
Alemán, Carlos; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Casanovas, Jordi
2009-01-01
The intrinsic conformational preferences of the restricted phenylalanine analogue generated by including the α and β carbon atoms into a cyclohexane ring (1-amino-2-phenylcyclohexanecarboxylic acid, c6Phe) have been determined using quantum mechanical calculations. Specifically, the conformational profile of the N-acetyl-N’-methylamide derivative of the c6Phe stereoisomers exhibiting either a cis or a trans relative orientation between the amino and phenyl substituents has been analyzed in different environments (gas phase, chloroform and aqueous solutions). Calculations were performed using B3LYP, MP2 and HF methods combined with the 6-31+G(d,p) and 6-311++G(d,p) basis sets, and a self-consistent reaction-field (SCRF) method was applied to analyze the influence of the solvent. The amino acids investigated can be viewed as constrained phenylalanine analogues with a rigidly oriented aromatic side chain that may interact with the peptide backbone not only sterically but also electronically through the aromatic π orbitals. Their conformational propensities have been found to be strongly influenced by the specific orientation of the aromatic substituent in each stereoisomer and the conformation adopted by the cyclohexane ring, as well as by the environment. PMID:19772338
Lu, Jie; Yao, Yufeng; Jiang, Weihong; Jiao, Ruishen
2003-02-01
Acetyl CoA carboxylase (EC 6.4.1.2, ACC) catalyzes the ATP-dependent carboxylation of acetyl CoA to yield malonyl CoA, which is the first committed step in fatty acid synthesis. A pair of degenerate PCR primers were designed according to the conserved amino acid sequence of AccA from M. tuberculosis and S. coelicolor. The product of the PCR amplification, a DNA fragment of 250bp was used as a probe for screening the U32 genomic cosmid library and its gene, accA, coding the biotinylated protein subunit of acetyl CoA carboxylase, was successfully cloned from U32. The accA ORF encodes a 598-amino-acid protein with the calculated molecular mass of 63.7kD, with 70.1% of G + C content. A typical Streptomyces RBS sequence, AGGAGG, was found at the - 6 position upstream of the start codon GTG. Analysis of the deduced amino acid sequence showed the presence of biotin-binding site and putative ATP-bicarbonate interaction region, which suggested the U32 AccA may act as a biotin carboxylase as well as a biotin carrier protein. Gene accA was then cloned into the pET28 (b) vector and expressed solubly in E. coli BL21 (DE3) by 0.1 mmol/L IPTG induction. Western blot confirmed the covalent binding of biotin with AccA. Northern blot analyzed transcriptional regulation of accA by 5 different nitrogen sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Land, S.; Allaben, W.T.; King, C.M.
1986-05-01
Mutagenic and carcinogenic aromatic amines are acetylated in most organisms. Acetyl CoA and arylhydroxamic acids can serve as acetyl donors for N-Acetylation of amines to yield stable amides, or by O-acetylation of hydroxylamine derivatives to produce reactive metabolites that can react covalently with nucleic acid. Polyclonal antibodies against rat arylhydroxamic acid, N,O-acyltransferase (AHAT) have been compared for their abilities to react with this enzyme and the acetyl CoA-dependent N-acetyltransferase (NAT) of the rat, rabbit, hamster, mouse and human. Liver cytosols were treated with increasing quantities of antibodies from immune or control rabbits. Immune complexes were removed by treatment with proteinmore » A-Sepharose before assay of nucleic acid adduct formation by AHAT activation of N-hydroxy-2-acetylaminofluorene and the acetylation of 2-aminofluorene by NAT. Both rat activities, the AHAT of the hamster and the NAT of the mouse and human were removed by this treatment. No decrease in NAT activity of hamster, or of either rabbit cytosol activity was observed. Neither mouse nor human liver has appreciable AHAT activity. These data support the idea that AHAT and NAT of rat, AHAT of hamster and NAT of mouse and human liver are immunochemically related, but that NAT of the hamster is an immunochemically distinct peptide.« less
Lindsay, D. G.; Shall, S.
1971-01-01
The acetylation of the free amino groups of insulin was studied by reaction of the hormone with N-hydroxysuccinimide acetate at pH6.9 and 8.5. The products formed were separated by chromatography on DEAE-Sephadex and were characterized by isoelectric focusing, by end-group analysis, by the incorporation of [3H]acetyl groups in the molecule, and by treatment with trypsin that had been treated with 1-chloro-4-phenyl-3-toluene-p-sulphonamidobutan-2-one (`tosylphenylalanyl chloromethyl ketone'). Three monosubstituted products, two disubstituted products and one trisubstituted derivative were prepared. The α-amino groups of the terminal residues and the ∈-amino group of the lysine-B29 were the sites of reaction. Acetylation of any of the free amino groups did not affect the biological activity of insulin. It was demonstrated, however, that substitution at the glycine-A1 amino group by the larger residues, acetoacetyl or thiazolidinecarbonyl, produced a decrease in biological activity. Modification of the lysine-B29 or phenylalanine-B1 amino groups with these larger reagents did not affect the biological activity. Modification of the phenylalanine-B1 amino group by any of the three substituents resulted in a large decrease in the affinity of insulin for anti-insulin antibodies raised in the guinea pig. Modification of the other two amino groups did not affect the reaction with antibody. These observations are correlated with the tertiary structure of insulin. ImagesFig. 4. PMID:5113488
Subramanian, Raju; Zhu, Xiaochun; Kerr, Savannah J; Esmay, Joel D; Louie, Steven W; Edson, Katheryne Z; Walter, Sarah; Fitzsimmons, Michael; Wagner, Mylo; Soto, Marcus; Pham, Roger; Wilson, Sarah F; Skiles, Gary L
2016-08-01
AMG 416 (etelcalcetide) is a novel synthetic peptide agonist of the calcium-sensing receptor composed of a linear chain of seven d-amino acids (referred to as the d-amino acid backbone) with a d-cysteine linked to an l-cysteine via a disulfide bond. AMG 416 contains four basic d-arginine residues and is a +4 charged peptide at physiologic pH with a mol. wt. of 1048.3 Da. The pharmacokinetics (PK), disposition, and potential of AMG 416 to cause drug-drug interaction were investigated in nonclinical studies with two single (14)C-labels placed either at a potentially metabolically labile acetyl position or on the d-alanine next to d-cysteine in the interior of the d-amino acid backbone. After i.v. dosing, the PK and disposition of AMG 416 were similar in male and female rats. Radioactivity rapidly distributed to most tissues in rats with intact kidneys, and renal elimination was the predominant clearance pathway. No strain-dependent differences were observed. In bilaterally nephrectomized rats, minimal radioactivity (1.2%) was excreted via nonrenal pathways. Biotransformation occurred primarily via disulfide exchange with endogenous thiol-containing molecules in whole blood rather than metabolism by enzymes, such as proteases or cytochrome P450s; the d-amino acid backbone remained unaltered. A substantial proportion of the plasma radioactivity was covalently conjugated to albumin. AMG 416 presents a low risk for P450 or transporter-mediated drug-drug interactions because it showed no interactions in vitro. These studies demonstrated a (14)C label on either the acetyl or the d-alanine in the d-amino acid backbone would be appropriate for clinical studies. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Optimization of Clonazepam Therapy Adjusted to Patient's CYP3A Status and NAT2 Genotype.
Tóth, Katalin; Csukly, Gábor; Sirok, Dávid; Belic, Ales; Kiss, Ádám; Háfra, Edit; Déri, Máté; Menus, Ádám; Bitter, István; Monostory, Katalin
2016-12-01
The shortcomings of clonazepam therapy include tolerance, withdrawal symptoms, and adverse effects such as drowsiness, dizziness, and confusion leading to increased risk of falls. Inter-individual variability in the incidence of adverse events in patients partly originates from the differences in clonazepam metabolism due to genetic and nongenetic factors. Since the prominent role in clonazepam nitro-reduction and acetylation of 7-amino-clonazepam is assigned to CYP3A and N-acetyl transferase 2 enzymes, respectively, the association between the patients' CYP3A status (CYP3A5 genotype, CYP3A4 expression) or N-acetyl transferase 2 acetylator phenotype and clonazepam metabolism (plasma concentrations of clonazepam and 7-amino-clonazepam) was evaluated in 98 psychiatric patients suffering from schizophrenia or bipolar disorders. The patients' CYP3A4 expression was found to be the major determinant of clonazepam plasma concentrations normalized by the dose and bodyweight (1263.5±482.9 and 558.5±202.4ng/mL per mg/kg bodyweight in low and normal expressers, respectively, P<.0001). Consequently, the dose requirement for the therapeutic concentration of clonazepam was substantially lower in low-CYP3A4 expresser patients than in normal expressers (0.029±0.011 vs 0.058±0.024mg/kg bodyweight, P<.0001). Furthermore, significantly higher (about 2-fold) plasma concentration ratio of 7-amino-clonazepam and clonazepam was observed in the patients displaying normal CYP3A4 expression and slower N-acetylation than all the others. Prospective assaying of CYP3A4 expression and N-acetyl transferase 2 acetylator phenotype can better identify the patients with higher risk of adverse reactions and can facilitate the improvement of personalized clonazepam therapy and withdrawal regimen. © The Author 2016. Published by Oxford University Press on behalf of CINP.
J-Refocused Coherence Transfer Spectroscopic Imaging at 7 T in Human Brain
Pan, J.W.; Avdievich, N.; Hetherington, H.P.
2013-01-01
Short echo spectroscopy is commonly used to minimize signal modulation due to J-evolution of the cerebral amino acids. However, short echo acquisitions suffer from high sensitivity to macromolecules which make accurate baseline determination difficult. In this report, we describe implementation at 7 T of a double echo J-refocused coherence transfer sequence at echo time (TE) of 34 msec to minimize J-modulation of amino acids while also decreasing interfering macromolecule signals. Simulation of the pulse sequence at 7 T shows excellent resolution of glutamate, glutamine, and N-acetyl aspartate. B1 sufficiency at 7 T for the double echo acquisition is achieved using a transceiver array with radiofrequency (RF) shimming. Using an alternate RF distribution to minimize receiver phase cancellation in the transceiver, accurate phase determination for the coherence transfer is achieved with rapid single scan calibration. This method is demonstrated in spectroscopic imaging mode with n = 5 healthy volunteers resulting in metabolite values consistent with literature and in a patient with epilepsy. PMID:20648684
NASA Technical Reports Server (NTRS)
Wickramasinghe, Nalinie S. M. D.; Lacey, James C., Jr.
1992-01-01
Procedure for the formation of aminoacyl esters of monoribonucleotides with aminoacyl imidazolides were first reported by Gottikh et al. (1970) and summarized in 1970. This reaction has been widely used by us and numbers of other workers as a convenient means of preparing aminoacyl esters of nucleotides. We have previously reported that, under conditions of excess imidazolide, large amounts of bis 2', 3' esters are formed in addition to the monoesters. However, to our knowledge, no one has reported that in addition to the esters, relatively large amounts of the mixed anhydride, with the amino acid carboxyl attached to the phosphate, are also formed at short reaction times. We report here on the relative amounts of anhydride and esters formed in this reaction of racemic mixtures of eleven N-acetyl amino acid imidazolides with 5'-AMP and discuss the relevance of the findings to the origin of protein synthesis.
Jang, SoRi; Marjanovic, Jasmina; Gornicki, Piotr
2013-03-01
Eleven spontaneous mutations of acetyl-CoA carboxylase have been identified in many herbicide-resistant populations of 42 species of grassy weeds, hampering application of aryloxyphenoxypropionate, cyclohexadione and phenylpyrazoline herbicides in agriculture. IC(50) shifts (resistance indices) caused by herbicide-resistant mutations were determined using a recombinant yeast system that allows comparison of the effects of single amino acid mutations in the same biochemical background, avoiding the complexity inherent in the in planta experiments. The effect of six mutations on the sensitivity of acetyl-CoA carboxylase to nine herbicides representing the three chemical classes was studied. A combination of partially overlapping binding sites of the three classes of herbicides and the structure of their variable parts explains cross-resistance among and between the three classes of inhibitors, as well as differences in their specificity. Some degree of resistance was detected for 51 of 54 herbicide/mutation combinations. Introduction of new herbicides targeting acetyl-CoA carboxylase will depend on their ability to overcome the high degree of cross-resistance already existing in weed populations. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
1H-NMR, 1H-NMR T2-edited, and 2D-NMR in bipolar disorder metabolic profiling.
Sethi, Sumit; Pedrini, Mariana; Rizzo, Lucas B; Zeni-Graiff, Maiara; Mas, Caroline Dal; Cassinelli, Ana Cláudia; Noto, Mariane N; Asevedo, Elson; Cordeiro, Quirino; Pontes, João G M; Brasil, Antonio J M; Lacerda, Acioly; Hayashi, Mirian A F; Poppi, Ronei; Tasic, Ljubica; Brietzke, Elisa
2017-12-01
The objective of this study was to identify molecular alterations in the human blood serum related to bipolar disorder, using nuclear magnetic resonance (NMR) spectroscopy and chemometrics. Metabolomic profiling, employing 1 H-NMR, 1 H-NMR T 2 -edited, and 2D-NMR spectroscopy and chemometrics of human blood serum samples from patients with bipolar disorder (n = 26) compared with healthy volunteers (n = 50) was performed. The investigated groups presented distinct metabolic profiles, in which the main differential metabolites found in the serum sample of bipolar disorder patients compared with those from controls were lipids, lipid metabolism-related molecules (choline, myo-inositol), and some amino acids (N-acetyl-L-phenyl alanine, N-acetyl-L-aspartyl-L-glutamic acid, L-glutamine). In addition, amygdalin, α-ketoglutaric acid, and lipoamide, among other compounds, were also present or were significantly altered in the serum of bipolar disorder patients. The data presented herein suggest that some of these metabolites differentially distributed between the groups studied may be directly related to the bipolar disorder pathophysiology. The strategy employed here showed significant potential for exploring pathophysiological features and molecular pathways involved in bipolar disorder. Thus, our findings may contribute to pave the way for future studies aiming at identifying important potential biomarkers for bipolar disorder diagnosis or progression follow-up.
Yang, Zonglin; Peng, Hanyong; Lu, Xiufen; Liu, Qingqing; Huang, Rongfu; Hu, Bin; Kachanoski, Gary; Zuidhof, Martin J; Le, X Chris
2016-07-05
The poultry industry has used organoarsenicals, such as 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone, ROX), to prevent disease and to promote growth. Although previous studies have analyzed arsenic species in chicken litter after composting or after application to agricultural lands, it is not clear what arsenic species were excreted by chickens before biotransformation of arsenic species during composting. We describe here the identification and quantitation of arsenic species in chicken litter repeatedly collected on days 14, 24, 28, 30, and 35 of a Roxarsone-feeding study involving 1600 chickens of two strains. High performance liquid chromatography separation with simultaneous detection by both inductively coupled plasma mass spectrometry and electrospray ionization tandem mass spectrometry provided complementary information necessary for the identification and quantitation of arsenic species. A new metabolite, N-acetyl-4-hydroxy-m-arsanilic acid (N-AHAA), was identified, and it accounted for 3-12% of total arsenic. Speciation analyses of litter samples collected from ROX-fed chickens on days 14, 24, 28, 30, and 35 showed the presence of N-AHAA, 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA), inorganic arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA(V)), dimethylarsinic acid (DMA(V)), and ROX. 3-AHPAA accounted for 3-19% of the total arsenic. Inorganic arsenicals (the sum of As(III) and As(V)) comprised 2-6% (mean 3.5%) of total arsenic. Our results on the detection of inorganic arsenicals, methylarsenicals, 3-AHPAA, and N-AHAA in the chicken litter support recent findings that ROX is actually metabolized by the chicken or its gut microbiome. The presence of the toxic metabolites in chicken litter is environmentally relevant as chicken litter is commonly used as fertilizer.
Plaga, W; Frank, R; Knappe, J
1988-12-15
Pyruvate formate-lyase of Escherichia coli cells, a homodimeric protein of 2 x 85 kDa, is distinguished by the property of containing a stable organic free radical (g = 2.0037) in its resting state. The enzyme (E-SH) achieves pyruvate conversion to acetyl-CoA via two distinct half-reactions (E-SH + pyruvate in equilibrium E-S-acetyl + formate; E-S-acetyl + CoA in equilibrium E-SH + acetyl-CoA), the first of which has been proposed to involve reversible homolytic carbon-carbon bond cleavage [J. Knappe et al. (1984) Proc. Natl Acad. Sci. USA 81, 1332-1335]. Present studies identified Cys-419 as the covalent-catalytic cysteinyl residue via CNBr fragmentation of E-S-[14C]acetyl and radio-sequencing of the isolated peptide CB-Ac (amino acid residues 406-423). Reaction of the formate analogue hypophosphite with E-S-acetyl was investigated and found to produce 1-hydroxyethylphosphonate with a thioester linkage to the adjacent Cys-418. The structure was determined from the chymotryptic peptide CH-P (amino acid residues 415-425), using 31P-NMR spectroscopy (delta = 44 ppm) and by chemical characterisation through degradation into 1-hydroxyethylphosphonate with phosphodiesterase or bromine. This novel P-C-bond synthesis involves the enzyme-based free radical and is proposed to resemble the physiological C-C-bond synthesis (pyruvate production) from formate and E-S-acetyl. These findings are interpreted as proof of a radical mechanism for the action of pyruvate formate-lyase. The central Cys-418/Cys-419 pair of the active site shows a distinctive thiolate property even in the inactive (nonradical) form of the enzyme, as determined using an iodoacetate probe.
Ishikawa, Kumiko; Tohyama, Kanako; Mitsuhashi, Shinya; Maruta, Shinsaku
2014-04-01
Because the mitotic kinesin Eg5 is essential for the formation of bipolar spindles during eukaryotic cell division, it has been considered as a potential target for cancer treatment. A number of specific and potent inhibitors of Eg5 are known. S-trityl-L-cysteine is one of the inhibitors of Eg5 whose molecular mechanism of inhibition was well studied. The trityl group of S-trityl-L-cysteine was shown to be a key moiety required for potent inhibition. In this study, we synthesized a novel photochromic S-trityl-L-cysteine analogue, 4-(N-(2-(N-acetylcysteine-S-yl) acetyl) amino)-4'- (N-(2-(N-(triphenylmethyl)amino)acetyl)amino)azobenzene (ACTAB), composed of a trityl group, azobenzene and N-acetyl-L-cysteine, which exhibits cis-trans photoisomerization in order to photocontrol the function of Eg5. ACTAB exhibited cis-trans photoisomerization upon alternating irradiation at two different wavelengths in the visible range, 400 and 480 nm. ACTAB induced reversible changes in the inhibitory activity of ATPase and motor activities correlating with the cis-trans photoisomerization. Compared with cis-ACTAB, trans-ACTAB reduced ATPase activity and microtubule gliding velocity more significantly. These results suggest that ACTAB could be used as photochromic inhibitor of Eg5 to achieve photocontrol of living cells.
Metabolism and elimination of benzocaine by rainbow-trout, Oncorhynchus mykiss
Meinertz, J.R.; Gingerich, W.H.; Allen, J.L.
1991-01-01
1. Branchial and urinary elimination of benzocaine residues was evaluated in adult rainbow trout, oncorhynchus mykiss, given a single dorsal aortic dose of c-14-benzocaine hydrochloride.^2. Branchial elimination of benzocaine residues was rapid and accounted for 59.2% Of the dose during the first 3 h after dosing. Renal elimination of radioactivity was considerably slower; the kidney excreted 2.7% Dose within 3 h and 9.0% Within 24 h. Gallbladder bile contained 2.0% Dose 24 h after injection.^3. Of the radioactivity in radiochromatograms from water taken 3 min after injection, 87.3% Was benzocaine and 12.7% Was n-acetylated benzocaine. After 60 min, 32.7% Was benzocaine and 67.3% Was n-acetylated benzocaine.^4. Of the radioactivity in radiochromatograms from urine taken 1 h after dosing, 7.6% Was para-aminobenzoic acid, 59.7% Was n-acetylated para-aminobenzoic acid, 19.5% Was benzocaine, and 8.0% Was n-acetylated benzocaine. The proportion of the radioactivity in urine changed with time so that by 20 h, 1.0% Was para-aminobenzoic acid and 96.6% Was n-acetylated para-aminobenzoic acid.^5. Benzocaine and a more hydrophobic metabolite, n-acetylated benzocaine, were eliminated primarily through the gills; renal and biliary pathways were less significant elimination routes for benzocaine residues.
NASA Astrophysics Data System (ADS)
Yadav, P. N. S.; Rai, D. K.; Yadav, J. S.
1989-03-01
The energies of various conformations of N-acetyl-β- D-glucosamine (NAG) and its 3-O- D-lactic acid derivative N-acetyl-β- D-muramic acid (NAM) have been calculated by geometry optimization using the molecular mechanics program MM2. The geometries of these systems have been analyzed in the light of ring torsion, bond lengths, bond angles and conformational states of side groups of the pyranosyl ring and compared with available experimental data of similar pyranose derivatives. The present study indicates the presence of hydrogen bonds to stabilize the side group conformations. Discrepancies with experimental data that are seen in a few cases are ascribed to the nature of the side groups and their geometry.
N-Terminal Acetylation Inhibits Protein Targeting to the Endoplasmic Reticulum
Forte, Gabriella M. A.; Pool, Martin R.; Stirling, Colin J.
2011-01-01
Amino-terminal acetylation is probably the most common protein modification in eukaryotes with as many as 50%–80% of proteins reportedly altered in this way. Here we report a systematic analysis of the predicted N-terminal processing of cytosolic proteins versus those destined to be sorted to the secretory pathway. While cytosolic proteins were profoundly biased in favour of processing, we found an equal and opposite bias against such modification for secretory proteins. Mutations in secretory signal sequences that led to their acetylation resulted in mis-sorting to the cytosol in a manner that was dependent upon the N-terminal processing machinery. Hence N-terminal acetylation represents an early determining step in the cellular sorting of nascent polypeptides that appears to be conserved across a wide range of species. PMID:21655302
Zhou, Huaixiang; Cheng, Xusheng; Xu, Xiaoyuan; Jiang, Tianlong; Zhou, Haimeng; Sheng, Qing; Nie, Zuoming
2018-03-22
Alpha-tubulin N-acetyltransferase 1 (ATAT1) is an acetyltransferase specific to α-tubulin and performs important functions in many cellular processes. Bombyx mori is an economic insect and also known as a model lepidoptera insect. In this study, we cloned a B. mori ATAT1 gene (BmATAT1) (Gen Bank accession number: XP_004932777.1). BmATAT1 contained an open reading frame (ORF) of 1,065 bp encoding 355 amino acids (aa). Expression profiling of BmATAT1 protein showed that the expression levels of BmATAT1 at different developmental stages and different tissues in fifth-instar larvae differ. BmATAT1 was highly expressed at the egg stage and in the head of the fifth-instar larvae. Subcellular localization showed that BmATAT1 was distributed in the cytoplasm and nucleus. Furthermore, BmATAT1 may lead to time-dependent induction of cell cycle arrest in the G2/M phase by flow cytometry analysis. Interestingly, using site-specific mutation, immunoprecipitation, and Western blotting, we further found a BmATAT1 acetylated site at K156, suggesting that this acetyltransferase could be regulated by acetylation itself. © 2018 Wiley Periodicals, Inc.
Reconstruction of Cysteine Biosynthesis Using Engineered Cysteine-Free and Methionine-Free Enzymes
NASA Technical Reports Server (NTRS)
Wang, Kendrick; Fujishima, Kosuke; Abe, Nozomi; Nakahigashi, Kenji; Endy, Drew; Rothschild, Lynn J.
2016-01-01
Ten of the proteinogenic amino acids can be generated abiotically while the remaining thirteen require biology for their synthesis. Paradoxically, the biosynthesis pathways observed in nature require enzymes that are made with the amino acids they produce. For example, Escherichia coli produces cysteine from serine via two enzymes that contain cysteine. Here, we substituted alternate amino acids for cysteine and also methionine, which is biosynthesized from cysteine, in serine acetyl transferase (CysE) and O-acetylserine sulfhydrylase (CysM). CysE function was rescued by cysteine-and-methionine-free enzymes and CysM function was rescued by cysteine-free enzymes. Structural modeling suggests that methionine stabilizes CysM and is present in the active site of CysM. Cysteine is not conserved among CysE and CysM protein orthologs, suggesting that cysteine is not functionally important for its own synthesis. Engineering biosynthetic enzymes that lack the amino acids being synthesized provides insights into the evolution of amino acid biosynthesis and pathways for bioengineering.
Blanchard, Véronique; Frank, Martin; Leeflang, Bas R; Boelens, Rolf; Kamerling, Johannis P
2008-03-18
In glycoanalysis protocols, N-glycans from glycoproteins are most frequently released with peptide- N (4)-( N-acetyl-beta-glucosaminyl)asparagine amidase F (PNGase F). As the enzyme is an amidase, it cleaves the NH-CO linkage between the Asn side chain and the Asn-bound GlcNAc residue. Usually, the enzyme has a low activity, or is not active at all, on native glycoproteins. A typical example is native bovine pancreatic ribonuclease B (RNase B) with oligomannose-type N-glycans at Asn-34. However, native RNase BS, generated by subtilisin digestion of native RNase B, which comprises amino acid residues 21-124 of RNase B, is sensitive to PNGase F digestion. The same holds for carboxymethylated RNase B (RNase B (cm)). In this study, NMR spectroscopy and molecular modeling have been used to explain the differences in PNGase F activity for native RNase B, native RNase BS, and RNase B (cm). NMR analysis combined with literature data clearly indicated that the N-glycan at Asn-34 is more mobile in RNase BS than in RNase B. MD simulations showed that the region around Asn-34 in RNase B is not very flexible, whereby the alpha-helix of the amino acid residues 1-20 has a stabilizing effect. In RNase BS, the alpha-helix formed by amino acid residues 23-32 is significantly more flexible. Using these data, the possibilities for complex formation of both RNase B and RNase BS with PNGase F were studied, and a model for the RNase BS-PNGase F complex is proposed.
Lysine acetylation sites prediction using an ensemble of support vector machine classifiers.
Xu, Yan; Wang, Xiao-Bo; Ding, Jun; Wu, Ling-Yun; Deng, Nai-Yang
2010-05-07
Lysine acetylation is an essentially reversible and high regulated post-translational modification which regulates diverse protein properties. Experimental identification of acetylation sites is laborious and expensive. Hence, there is significant interest in the development of computational methods for reliable prediction of acetylation sites from amino acid sequences. In this paper we use an ensemble of support vector machine classifiers to perform this work. The experimentally determined acetylation lysine sites are extracted from Swiss-Prot database and scientific literatures. Experiment results show that an ensemble of support vector machine classifiers outperforms single support vector machine classifier and other computational methods such as PAIL and LysAcet on the problem of predicting acetylation lysine sites. The resulting method has been implemented in EnsemblePail, a web server for lysine acetylation sites prediction available at http://www.aporc.org/EnsemblePail/. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Compound-specific stable isotope analysis of nitrogen-containing intact polar lipids.
Svensson, Elisabeth; Schouten, Stefan; Stam, Axel; Middelburg, Jack J; Sinninghe Damsté, Jaap S
2015-12-15
Compound-specific isotope analysis (CSIA) of nitrogen in amino acids has proven a valuable tool in many fields (e.g. ecology). Several intact polar lipids (IPLs) also contain nitrogen, and their nitrogen isotope ratios have the potential to elucidate food-web interactions or metabolic pathways. Here we have developed novel methodology for the determination of δ(15)N values of nitrogen-containing headgroups of IPLs using gas chromatography coupled with isotope-ratio mass spectrometry. Intact polar lipids with nitrogen-containing headgroups were hydrolyzed and the resulting compounds were derivatized by (1) acetylation with pivaloyl chloride for compounds with amine and hydroxyl groups or (2) esterification using acidified 2-propanol followed by acetylation with pivaloyl chloride for compounds with both carboxyl and amine groups. The δ(15)N values of the derivatives were subsequently determined using gas chromatography/combustion/isotope-ratio mass spectrometry. Intact polar lipids with ethanolamine and amino acid headgroups, such as phosphatidylethanolamine and phosphatidylserine, were successfully released from the IPLs and derivatized. Using commercially available pure compounds it was established that δ(15)N values of ethanolamine and glycine were not statistically different from the offline-determined values. Application of the technique to microbial cultures and a microbial mat showed that the method works well for the release and derivatization of the headgroup of phosphatidylethanolamine, a common IPL in bacteria. A method to enable CSIA of nitrogen of selected IPLs has been developed. The method is suitable for measuring natural stable nitrogen isotope ratios in microbial lipids, in particular phosphatidylethanolamine, and will be especially useful for tracing the fate of nitrogen in deliberate tracer experiments. Copyright © 2015 John Wiley & Sons, Ltd.
Koseki, Takuya; Miwa, Yozo; Akao, Takeshi; Akita, Osamu; Hashizume, Katsumi
2006-02-10
We screened 20,000 clones of an expressed sequence tag (EST) library from Aspergillus oryzae (http://www.nrib.go.jp/ken/EST/db/index.html) and obtained one cDNA clone encoding a protein with similarity to fungal acetyl xylan esterase. We also cloned the corresponding gene, designated as Aoaxe, from the genomic DNA. The deduced amino acid sequence consisted of a putative signal peptide of 31-amino acids and a mature protein of 276-amino acids. We engineered Aoaxe for heterologous expression in P. pastoris. Recombinant AoAXE (rAoAXE) was secreted by the aid of fused alpha-factor secretion signal peptide and accumulated as an active enzyme in the culture medium to a final level of 190 mg/l after 5 days. Purified rAoAXEA before and after treatment with endoglycosidase H migrated by SDS-PAGE with a molecular mass of 31 and 30 kDa, respectively. Purified rAoAXE displayed the greatest hydrolytic activity toward alpha-naphthylacetate (C2), lower activity toward alpha-naphthylpropionate (C3) and no detectable activity toward acyl-chain substrates containing four or more carbon atoms. The recombinant enzyme catalyzed the release of acetic acid from birchwood xylan. No activity was detectable using methyl esters of ferulic, caffeic or sinapic acids. rAoAXE was thermolabile in comparison to other AXEs from Aspergillus.
Polypeptide having acetyl xylan esterase activity and uses thereof
Schoonneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Los, Alrik Pieter
2015-10-20
The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 82% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 82% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.
Li, C; Zhang, G F; Mao, X; Wang, J Y; Duan, C Y; Wang, Z J; Liu, L B
2016-06-01
Algal carcass is a low-value byproduct of algae after its conversion to biodiesel. Dried algal carcass is rich in protein, carbohydrate, and multiple amino acids, and it is typically well suited for growth and acid production of lactic acid bacteria. In this study, Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 was used to ferment different algal carcass media (ACM), including 2% ACM, 2% ACM with 1.9% glucose (ACM-G), and 2% ACM with 1.9% glucose and 2g/L amino acid mixture (ACM-GA). Concentrations of organic acids (lactic acid and acetic acid), acetyl-CoA, and ATP were analyzed by HPLC, and activities of lactate dehydrogenase (LDH), acetokinase (ACK), pyruvate kinase (PK), and phosphofructokinase (PFK) were determined by using a chemical approach. The growth of L. bulgaricus cells in ACM-GA was close to that in the control medium (de Man, Rogosa, and Sharpe). Lactic acid and acetic acid contents were greatly reduced when L. bulgaricus cells were grown in ACM compared with the control medium. Acetyl-CoA content varied with organic acid content and was increased in cells grown in different ACM compared with the control medium. The ATP content of L. bulgaricus cells in ACM was reduced compared with that of cells grown in the control medium. Activities of PFK and ACK of L. bulgaricus cells grown in ACM were higher and those of PK and LDH were lower compared with the control. Thus, ACM rich in nutrients may serve as an excellent substrate for growth by lactic acid bacteria, and addition of appropriate amounts of glucose and amino acids can improve growth and acid production. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Alginate Polymerization and Modification Are Linked in Pseudomonas aeruginosa
Moradali, M. Fata; Donati, Ivan; Sims, Ian M.; Ghods, Shirin
2015-01-01
ABSTRACT The molecular mechanisms of alginate polymerization/modification/secretion by a proposed envelope-spanning multiprotein complex are unknown. Here, bacterial two-hybrid assays and pulldown experiments showed that the catalytic subunit Alg8 directly interacts with the proposed copolymerase Alg44 while embedded in the cytoplasmic membrane. Alg44 additionally interacts with the lipoprotein AlgK bridging the periplasmic space. Site-specific mutagenesis of Alg44 showed that protein-protein interactions and stability were independent of conserved amino acid residues R17 and R21, which are involved in c-di-GMP binding, the N-terminal PilZ domain, and the C-terminal 26 amino acids. Site-specific mutagenesis was employed to investigate the c-di-GMP-mediated activation of alginate polymerization by the PilZAlg44 domain and Alg8. Activation was found to be different from the proposed activation mechanism for cellulose synthesis. The interactive role of Alg8, Alg44, AlgG (epimerase), and AlgX (acetyltransferase) on alginate polymerization and modification was studied by using site-specific deletion mutants, inactive variants, and overproduction of subunits. The compositions, molecular masses, and material properties of resulting novel alginates were analyzed. The molecular mass was reduced by epimerization, while it was increased by acetylation. Interestingly, when overproduced, Alg44, AlgG, and the nonepimerizing variant AlgG(D324A) increased the degree of acetylation, while epimerization was enhanced by AlgX and its nonacetylating variant AlgX(S269A). Biofilm architecture analysis showed that acetyl groups promoted cell aggregation while nonacetylated polymannuronate alginate promoted stigmergy. Overall, this study sheds new light on the arrangement of the multiprotein complex involved in alginate production. Furthermore, the activation mechanism and the interplay between polymerization and modification of alginate were elucidated. PMID:25968647
Kimura, Y; Miyake, R; Tokumasu, Y; Sato, M
2000-10-01
We have cloned a DNA fragment from a genomic library of Myxococcus xanthus using an oligonucleotide probe representing conserved regions of biotin carboxylase subunits of acetyl coenzyme A (acetyl-CoA) carboxylases. The fragment contained two open reading frames (ORF1 and ORF2), designated the accB and accA genes, capable of encoding a 538-amino-acid protein of 58.1 kDa and a 573-amino-acid protein of 61.5 kDa, respectively. The protein (AccA) encoded by the accA gene was strikingly similar to biotin carboxylase subunits of acetyl-CoA and propionyl-CoA carboxylases and of pyruvate carboxylase. The putative motifs for ATP binding, CO(2) fixation, and biotin binding were found in AccA. The accB gene was located upstream of the accA gene, and they formed a two-gene operon. The protein (AccB) encoded by the accB gene showed high degrees of sequence similarity with carboxyltransferase subunits of acetyl-CoA and propionyl-CoA carboxylases and of methylmalonyl-CoA decarboxylase. Carboxybiotin-binding and acyl-CoA-binding domains, which are conserved in several carboxyltransferase subunits of acyl-CoA carboxylases, were found in AccB. An accA disruption mutant showed a reduced growth rate and reduced acetyl-CoA carboxylase activity compared with the wild-type strain. Western blot analysis indicated that the product of the accA gene was a biotinylated protein that was expressed during the exponential growth phase. Based on these results, we propose that this M. xanthus acetyl-CoA carboxylase consists of two subunits, which are encoded by the accB and accA genes, and occupies a position between prokaryotic and eukaryotic acetyl-CoA carboxylases in terms of evolution.
Enzymes involved in branched-chain amino acid metabolism in humans.
Adeva-Andany, María M; López-Maside, Laura; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Sixto-Leal, Cristina
2017-06-01
Branched-chain amino acids (leucine, isoleucine and valine) are structurally related to branched-chain fatty acids. Leucine is 2-amino-4-methyl-pentanoic acid, isoleucine is 2-amino-3-methyl-pentanoic acid, and valine is 2-amino-3-methyl-butanoic acid. Similar to fatty acid oxidation, leucine and isoleucine produce acetyl-coA. Additionally, leucine generates acetoacetate and isoleucine yields propionyl-coA. Valine oxidation produces propionyl-coA, which is converted into methylmalonyl-coA and succinyl-coA. Branched-chain aminotransferase catalyzes the first reaction in the catabolic pathway of branched-chain amino acids, a reversible transamination that converts branched-chain amino acids into branched-chain ketoacids. Simultaneously, glutamate is converted in 2-ketoglutarate. The branched-chain ketoacid dehydrogenase complex catalyzes the irreversible oxidative decarboxylation of branched-chain ketoacids to produce branched-chain acyl-coA intermediates, which then follow separate catabolic pathways. Human tissue distribution and function of most of the enzymes involved in branched-chain amino acid catabolism is unknown. Congenital deficiencies of the enzymes involved in branched-chain amino acid metabolism are generally rare disorders. Some of them are associated with reduced pyruvate dehydrogenase complex activity and respiratory chain dysfunction that may contribute to their clinical phenotype. The biochemical phenotype is characterized by accumulation of the substrate to the deficient enzyme and its carnitine and/or glycine derivatives. It was established at the beginning of the twentieth century that the plasma level of the branched-chain amino acids is increased in conditions associated with insulin resistance such as obesity and diabetes mellitus. However, the potential clinical relevance of this elevation is uncertain.
Muñoz-Barroso, I; García-Sastre, A; Villar, E; Manuguerra, J C; Hannoun, C; Cabezas, J A
1992-09-01
Influenza virus type C (Johannesburg/1/66) was used as a source for the enzyme O-acetylesterase (EC 3.1.1.53) with several natural sialoglycoconjugates as substrates. The resulting products were immediately employed as substrates using influenza virus type A [(Singapore/6/86) (H1N1) or Shanghai/11/87 (H3N2)] as a source for sialidase (neuraminidase, EC 3.2.1.18). A significant increase in the percentage of sialic acid released was found when the O-acetyl group was cleaved by O-acetylesterase activity from certain substrates (bovine submandibular gland mucin, rat serum glycoproteins, human saliva glycoproteins, mouse erythrocyte stroma, chick embryonic brain gangliosides and bovine brain gangliosides). A common feature of all these substrates is that they contain N-acetyl-9-O-acetylneuraminic acid residues. By contrast, no significant increase in the release of sialic acid was detected when certain other substrates could not be de-O-acetylated by the action of influenza C esterase, either because they lacked O-acetylsialic acid (human glycophorin A, alpha 1-acid glycoprotein from human serum, fetuin and porcine submandibular gland mucin) or because the 4-O-acetyl group was scarcely cleaved by the viral O-acetylesterase (equine submandibular gland mucin). The biological significance of these facts is discussed, relative to the infective capacity of influenza C virus.
Wang, Xude; Yang, Shanshan; Gu, Jing; Deng, Jiaoyu
2016-12-01
Mycobacterium tuberculosis arylamine N-acetyltransferase (TBNAT) is able to acetylate para-aminosalicylic acid (PAS) both in vitro and in vivo as determined by high-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (ESI-MS) techniques. The antituberculosis activity of the acetylated PAS is significantly reduced. As a result, overexpression of TBNAT in M. tuberculosis results in PAS resistance, as determined by MIC tests and drug exposure experiments. Taken together, our results suggest that TBNAT from M. tuberculosis is able to inactivate PAS by acetylating the compound. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Structure of a putative acetyltransferase (PA1377) from Pseudomonas aeruginosa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, Anna M.; Tata, Renée; Chauviac, François-Xavier
2008-05-01
The crystal structure of an acetyltransferase encoded by the gene PA1377 from Pseudomonas aeruginosa has been determined at 2.25 Å resolution. Comparison with a related acetyltransferase revealed a structural difference in the active site that was taken to reflect a difference in substrate binding and/or specificity between the two enzymes. Gene PA1377 from Pseudomonas aeruginosa encodes a 177-amino-acid conserved hypothetical protein of unknown function. The structure of this protein (termed pitax) has been solved in space group I222 to 2.25 Å resolution. Pitax belongs to the GCN5-related N-acetyltransferase family and contains all four sequence motifs conserved among family members. Themore » β-strand structure in one of these motifs (motif A) is disrupted, which is believed to affect binding of the substrate that accepts the acetyl group from acetyl-CoA.« less
Origins of pressure-induced protein transitions.
Chalikian, Tigran V; Macgregor, Robert B
2009-12-18
The molecular mechanisms underlying pressure-induced protein denaturation can be analyzed based on the pressure-dependent differences in the apparent volume occupied by amino acids inside the protein and when they are exposed to water in an unfolded conformation. We present here an analysis for the peptide group and the 20 naturally occurring amino acid side chains based on volumetric parameters for the amino acids in the interior of the native state, the micelle-like interior of the pressure-induced denatured state, and the unfolded conformation modeled by N-acetyl amino acid amides. The transfer of peptide groups from the protein interior to water becomes increasingly favorable as pressure increases. Thus, solvation of peptide groups represents a major driving force in pressure-induced protein denaturation. Polar side chains do not appear to exhibit significant pressure-dependent changes in their preference for the protein interior or solvent. The transfer of nonpolar side chains from the protein interior to water becomes more unfavorable as pressure increases. We conclude that a sizeable population of nonpolar side chains remains buried inside a solvent-inaccessible core of the pressure-induced denatured state. At elevated pressures, this core may become packed almost as tightly as the interior of the native state. The presence and partial disappearance of large intraglobular voids is another driving force facilitating pressure-induced denaturation of individual proteins. Our data also have implications for the kinetics of protein folding and shed light on the nature of the folding transition state ensemble.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Jyh-Ching; Cohen, J.D.; Mulbry, W.W.
1996-11-01
Indole-3-acetyl-amino acid conjugate hydrolases are believed to be important in the regulation of indole-3-acetic acid (IAA) metabolism in plants and therefore have potential uses for the alteration of plant IAA metabolism. To isolate bacterial strains exhibiting significant indole-3-acetyl-aspartate (IAA-Asp) hydrolase activity, a sewage sludge inoculation was cultured under conditions in which IAA-Asp served as the sole source of carbon and nitrogen. One isolate, Enterobacter agglomerans, showed hydrolase activity inducible by IAA-L-Asp or N-acetyl-L-Asp but not by IAA, (NH{sub 4}){sub 2}SO{sub 4}, urea, or indoleacetamide. Among a total of 17 IAA conjugates tested as potential substrates, the enzyme had an exclusivelymore » high substrate specificity for IAA-L-Asp of 13.5 mM. The optimal pH for this enzyme was between 8.0 and 8.5. In extraction buffer containing 0.8 mM Mg{sup 2+} the hydrolase activity was inhibited to 80% by 1 mM dithiothreitol and to 60% by 1 mm CuSO{sub 4}; the activity was increased by 40% with 1mM MnSO{sub 4}. However, in extraction buffer with no trace elements, the hydrolase activity was inhibited to 50% by either 1 mM dithiothreitol or 1% Triton X-100 (Sigma). These results suggest that disulfide bonding might be essential for enzyme activity. Purification of the hydrolase by hydroxyapatite and TSK-phenyl (HP-Genenchem, South San Francisco, CA) preparative high-performance liquid chromatography yielded a major 45-kD polypeptide as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. 45 refs., 5 figs., 3 tabs.« less
Song, Wan Seok; Nam, Mi Sun; Namgung, Byeol; Yoon, Sung-il
2015-03-20
Campylobacter jejuni is a bacterium that uses flagella for motility and causes worldwide acute gastroenteritis in humans. The C. jejuni N-acetyltransferase PseH (cjPseH) is responsible for the third step in flagellin O-linked glycosylation and plays a key role in flagellar formation and motility. cjPseH transfers an acetyl group from an acetyl donor, acetyl coenzyme A (AcCoA), to the amino group of UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine to produce UDP-2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranose. To elucidate the catalytic mechanism of cjPseH, crystal structures of cjPseH alone and in complex with AcCoA were determined at 1.95 Å resolution. cjPseH folds into a single-domain structure of a central β-sheet decorated by four α-helices with two continuously connected grooves. A deep groove (groove-A) accommodates the AcCoA molecule. Interestingly, the acetyl end of AcCoA points toward an open space in a neighboring shallow groove (groove-S), which is occupied by extra electron density that potentially serves as a pseudosubstrate, suggesting that the groove-S may provide a substrate-binding site. Structure-based comparative analysis suggests that cjPseH utilizes a unique catalytic mechanism of acetylation that has not been observed in other glycosylation-associated acetyltransferases. Thus, our studies on cjPseH will provide valuable information for the design of new antibiotics to treat C. jejuni-induced gastroenteritis. Copyright © 2015 Elsevier Inc. All rights reserved.
Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes
Nag, Ambarish; St. John, Peter C.; Crowley, Michael F.
2018-01-01
Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes the biosynthetic pathways for the main components of biomass—namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-α-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production. PMID:29381705
Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes.
Nag, Ambarish; St John, Peter C; Crowley, Michael F; Bomble, Yannick J
2018-01-01
Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes the biosynthetic pathways for the main components of biomass-namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-α-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production.
Wzorek, Alicja; Sato, Azusa; Drabowicz, Józef; Soloshonok, Vadim A; Klika, Karel D
2016-02-01
We report the best performance yet for the self-disproportionation of enantiomers (SDE) via achiral chromatography as typically used in laboratories for the isolated yield of the excess enantiomer using N-acetyl β-amino acid ethyl esters. The results are the most convincing ever demonstration of the capability of the SDE for practical-scale enantiopurification as comparable, or even superior for some systems, to that of recrystallization. For example, from a sample of 94.4 % ee, a yield of 71 % of enantiopure material was isolated in a single chromatographic run. Moreover, the lack of an esoteric structural entity, e.g. strongly polarizing groups, such as, for instance CF3, highlights the fact that the phenomenon is not dependent on the presence of such and thus the process is relevant to any usual-type structure. In contrast to recrystallization, the procedure is predictable, general, and dependable, boding well for its widespread application in routine laboratory settings.
Revilla-López, Guillem; Torras, Juan; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos
2009-01-01
The intrinsic conformational preferences of the non-proteinogenic amino acids constructed by incorporating the arginine side chain in the β position of 1-aminocyclopentane-1-carboxylic acid (either in a cis or a trans orientation relative to the amino group) have been investigated using computational methods. These compounds may be considered as constrained analogues of arginine (denoted as c5Arg) in which the orientation of the side chain is fixed by the cyclopentane moiety. Specifically, the N-acetyl-N′-methylamide derivatives of cis and trans-c5Arg have been examined in the gas phase and in solution using B3LYP/6-311+G(d,p) calculations and Molecular Dynamics simulations. Results indicate that the conformational space available to these compounds is highly restricted, their conformational preferences being dictated by the ability of the guanidinium group in the side chain to establish hydrogen-bond interactions with the backbone. A comparison with the behavior previously described for the analogous phenylalanine derivatives is presented. PMID:19236034
A colorimetric micro method for the determination of formyl groups
Lakshmi, S. Usha; Ramachandran, L. K.
1969-01-01
The characteristic purple colour formed by N-formyl-N′-2,4-dinitrophenyl-hydrazine in the presence of piperidine and acetone was made the basis of a new quantitative method for the determination of formyl groups. Samples containing N-formyl groups (up to 0·4μmole) are hydrazinolysed at 97–98° for 1hr. and are dinitrophenylated after the removal of excess of hydrazine. Interference from 2,4-dinitrophenylhydrazine is eliminated by subjecting the dinitrophenylated samples to chromatography on an alumina column. Interference arising from the formation of N-acetyl-N′-2,4-dinitrophenylhydrazine, when determining formyl groups in samples containing acetyl, can be avoided by a paper-chromatographic separation before analysis. A standard procedure is described. The method gives satisfactory results when applied to N-formyl-amino acids. Gramicidin, when analysed by this method, was found to contain 0·89 mole of formyl group/mole for a molecular weight of 1880. The method indicated the absence of formyl groups from lysozyme, a protein known not to contain such groups. Generally, the analytical values obtained by the method are within 100±4% of theory. PMID:5774469
Impact of storage conditions on the urinary metabolomics fingerprint.
Laparre, Jérôme; Kaabia, Zied; Mooney, Mark; Buckley, Tom; Sherry, Mark; Le Bizec, Bruno; Dervilly-Pinel, Gaud
2017-01-25
Urine stability during storage is essential in metabolomics to avoid misleading conclusions or erroneous interpretations. Facing the lack of comprehensive studies on urine metabolome stability, the present work performed a follow-up of potential modifications in urinary chemical profile using LC-HRMS on the basis of two parameters: the storage temperature (+4 °C, -20 °C, -80 °C and freeze-dried stored at -80 °C) and the storage duration (5-144 days). Both HILIC and RP chromatographies have been implemented in order to globally monitor the urinary metabolome. Using an original data processing associated to univariate and multivariate data analysis, our study confirms that chemical profiles of urine samples stored at +4 °C are very rapidly modified, as observed for instance for compounds such as:N-acetyl Glycine, Adenosine, 4-Amino benzoic acid, N-Amino diglycine, creatine, glucuronic acid, 3-hydroxy-benzoic acid, pyridoxal, l-pyroglutamic acid, shikimic acid, succinic acid, thymidine, trigonelline and valeryl-carnitine, while it also demonstrates that urine samples stored at -20 °C exhibit a global stability over a long period with no major modifications compared to -80 °C condition. This study is the first to investigate long term stability of urine samples and report potential modifications in the urinary metabolome, using both targeted approach monitoring individually a large number (n > 200) of urinary metabolites and an untargeted strategy enabling assessing for global impact of storage conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Nonprotein Amino Acids in the Murchison Meteorite
Kvenvolden, Keith A.; Lawless, James G.; Ponnamperuma, Cyril
1971-01-01
Twelve nonprotein amino acids appear to be present in the Murchison meteorite. The identity of eight of them has been conclusively established as N-methylglycine, β-alanine, 2-methylalanine, α-amino-n-butyric acid, β-amino-n-butyric acid, γ-amino-n-butyric acid, isovaline, and pipecolic acid. Tentative evidence is presented for the presence of N-methylalanine, N-ethylglycine, β-aminoisobutyric acid, and norvaline. These amino acids appear to be extraterrestrial in origin and may provide new evidence for the hypothesis of chemical evolution. PMID:16591908
Amino acid sequence of tyrosinase from Neurospora crassa.
Lerch, K
1978-01-01
The amino-acid sequence of tyrosinase from Neurospora crassa (monophenol,dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) is reported. This copper-containing oxidase consists of a single polypeptide chain of 407 amino acids. The primary structure was determined by automated and manual sequence analysis on fragments produced by cleavage with cyanogen bromide and on peptides obtained by digestion with trypsin, pepsin, thermolysin, or chymotrypsin. The amino terminus of the protein is acetylated and the single cysteinyl residue 96 is covalently linked via a thioether bridge to histidyl residue 94. The formation and the possible role of this unusual structure in Neurospora tyrosinase is discussed. Dye-sensitized photooxidation of apotyrosinase and active-site-directed inactivation of the native enzyme indicate the possible involvement of histidyl residues 188, 192, 289, and 305 or 306 as ligands to the active-site copper as well as in the catalytic mechanism of this monooxygenase. PMID:151279
Dual effects of phloretin and phloridzin on the glycation induced by methylglyoxal in model systems.
Ma, Jinyu; Peng, Xiaofang; Zhang, Xinchen; Chen, Feng; Wang, Mingfu
2011-08-15
In the present study, the dual effects of phloretin and phloridzin on methylglyoxal (MGO)-induced glycation were investigated in three N(α)-acetyl amino acid (arginine, cysteine, and lysine) models and three N-terminal polypeptide (PP01, PP02, and PP03 containing arginine, cysteine, and lysine, respectively) models. In both N(α)-acetyl amino acids and N-terminal polypeptides models, the arginine residue was confirmed as the major target for modification induced by MGO. Meanwhile, MGO modification was significantly inhibited by the addition of phloretin or phloridzin via their MGO-trapping abilities, with phloretin being more effective. Interestingly, the cysteine residue was intact when solely incubated with MGO, whereas the consumption of N(α)-acetylcysteine and PP02 was promoted by the addition of phloretin. Additional adducts, [N(α)-acetylcysteine + 2MGO + phloretin-H(2)O] and [2N(α)-acetylcysteine + 2MGO + phloretin-2H(2)O] were formed in the model composed of N(α)-acetylcysteine, MGO, and phloretin. Another adduct, [PP02 + 2MGO + phloretin-H(2)O] was observed in the model composed of PP02, MGO, and phloretin. The generation of adducts indicates that phloretin could directly participate in the modification of the cysteine residue in the presence of MGO. When creatine kinase (model protein) was exposed to MGO, the addition of phloridzin did not show a significant effect on retaining the activity of creatine kinase impaired by MGO, whereas the addition of phloretin completely inactivated creatine kinase. Results of the mass spectrometric analysis of intact creatine kinase in different models demonstrated that phloretin could directly participate in the reaction between creatine kinase and MGO, which would lead to the inactivation of creatine kinase. Furthermore, the addition of N(α)-acetylcysteine was found to maintain the activity of creatine kinase incubated with phloretin and MGO. These results showed that phloretin and phloridzin could inhibit the modification of the arginine residue by MGO and that phloretin could directly participate in the reaction between the thiol group and MGO.
The gut microbiota modulates host amino acid and glutathione metabolism in mice
Mardinoglu, Adil; Shoaie, Saeed; Bergentall, Mattias; Ghaffari, Pouyan; Zhang, Cheng; Larsson, Erik; Bäckhed, Fredrik; Nielsen, Jens
2015-01-01
The gut microbiota has been proposed as an environmental factor that promotes the progression of metabolic diseases. Here, we investigated how the gut microbiota modulates the global metabolic differences in duodenum, jejunum, ileum, colon, liver, and two white adipose tissue depots obtained from conventionally raised (CONV-R) and germ-free (GF) mice using gene expression data and tissue-specific genome-scale metabolic models (GEMs). We created a generic mouse metabolic reaction (MMR) GEM, reconstructed 28 tissue-specific GEMs based on proteomics data, and manually curated GEMs for small intestine, colon, liver, and adipose tissues. We used these functional models to determine the global metabolic differences between CONV-R and GF mice. Based on gene expression data, we found that the gut microbiota affects the host amino acid (AA) metabolism, which leads to modifications in glutathione metabolism. To validate our predictions, we measured the level of AAs and N-acetylated AAs in the hepatic portal vein of CONV-R and GF mice. Finally, we simulated the metabolic differences between the small intestine of the CONV-R and GF mice accounting for the content of the diet and relative gene expression differences. Our analyses revealed that the gut microbiota influences host amino acid and glutathione metabolism in mice. PMID:26475342
Cao, Xiaochuang; Ma, Qingxu; Zhong, Chu; Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan
2016-01-01
Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3--N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many amino acids across the elevational gradient suggests that soil amino acids likely originate from a common source or through similar biochemical processes.
Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan
2016-01-01
Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3−-N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many amino acids across the elevational gradient suggests that soil amino acids likely originate from a common source or through similar biochemical processes. PMID:27337100
Degraded protein adducts of cis-2-butene-1,4-dial are urinary and hepatocyte metabolites of furan.
Lu, Ding; Sullivan, Mathilde M; Phillips, Martin B; Peterson, Lisa A
2009-06-01
Furan is a liver toxicant and carcinogen in rodents. On the basis of these observations and the large potential for human exposure, furan has been classified as a possible human carcinogen. The mechanism of tumor induction by furan is unknown. However, the toxicity requires cytochrome P450-catalyzed oxidation of furan. The product of this oxidation, cis-2-butene-1,4-dial (BDA), reacts readily with glutathione, amino acids, and DNA and is a bacterial mutagen in Ames assay strain TA104. Characterization of the urinary metabolites of furan is expected to provide information regarding the structure(s) of the reactive metabolite(s). Recently, several urinary metabolites have been identified. We reported the presence of a monoglutathione-BDA reaction product, N-[4-carboxy-4-(3-mercapto-1H-pyrrol-1-yl)-1-oxobutyl]-l-cysteinylglycine cyclic sulfide. Three additional urinary metabolites of furan were also characterized as follows: R-2-acetylamino-6-(2,5-dihydro-2-oxo-1H-pyrrol-1-yl)-1-hexanoic acid, N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-l-cysteine, and its sulfoxide. It was postulated that these three metabolites are derived from degraded protein adducts. However, the possibility that these metabolites result from the reaction of BDA with free lysine and/or cysteine was not ruled out. In this latter case, one might predict that the reaction of thiol-BDA with free lysine would not occur exclusively on the epsilon-amino group. Reaction of BDA with N-acetylcysteine or GSH in the presence of lysine indicated that both the alpha- and the epsilon-amino groups of lysine can be modified by thiol-BDA. The N-acetylcysteine-BDA-N-acetyllysine urinary metabolites were solely linked through the epsilon-amino group of lysine. A GSH-BDA-lysine cross-link was a significant hepatocyte metabolite of furan. In this case, the major product resulted from reaction with the epsilon-amino group of lysine; however, small amounts of the alpha-amino reaction product were also observed. Western analysis of liver and hepatocyte protein extracts using anti-GSH antibody indicated that GSH was covalently linked to proteins in tissues or cells exposed to furan. Our data support the hypothesis that GSH-BDA can react with either free lysine or protein lysine groups. These data suggest that there are multiple pathways by which furan can modify cellular nucleophiles. In one pathway, BDA reacts directly with proteins to form cysteine-lysine reaction products. In another, BDA reacts with GSH to form GSH-BDA conjugates, which then react with cellular nucleophiles like free lysine or lysine moieties in proteins. Both pathways will give rise to N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-l-cysteine. Given the abundance of these metabolites in urine of furan-treated rats, these pathways appear to be major pathways of furan biotransformation in vivo.
Degraded protein adducts of cis-2-butene-1,4-dial are urinary and hepatocyte metabolites of furan
Lu, Ding; Sullivan, Mathilde M.; Phillips, Martin B.; Peterson, Lisa A.
2009-01-01
Furan is a liver toxicant and carcinogen in rodents. Based on these observations and the large potential for human exposure, furan has been classified as a possible human carcinogen. The mechanism of tumor induction by furan is unknown. However, the toxicity requires cytochrome P450 catalyzed oxidation of furan. The product of this oxidation, cis-2-butene-1,4-dial (BDA), reacts readily with glutathione, amino acids and DNA and is a bacterial mutagen in Ames assay strain TA104. Characterization of the urinary metabolites of furan is expected to provide information regarding the structure(s) of the reactive metabolite(s). Recently, several urinary metabolites have been identified. We reported the presence of a mono-glutathione-BDA reaction product, N-[4-carboxy-4-(3-mercapto-1H-pyrrol-1-yl)-1-oxobutyl]-L-cysteinylglycine cyclic sulfide. Three additional urinary metabolites of furan were also characterized: R-2-acetylamino-6-(2,5-dihydro-2-oxo-1H-pyrrol-1-yl)-1-hexanoic acid, N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-L-cysteine and its sulfoxide. It was postulated that these three metabolites are derived from degraded protein adducts. However, the possibility that these metabolites result from reaction of BDA with free lysine and/or cysteine was not ruled out. In this latter case, one might predict that the reaction of thiol-BDA with free lysine would not occur exclusively on the ε-amino group. Reaction of BDA with N-acetylcysteine or GSH in the presence of lysine indicated that both the α- and ε-amino groups of lysine can be modified by thiol-BDA. The N-acetylcysteine-BDA-N-acetyllysine urinary metabolites were solely linked through the ε-amino group of lysine. A GSH-BDA-lysine crosslink was a significant hepatocyte metabolite of furan. In this case, the major product resulted from reaction with the ε-amino group of lysine, however, small amounts of the α-amino reaction product were also observed. Western analysis of liver and hepatocyte protein extracts using anti-GSH antibody indicated that GSH was covalently linked to proteins in tissues or cells exposed to furan. Our data support the hypothesis that GSH-BDA can react with either free lysine or protein lysine groups. These data suggest that there are multiple pathways by which furan can modify cellular nucleophiles. In one pathway, BDA reacts directly with proteins to form cysteine-lysine reaction products. In another, BDA reacts with GSH to form GSH-BDA conjugates which then reacts with cellular nucleophiles like free lysine or lysine moieties in proteins. Both pathways will give rise to N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-L-cysteine. Given the abundance of these metabolites in urine of furan-treated rats, these pathways appear to be major pathways of furan biotransformation in vivo. PMID:19441776
Putrescine catabolism in mammalian brain
Seiler, N.; Al-Therib, M. J.
1974-01-01
In contrast with putrescine (1,4-diaminobutane), which is a substrate of diamine oxidase, monoacetylputrescine is oxidatively deaminated both in vitro and in vivo by monoamine oxidase. The product of this reaction is N-acetyl-γ-aminobutyrate. The existence of a degradative pathway in mammalian brain for putrescine is shown, which comprises acetylation of putrescine, oxidative deamination of monoacetylputrescine to N-acetyl-γ-aminobutyrate, transformation of N-acetyl-γ-aminobutyrate to γ-aminobutyrate and degradation of γ-aminobutyrate to CO2 via the tricarboxylic acid cycle. PMID:4156831
Unexpected Diversity of Escherichia coli Sialate O-Acetyl Esterase NanS
Rangel, Ariel; Steenbergen, Susan M.
2016-01-01
ABSTRACT The sialic acids (N-acylneuraminates) are a group of nine-carbon keto-sugars existing mainly as terminal residues on animal glycoprotein and glycolipid carbohydrate chains. Bacterial commensals and pathogens exploit host sialic acids for nutrition, adhesion, or antirecognition, where N-acetyl- or N-glycolylneuraminic acids are the two predominant chemical forms of sialic acids. Each form may be modified by acetyl esters at carbon position 4, 7, 8, or 9 and by a variety of less-common modifications. Modified sialic acids produce challenges for colonizing bacteria, because the chemical alterations to N-acetylneuraminic acid (Neu5Ac) confer increased resistance to sialidase and aldolase activities essential for the catabolism of host sialic acids. Bacteria with O-acetyl sialate esterase(s) utilize acetylated sialic acids for growth, thereby gaining a presumed metabolic advantage over competitors lacking this activity. Here, we demonstrate the esterase activity of Escherichia coli NanS after purifying it as a C-terminal HaloTag fusion. Using a similar approach, we show that E. coli strain O157:H7 Stx prophage or prophage remnants invariably include paralogs of nanS often located downstream of the Shiga-like toxin genes. These paralogs may include sequences encoding N- or C-terminal domains of unknown function where the NanS domains can act as sialate O-acetyl esterases, as shown by complementation of an E. coli strain K-12 nanS mutant and the unimpaired growth of an E. coli O157 nanS mutant on O-acetylated sialic acid. We further demonstrate that nanS homologs in Streptococcus spp. also encode active esterase, demonstrating an unexpected diversity of bacterial sialate O-acetyl esterase. IMPORTANCE The sialic acids are a family of over 40 naturally occurring 9-carbon keto-sugars that function in a variety of host-bacterium interactions. These sugars occur primarily as terminal carbohydrate residues on host glycoproteins and glycolipids. Available evidence indicates that diverse bacterial species use host sialic acids for adhesion or as sources of carbon and nitrogen. Our results show that the catabolism of the diacetylated form of host sialic acid requires a specialized esterase, NanS. Our results further show that nanS homologs exist in bacteria other than Escherichia coli, as well as part of toxigenic E. coli prophage. The unexpected diversity of these enzymes suggests new avenues for investigating host-bacterium interactions. Therefore, these original results extend our previous studies of nanS to include mucosal pathogens, prophage, and prophage remnants. This expansion of the nanS superfamily suggests important, although as-yet-unknown, functions in host-microbe interactions. PMID:27481927
Acetyl-DL-leucine improves gait variability in patients with cerebellar ataxia-a case series.
Schniepp, Roman; Strupp, Michael; Wuehr, Max; Jahn, Klaus; Dieterich, Marianne; Brandt, Thomas; Feil, Katharina
2016-01-01
Acetyl-DL-leucine is a modified amino acid that was observed to improve ataxic symptoms in patients with sporadic and hereditary forms of ataxia. Here, we investigated the effect of the treatment with Acetyl-DL-leucine on the walking stability of patients with cerebellar ataxia (10x SAOA, 2x MSA-C, 2x ADA, 1x CACNA-1A mutation, 2x SCA 2, 1x SCA 1). Treatment with Acetyl-DL-leucine (500 mg; 3-3-4) significantly improved the coefficient of variation of stride time in 14 out of 18 patients. Moreover, subjective ambulatory scores (FES-I and ABC) and the SARA scores were also improved under treatment. Further prospective studies are necessary to support these class III observational findings.
Fermentable soluble fibres spare amino acids in healthy dogs fed a low-protein diet.
Wambacq, Wendy; Rybachuk, Galena; Jeusette, Isabelle; Rochus, Kristel; Wuyts, Brigitte; Fievez, Veerle; Nguyen, Patrick; Hesta, Myriam
2016-06-28
Research in cats has shown that increased fermentation-derived propionic acid and its metabolites can be used as alternative substrates for gluconeogenesis, thus sparing amino acids for other purposes. This amino acid sparing effect could be of particular interest in patients with kidney or liver disease, where this could reduce the kidneys'/liver's burden of N-waste removal. Since dogs are known to have a different metabolism than the obligatory carnivorous cat, the main objective of this study was to assess the possibility of altering amino acid metabolism through intestinal fermentation in healthy dogs. This was studied by supplementing a low-protein diet with fermentable fibres, hereby providing an initial model for future studies in dogs suffering from renal/liver disease. Eight healthy dogs were randomly assigned to one of two treatment groups: sugar beet pulp and guar gum mix (SF: soluble fibre, estimated to mainly stimulate propionic acid production) or cellulose (IF: insoluble fibre). Treatments were incorporated into a low-protein (17 %) extruded dry diet in amounts to obtain similar total dietary fibre (TDF) contents for both diets (9.4 % and 8.2 % for the SF and IF diet, respectively) and were tested in a 4-week crossover feeding trial. Apparent faecal nitrogen digestibility and post-prandial fermentation metabolites in faeces and plasma were evaluated. Dogs fed the SF diet showed significantly higher faecal excretion of acetic and propionic acid, resulting in a higher total SCFA excretion compared to IF. SF affected the three to six-hour postprandial plasma acylcarnitine profile by significantly increasing AUC of acetyl-, propionyl-, butyryl- + isobutyryl-, 3-OH-butyryl-, 3-OH-isovaleryl- and malonyl-L-carnitine. Moreover, the amino acid plasma profile at that time was modified as leucine + isoleucine concentrations were significantly increased by SF, and a similar trend for phenylalanine and tyrosine's AUC was found. These results indicate that guar gum and sugar beet pulp supplementation diminishes postprandial use of amino acids favoring instead the use of short-chain fatty acids as substrate for the tricarboxylic acid (TCA) cycle. Further research is warranted to investigate the amino acid sparing effect of fermentable fibres in dogs with kidney/liver disease.
Khedri, Zahra; Xiao, An; Yu, Hai; Landig, Corinna Susanne; Li, Wanqing; Diaz, Sandra; Wasik, Brian R; Parrish, Colin R; Wang, Lee-Ping; Varki, Ajit; Chen, Xi
2017-01-20
9-O-Acetylation is a common natural modification on sialic acids (Sias) that terminate many vertebrate glycan chains. This ester group has striking effects on many biological phenomena, including microbe-host interactions, complement action, regulation of immune responses, sialidase action, cellular apoptosis, and tumor immunology. Despite such findings, 9-O-acetyl sialoglycoconjugates have remained largely understudied, primarily because of marked lability of the 9-O-acetyl group to even small pH variations and/or the action of mammalian or microbial esterases. Our current studies involving 9-O-acetylated sialoglycans on glycan microarrays revealed that even the most careful precautions cannot ensure complete stability of the 9-O-acetyl group. We now demonstrate a simple chemical biology solution to many of these problems by substituting the oxygen atom in the ester with a nitrogen atom, resulting in sialic acids with a chemically and biologically stable 9-N-acetyl group. We present an efficient one-pot multienzyme method to synthesize a sialoglycan containing 9-acetamido-9-deoxy-N-acetylneuraminic acid (Neu5Ac9NAc) and compare it to the one with naturally occurring 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac 2 ). Conformational resemblance of the two molecules was confirmed by computational molecular dynamics simulations. Microarray studies showed that the Neu5Ac9NAc-sialoglycan is a ligand for viruses naturally recognizing Neu5,9Ac 2 , with a similar affinity but with much improved stability in handling and study. Feeding of Neu5Ac9NAc or Neu5,9Ac 2 to mammalian cells resulted in comparable incorporation and surface expression as well as binding to 9-O-acetyl-Sia-specific viruses. However, cells fed with Neu5Ac9NAc remained resistant to viral esterases and showed a slower turnover. This simple approach opens numerous research opportunities that have heretofore proved intractable.
Shu, Qunfeng; Xu, Meijuan; Li, Jing; Yang, Taowei; Zhang, Xian; Xu, Zhenghong; Rao, Zhiming
2018-05-04
L-Ornithine is a non-protein amino acid with extensive applications in the food and pharmaceutical industries. In this study, we performed metabolic pathway engineering of an L-arginine hyper-producing strain of Corynebacterium crenatum for L-ornithine production. First, we amplified the L-ornithine biosynthetic pathway flux by blocking the competing branch of the pathway. To enhance L-ornithine synthesis, we performed site-directed mutagenesis of the ornithine-binding sites to solve the problem of L-ornithine feedback inhibition for ornithine acetyltransferase. Alternatively, the genes argA from Escherichia coli and argE from Serratia marcescens, encoding the enzymes N-acetyl glutamate synthase and N-acetyl-L-ornithine deacetylase, respectively, were introduced into Corynebacterium crenatum to mimic the linear pathway of L-ornithine biosynthesis. Fermentation of the resulting strain in a 5-L bioreactor allowed a dramatically increased production of L-ornithine, 40.4 g/L, with an overall productivity of 0.673 g/L/h over 60 h. This demonstrates that an increased level of transacetylation is beneficial for L-ornithine biosynthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jian, Siyang; Li, Jianwei; Chen, Ji
Nitrogen (N) fertilization affects the rate of soil organic carbon (SOC) decomposition by regulating extracellular enzyme activities (EEA). Extracellular enzymes have not been represented in global biogeochemical models. Understanding the relationships among EEA and SOC, soil N (TN), and soil microbial biomass carbon (MBC) under N fertilization would enable modeling of the influence of EEA on SOC decomposition. Based on 65 published studies, we synthesized the activities of α-1,4-glucosidase (AG), β-1,4-glucosidase (BG), β-d-cellobiosidase (CBH), β-1,4-xylosidase (BX), β-1,4-N-acetyl-glucosaminidase (NAG), leucine amino peptidase (LAP), urease (UREA), acid phosphatase (AP), phenol oxidase (PHO), and peroxidase (PEO) in response to N fertilization. Here, themore » proxy variables for hydrolytic C acquisition enzymes (C-acq), N acquisition (N-acq), and oxidative decomposition (OX) were calculated as the sum of AG, BG, CBH and BX; AG and LAP; PHO and PEO, respectively.« less
Urashima, Tadasu; Inamori, Hiroaki; Fukuda, Kenji; Saito, Tadao; Messer, Michael; Oftedal, Olav T
2015-06-01
Monotremes (echidnas and platypus) retain an ancestral form of reproduction: egg-laying followed by secretion of milk onto skin and hair in a mammary patch, in the absence of nipples. Offspring are highly immature at hatching and depend on oligosaccharide-rich milk for many months. The primary saccharide in long-beaked echidna milk is an acidic trisaccharide Neu4,5Ac2(α2-3)Gal(β1-4)Glc (4-O-acetyl 3'-sialyllactose), but acidic oligosaccharides have not been characterized in platypus milk. In this study, acidic oligosaccharides purified from the carbohydrate fraction of platypus milk were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and (1)H-nuclear magnetic resonance spectroscopy. All identified structures, except Neu5Ac(α2-3)Gal(β1-4)Glc (3'-sialyllactose) contained Neu4,5Ac2 (4-O-acetyl-sialic acid). These include the trisaccharide 4-O-acetyl 3'-sialyllactose, the pentasaccharide Neu4,5Ac2(α2-3)Gal(β1-4)GlcNAc(β1-3)Gal(β1-4)Glc (4-O-acetyl-3'-sialyllacto-N-tetraose d) and the hexasaccharide Neu4,5Ac2(α2-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3)Gal(β1-4)Glc (4-O-acetyl-3'-sialyllacto-N-fucopentaose III). At least seven different octa- to deca-oligosaccharides each contained a lacto-N-neohexaose core (LNnH) and one or two Neu4,5Ac2 and one to three fucose residues. We conclude that platypus milk contains a diverse (≥ 20) array of neutral and acidic oligosaccharides based primarily on lactose, lacto-N-neotetraose (LNnT) and LNnH structural cores and shares with echidna milk the unique feature that all identified acidic oligosaccharides (other than 3'-sialyllactose) contain the 4-O-acetyl-sialic acid moiety. We propose that 4-O-acetylation of sialic acid moieties protects acidic milk oligosaccharides secreted onto integumental surfaces from bacterial hydrolysis via steric interference with bacterial sialidases. This may be of evolutionary significance since taxa ancestral to monotremes and other mammals are thought to have secreted milk, or a milk-like fluid containing oligosaccharides, onto skin surfaces. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Chen, Zhuo; Luo, Ling; Chen, Runfa; Hu, Hanhua; Pan, Yufang; Jiang, Haibo; Wan, Xia; Jin, Hu; Gong, Yangmin
2018-03-01
N ε -lysine acetylation represents a highly dynamic and reversibly regulated post-translational modification widespread in almost all organisms, and plays important roles for regulation of protein function in diverse metabolic pathways. However, little is known about the role of lysine acetylation in photosynthetic eukaryotic microalgae. We integrated proteomic approaches to comprehensively characterize the lysine acetylome in the model diatom Phaeodactylum tricornutum In total, 2324 acetylation sites from 1220 acetylated proteins were identified, representing the largest data set of the lysine acetylome in plants to date. Almost all enzymes involved in fatty acid synthesis were found to be lysine acetylated. Six putative lysine acetylation sites were identified in a plastid-localized long-chain acyl-CoA synthetase. Site-directed mutagenesis and site-specific incorporation of N-acetyllysine in acyl-CoA synthetase show that acetylation at K407 and K425 increases its enzyme activity. Moreover, the nonenzymatically catalyzed overall hyperacetylation of acyl-CoA synthetase by acetyl-phosphate can be effectively deacetylated and reversed by a sirtuin-type NAD + -dependent deacetylase with subcellular localization of both the plastid and nucleus in Phaeodactylum This work indicates the regulation of acyl-CoA synthetase activity by site-specific lysine acetylation and highlights the potential regulation of fatty acid metabolism by lysine actetylation in the plastid of the diatom Phaeodactylum . © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Pulmonary fatty acid synthesis. I. Mitochondrial acetyl transfer by rat lung in vitro.
Evans, R M; Scholz, R W
1977-04-01
Incorporation of tritiated water into fatty acids by rat adipose tissue and lung tissue slices incubated with 5 mM glucose indicated a level of fatty acid synthesis in rat lung approximately 15% that observed in adipose tissue in vitro. (-)-Hydroxycitrate, and inhibitor of ATP citrate lyase, markedly reduced tritiated water incorporation into fatty acids by lung tissue slices. The effects of (-)-hydroxycitrate and n-butymalonate on the incorporation of 14C-labeled glucose, pyruvate, acetate, and citrate suggested that citrate is a major acetyl carrier for de novo fatty acid synthesis in lung tissue. Alternative mechanisms to citrate as an acetyl carrier were also considered. Lung mitochondrial preparations formed significant levels of acetylcarnitine in the presence of pyruvate and carnitine. However, the effect of carnitine on the incorporation of 14C-labeled glucose, pyruvate, acetate, and citrate into fatty acids by lung tissue slices indicated that acetylcarnitine may not be a significant acetyl carrier for fatty acid synthesis but may serve as an acetyl "buffer" in the control of mitochondrial acetyl-CoA levels. Additionally, it appears unlikely that either acetylaspartate or acetoacetate are of major importance in acetyl transfer in lung tissue.
Choragudi, Shechinah Felice; Veeramachaneni, Ganesh Kumar; Raman, BV; JS, Bondili
2014-01-01
Endo- β-N-acetylgucosaminidases (ENGases) are the enzymes that catalyze both hydrolysis and transglycosylation reactions. It is of interest to study ENGases because of their ability to synthesize glycopeptides. Homology models of Human, Arabidopsis thaliana and Sorghum ENGases were developed and their active sites marked based on information available from Arthrobacter protophormiae (PDB ID: 3FHQ) ENGase. Further, these models were docked with the natural substrate GlcNAc-Asn and the inhibitor Man3GlcNAc-thiazoline. The catalytic triad of Asn, Glu and Tyr (N171, E173 and Y205 of bacteria) were found to be conserved across the phyla. The crucial Y299F mutation showing 3 times higher transglycosylation activity than in wild type Endo-A is known. The hydrolytic activity remained unchanged in bacteria, while the transglycosylation activity increased. This Y to F change is found to be naturally evolved and should be attributing higher transglycosylation rates in human and Arabidopsis thaliana ENGases. Ligand interactions Ligplots revealed the interaction of amino acids with hydrophobic side chains and polar uncharged side chain amino acids. Thus, structure based molecular model-ligand interactions provide insights into the catalytic mechanism of ENGases and assist in the rational engineering of ENGases. PMID:25258486
Choragudi, Shechinah Felice; Veeramachaneni, Ganesh Kumar; Raman, Bv; Js, Bondili
2014-01-01
Endo- β-N-acetylgucosaminidases (ENGases) are the enzymes that catalyze both hydrolysis and transglycosylation reactions. It is of interest to study ENGases because of their ability to synthesize glycopeptides. Homology models of Human, Arabidopsis thaliana and Sorghum ENGases were developed and their active sites marked based on information available from Arthrobacter protophormiae (PDB ID: 3FHQ) ENGase. Further, these models were docked with the natural substrate GlcNAc-Asn and the inhibitor Man3GlcNAc-thiazoline. The catalytic triad of Asn, Glu and Tyr (N171, E173 and Y205 of bacteria) were found to be conserved across the phyla. The crucial Y299F mutation showing 3 times higher transglycosylation activity than in wild type Endo-A is known. The hydrolytic activity remained unchanged in bacteria, while the transglycosylation activity increased. This Y to F change is found to be naturally evolved and should be attributing higher transglycosylation rates in human and Arabidopsis thaliana ENGases. Ligand interactions Ligplots revealed the interaction of amino acids with hydrophobic side chains and polar uncharged side chain amino acids. Thus, structure based molecular model-ligand interactions provide insights into the catalytic mechanism of ENGases and assist in the rational engineering of ENGases.
Kelly, Mary T; Blaise, Alain; Larroque, Michel
2010-11-19
This paper reports a new, simple, rapid and economical method for routine determination of 24 amino acids and biogenic amines in grapes and wine. No sample clean-up is required and total run time including column re-equilibration is less than 40min. Following automated in-loop automated pre-column derivatisation with an o-phthaldialdehyde, N-acetyl-l-cysteine reagent, compounds were separated on a 3mm×25cm C(18) column using a binary mobile phase. The method was validated in the range 0.25-10mg/l; repeatability was less than 3% RSD and the intermediate precision ranged from 2 to 7% RSD. The method was shown to be linear by the 'lack of fit' test and the accuracy was between 97 and 101%. The LLOQ varied between 10μg/l for aspartic and glutamic acids, ethanolamine and GABA, and 100μg/l for tyrosine, phenylalanine, putrescine and cadaverine. The method was applied to grapes, white wine, red wine, honey and three species of physalis fruit. Grapes and physalis fruit were crushed, sieved, centrifuged and diluted 1/20 and 1/100, respectively, for analysis; wines and honeys were simply diluted 10-fold. It was shown using this method that the amino acid content of grapes was strongly correlated with berry volume, moderately correlated with sugar concentration and inversely correlated with total acidity. Copyright © 2010 Elsevier B.V. All rights reserved.
Antiamnesic properties of analogs and mimetics of the tripeptide human urocortin 3.
Telegdy, Gyula; Kovács, Anita Kármen; Rákosi, Kinga; Zarándi, Márta; Tóth, Gábor K
2016-09-01
Amnesia is a deficit in memory caused by brain damage, disease, or trauma. Until now, there are no successful medications on the drug market available to treat amnesia. Short analogs and mimetics of human urocortin 3 (Ucn 3) tripeptide were synthetized and tested for their action against amnesia induced by eletroconvulsion in mice. Among the 16 investigated derivatives of Ucn 3 tripeptide, eight compounds displayed antiamnesic effect. Our results proved that the configuration of chiral center of glutamine does not affect the antiamnesic properties. Alkyl amide or isoleucyl amide at the C-terminus may lead to antiamnesic compounds. As concerned the N-terminus, acetyl, Boc, and alkyl ureido moieties were found among the active analogs, but the free amino function at the N-terminus usually led to an inactive derivatives. These observations may lead to the design and synthesis of small peptidomimetics and amino acid derivatives as antiamnesic drug candidates, although the elucidation of the mechanism of the action requires further investigations.
Chirally selective, intramolecular interaction observed in an aminoacyl adenylate anhydride
NASA Technical Reports Server (NTRS)
Lacey, J. C., Jr.; Hall, L. M.; Mullins, D. W., Jr.; Watkins, C. L.
1985-01-01
The interaction between amino acids and nucleotide bases is studied. The proton NMR spectrum of N-acetylphenylalanyl-AMP-anhydride is analyzed H8 and H2 signals, two upfield signals of equal size, and five phenylalanine ring proton signals are observed in the spectrum; the upfield movement of the proton and the racemization of the N-acetyl L-phenylalanine material are examined. The differences in the position of the signals due to the diastereoisomers are investigated. The separation of the D and L amino acyl adenylates using HPLC is described. H-1 NMR spectra of the isomers are examined in order to determine which isomer displays the strongest interaction between the phenyl ring and the adenine ring. The spectra reveal that the L isomer shows the highest upfield change of both H8 and H2 signals. It is noted that the phenyl ring lies over C2 of the adenine ring with the phenyl meta and para protons extended past the adenine ring and the phenyl ortho protons.
Ohno, Hiroyuki; Fukumoto, Kenta
2007-11-01
The preparation of ionic liquids derived from amino acids, and their properties, are outlined. Since amino acids have both a carboxylic acid residue and an amino group in a single molecule, they can be used as either anions or cations. These groups are also useful in their ability to introduce functional group(s). Twenty different natural amino acids were used as anions, to couple with the 1-ethyl-3-methylimidazolium cation. The salts obtained were all liquid at room temperature. The properties of the resulting ionic liquids (AAILs) depend on the side groups of the amino acids involved. These AAILs, composed of an amino acid with some functional groups such as a hydrogen bonding group, a charged group, or an aromatic ring, had an increased glass transition (or melting) temperature and/or higher viscosity as a result of additional interactions among the ions. Viscosity is reduced and the decomposition temperature of imidazolium-type salts is improved by using the tetrabutylphosphonium cation. The chirality of AAILs was maintained even upon heating to 150 degrees C after acetylation of the free amino group. The amino group was also modified to introduce a strong acid group so as to form hydrophobic and chiral ionic liquids. Unique phase behavior of the resulting hydrophobic ionic liquids and water mixture is found; the mixture is clearly phase separated at room temperature, but the solubility of water in this IL increases upon cooling, to give a homogeneous solution. This phase change is reversible, and separation occurs again by raising the temperature a few degrees. It is extraordinary for an IL/water mixture to display such behavior with a lower critical solution temperature. Some likely applications are proposed for these amino acid derived ionic liquids.
Shi, Dashuang; Sagar, Vatsala; Jin, Zhongmin; Yu, Xiaolin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M; Tuchman, Mendel
2008-03-14
The crystal structures of N-acetylglutamate synthase (NAGS) in the arginine biosynthetic pathway of Neisseria gonorrhoeae complexed with acetyl-CoA and with CoA plus N-acetylglutamate have been determined at 2.5- and 2.6-A resolution, respectively. The monomer consists of two separately folded domains, an amino acid kinase (AAK) domain and an N-acetyltransferase (NAT) domain connected through a 10-A linker. The monomers assemble into a hexameric ring that consists of a trimer of dimers with 32-point symmetry, inner and outer ring diameters of 20 and 100A, respectively, and a height of 110A(.) Each AAK domain interacts with the cognate domains of two adjacent monomers across two 2-fold symmetry axes and with the NAT domain from a second monomer of the adjacent dimer in the ring. The catalytic sites are located within the NAT domains. Three active site residues, Arg316, Arg425, and Ser427, anchor N-acetylglutamate in a position at the active site to form hydrogen bond interactions to the main chain nitrogen atoms of Cys356 and Leu314, and hydrophobic interactions to the side chains of Leu313 and Leu314. The mode of binding of acetyl-CoA and CoA is similar to other NAT family proteins. The AAK domain, although catalytically inactive, appears to bind arginine. This is the first reported crystal structure of any NAGS, and it provides insights into the catalytic function and arginine regulation of NAGS enzymes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Dashuang; Sagar, Vatsala; Jin, Zhongmin
2010-01-07
The crystal structures of N-acetylglutamate synthase (NAGS) in the arginine biosynthetic pathway of Neisseria gonorrhoeae complexed with acetyl-CoA and with CoA plus N-acetylglutamate have been determined at 2.5- and 2.6-A resolution, respectively. The monomer consists of two separately folded domains, an amino acid kinase (AAK) domain and an N-acetyltransferase (NAT) domain connected through a 10-A linker. The monomers assemble into a hexameric ring that consists of a trimer of dimers with 32-point symmetry, inner and outer ring diameters of 20 and 100A, respectively, and a height of 110A(.) Each AAK domain interacts with the cognate domains of two adjacent monomersmore » across two 2-fold symmetry axes and with the NAT domain from a second monomer of the adjacent dimer in the ring. The catalytic sites are located within the NAT domains. Three active site residues, Arg316, Arg425, and Ser427, anchor N-acetylglutamate in a position at the active site to form hydrogen bond interactions to the main chain nitrogen atoms of Cys356 and Leu314, and hydrophobic interactions to the side chains of Leu313 and Leu314. The mode of binding of acetyl-CoA and CoA is similar to other NAT family proteins. The AAK domain, although catalytically inactive, appears to bind arginine. This is the first reported crystal structure of any NAGS, and it provides insights into the catalytic function and arginine regulation of NAGS enzymes.« less
Synthesis of the antileukemic compound N,N(11)-[5-[bis(2-chloroethyl)amino]-1, 3-phenylene]bisurea.
Denny, G H; Ryder, M A; DeMarco, A M; Babson, R D
1976-03-01
Conversion of 5-nitro-1, 3-benzenedicarboxylic acid (1) to the diamide 2 followed by hypochlorite rearrangement to the idamine 3 and subsequent reaction with acetic anhydride gave the bisacetamide 4. Reduction to the amine 5 followed by treatment with ethylene oxide formed the diol 6. The latter was converted to the bistosylate 7, which undrewent facile displacement with lithium chloride in acetone to give the mustard 8. Removal of the acetyl groups with hydrochloric acid gave 9, which reacted with potassium cyanate to provide the bisurea 10. In an alternative, but less satisfactory synthesis of 10, the compound (5-nitro-1, 3-phenylene) biscarbamic acid diphenyl ester (11), or the corresponding diethyl ester 12, was converted by ammonolysis to 13. The nitrodiurea 13 was next reduced to the amine 14, the hydrochloride of which reacted with ethylene oxide to give the diol 15. Treatment of the latter in dimethylformamide with N-chlorosuccinimide in the presence of triphenylphosphine gave 10 in low yield. The nitrogen mustards 8, 9 and 10 showed significant antitumor activities against P388 lymphocytic leukemia in mice.
... Glucosamine Sulphate KCl, Glucosamine-6-Phosphate, GS, Mono-Sulfated Saccharide, Poly-(1->3)-N-Acetyl-2-Amino- ... Sulfate de Glucosamine, Sulfate de Glucosamine 2KCl, SG, Sulfated Monosaccharide, Sulfated Saccharide, Sulfato de Glucosamina. Glucosamine Hydrochloride ...
Determination of the sequences of protein-derived peptides and peptide mixtures by mass spectrometry
Morris, Howard R.; Williams, Dudley H.; Ambler, Richard P.
1971-01-01
Micro-quantities of protein-derived peptides have been converted into N-acetylated permethyl derivatives, and their sequences determined by low-resolution mass spectrometry without prior knowledge of their amino acid compositions or lengths. A new strategy is suggested for the mass spectrometric sequencing of oligopeptides or proteins, involving gel filtration of protein hydrolysates and subsequent sequence analysis of peptide mixtures. Finally, results are given that demonstrate for the first time the use of mass spectrometry for the analysis of a protein-derived peptide mixture, again without prior knowledge of the protein or components within the mixture. PMID:5158904
Acetylation unleashes protein demons of dementia.
Mattson, Mark P
2010-09-23
Aberrant posttranslational modifications of proteins can impair synaptic plasticity and may render neurons vulnerable to degeneration during aging. In this issue of Neuron, Min et al. show that acetylation of the amino acid lysine in the microtubule-associated protein tau prevents its ubiquitin-mediated degradation, resulting in "tau tangles" similar to those of dementias. Other recent studies suggest that lysine hyperacetylation contributes to the accumulation of amyloid β-peptide in Alzheimer's disease and to impaired cognitive function resulting from a trophic factor deficit. Copyright © 2010 Elsevier Inc. All rights reserved.
Yunus, Uzma; Tahir, Muhammad Kalim; Bhatti, Moazzam Hussain; Wong, Wai-Yeung
2008-01-01
The title compound, C5H6N2OS, was synthesized from acetyl chloride and 2-aminothiazole in dry acetone. The asymmetric unit contains two molecules. The crystal structure is stabilized by N—H⋯N and C—H⋯O hydrogen bonds. PMID:21203224
Code of Federal Regulations, 2012 CFR
2012-07-01
... L-Phenylalanine, 4-[bis(2-chloroethyl)amino]- U145 7446-27-7 Phosphoric acid, lead(2+) salt (2:3...-Naphthacenedione, 8-acetyl-10-[(3-amino-2,3,6-trideoxy)-alpha-L-lyxo-hexopyranosyl)oxy]-7,8,9,10-tetrahydro-6,8,11... sulfide SeS2 (R,T) U015 115-02-6 L-Serine, diazoacetate (ester) See F027 93-72-1 Silvex (2,4,5-TP) U206...
Code of Federal Regulations, 2014 CFR
2014-07-01
... L-Phenylalanine, 4-[bis(2-chloroethyl)amino]- U145 7446-27-7 Phosphoric acid, lead(2+) salt (2:3...-Naphthacenedione, 8-acetyl-10-[(3-amino-2,3,6-trideoxy)-alpha-L-lyxo-hexopyranosyl)oxy]-7,8,9,10-tetrahydro-6,8,11... sulfide SeS2 (R,T) U015 115-02-6 L-Serine, diazoacetate (ester) See F027 93-72-1 Silvex (2,4,5-TP) U206...
Code of Federal Regulations, 2013 CFR
2013-07-01
... L-Phenylalanine, 4-[bis(2-chloroethyl)amino]- U145 7446-27-7 Phosphoric acid, lead(2+) salt (2:3...-Naphthacenedione, 8-acetyl-10-[(3-amino-2,3,6-trideoxy)-alpha-L-lyxo-hexopyranosyl)oxy]-7,8,9,10-tetrahydro-6,8,11... sulfide SeS2 (R,T) U015 115-02-6 L-Serine, diazoacetate (ester) See F027 93-72-1 Silvex (2,4,5-TP) U206...
NASA Astrophysics Data System (ADS)
Xu, Yu; Xiao, Huayun
2017-09-01
Free amino acid δ15N values and concentrations of current-year new (new), current-year mature (middle-age) and previous-year (old) Pinus massoniana (Lamb.) needles were determined for five sites with different distances from a highway in a forest in Guiyang (SW China). Needle free amino acid concentrations decreased with increasing distance from the highway, and only the free amino acid concentrations (total free amino acid, arginine, γ-aminobutyric acid, valine, alanine and proline) in the middle-aged needles demonstrated a strong correlation with distance from the highway, indicating that free amino acid concentrations in middle-aged needles may be a more suitable indicator of nitrogen (N) deposition compared to new and old needles. Needle free amino acid δ15N values were more positive near the highway compared to the more distant sites and increased with increasing needle age, indicating that N deposition in this site may be dominated by isotopically heavy NOx-N from traffic emissions. In sites beyond 400 m from the highway, the δ15N values of total free amino acids, histidine, glutamine, proline, alanine, aspartate, isoleucine, lysine, arginine and serine in each age of needle were noticeably negative compared to their respective δ15N values near the highway. This suggested that needle free amino acid δ15N values from these sites were more affected by 15N-depleted atmospheric NHx-N from soil emissions. This result was further supported by the similarity in the negative moss δ15N values at these sites to the δ15N values of soil-derived NHx-N. Needle free amino acid δ15N values therefore have the potential to provide information about atmospheric N sources. We conclude that needle free amino acid concentrations are sensitive indicators of N deposition and that the age-related free amino acid δ15N values in needles can efficiently reflect atmospheric N sources. This would probably promote the application of the combined plant tissue amino acid concentration and δ15N analyses in N deposition bio-monitoring.
Aberrant levels of histone H3 acetylation induce spermatid anomaly in mouse testis.
Dai, Lei; Endo, Daisuke; Akiyama, Naotaro; Yamamoto-Fukuda, Tomomi; Koji, Takehiko
2015-02-01
Histone acetylation is involved in the regulation of chromatin structure and gene function. We reported previously that histone H3 acetylation pattern is subject to dynamic changes and limited to certain stages of germ cell differentiation during murine spermatogenesis, suggesting a crucial role for acetylation in the process. In the present study, we investigated the effects of hyper- and hypo-acetylation on spermatogenesis. Changes in acetylation level were induced by either in vivo administration of sodium phenylbutyrate, a histone deacetylase inhibitor, or by knockdown of histone acetyltransferases using short hairpin RNA plasmids transfection. Administration of sodium phenylbutyrate induced accumulation of acetylated histone H3 at lysine 9 and lysine 18 in round spermatids, together with spermatid morphological abnormalities and induction of apoptosis through a Bax-related pathway. Knockdown of steroid receptor coactivator 1, a member of histone acetyltransferases, but not general control of amino acid synthesis 5 nor elongator protein 3 by in vivo electroporation of shRNA plasmids, reduced acetylated histone H3 at lysine 9 in round spermatids, and induced morphological abnormalities. We concluded that the proper regulation of histone H3 acetylation levels is important for spermatid differentiation and complex chromatin remodeling during spermiogenesis.
Horňák, Karel; Pernthaler, Jakob
2014-10-24
The concentrations of free neutral carbohydrates and amino sugars were determined in freshwater samples of distinct matrix complexity, including meso-, eu- and dystrophic lakes and ponds, using high-performance ion-exclusion chromatography (HPIEC) coupled to mass spectrometry (MS). In contrast to other methods, our approach allowed the quantification of free neutral carbohydrates and amino sugars at low nM concentrations without derivatization, de-salting or pre-concentration. New sample preparation procedures were applied prior to injection employing syringe and hollow fiber filtration. Analytes were separated on a strong cation exchange resin under 100% aqueous conditions using 0.1% formic acid as a mobile phase. To minimize background noise in MS, analytes were detected in a multiple reaction monitoring scan mode with double ion filtering. Detection limits of carbohydrates and amino sugars ranged between 0.2 and 2nM at a signal-to-noise ratio >5. Error ranged between 1 and 12% at 0.5-500nM levels. Using a stable isotope dilution approach, both the utilization and recycling of glucose in Lake Zurich was observed. In contrast, N-acetyl-glucosamine was equally rapidly consumed but there was no visible de novo production. The simple and rapid sample preparation makes our protocol suitable for routine analyses of organic compounds in freshwater samples. Application of stable isotope tracers along with accurate measures of carbohydrate and amino sugar concentrations enables novel insights into the compound in situ dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.
Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nag, Ambarish; St. John, Peter C.; Crowley, Michael F.
Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes themore » biosynthetic pathways for the main components of biomass - namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-a-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production.« less
Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes
Nag, Ambarish; St. John, Peter C.; Crowley, Michael F.; ...
2018-01-30
Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes themore » biosynthetic pathways for the main components of biomass - namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-a-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lodewick, Julie; Lamsoul, Isabelle; Polania, Angela
The oncogenic potential of the HTLV-1 Tax protein involves activation of the NF-{kappa}B pathway, which depends on Tax phosphorylation, ubiquitination and sumoylation. We demonstrate that the nuclei of Tax-expressing cells, including HTLV-1 transformed T-lymphocytes, contain a pool of Tax molecules acetylated on lysine residue at amino acid position 346 by the transcriptional coactivator p300. Phosphorylation of Tax on serine residues 300/301 was a prerequisite for Tax localization in the nucleus and correlated with its subsequent acetylation by p300, whereas sumoylation, resulting in the formation of Tax nuclear bodies in which p300 was recruited, favored Tax acetylation. Overexpression of p300 markedlymore » increased Tax acetylation and the ability of a wild type HTLV-1 provirus, -but not of a mutant provirus carrying an acetylation deficient Tax gene-, to activate gene expression from an integrated NF-{kappa}B-controlled promoter. Thus, Tax acetylation favors NF-{kappa}B activation and might play an important role in HTLV-1-induced cell transformation.« less
Friis, R Magnus N; Glaves, John Paul; Huan, Tao; Li, Liang; Sykes, Brian D; Schultz, Michael C
2014-04-24
Abnormal respiratory metabolism plays a role in numerous human disorders. We find that regulation of overall histone acetylation is perturbed in respiratory-incompetent (ρ(0)) yeast. Because histone acetylation is highly sensitive to acetyl-coenzyme A (acetyl-CoA) availability, we sought interventions that suppress this ρ(0) phenotype through reprogramming metabolism. Nutritional intervention studies led to the discovery that genetic coactivation of the mitochondrion-to-nucleus retrograde (RTG) response and the AMPK (Snf1) pathway prevents abnormal histone deacetylation in ρ(0) cells. Metabolic profiling of signaling mutants uncovered links between chromatin-dependent phenotypes of ρ(0) cells and metabolism of ATP, acetyl-CoA, glutathione, branched-chain amino acids, and the storage carbohydrate trehalose. Importantly, RTG/AMPK activation reprograms energy metabolism to increase the supply of acetyl-CoA to lysine acetyltransferases and extend the chronological lifespan of ρ(0) cells. Our results strengthen the framework for rational design of nutrient supplementation schemes and drug-discovery initiatives aimed at mimicking the therapeutic benefits of dietary interventions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Lewis, Amanda L; Cao, Hongzhi; Patel, Silpa K; Diaz, Sandra; Ryan, Wesley; Carlin, Aaron F; Thon, Vireak; Lewis, Warren G; Varki, Ajit; Chen, Xi; Nizet, Victor
2007-09-21
Group B Streptococcus (GBS) is a common cause of neonatal sepsis and meningitis. A major GBS virulence determinant is its sialic acid (Sia)-capped capsular polysaccharide. Recently, we discovered the presence and genetic basis of capsular Sia O-acetylation in GBS. We now characterize a GBS Sia O-acetylesterase that modulates the degree of GBS surface O-acetylation. The GBS Sia O-acetylesterase operates cooperatively with the GBS CMP-Sia synthetase, both part of a single polypeptide encoded by the neuA gene. NeuA de-O-acetylation of free 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac(2)) was enhanced by CTP and Mg(2+), the substrate and co-factor, respectively, of the N-terminal GBS CMP-Sia synthetase domain. In contrast, the homologous bifunctional NeuA esterase from Escherichia coli K1 did not display cofactor dependence. Further analyses showed that in vitro, GBS NeuA can operate via two alternate enzymatic pathways: de-O-acetylation of Neu5,9Ac(2) followed by CMP activation of Neu5Ac or activation of Neu5,9Ac(2) followed by de-O-acetylation of CMP-Neu5,9Ac(2). Consistent with in vitro esterase assays, genetic deletion of GBS neuA led to accumulation of intracellular O-acetylated Sias, and overexpression of GBS NeuA reduced O-acetylation of Sias on the bacterial surface. Site-directed mutagenesis of conserved asparagine residue 301 abolished esterase activity but preserved CMP-Sia synthetase activity, as evidenced by hyper-O-acetylation of capsular polysaccharide Sias on GBS expressing only the N301A NeuA allele. These studies demonstrate a novel mechanism regulating the extent of capsular Sia O-acetylation in intact bacteria and provide a genetic strategy for manipulating GBS O-acetylation in order to explore the role of this modification in GBS pathogenesis and immunogenicity.
Sappey-Marinier, Dominique; Chileuitt, Laureano; Weiner, Michael W.; Faden, Alan I.; Weinstein, Philip R.
2009-01-01
Sequential 31P and 1H MRS was used to measure cerebral phosphate metabolites, intracellular pH, and lactate in normoglycemic and hypoglycemic rats during 30 min of complete cerebral ischemia and 5.5 h of reperfusion. These results were correlated with brain levels of free fatty acids (FFAs), excitatory amino acids, cations, and water content at death. The lactate/N-acetyl aspartate ratio was not significantly different between groups before or during occlusion. During reperfusion, the ratio was higher in normoglycemic rats from 3 to 85 min (p≤ 0.05), and recovery time was faster in hypoglycemic rats (29 vs 45 min; p = 0.04), suggesting reduced lactate production and faster recovery of aerobic metabolism. During occlusion, significant but comparable decrease of intracellular pH occurred in each group. Intracellular pH was higher in hypoglycemic rats at 140 min and 260 min of reperfusion. Water content, Na and K+ concentrations, and FFA and excitatory amino acid levels were not significantly different between groups, but hypoglycemic rats had less depletion of levels of Mg2+ (p=0.011). These results show that hypoglycemia has a limited but potentially beneficial effect on postischemic lactic acidosis. PMID:8771092
Li, Tianqi; Sun, Shanshan; Zhang, Jinyue; Qu, Kai; Yang, Liu; Ma, Changlu; Jin, Xiangju; Zhu, Haibo; Wang, Yinghong
2018-06-21
ABSTRACT:Hyperlipidemia is one of the main causes of obesity, type 2 diabetes mellitus (T2DM) and atherosclerosis. The adenosine derivative, 2', 3', 5'-tri-acetyl-N6-(3-hydroxylaniline) adenosine (IMM-H007) is an effective lipid-lowering compound that has important implications for the development of lipid-lowering drugs. Metabolomic analysis based on 1H-NMR was used to monitor dynamic changes in diverse biological media including serum, liver, urine, and feces in response to high-fat diet (HFD) and IMM-H007 treatments. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography (GC) analyses were performed to quantify the bile acids and fatty acids in the liver and feces. Fecal microbiome profiling was performed using Illumina sequencing of the 16S ribosomal RNA (16S rRNA) gene. IMM-H007 improved the metabolism of carbohydrate, ketone bodies, fatty acids, amino acids and bile acids in hyperlipidemic hamsters. The correlation between metabolite changes was explored in different biological media. Significant changes in gut microbiota were observed in the HFD and IMM-H007 treatment groups. In the HFD group at the phylum level, we found high levels of the Firmicutes genus and low levels of Bacteroidetes. In contrast, the administration of IMM-H007 reversed the levels of Firmicutes and Bacteroidetes. This reversal suggested that IMM-H007 may have the ability to regulate the composition of the gut flora. We also analyzed the correlation between the gut flora and the metabolites. Our results indicate that IMM-H007 treatment improves the hyperlipidemic metabolism and the structure of the gut microbiota in hyperlipidemic hamsters.
Investigation of Isovaline Enantiomeric Excesses and Other C5 Amino Acids in Carbonaceous Meteorites
NASA Technical Reports Server (NTRS)
Dworkin, Jason P.; Glavin, Daniel P.
2009-01-01
The origin of biological homochirality is one of the most perplexing puzzles to understanding the emergence of life on Earth. While many models have been proposed, the only reported non-biologically generated. compounds that show a significant enantiomeric excess are a few amino acids in the CM2 Murchison and Murray meteorites (e.g. Pizzarello and Cronin 2000; Pizzarello et al, 2008). Of these isovaline (alpha-ethyl-alanine) is of particular interest since it is typically abundant in CM2 meteorites, is exceedingly rare in biology, and due to its chemical structure is likely to maintain its primordial D/L ratio. Instead of the gas chromatography-mass spectrometry (GC-MS) technique employed by Pizzarello et al., we have used liquid chromatography-fluorescence detection/time of flight-mass spectrometry (LC-FD/ToF-MS) to study the enantiomeric ratio of isovaline in the CM2 meteorites Murchison and LEW90500 and the CR2 QUE99177. We have placed particular emphasis on understanding the suite of C5 amino acids in these meteorites. In doing so, we have determined that D and L 3-aminopentanoic acid co-elutes with Lisovaline and L-valine under common chromatographic conditions (Glavin and Dworkin 2006) for omicron-phthaldialdehyde/N-acetyl-L-cysteine (OPA/NAC). We have devised a method to separate these compounds and we will report the actual D/ L ratios of isovaline in these meteorites and how they compare to the GC-MS measurements of Pizzarello and co-workers.
The cDNA-derived amino acid sequence of hemoglobin II from Lucina pectinata.
Torres-Mercado, Elineth; Renta, Jessicca Y; Rodríguez, Yolanda; López-Garriga, Juan; Cadilla, Carmen L
2003-11-01
Hemoglobin II from the clam Lucina pectinata is an oxygen-reactive protein with a unique structural organization in the heme pocket involving residues Gln65 (E7), Tyr30 (B10), Phe44 (CD1), and Phe69 (E11). We employed the reverse transcriptase-polymerase chain reaction (RT-PCR) and methods to synthesize various cDNA(HbII). An initial 300-bp cDNA clone was amplified from total RNA by RT-PCR using degenerate oligonucleotides. Gene-specific primers derived from the HbII-partial cDNA sequence were used to obtain the 5' and 3' ends of the cDNA by RACE. The length of the HbII cDNA, estimated from overlapping clones, was approximately 2114 bases. Northern blot analysis revealed that the mRNA size of HbII agrees with the estimated size using cDNA data. The coding region of the full-length HbII cDNA codes for 151 amino acids. The calculated molecular weight of HbII, including the heme group and acetylated N-terminal residue, is 17,654.07 Da.
Tang, Xin; Zan, Xinyi; Zhao, Lina; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda; Ratledge, Colin
2016-02-11
The oleaginous fungus, Mucor circinelloides, is attracting considerable interest as it produces oil rich in γ-linolenic acid. Nitrogen (N) deficiency is a common strategy to trigger the lipid accumulation in oleaginous microorganisms. Although a simple pathway from N depletion in the medium to lipid accumulation has been elucidated at the enzymatic level, global changes at protein levels upon N depletion have not been investigated. In this study, we have systematically analyzed the changes at the levels of protein expression in M. circinelloides WJ11, a high lipid-producing strain (36 %, lipid/cell dry weight), during lipid accumulation. Proteomic analysis demonstrated that N depletion increased the expression of glutamine synthetase, involved in ammonia assimilation, for the supply of cellular nitrogen but decreased the metabolism of amino acids. Upon N deficiency, many proteins (e.g., fructose-bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, enolase, pyruvate kinase) involved in glycolytic pathway were up-regulated while proteins involved in the tricarboxylic acid cycle (e.g., isocitrate dehydrogenase, succinyl-CoA ligase, succinate dehydrogenase, fumarate hydratase) were down-regulated, indicating this activity was retarded thereby leading to a greater flux of carbon into fatty acid biosynthesis. Moreover, glucose-6-phosphate dehydrogenase, transaldolase and transketolase, which participate in the pentose phosphate pathway, were up-regulated, leading to the increased production of NADPH, the reducing power for fatty acid biosynthesis. Furthermore, protein and nucleic acid metabolism were down-regulated and some proteins involved in energy metabolism, signal transduction, molecular chaperone and redox homeostasis were up-regulated upon N depletion, which may be the cellular response to the stress produced by the onset of N deficiency. N limitation increased those expressions of the proteins involved in ammonia assimilation but decreased that involved in the biosynthesis of amino acids. Upon N deprivation, the glycolytic pathway was up-regulated, while the activity of the tricarboxylic acid cycle was retarded, thus, leading more carbon flux to fatty acid biosynthesis. Moreover, the pentose phosphate pathway was up-regulated, then this would increase the production of NADPH. Together, coordinated regulation of central carbon metabolism upon N limitation, provides more carbon flux to acetyl-CoA and NADPH for fatty acid biosynthesis.
Hentchel, Kristy L.
2014-01-01
Protein and small-molecule acylation reactions are widespread in nature. Many of the enzymes catalyzing acylation reactions belong to the Gcn5-related N-acetyltransferase (GNAT; PF00583) family, named after the yeast Gcn5 protein. The genome of Salmonella enterica serovar Typhimurium LT2 encodes 26 GNATs, 11 of which have no known physiological role. Here, we provide in vivo and in vitro evidence for the role of the MddA (methionine derivative detoxifier; formerly YncA) GNAT in the detoxification of oxidized forms of methionine, including methionine sulfoximine (MSX) and methionine sulfone (MSO). MSX and MSO inhibited the growth of an S. enterica ΔmddA strain unless glutamine or methionine was present in the medium. We used an in vitro spectrophotometric assay and mass spectrometry to show that MddA acetylated MSX and MSO. An mddA+ strain displayed biphasic growth kinetics in the presence of MSX and glutamine. Deletion of two amino acid transporters (GlnHPQ and MetNIQ) in a ΔmddA strain restored growth in the presence of MSX. Notably, MSO was transported by GlnHPQ but not by MetNIQ. In summary, MddA is the mechanism used by S. enterica to respond to oxidized forms of methionine, which MddA detoxifies by acetyl coenzyme A-dependent acetylation. PMID:25368301
Broussard, Tyler C.; Pakhomova, Svetlana; Neau, David B.; Bonnot, Ross; Waldrop, Grover L.
2015-01-01
Acetyl-CoA carboxylase catalyzes the first and regulated step in fatty acid synthesis. In most Gram-negative and Gram-positive bacteria, the enzyme is composed of three proteins: biotin carboxylase, a biotin carboxyl carrier protein (BCCP), and carboxyltransferase. The reaction mechanism involves two half-reactions with biotin carboxylase catalyzing the ATP-dependent carboxylation of biotin-BCCP in the first reaction. In the second reaction, carboxyltransferase catalyzes the transfer of the carboxyl group from biotin-BCCP to acetyl-CoA to form malonyl-CoA. In this report, high-resolution crystal structures of biotin carboxylase from Haemophilus influenzae were determined with bicarbonate, the ATP analogue AMPPCP; the carboxyphosphate intermediate analogues, phosphonoacetamide and phosphonoformate; the products ADP and phosphate; and the carboxybiotin analogue N1′-methoxycarbonyl biotin methyl ester. The structures have a common theme in that bicarbonate, phosphate, and the methyl ester of the carboxyl group of N1′-methoxycarbonyl biotin methyl ester all bound in the same pocket in the active site of biotin carboxylase and as such utilize the same set of amino acids for binding. This finding suggests a catalytic mechanism for biotin carboxylase in which the binding pocket that binds tetrahedral phosphate also accommodates and stabilizes a tetrahedral dianionic transition state resulting from direct transfer of CO2 from the carboxyphosphate intermediate to biotin. PMID:26020841
Dad, Rubina; Malik, Uzma; Javed, Aneela; Minassian, Berge A; Hassan, Muhammad Jawad
2017-08-30
Beta-1,4-N-acetyl galactosaminyltransferase 1, B4GALNT1, is a GM2/GD2 synthase, involved in the expression of glycosphingolipids (GSLs) containing sialic acid. Mutations in the gene B4GALNT1 cause Hereditary Spastic Paraplegia 26 (HSP26). In present study we have made attempt to predict the potential structural of the human B4GALNT1 protein. The results illustrated that the amino acid sequences of B4GALNT1 are not 100% conserved among selected twenty species. One signal peptide and one transmembrane domain predicted in human wild type B4GALNT1 protein with aliphatic index of 92.76 and theoretical (iso-electric point) pI of 8.93. It was a kind of unstable protein with Grand average of hydropathicity (GRAVY) of -0.127. Various post-translational modifications were also predicted to exist in B4GALNT1 and predicted to interact with different proteins including ST8SIA5, SLC33A1, GLB1 and others. In the final round, reported missense mutations have shown the further decrease in stability of the protein. This in-silico analysis of B4GALNT1 protein will provide the basis for the further studies on structural variations and biological pathways involving B4GALNT1 in the HSP26. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Jason W.; Coussens, Nathan P.; Allen, Simon
Nontypeable Haemophilus influenzae is an opportunistic human pathogen causing otitis media in children and chronic bronchitis and pneumonia in patients with chronic obstructive pulmonary disease. The outer membrane of nontypeable H. influenzae is dominated by lipooligosaccharides (LOS), many of which incorporate sialic acid as a terminal nonreducing sugar. Sialic acid has been demonstrated to be an important factor in the survival of the bacteria within the host environment. H. influenzae is incapable of synthesizing sialic acid and is dependent on scavenging free sialic acid from the host environment. To achieve this, H. influenzae utilizes a tripartite ATP-independent periplasmic transporter. Inmore » this study, we characterize the binding site of the extracytoplasmic solute receptor (SiaP) from nontypeable H. influenzae strain 2019. A crystal structure of N-acetyl-5-neuraminic acid (Neu5Ac)-bound SiaP was determined to 1.4 {angstrom} resolution. Thermodynamic characterization of Neu5Ac binding shows this interaction is enthalpically driven with a substantial unfavorable contribution from entropy. This is expected because the binding of SiaP to Neu5Ac is mediated by numerous hydrogen bonds and has several buried water molecules. Point mutations targeting specific amino acids were introduced in the putative binding site. Complementation with the mutated siaP constructs resulted either in full, partial, or no complementation, depending on the role of specific residues. Mass spectrometry analysis of the O-deacylated LOS of the R127K point mutation confirmed the observation of reduced incorporation of Neu5Ac into the LOS. The decreased ability of H. influenzae to import sialic acid had negative effects on resistance to complement-mediated killing and viability of biofilms in vitro, confirming the importance of sialic acid transport to the bacterium.« less
Control of seizures by ketogenic diet-induced modulation of metabolic pathways.
Clanton, Ryan M; Wu, Guoyao; Akabani, Gamal; Aramayo, Rodolfo
2017-01-01
Epilepsy is too complex to be considered as a disease; it is more of a syndrome, characterized by seizures, which can be caused by a diverse array of afflictions. As such, drug interventions that target a single biological pathway will only help the specific individuals where that drug's mechanism of action is relevant to their disorder. Most likely, this will not alleviate all forms of epilepsy nor the potential biological pathways causing the seizures, such as glucose/amino acid transport, mitochondrial dysfunction, or neuronal myelination. Considering our current inability to test every individual effectively for the true causes of their epilepsy and the alarming number of misdiagnoses observed, we propose the use of the ketogenic diet (KD) as an effective and efficient preliminary/long-term treatment. The KD mimics fasting by altering substrate metabolism from carbohydrates to fatty acids and ketone bodies (KBs). Here, we underscore the need to understand the underlying cellular mechanisms governing the KD's modulation of various forms of epilepsy and how a diverse array of metabolites including soluble fibers, specific fatty acids, and functional amino acids (e.g., leucine, D-serine, glycine, arginine metabolites, and N-acetyl-cysteine) may potentially enhance the KD's ability to treat and reverse, not mask, these neurological disorders that lead to epilepsy.
Synthesis and Anti-microbial Activity of Novel Phosphatidylethanolamine-N-amino Acid Derivatives.
Vijeetha, Tadla; Balakrishna, Marrapu; Karuna, Mallampalli Sri Lakshmi; Surya Koppeswara Rao, Bhamidipati Venkata; Prasad, Rachapudi Badari Narayana; Kumar, Koochana Pranay; Surya Narayana Murthy, Upadyaula
2015-01-01
The study involved synthesis of five novel amino acid derivatives of phosphatidylethanolamine isolated from egg yolk lecithin employing a three step procedure i) N-protection of L-amino acids with BOC anhydride in alkaline medium ii) condensation of - CO2H group of N-protected amino acid with free -NH2 of PE by a peptide linkage and iii) deprotection of N-protected group of amino acids to obtain phosphatidylethanolamine-N-amino acid derivatives in 60-75% yield. The five L-amino acids used were L glycine, L-valine, L-leucine, L-isoleucine and L-phenylalanine. The amino acid derivatives were screened for anti-baterial activity against B. subtilis, S. aureus, P. aeroginosa and E. coli taking Streptomycin as reference compound and anti-fungal activity against C. albicans, S. cervisiae, A. niger taking AmphotericinB as reference compound. All the amino acid derivatives exhibited extraordinary anti-bacterial activities about 3 folds or comparable to Streptomycin and moderate or no anti-fungal activity against Amphotericin-B.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Wan Seok; Nam, Mi Sun; Namgung, Byeol
2015-03-20
Campylobacter jejuni is a bacterium that uses flagella for motility and causes worldwide acute gastroenteritis in humans. The C. jejuni N-acetyltransferase PseH (cjPseH) is responsible for the third step in flagellin O-linked glycosylation and plays a key role in flagellar formation and motility. cjPseH transfers an acetyl group from an acetyl donor, acetyl coenzyme A (AcCoA), to the amino group of UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine to produce UDP-2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranose. To elucidate the catalytic mechanism of cjPseH, crystal structures of cjPseH alone and in complex with AcCoA were determined at 1.95 Å resolution. cjPseH folds into a single-domain structure of a central β-sheet decorated by four α-helicesmore » with two continuously connected grooves. A deep groove (groove-A) accommodates the AcCoA molecule. Interestingly, the acetyl end of AcCoA points toward an open space in a neighboring shallow groove (groove-S), which is occupied by extra electron density that potentially serves as a pseudosubstrate, suggesting that the groove-S may provide a substrate-binding site. Structure-based comparative analysis suggests that cjPseH utilizes a unique catalytic mechanism of acetylation that has not been observed in other glycosylation-associated acetyltransferases. Thus, our studies on cjPseH will provide valuable information for the design of new antibiotics to treat C. jejuni-induced gastroenteritis. - Highlights: • cjPseH adopts a single-domain structure of a central β-sheet decorated by α-helices. • cjPseH features two continuously connected grooves on the protein surface. • Acetyl coenzyme A (AcCoA) binds into a deep groove of cjPseH in an ‘L’ shape. • The acetyl end of AcCoA points to a wide groove, a potential substrate-binding site.« less
Corral, Sara; Leitner, Erich; Siegmund, Barbara; Flores, Mónica
2016-01-01
The identification of odor-active sulfur and nitrogen compounds formed during the processing of dry fermented sausages was the objective of this study. In order to elucidate their possible origin, free amino acids (FAAs) were also determined. The volatile compounds present in the dry sausages were extracted using solvent assisted flavor evaporation (SAFE) and monitored by one and two-dimensional gas chromatography with different detectors: mass spectrometry (MS), nitrogen phosphorous (NPD), flame photometric (FPD) detectors, as well as gas chromatography-olfactometry. A total of seventeen sulfur and nitrogen compounds were identified and quantified. Among them, 2-acetyl-1-pyrroline was the most potent odor active compound, followed by methional, ethylpyrazine and 2,3-dihydrothiophene characterized by toasted, cooked potato, and nutty notes. The degradation of FAAs, generated during processing, was related to the production of aroma compounds, such as methionine forming methional and benzothiazole while ornithine was the precursor compound for 2-acetyl-1-pyrroline and glycine for ethylpyrazine. Copyright © 2015 Elsevier Ltd. All rights reserved.
Polyspecific pyrrolysyl-tRNA synthetases from directed evolution
Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M.; Wong, Margaret; Kiessling, Laura L.; Steitz, Thomas A.; O’Donoghue, Patrick; Söll, Dieter
2014-01-01
Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNAPyl have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate Nε-acetyl-Lys (AcK) onto tRNAPyl. Here, we examine an Nε-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids. PMID:25385624
Garg, Bhawan Deep; Kabra, Nandkishor S
2018-09-01
Necrotizing enterocolitis (NEC) is one of the most common acute and fatal gastrointestinal emergency in very low birth weight (VLBW) preterm neonates with mortality range from 15 to 30%. NEC is likely due to multifactorial process such as oxidative injury, ischemic necrosis, and over-reactive inflammatory response to intestinal microbes. To evaluate the role of amino acid supplementation for reduction of neonatal NEC in preterm neonates. The literature search was done for various randomized control trial (RCT) by searching the Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, EMBASE, Web of Science, Scopus, Index Copernicus, African Index Medicus (AIM), Thomson Reuters (ESCI), Chemical Abstracts Service (CAS) and other database. This review included 15 RCTs that fulfilled inclusion criteria. The total neonates enrolled in these different RCT are 3424 (amino acid group 1711 and control 1713). Almost all participating neonates were of VLBW or extremely low birth weight (ELBW). In two trials, birth weight was between 1500-2000 grams. The intervention was started within first few days after birth and continued up to 30th day of postnatal age in most of the trials. In two trials, intervention was continued up to 120th day of postnatal age. Arginine, glutamine and N-acetyl cysteine (NAC) were used at the dose of 1.5 mol/kg/day (261 mg/kg/day), 0.3 grams/kg/day and 16-32 mg/kg/day, respectively. Role of amino acid in the prevention of neonatal NEC is not exclusively supported by the current evidence. Only three studies were able to show reduction in the incidence of NEC with amino acid supplementation (arginine, glutamine), and the remaining studies did not report any positive effect. Amino acid supplementation was not associated with significant reduction in mortality due to any causes. However, arginine supplementation was associated with significant reduction in mortality due to NEC. Two studies on glutamine were reported significant reduction in the incidence of invasive infection. Only one study reported significant positive effects on growth parameters and less time to reach full enteral feeds. None of the studies showed any effect on the duration of hospital stay.
Cioci, Gianluca; Mitchell, Edward P; Chazalet, Valerie; Debray, Henri; Oscarson, Stefan; Lahmann, Martina; Gautier, Catherine; Breton, Christelle; Perez, Serge; Imberty, Anne
2006-04-14
The lectin from the mushroom Psathyrella velutina recognises specifically N-acetylglucosamine and N-acetylneuraminic acid containing glycans. The crystal structure of the 401 amino acid residue lectin shows that it adopts a very regular seven-bladed beta-propeller fold with the N-terminal region tucked into the central cavity around the pseudo 7-fold axis. In the complex with N-acetylglucosamine, six monosaccharides are bound in pockets located between two consecutive propeller blades. Due to the repeats shown by the sequence the binding sites are very similar. Five hydrogen bonds between the protein and the sugar hydroxyl and N-acetyl groups stabilize the complex, together with the hydrophobic interactions with a conserved tyrosine and histidine. The complex with N-acetylneuraminic acid shows molecular mimicry with the same hydrogen bond network, but with different orientations of the carbohydrate ring in the binding site. The beta-hairpin loops connecting the two inner beta-strands of each blade are metal binding sites and two to three calcium ions were located in the structure. The multispecificity and high multivalency of this mushroom lectin, combined with its similarity to the extracellular domain of an important class of cell adhesion molecules, integrins, are another example of the outstanding success of beta-propeller structures as molecular binding machines in nature.
Glawischnig, E; Gierl, A; Tomas, A; Bacher, A; Eisenreich, W
2001-03-01
Information on metabolic networks could provide the basis for the design of targets for metabolic engineering. To study metabolic flux in cereals, developing maize (Zea mays) kernels were grown in sterile culture on medium containing [U-(13)C(6)]glucose or [1,2-(13)C(2)]acetate. After growth, amino acids, lipids, and sitosterol were isolated from kernels as well as from the cobs, and their (13)C isotopomer compositions were determined by quantitative nuclear magnetic resonance spectroscopy. The highly specific labeling patterns were used to analyze the metabolic pathways leading to amino acids and the triterpene on a quantitative basis. The data show that serine is generated from phosphoglycerate, as well as from glycine. Lysine is formed entirely via the diaminopimelate pathway and sitosterol is synthesized entirely via the mevalonate route. The labeling data of amino acids and sitosterol were used to reconstruct the labeling patterns of key metabolic intermediates (e.g. acetyl-coenzyme A, pyruvate, phosphoenolpyruvate, erythrose 4-phosphate, and Rib 5-phosphate) that revealed quantitative information about carbon flux in the intermediary metabolism of developing maize kernels. Exogenous acetate served as an efficient precursor of sitosterol, as well as of amino acids of the aspartate and glutamate family; in comparison, metabolites formed in the plastidic compartments showed low acetate incorporation.
Porphyrin amino acids-amide coupling, redox and photophysical properties of bis(porphyrin) amides.
Melomedov, Jascha; Wünsche von Leupoldt, Anica; Meister, Michael; Laquai, Frédéric; Heinze, Katja
2013-07-14
New trans-AB2C meso-substituted porphyrin amino acid esters with meso-substituents of tunable electron withdrawing power (B = mesityl, 4-C6H4F, 4-C6H4CF3, C6F5) were prepared as free amines 3a-3d, as N-acetylated derivatives Ac-3a-Ac-3d and corresponding zinc(II) complexes Zn-Ac-3a-Zn-Ac-3d. Several amide-linked bis(porphyrins) with a tunable electron density at each porphyrin site were obtained from the amino porphyrin precursors by condensation reactions (4a-4d) and mono- and bis(zinc(II)) complexes Zn(2)-4d and Zn(1)Zn(2)-4d were prepared. The electronic interaction between individual porphyrin units in bis(porphyrins) 4 is probed by electrochemical experiments (CV, EPR), electronic absorption spectroscopy, steady-state and time-resolved fluorescence spectroscopy in combination with DFT/PCM calculations on diamagnetic neutral bis(porphyrins) 4 and on respective charged mixed-valent radicals 4(+/-). The interaction via the -C6H4-NHCO-C6H4- bridge, the site of oxidation and reduction and the lowest excited singlet state S1, is tuned by the substituents on the individual porphyrins and the metalation state.
He, Dongli; Wang, Qiong; Li, Ming; Damaris, Rebecca Njeri; Yi, Xingling; Cheng, Zhongyi; Yang, Pingfang
2016-03-04
Regulation of rice seed germination has been shown to mainly occur at post-transcriptional levels, of which the changes on proteome status is a major one. Lysine acetylation and succinylation are two prevalent protein post-translational modifications (PTMs) involved in multiple biological processes, especially for metabolism regulation. To investigate the potential mechanism controlling metabolism regulation in rice seed germination, we performed the lysine acetylation and succinylation analyses simultaneously. Using high-accuracy nano-LC-MS/MS in combination with the enrichment of lysine acetylated or succinylated peptides from digested embryonic proteins of 24 h after imbibition (HAI) rice seed, a total of 699 acetylated sites from 389 proteins and 665 succinylated sites from 261 proteins were identified. Among these modified lysine sites, 133 sites on 78 proteins were commonly modified by two PTMs. The overlapped PTM sites were more likely to be in polar acidic/basic amino acid regions and exposed on the protein surface. Both of the acetylated and succinylated proteins cover nearly all aspects of cellular functions. Ribosome complex and glycolysis/gluconeogenesis-related proteins were significantly enriched in both acetylated and succinylated protein profiles through KEGG enrichment and protein-protein interaction network analyses. The acetyl-CoA and succinyl-CoA metabolism-related enzymes were found to be extensively modified by both modifications, implying the functional interaction between the two PTMs. This study provides a rich resource to examine the modulation of the two PTMs on the metabolism pathway and other biological processes in germinating rice seed.
Phenanthridine synthesis through iron-catalyzed intramolecular N-arylation of O-acetyl oxime.
Deb, Indubhusan; Yoshikai, Naohiko
2013-08-16
O-Acetyl oximes derived from 2'-arylacetophenones undergo N-O bond cleavage/intramolecular N-arylation in the presence of a catalytic amount of iron(III) acetylacetonate in acetic acid. In combination with the conventional cross-coupling or directed C-H arylation, the reaction offers a convenient route to substituted phenanthridines.
Otsubo, N; Ishida, H; Kiso, M
2001-01-15
Novel ganglioside GM4 analogues, which contain N-deacetylated or lactamized sialic acid instead of usual N-acetylneuraminic acid, were synthesized in a highly efficient manner. (Methyl 4,7,8,9-tetra-O-acetyl-3,5-dideoxy-5-trifluoroacetamido-D-glycero-alpha-D-galacto-2-nonulopyranosylonate)-(2-->3)-4,6-di-O-acetyl-2-O-benzoyl-D-galactopyranosyl trichloroacetimidate was coupled with 2-(tetradecyl)hexadecanol to give the desired beta-glycoside in high yield. Successive O- and N-deacylation, and saponification of the methyl ester group afforded the N-deacetylated sialyl derivative that was converted by treatment with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride in Me2SO into the lactamized sialic acid-containing ganglioside GM4 analogue.
Paslakis, Georgios; Träber, Frank; Roberz, Jens; Block, Wolfgang; Jessen, Frank
2014-10-01
The amino-acid N-acetyl-aspartate (NAA) is located in neurons and the concentration of NAA correlates with neuronal mitochondrial function. The signal of NAA, as measured with proton magnetic resonance spectroscopy (1H-MRS), is considered to reflect both, neuronal density and integrity of neuronal mitochondria. A reduction of the NAA concentrations has been found in several psychiatric disorders. Newer studies report reversal of decreased NAA concentration with treatment. The objective of this review is to summarize the literature on NAA changes in association with psychopharmacological treatment in psychiatric disorders (affective disorders, obsessive-compulsive disorder, schizophrenia and dementia). The majority of studies identified increased NAA concentrations in response to treatment, while a smaller number of studies did not find this effect. The NAA increase seems to be neither specific for a certain disorder nor for a specific intervention. This suggests that the reduction of NAA may represent an altered functional (metabolic) state of neurons common to different psychiatric disorders and the increase after treatment to indicate functional restoration as one general effect of interventions. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.
Gardères, Johan; Domart-Coulon, Isabelle; Marie, Arul; Hamer, Bojan; Batel, Renato; Müller, Werner E G; Bourguet-Kondracki, Marie-Lise
2016-10-01
Carbohydrate-binding proteins were purified from the marine calcareous sponge Clathrina clathrus via affinity chromatography on lactose and N-acetyl glucosamine-agarose resins. Proteomic analysis of acrylamide gel separated protein subunits obtained in reducing conditions pointed out several candidates for lectins. Based on amino-acid sequence similarity, two peptides displayed homology with the jack bean lectin Concanavalin A, including a conserved domain shared by proteins in the L-type lectin superfamily. An N-acetyl glucosamine - binding protein complex, named clathrilectin, was further purified via gel filtration chromatography, bioguided with a diagnostic rabbit erythrocyte haemagglutination assay, and its activity was found to be calcium dependent. Clathrilectin, a protein complex of 3200kDa estimated by gel filtration, is composed of monomers with apparent molecular masses of 208 and 180kDa estimated on 10% SDS-PAGE. Nine internal peptides were identified using proteomic analyses, and compared to protein libraries from the demosponge Amphimedon queenslandica and a calcareous sponge Sycon sp. from the Adriatic Sea. The clathrilectin is the first lectin isolated from a calcareous sponge and displays homologies with predicted sponge proteins potentially involved in cell aggregation and interaction with bacteria. Copyright © 2016 Elsevier Inc. All rights reserved.
Kurita, Keisuke; Matsumura, Yuriko; Takahara, Hiroki; Hatta, Kiyoshige; Shimojoh, Manabu
2011-06-13
N-Acetyl-d-glucosamine branches were incorporated at the C-6 position of curdlan, a linear β-1,3-d-glucan, and the resulting nonnatural branched polysaccharides were evaluated in terms of the immunomodulation activities in comparison with lentinan, a β-1,3-d-glucan having d-glucose branches at C-6. To incorporate the amino sugar branches, we conducted a series of regioselective protection-deprotections of curdlan involving triphenylmethylation at C-6, phenylcarbamoylation at C-2 and C-4, and detriphenylmethylation. Subsequent glycosylation with a d-glucosamine-derived oxazoline, followed by deprotection gave rise to the branched curdlans with various substitution degrees. The products exhibited remarkable solubility in both organic solvents and water. Their immunomodulation activities were determined using mouse macrophagelike cells, and the secretions of both the tumor necrosis factor and nitric oxide proved to be significantly higher than those with lentinan. These results conclude that the amino sugar/curdlan hybrid materials are promising as a new type of polysaccharide immunoadjuvants useful for cancer chemotherapy.
DeRuiter, J; Mayfield, C A
1990-11-15
A series of substituted N-[[(4-benzoylamino)phenyl]sulfonyl]amino acids (BAPS-amino acids) were synthesized by established methods, and the stereochemistry of the products was confirmed by HPLC analysis after chiral derivatization. When tested against aldose reductase (alditol:NADP+ oxidoreductase; EC 1.1.1.21; ALR2) isolated from rat lens, all of the BAPS-amino acids were determined to be significantly more inhibitory than the corresponding N-(phenylsulfonyl)amino acids. Structure-inhibition and enzyme kinetic analyses suggest that the BAPS-amino acids inhibit ALR2 by a mechanism similar to the N-(phenylsulfonyl)amino acids. However, multiple inhibition analyses indicate that the increased inhibitory activity of the BAPS-amino acids is a result of interaction with multiple sites present on ALR2. Enzyme specificity studies with several of the BAPS-amino acids demonstrated that these compounds do not produce significant inhibition of other nucleotide-requiring enzymes including aldehyde reductase (alcohol: NADP+ oxidoreductase; EC 1.1.1.2; ALR1).
Nakamura, Hidehiro; Kawamata, Yasuko; Kuwahara, Tomomi; Sakai, Ryosei
2017-08-01
Background: Although previous growth studies in rodents have indicated the importance of dietary nonessential amino acids (NEAAs) as nitrogen sources, individual NEAAs have different growth-promoting activities. This phenomenon might be attributable to differences in the nitrogen metabolism of individual NEAAs. Objective: The aim of this study was to compare nitrogen metabolism across dietary NEAAs with the use of their 15 N isotopologues. Methods: Male Fischer rats (8 wk old) were given 1.0 g amino acid-defined diets containing either 15 N-labeled glutamate, glutamine (amino or amide), aspartate, alanine, proline, glycine, or serine hourly for 5-6 h. Then, steady-state amino acid concentrations and their 15 N enrichments in the gut and in portal and arterial plasma were measured by an amino acid analyzer and LC tandem mass spectrometry, respectively. Results: The intestinal 15 N distribution and portal-arterial balance of 15 N metabolites indicated that most dietary glutamate nitrogen (>90% of dietary input) was incorporated into various amino acids, including alanine, proline, and citrulline, in the gut. Dietary aspartate nitrogen, alanine nitrogen, and amino nitrogen of glutamine were distributed similarly to other amino acids both in the gut and in the circulation. In contrast, incorporation of the nitrogen moieties of dietary proline, serine, and glycine into other amino acids was less than that of other NEAAs, although interconversion between serine and glycine was very active. Cluster analysis of 15 N enrichment data also indicated that dietary glutamate nitrogen, aspartate nitrogen, alanine nitrogen, and the amino nitrogen of glutamine were distributed similarly to intestinal and circulating amino acids. Further, the analysis revealed close relations between intestinal and arterial 15 N enrichment for each amino acid. The steady-state 15 N enrichment of arterial amino acids indicated that substantial amounts of circulating amino acid nitrogen are derived from dietary NEAAs. Conclusions: The present results revealed similarities and differences among NEAAs in terms of their intestinal nitrogen metabolism in rats and indicated substantial entry of dietary NEAA nitrogen into circulating amino acid nitrogen, presumably primarily through metabolism in the gut. © 2017 American Society for Nutrition.
Zhang, Zhiguo; Li, Junlong; Zhang, Guisheng; Ma, Nana; Liu, Qingfeng; Liu, Tongxin
2015-07-02
An efficient and convenient iron-catalyzed protocol has been developed for the synthesis of substituted pyrrolo[1,2-a]quinoxalines from 1-(N-arylpyrrol-2-yl)ethanone O-acetyl oximes through N-O bond cleavage and intramolecular directed C-H arylation reactions in acetic acid.
Extraterrestrial material analysis: loss of amino acids during liquid-phase acid hydrolysis
NASA Astrophysics Data System (ADS)
Buch, Arnaud; Brault, Amaury; Szopa, Cyril; Freissinet, Caroline
2015-04-01
Searching for building blocks of life in extraterrestrial material is a way to learn more about how life could have appeared on Earth. With this aim, liquid-phase acid hydrolysis has been used, since at least 1970 , in order to extract amino acids and other organic molecules from extraterrestrial materials (e.g. meteorites, lunar fines) or Earth analogues (e.g. Atacama desert soil). This procedure involves drastic conditions such as heating samples in 6N HCl for 24 h, either under inert atmosphere/vacuum, or air. Analysis of the hydrolyzed part of the sample should give its total (free plus bound) amino acid content. The present work deals with the influence of the 6N HCl hydrolysis on amino acid degradation. Our experiments have been performed on a standard solution of 17 amino acids. After liquid-phase acid hydrolysis (6N HCl) under argon atmosphere (24 h at 100°C), the liquid phase was evaporated and the dry residue was derivatized with N-Methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF), followed by gas chromatography-mass spectrometry analysis. After comparison with derivatized amino acids from the standard solution, a significant reduction of the chromatographic peak areas was observed for most of the amino acids after liquid-phase acid hydrolysis. Furthermore, the same loss pattern was observed when the amino acids were exposed to cold 6N HCl for a short amount of time. The least affected amino acid, i.e. glycine, was found to be 73,93% percent less abundant compared to the non-hydrolyzed standard, while the most affected, i.e. histidine, was not found in the chromatograms after hydrolysis. Our experiments thereby indicate that liquid-phase acid hydrolysis, even under inert atmosphere, leads to a partial or total loss of all of the 17 amino acids present in the standard solution, and that a quick cold contact with 6N HCl is sufficient to lead to a loss of amino acids. Therefore, in the literature, the reported increase of the total quantity of amino acids after acid hydrolysis, due to the formation/release of amino acids during the whole water extraction / liquid-phase acid hydrolysis, could have hidden a loss of amino acids. Thus, in extraterrestrial material studies involving liquid-phase acid hydrolysis, the quantities of total amino acids may have been underestimated.
Installing amino acids and peptides on N-heterocycles under visible-light assistance
Jin, Yunhe; Jiang, Min; Wang, Hui; Fu, Hua
2016-01-01
Readily available natural α-amino acids are one of nature’s most attractive and versatile building blocks in synthesis of natural products and biomolecules. Peptides and N-heterocycles exhibit various biological and pharmaceutical functions. Conjugation of amino acids or peptides with N-heterocycles provides boundless potentiality for screening and discovery of diverse biologically active molecules. However, it is a great challenge to install amino acids or peptides on N-heterocycles through formation of carbon-carbon bonds under mild conditions. In this article, eighteen N-protected α-amino acids and three peptides were well assembled on phenanthridine derivatives via couplings of N-protected α-amino acid and peptide active esters with substituted 2-isocyanobiphenyls at room temperature under visible-light assistance. Furthermore, N-Boc-proline residue was successfully conjugated with oxindole derivatives using similar procedures. The simple protocol, mild reaction conditions, fast reaction, and high efficiency of this method make it an important strategy for synthesis of diverse molecules containing amino acid and peptide fragments. PMID:26830014
Jian, Siyang; Li, Jianwei; Chen, Ji; ...
2016-07-08
Nitrogen (N) fertilization affects the rate of soil organic carbon (SOC) decomposition by regulating extracellular enzyme activities (EEA). Extracellular enzymes have not been represented in global biogeochemical models. Understanding the relationships among EEA and SOC, soil N (TN), and soil microbial biomass carbon (MBC) under N fertilization would enable modeling of the influence of EEA on SOC decomposition. Based on 65 published studies, we synthesized the activities of α-1,4-glucosidase (AG), β-1,4-glucosidase (BG), β-d-cellobiosidase (CBH), β-1,4-xylosidase (BX), β-1,4-N-acetyl-glucosaminidase (NAG), leucine amino peptidase (LAP), urease (UREA), acid phosphatase (AP), phenol oxidase (PHO), and peroxidase (PEO) in response to N fertilization. Here, themore » proxy variables for hydrolytic C acquisition enzymes (C-acq), N acquisition (N-acq), and oxidative decomposition (OX) were calculated as the sum of AG, BG, CBH and BX; AG and LAP; PHO and PEO, respectively.« less
Hawari, Jalal; Halasz, Annamaria; Beaudet, Sylvie; Paquet, Louise; Ampleman, Guy; Thiboutot, Sonia
1999-01-01
The biotransformation of 2,4,6-trinitrotoluene (TNT) (175 μM) by Phanerochaete chrysosporium with molasses and citric acid at pH 4.5 was studied. In less than 2 weeks, TNT disappeared completely, but mineralization (liberated 14CO2) did not exceed 1%. A time study revealed the presence of several intermediates, marked by the initial formation of two monohydroxylaminodinitrotoluenes (2- and 4-HADNT) followed by their successive transformation to several other products, including monoaminodinitrotoluenes (ADNT). A group of nine acylated intermediates were also detected. They included 2-N-acetylamido-4,6-dinitrotoluene and its p isomer, 2-formylamido-4,6-dinitrotoluene and its p isomer (as acylated ADNT), 4-N-acetylamino-2-amino-6-nitrotoluene and 4-N-formylamido-2-amino-6-nitrotoluene (as acetylated DANT), 4-N-acetylhydroxy-2,6-dinitrotoluene and 4-N-acetoxy-2,6-dinitrotoluene (as acetylated HADNT), and finally 4-N-acetylamido-2-hydroxylamino-6-nitrotoluene. Furthermore, a fraction of HADNTs were found to rearrange to their corresponding phenolamines (Bamberger rearrangement), while another group dimerized to azoxytoluenes which in turn transformed to azo compounds and eventually to the corresponding hydrazo derivatives. After 30 days, all of these metabolites, except traces of 4-ADNT and the hydrazo derivatives, disappeared, but mineralization did not exceed 10% even after the incubation period was increased to 120 days. The biotransformation of TNT was accompanied by the appearance of manganese peroxidase (MnP) and lignin-dependent peroxidase (LiP) activities. MnP activity was observed almost immediately after TNT disappearance, which was the period marked by the appearance of the initial metabolites (HADNT and ADNT), whereas the LiP activity was observed after 8 days of incubation, corresponding to the appearance of the acyl derivatives. Both MnP and LiP activities reached their maximum levels (100 and 10 U/liter, respectively) within 10 to 15 days after inoculation. PMID:10388692
Xian, Mingjie; Zhai, Lei; Zhong, Naiqin; Ma, Yiwei; Xue, Yanfen; Ma, Yanhe
2013-08-04
Acetyl-CoA carboxylase (ACC) catalyzes the first step of fatty acid synthesis. In most bacteria, ACC is composed of four subunits encoded by accA, accB, accC, and accD. Of them, accA encodes acetyl-CoA carboxyltransferase alpha-subunit. Our prior work on proteomics of Alkalimonas amylolytica N10 showed that the expression of the Aa-accA has a remarkable response to salt and alkali stress. This research aimed to find out the Aa-accA gene contributing to salt and alkali tolerance. The Aa-accA was amplified by PCR from A. amylolytica N10 and expressed in E. coli K12 host. The effects of Aa-accA expression on the growth of transgenic strains were examined under different NaCl concentration and pH conditions. Transgenic tobacco BY-2 cells harboring Aa-accA were also generated via Agrobacterium-mediated transformation. The viability of BY-2 cells was determined with FDA staining method after salt and alkali shock. The Aa-accA gene product has 318 amino acids and is homologous to the carboxyl transferase domain of acyl-CoA carboxylases. It showed 76% identity with AccA (acetyl-CoA carboxylase carboxyltransferase subunit alpha) from E. coli. Compared to the wild-type strains, transgenic E. coli K12 strain containing Aa-accA showed remarkable growth superiority when grown in increased NaCl concentrations and pH levels. The final cell density of the transgenic strains was 2.6 and 3.5 times higher than that of the control type when they were cultivated in LB medium containing 6% (W/V) NaCl and at pH 9, respectively. Complementary expression of Aa-accA in an accA-depletion E. coli can recover the tolerance of K12 delta accA to salt and alkali stresses to some extent. Similar to the transgenic E. coli, transgenic tobacco BY-2 cells showed higher percentages of viability compared to the wild BY-2 cells under the salt or alkali stress condition. We found that Aa-accA from A. amylolytica N10 overexpression enhances the tolerance of both transgenic E. coli and tobacco BY-2 cells to NaCl and alkali stresses.
N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action
Dean, Olivia; Giorlando, Frank; Berk, Michael
2011-01-01
There is an expanding field of research investigating the benefits of alternatives to current pharmacological therapies in psychiatry. N-acetylcysteine (NAC) is emerging as a useful agent in the treatment of psychiatric disorders. Like many therapies, the clinical origins of NAC are far removed from its current use in psychiatry. Whereas the mechanisms of NAC are only beginning to be understood, it is likely that NAC is exerting benefits beyond being a precursor to the antioxidant, glutathione, modulating glutamatergic, neurotropic and inflammatory pathways. This review outlines the current literature regarding the use of NAC in disorders including addiction, compulsive and grooming disorders, schizophrenia and bipolar disorder. N-acetylcysteine has shown promising results in populations with these disorders, including those in whom treatment efficacy has previously been limited. The therapeutic potential of this acetylated amino acid is beginning to emerge in the field of psychiatric research. PMID:21118657
Pizzitutti, Francesco; Giansanti, Andrea; Ballario, Paola; Ornaghi, Prisca; Torreri, Paola; Ciccotti, Giovanni; Filetici, Patrizia
2006-01-01
Biological experiments were combined with molecular dynamics simulations to understand the importance of amino acidic residues present in the bromodomain of the yeast histone acetyltransferase Gcn5p. It was found that residue Pro371 plays an important role in the molecular recognition of the acetylated histone H4 tail by Gcn5p bromodomain. Crystallographic analysis of the complex showed that this residue does not directly interact with the histone substrate. It has been demonstrated that a double mutation Pro371Thr and Met372Ala in the Gcn5p bromodomain impairs chromatin remodeling activity. It is demonstrated here that, in this double mutant and in the fully deleted bromodomain strain, there is lower growth under amino acid deprivation conditions. By in vitro surface plasmon resonance (Biacore) experiments it is shown that the binding affinity of the double mutation to acetyl lysine 16 histone H4 peptide decreases. Molecular dynamics simulations were used to explain this loss in acetyl lysine-Gcn5p bromodomain affinity, in the double mutant. By comparing nanosecond molecular dynamics trajectories of the native as well as the single and doubly mutated bromodomain, it is concluded that the presence of Pro371 is important to the functionality of the Gcn5p bromodomain. In the simulation a point mutation involving this highly conserved residue induced an increase in the flexibility of the ZA loop, which in turn modulated the exposure of the binding pocket to the acetyl lysine. The combined double mutations (Pro371Thr-Met372Ala) not only markedly perturb the motion of the ZA loop but also destabilize the entire structure of the bromodomain. Copyright 2005 John Wiley & Sons, Ltd.
Identification and analysis of o-acetylated sialoglycoproteins.
Mandal, Chandan; Mandal, Chitra
2013-01-01
5-N-acetylneuraminic acid, commonly known as sialic acid (Sia), constitutes a family of N- and O-substituted 9-carbon monosaccharides. Frequent modification of O-acetylations at positions C-7, C-8, or C-9 of Sias generates a family of O-acetylated sialic acid (O-AcSia) and plays crucial roles in many cellular events like cell-cell adhesion, proliferation, migration, etc. Therefore, identification and analysis of O-acetylated sialoglycoproteins (O-AcSGPs) are important. In this chapter, we describe several approaches for successful identification of O-AcSGPs. We broadly divide them into two categories, i.e., invasive and noninvasive methods. Several O-AcSias-binding probes are used for this purpose. Detailed methodologies for step-by-step identification using these probes have been discussed. We have also included a few invasive analytical methods for identification and quantitation of O-AcSias. Several indirect methods are also elaborated for such purpose, in which O-acetyl group from sialic acids is initially removed followed by detection of Sias by several approaches. For molecular identification, we have described methods for affinity purification of O-AcSGPs using an O-AcSias-binding lectin as an affinity matrix followed by sequencing using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF-TOF) mass spectroscopy (MS). In spite of special attention, loss of O-acetyl groups due to its sensitivity towards alkaline pH and high temperature along with migration of labile O-acetyl groups from C7-C8-C9 during sample preparation is difficult to avoid. Therefore there is always a risk for underestimation of O-AcSias.
Wang, Hualong; Lian, Kaoqi; Han, Bing; Wang, Yanyong; Kuo, Sheng-Han; Geng, Yuan; Qiang, Jing; Sun, Meiyu; Wang, Mingwei
2015-01-01
Alzheimer's disease (AD), the most common age-dependent neurodegenerative disorder, produces a progressive decline in cognitive function. The metabolic mechanism of AD has emerged in recent years. In this study, we used multivariate analyses of gas chromatography-mass spectrometry measurements to determine that learning and retention-related metabolic profiles are altered during aging in the hippocampus of the senescence-accelerated mouse prone 8 (SAMP8). Alterations in 17 metabolites were detected in mature and aged mice compared to young mice (13 decreased and 4 increased metabolites), including metabolites related to dysfunctional lipid metabolism (significantly increased cholesterol, oleic acid, and phosphoglyceride levels), decreased amino acid (alanine, serine, glycine, aspartic acid, glutamate, and gamma-aminobutyric acid), and energy-related metabolite levels (malic acid, butanedioic acid, fumaric acid, and citric acid), and other altered metabolites (increased N-acetyl-aspartic acid and decreased pyroglutamic acid, urea, and lactic acid) in the hippocampus. All of these alterations indicated that the metabolic mechanisms of age-related cognitive impairment in SAMP8 mice were related to multiple pathways and networks. Lipid metabolism, especially cholesterol metabolism, appears to play a distinct role in the hippocampus in AD. PMID:24284365
Role of chirality in peptide-induced formation of cholesterol-rich domains
2005-01-01
The chiral specificity of the interactions of peptides that induce the formation of cholesterol-rich domains has not been extensively investigated. Both the peptide and most lipids are chiral, so there is a possibility that interactions between peptide and lipid could require chiral recognition. On the other hand, in our models with small peptides, the extent of folding of the peptide to form a specific binding pocket is limited. We have determined that replacing cholesterol with its enantiomer, ent-cholesterol, alters the modulation of lipid organization by peptides. The phase-transition properties of SOPC (1-stearoyl-2-oleoylphosphatidylcholine):cholesterol [in a 6:4 ratio with 0.2 mol% PtdIns(4,5)P2] are not significantly altered when ent-cholesterol replaces cholesterol. However, in the presence of 10 mol% of a 19-amino-acid, N-terminally myristoylated fragment (myristoyl-GGKLSKKKKGYNVNDEKAK-amide) of the protein NAP-22 (neuronal axonal membrane protein), the lipid mixture containing cholesterol undergoes separation into cholesterol-rich and cholesterol-depleted domains. This does not occur when ent-cholesterol replaces cholesterol. In another example, when N-acetyl-Leu-Trp-Tyr-Ile-Lys-amide (N-acetyl-LWYIK-amide) is added to SOPC:cholesterol (7:3 ratio), there is a marked increase in the transition enthalpy of the phospholipid, indicating separation of a cholesterol-depleted domain of SOPC. This phenomenon completely disappears when ent-cholesterol replaces cholesterol. The all-D-isomer of N-acetyl-LWYIK-amide also induces the formation of cholesterol-rich domains with natural cholesterol, but does so to a lesser extent with ent-cholesterol. Thus specific peptide chirality is not required for interaction with cholesterol-containing membranes. However, a specific chirality of membrane lipids is required for peptide-induced formation of cholesterol-rich domains. PMID:15929726
Nie, Zuoming; Zhu, Honglin; Zhou, Yong; Wu, Chengcheng; Liu, Yue; Sheng, Qing; Lv, Zhengbing; Zhang, Wenping; Yu, Wei; Jiang, Caiying; Xie, Longfei; Zhang, Yaozhou; Yao, Juming
2015-09-01
Lysine acetylation in proteins is a dynamic and reversible PTM and plays an important role in diverse cellular processes. In this study, using lysine-acetylation (Kac) peptide enrichment coupled with nano HPLC/MS/MS, we initially identified the acetylome in the silkworms. Overall, a total of 342 acetylated proteins with 667 Kac sites were identified in silkworm. Sequence motifs analysis around Kac sites revealed an enrichment of Y, F, and H in the +1 position, and F was also enriched in the +2 and -2 positions, indicating the presences of preferred amino acids around Kac sites in the silkworm. Functional analysis showed the acetylated proteins were primarily involved in some specific biological processes. Furthermore, lots of nutrient-storage proteins, such as apolipophorin, vitellogenin, storage proteins, and 30 K proteins, were highly acetylated, indicating lysine acetylation may represent a common regulatory mechanism of nutrient utilization in the silkworm. Interestingly, Ser2 proteins, the coating proteins of larval silk, were found to contain many Kac sites, suggesting lysine acetylation may be involved in the regulation of larval silk synthesis. This study is the first to identify the acetylome in a lepidoptera insect, and expands greatly the catalog of lysine acetylation substrates and sites in insects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Servetnick, D A; Bryant, D; Wells-Knecht, K J; Wiesenfeld, P L
1996-03-01
L-Arginine (Arg) has a structure similar to that of aminoguanidine (AG) and may inhibit glycation and advanced glycosylated end product (AGE) formation. Human serum albumin (HSA) (100mg/ml) was incubated for 2 weeks with glucose (200mM) at 37°C or with glucose and equimolar concentrations of Arg, N-α-acetyl Arg, or AG with or without 25mM diethylenetriaminepentaacetic acid (DTPA). In the absence of DTPA, electrospray ionization mass spectrometry showed a 70% reduction of covalently bound glucose in the presence of Arg and a 30% reduction with AG. Digestibility by trypsin of HSA incubated with glucose and Arg was similar to that of HSA incubated alone. This suggests less covalent modification of HSA in the presence of Arg as compared with the absence of Arg. When incubations contained DTPA, autoradiography showed less(14)C labeling of HSA subunits in the presence of Arg and AG. When theα-amino group of Arg was blocked with an acetyl group, labeling was similar to that of HSA incubated with glucose, suggesting involvement of theα-amino group in the inhibition. Fluorescence of HSA at ex370 and em440 was reduced with Arg, but AG was more effective than Arg. These results suggest that Arg, like AG, can inhibit glycation and AGE formation.
Amino acid composition of some Mexican foods.
Morales de León, Josefina; Camacho, M Elena; Bourges, Héctor
2005-06-01
Knowledge of the amino acid composition of foods is essential to calculate their chemical score, which is used to predict protein quality of foods and diets. Though amino acid composition of many foods is reasonably well established, better knowledge is needed on native foods consumed in different regions and countries. This paper presents the amino acid composition of different presentations of raw and processed foods produced and consumed in Mexico. The amino acid composition was determined using Beckman amino acid analyzers (models 116 and 6300). Tryptophan was determined using the Spies and Chambers method. Of the different foods analyzed, some comments are made on native or basic foods in Mexico: Spirulin, where lysine is the limiting amino acid, with a chemical score of 67%, is a good source of tryptophan (1.16g/16 gN); amaranth contains high levels of sulphur amino acids (4.09 to 5.34 g/16gN), with a protein content of 15 g/100g; and pulque, a Pre-Hispanic beverage that contains high levels of tryptophan (2.58 g/16 gN) and sulphur amino acids (2.72 g/16 gN). Finally, insects are good sources of sulphur amino acids and lysine.
Analysis of the aac(3)-VIa gene encoding a novel 3-N-acetyltransferase.
Rather, P N; Mann, P A; Mierzwa, R; Hare, R S; Miller, G H; Shaw, K J
1993-01-01
Biochemical analysis (G. A. Papanicolaou, R. S. Hare, R. Mierzwa, and G. H. Miller, abstr. 152, Program Abstr. 29th Intersci. Conf. Antimicrob. Agents Chemother., 1989) demonstrated the presence of a novel 3-N-acetyltransferase in Enterobacter cloacae 88020217. This organism was resistant to gentamicin, and the MIC of 2'-N-ethylnetilmicin for it was fourfold lower than that of 6'-N-ethylnetilmicin, a resistance pattern which suggested 2'-acetylating activity. However, high-pressure liquid chromatography analysis demonstrated that the enzyme acetylated sisomicin in the 3 position. We have cloned the structural gene for this enzyme from a large (> 70-kb) conjugative plasmid present in E. cloacae. Subcloning experiments have localized the aac(3)-VIa gene to a 2.1-kb Sau3A fragment. The deduced AAC(3)-VIa protein showed 48% amino acid identity to the AAC(3)-IIa protein and 39% identity to the AAC(3)-VII protein. Examination of the 5'-flanking sequences demonstrated that the aac(3)-VIa gene was located 167 bp downstream of the aadA1 gene and was present in an integron. In addition, the aac(3)-VIa gene is also downstream of a 59-base element often seen in an integron environment. Primer extension analysis has identified a promoter for the aac(3)-VIa gene downstream of both the aadA1 gene and a 59-base element. Images PMID:8257126
Reactivity of Biliatresone, a Natural Biliary Toxin, with Glutathione, Histamine, and Amino Acids
Koo, Kyung A.; Waisbourd-Zinman, Orith; Wells, Rebecca G.; Pack, Michael; Porter, John R.
2016-01-01
In our previous work, we identified a natural toxin, biliatresone, from Dysphania glomulifera and D. littoralis, endemic plants associated with outbreaks of biliary atresia in Australian neonatal livestock. Biliatresone is a very rare isoflavonoid with an α-methylene ketone between two phenyls, 1,2-diaryl-2-propenone, along with methylenedioxy, dimethoxyl, and hydroxyl functional groups, that causes extrahepatic biliary toxicity in zebrafish. The toxic core of biliatresone is a methylene in the α-position relative to the ketone of 1,2-diaryl-2-propenone that serves as an electrophilic Michael acceptor. The α-methylene of biliatresone spontaneously conjugated with water and methanol (MeOH), respectively, via Michael addition in a reverse phase high-performance liquid chromatography (RP-HPLC) analysis. We here report the reactivity of biliatresone toward glutathione (GSH), several amino acids, and other thiol- or imidazole-containing biomolecules. LC-MS and HPLC analysis of the conjugation reaction showed the reactivity of biliatresone to be in the order histidine > N-acetyl-d-cysteine (D-NAC) = N-acetyl-l-cysteine (L-NAC) > histamine > glutathione ≥ cysteine ≫ glycine > glutamate > phenylalanine, while serine and adenine had no reactivity due to intramolecular hydrogen bonding in the protic solvents. The reactivity of ethyl vinyl ketone (EVK, 1-penten-3-one), an example of a highly reactive α,ß-unsaturated ketone, toward GSH gave a 6.7-fold lower reaction rate constant than that of biliatresone. The reaction rate constant of synthetic 1,2-diaryl-2-propen-1-one (DP), a core structure of the toxic molecule, was 10-fold and 1.5-fold weaker in potency compared to the reaction rate constants of biliatresone and EVK, respectively. These results demostrated that the methylenedioxy, dimethoxyl, and hydroxyl functional groups of biliatresone contribute to the stronger reactivity of the Michael acceptor α-methylene ketone toward nucleophiles compared to that of DP and EVK. PMID:26713899
Reactivity of Biliatresone, a Natural Biliary Toxin, with Glutathione, Histamine, and Amino Acids.
Koo, Kyung A; Waisbourd-Zinman, Orith; Wells, Rebecca G; Pack, Michael; Porter, John R
2016-02-15
In our previous work, we identified a natural toxin, biliatresone, from Dysphania glomulifera and D. littoralis, endemic plants associated with outbreaks of biliary atresia in Australian neonatal livestock. Biliatresone is a very rare isoflavonoid with an α-methylene ketone between two phenyls, 1,2-diaryl-2-propenone, along with methylenedioxy, dimethoxyl, and hydroxyl functional groups, that causes extrahepatic biliary toxicity in zebrafish. The toxic core of biliatresone is a methylene in the α-position relative to the ketone of 1,2-diaryl-2-propenone that serves as an electrophilic Michael acceptor. The α-methylene of biliatresone spontaneously conjugated with water and methanol (MeOH), respectively, via Michael addition in a reverse phase high-performance liquid chromatography (RP-HPLC) analysis. We here report the reactivity of biliatresone toward glutathione (GSH), several amino acids, and other thiol- or imidazole-containing biomolecules. LC-MS and HPLC analysis of the conjugation reaction showed the reactivity of biliatresone to be in the order histidine > N-acetyl-d-cysteine (D-NAC) = N-acetyl-l-cysteine (L-NAC) > histamine > glutathione ≥ cysteine ≫ glycine > glutamate > phenylalanine, while serine and adenine had no reactivity due to intramolecular hydrogen bonding in the protic solvents. The reactivity of ethyl vinyl ketone (EVK, 1-penten-3-one), an example of a highly reactive α,ß-unsaturated ketone, toward GSH gave a 6.7-fold lower reaction rate constant than that of biliatresone. The reaction rate constant of synthetic 1,2-diaryl-2-propen-1-one (DP), a core structure of the toxic molecule, was 10-fold and 1.5-fold weaker in potency compared to the reaction rate constants of biliatresone and EVK, respectively. These results demostrated that the methylenedioxy, dimethoxyl, and hydroxyl functional groups of biliatresone contribute to the stronger reactivity of the Michael acceptor α-methylene ketone toward nucleophiles compared to that of DP and EVK.
The metabolism of galactose in the human gastric mucous membrane.
Kopacz-Jodczyk, T; Zwierz, K; Gałasiński, W
1984-12-01
After incubating pieces of human gastric mucous membrane with radioactive galactose, labeled metabolites of glycolysis (FDP,PEP,pyruvate):hexose and hexosamine intermediates in glycoconjugate biosynthesis (gal-1P, UDP-gal,acetylated hexosamines, and their phosphate esters), amino acids (glycine, alanine, and serine), and oxoglutarate as a metabolite of the citric acid cycle were isolated from the acid-soluble fraction. These results suggest that galactose in the human gastric mucous membrane is epimerized to glucose and metabolized in the glycolytic pathway together with oxidation in the citric acid cycle and in the direction of glycoconjugate biosynthesis.
A Propensity for n-omega-Amino Acids in Thermally-Altered Antarctic Meteorites
NASA Technical Reports Server (NTRS)
Burton, Aaron S.; Elsila, Jamie E.; Callahan, Michael P.; Martin, Mildred G.; Glavin, Daniel P.; Johnson, Natasha M.; Dworkin, Jason P.
2012-01-01
Carbonaceous meteorites are known to contain a wealth of indigenous organic molecules, including amino acids, which suggests that these meteorites could have been an important source of prebiotic organic material during the origins of life on Earth and possibly elsewhere. We report the detection of extraterrestrial amino acids in thermally-altered type 3 CV and CO carbonaceous chondrites and ureilites recovered from Antarctica. The amino acid concentrations of the thirteen Antarctic meteorites were generally less abundant than in more amino acid-rich CI, CM, and CR carbonaceous chondrites that experienced much lower temperature aqueous alteration on their parent bodies. In contrast to low-temperature aqueously-altered meteorites that show complete structural diversity in amino acids formed predominantly by Strecker-cyanohydrin synthesis, the thermally-altered meteorites studied here are dominated by small, straight-chain, amine terminal (n-omega-amino) amino acids that are not consistent with Strecker formation. The carbon isotopic ratios of two extraterrestrial n-omega-amino acids measured in one of the CV chondrites are consistent with C-13-depletions observed previously in hydrocarbons produced by Fischer-Tropsch type reactions. The predominance of n-omega-amino acid isomers in thermally-altered meteorites hints at cosmochemical mechanisms for the preferential formation and preservation of a small subset of the possible amino acids.
Martin-Park, Abdiel; Gomez-Govea, Mayra A.; Lopez-Monroy, Beatriz; Treviño-Alvarado, Víctor Manuel; Torres-Sepúlveda, María del Rosario; López-Uriarte, Graciela Arelí; Villanueva-Segura, Olga Karina; Ruiz-Herrera, María del Consuelo; Martinez-Fierro, Margarita de la Luz; Delgado-Enciso, Ivan; Flores-Suárez, Adriana E.; White, Gregory S.; Martínez de Villarreal, Laura E.; Ponce-Garcia, Gustavo; Black, William C.; Rodríguez-Sanchez, Irám Pablo
2017-01-01
Culex quinquefasciatus Say is a vector of many pathogens of humans, and both domestic and wild animals. Personal protection, reduction of larval habitats, and chemical control are the best ways to reduce mosquito bites and, therefore, the transmission of mosquito-borne pathogens. Currently, to reduce the risk of transmission, the pyrethroids, and other insecticide groups have been extensively used to control both larvae and adult mosquitoes. In this context, amino acids and acylcarnitines have never been associated with insecticide exposure and or insecticide resistance. It has been suggested that changes in acylcarnitines and amino acids profiles could be a powerful diagnostic tool for metabolic alterations. Monitoring these changes could help to better understand the mechanisms involved in insecticide resistance, complementing the strategies for managing this phenomenon in the integrated resistance management. The purpose of the study was to determine the amino acids and acylcarnitines profiles in larvae of Cx. quinquefasciatus after the exposure to different insecticides. Bioassays were performed on Cx. quinquefasciatus larvae exposed to the diagnostic doses (DD) of the insecticides chlorpyrifos (0.001 μg/mL), temephos (0.002 μg/mL) and permethrin (0.01 μg/mL). In each sample, we analyzed the profile of 12 amino acids and 31 acylcarnitines by LC-MS/MS. A t-test was used to determine statistically significant differences between groups and corrections of q-values. Results indicates three changes, the amino acids arginine (ARG), free carnitine (C0) and acetyl-carnitine (C2) that could be involved in energy production and insecticide detoxification. We confirmed that concentrations of amino acids and acylcarnitines in Cx. quinquefasciatus vary with respect to different insecticides. The information generated contributes to understand the possible mechanisms and metabolic changes occurring during insecticide exposure. PMID:28085898
Martin-Park, Abdiel; Gomez-Govea, Mayra A; Lopez-Monroy, Beatriz; Treviño-Alvarado, Víctor Manuel; Torres-Sepúlveda, María Del Rosario; López-Uriarte, Graciela Arelí; Villanueva-Segura, Olga Karina; Ruiz-Herrera, María Del Consuelo; Martinez-Fierro, Margarita de la Luz; Delgado-Enciso, Ivan; Flores-Suárez, Adriana E; White, Gregory S; Martínez de Villarreal, Laura E; Ponce-Garcia, Gustavo; Black, William C; Rodríguez-Sanchez, Irám Pablo
2017-01-01
Culex quinquefasciatus Say is a vector of many pathogens of humans, and both domestic and wild animals. Personal protection, reduction of larval habitats, and chemical control are the best ways to reduce mosquito bites and, therefore, the transmission of mosquito-borne pathogens. Currently, to reduce the risk of transmission, the pyrethroids, and other insecticide groups have been extensively used to control both larvae and adult mosquitoes. In this context, amino acids and acylcarnitines have never been associated with insecticide exposure and or insecticide resistance. It has been suggested that changes in acylcarnitines and amino acids profiles could be a powerful diagnostic tool for metabolic alterations. Monitoring these changes could help to better understand the mechanisms involved in insecticide resistance, complementing the strategies for managing this phenomenon in the integrated resistance management. The purpose of the study was to determine the amino acids and acylcarnitines profiles in larvae of Cx. quinquefasciatus after the exposure to different insecticides. Bioassays were performed on Cx. quinquefasciatus larvae exposed to the diagnostic doses (DD) of the insecticides chlorpyrifos (0.001 μg/mL), temephos (0.002 μg/mL) and permethrin (0.01 μg/mL). In each sample, we analyzed the profile of 12 amino acids and 31 acylcarnitines by LC-MS/MS. A t-test was used to determine statistically significant differences between groups and corrections of q-values. Results indicates three changes, the amino acids arginine (ARG), free carnitine (C0) and acetyl-carnitine (C2) that could be involved in energy production and insecticide detoxification. We confirmed that concentrations of amino acids and acylcarnitines in Cx. quinquefasciatus vary with respect to different insecticides. The information generated contributes to understand the possible mechanisms and metabolic changes occurring during insecticide exposure.
2004-04-30
a ketone functionality in the same position relative to the core monosaccharide structure, and both also inhibited flux through the sialic acid...12, 13), a linear polysaccharide composed of entirely of -2,8-linked sialic acid, which is implicated in the complex neural processes (14), synaptic...acetylated monosaccharides (22–25). In a previous study, we demonstrated that various acetylated ManNAc analogs are used with up to 900-fold increased
Doll, Mark A; Hein, David W
2017-07-01
Genetic polymorphisms in human N-acetyltransferase 2 (NAT2) modify the metabolism of numerous drugs and carcinogens. These genetic polymorphisms modify both drug efficacy and toxicity and cancer risk associated with carcinogen exposure. Previous studies have suggested phenotypic heterogeneity among different NAT2 slow acetylator genotypes. NAT2 phenotype was investigated in vitro and in situ in samples of human hepatocytes obtained from various NAT2 slow and intermediate NAT2 acetylator genotypes. NAT2 gene dose response (NAT2*5B/*5B > NAT2*5B/*6A > NAT2*6A/*6A) was observed towards the N-acetylation of the NAT2-specific drug sulfamethazine by human hepatocytes both in vitro and in situ. N-acetylation of 4-aminobiphenyl, an arylamine carcinogen substrate for both N-acetyltransferase 1 and NAT2, showed the same trend both in vitro and in situ although the differences were not significant (p > 0.05). The N-acetylation of the N-acetyltransferase 1-specific substrate p-aminobenzoic acid did not follow this trend. In comparisons of NAT2 intermediate acetylator genotypes, differences in N-acetylation between NAT2*4/*5B and NAT2*4/*6B hepatocytes were not observed in vitro or in situ towards any of these substrates. These results further support phenotypic heterogeneity among NAT2 slow acetylator genotypes, consistent with differential risks of drug failure or toxicity and cancer associated with carcinogen exposure.
The Origin of Amino Acids in Lunar Regolith Samples
NASA Technical Reports Server (NTRS)
Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.
2016-01-01
We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.
Allevi, Pietro; Femia, Eti Alessandra; Costa, Maria Letizia; Cazzola, Roberta; Anastasia, Mario
2008-11-28
The present report describes a method for the quantification of N-acetyl- and N-glycolylneuraminic acids without any derivatization, using their (13)C(3)-isotopologues as internal standards and a C(18) reversed-phase column modified by decylboronic acid which allows for the first time a complete chromatographic separation between the two analytes. The method is based on high-performance liquid chromatographic coupled with electrospray ion-trap mass spectrometry. The limit of quantification of the method is 0.1mg/L (2.0ng on column) for both analytes. The calibration curves are linear for both sialic acids over the range of 0.1-80mg/L (2.0-1600ng on column) with a correlation coefficient greater than 0.997. The proposed method was applied to the quantitative determination of sialic acids released from fetuin as a model of glycoproteins.
Gao, JianZhao; Tao, Xue-Wen; Zhao, Jia; Feng, Yuan-Ming; Cai, Yu-Dong; Zhang, Ning
2017-01-01
Lysine acetylation, as one type of post-translational modifications (PTM), plays key roles in cellular regulations and can be involved in a variety of human diseases. However, it is often high-cost and time-consuming to use traditional experimental approaches to identify the lysine acetylation sites. Therefore, effective computational methods should be developed to predict the acetylation sites. In this study, we developed a position-specific method for epsilon lysine acetylation site prediction. Sequences of acetylated proteins were retrieved from the UniProt database. Various kinds of features such as position specific scoring matrix (PSSM), amino acid factors (AAF), and disorders were incorporated. A feature selection method based on mRMR (Maximum Relevance Minimum Redundancy) and IFS (Incremental Feature Selection) was employed. Finally, 319 optimal features were selected from total 541 features. Using the 319 optimal features to encode peptides, a predictor was constructed based on dagging. As a result, an accuracy of 69.56% with MCC of 0.2792 was achieved. We analyzed the optimal features, which suggested some important factors determining the lysine acetylation sites. We developed a position-specific method for epsilon lysine acetylation site prediction. A set of optimal features was selected. Analysis of the optimal features provided insights into the mechanism of lysine acetylation sites, providing guidance of experimental validation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Sakaguchi, Yohei; Kinumi, Tomoya; Yamazaki, Taichi; Takatsu, Akiko
2015-03-21
We have developed a novel amino acid analysis method using derivatization of multiple functional groups (amino, carboxyl, and phenolic hydroxyl groups). The amino, carboxyl, and phenolic hydroxyl groups of the amino acids were derivatized with 1-bromobutane so that the hydrophobicities and basicities of the amino acids were improved. The derivatized amino acids, including amino group-modified amino acids, could be detected with high sensitivity using liquid chromatography/tandem mass spectrometry (LC-MS/MS). In this study, 17 amino acids obtained by hydrolyzing proteins and 4 amino group-modified amino acids found in the human body (N,N-dimethylglycine, N-formyl-L-methionine, L-pyroglutamic acid, and sarcosine) were selected as target compounds. The 21 derivatized amino acids could be separated using an octadecyl-silylated silica column within 20 min and simultaneously detected. The detection limits for the 21 amino acids were 5.4-91 fmol, and the calibration curves were linear over the range of 10-100 nmol L(-1) (r(2) > 0.9984) with good repeatability. A confirmatory experiment showed that our proposed method could be applied to the determination of a protein certified reference material using the analysis of 12 amino acids combined with isotope dilution mass spectrometry. Furthermore, the proposed method was successfully applied to a stable isotope-coded derivatization method using 1-bromobutane and 1-bromobutane-4,4,4-d3 for comparative analysis of amino acids in human serum.
Ozawa, Motoyasu; Ozawa, Tomonaga; Ueda, Kazuyoshi
2017-06-01
The molecular interactions of inhibitors of bromodomains (BRDs) were investigated. BRDs are protein interaction modules that recognizing ε-N-acetyl-lysine (εAc-Lys) motifs found in histone tails and are promising protein-protein interaction (PPI) targets. First, we analyzed a peptide ligand containing εAc-Lys to evaluate native PPIs. We then analyzed tetrahydroquinazoline-6-yl-benzensulfonamide derivatives found by fragment-based drug design (FBDD) and examined their interactions with the protein compared with the peptide ligand in terms of the inter-fragment interaction energy. In addition, we analyzed benzodiazepine derivatives that are high-affinity ligands for BRDs and examined differences in the CH/π interactions of the amino acid residues. We further surveyed changes in the charges of the amino acid residues among individual ligands, performed pair interaction energy decomposition analysis and estimated the water profile within the ligand binding site. Thus, useful insights for drug design were provided. Through these analyses and considerations, we show that the FMO method is a useful drug design tool to evaluate the process of FBDD and to explore PPI inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rangarajan,E.; Ruane, K.; Sulea, T.
2008-01-01
Campylobacter jejuni is highly unusual among bacteria in forming N-linked glycoproteins. The heptasaccharide produced by its pgl system is attached to protein Asn through its terminal 2, 4-diacetamido-2, 4,6-trideoxy-d-Glc (QuiNAc4NAc or N, N'-diacetylbacillosamine) moiety. The crucial, last part of this sugar's synthesis is the acetylation of UDP-2-acetamido-4-amino-2, 4,6-trideoxy-d-Glc by the enzyme PglD, with acetyl-CoA as a cosubstrate. We have determined the crystal structures of PglD in CoA-bound and unbound forms, refined to 1.8 and 1.75 Angstroms resolution, respectively. PglD is a trimer of subunits each comprised of two domains, an N-terminal {alpha}/{beta}-domain and a C-terminal left-handed {beta}-helix. Few structural differencesmore » accompany CoA binding, except in the C-terminal region following the {beta}-helix (residues 189-195), which adopts an extended structure in the unbound form and folds to extend the {beta}-helix upon binding CoA. Computational molecular docking suggests a different mode of nucleotide-sugar binding with respect to the acetyl-CoA donor, with the molecules arranged in an 'L-shape', compared with the 'in-line' orientation in related enzymes. Modeling indicates that the oxyanion intermediate would be stabilized by the NH group of Gly143', with His125' the most likely residue to function as a general base, removing H+ from the amino group prior to nucleophilic attack at the carbonyl carbon of acetyl-CoA. Site-specific mutations of active site residues confirmed the importance of His125', Glu124', and Asn118. We conclude that Asn118 exerts its function by stabilizing the intricate hydrogen bonding network within the active site and that Glu124' may function to increase the pKa of the putative general base, His125'.« less
Hildebrandt, K M; Anderson, J S
1990-01-01
Cytoplasmic membrane fragments of Micrococcus luteus catalyze in vitro biosynthesis of teichuronic acid from uridine diphosphate D-glucose (UDP-glucose), uridine diphosphate N-acetyl-D-mannosaminuronic acid (UDP-ManNAcA), and uridine diphosphate N-acetyl-D-glucosamine. Membrane fragments solubilized with Thesit (dodecyl alcohol polyoxyethylene ether) can utilize UDP-glucose and UDP-ManNAcA to effect elongation of teichuronic acid isolated from native cell walls. When UDP-glucose is the only substrate supplied, the detergent-solubilized glucosyltransferase incorporates a single glucosyl residue onto each teichuronic acid acceptor. When both UDP-glucose and UDP-ManNAcA are supplied, the glucosyltransferase and the N-acetylmannosaminuronosyltransferase act cooperatively to elongate the teichuronic acid acceptor by multiple additions of the disaccharide repeat unit. As shown by polyacrylamide gel electrophoresis, low-molecular-weight fractions of teichuronic acid are converted to higher-molecular-weight polymers by the addition of as many as 17 disaccharide repeat units. Images PMID:2118507
Heparosan-glucuronate 5-epimerase: Molecular cloning and characterization of a novel enzyme.
Mochizuki, Hideo; Yamagishi, Kiwamu; Suzuki, Kiyoshi; Kim, Yeong Shik; Kimata, Koji
2015-07-01
Iduronic acid (IdoA) is a critical component of heparan sulfate in its interaction with functional proteins. Heparosan-N-sulfate-glucuronate 5-epimerase (HNSG-5epi) converts d-glucuronic acid (GlcA) residues in N-sulfated heparosan (NS-heparosan), as an intermediate in heparan sulfate biosynthesis, to IdoA. In the present study, the authors discovered a different 5-epimerase, designated HG-5epi (heparosan-glucuronate 5-epimerase), that is involved in acharan sulfate biosynthesis and possesses novel substrate specificity. A candidate cDNA of HG-5epi was cloned from the cDNA library of Achatina fulica. The cloned cDNA contained a whole coding region that predicts a type II transmembrane protein composed of 601 amino acid residues. The amino acid sequence of HG-5epi is homologous to that of HNSG-5epi. Recombinant HG-5epi was expressed in insect cells and its enzymatic properties characterized. As expected, HG-5epi epimerizes GlcA residues in heparosan, but not in NS-heparosan. Conversion of IdoA to GlcA was also catalyzed by HG-5epi when completely desulfated N-acetylated heparin was used as the substrate, indicating a reversible reaction mechanism. At equilibrium of the epimerization, the proportion of IdoA in the reaction product reached up to 30% of total hexuronic acid. To our knowledge, this is the first report to describe an enzyme that catalyzes the epimerization of non-sulfated heparosan. This new enzyme may be applied to the study of synthetic heparan sulfate-related polysaccharides having certain biological and pharmacological activities. In addition, a new method using anion-exchange HPLC connected to a post-column fluorescent labeling system was developed for analyzing hexuronic acid isomers. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Amino acid uptake by temperate tree species characteristic of low- and high-fertility habitats.
Scott, Emily E; Rothstein, David E
2011-10-01
The relationship between inorganic nitrogen (N) cycling and plant productivity is well established. However, recent research has demonstrated the ability of plants to take up low molecular weight organic N compounds (i.e., amino acids) at rates that often rival those of inorganic N forms. In this study, we hypothesize that temperate forest tree species characteristic of low-fertility habitats will prefer amino acids over species characteristic of high-fertility habitats. We measured the uptake of (15)N-labeled amino acids (glycine, glutamine, arginine, serine), ammonium (NH(4)(+)), and nitrate (NO(3)(-)) by four tree species that commonly occur in eastern North America, where their abundances have been correlated with inorganic N availability. Specific uptake rates of amino acids were largely similar for all tree species; however, high-fertility species took up NH(4)(+) at rates more than double those of low-fertility species, rendering amino acid N relatively more important to the N nutrition of low-fertility species. Low-fertility species acquired over four times more total N from arginine compared to NH(4)(+) and NO(3)(-); high-fertility species acquired the most N from NH(4)(+). Arginine had the highest uptake rates of any amino acid by all species; there were no significant differences in uptake rates of the remaining amino acids. Our results support the idea that the dominant species in a particular habitat are those best able to utilize the most available N resources.
Gopal, Sanganamoni Chinna; Kaki, Shiva Shanker; Rao, Bhamidipati V S K; Poornachandra, Yedla; Kumar, Chityal Ganesh; Narayana Prasad, Rachapudi Badari
2014-01-01
Novel lipoamino acids were prepared with the coupling of sapienic acid [(Z)-6-hexadecenoic acid] with α - amino group of amino acids and the resulting N-sapienoyl amino acids were tested for their cytotoxicity activities against four cancer based cell lines. Initially, sapienic acid was synthesized by the Wittig coupling of triphenylphosphonium bromide salt of 6-bromohexanoic acid and decanal with a Z specific reagent. The prepared sapienic acid was subsequently converted to its acid chloride which was further coupled with amino acids by the Schotten-Baumann reaction to form N-sapienoyl amino acid conjugates. Structural characterization of the prepared N-sapienoyl amino acid derivatives was done by spectral data (IR, mass spectra and NMR). These lipoamino acid derivatives were screened for in vitro cytotoxicity evaluation. Cytotoxicity evaluation against four cancer cell lines showed that N-sapienoyl isoleucine was active against three cell lines whereas other derivatives either showed activity against only one or two cell lines with very moderate activity and two derivatives were observed to be inactive against the tested cell lines.
Brain proton magnetic resonance spectroscopy for hepatic encephalopathy
NASA Astrophysics Data System (ADS)
Ong, Chin-Sing; McConnell, James R.; Chu, Wei-Kom
1993-08-01
Liver failure can induce gradations of encephalopathy from mild to stupor to deep coma. The objective of this study is to investigate and quantify the variation of biochemical compounds in the brain in patients with liver failure and encephalopathy, through the use of water- suppressed, localized in-vivo Proton Magnetic Resonance Spectroscopy (HMRS). The spectral parameters of the compounds quantitated are: N-Acetyl Aspartate (NAA) to Creatine (Cr) ratio, Choline (Cho) to Creatine ratio, Inositol (Ins) to Creatine ratio and Glutamine-Glutamate Amino Acid (AA) to Creatine ratio. The study group consisted of twelve patients with proven advanced chronic liver failure and symptoms of encephalopathy. Comparison has been done with results obtained from five normal subjects without any evidence of encephalopathy or liver diseases.
Yefremova, Yelena; Al-Majdoub, Mahmoud; Opuni, Kwabena F M; Koy, Cornelia; Cui, Weidong; Yan, Yuetian; Gross, Michael L; Glocker, Michael O
2015-03-01
Mass spectrometric de-novo sequencing was applied to review the amino acid sequence of a commercially available recombinant protein G´ with great scientific and economic importance. Substantial deviations to the published amino acid sequence (Uniprot Q54181) were found by the presence of 46 additional amino acids at the N-terminus, including a so-called "His-tag" as well as an N-terminal partial α-N-gluconoylation and α-N-phosphogluconoylation, respectively. The unexpected amino acid sequence of the commercial protein G' comprised 241 amino acids and resulted in a molecular mass of 25,998.9 ± 0.2 Da for the unmodified protein. Due to the higher mass that is caused by its extended amino acid sequence compared with the original protein G' (185 amino acids), we named this protein "protein G'e." By means of mass spectrometric peptide mapping, the suggested amino acid sequence, as well as the N-terminal partial α-N-gluconoylations, was confirmed with 100% sequence coverage. After the protein G'e sequence was determined, we were able to determine the expression vector pET-28b from Novagen with the Xho I restriction enzyme cleavage site as the best option that was used for cloning and expressing the recombinant protein G'e in E. coli. A dissociation constant (K(d)) value of 9.4 nM for protein G'e was determined thermophoretically, showing that the N-terminal flanking sequence extension did not cause significant changes in the binding affinity to immunoglobulins.
Histochemical study of lymphocystis disease in skin of gilthead seabream, Sparus aurata L.
Sarasquete, C; González de Canales, M L; Arellano, J; Pérez-Prieto, S; García-Rosado, E; Borrego, J J
1998-01-01
A battery of horseradish peroxidase-conjugated lectins (Con A, WGA and DBA), as well as conventional histochemical techniques (PAS, saponification, Alcian Blue pH 0.1, 1, 2.5, chlorhydric hydrolisis, sialidase, Bromophenol blue, Tioglycollate reduction and Ferric-ferricyanide-FeIII) were used to study the content and distribution of carbohydrates, proteins and glycoconjugate sugar residues on the skin and on the lymphocystis-infected cells of gilthead seabream, Sparus aurata. Variable amounts of glycoproteins containing sialic acid, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, mannose and/or glucose residues were observed in the cuticle and mucous cells of the corporal skin, tails and fins. Germinative and epithelial cells of the epidermis contained glycogen, proteins, carboxylated groups, as well as glycoproteins with mannose and/or glucose and N-acetyl-D-galactosamine residues. Hyaline capsule of the mature lymphocystis-infected cells was strongly stained with PAS, Alcian Blue (pH 0.5 and 2.5) and weakly positive with Alcian Blue (pH 1). Con A reacted with the granular cytoplasm, specially around hyaline capsule, and with the basophilic intracytoplasmic inclusions developed in mature lymphocystis-infected cells of Sparus aurata skin. These sugar residues (mannose and/or glucose), as well as N-acetyl-D-glucosamine and/or sialic acid and N-acetyl-D-galactosamine were not detected in the hyaline capsule of the lymphocystis disease.
Jung, Marie; Philpott, Martin; Müller, Susanne; Schulze, Jessica; Badock, Volker; Eberspächer, Uwe; Moosmayer, Dieter; Bader, Benjamin; Schmees, Norbert; Fernández-Montalván, Amaury; Haendler, Bernard
2014-01-01
Bromodomain protein 4 (BRD4) is a member of the bromodomain and extra-terminal domain (BET) protein family. It binds to acetylated histone tails via its tandem bromodomains BD1 and BD2 and forms a complex with the positive transcription elongation factor b, which controls phosphorylation of RNA polymerase II, ultimately leading to stimulation of transcription elongation. An essential role of BRD4 in cell proliferation and cancer growth has been reported in several recent studies. We analyzed the binding of BRD4 BD1 and BD2 to different partners and showed that the strongest interactions took place with di- and tetra-acetylated peptides derived from the histone 4 N-terminal tail. We also found that several histone 4 residues neighboring the acetylated lysines significantly influenced binding. We generated 10 different BRD4 BD1 mutants and analyzed their affinities to acetylated histone tails and to the BET inhibitor JQ1 using several complementary biochemical and biophysical methods. The impact of these mutations was confirmed in a cellular environment. Altogether, the results show that Trp-81, Tyr-97, Asn-140, and Met-149 play similarly important roles in the recognition of acetylated histones and JQ1. Pro-82, Leu-94, Asp-145, and Ile-146 have a more differentiated role, suggesting that different kinds of interactions take place and that resistance mutations compatible with BRD4 function are possible. Our study extends the knowledge on the contribution of individual BRD4 amino acids to histone and JQ1 binding and may help in the design of new BET antagonists with improved pharmacological properties. PMID:24497639
A new acylamidase from Rhodococcus erythropolis TA37 can hydrolyze N-substituted amides.
Lavrov, K V; Zalunin, I A; Kotlova, E K; Yanenko, A S
2010-08-01
A new acylamidase was isolated from Rhodococcus erythropolis TA37 and characterized. N-Substituted acrylamides (isopropyl acrylamide, N,N-dimethyl-aminopropyl acrylamide, and methylene-bis-acrylamide), acid para-nitroanilides (4'-nitroacetanilide, Gly-pNA, Ala-pNA, Leu-pNA), and N-acetyl derivatives of glycine, alanine, and leucine are good substrates for this enzyme. Aliphatic amides (acetamide, acrylamide, isobutyramide, n-butyramide, and valeramide) are also used as substrates but with less efficiency. The enzyme subunit mass by SDS-PAGE is 55 kDa. Maximal activity is exhibited at pH 7-8 and 55°C. The enzyme is stable for 15 h at 22°C and for 0.5 h at 45°C. The Michaelis constant (K(m)) is 0.25 mM with Gly-pNA and 0.55 mM with Ala-pNA. The acylamidase activity is suppressed by inhibitors of serine proteases (phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate) but is not suppressed by inhibitors of aliphatic amidases (acetaldehyde and nitrophenyl disulfides). The N-terminal amino acid sequence of the acylamidase is highly homologous to those of two putative amidases detected from sequenced R. erythropolis genomes. It is suggested that the acylamidase together with the detected homologs forms a new class within the amidase signature family.
Han, Jong Won; Klochkova, Tatyana A.; Shim, Jun Bo; Yoon, Kangsup
2012-01-01
In red algae, spermatial binding to female trichogynes is mediated by a lectin-carbohydrate complementary system. Aglaothamnion oosumiense is a microscopic filamentous red alga. The gamete recognition and binding occur at the surface of the hairlike trichogyne on the female carpogonium. Male spermatia are nonmotile. Previous studies suggested the presence of a lectin responsible for gamete recognition on the surface of female trychogynes. A novel N-acetyl-d-galactosamine-specific protein was isolated from female plants of A. oosumiense by affinity chromatography and named AOL1. The lectin was monomeric and did not agglutinate horse blood or human erythrocytes. The N-terminal amino acid sequence of the protein was analyzed, and degenerate primers were designed. A full-length cDNA encoding the lectin was obtained using rapid amplification of cDNA ends-PCR (RACE-PCR). The cDNA was 1,095 bp in length and coded for a protein of 259 amino acids with a deduced molecular mass of 21.4 kDa, which agreed well with the protein data. PCR analysis using genomic DNA showed that both male and female plants have this gene. However, Northern blotting and two-dimensional electrophoresis showed that this protein was expressed 12 to 15 times more in female plants. The lectin inhibited spermatial binding to the trichogynes when preincubated with spermatia, suggesting its involvement in gamete binding. PMID:22865077
Leruez, Stéphanie; Bresson, Thomas; Chao de la Barca, Juan M; Marill, Alexandre; de Saint Martin, Grégoire; Buisset, Adrien; Muller, Jeanne; Tessier, Lydie; Gadras, Cédric; Verny, Christophe; Amati-Bonneau, Patrizia; Lenaers, Guy; Gohier, Philippe; Bonneau, Dominique; Simard, Gilles; Milea, Dan; Procaccio, Vincent; Reynier, Pascal
2018-02-01
To determine the plasma metabolomic signature of the exfoliative syndrome (XFS), the most common cause worldwide of secondary open-angle glaucoma. We performed a targeted metabolomic study, using the standardized p180 Biocrates Absolute IDQ p180 kit with a QTRAP 5500 mass spectrometer, to compare the metabolomic profiles of plasma from individuals with XFS (n = 16), and an age- and sex-matched control group with cataract (n = 18). A total of 151 metabolites were detected correctly, 16 of which allowed for construction of an OPLS-DA model with a good predictive capability (Q2cum = 0.51) associated with a low risk of over-fitting (permQ2 = -0.48, CV-ANOVA P-value <0.001). The metabolites contributing the most to the signature were octanoyl-carnitine (C8) and decanoyl-carnitine (C10), the branched-chain amino acids (i.e., isoleucine, leucine, and valine), and tyrosine, all of which were at higher concentrations in the XFS group, whereas spermine and spermidine, together with their precursor acetyl-ornithine, were at lower concentrations than in the control group. We identified a significant metabolomic signature in the plasma of individuals with XFS. Paradoxically, this signature, characterized by lower concentrations of the neuroprotective spermine and spermidine polyamines than in controls, partially overlaps the plasma metabolomic profile associated with insulin resistance, despite the absence of evidence of insulin resistance in XFS.
Blessy, J Jino; Sharmila, D Jeya Sundara
2015-02-01
Molecular modeling of synthetic methyl-α-Neu5Ac analogues modified in C-9 position was investigated by molecular docking and molecular dynamics (MD) simulation methods. Methyl-α-Neu5Ac analogues were docked against cholera toxin (CT) B subunit protein and MD simulations were carried out for three Methyl-α-Neu5Ac analogue-CT complexes (30, 10 and 10 ns) to estimate the binding activity of cholera toxin-Methyl-α-Neu5Ac analogues using OPLS_2005 force field. In this study, direct and water mediated hydrogen bonds play a vital role that exist between the methyl-α-9-N-benzoyl-amino-9-deoxy-Neu5Ac (BENZ)-cholera toxin active site residues. The Energy plot, RMSD and RMSF explain that the simulation was stable throughout the simulation run. Transition of phi, psi and omega angle for the complex was calculated. Molecular docking studies could be able to identify the binding mode of methyl-α-Neu5Ac analogues in the binding site of cholera toxin B subunit protein. MD simulation for Methyl-α-9-N-benzoyl-amino-9-deoxy-Neu5Ac (BENZ), Methyl-α-9-N-acetyl-9-deoxy-9-amino-Neu5Ac and Methyl-α-9-N-biphenyl-4-acetyl-deoxy-amino-Neu5Ac complex with CT B subunit protein was carried out, which explains the stable nature of interaction. These methyl-α-Neu5Ac analogues that have computationally acceptable pharmacological properties may be used as novel candidates for drug design for cholera disease.
Vujcic, Slavoljub; Diegelman, Paula; Bacchi, Cyrus J; Kramer, Debora L; Porter, Carl W
2002-01-01
During polyamine catabolism, spermine and spermidine are first acetylated by spermidine/spermine N(1)-acetyltransferase (SSAT) and subsequently oxidized by polyamine oxidase (PAO) to produce spermidine and putrescine, respectively. In attempting to clone the PAO involved in this back-conversion pathway, we encountered an oxidase that preferentially cleaves spermine in the absence of prior acetylation by SSAT. A BLAST search using maize PAO sequences identified homologous mammalian cDNAs derived from human hepatoma and mouse mammary carcinoma: the encoded proteins differed by 20 amino acids. When either cDNA was transiently transfected into HEK-293 cells, intracellular spermine pools decreased by 75% while spermidine and N (1)-acetylspermidine pools increased, suggesting that spermine was selectively and directly oxidized by the enzyme. Substrate specificity using lysates of oxidase-transfected HEK-293 cells revealed that the newly identified oxidase strongly favoured spermine over N (1)-acetylspermine and that it failed to act on N (1)-acetylspermidine, spermidine or the preferred PAO substrate, N (1), N (12)-diacetylspermine. The PAO inhibitor, MDL-72,527, only partially blocked oxidation of spermine while a previously reported PAO substrate, N (1)-( n -octanesulphonyl)spermine, potently inhibited the reaction. Overall, the data indicate that the enzyme represents a novel mammalian oxidase which, on the basis of substrate specificity, we have designated spermine oxidase in order to distinguish it from the PAO involved in polyamine back-conversion. The identification of an enzyme capable of directly oxidizing spermine to spermidine has important implications for understanding polyamine homoeostasis and for interpreting metabolic and cellular responses to clinically relevant polyamine analogues and inhibitors. PMID:12141946
Kawasoko, Cristiane Y; Foletto, Patricia; Rodrigues, Oscar E D; Dornelles, Luciano; Schwab, Ricardo S; Braga, Antonio L
2013-08-21
The synthesis of new chiral seleno-, telluro-, and thio-N-Boc-γ-amino acids is described herein. These new compounds were prepared through a simple and short synthetic route, from the inexpensive and commercially-available amino acid L-glutamic acid. The products, with a highly modular character, were obtained in good to excellent yields, via hydrolysis of chalcogen pyroglutamic derivatives with overall retention of the L-glutamic acid stereochemistry. Also, an L-diselenide-N-Boc-γ-amino acid was prepared in good yield. This new synthetic route represents an efficient method for preparing new L-chalcogen- and L-diselenide-γ-amino acids with biological potential.
Etxeberria, U; de la Garza, A L; Martínez, J A; Milagro, F I
2013-09-01
Metabolomics is a high-throughput tool that quantifies and identifies the complete set of biofluid metabolites. This "omics" science is playing an increasing role in understanding the mechanisms involved in disease progression. The aim of this study was to determine whether a nontargeted metabolomic approach could be applied to investigate metabolic differences between obese rats fed a high-fat sucrose (HFS) diet for 9 weeks and control diet-fed rats. Animals fed with the HFS diet became obese, hyperleptinemic, hyperglycemic, hyperinsulinemic, and resistant to insulin. Serum samples of overnight-fasted animals were analyzed by (1)H NMR technique, and 49 metabolites were identified and quantified. The biochemical changes observed suggest that major metabolic processes like carbohydrate metabolism, β-oxidation, tricarboxylic acid cycle, Kennedy pathway, and folate-mediated one-carbon metabolism were altered in obese rats. The circulating levels of most amino acids were lower in obese animals. Serum levels of docosahexaenoic acid, linoleic acid, unsaturated n-6 fatty acids, and total polyunsaturated fatty acids also decreased in HFS-fed rats. The circulating levels of urea, six water-soluble metabolites (creatine, creatinine, choline, acetyl carnitine, formate, and allantoin), and two lipid compounds (phosphatidylcholines and sphingomyelin) were also significantly reduced by the HFS diet intake. This study offers further insight of the possible mechanisms implicated in the development of diet-induced obesity. It suggests that the HFS diet-induced hyperinsulinemia is responsible for the decrease in the circulating levels of urea, creatinine, and many amino acids, despite an increase in serum glucose levels.
Human metabolism and excretion kinetics of aniline after a single oral dose.
Modick, Hendrik; Weiss, Tobias; Dierkes, Georg; Koslitz, Stephan; Käfferlein, Heiko Udo; Brüning, Thomas; Koch, Holger Martin
2016-06-01
Aniline is an important source material in the chemical industry (e.g., rubber, pesticides, and pharmaceuticals). The general population is known to be ubiquitously exposed to aniline. Thus, assessment of aniline exposure is of both occupational and environmental relevance. Knowledge on human metabolism of aniline is scarce. We orally dosed four healthy male volunteers (two fast and two slow acetylators) with 5 mg isotope-labeled aniline, consecutively collected all urine samples over a period of 2 days, and investigated the renal excretion of aniline and its metabolites by LS-MS/MS and GC-MS. After enzymatic hydrolysis of glucuronide and sulfate conjugates, N-acetyl-4-aminophenol was the predominant urinary aniline metabolite representing 55.7-68.9 % of the oral dose, followed by the mercapturic acid conjugate of N-acetyl-4-aminophenol accounting for 2.5-6.1 %. Acetanilide and free aniline were found only in minor amounts accounting for 0.14-0.36 % of the dose. Overall, these four biomarkers excreted in urine over 48 h post-dose represented 62.4-72.1 % of the oral aniline dose. Elimination half-times were 3.4-4.3 h for N-acetyl-4-aminophenol, 4.1-5.5 h for the mercapturic acid conjugate, and 1.3-1.6 and 0.6-1.2 h for acetanilide and free aniline, respectively. Urinary maximum concentrations of N-acetyl-4-aminophenol were reached after about 4 h and maximum concentrations of the mercapturic acid conjugate after about 6 h, whereas concentrations of acetanilide and free aniline peaked after about 1 h. The present study is one of the first to provide reliable urinary excretion factors for aniline and its metabolites in humans after oral dosage, including data on the predominant urinary metabolite N-acetyl-4-aminophenol, also known as an analgesic under the name paracetamol/acetaminophen.
Ivkovic, Jakov; Lembacher-Fadum, Christian; Breinbauer, Rolf
2015-11-14
N-Protected amino acids can be easily converted into chiral α-amino aldehydes in a one-pot reaction by activation with CDI followed by reduction with DIBAL-H. This method delivers Boc-, Cbz- and Fmoc-protected amino aldehydes from proteinogenic amino acids in very good isolated yields and complete stereointegrity.
Activating and Attenuating the Amicoumacin Antibiotics.
Park, Hyun Bong; Perez, Corey E; Perry, Elena Kim; Crawford, Jason M
2016-06-24
The amicoumacins belong to a class of dihydroisocoumarin natural products and display antibacterial, antifungal, anticancer, and anti-inflammatory activities. Amicoumacins are the pro-drug activation products of a bacterial nonribosomal peptide-polyketide hybrid biosynthetic pathway and have been isolated from Gram-positive Bacillus and Nocardia species. Here, we report the stimulation of a "cryptic" amicoumacin pathway in the entomopathogenic Gram-negative bacterium Xenorhabdus bovienii, a strain not previously known to produce amicoumacins. X. bovienii participates in a multi-lateral symbiosis where it is pathogenic to insects and mutualistic to its Steinernema nematode host. Waxmoth larvae are common prey of the X. bovienii-Steinernema pair. Employing a medium designed to mimic the amino acid content of the waxmoth circulatory fluid led to the detection and characterization of amicoumacins in X. bovienii. The chemical structures of the amicoumacins were supported by 2D-NMR, HR-ESI-QTOF-MS, tandem MS, and polarimeter spectral data. A comparative gene cluster analysis of the identified X. bovienii amicoumacin pathway to that of the Bacillus subtilis amicoumacin pathway and the structurally-related Xenorhabdus nematophila xenocoumacin pathway is presented. The X. bovienii pathway encodes an acetyltransferase not found in the other reported pathways, which leads to a series of N-acetyl-amicoumacins that lack antibacterial activity. N-acetylation of amicoumacin was validated through in vitro protein biochemical studies, and the impact of N-acylation on amicoumacin's mode of action was examined through ribosomal structural analyses.
Discovery and characterization of sialic acid O-acetylation in group B Streptococcus.
Lewis, Amanda L; Nizet, Victor; Varki, Ajit
2004-07-27
Group B Streptococcus (GBS) is the leading cause of human neonatal sepsis and meningitis. The GBS capsular polysaccharide is a major virulence factor and the active principle of vaccines in phase II trials. All GBS capsules have a terminal alpha 2-3-linked sialic acid [N-acetylneuraminic acid (Neu5Ac)], which interferes with complement-mediated killing. We show here that some of the Neu5Ac residues of the GBS type III capsule are O-acetylated at carbon position 7, 8, or 9, a major modification evidently missed in previous studies. Data are consistent with initial O-acetylation at position 7, and subsequent migration of the O-acetyl ester at positions 8 and 9. O-acetylation was also present on several other GBS serotypes (Ia, Ib, II, V, and VI). Deletion of the CMP-Neu5Ac synthase gene neuA by precise, in-frame allelic replacement gave intracellular accumulation of O-acetylated Neu5Ac, whereas overexpression markedly decreased O-acetylation. Given the known GBS Neu5Ac biosynthesis pathway, these data indicate that O-acetylation occurs on free Neu5Ac, competing with the CMP-Neu5Ac synthase. O-acetylation often generates immunogenic epitopes on bacterial capsular polysaccharides and can modulate human alternate pathway complement activation. Thus, our discovery has important implications for GBS pathogenicity, immunogenicity, and vaccine design.
Abu-Gharbieh, Eman; Shehab, Naglaa Gamil
2017-04-18
Hyperglycemia is a complicated condition accompanied with high incidence of infection and dyslipidemia. This study aimed to explore the phyto-constituents of Crataegus azarolus var. eu- azarolus Maire leaves, and to evaluate the therapeutic potentials particularly antimicrobial, antihyperglycemic and antihyperlipidemic of the extract and the isolated compound (3β-O-acetyl ursolic acid). Total phenolics and flavonoidal contents were measured by RP-HPLC analysis. Free radicals scavenging activity of different extraction solvents was tested in-vitro on DPPH free radicals. The antimicrobial activity of the ethanolic extract and its fractions as well as the isolated compounds were evaluated in-vitro on variable microorganisms. Animal models were used to evaluate the antihyperglycemic and antihyperlipidemic activities of the ethanolic extract along with the isolated compound (3β-O acetyl ursolic acid). RP- HPLC analysis of the phenolics revealed high content of rutin, salicylic and ellagic acids. Six compounds belonging to triterpenes and phenolics were isolated from chloroform and n-butanol fractions namely: ursolic acid, 3β-O-acetyl ursolic acid, ellagic acid, quercetin 3-O-β methyl ether, rutin and apigenin7-O-rutinoside. Ethanolic extract showed the highest DPPH radical scavenger activity compared to other solvents. Ethanolic extract, hexane fraction, ursolic acid, 3β-O acetyl ursolic acid and quercetin 3-O-methyl ether showed variable antimicrobial activity against E. coli, P. aeruginosa, S. aureus, and C. albicans. Administration of the ethanolic extract or 3β-O acetyl ursolic acid orally to the mice reduced blood glucose significantly in a time- and dose-dependent manner. Ethanolic extract significantly reduced LDL-C, VLDL-C, TC and TG and increased HDL-C in rats. Ethanolic extract and 3β-O acetyl ursolic acid reduced in-vitro activity of pancreatic lipase. This study reveals that Crataegus azarolus var. eu- azarolus Maire has the efficiency to control hyperglycemia with its associated complications. This study is the first to evaluate antihyperglycemic and antihyperlipidemic potentials of 3β-O acetyl ursolic acid.
Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
Hallows, William C.; Yu, Wei; Smith, Brian C.; Devries, Mark K.; Ellinger, James J.; Someya, Shinichi; Shortreed, Michael R.; Prolla, Tomas; Markley, John L.; Smith, Lloyd M.; Zhao, Shimin; Guan, Kun-Liang; Denu, John M.
2011-01-01
Summary Emerging evidence suggests that protein acetylation is a broad-ranging regulatory mechanism. Here we utilize acetyl-peptide arrays and metabolomic analyses to identify substrates of mitochondrial deacetylase Sirt3. We identified ornithine transcarbamoylase (OTC) from the urea cycle, and enzymes involved in β-oxidation. Metabolomic analyses of fasted mice lacking Sirt3 (sirt3−/−) revealed alterations in β-oxidation and the urea cycle. Biochemical analysis demonstrated that Sirt3 directly deacetylates OTC and stimulates its activity. Mice under caloric restriction (CR) increased Sirt3 protein levels, leading to deacetylation and stimulation of OTC activity. In contrast, sirt3−/− mice failed to deacetylate OTC in response to CR. Inability to stimulate OTC under CR led to a failure to reduce orotic acid levels, a known outcome of OTC deficiency. Thus, Sirt3 directly regulates OTC activity and promotes the urea cycle during CR, and the results suggest that under low energy input, Sirt3 modulates mitochondria by promoting amino-acid catabolism and β-oxidation. PMID:21255725
The alkaline solution to the emergence of life: energy, entropy and early evolution.
Russell, Michael J
2007-01-01
The Earth agglomerates and heats. Convection cells within the planetary interior expedite the cooling process. Volcanoes evolve steam, carbon dioxide, sulfur dioxide and pyrophosphate. An acidulous Hadean ocean condenses from the carbon dioxide atmosphere. Dusts and stratospheric sulfurous smogs absorb a proportion of the Sun's rays. The cooled ocean leaks into the stressed crust and also convects. High temperature acid springs, coupled to magmatic plumes and spreading centers, emit iron, manganese, zinc, cobalt and nickel ions to the ocean. Away from the spreading centers cooler alkaline spring waters emanate from the ocean floor. These bear hydrogen, formate, ammonia, hydrosulfide and minor methane thiol. The thermal potential begins to be dissipated but the chemical potential is dammed. The exhaling alkaline solutions are frustrated in their further attempt to mix thoroughly with their oceanic source by the spontaneous precipitation of biomorphic barriers of colloidal iron compounds and other minerals. It is here we surmise that organic molecules are synthesized, filtered, concentrated and adsorbed, while acetate and methane--separate products of the precursor to the reductive acetyl-coenzyme-A pathway-are exhaled as waste. Reactions in mineral compartments produce acetate, amino acids, and the components of nucleosides. Short peptides, condensed from the simple amino acids, sequester 'ready-made' iron sulfide clusters to form protoferredoxins, and also bind phosphates. Nucleotides are assembled from amino acids, simple phosphates carbon dioxide and ribose phosphate upon nanocrystalline mineral surfaces. The side chains of particular amino acids register to fitting nucleotide triplet clefts. Keyed in, the amino acids are polymerized, through acid-base catalysis, to alpha chains. Peptides, the tenuous outer-most filaments of the nanocrysts, continually peel away from bound RNA. The polymers are concentrated at cooler regions of the mineral compartments through thermophoresis. RNA is reproduced through a convective polymerase chain reaction operating between 40 and 100 degrees C. The coded peptides produce true ferredoxins, the ubiquitous proteins with the longest evolutionary pedigree. They take over the role of catalyst and electron transfer agent from the iron sulfides. Other iron-nickel sulfide clusters, sequestered now by cysteine residues as CO-dehydrogenase and acetyl-coenzyme-A synthase, promote further chemosynthesis and support the hatchery--the electrochemical reactor--from which they sprang. Reactions and interactions fall into step as further pathways are negotiated. This hydrothermal circuitry offers a continuous supply of material and chemical energy, as well as electricity and proticity at a potential appropriate for the onset of life in the dark, a rapidly emerging kinetic structure born to persist, evolve and generate entropy while the sun shines.
The composition of peptidochitodextrins from sarcophagid puparial cases
Lipke, H.; Geoghegan, T.
1971-01-01
1. N-Bromosuccinimide cleaved proteins and pigments from fly puparia, increasing the chitin:protein ratio from 0.5 to 1.5. The product afforded subfractions (ratio 5:1) of molecular weights of 1200 and 1600 devoid of aromatic residues and N-terminal β-alanine, direct aryl links between polysaccharide chains being discounted. 2. The chitin–protein complex decreased in molecular weight when treated with Pronase, which suggested polypeptide bridges within the native chitin micelle. The limit dextrins generated by chitinase were mixtures of unsubstituted dextrins and peptidylated oligosaccharides, with the former predominating. 3. Peptidochitodextrins of similar molecular weight but markedly different solubility were prepared, which were indistinguishable with respect to amino acid, glucosamine, acetyl, X-ray or infrared characteristics. It is suggested that physical interactions contribute to the stability of the integument in addition to the covalent bonds that form during sclerotization. PMID:5145884
Felinine stability in the presence of selected urine compounds.
Rutherfurd, S M; Kitson, T M; Woolhouse, A D; McGrath, M C; Hendriks, W H
2007-02-01
The stability of felinine, an amino acid present in feline urine, was investigated. Synthetic felinine was unstable in the urine of a selection of mammals. Felinine was found to stable in feline urine in which urea had been degraded. Synthetic felinine was found to react specifically with urea and did not react with urea analogues such as biuret or thiourea or other nucleophilic compounds such as ammonia which is more nucleophilic or acetamide and water which are less nucleophilic than urea. The reaction of urea and felinine was independent of pH over the range of 3-10. Urea did not react with N-acetyl-felinine suggesting a felinine N-terminal interaction with urea. Mass spectral analysis of the reaction products showed the presence of carbamylated felinine and fragmentation ions derived from carbamyl-felinine. The physiological relevance of felinine carbamylation is yet to be determined.
Howard, Michael D; Willis, Lisa; Wakarchuk, Warren; St Michael, Frank; Cox, Andrew; Horne, William T; Hontecillas, Raquel; Bassaganya-Riera, Josep; Lorenz, Eva; Inzana, Thomas J
2011-11-21
Histophilus somni is an etiologic agent of bovine respiratory and systemic diseases. Most pathogenic strains of H. somni that have been tested (36 of 42) are able to utilize N-acetyl-5-neuraminic acid (Neu5Ac) to sialylate their lipooligosaccharide (LOS). Homologs of all the genes required for transport, metabolism, and regulation of Neu5Ac in Haemophilus influenzae were identified in the sequenced genomes of H. somni. Three open reading frames (ORFs) in H. somni strain 2336 were identified that contained homology to genes required for LOS sialylation in related bacteria. ORF-1 (hssT-I), ORF-2 (hssT-II), and ORF-3 (neuA(Hs)) were predicted to encode for putative proteins with 37% amino acid homology to an α-(2-3)-sialyltransferase in H. influenzae, 43% amino acid homology to an Haemophilus ducreyi sialyltransferase, and 72% amino acid homology to an H. influenzae CMP-Neu5Ac synthetase, respectively. The specific enzyme activity of each ORF was determined using synthetic acceptor substrates. The HssT-I sialyltransferase primarily sialylated N-acetyllactosamine (LacNAc, Gal-β-[1-4]-GlcNAc-R), which is expressed on strain 2336, whereas HssT-II preferentially sialylated lacto-N-biose (LNB, Gal-β-[1-3]-GlcNAc-R), which is expressed on a phase variant of strain 2336: strain 738. Phase variation of the terminal galactose linkage in strain 738 from β-(1-3)-(LNB) to β-(1-4)-(LacNAc) was confirmed using monoclonal antibody reactivity and nuclear magnetic resonance spectroscopy. Sialylated LOS induced significantly less chemokine response from macrophages derived from Toll-like receptor (TLR)-4 knockout mice than from de-sialylated LOS. Furthermore, sialylated LOS induced significantly less NF-κB activity from mouse-derived bone marrow macrophages than de-sialylated LOS. Therefore, sialylation inhibited LOS signaling through TLR-4. In conclusion, H. somni utilizes linkage-specific sialyltransferases to sialylate its LOS to avoid innate host defense mechanisms despite simultaneous epitope phase variation. Copyright © 2011 Elsevier B.V. All rights reserved.
EPR studies of the free radicals generated in gamma irradiated amino acid derivatives
NASA Astrophysics Data System (ADS)
Osmanoğlu, Y. Emre; Sütçü, Kerem
2017-10-01
Gamma irradiated powder forms of N-acetyl-DL-aspartic acid, N-carbamoyl-DL-aspartic acid and N-methyl-L-serine were investigated by electron paramagnetic resonance spectroscopy (EPR) at room temperature. In these compounds, the paramagnetic centers formed after irradiation were attributed to the HOOCCH2ĊHCOOH, COOHĊHCHNH and HOCH2ĊHCOOH radicals, respectively. The g values and the hyperfine coupling constants for the radical species are with values of g = 2.0038 ± 0.0005, aα = 2.15 mT, aβ(1) = 3.84 mT and aβ(2) = 2.15 for the first radical, g = 2.0039 ± 0.0005, aα = 1.7 mT, aß(1) = 0.62 mT, aß(2) = 0.54 mT, aγ = 0.53 mT for the second radical and g = 2.0039 ± 0.0005, aβ(1) = 2.40 mT, aβ(2) = 1.83 mT and aα = 1.83 mT for the third radical. The free radicals formed in three compounds were found to be stable for three months at room temperature. It was concluded that, spin density was concentrated predominantly in the 2pπ orbital of the carbon atom.
A precursor to the beta-pyranosides of 3-amino-3,6-dideoxy-D-mannose (mycosamine).
Alais, J; David, S
1992-06-04
SN2-type reaction of 3-O-(1-imidazyl)sulfonyl-1,2:5,6-di-O-isopropylidene-alpha-D-gluco furanose with benzoate gave the 3-O-benzoyl-alpha-D-allo derivative 2, which was hydrolysed to give the 5,6-diol 3. Compound 3 was converted into the 6-deoxy-6-iodo derivative 4 which was reduced with tributylstannane, and then position 5 was protected by benzyloxymethylation, to give 3-O-benzoyl-5-O-benzyloxymethyl-6-deoxy-1,2-O-isopropylidene-alpha -D- allofuranose (6). Debenzoylation of 6 gave 7, (1-imidazyl)sulfonylation gave 8, and azide displacement gave 3-azido-5-O-benzyloxymethyl-3,6-dideoxy- 1,2-O-isopropylidene-alpha-D-glucofuranose (9, 85%). Acetolysis of 9 gave 1,2,4-tri-O-acetyl-3-azido-3,6-dideoxy-alpha,beta-D-glucopyranose (10 and 11). Selective hydrolysis of AcO-1 in the mixture of 10 and 11 with hydrazine acetate (----12), followed by conversion into the pyranosyl chloride 13, treatment with N,N-dimethylformamide dimethyl acetal in the presence of tetrabutylammonium bromide, and benzylation gave 3-azido-4-O-benzyl-3,6-dideoxy-1,2-O-(1-methoxyethylidene)-alpha-D -glucopyranose (15). Treatment of 15 with dry acetic acid gave 1,2-di-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranose (16, 86% yield) that was an excellent glycosyl donor in the presence of trimethylsilyl triflate, allowing the synthesis of cyclohexyl 2-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranoside (17, 90%).(ABSTRACT TRUNCATED AT 250 WORDS)
Zaman, Masihuz; Khan, Mohsin Vahid; Zakariya, Syed Mohammad; Nusrat, Saima; Meeran, Syed Mustapha; Alam, Parvez; Ajmal, Mohammad Rehan; Wahiduzzaman, Wahiduzzaman; Shahein, Yasser E; Abouelella, Amira M; Khan, Rizwan Hasan
2018-05-01
Protein misfolding and aggregation lead to amyloid generation that in turn may induce cell membrane disruption and leads to cell apoptosis. In an effort to prevent or treat amyloidogenesis, large number of studies has been paying attention on breakthrough of amyloid inhibitors. In the present work, we aim to access the effect of two drugs, that is, acetylsalicylic acid and 5-amino salicylic acid on insulin amyloids by using various biophysical, imaging, cell viability assay, and computational approaches. We established that both drugs reduce the turbidity, light scattering and fluorescence intensity of amyloid indicator dye thioflavin T. Premixing of drugs with insulin inhibited the nucleation phase and inhibitory potential was boosted by increasing the concentration of the drug. Moreover, addition of drugs at the studied concentrations attenuated the insulin fibril induced cytotoxicity in breast cancer cell line MDA-MB-231. Our results highlight the amino group of salicylic acid exhibited enhanced inhibitory effects on insulin fibrillation in comparison to acetyl group. It may be due to presence of amino group that helps it to prolong the nucleation phase with strong binding as well as disruption of aromatic and hydrophobic stacking that plays a key role in amyloid progression. © 2017 Wiley Periodicals, Inc.
Oh, Kyungsoo; Baek, Moon-Chang; Kang, Wonku
2016-09-10
Sulfisoxazole (SFX) is still used in combination with trimethoprim in cattle despite adverse drug reactions (e.g., urolithiasis). Recently, SFX is known to be a promising repositioned drug candidate for pulmonary hypertension and cancer. We developed a simultaneous determination method of SFX and its N-acetylated metabolites (N(1)-acetyl SFX, N1AS; N(4)-acetyl SFX, N4AS; diacetyl SFX, DAS) using HPLC-MS/MS for the first time, and examined the pharmacokinetics of SFX in mice. N1AS and DAS were converted rapidly to SFX and N4AS, respectively, in mouse plasma. The time courses of plasma SFX and N4AS concentrations were well-characterised following the oral administration of SFX to mice. The absorption, metabolism, and/or excretion of SFX given at >700mg/kg may be saturable, and in contrast to humans and rats, the extent of systemic exposure of mice to N4AS was much greater than that of SFX. Interestingly, the acetyl groups at both N1- and N4-positions were degraded during the ionisation required to generate precursor ions. In additional experiments the carboxyl group of N-acetyl-5-aminosalicylic acid (NA5AS) was lost instead of the acetyl group during the ionisation, and acetaminophen (AAP) appeared. As the acetyl and carboxyl groups of some substances can be degraded during ionisation in the mass spectrometer, caution is appropriate when it is sought to simultaneously quantify similar structures containing these moieties; chromatographic separation is essential. Copyright © 2016 Elsevier B.V. All rights reserved.
Materials and methods for the alteration of enzyme and acetyl CoA levels in plants
Nikolau, Basil J.; Wurtele, Eve S.; Oliver, David J.; Behal, Robert; Schnable, Patrick S.; Ke, Jinshan; Johnson, Jerry L.; Allred, Carolyn C.; Fatland, Beth; Lutziger, Isabelle; Wen, Tsui-Jung
2005-09-13
The present invention provides nucleic acid and amino acid sequences of acetyl CoA synthetase (ACS), plastidic pyruvate dehydrogenase (pPDH), ATP citrate lyase (ACL), Arabidopsis pyruvate decarboxylase (PDC), and Arabidopsis aldehyde dehydrogenase (ALDH), specifically ALDH-2 and ALDH-4. The present invention also provides a recombinant vector comprising a nucleic acid sequence encoding one of the aforementioned enzymes, an antisense sequence thereto or a ribozyme therefor, a cell transformed with such a vector, antibodies to the enzymes, a plant cell, a plant tissue, a plant organ or a plant in which the level of an enzyme has been altered, and a method of producing such a plant cell, plant tissue, plant organ or plant. Desirably, alteration of the level of enzyme results in an alteration of the level of acetyl CoA in the plant cell, plant tissue, plant organ or plant. In addition, the present invention provides a recombinant vector comprising an antisense sequence of a nucleic acid sequence encoding pyruvate decarboxylase (PDC), the E1.alpha. subunit of pPDH, the E1.beta. subunit of pPDH, the E2 subunit of pPDH, mitochondrial pyruvate dehydrogenase (mtPDH) or aldehyde dehydrogenase (ALDH) or a ribozyme that can cleave an RNA molecule encoding PDC, E1.alpha. pPDH, E1.beta. pPDH, E2 pPDH, mtPDH or ALDH.
α-Amidoalkylating agents from N-acyl-α-amino acids: 1-(N-acylamino)alkyltriphenylphosphonium salts.
Mazurkiewicz, Roman; Adamek, Jakub; Październiok-Holewa, Agnieszka; Zielińska, Katarzyna; Simka, Wojciech; Gajos, Anna; Szymura, Karol
2012-02-17
N-Acyl-α-amino acids were efficiently transformed in a two-step procedure into 1-N-(acylamino)alkyltriphenylphosphonium salts, new powerful α-amidoalkylating agents. The effect of the α-amino acid structure, the base used [MeONa or a silica gel-supported piperidine (SiO(2)-Pip)], and the main electrolysis parameters (current density, charge consumption) on the yield and selectivity of the electrochemical decarboxylative α-methoxylation of N-acyl-α-amino acids (Hofer-Moest reaction) was investigated. For most proteinogenic and all studied unproteinogenic α-amino acids, very good results were obtained using a substoichiometric amount of SiO(2)-Pip as the base. Only in the cases of N-acylated cysteine, methionine, and tryptophan, attempts to carry out the Hofer-Moest reaction in the applied conditions failed, probably because of the susceptibility of these α-amino acids to an electrochemical oxidation on the side chain. The methoxy group of N-(1-methoxyalkyl)amides was effectively displaced with the triphenylphosphonium group by dissolving an equimolar amount of N-(1-methoxyalkyl)amide and triphenylphosphonium tetrafluoroborate in CH(2)Cl(2) at room temperature for 30 min, followed by the precipitation of 1-N-(acylamino)alkyltriphenylphosphonium salt with Et(2)O.
Kato, Megumi; Yamazaki, Taichi; Kato, Hisashi; Yamanaka, Noriko; Takatsu, Akiko; Ihara, Toshihide
2017-01-01
To prepare metrologically traceable amino acid mixed standard solutions, it is necessary to determine the stability of each amino acid present in the mixed solutions. In the present study, we prepared amino acid mixed solutions using certified reference standards of 17 proteinogenic amino acids, and examined the stability of each of these amino acids in 0.1 N HCl. We found that the concentration of glutamic acid decreased significantly during storage. LC/MS analysis indicated that the instability of glutamic acid was due to the partial degradation of glutamic acid to pyroglutamic acid in 0.1 N HCl. Using accelerated degradation tests, we investigated several solvent compositions to improve the stability of glutamic acid in amino acid mixed solution, and determined that the change of the pH by diluting the mixed solution improved the stability of glutamic acid.
Creamer, Jessica S; Mora, Maria F; Willis, Peter A
2017-01-17
Amino acids are fundamental building blocks of terrestrial life as well as ubiquitous byproducts of abiotic reactions. In order to distinguish between amino acids formed by abiotic versus biotic processes it is possible to use chemical distributions to identify patterns unique to life. This article describes two capillary electrophoresis methods capable of resolving 17 amino acids found in high abundance in both biotic and abiotic samples (seven enantiomer pairs d/l-Ala, -Asp, -Glu, -His, -Leu, -Ser, -Val and the three achiral amino acids Gly, β-Ala, and GABA). To resolve the 13 neutral amino acids one method utilizes a background electrolyte containing γ-cyclodextrin and sodium taurocholate micelles. The acidic amino acid enantiomers were resolved with γ-cyclodextrin alone. These methods allow detection limits down to 5 nM for the neutral amino acids and 500 nM for acidic amino acids and were used to analyze samples collected from Mono Lake with minimal sample preparation.
Srivastava, Ritika; Kaur, Amanpreet; Sharma, Charu; Karthikeyan, Subramanian
2018-04-01
In bacteria, biosynthesis of riboflavin occurs through a series of enzymatic steps starting with one molecule of GTP and two molecules of ribulose-5-phosphate. In Bacillus subtilis (B. subtilis) the genes (ribD/G, ribE, ribA, ribH and ribT) which are involved in riboflavin biosynthesis are organized in an operon referred as rib operon. All the genes of rib operon are characterized functionally except for ribT. The ribT gene with unknown function is found at the distal terminal of rib operon and annotated as a putative N-acetyltransferase. Here, we report the crystal structure of ribT from B. subtilis (bribT) complexed with coenzyme A (CoA) at 2.1 Å resolution determined by single wavelength anomalous dispersion method. Our structural study reveals that bribT is a member of GCN5-related N-acetyltransferase (GNAT) superfamily and contains all the four conserved structural motifs that have been in other members of GNAT superfamily. The members of GNAT family transfers the acetyl group from acetyl coenzyme A (AcCoA) to a variety of substrates. Moreover, the structural analysis reveals that the residues Glu-67 and Ser-107 are suitably positioned to act as a catalytic base and catalytic acid respectively suggesting that the catalysis by bribT may follow a direct transfer mechanism. Surprisingly, the mutation of a non-conserved amino acid residue Cys-112 to alanine or serine affected the binding of AcCoA to bribT, indicating a possible role of Cys-112 in the catalysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Palanché, Tania; Blanc, Sylvie; Hennard, Christophe; Abdallah, Mohamed A; Albrecht-Gary, Anne-Marie
2004-02-09
Azotobacter vinelandii, a nitrogen-fixing soil bacterium, secretes in iron deficiency azotobactin delta, a highly fluorescent pyoverdin-like chromopeptidic hexadentate siderophore. The chromophore, derived from 2,3-diamino-6,7 dihydroxyquinoline, is bound to a peptide chain of 10 amino acids: (L)-Asp-(D)-Ser-(L)-Hse-Gly-(D)-beta-threo-HOAsp-(L)-Ser-(D)-Cit-(L)-Hse-(L)-Hse lactone-(D)-N(delta)-Acetyl, N(delta)-HOOrn. Azotobactin delta has three different iron(III) binding sites which are one hydroxamate group at the C-terminal end of the peptidic chain (N(delta)-Acetyl, N(delta)-HOOrn), one alpha-hydroxycarboxylic function in the middle of the chain (beta-threo-hydroxyaspartic acid), and one catechol group on the chromophore. The coordination properties of its iron(III) and iron(II) complexes were measured by spectrophotometry, potentiometry, and voltammetry after the determination of the acid-base functions of the uncomplexed free siderophore. Strongly negatively charged ferric species were observed at neutral p[H]'s corresponding to a predominant absolute configuration Lambda of the ferric complex in solution as deduced from CD measurements. The presence of an alpha-hydroxycarboxylic chelating group does not decrease the stability of the iron(III) complex when compared to the main trishydroxamate siderophores or to pyoverdins. The value of the redox potential of ferric azotobactin is highly consistent with a reductive step by physiological reductants for the iron release. Formation and dissociation kinetics of the azotobactin delta ferric complex point out that both ends of this long siderophore chain get coordinated to Fe(III) before the middle. The most striking result provided by fluorescence measurements is the lasting quenching of the fluorophore in the course of the protonation of the ferric azotobactin delta complex. Despite the release of the hydroxyacid and of the catechol, the fluorescence remains indeed quenched, when iron(III) is bound only to the hydroxamic acid, suggesting a folded conformation at this stage, around the metal ion, in contrast to the unfolded species observed for other siderophores such as ferrioxamine or pyoverdin PaA.
Nowrousian, Minou; Masloff, Sandra; Pöggeler, Stefanie; Kück, Ulrich
1999-01-01
During sexual development, mycelial cells from most filamentous fungi differentiate into typical fruiting bodies. Here, we describe the isolation and characterization of the Sordaria macrospora developmental mutant per5, which exhibits a sterile phenotype with defects in fruiting body maturation. Cytological investigations revealed that the mutant strain forms only ascus precursors without any mature spores. Using an indexed cosmid library, we were able to complement the mutant to fertility by DNA-mediated transformation. A single cosmid clone, carrying a 3.5-kb region able to complement the mutant phenotype, has been identified. Sequencing of the 3.5-kb region revealed an open reading frame of 2.1 kb interrupted by a 66-bp intron. The predicted polypeptide (674 amino acids) shows significant homology to eukaryotic ATP citrate lyases (ACLs), with 62 to 65% amino acid identity, and the gene was named acl1. The molecular mass of the S. macrospora ACL1 polypeptide is 73 kDa, as was verified by Western blot analysis with a hemagglutinin (HA) epitope-tagged ACL1 polypeptide. Immunological in situ detection of the HA-tagged polypeptide demonstrated that ACL is located within the cytosol. Sequencing of the mutant acl1 gene revealed a 1-nucleotide transition within the coding region, resulting in an amino acid substitution within the predicted polypeptide. Further evidence that ACL1 is essential for fruiting body maturation comes from experiments in which truncated and mutated versions of the acl1 gene were used for transformation. None of these copies was able to reconstitute the fertile phenotype in transformed per5 recipient strains. ACLs are usually involved in the formation of cytosolic acetyl coenzyme A (acetyl-CoA), which is used for the biosynthesis of fatty acids and sterols. Protein extracts from the mutant strain showed a drastic reduction in enzymatic activity compared to values obtained from the wild-type strain. Investigation of the time course of ACL expression suggests that ACL is specifically induced at the beginning of the sexual cycle and produces acetyl-CoA, which most probably is a prerequisite for fruiting body formation during later stages of sexual development. We discuss the contribution of ACL activity to the life cycle of S. macrospora. PMID:9858569
Nowrousian, M; Masloff, S; Pöggeler, S; Kück, U
1999-01-01
During sexual development, mycelial cells from most filamentous fungi differentiate into typical fruiting bodies. Here, we describe the isolation and characterization of the Sordaria macrospora developmental mutant per5, which exhibits a sterile phenotype with defects in fruiting body maturation. Cytological investigations revealed that the mutant strain forms only ascus precursors without any mature spores. Using an indexed cosmid library, we were able to complement the mutant to fertility by DNA-mediated transformation. A single cosmid clone, carrying a 3.5-kb region able to complement the mutant phenotype, has been identified. Sequencing of the 3.5-kb region revealed an open reading frame of 2.1 kb interrupted by a 66-bp intron. The predicted polypeptide (674 amino acids) shows significant homology to eukaryotic ATP citrate lyases (ACLs), with 62 to 65% amino acid identity, and the gene was named acl1. The molecular mass of the S. macrospora ACL1 polypeptide is 73 kDa, as was verified by Western blot analysis with a hemagglutinin (HA) epitope-tagged ACL1 polypeptide. Immunological in situ detection of the HA-tagged polypeptide demonstrated that ACL is located within the cytosol. Sequencing of the mutant acl1 gene revealed a 1-nucleotide transition within the coding region, resulting in an amino acid substitution within the predicted polypeptide. Further evidence that ACL1 is essential for fruiting body maturation comes from experiments in which truncated and mutated versions of the acl1 gene were used for transformation. None of these copies was able to reconstitute the fertile phenotype in transformed per5 recipient strains. ACLs are usually involved in the formation of cytosolic acetyl coenzyme A (acetyl-CoA), which is used for the biosynthesis of fatty acids and sterols. Protein extracts from the mutant strain showed a drastic reduction in enzymatic activity compared to values obtained from the wild-type strain. Investigation of the time course of ACL expression suggests that ACL is specifically induced at the beginning of the sexual cycle and produces acetyl-CoA, which most probably is a prerequisite for fruiting body formation during later stages of sexual development. We discuss the contribution of ACL activity to the life cycle of S. macrospora.
Hein, David W; Doll, Mark A
2017-08-01
Human N-acetyltransferase 2 (NAT2) catalyzes the N-acetylation of numerous aromatic amine drugs such as sulfamethazine (SMZ) and hydrazine drugs such as isoniazid (INH). NAT2 also catalyzes the N-acetylation of aromatic amine carcinogens such as 2-aminofluorene and the O- and N,O-acetylation of aromatic amine and heterocyclic amine metabolites. Genetic polymorphism in NAT2 modifies drug efficacy and toxicity as well as cancer risk. Acetyltransferase catalytic activities and heat stability associated with six novel NAT2 haplotypes (NAT2*6C, NAT2*14C, NAT2*14D, NAT2*14E, NAT2*17, and NAT2*18) were compared with that of the reference NAT2*4 haplotype following recombinant expression in Escherichia coli. N-acetyltransferase activities towards SMZ and INH were significantly (p < 0.0001) lower when catalyzed by the novel recombinant human NAT2 allozymes compared to NAT2 4. SMZ and INH N-acetyltransferase activities catalyzed by NAT2 14C and NAT2 14D were significantly lower (p < 0.001) than catalyzed by NAT2 6C and NAT2 14E. N-Acetylation catalyzed by recombinant human NAT2 17 was over several hundred-fold lower than by recombinant NAT2 4 precluding measurement of its kinetic or heat inactivation constants. Similar results were observed for the O-acetylation of N-hydroxy-2-aminofluorene and N-hydroxy-2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine and the intramolecular N,O-acetylation of N-hydroxy-N-acetyl-2-aminofluorene. The apparent V max of the novel recombinant NAT2 allozymes NAT2 6C, NAT2 14C, NAT2 14D, and NAT2 14E towards AF, 4-aminobiphenyl (ABP), and 3,2'-dimethyl-4-aminobiphenyl (DMABP) were each significantly (p < 0.001) lower while their apparent K m values did not differ significantly (p > 0.05) from recombinant NAT2 4. The apparent V max catalyzed by NAT2 14C and NAT2 14D were significantly lower (p < 0.05) than the apparent V max catalyzed by NAT2 6C and NAT2 14E towards AF, ABP, and DMABP. Heat inactivation rate constants for recombinant human NAT2 14C, 14D, 14E, and 18 were significantly (p < 0.05) higher than NAT2 4. These results provide further evidence of genetic heterogeneity within the NAT2 slow acetylator phenotype.
Allgayer, H; Sonnenbichler, J; Kruis, W; Paumgartner, G
1985-01-01
Sulphasalazine (SASP), used in the treatment of inflammatory bowel disease, is split into sulphapyridine (SP) and 5-aminosalicylic acid (5-ASA) in the colon. Lower plasma levels of SASP and 5-ASA as compared to those of SP may be due to different absorption rates from the colon because of different pK values and pH dependent lipid-water partition coefficients. In this study we determined the pK values of 5-ASA and its major metabolite, N-acetyl amino-salicylic acid (AcASA), by 13C-NMR spectroscopy and compared the pH dependent apparent benzene-water partition coefficients (Papp) of SASP, SP and 5-ASA with respect to their different plasma levels. The COOH group of 5-ASA had a pK value of 3.0, the -NH3+ group had 6.0, the -OH group 13.9; the -COOH group of AcASA had 2.7 and the -OH group 12.9; The Papp of SASP (0.042 +/- 0.004) and 5-ASA (0.059 +/- 0.01) were significantly lower than that of SP (0.092 +/- 0.03) (at pH 5.5).
Harazono, Akira; Kobayashi, Tetsu; Kawasaki, Nana; Itoh, Satsuki; Tada, Minoru; Hashii, Noritaka; Ishii, Akiko; Arato, Teruyo; Yanagihara, Shigehiro; Yagi, Yuki; Koga, Akiko; Tsuda, Yuriko; Kimura, Mikiko; Sakita, Masashi; Kitamura, Satoshi; Yamaguchi, Hideto; Mimura, Hisashi; Murata, Yoshimi; Hamazume, Yasuki; Sato, Takayuki; Natsuka, Shunji; Kakehi, Kazuaki; Kinoshita, Mitsuhiro; Watanabe, Sakie; Yamaguchi, Teruhide
2011-05-01
The various monosaccharide composition analysis methods were evaluated as monosaccharide test for glycoprotein-based pharmaceuticals. Neutral and amino sugars were released by hydrolysis with 4-7N trifluoroacetic acid. The monosaccharides were N-acetylated if necessary, and analyzed by high-performance liquid chromatography (HPLC) with fluorometric or UV detection after derivatization with 2-aminopyridine, ethyl 4-aminobenzoate, 2-aminobenzoic acid or 1-phenyl-3-methyl-5-pyrazolone, or high pH anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Sialic acids were released by mild acid hydrolysis or sialidase digestion, and analyzed by HPLC with fluorometric detection after derivatization with 1,2-diamino-4,5-methylenedioxybenzene, or HPAEC-PAD. These methods were verified for resolution, linearity, repeatability, and accuracy using a monosaccharide standard solution, a mixture of epoetin alfa and beta, and alteplase as models. It was confirmed that those methods were useful for ensuring the consistency of glycosylation. It is considered essential that the analytical conditions including desalting, selection of internal standards, release of monosaccharides, and gradient time course should be determined carefully to eliminate interference of sample matrix. Various HPLC-based monosaccharide analysis methods were evaluated as a carbohydrate test for glycoprotein pharmaceuticals by an inter-laboratory study. Copyright © 2011 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
Hummelen, Ruben; Hemsworth, Jaimie; Reid, Gregor
2010-01-01
Low serum concentrations of micronutrients, intestinal abnormalities, and an inflammatory state have been associated with HIV progression. These may be ameliorated by micronutrients, N-acetyl cysteine, probiotics, and prebiotics. This review aims to integrate the evidence from clinical trials of these interventions on the progression of HIV. Vitamin B, C, E, and folic acid have been shown to delay the progression of HIV. Supplementation with selenium, N-acetyl cysteine, probiotics, and prebiotics has considerable potential, but the evidence needs to be further substantiated. Vitamin A, iron, and zinc have been associated with adverse effects and caution is warranted for their use. PMID:22254046
Sumida, Yosuke; Iwai, Sachio; Nishiya, Yoshiaki; Kumagai, Shinya; Yamada, Toshihide; Azuma, Masayuki
2018-03-01
d-Amino acids are important building blocks for various compounds, such as pharmaceuticals and agrochemicals. A more cost-effective enzymatic method for d-amino acid production is needed in the industry. We improved a one-pot enzymatic method for d-amino acid production by the dynamic kinetic resolution of N-succinyl amino acids using two enzymes: d-succinylase (DSA) from Cupriavidus sp. P4-10-C, which hydrolyzes N-succinyl-d-amino acids enantioselectively to their corresponding d-amino acid, and N-succinyl amino acid racemase (NSAR, EC.4.2.1.113) from Geobacillus stearothermophilus NCA1503. In this study, DSA and NSAR were purified and their properties were investigated. The optimum temperature of DSA was 50°C and it was stable up to 55°C. The optimum pH of DSA and NSAR was around 7.5. In d-phenylalanine production, the optical purity of product was improved to 91.6% ee from the examination about enzyme concentration. Moreover, 100 mM N-succinyl-dl-tryptophan was converted to d-tryptophan at 81.8% yield with 94.7% ee. This enzymatic method could be useful for the industrial production of various d-amino acids. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Seebauer, Juliann R; Moose, Stephen P; Fabbri, Bradon J; Crossland, Lyle D; Below, Frederick E
2004-12-01
Nitrogen (N) is an essential requirement for kernel growth in maize (Zea mays); however, little is known about how N assimilates are metabolized in young earshoots during seed development. The objective of this study was to assess amino acid metabolism in cob and spikelet tissues during the critical 2 weeks following silking. Two maize hybrids were grown in the field for 2 years at two levels of supplemental N fertilizer (0 and 168 kg N/ha). The effects of the reproductive sink on cob N metabolism were examined by comparing pollinated to unpollinated earshoots. Earshoots were sampled at 2, 8, 14, and 18 d after silking; dissected into cob, spikelet, and/or pedicel and kernel fractions; then analyzed for amino acid profiles and key enzyme activities associated with amino acid metabolism. Major amino acids in the cob were glutamine (Gln), aspartic acid (Asp), asparagine (Asn), glutamate, and alanine. Gln concentrations dropped dramatically from 2 to 14 d after silking in both pollinated and unpollinated cobs, whereas all other measured amino acids accumulated over time in unpollinated spikelets and cobs, especially Asn. N supply had a variable effect on individual amino acid levels in young cobs and spikelets, with Asn being the most notably enhanced. We found that the cob performs significant enzymatic interconversions among Gln, alanine, Asp, and Asn during early reproductive development, which may precondition the N assimilate supply for sustained kernel growth. The measured amino acid profiles and enzymatic activities suggest that the Asn to Gln ratio in cobs may be part of a signal transduction pathway involving aspartate aminotransferase, Gln synthetase, and Asn synthetase to indicate plant N status for kernel development.
Direct N-alkylation of unprotected amino acids with alcohols
Yan, Tao; Feringa, Ben L.; Barta, Katalin
2017-01-01
N-alkyl amino acids find widespread application as highly valuable, renewable building blocks. However, traditional synthesis methodologies to obtain these suffer from serious limitations, providing a major challenge to develop sustainable alternatives. We report the first powerful catalytic strategy for the direct N-alkylation of unprotected α-amino acids with alcohols. This method is highly selective, produces water as the only side product leading to a simple purification procedure, and a variety of α-amino acids are mono- or di-N-alkylated, in most cases with excellent retention of optical purity. The hydrophobicity of the products is tunable, and even simple peptides are selectively alkylated. An iron-catalyzed route to mono-N-alkyl amino acids using renewable fatty alcohols is also described that represents an ideal green transformation for obtaining fully bio-based surfactants. PMID:29226249
Smeland, Olav B; Hadera, Mussie G; McDonald, Tanya S; Sonnewald, Ursula; Borges, Karin
2013-01-01
Although certain metabolic characteristics such as interictal glucose hypometabolism are well established for temporal lobe epilepsy (TLE), its pathogenesis still remains unclear. Here, we performed a comprehensive study of brain metabolism in a mouse model of TLE, induced by pilocarpine–status epilepticus (SE). To investigate glucose metabolism, we injected mice 3.5–4 weeks after SE with [1,2-13C]glucose before microwave fixation of the head. Using 1H and 13C nuclear magnetic resonance spectroscopy, gas chromatography—mass spectrometry and high-pressure liquid chromatography, we quantified metabolites and 13C labeling in extracts of cortex and hippocampal formation (HF). Hippocampal levels of glutamate, glutathione and alanine were decreased in pilocarpine–SE mice compared with controls. Moreover, the contents of N-acetyl aspartate, succinate and reduced nicotinamide adenine dinucleotide (phosphate) NAD(P)H were decreased in HF indicating impairment of mitochondrial function. In addition, the reduction in 13C enrichment of hippocampal citrate and malate suggests decreased tricarboxylic acid (TCA) cycle turnover in this region. In cortex, we found reduced 13C labeling of glutamate, glutamine and aspartate via the pyruvate carboxylation and pyruvate dehydrogenation pathways, suggesting slower turnover of these amino acids and/or the TCA cycle. In conclusion, mitochondrial metabolic dysfunction and altered amino-acid metabolism is found in both cortex and HF in this epilepsy model. PMID:23611869
Sungsanpin, a lasso peptide from a deep-sea streptomycete.
Um, Soohyun; Kim, Young-Joo; Kwon, Hyuknam; Wen, He; Kim, Seong-Hwan; Kwon, Hak Cheol; Park, Sunghyouk; Shin, Jongheon; Oh, Dong-Chan
2013-05-24
Sungsanpin (1), a new 15-amino-acid peptide, was discovered from a Streptomyces species isolated from deep-sea sediment collected off Jeju Island, Korea. The planar structure of 1 was determined by 1D and 2D NMR spectroscopy, mass spectrometry, and UV spectroscopy. The absolute configurations of the stereocenters in this compound were assigned by derivatizations of the hydrolysate of 1 with Marfey's reagents and 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl isothiocyanate, followed by LC-MS analysis. Careful analysis of the ROESY NMR spectrum and three-dimensional structure calculations revealed that sungsanpin possesses the features of a lasso peptide: eight amino acids (-Gly(1)-Phe-Gly-Ser-Lys-Pro-Ile-Asp(8)-) that form a cyclic peptide and seven amino acids (-Ser(9)-Phe-Gly-Leu-Ser-Trp-Leu(15)) that form a tail that loops through the ring. Sungsanpin is thus the first example of a lasso peptide isolated from a marine-derived microorganism. Sungsanpin displayed inhibitory activity in a cell invasion assay with the human lung cancer cell line A549.
Hammerl, Richard; Frank, Oliver; Hofmann, Thomas
2017-04-19
A novel differential off-line LC-NMR approach (DOLC-NMR) was developed to capture and quantify nutrient-induced metabolome alterations in Saccharomyces cerevisiae. Off-line coupling of HPLC separation and 1 H NMR spectroscopy supported by automated comparative bucket analyses, followed by quantitative 1 H NMR using ERETIC 2 (electronic reference to access in vivo concentrations), has been successfully used to quantitatively record changes in the metabolome of S. cerevisiae upon intervention with the aromatic amino acid l-tyrosine. Among the 33 metabolites identified, glyceryl succinate, tyrosol acetate, tyrosol lactate, tyrosol succinate, and N-acyl-tyrosine derivatives such as N-(1-oxooctyl)-tyrosine are reported for the first time as yeast metabolites. Depending on the chain length, N-(1-oxooctyl)-, N-(1-oxodecanyl)-, N-(1-oxododecanyl)-, N-(1-oxomyristinyl)-, N-(1-oxopalmityl)-, and N-(1-oxooleoyl)-l-tyrosine imparted a kokumi taste enhancement above their recognition thresholds ranging between 145 and 1432 μmol/L (model broth). Finally, carbon module labeling (CAMOLA) and carbon bond labeling (CABOLA) experiments with 13 C 6 -glucose as the carbon source confirmed the biosynthetic pathway leading to the key metabolites; for example, the aliphatic side chain of N-(1-oxooctyl)-tyrosine could be shown to be generated via de novo fatty acid biosynthesis from four C 2 -carbon modules (acetyl-CoA) originating from glucose.
George C. Chen
2004-01-01
N,N-dimethyl amino carbinol catechol borate(1). N,N-dimethyl amino carbinol-4-methyl catechol borate(2), N,N-dimethyl amino carbinol-4-t- butyl catechol borate(3). N,N-dimethyl amino carbinol-2,3-naphthyl borate 4) were synthesized by refluxing boric acid and diol in DMF(N,N-dimethyl formamide). The borates were characterized by NMR. Wood impregnated with borate 1,2 or...
Enantiomeric excesses in meteoritic amino acids
NASA Technical Reports Server (NTRS)
Cronin, J. R.; Pizzarello, S.
1997-01-01
Gas chromatographic-mass spectral analyses of the four stereoisomers of 2-amino-2,3-dimethylpentanoic acid (dl-alpha-methylisoleucine and dl-alpha-methylalloisoleucine) obtained from the Murchison meteorite show that the L enantiomer occurs in excess (7.0 and 9.1%, respectively) in both of the enantiomeric pairs. Similar results were obtained for two other alpha-methyl amino acids, isovaline and alpha-methylnorvaline, although the alpha hydrogen analogs of these amino acids, alpha-amino-n-butyric acid and norvaline, were found to be racemates. With the exception of alpha-amino-n-butyric acid, these amino acids are either unknown or of limited occurrence in the biosphere. Because carbonaceous chondrites formed 4.5 billion years ago, the results are indicative of an asymmetric influence on organic chemical evolution before the origin of life.
Hu, Yuntao; Zheng, Qing; Wanek, Wolfgang
2017-09-05
Soil fluxomics analysis can provide pivotal information for understanding soil biochemical pathways and their regulation, but direct measurement methods are rare. Here, we describe an approach to measure soil extracellular metabolite (amino sugar and amino acid) concentrations and fluxes based on a 15 N isotope pool dilution technique via liquid chromatography and high-resolution mass spectrometry. We produced commercially unavailable 15 N and 13 C labeled amino sugars and amino acids by hydrolyzing peptidoglycan isolated from isotopically labeled bacterial biomass and used them as tracers ( 15 N) and internal standards ( 13 C). High-resolution (Orbitrap Exactive) MS with a resolution of 50 000 allowed us to separate different stable isotope labeled analogues across a large range of metabolites. The utilization of 13 C internal standards greatly improved the accuracy and reliability of absolute quantification. We successfully applied this method to two types of soils and quantified the extracellular gross fluxes of 2 amino sugars, 18 amino acids, and 4 amino acid enantiomers. Compared to the influx and efflux rates of most amino acids, similar ones were found for glucosamine, indicating that this amino sugar is released through peptidoglycan and chitin decomposition and serves as an important nitrogen source for soil microorganisms. d-Alanine and d-glutamic acid derived from peptidoglycan decomposition exhibited similar turnover rates as their l-enantiomers. This novel approach offers new strategies to advance our understanding of the production and transformation pathways of soil organic N metabolites, including the unknown contributions of peptidoglycan and chitin decomposition to soil organic N cycling.
Amino Acid Isotope Incorporation and Enrichment Factors in Pacific Bluefin Tuna, Thunnus orientalis
Bradley, Christina J.; Madigan, Daniel J.; Block, Barbara A.; Popp, Brian N.
2014-01-01
Compound specific isotopic analysis (CSIA) of amino acids has received increasing attention in ecological studies in recent years due to its ability to evaluate trophic positions and elucidate baseline nutrient sources. However, the incorporation rates of individual amino acids into protein and specific trophic discrimination factors (TDFs) are largely unknown, limiting the application of CSIA to trophic studies. We determined nitrogen turnover rates of individual amino acids from a long-term (up to 1054 days) laboratory experiment using captive Pacific bluefin tuna, Thunnus orientalis (PBFT), a large endothermic pelagic fish fed a controlled diet. Small PBFT (white muscle δ15N∼11.5‰) were collected in San Diego, CA and transported to the Tuna Research and Conservation Center (TRCC) where they were fed a controlled diet with high δ15N values relative to PBFT white muscle (diet δ15N∼13.9‰). Half-lives of trophic and source amino acids ranged from 28.6 to 305.4 days and 67.5 to 136.2 days, respectively. The TDF for the weighted mean values of amino acids was 3.0 ‰, ranging from 2.2 to 15.8 ‰ for individual combinations of 6 trophic and 5 source amino acids. Changes in the δ15N values of amino acids across trophic levels are the underlying drivers of the trophic 15N enrichment. Nearly all amino acid δ15N values in this experiment changed exponentially and could be described by a single compartment model. Significant differences in the rate of 15N incorporation were found for source and trophic amino acids both within and between these groups. Varying half-lives of individual amino acids can be applied to migratory organisms as isotopic clocks, determining the length of time an individual has spent in a new environment. These results greatly enhance the ability to interpret compound specific isotope analyses in trophic studies. PMID:24465724
George C. Chen
2008-01-01
N-methyl amino catechol borate (1), N-methyl amino-4-methyl catechol borate (2), N-methyl amino-4-t-butyl catechol borate (3), and N-methyl amino-2, 3-naphthyl borate (4) were synthesized by reflux of boric acid with a diol in solvent N,N-dimethyl formamide. The aminoborates were characterized by proton nuclear magnetic resonance spectroscopy, FTIR spectroscopy and...
Frost, L S; Lee, J S; Scraba, D G; Paranchych, W
1986-01-01
Two murine monoclonal antibodies (JEL 92 and 93) specific for adjacent epitopes on F pilin were purified and characterized. JEL 93 immunoglobulin G (IgG) and its Fab fragments were specific for the amino-terminal region and were completely reactive with a synthetic peptide representing the first eight amino acids of F pilin. The acetyl group was demonstrated to be an important part of the epitope, since an unacetylated version of the amino-terminal peptide was 100-fold less reactive with JEL 93 IgG. JEL 92 IgG reacted with the region of F pilin surrounding Met-9, represented by a tryptic peptide derived from the first 17 amino acids. This reactivity was completely abolished by cleavage of the peptide with cyanogen bromide. As shown by electron microscopy, both monoclonal antibodies bound to a vesiclelike structure at one end of purified free pili and did not bind to the sides of the pili, nor did they appear to bind to the tip. When sonication was used to break pili into shorter fragments, the number of binding sites for JEL 92 but not JEL 93 IgG increased as measured by a competitive enzyme-linked immunosorbent assay. Images PMID:2428808
Some structural features of the teichuronic acid of Bacillus licheniformis N.C.T.C. 6346 cell walls
Hughes, R. C.; Thurman, P. F.
1970-01-01
A teichuronic acid, containing glucuronic acid and N-acetylgalactosamine, was purified from acid extracts of Bacillus licheniformis 6346 cell walls as described by Janczura, Perkins & Rogers (1961). After reduction of the carboxyl function of glucuronic acid residues in the polysaccharide the reduced polymer contains equimolar amounts of N-acetylgalactosamine and glucose. Methylation of the reduced polysaccharide by the Hakamori (1964) technique showed the glucose residues to be substituted on C-4. A disaccharide, 3-O-glucuronosylgalactosamine, was isolated from partial acid hydrolysates of teichuronic acid. After N-acetylation the disaccharide produces chromogen readily on heating at pH7, in agreement with C-3 substitution of the reducing N-acetylamino sugar. Teichuronic acid also produces chromogen under the same conditions, with concurrent elimination of a modified polysaccharide from C-3 of reducing terminal N-acetylgalactosamine residues of the teichuronic acid chains. The number-average chain lengths of several preparations of teichuronic acid were estimated from the amounts of chromogen produced in comparison with the N-acetylated disaccharide. The values obtained are in good agreement with the weight-average molecular weight determined by ultracentrifugal analysis. The reducing terminals of teichuronic acid are shown to be exclusively N-acetylgalactosamine by reduction with sodium boro[3H]hydride. The number-average chain lengths of the teichuronic acid preparations were estimated by the extent of in corporation of tritium and are in agreement with values obtained by the other methods. PMID:5419741
Priddy, Colleen M O'Kelly; Kajimoto, Masaki; Ledee, Dolena R; Bouchard, Bertrand; Isern, Nancy; Olson, Aaron K; Des Rosiers, Christine; Portman, Michael A
2013-02-01
Extracorporeal membrane oxygenation (ECMO) provides essential mechanical circulatory support necessary for survival in infants and children with acute cardiac decompensation. However, ECMO also causes metabolic disturbances, which contribute to total body wasting and protein loss. Cardiac stunning can also occur, which prevents ECMO weaning, and contributes to high mortality. The heart may specifically undergo metabolic impairments, which influence functional recovery. We tested the hypothesis that ECMO alters oxidative metabolism and protein synthesis. We focused on the amino acid leucine and integration with myocardial protein synthesis. We used a translational immature swine model in which we assessed in heart 1) the fractional contribution of leucine (FcLeucine) and pyruvate to mitochondrial acetyl-CoA formation by nuclear magnetic resonance and 2) global protein fractional synthesis (FSR) by gas chromatography-mass spectrometry. Immature mixed breed Yorkshire male piglets (n = 22) were divided into four groups based on loading status (8 h of normal circulation or ECMO) and intracoronary infusion [(13)C(6),(15)N]-L-leucine (3.7 mM) alone or with [2-(13)C]-pyruvate (7.4 mM). ECMO decreased pulse pressure and correspondingly lowered myocardial oxygen consumption (∼40%, n = 5), indicating decreased overall mitochondrial oxidative metabolism. However, FcLeucine was maintained and myocardial protein FSR was marginally increased. Pyruvate addition decreased tissue leucine enrichment, FcLeucine, and Fc for endogenous substrates as well as protein FSR. The heart under ECMO shows reduced oxidative metabolism of substrates, including amino acids, while maintaining 1) metabolic flexibility indicated by ability to respond to pyruvate and 2) a normal or increased capacity for global protein synthesis.
Structure-Derived Proton-Transfer Mechanism of Action Human Pyruvate Dehydrogenase
NASA Technical Reports Server (NTRS)
Ciszak, Ewa; Dominiak, Paulina
2003-01-01
The derivative of vitamin B1 thiamin pyrophosphate (TPP) is a cofactor of pyruvate dehydrogenase (E1p) that is involved in decarboxylation of pyruvate followed by reductive acetylation of lipoic acid covalently bound to a lysine residue of dihydrolipoamide acetyltransferase. The structure of E1p recently determined in our laboratory revealed patterns of association of foul subunits and specifics of two TPP binding sites. The mechanism of action in part includes a conserved hydrogen bond between the N1' atom of the aminopyrimidine ring of the cofactor and the carboxylate group of Glu59 from the beta subunits, and a V-conformation of the cofactor that brings the N4' atom of the aminopyrimidine ring to the distance of the intramolecular hydrogen bond formed with the C2-atom of the thiazolium moiety. The carboxylate group of Glu59 is the local proton acceptor that enables proton translocation within the aminopyrimidine ring and stabilization of the rare N4' - iminopyrimidine tautomer. Based on the analysis of E1p structure, we postulate that the protein environment drives N4' - amino/N4' - imino dynamics resulting in a concerted shuttle-like movement of the subunits. We also propose that this movement of the subunits is strictly coordinated with the two enzymatic reactions carried out in E1p by each of the two cofactor sites. It is proposed that these reactions are in alternating phases such that when one active site is involved in decarboxylation, the other is involved in acetylation of lipoyl noiety.
Ramos, Caroline L.; Fonseca, Fernanda L.; Rodrigues, Jessica; Guimarães, Allan J.; Cinelli, Leonardo P.; Miranda, Kildare; Nimrichter, Leonardo; Casadevall, Arturo; Travassos, Luiz R.
2012-01-01
In prior studies, we demonstrated that glucuronoxylomannan (GXM), the major capsular polysaccharide of the fungal pathogen Cryptococcus neoformans, interacts with chitin oligomers at the cell wall-capsule interface. The structural determinants regulating these carbohydrate-carbohydrate interactions, as well as the functions of these structures, have remained unknown. In this study, we demonstrate that glycan complexes composed of chitooligomers and GXM are formed during fungal growth and macrophage infection by C. neoformans. To investigate the required determinants for the assembly of chitin-GXM complexes, we developed a quantitative scanning electron microscopy-based method using different polysaccharide samples as inhibitors of the interaction of chitin with GXM. This assay revealed that chitin-GXM association involves noncovalent bonds and large GXM fibers and depends on the N-acetyl amino group of chitin. Carboxyl and O-acetyl groups of GXM are not required for polysaccharide-polysaccharide interactions. Glycan complex structures composed of cryptococcal GXM and chitin-derived oligomers were tested for their ability to induce pulmonary cytokines in mice. They were significantly more efficient than either GXM or chitin oligomers alone in inducing the production of lung interleukin 10 (IL-10), IL-17, and tumor necrosis factor alpha (TNF-α). These results indicate that association of chitin-derived structures with GXM through their N-acetyl amino groups generates glycan complexes with previously unknown properties. PMID:22562469
Anti-microbial properties of histone H2A from skin secretions of rainbow trout, Oncorhynchus mykiss.
Fernandes, Jorge M O; Kemp, Graham D; Molle, M Gerard; Smith, Valerie J
2002-01-01
Skin exudates of rainbow trout contain a potent 13.6 kDa anti-microbial protein which, from partial internal amino acid sequencing, peptide mass fingerprinting, matrix-associated laser desorption/ionization MS and amino acid analysis, seems to be histone H2A, acetylated at the N-terminus. The protein, purified to homogeneity by ion-exchange and reversed-phase chromatography, exhibits powerful anti-bacterial activity against Gram-positive bacteria, with minimal inhibitory concentrations in the submicromolar range. Kinetic analysis revealed that at a concentration of 0.3 microM all test bacteria lose viability after 30 min incubation. Weaker activity is also displayed against the yeast Saccharomyces cerevisiae. The protein is salt-sensitive and has no haemolytic activity towards trout erythrocytes at concentrations below 0.3 microM. Reconstitution of the protein in a planar lipid bilayer strongly disturbs the membrane but does not form stable ion channels, indicating that its anti-bacterial activity is probably not due to pore-forming properties. This is the first report to show that, in addition to its classical function in the cell, histone H2A has extremely strong anti-microbial properties and could therefore help contribute to protection against bacterial invasion. PMID:12164782
Medzihradszky, K F; Gibson, B W; Kaur, S; Yu, Z H; Medzihradszky, D; Burlingame, A L; Bass, N M
1992-02-01
The primary structure of a fatty-acid-binding protein (FABP) isolated from the liver of the nurse shark (Ginglymostoma cirratum) was determined by high-performance tandem mass spectrometry (employing multichannel array detection) and Edman degradation. Shark liver FABP consists of 132 amino acids with an acetylated N-terminal valine. The chemical molecular mass of the intact protein determined by electrospray ionization mass spectrometry (Mr = 15124 +/- 2.5) was in good agreement with that calculated from the amino acid sequence (Mr = 15121.3). The amino acid sequence of shark liver FABP displays significantly greater similarity to the FABP expressed in mammalian heart, peripheral nerve myelin and adipose tissue (61-53% sequence similarity) than to the FABP expressed in mammalian liver (22% similarity). Phylogenetic trees derived from the comparison of the shark liver FABP amino acid sequence with the members of the mammalian fatty-acid/retinoid-binding protein gene family indicate the initial divergence of an ancestral gene into two major subfamilies: one comprising the genes for mammalian liver FABP and gastrotropin, the other comprising the genes for mammalian cellular retinol-binding proteins I and II, cellular retinoic-acid-binding protein myelin P2 protein, adipocyte FABP, heart FABP and shark liver FABP, the latter having diverged from the ancestral gene that ultimately gave rise to the present day mammalian heart-FABP, adipocyte FABP and myelin P2 protein sequences. The sequence for intestinal FABP from the rat could be assigned to either subfamily, depending on the approach used for phylogenetic tree construction, but clearly diverged at a relatively early evolutionary time point. Indeed, sequences proximately ancestral or closely related to mammalian intestinal FABP, liver FABP, gastrotropin and the retinoid-binding group of proteins appear to have arisen prior to the divergence of shark liver FABP and should therefore also be present in elasmobranchs. The presence in shark liver of an FABP which differs substantially in primary structure from mammalian liver FABP, while being closely related to the FABP expressed in mammalian heart muscle, peripheral nerve myelin and adipocytes, opens a further dimension regarding the question of the existence of structure-dependent and tissue-specific specialization of FABP function in lipid metabolism.
Remoroza, C; Cord-Landwehr, S; Leijdekkers, A G M; Moerschbacher, B M; Schols, H A; Gruppen, H
2012-09-01
The combined action of endo-polygalacturonase (endo-PGII), pectin lyase (PL), pectin methyl esterase (fungal PME) and RG-I degrading enzymes enabled the extended degradation of methylesterified and acetylated sugar beet pectins (SBPs). The released oligomers were separated, identified and quantified using hydrophilic interaction liquid chromatography (HILIC) with online electrospray ionization ion trap mass spectrometry (ESI-IT-MS(n)) and evaporative light scattering detection (ELSD). By MS(n), the structures of galacturonic acid (GalA) oligomers having an acetyl group in the O-2 and/or O-3 positions eluting from the HILIC column were elucidated. The presence of methylesterified and/or acetylated galacturonic acid units within an oligomer reduced the interaction with the HILIC column significantly compared to the unsubstituted GalA oligomers. The HILIC column enables a good separation of most oligomers present in the digest. The use of ELSD to quantify oligogalacturonides was validated using pure GalA standards and the signal was found to be independent of the chemical structure of the oligomer being detected. The combination of chromatographic and enzymatic strategies enables to distinguish SBPs having different methylesters and acetyl group distribution. Copyright © 2012 Elsevier Ltd. All rights reserved.
Spin labeled amino acid nitrosourea derivatives--synthesis and antitumour activity.
Zheleva, A; Raikov, Z; Ilarionova, M; Todorov, D
1995-01-01
The synthesis of three spin labeled derivatives of N-[N'-(chloroethyl)-N'-nitrosocarbamoyl] amino acids is reported. The new nitrosoureas are obtained by condensation of the corresponding N-[N'-(2-chloroethyl)-N'-nitrosocarbamoyl] amino acid with 2,2,6,6-tetramethyl-1-oxyl-4-aminopiperidine using dicyclohexylcarbodiimide. Their chemical structures are confirmed by elemental analysis, IR, MS, and EPR spectroscopy. All newly synthesized compounds showed high antitumour activity against the lymphoid leukemia L1210 in BDF1 mice.
NASA Astrophysics Data System (ADS)
Feng, Jianghua; Liu, Huili; Zhang, Limin; Bhakoo, Kishore; Lu, Lehui
2010-10-01
Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary α-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary α-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies (β-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of subtle physiological responses on mammalian metabolism, and can be employed to investigate the potential adverse effects of other nanoparticles and nanomaterials on the environment and human health.
Tanaka, Takeshi; Shima, Yasuyuki; Ogawa, Naoki; Nagayama, Koki; Yoshida, Takashi; Ohmachi, Tetsuo
2011-01-01
Acetoacetyl-CoA thiolase (AT) is an enzyme that catalyses the CoA-dependent thiolytic cleavage of acetoacetyl-CoA to yield 2 molecules of acetyl-CoA, or the reverse condensation reaction. A full-length cDNA clone pBSGT-3, which has homology to known thiolases, was isolated from Dictyostelium cDNA library. Expression of the protein encoded in pBSGT-3 in Escherichia coli, its thiolase enzyme activity, and the amino acid sequence homology search revealed that pBSGT-3 encodes an AT. The recombinant AT (r-thiolase) was expressed in an active form in an E. coli expression system, and purified to homogeneity by selective ammonium sulfate fractionation and two steps of column chromatography. The purified enzyme exhibited a specific activity of 4.70 mU/mg protein. Its N-terminal sequence was (NH2)-Arg-Met-Tyr-Thr-Thr-Ala-Lys-Asn-Leu-Glu-, which corresponds to the sequence from positions 15 to 24 of the amino acid sequence deduced from pBSGT-3 clone. The r-thiolase in the inclusion body expressed highly in E. coli was the precursor form, which is slightly larger than the purified r-thiolase. When incubated with the cell-free extract of Dictyostelium cells, the precursor was converted to the same size to the purified r-thiolase, suggesting that the presequence at the N-terminus is removed by a Dictyostelium processing peptidase. PMID:21209787
Regulation of neuraminidase expression in Streptococcus pneumoniae
2012-01-01
Background Sialic acid (N-acetylneuraminic acid; NeuNAc) is one of the most important carbohydrates for Streptococcus pneumoniae due of its role as a carbon and energy source, receptor for adhesion and invasion and molecular signal for promotion of biofilm formation, nasopharyngeal carriage and invasion of the lung. Results In this work, NeuNAc and its metabolic derivative N-acetyl mannosamine (ManNAc) were used to analyze regulatory mechanisms of the neuraminidase locus expression. Genomic and metabolic comparison to Streptococcus mitis, Streptococcus oralis, Streptococcus gordonii and Streptococcus sanguinis elucidates the metabolic association of the two amino sugars to different parts of the locus coding for the two main pneumococcal neuraminidases and confirms the substrate specificity of the respective ABC transporters. Quantitative gene expression analysis shows repression of the locus by glucose and induction of all predicted transcriptional units by ManNAc and NeuNAc, each inducing with higher efficiency the operon encoding for the transporter with higher specificity for the respective amino sugar. Cytofluorimetric analysis demonstrated enhanced surface exposure of NanA on pneumococci grown in NeuNAc and ManNAc and an activity assay allowed to quantify approximately twelve times as much neuraminidase activity on induced cells as opposed to glucose grown cells. Conclusions The present data increase the understanding of metabolic regulation of the nanAB locus and indicate that experiments aimed at the elucidation of the relevance of neuraminidases in pneumococcal virulence should possibly not be carried out on bacteria grown in glucose containing media. PMID:22963456
Melani, Rafael D; Skinner, Owen S; Fornelli, Luca; Domont, Gilberto B; Compton, Philip D; Kelleher, Neil L
2016-07-01
Characterizing whole proteins by top-down proteomics avoids a step of inference encountered in the dominant bottom-up methodology when peptides are assembled computationally into proteins for identification. The direct interrogation of whole proteins and protein complexes from the venom of Ophiophagus hannah (king cobra) provides a sharply clarified view of toxin sequence variation, transit peptide cleavage sites and post-translational modifications (PTMs) likely critical for venom lethality. A tube-gel format for electrophoresis (called GELFrEE) and solution isoelectric focusing were used for protein fractionation prior to LC-MS/MS analysis resulting in 131 protein identifications (18 more than bottom-up) and a total of 184 proteoforms characterized from 14 protein toxin families. Operating both GELFrEE and mass spectrometry to preserve non-covalent interactions generated detailed information about two of the largest venom glycoprotein complexes: the homodimeric l-amino acid oxidase (∼130 kDa) and the multichain toxin cobra venom factor (∼147 kDa). The l-amino acid oxidase complex exhibited two clusters of multiproteoform complexes corresponding to the presence of 5 or 6 N-glycans moieties, each consistent with a distribution of N-acetyl hexosamines. Employing top-down proteomics in both native and denaturing modes provides unprecedented characterization of venom proteoforms and their complexes. A precise molecular inventory of venom proteins will propel the study of snake toxin variation and the targeted development of new antivenoms or other biotherapeutics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Schräder, T; Andreesen, J R
1992-05-15
Protein PC of the glycine reductase from Eubacterium acidaminophilum was purified to homogeneity by chromatography on phenyl-Sepharose and Sepharose S. The apparent molecular mass of the native protein, which showed an associating/dissociating behaviour, was about 420 kDa. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis of protein PC revealed two protein bands corresponding to 48 and 57 kDa, indicating an alpha 4 beta 4 composition. The smaller subunit was identified as an acetyl-group-transferring protein, the 57-kDa protein was hydrophobic. N-terminal amino acid sequences were determined for both subunits. Antibodies raised against the 48-kDa subunit showed cross-reactions with extracts of E. acidaminophilum grown on different substrates and with extracts from other glycine-utilizing anaerobic bacteria such as Clostridium purinolyticum, C. sticklandii, and C. sporogenes. The respective protein from the former two organisms corresponded in molecular mass. When protein PA was chemically carboxymethylated by iodo[2-14C]acetate and incubated with protein PC, acetyl phosphate was a reaction product, thus establishing it as the product of the glycine reductase reaction by using homogeneous preparations of these two proteins from E. acidaminophilum.
Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente
2015-04-23
Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.
Nitrogen isotopes provide clues to amino acid metabolism in human colorectal cancer cells.
Krishnamurthy, R V; Suryawanshi, Yogesh R; Essani, Karim
2017-05-31
Glutamic acid and alanine make up more than 60 per cent of the total amino acids in the human body. Glutamine is a significant source of energy for cells and also a prime donor of nitrogen in the biosynthesis of many amino acids. Several studies have advocated the role of glutamic acid in cancer therapy. Identification of metabolic signatures in cancer cells will be crucial for advancement of cancer therapies based on the cell's metabolic state. Stable nitrogen isotope ratios ( 15 N/ 14 N, δ 15 N) are of particular advantage to understand the metabolic state of cancer cells, since most biochemical reactions involve transfer of nitrogen. In our study, we used the natural abundances of nitrogen isotopes (δ 15 N values) of individual amino acids from human colorectal cancer cell lines to investigate isotope discrimination among amino acids. Significant effects were noticed in the case of glutamic acid, alanine, aspartic acid and proline between cancer and healthy cells. The data suggest that glutamic acid is a nitrogen acceptor while alanine, aspartic acid and proline are nitrogen donors in cancerous cells. One plausible explanation is the transamination of the three acids to produce glutamic acid in cancerous cells.
IL-6 Receptor Isoforms and Ovarian Cancer
2013-01-01
previously de- cribed.27 Groups of mice (n 6) were dministered acetyl salicylic acid (ASA; 00 mg/kg; Sigma, St Louis, MO), phos- hate-buffered saline...indicates P .05. SA, acetyl salicylic acid ; IL6R, interleukin-6 receptor. ath. IL-6 receptor in ovarian tumors. Am J Obstet Gynecol 2010. ause they are...tumor cell proper to increase this effect . Published studies examining IL6-/- and IL6R-/- mice demonstrated a complexity of IL6 signaling for wound
2017-01-01
Soil fluxomics analysis can provide pivotal information for understanding soil biochemical pathways and their regulation, but direct measurement methods are rare. Here, we describe an approach to measure soil extracellular metabolite (amino sugar and amino acid) concentrations and fluxes based on a 15N isotope pool dilution technique via liquid chromatography and high-resolution mass spectrometry. We produced commercially unavailable 15N and 13C labeled amino sugars and amino acids by hydrolyzing peptidoglycan isolated from isotopically labeled bacterial biomass and used them as tracers (15N) and internal standards (13C). High-resolution (Orbitrap Exactive) MS with a resolution of 50 000 allowed us to separate different stable isotope labeled analogues across a large range of metabolites. The utilization of 13C internal standards greatly improved the accuracy and reliability of absolute quantification. We successfully applied this method to two types of soils and quantified the extracellular gross fluxes of 2 amino sugars, 18 amino acids, and 4 amino acid enantiomers. Compared to the influx and efflux rates of most amino acids, similar ones were found for glucosamine, indicating that this amino sugar is released through peptidoglycan and chitin decomposition and serves as an important nitrogen source for soil microorganisms. d-Alanine and d-glutamic acid derived from peptidoglycan decomposition exhibited similar turnover rates as their l-enantiomers. This novel approach offers new strategies to advance our understanding of the production and transformation pathways of soil organic N metabolites, including the unknown contributions of peptidoglycan and chitin decomposition to soil organic N cycling. PMID:28776982
Robinson, Jacob William; Yanke, Dan; Mirza, Jeff; Ballantyne, James Stuart
2011-02-01
To gain insight into the metabolic design of the amino acid carrier systems in fish, we injected a bolus of (15)N amino acids into the dorsal aorta in mature rainbow trout (Oncorhynchus mykiss). The plasma kinetic parameters including concentration, pool size, rate of disappearance (R(d)), half-life and turnover rate were determined for 15 amino acids. When corrected for metabolic rate, the R(d) values obtained for trout for most amino acids were largely comparable to human values, with the exception of glutamine (which was lower) and threonine (which was higher). R(d) values ranged from 0.9 μmol 100 g(-1) h(-1) (lysine) to 22.1 μmol 100 g(-1) h(-1) (threonine) with most values falling between 2 and 6 μmol 100 g(-1) h(-1). There was a significant correlation between R(d) and the molar proportion of amino acids in rainbow trout whole body protein hydrolysate. Other kinetic parameters did not correlate significantly with whole body amino acid composition. This indicates that an important design feature of the plasma-free amino acids system involves proportional delivery of amino acids to tissues for protein synthesis.
The origin of amino acids in lunar regolith samples
NASA Astrophysics Data System (ADS)
Elsila, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K.
2016-01-01
We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5-651.1 ppb in 6 M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: α-aminoisobutyric acid (AIB), D- and L-β-amino-n-butyric acid (β-ABA), DL-α-amino-n-butyric acid, γ-amino-n-butyric acid, β-alanine, and ε-amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic β-ABA were present in some samples. We also examined seven samples from Apollo 15, 16, and 17 that had been previously allocated to a non-curation laboratory, as well as two samples of terrestrial dunite from studies of lunar module engine exhaust that had been stored in the same laboratory. The amino acid content of these samples suggested that contamination had occurred during non-curatorial storage. We measured the compound-specific carbon isotopic ratios of glycine, β-alanine, and L-alanine in Apollo regolith sample 70011 and found values of -21‰ to -33‰. These values are consistent with those seen in terrestrial biology and, together with the enantiomeric compositions of the proteinogenic amino acids, suggest that terrestrial biological contamination is a primary source of the amino acids in these samples. However, the presence of the non-proteinogenic amino acids such as AIB and β-ABA suggests the possibility of some contribution from exogenous sources. We did not observe a correlation of amino acid content with proximity to the Apollo 17 lunar module, implying that lunar module exhaust was not a primary source of amino acid precursors. Solar-wind-implanted precursors such as HCN also appear to be at most a minor contributor, given a lack of correlation between amino acid content and soil maturity (as measured by Is/FeO ratio) and the differences between the δ13C values of the amino acids and the solar wind.
Laurieri, Nicola; Dairou, Julien; Egleton, James E.; Stanley, Lesley A.; Russell, Angela J.; Dupret, Jean-Marie; Sim, Edith; Rodrigues-Lima, Fernando
2014-01-01
Acetyl Coenzyme A-dependent N-, O- and N,O-acetylation of aromatic amines and hydrazines by arylamine N-acetyltransferases is well characterised. Here, we describe experiments demonstrating that human arylamine N-acetyltransferase Type 1 and its murine homologue (Type 2) can also catalyse the direct hydrolysis of acetyl Coenzyme A in the presence of folate. This folate-dependent activity is exclusive to these two isoforms; no acetyl Coenzyme A hydrolysis was found when murine arylamine N-acetyltransferase Type 1 or recombinant bacterial arylamine N-acetyltransferases were incubated with folate. Proton nuclear magnetic resonance spectroscopy allowed chemical modifications occurring during the catalytic reaction to be analysed in real time, revealing that the disappearance of acetyl CH 3 from acetyl Coenzyme A occurred concomitantly with the appearance of a CH 3 peak corresponding to that of free acetate and suggesting that folate is not acetylated during the reaction. We propose that folate is a cofactor for this reaction and suggest it as an endogenous function of this widespread enzyme. Furthermore, in silico docking of folate within the active site of human arylamine N-acetyltransferase Type 1 suggests that folate may bind at the enzyme’s active site, and facilitate acetyl Coenzyme A hydrolysis. The evidence presented in this paper adds to our growing understanding of the endogenous roles of human arylamine N-acetyltransferase Type 1 and its mouse homologue and expands the catalytic repertoire of these enzymes, demonstrating that they are by no means just xenobiotic metabolising enzymes but probably also play an important role in cellular metabolism. These data, together with the characterisation of a naphthoquinone inhibitor of folate-dependent acetyl Coenzyme A hydrolysis by human arylamine N-acetyltransferase Type 1/murine arylamine N-acetyltransferase Type 2, open up a range of future avenues of exploration, both for elucidating the developmental role of these enzymes and for improving chemotherapeutic approaches to pathological conditions including estrogen receptor-positive breast cancer. PMID:24823794
Randoux, A; CornilletStoupy, J; Desanti, M; Borel, J P
1976-09-28
Structural glycoproteins have been extracted by 8 M ureau from the insoluble residue remaining after collagenase digestion of rabbit dermis and purified by Sepharose 4 B chromatography. After reduction and alkylation, Dowex 1 x 2 chromatography allowed separation of two structural glycoproteins (D1 and D2) in an homogenous state as shown by chromatographic and electrophoretic behaviour as well as N terminal amino acid determination. These two glycoproteins have a molecular weight of about 16 000. Their amino acid compositions (very similar), are characterized by a high level of dicarboxylic amino acids and the absence of hydroxyproline and hydroxylysine. The less acidic glycoprotein (D1) has glycine for N terminal amino acid and contains 10.4 percent of bound carbohydrates. The glycoprotein D2 contains 5.1 percent of bound carbohydrates and its N terminal amino acid is glutamic acid.
Sychantha, David; Jones, Carys S.; Little, Dustin J.; ...
2017-10-27
The O-acetylation of the essential cell wall polymer peptidoglycan occurs in most Gram-positive bacterial pathogens, including species of Staphylococcus, Streptococcus and Enterococcus. This modification to peptidoglycan protects these pathogens from the lytic action of the lysozymes of innate immunity systems and, as such, is recognized as a virulence factor. The key enzyme involved, peptidoglycan O-acetyltransferase A (OatA) represents a particular challenge to biochemical study since it is a membrane associated protein whose substrate is the insoluble peptidoglycan cell wall polymer. OatA is predicted to be bimodular, being comprised of an N-terminal integral membrane domain linked to a C-terminal extracytoplasmic domain.more » We present herein the first biochemical and kinetic characterization of the C-terminal catalytic domain of OatA from two important human pathogens, Staphylococcus aureus and Streptococcus pneumoniae. Using both pseudosubstrates and novel biosynthetically-prepared peptidoglycan polymers, we characterized distinct substrate specificities for the two enzymes. In addition, the high resolution crystal structure of the C-terminal domain reveals an SGNH/GDSL-like hydrolase fold with a catalytic triad of amino acids but with a non-canonical oxyanion hole structure. Site-specific replacements confirmed the identity of the catalytic and oxyanion hole residues. A model is presented for the O-acetylation of peptidoglycan whereby the translocation of acetyl groups from a cytoplasmic source across the cytoplasmic membrane is catalyzed by the N-terminal domain of OatA for their transfer to peptidoglycan by its C-terminal domain. This study on the structure-function relationship of OatA provides a molecular and mechanistic understanding of this bacterial resistance mechanism opening the prospect for novel chemotherapeutic exploration to enhance innate immunity protection against Gram-positive pathogens.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sychantha, David; Jones, Carys S.; Little, Dustin J.
The O-acetylation of the essential cell wall polymer peptidoglycan occurs in most Gram-positive bacterial pathogens, including species of Staphylococcus, Streptococcus and Enterococcus. This modification to peptidoglycan protects these pathogens from the lytic action of the lysozymes of innate immunity systems and, as such, is recognized as a virulence factor. The key enzyme involved, peptidoglycan O-acetyltransferase A (OatA) represents a particular challenge to biochemical study since it is a membrane associated protein whose substrate is the insoluble peptidoglycan cell wall polymer. OatA is predicted to be bimodular, being comprised of an N-terminal integral membrane domain linked to a C-terminal extracytoplasmic domain.more » We present herein the first biochemical and kinetic characterization of the C-terminal catalytic domain of OatA from two important human pathogens, Staphylococcus aureus and Streptococcus pneumoniae. Using both pseudosubstrates and novel biosynthetically-prepared peptidoglycan polymers, we characterized distinct substrate specificities for the two enzymes. In addition, the high resolution crystal structure of the C-terminal domain reveals an SGNH/GDSL-like hydrolase fold with a catalytic triad of amino acids but with a non-canonical oxyanion hole structure. Site-specific replacements confirmed the identity of the catalytic and oxyanion hole residues. A model is presented for the O-acetylation of peptidoglycan whereby the translocation of acetyl groups from a cytoplasmic source across the cytoplasmic membrane is catalyzed by the N-terminal domain of OatA for their transfer to peptidoglycan by its C-terminal domain. This study on the structure-function relationship of OatA provides a molecular and mechanistic understanding of this bacterial resistance mechanism opening the prospect for novel chemotherapeutic exploration to enhance innate immunity protection against Gram-positive pathogens.« less
Sychantha, David; Jones, Carys S.; Little, Dustin J.; Howell, P. Lynne
2017-01-01
The O-acetylation of the essential cell wall polymer peptidoglycan occurs in most Gram-positive bacterial pathogens, including species of Staphylococcus, Streptococcus and Enterococcus. This modification to peptidoglycan protects these pathogens from the lytic action of the lysozymes of innate immunity systems and, as such, is recognized as a virulence factor. The key enzyme involved, peptidoglycan O-acetyltransferase A (OatA) represents a particular challenge to biochemical study since it is a membrane associated protein whose substrate is the insoluble peptidoglycan cell wall polymer. OatA is predicted to be bimodular, being comprised of an N-terminal integral membrane domain linked to a C-terminal extracytoplasmic domain. We present herein the first biochemical and kinetic characterization of the C-terminal catalytic domain of OatA from two important human pathogens, Staphylococcus aureus and Streptococcus pneumoniae. Using both pseudosubstrates and novel biosynthetically-prepared peptidoglycan polymers, we characterized distinct substrate specificities for the two enzymes. In addition, the high resolution crystal structure of the C-terminal domain reveals an SGNH/GDSL-like hydrolase fold with a catalytic triad of amino acids but with a non-canonical oxyanion hole structure. Site-specific replacements confirmed the identity of the catalytic and oxyanion hole residues. A model is presented for the O-acetylation of peptidoglycan whereby the translocation of acetyl groups from a cytoplasmic source across the cytoplasmic membrane is catalyzed by the N-terminal domain of OatA for their transfer to peptidoglycan by its C-terminal domain. This study on the structure-function relationship of OatA provides a molecular and mechanistic understanding of this bacterial resistance mechanism opening the prospect for novel chemotherapeutic exploration to enhance innate immunity protection against Gram-positive pathogens. PMID:29077761
Effects of alkali or acid treatment on the isomerization of amino acids.
Ohmori, Taketo; Mutaguchi, Yuta; Doi, Katsumi; Ohshima, Toshihisa
2012-10-01
The effect of alkali treatment on the isomerization of amino acids was investigated. The 100×D/(D+L) values of amino acids from peptide increased with increase in the number of constituent amino acid residues. Furthermore, the N-terminal amino acid of a dipeptide was isomerized to a greater extent than the C-terminal residue. Copyright © 2012. Published by Elsevier B.V.
Elfarra, A A; Hwang, I Y
1996-01-01
The stability of S-(purin-6-yl)-L-cysteine (SPC), a kidney-selective prodrug of 6-mercaptopurine and a putative metabolite of 6-chloropurine, was investigated under various pH and temperature conditions. At room temperature, the half-life (t 1/2) of SPC at either highly acidic (pH 3.6) or basic conditions (pH 9.6) was longer than at neutral or slightly acidic or basic conditions (pH 5.7-8.75). The primary degradation product, N-(purin-6-yl)-L-cysteine (NPC), was isolated using Sephadex LH-20 chromatography and characterized by 1H NMR and FAB/MS after derivatization with 2-iodoacetic acid. These results reveal novel stability requirements and implicate the cysteinyl amino group and the purinyl N-1 nitrogen in the mechanism of SPC rearrangement to NPC. Further evidence for this hypothesis was provided by the findings that the stability of SPC in phosphate buffer (pH 7.4) at 37 degrees C was similar to that of S-(guanin-6-yl)-L-cysteine, whereas S-(purin-6-yl)-N-acetyl-L-cysteine and S-(purin-6-yl)glutathione which have their cysteine amino groups blocked were much more stable than SPC. S-(Purin-6-yl)-L-homocysteine (SPHC) was also more stable than SPC, possibly because the formation of a 6-membered ring transition state as would be expected with SPHC is kinetically less favored than the formation of a 5-membered ring transition state as would be expected with SPC. These results may explain previous in vivo metabolism results of SPC and its analogs and may contribute to a better understanding of stability of structurally related cysteine S-conjugates.
Activity and structure of human acetyl-CoA carboxylase targeted by a specific inhibitor.
Jang, SoRi; Gornicki, Piotr; Marjanovic, Jasmina; Bass, Ethan; Lurcotta, Toni; Rodriguez, Pedro; Austin, Jotham; Haselkorn, Robert
2018-05-17
We have studied a series of human acetyl CoA-carboxylase (ACC) 1 and ACC2 proteins with deletions and/or Ser to Ala substitutions of the known phosphorylation sites. In vitro dephosphorylation/phosphorylation experiments reveal a substantial level of phosphorylation of human ACCs produced in insect cells. Our results are consistent with AMPK phosphorylation of Ser 29, Ser 80 , Ser 1,201 and Ser 1,216 . Phosphorylation of the N-terminal regulatory domain decreases ACC1 activity, while phosphorylation of residues in the ACC central domain has no effect. Inhibition of the activity by phosphorylation is significantly more profound at citrate concentrations below 2 mM. Furthermore, deletion of the N-terminal domain facilitates structural changes induced by citrate, including conversion of ACC dimers to linear polymers. We have also identified ACC2 amino acid mutations affecting specific inhibition of the isozyme by compound CD-017-0191. They form two clusters separated by 60-90 Å: one located in the vicinity of the BC active site and the other one in the vicinity of the ACC1 phosphorylation sites in the central domain, suggesting a contribution of the interface of two ACC dimers in the polymer to the inhibitor binding site. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Eşrefoğlu, Mukaddes; Gül, Mehmet; Ateş, Burhan; Batçıoğlu, Kadir; Selimoğlu, Mukadder Ayşe
2006-01-01
AIM: To investigate the role of oxidative injury in pancreatitis-induced hepatic damage and the effect of antioxidant agents such as melatonin, ascorbic acid and N-acetyl cysteine on caerulein-induced pancreatitis and associated liver injury in rats. METHODS: Thirty-eight female Wistar rats were used. Acute pancreatitis (AP) was induced by two i.p. injections of caerulein at 2-h intervals (at a total dose of 100 µg/kg b.wt). The other two groups received additional melatonin (20 mg/kg b.wt) or an antioxidant mixture containing L(+)-ascorbic acid (14.3 mg/kb.wt.) and N-acetyl cysteine (181 mg/kg b.wt.) i.p. shortly before each injection of caerulein. The rats were sacrificed by decapitation 12 h after the last injection of caerulein. Pancreatic and hepatic oxidative stress markers were evaluated by changes in the amount of lipid peroxides measured as malondialdehyde (MDA) and changes in tissue antioxidant enzyme levels, catalase (CAT) and glutathione peroxidase (GPx). Histopathological examination was performed using scoring systems. RESULTS: The degree of hepatic cell degeneration, intracellular vacuolization, vascular congestion, sinusoidal dilatation and inflammatory infiltration showed a significant difference between caerulein and caerulein + melatonin (P = 0.001), and careulein and caerulein + L(+)-ascorbic acid + N-acetyl cysteine groups (P = 0.002). The degree of aciner cell degeneration, pancreatic edema, intracellular vacuolization and inflammatory infiltration showed a significant difference between caerulein and caerulein + melatonin (P = 0.004), and careulein and caerulein + L(+)-ascorbic acid + N-acetyl cysteine groups (P = 0.002). Caerulein-induced pancreatic and liver damage was accompanied with a significant increase in tissue MDA levels (P = 0.01, P = 0.003, respectively) whereas a significant decrease in CAT (P = 0.002, P = 0.003, respectively) and GPx activities (P = 0.002, P = 0.03, respectively). Melatonin and L(+)-ascorbic acid + N-acetyl cysteine administration significantly decreased MDA levels in pancreas (P = 0.03, P = 0.002, respectively) and liver (P = 0.007, P = 0.01, respectively). Administration of these agents increased pancreatic and hepatic CAT and GPx activities. Melatonin significantly increased pancreatic and hepatic CAT (P = 0.002, P = 0.001, respectively) and GPx activities (P = 0.002, P = 0.001). Additionally, L(+)-ascorbic acid+N-acetyl cysteine significantly increased pancreatic GPx (P = 0.002) and hepatic CAT and GPx activities (P = 0.001, P = 0.007, respectively) CONCLUSION: Oxidative injury plays an important role not only in the pathogenesis of AP but also in pancreatitis-induced hepatic damage. Antioxidant agents such as melatonin and ascorbic acid + N-acetyl cysteine, are capable of limiting pancreatic and hepatic damage produced during AP via restoring tissue antioxidant enzyme activities. PMID:16482627
In vivo contribution of amino acid sulfur to cartilage proteoglycan sulfation
Pecora, Fabio; Gualeni, Benedetta; Forlino, Antonella; Superti-Furga, Andrea; Tenni, Ruggero; Cetta, Giuseppe; Rossi, Antonio
2006-01-01
Cytoplasmic sulfate for sulfation reactions may be derived either from extracellular fluids or from catabolism of sulfur-containing amino acids and other thiols. In vitro studies have pointed out the potential relevance of sulfur-containing amino acids as sources for sulfation when extracellular sulfate concentration is low or when its transport is impaired such as in DTDST [DTD (diastrophic dysplasia) sulfate transporter] chondrodysplasias. In the present study, we have considered the contribution of cysteine and cysteine derivatives to in vivo macromolecular sulfation of cartilage by using the mouse model of DTD we have recently generated [Forlino, Piazza, Tiveron, Della Torre, Tatangelo, Bonafe, Gualeni, Romano, Pecora, Superti-Furga et al. (2005) Hum. Mol. Genet. 14, 859–871]. By intraperitoneal injection of [35S]cysteine in wild-type and mutant mice and determination of the specific activity of the chondroitin 4-sulfated disaccharide in cartilage, we demonstrated that the pathway by which sulfate is recruited from the intracellular oxidation of thiols is active in vivo. To check whether cysteine derivatives play a role, sulfation of cartilage proteoglycans was measured after treatment for 1 week of newborn mutant and wild-type mice with hypodermic NAC (N-acetyl-L-cysteine). The relative amount of sulfated disaccharides increased in mutant mice treated with NAC compared with the placebo group, indicating an increase in proteoglycan sulfation due to NAC catabolism, although pharmacokinetic studies demonstrated that the drug was rapidly removed from the bloodstream. In conclusion, cysteine contribution to cartilage proteoglycan sulfation in vivo is minimal under physiological conditions even if extracellular sulfate availability is low; however, the contribution of thiols to sulfation becomes significant by increasing their plasma concentration. PMID:16719839
Biosynthesis of mercapturic acids from allyl alcohol, allyl esters and acrolein
Kaye, Clive M.
1973-01-01
1. 3-Hydroxypropylmercapturic acid, i.e. N-acetyl-S-(3-hydroxypropyl)-l-cysteine, was isolated, as its dicyclohexylammonium salt, from the urine of rats after the subcutaneous injection of each of the following compounds: allyl alcohol, allyl formate, allyl propionate, allyl nitrate, acrolein and S-(3-hydroxypropyl)-l-cysteine. 2. Allylmercapturic acid, i.e. N-acetyl-S-allyl-l-cysteine, was isolated from the urine of rats after the subcutaneous injection of each of the following compounds: triallyl phosphate, sodium allyl sulphate and allyl nitrate. The sulphoxide of allylmercapturic acid was detected in the urine excreted by these rats. 3. 3-Hydroxypropylmercapturic acid was identified by g.l.c. as a metabolite of allyl acetate, allyl stearate, allyl benzoate, diallyl phthalate, allyl nitrite, triallyl phosphate and sodium allyl sulphate. 4. S-(3-Hydroxypropyl)-l-cysteine was detected in the bile of a rat dosed with allyl acetate. PMID:4762754
Ridley, R G; Patel, H V; Gerber, G E; Morton, R C; Freeman, K B
1986-01-01
A cDNA clone spanning the entire amino acid sequence of the nuclear-encoded uncoupling protein of rat brown adipose tissue mitochondria has been isolated and sequenced. With the exception of the N-terminal methionine the deduced N-terminus of the newly synthesized uncoupling protein is identical to the N-terminal 30 amino acids of the native uncoupling protein as determined by protein sequencing. This proves that the protein contains no N-terminal mitochondrial targeting prepiece and that a targeting region must reside within the amino acid sequence of the mature protein. Images PMID:3012461
Chamarro, J; Ostin, A; Sandberg, G
2001-05-01
[5-3H, 1'-14C, 13C6, 12C] Indole-3-acetic acid (IAA), was applied to the flavedo (epicarp) of intact orange fruits at different stages of development. After incubation in the dark, at 25 degrees C, the tissue was extracted with MeOH and the partially purified extracts were analyzed by reversed phase HPLC-RC. Six major metabolite peaks were detected and subsequently analyzed by combined HPLC-frit-FAB MS. The metabolite peak 6 contained oxindole-3-acetic acid (OxIAA), indole-3-acetyl-N-aspartic acid (IAAsp) and also indole-3-acetyl-N-glutamic acid (IAGlu). The nature of metabolite 5 remains unknown. Metabolites 3 and 4 were diastereomers of oxindole-3-acetyl-N-aspartic acid (OxIAAsp). Metabolite 2 was identified as dioxindole-3-acetic acid and metabolite 1 as a DiOx-IAA linked in position three to a hexose, which is suggested to be 3-(-O-beta-glucosyl) dioxindole-3-acetic acid (DiOxIAGlc). Identification work as well as feeding experiments with the [5-3H]IAA labeled metabolites suggest that IAA is metabolized in flavedo tissue mainly through two pathways, namely IAA-OxIAA-DiOxIAA-DiOxIAGlc and IAA-IAAsp-OxIAAsp. The flavedo of citrus fruit has a high capacity for IAA catabolism until the beginning of fruit senescence, with the major route having DiOxIAGlc as end product. This capacity is operative even at high IAA concentrations and is accelerated by pretreatment with the synthetic auxins 2,4-D, NAA and the gibberellin GA3.
Shiozaki, Hiroki; Miyahara, Masayoshi; Otsuka, Kazunori; Miyako, Kei; Honda, Akito; Takasaki, Yuichi; Takamizawa, Satoshi; Tukada, Hideyuki; Ishikawa, Yuichi; Sakai, Ryuichi; Oikawa, Masato
2018-05-23
A synthetic strategy for accessing protoaculeine B (1), the N-terminal amino acid of the highly modified peptide toxin aculeine, was developed via the synthesis of the fully protected natural homologue of 1 with a 12-mer poly(propanediamine). The synthesis of mono(propanediamine) analog 2, as well as core amino acid 3, was demonstrated by this strategy. New amino acid 3 induced convulsions in mice; however, compound 2 showed no such activity.
2009-07-01
that pathogenic TSC1 amino acid changes are clustered to a conserved ~300 amino acid region close to the N-terminal of the protein . These substitutions ...Genet. (2009) 18 2378-2387. 15. Ng PC and Henikoff S. Predicting the effects of amino acid substitutions on protein function. Annu. Rev...amino acid substitutions in the N-terminal region of TSC1 that result in reduced steady state levels of the protein and lead to increased mTOR
4-Aza-1-azoniabicyclo[2.2.2]octane–2-aminobenzoate–2-aminobenzoic acid (1/1/1)
Arman, Hadi D.; Kaulgud, Trupta; Tiekink, Edward R. T.
2011-01-01
A 4-aza-1-azoniabicyclo[2.2.2]octane cation, a 2-aminobenzoate anion and a neutral 2-aminobenzoic acid molecule comprise the asymmetric unit of the title compound, C6H13N2 +·C7H6NO2 −·C7H7NO2. An intramolecular N—H⋯O hydrogen bond occurs in the anion and in the neutral 2-aminobenzoic acid molecule. The cation provides a charge-assisted N—H⋯O hydrogen bond to the anion, and the 2-aminobenzoic acid molecule forms an O—H⋯N hydrogen bond to the unprotonated amino N atom in the cation. In this way, a three-component aggregate is formed. These are connected into a three-dimensional network by amino–carboxylate N—H⋯O hydrogen bonds. N—H⋯N hydrogen bonds are also observed. PMID:22219964
Echinococcus granulosus: specificity of amino acid transport systems in protoscoleces.
Jeffs, S A; Arme, C
1987-08-01
Protoscoleces of Echinococcus granulosus absorb the L-amino acids proline, methionine, leucine, alanine, serine, phenylalanine, lysine and glutamic acid by a combination of mediated transport and diffusion. All eight amino acids were accumulated against a concentration gradient. Comparison of Kt and Vmax values suggests that a low affinity for a particular compound is compensated for by a relatively larger number of transport sites for that compound. Four systems serve for the transport of the eight substrates studied: 2 for neutral (EgN1, EgN2) and 1 each for acidic (EgA) and basic (EgB) amino acids. All eight amino acids are incorporated into protein to varying degrees and substantial portions of absorbed L-alanine and L-methionine are metabolized into other compounds.
NASA Astrophysics Data System (ADS)
Gao, Fei; Xu, Qiang; Yang, Hongsheng
2011-03-01
Seasonal Variation in proximate, amino acid and fatty acid composition of the body wall of sea cucumber Apostichopus japonicus was evaluated. The proximate composition, except for ash content, changed significantly among seasons ( P<0.05). Alanine, glycine, glutamic acid and asparagic acid were the most abundant amino acids. Total amino acid and essential amino acid Contents both varied clearly with seasons ( P<0.05). 16:0 and 16:ln7 were the primary saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) respectively for all months. EPA (20:5n-3), AA (20:4n-6) and DHA (22:6n-3) were the major polyunsaturated fatty acids (PUFA). The proportions of SFA and PUFA yielded significant seasonal variations ( P<0.001), but MUFA did not changed significantly. The results indicated that the biochemical compositions of the body wall in A. japonicus were significantly influenced by seasons and that the body wall tissue is an excellent source of protein, MUFA and n-3 PUFA for humans.
Design and synthesis of unnatural heparosan and chondroitin building blocks
Bera, Smritilekha; Linhardt, Robert J.
2011-01-01
Triazole linked heparosan and chondroitin disaccharide and tetrasaccharide building blocks were synthesized in a stereoselective manner by applying a very efficient Copper Catalyzed Azide-Alkyne Cycloadditions (CuAAC) reaction of appropriately substituted azido-glucuronic acid and propargyluted N-acetyl glucosamine and N-acetyl galactosamine derivative respectively. The resulting suitably substituted tetrasaccharide analogs can be easily converted into azide and alkyne unit for further synthesis of higher oligosaccharide analogs. PMID:21438620
Distribution, industrial applications, and enzymatic synthesis of D-amino acids.
Gao, Xiuzhen; Ma, Qinyuan; Zhu, Hailiang
2015-04-01
D-Amino acids exist widely in microbes, plants, animals, and food and can be applied in pharmaceutical, food, and cosmetics. Because of their widespread applications in industry, D-amino acids have recently received more and more attention. Enzymes including D-hydantoinase, N-acyl-D-amino acid amidohydrolase, D-amino acid amidase, D-aminopeptidase, D-peptidase, L-amino acid oxidase, D-amino acid aminotransferase, and D-amino acid dehydrogenase can be used for D-amino acids synthesis by kinetic resolution or asymmetric amination. In this review, the distribution, industrial applications, and enzymatic synthesis methods are summarized. And, among all the current enzymatic methods, D-amino acid dehydrogenase method not only produces D-amino acid by a one-step reaction but also takes environment and atom economics into consideration; therefore, it is deserved to be paid more attention.
Liu, Zhongfa; Minkler, Paul E; Lin, De; Sayre, Lawrence M
2004-01-01
Derivatization, separation and identification of amino acids with a novel compound, N,N-dimethyl-2,4-dinitro-5-fluorobenzylamine (DMDNFB), using high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) was demonstrated. Compared to derivatization with 2,4-dinitrofluorobenzene (DNFB), DMDNFB-derivatized amino acids and dipeptides exhibit much larger ion current signals in the commonly used ESI positive mode, which was attributed to the introduction of the N,N-dimethylaminomethyl protonatable site. Copyright 2004 John Wiley & Sons, Ltd.
Nonprotein amino acids from seeds of Cycas circinalis and Phaseolus vulgaris.
Li, C J; Brownson, D M; Mabry, T J; Perera, C; Bell, E A
1996-05-01
Our chemical studies on Cycas circinalis seeds from Guam has provided two new nonprotein amino acids, N-(3'-one-5'-methyl)-hexylalanine and leucine betaine. N-methylisoleucine, previously reported as a component of naturally occurring peptides, has been isolated as a free amino acid from the seeds of Phaseolus vulgaris (pinto bean), together with S-methylcysteine, pipecolic acid and a dipeptide, gamma-glutamyl-leucine.
Amino acids in the Yamato carbonaceous chrondrite from Antarctica
NASA Technical Reports Server (NTRS)
Shimoyama, A.; Ponnamperuma, C.; Yanai, K.
1979-01-01
Evidence for the presence of amino acids of extraterrestrial origin in the Antarctic Yamato carbonaceous chrondrite is presented. Hydrolyzed and nonhydrolyzed water-extracted amino acid samples from exterior, middle and interior portions of the meteorite were analyzed by an amino acid analyzer and by gas chromatography of N-TFA-isopropyl amino acid derivatives. Nine protein and six nonprotein amino acids were detected in the meteorite at abundances between 34 and less than one nmole/g, with equal amounts in interior and exterior portions. Nearly equal abundances of the D and L enantiomers of alanine, aspartic acid and glutamic acid were found, indicating the abiotic, therefore extraterrestrial, origin of the amino acids. The Antarctic environment and the uniformity of protein amino acid abundances are discussed as evidence against the racemization of terrestrially acquired amino acids, and similarities between Yamato amino acid compositions and the amino acid compositions of the Murchison and Murray type II carbonaceous chrondrites are indicated.
Effect of the quality of dietary amino acids composition on the urea synthesis in rats.
Tujioka, Kazuyo; Ohsumi, Miho; Hayase, Kazutoshi; Yokogoshi, Hidehiko
2011-01-01
We have shown that urinary urea excretion increased in rats given a lower quality protein. The purpose of present study was to determine whether the composition of dietary amino acids affects urea synthesis. Experiments were done on three groups of rats given diets containing a 10% gluten amino acid mix diet or 10% casein amino acid mix diet or 10% whole egg protein amino acids mix diet for 10 d. The urinary excretion of urea, the liver concentration of N-acetylglutamate, and the liver concentration of free serine, glutamic acids and alanine were greater in the group given the amino acid mix diet of lower quality. The fractional and absolute rates of protein synthesis in tissues declined with a decrease in quality of dietary amino acids. The hepatic concentration of ornithine and the activities of hepatic urea-cycle enzymes were not related to the urea excretion. These results suggest that the increased concentrations of amino acids and N-acetylglutamate seen in the liver of rats given the amino acid mix diets of lower quality are likely among the factors stimulating urea synthesis. The protein synthesis in tissues is at least partly related to hepatic concentrations of amino acids. The composition of dietary amino acids is likely to be one of the factors regulating urea synthesis when the quality of dietary protein is manipulated.
Acquisition and Assimilation of Nitrogen as Peptide-Bound and D-Enantiomers of Amino Acids by Wheat
Hill, Paul W.; Quilliam, Richard S.; DeLuca, Thomas H.; Farrar, John; Farrell, Mark; Roberts, Paula; Newsham, Kevin K.; Hopkins, David W.; Bardgett, Richard D.; Jones, David L.
2011-01-01
Nitrogen is a key regulator of primary productivity in many terrestrial ecosystems. Historically, only inorganic N (NH4 + and NO3 -) and L-amino acids have been considered to be important to the N nutrition of terrestrial plants. However, amino acids are also present in soil as small peptides and in D-enantiomeric form. We compared the uptake and assimilation of N as free amino acid and short homopeptide in both L- and D-enantiomeric forms. Sterile roots of wheat (Triticum aestivum L.) plants were exposed to solutions containing either 14C-labelled L-alanine, D-alanine, L-trialanine or D-trialanine at a concentration likely to be found in soil solution (10 µM). Over 5 h, plants took up L-alanine, D-alanine and L-trialanine at rates of 0.9±0.3, 0.3±0.06 and 0.3±0.04 µmol g−1 root DW h−1, respectively. The rate of N uptake as L-trialanine was the same as that as L-alanine. Plants lost ca.60% of amino acid C taken up in respiration, regardless of the enantiomeric form, but more (ca.80%) of the L-trialanine C than amino acid C was respired. When supplied in solutions of mixed N form, N uptake as D-alanine was ca.5-fold faster than as NO3 -, but slower than as L-alanine, L-trialanine and NH4 +. Plants showed a limited capacity to take up D-trialanine (0.04±0.03 µmol g−1 root DW h−1), but did not appear to be able to metabolise it. We conclude that wheat is able to utilise L-peptide and D-amino acid N at rates comparable to those of N forms of acknowledged importance, namely L-amino acids and inorganic N. This is true even when solutes are supplied at realistic soil concentrations and when other forms of N are available. We suggest that it may be necessary to reconsider which forms of soil N are important in the terrestrial N cycle. PMID:21541281
NASA Astrophysics Data System (ADS)
Elsila, Jamie E.; Charnley, Steven B.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.
2012-09-01
Stable hydrogen, carbon, and nitrogen isotopic ratios (δD, δ13C, and δ15N) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound-specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1/2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CR2 Graves Nunataks (GRA) 95229, CR2 Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing δ13C and increasing δD with increasing carbon number in the α-H, α-NH2 amino acids that correspond to predictions made for formation via Strecker-cyanohydrin synthesis. We also observe light δ13C signatures for β-alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight-chain, amine-terminal amino acids (n-ω-amino acids). Higher deuterium enrichments are observed in α-methyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than in CM chondrites, reflecting different parent-body chemistry.
NASA Technical Reports Server (NTRS)
Song, W.; Welti, R.; Hafner-Strauss, S.; Rintoul, D. A.; Spooner, B. S. (Principal Investigator)
1993-01-01
A specific plasma membrane glycosphingolipid, known as ganglioside GM3, can regulate the intrinsic tyrosyl kinase activity of the epidermal growth factor (EGF) receptor; this modulation is not associated with alterations in hormone binding to the receptor. GM3 inhibits EGF receptor tyrosyl kinase activity in detergent micelles, in plasma membrane vesicles, and in whole cells. In addition, immunoaffinity-purified EGF receptor preparations contain ganglioside GM3 (Hanai et al. (1988) J. Biol. Chem. 263, 10915-10921), implying that the glycosphingolipid is intimately associated with the receptor kinase in cell membranes. Both the nature of this association and the molecular mechanism of kinase inhibition remain to be elucidated. In this report, we describe the synthesis of a fluorescent analog of ganglioside GM3, in which the native fatty acid was replaced with trans-parinaric acid. This glycosphingolipid inhibited the receptor kinase activity in a manner similar to that of the native ganglioside. A modified fluorescent glycosphingolipid, N-trans-parinaroyl de-N-acetyl ganglioside GM3, was also prepared. This analog, like the nonfluorescent de-N-acetyl ganglioside GM3, had no effect on receptor kinase activity. Results from tryptophan fluorescence quenching and steady-state anisotropy measurements in membranes containing these fluorescent probes and the human EGF receptor were consistent with the notion that GM3, but not de-N-acetyl GM3, interacts specifically with the receptor in intact membranes.
Inagaki, M; Shibai, M; Isobe, R; Higuchi, R
2001-12-01
Three ganglioside molecular species, OSG-0 (1), OSG-1 (2), and OSG-2 (3) have been obtained from the polar lipid fraction of the chloroform/methanol extract of the brittle star Ophiocoma scolopendrina. The structures of these gangliosides have been determined on the basis of chemical and spectroscopic evidence as 1-O-[(N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (1), 1-O-[8-O-sulfo-(N-acetyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyll-ceramide (2) and 1-O-[(N-glycolyl-alpha-D-neuraminosyl)-(2-->8)-(N-acetyl- and N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (3). The ceramide moieties were composed of heterogeneous unsubstituted fatty acid, 2-hydroxy fatty acid and phytosphingosine units. Compounds 2 and 3 represent new ganglioside molecular species.
De Poli, Matteo; De Zotti, Marta; Raftery, James; Aguilar, Juan A; Morris, Gareth A; Clayden, Jonathan
2013-03-15
Oligomers of the achiral amino acid Aib adopt helical conformations in which the screw-sense may be controlled by a single N-terminal residue. Using crystallographic and NMR techniques, we show that the left- or right-handed sense of helical induction arises from the nature of the β-turn at the N terminus: the tertiary amino acid L-Val induces a left-handed type II β-turn in both the solid state and in solution, while the corresponding quaternary amino acid L-α-methylvaline induces a right-handed type III β-turn.
Genetic diversity of HA1 domain of heammaglutinin gene of influenza A(H1N1)pdm09 in Tunisia
2013-01-01
We present major results concerning isolation and determination of the nucleotide sequence of hemagglutinin (HA1) of the pandemic (H1N1)pdm09 influenza viruses found in Tunisia. Amino acid analysis revealed minor amino acid changes in the antigenic or receptor-binding domains. We found mutations that were also present in 1918 pandemic virus, which includes S183P in 4 and S185T mutation in 19 of 27 viruses analyzed from 2011, while none of the 2009 viruses carried these mutations. Also two specific amino acid differences into N-glycosylation sites (N288T and N276H) were detected. The phylogenetic analysis revealed that the majority of the Tunisian isolates clustered with clade A/St. Petersburg/27/2011 viruses characterized by D97N and S185T mutations. However it also reveals a trend of 2010 strains to accumulate amino acid variation and form new phylogenetic clade with three specific amino acid substitutions: V47I, E172K and K308E. PMID:23679923
Zemanová, Veronika; Pavlík, Milan; Pavlíková, Daniela
2017-01-01
Cadmium (Cd) toxicity affects numerous metabolic processes in plants. In the presence of Cd, plants accumulate specific amino acids which may be beneficial to developing Cd tolerance. Our study aimed to characterize the changes in the metabolism of selected free amino acids that are associated with Cd tolerance, and investigate the levels of selected microelements in order to relate these changes to the adaptation strategies of two metallophytes—Noccaea caerulescens (Redlschlag, Austria) and Noccaea praecox (Mežica, Slovenia). The plants were exposed to Cd contamination (90 mg Cd/kg soil) for 120 days in a pot experiment. Our results showed higher Cd accumulation in N. praecox compared to N. caerulescens. Cadmium contamination reduced the zinc and nickel levels in both species and a mixed effect was determined for copper and manganese content. Differences in free amino acid metabolism were observed between the two metallophytes growing under Cd-free and Cd-loaded conditions. Under Cd-free conditions, aromatic amino acids (phenylalanine, tryptophan and tyrosine) and branched-chain amino acids (leucine, isoleucine and valine) were accumulated more in the leaves of N. praecox than in N. caerulescens. Cd stress increased the content of these amino acids in both species but this increase was significant only in N. caerulescens leaves. Marked differences in the responses of the two species to Cd stress were shown for alanine, phenylalanine, threonine and sarcosine. Cadmium contamination also induced an increase of threonine as alanine and sarcosine decrease, which was larger in N. caerulescens than in N. praecox. All these factors contribute to the higher adaptation of N. praecox to Cd stress. PMID:28542385
Zemanová, Veronika; Pavlík, Milan; Pavlíková, Daniela
2017-01-01
Cadmium (Cd) toxicity affects numerous metabolic processes in plants. In the presence of Cd, plants accumulate specific amino acids which may be beneficial to developing Cd tolerance. Our study aimed to characterize the changes in the metabolism of selected free amino acids that are associated with Cd tolerance, and investigate the levels of selected microelements in order to relate these changes to the adaptation strategies of two metallophytes-Noccaea caerulescens (Redlschlag, Austria) and Noccaea praecox (Mežica, Slovenia). The plants were exposed to Cd contamination (90 mg Cd/kg soil) for 120 days in a pot experiment. Our results showed higher Cd accumulation in N. praecox compared to N. caerulescens. Cadmium contamination reduced the zinc and nickel levels in both species and a mixed effect was determined for copper and manganese content. Differences in free amino acid metabolism were observed between the two metallophytes growing under Cd-free and Cd-loaded conditions. Under Cd-free conditions, aromatic amino acids (phenylalanine, tryptophan and tyrosine) and branched-chain amino acids (leucine, isoleucine and valine) were accumulated more in the leaves of N. praecox than in N. caerulescens. Cd stress increased the content of these amino acids in both species but this increase was significant only in N. caerulescens leaves. Marked differences in the responses of the two species to Cd stress were shown for alanine, phenylalanine, threonine and sarcosine. Cadmium contamination also induced an increase of threonine as alanine and sarcosine decrease, which was larger in N. caerulescens than in N. praecox. All these factors contribute to the higher adaptation of N. praecox to Cd stress.
Banda, Kalyan; Gregg, Christopher J; Chow, Renee; Varki, Nissi M; Varki, Ajit
2012-08-17
Although N-acetyl groups are common in nature, N-glycolyl groups are rare. Mammals express two major sialic acids, N-acetylneuraminic acid and N-glycolylneuraminic acid (Neu5Gc). Although humans cannot produce Neu5Gc, it is detected in the epithelial lining of hollow organs, endothelial lining of the vasculature, fetal tissues, and carcinomas. This unexpected expression is hypothesized to result via metabolic incorporation of Neu5Gc from mammalian foods. This accumulation has relevance for diseases associated with such nutrients, via interaction with Neu5Gc-specific antibodies. Little is known about how ingested sialic acids in general and Neu5Gc in particular are metabolized in the gastrointestinal tract. We studied the gastrointestinal and systemic fate of Neu5Gc-containing glycoproteins (Neu5Gc-glycoproteins) or free Neu5Gc in the Neu5Gc-free Cmah(-/-) mouse model. Ingested free Neu5Gc showed rapid absorption into the circulation and urinary excretion. In contrast, ingestion of Neu5Gc-glycoproteins led to Neu5Gc incorporation into the small intestinal wall, appearance in circulation at a steady-state level for several hours, and metabolic incorporation into multiple peripheral tissue glycoproteins and glycolipids, thus conclusively proving that Neu5Gc can be metabolically incorporated from food. Feeding Neu5Gc-glycoproteins but not free Neu5Gc mimics the human condition, causing tissue incorporation into human-like sites in Cmah(-/-) fetal and adult tissues, as well as developing tumors. Thus, glycoproteins containing glycosidically linked Neu5Gc are the likely dietary source for human tissue accumulation, and not the free monosaccharide. This human-like model can be used to elucidate specific mechanisms of Neu5Gc delivery from the gut to tissues, as well as general mechanisms of metabolism of ingested sialic acids.
A review of the design and modification of lactoferricins and their derivatives.
Hao, Ya; Yang, Na; Teng, Da; Wang, Xiumin; Mao, Ruoyu; Wang, Jianhua
2018-06-01
Lactoferricin (Lfcin), a multifunction short peptide with a length of 25 residues, is derived from the whey protein lactoferrin by acidic pepsin hydrolysis. It has potent nutritional enhancement, antimicrobial, anticancer, antiviral, antiparasitic, and anti-inflammatory activities. This review describes the research advantages of the above biological functions, with attention to the molecular design and modification of Lfcin. In this examination of design and modification studies, research on the identification of Lfcin active derivatives and crucial amino acid residues is also reviewed. Many strategies for Lfcin optimization have been studied in recent decades, but we mainly introduce chemical modification, cyclization, chimera and polymerization of this peptide. Modifications such as incorporation of D-amino acids, acetylation and/or amidation could effectively improve the activity and stability of these compounds. Due to their wide array of bio-functions and applications, Lfcins have great potential to be developed as biological agents with multiple functions involved with nutritional enhancement, as well as disease preventive and therapeutic effects.
Pseudoephedrine-Directed Asymmetric α-Arylation of α-Amino Acid Derivatives.
Atkinson, Rachel C; Fernández-Nieto, Fernando; Mas Roselló, Josep; Clayden, Jonathan
2015-07-27
Available α-amino acids undergo arylation at their α position in an enantioselective manner on treatment with base of N'-aryl urea derivatives ligated to pseudoephedrine as a chiral auxiliary. In situ silylation and enolization induces diastereoselective migration of the N'-aryl group to the α position of the amino acid, followed by ring closure to a hydantoin with concomitant explulsion of the recyclable auxiliary. The hydrolysis of the hydantoin products provides derivatives of quaternary amino acids. The arylation avoids the use of heavy-metal additives, and is successful with a range of amino acids and with aryl rings of varying electronic character. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Billaud, C; Maraschin, C; Peyrat-Maillard, M-N; Nicolas, J
2005-06-01
Some thiol-derived Maillard reaction products (MRPs) may exert antioxidant activity, depending on the reaction conditions as well as on the sugar and the sulphydryl compound. Recently, we reported that MRPs derived from glucose or fructose with cysteine (CSH) or glutathione (GSH) mixtures greatly inhibited polyphenoloxidases (PPOs), oxidoreductases responsible for discoloration of fresh or minimally processed fruits and vegetables. Glucose and GSH were shown to be the most active in producing inhibitory MRPs. Therefore, we examined the way in which the nature of the reactants affected their synthesis, in order to establish a structure-activity relationship for the inhibitory products. Various aqueous (0.083 M, 0.125 M, or 0.25 M) mixtures of a sugar (hexose, pentose, or diholoside) with either a CSH-related compound (CSH, GSH, N-acetyl-cysteine, cysteamine, cysteic acid, methyl-cysteine, cysteine methyl ester), an amino acid (gamma-glutamic acid, glycine, methionine), or other sulfur compound (thiourea, 1,4-dithiothreitol, 2-mercaptoethanol) were heated at 103 degrees C for 14 h. Soluble MRPs were compared for their ability to inhibit apple PPO activity. In the presence of CSH, the rated sugars (same molar concentration) ranked as to inhibitory effect were pentoses > sucrose > hexoses > or = maltose. In the presence of glucose, the simultaneous presence of an amino group, a carboxyl group, and a free thiol group on the same molecule seemed essential for the production of highly inhibitory compounds.
Polypeptide having an amino acid replaced with N-benzylglycine
Mitchell, Alexander R.; Young, Janis D.
1996-01-01
The present invention relates to one or more polypeptides having useful biological activity in a mammal, which comprise: a polypeptide related to bradykinin of four to ten amino acid residues wherein one or more specific amino acids in the polypeptide chain are replaced with achiral N-benzylglycine. These polypeptide analogues have useful potent agonist or antagonist pharmacological properties depending upon the structure. A preferred polypeptide is (N-benzylglycine.sup.7)-bradykinin.
Zhang, Yifan; Zhang, Shenghui; Marin-Valencia, Isaac; Puchowicz, Michelle A.
2014-01-01
The mechanistic link of ketosis to neuroprotection under certain pathological conditions continues to be explored. We investigated whether chronic ketosis induced by ketogenic diet results in the partitioning of ketone bodies towards oxidative metabolism in brain. We hypothesized that diet-induced ketosis results in increased shunting of ketone bodies towards citric acid cycle (CAC) and amino acids with decreased carbon shunting from glucose. Rats were fed standard (STD) or ketogenic (KG) diets for 3.5 weeks and then infused with [U-13C]glucose or [U-13C]acetoacetate tracers. Concentrations and 13C-labeling pattern of CAC intermediates and amino acids were analyzed from brain homogenates using stable isotopomer mass spectrometry analysis. The contribution of [U-13C]glucose to acetyl-CoA and amino acids decreased by ~30% in the KG group vs STD, whereas [U-13C]acetoacetate contributions were more than 2-fold higher. The concentration of GABA remained constant across all groups; however, the 13C-labeling of GABA was markedly increased in the KG group infused with [U-13C]acetoacetate compared to STD. This study reveals that there is a significant contribution of ketone bodies to oxidative metabolism and GABA in diet-induced ketosis. We propose that this represents a fundamental mechanism of neuroprotection under pathological conditions. PMID:25314677
Pappa, Eleni V; Zompra, Aikaterini A; Diamantopoulou, Zoi; Spyranti, Zinovia; Pairas, George; Lamari, Fotini N; Katsoris, Panagiotis; Spyroulias, George A; Cordopatis, Paul
2012-01-01
Lamprey gonadotropin-releasing hormone type III (lGnRH-III) is an isoform of GnRH isolated from the sea lamprey (Petromyzon marinus) with negligible endocrine activity in mammalian systems. Data concerning the superior direct anticancer activity of lGnRH-III have been published, raising questions on the structure-activity relationship. We synthesized 21 lGnRH-III analogs with rational amino acid substitutions and studied their effect on PC3 and LNCaP prostate cancer cell proliferation. Our results question the importance of the acidic charge of Asp⁶ for the antiproliferative activity and indicate the significance of the stereochemistry of Trp in positions 3 and 7. Furthermore, conjugation of an acetyl-group to the side chain of Lys⁸ or side chain cyclization of amino acids 1-8 increased the antiproliferative activity of lGnRH-III demonstrating that the proposed salt bridge between Asp⁶ and Lys⁸ is not crucial. Conformational studies of lGnRH-III were performed through NMR spectroscopy, and the solution structure of GnRH-I was solved. In solution, lGnRH-III adopts an extended backbone conformation in contrast to the well-defined β-turn conformation of GnRH-I. Copyright © 2012 Wiley Periodicals, Inc.
Todua, Nino G; Mikaia, Anzor I
2016-01-01
Derivatives requiring either anhydrous or aqueous reaction conditions were prepared for robust and reliable gas chromatography/mass spectrometry (GC/MS) characterization of hydroxyl, mercapto, and amino benzoic acids Methylation and trialkylsilytation are employed for blocking the acidic function. Alkyl, trimethylsilyl, acetyl, perfluoroacyl and alkoxycarbonyl derivatization groups are introduced to hydroxyl, mercapto and amino functions. The electron ionization induced fragmentation characteristics of corresponding derivatives are explained by comparing the MS 1 spectra of unlabeled compounds to their 2 H and 13 C labeled analogs, and analysis of collision-induced dissociation data from MS 2 spectra. Competing fragmentation alternatives are identified and specific decomposition processes are detailed that characterize (a) ortho isomers due to interaction or vicinal functional substituents and (b) para isomers prone to forming para quinoid type structures. Skeletal and hydrogen rearrangements typical for methyl benzoates and the blocking groups are considered when discussing diagnostically important ions. Characteristic ions produced as a result of rearrangements in ortho isomers are classified, and skeletal rearrangements required to produce para quinoid type ions specific for para isomers are noted. Key ions for structure elucidation and differentiation of isomers for derivatives of substituted benzoic acids by GC/MS are suggested.
Todua, Nino G.; Mikaia, Anzor I.
2016-01-01
Derivatives requiring either anhydrous or aqueous reaction conditions were prepared for robust and reliable gas chromatography/mass spectrometry (GC/MS) characterization of hydroxyl, mercapto, and amino benzoic acids Methylation and trialkylsilytation are employed for blocking the acidic function. Alkyl, trimethylsilyl, acetyl, perfluoroacyl and alkoxycarbonyl derivatization groups are introduced to hydroxyl, mercapto and amino functions. The electron ionization induced fragmentation characteristics of corresponding derivatives are explained by comparing the MS1 spectra of unlabeled compounds to their 2H and 13C labeled analogs, and analysis of collision-induced dissociation data from MS2 spectra. Competing fragmentation alternatives are identified and specific decomposition processes are detailed that characterize (a) ortho isomers due to interaction or vicinal functional substituents and (b) para isomers prone to forming para quinoid type structures. Skeletal and hydrogen rearrangements typical for methyl benzoates and the blocking groups are considered when discussing diagnostically important ions. Characteristic ions produced as a result of rearrangements in ortho isomers are classified, and skeletal rearrangements required to produce para quinoid type ions specific for para isomers are noted. Key ions for structure elucidation and differentiation of isomers for derivatives of substituted benzoic acids by GC/MS are suggested. PMID:27891187
Fatty acid-amino acid conjugates diversification in Lepidopteran caterpillars
USDA-ARS?s Scientific Manuscript database
Fatty acid amino acid conjugates (FACs) have been found in Noctuid as well as Sphingid caterpillar oral secretions and especially volicitin [N-(17-hydroxylinolenoyl)-L-Glutamine] and its biochemical precursor, N-linolenoyl-L-glutamine, are known elicitors of induced volatile emissions in corn plants...
NASA Astrophysics Data System (ADS)
Styring, Amy K.; Sealy, Judith C.; Evershed, Richard P.
2010-01-01
Stable nitrogen isotope analysis is a fundamental tool in assessing dietary preferences and trophic positions within contemporary and ancient ecosystems. In order to assess more fully the dietary contributions to human tissue isotope values, a greater understanding of the complex biochemical and physiological factors which underpin bulk collagen δ 15N values is necessary. Determinations of δ 15N values of the individual amino acids which constitute bone collagen are necessary to unravel these relationships, since different amino acids display different δ 15N values according to their biosynthetic origins. A range of collagen isolates from archaeological faunal and human bone ( n = 12 and 11, respectively), representing a spectrum of terrestrial and marine protein origins and diets, were selected from coastal and near-coastal sites at the south-western tip of Africa. The collagens were hydrolysed and δ 15N values of their constituent amino acids determined as N-acetylmethyl esters (NACME) via gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). The analytical approach employed accounts for 56% of bone collagen nitrogen. Reconstruction of bulk bone collagen δ 15N values reveals a 2‰ offset from bulk collagen δ 15N values which is attributable to the δ 15N value of the amino acids which cannot currently be determined by GC-C-IRMS, notably arginine which comprises 53% of the nitrogen unaccounted for (23% of the total nitrogen). The δ 15N values of individual amino acids provide insights into both the contributions of various amino acids to the bulk δ 15N value of collagen and the factors influencing trophic position and the nitrogen source at the base of the food web. The similarity in the δ 15N values of alanine, glutamate, proline and hydroxyproline reflects the common origin of their amino groups from glutamate. The depletion in the δ 15N value of threonine with increasing trophic level indicates a fundamental difference between the biosynthetic pathway of threonine and the other amino acids. The δ 15N value of phenylalanine does not change significantly with trophic level, reflecting its conservative nature as an essential amino acid, and thus represents the isotopic composition of the nitrogen at the base of the food web. Δ 15N Glu-Phe values in particular are shown to reflect trophic level nitrogen sources within a food web. In relation to the reconstruction of ancient human diet the contribution of marine and terrestrial protein are strongly reflected in Δ 15N Glu-Phe values. Differences in nitrogen metabolism are also shown to have an influence upon individual amino acid δ 15N values with Δ 15N Glu-Phe values emphasising differences between the different physiological adaptations. The latter is demonstrated in tortoises, which can excrete nitrogen in the form of uric acid and urea and display negative Δ 15N Glu-Phe values whereas those for marine and terrestrial mammals are positive. The findings amplify the potential advantages of compound-specific nitrogen isotope analysis in the study of nitrogen flow within food webs and in the reconstruction of past human diets.
Conformational profile of a proline-arginine hybrid
Revilla-López, Guillermo; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos; Zanuy, David
2010-01-01
The intrinsic conformational preferences of a new non-proteinogenic amino acid have been explored by computational methods. This tailored molecule, named (βPro)Arg, is conceived as a replacement for arginine in bioactive peptides when the stabilization of folded turn-like conformations is required. The new residue features a proline skeleton that bears the guanidilated side chain of arginine at the Cβ position of the five-membered pyrrolidine ring, either in a cis or a trans orientation with respect to the carboxylic acid. The conformational profile of the N-acetyl-N'-methylamide derivatives of the cis and trans isomers of (βPro)Arg has been examined in the gas phase and in solution by B3LYP/6–31+G(d,p) calculations and molecular dynamics simulations. The main conformational features of both isomers represent a balance between geometric restrictions imposed by the five-membered pyrrolidine ring and the ability of the guanidilated side chain to interact with the backbone through hydrogen-bonds. Thus, both cis and trans (βPro)Arg exhibit a preference for the αL conformation as a consequence of the interactions established between the guanidinium moiety and the main-chain amide groups. PMID:20886854
Conformational profile of a proline-arginine hybrid.
Revilla-López, Guillermo; Jiménez, Ana I; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos; Zanuy, David
2010-10-25
The intrinsic conformational preferences of a new nonproteinogenic amino acid have been explored by computational methods. This tailored molecule, named ((β)Pro)Arg, is conceived as a replacement for arginine in bioactive peptides when the stabilization of folded turn-like conformations is required. The new residue features a proline skeleton that bears the guanidilated side chain of arginine at the C(β) position of the five-membered pyrrolidine ring, in either a cis or a trans orientation with respect to the carboxylic acid. The conformational profiles of the N-acetyl-N'-methylamide derivatives of the cis and trans isomers of ((β)Pro)Arg have been examined in the gas phase and in solution by B3LYP/6-31+G(d,p) calculations and molecular dynamics simulations. The main conformational features of both isomers represent a balance between geometric restrictions imposed by the five-membered pyrrolidine ring and the ability of the guanidilated side chain to interact with the backbone through hydrogen bonds. Thus, both cis- and trans-((β)Pro)Arg exhibit a preference for the α(L) conformation as a consequence of the interactions established between the guanidinium moiety and the main-chain amide groups.
In Vivo Imaging of Branched Chain Amino Acid Metabolism in Prostate Cancer
2014-10-01
and dietary supplement . Due to its close similarity with cysteine, NAC is likely to undergo oxidation to form disulfide product, while its acetyl...Canary Center (Stanford University). Each cell line was cultured with Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% Fetal Bovine Serum...incubated at 37 °C with pig liver esterase (7.5 Units/mL) in RPMI media supplemented with 10% fetal bovine serum and 5% penicillin-streptomycin. Pig liver
Chemistry of anti-AIDS and anticancer compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, S.
1992-01-01
Several types of prodrugs of 2[prime], 3[prime]-dideoxynucleosides were designed and synthesized for evaluation as anti-AIDS drugs. These prodrugs include 5[prime]-O-acyl-2[prime], 3[prime]-dideoxynucleosides, in which the acyl groups are derived from both aromatic and aliphatic acids, [alpha]-amino acids, diacylglycerol carbonic acids, and diacylglycerol carbamic acids. By applying the pyridium-dihydropyridine redox delivery system to deliver 2[prime], 3[prime]-dideoxynucleosides to the central nervous system, 1,4-dihydropyridine-2[prime], 3[prime]-dideoxy-inosine and -adenosine compounds were synthesized. 5[prime]-Esters of 2[prime], 3[prime]-dideoxyinosine and 2[prime], 3[prime]-dideoxyadenosine were evaluated for their activity against the HIV-1 virus and for delivery to the central nervous system (CNS). The isomerization, hydrolysis, and oxidation of alkyl 1,4-dihydro-N-methylpyridine-3-carboxylates weremore » studied by [sup 1]H and [sup 13]C NMR spectroscopy. Three intermediates, 1,4-dihydro-N-methylpyridine-3-carboxylic acid, alkyl (methyl or isopropyl) 1,6-dihydro-N-methylpyridine-3-carboxylate, and 1,6-dihydro-N-methylpyridine-3-carboxylic acid, were observed by [sup 1]H and [sup 13]C NMR spectroscopy, and their percentages in solution were determined. The structures of the 1,6-dihydropyridine intermediates were confirmed by comparison of the NMR spectra with those of an authentic model compound, methyl N-(4-chlorobenzyl)-1,6-dihydropyridine-3-carboxylate. The rate of hydrolysis of alkyl 1,4-dihydro-N-methylpyridine-3-carboxylates depends on the steric bulk of the O-alkyl group. A new type of 1,4-dihydropyridine drug delivery system with a three-carbon spacer group, 9-[2,3-di-O-acetyl-5-O-[3-(1,4-dihydro-N-methylpyridine-3-carboxamido)propionyl]-[beta]-D-arabinofuranosyl]adenine was designed, synthesized, and evaluated to deliver ara-ADA to the CNS for treatment of herpes encephalitis.« less
Amino acidis derived from Titan tholins
NASA Technical Reports Server (NTRS)
Khare, Bishun N.; Sagan, Carl; Ogino, Hiroshi; Nagy, Bartholomew; Er, Cevat
1986-01-01
The production of amino acids by acid treatment of Titan tholin is experimentally investigated. The synthesis of Titan tholin and the derivatization of amino acids to N-trifluoroacetyl isopropyl esters are described. The gas chromatography/mass spectroscopy analysis of the Titan tholins reveals the presence of glycine, alpha and beta alainine, and aspartic acid, and the total yield of amino acids is about 0.01.
Wang, Pengcheng; Shehu, Amina I; Lu, Jie; Joshi, Rujuta H; Venkataramanan, Raman; Sugamori, Kim S; Grant, Denis M; Zhong, Xiao-Bo; Ma, Xiaochao
2017-12-01
Acetylation is the major metabolic pathway of isoniazid (INH) mediated by N-acetyltransferases (NATs). Previous reports suggest that slow acetylators have higher risks of INH hepatotoxicity than rapid acetylators, but the detailed mechanisms remain elusive. The current study used Nat1/2(-/-) mice to mimic NAT slow metabolizers and to investigate INH metabolism in the liver. We found that INH acetylation is abolished in the liver of Nat1/2(-/-) mice, suggesting that INH acetylation is fully dependent on NAT1/2. In addition to the acetylation pathway, INH can be hydrolyzed to form hydrazine (Hz) and isonicotinic acid (INA). We found that INA level was not altered in the liver of Nat1/2(-/-) mice, indicating that deficiency of NAT1/2 has no effect on INH hydrolysis. Because INH acetylation was abolished and INH hydrolysis was not altered in Nat1/2(-/-) mice, we expected an extremely high level of INH in the liver. However, we only observed a modest accumulation of INH in the liver of Nat1/2(-/-) mice, suggesting that there are alternative pathways in INH metabolism in NAT1/2 deficient condition. Our further studies revealed that the conjugated metabolites of INH with endobiotics, including fatty acids and vitamin B6, were significantly increased in the liver of Nat1/2(-/-) mice. In summary, this study illustrated that deficiency of NAT1/2 decreases INH acetylation, but increases the interactions of INH with endobiotics in the liver. These findings can be used to guide future studies on the mechanisms of INH hepatotoxicity in NAT slow metabolizers. Copyright © 2017 Elsevier Inc. All rights reserved.
Mita, Tsuyoshi; Sugawara, Masumi; Saito, Keisuke; Sato, Yoshihiro
2014-06-06
A catalytic enantioselective silylation of N-tert-butylsulfonylimines using a Cu-secondary diamine complex was demonstrated. The resulting optically active α-amino silanes could be carboxylated under a CO2 atmosphere (1 atm) to afford the corresponding α-amino acids in a stereoretentive manner. This two-step sequence provides a new synthetic protocol for optically active α-amino acids from gaseous CO2 and imines in the presence of a catalytic amount of a chiral source.
Alabaster, Amy; Isoe, Jun; Zhou, Guoli; Lee, Ada; Murphy, Ashleigh; Day, W Anthony; Miesfeld, Roger L
2011-12-01
To better understand the mechanism of de novo lipid biosynthesis in blood fed Aedes aegypti mosquitoes, we quantitated acetyl-CoA carboxylase (ACC) and fatty acid synthase 1 (FAS1) transcript levels in blood fed mosquitoes, and used RNAi methods to generate ACC and FAS1 deficient mosquitoes. Using the ketogenic amino acid (14)C-leucine as a metabolic precursor of (14)C-acetyl-CoA, we found that (14)C-triacylglycerol and (14)C-phospholipid levels were significantly reduced in both ACC and FAS1 deficient mosquitoes, confirming that ACC and FAS1 are required for de novo lipid biosynthesis after blood feeding. Surprisingly however, we also found that ACC deficient mosquitoes, but not FAS1 deficient mosquitoes, produced defective oocytes, which lacked an intact eggshell and gave rise to inviable eggs. This severe phenotype was restricted to the 1st gonotrophic cycle, suggesting that the eggshell defect was due to ACC deficiencies in the follicular epithelial cells, which are replaced after each gonotrophic cycle. Consistent with lower amounts of de novo lipid biosynthesis, both ACC and FAS1 deficient mosquitoes produced significantly fewer eggs than control mosquitoes in both the 1st and 2nd gonotrophic cycles. Lastly, FAS1 deficient mosquitoes, but not ACC deficient mosquitoes, showed delayed blood meal digestion, suggesting that a feedback control mechanism may coordinate rates of fat body lipid biosynthesis and midgut digestion during feeding. We propose that decreased ACC and FAS1 enzyme levels lead to reduced lipid biosynthesis and lower fecundity, whereas altered levels of the regulatory metabolites acetyl-CoA and malonyl-CoA account for the observed defects in eggshell formation and blood meal digestion, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.
Alabaster, Amy; Isoe, Jun; Zhou, Guoli; Lee, Ada; Murphy, Ashleigh; Day, W. Anthony; Miesfeld, Roger L.
2011-01-01
To better understand the mechanism of de novo lipid biosynthesis in blood fed Ae. aegypti mosquitoes, we quantitated acetyl-CoA carboxylase (ACC) and fatty acid synthase 1 (FAS1) transcript levels in blood fed mosquitoes, and used RNAi methods to generate ACC and FAS1 deficient mosquitoes. Using the ketogenic amino acid 14C-leucine as a metabolic precursor of 14C-acetyl-CoA, we found that 14C-triacylglycerol and 14C-phospholipid levels were significantly reduced in both ACC and FAS1 deficient mosquitoes, confirming that ACC and FAS1 are required for de novo lipid biosynthesis after blood feeding. Surprisingly however, we also found that ACC deficient mosquitoes, but not FAS1 deficient mosquitoes, produced defective oocytes, which lacked an intact eggshell and gave rise to inviable eggs. This severe phenotype was restricted to the 1st gonotrophic cycle, suggesting that the eggshell defect was due to ACC deficiencies in the follicular epithelial cells, which are replaced after each gonotrophic cycle. Consistent with lower amounts of de novo lipid biosynthesis, both ACC and FAS1 deficient mosquitoes produced significantly fewer eggs than control mosquitoes in both the 1st and 2nd gonotrophic cycles. Lastly, FAS1 deficient mosquitoes, but not ACC deficient mosquitoes, showed delayed blood meal digestion, suggesting that a feedback control mechanism may coordinate rates of fat body lipid biosynthesis and midgut digestion during feeding. We propose that decreased ACC and FAS1 enzyme levels lead to reduced lipid biosynthesis and lower fecundity, whereas altered levels of the regulatory metabolites acetyl-CoA and malonyl-CoA account for the observed defects in eggshell formation and blood meal digestion, respectively. PMID:21971482
Salas, P M; Sujatha, C H; Ratheesh Kumar, C S; Cheriyan, Eldhose
2018-02-01
Surface sediments from three zones (fresh water, estuarine, and riverine/industrial zones) of the Cochin estuary, Southwest coast of India, were seasonally analyzed to understand the nature and degradation status of organic matter. Amino acid-based indices such as total hydrolyzable amino acids (THAAs), percentage contributions of amino acid carbon to total organic carbon (THAA-C%) and those of amino acid nitrogen to total nitrogen (THAA-N%), and degradation index (DI) were calculated. Elevated levels of amino acids in the sediments of the estuary were attributed to river runoff, autochthonous production, allochthonous inputs, and industrial and domestic effluent discharges. Higher levels of THAA-C%, THAA-N%, THAA, and positive DI found in most of the stations suggest the fresh deposition of organic matter. Multivariate statistical analyses revealed that the dispersal pattern of amino acids depends on the sediment texture, organic matter, redox state, and microbial processes in the study region. Copyright © 2017 Elsevier Ltd. All rights reserved.
The spark discharge synthesis of amino acids from various hydrocarbons
NASA Technical Reports Server (NTRS)
Ring, D.; Miller, S. L.
1984-01-01
The spark discharge synthesis of amino acids using an atmosphere of CH4+N2+H2O+NH3 has been investigated with variable pNH3. The amino acids produced using higher hydrocarbons (ethane, ethylene, acetylene, propane, butane, and isobutane) instead of CH4 were also investigated. There was considerable range in the absolute yields of amino acids, but the yields relative to glycine (or alpha-amino-n-butyric acid) were more uniform. The relative yields of the C3 to C6 aliphatic alpha-amino acids are nearly the same (with a few exceptions) with all the hydrocarbons. The glycine yields are more variable. The precursors to the C3-C6 aliphatic amino acids seem to be produced in the same process, which is separate from the synthesis of glycine precursors. It may be possible to use these relative yields as a signature for a spark discharge synthesis provided corrections can be made for subsequent decomposition events (e.g. in the Murchison meteorite).
Virulence-Affecting Amino Acid Changes in the PA Protein of H7N9 Influenza A Viruses
Yamayoshi, Seiya; Yamada, Shinya; Fukuyama, Satoshi; Murakami, Shin; Zhao, Dongming; Uraki, Ryuta; Watanabe, Tokiko; Tomita, Yuriko; Macken, Catherine; Neumann, Gabriele
2014-01-01
ABSTRACT Novel avian-origin influenza A(H7N9) viruses were first reported to infect humans in March 2013. To date, 143 human cases, including 45 deaths, have been recorded. By using sequence comparisons and phylogenetic and ancestral inference analyses, we identified several distinct amino acids in the A(H7N9) polymerase PA protein, some of which may be mammalian adapting. Mutant viruses possessing some of these amino acid changes, singly or in combination, were assessed for their polymerase activities and growth kinetics in mammalian and avian cells and for their virulence in mice. We identified several mutants that were slightly more virulent in mice than the wild-type A(H7N9) virus, A/Anhui/1/2013. These mutants also exhibited increased polymerase activity in human cells but not in avian cells. Our findings indicate that the PA protein of A(H7N9) viruses has several amino acid substitutions that are attenuating in mammals. IMPORTANCE Novel avian-origin influenza A(H7N9) viruses emerged in the spring of 2013. By using computational analyses of A(H7N9) viral sequences, we identified several amino acid changes in the polymerase PA protein, which we then assessed for their effects on viral replication in cultured cells and mice. We found that the PA proteins of A(H7N9) viruses possess several amino acid substitutions that cause attenuation in mammals. PMID:24371069
de Cima, Sergio; Gil-Ortiz, Fernando; Crabeel, Marjolaine; Fita, Ignacio; Rubio, Vicente
2012-01-01
N-acetyl-L-glutamate kinase (NAGK) catalyzes the second, generally controlling, step of arginine biosynthesis. In yeasts, NAGK exists either alone or forming a metabolon with N-acetyl-L-glutamate synthase (NAGS), which catalyzes the first step and exists only within the metabolon. Yeast NAGK (yNAGK) has, in addition to the amino acid kinase (AAK) domain found in other NAGKs, a ∼150-residue C-terminal domain of unclear significance belonging to the DUF619 domain family. We deleted this domain, proving that it stabilizes yNAGK, slows catalysis and modulates feed-back inhibition by arginine. We determined the crystal structures of both the DUF619 domain-lacking yNAGK, ligand-free as well as complexed with acetylglutamate or acetylglutamate and arginine, and of complete mature yNAGK. While all other known arginine-inhibitable NAGKs are doughnut-like hexameric trimers of dimers of AAK domains, yNAGK has as central structure a flat tetramer formed by two dimers of AAK domains. These dimers differ from canonical AAK dimers in the −110° rotation of one subunit with respect to the other. In the hexameric enzymes, an N-terminal extension, found in all arginine-inhibitable NAGKs, forms a protruding helix that interlaces the dimers. In yNAGK, however, it conforms a two-helix platform that mediates interdimeric interactions. Arginine appears to freeze an open inactive AAK domain conformation. In the complete yNAGK structure, two pairs of DUF619 domains flank the AAK domain tetramer, providing a mechanism for the DUF619 domain modulatory functions. The DUF619 domain exhibits the histone acetyltransferase fold, resembling the catalytic domain of bacterial NAGS. However, the putative acetyl CoA site is blocked, explaining the lack of NAGS activity of yNAGK. We conclude that the tetrameric architecture is an adaptation to metabolon formation and propose an organization for this metabolon, suggesting that yNAGK may be a good model also for yeast and human NAGSs. PMID:22529931
Rajasekaran, M.; Abirami, Santhanam; Chen, Chinpan
2011-01-01
Background Arylamine N-acetyltransferase 2 (NAT2) is an important catalytic enzyme that metabolizes the carcinogenic arylamines, hydrazine drugs and chemicals. This enzyme is highly polymorphic in different human populations. Several polymorphisms of NAT2, including the single amino acid substitutions R64Q, I114T, D122N, L137F, Q145P, R197Q, and G286E, are classified as slow acetylators, whereas the wild-type NAT2 is classified as a fast acetylator. The slow acetylators are often associated with drug toxicity and efficacy as well as cancer susceptibility. The biological functions of these 7 mutations have previously been characterized, but the structural basis behind the reduced catalytic activity and reduced protein level is not clear. Methodology/Principal Findings We performed multiple molecular dynamics simulations of these mutants as well as NAT2 to investigate the structural and dynamical effects throughout the protein structure, specifically the catalytic triad, cofactor binding site, and the substrate binding pocket. None of these mutations induced unfolding; instead, their effects were confined to the inter-domain, domain 3 and 17-residue insert region, where the flexibility was significantly reduced relative to the wild-type. Structural effects of these mutations propagate through space and cause a change in catalytic triad conformation, cofactor binding site, substrate binding pocket size/shape and electrostatic potential. Conclusions/Significance Our results showed that the dynamical properties of all the mutant structures, especially in inter-domain, domain 3 and 17-residue insert region were affected in the same manner. Similarly, the electrostatic potential of all the mutants were altered and also the functionally important regions such as catalytic triad, cofactor binding site, and substrate binding pocket adopted different orientation and/or conformation relative to the wild-type that may affect the functions of the mutants. Overall, our study may provide the structural basis for reduced catalytic activity and protein level, as was experimentally observed for these polymorphisms. PMID:21980537
Nasuno, Ryo; Hirano, Yoshinori; Itoh, Takafumi; Hakoshima, Toshio; Hibi, Takao; Takagi, Hiroshi
2013-01-01
Mpr1 (sigma1278b gene for proline-analog resistance 1), which was originally isolated as N-acetyltransferase detoxifying the proline analog l-azetidine-2-carboxylate, protects yeast cells from various oxidative stresses. Mpr1 mediates the l-proline and l-arginine metabolism by acetylating l-Δ1-pyrroline-5-carboxylate, leading to the l-arginine–dependent production of nitric oxide, which confers oxidative stress tolerance. Mpr1 belongs to the Gcn5-related N-acetyltransferase (GNAT) superfamily, but exhibits poor sequence homology with the GNAT enzymes and unique substrate specificity. Here, we present the X-ray crystal structure of Mpr1 and its complex with the substrate cis-4-hydroxy-l-proline at 1.9 and 2.3 Å resolution, respectively. Mpr1 is folded into α/β-structure with eight-stranded mixed β-sheets and six α-helices. The substrate binds to Asn135 and the backbone amide of Asn172 and Leu173, and the predicted acetyl-CoA–binding site is located near the backbone amide of Phe138 and the side chain of Asn178. Alanine substitution of Asn178, which can interact with the sulfur of acetyl-CoA, caused a large reduction in the apparent kcat value. The replacement of Asn135 led to a remarkable increase in the apparent Km value. These results indicate that Asn178 and Asn135 play an important role in catalysis and substrate recognition, respectively. Such a catalytic mechanism has not been reported in the GNAT proteins. Importantly, the amino acid substitutions in these residues increased the l-Δ1-pyrroline-5-carboxylate level in yeast cells exposed to heat stress, indicating that these residues are also crucial for its physiological functions. These studies provide some benefits of Mpr1 applications, such as the breeding of industrial yeasts and the development of antifungal drugs. PMID:23818613
de Cima, Sergio; Gil-Ortiz, Fernando; Crabeel, Marjolaine; Fita, Ignacio; Rubio, Vicente
2012-01-01
N-acetyl-L-glutamate kinase (NAGK) catalyzes the second, generally controlling, step of arginine biosynthesis. In yeasts, NAGK exists either alone or forming a metabolon with N-acetyl-L-glutamate synthase (NAGS), which catalyzes the first step and exists only within the metabolon. Yeast NAGK (yNAGK) has, in addition to the amino acid kinase (AAK) domain found in other NAGKs, a ~150-residue C-terminal domain of unclear significance belonging to the DUF619 domain family. We deleted this domain, proving that it stabilizes yNAGK, slows catalysis and modulates feed-back inhibition by arginine. We determined the crystal structures of both the DUF619 domain-lacking yNAGK, ligand-free as well as complexed with acetylglutamate or acetylglutamate and arginine, and of complete mature yNAGK. While all other known arginine-inhibitable NAGKs are doughnut-like hexameric trimers of dimers of AAK domains, yNAGK has as central structure a flat tetramer formed by two dimers of AAK domains. These dimers differ from canonical AAK dimers in the -110° rotation of one subunit with respect to the other. In the hexameric enzymes, an N-terminal extension, found in all arginine-inhibitable NAGKs, forms a protruding helix that interlaces the dimers. In yNAGK, however, it conforms a two-helix platform that mediates interdimeric interactions. Arginine appears to freeze an open inactive AAK domain conformation. In the complete yNAGK structure, two pairs of DUF619 domains flank the AAK domain tetramer, providing a mechanism for the DUF619 domain modulatory functions. The DUF619 domain exhibits the histone acetyltransferase fold, resembling the catalytic domain of bacterial NAGS. However, the putative acetyl CoA site is blocked, explaining the lack of NAGS activity of yNAGK. We conclude that the tetrameric architecture is an adaptation to metabolon formation and propose an organization for this metabolon, suggesting that yNAGK may be a good model also for yeast and human NAGSs.
Queffelec, Clémence; Ribière, Patrice; Montchamp, Jean-Luc
2009-01-01
P,N-Heterocycles (3-hydroxy-1,3-azaphospholane and 3-hydroxy-1,3-azaphosphorinane-3-oxide) are synthesized in moderate yield from readily available ω-amino-H-phosphinates and aldehydes or ketones via an intramolecular Kabachnik-Fields reaction. The products are conformationally restricted phosphinic analogs of α-amino acids. The multi-gram scale syntheses of the H2N(CH2)nPO2H2 phosphinic precursors (n = 1, 2, 3) and some derivatives are also described. PMID:18855477
Fan, Xiaolian; Tkachyova, Ilona; Sinha, Ankit; Rigat, Brigitte; Mahuran, Don
2011-01-01
Heparin acetyl-CoA:alpha-glucosaminide N-acetyltransferase (N-acetyltransferase, EC 2.3.1.78) is an integral lysosomal membrane protein containing 11 transmembrane domains, encoded by the HGSNAT gene. Deficiencies of N-acetyltransferase lead to mucopolysaccharidosis IIIC. We demonstrate that contrary to a previous report, the N-acetyltransferase signal peptide is co-translationally cleaved and that this event is required for its intracellular transport to the lysosome. While we confirm that the N-acetyltransferase precursor polypeptide is processed in the lysosome into a small amino-terminal alpha- and a larger ß- chain, we further characterize this event by identifying the mature amino-terminus of each chain. We also demonstrate this processing step(s) is not, as previously reported, needed to produce a functional transferase, i.e., the precursor is active. We next optimize the biochemical assay procedure so that it remains linear as N-acetyltransferase is purified or protein-extracts containing N-acetyltransferase are diluted, by the inclusion of negatively charged lipids. We then use this assay to demonstrate that the purified single N-acetyltransferase protein is both necessary and sufficient to express transferase activity, and that N-acetyltransferase functions as a monomer. Finally, the kinetic mechanism of action of purified N-acetyltransferase was evaluated and found to be a random sequential mechanism involving the formation of a ternary complex with its two substrates; i.e., N-acetyltransferase does not operate through a ping-pong mechanism as previously reported. We confirm this conclusion by demonstrating experimentally that no acetylated enzyme intermediate is formed during the reaction. PMID:21957468
The first proton sponge-based amino acids: synthesis, acid-base properties and some reactivity.
Ozeryanskii, Valery A; Gorbacheva, Anastasia Yu; Pozharskii, Alexander F; Vlasenko, Marina P; Tereznikov, Alexander Yu; Chernov'yants, Margarita S
2015-08-21
The first hybrid base constructed from 1,8-bis(dimethylamino)naphthalene (proton sponge or DMAN) and glycine, N-methyl-N-(8-dimethylamino-1-naphthyl)aminoacetic acid, was synthesised in high yield and its hydrobromide was structurally characterised and used to determine the acid-base properties via potentiometric titration. It was found that the basic strength of the DMAN-glycine base (pKa = 11.57, H2O) is on the level of amidine amino acids like arginine and creatine and its structure, zwitterionic vs. neutral, based on the spectroscopic (IR, NMR, mass) and theoretical (DFT) approaches has a strong preference to the zwitterionic form. Unlike glycine, the DMAN-glycine zwitterion is N-chiral and is hydrolytically cleaved with the loss of glycolic acid on heating in DMSO. This reaction together with the mild decarboxylative conversion of proton sponge-based amino acids into 2,3-dihydroperimidinium salts under air-oxygen was monitored with the help of the DMAN-alanine amino acid. The newly devised amino acids are unique as they combine fluorescence, strongly basic and redox-active properties.
Sugiki, Toshihiko; Furuita, Kyoko; Fujiwara, Toshimichi; Kojima, Chojiro
2018-06-20
Amino acid selective isotope labeling is an important nuclear magnetic resonance technique, especially for larger proteins, providing strong bases for the unambiguous resonance assignments and information concerning the structure, dynamics, and intermolecular interactions. Amino acid selective 15 N labeling suffers from isotope dilution caused by metabolic interconversion of the amino acids, resulting in isotope scrambling within the target protein. Carbonyl 13 C atoms experience less isotope scrambling than the main-chain 15 N atoms do. However, little is known about the side-chain 13 C atoms. Here, the 13 C scrambling profiles of the Cα and side-chain carbons were investigated for 15 N scrambling-prone amino acids, such as Leu, Ile, Tyr, Phe, Thr, Val, and Ala. The level of isotope scrambling was substantially lower in 13 Cα and 13 C side-chain labeling than in 15 N labeling. We utilized this reduced scrambling-prone character of 13 C as a simple and efficient method for amino acid selective 13 C labeling using an Escherichia coli cold-shock expression system and high-cell density fermentation. Using this method, the 13 C labeling efficiency was >80% for Leu and Ile, ∼60% for Tyr and Phe, ∼50% for Thr, ∼40% for Val, and 30-40% for Ala. 1 H- 15 N heteronuclear single-quantum coherence signals of the 15 N scrambling-prone amino acid were also easily filtered using 15 N-{ 13 Cα} spin-echo difference experiments. Our method could be applied to the assignment of the 55 kDa protein.
Tea, Illa; Le Guennec, Adrien; Frasquet-Darrieux, Marine; Julien, Maxime; Romek, Katarzyna; Antheaume, Ingrid; Hankard, Régis; Robins, Richard J
2013-06-30
In isotope tracer experiments used in nutritional studies, it is frequently desirable both to determine the (15)N/(14)N ratios of target compounds and to quantify these compounds. This report shows how this can be achieved in a single chromatographic run for protein amino acids using an isotope ratio mass spectrometer. Protein hydrolysis by acidic digestion was used to release amino acids, which were then derivatized as their N-pivaloyl-O-isopropyl esters. Suitable conditions for sample preparation were established for both hair and milk proteins. The N-pivaloyl-O-isopropyl esters of amino acids were separated by gas chromatography (GC) on a 60 m ZB-WAX column linked via a combustion interface to an isotope ratio mass spectrometer. The (15)N/(14)N ratios were obtained from the m/z 28, 29 and 30 peak intensities and the quantities from the Area All (Vs) integrated peak areas. It is shown from a five-point calibration curve that both parameters can be measured reliably within the range of 1.0 to 2.0 mg/mL for the major amino acids derived from the hydrolysis of human maternal milk or hair samples. The method was validated in terms of inter-day and inter-user repeatability for both parameters for 14 amino acids. The amino acid percentage composition showed a good correlation with literature values. The method was applied to determine the variability in a population of lactating mothers and their infants. It has been established that δ(15)N values can be simultaneously determined for a complex mixture of amino acids at variable concentrations. It is shown that the percentage composition obtained correlates well with that obtained by calculation from the protein composition or from literature values. This procedure should provide a significant saving in analysis time, especially in those cases where the GC run-time is necessarily long. It allows the satisfactory determination of the variation within a sample population. Copyright © 2013 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Priddy, MD, Colleen M.; Kajimoto, Masaki; Ledee, Dolena
2013-02-01
Extracorporeal membrane oxygenation (ECMO) provides mechanical circulatory support essential for survival in infants and children with acute cardiac decompensation. However, ECMO also causes metabolic disturbances, which contribute to total body wasting and protein loss. Cardiac stunning can also occur which prevents ECMO weaning, and contributes to high mortality. The heart may specifically undergo metabolic impairments, which influence functional recovery. We tested the hypothesis that ECMO alters oxidative. We focused on the amino acid leucine, and integration with myocardial protein synthesis. We used a translational immature swine model in which we assessed in heart (i) the fractional contribution of leucine (FcLeucine)more » and pyruvate (FCpyruvate) to mitochondrial acetyl-CoA formation by nuclear magnetic resonance and (ii) global protein fractional synthesis (FSR) by gas chromatography-mass spectrometry. Immature mixed breed Yorkshire male piglets (n = 22) were divided into four groups based on loading status (8 hours of normal circulation or ECMO) and intracoronary infusion [13C6,15N]-L-leucine (3.7 mM) alone or with [2-13C]-pyruvate (7.4 mM). ECMO decreased pulse pressure and correspondingly lowered myocardial oxygen consumption (~ 40%, n = 5), indicating decreased overall mitochondrial oxidative metabolism. However, FcLeucine was maintained and myocardial protein FSR was marginally increased. Pyruvate addition decreased tissue leucine enrichment, FcLeucine, and Fc for endogenous substrates as well as protein FSR. Conclusion: The heart under ECMO shows reduced oxidative metabolism of substrates, including amino acids, while maintaining (i) metabolic flexibility indicated by ability to respond to pyruvate, and (ii) a normal or increased capacity for global protein synthesis, suggesting an improved protein balance.« less
Romek, Katarzyna M; Julien, Maxime; Frasquet-Darrieux, Marine; Tea, Illa; Antheaume, Ingrid; Hankard, Régis; Robins, Richard J
2013-12-01
Since exclusively breast-suckled infants obtain their nutrient only from their mother's milk, it might be anticipated that a correlation will exist between the (15)N/(14)N isotope ratios of amino acids of protein of young infants and those supplied by their mother. The work presented here aimed to determine whether amino nitrogen transfer from human milk to infant hair protein synthesized within the first month of life conserves the maternal isotopic signature or whether post-ingestion fractionation dominates the nitrogen isotope spectrum. The study was conducted at 1 month post-birth on 100 mother-infant pairs. Isotope ratios (15)N/(14)N and (13)C/(12)C were measured using isotope ratio measurement by Mass Spectrometry (irm-MS) for whole maternal milk, and infant hair and (15)N/(14)N ratios were also measured by GC-irm-MS for the N-pivaloyl-O-isopropyl esters of amino acids obtained from the hydrolysis of milk and hair proteins. The δ(15)N and δ(13)C (‰) were found to be significantly higher in infant hair than in breast milk (δ(15)N, P < 0.001; δ(13)C, P < 0.001). Furthermore, the δ(15)N (‰) of individual amino acids in infant hair was also significantly higher than that in maternal milk (P < 0.001). By calculation, the observed shift in isotope ratio was shown not to be accounted for by the amino acid composition of hair and milk proteins, indicating that it is not simply due to differences in the composition in the proteins present. Rather, it would appear that each pool-mother and infant-turns over independently, and that fractionation in infant N-metabolism even in the first month of life dominates over the nutrient N-content.
Highly efficient peptide formation from N-acetylaminoacyl-AMP anhydride and free amino acid
NASA Technical Reports Server (NTRS)
Mullins, D. W., Jr.; Lacey, J. C., Jr.
1983-01-01
The kinetics of formation of the N-blocked dipeptide, N-acetylglycylglycine, from N-acetylglycyl adenylate anhydride and glycine in aqueous solution at 25 C, and at various PH's are reported. The reaction is of interest in that over a physiologically relevant pH range (6-8), peptide synthesis proceeds more rapidly than hydrolysis, even at those pH's at which this compound becomes increasingly susceptible to base-catalyzed hydrolysis. Under similar conditions, the corresponding unblocked aminoacyl adenylate anhydrides are considerably more unstable, and undergo appreciable hydrlysis in the presence of free amino acid. Because N-blocked aminoacyl adenylate anhydrides serve as model compounds of peptidyl adenylate anhydrides, these results suggest that primitive amino acid polymerization systems may have operated by cyclic reactivation of the peptidyl carboxyl group, rather than that of the incoming amino acid.
Comparison in nutritional quality between wild and cultured cuttlefish Sepia pharaonis
NASA Astrophysics Data System (ADS)
Wen, Jing; Chen, Daohai; Zeng, Ling
2014-01-01
In this study, the proximate composition and the amino and fatty acid profiles of shrimp Litopenaeus vannamei (prey) and wild and cultured cuttlefish Sepia pharaonis (the latter fed the prey) were determined and compared with FAO/WHO recommendations. The resulting scores for isoleucine, phenylalanine+tyrosine, histidine, lysine, threonine, and tryptophan in cultured cuttlefish were ≥150. The ratio of EAA (essential amino acids)/nonessential amino acids in cultured cuttlefish (0.82) was higher than in the wild form (0.80). All EAA amino acid scores for cultured cuttlefish were higher than their wild counterparts, except for histidine and tryptophan. Both groups of cuttlefish possessed similar saturated fatty acid content, with the cultured containing much more total (Σ) monounsaturated fatty acids, Σ n-6 polyunsaturated fatty acids (PUFA), and eicosapentaenoic acid (C20:5 n-3) but less Σ n-3 PUFA, arachidonic acid (C20:4 n-6), and docosahexaenoic acid (C22:6 n-3) than their wild counterparts. Therefore, the present results suggest that these cultured cuttlefish were better than the wild form for human health. Notably, these results also indicate that the nutritional composition of these cuttlefish might have been significantly affected by diet.
Kawano-Kawada, Miyuki; Chardwiriyapreecha, Soracom; Manabe, Kunio; Sekito, Takayuki; Akiyama, Koichi; Takegawa, Kaoru; Kakinuma, Yoshimi
2016-12-01
Avt3p, a vacuolar amino acid exporter (656 amino acid residues) that is important for vacuolar amino acid compartmentalization as well as spore formation in Schizosaccharomyces pombe, has an extremely long hydrophilic region (approximately 290 amino acid residues) at its N-terminus. Because known functional domains have not been found in this region, its functional role was examined with a deletion mutant avt3 (∆1-270) expressed in S. pombe avt3∆ cells. The deletion of this region did not affect its intracellular localization or vacuolar contents of basic amino acids as well as neutral ones. The defect of avt3Δ cells in spore formation was rescued by the expression of avt3 + but was not completely rescued by the expression of avt3 (∆1-270) . The N-terminal region is thus dispensable for the function of Avt3p as an amino acid exporter, but it is likely to be involved in the role of Avt3p under nutritional starvation conditions.
Cieslarova, Zuzana; Lopes, Fernando Silva; do Lago, Claudimir Lucio; França, Marcondes Cavalcante; Colnaghi Simionato, Ana Valéria
2017-08-01
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects both lower and upper motor neurons, leading to muscle atrophy, paralysis, and death caused by respiratory failure or infectious complications. Altered levels of homocysteine, cysteine, methionine, and glutamic acid have been observed in plasma of ALS patients. In this context, a method for determination of these potential biomarkers in plasma by capillary electrophoresis tandem mass spectrometry (CE-MS/MS) is proposed herein. Sample preparation was carefully investigated, since sulfur-containing amino acids may interact with plasma proteins. Owing to the non-thiol sulfur atom in methionine, it was necessary to split sample preparation into two methods: i) determination of homocysteine and cysteine as S-acetyl amino acids; ii) determination of glutamic acid and methionine. All amino acids were separated within 25min by CE-MS/MS using 5molL -1 acetic acid as background electrolyte and 5mmolL -1 acetic acid in 50% methanol/H 2 O (v/v) as sheath liquid. The proposed CE-MS/MS method was validated, presenting RSD values below 6% and 11% for intra- and inter-day precision, respectively, for the middle concentration level within the linear range. The limits of detection ranged from 35 (homocysteine) to 268nmolL -1 (glutamic acid). The validated method was applied to the analysis of plasma samples from a group of healthy individuals and patients with ALS, showing the potential of glutamic acid and homocysteine metabolites as biomarkers of ALS. Copyright © 2017 Elsevier B.V. All rights reserved.
Synthesis of N-peptide-6-amino-D-luciferin Conjugates.
Kovács, Anita K; Hegyes, Péter; Szebeni, Gábor J; Nagy, Lajos I; Puskás, László G; Tóth, Gábor K
2018-01-01
A general strategy for the synthesis of N -peptide-6-amino-D-luciferin conjugates has been developed. The applicability of the strategy was demonstrated with the preparation of a known substrate, N -Z-Asp-Glu-Val-Asp-6-amino-D-luciferin ( N -Z-DEVD-aLuc). N -Z-DEVD-aLuc was obtained via a hybrid liquid/solid phase synthesis method, in which the appropriately protected C-terminal amino acid was coupled to 6-amino-2-cyanobenzothiazole and the resulting conjugate was reacted with D-cysteine in order to get the protected amino acid-6-amino-D-luciferin conjugate, which was then attached to resin. The resulting loaded resin was used for the solid-phase synthesis of the desired N -peptide-6-amino-D-luciferin conjugate without difficulties, which was then attested with NMR spectroscopy and LC-MS, and successfully tested in a bioluminescent system.
Synthesis of N-peptide-6-amino-D-luciferin Conjugates
Kovács, Anita K.; Hegyes, Péter; Szebeni, Gábor J.; Nagy, Lajos I.; Puskás, László G.; Tóth, Gábor K.
2018-01-01
A general strategy for the synthesis of N-peptide-6-amino-D-luciferin conjugates has been developed. The applicability of the strategy was demonstrated with the preparation of a known substrate, N-Z-Asp-Glu-Val-Asp-6-amino-D-luciferin (N-Z-DEVD-aLuc). N-Z-DEVD-aLuc was obtained via a hybrid liquid/solid phase synthesis method, in which the appropriately protected C-terminal amino acid was coupled to 6-amino-2-cyanobenzothiazole and the resulting conjugate was reacted with D-cysteine in order to get the protected amino acid-6-amino-D-luciferin conjugate, which was then attached to resin. The resulting loaded resin was used for the solid-phase synthesis of the desired N-peptide-6-amino-D-luciferin conjugate without difficulties, which was then attested with NMR spectroscopy and LC-MS, and successfully tested in a bioluminescent system. PMID:29725588
Kamisaka, Yasushi; Kimura, Kazuyoshi; Uemura, Hiroshi; Ledesma-Amaro, Rodrigo
2016-09-01
We previously created an oleaginous Saccharomyces cerevisiae transformant as a dga1 mutant overexpressing Dga1p lacking 29 amino acids at the N-terminal (Dga1∆Np). Because we have already shown that dga1 disruption decreases the expression of ESA1, which encodes histone acetyltransferase, the present study was aimed at exploring how Esa1p was involved in lipid accumulation. We based our work on the previous observation that Esa1p acetylates and activates phosphoenolpyruvate carboxykinase (PEPCK) encoded by PCK1, a rate-limiting enzyme in gluconeogenesis, and subsequently evaluated the activation of Pck1p by yeast growth with non-fermentable carbon sources, thus dependent on gluconeogenesis. This assay revealed that the ∆dga1 mutant overexpressing Dga1∆Np had much lower growth in a glycerol-lactate (GL) medium than the wild-type strain overexpressing Dga1∆Np. Moreover, overexpression of Esa1p or Pck1p in mutants improved the growth, indicating that the ∆dga1 mutant overexpressing Dga1∆Np had lower activities of Pck1p and gluconeogenesis due to lower expression of ESA1. In vitro PEPCK assay showed the same trend in the culture of the ∆dga1 mutant overexpressing Dga1∆Np with 10 % glucose medium, indicating that Pck1p-mediated gluconeogenesis decreased in this oleaginous transformant under the lipid-accumulating conditions introduced by the glucose medium. The growth of the ∆dga1 mutant overexpressing Dga1∆Np in the GL medium was also improved by overexpression of acetyl-CoA synthetase, Acs1p or Acs2p, indicating that supply of acetyl-CoA was crucial for Pck1p acetylation by Esa1p. In addition, the ∆dga1 mutant without Dga1∆Np also showed better growth in the GL medium, indicating that decreased lipid accumulation was enhancing Pck1p-mediated gluconeogenesis. Finally, we found that overexpression of Ole1p, a fatty acid ∆9-desaturase, in the ∆dga1 mutant overexpressing Dga1∆Np improved its growth in the GL medium. Although the exact mechanisms leading to the effects of Ole1p were not clearly defined, changes of palmitoleic and oleic acid contents appeared to be critical. This observation was supported by experiments using exogenous palmitoleic and oleic acids or overexpression of elongases. Our findings provide new insights on lipid accumulation mechanisms and metabolic engineering approaches for lipid production.
PCI-GC-MS-MS approach for identification of non-amino organic acid and amino acid profiles.
Luan, Hemi; Yang, Lin; Ji, Fenfen; Cai, Zongwei
2017-03-15
Alkyl chloroformate have been wildly used for the fast derivatization of metabolites with amino and/or carboxyl groups, coupling of powerful separation and detection systems, such as GC-MS, which allows the comprehensive analysis of non-amino organic acids and amino acids. The reagents involving n-alkyl chloroformate and n-alcohol are generally employed for providing symmetric labeling terminal alkyl chain with the same length. Here, we developed an asymmetric labeling strategy and positive chemical ionization gas chromatography-tandem mass spectrometry (PCI-GC-MS-MS) approach for determination of non-amino organic acids and amino acids, as well as the short chain fatty acids. Carboxylic and amino groups could be selectively labelled by propyl and ethyl groups, respectively. The specific neutral loss of C 3 H 8 O (60Da), C 3 H 5 O 2 (74Da) and C 4 H 8 O 2 (88Da) were useful in the selective identification for qualitative analysis of organic acids and amino acid derivatives. PCI-GC-MS-MS using multiple reaction monitoring (MRM) was applied for semi-quantification of typical non-amino organic acids and amino acids. This method exhibited a wide range of linear range, good regression coefficient (R 2 ) and repeatability. The relative standard deviation (RSD) of targeted metabolites showed excellent intra- and inter-day precision (<5%). Our method provided a qualitative and semi-quantitative PCI-GC-MS-MS, coupled with alkyl chloroformate derivatization. Copyright © 2016 Elsevier B.V. All rights reserved.
Park, Taehoon; Oh, Ju-Hee; Lee, Joo Hyun; Park, Sang Cheol; Jang, Young Pyo; Lee, Young-Joo
2017-11-01
( S )-Allyl-l-cysteine is the major bioactive compound in garlic. ( S )-Allyl-l-cysteine is metabolized to ( S )-allyl-l-cysteine sulfoxide, N -acetyl-( S )-allyl-l-cysteine, and N -acetyl-( S )-allyl-l-cysteine sulfoxide after oral administration. An accurate LC-MS/MS method was developed and validated for the simultaneous quantification of ( S )-allyl-l-cysteine and its metabolites in rat plasma, and the feasibility of using it in pharmacokinetic studies was tested. The analytes were quantified by multiple reaction monitoring using an atmospheric pressure ionization mass spectrometer. Because significant quantitative interference was observed between ( S )-allyl-l-cysteine and N -acetyl-( S )-allyl-l-cysteine as a result of the decomposition of N -acetyl-( S )-allyl-l-cysteine at the detector source, chromatographic separation was required to discriminate ( S )-allyl-l-cysteine and its metabolites on a reversed-phase C 18 analytical column with a gradient mobile phase consisting of 0.1% formic acid and acetonitrile. The calibration curves of ( S )-allyl-l-cysteine, ( S )-allyl-l-cysteine sulfoxide, N -acetyl-( S )-allyl-l-cysteine, and N -acetyl-( S )-allyl-l-cysteine sulfoxide were linear over each concentration range, and the lower limits of quantification were 0.1 µg/mL [( S )-allyl-l-cysteine and N -acetyl-( S )-allyl-l-cysteine] and 0.25 µg/mL [( S )-allyl-l-cysteine sulfoxide and N -acetyl-( S )-allyl-l-cysteine sulfoxide]. Acceptable intraday and inter-day precisions and accuracies were obtained at three concentration levels. The method satisfied the regulatory requirements for matrix effects, recovery, and stability. The validated LC-MS/MS method was successfully used to determine the concentration of ( S )-allyl-l-cysteine and its metabolites in rat plasma samples after the administration of ( S )-allyl-l-cysteine or aged garlic extract. Georg Thieme Verlag KG Stuttgart · New York.
Miyamoto, Tetsuya; Sekine, Masae; Ogawa, Tetsuhiro; Hidaka, Makoto; Watanabe, Hidenori; Homma, Hiroshi; Masaki, Haruhiko
2016-11-01
In this study, we investigated whether the amino acid residues within peptides were isomerized (and the peptides converted to diastereomers) during the early stages of acid hydrolysis. We demonstrate that the model dipeptides L-Ala-L-Phe and L-Phe-L-Ala are epimerized to produce the corresponding diastereomers at a very early stage, prior to their acid hydrolytic cleavage to amino acids. Furthermore, the sequence-inverted dipeptides were generated via formation of a diketopiperazine during hydrolytic incubation, and these dipeptides were also epimerized. The proportion of diastereomers increased rapidly during incubation for 0.5-2 h. During acid hydrolysis, C-terminal residues of the model dipeptides were isomerized faster than N-terminal residues, consistent with the observation that the D-amino acid values of the C-terminal residues determined by the 0 h-extrapolating method were larger than those of the N-terminal residues. Thus, the artificial D-amino acid contents determined by the 0 h-extrapolating method appear to be products of the isomerization of amino acid residues during acid hydrolysis.
Shimizu, S; Sabsay, B; Veis, A; Ostrow, J D; Rege, R V; Dawes, L G
1989-01-01
In seeking to identify nucleating/antinucleating proteins involved in the pathogenesis of cholesterol gallstones, a major acidic protein was isolated from each of 13 samples of cholesterol gallstones. After the stones were extracted with methyl t-butyl ether to remove cholesterol, and methanol to remove bile salts and other lipids, they were demineralized with EDTA. The extracts were desalted with Sephadex-G25, and the proteins separated by PAGE. A protein was isolated, of molecular weight below 10 kD, which included firmly-bound diazo-positive yellow pigments and contained 24% acidic, but only 7% basic amino acid residues. The presence of N-acetyl glucosamine suggested that this was a glycoprotein. This protein at concentrations as low as 2 micrograms/ml, but neither human serum albumin nor its complex with bilirubin, inhibited calcium carbonate precipitation from a supersaturated solution in vitro. This protein could be precipitated from 0.15 M NaCl solution by the addition of 0.5 M calcium chloride. Considering that cholesterol gallstones contain calcium and pigment at their centers, and that small acidic proteins are important regulators in other biomineralization systems, this protein seems likely to play a role in the pathogenesis of cholesterol gallstones. Images PMID:2592569
Detection of non-protein amino acids in the presence of protein amino acids. II.
NASA Technical Reports Server (NTRS)
Shapshak, P.; Okaji, M.
1972-01-01
Studies conducted with the JEOL 5AH amino acid analyzer are described. This instrument makes possible the programming of the chromatographic process. Data are presented showing the separations of seventeen non-protein amino acids in the presence of eighteen protein amino acids. It is pointed out that distinct separations could be obtained in the case of a number of chemically similar compounds, such as ornithine and lysine, N-amidino alanine and arginine, and iminodiacetic acid and S-carboxymethyl cysteine and aspartic acid.
Fine tuning of the spectral properties of LH2 by single amino acid residues.
Silber, Martina V; Gabriel, Günther; Strohmann, Brigitte; Garcia-Martin, Adela; Robert, Bruno; Braun, Paula
2008-05-01
The peripheral light-harvesting complex, LH2, of Rhodobacter sphaeroides consists of an assembly of membrane-spanning alpha and beta polypeptides which assemble the photoactive bacteriochlorophyll and carotenoid molecules. In this study we systematically investigated bacteriochlorophyll-protein interactions and their effect on functional bacteriochlorophyll assembly by site-directed mutations of the LH2 alpha-subunit. The amino acid residues, isoleucine at position -1 and serine at position -4 were replaced by 12 and 13 other residues, respectively. All residues replacing isoleucine at position -1 supported the functional assembly of LH2. The replacement of isoleucine by glycine, glutamine or asparagine, however, produced LH2 complex with significantly altered spectral properties in comparison to LH2 WT. As indicated by resonance Raman spectroscopy extensive rearrangement of the bacteriochlorophyll-B850 macrocycle(s) took place in LH2 in which isoleucine -1 was replaced by glycine. The replacement results in disruption of the H-bond between the C3 acetyl groups and the aromatic residues +13/+14 without affecting the H-bond involving the C13(1) keto group. In contrast, nearly all amino acid replacements of serine at position -4 resulted in shifting of the bacteriochlorophyll-B850 red most absorption maximum. Interestingly, the extent of shifting closely correlated with the volume of the residue at position -4. These results illustrate that fine tuning of the spectral properties of the bacteriochlorophyll-B850 molecules depend on their packing with single amino acid residues at distinct positions.
Systemic functional expression of N-acetyltransferase polymorphism in the F344 Nat2 congenic rat
Hein, David W.; Bendaly, Jean; Neale, Jason R.; Doll, Mark A.
2008-01-01
Rat lines congenic for the rat N-acetyltransferase 2 [(RAT)Nat2] gene were constructed and characterized. F344 (homozygous Nat2 rapid) males were mated to WKY (homozygous Nat2 slow) females to produce heterozygous F1. F1 females were then backcrossed to F344 males. Heterozygous acetylator female progeny from this and each successive backcross were identified by rat Nat2 genotyping and mated with F344 rapid acetylator males. Following ten generations of backcross mating, heterozygous acetylator brother/sister progeny were mated to produce the homozgygous rapid and slow acetylator Nat2 congenic rat lines. p-Aminobenzoic acid (selective for rat NAT2) and 4-aminobiphenyl N-acetyltransferase activities were expressed in all tissues examined (liver, lung, esophagus, stomach, small intestine, colon, pancreas, kidney, skin, leukocytes, and urinary bladder in male and female rats and in breast of female and prostate of male rats). NAT2 expression in rat extrahepatic tissues was much higher than in liver. In each tissue, activities were Nat2-genotype dependent, with highest levels in homozygous rapid acetylators, intermediate levels in heterozygous acetylators, and lowest in homozygous slow acetylators. Sulfamethazine (selective for rat NAT1) N-acetyltransferase activities were observed in all tissues examined in both male and female rats except for breast (females), bladder and leukocytes. In each tissue, the activity was Nat2-genotype independent, with similar levels in homozygous rapid, heterozygous, and homozygous slow acetylators. These congenic rat lines are useful to investigate the role of NAT2 genetic polymorphism in susceptibility to cancers related to arylamine carcinogen exposures. PMID:18799801
Anaerobic degradation of amino acids generated from the hydrolysis of sewage sludge.
Park, Junghoon; Park, Seyong; Kim, Moonil
2014-01-01
The anaerobic degradation of each amino acid that could be generated through the hydrolysis of sewage sludge was evaluated. Stickland reaction as an intermediate reaction between two kinds of amino acids was restricted in order to evaluate each amino acid. Changes in the chemical oxygen demand (COD), T-N, NH4(+)-N, biogas, and CH4 were analysed for the anaerobic digestion process. The initial nitrogen concentration of all amino acids is adjusted as 1000 mg/L. The degradation rate of the amino acids was determined based on the ammonia form of nitrogen, which is generated by the deamination of amino acids. Among all amino acids, such as alpha-alanine, beta-alanine, lysine, arginine, glycine, histidine, cysteine, methionine, and leucine, deamination rates of cysteine, leucine, and methionine were just 61.55%, 54.59%, and 46.61%, respectively, and they had low removal rates of organic matter and showed very low methane production rates of 13.55, 71.04, and 80.77 mL CH4/g CODin, respectively. Especially for cysteine, the methane content was maintained at approximately 7% during the experiment. If wastewater contains high levels of cysteine, leucine, and methionine and Stickland reaction is not prepared, these amino acids may reduce the efficiency of the anaerobic digestion.
Glycoconjugate sugar residues in the chick embryo developing lung: a lectin histochemical study.
Gheri, G; Sgambati, E; Bryk, S G
2000-03-01
A lectin histochemical study was performed to investigate the distribution and changes of the oligosaccharidic component of the glycoconjugates in the lung of chick embryos, of 1-day-old chick, and of the adult animal. For this purpose, a battery of seven horseradish peroxidase-conjugated lectins (PNA, SBA, DBA, WGA, Con A, LTA, and UEA I) were employed. During the first phase of parabronchi and atria formation, D-galactose-(beta1-->3)-N-acetyl-D-galactosamine, beta-N-acetyl-D-galactosamine, D-glucosamine, alpha-D-mannose, and sialic acid, present at the level of the surface and of cytoplasmic granules of the lining epithelial cells, seem to play a role in regulating morphogenetic phenomena. In the subsequent phases, the parabronchial lumen and the atrial cavities were characterized by the presence of lectin-reactive material rich in terminal D-galactose-(beta1-->3)-N-acetyl-D-galactosamine, beta-N-acetyl-D-galactosamine, D-glucosamine and alpha-D-mannose. From day 18 onwards and immediately after hatching, the free border of the cells lining the air capillaries was characterized by the presence of beta-N-acetyl-D-galactosamine and alpha-D-mannose. The appearance of these sugar residues was concomitant with the beginning of respiratory activity. Copyright 2000 Wiley-Liss, Inc.
Stereoconversion of amino acids and peptides in uryl-pendant binol schiff bases.
Park, Hyunjung; Nandhakumar, Raju; Hong, Jooyeon; Ham, Sihyun; Chin, Jik; Kim, Kwan Mook
2008-01-01
(S)-2-Hydroxy-2'-(3-phenyluryl-benzyl)-1,1'-binaphthyl-3-carboxaldehyde (1) forms Schiff bases with a wide range of nonderivatized amino acids, including unnatural ones. Multiple hydrogen bonds, including resonance-assisted ones, fix the whole orientation of the imine and provoke structural rigidity around the imine C==N bond. Due to the structural difference and the increase in acidity of the alpha proton of the amino acid, the imine formed with an L-amino acid (1-l-aa) is converted into the imine of the D-amino acid (1-D-aa), with a D/L ratio of more than 10 for most amino acids at equilibrium. N-terminal amino acids in dipeptides are also predominantly epimerized to the D form upon imine formation with 1. Density functional theory calculations show that 1-D-Ala is more stable than 1-L-Ala by 1.64 kcal mol(-1), a value that is in qualitative agreement with the experimental result. Deuterium exchange of the alpha proton of alanine in the imine form was studied by (1)H NMR spectroscopy and the results support a stepwise mechanism in the L-into-D conversion rather than a concerted one; that is, deprotonation and protonation take place in a sequential manner. The deprotonation rate of L-Ala is approximately 16 times faster than that of D-Ala. The protonation step, however, appears to favor L-amino acid production, which prevents a much higher predominance of the D form in the imine. Receptor 1 and the predominantly D-form amino acid can be recovered from the imine by simple extraction under acidic conditions. Hence, 1 is a useful auxiliary to produce D-amino acids of industrial interest by the conversion of naturally occurring L-amino acids or relatively easily obtainable racemic amino acids.
Sakamoto, Ken; Sato, Kohei; Shigenaga, Akira; Tsuji, Kohei; Tsuda, Shugo; Hibino, Hajime; Nishiuchi, Yuji; Otaka, Akira
2012-08-17
N-sulfanylethylanilide (SEAlide) peptides 1, obtainable using Fmoc-based solid-phase peptide synthesis (Fmoc SPPS), function as crypto-thioesters in native chemical ligation (NCL), yielding a wide variety of peptides/proteins. Their acylating potential with N-terminal cysteinyl peptides 2 can be tuned by the presence or absence of phosphate salts, leading to one-pot/multifragment ligation, operating under kinetically controlled conditions. SEAlide peptides have already been shown to be promising for use in protein synthesis; however, a widely applicable method for the synthesis of N-Fmoc amino acyl-N-sulfanylethylaniline linkers 4, required for the preparation of SEAlide peptides, is unavailable. The present study addresses the development of efficient condensation protocols of 20 naturally occurring amino acid derivatives to the N-sulfanylethylaniline linker 5. N-Fmoc amino acyl aniline linkers 4 of practical use in NCL chemistry, except in the case of the proline- or aspartic acid-containing linker, were successfully synthesized by coupling of POCl(3)- or SOCl(2)-activated Fmoc amino acid derivatives with sodium anilide species 6, without accompanying racemization and loss of side-chain protection. Furthermore, SEAlide peptides 7 possessing various C-terminal amino acids (Gly, His, Phe, Ala, Asn, Ser, Glu, and Val) were shown to be of practical use in NCL chemistry.
Paolini, Mauro; Ziller, Luca; Laursen, Kristian Holst; Husted, Søren; Camin, Federica
2015-07-01
We present a study deploying compound-specific nitrogen and carbon isotope analysis of amino acids to discriminate between organically and conventionally grown plants. We focused on grain samples of common wheat and durum wheat grown using synthetic nitrogen fertilizers, animal manures, or green manures from nitrogen-fixing legumes. The measurement of amino acid δ(15)N and δ(13)C values, after protein hydrolysis and derivatization, was carried out using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Our results demonstrated that δ(13)C of glutamic acid and glutamine in particular, but also the combination of δ(15)N and δ(13)C of 10 amino acids, can improve the discrimination between conventional and organic wheat compared to stable isotope bulk tissue analysis. We concluded that compound-specific stable isotope analysis of amino acids represents a novel analytical tool with the potential to support and improve the certification and control procedures in the organic sector.
Kotapati, Srikanth; Esades, Amanda; Matter, Brock; Le, Chap; Tretyakova, Natalia
2015-11-05
1,3-Butadiene (BD) is an important industrial and environmental carcinogen present in cigarette smoke, automobile exhaust, and urban air. The major urinary metabolites of BD in humans are 2-(N-acetyl-L-cystein-S-yl)-1-hydroxybut-3-ene/1-(N-acetyl-L-cystein-S-yl)-2-hydroxybut-3-ene (MHBMA), 4-(N-acetyl-L-cystein-S-yl)-1,2-dihydroxybutane (DHBMA), and 4-(N-acetyl-L-cystein-S-yl)-1,2,3-trihydroxybutyl mercapturic acid (THBMA), which are formed from the electrophilic metabolites of BD, 3,4-epoxy-1-butene (EB), hydroxymethyl vinyl ketone (HMVK), and 3,4-epoxy-1,2-diol (EBD), respectively. In the present work, a sensitive high-throughput HPLC-ESI(-)-MS/MS method was developed for simultaneous quantification of MHBMA and DHBMA in small volumes of human urine (200 μl). The method employs a 96 well Oasis HLB SPE enrichment step, followed by isotope dilution HPLC-ESI(-)-MS/MS analysis on a triple quadrupole mass spectrometer. The validated method was used to quantify MHBMA and DHBMA in urine of workers from a BD monomer and styrene-butadiene rubber production facility (40 controls and 32 occupationally exposed to BD). Urinary THBMA concentrations were also determined in the same samples. The concentrations of all three BD-mercapturic acids and the metabolic ratio (MHBMA/(MHBMA+DHBMA+THBMA)) were significantly higher in the occupationally exposed group as compared to controls and correlated with BD exposure, with each other, and with BD-hemoglobin biomarkers. This improved high throughput methodology for MHBMA and DHBMA will be useful for future epidemiological studies in smokers and occupationally exposed workers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pampa, K.J., E-mail: sagarikakj@gmail.com; Lokanath, N.K.; Girish, T.U.
Highlights: • Determined the structure of UDP-D-ManNAcADH to a resolution of 1.55 Å. • First complex structure of PhUDP-D-ManNAcADH with UDP-D-ManMAcA. • The monomeric structure consists of three distinct domains. • Cys258 acting as catalytic nucleophilic and Lys204 acts as acid/base catalyst. • Oligomeric state plays an important role for the catalytic function. - Abstract: UDP-N-acetyl-D-mannosamine dehydrogenase (UDP-D-ManNAcDH) belongs to UDP-glucose/GDP-mannose dehydrogenase family and catalyzes Uridine-diphospho-N-acetyl-D-mannosamine (UDP-D-ManNAc) to Uridine-diphospho-N-acetyl-D-mannosaminuronic acid (UDP-D-ManNAcA) through twofold oxidation of NAD{sup +}. In order to reveal the structural features of the Pyrococcus horikoshii UDP-D-ManNAcADH, we have determined the crystal structure of the product-bound enzyme bymore » X-ray diffraction to resolution of 1.55 Å. The protomer folds into three distinct domains; nucleotide binding domain (NBD), substrate binding domain (SBD) and oligomerization domain (OD, involved in the dimerization). The clear electron density of the UDP-D-ManNAcA is observed and the residues binding are identified for the first time. Crystal structures reveal a tight dimeric polymer chains with product-bound in all the structures. The catalytic residues Cys258 and Lys204 are conserved. The Cys258 acts as catalytic nucleophile and Lys204 as acid/base catalyst. The product is directly interacts with residues Arg211, Thr249, Arg244, Gly255, Arg289, Lys319 and Arg398. In addition, the structural parameters responsible for thermostability and oligomerization of the three dimensional structure are analyzed.« less
N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why.
Aldini, Giancarlo; Altomare, Alessandra; Baron, Giovanna; Vistoli, Giulio; Carini, Marina; Borsani, Luisa; Sergio, Francesco
2018-05-09
The main molecular mechanisms explaining the well-established antioxidant and reducing activity of N-acetylcysteine (NAC), the N-acetyl derivative of the natural amino acid l-cysteine, are summarised and critically reviewed. The antioxidant effect is due to the ability of NAC to act as a reduced glutathione (GSH) precursor; GSH is a well-known direct antioxidant and a substrate of several antioxidant enzymes. Moreover, in some conditions where a significant depletion of endogenous Cys and GSH occurs, NAC can act as a direct antioxidant for some oxidant species such as NO 2 and HOX. The antioxidant activity of NAC could also be due to its effect in breaking thiolated proteins, thus releasing free thiols as well as reduced proteins, which in some cases, such as for mercaptoalbumin, have important direct antioxidant activity. As well as being involved in the antioxidant mechanism, the disulphide breaking activity of NAC also explains its mucolytic activity which is due to its effect in reducing heavily cross-linked mucus glycoproteins. Chemical features explaining the efficient disulphide breaking activity of NAC are also explained.
Hasler, Gregor; van der Veen, Jan Willem; Geraci, Marilla; Shen, Jun; Pine, Daniel; Drevets, Wayne C.
2009-01-01
Background Panic disorder (PD) is hypothesized to be associated with altered function of the major inhibitory neurotransmitter, gamma-amino butyric acid (GABA). Previous proton magnetic resonance spectroscopy (MRS) studies found lower GABA concentrations in the occipital cortex of subjects with PD relative to healthy controls. The current study is the first MRS study to compare GABA concentrations between unmedicated PD subjects and controls in the prefrontal cortex (PFC). Methods Unmedicated subjects with PD (n=17) and age- and sex-matched healthy controls (n=17) were scanned on a 3 Tesla scanner using a transmit-receive head coil that provided a sufficiently homogenous radiofrequency field to obtain spectroscopic measurements in the dorsomedial/dorsal anterolateral and ventromedial areas of the PFC. Results The prefrontal cortical GABA concentrations did not differ significantly between PD subjects and controls. There also was no statistically significant difference in Glx, choline or N-acetyl-aspartate concentrations. Conclusions The previously reported finding of reduced GABA concentrations in the occipital cortex of PD subjects does not appear to extend to the PFC. PMID:18692172
Biological and Structural Characterization of a Host-Adapting Amino Acid in Influenza Virus
Yamada, Shinya; Hatta, Masato; Staker, Bart L.; Watanabe, Shinji; Imai, Masaki; Shinya, Kyoko; Sakai-Tagawa, Yuko; Ito, Mutsumi; Ozawa, Makoto; Watanabe, Tokiko; Sakabe, Saori; Li, Chengjun; Kim, Jin Hyun; Myler, Peter J.; Phan, Isabelle; Raymond, Amy; Smith, Eric; Stacy, Robin; Nidom, Chairul A.; Lank, Simon M.; Wiseman, Roger W.; Bimber, Benjamin N.; O'Connor, David H.; Neumann, Gabriele; Stewart, Lance J.; Kawaoka, Yoshihiro
2010-01-01
Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals. PMID:20700447
Organo-mineral complexation alters carbon and nitrogen cycling in stream microbial assemblages
NASA Astrophysics Data System (ADS)
Hunter, William Ross; Wanek, Wolfgang; Prommer, Judith; Mooshammer, Maria; Battin, Tom
2014-05-01
Inland waters are of global biogeochemical importance receiving carbon inputs of ~ 4.8 Pg C y-1. Of this 12 % is buried, 18 % transported to the oceans, and 70 % supports aquatic secondary production. However, the mechanisms that determine the fate of organic matter (OM) in these systems are poorly defined. One important aspect is the formation of organo-mineral complexes in aquatic systems and their potential as a route for OM transport and burial vs. microbial utilization as organic carbon (C) and nitrogen (N) sources. Organo-mineral particles form by sorption of dissolved OM to freshly eroded mineral surfaces and may contribute to ecosystem-scale particulate OM fluxes. We tested the availability of mineral-sorbed OM as a C & N source for streamwater microbial assemblages and streambed biofilms. Organo-mineral particles were constructed in vitro by sorption of 13C:15N-labelled amino acids to hydrated kaolin particles, and microbial degradation of these particles compared with equivalent doses of 13C:15N-labelled free amino acids. Experiments were conducted in 120 ml mesocosms over 7 days using biofilms and streamwater sampled from the Oberer Seebach stream (Austria), tracing assimilation and mineralization of 13C and 15N labels from mineral-sorbed and dissolved amino acids. Here we present data on the effects of organo-mineral sorption upon amino acid mineralization and its C:N stoichiometry. Organo-mineral sorption had a significant effect upon microbial activity, restricting C and N mineralization by both the biofilm and streamwater treatments. Distinct differences in community response were observed, with both dissolved and mineral-stabilized amino acids playing an enhanced role in the metabolism of the streamwater microbial community. Mineral-sorption of amino acids differentially affected C & N mineralization and reduced the C:N ratio of the dissolved amino acid pool. The present study demonstrates that organo-mineral complexes restrict microbial degradation of OM and may, consequently, alter the carbon and nitrogen cycling dynamics within aquatic ecosystems.
Trophic spectra under the lens of amino acid isotopic analysis
USDA-ARS?s Scientific Manuscript database
Recent advances in compound specific isotopic ratio analysis (CSIRA) have allowed researchers to measure trophic fractionation of 15N in specific amino acids, namely glutamic acid and phenylalanine. These amino acids have proven useful in food web studies because of the wide and consistent disparity...
Mutual Exclusion of Urea and Trimethylamine N-oxide from Amino Acids in Mixed Solvent Environment
NASA Astrophysics Data System (ADS)
Ganguly, Pritam; Hajari, Timir; Shea, Joan-Emma; van der Vegt, Nico F. A.
2015-03-01
We study the solvation thermodynamics of individual amino acids in mixed urea and trimethylamine N-oxide (TMAO) solutions using molecular dynamics simulations and the Kirkwood-Buff theory. Our results on the preferential interactions between the amino acids and the cosolvents (urea and TMAO) show a mutual exclusion of both the cosolvents from the amino acid surface in the mixed cosolvent condition which is followed by an increase in the cosolvent-cosolvent aggregation away from the amino acid surface. The effects of the mixed cosolvents on the association of the amino acids and the preferential solvation of the amino acids by water are found to be highly non-linear in terms of the effects of the individual cosolvents. A similar result has been found for the association of the protein backbone, mimicked by triglycine. Our results have been confirmed by different TMAO force-fields and the mutual exclusions of the cosolvents from the amino acids are found to be independent of the choice of the strength of the TMAO-water interactions. Based on our data, a general mechanism can potentially be proposed for the effects of the mixed cosolvents on the preferential solvations of the solutes including the case of cononsolvency.
Arndt, K; Hofmann, D; Gehre, M; Krumbiegel, P
1998-01-01
A pilot study was performed to examine the potential of stable isotope techniques for monitoring the impact of a harmful substance on the cellular nitrogen metabolism in the ciliate species Tetrahymena pyriformis. After identical cultivation periods of control cells and toluene-exposed cells in a defined culture medium enriched with [guanidino-15N2]l-arginine, a number of nitrogen-containing pools were analyzed: 1) quantity and 15N abundance of ammonia as the end product of nitrogen metabolism in the system; 2) pattern and 15N abundances of the protein-bound amino acids in the cells; 3) pattern and 15N abundances of free amino acids in the cells; and 4) pattern and 15N abundances of the amino acids in the culture medium. In addition to 15N emission spectrometry, a new gas chromatography/combustion interface-isotope ratio mass spectrometry/mass spectrometry analytical system was used. The production and 15N content of ammonia were higher in the toluene-exposed system by 30% and 43%, respectively, indicating higher deamination rates and greater arginine consumption. The toluene-exposed cells exhibited increased 15N abundances of protein-bound amino acids in alanine, aspartic acid, glutamic acid, and tyrosine. Furthermore, structural analyses revealed the presence of N[Omega]-acetylarginine and pyrrolidonecarboxylic acid--compounds that had not previously been detected in Tetrahymena pyriformis. Differences in the 15N-enrichment of free amino acids were also evident. This new effect-monitoring system designed to investigate the impact of a pollutant on protein metabolism by using a stable isotope-labeled cell culture is a powerful tool for environmental medical research. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9681977
Higa, K; Gao, C; Motokawa, W; Abe, K
2001-04-01
In order to elucidate the regulatory roles for salivation of amino acids in positions 1-4 of the N-terminal region of [Tyr8]-substance P (SP), the structure-sialogogic activity correlations of various synthetic octa- to undecapeptides replaced in positions 1-4 of [Tyr8]-SP with each of 19 common amino acids, one by one, and with the same sequence of the C-terminal hepatapeptide as that of [Tyr8]-SP, were studied in the submandibular glands of rats after intraperitoneal injection. Each of 19 octa-, nona-, deca- and undecapeptides with replaced amino acids and a penta- to decapeptide with the progressive elimination of the N-terminal portion were newly synthesized by the multipin peptide method. All octa- to undecapeptides replaced with each of 19 common amino acids in positions 1-4 had sialogogic activities. In 19 octa- and decapeptides in which P4 and P2 had been replaced, four and three replacements, respectively, had significantly increased secretory activities. In contrast, in 19 nonapeptides in which K3 had been replaced, none had significantly increased secretory activities. Furthermore, in 19 undecapeptides in which R1 had been replaced, most replacements had significantly increased or equipotent activities for fluid secretion. It is concluded that amino acids in the N-terminal region of various tachykinins may not need to be strictly conserved and that amino acid residues in the N-terminal portion, R1 in particular and P2, may strongly inhibit secretory activity.
Amino acids derived from Titan tholins
NASA Technical Reports Server (NTRS)
Khare, B. N.; Sagan, C.; Ogino, H.; Nagy, B.; Er, C.; Schram, K. H.; Arakawa, E. T.
1986-01-01
An organic heteropolymer (Titan tholin) was produced by continuous dc discharge through a 0.9 N2/0.1 CH4 gas mixture at 0.2 mbar pressure, roughly simulating the cloudtop atmosphere of Titan. Treatment of this tholin with 6N HCl yielded 16 amino acids by gas chromatography after derivatization of N-trifluroacetyl isopropyl esters on two different capillary columns. Identifications were confirmed by GC/MS. Glycine, aspartic acid, and alpha- and beta-alanine were produced in greatest abundance; the total yield of amino acids was approximately 10(-2), approximately equal to the yield of urea. The presence of "nonbiological" amino acids, the absence of serine, and the fact that the amino acids are racemic within experimental error together indicate that these molecules are not due to microbial or other contamination, but are derived from the tholin. In addition to the HCN, HC2CN, and (CN)2 found by Voyager, nitriles and aminonitriles should be sought in the Titanian atmosphere and, eventually, amino acids on the surface. These results suggest that episodes of liquid water in the past or future of Titan might lead to major further steps in prebiological organic chemistry on that body.
Structural and Functional Role of Acetyltransferase hMOF K274 Autoacetylation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCullough, Cheryl E.; Song, Shufei; Shin, Michael H.
Many histone acetyltransferases undergo autoacetylation, either through chemical or enzymatic means, to potentiate enzymatic cognate substrate lysine acetylation, although the mode and molecular role of such autoacetylation is poorly understood. The MYST family of histone acetyltransferases is autoacetylated at an active site lysine residue to facilitate cognate substrate lysine binding and acetylation. Here, we report on a detailed molecular investigation of Lys-274 autoacetylation of the human MYST protein Males Absent on the First (hMOF). A mutational scan of hMOF Lys-274 reveals that all amino acid substitutions of this residue are able to bind cofactor but are significantly destabilized, both inmore » vitro and in cells, and are catalytically inactive for cognate histone H4 peptide lysine acetylation. The x-ray crystal structure of a hMOF K274P mutant suggests that the reduced stability and catalytic activity stems from a disordering of the residue 274-harboring a α2-β7 loop. We also provide structural evidence that a C316S/E350Q mutant, which is defective for cognate substrate lysine acetylation; and biochemical evidence that a K268M mutant, which is defective for Lys-274 chemical acetylation in the context of a K274-peptide, can still undergo quantitative K274 autoacetylation. Together, these studies point to the critical and specific role of hMOF Lys-274 autoacetylation in hMOF stability and cognate substrate acetylation and argues that binding of Ac-CoA to hMOF likely drives Lys-274 autoacetylation for subsequent cognate substrate acetylation.« less
Perdih, Andrej; Hodoscek, Milan; Solmajer, Tom
2009-02-15
MurD (UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase), a three-domain bacterial protein, catalyses a highly specific incorporation of D-glutamate to the cytoplasmic intermediate UDP-N-acetyl-muramoyl-L-alanine (UMA) utilizing ATP hydrolysis to ADP and P(i). This reaction is part of a biosynthetic path yielding bacterial peptidoglycan. On the basis of structural studies of MurD complexes, a stepwise catalytic mechanism was proposed that commences with a formation of the acyl-phosphate intermediate, followed by a nucleophilic attack of D-glutamate that, through the formation of a tetrahedral reaction intermediate and subsequent phosphate dissociation, affords the final product, UDP-N-acetyl-muramoyl-L-alanine-D-glutamate (UMAG). A hybrid quantum mechanical/molecular mechanical (QM/MM) molecular modeling approach was utilized, combining the B3LYP QM level of theory with empirical force field simulations to evaluate three possible reaction pathways leading to tetrahedral intermediate formation. Geometries of the starting structures based on crystallographic experimental data and tetrahedral intermediates were carefully examined together with a role of crucial amino acids and water molecules. The replica path method was used to generate the reaction pathways between the starting structures and the corresponding tetrahedral reaction intermediates, offering direct comparisons with a sequential kinetic mechanism and the available structural data for this enzyme. The acquired knowledge represents new and valuable information to assist in the ongoing efforts leading toward novel inhibitors of MurD as potential antibacterial drugs. (c) 2008 Wiley-Liss, Inc.
Sialic acids as link to Japanese scientistsDedicated to Prof. Dr. Tamio Yamakawa.
SCHAUER, Roland
2016-01-01
This manuscript is dedicated to Prof. Tamio Yamakawa and describes my cooperations on sialic acid-related topics with Japanese scientists during the last 40 years. We studied sialic acids and their O-acetylated derivatives in the sea urchin Pseudocentrotus depressus, in Halocynthia species, and in human and bovine milk. In seafood we mainly searched for N-glycolylneuraminic acid. With synthetic substrates it was shown that sialic acid O-acetylation at C-4 hinders the activity of sialidases, with the exception of viral enzymes. The biosynthesis of Neu5Gc was discussed and the distribution of this sialic acid in dogs followed in modern literature and reviewed regarding their migration. An excellent source of sialic acids is edible bird nest substance (Collocalia mucin) which was used for the synthesis of sialylation inhibitors. PMID:27063181
Cicek, Kader; Gulec, Burcu; Ungor, Rifat; Hasanova, Gulnara
2017-01-01
A plant transient expression system, with eukaryotic post-translational modification machinery, offers superior efficiency, scalability, safety, and lower cost over other expression systems. However, due to aberrant N-glycosylation, this expression system may not be a suitable expression platform for proteins not carrying N-linked glycans in the native hosts. Therefore, it is crucial to develop a strategy to produce target proteins in a non-glycosylated form while preserving their native sequence, conformation and biological activity. Previously, we developed a strategy for enzymatic deglycosylation of proteins in planta by co-expressing bacterial peptide-N-glycosidase F (PNGase F). Though PNGase F removes oligosaccharides from glycosylated proteins, in so doing it causes an amino acid change due to the deamidation of asparagine to aspartate in the N-X-S/T site. Endo-β-N-acetylglucosaminidase (EC3.2.1.96, Endo H), another deglycosylating enzyme, catalyzes cleavage between two N-Acetyl-D-glucosamine residues of the chitobiose core of N-linked glycans, leaving a single N-Acetyl-D-glucosamine residue without the concomitant deamidation of asparagine. In this study, a method for in vivo deglycosylation of recombinant proteins in plants by transient co-expression with bacterial Endo H is described for the first time. Endo H was fully active in vivo. and successfully cleaved N-linked glycans from glycoproteins were tested. In addition, unlike the glycosylated form, in vivo Endo H deglycosylated Pfs48/45 was recognized by conformational specific Pfs48/45 monoclonal antibody, in a manner similar to its PNGase F deglycosylated counterpart. Furthermore, the deglycosylated PA83 molecule produced by Endo H showed better stability than a PNGase F deglycosylated counterpart. Thus, an Endo H in vivo deglycosylation approach provides another opportunity to develop vaccine antigens, therapeutic proteins, antibodies, and industrial enzymes. PMID:28827815
NASA Astrophysics Data System (ADS)
Xiang, Zhang
2013-10-01
It is generally appreciated that carbonyl compound can promote the decarboxylation of the amino acid. In this paper, we have performed the experimental and theoretical investigation into the gas-phase decarboxylation of the amino acid anion catalyzed by the aromatic aldehyde via the imine intermediate on the basis of the tandem mass spectrometry (MS/MS) technique and density functional theory (DFT) calculation. The results show that the aromatic aldehyde can achieve a remarkable catalytic effect. Moreover, the catalytic mechanism varies according to the type of amino acid: (i) The decarboxylation of α-amino acid anion is determined by the direct dissociation of the Csbnd C bond adjacent to the carboxylate, for the resulting carbanion can be well stabilized by the conjugation between α-carbon, Cdbnd N bond and benzene ring. (ii) The decarboxylation of non-α-amino acid anion proceeds via a SN2-like transition state, in which the dissociation of the Csbnd C bond adjacent to the carboxylate and attacking of the resulting carbanion to the Cdbnd N bond or benzene ring take place at the same time. Specifically, for β-alanine, the resulting carbanion preferentially attacks the benzene ring leading to the benzene anion, because attacking the Cdbnd N bond in the decarboxylation can produce the unstable three or four-membered ring anion. For the other non-α-amino acid anion, the Cdbnd N bond preferentially participates in the decarboxylation, which leads to the pediocratic nitrogen anion.
van Rossum, Harmen M; Kozak, Barbara U; Pronk, Jack T; van Maris, Antonius J A
2016-07-01
Saccharomyces cerevisiae is an important industrial cell factory and an attractive experimental model for evaluating novel metabolic engineering strategies. Many current and potential products of this yeast require acetyl coenzyme A (acetyl-CoA) as a precursor and pathways towards these products are generally expressed in its cytosol. The native S. cerevisiae pathway for production of cytosolic acetyl-CoA consumes 2 ATP equivalents in the acetyl-CoA synthetase reaction. Catabolism of additional sugar substrate, which may be required to generate this ATP, negatively affects product yields. Here, we review alternative pathways that can be engineered into yeast to optimize supply of cytosolic acetyl-CoA as a precursor for product formation. Particular attention is paid to reaction stoichiometry, free-energy conservation and redox-cofactor balancing of alternative pathways for acetyl-CoA synthesis from glucose. A theoretical analysis of maximally attainable yields on glucose of four compounds (n-butanol, citric acid, palmitic acid and farnesene) showed a strong product dependency of the optimal pathway configuration for acetyl-CoA synthesis. Moreover, this analysis showed that combination of different acetyl-CoA production pathways may be required to achieve optimal product yields. This review underlines that an integral analysis of energy coupling and redox-cofactor balancing in precursor-supply and product-formation pathways is crucial for the design of efficient cell factories. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Swatek, Kirby N; Komander, David
2016-01-01
Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the 'ubiquitin code'. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation. PMID:27012465
Todua, Nino G.; Tretyakov, Kirill V.; Mikaia, Anzor I.
2016-01-01
The central mission for the development of the National Institute of Standards and Technology/National Institutes of Health/Environmental Protection Agency Mass Spectral Library is the acquisition of reference gas chromatography–mass spectrometry data for important compounds and their chemical modification products. The addition of reliable reference data of various derivatives of amino acids to The Library, and the study of their behavior under electron ionization conditions may be useful for their identification, structure elucidation, and a better understanding of the data obtained when the same derivatives are subjected to other ionization methods. N-Alkyl-N-perfluoroacyl derivatives of amino acids readily produce previously unreported alkylnitrilium cations of composition [HC≡N-alkyl]+. Homologous [HC≡N-aryl]+ cations are typical for corresponding N-aryl analogs. The formation of other ions characteristic for these derivatives involves oxygen rearrangement giving rise to ions [CnF2n+1–C≡N+–CnH2n+1] and [CnF2n+1–C≡N+-aryl]. The introduction of an N-benzyl substituent in a molecule favors a process producing benzylidene iminium cations. l-Threonine and l-cysteine derivatives exhibit more fragmentation pathways not typical for other α-amino acids; additionally, the Nω-amino group in l-lysine directs the dissociation process and provides structural information on the substitution at the amino functions in the molecule. PMID:26307698
Cottam, H B; Revankar, G R; Robins, R K
1983-01-01
The glycosylation of 4,6-dichloropyrazolo[3,4-d]pyrimidine and 4-chloro-6-methylthiopyrazolo[3,4-d]pyrimidine via the corresponding trimethylsilyl intermediate and tetra-O-acetyl-beta-D-ribofuranose in the presence of trimethylsilyl triflate as a catalyst, gave selective glycosylation at N1 as the only nucleoside product. The intermediates 4,6-dichloro-1-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)pyrazolo [3,4-d]pyrimidine 7 and 4-chloro-6-methylthio-1-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)pyrazolo [3,4-d]pyrimidine 13 gave new and convenient synthetic routes to the inosine analog 1, the guanosine analog 2, the adenosine analog 3, and the isoguanosine analog 16. Glycosylation of the trimethylsilyl derivative of 6-chloropyrazolo[3,4-d]pyrimidine-4-one unexpectedly gave the N2-glycosyl isomer 20 as the major product. A number of new 4,6-disubstituted pyrazolo[3,4-d]pyrimidine nucleosides were prepared from these glycosyl intermediates. PMID:6835838
Structural Characterization of the N Terminus of IpaC from Shigella flexneri
Harrington, Amanda T.; Hearn, Patricia D.; Picking, Wendy L.; Barker, Jeffrey R.; Wessel, Andrew; Picking, William D.
2003-01-01
The primary effector for Shigella invasion of epithelial cells is IpaC, which is secreted via a type III secretion system. We recently reported that the IpaC N terminus is required for type III secretion and possibly other functions. In this study, mutagenesis was used to identify an N-terminal secretion signal and to determine the functional importance of the rest of the IpaC N terminus. The 15 N-terminal amino acids target IpaC for secretion by Shigella flexneri, and placing additional amino acids at the N terminus does not interfere with IpaC secretion. Furthermore, amino acid sequences with no relationship to the native IpaC secretion signal can also direct its secretion. Deletions introduced beyond amino acid 20 have no effect on secretion and do not adversely affect IpaC function in vivo until they extend beyond residue 50, at which point invasion function is completely eliminated. Deletions introduced at amino acid 100 and extending toward the N terminus reduce IpaC's invasion function but do not eliminate it until they extend to the N-terminal side of residue 80, indicating that a region from amino acid 50 to 80 is critical for IpaC invasion function. To explore this further, the ability of an IpaC N-terminal peptide to associate in vitro with its translocon partner IpaB and its chaperone IpgC was studied. The N-terminal peptide binds tightly to IpaB, but the IpaC central hydrophobic region also appears to participate in this binding. The N-terminal peptide also associates with the chaperone IpgC and IpaB is competitive for this interaction. Based on additional biophysical data, we propose that a region between amino acids 50 and 80 is required for chaperone binding, and that the IpaB binding domain is located downstream from, and possibly overlapping, this region. From these data, we propose that the secretion signal, chaperone binding region, and IpaB binding domain are located at the IpaC N terminus and are essential for presentation of IpaC to host cells during bacterial entry; however, IpaC effector activity may be located elsewhere. PMID:12595440
NASA Astrophysics Data System (ADS)
Li, Zhi; Zhang, Fei-long; Wang, Zhiyuan; Pan, Li-li; Shen, Ying-ying; Zhang, Zhen-zhong
2013-12-01
The photocytotoxicity of water-dispersed 100-300 nm fullerene amino acid derivatives nanoparticles was studied. The nanoparticle solution of fullerene derivatives, l-phenylalanine (C60-phe) and glycine (C60-gly), suppressed the in vitro growth of MCF-7 cells lines, induced cancer cells apoptosis, and caused a perturbation of the cell cycle. These nanoparticle solutions increased intracellular reactive oxygen species after irradiation. C60-phe or C60-gly upregulated the expression of phosphorylated (p)p38 mitogen-activated protein kinase (MAPK). N-Acetyl- l-cysteine significantly depressed the composite-induced activation of p38MAPK, and the kinase inhibitor SB203580 significantly prevented C60 derivative-induced cell apoptosis. This study revealed that p38MAPK is activated by C60 nanoparticles through triggering reactive oxygen species generation, leading to cancer cell injuries.
Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization
Barazzouk, Saïd; Daneault, Claude
2012-01-01
In this work, oxidized nanocellulose (ONC) was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides) were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectroscopic techniques. PMID:28348303
de Vrese, M; Frik, R; Roos, N; Hagemeister, H
2000-08-01
Heat and alkali treatment of food may increase the concentrations of protein-bound D-amino acids and cross-links such as lysinoalanine (LAL). To examine how protein treatment affects digestibility, purified test meals [total protein 150 g/kg dry matter (DM), 0.44 MJ/(kg BW(0.75). d)] were prepared, containing (g/kg DM) casein, 75; beta-lactoglobulin, 50; or wheat protein, 40. Each was (15)N-labeled. Test proteins were used either in their native form or after treatment for 6 or 24 h at 65 degrees C, pH 10.5-11.5. Each meal was fed to nine adult miniature pigs (twofold complete cross-classification). Chyme was collected continuously over 33 h postprandially via T-fistulas in the terminal ileum, and digestibilities of test proteins and individual L- and D-amino acids were calculated on the basis of recovery of (15)N and the respective amino acids in the chyme. Treatment of casein, beta-lactoglobulin or wheat protein for 24 h increased levels of D-amino acid residues. L-Asparagine and aspartate (L-Asx) were particularly susceptible; 14. 7 +/- 0.4, 11.7 +/- 0.2 and 11.0 +/- 0.9%, respectively, underwent racemization. LAL levels increased in parallel; 11.7 +/- 0.3, 13.6 +/- 0 and 14.8 +/- 0.0%, respectively, of total lysine was converted to LAL. At the same time, prececal protein digestibility was decreased by 13.4 +/- 2.3, 15.3 +/- 1.4 and 17.8 +/- 1.2% units, respectively (P < 0.05; mean +/- SEM, n = 9). Digestibility of individual L-amino acids decreased by 10-15%, but L-amino acids prone to peptic cleavage, such as L-phenylalanine and L-tyrosine, were not affected. Digestibilities of D-amino acids and LAL were approximately 35%. It seems that mainly D-amino acids, and to a lesser extent LAL, were responsible for lower digestibility by interfering with peptic cleavage.
Brorson, T; Skarping, G; Sandström, J F; Stenberg, M
1990-01-01
1,6-Hexamethylene diamine (HDA), used as raw material in industrial manufacturing operations, was orally administered to six healthy volunteers. After acid hydrolysis of the urine by hydrochloric acid, HDA and the metabolite 6-aminohexanoic acid were quantified. HDA was determined as an ethyl-chloroformate derivative by capillary gas chromatography using thermionic specific detection (TSD), and 6-aminohexanoic acid was quantified by ion chromatography using the ninhydrin reaction. In nonhydrolysed urine, monoacetylated HDA (N-acetyl-1,6-hexamethylene diamine) and HDA, were verified as heptafluorobutyric anhydride derivatives by gas chromatography-mass spectrometry (GC-MS), in a chemical ionization mode using isobutane and ammonia as reagent gases. In hydrolysed urine, a mean of 0.28 mg (range 1-6%) of the administered dose (8.2 mg) was recovered as HDA, and a mean of 0.8 mg (range less than 1-27%) as 6-aminohexanoic acid. The urinary excretion of both the determined compounds was rapid, and the principal part (greater than 90%) of the elimination was completed within 10 h. There was a considerable inter-individual variation in the excreted amounts, but the intra-individual variation in the excretion of HDA was limited. The subjects N-acetylator phenotype was determined by a dapsone test. Three slow acetylators excreted lower amounts (mean 2% of given dose) of HDA than three rapid ones (mean 5%).
Reasons for the occurrence of the twenty coded protein amino acids
NASA Technical Reports Server (NTRS)
Weber, A. L.; Miller, S. L.
1981-01-01
Factors involved in the selection of the 20 protein L-alpha-amino acids during chemical evolution and the early stages of Darwinian evolution are discussed. The selection is considered on the basis of the availability in the primitive ocean, function in proteins, the stability of the amino acid and its peptides, stability to racemization, and stability on the transfer RNA. It is concluded that aspartic acid, glutamic acid, arginine, lysine, serine and possibly threonine are the best choices for acidic, basic and hydroxy amino acids. The hydrophobic amino acids are reasonable choices, except for the puzzling absences of alpha-amino-n-butyric acid, norvaline and norleucine. The choices of the sulfur and aromatic amino acids seem reasonable, but are not compelling. Asparagine and glutamine are apparently not primitive. If life were to arise on another planet, it would be expected that the catalysts would be poly-alpha-amino acids and that about 75% of the amino acids would be the same as on the earth.
The problem of nitrogen disposal in the obese.
Alemany, Marià
2012-06-01
Amino-N is preserved because of the scarcity and nutritional importance of protein. Excretion requires its conversion to ammonia, later incorporated into urea. Under conditions of excess dietary energy, the body cannot easily dispose of the excess amino-N against the evolutively adapted schemes that prevent its wastage; thus ammonia and glutamine formation (and urea excretion) are decreased. High lipid (and energy) availability limits the utilisation of glucose, and high glucose spares the production of ammonium from amino acids, limiting the synthesis of glutamine and its utilisation by the intestine and kidney. The amino acid composition of the diet affects the production of ammonium depending on its composition and the individual amino acid catabolic pathways. Surplus amino acids enhance protein synthesis and growth, and the synthesis of non-protein-N-containing compounds. But these outlets are not enough; consequently, less-conventional mechanisms are activated, such as increased synthesis of NO∙ followed by higher nitrite (and nitrate) excretion and changes in the microbiota. There is also a significant production of N(2) gas, through unknown mechanisms. Health consequences of amino-N surplus are difficult to fathom because of the sparse data available, but it can be speculated that the effects may be negative, largely because the fundamental N homeostasis is stretched out of normalcy, forcing the N removal through pathways unprepared for that task. The unreliable results of hyperproteic diets, and part of the dysregulation found in the metabolic syndrome may be an unwanted consequence of this N disposal conflict.
Myette, James R; Soundararajan, Venkataramanan; Shriver, Zachary; Raman, Rahul; Sasisekharan, Ram
2009-12-11
Heparin and heparan sulfate glycosaminoglycans (HSGAGs) comprise a chemically heterogeneous class of sulfated polysaccharides. The development of structure-activity relationships for this class of polysaccharides requires the identification and characterization of degrading enzymes with defined substrate specificity and enzymatic activity. Toward this end, we report here the molecular cloning and extensive structure-function analysis of a 6-O-sulfatase from the Gram-negative bacterium Flavobacterium heparinum. In addition, we report the recombinant expression of this enzyme in Escherichia coli in a soluble, active form and identify it as a specific HSGAG sulfatase. We further define the mechanism of action of the enzyme through biochemical and structural studies. Through the use of defined substrates, we investigate the kinetic properties of the enzyme. This analysis was complemented by homology-based molecular modeling studies that sought to rationalize the substrate specificity of the enzyme and mode of action through an analysis of the active-site topology of the enzyme including identifying key enzyme-substrate interactions and assigning key amino acids within the active site of the enzyme. Taken together, our structural and biochemical studies indicate that 6-O-sulfatase is a predominantly exolytic enzyme that specifically acts on N-sulfated or N-acetylated 6-O-sulfated glucosamines present at the non-reducing end of HSGAG oligosaccharide substrates. This requirement for the N-acetyl or N-sulfo groups on the glucosamine substrate can be explained through eliciting favorable interactions with key residues within the active site of the enzyme. These findings provide a framework that enables the use of 6-O-sulfatase as a tool for HSGAG structure-activity studies as well as expand our biochemical and structural understanding of this important class of enzymes.
Wu, R H; Lin, R; Li, H; Xiao, Z W; Rao, H B; Luo, W H; Guo, G; Huang, K; Zhang, X G; Lang, Z J
2005-01-01
The metabolite ratios had been employed in the field of MR spectroscopy (MRS) for a long period. The main drawback of metabolite ratio is that ratio results are not comparable with absolute metabolite concentration in vivo. The purpose of this study was to examine the accuracy of noninvasive quantification of brain N-acetylaspartate (NAA) concentrations using previously reported MR external standard method. Eight swine were scanned on a GE 1.5 T scanner with a standard head coil. The external standard method was utilized with a sphere filled with NAA, GABA, glutamine, glutamate, creatine, choline chloride, and myo-inositol. The position resolved spectroscopy (PRESS) sequence was used with TE=135 msec, TR=1500 msec, and 128 scan averages. The analysis of MRS was done with SAGE/IDL program. In vivo NAA concentration was obtained using the equation S=N * e(-TE/T2) * [1-e(-TR/T1). In vitro NAA concentration was measured by high performance liquid chromatography (HPLC). In the MRS group, the mean concentration of NAA was 10.03 plusmn 0.74 mmol/kg. In the HPLC group, the mean concentration of NAA was 9.22 plusmn 0.55 mmol/kg. There was no significant difference between the two groups (p = 0.46). However, slightly higher value was observed in the MRS group (7/8 swine), compared with HPLC group. The range of differences was between 0.02~2.05 mmol/kg. MRS external reference method could be more accurate than internal reference method. 1H MRS does not distinguish between N-acetyl resonance frequencies and other N-acetylated amino acids.
Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation
Jump, Donald B.; Torres-Gonzalez, Moises; Olson, L. Karl
2010-01-01
Acetyl CoA carboxylase (ACC1 & ACC2) generates malonyl CoA, a substrate for de novo lipogenesis (DNL) and an inhibitor of mitochondrial fatty acid β-oxidation (FAO). Malonyl CoA is also a substrate for microsomal fatty acid elongation, an important pathway for saturated (SFA), mono- (MUFA) and polyunsaturated fatty acid (PUFA) synthesis. Despite the interest in ACC as a target for obesity and cancer therapy, little attention has been given to the role ACC plays in long chain fatty acid synthesis. This report examines the effect of pharmacological inhibition of ACC on DNL & palmitate (16:0) and linoleate (18:2,n-6) metabolism in HepG2 and LnCap cells. The ACC inhibitor, soraphen A, lowers cellular malonyl CoA, attenuates DNL and the formation of fatty acid elongation products derived from exogenous fatty acids, i.e., 16:0 & 18:2,n-6; IC50 ~ 5 nM. Elevated expression of fatty acid elongases (Elovl5, Elovl6) or desaturases (FADS1, FADS2) failed to override the soraphen A effect on SFA, MUFA or PUFA synthesis. Inhibition of fatty acid elongation leads to the accumulation of 16- and 18-carbon unsaturated fatty acids derived from 16:0 and 18:2,n-6, respectively. Pharmacological inhibition of ACC activity will not only attenuate DNL and induce FAO, but will also attenuate the synthesis of very long chain saturated, mono- and polyunsaturated fatty acids. PMID:21184748
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolau, Basil J; Wurtele, Eve S; Oliver, David J
The present invention provides nucleic acid and amino acid sequences of acetyl CoA synthetase (ACS), plastidic pyruvate dehydrogenase (pPDH), ATP citrate lyase (ACL), Arabidopsis pyruvate decarboxylase (PDC), and Arabidopsis aldehyde dehydrogenase (ALDH), specifically ALDH-2 and ALDH-4. The present invention also provides a recombinant vector comprising a nucleic acid sequence encoding one of the aforementioned enzymes, an antisense sequence thereto or a ribozyme therefor, a cell transformed with such a vector, antibodies to the enzymes, a plant cell, a plant tissue, a plant organ or a plant in which the level of an enzyme has been altered, and a method ofmore » producing such a plant cell, plant tissue, plant organ or plant. Desirably, alteration of the level of enzyme results in an alteration of the level of acetyl CoA in the plant cell, plant tissue, plant organ or plant. In addition, the present invention provides a recombinant vector comprising an antisense sequence of a nucleic acid sequence encoding pyruvate decarboxylase (PDC), the E1.alpha. subunit of pPDH, the E1.beta. subunit of pPDH, the E2 subunit of pPDH, mitochondrial pyruvate dehydrogenase (mtPDH) or aldehyde dehydrogenase (ALDH) or a ribozyme that can cleave an RNA molecule encoding PDC, E1.alpha. pPDH, E1.beta. pPDH, E2 pPDH, mtPDH or ALDH.« less
Regulation of Lipid Synthesis in Soybeans by Two Benzoic Acid Herbicides 1
Muslih, Raad K.; Linscott, Dean L.
1977-01-01
The effects of 3-nitro-2,5-dichlorobenzoic acid (dinoben) and 3-amino-2,4-dichlorobenzoic acid (chloramben) on lipid formation and on the incorporation of various substrates into lipids by intact seeds and subcellular fractions of germinating soybean (Glycine max [L.] Merr. `Amsoy') were studied. Dinoben (20 μg/ml) inhibited synthesis of total lipids 67%, neutral lipids 73%, glycolipids 51%, and phospholipids 39% in germinating seeds. When polar lipids were analyzed further, inhibition of individual lipid classes was also observed. Chloramben (20 μg/ml) stimulated total lipid synthesis 25%. With the exception of the mitochondrial fraction where malonate thiokinase was absent, dinoben inhibited up to 99% the incorporation of acetate and malonate into lipids, but did not inhibit acetyl-CoA and malonyl-CoA incorporation. Chloramben stimulated the incorporation of all substrates tested into lipids by all fractions except the mitochondrial fraction when malonate was the substrate. When dinoben and chloramben were used in combinations, chloramben did not reverse the inhibitory effect of dinoben. It is concluded that the dinoben inhibitory effect is specific and is associated with the acetate and malonate thiokinase systems. The chloramben effect is stimulatory to either acetyl-CoA carboxylase or fatty acid synthetase or both. PMID:16660173
Donato, D C Z; Sakomura, N K; Silva, E P; Troni, A R; Vargas, L; Guagnoni, M A N; Meda, B
2016-06-01
The intensification of livestock have increased the emission of pollutants to the environment, leading to a growing interest in seeking strategies that minimise these emissions. Studies have shown that it is possible to manipulate diets by reducing CP levels and thus reducing nitrogen (N) excretion, without compromising performance. However, there is no knowledge of any study that has focused on reducing N excretion and relating this reduction to individual amino acids. This study investigated the effect of dietary methionine+cysteine (MC) and threonine (THR), the two most limiting amino acids for broiler production, on nitrogen excretion (NE) and nitrogen deposition (ND) and determined the efficiency of utilisation of both amino acids for protein deposition. Six trials were conducted to measure the NE and ND in broiler chickens during three rearing phases in response to dietary amino acid. The efficiency of utilisation of the amino acids was calculated by linear regression of body protein deposition and the amino acid intake. Despite the differences between sexes and phases, the efficiency of utilisation was the same, being 0.60 and 0.59 for MC and THR, respectively. The rate of NE behaved exponentially, increasing with amino acid intake, and can exceed 50% of N intake, being higher than ND. On average, for a reduction in intake of each unit of MC or THR (mg) there is a reduction of 0.5% of NE. Although this reduction seems low, considering that it corresponds to changes in one amino acid only, the impact on a large scale would be significant. Knowledge of how animals respond to NE and ND/protein deposition according to amino acid dietary content may represent new efforts towards reducing the impact on environment.
Determination of Selected Amino Acids in Serum of Patients with Liver Disease.
Kanďár, Roman; Drábková, Petra; Toiflová, Tereza; Čegan, Alexander
2016-01-01
The determination of amino acids can be a reliable approach for extended diagnosis of liver diseases. This is because liver disease can be a cause of impaired amino acid metabolism. Therefore, a method for the determination of serum amino acids, applicable for clinical purposes, is necessary. The aim of this study was to find differences in the levels of selected amino acids between patients with liver disease and a control group. Samples of peripheral venous blood were obtained from a group of patients with liver disease (n = 131, 59 women at an average age of 60 years and 72 men at an average age of 52 years) and a control group (n = 105, 47 women at an average age of 62 years and 58 men at an average age of 58 years). Before the separation, the amino acids were derivatized with naphthalene-2,3-dicarboxaldehyde. For the separation, reverse phase column was used. The effluent was monitored with a fluorescence detector. There were significant differences in the concentrations of some amino acids between the patients and the control group, but also between women and men. Correlations between some amino acids and markers of liver blood tests and lipid metabolism were observed. A simple, relatively rapid and selective HPLC method with fluorescence detection for the determination of selected amino acids in serum has been developed.
NASA Technical Reports Server (NTRS)
Stein, T. P.; Settle, R. G.; Albina, J. A.; Dempsey, D. T.; Melnick, G.
1991-01-01
Eight N-15 labeled nonessential amino acids plus (15)NH4Cl were administered over a 10 h period to four healthy adult males using a primed-constant dosage regimen. The amount of N-15 excreted in the urine and the urinary ammonia, hippuric acid, and plasma alanine N-15 enrichments were measured. There was a high degree of consistency across subjects in the ordering of the nine compounds based on the fraction of N-15 excreted (Kendall coefficient of concordance W = 0.83, P is less than 0.01). Protein synthesis rates were calculated from the urinary ammonia plateau enrichment and the cumulative excretion of N-15. Glycine was one of the few amino acids that gave similar values by both methods.
Polyak, Felix; Lubell, William D.
1998-08-21
Azabicyclo[X.Y.0]alkane amino acids are tools for constructing mimics of peptide structure and templates for generating combinatorial libraries for drug discovery. Our methodology for synthesizing these conformationally rigid dipeptides has been elaborated such that alkyl groups can be appended onto the heterocycle to generate mimics of peptide backbone and side-chain structure. Inexpensive glutamic acid was employed as chiral educt in a Claisen condensation/ketone alkylation/reductive amination/lactam cyclization sequence that furnished alkyl-branched azabicyclo[4.3.0]alkane amino acid. Enantiopure 5-benzyl-, 7-benzyl-, and 5,7-dibenzylindolizidinone amino acids 2-4 were stereoselectively synthesized via efficient reaction sequences featuring the alkylation of di-tert-butyl alpha,omega-di-[N-(PhF)amino]azelate delta-ketone 5. A variety of alkyl halides were readily added to the enolate of ketone 5 to provide mono- and dialkylated ketones 6 and 7. Hydride additions to 6 and 7, methanesulfonations, and intramolecular S(N)2 displacements by the PhF amine gave 5-alkylprolines that were converted by lactam cyclizations into 7- and 5-benzyl-, as well as 5,7-dibenzyl-2-oxo-3-N-(BOC)amino-1-azabicyclo[4.3.0]nonane-9-carboxylate methyl esters 10, 11, and 14. Epimerization of the alkyl-branched stereocenter via an iminium-enaminium equilibrium proved effective for controlling diastereoselectivity in reductive aminations with 6 and 7 in order to furnish 5-alkylprolines that were similarly converted to 7- benzyl- and 5,7-dibenzylindolizidinone N-(BOC)amino esters 10 and 14. Ester hydrolysis with hydroxide ion and potassium trimethylsilanolate then gave enantiopure indolizidinone amino acids 2-4. Epimerization at C-9 of benzylindolizidinone amino esters was also used to provide alternative diastereomers of 10, 11, and 14. This practical methodology for introducing side-chain groups onto the heterocycle with regioselective and diastereoselective control is designed to enhance the use of alkyl-branched azabicycloalkane amino acids for the exploration of conformation-activity relationships of various biologically active peptides.
Kawakami, Takashi; Ishizawa, Takahiro; Murakami, Hiroshi
2013-08-21
Cyclic structures can increase the proteolytic stability and conformational rigidity of peptides, and N-alkylation of the peptide backbone can make peptides more cell-permeable and resistant to proteolysis. Therefore, cyclic N-alkyl amino acids are expected to be useful building blocks to increase simultaneously these pharmacological properties of peptides. In this study, we screened various cyclic N-alkyl amino acids for their ribosomal incorporation into peptides and identified cyclic N-alkyl amino acids that can be efficiently and successively incorporated. We also demonstrated genetic code reprogramming for reassigning 16 NNU codons to 16 different cyclic N-alkyl amino acids with high fidelity to synthesize highly N-alkylated polycyclic peptidomimetics and an mRNA-displayed library of completely N-alkylated polycyclic peptidomimetics by using our recently developed TRAP (transcription/translation coupled with association of puromycin linker) display. In vitro selection from a highly diverse library of such completely N-alkylated polycyclic peptidomimetics could become a powerful means to discover small-molecule ligands such as drug candidates that can be targeted to biomolecules inside living cells.
Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups
NASA Astrophysics Data System (ADS)
Zhao, Zhiyuan; Yang, Zhanhong; Hu, Youwang; Li, Jianping; Fan, Xinming
2013-07-01
In this paper, carboxyl and amino groups have been introduced onto the surface of the multi-walled carbon nanotubes (MWCNTs) by the mixed acid treatment and the diazonium reaction, respectively. The presence of multifunctionality groups on the MWCNTs has been characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric (TGA) analysis, Raman spectra, scanning electron microscopy (SEM) and energy dispersive X-ray spectrum (EDS). The multifunctionalized carbon nanotubes were further utilized to react with acetyl chloride and ethylenediamine (EDA). The formation of the amide bond in the grafting reaction has been confirmed by FT-IR spectroscopy. The result indicates that the further grafting is successful. The multifunctionalized MWCNTs can be a new versatile platform for many interesting applications.
Small-Molecule Antioxidant Proteome-Shields in Deinococcus Radiodurans
2010-09-01
from oxidative damage and degradation. Nucleic Acids Res 31: 2995–3005. 48. Oren A, Gunde-Cimerman N (2007) Mycosporines and mycosporine - like amino ...TT-ultrafiltrates include Mn (Figure 2A), phosphate (Figure 2A), uridine, adenosine and uracil (Figure 2B and Table S1), and amino acids and peptides...which catalytically remove superoxide (O2 N2) via a disproportionation mechanism [23,24]; and amino acids and peptides, which scavenge HON very
Neumann, Gabriele; Macken, Catherine A.
2014-01-01
ABSTRACT Novel influenza A viruses of the H7N9 subtype [A(H7N9)] emerged in the spring of 2013 in China and had infected 163 people as of 10 January 2014; 50 of them died of the severe respiratory infection caused by these viruses. Phylogenetic studies have indicated that the novel A(H7N9) viruses emerged from reassortment of H7, N9, and H9N2 viruses. Inspections of protein sequences from A(H7N9) viruses and their immediate predecessors revealed several amino acid changes in A(H7N9) viruses that may have facilitated transmission and replication in the novel host. Since mutations that occurred more ancestrally may also have contributed to the genesis of A(H7N9) viruses, we inferred historical evolutionary events leading to the novel viruses. We identified a number of amino acid changes on the evolutionary path to A(H7N9) viruses, including substitutions that may be associated with host range, replicative ability, and/or host responses to infection. The biological significance of these amino acid changes can be tested in future studies. IMPORTANCE The novel influenza A viruses of the H7N9 subtype [A(H7N9)], which first emerged in the spring of 2013, cause severe respiratory infections in humans. Here, we performed a comprehensive evolutionary analysis of the progenitors of A(H7N9) viruses to identify amino acid changes that may have been critical for the emergence of A(H7N9) viruses and their ability to infect humans. We provide a list of potentially important amino acid changes that can be tested for their significance for the influenza virus host range, replicative ability, and/or host responses to infection. PMID:24522919
N-nitrosations of basic amino acid residues in polypeptide.
Kuo, Wu-Nan; Ivy, Dynisha; Guruvadoo, Luvina; White, Atavia; Graham, Latia
2004-09-01
Changes in the electrophoretic pattern were noted in the products of polypeptides of identical basic amino acids preincubated with reactive or degraded PN, suggesting the occurrence of N-nitrosation of the epsilon-amino group of lysine, the guanido group of arginine and the imidazole group of histidine. Additionally, increase in the N-nitroso immunoreactivity of preincubated histones H2A and H2B was detected by Western blot analysis.
Suzuki, Shun'ichi; Takenaka, Yasuhiro; Onishi, Norimasa; Yokozeki, Kenzo
2005-08-01
A DNA fragment from Microbacterium liquefaciens AJ 3912, containing the genes responsible for the conversion of 5-substituted-hydantoins to alpha-amino acids, was cloned in Escherichia coli and sequenced. Seven open reading frames (hyuP, hyuA, hyuH, hyuC, ORF1, ORF2, and ORF3) were identified on the 7.5 kb fragment. The deduced amino acid sequence encoded by the hyuA gene included the N-terminal amino acid sequence of the hydantoin racemase from M. liquefaciens AJ 3912. The hyuA, hyuH, and hyuC genes were heterologously expressed in E. coli; their presence corresponded with the detection of hydantoin racemase, hydantoinase, and N-carbamoyl alpha-amino acid amido hydrolase enzymatic activities respectively. The deduced amino acid sequences of hyuP were similar to those of the allantoin (5-ureido-hydantoin) permease from Saccharomyces cerevisiae, suggesting that hyuP protein might function as a hydantoin transporter.
NASA Astrophysics Data System (ADS)
Li, Yao-Wang; Li, Bo; He, Jiguo; Qian, Ping
2011-07-01
A database consisting of 214 tripeptides which contain either His or Tyr residue was applied to study quantitative structure-activity relationships (QSAR) of antioxidative tripeptides. Partial Least-Squares Regression analysis (PLSR) was conducted using parameters individually of each amino acid descriptor, including Divided Physico-chemical Property Scores (DPPS), Hydrophobic, Electronic, Steric, and Hydrogen (HESH), Vectors of Hydrophobic, Steric, and Electronic properties (VHSE), Molecular Surface-Weighted Holistic Invariant Molecular (MS-WHIM), isotropic surface area-electronic charge index (ISA-ECI) and Z-scale, to describe antioxidative tripeptides as X-variables and antioxidant activities measured with ferric thiocyanate methods were as Y-variable. After elimination of outliers by Hotelling's T 2 method and residual analysis, six significant models were obtained describing the entire data set. According to cumulative squared multiple correlation coefficients ( R2), cumulative cross-validation coefficients ( Q2) and relative standard deviation for calibration set (RSD c), the qualities of models using DPPS, HESH, ISA-ECI, and VHSE descriptors are better ( R2 > 0.6, Q2 > 0.5, RSD c < 0.39) than that of models using MS-WHIM and Z-scale descriptors ( R2 < 0.6, Q2 < 0.5, RSD c > 0.44). Furthermore, the predictive ability of models using DPPS descriptor is best among the six descriptors systems (cumulative multiple correlation coefficient for predict set ( Rext2) > 0.7). It was concluded that the DPPS is better to describe the amino acid of antioxidative tripeptides. The results of DPPS descriptor reveal that the importance of the center amino acid and the N-terminal amino acid are far more than the importance of the C-terminal amino acid for antioxidative tripeptides. The hydrophobic (positively to activity) and electronic (negatively to activity) properties of the N-terminal amino acid are suggested to play the most important significance to activity, followed by the hydrogen bond (positively to activity) of the center amino acid. The N-terminal amino acid should be a high hydrophobic and low electronic amino acid (such as Ala, Gly, Val, and Leu); the center amino acid would be an amino acid that possesses high hydrogen bond property (such as base amino acid Arg, Lys, and His). The structural characteristics of antioxidative peptide be found in this paper may contribute to the further research of antioxidative mechanism.
New indole, aminoindole and pyranoindole derivatives with anti-inflammatory activity.
Nakkady, S S; Fathy, M M; Hishmat, O H; Mahmond, S S; Ebeid, M Y
2000-01-01
6-Methoxy-1-methyl-2,3-diphenyl indol-5-carboxaldehyde (2) was demethylated to give the 6-hydroxy derivative (3) which was cyclized to the pyrano[3,2-f]indole derivatives (4a-d) by the action of ethyl acetoacetate, diethyl malonate, malononitrile, ethyl cyanoacetate. When 4c was boiled in acetic acid, it gave 4d. Reduction of 4c by sodium borohydride yielded the orthoaminonitrile (5). Friedel Craft's acetylation of 1b yielded the 5-acetyl derivative (6), which reacted with hydrazine hydrate, o-toluidine and o-aminophenol to afford (7a-c). Demethylation of (1b) yielded the hydroxyl derivative (8), which differs from compound (9) obtained by demethylation of 6-methoxy-2,3-diphenyl-indole (1a). Friedel Craft's acetylation of 9 gave the 7-acetyl compound (10) which yielded the hydrazone (11). The reaction of primary aromatic amines, (i.e. p-nitroaniline, p-anisidine and p-bromo aniline) with 6-methoxy-1-methyl-2,3-diphenyl-indol-5-carboxaldehyde (2) gave the Schiff bases (12a-c). The latter compounds were reduced by sodium borohydride to yield the corresponding Mannich bases (13a-c). Treatment of 12a-c with thioglycolic acid led to the thiazolidin-4-one-derivatives (14a-c). When (12a-c) reacted with cyanoacetamide, the amino group was replaced by the active methylene to form the cyano compound (15). The structure was confirmed by reacting the carboxaldehyde (2) with cyanoacetamide to yield (15). Pharmacological screening was has been carried out to test the anti-inflammatory activity, ulcerogenecity, effect on the isolated rabbit intestine and the antispasmodic activity.
NASA Astrophysics Data System (ADS)
Hu, Yuntao; Zheng, Qing; Noll, Lisa; Zhang, Shasha; Wanek, Wolfgang
2017-04-01
Organic nitrogen transformation processes are the key driver of soil nitrogen availability, strongly affecting the nitrogen turnover and carbon cycling of terrestrial ecosystems. Low molecular weight organic nitrogen compounds (e.g. amino acids and amino sugars) that can be directly utilized by plants or microorganisms are released by the extracellular cleavage of high molecular weight organic nitrogen compounds (e.g. proteins, peptidoglycan, and chitin) by hydrolytic enzymes. This decomposition process is believed to be the rate-limiting step in the soil N cycle. Direct measurements of the in situ transformation rates of these small N compounds is highly challenging but can be realized by applying the isotope pool dilution (IPD) technique, in which the target compound pool is labeled with isotopic tracers and subsequently the dilution of the tracers is measured. We have recently pioneered the development of IPD assays to investigate the in situ flux of proteinaceous amino acids and glucose due to decomposition of organic matter and microbial utilization, but the roles of fluxes of amino sugars and amino acid enantiomers in soil nitrogen transformation processes are still unknown due to the lack of feasible extraction, purification, separation and detection methods. Here we developed a 15N IPD assay by utilizing a novel LC/HRMS (Orbitrap) platform, with the aim to measure transformation rates of amino sugars and amino acid enantiomers. After the tracer experiments soil extracts were purified by solid phase extraction prior to the analysis by MS. The utilization of Orbitrap-HRMS allowed us to resolve the mass signals of unlabeled analytes, and their 15N labeled (tracers) and 13C labeled (internal standards) analogues. The commercially unavailable 15N and 13C labeled amino sugars and amino acid enantiomers were produced from bacterial cell walls after batch culture in labeled growth media. This workflow was validated with soils from two sampling sites, allowing us to successfully investigate the production and consumption of 2 amino sugars, 18 amino acids, and 4 amino acid enantiomers in soils. We further applied this method to soils from 6 sampling sites differing in geology and land management, after short-term (1-day) temperature (5˚ C, 15˚ C, 25˚ C) pre-incubations. We found that the release of amino sugars (free glucosamine) during the decomposition of peptidoglycan and chitin accounted for approximately 5% to 15% of the total influx into the dissolved organic nitrogen pool (amino acids plus amino sugars). Muramic acid exhibited significantly longer residence times in soils, indicating that free muramic acid was not an important decomposition product of peptidoglycan in soil. We will present further results on potential controls of soil amino sugar fluxes, such as soil temperature, geology and land management, as well as soil peptidoglycan and chitin content, hydrolytic enzyme activity, and microbial community structure. These findings and further ongoing work will greatly advance our knowledge of the transformation processes of soil organic nitrogen and its major controls.
Extensive interactions between HIV TAT and TAF(II)250.
Weissman, J D; Hwang, J R; Singer, D S
2001-03-09
The HIV transactivator, Tat, has been shown to be capable of potent repression of transcription initiation. Repression is mediated by the C-terminal segment of Tat, which binds the TFIID component, TAF(II)250, although the site(s) of interaction were not defined previously. We now report that the interaction between Tat and TAF(II)250 is extensive and involves multiple contacts between the Tat protein and TAF(II)250. The C-terminal domain of Tat, which is necessary for repression of transcription initiation, binds to a segment of TAF(II)250 that encompasses its acetyl transferase (AT) domain (885-1034 amino acids (aa)). Surprisingly, the N-terminal segment of Tat, which contains its activation domains, also binds to TAF(II)250 and interacts with two discontinuous segments of TAF(II)250 located between 885 and 984 aa and 1120 and 1279 aa. Binding of Tat to the 885-984 aa segment of TAF(II)250 requires the cysteine-rich domain of Tat, but not the acidic or glutamine-rich domains. Binding by the N-terminal domain of Tat to the 1120-1279 aa TAF(II)250 segment does not involve the acidic, cysteine- or glutamine-rich domains. Repression of transcription initiation by Tat requires functional TAF(II)250. We now demonstrate that transcription of the HIV LTR does not depend on TAF(II)250 which may account for its resistance to Tat mediated repression.
Saile, Nadja; Schwarz, Lisa; Eißenberger, Kristina; Klumpp, Jochen; Fricke, Florian W; Schmidt, Herbert
2018-06-01
Enterohemorrhagic E. coli (EHEC) are serious bacterial pathogens which are able to cause a hemorrhagic colitis or the life-threatening hemolytic-uremic syndrome (HUS) in humans. EHEC strains can carry different numbers of phage-borne nanS-p alleles that are responsible for acetic acid release from mucin from bovine submaxillary gland and 5-N-acetyl-9-O-acetyl neuraminic acid (Neu5,9Ac 2 ), a carbohydrate present in mucin. Thus, Neu5,9Ac 2 can be transformed to 5-N-acetyl neuraminic acid, an energy source used by E. coli strains. We hypothesize that these NanS-p proteins are involved in competitive growth of EHEC in the gastrointestinal tract of humans and animals. The aim of the current study was to demonstrate and characterize the nanS-p alleles of the 2011 E. coli O104:H4 outbreak strain LB226692 and analyze whether the presence of multiple nanS-p alleles in the LB226692 genome causes a competitive growth advantage over a commensal E. coli strain. We detected and characterized five heterogeneous phage-borne nanS-p alleles in the genome of E. coli O104:H4 outbreak strain LB226692 by in silico analysis of its genome. Furthermore, successive deletion of all nanS-p alleles, subsequent complementation with recombinant NanS-p13-His, and in vitro co-culturing experiments with the commensal E. coli strain AMC 198 were conducted. We could show that nanS-p genes of E. coli O104:H4 are responsible for growth inhibition of strain AMC 198, when Neu5,9Ac 2 was used as sole carbon source in co-culture. The results of this study let us suggest that multiple nanS-p alleles may confer a growth advantage by outcompeting other E. coli strains in Neu5,9Ac 2 rich environments, such as mucus in animal and human gut. Copyright © 2018 Elsevier GmbH. All rights reserved.
N-Acyl derivatives of Asn, new bacterial N-acyl D-amino acids with surfactant activity.
Peypoux, F; Laprévote, O; Pagadoy, M; Wallach, J
2004-03-01
New N-acyl D-amino acids were isolated from Bacillus pumilus IM 1801. Their structures were determined by chemical analysis and mass spectrometry. The lipid part was identified as a mixture of fatty acids with 11, 12, 13, 15, and 16 carbon atoms in the iso, anteiso or n configuration linked by an amide bond with a D-asparagine. They exhibited surfactant properties.
Quiroga, Jairo; Portilla, Jaime; Cobo, Justo; Glidewell, Christopher
2010-01-01
(3Z)-3-{1-[(5-Phenyl-1H-pyrazol-3-yl)amino]ethylidene}-4,5-dihydrofuran-2(3H)-one, C(15)H(15)N(3)O(2), (I), and the stoichiometric adduct (3Z)-3-{1-[(5-methyl-1H-pyrazol-3-yl)amino]ethylidene}-4,5-dihydrofuran-2(3H)-one-6-(2-hydroxyethyl)-2,5-dimethylpyrazolo[1,5-a]pyrimidin-7(4H)-one (1/1), C(10)H(13)N(3)O(2).C(10)H(13)N(3)O(2), (II), in which the two components have the same composition but different constitutions, are formed in the reactions of 2-acetyl-4-butyrolactone with 5-amino-3-phenyl-1H-pyrazole and 5-amino-3-methyl-1H-pyrazole, respectively. In each compound, the furanone component contains an intramolecular N-H...O hydrogen bond. The molecules of (I) are linked into a chain by a single intermolecular N-H...O hydrogen bond, while in (II), a combination of one O-H...N hydrogen bond, within the selected asymmetric unit, and two N-H...O hydrogen bonds link the molecular components into a ribbon containing alternating centrosymmetric R(4)(4)(20) and R(6)(6)(22) rings.
Choy, C. Anela; Davison, Peter C.; Drazen, Jeffrey C.; Flynn, Adrian; Gier, Elizabeth J.; Hoffman, Joel C.; McClain-Counts, Jennifer P.; Miller, Todd W.; Popp, Brian N.; Ross, Steve W.; Sutton, Tracey T.
2012-01-01
The δ15N values of organisms are commonly used across diverse ecosystems to estimate trophic position and infer trophic connectivity. We undertook a novel cross-basin comparison of trophic position in two ecologically well-characterized and different groups of dominant mid-water fish consumers using amino acid nitrogen isotope compositions. We found that trophic positions estimated from the δ15N values of individual amino acids are nearly uniform within both families of these fishes across five global regions despite great variability in bulk tissue δ15N values. Regional differences in the δ15N values of phenylalanine confirmed that bulk tissue δ15N values reflect region-specific water mass biogeochemistry controlling δ15N values at the base of the food web. Trophic positions calculated from amino acid isotopic analyses (AA-TP) for lanternfishes (family Myctophidae) (AA-TP ∼2.9) largely align with expectations from stomach content studies (TP ∼3.2), while AA-TPs for dragonfishes (family Stomiidae) (AA-TP ∼3.2) were lower than TPs derived from stomach content studies (TP∼4.1). We demonstrate that amino acid nitrogen isotope analysis can overcome shortcomings of bulk tissue isotope analysis across biogeochemically distinct systems to provide globally comparative information regarding marine food web structure. PMID:23209656
Choy, C. Anela; Davison, Peter C.; Drazen, Jeffrey C.; Flynn, Adrian; Gier, Elizabeth J.; Hoffman, Joel C.; McClain-Counts, Jennifer P.; Miller, Todd W.; Popp, Brian N.; Ross, Steve W.; Sutton, Tracey T.
2012-01-01
The δ15N values of organisms are commonly used across diverse ecosystems to estimate trophic position and infer trophic connectivity. We undertook a novel cross-basin comparison of trophic position in two ecologically well-characterized and different groups of dominant mid-water fish consumers using amino acid nitrogen isotope compositions. We found that trophic positions estimated from the δ15N values of individual amino acids are nearly uniform within both families of these fishes across five global regions despite great variability in bulk tissue δ15N values. Regional differences in the δ15N values of phenylalanine confirmed that bulk tissue δ15N values reflect region-specific water mass biogeochemistry controlling δ15N values at the base of the food web. Trophic positions calculated from amino acid isotopic analyses (AA-TP) for lanternfishes (family Myctophidae) (AA-TP ~2.9) largely align with expectations from stomach content studies (TP ~3.2), while AA-TPs for dragonfishes (family Stomiidae) (AA-TP ~3.2) were lower than TPs derived from stomach content studies (TP~4.1). We demonstrate that amino acid nitrogen isotope analysis can overcome shortcomings of bulk tissue isotope analysis across biogeochemically distinct systems to provide globally comparative information regarding marine food web structure.
Preexisting compensatory amino acids compromise fitness costs of a HIV-1 T cell escape mutation
Liu, Donglai; Zuo, Tao; Hora, Bhavna; ...
2014-01-01
Background: Fitness costs and slower disease progression are associated with a cytolytic T lymphocyte (CTL) escape mutation T242N in Gag in HIV-1-infected individuals carrying HLA-B*57/5801 alleles. However, the impact of different context in diverse HIV-1 strains on the fitness costs due to the T242N mutation has not been well characterized. To better understand the extent of fitness costs of the T242N mutation and the repair of fitness loss through compensatory amino acids, we investigated its fitness impact in different transmitted/founder (T/F) viruses. Results: The T242N mutation resulted in various levels of fitness loss in four different T/F viruses. However, themore » fitness costs were significantly compromised by preexisting compensatory amino acids in (Isoleucine at position 247) or outside (glutamine at position 219) the CTL epitope. Moreover, the transmitted T242N escape mutant in subject CH131 was as fit as the revertant N242T mutant and the elimination of the compensatory amino acid I247 in the T/F viral genome resulted in significant fitness cost, suggesting the fitness loss caused by the T242N mutation had been fully repaired in the donor at transmission. Analysis of the global circulating HIV-1 sequences in the Los Alamos HIV Sequence Database showed a high prevalence of compensatory amino acids for the T242N mutation and other T cell escape mutations. Conclusions: Our results show that the preexisting compensatory amino acids in the majority of circulating HIV-1 strains could significantly compromise the fitness loss due to CTL escape mutations and thus increase challenges for T cell based vaccines.« less
Poupin, Nathalie; Bos, Cécile; Mariotti, François; Huneau, Jean-François; Tomé, Daniel; Fouillet, Hélène
2011-01-01
Due to the existence of isotope effects on some metabolic pathways of amino acid and protein metabolism, animal tissues are 15N-enriched relative to their dietary nitrogen sources and this 15N enrichment varies among different tissues and metabolic pools. The magnitude of the tissue-to-diet discrimination (Δ15N) has also been shown to depend on dietary factors. Since dietary protein sources affect amino acid and protein metabolism, we hypothesized that they would impact this discrimination factor, with selective effects at the tissue level. To test this hypothesis, we investigated in rats the influence of a milk or soy protein-based diet on Δ15N in various nitrogen fractions (urea, protein and non-protein fractions) of blood and tissues, focusing on visceral tissues. Regardless of the diet, the different protein fractions of blood and tissues were generally 15N-enriched relative to their non-protein fraction and to the diet (Δ15N>0), with large variations in the Δ15N between tissue proteins. Δ15N values were markedly lower in tissue proteins of rats fed milk proteins compared to those fed soy proteins, in all sampled tissues except in the intestine, and the amplitude of Δ15N differences between diets differed between tissues. Both between-tissue and between-diet Δ15N differences are probably related to modulations of the relative orientation of dietary and endogenous amino acids in the different metabolic pathways. More specifically, the smaller Δ15N values observed in tissue proteins with milk than soy dietary protein may be due to a slightly more direct channeling of dietary amino acids for tissue protein renewal and to a lower recycling of amino acids through fractionating pathways. In conclusion, the present data indicate that natural Δ15N of tissue are sensitive markers of the specific subtle regional modifications of the protein and amino acid metabolism induced by the protein dietary source. PMID:22132207
Rosa, J. C.; De Oliveira, P. S.; Garratt, R.; Beltramini, L.; Resing, K.; Roque-Barreira, M. C.; Greene, L. J.
1999-01-01
The complete amino acid sequence of the lectin KM+ from Artocarpus integrifolia (jackfruit), which contains 149 residues/mol, is reported and compared to those of other members of the Moraceae family, particularly that of jacalin, also from jackfruit, with which it shares 52% sequence identity. KM+ presents an acetyl-blocked N-terminus and is not posttranslationally modified by proteolytic cleavage as is the case for jacalin. Rather, it possesses a short, glycine-rich linker that unites the regions homologous to the alpha- and beta-chains of jacalin. The results of homology modeling implicate the linker sequence in sterically impeding rotation of the side chain of Asp141 within the binding site pocket. As a consequence, the aspartic acid is locked into a conformation adequate only for the recognition of equatorial hydroxyl groups on the C4 epimeric center (alpha-D-mannose, alpha-D-glucose, and their derivatives). In contrast, the internal cleavage of the jacalin chain permits free rotation of the homologous aspartic acid, rendering it capable of accepting hydrogen bonds from both possible hydroxyl configurations on C4. We suggest that, together with direct recognition of epimeric hydroxyls and the steric exclusion of disfavored ligands, conformational restriction of the lectin should be considered to be a new mechanism by which selectivity may be built into carbohydrate binding sites. Jacalin and KM+ adopt the beta-prism fold already observed in two unrelated protein families. Despite presenting little or no sequence similarity, an analysis of the beta-prism reveals a canonical feature repeatedly present in all such structures, which is based on six largely hydrophobic residues within a beta-hairpin containing two classic-type beta-bulges. We suggest the term beta-prism motif to describe this feature. PMID:10210179
Mondal, A K; Parui, S; Mandal, S
1998-01-01
The study reports the free amino acid composition of the pollen of nine members of the family Asteraceae, i.e. Ageratum conyzoides L., Blumea oxyodonta DC., Eupatorium odoratum L., Gnaphalium indicum L., Mikania scandens Willd., Parthenium hysterophorus L., Spilanthes acmella Murr., Vernonia cinerea (L.) Lees. and Xanthium strumarium L. by thin layer chromatography. The amino acid content was found to vary from 0.5-4.0% of the total dry weight. Fourteen amino acids were identified, among which amino-n-butyric acid, aspartic acid and proline were present in almost all pollen samples. The other major amino acids present in free form included arginine, cystine, glutamic acid, glycine, isoleucine, leucine, methionine, ornithine, tryptophan and tyrosine.
Analytical pyrolysis-based study on intra-skeletal organic matrices from Mediterranean corals.
Adamiano, Alessio; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren; Fermani, Simona; Fabbri, Daniele; Falini, Giuseppe
2014-09-01
Off-line analytical pyrolysis combined with gas chromatography–mass spectroscopy (GC–MS), directly or after trimethylsilylation, along with infrared spectroscopy and amino acid analysis was applied for the first time to the characterization of the intra-skeletal organic matrix (OM) extracted from four Mediterranean hard corals. They were diverse in growth form and trophic strategy namely Balanophyllia europaea and Leptopsammia pruvoti—solitary corals, only the first having zooxanthelle—and Cladocora caespitosa and Astroides calycularis—colonial corals, only the first with zooxanthelle. Pyrolysis products evolved from OM could be assigned to lipid (e.g. fatty acids, fatty alcohols, monoacylglicerols), protein (e.g. 2,5-diketopiperazines, DKPs) and polysaccharide (e.g. anhydrosugars) precursors. Their quantitative distribution showed for all the species a low protein content with respect to lipids and polysaccharides. A chemometric approach using principal component analysis (PCA) and clustering analysis was applied on OM mean amino acidic compositions. The small compositional diversity across coral species was tentatively related with coral growth form. The presence of N-acetyl glucosamine markers suggested a functional link with other calcified tissues containing chitin. The protein fraction was further investigated using novel DKP markers tentatively identified from analytical pyrolysis of model polar linear dipeptides. Again, no correlation was observed in relation to coral ecology. These analytical results revealed that the bulk structure and composition of OMs among studied corals are similar, as it is the textural organization of the skeleton mineralized units. Therefore, they suggest that coral’s biomineralization is governed by similar macromolecules, and probably mechanisms, independently from their ecology.
[Plasma amino acids profile of healthy pregnant adolescents in Maracaibo, Venezuela].
Ortega, Pablo; Castejón, Haydée V; Argotte, María G; Gómez, Gisela; Bohorquez, Lissette; Urrieta, Jesús R
2003-06-01
One hundred female adolescents (13-18 y) were clinical and anthropometrically studied to select only those with adequate nutrition. Most adolescents belonged to IV socio-economic stratum families (worker class). Height, weight, age, body mass index and medial arm circumference were used as anthropometric parameters. After screening, only 41 non pregnant girls (control) and 42 pregnant girls with adequate nutrition were selected to analyze plasma amino acids. Fasting peripheral venous blood was drawn, and plasma amino acids were analyzed by HPLC. Amino acid concentrations were expressed as umol/L +/- SE. SAS/STAT program was used for statistical analysis. Amino acid values of control adolescent group were found in ranges reported by other investigators, with slight variations, mostly in diminution, presumably due to nutritional, metabolic or genetic conditions of people living in tropical regions. In pregnant healthy adolescents, distributed according to gestational age: < 32 weeks (n = 30) and > 32 weeks (n = 12), a diminution of total molar plasma amino acids was found, by comparing with control values. Ten amino acids (Pro, Gly, Gln, Arg, Ser, Orn, Tau, Leu, Thr and Val) appeared significantively diminished throughout gestation, being Gly. Gln and Arg most affected since earlier weeks. During the 2nd period. Thr and Val increased their grade of affectation; whereas some amino acids values (Orn, Pro and Tau) tended to recuperate. Several of affected amino acids are gluconegoenic, thus, they could be utilized to supply the energy required by the pregnant adolescent against her double stress: the fetus development and her own development. The plasma amino acid values reported in both, healthy non pregnant and pregnant adolescents, could be taken as regional referential profile of plasma amino acids in this poblational group for further research on adolescent and fetal--maternal malnutrition.
NASA Technical Reports Server (NTRS)
Elsila, Jamie E.; Charnley, Steven B.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.
2012-01-01
Stable hydrogen, carbon, and nitrogen isotopic ratios (oD, 013C, and olSN) of organic compounds can revcal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound-specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1I2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CRZ Graves Nunataks (GRA) 95229, CRZ Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing ODC and increasing oD with increasing carbon number in the aH, (l-NH2 amino acids that correspond to predictions made for formation via Streckercyanohydrin synthesis. We also observe light ODC signatures for -alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight-chain, amine-terminal amino acids (n-ro-amino acids). Higher deuterium enrichments are observed in amethyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than CM chondrites, reflecting different parent-body chemistry.
Ogawa, Kazuma; Mukai, Takahiro; Arano, Yasushi; Otaka, Akira; Ueda, Masashi; Uehara, Tomoya; Magata, Yasuhiro; Hashimoto, Kazuyuki; Saji, Hideo
2006-05-01
To develop a radiopharmaceutical for the palliation of painful bone metastases based on the concept of bifunctional radiopharmaceuticals, we synthesized a bisphosphonate derivative labeled with rhenium-186 (186Re) that contains a hydroxyl group at the central carbon of its bisphosphonate structure, we attached a stable 186Re-MAMA chelate to the amino group of a 4-amino butylidene-bisphosphonate derivative [N-[2-[[4-[(4-hydroxy-4,4-diphosphonobutyl)amino]-4-oxobutyl]-2-thioethylamino]acetyl]-2-aminoethanethiolate] oxorhenium (V) (186Re-MAMA-HBP) and we investigated the effect of a hydroxyl group at the central carbon of its bisphosphonate structure on affinity for hydroxyapatite and on biodistribution by conducting a comparative study with [N-[2-[[3-(3,3-diphosphonopropylcarbamoyl)propyl]-2-thioethylamino]acetyl]-2-aminoethanethiolate] oxorhenium (V) (186Re-MAMA-BP). The precursor of 186Re-MAMA-HBP, trityl (Tr)-MAMA-HBP, was obtained by coupling a Tr-MAMA derivative to 4-amino-1-hydroxybutylidene-1,1-bisphosphonate. 186Re-MAMA-HBP was prepared by a reaction with 186ReO(4-) and SnCl2 in citrate buffer after the deprotection of the Tr groups of Tr-MAMA-HBP. After reversed-phase high-performance liquid chromatography, 186Re-MAMA-HBP had a radiochemical purity of over 95%. Compared with 186Re-MAMA-BP, 186Re-MAMA-HBP showed a greater affinity for hydroxyapatite beads in vitro and accumulated a significantly higher level in the femur in vivo. Thus, the introduction of a hydroxyl group into 186Re complex-conjugated bisphosphonates would be effective in enhancing accumulation in bones. These findings provide useful information on the design of bone-seeking therapeutic radiopharmaceuticals.
Kallscheuer, Nicolai; Polen, Tino; Bott, Michael; Marienhagen, Jan
2017-07-01
β-Oxidation is the ubiquitous metabolic strategy to break down fatty acids. In the course of this four-step process, two carbon atoms are liberated per cycle from the fatty acid chain in the form of acetyl-CoA. However, typical β-oxidative strategies are not restricted to monocarboxylic (fatty) acid degradation only, but can also be involved in the utilization of aromatic compounds, amino acids and dicarboxylic acids. Each enzymatic step of a typical β-oxidation cycle is reversible, offering the possibility to also take advantage of reversed metabolic pathways for applied purposes. In such cases, 3-oxoacyl-CoA thiolases, which catalyze the final chain-shortening step in the catabolic direction, mediate the condensation of an acyl-CoA starter molecule with acetyl-CoA in the anabolic direction. Subsequently, the carbonyl-group at C3 is stepwise reduced and dehydrated yielding a chain-elongated product. In the last years, several β-oxidation pathways have been studied in detail and reversal of these pathways already proved to be a promising strategy for the production of chemicals and polymer building blocks in several industrially relevant microorganisms. This review covers recent advancements in this field and discusses constraints and bottlenecks of this metabolic strategy in comparison to alternative production pathways. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Gruhn, K; Zander, R
1989-03-01
Over a period of 4 days 12 colostomized laying hens daily received 36 g 15N labelled wheat with 15N excess (15N') of 14.37 atom-% together with a conventional feed mixture for laying hens. The labelling of the lysine N in the wheat was 13.58 atom-%, that of histidine N 14.38 and that of arginine 15N' 13.63 atom-% 15N'. Three hens each were butchered 12, 36, 60 and 108 h after the last 15N' feeding. The first three hens did not receive any feed before being butchered. The following three hens each received the unlabelled feed ration for another 1, 2 or 4 days resp. after the main period until they were butchered. The total of skeleton muscles, the heart and the stomach muscle (without inner skin) of each hen were combined into one sample, cut thinly, drenched with fluid nitrogen and pulverized. N, 15N' and the basic and non-basic amino acids as well as their 15N' were determined in the individual samples. In contrast to the organs, the proteins in the muscle tissue have a long half life so that a slight decrease of atom-% 15N' in the muscles could only be detected after 108 h. The 14N and 15N' quota of the non-basic amino acids in the total nitrogen of the muscles is 50%. The 14N quota of the basic amino acids is 30% and the 15N' quota only 22.5% in the total muscle N. The heavy nitrogen of the free lysine in the TCA soluble N fraction is hardly detectable 36 h and 60 h after the last 15N' supply and not at all after 108 h. In contrast to this, the other two free basic amino acids remain significantly higher labelled in dependence on the last butchering time.
Tateno, H; Saneyoshi, A; Ogawa, T; Muramoto, K; Kamiya, H; Saneyoshi, M
1998-07-24
Two L-rhamnose-binding lectins named STL1 and STL2 were isolated from eggs of steelhead trout (Oncorhynchus mykiss) by affinity chromatography and ion exchange chromatography. The apparent molecular masses of purified STL1 and STL2 were estimated to be 84 and 68 kDa, respectively, by gel filtration chromatography. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization time of flight mass spectrometry of these lectins revealed that STL1 was composed of noncovalently linked trimer of 31.4-kDa subunits, and STL2 was noncovalently linked trimer of 21.5-kDa subunits. The minimum concentrations of STL1, a major component, and STL2, a minor component, needed to agglutinate rabbit erythrocytes were 9 and 0.2 microg/ml, respectively. The most effective saccharide in the hemagglutination inhibition assay for both STL1 and STL2 was L-rhamnose. Saccharides possessing the same configuration of hydroxyl groups at C2 and C4 as that in L-rhamnose, such as L-arabinose and D-galactose, also inhibited. The amino acid sequence of STL2 was determined by analysis of peptides generated by digestion of the S-carboxamidomethylated protein with Achromobacter protease I or Staphylococcus aureus V8 protease. The STL2 subunit of 195 amino acid residues proved to have a unique polypeptide architecture; that is, it was composed of two tandemly repeated homologous domains (STL2-N and STL2-C) with 52% internal homology. These two domains showed a sequence homology to the subunit (105 amino acid residues) of D-galactoside-specific sea urchin (Anthocidaris crassispina) egg lectin (37% for STL2-N and 46% for STL2-C, respectively). The N terminus of the STL1 subunit was blocked with an acetyl group. However, a partial amino acid sequence of the subunit showed a sequence similarity to STL2. Moreover, STL2 also showed a sequence homology to the ligand binding domain of the vitellogenin receptor. We have also employed surface plasmon resonance biosensor methodology to investigate the interactions between STL2 and major egg yolk proteins from steelhead trout, lipovitellin, and beta'-component, which are known as vitellogenin digests. Interestingly, STL2 showed distinct interactions with both egg yolk proteins. The estimated values for the affinity constant (Ka) of STL2 to lipovitellin and beta' component were 3.44 x 10(6) and 4.99 x 10(6), respectively. These results suggest that the fish egg lectins belong to a new family of animal lectin structurally related to the low density lipoprotein receptor super- family.
Lipogenesis and Redox Balance in Nitrogen-Fixing Pea Bacteroids.
Terpolilli, Jason J; Masakapalli, Shyam K; Karunakaran, Ramakrishnan; Webb, Isabel U C; Green, Rob; Watmough, Nicholas J; Kruger, Nicholas J; Ratcliffe, R George; Poole, Philip S
2016-10-15
Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the tricarboxylic acid (TCA) cycle to generate NAD(P)H for reduction of N2 Metabolic flux analysis of laboratory-grown Rhizobium leguminosarum showed that the flux from [(13)C]succinate was consistent with respiration of an obligate aerobe growing on a TCA cycle intermediate as the sole carbon source. However, the instability of fragile pea bacteroids prevented their steady-state labeling under N2-fixing conditions. Therefore, comparative metabolomic profiling was used to compare free-living R. leguminosarum with pea bacteroids. While the TCA cycle was shown to be essential for maximal rates of N2 fixation, levels of pyruvate (5.5-fold reduced), acetyl coenzyme A (acetyl-CoA; 50-fold reduced), free coenzyme A (33-fold reduced), and citrate (4.5-fold reduced) were much lower in bacteroids. Instead of completely oxidizing acetyl-CoA, pea bacteroids channel it into both lipid and the lipid-like polymer poly-β-hydroxybutyrate (PHB), the latter via a type III PHB synthase that is active only in bacteroids. Lipogenesis may be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules. Direct reduction by NAD(P)H of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance the production of NAD(P)H from oxidation of acetyl-CoA in the TCA cycle with its storage in PHB and lipids. Biological nitrogen fixation by symbiotic bacteria (rhizobia) in legume root nodules is an energy-expensive process. Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the TCA cycle to generate NAD(P)H for reduction of N2 However, direct reduction of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance oxidation of plant-derived dicarboxylates in the TCA cycle with lipid synthesis. Pea bacteroids channel acetyl-CoA into both lipid and the lipid-like polymer poly-β-hydroxybutyrate, the latter via a type II PHB synthase. Lipogenesis is likely to be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Lipogenesis and Redox Balance in Nitrogen-Fixing Pea Bacteroids
Terpolilli, Jason J.; Masakapalli, Shyam K.; Karunakaran, Ramakrishnan; Webb, Isabel U. C.; Green, Rob; Watmough, Nicholas J.; Kruger, Nicholas J.; Ratcliffe, R. George
2016-01-01
ABSTRACT Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the tricarboxylic acid (TCA) cycle to generate NAD(P)H for reduction of N2. Metabolic flux analysis of laboratory-grown Rhizobium leguminosarum showed that the flux from [13C]succinate was consistent with respiration of an obligate aerobe growing on a TCA cycle intermediate as the sole carbon source. However, the instability of fragile pea bacteroids prevented their steady-state labeling under N2-fixing conditions. Therefore, comparative metabolomic profiling was used to compare free-living R. leguminosarum with pea bacteroids. While the TCA cycle was shown to be essential for maximal rates of N2 fixation, levels of pyruvate (5.5-fold reduced), acetyl coenzyme A (acetyl-CoA; 50-fold reduced), free coenzyme A (33-fold reduced), and citrate (4.5-fold reduced) were much lower in bacteroids. Instead of completely oxidizing acetyl-CoA, pea bacteroids channel it into both lipid and the lipid-like polymer poly-β-hydroxybutyrate (PHB), the latter via a type III PHB synthase that is active only in bacteroids. Lipogenesis may be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules. Direct reduction by NAD(P)H of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance the production of NAD(P)H from oxidation of acetyl-CoA in the TCA cycle with its storage in PHB and lipids. IMPORTANCE Biological nitrogen fixation by symbiotic bacteria (rhizobia) in legume root nodules is an energy-expensive process. Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the TCA cycle to generate NAD(P)H for reduction of N2. However, direct reduction of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance oxidation of plant-derived dicarboxylates in the TCA cycle with lipid synthesis. Pea bacteroids channel acetyl-CoA into both lipid and the lipid-like polymer poly-β-hydroxybutyrate, the latter via a type II PHB synthase. Lipogenesis is likely to be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules. PMID:27501983
Preparation and investigation of acetyl salicylic acid-caffeine complex for rectal administration.
Fouad, Ehab A; El-Badry, Mahmoud; Alanazi, Fars K; Arafah, Maha M; Al-Ashban, Riyadh; Alsarra, Ibrahim A
2010-06-01
An acetyl salicylic acid-caffeine complex was prepared and evaluated for the potential use in rectal administration. The results revealed the formation of a complex between acetyl salicylic acid and caffeine in a 1:1 molar ratio by a charge transfer mechanism. The effects of acetyl salicylic acid and complex on the rectal tissues showed destruction in the mucosal epithelium in case of acetyl salicylic acid; however, no change in the rectal tissues was noticed upon the administration of the complex. The effect of suppository bases on the release of the complex was studied using Witepsol H15 as fatty base and polyethylene glycols (PEG) 1000 and 4000 as a water soluble suppository base. The release profiles of acetyl salicylic acid and the complex were faster from PEG than from that of Witepsol H15. The percent release for the complex and acetyl salicylic acid from PEG base were 45.8, and 34.9%, respectively. However, it was 8.7 and 7.8%, respectively, from Witepsol H15 fatty base. The release kinetic was found to follow the non-Fickian diffusion model for complex from the suppository bases. It was concluded that acetyl salicylic acid caffeine complex can be used safely for rectal administration.
Preparation and investigation of acetyl salicylic acid-caffeine complex for rectal administration.
Fouad, Ehab A; El-Badry, Mahmoud; Alanazi, Fars K; Arafah, Maha M; Al-Ashban, Riyadh; Alsarra, Ibrahim A
2009-07-30
An acetyl salicylic acid-caffeine complex was prepared and evaluated for the potential use in rectal administration. The results revealed the formation of a complex between acetyl salicylic acid and caffeine in a 1:1 molar ratio by a charge transfer mechanism. The effects of acetyl salicylic acid and complex on the rectal tissues showed destruction in the mucosal epithelium in case of acetyl salicylic acid; however, no change in the rectal tissues was noticed upon the administration of the complex. The effect of suppository bases on the release of the complex was studied using Witepsol H15 as fatty base and polyethylene glycols (PEG) 1000 and 4000 as a water soluble suppository base. The release profiles of acetyl salicylic acid and the complex were faster from PEG than from that of Witepsol H15. The percent release for the complex and acetyl salicylic acid from PEG base were 45.8, and 34.9%, respectively. However, it was 8.7 and 7.8%, respectively, from Witepsol H15 fatty base. The release kinetic was found to follow the non-Fickian diffusion model for complex from the suppository bases. It was concluded that acetyl salicylic acid caffeine complex can be used safely for rectal administration.
NASA Astrophysics Data System (ADS)
Richter, P. R.; Liu, Y.; An, Y.; Li, X.; Nasir, A.; Strauch, S. M.; Becker, I.; Krüger, J.; Schuster, M.; Ntefidou, M.; Daiker, V.; Haag, F. W. M.; Aiach, A.; Lebert, M.
2015-01-01
In recent times Euglena gracilis Z was employed as primary producer in closed environmental life-support system (CELSS), e.g. in space research. The photosynthetic unicellular flagellate is not capable of utilizing nitrate, nitrite, and urea as nitrogen source. Therefore, ammonium is supplied as an N-source in the lab (provided as diammonium-dihydrogenphosphate, (NH4)2HPO4) to E. gracilis cultures. While nitrate exerts low toxicity to organisms, ammonium is harmful for many aquatic organisms especially, at high pH-values, which causes the ionic NH+4 (low toxicity) to be partially transformed into the highly toxic ammonia, NH3. In earlier reports, Euglena gracilis was described to grow with various amino acids as sole N-source. Our aim was to investigate alternatives for (NH4)2HPO4 as N-source with lower toxicity for organisms co-cultivated with Euglena in a CELSS. The growth kinetics of Euglena gracilis cultures was determined in the presence of different amino acids (glycine, glutamine, glutamic acid, leucine, and threonine). In addition, uptake of those amino acids by the cells was measured. Cell growth in the presence of glycine and glutamine was quite comparable to the growth in (NH4)2HPO4 containing cultures while a delay in growth was observed in the presence of leucine and threonine. Unlike, aforementioned amino acids glutamate consumption was very poor. Cell density and glutamate concentration were almost unaltered throughout the experiment and the culture reached the stationary phase within 8 days. The data are compared with earlier studies in which utilization of amino acids in Euglena gracilis was investigated. All tested amino acids (glutamate with limitations) were found to have the potential of being an alternative N-source for Euglena gracilis. Hence, these amino acids can be used as a non-toxic surrogate for (NH4)2HPO4.
Richter, P R; Liu, Y; An, Y; Li, X; Nasir, A; Strauch, S M; Becker, I; Krüger, J; Schuster, M; Ntefidou, M; Daiker, V; Haag, F W M; Aiach, A; Lebert, M
2015-01-01
In recent times Euglena gracilis Z was employed as primary producer in closed environmental life-support system (CELSS), e.g. in space research. The photosynthetic unicellular flagellate is not capable of utilizing nitrate, nitrite, and urea as nitrogen source. Therefore, ammonium is supplied as an N-source in the lab (provided as diammonium-dihydrogenphosphate, (NH4)2HPO4) to E. gracilis cultures. While nitrate exerts low toxicity to organisms, ammonium is harmful for many aquatic organisms especially, at high pH-values, which causes the ionic NH4+ (low toxicity) to be partially transformed into the highly toxic ammonia, NH3. In earlier reports, Euglena gracilis was described to grow with various amino acids as sole N-source. Our aim was to investigate alternatives for (NH4)2HPO4 as N-source with lower toxicity for organisms co-cultivated with Euglena in a CELSS. The growth kinetics of Euglena gracilis cultures was determined in the presence of different amino acids (glycine, glutamine, glutamic acid, leucine, and threonine). In addition, uptake of those amino acids by the cells was measured. Cell growth in the presence of glycine and glutamine was quite comparable to the growth in (NH4)2HPO4 containing cultures while a delay in growth was observed in the presence of leucine and threonine. Unlike, aforementioned amino acids glutamate consumption was very poor. Cell density and glutamate concentration were almost unaltered throughout the experiment and the culture reached the stationary phase within 8 days. The data are compared with earlier studies in which utilization of amino acids in Euglena gracilis was investigated. All tested amino acids (glutamate with limitations) were found to have the potential of being an alternative N-source for Euglena gracilis. Hence, these amino acids can be used as a non-toxic surrogate for (NH4)2HPO4. Copyright © 2014 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Ma, Meilei; He, Xiangyu; Zhu, Weiyun
2016-11-04
This experiment was conducted to study different metabolic patterns of pig hindgut bacteria on aromatic amino acids by an in vitro fermentation method. Ileum, cecum and colon chyme in Duroc, Landrace and Yorkshire goods hybridization pigs were taken as inoculum. The single aromatic amino acid concentration was kept 10 mmol/L in fermentation flask. Then the fermentation flask was incubated at 37℃ for 24 h. Gas production was measured at 4, 8, 12, 16 and 24 h, and samples of fermentation collected at 0 h and 24 h were used to measure ammonia nitrogen NH3-N and microbial crude protein (MCP). Denaturing gradient gel electrophoresis (DGGE) and real-time PCR were used to monitor and quantify the development of bacteria community in zymotic fluid.[ The concentrations of NH3-N and MCP were significantly affected by aromatic amino acids and intestinal segments (P<0.01). Intestinal segments also affected gas production (GP) significantly (P0.01). NH3-N, MCP and GP were affected by interaction of aromatic amino acids and intestinal segments. DGGE analysis showed bacteria of aromatic amino acids shared amount of bands together, especially similarity analysis of DGGE profile of Phe and Tyr in ileum, Tyr and Trp in colon were 87.9% and 80.5% separately. Shannon diversity indices analysis revealed that aromatic amino acids in cecum and colon varied significantly (P<0.05). Real-time PCR results showed that the quantity of total bacteria were affected by aromatic amino acids and intestinal segments significantly (P<0.05). The potential as proportion of different aromatic amino acids are different. Compared with Trp and Phe, the diversity of bacteria utilizing Tyr in cecum or colon is low; compared with Tyr and Trp, a large number of Phe participated in synthesizing bacteria.The fermentation pattern of specific aromatic amino acids in different intestinal segment was unique. Compared with ileum and cecum, much more aromatic amino acids participated in the synthesis of bacteria in colon.
Cyclic mu-opioid receptor ligands containing multiple N-methylated amino acid residues.
Adamska-Bartłomiejczyk, Anna; Janecka, Anna; Szabó, Márton Richárd; Cerlesi, Maria Camilla; Calo, Girolamo; Kluczyk, Alicja; Tömböly, Csaba; Borics, Attila
2017-04-15
In this study we report the in vitro activities of four cyclic opioid peptides with various sequence length/macrocycle size and N-methylamino acid residue content. N-Methylated amino acids were incorporated and cyclization was employed to enhance conformational rigidity to various extent. The effect of such modifications on ligand structure and binding properties were studied. The pentapeptide containing one endocyclic and one exocyclic N-methylated amino acid displayed the highest affinity to the mu-opioid receptor. This peptide was also shown to be a full agonist, while the other analogs failed to activate the mu opioid receptor. Results of molecular docking studies provided rationale for the explanation of binding properties on a structural basis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Park, In Ho; Lin, Jisheng; Choi, Ji Eun; Shin, Jeon-Soo
2014-06-01
The capsular polysaccharide (PS) of Neisseria meningitidis serogroup B (NMGB) is α(2-8)-linked N-acetylneuraminic acid (Neu5Ac), which is almost identical to the O-acetylated colominic acid (CA) of Escherichia coli K1 Although E. coli K1 has long been known to elicit cross-protective antibodies against NMGB, limited information on these highly cross-reactive antibodies is available. In the present study, six new monoclonal antibodies (mAbs) specific to both E. coli K1 CA and NMGB PS were produced by immunizing Balb/c mice with E. coli K1, and their serological and molecular properties were characterized, together with 12 previously reported hybridoma mAbs. Among the bactericidal mAbs against NMGB, both HmenB5 and HmenB18, which are genetically identical though of different mouse origins, were able to kill serogroup C and Y meningococci. Based on SPR sensograms, the binding affinity of HmenB18 for PS was suggested to be associated with at least two different binding forces: the polyanionicity of Neu5Ac and an interaction with the O-acetyl groups of Neu5Ac. Molecular analysis showed that similar to most mAbs presenting a few restricted V region germline genes, the V region genes of HmenB18 were 979% and 986% identical to the closest IGHV1-1401 and IGLV15-10301 germline gene alleles, respectively, and V-D-J editing in this mAb generated an unusually long VH-CDR3 sequence (17 amino acid residues), containing one basic arginine, two hydrophobic isoleucine residues and a 'YAMDY' motif. Models of the mAb combining sites demonstrate that most of the mAbs exhibited a wide, shallow groove with a high overall positive charge, as seen in mAb735, which is specific for a polyanionic helical epitope. In contrast, the combining site of HmenB18 was shown to be wide but to present a relatively weak positive charge, consistent with the extensive recognition by HmenB18 of the various structural epitopes formed with the Neu5Ac residue and its O-acetylation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Caba, Cody; Ali Khan, Hyder; Auld, Janeen; Ushioda, Ryo; Araki, Kazutaka; Nagata, Kazuhiro; Mutus, Bulent
2018-01-01
Despite its study since the 1960's, very little is known about the post-translational regulation of the multiple catalytic activities performed by protein disulfide isomerase (PDI), the primary protein folding catalyst of the cell. This work identifies a functional role for the highly conserved CxxC-flanking residues Lys57 and Lys401 of human PDI in vitro. Mutagenesis studies have revealed these residues as modulating the oxidoreductase activity of PDI in a pH-dependent manner. Non-conservative amino acid substitutions resulted in enzyme variants upwards of 7-fold less efficient. This attenuated activity was found to translate into a 2-fold reduction of the rate of electron shuttling between PDI and the intraluminal endoplasmic reticulum oxidase, ERO1α, suggesting a functional significance to oxidative protein folding. In light of this, the possibility of lysine acetylation at residues Lys57 and Lys401 was assessed by in vitro treatment using acetylsalicylic acid (aspirin). A total of 28 acetyllysine residues were identified, including acLys57 and acLys401. The kinetic behavior of the acetylated protein form nearly mimicked that obtained with a K57/401Q double substitution variant providing an indication that acetylation of the active site-flanking lysine residues can act to reversibly modulate PDI activity. PMID:29541639
Plasma Amino Acid Levels in Children with Autism and Their Families.
ERIC Educational Resources Information Center
Aldred, Sarah; Moore, Kieran M.; Fitzgerald, Michael; Waring, Rosemary H.
2003-01-01
Plasma amino acid levels were measured in autistic (n=12), Asperger syndrome (n=11) patients, their parents and siblings. Patients with autism or Asperger syndrome and their siblings and parents all had raised glutamic acid, phenyalanine, asparagine, tyrosine, alanine, and lysine levels than age-matched controls. Results suggest dysregulated amino…
Research for amino acids in lunar samples.
NASA Technical Reports Server (NTRS)
Gehrke, C. W.; Zumwalt, R. W.; Kuo, K.; Rash, J. J.; Aue , W. A.; Stalling, D. L.; Kvenvolden, K. A.; Ponnamperuma, C.
1972-01-01
The study was primarily directed toward the examination of Apollo 14 lunar fines for indigenous amino acids or materials which could be converted to amino acids on hydrolysis with 6 N hydrochloric acid. Initial experiments were conducted to confirm the integrity of the derivatization reactions and reagents, and to optimize the gas-liquid chromatographic (GLC) instrumental and chromatographic system for the separation and flame ionization detection of the amino acid derivatives. In studies on the recovery of amino acids added to lunar fines, low recoveries were obtained when 10 ng of each amino acid were added to 50 mg of virgin fines, but the subsequent addition of 50 ng of each to the previously extracted sample resulted in much higher recoveries.
Amino acid production exceeds plant nitrogen demand in Siberian tundra
NASA Astrophysics Data System (ADS)
Wild, Birgit; Eloy Alves, Ricardo J.; Bárta, Jiři; Čapek, Petr; Gentsch, Norman; Guggenberger, Georg; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Prommer, Judith; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Richter, Andreas
2018-03-01
Arctic plant productivity is often limited by low soil N availability. This has been attributed to slow breakdown of N-containing polymers in litter and soil organic matter (SOM) into smaller, available units, and to shallow plant rooting constrained by permafrost and high soil moisture. Using 15N pool dilution assays, we here quantified gross amino acid and ammonium production rates in 97 active layer samples from four sites across the Siberian Arctic. We found that amino acid production in organic layers alone exceeded literature-based estimates of maximum plant N uptake 17-fold and therefore reject the hypothesis that arctic plant N limitation results from slow SOM breakdown. High microbial N use efficiency in organic layers rather suggests strong competition of microorganisms and plants in the dominant rooting zone. Deeper horizons showed lower amino acid production rates per volume, but also lower microbial N use efficiency. Permafrost thaw together with soil drainage might facilitate deeper plant rooting and uptake of previously inaccessible subsoil N, and thereby promote plant productivity in arctic ecosystems. We conclude that changes in microbial decomposer activity, microbial N utilization and plant root density with soil depth interactively control N availability for plants in the Arctic.
He, Hong-Bo; Zhang, Wei; Ding, Xue-Li; Bai, Zhen; Liu, Ning; Zhang, Xu-Dong
2008-06-01
The transformation and renewal of amino acid enantiomers is of significance in indicating the turnover mechanism of soil organic matter. In this paper, a method of gas chromatogram/mass spectrometry combined with U-13 C-glucose incubation was developed to determine the 13C enrichment in soil amino acid enantiomers, which could effectively differentiate the original and the newly synthesized amino acids in soil matrix. The added U-13 C-glucose was utilized rapidly to structure the amino acid carbon skeleton, and the change of relative abundance of isotope ions could be determined by mass spectrometry. The direct incorporation of U-13 C glucose was estimated by the intensity increase of m/z (F + n) to F (F was parent fragment, and n was the carbon number in the fragment), while the total isotope incorporation from the added 13C could be calculated according to the abundance ratio increment summation from m/z (Fa + 1) through (Fa + T) (Fa was the fragment containing all original skeleton carbons, and T was the carbon number in the amino acid molecule). The 13C enrichment in the target compound was expressed as atom percentage excess (APE), and that of D-amino acid needed to be corrected by the coefficient of hydrolysis-induced racemization. The 13C enrichment reflected the carbon turnover velocity of individual amino acid enantiomers, and was powerful to investigate the dynamics of soil amino acids.
Improving Plant Nitrogen Use Efficiency through Alteration of Amino Acid Transport Processes1[OPEN
Perchlik, Molly
2017-01-01
Improving the efficiency of nitrogen (N) uptake and utilization in plants could potentially increase crop yields while reducing N fertilization and, subsequently, environmental pollution. Within most plants, N is transported primarily as amino acids. In this study, pea (Pisum sativum) plants overexpressing AMINO ACID PERMEASE1 (AAP1) were used to determine if and how genetic manipulation of amino acid transport from source to sink affects plant N use efficiency. The modified plants were grown under low, moderate, or high N fertilization regimes. The results showed that, independent of the N nutrition, the engineered plants allocate more N via the vasculature to the shoot and seeds and produce more biomass and higher seed yields than wild-type plants. Dependent on the amount of N supplied, the AAP1-overexpressing plants displayed improved N uptake or utilization efficiency, or a combination of the two. They also showed significantly increased N use efficiency in N-deficient as well as in N-rich soils and, impressively, required half the amount of N to produce as many fruits and seeds as control plants. Together, these data support that engineering N allocation from source to sink presents an effective strategy to produce crop plants with improved productivity as well as N use efficiency in a range of N environments. PMID:28733388
[The application of N-acetylcysteine in optimization of specific pharmacological therapies].
Hołyńska-Iwan, Iga; Wróblewski, Marcin; Olszewska-Słonina, Dorota; Tyrakowski, Tomasz
2017-09-29
Based on the analysis of data from clinical trials it could be postulated that N-acetylcysteine has a positive impact on the treatment of various diseases. However, less is known about specific molecular and physiological mechanisms underlying the reported therapeutic effects. N-acetylcysteine (NAC, N-acetyl-L-cysteine) is an amino acid derivative containing a thiol group. It is a precursor of L-cysteine and glutathione. NAC is well absorbed and safe for the body at doses up to 300 mg per kg of body weight. Side effects are relatively rare. NAC is used as an mucolytic agent in adjunctive therapy of respiratory diseases causing the retention of secretions, as well as an antidote in the treatment of paracetamol poisoning. Moreover, NAC protects against the toxic effects of reactive oxygen species and their active metabolites. NAC is involved in free radical scavenging processes via several independent mechanisms, including a direct reduction of free radicals, providing substrates for oxidation-reduction reactions and activation of antioxidant enzymes. In the blood, NAC decreases the level of low density lipoprotein peroxidation. In various tissues, NAC may increase the levels of glutathione and cysteine and stimulate the superoxide dismutase action. NAC is used as a supplement in the treatment of various diseases associated with impaired exterior and intracellular oxidative balance. NAC increases the concentrations of amino acids and their derivatives, including cysteine, cystine, and glutathione. It also stabilizes the antioxidant status of the cells and the intercellular spaces. NAC changes the levels of transcription factors, modifying the transcription of selected genes and acting on the protein translation. It works on the activation of several enzymes in the cells and outside the cells. Based on the analysis of data from clinical trials it can be concluded, that an administration of NAC may be beneficial for these groups of patients, in whom the reversible accumulation and the negative action of free radicals was observed.
Lv, Caixia; Feng, Lei; Zhao, Hongmei; Wang, Guo; Stavropoulos, Pericles; Ai, Lin
2017-02-21
In the field of chiral recognition, reported chiral discrimination by 1 H NMR spectroscopy has mainly focused on various chiral analytes with a single chiral center, regarded as standard chiral substrates to evaluate the chiral discriminating abilities of a chiral auxiliary. Among them, chiral α-hydroxy acids, α-amino acids and their derivatives are chiral organic molecules involved in a wide variety of biological processes, and also play an important role in the area of preparation of pharmaceuticals, as they are part of the synthetic process in the production of chiral drug intermediates and protein-based drugs. In this paper, several α-hydroxy acids and N-Ts-α-amino acids were used to evaluate the chiral discriminating abilities of tetraaza macrocyclic chiral solvating agents (TAMCSAs) 1a-1d by 1 H NMR spectroscopy. The results indicate that α-hydroxy acids and N-Ts-α-amino acids were successfully discriminated in the presence of TAMCSAs 1a-1d by 1 H NMR spectroscopy in most cases. The enantiomers of the α-hydroxy acids and N-Ts-α-amino acids were assigned based on the change of integration of the 1 H NMR signals of the corresponding protons. The enantiomeric excesses (ee) of N-Ts-α-amino acids 11 with different optical compositions were calculated based on the integration of the 1 H NMR signals of the CH 3 protons (Ts group) of the enantiomers of (R)- and (S)-11 in the presence of TAMCSA 1b. At the same time, the possible chiral discriminating behaviors have been discussed by means of the Job plots of (±)-2 with TAMCSAs 1b and proposed theoretical models of the enantiomers of 2 and 6 with TAMCSA 1a, respectively.
Ji, Kun; Lee, Changsuk; Janesko, Benjamin G; Simanek, Eric E
2015-08-03
Condensation of a hydrazine-substituted s-triazine with an aldehyde or ketone yields an equivalent to the widely used, acid-labile acyl hydrazone. Hydrolysis of these hydrazones using a formaldehyde trap as monitored using HPLC reveals that triazine-substituted hydrazones are more labile than acetyl hydrazones at pH>5. The reactivity trends mirror that of the corresponding acetyl hydrazones, with hydrolysis rates increasing along the series (aromatic aldehyde
Mandal, Pijus K; Birtwistle, J Sanderson; McMurray, John S
2014-09-05
We report a very mild synthesis of N-protected α-methylamines from the corresponding amino acids. Carboxyl groups of amino acids are reduced to iodomethyl groups via hydroxymethyl intermediates. Reductive deiodination to methyl groups is achieved by hydrogenation or catalytic transfer hydrogenation under alkaline conditions. Basic hydrodehalogenation is selective for the iodomethyl group over hydrogenolysis-labile protecting groups, such as benzyloxycarbonyl, benzyl ester, benzyl ether, and 9-fluorenyloxymethyl, thus allowing the conversion of virtually any protected amino acid into the corresponding N-protected α-methylamine.
2015-01-01
We report a very mild synthesis of N-protected α-methylamines from the corresponding amino acids. Carboxyl groups of amino acids are reduced to iodomethyl groups via hydroxymethyl intermediates. Reductive deiodination to methyl groups is achieved by hydrogenation or catalytic transfer hydrogenation under alkaline conditions. Basic hydrodehalogenation is selective for the iodomethyl group over hydrogenolysis-labile protecting groups, such as benzyloxycarbonyl, benzyl ester, benzyl ether, and 9-fluorenyloxymethyl, thus allowing the conversion of virtually any protected amino acid into the corresponding N-protected α-methylamine. PMID:25116734
Bohaty, Robin E; de Godoy, Maria R C; McLeod, Kyle R; Harmon, David L
2012-02-01
The objectives of this study were to investigate the effects of added essential amino acids in conjunction with a dietary lysine/MJ of 0.72 on nitrogen (N) metabolism in dogs. Treatments were; a control diet, a diet that provided an ideal amino acid profile (IAA), a diet with added total sulphur amino acids (TSAA), and a diet with added TSAA and threonine (TT). Diets were fed to eight overweight, mature, female hounds using a replicated 4 x 4 Latin Square design. Food intake was similar across treatments, however, food N intake was higher (p < 0.001) for TSAA than control, IAA or TT. Nitrogen absorbed was higher (p < 0.01) for TSAA than IAA and control. Urea N excretion was greater for control than TT (p < 0.05). Urine N excretion did not differ between diets. There were no differences in digestibility or N retention of diets. There were no differences in protein turnover, synthesis, or degradation. Blood metabolites were within normal ranges and did not differ due to dietary treatment. Based on the measurements made in this study, there is no benefit for added TSAA, TT or additional EAA in diets for mature dogs formulated to provide a 0.72 g lysine/MJ ME ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leong, JoAnn Ching
The nucleotide sequence of the IHNV glycoprotein gene has been determined from a cDNA clone containing the entire coding region. The glycoprotein cDNA clone contained a leader sequence of 48 bases, a coding region of 1524 nucleotides, and 39 bases at the 3 foot end. The entire cDNA clone contains 1609 nucleodites and encodes a protein of 508 amino acids. The deduced amino acid sequence gave a translated molecular weight of 56,795 daltons. A hydropathicity profile of the deduced amino acid sequence indicated that there were two major hydrophobic domains: one,at the N-terminus,delineating a signal peptide of 18 amino acidsmore » and the other, at the C-terminus,delineating the region of the transmembrane. Five possible sites of N-linked glyscoylation were identified. Although no nucleic acid homology existed between the IHNV glycoprotein gene and the glycoprotein genes of rabies and VSV, there was significant homology at the amino acid level between all three rhabdovirus glycoproteins.« less
[Analysis of constituents of essential oil from the skin of water caltrop].
Liang, Rui; Peng, Qi-Jun
2006-01-01
To analyze the constituents of essential oil from the skin of water caltrop. Water steam distillation and GC-MS were used. 58 componds were separated respectively. 56 componds being identified which were 96. 5% of the totle essential oil. Diethyl phthalate, acetamide, N-acetyl-N, N'-1,2-ethanediylbis-, isopropyl palmitate, hexadecanoic acid, Z-11 and octadecanoic acid are the main component of essential oil from the skin of water caltrop.
High Concentrations of Tranexamic Acid Inhibit Ionotropic Glutamate Receptors.
Lecker, Irene; Wang, Dian-Shi; Kaneshwaran, Kirusanthy; Mazer, C David; Orser, Beverley A
2017-07-01
The antifibrinolytic drug tranexamic acid is structurally similar to the amino acid glycine and may cause seizures and myoclonus by acting as a competitive antagonist of glycine receptors. Glycine is an obligatory co-agonist of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors. Thus, it is plausible that tranexamic acid inhibits NMDA receptors by acting as a competitive antagonist at the glycine binding site. The aim of this study was to determine whether tranexamic acid inhibits NMDA receptors, as well as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate subtypes of ionotropic glutamate receptors. Tranexamic acid modulation of NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainate receptors was studied using whole cell voltage-clamp recordings of current from cultured mouse hippocampal neurons. Tranexamic acid rapidly and reversibly inhibited NMDA receptors (half maximal inhibitory concentration = 241 ± 45 mM, mean ± SD; 95% CI, 200 to 281; n = 5) and shifted the glycine concentration-response curve for NMDA-evoked current to the right. Tranexamic acid also inhibited α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (half maximal inhibitory concentration = 231 ± 91 mM; 95% CI, 148 to 314; n = 5 to 6) and kainate receptors (half maximal inhibitory concentration = 90 ± 24 mM; 95% CI, 68 to 112; n = 5). Tranexamic acid inhibits NMDA receptors likely by reducing the binding of the co-agonist glycine and also inhibits α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate receptors. Receptor blockade occurs at high millimolar concentrations of tranexamic acid, similar to the concentrations that occur after topical application to peripheral tissues. Glutamate receptors in tissues including bone, heart, and nerves play various physiologic roles, and tranexamic acid inhibition of these receptors may contribute to adverse drug effects.
Yu, Zhijun; Sun, Weiyang; Zhang, Xinghai; Cheng, Kaihui; Zhao, Chuqi; Xia, Xianzhu; Gao, Yuwei
2017-08-01
Although H1N2 avian influenza virus (AIV) only infect birds, documented cases of swine infection with H1N2 influenza viruses suggest this subtype AIV may pose a potential threat to mammals. Here, we generated mouse-adapted variants of a H1N2 AIV to identify adaptive changes that increased virulence in mammals. MLD 50 of the variants were reduced >1000-fold compared to the parental virus. Variants displayed enhanced replication in vitro and in vivo, and replicate in extrapulmonary organs. These data show that enhanced replication capacity and expanded tissue tropism may increase the virulence of H1N2 AIV in mice. Sequence analysis revealed multiple amino acid substitutions in the PB2 (L134H, I647L, and D701N), HA (G228S), and M1 (D231N) proteins. These results indicate that H1N2 AIV can rapidly acquire adaptive amino acid substitutions in mammalian hosts, and these amino acid substitutions collaboratively enhance the ability of H1N2 AIV to replicate and cause severe disease in mammals. Copyright © 2017 Elsevier B.V. All rights reserved.
Raibaud, A; Zalacain, M; Holt, T G; Tizard, R; Thompson, C J
1991-01-01
Nucleotide sequence analysis of a 5,000-bp region of the bialaphos antibiotic production (bap) gene cluster defined five open reading frames (ORFs) which predicted structural genes in the order bah, ORF1, ORF2, and ORF3 followed by the regulatory gene, brpA (H. Anzai, T. Murakami, S. Imai, A. Satoh, K. Nagaoka, and C.J. Thompson, J. Bacteriol. 169:3482-3488, 1987). The four structural genes were translationally coupled and apparently cotranscribed from an undefined promoter(s) under the positive control of the brpA gene product. S1 mapping experiments indicated that brpA was transcribed by two promoters (brpAp1 and brpAp2) which initiate transcription 150 and 157 bp upstream of brp A within an intergenic region and at least one promoter further upstream within the bap gene cluster (brpAp3). All three transcripts were present at low levels during exponential growth and increased just before the stationary phase. The levels of the brpAp3 band continued to increase at the onset of stationary phase, whereas brpAp1-and brpAp2-protected fragments showed no further change. BrpA contained a possible helix-turn-helix motif at its C terminus which was similar to the C-terminal regulatory motif found in the receiver component of a family of two-component transcriptional activator proteins. This motif was not associated with the N-terminal domain conserved in other members of the family. The structural gene cluster sequenced began with bah, encoding a bialaphos acetylhydrolase which removes the N-acetyl group from bialaphos as one of the final steps in the biosynthetic pathway. The observation that Bah was similar to a rat and to a bacterial (Acinetobacter calcoaceticus) lipase probably reflects the fact that the ester bonds of triglycerides and the amide bond linking acetate to phosphinothricin are similar and hydrolysis is catalyzed by structurally related enzymes. This was followed by two regions encoding ORF1 and ORF2 which were similar to each other (48% nucleotide identity, 31% amino acid identity), as well as to GrsT, a protein encoded by a gene located adjacent to gramicidin S synthetase in Bacillus brevis, and to vertebrate (mallard duck and rat) thioesterases. The amino acid sequence and hydrophobicity profile of ORF3 indicated that it was related to a family of membrane transport proteins. It was strikingly similar to the citrate uptake protein encoded by the transposon Tn3411. Images PMID:2066341
Excitatory Amino Acids as Transmitters in the Brain
1989-04-30
Amino Acids as Transmitters in the Brain 12 PERSONAL AUTHOR(S) Cotman, C.W. 13a TYPE OF REPORT 1i3b TIME OYERED 14. DATE OF REPORT (Ye, Month, Day) 5s...necenearia i dentf by block number) FIEL.D GROUP SBGOP Excitatory receptors, excitatory amino acids , excitotoxicit N-methyl-D-aspartate, kainate...mediated by excitatory amino acids and their receptors. These receptors participate in both standard synaptic transmission as well as higher order
Nguyen, Truong X; Landgraf, Stephan; Grampp, Günter
2017-01-01
Photooxidation kinetics of phenol, 1-naphthol, 2-naphthol, tyrosine (TyrOH) and N-acetyl-tyrosine (AcTyrOH), tryptophan (TrpH) by ruthenium(II) polypyridyl complexes: [Ru(bpy) 3 ]Cl 2 (1), [Ru(phen) 3 ]Cl 2 (2), [Ru(bpy)(phen)(bpg)]Cl 2 (3), and [Ru(dpq) 2 (bxbg)]Cl 2 (4) where bpy is 2,2'-bipyridine, phen - 1,10-phenanthroline, bpg - bipyridine-glycoluril, dpq - dipyrido[3,2-d:2',3'-f]quinoxaline, and bxbg - bis(o-xylene)bipyridine-glycoluril are investigated. Rate constants have been measured by steady-state luminescence and phase-modulation fluorometry in aqueous solutions at different pH's. The rates for the oxidation of the phenols and phenolic aromatic amino acids spreads over a wide range from 4.2×10 6 to 6.8×10 9 M -1 s -1 , depending on pH and the nature of solutes. At pH>pK a of the quenchers, the presence of reactive species (PhO - ) in the alkaline solutions is accounted for the rapid ET rates. In the pH range between 4 and 10 (pH
Oishi, Kohei; Yamayoshi, Seiya; Kawaoka, Yoshihiro
2018-03-01
The influenza A virus protein PA-X comprises an N-terminal PA region and a C-terminal PA-X-specific region. PA-X suppresses host gene expression, termed shutoff, via mRNA cleavage. Although the endonuclease active site in the N-terminal PA region of PA-X and basic amino acids in the C-terminal PA-X-specific region are known to be important for PA-X shutoff activity, other amino acids may also play a role. Here, we used yeast to identify novel amino acids of PA-X that are important for PA-X shutoff activity. Unlike wild-type PA-X, most PA-X mutants predominantly localized in the cytoplasm, indicating that these mutations decreased the shutoff activity of PA-X by affecting PA-X translocation to the nucleus. Mapping of the identified amino acids onto the N-terminal structure of PA revealed that some of them likely contribute to the formation of the endonuclease active site of PA. Copyright © 2018. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higa, H.; Varki, A.
1986-05-01
Certain strains of bacteria synthesize an outer polysialic acid (K1) capsule. Some strains of K1/sup +/ E.coli are also capable of adding O-acetyl-esters to the exocyclic hydroxyl groups of the sialic acid residues. Both the capsule and the O-acetyl modification have been correlated with differences in antigenicity and pathogenicity. The authors have developed an assay for an O-acetyl-transferase in E.coli that transfers O-(/sup 3/H)acetyl groups from (/sup 3/H)acetyl-Coenzyme A to colominic acid (fragments of the polysialic acid capsule). Using this assay, the enzyme was solubilized, and purified approx. 600-fold using a single affinity chromatography step with Procion Red-A Agarose. Themore » enzyme also binds to Coenzyme A Sepharose, and can be eluted with high salt or Coenzyme A. The partially purified enzyme has a pH optimum of 7.0 - 7.5, is unaffected by divalent cations, is inhibited by high salt concentrations, is inhibited by Coenzyme A (50% inhibition at 100 ..mu..M), and shows an apparent Km for colominic acid of 3.7 mM (sialic acid concentration). This enzyme could be involved in the O-acetyl +/- form variation seen in some strains of K1/sup +/ E.coli.« less
Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart.
Thapa, Dharendra; Zhang, Manling; Manning, Janet R; Guimarães, Danielle A; Stoner, Michael W; O'Doherty, Robert M; Shiva, Sruti; Scott, Iain
2017-08-01
Lysine acetylation is a reversible posttranslational modification and is particularly important in the regulation of mitochondrial metabolic enzymes. Acetylation uses acetyl-CoA derived from fuel metabolism as a cofactor, thereby linking nutrition to metabolic activity. In the present study, we investigated how mitochondrial acetylation status in the heart is controlled by food intake and how these changes affect mitochondrial metabolism. We found that there was a significant increase in cardiac mitochondrial protein acetylation in mice fed a long-term high-fat diet and that this change correlated with an increase in the abundance of the mitochondrial acetyltransferase-related protein GCN5L1. We showed that the acetylation status of several mitochondrial fatty acid oxidation enzymes (long-chain acyl-CoA dehydrogenase, short-chain acyl-CoA dehydrogenase, and hydroxyacyl-CoA dehydrogenase) and a pyruvate oxidation enzyme (pyruvate dehydrogenase) was significantly upregulated in high-fat diet-fed mice and that the increase in long-chain and short-chain acyl-CoA dehydrogenase acetylation correlated with increased enzymatic activity. Finally, we demonstrated that the acetylation of mitochondrial fatty acid oxidation proteins was decreased after GCN5L1 knockdown and that the reduced acetylation led to diminished fatty acid oxidation in cultured H9C2 cells. These data indicate that lysine acetylation promotes fatty acid oxidation in the heart and that this modification is regulated in part by the activity of GCN5L1. NEW & NOTEWORTHY Recent research has shown that acetylation of mitochondrial fatty acid oxidation enzymes has greatly contrasting effects on their activity in different tissues. Here, we provide new evidence that acetylation of cardiac mitochondrial fatty acid oxidation enzymes by GCN5L1 significantly upregulates their activity in diet-induced obese mice. Copyright © 2017 the American Physiological Society.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1-piperazineethanamine and sulfur dioxide; fatty acids, tall-oil reaction products with sulfur...)amino]ethyl], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1...
Code of Federal Regulations, 2010 CFR
2010-07-01
...-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1-piperazineethanamine and sulfur dioxide; fatty acids, tall-oil reaction products with sulfur...)amino]ethyl], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1...