Sample records for n-acetyl-p-benzoquinone imine napqi

  1. The acetaminophen metabolite N-acetyl-p-benzoquinone imine (NAPQI) inhibits glutathione synthetase in vitro; a clue to the mechanism of 5-oxoprolinuric acidosis?

    PubMed

    Walker, Valerie; Mills, Graham A; Anderson, Mary E; Ingle, Brandall L; Jackson, John M; Moss, Charlotte L; Sharrod-Cole, Hayley; Skipp, Paul J

    2017-02-01

    1. Metabolic acidosis due to accumulation of l-5-oxoproline is a rare, poorly understood, disorder associated with acetaminophen treatment in malnourished patients with chronic morbidity. l-5-Oxoprolinuria signals abnormal functioning of the γ-glutamyl cycle, which recycles and synthesises glutathione. Inhibition of glutathione synthetase (GS) by N-acetyl-p-benzoquinone imine (NAPQI) could contribute to 5-oxoprolinuric acidosis in such patients. We investigated the interaction of NAPQI with GS in vitro. 2. Peptide mapping of co-incubated NAPQI and GS using mass spectrometry demonstrated binding of NAPQI with cysteine-422 of GS, which is known to be essential for GS activity. Computational docking shows that NAPQI is properly positioned for covalent bonding with cysteine-422 via Michael addition and hence supports adduct formation. 3. Co-incubation of 0.77 μM of GS with NAPQI (25-400 μM) decreased enzyme activity by 16-89%. Inhibition correlated strongly with the concentration of NAPQI and was irreversible. 4. NAPQI binds covalently to GS causing irreversible enzyme inhibition in vitro. This is an important novel biochemical observation. It is the first indication that NAPQI may inhibit glutathione synthesis, which is pivotal in NAPQI detoxification. Further studies are required to investigate its biological significance and its role in 5-oxoprolinuric acidosis.

  2. Acetaminophen analog N-acetyl-m-aminophenol, but not its reactive metabolite, N-acetyl-p-benzoquinone imine induces CYP3A activity via inhibition of protein degradation.

    PubMed

    Santoh, Masataka; Sanoh, Seigo; Ohtsuki, Yuya; Ejiri, Yoko; Kotake, Yaichiro; Ohta, Shigeru

    2017-05-06

    Cytochrome P450 (CYP) 3A subfamily members are known to metabolize various types of drugs, highlighting the importance of understanding drug-drug interactions (DDI) depending on CYP3A induction or inhibition. While transcriptional regulation of CYP3A members is widely understood, post-translational regulation needs to be elucidated. We previously reported that acetaminophen (APAP) induces CYP3A activity via inhibition of protein degradation and proposed a novel DDI concept. N-Acetyl-p-benzoquinone imine (NAPQI), the reactive metabolite of APAP formed by CYP, is known to cause adverse events related to depletion of intracellular reduced glutathione (GSH). We aimed to inspect whether NAPQI rather than APAP itself could cause the inhibitory effects on protein degradation. We found that N-acetyl-l-cysteine, the precursor of GSH, and 1-aminobenzotriazole, a nonselective CYP inhibitor, had no effect on CYP3A1/23 protein levels affected by APAP. Thus, we used APAP analogs to test CYP3A1/23 mRNA levels, protein levels, and CYP3A activity. We found N-acetyl-m-aminophenol (AMAP), a regioisomer of APAP, has the same inhibitory effects of CYP3A1/23 protein degradation, while p-acetamidobenzoic acid (PAcBA), a carboxy-substituted form of APAP, shows no inhibitory effects. AMAP and PAcBA cannot be oxidized to quinone imine forms such as NAPQI, so the inhibitory effects could depend on the specific chemical structure of APAP. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The Amelioration of N-Acetyl-p-Benzoquinone Imine Toxicity by Ginsenoside Rg3: The Role of Nrf2-Mediated Detoxification and Mrp1/Mrp3 Transports

    PubMed Central

    Gum, Sang Il; Cho, Min Kyung

    2013-01-01

    Previously, we found that Korean red ginseng suppressed acetaminophen (APAP)-induced hepatotoxicity via alteration of its metabolic profile involving GSTA2 induction and that ginsenoside Rg3 was a major component of this gene induction. In the present study, therefore, we assessed the protective effect of Rg3 against N-acetyl-p-benzoquinone imine (NAPQI), a toxic metabolic intermediate of APAP. Excess NAPQI resulted in GSH depletion with increases in the ALT and AST activities in H4IIE cells. Rg3 pretreatment reversed GSH depletion by NAPQI. Rg3 resulted in increased mRNA levels of the catalytic and modulatory subunit of glutamate cysteine ligase (GCL), the rate-limiting steps in GSH synthesis and subsequently increased GSH content. Rg3 increased levels of nuclear Nrf2, an essential transcriptional factor of these genes. The knockdown or knockout of the Nrf2 gene abrogated the inductions of mRNA and protein by Rg3. Abolishment of the reversal of GSH depletion by Rg3 against NAPQI was observed in Nrf2-deficient cells. Rg3 induced multidrug resistance-associated protein (Mrp) 1 and Mrp3 mRNA levels, but not in Nrf2-deficient cells. Taken together, these results demonstrate that Rg3 is efficacious in protecting hepatocytes against NAPQI insult, due to GSH repletion and coordinated gene regulations of GSH synthesis and Mrp family genes by Nrf2. PMID:23766864

  4. Trapping of NAPQI, the intermediate toxic paracetamol metabolite, by aqueous sulfide (S²⁻) and analysis by GC-MS/MS.

    PubMed

    Trettin, Arne; Batkai, Sandor; Thum, Thomas; Jordan, Jens; Tsikas, Dimitrios

    2014-07-15

    NAPQI, i.e., N-acetyl-p-benzoquinone imine, is considered the toxic metabolite of the widely used analgesic drug paracetamol (acetaminophen, APAP). Due to its high reactivity towards nucleophiles both in low- and high-molecular-mass biomolecules, NAPQI is hardly detectable in its native form. Upon conjugation with glutathione, NAPQI is finally excreted in the urine as the paracetamol mercapturic acid. Thus, determination of paracetamol mercapturate may provide a measure of in vivo NAPQI formation. In this work, we propose the use of Na2S in aqueous solution to trap NAPQI and to analyze the reaction product, i.e., 3-thio-paracetamol, together with paracetamol by GC-MS/MS in the electron-capture negative-ion chemical ionization mode after solvent extraction with ethyl acetate and derivatization with pentafluorobenzyl bromide. In mechanistic studies, we used newly synthesized N-acetyl-p-[2,3,5,6-(2)H4]benzoquinone imine (d4-NAPQI). In quantitative analyses, N-(4-hydroxyphenyl)-[2,3,5,6-(2)H4]acetamide (d4-APAP) was used as the internal standard both for NAPQI and APAP. 3-Thio-d3-paracetamol, prepared from d4-NAPQI and Na2S, may also be useful as an internal standard. We showed NAPQI in vitro formation from APAP by recombinant cyclooxygenase-1 as well as by dog liver homogenate. In vivo formation of NAPQI was demonstrated in mice given paracetamol intraperitoneally (about 150 mg/kg). Copyright © 2014 Elsevier B.V. All rights reserved.

  5. A quantum chemical study of the reactivity of acetaminophen (paracetamol) toxic metabolite N-acetyl-p-benzoquinone imine with deoxyguanosine and glutathione.

    PubMed

    Klopčič, Ivana; Poberžnik, Matic; Mavri, Janez; Dolenc, Marija Sollner

    2015-12-05

    Acetaminophen (APAP) forms some reactive metabolites that can react with DNA. APAP is a potentially genotoxic drug and is classified as a Group 3 drug according to International Agency for Research on Cancer (IARC). One of the possible mechanisms of APAP genotoxicity after long term of use is that its reactive quinone imine (QI) metabolite of acetaminophen (NAPQI), can chemically react with DNA after glutathione (GSH) depletion. A quantum chemical study of the reactions between the NAPQI and deoxyguanosine (dG) or GSH was performed. Activation energies (ΔG(ǂ)) for the reactions associated with the 1, 4-Michael addition were calculated on the M062X/6-311++G (d,p) level of theory. We modeled the reaction with dG as a multi-step process. The first step is rate-limiting (ΔG(ǂ) = 26.7 kcal/mol) and consists of formation of a C-N bond between the C3 atom of the QI moiety and the N7 atom of dG. The second step involves proton transfer from the C3 moiety to the nitrogen atom of the QI with ΔG(ǂ) of 13.8 kcal/mol. The depurination reaction that follows has a ΔG(ǂ) of 25.7 kcal/mol. The calculated ΔG(ǂ) for the nucleophilic attack of the deprotonated S atom of GSH on the C3 atom of the NAPQI is 12.9 kcal/mol. Therefore, the QI will react with GSH much faster than with DNA. Our study gives mechanistic insight into the genotoxicity of the APAP metabolite and will be useful for estimating the genotoxic potential of existing drugs with a QI moiety. Our results show that clinical application of APAP is safe, while in the case of severely depleted GSH levels APAP should be administered with caution. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Absolute quantitation of NAPQI-modified rat serum albumin by LC-MS/MS: monitoring acetaminophen covalent binding in vivo.

    PubMed

    LeBlanc, André; Shiao, Tze Chieh; Roy, René; Sleno, Lekha

    2014-09-15

    Acetaminophen is known to cause hepatoxicity via the formation of a reactive metabolite, N-acetyl p-benzoquinone imine (NAPQI), as a result of covalent binding to liver proteins. Serum albumin (SA) is known to be covalently modified by NAPQI and is present at high concentrations in the bloodstream and is therefore a potential biomarker to assess the levels of protein modification by NAPQI. A newly developed method for the absolute quantitation of serum albumin containing NAPQI covalently bound to its active site cysteine (Cys34) is described. This optimized assay represents the first absolute quantitation of a modified protein, with very low stoichiometric abundance, using a protein-level standard combined with isotope dilution. The LC-MS/MS assay is based on a protein standard modified with a custom-designed reagent, yielding a surrogate peptide (following digestion) that is a positional isomer to the target peptide modified by NAPQI. To illustrate the potential of this approach, the method was applied to quantify NAPQI-modified SA in plasma from rats dosed with acetaminophen. The resulting method is highly sensitive (capable of quantifying down to 0.0006% of total RSA in its NAPQI-modified form) and yields excellent precision and accuracy statistics. A time-course pharmacokinetic study was performed to test the usefulness of this method for following acetaminophen-induced covalent binding at four dosing levels (75-600 mg/kg IP), showing the viability of this approach to directly monitor in vivo samples. This approach can reliably quantify NAPQI-modified albumin, allowing direct monitoring of acetaminophen-related covalent binding.

  7. Electrochemical Synthesis and Kinetic Evaluation of Electrooxidation of Acetaminophen in the Presence of Antidepressant Drugs

    PubMed Central

    Nematollahi, Davood; Feyzi Barnaji, Bahareh; Amani, Ameneh

    2015-01-01

    With the aim of obtaining information about drug-drug interaction (DDI) between acetaminophen and some of antidepressant drugs (fluoxetine, sertraline and nortriptyline), in the present work we studied the electrochemical oxidation of acetaminophen (paracetamol) in the presence of these drugs by means of cyclic voltammetry and Controlled-potential coulometry. The reaction between N-acetyl-p-benzoquinone-imine (NAPQI) produced from electrooxidation of acetaminophen and antidepressant drugs (see scheme 1) cause to reduce the concentration of NAPQI and decreases the effective concentration of antidepressants. The cyclic voltammetric data were analyzed by digital simulation to measure the homogeneous parameters for the suggesting electrode mechanism. The calculated observed homogeneous rate constants (kobs) for the reaction of electrochemically generated N-acetyl-para benzoquinn-imine with antidepressant drugs was found to vary in the order kobsnortriptyline > kobssertraline > kobsfluxetine at biological pH. PMID:26664378

  8. Plasmid DNA linearization in the antibacterial action of a new fluorescent Ag nanoparticle-paracetamol dimer composite

    NASA Astrophysics Data System (ADS)

    Sahoo, Amaresh Kumar; Sk, Md Palashuddin; Ghosh, Siddhartha Sankar; Chattopadhyay, Arun

    2011-10-01

    Herein, we report the generation of a composite comprised of p-hydroxyacetanilide dimer and Ag nanoparticles (NPs) by reaction of AgNO3 and p-hydroxyacetanilide. The formation of the composite was established by UV-vis, FTIR and NMR spectroscopy, transmission electron microscopy and X-ray diffraction along with substantiation by mass spectrometry. Interestingly, the composite exhibited an emission spectrum with a peak at 435 nm when excited by light of wavelength 320 nm. The composite showed superior antimicrobial activity with respect to its individual components against a wide range of Gram positive and Gram negative bacteria at relatively low concentrations of Ag NPs and at which there was no apparent cytotoxicity against mammalian cells. Our results suggest that the composite strongly interacted with the bacterial cell walls leading to cell bursting. Interestingly, enhancement in the reactive oxygen species (ROS) generation in bacteria was observed in the presence of the composite. It is proposed that the ROS generation led to oxidation of the dimer to N-acetyl-p-benzoquinone imine (NAPQI). The generated NAPQI acted as a DNA gyrase inhibitor causing cell death following linearization of DNA.Herein, we report the generation of a composite comprised of p-hydroxyacetanilide dimer and Ag nanoparticles (NPs) by reaction of AgNO3 and p-hydroxyacetanilide. The formation of the composite was established by UV-vis, FTIR and NMR spectroscopy, transmission electron microscopy and X-ray diffraction along with substantiation by mass spectrometry. Interestingly, the composite exhibited an emission spectrum with a peak at 435 nm when excited by light of wavelength 320 nm. The composite showed superior antimicrobial activity with respect to its individual components against a wide range of Gram positive and Gram negative bacteria at relatively low concentrations of Ag NPs and at which there was no apparent cytotoxicity against mammalian cells. Our results suggest that the

  9. A Txnrd1-dependent metabolic switch alters hepatic lipogenesis, glycogen storage, and detoxification

    PubMed Central

    Iverson, Sonya V.; Eriksson, Sofi; Xu, Jianqiang; Prigge, Justin R.; Talago, Emily A.; Meade, Tesia A.; Meade, Erin S.; Capecchi, Mario R.; Arnér, Elias S.J.; Schmidt, Edward E.

    2013-01-01

    Besides helping to maintain a reducing intracellular environment, the thioredoxin (Trx) system impacts bioenergetics and drug-metabolism. We show that hepatocyte-specific disruption of Txnrd1, encoding Trx reductase-1 (TrxR1), causes a metabolic switch in which lipogenic genes are repressed and periportal hepatocytes become engorged with glycogen. These livers also overexpress machinery for biosynthesis of glutathione and conversion of glycogen into UDP-glucuronate; they stockpile glutathione-S-transferases and UDP-glucuronyl-transferases; and they overexpress xenobiotic exporters. This realigned metabolic profile suggested that the mutant hepatocytes might be preconditioned to more effectively detoxify certain xenobiotic challenges. Hepatocytes convert the pro-toxin acetaminophen (APAP, paracetamol) into cytotoxic N-acetyl-p-benzoquinone imine (NAPQI). APAP defenses include glucuronidation of APAP or glutathionylation of NAPQI, allowing removal by xenobiotic exporters. We found that NAPQI directly inactivates TrxR1, yet Txnrd1-null livers were resistant to APAP-induced hepatotoxicity. Txnrd1-null livers did not have more effective gene expression responses to APAP challenge; however their constitutive metabolic state supported more robust GSH biosynthesis-, glutathionylation-, and glucuronidation-systems. Following APAP challenge, this effectively sustained the GSH system and attenuated damage. PMID:23743293

  10. Acetaminophen and NAPQI are Toxic to Auditory Cells via Oxidative and Endoplasmic Reticulum Stress-dependent Pathways

    PubMed Central

    Kalinec, Gilda M.; Thein, Pru; Parsa, Arya; Yorgason, Joshua; Luxford, William; Urrutia, Raul; Kalinec, Federico

    2014-01-01

    Pain relievers containing N-acetyl-para-aminophenol, also called APAP, acetaminophen or paracetamol, in combination with opioid narcotics are top-selling pharmaceuticals in the U.S. Individuals who abuse these drugs for as little as sixty days can develop tinnitus and progressive bilateral sensorineural hearing loss. Recently published studies indicate that APAP and its metabolic product N-acetyl-p-benzoquinoneimine (NAPQI) are the primary ototoxic agents in this type of pain relievers. However, the mechanisms underlying the deleterious effects of these drugs on auditory cells remain to be fully characterized. In this study, we report cellular, genomic, and proteomic experiments revealing that cytotoxicity by APAP and NAPQI involves two different pathways in Immortomouse™-derived HEI-OC1 cells, implicating ROS overproduction, alterations in ER morphology, redistribution of intra-cisternal chaperones, activation of the eIF2α-CHOP pathway, as well as changes in ER stress and protein folding response markers. Thus, both oxidative and ER stress are part of the cellular and molecular mechanisms that contribute to the cytotoxic effects of APAP and NAPQI in these cells. We suggest that these in vitro findings should be taken into consideration when designing pharmacological strategies aimed at preventing the toxic effects of these drugs on the auditory system. PMID:24793116

  11. Structural and Kinetic Analyses of Macrophage Migration Inhibitory Factor Active Site Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crichlow, G.; Lubetsky, J; Leng, L

    Macrophage migration inhibitory factor (MIF) is a secreted protein expressed in numerous cell types that counters the antiinflammatory effects of glucocorticoids and has been implicated in sepsis, cancer, and certain autoimmune diseases. Interestingly, the structure of MIF contains a catalytic site resembling the tautomerase/isomerase sites of microbial enzymes. While bona fide physiological substrates remain unknown, model substrates have been identified. Selected compounds that bind in the tautomerase active site also inhibit biological functions of MIF. It had previously been shown that the acetaminophen metabolite, N-acetyl-p-benzoquinone imine (NAPQI), covalently binds to the active site of MIF. In this study, kinetic datamore » indicate that NAPQI inhibits MIF both covalently and noncovalently. The structure of MIF cocrystallized with NAPQI reveals that the NAPQI has undergone a chemical alteration forming an acetaminophen dimer (bi-APAP) and binds noncovalently to MIF at the mouth of the active site. We also find that the commonly used protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), forms a covalent complex with MIF and inhibits the tautomerase activity. Crystallographic analysis reveals the formation of a stable, novel covalent bond for PMSF between the catalytic nitrogen of the N-terminal proline and the sulfur of PMSF with complete, well-defined electron density in all three active sites of the MIF homotrimer. Conclusions are drawn from the structures of these two MIF-inhibitor complexes regarding the design of novel compounds that may provide more potent reversible and irreversible inhibition of MIF.« less

  12. Biotransformation of hydroxylaminobenzene and aminophenol by Pseudomonas putida 2NP8 cells grown in the presence of 3-nitrophenol.

    PubMed

    Zhao, J S; Singh, A; Huang, X D; Ward, O P

    2000-06-01

    Biotransformation products of hydroxylaminobenzene and aminophenol produced by 3-nitrophenol-grown cells of Pseudomonas putida 2NP8, a strain grown on 2- and 3-nitrophenol, were characterized. Ammonia, 2-aminophenol, 4-aminophenol, 4-benzoquinone, N-acetyl-4-aminophenol, N-acetyl-2-aminophenol, 2-aminophenoxazine-3-one, 4-hydroquinone, and catechol were produced from hydroxylaminobenzene. Ammonia, N-acetyl-2-aminophenol, and 2-aminophenoxazine-3-one were produced from 2-aminophenol. All of these metabolites were also found in the nitrobenzene transformation medium, and this demonstrated that they were metabolites of nitrobenzene transformation via hydroxylaminobenzene. Production of 2-aminophenoxazine-3-one indicated that oxidation of 2-aminophenol via imine occurred. Rapid release of ammonia from 2-aminophenol transformation indicated that hydrolysis of the imine intermediate was the dominant reaction. The low level of 2-aminophenoxazine-3-one indicated that formation of this compound was probably due to a spontaneous reaction accompanying oxidation of 2-aminophenol via imine. 4-Hydroquinone and catechol were reduction products of 2- and 4-benzoquinones. Based on these transformation products, we propose a new ammonia release pathway via oxidation of aminophenol to benzoquinone monoimine and subsequent hydrolysis for transformation of nitroaromatic compounds by 3-nitrophenol-grown cells of P. putida 2NP8. We propose a parallel mechanism for 3-nitrophenol degradation in P. putida 2NP8, in which all of the possible intermediates are postulated.

  13. Acetaminophen-Induced Hepatotoxicity in Mice Occurs with Inhibition of Activity and Nitration of Mitochondrial Manganese Superoxide Dismutase

    PubMed Central

    Agarwal, Rakhee; MacMillan-Crow, Lee Ann; Rafferty, Tonya M.; Saba, Hamida; Roberts, Dean W.; Fifer, E. Kim; James, Laura P.

    2011-01-01

    In overdose the analgesic/antipyretic acetaminophen (APAP) is hepatotoxic. Toxicity is mediated by initial hepatic metabolism to N-acetyl-p-benzoquinone imine (NAPQI). After low doses NAPQI is efficiently detoxified by GSH. However, in overdose GSH is depleted, NAPQI covalently binds to proteins as APAP adducts, and oxygen/nitrogen stress occurs. Toxicity is believed to occur by mitochondrial dysfunction. Manganese superoxide dismutase (MnSOD) inactivation by protein nitration has been reported to occur during other oxidant stress-mediated diseases. MnSOD is a critical mitochondrial antioxidant enzyme that prevents peroxynitrite formation within the mitochondria. To examine the role of MnSOD in APAP toxicity, mice were treated with 300 mg/kg APAP. GSH was significantly reduced by 65% at 0.5 h and remained reduced from 1 to 4 h. Serum alanine aminotransferase did not significantly increase until 4 h and was 2290 IU/liter at 6 h. MnSOD activity was significantly reduced by 50% at 1 and 2 h. At 1 h, GSH was significantly depleted by 62 and 80% at nontoxic doses of 50 and 100 mg/kg, respectively. No further GSH depletion occurred with hepatotoxic doses of 200 and 300 mg/kg APAP. A dose response decrease in MnSOD activity was observed for APAP at 100, 200, and 300 mg/kg. Immunoprecipitation of MnSOD from livers of APAP-treated mice followed by Western blot analysis revealed nitrated MnSOD. APAP-MnSOD adducts were not detected. Treatment of recombinant MnSOD with NAPQI did not produce APAP protein adducts. The data indicate that MnSOD inactivation by nitration is an early event in APAP-induced hepatic toxicity. PMID:21205919

  14. Biotransformation of Hydroxylaminobenzene and Aminophenol by Pseudomonas putida 2NP8 Cells Grown in the Presence of 3-Nitrophenol

    PubMed Central

    Zhao, Jian-Shen; Singh, Ajay; Huang, Xiao-Dong; Ward, Owen P.

    2000-01-01

    Biotransformation products of hydroxylaminobenzene and aminophenol produced by 3-nitrophenol-grown cells of Pseudomonas putida 2NP8, a strain grown on 2- and 3-nitrophenol, were characterized. Ammonia, 2-aminophenol, 4-aminophenol, 4-benzoquinone, N-acetyl-4-aminophenol, N-acetyl-2-aminophenol, 2-aminophenoxazine-3-one, 4-hydroquinone, and catechol were produced from hydroxylaminobenzene. Ammonia, N-acetyl-2-aminophenol, and 2-aminophenoxazine-3-one were produced from 2-aminophenol. All of these metabolites were also found in the nitrobenzene transformation medium, and this demonstrated that they were metabolites of nitrobenzene transformation via hydroxylaminobenzene. Production of 2-aminophenoxazine-3-one indicated that oxidation of 2-aminophenol via imine occurred. Rapid release of ammonia from 2-aminophenol transformation indicated that hydrolysis of the imine intermediate was the dominant reaction. The low level of 2-aminophenoxazine-3-one indicated that formation of this compound was probably due to a spontaneous reaction accompanying oxidation of 2-aminophenol via imine. 4-Hydroquinone and catechol were reduction products of 2- and 4-benzoquinones. Based on these transformation products, we propose a new ammonia release pathway via oxidation of aminophenol to benzoquinone monoimine and subsequent hydrolysis for transformation of nitroaromatic compounds by 3-nitrophenol-grown cells of P. putida 2NP8. We propose a parallel mechanism for 3-nitrophenol degradation in P. putida 2NP8, in which all of the possible intermediates are postulated. PMID:10831408

  15. Enolate-Forming Phloretin Pharmacophores: Hepatoprotection in an Experimental Model of Drug-Induced Toxicity

    PubMed Central

    Geohagen, Brian C.; Vydyanathan, Amaresh; Kosharskyy, Boleslav; Shaparin, Naum; Gavin, Terrence

    2016-01-01

    Drug-induced toxicity is often mediated by electrophilic metabolites, such as bioactivation of acetaminophen (APAP) to N-acetyl-p-benzoquinone imine (NAPQI). We have shown that APAP hepatotoxicity can be prevented by 2-acetylcyclopentanone (2-ACP). This 1,3-dicarbonyl compound ionizes to form an enolate nucleophile that scavenges NAPQI and other electrophilic intermediates. In this study, we expanded our investigation of enolate-forming compounds to include analyses of the phloretin pharmacophores, 2′,4′,6′-trihydroxyacetophenone (THA) and phloroglucinol (PG). Studies in a mouse model of APAP overdose showed that THA provided hepatoprotection when given either by intraperitoneal injection or oral administration, whereas PG was hepatoprotective only when given intraperitoneally. Corroborative research characterized the molecular pharmacology (efficacy, potency) of 2-ACP, THA, and PG in APAP-exposed isolated mouse hepatocytes. For comparative purposes, N-acetylcysteine (NAC) cytoprotection was also evaluated. Measurements of multiple cell parameters (e.g., cell viability, mitochondrial membrane depolarization) indicated that THA and, to a lesser extent, PG provided concentration-dependent protection against APAP toxicity, which exceeded that of 2-ACP or NAC. The enolate-forming compounds and NAC truncated ongoing APAP exposure and thereby returned intoxicated hepatocytes toward normal viability. The superior ability of THA to protect is related to multifaceted modes of action that include metal ion chelation, free radical trapping, and scavenging of NAPQI and other soft electrophiles involved in oxidative stress. The rank order of potency for the tested cytoprotectants was consistent with that determined in a parallel mouse model. These data suggest that THA or a derivative might be useful in treating drug-induced toxicities and other conditions that involve electrophile-mediated pathogenesis. PMID:27029584

  16. Synthesis, characterization and theoretical study in gaseous and solid phases of the imine 4-Acetyl-N-(4-methoxybenzylidene)aniline

    NASA Astrophysics Data System (ADS)

    Batista, J. F. N.; Cruz, J. W.; Doriguetto, A. C.; Torres, C.; de Almeida, E. T.; Camps, I.

    2017-11-01

    In the present paper we describe the synthesis and characterization of the Schiff's base or imine 4-Acetyl-N-(4-methoxybenzylidene)aniline (1), which provided experimental support for the theoretical calculations. The imine was characterized by infrared spectroscopy and single crystal XRD techniques. The computational studies were performed using the density functional theory (DFT) for the gaseous and solid phases. As similar compounds already shown biological activity, the pharmacokinetic properties of (1) were evaluated. Our results shown that (1), in its gaseous form, it is electronically stable and has pharmacological drug like properties. Due to its structural similarity with commercial drugs, it is a promise candidate to act as a nonsteroidal anti-inflammatory and to treat dementia, sleep disorders, alcohol dependence, and psychosis. From the solid state calculations we obtain that (1) is a low gap semiconductor and can act as an absorber for electromagnetic radiations with energy greater that ∼ 0.9eV .

  17. Enolate-Forming Phloretin Pharmacophores: Hepatoprotection in an Experimental Model of Drug-Induced Toxicity.

    PubMed

    Geohagen, Brian C; Vydyanathan, Amaresh; Kosharskyy, Boleslav; Shaparin, Naum; Gavin, Terrence; LoPachin, Richard M

    2016-06-01

    Drug-induced toxicity is often mediated by electrophilic metabolites, such as bioactivation of acetaminophen (APAP) to N-acetyl-p-benzoquinone imine (NAPQI). We have shown that APAP hepatotoxicity can be prevented by 2-acetylcyclopentanone (2-ACP). This 1,3-dicarbonyl compound ionizes to form an enolate nucleophile that scavenges NAPQI and other electrophilic intermediates. In this study, we expanded our investigation of enolate-forming compounds to include analyses of the phloretin pharmacophores, 2',4',6'-trihydroxyacetophenone (THA) and phloroglucinol (PG). Studies in a mouse model of APAP overdose showed that THA provided hepatoprotection when given either by intraperitoneal injection or oral administration, whereas PG was hepatoprotective only when given intraperitoneally. Corroborative research characterized the molecular pharmacology (efficacy, potency) of 2-ACP, THA, and PG in APAP-exposed isolated mouse hepatocytes. For comparative purposes, N-acetylcysteine (NAC) cytoprotection was also evaluated. Measurements of multiple cell parameters (e.g., cell viability, mitochondrial membrane depolarization) indicated that THA and, to a lesser extent, PG provided concentration-dependent protection against APAP toxicity, which exceeded that of 2-ACP or NAC. The enolate-forming compounds and NAC truncated ongoing APAP exposure and thereby returned intoxicated hepatocytes toward normal viability. The superior ability of THA to protect is related to multifaceted modes of action that include metal ion chelation, free radical trapping, and scavenging of NAPQI and other soft electrophiles involved in oxidative stress. The rank order of potency for the tested cytoprotectants was consistent with that determined in a parallel mouse model. These data suggest that THA or a derivative might be useful in treating drug-induced toxicities and other conditions that involve electrophile-mediated pathogenesis. Copyright © 2016 by The American Society for Pharmacology and

  18. Acetaminophen/paracetamol: A history of errors, failures and false decisions.

    PubMed

    Brune, K; Renner, B; Tiegs, G

    2015-08-01

    Acetaminophen/paracetamol is the most widely used drug of the world. At the same time, it is probably one of the most dangerous compounds in medical use, causing hundreds of deaths in all industrialized countries due to acute liver failure (ALF). Publications of the last 130 years found in the usual databases were analyzed. Personal contacts existed to renowned researchers having contributed to the medical use of paracetamol and its precursors as H.U. Zollinger, S. Moeschlin, U. Dubach, J. Axelrod and others. Further information is found in earlier reviews by Eichengrün, Rodnan and Benedek, Sneader, Brune; comp. references. The history of the discovery of paracetamol starts with an error (active against worms), continues with a false assumption (paracetamol is safer than phenacetin), describes the first side-effect 'epidemy' (phenacetin nephropathy, drug-induced interstitial nephritis) and ends with the discovery of second-generation problems due to the unavoidable production of a highly toxic metabolite of paracetamol N-acetyl-p-benzoquinone imine (NAPQI) that may cause not only ALF and kidney damage but also impaired development of the fetus and the newborn child. It appears timely to reassess the risk/benefit ratio of this compound. © 2014 European Pain Federation - EFIC®

  19. Pharmacokinetic modelling of modified acetylcysteine infusion regimens used in the treatment of paracetamol poisoning.

    PubMed

    Wong, Anselm; Landersdorfer, Cornelia; Graudins, Andis

    2017-09-01

    Paracetamol overdose is common and is treated with acetylcysteine to prevent the development of hepatotoxicity. N-acetyl-p-benzoquinone imine (NAPQI) is the toxic metabolite of paracetamol overdose. We aimed to assess the expected acetylcysteine concentration time profiles following delivery of modified acetylcysteine regimens proposed for those at high and low risk of hepatotoxicity. In addition, we will determine acetylcysteine concentrations post-cessation of abbreviated infusions. We performed pharmacokinetic simulations using Berkeley Madonna (version 8.3.23.0) comparing the time course of acetylcysteine concentration during and after the cessation of an abbreviated 12-h regimen (250 mg/kg) using a two-bag infusion and compared this to the standard 21-h three-bag (300 mg/kg) regimen. We also simulated extended duration acetylcysteine regimens and other increased dosing strategies that have been recommended in specific paracetamol poisoning scenarios. A more sustained serum concentration is achieved when the acetylcysteine loading dose is delivered over 4 h using the two-bag compared to the 1-h loading dose of the three-bag regimen. When administering an abbreviated 12-h acetylcysteine regimen, circulating acetylcysteine is detectable for 8 h after cessation of the infusion. This may provide a continued hepatoprotective effect if NAPQI is still being generated after the infusion is ceased. This pharmacokinetic simulation study is an important step in determining plasma acetylcysteine concentrations that are likely to be achieved using various modified treatment regimens. Importantly, for patients at low risk of liver injury after acute overdose, acetylcysteine is likely to be detectable many hours post-cessation of a 12-h regimen. This should provide a safety factor against development of hepatotoxicity for any ongoing paracetamol metabolism after cessation of the acetylcysteine infusion.

  20. Predictive toxicology using systemic biology and liver microfluidic “on chip” approaches: Application to acetaminophen injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prot, Jean-Matthieu; Bunescu, Andrei; Elena-Herrmann, Bénédicte

    2012-03-15

    We have analyzed transcriptomic, proteomic and metabolomic profiles of hepatoma cells cultivated inside a microfluidic biochip with or without acetaminophen (APAP). Without APAP, the results show an adaptive cellular response to the microfluidic environment, leading to the induction of anti-oxidative stress and cytoprotective pathways. In presence of APAP, calcium homeostasis perturbation, lipid peroxidation and cell death are observed. These effects can be attributed to APAP metabolism into its highly reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI). That toxicity pathway was confirmed by the detection of GSH-APAP, the large production of 2-hydroxybutyrate and 3-hydroxybutyrate, and methionine, cystine, and histidine consumption in the treatedmore » biochips. Those metabolites have been reported as specific biomarkers of hepatotoxicity and glutathione depletion in the literature. In addition, the integration of the metabolomic, transcriptomic and proteomic collected profiles allowed a more complete reconstruction of the APAP injury pathways. To our knowledge, this work is the first example of a global integration of microfluidic biochip data in toxicity assessment. Our results demonstrate the potential of that new approach to predictive toxicology. -- Highlights: ► We cultivated liver cells in microfluidic biochips ► We integrated transcriptomic, proteomic and metabolomics profiles ► Pathways reconstructions were proposed in control and acetaminophen treated cultures ► Biomarkers were identified ► Comparisons with in vivo studies were proposed.« less

  1. Codominant Expression of N-Acetylation and O-Acetylation Activities Catalyzed by N-Acetyltransferase 2 in Human Hepatocytes

    PubMed Central

    Doll, Mark A.; Zang, Yu; Moeller, Timothy

    2010-01-01

    Human populations exhibit genetic polymorphism in N-acetylation capacity, catalyzed by N-acetyltransferase 2 (NAT2). We investigated the relationship between NAT2 acetylator genotype and phenotype in cryopreserved human hepatocytes. NAT2 genotypes determined in 256 human samples were assigned as rapid (two rapid alleles), intermediate (one rapid and one slow allele), or slow (two slow alleles) acetylator phenotypes based on functional characterization of the NAT2 alleles reported previously in recombinant expression systems. A robust and significant relationship was observed between deduced NAT2 phenotype (rapid, intermediate, or slow) and N-acetyltransferase activity toward sulfamethazine (p < 0.0001) and 4-aminobiphenyl (p < 0.0001) and for O-acetyltransferase-catalyzed metabolic activation of N-hydroxy-4-aminobiphenyl (p < 0.0001), N-hydroxy-2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (p < 0.01), and N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (p < 0.0001). NAT2-specific protein levels also significantly associated with the rapid, intermediate, and slow NAT2 acetylator phenotypes (p < 0.0001). As a negative control, p-aminobenzoic acid (an N-acetyltransferase 1-selective substrate) N-acetyltransferase activities from the same samples did not correlate with the three NAT2 acetylator phenotypes (p > 0.05). These results clearly document codominant expression of human NAT2 alleles resulting in rapid, intermediate, and slow acetylator phenotypes. The three phenotypes reflect levels of NAT2 protein catalyzing both N- and O-acetylation. Our results suggest a significant role of NAT2 acetylation polymorphism in arylamine-induced cancers and are consistent with differential cancer risk and/or drug efficacy/toxicity in intermediate compared with rapid or slow NAT2 acetylator phenotypes. PMID:20430842

  2. Origin of attraction in p-benzoquinone complexes with benzene and p-hydroquinone.

    PubMed

    Tsuzuki, Seiji; Uchimaru, Tadafumi; Ono, Taizo

    2017-08-30

    The origin of the attraction in charge-transfer complexes (a p-hydroquinone-p-benzoquinone complex and benzene complexes with benzoquinone, tetracyanoethylene and Br 2 ) was analyzed using distributed multipole analysis and symmetry-adapted perturbation theory. Both methods show that the dispersion interactions are the primary source of the attraction in these charge-transfer complexes followed by the electrostatic interactions. The natures of the intermolecular interactions in these complexes are close to the π/π interactions of neutral aromatic molecules. The electrostatic interactions play important roles in determining the magnitude of the attraction. The contribution of charge-transfer interactions to the attraction is not large compared with the dispersion interactions in these complexes.

  3. N-acetyl-L-tryptophan, a substance-P receptor antagonist attenuates aluminum-induced spatial memory deficit in rats.

    PubMed

    Fernandes, Joylee; Mudgal, Jayesh; Rao, Chamallamudi Mallikarjuna; Arora, Devinder; Basu Mallik, Sanchari; Pai, K S R; Nampoothiri, Madhavan

    2018-06-01

    Neuroinflammation plays an important role in the pathophysiology of Alzheimer's disease. Neurokinin substance P is a key mediator which modulates neuroinflammation through neurokinin receptor. Involvement of substance P in Alzheimer's disease is still plausible and various controversies exist in this hypothesis. Preventing the deleterious effects of substance P using N-acetyl-L-tryptophan, a substance P antagonist could be a promising therapeutic strategy. This study was aimed to evaluate the effect of N-acetyl-L-tryptophan on aluminum induced spatial memory alterations in rats. Memory impairment was induced using aluminum chloride (AlCl 3 ) at a dose of 10 mg/kg for 42 d. After induction of dementia, rats were exposed to 30 and 50 mg/kg of N-acetyl-L-tryptophan for 28 d. Spatial memory alterations were measured using Morris water maze. Acetylcholinesterase activity and antioxidant enzyme glutathione level were assessed in hippocampus, frontal cortex and striatum. The higher dose of N-acetyl-L-tryptophan (50 mg/kg) significantly improved the aluminum induced memory alterations. N-acetyl-L-tryptophan exposure resulted in significant increase in acetylcholinesterase activity and glutathione level in hippocampus. The neuroprotective effect of N-acetyl-L-tryptophan could be due to its ability to block substance P mediated neuroinflammation, reduction in oxidative stress and anti-apoptotic properties. To conclude, N-acetyl-L-tryptophan may be considered as a novel neuroprotective therapy in Alzheimer's disease.

  4. Novel approach for evaluating pharmaceuticals toxicity using Daphnia model: analysis of the mode of cytochrome P450-generated metabolite action after acetaminophen exposure.

    PubMed

    Kim, Ryeo-Ok; Jo, Min-A; Song, Jinhaeng; Kim, Il-Chan; Yoon, Seokjoo; Kim, Woo-Keun

    2018-03-01

    Because of its widespread use, the pharmaceutical acetaminophen (APAP) is frequently detected in aquatic environments. APAP can have serious physiological effects, such as reduced reproduction, low growth rates, and abnormal behavior, in aquatic organisms. However, the methods available for evaluation of the aquatic toxicity of APAP are of limited usefulness. The present study aimed to develop reliable and sensitive markers for evaluation of APAP toxicity using Daphnia as a model organism. We focused on N-acetyl-p-benzoquinoneimine (NAPQI) production from APAP via cytochrome P450 metabolism because NAPQI causes APAP toxicity. Daphnia magna were exposed to APAP (0, 50, or 100 mg/L for 12 h or 24 h), and the total metabolites were extracted and analyzed for NAPQI. Direct detection of NAPQI was difficult because of its high reactivity, and its peak was close to that for APAP. Therefore, we tried to identify molecular and biochemical indicators associated with NAPQI generation, elimination, and its interactions with macromolecules. We identified changes in CYP370A13 gene expression, glutathione depletion, inhibition of thioredoxin reductase activity, and production of reactive oxygen species as indicators of D. magna exposure to APAP. These indicators could be used to develop sensitive and accurate techniques to evaluate the environmental toxicity of APAP. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Rabbit N-acetyltransferase 2 genotyping method to investigate role of acetylation polymorphism on N- and O-acetylation of aromatic and heterocyclic amine carcinogens.

    PubMed

    Hein, David W; Doll, Mark A

    2017-09-01

    The rabbit was the initial animal model to investigate the acetylation polymorphism expressed in humans. Use of the rabbit model is compromised by lack of a rapid non-invasive method for determining acetylator phenotype. Slow acetylator phenotype in the rabbit results from deletion of the N-acetyltransferase 2 (NAT2) gene. A relatively quick and non-invasive method for identifying the gene deletion was developed and acetylator phenotypes confirmed by measurement of N- and O-acetyltransferase activities in hepatic cytosols. Rabbit liver cytosols catalyzed the N-acetylation of sulfamethazine (p = 0.0014), benzidine (p = 0.0257), 4-aminobiphenyl (p = 0.0012), and the O-acetylation of N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP; p = 0.002) at rates significantly higher in rabbits possessing NAT2 gene than rabbits with NAT2 gene deleted. In contrast, hepatic cytosols catalyzed the N-acetylation of p-aminobenzoic acid (an N-acetyltransferase 1 selective substrate) at rates that did not differ significantly (p > 0.05) between rabbits positive and negative for NAT2. The new NAT2 genotyping method facilitates use of the rabbit model to investigate the role of acetylator polymorphism in the metabolism of aromatic and heterocyclic amine drugs and carcinogens.

  6. Acylcarnitine Profiles in Acetaminophen Toxicity in the Mouse: Comparison to Toxicity, Metabolism and Hepatocyte Regeneration

    PubMed Central

    Bhattacharyya, Sudeepa; Pence, Lisa; Beger, Richard; Chaudhuri, Shubhra; McCullough, Sandra; Yan, Ke; Simpson, Pippa; Hennings, Leah; Hinson, Jack; James, Laura

    2013-01-01

    High doses of acetaminophen (APAP) result in hepatotoxicity that involves metabolic activation of the parent compound, covalent binding of the reactive intermediate N-acetyl-p-benzoquinone imine (NAPQI) to liver proteins, and depletion of hepatic glutathione. Impaired fatty acid β-oxidation has been implicated in previous studies of APAP-induced hepatotoxicity. To better understand relationships between toxicity and fatty acid β-oxidation in the liver in APAP toxicity, metabolomic assays for long chain acylcarnitines were examined in relationship to established markers of liver toxicity, oxidative metabolism, and liver regeneration in a time course study in mice. Male B6C3F1 mice were treated with APAP (200 mg/kg IP) or saline and sacrificed at 1, 2, 4, 8, 24 or 48 h after APAP. At 1 h, hepatic glutathione was depleted and APAP protein adducts were markedly increased. Alanine aminotransferase (ALT) levels were elevated at 4 and 8 h, while proliferating cell nuclear antigen (PCNA) expression, indicative of hepatocyte regeneration, was apparent at 24 h and 48 h. Elevations of palmitoyl, oleoyl and myristoyl carnitine were apparent by 2–4 h, concurrent with the onset of Oil Red O staining in liver sections. By 8 h, acylcarnitine levels were below baseline levels and remained low at 24 and 48 h. A partial least squares (PLS) model suggested a direct association of acylcarnitine accumulation in serum to APAP protein adduct and hepatic glutathione levels in mice. Overall, the kinetics of serum acylcarnitines in APAP toxicity in mice followed a biphasic pattern involving early elevation after the metabolism phases of toxicity and later depletion of acylcarnitines. PMID:24958141

  7. Arylamine N-acetyltransferase 2 genotype-dependent N-acetylation of isoniazid in cryopreserved human hepatocytes.

    PubMed

    Doll, Mark A; Salazar-González, Raúl A; Bodduluri, Srineil; Hein, David W

    2017-07-01

    Cryopreserved human hepatocytes were used to investigate the role of arylamine N -acetyltransferase 2 (NAT2; EC 2.3.1.5) polymorphism on the N -acetylation of isoniazid (INH). NAT2 genotype was determined by Taqman allelic discrimination assay and INH N -acetylation was measured by high performance liquid chromatography. INH N -acetylation rates in vitro exhibited a robust and highly significant ( P <0.005) NAT2 phenotype-dependent metabolism. N -acetylation rates in situ were INH concentration- and time-dependent. Following incubation for 24 h with 12.5 or 100 µmol/L INH, acetyl-INH concentrations varied significantly ( P = 0.0023 and P = 0.0002) across cryopreserved human hepatocytes samples from rapid, intermediate, and slow acetylators, respectively. The clear association between NAT2 genotype and phenotype supports use of NAT2 genotype to guide INH dosing strategies in the treatment and prevention of tuberculosis.

  8. Diastereoselective addition of anisoles to N-tert-butanesulfinyl imines via four-membered lithium cycles.

    PubMed

    Reddy, Leleti Rajender; Kotturi, Sharadsrikar; Waman, Yogesh; Patel, Chirag; Patwa, Aditya; Shenoy, Rajesh

    2018-06-06

    A highly regio- and diastereo-selective ortho-lithiation/addition of anisoles to N-tert-butanesulfinyl imines resulting in the selective formation of chiral α-branched amines is described. This method is also efficient for highly regioselective benzylic lithiation of o-methylanisoles, followed by diastereoselective addition to N-tert-butanesulfinyl imines.

  9. [EFFECT OF ACETYLCYSTEINE, CORVITIN AND THEIR COMBINATION ON THE FUNCTIONAL STATE OF LIVER IN RATS WITH PARACETAMOL INDUCED TOXIC HEPATITIS].

    PubMed

    Ghonghadze, M; Antelava, N; Liluashvili, K; Okujava, M; Pachkoria, K

    2017-02-01

    Nowadays drug-induced hepatotoxicity is urgent problem worldwide. Currently more than 1000 drugs are hepatotoxic and most often are the reason of acute fulminant hepatitis and hepatocellular failure, the states requiring liver transplantation. The paracetamol induced liver toxicity is related with accumulation of its toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI), which is the free radical and enhances peroxidation of lipids, disturbs the energy status and causes death of hepatocytes. During our research we investigated and assessed the efficacy of acetylcysteine, corvitin and their combination in rat model of paracetamol induced acute toxic hepatitis. The study was performed on mature white male Wistar rates with body mass 150-180 g. 50 rats were randomly divided into 5 groups (10 rats in each group). To get the model of acute toxic hepatitis single intraperitoneal injection of paracetamol solution was used (750 mg/kg). Toxic hepatitis was treated with intrapertoneal administration of 40mg/kg acetylcysteine or 100mg/kg corvitin, as well as with combination of these drugs. Monotherapy with acetylcysteine and corvitin of paracetamol induced toxic hepatitis improved the liver function, decreased relative mass of the liver and animal mortality. The treatment of toxic hepatitis was most effective in the case of simultaneous administration of acetylcysteine and corvitin. The normal value of laboratory tests (ALT, ACT, alkaline phosphatase, total and unconjugated bilirubin) was reached and mortality was not more observed. On the bases of obtained data was concluded that acetylcysteine and corvitin have almost equal hepatoprotective activity. The combination of two drugs actually improves the liver function. The most pronounced hepatoprotective effect may be due to synergic action of acetylcysteine and corvitin and such regime can be recommended for correction of liver function.

  10. N-terminal acetylation modulates Bax targeting to mitochondria.

    PubMed

    Alves, Sara; Neiri, Leire; Chaves, Susana Rodrigues; Vieira, Selma; Trindade, Dário; Manon, Stephen; Dominguez, Veronica; Pintado, Belen; Jonckheere, Veronique; Van Damme, Petra; Silva, Rui Duarte; Aldabe, Rafael; Côrte-Real, Manuela

    2018-02-01

    The pro-apoptotic Bax protein is the main effector of mitochondrial permeabilization during apoptosis. Bax is controlled at several levels, including post-translational modifications such as phosphorylation and S-palmitoylation. However, little is known about the contribution of other protein modifications to Bax activity. Here, we used heterologous expression of human Bax in yeast to study the involvement of N-terminal acetylation by yNaa20p (yNatB) on Bax function. We found that human Bax is N-terminal (Nt-)acetylated by yNaa20p and that Nt-acetylation of Bax is essential to maintain Bax in an inactive conformation in the cytosol of yeast and Mouse Embryonic Fibroblast (MEF) cells. Bax accumulates in the mitochondria of yeast naa20Δ and Naa25 -/- MEF cells, but does not promote cytochrome c release, suggesting that an additional step is required for full activation of Bax. Altogether, our results show that Bax N-terminal acetylation by NatB is involved in its mitochondrial targeting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Persubstituted p-benzoquinone monoxime alkyl ethers and their molecular structure

    NASA Astrophysics Data System (ADS)

    Slaschinin, D. G.; Alemasov, Y. A.; Ilushkin, D. I.; Sokolenko, W. A.; Tovbis, M. S.; Kirik, S. D.

    2012-05-01

    Theoretical and experimental approaches were applied for the investigation of the reactivity of persubstituted 4-nitrosophenols in the reaction with alkyl iodides, in particular the potassium salt of 2,6-di(alkoxycarbonyl)-3,5-dimethyl-4-nitrosophenol. Hartre-Fock calculations showed that the anion negative charge was located mostly on the oxygen of hydroxyl group, while estimation of the total energy of the alkylated products pointed out the benefit of alkylation on the oxygen atom of the nitroso group yielding p-benzoquinone monoxime alkyl ethers. Methylation and ethylation of persubstituted nitrosophenols were carried out. The products obtained were investigated using X-ray diffraction, 1Н NMR spectroscopy and mass spectrometry. The crystal structure of the methyl ether of 2,6-di(alkoxycarbonyl)-3,5-dimethyl-1,4-benzoquinone-1-oxime (С15H19NO6) (I) was determined by the X-ray powder diffraction technique. The unit cell parameters were: a = 7.3322(6) Å, b = 10.5039(12) Å, c = 21.1520(20) Å, β = 93.742(6)°, V = 1625.58(2) Å3Z = 4, Sp.Gr. P21/c. The structure modeling was made in direct space by the Monte-Carlo approach using rigid and soft restrictions. The structure refinement was completed by the Rietveld method. It was established that the alkylation occurred on the oxygen atom of the nitroso group. The molecules (I) in the crystal structure were packed in columns along the axis a with pairwise convergence in a column up to the distance of 3.63 Å due to a 180° turn of every second molecule around the column axis. In the molecular structure the methyloxime group was oriented in the benzene plane and had π-conjugation with the ring. The ethoxycarbonyl groups were turned nearly perpendicular to the ring. Other compounds obtained had the structure of the alkyl ethers of 1.4-benzoquinone-1-oxime, which was proved by 1Н NMR spectroscopy and mass-spectrometry.

  12. Azeotropic Preparation of a "C"-Phenyl "N"-Aryl Imine: An Introductory Undergraduate Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Silverberg, Lee J.; Coyle, David J.; Cannon, Kevin C.; Mathers, Robert T.; Richards, Jeffrey A.; Tierney, John

    2016-01-01

    Imines are important in biological chemistry and as intermediates in organic synthesis. An experiment for introductory undergraduate organic chemistry is presented in which benzaldehyde was condensed with "p"-methoxyaniline in toluene to give 4-methoxy-"N"-(phenylmethylene)benzenamine. Water was removed by azeotropic…

  13. Mechanism of the lysosomal membrane enzyme acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bame, K.J.

    1986-01-01

    Acetyl-CoA:..cap alpha..-glucosaminide N-acetyltransferase is a lysosomal membrane enzyme, deficient in the genetic disease Sanfilippo C syndrome. The enzyme catalyzes the transfer of an acetyl group from cytoplasmic acetyl-CoA to terminal ..cap alpha..-glucosamine residues of heparan sulfate within the organelle. The reaction mechanism was examined using high purified lysosomal membranes from rat liver and human fibroblasts. The N-acetyltransferase reaction is optimal above pH 5.5 and a 2-3 fold stimulation of activity is observed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicate that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. The bindingmore » of acetyl-CoA to the enzyme is measured by exchange label from (/sup 3/H)CoA to acetyl-CoA, and is optimal at pH's above 7.0. The acetyl-enzyme intermediate is formed by incubating membranes with (/sup 3/H)acetyl-CoA. The acetyl group can be transferred to glucosamine, forming (/sup 3/H)N-acetylglucosamine; the transfer is optimal between pH 4 and 5. Lysosomal membranes from Sanfilippo C fibroblasts confirm that these half reactions carried out by the N-acetyltransferase. The enzyme is inactivated by N-bromosuccinimide and diethylpyrocarbonate, indicating that a histidine is involved in the reaction. These results suggest that the histidine residue is at the active site of the enzyme. The properties of the N-acetyltransferase in the membrane, the characterization of the enzyme kinetics, the chemistry of a histidine mediated acetylation and the pH difference across the lysosomal membrane all support a transmembrane acetylation mechanism.« less

  14. Hemizygosity of transsulfuration genes confers increased vulnerability against acetaminophen-induced hepatotoxicity in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagiya, Yoshifumi; Kamata, Shotaro; Mitsuoka, Saya

    2015-01-15

    The key mechanism for acetaminophen hepatotoxicity is cytochrome P450 (CYP)-dependent formation of N-acetyl-p-benzoquinone imine, a potent electrophile that forms protein adducts. Previous studies revealed the fundamental role of glutathione, which binds to and detoxifies N-acetyl-p-benzoquinone imine. Glutathione is synthesized from cysteine in the liver, and N-acetylcysteine is used as a sole antidote for acetaminophen poisoning. Here, we evaluated the potential roles of transsulfuration enzymes essential for cysteine biosynthesis, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH), in acetaminophen hepatotoxicity using hemizygous (Cbs{sup +/−} or Cth{sup +/−}) and homozygous (Cth{sup −/−}) knockout mice. At 4 h after intraperitoneal acetaminophen injection, serum alaninemore » aminotransferase levels were highly elevated in Cth{sup −/−} mice at 150 mg/kg dose, and also in Cbs{sup +/−} or Cth{sup +/−} mice at 250 mg/kg dose, which was associated with characteristic centrilobular hepatocyte oncosis. Hepatic glutathione was depleted while serum malondialdehyde accumulated in acetaminophen-injected Cth{sup −/−} mice but not wild-type mice, although glutamate–cysteine ligase (composed of catalytic [GCLC] and modifier [GCLM] subunits) became more activated in the livers of Cth{sup −/−} mice with lower K{sub m} values for Cys and Glu. Proteome analysis using fluorescent two-dimensional difference gel electrophoresis revealed 47 differentially expressed proteins after injection of 150 mg acetaminophen/kg into Cth{sup −/−} mice; the profiles were similar to 1000 mg acetaminophen/kg-treated wild-type mice. The prevalence of Cbs or Cth hemizygosity is estimated to be 1:200–300 population; therefore, the deletion or polymorphism of either transsulfuration gene may underlie idiosyncratic acetaminophen vulnerability along with the differences in Cyp, Gclc, and Gclm gene activities. - Highlights: • Cbs{sup +/−}, Cth{sup +/

  15. Copper(II)-catalyzed trifluoromethylation of N-aryl imines.

    PubMed

    Zhang, Yong-Qiang; Liu, Ji-Dan; Xu, Hao

    2013-10-07

    Methods for imine trifluoromethylation are of great importance because amines with trifluoromethylated stereogenic centers are useful building blocks for synthetic chemistry and drug discovery. Herein, we describe a new copper(II)-catalyzed imine trifluoromethylation method without the use of Lewis base activators, presumably through cooperative activation.

  16. Reduction of substituted p-Benzoquinones by Fe II near neutral pH

    USDA-ARS?s Scientific Manuscript database

    The oxidation of dihydroxyaromatics to benzoquinones by FeIII (hydr)oxides is important in respiratory electron shuttling by microorganisms and has been extensively studied. Prior publications have noted that the Gibbs Free Energy (DG) for the forward reaction is sensitive to dihydroxyaromatic struc...

  17. Genetic heterogeneity among slow acetylator N-acetyltransferase 2 phenotypes in cryopreserved human hepatocytes.

    PubMed

    Doll, Mark A; Hein, David W

    2017-07-01

    Genetic polymorphisms in human N-acetyltransferase 2 (NAT2) modify the metabolism of numerous drugs and carcinogens. These genetic polymorphisms modify both drug efficacy and toxicity and cancer risk associated with carcinogen exposure. Previous studies have suggested phenotypic heterogeneity among different NAT2 slow acetylator genotypes. NAT2 phenotype was investigated in vitro and in situ in samples of human hepatocytes obtained from various NAT2 slow and intermediate NAT2 acetylator genotypes. NAT2 gene dose response (NAT2*5B/*5B > NAT2*5B/*6A > NAT2*6A/*6A) was observed towards the N-acetylation of the NAT2-specific drug sulfamethazine by human hepatocytes both in vitro and in situ. N-acetylation of 4-aminobiphenyl, an arylamine carcinogen substrate for both N-acetyltransferase 1 and NAT2, showed the same trend both in vitro and in situ although the differences were not significant (p > 0.05). The N-acetylation of the N-acetyltransferase 1-specific substrate p-aminobenzoic acid did not follow this trend. In comparisons of NAT2 intermediate acetylator genotypes, differences in N-acetylation between NAT2*4/*5B and NAT2*4/*6B hepatocytes were not observed in vitro or in situ towards any of these substrates. These results further support phenotypic heterogeneity among NAT2 slow acetylator genotypes, consistent with differential risks of drug failure or toxicity and cancer associated with carcinogen exposure.

  18. N-acetyl Aspartate Levels in Adolescents With Bipolar and/or Cannabis Use Disorders

    PubMed Central

    Bitter, Samantha M.; Weber, Wade A.; Chu, Wen-Jang; Adler, Caleb M.; Eliassen, James C.; Strakowski, Stephen M.; DelBello, Melissa P.

    2014-01-01

    Objective Bipolar and cannabis use disorders commonly co-occur during adolescence, and neurochemical studies may help clarify the pathophysiology underlying this co-occurrence. This study compared metabolite concentrations in the left ventral lateral prefrontal cortex among: adolescents with bipolar disorder (bipolar group; n=14), adolescents with a cannabis use disorder (cannabis use group, n=13), adolescents with cannabis use and bipolar disorders (bipolar and cannabis group, n=25), and healthy adolescents (healthy controls, n=15). We hypothesized that adolescents with bipolar disorder (with or without cannabis use disorder) would have decreased N-acetyl aspartate levels in the ventral lateral prefrontal cortex compared to the other groups, and that the bipolar and cannabis group would have the lowest N-acetyl aspartate levels of all groups. Methods N-acetyl aspartate concentrations in the left ventral lateral prefrontal cortex were obtained using Proton Magnetic Resonance Spectroscopy. Results Adolescents with bipolar disorder showed significantly lower left ventral lateral prefrontal cortex N-acetyl aspartate levels, but post-hoc analyses indicated that this was primarily due to increased N-acetyl aspartate levels in the cannabis group. The cannabis use disorder group had significantly higher N-acetyl aspartate levels compared to the bipolar disorder and the bipolar and cannabis groups (p=0.0002 and p=0.0002, respectively). Pearson correlations revealed a significant positive correlation between amount of cannabis used and N-acetyl aspartate concentrations. Conclusions Adolescents with cannabis use disorder showed higher levels of N-acetyl aspartate concentrations that were significantly positively associated with the amount of cannabis used; however, this finding was not present in adolescents with comorbid bipolar disorder. PMID:24729763

  19. Comparative analysis of pharmacological treatments with N-acetyl-DL-leucine (Tanganil) and its two isomers (N-acetyl-L-leucine and N-acetyl-D-leucine) on vestibular compensation: Behavioral investigation in the cat.

    PubMed

    Tighilet, Brahim; Leonard, Jacques; Bernard-Demanze, Laurence; Lacour, Michel

    2015-12-15

    Head roll tilt, postural imbalance and spontaneous nystagmus are the main static vestibular deficits observed after an acute unilateral vestibular loss (UVL). In the UVL cat model, these deficits are fully compensated over 6 weeks as the result of central vestibular compensation. N-Acetyl-dl-leucine is a drug prescribed in clinical practice for the symptomatic treatment of acute UVL patients. The present study investigated the effects of N-acetyl-dl-leucine on the behavioral recovery after unilateral vestibular neurectomy (UVN) in the cat, and compared the effects of each of its two isomers N-acetyl-L-leucine and N-acetyl-D-leucine. Efficacy of these three drug treatments has been evaluated with respect to a placebo group (UVN+saline water) on the global sensorimotor activity (observation grids), the posture control (support surface measurement), the locomotor balance (maximum performance at the rotating beam test), and the spontaneous vestibular nystagmus (recorded in the light). Whatever the parameters tested, the behavioral recovery was strongly and significantly accelerated under pharmacological treatments with N-acetyl-dl-leucine and N-acetyl-L-leucine. In contrast, the N-acetyl-D-leucine isomer had no effect at all on the behavioral recovery, and animals of this group showed the same recovery profile as those receiving a placebo. It is concluded that the N-acetyl-L-leucine isomer is the active part of the racemate component since it induces a significant acceleration of the vestibular compensation process similar (and even better) to that observed under treatment with the racemate component only. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. One-pot non-enzymatic formation of firefly luciferin in a neutral buffer from p-benzoquinone and cysteine

    PubMed Central

    Kanie, Shusei; Nishikawa, Toshio; Ojika, Makoto; Oba, Yuichi

    2016-01-01

    Firefly luciferin, the substrate for the bioluminescence reaction of luminous beetles, possesses a benzothiazole ring, which is rare in nature. Here, we demonstrate a novel one-pot reaction to give firefly luciferin in a neutral buffer from p-benzoquinone and cysteine without any synthetic reagents or enzymes. The formation of firefly luciferin was low in yield in various neutral buffers, whereas it was inhibited or completely prevented in acidic or basic buffers, in organic solvents, or under a nitrogen atmosphere. Labelling analysis of the firefly luciferin using stable isotopic cysteines showed that the benzothiazole ring was formed via the decarboxylation and carbon-sulfur bond rearrangement of cysteine. These findings imply that the biosynthesis of firefly luciferin can be developed/evolved from the non-enzymatic production of firefly luciferin using common primary biosynthetic units, p-benzoquinone and cysteine. PMID:27098929

  1. One-pot non-enzymatic formation of firefly luciferin in a neutral buffer from p-benzoquinone and cysteine.

    PubMed

    Kanie, Shusei; Nishikawa, Toshio; Ojika, Makoto; Oba, Yuichi

    2016-04-21

    Firefly luciferin, the substrate for the bioluminescence reaction of luminous beetles, possesses a benzothiazole ring, which is rare in nature. Here, we demonstrate a novel one-pot reaction to give firefly luciferin in a neutral buffer from p-benzoquinone and cysteine without any synthetic reagents or enzymes. The formation of firefly luciferin was low in yield in various neutral buffers, whereas it was inhibited or completely prevented in acidic or basic buffers, in organic solvents, or under a nitrogen atmosphere. Labelling analysis of the firefly luciferin using stable isotopic cysteines showed that the benzothiazole ring was formed via the decarboxylation and carbon-sulfur bond rearrangement of cysteine. These findings imply that the biosynthesis of firefly luciferin can be developed/evolved from the non-enzymatic production of firefly luciferin using common primary biosynthetic units, p-benzoquinone and cysteine.

  2. Hydride, hydrogen, proton, and electron affinities of imines and their reaction intermediates in acetonitrile and construction of thermodynamic characteristic graphs (TCGs) of imines as a "molecule ID card".

    PubMed

    Zhu, Xiao-Qing; Liu, Qiao-Yun; Chen, Qiang; Mei, Lian-Rui

    2010-02-05

    A series of 61 imines with various typical structures were synthesized, and the thermodynamic affinities (defined as enthalpy changes or redox potentials in this work) of the imines to abstract hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the imines to abstract hydrogen atoms and protons, and the thermodynamic affinities of the hydrogen adducts of the imines to abstract electrons in acetonitrile were determined by using titration calorimetry and electrochemical methods. The pure heterolytic and homolytic dissociation energies of the C=N pi-bond in the imines were estimated. The polarity of the C=N double bond in the imines was examined using a linear free-energy relationship. The idea of a thermodynamic characteristic graph (TCG) of imines as an efficient "Molecule ID Card" was introduced. The TCG can be used to quantitatively diagnose and predict the characteristic chemical properties of imines and their various reaction intermediates as well as the reduction mechanism of the imines. The information disclosed in this work could not only supply a gap of thermodynamics for the chemistry of imines but also strongly promote the fast development of the applications of imines.

  3. Even-electron [M-H](+) ions generated by loss of AgH from argentinated peptides with N-terminal imine groups.

    PubMed

    Plaviak, Alexandra; Osburn, Sandra; Patterson, Khiry; van Stipdonk, Michael J

    2016-01-15

    Experiments were performed to probe the creation of apparent even-electron, [M-H](+) ions by CID of Ag-cationized peptides with N-terminal imine groups (Schiff bases). Imine-modified peptides were prepared using condensation reactions with aldehydes. Ag(+) -cationized precursors were generated by electrospray ionization (ESI). Tandem mass spectrometry (MS(n) ) and collision-induced dissociation (CID) were performed using a linear ion trap mass spectrometer. Loss of AgH from peptide [M + Ag](+) ions, at the MS/MS stage, creates closed-shell [M-H](+) ions from imine-modified peptides. Isotope labeling unambiguously identifies the imine C-H group as the source of H eliminated in AgH. Subsequent CID of the [M-H](+) ions generated sequence ions that are analogous to those produced from [M + H](+) ions of the imine-modified peptides. Experiments show (a) formation of novel even-electron peptide cations by CID and (b) the extent to which sequence ions (conventional b, a and y ions) are generated from peptides with fixed charge site and thus lacking a conventional mobile proton. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Water-soluble pH-responsive dendritic core-shell nanocarriers for polar dyes based on poly(ethylene imine).

    PubMed

    Xu, Shangjie; Luo, Ying; Haag, Rainer

    2007-08-07

    A simple general synthetic concept to build dendritic core-shell architectures with pH-labile linkers based on hyperbranched PEI cores and biocompatible PEG shells is presented. Using these dendritic core-shell architectures as nanocarriers, the encapsulation and transport of polar dyes of different sizes is studied. The results show that the acid-labile nanocarriers exhibit much higher transport capacities for dyes than unfunctionalized hyperbranched PEI. The cleavage of imine bonds and controlled release of the polar dyes revealed that weak acidic condition (pH approximately 5.0) could cleave the imine bonds linker and release the dyes up to five times faster than neutral conditions (pH = 7.4).

  5. First observation of N-acetyl leucine and N-acetyl isoleucine in diabetic patient hair and quantitative analysis by UPLC-ESI-MS/MS.

    PubMed

    Min, Jun Zhe; Tomiyasu, Yuki; Morotomi, Takashi; Jiang, Ying-Zi; Li, Gao; Shi, Qing; Yu, Hai-Fu; Inoue, Koichi; Todoroki, Kenichiro; Toyo'oka, Toshimasa

    2015-04-15

    Type 2 diabetes patients (DP) have significantly higher plasma levels of valine, leucine, isoleucine and alanine than the controls. Specific amino acids may acutely and chronically regulate insulin secretion from the pancreatic β-cells. We recently identified a metabolic signature of N-acetyl leucine (Ac-Leu) that strongly predicts diabetes development in mice hair. The Ac-Leu appears to be a potential biomarker candidate related to diabetes. However, the determination of Ac-Leu in human hair has not been reported. We measured the Ac-Leu, and its structure is similar to N-acetyl isoleucine (Ac-Ile) in human hair by ultra-performance liquid chromatography (UPLC) with electrospray ionization tandem mass spectrometry (ESI-MS/MS). The developed method was applied to the determination of Ac-Leu and Ac-Ile in the hair of healthy volunteers (HV) and DP. Ac-Leu, Ac-Ile and N-acetyl norleucine (Ac-Nle, IS) were extracted from human hair samples by a micropulverized extraction procedure, then separated on a C18 column by isocratic elution of acetonitrile-0.1% formic acid in water:0.1% formic acid (14:86, vol./vol.). MRM using the fragmentation transitions of m/z 174.1→86.1 in the positive ESI mode was performed to quantify the N-acetyl leucine, N-acetyl isoleucine and IS. Ac-Leu, Ac-Ile and Ac-Nle in the human hair samples were completely separated by isocratic elution of a 5.0 min duration wash program using a reversed-phase column, and sensitively detected by LC-MS/MS in the ESI(+) MRM mode. The amounts of Ac-Leu and Ac-Ile in the hairs of HV and DP were determined. When comparing the concentrations between DP and those from HV, a statistically significant correlation was observed for the Ac-Leu (p<0.001) and Ac-Ile (p<0.01). The proposed method is useful for the determination of Ac-Leu and Ac-Ile in the hairs of DP and HV. Human hair may serve as a noninvasive biosample for the diagnosis of diabetes. Crown Copyright © 2015. Published by Elsevier B.V. All rights

  6. Autoimmune regulator is acetylated by transcription coactivator CBP/p300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saare, Mario, E-mail: mario.saare@ut.ee; Rebane, Ana; SIAF, Swiss Institute of Allergy and Asthma Research, University of Zuerich, Davos

    2012-08-15

    The Autoimmune Regulator (AIRE) is a regulator of transcription in the thymic medulla, where it controls the expression of a large set of peripheral-tissue specific genes. AIRE interacts with the transcriptional coactivator and acetyltransferase CBP and synergistically cooperates with it in transcriptional activation. Here, we aimed to study a possible role of AIRE acetylation in the modulation of its activity. We found that AIRE is acetylated in tissue culture cells and this acetylation is enhanced by overexpression of CBP and the CBP paralog p300. The acetylated lysines were located within nuclear localization signal and SAND domain. AIRE with mutations thatmore » mimicked acetylated K243 and K253 in the SAND domain had reduced transactivation activity and accumulated into fewer and larger nuclear bodies, whereas mutations that mimicked the unacetylated lysines were functionally similar to wild-type AIRE. Analogously to CBP, p300 localized to AIRE-containing nuclear bodies, however, the overexpression of p300 did not enhance the transcriptional activation of AIRE-regulated genes. Further studies showed that overexpression of p300 stabilized the AIRE protein. Interestingly, gene expression profiling revealed that AIRE, with mutations mimicking K243/K253 acetylation in SAND, was able to activate gene expression, although the affected genes were different and the activation level was lower from those regulated by wild-type AIRE. Our results suggest that the AIRE acetylation can influence the selection of AIRE activated genes. -- Highlights: Black-Right-Pointing-Pointer AIRE is acetylated by the acetyltransferases p300 and CBP. Black-Right-Pointing-Pointer Acetylation occurs between CARD and SAND domains and within the SAND domain. Black-Right-Pointing-Pointer Acetylation increases the size of AIRE nuclear dots. Black-Right-Pointing-Pointer Acetylation increases AIRE protein stability. Black-Right-Pointing-Pointer AIRE acetylation mimic regulates a different set of

  7. Acetyl group coordinated progression through the catalytic cycle of an arylalkylamine N-acetyltransferase.

    PubMed

    Aboalroub, Adam A; Bachman, Ashleigh B; Zhang, Ziming; Keramisanou, Dimitra; Merkler, David J; Gelis, Ioannis

    2017-01-01

    The transfer of an acetyl group from acetyl-CoA to an acceptor amine is a ubiquitous biochemical transformation catalyzed by Gcn5-related N-acetyltransferases (GNATs). Although it is established that the reaction proceeds through a sequential ordered mechanism, the role of the acetyl group in driving the ordered formation of binary and ternary complexes remains elusive. Herein, we show that CoA and acetyl-CoA alter the conformation of the substrate binding site of an arylalkylamine N-acetyltransferase (AANAT) to facilitate interaction with acceptor substrates. However, it is the presence of the acetyl group within the catalytic funnel that triggers high affinity binding. Acetyl group occupancy is relayed through a conserved salt bridge between the P-loop and the acceptor binding site, and is manifested as differential dynamics in the CoA and acetyl-CoA-bound states. The capacity of the acetyl group carried by an acceptor to promote its tight binding even in the absence of CoA, but also its mutually exclusive position to the acetyl group of acetyl-CoA underscore its importance in coordinating the progression of the catalytic cycle.

  8. Acetyl group coordinated progression through the catalytic cycle of an arylalkylamine N-acetyltransferase

    PubMed Central

    Aboalroub, Adam A.; Bachman, Ashleigh B.; Zhang, Ziming; Keramisanou, Dimitra; Merkler, David J.

    2017-01-01

    The transfer of an acetyl group from acetyl-CoA to an acceptor amine is a ubiquitous biochemical transformation catalyzed by Gcn5-related N-acetyltransferases (GNATs). Although it is established that the reaction proceeds through a sequential ordered mechanism, the role of the acetyl group in driving the ordered formation of binary and ternary complexes remains elusive. Herein, we show that CoA and acetyl-CoA alter the conformation of the substrate binding site of an arylalkylamine N-acetyltransferase (AANAT) to facilitate interaction with acceptor substrates. However, it is the presence of the acetyl group within the catalytic funnel that triggers high affinity binding. Acetyl group occupancy is relayed through a conserved salt bridge between the P-loop and the acceptor binding site, and is manifested as differential dynamics in the CoA and acetyl-CoA-bound states. The capacity of the acetyl group carried by an acceptor to promote its tight binding even in the absence of CoA, but also its mutually exclusive position to the acetyl group of acetyl-CoA underscore its importance in coordinating the progression of the catalytic cycle. PMID:28486510

  9. 4-Aminobiphenyl Downregulation of NAT2 Acetylator Genotype–Dependent N- and O-acetylation of Aromatic and Heterocyclic Amine Carcinogens in Primary Mammary Epithelial Cell Cultures from Rapid and Slow Acetylator Rats

    PubMed Central

    Jefferson, Felicia A.; Xiao, Gong H.; Hein, David W.

    2009-01-01

    Aromatic and heterocyclic amine carcinogens present in the diet and in cigarette smoke induce breast tumors in rats. N-acetyltransferase 1 (NAT1) and N-acetyltransferase 2 (NAT2) enzymes have important roles in their metabolic activation and deactivation. Human epidemiological studies suggest that genetic polymorphisms in NAT1 and/or NAT2 modify breast cancer risk in women exposed to these carcinogens. p-Aminobenzoic acid (selective for rat NAT2) and sulfamethazine (SMZ; selective for rat NAT1) N-acetyltransferase catalytic activities were both expressed in primary cultures of rat mammary epithelial cells. PABA, 2-aminofluorene, and 4-aminobiphenyl N-acetyltransferase and N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine and N-hydroxy-2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline O-acetyltransferase activities were two- to threefold higher in mammary epithelial cell cultures from rapid than slow acetylator rats. In contrast, SMZ (a rat NAT1-selective substrate) N-acetyltransferase activity did not differ between rapid and slow acetylators. Rat mammary cells cultured in the medium supplemented 24 h with 10μM ABP showed downregulation in the N-and O-acetylation of all substrates tested except for the NAT1-selective substrate SMZ. This downregulation was comparable in rapid and slow NAT2 acetylators. These studies clearly show NAT2 acetylator genotype–dependent N- and O-acetylation of aromatic and heterocyclic amine carcinogens in rat mammary epithelial cell cultures to be subject to downregulation by the arylamine carcinogen ABP. PMID:18842621

  10. Light-Activated Reversible Imine Isomerization: Towards a Photochromic Protein Switch.

    PubMed

    Berbasova, Tetyana; Santos, Elizabeth M; Nosrati, Meisam; Vasileiou, Chrysoula; Geiger, James H; Borhan, Babak

    2016-03-02

    Mutants of cellular retinoic acid-binding protein II (CRABPII), engineered to bind all-trans-retinal as an iminium species, demonstrate photochromism upon irradiation with light at different wavelengths. UV light irradiation populates the cis-imine geometry, which has a high pKa , leading to protonation of the imine and subsequent "turn-on" of color. Yellow light irradiation yields the trans-imine isomer, which has a depressed pKa , leading to loss of color because the imine is not protonated. The protein-bound retinylidene chromophore undergoes photoinduced reversible interconversion between the colored and uncolored species, with excellent fatigue resistance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nitroreductase-dependent mutagenicity of p-nitrophenylhydroxylamine and its N-acetyl and N-formyl hydroxamic acids.

    PubMed

    Corbett, M D; Wei, C; Corbett, B R

    1985-05-01

    p-Nitrophenylhydroxylamine (NPH) and two hydroxamic acids derived from it were synthesized and subjected to mutagenicity testing in Salmonella typhimurium strains TA98, TA98NR, TA1538 and TA1538NR. In addition, p-dinitrobenzene (DNB), p-nitroaniline (NA) and p-nitroacetanilide (AcNA) were simultaneously examined for mutagenic action against these four tester strains. NPH, its N-acetyl (AcNPH) and N-formyl (FoNPH) derivatives, and also DNB displayed strong mutagenic action to the nitroreductase-containing strains, TA98 and TA1538. NPH was the most potent chemical in this series against both of these strains, while the two hydroxamic acids AcNPH and FoNPH, and also DNB displayed approximately the same degree of mutagenicity. In the nitroreductase-deficient strains, TA98NR and TA1538NR, the mutagenicity of these four compounds was markedly reduced. The necessity for nitroreduction in order to activate these promutagens is fairly certain; however, the lack of mutagenicity of NA and AcNA towards all four tester strains made the interpretation of these data somewhat more complicated. Several possible bioactivation pathways were presented, with one mechanism in particular being proposed. This mechanism requires only that the strong electron-withdrawing nitro group be converted to an electron-donating group by bacterial nitroreductase. Such a mechanism is unique for the bioactivation of nitro aromatics by nitroreductase, since the enzymatic reduction need not produce the intermediary hydroxylamine metabolite.

  12. N-Acetyl-4-aminophenol (paracetamol), N-acetyl-2-aminophenol and acetanilide in urine samples from the general population, individuals exposed to aniline and paracetamol users.

    PubMed

    Dierkes, Georg; Weiss, Tobias; Modick, Hendrik; Käfferlein, Heiko Udo; Brüning, Thomas; Koch, Holger M

    2014-01-01

    Epidemiological studies suggest associations between the use of N-acetyl-4-aminophenol (paracetamol) during pregnancy and increased risks of reproductive disorders in the male offspring. Previously we have reported a ubiquitous urinary excretion of N-acetyl-4-aminophenol in the general population. Possible sources are (1) direct intake of paracetamol through medication, (2) paracetamol residues in the food chain and (3) environmental exposure to aniline or related substances that are metabolized into N-acetyl-4-aminophenol. In order to elucidate the origins of the excretion of N-acetyl-4-aminophenol in urine and to contribute to the understanding of paracetamol and aniline metabolism in humans we developed a rapid, turbulent-flow HPLC-MS/MS method with isotope dilution for the simultaneous quantification of N-acetyl-4-aminophenol and two other aniline related metabolites, N-acetyl-2-aminophenol and acetanilide. We applied this method to three sets of urine samples: (1) individuals with no known exposure to aniline and also no recent paracetamol medication; (2) individuals after occupational exposure to aniline but no paracetamol medication and (3) paracetamol users. We confirmed the omnipresent excretion of N-acetyl-4-aminophenol. Additionally we revealed an omnipresent excretion of N-acetyl-2-aminophenol. In contrast, acetanilide was only found after occupational exposure to aniline, not in the general population or after paracetamol use. The results lead to four preliminary conclusions: (1) other sources than aniline seem to be responsible for the major part of urinary N-acetyl-4-aminophenol in the general population; (2) acetanilide is a metabolite of aniline in man and a valuable biomarker for aniline in occupational settings; (3) aniline baseline levels in the general population measured after chemical hydrolysis do not seem to originate from acetanilide and hence not from a direct exposure to aniline itself and (4) N-acetyl-2-aminophenol does not seem to be

  13. N-Acetyl-L-Leucine Accelerates Vestibular Compensation after Unilateral Labyrinthectomy by Action in the Cerebellum and Thalamus

    PubMed Central

    Xiong, Guoming; Potschka, Heidrun; Jahn, Klaus; Bartenstein, Peter; Brandt, Thomas; Dutia, Mayank; Dieterich, Marianne; Strupp, Michael; la Fougère, Christian; Zwergal, Andreas

    2015-01-01

    An acute unilateral vestibular lesion leads to a vestibular tone imbalance with nystagmus, head roll tilt and postural imbalance. These deficits gradually decrease over days to weeks due to central vestibular compensation (VC). This study investigated the effects of i.v. N-acetyl-DL-leucine, N-acetyl-L-leucine and N-acetyl-D-leucine on VC using behavioural testing and serial [18F]-Fluoro-desoxyglucose ([18F]-FDG)-μPET in a rat model of unilateral chemical labyrinthectomy (UL). Vestibular behavioural testing included measurements of nystagmus, head roll tilt and postural imbalance as well as sequential whole-brain [18F]-FDG-μPET was done before and on days 1,3,7 and 15 after UL. A significant reduction of postural imbalance scores was identified on day 7 in the N-acetyl-DL-leucine (p < 0.03) and the N-acetyl-L-leucine groups (p < 0.01), compared to the sham treatment group, but not in the N-acetyl-D-leucine group (comparison for applied dose of 24 mg i.v. per rat, equivalent to 60 mg/kg body weight, in each group). The course of postural compensation in the DL- and L-group was accelerated by about 6 days relative to controls. The effect of N-acetyl-L-leucine on postural compensation depended on the dose: in contrast to 60 mg/kg, doses of 15 mg/kg and 3.75 mg/kg had no significant effect. N-acetyl-L-leucine did not change the compensation of nystagmus or head roll tilt at any dose. Measurements of the regional cerebral glucose metabolism (rCGM) by means of μPET revealed that only N-acetyl-L-leucine but not N-acetyl-D-leucine caused a significant increase of rCGM in the vestibulocerebellum and a decrease in the posterolateral thalamus and subthalamic region on days 3 and 7. A similar pattern was found when comparing the effect of N-acetyl-L-leucine on rCGM in an UL-group and a sham UL-group without vestibular damage. In conclusion, N-acetyl-L-leucine improves compensation of postural symptoms after UL in a dose-dependent and specific manner, most likely by

  14. N-acetyl-L-leucine accelerates vestibular compensation after unilateral labyrinthectomy by action in the cerebellum and thalamus.

    PubMed

    Günther, Lisa; Beck, Roswitha; Xiong, Guoming; Potschka, Heidrun; Jahn, Klaus; Bartenstein, Peter; Brandt, Thomas; Dutia, Mayank; Dieterich, Marianne; Strupp, Michael; la Fougère, Christian; Zwergal, Andreas

    2015-01-01

    An acute unilateral vestibular lesion leads to a vestibular tone imbalance with nystagmus, head roll tilt and postural imbalance. These deficits gradually decrease over days to weeks due to central vestibular compensation (VC). This study investigated the effects of i.v. N-acetyl-DL-leucine, N-acetyl-L-leucine and N-acetyl-D-leucine on VC using behavioural testing and serial [18F]-Fluoro-desoxyglucose ([18F]-FDG)-μPET in a rat model of unilateral chemical labyrinthectomy (UL). Vestibular behavioural testing included measurements of nystagmus, head roll tilt and postural imbalance as well as sequential whole-brain [18F]-FDG-μPET was done before and on days 1,3,7 and 15 after UL. A significant reduction of postural imbalance scores was identified on day 7 in the N-acetyl-DL-leucine (p < 0.03) and the N-acetyl-L-leucine groups (p < 0.01), compared to the sham treatment group, but not in the N-acetyl-D-leucine group (comparison for applied dose of 24 mg i.v. per rat, equivalent to 60 mg/kg body weight, in each group). The course of postural compensation in the DL- and L-group was accelerated by about 6 days relative to controls. The effect of N-acetyl-L-leucine on postural compensation depended on the dose: in contrast to 60 mg/kg, doses of 15 mg/kg and 3.75 mg/kg had no significant effect. N-acetyl-L-leucine did not change the compensation of nystagmus or head roll tilt at any dose. Measurements of the regional cerebral glucose metabolism (rCGM) by means of μPET revealed that only N-acetyl-L-leucine but not N-acetyl-D-leucine caused a significant increase of rCGM in the vestibulocerebellum and a decrease in the posterolateral thalamus and subthalamic region on days 3 and 7. A similar pattern was found when comparing the effect of N-acetyl-L-leucine on rCGM in an UL-group and a sham UL-group without vestibular damage. In conclusion, N-acetyl-L-leucine improves compensation of postural symptoms after UL in a dose-dependent and specific manner, most likely by

  15. Arylamine N-acetyltransferase 1 in situ N-acetylation on CD3+ peripheral blood mononuclear cells correlate with NATb mRNA and NAT1 haplotype.

    PubMed

    Salazar-González, Raúl A; Turiján-Espinoza, Eneida; Hein, David W; Niño-Moreno, Perla C; Romano-Moreno, Silvia; Milán-Segovia, Rosa C; Portales-Pérez, Diana P

    2018-02-01

    Human arylamine N-acetyltransferase 1 (NAT1) is responsible for the activation and elimination of xenobiotic compounds and carcinogens. Genetic polymorphisms in NAT1 modify both drug efficacy and toxicity. Previous studies have suggested a role for NAT1 in the development of several diseases. The aim of the present study was to evaluate NAT1 protein expression and in situ N-acetylation capacity in peripheral blood mononuclear cells (PBMC), as well as their possible associations with the expression of NAT1 transcript and NAT1 genotype. We report NAT1 protein, mRNA levels, and N-acetylation in situ activity for PBMC obtained from healthy donors. NAT1-specific protein expression was higher in CD3+ cells than other major immune cell subtypes (CD19 or CD56 cells). N-acetylation of pABA varied markedly among the PBMC of participants, but correlated very significantly with levels of NAT1 transcripts. NAT1*4 subjects showed significantly (p = 0.017) higher apparent pABA V max of 71.3 ± 3.7 versus the NAT1*14B subjects apparent V max of 58.5 ± 2.5 nmoles Ac-pABA/24 h/million cells. Levels of pABA N-acetylation activity at each concentration of substrate evaluated also significantly correlated with NAT1 mRNA levels for all samples (p < 0.0001). This highly significant correlation was maintained for samples with the NAT1*4 (p = 0.002) and NAT1*14B haplotypes (p = 0.0106). These results provide the first documentation that NAT1-catalyzed N-acetylation in PBMC is higher in T cell than in other immune cell subtypes and that individual variation in N-acetylation capacity is dependent upon NAT1 mRNA and NAT1 haplotype.

  16. Inhibition of p53 acetylation by INHAT subunit SET/TAF-Iβ represses p53 activity

    PubMed Central

    Kim, Ji-Young; Lee, Kyu-Sun; Seol, Jin-Ee; Yu, Kweon; Chakravarti, Debabrata; Seo, Sang-Beom

    2012-01-01

    The tumor suppressor p53 responds to a wide variety of cellular stress signals. Among potential regulatory pathways, post-translational modifications such as acetylation by CBP/p300 and PCAF have been suggested for modulation of p53 activity. However, exactly how p53 acetylation is modulated remains poorly understood. Here, we found that SET/TAF-Iβ inhibited p300- and PCAF-mediated p53 acetylation in an INHAT (inhibitor of histone acetyltransferase) domain-dependent manner. SET/TAF-Iβ interacted with p53 and repressed transcription of p53 target genes. Consequently, SET/TAF-Iβ blocked both p53-mediated cell cycle arrest and apoptosis in response to cellular stress. Using different apoptosis analyses, including FACS, TUNEL and BrdU incorporation assays, we also found that SET/TAF-Iβ induced cellular proliferation via inhibition of p53 acetylation. Furthermore, we observed that apoptotic Drosophila eye phenotype induced by either dp53 overexpression or UV irradiation was rescued by expression of dSet. Inhibition of dp53 acetylation by dSet was observed in both cases. Our findings provide new insights into the regulation of stress-induced p53 activation by HAT-inhibiting histone chaperone SET/TAF-Iβ. PMID:21911363

  17. Inhibition of p53 acetylation by INHAT subunit SET/TAF-Iβ represses p53 activity.

    PubMed

    Kim, Ji-Young; Lee, Kyu-Sun; Seol, Jin-Ee; Yu, Kweon; Chakravarti, Debabrata; Seo, Sang-Beom

    2012-01-01

    The tumor suppressor p53 responds to a wide variety of cellular stress signals. Among potential regulatory pathways, post-translational modifications such as acetylation by CBP/p300 and PCAF have been suggested for modulation of p53 activity. However, exactly how p53 acetylation is modulated remains poorly understood. Here, we found that SET/TAF-Iβ inhibited p300- and PCAF-mediated p53 acetylation in an INHAT (inhibitor of histone acetyltransferase) domain-dependent manner. SET/TAF-Iβ interacted with p53 and repressed transcription of p53 target genes. Consequently, SET/TAF-Iβ blocked both p53-mediated cell cycle arrest and apoptosis in response to cellular stress. Using different apoptosis analyses, including FACS, TUNEL and BrdU incorporation assays, we also found that SET/TAF-Iβ induced cellular proliferation via inhibition of p53 acetylation. Furthermore, we observed that apoptotic Drosophila eye phenotype induced by either dp53 overexpression or UV irradiation was rescued by expression of dSet. Inhibition of dp53 acetylation by dSet was observed in both cases. Our findings provide new insights into the regulation of stress-induced p53 activation by HAT-inhibiting histone chaperone SET/TAF-Iβ.

  18. An unscaled quantum mechanical harmonic force field for p-benzoquinone

    NASA Astrophysics Data System (ADS)

    Nonella, Marco; Tavan, Paul

    1995-10-01

    Structure and harmonic vibrational frequencies of p-benzoquinone have been calculated using quantum chemical ab initio and density functional methods. Our calculations show that a satisfactory description of fundamentals and normal mode compositions is achieved upon consideration of correlation effects by means of Møller-Plesset perturbation expansion (MP2) or by density functional theory (DFT). Furthermore, for correct prediction of CO bondlength and force constant, basis sets augmented by polarization functions are required. Applying such basis sets, MP2 and DFT calculations both give results which are generally in reasonable agreement with experimental data. The quantitatively better agreement, however, is achieved with the computationally less demanding DFT method. This method particularly allows very precise prediction of the experimentally important absorptions in the frequency region between 1500 and 1800 cm -1 and of the isotopic shifts of these vibrations due to 13C or 18O substitution.

  19. Copper-catalyzed aerobic spirocyclization of biaryl-N-H-imines via 1,4-aminooxygenation of benzene rings.

    PubMed

    Tnay, Ya Lin; Chen, Cheng; Chua, Yi Yuan; Zhang, Line; Chiba, Shunsuke

    2012-07-06

    A synthetic method of azaspirocyclohexadienones has been developed through copper-catalyzed aerobic spirocyclization of biaryl-N-H-imines prepared by the reaction of biarylcarbonitriles and Grignard reagents.

  20. Developing a novel catalytic approach for imine formation by using self-replicating catalyst

    NASA Astrophysics Data System (ADS)

    Nasir, Fatin Ilyani; Philp, Douglas; Hasbullah, Siti Aishah; Hassan, Nurul Izzaty

    2015-09-01

    Synthesis of imine compounds usually results in moderate yield due its reversibility characteristic and prone to hydrolysis. Hence, to increase the formation of imine compound, self-replicating catalyst was introduced. The self-replicating catalyst is the imine product itself. The first imine compound, 4-{[4-(3,5-Dimethyl-phenylcarbamoyl)-benzylidene]-amino}-phenyl)-acetic acid has been synthesized from 4-Amino-N-(3,5-dimethyl-phenyl)-benzamide and (4-formyl-phenyl)-acetic acid. Simultaneously, 4-formylbenzoic acid was reacted with thionyl chloride to produce 4-formylbenzoyl chloride, which was then reacted with 2-amino-4,6-dimethylpyridine in the presence of triethylamine to afford N-(4,6-dimethyl-pyridin-2-yl)-4-formyl-benzamide. N-(4,6-dimethyl-pyridin-2-yl)-4-formyl-benzamide formed then reacted with 4-amino-2-methylbenzoic acid to form the second imine derivative, 4-{[4-(4,6-dimethyl-pyridin-2-ylcarbamoyl)-benzylidene]-amino}-2-methyl-benzoic acid. The concentration time profile for the synthesis of self-replicating imine 1 reveals the classic sigmoidal shape characteristics of an autocatalytic process and the rate of the reaction are higher than that observed in the absence of recognition. In order to demonstrate the nature of self-replicating catalyst, a preformed imine 1 was doped into the reaction mixture of amine 1 and the corresponding aldehyde, 4-formylbenzoic acid. The insertion of substoichiometric amounts (15 mol%) of imine 1 at the start of the reaction has accelerated the rate formation of imine 1.

  1. Formation of the thioester, N-acetyl, S-lactoylcysteine, by reaction of N-acetylcysteine with pyruvaldehyde in aqueous solution. [in prebiotic evolution

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1982-01-01

    N-acetylcysteine reacts efficiently with pyruvaldehyde (methylglyoxal) in aqueous solution (pH 7.0) in the presence of a weak base, like imidazole or phosphate, to give the thioester, N-acetyl, S-lactoylcysteine. Reactions of 100 mM N-acetylcysteine with 14 mM, 24 mM and 41 mM pyruvaldehyde yield, respectively, 86%, 76% and 59% N-acetyl, S-lactoylcysteine based on pyruvaldehyde. The decrease in the percent yield at higher pyruvaldehyde concentrations suggests that during its formation the thioester is not only consumed by hydrolysis, but also by reaction with some substance in the pyruvaldehyde preparation. Indeed, purified N-acetyl, S-lactoylcysteine disappears much more rapidly in the presence of pyruvaldehyde than in its absence. Presumably, N-acetyl, S-lactoylcysteine synthesis occurs by rearrangement of the hemithioacetal of N-acetylcysteine and pyruvaldehyde. The significance of this pathway of thioester formation to molecular evolution is discussed.

  2. N-Acetyl and Glutamatergic Neurometabolites in Perisylvian Brain Regions of Methamphetamine Users.

    PubMed

    Tang, Jinsong; O'Neill, Joseph; Alger, Jeffry R; Shen, Zhiwei; Johnson, Maritza C; London, Edythe D

    2018-05-21

    Methamphetamine induces neuronal N-acetyl-aspartate synthesis in preclinical studies. In a preliminary human proton magnetic resonance spectroscopic imaging investigation, we also observed that N-acetyl-aspartate+N-acetyl-aspartyl-glutamate in right inferior frontal cortex correlated with years of heavy methamphetamine abuse. In the same brain region, glutamate+glutamine is lower in methamphetamine users than in controls and is negatively correlated with depression. N-acetyl and glutamatergic neurochemistries therefore merit further investigation in methamphetamine abuse and the associated mood symptoms. Magnetic resonance spectroscopic imaging was used to measure N-acetyl-aspartate+N-acetyl-aspartyl-glutamate and glutamate+glutamine in bilateral inferior frontal cortex and insula, a neighboring perisylvian region affected by methamphetamine, of 45 abstinent methamphetamine-dependent and 45 healthy control participants. Regional neurometabolite levels were tested for group differences and associations with duration of heavy methamphetamine use, depressive symptoms, and state anxiety. In right inferior frontal cortex, N-acetyl-aspartate+N-acetyl-aspartyl-glutamate correlated with years of heavy methamphetamine use (r = +0.45); glutamate+glutamine was lower in methamphetamine users than in controls (9.3%) and correlated negatively with depressive symptoms (r = -0.44). In left insula, N-acetyl-aspartate+N-acetyl-aspartyl-glutamate was 9.1% higher in methamphetamine users than controls. In right insula, glutamate+glutamine was 12.3% lower in methamphetamine users than controls and correlated negatively with depressive symptoms (r = -0.51) and state anxiety (r = -0.47). The inferior frontal cortex and insula show methamphetamine-related abnormalities, consistent with prior observations of increased cortical N-acetyl-aspartate in methamphetamine-exposed animal models and associations between cortical glutamate and mood in human methamphetamine users.

  3. Imine-based [2]catenanes in water.

    PubMed

    Caprice, Kenji; Pupier, Marion; Kruve, Anneli; Schalley, Christoph A; Cougnon, Fabien B L

    2018-02-07

    We report the efficient condensation of imine-based macrocycles from dialdehyde A and aliphatic diamines B n in pure water. Within the libraries, we identified a family of homologous amphiphilic [2]catenanes, whose self-assembly is primarily driven by the hydrophobic effect. The length and odd-even character of the diamine alkyl linker dictate both the yield and the conformation of the [2]catenanes, whose particular thermodynamic stability further shifts the overall equilibrium in favour of imine condensation. These findings highlight the role played by solvophobic effects in the self-assembly of complex architectures.

  4. Chiral discrimination in cyclodextrin complexes of amino acid derivatives: beta-cyclodextrin/N-acetyl-L-phenylalanine and N-acetyl-D-phenylalanine complexes.

    PubMed

    Alexander, Jennifer M; Clark, Joanna L; Brett, Tom J; Stezowski, John J

    2002-04-16

    In a systematic study of molecular recognition of amino acid derivatives in solid-state beta-cyclodextrin (beta-CD) complexes, we have determined crystal structures for complexes of beta-cyclodextrin/N-acetyl-L-phenylalanine at 298 and 20 K and for N-acetyl-D-phenylalanine at 298 K. The crystal structures for the N-acetyl-L-phenylalanine complex present disordered inclusion complexes for which the distribution of guest molecules at room temperature is not resolvable; however, they can be located with considerable confidence at low temperature. In contrast, the complex with N-acetyl-D-phenylalanine is well ordered at room temperature. The latter complex presents an example of a complex in this series in which a water molecule is included deeply in the hydrophobic torus of the extended dimer host. In an effort to understand the mechanisms of molecular recognition giving rise to the dramatic differences in crystallographic order in these crystal structures, we have examined the intermolecular interactions in detail and have examined insertion of the enantiomer of the D-complex into the chiral beta-CD complex crystal lattice.

  5. High-pressure polymorphism of the electrochemically active organic molecule tetrahydroxy-p-benzoquinone

    DOE PAGES

    Ciezak-Jenkins, Jennifer A.

    2016-04-22

    We have studied the structural and chemical response of tetrahydroxy-p-benzoquinone to isothermal compression to near 20 GPa using powder x-ray diffraction and vibrational spectroscopy. Compression beyond 11.5 GPa resulted in the appearance of several new peaks in the x-ray patterns, changes in the peak distribution and intensities, as well as the disappearance of features observed at lower pressures, which when coupled with concomitant changes in the infrared spectrum are indicative of a phase transition. Further analysis of the infrared spectra suggest this phase transition results in an increase in the anharmonicity of the system. Finally, Raman spectroscopic experiments indicate themore » high-pressure phase to be highly photosensitive and easily polymerized.« less

  6. [Cytochrome b-559 photooxidation in the presence of carbonyl cyanide p-trifluorometh-oxyphenylhydrazone and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone or p-benzoquinone in three non-photosynthetic mutants of Chlamydomonas reinhardti (author's transl)].

    PubMed

    Maroc, J; Garnier, J

    1975-04-14

    Studies of absorbance related to the cytochrome b-559 photooxidation induced by FCCP, with and without addition of 3-p-chlorophenyl-1, 1-dimethylurea (CMU), DBMIB or p-benzoquinone, in whole cells and in chloroplast fragments of Chlamydomonas reinhardti, were carried out. In addition to the wild type, three strains of non-photosynthetic mutants were used: Fl 5, which lacks P 700; Fl 9 and Fl 15, which are deficient in bound cytochrome c-553 and in cytochrome b-563. In the presence of FCCP, whole cells and chloroplast fragments of the four strains showed a System II-dependent photooxidation of cytochrome b-559. This photooxidation was inhibited by CMU but it occurred again in presence of FCCP, CMU and DBMIB. In chloroplast fragments, cytochrome b-559 photooxidation was also inhibited by an excess of FCCP; it was recovered, likewise, by addition of DBMIB. In whole cells, the highest measured redox changes were: 1 mu mol oxidized cytochrome b-559 per 1 mmol chlorophyll, corresponding approximately to about one seventh (wild type, Fl5) or one fifth (Fl 9, Fl 15) of the total amount of this cytochrome. Another kind of cytochrome b-559 photooxidation, CMU-insensitive, also occurred in the mutants Fl 9 and Fl 15 and in the wild type, but not in the mutant Fl 5. This latter kind of photooxidation was observed with chloroplast fragments in the presence of FCCP and CMU and also with whole cells in the presence of FCCP, CMU and p-benzoquinone. These reactions can be attributed to the Photosystem I; they do not require the intervention of the cytochrome c-553. A high-potential form of cytochrome b-559, hydroquinone-reducible, was involved in these two kinds of photooxidation. In addition, a lower potential form, reducible only by ascorbate, appeared to be able to interfere also. An interpretation is attempted, taking into consideration the various effects of FCCP and DBMIB, at different concentrations, on photosynthetic electron transport.

  7. Mechanistic investigations of imine hydrogenation catalyzed by cationic iridium complexes.

    PubMed

    Martín, Marta; Sola, Eduardo; Tejero, Santiago; Andrés, José L; Oro, Luis A

    2006-05-15

    Complexes [IrH2(eta6-C6H6)(PiPr3)]BF4 (1) and [IrH2(NCMe)3(PiPr3)]BF4 (2) are catalyst precursors for homogeneous hydrogenation of N-benzylideneaniline under mild conditions. Precursor 1 generates the resting state [IrH2{eta5-(C6H5)NHCH2Ph}(PiPr3)]BF4 (3), while 2 gives rise to a mixture of [IrH{PhN=CH(C6H4)-kappaN,C}(NCMe)2(PiPr3)]BF4 (4) and [IrH{PhN=CH(C6H4)-kappaN,C}(NCMe)(NH2Ph)(PiPr3)]BF4 (5), in which the aniline ligand is derived from hydrolysis of the imine. The less hindered benzophenone imine forms the catalytically inactive, doubly cyclometalated compound [Ir{HN=CPh(C6H4)-kappaN,C}2(NH2CHPh2)(PiPr3)]BF4 (6). Hydrogenations with precursor 1 are fast and their reaction profiles are strongly dependent on solvent, concentrations, and temperature. Significant induction periods, minimized by addition of the amine hydrogenation product, are commonly observed. The catalytic rate law (THF) is rate = k[1][PhN=CHPh]p(H2). The results of selected stoichiometric reactions of potential catalytic intermediates exclude participation of the cyclometalated compounds [IrH{PhN=CH(C6H4)-kappaN,C}(S)2(PiPr3)]BF4 [S = acetonitrile (4), [D6]acetone (7), [D4]methanol (8)] in catalysis. Reactions between resting state 3 and D2 reveal a selective sequence of deuterium incorporation into the complex which is accelerated by the amine product. Hydrogen bonding among the components of the catalytic reaction was examined by MP2 calculations on model compounds. The calculations allow formulation of an ionic, outer-sphere, bifunctional hydrogenation mechanism comprising 1) amine-assisted oxidative addition of H2 to 3, the result of which is equivalent to heterolytic splitting of dihydrogen, 2) replacement of a hydrogen-bonded amine by imine, and 3) simultaneous H delta+/H delta- transfer to the imine substrate from the NH moiety of an arene-coordinated amine ligand and the metal, respectively.

  8. Structures of the N-acetyltransferase domain of Xylella fastidiosa N-acetyl-L-glutamate synthase/kinase with and without a His tag bound to N-acetyl-L-glutamate.

    PubMed

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2015-01-01

    Structures of the catalytic N-acetyltransferase (NAT) domain of the bifunctional N-acetyl-L-glutamate synthase/kinase (NAGS/K) from Xylella fastidiosa bound to N-acetyl-L-glutamate (NAG) with and without an N-terminal His tag have been solved and refined at 1.7 and 1.4 Å resolution, respectively. The NAT domain with an N-terminal His tag crystallized in space group P4(1)2(1)2, with unit-cell parameters a=b=51.72, c=242.31 Å. Two subunits form a molecular dimer in the asymmetric unit, which contains ∼41% solvent. The NAT domain without an N-terminal His tag crystallized in space group P21, with unit-cell parameters a=63.48, b=122.34, c=75.88 Å, β=107.6°. Eight subunits, which form four molecular dimers, were identified in the asymmetric unit, which contains ∼38% solvent. The structures with and without the N-terminal His tag provide an opportunity to evaluate how the His tag affects structure and function. Furthermore, multiple subunits in different packing environments allow an assessment of the plasticity of the NAG binding site, which might be relevant to substrate binding and product release. The dimeric structure of the X. fastidiosa N-acetytransferase (xfNAT) domain is very similar to that of human N-acetyltransferase (hNAT), reinforcing the notion that mammalian NAGS is evolutionally derived from bifunctional bacterial NAGS/K.

  9. Conjecture: imines as unidirectional photodriven molecular motors-motional and constitutional dynamic devices.

    PubMed

    Lehn, Jean-Marie

    2006-08-07

    Compounds containing the C==N group, such as imines and their derivatives, may undergo syn-anti isomerization by two different routes: 1) photochemically, by out-of-plane rotation around the carbon-nitrogen double bond through a "perpendicular" form, and 2) thermally, by in-plane nitrogen inversion through a "linear" transition state. When the two interconversions occur in sequence, a full, closed process is accomplished, restoring the initial state of the system along two different steps. In a chiral imine-type compound, for example, with an asymmetric center next to the C==N function, photoinduced rotation may be expected to occur in one sense in preference to the opposite one. Thus, photoisomerization followed by thermal isomerization in a chiral imine compound generates unidirectional molecular motion. Generally, imine-type compounds represent unidirectional molecular photomotors converting light energy into mechanical motion. As they are also able to undergo exchange of the carbonyl and amine partners, they present constitutional dynamics. Thus, imine-type compounds are double dynamic, motional, and constitutional devices.

  10. N-cyanoimidazole and diimidazole imine: water-soluble condensing agents for the formation of the phosphodiester bond

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Huang, C. H.; Hagan, W. J. Jr

    1989-01-01

    The reaction of BrCN with imidazole results in the formation of N-cyanoimidazole and diimidazole imine. These compounds were shown to be useful condensing agents for the formation of the phosphodiester bound in aqueous solution.

  11. Identification and Functional Characterization of N-Terminally Acetylated Proteins in Drosophila melanogaster

    PubMed Central

    Gerrits, Bertran; Roschitzki, Bernd; Mohanty, Sonali; Niederer, Eva M.; Laczko, Endre; Timmerman, Evy; Lange, Vinzenz; Hafen, Ernst; Aebersold, Ruedi; Vandekerckhove, Joël; Basler, Konrad; Ahrens, Christian H.; Gevaert, Kris; Brunner, Erich

    2009-01-01

    Protein modifications play a major role for most biological processes in living organisms. Amino-terminal acetylation of proteins is a common modification found throughout the tree of life: the N-terminus of a nascent polypeptide chain becomes co-translationally acetylated, often after the removal of the initiating methionine residue. While the enzymes and protein complexes involved in these processes have been extensively studied, only little is known about the biological function of such N-terminal modification events. To identify common principles of N-terminal acetylation, we analyzed the amino-terminal peptides from proteins extracted from Drosophila Kc167 cells. We detected more than 1,200 mature protein N-termini and could show that N-terminal acetylation occurs in insects with a similar frequency as in humans. As the sole true determinant for N-terminal acetylation we could extract the (X)PX rule that indicates the prevention of acetylation under all circumstances. We could show that this rule can be used to genetically engineer a protein to study the biological relevance of the presence or absence of an acetyl group, thereby generating a generic assay to probe the functional importance of N-terminal acetylation. We applied the assay by expressing mutated proteins as transgenes in cell lines and in flies. Here, we present a straightforward strategy to systematically study the functional relevance of N-terminal acetylations in cells and whole organisms. Since the (X)PX rule seems to be of general validity in lower as well as higher eukaryotes, we propose that it can be used to study the function of N-terminal acetylation in all species. PMID:19885390

  12. N-acetylaspartate catabolism determines cytosolic acetyl-CoA levels and histone acetylation in brown adipocytes

    PubMed Central

    Prokesch, A.; Pelzmann, H. J.; Pessentheiner, A. R.; Huber, K.; Madreiter-Sokolowski, C. T.; Drougard, A.; Schittmayer, M.; Kolb, D.; Magnes, C.; Trausinger, G.; Graier, W. F.; Birner-Gruenberger, R.; Pospisilik, J. A.; Bogner-Strauss, J. G.

    2016-01-01

    Histone acetylation depends on the abundance of nucleo-cytoplasmic acetyl-CoA. Here, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. N-acetylaspartate (NAA) is a highly abundant brain metabolite catabolized by aspartoacylase yielding aspartate and acetate. The latter can be further used for acetyl-CoA production. Prior to this work, the presence of NAA has not been described in adipocytes. Here, we show that accumulation of NAA decreases the brown adipocyte phenotype. We increased intracellular NAA concentrations in brown adipocytes via media supplementation or knock-down of aspartoacylase and measured reduced lipolysis, thermogenic gene expression, and oxygen consumption. Combinations of approaches to increase intracellular NAA levels showed additive effects on lipolysis and gene repression, nearly abolishing the expression of Ucp1, Cidea, Prdm16, and Ppara. Transcriptome analyses of aspartoacylase knock-down cells indicate deficiencies in acetyl-CoA and lipid metabolism. Concordantly, cytoplasmic acetyl-CoA levels and global histone H3 acetylation were decreased. Further, activating histone marks (H3K27ac and H3K9ac) in promoters/enhancers of brown marker genes showed reduced acetylation status. Taken together, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. Thereby, we mechanistically connect the NAA pathway to the epigenomic regulation of gene expression, modulating the phenotype of brown adipocytes. PMID:27045997

  13. Characterization of the active site, substrate specificity and kinetic properties of acetyl-CoA:arylamine N-acetyltransferase from pigeon liver.

    PubMed

    Andres, H H; Kolb, H J; Schreiber, R J; Weiss, L

    1983-08-16

    It could be demonstrated that a sulfhydryl group is involved in the catalysis of acetyl-CoA:arylamine N-acetyltransferase from pigeon liver (EC 2.3.1.5). From ping-pong kinetics it was concluded that there is a covalent acetyl-enzyme intermediate. The respective intermediate could be isolated and chemically characterized as a cysteinyl thioester. Electrophoretically homogeneous acetyl-CoA:acylamine N-acetyltransferase from pigeon liver was able to acetylate a broad variety of aromatic and aliphatic amines from different acetyldonors such as acetyl-CoA, p-nitroacetanilide and p-nitrophenylacetate. Apparent Km values were determined for a number of acetyl donors and acetyl acceptors. Additionally, Ki values were evaluated for CoA, 3',5'-ADP and AMP. Correlation studies of basicity of acceptor amines and acetylation rate demonstrated that there is a limit of the pKa value (about pKa = 1) where the covalently-bound acetyl-enzyme intermediate can still be saponified. Testing crude liver homogenates of several animals including turkey, duck, chicken, cow, pig, horse, sheep, carp, trout and herring the outstanding nature of the pigeon liver enzyme in acetylating very weakly basic amines could be demonstrated. It is shown that the enzyme is quite flexible concerning sterically different acceptor amines, because arylamines whose amino group was effected by large o-substituents could be quantitatively acetylated. After enzymatic acetylation of the first amino group, 1,2-phenylendiamine formed the heterocyclic compound 2-methylbenzimidazole by a spontaneous condensation reaction. There is evidence that with distinct amines formation of heterocyclic compounds may also occur in vivo.

  14. Occurrence and formation of chloro- and bromo-benzoquinones during drinking water disinfection.

    PubMed

    Zhao, Yuli; Anichina, Janna; Lu, Xiufen; Bull, Richard J; Krasner, Stuart W; Hrudey, Steve E; Li, Xing-Fang

    2012-09-15

    Consumption of chlorinated drinking water has shown somewhat consistent association with increased risk of bladder cancer in a series of epidemiological studies, but plausible causative agents have not been identified. Halobenzoquinones (HBQs) have been recently predicted as putative disinfection byproducts (DBPs) that might be of toxicological relevance. This study reports the occurrence frequencies and concentrations of HBQs in plant effluents from nine drinking water treatment plants in the USA and Canada, where four common disinfection methods, chlorination, chloramination, chlorination with chloramination, and ozonation with chloramination, are used. In total, 16 water samples were collected and analyzed for eight HBQs: 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), 2,6-dibromo-1,4-benzoquinone (2,6-DBBQ), 2,6-dichloro-3-methyl-1,4-benzoquinone (2,6-DC-3-MBQ), 2,3,6-trichloro-1,4-benzoquinone (2,3,6-TriCBQ), 2,5-dibromo-1,4-benzoquinone (2,5-DBBQ), 2,3-dibromo-5,6-dimethyl-1,4-benzoquinone (2,3-DB-5,6-DM-BQ), tetrabromo-1,4-benzoquinone (TetraB-1,4-BQ), and tetrabromo-1,2-benzoquinone (TetraB-1,2-BQ). Of these, 2,6-DCBQ, 2,6-DBBQ, 2,6-DC-3-MBQ and 2,3,6-TriCBQ were detected in 16, 11, 6, and 3 of the 16 samples with the method detection limit (DL) of 1.0, 0.5, 0.9 and 1.5 ng/L, respectively, using a solid phase extraction and high performance liquid chromatography-tandem mass spectrometry method. The concentrations were in the ranges of 4.5-274.5 ng/L for 2,6-DCBQ, below DL to 37.9 ng/L for 2,6-DBBQ, below DL to 6.5 ng/L for 2,6-DC-3-MBQ, and below DL to 9.1 ng/L for 2,3,6-TriCBQ. These authentic samples show DCBQ and DBBQ as the most abundant and frequently detectable HBQs. In addition, laboratory controlled experiments were performed to examine the formation of HBQs and their subsequent stability toward hydrolysis when the disinfectants, chlorine, chloramine, or ozone followed by chloramines, reacted with phenol (a known precursor) under various conditions

  15. Two new ortho benzoquinones from Uncaria rhynchophylla.

    PubMed

    Zhang, Qian; Chen, Lei; Hu, Le-Jian; Liu, Wen-Yuan; Feng, Feng; Qu, Wei

    2016-03-01

    The present study was designed to determine the chemical constituents of the stems and hooks of Uncaria rhynchophylla. The chemical constituents were isolated and purified from CH2Cl2 fraction by chromatography. Their structures were elucidated by spectroscopic analyses. Their cytotoxicity was tested using MTT method. Two new ortho benzoquinones, 3-diethylamino-5-methoxy-1, 2-benzoquinone (1) and 3-ethylamino-5-methoxy-1, 2-benzoquinone (2), together with a known compound isorhynchophyllic acid (3) were isolated from U. rhynchophylla. These compounds were evaluated for their cytotoxicity against cancer cells A549, HepG2 and A2780. Compounds 1 and 2 were new ortho benzoquinones and showed weak antiproliferative activities on A549, HepG2 and A2780 cells. Compound 3 significantly inhibited the proliferation of A549, HepG2 and A2780 cells with IC50 values being 5.8, 12.8 and 11.8 µmol·L(-1), respectively. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  16. Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiupei, E-mail: xiupeiyang@163.com; College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000; Lin, Jia

    2015-06-15

    Highlights: • CdTe quantum dots with the diameter of 3–5 nm were synthesized in aqueous solution. • The modified CdTe quantum dots showed well fluorescence properties. • The interaction between the CdTe quantum dots and doxorubicin (DR) was investigated. - Abstract: N-acetyl-L-cysteine protected cadmium telluride quantum dots with a diameter of 3–5 nm were synthesized in aqueous solution. The interaction between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin was investigated by ultraviolet–visible absorption and fluorescence spectroscopy at physiological conditions (pH 7.2, 37 °C). The results indicate that electron transfer has occurred between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin under light illumination.more » The quantum dots react readily with doxorubicin to form a N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex via electrostatic attraction between the −NH{sub 3}{sup +} moiety of doxorubicin and the −COO{sup −} moiety of N-acetyl-L-cysteine/cadmium telluride quantum dots. The interaction of N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex with bovine serum albumin was studied as well, showing that the complex might induce the conformation change of bovine serum due to changes in microenvironment of bovine serum.« less

  17. Growth advantage of Escherichia coli O104:H4 strains on 5-N-acetyl-9-O-acetyl neuraminic acid as a carbon source is dependent on heterogeneous phage-Borne nanS-p esterases.

    PubMed

    Saile, Nadja; Schwarz, Lisa; Eißenberger, Kristina; Klumpp, Jochen; Fricke, Florian W; Schmidt, Herbert

    2018-06-01

    Enterohemorrhagic E. coli (EHEC) are serious bacterial pathogens which are able to cause a hemorrhagic colitis or the life-threatening hemolytic-uremic syndrome (HUS) in humans. EHEC strains can carry different numbers of phage-borne nanS-p alleles that are responsible for acetic acid release from mucin from bovine submaxillary gland and 5-N-acetyl-9-O-acetyl neuraminic acid (Neu5,9Ac 2 ), a carbohydrate present in mucin. Thus, Neu5,9Ac 2 can be transformed to 5-N-acetyl neuraminic acid, an energy source used by E. coli strains. We hypothesize that these NanS-p proteins are involved in competitive growth of EHEC in the gastrointestinal tract of humans and animals. The aim of the current study was to demonstrate and characterize the nanS-p alleles of the 2011 E. coli O104:H4 outbreak strain LB226692 and analyze whether the presence of multiple nanS-p alleles in the LB226692 genome causes a competitive growth advantage over a commensal E. coli strain. We detected and characterized five heterogeneous phage-borne nanS-p alleles in the genome of E. coli O104:H4 outbreak strain LB226692 by in silico analysis of its genome. Furthermore, successive deletion of all nanS-p alleles, subsequent complementation with recombinant NanS-p13-His, and in vitro co-culturing experiments with the commensal E. coli strain AMC 198 were conducted. We could show that nanS-p genes of E. coli O104:H4 are responsible for growth inhibition of strain AMC 198, when Neu5,9Ac 2 was used as sole carbon source in co-culture. The results of this study let us suggest that multiple nanS-p alleles may confer a growth advantage by outcompeting other E. coli strains in Neu5,9Ac 2 rich environments, such as mucus in animal and human gut. Copyright © 2018 Elsevier GmbH. All rights reserved.

  18. Role of N-acetyltransferase 2 acetylation polymorphism in 4, 4'-methylene bis (2-chloroaniline) biotransformation.

    PubMed

    Hein, David W; Zhang, Xiaoyan; Doll, Mark A

    2018-02-01

    Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) catalyze the acetylation of arylamine carcinogens. Single nucleotide polymorphisms in the NAT2 coding exon present in NAT2 haplotypes encode allozymes with reduced N-acetyltransferase activity towards the N-acetylation of arylamine carcinogens and the O-acetylation of their N-hydroxylated metabolites. NAT2 acetylator phenotype modifies urinary bladder cancer risk following exposures to arylamine carcinogens such as 4-aminobiphenyl. 4, 4'-methylene bis (2-chloroaniline) (MOCA) is a Group 1 carcinogen for which a role of the NAT2 acetylation polymorphism on cancer risk is unknown. We investigated the role of NAT2 and the genetic acetylation polymorphism on both MOCA N-acetylation and N-hydroxy-MOCA O-acetylation. MOCA N-acetylation exhibited a robust gene dose response in rabbit liver cytosol and in cryopreserved human hepatocytes derived from individuals of rapid, intermediate and slow acetylator NAT2 genotype. MOCA exhibited about 4-fold higher affinity for recombinant human NAT2 than NAT1. Recombinant human NAT2*4 (reference) and 15 variant recombinant human NAT2 allozymes catalyzed both the N-acetylation of MOCA and the O-acetylation of N-hydroxy-MOCA. Human NAT2 5, NAT2 6, NAT2 7 and NAT2 14 allozymes catalyzed MOCA N-acetylation and N-hydroxy-O-acetylation at rates much lower than the reference NAT2 4 allozyme. In conclusion, our results show that NAT2 acetylator genotype has an important role in MOCA metabolism and suggest that risk assessments related to MOCA exposures consider accounting for NAT2 acetylator phenotype in the analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Diastereoselective Allylation of "N"-"Tert"-Butanesulfinyl Imines: An Asymmetric Synthesis Experiment for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Chen, Xiao-Yang; Sun, Li-Sen; Gao, Xiang; Sun, Xing-Wen

    2015-01-01

    An asymmetric synthetic experiment that encompasses both diastereoselectivity and enantioselectivity is described. In this experiment, Zn-mediated allylation of an ("R")-"N"-"tert"-butanesulfinyl imine is first performed to obtain either diastereomer using two different solvent systems, followed by oxidation of the…

  20. Photochemically Induced Intramolecular Radical Cyclization Reactions with Imines.

    PubMed

    Lefebvre, Corentin; Michelin, Clément; Martzel, Thomas; Djou'ou Mvondo, Vaneck; Bulach, Véronique; Abe, Manabu; Hoffmann, Norbert

    2018-02-16

    The photochemically induced intramolecular hydrogen abstraction or hydrogen atom transfer in cyclic imines 8a,b followed by a cyclization is investigated. Two types of products are observed, one resulting from the formation of a C-C bond, the other from the formation of a C-N bond. A computational study reveals that hydrogen is exclusively transferred to the imine nitrogen leading to a triplet diradical intermediate. After intersystem crossing, the resulting zwitterionic intermediate undergoes cyclization leading to the final product.

  1. Infrared and Raman spectra of N-acetyl- L-amino acid methylamides with aromatic side groups

    NASA Astrophysics Data System (ADS)

    Matsuura, Hiroatsu; Hasegawa, Kodo; Miyazawa, Tatsuo

    Infrared and Raman spectra of N-acetyl- L-phenylalanine methylamide, N-acetyl- L-tyrosine methylamide and N-acetyl- L-tryptophan methylamide, as model compounds of aromatic amino acid residues in proteins, were measured in the solid state and in methanol solutions. Vibrational assignments of the spectra were made by utilizing the deuteration effect and by comparison with the spectra of related compounds which include toluene, p-cresol and 3-methylindole. The amide I, III and IV bands were strong in Raman scattering, but other characteristic amide bands were ill-defined. In the Raman spectra of methanol solutions, only the bands due to the aromatic side group vibrations were markedly observed, but those due to the peptide backbone vibrations were very weak, suggesting the coexistence of various molecular conformations in solution.

  2. The acetylation of transcription factor HBP1 by p300/CBP enhances p16INK4A expression

    PubMed Central

    Wang, Weibin; Pan, Kewu; Chen, Yifan; Huang, Chunyin; Zhang, Xiaowei

    2012-01-01

    HBP1 is a sequence-specific DNA-binding transcription factor with many important biological roles. It activates or represses the expression of some specific genes during cell growth and differentiation. Previous studies have exhibited that HBP1 binds to p16INK4A promoter and activates p16INK4A expression. We found that trichostatin A (TSA), an inhibitor of HDAC (histone deacetylase), induces p16INK4A expression in an HBP1-dependent manner. This result was drawn from a transactivation experiment by measuring relative luciferase activities of p16INK4A promoter with HBP1-binding site in comparison with that of the wild-type p16INK4A promoter by transient cotransfection with HBP1 into HEK293T cells and 2BS cells. HBP1 acetylation after TSA treatment was confirmed by immunoprecipitation assay. Our data showed that HBP1 interacted with histone acetyltransferase p300 and CREB-binding protein (CBP) and also recruited p300/CBP to p16INK4A promoter. HBP1 was acetylated by p300/CBP in two regions: repression domain (K297/305/307) and P domain (K171/419). Acetylation of Repression domain was not required for HBP1 transactivation on p16INK4A. However, luciferase assay and western blotting results indicate that acetylation of P domain, especially K419 acetylation is essential for HBP1 transactivation on p16INK4A. As assayed by SA-beta-gal staining, the acetylation of HBP1 at K419 enhanced HBP1-induced premature senescence in 2BS cells. In addition, HDAC4 repressed HBP1-induced premature senescence through permanently deacetylating HBP1. We conclude that our data suggest that HBP1 acetylation at K419 plays an important role in HBP1-induced p16INK4A expression. PMID:21967847

  3. New chalcone and dimeric chalcones with 1,4-p-benzoquinone residue from Combretum yunnanense.

    PubMed

    Wu, Ming-Mei; Wang, Li-Qin; Hua, Yan; Chen, Ye-Gao; Wang, Yuan-Yuan; Li, Xing-Yao; Li, Yan; Li, Ting; Yang, Xun-Yun; Tang, Zheng-Rong

    2011-03-01

    New chalcone and dimeric chalcones with 1,4- P-benzoquinone residue, combrequinone A (1), combrequinone B (2), and combrequinone C (3), along with three known compounds (4-6), were isolated from the ethanolic extract of the stems and leaves of Combretum yunnanense, and their structures were determined by spectroscopic analysis. Compounds 1-3 were evaluated for in vitro cytotoxicity against five human cancer cell lines: HL-60, SMMC-7721, A-549, MCF-7, and SW480. Compounds 1, 2 and 3 were found to be most potent against HL-60 acute leukemia cells, with IC₅₀ values of 4.63, 4.07, and 1.26 µM, respectively. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Novel histone deacetylase inhibitor CG200745 induces clonogenic cell death by modulating acetylation of p53 in cancer cells.

    PubMed

    Oh, Eun-Taex; Park, Moon-Taek; Choi, Bo-Hwa; Ro, Seonggu; Choi, Eun-Kyung; Jeong, Seong-Yun; Park, Heon Joo

    2012-04-01

    Histone deacetylase (HDAC) plays an important role in cancer onset and progression. Therefore, inhibition of HDAC offers potential as an effective cancer treatment regimen. CG200745, (E)-N(1)-(3-(dimethylamino)propyl)-N(8)-hydroxy-2-((naphthalene-1-loxy)methyl)oct-2-enediamide, is a novel HDAC inhibitor presently undergoing a phase I clinical trial. Enhancement of p53 acetylation by HDAC inhibitors induces cell cycle arrest, differentiation, and apoptosis in cancer cells. The purpose of the present study was to investigate the role of p53 acetylation in the cancer cell death caused by CG200745. CG200745-induced clonogenic cell death was 2-fold greater in RKO cells expressing wild-type p53 than in p53-deficient RC10.1 cells. CG200745 treatment was also cytotoxic to PC-3 human prostate cancer cells, which express wild-type p53. CG200745 increased acetylation of p53 lysine residues K320, K373, and K382. CG200745 induced the accumulation of p53, promoted p53-dependent transactivation, and enhanced the expression of MDM2 and p21(Waf1/Cip1) proteins, which are encoded by p53 target genes. An examination of CG200745 effects on p53 acetylation using cells transfected with various p53 mutants showed that cells expressing p53 K382R mutants were significantly resistant to CG200745-induced clonogenic cell death compared with wild-type p53 cells. Moreover, p53 transactivation in response to CG200745 was suppressed in all cells carrying mutant forms of p53, especially K382R. Taken together, these results suggest that acetylation of p53 at K382 plays an important role in CG200745-induced p53 transactivation and clonogenic cell death.

  5. Degradation and transformation products of acetaminophen in soil.

    PubMed

    Li, Juying; Ye, Qingfu; Gan, Jay

    2014-02-01

    Acetaminophen is the most widely used human medicine. Trace levels of acetaminophen are frequently detected in treated wastewater and the impacted surface or groundwater resources. However, even though soil is a primary receiving compartment, the fate of acetaminophen in soil is poorly known, including in particular the potential for the formation of incomplete degradation products that may have altered biological activity and mobility. In this study, using both (14)C-labeling and LC-MS/MS techniques, we evaluated the dissipation routes and transformation pathways of acetaminophen in soils under a range of conditions. Throughout 120-d aerobic incubation, up to 17.0 ± 0.8% of (14)C-acetaminophen was mineralized, but mineralization was greatly inhibited after sterilization or amendment of biosolids. Immediately after treatment, the majority of (14)C-residue became non-extractable or bound, with the level accounting for 73.4-93.3% of the applied amount at the end of incubation. A total of 8 intermediates were identified, including 3-hydroxyacetaminophen, hydroquinone, 1, 4-benzoquinone, N-acetyl-p-benzoquinone imine, p-acetanisidide, 4-methoxyphenol, 2-hexenoic acid, and 1, 4-dimethoxybenzene. Mineralization and rapid conversion to bound residues suggest that acetaminophen is quickly detoxified in soil, decreasing the potential for off-site transport such as leaching or runoff. On the other hand, the formation of a large number of degradation intermediates, and their potential biological activity, may pose unknown risks, such as accumulation into edible plants. This risk warrants further investigation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Rational design of aminoacyl-tRNA synthetase specific for p-acetyl-L-phenylalanine.

    PubMed

    Sun, Renhua; Zheng, Heng; Fang, Zhengzhi; Yao, Wenbing

    2010-01-01

    The Methanococcus jannaschii tRNA(Tyr)/tyrosyl-tRNA synthetase pair has been engineered to incorporate unnatural amino acids into proteins in Escherichia coli site-specifically. In order to add other unnatural amino acids into proteins by this approach, the amino acid binding site of M. jannaschii tyrosyl-tRNA synthetase need to be mutated. The crystal structures of M. jannaschii tyrosyl-tRNA synthetase and its mutations were determined, which provided an opportunity to design aminoacyl-tRNA synthetases specific for other unnatural amino acids. In our study, we attempted to design aminoacyl-tRNA synthetases being able to deliver p-acetyl-L-phenylalanine into proteins. p-Acetyl-L-phenylalanine was superimposed on tyrosyl in M. jannaschii tyrosyl-tRNA synthetase-tyrosine complex. Tyr32 needed to be changed to non-polar amino acid with shorter side chain, Val, Leu, Ile, Gly or Ala, in order to reduce steric clash and provide hydrophobic environment to acetyl on p-acetyl-L-phenylalanine. Asp158 and Ile159 would be changed to specific amino acids for the same reason. So we designed 60 aminoacyl-tRNA synthetases. Binding of these aminoacyl-tRNA synthetases with p-acetyl-L-phenylalanine indicated that only 15 of them turned out to be able to bind p-acetyl-L-phenylalanine with reasonable poses. Binding affinity computation proved that the mutation of Tyr32Leu and Asp158Gly benefited p-acetyl-L-phenylalanine binding. And two of the designed aminoacyl-tRNA synthetases had considerable binding affinities. They seemed to be very promising to be able to incorporate p-acetyl-L-phenylalanine into proteins in E. coli. The results show that the combination of homology modeling and molecular docking is a feasible method to filter inappropriate mutations in molecular design and point out beneficial mutations. Copyright 2009 Elsevier Inc. All rights reserved.

  7. Semi-catalytic reduction of secondary amides to imines and aldehydes.

    PubMed

    Lee, Sun-Hwa; Nikonov, Georgii I

    2014-06-21

    Secondary amides can be reduced by silane HSiMe2Ph into imines and aldehydes by a two-stage process involving prior conversion of amides into iminoyl chlorides followed by catalytic reduction mediated by the ruthenium complex [Cp(i-Pr3P)Ru(NCCH3)2]PF6 (1). Alkyl and aryl amides bearing halogen, ketone, and ester groups were converted with moderate to good yields under mild reaction conditions to the corresponding imines and aldehydes. This procedure does not work for substrates bearing the nitro-group and fails for heteroaromatic amides. In the case of cyano substituted amides, the cyano group is reduced to imine.

  8. Formation of toxic 2-nonyl-p-benzoquinones from α-tertiary 4-nonylphenol isomers during microbial metabolism of technical nonylphenol.

    PubMed

    Gabriel, Frédéric L P; Mora, Mauricio Arrieta; Kolvenbach, Boris A; Corvini, Philippe F X; Kohler, Hans-Peter E

    2012-06-05

    In many environmental compartments, microbial degradation of α-quaternary nonylphenols proceeds along an ipso-substitution pathway. It has been reported that technical nonylphenol contains, besides α-quaternary nonylphenols, minor amounts of various α-H, α-methyl substituted tertiary isomers. Here, we show that potentially toxic metabolites of such minor components are formed during ipso-degradation of technical nonylphenol by Sphingobium xenophagum Bayram, a strain isolated from activated sewage sludge. Small but significant amounts of nonylphenols were converted to the corresponding nonylhydroquinones, which in the presence of air oxygen oxidized to the corresponding nonyl-p-benzoquinones-yielding a complex mixture of potentially toxic metabolites. Through reduction with ascorbic acid and subsequent analysis by gas chromatography-mass spectrometry, we were able to characterize this unique metabolic fingerprint and to show that its components originated for the most part from α-tertiary nonylphenol isomers. Furthermore, our results indicate that the metabolites mixture also contained several α, β-dehydrogenated derivatives of nonyl-p-benzoquinones that originated by hydroxylation induced rearrangement, and subsequent ring and side chain oxidation from α-tertiary nonylphenol isomers. We predict that in nonylphenol polluted natural systems, in which microbial ipso-degradation is prominent, 2-alkylquinone metabolites will be produced and will contribute to the overall toxicity of the remaining material.

  9. Theoretical study of the Diels-Alder reaction between o-benzoquinone and norbornadiene

    NASA Astrophysics Data System (ADS)

    Quijano-Quiñones, Ramiro F.; Quesadas-Rojas, M.; Cuevas, Gabriel; Mena-Rejón, Gonzalo J.

    2013-06-01

    The reaction between norbornadiene and o-benzoquinone is an important step in polyalicyclic rigid structures synthesis. It has been considered that this reaction is an example of Diels-Alder (DA) and hetero-Diels-Alder (HDA) cycloadditions with o-benzoquinone acting as diene (forming C-C bonds) and heterodiene (forming O-C bonds). We have performed a Density Functional Theory study of this reaction, employing B3LYP, mPW1PW91, and B1B95 functionals and 6-31G(d,p) and 6-31+G(d,p) Gaussian type basis sets. The results indicate that Diels-Alder is a feasible mechanism for both reactions, but should not be the main route to the formation of products with C-C bonds.

  10. Effect of acetaminophen on sulfamethazine acetylation in male volunteers.

    PubMed

    Tahir, I M; Iqbal, T; Saleem, S; Mehboob, H; Akhter, N; Riaz, M

    2016-03-01

    The effect of acetaminophen on sulfamethazine N-acetylation by human N-acetyltrasferase-2 (NAT2) was studied in 19 (n=19) healthy male volunteers in two different phases. In the first phase of the study the volunteers were given an oral dose of sulfamethazine 500 mg alone and blood and urine samples were collected. After the 10-day washout period the same selected volunteers were again administered sulfamethazine 500 mg along with 1000 mg acetaminophen. The acetylation of sulfamethazine by human NAT2 in both phases with and without acetaminophen was determined by HPLC to establish their respective phenotypes. In conclusion obtained statistics of present study revealed that acetaminophen significantly (P<0.0001) decreased sulfamethazine acetylation in plasma of both slow and fast acetylator male volunteers. A highly significant (P<0.0001) decrease in plasma-free and total sulfamethazine concentration was also observed when acetaminophen was co-administered. Urine acetylation status in both phases of the study was found not to be in complete concordance with that of plasma. Acetaminophen significantly (P<0.0001) increased the acetyl, free and total sulfamethazine concentration in urine of both slow and fast acetylators. Urine acetylation analysis has not been found to be a suitable approach for phenotypic studies. © The Author(s) 2015.

  11. Activation of p300 histone acetyltransferase activity and acetylation of the androgen receptor by bombesin in prostate cancer cells.

    PubMed

    Gong, J; Zhu, J; Goodman, O B; Pestell, R G; Schlegel, P N; Nanus, D M; Shen, R

    2006-03-30

    Androgen receptor signaling in prostate cancer cells is augmented by the androgen receptor (AR) coactivator p300, which transactivates and acetylates the AR in the presence of dihydrotestosterone (DHT). As prostate cancer (PC) cells progress to androgen independence, AR signaling remains intact, indicating that other factors stimulate AR activities in the absence of androgen. We previously reported that neuropeptide growth factors could transactivate the AR in the presence of very low concentrations of DHT. Here, we examine the involvement of p300 in neuropeptide activation of AR signaling. Transfection of increasing concentrations of p300 in the presence of bombesin into PC-3 cells resulted in a linear increase in AR transactivation, suggesting that p300 acts as a coactivator in neuropeptide-mediated AR transactivation. P300 is endowed with histone acetyltransferase (HAT) activity. Therefore, we examine the effect of bombesin on p300 HAT activity. At 4 h after the addition of bombesin, p300 HAT activity increased 2.0-fold (P<0.01). Incubation with neutral endopeptidase, which degrades bombesin, or bombesin receptor antagonists blocked bombesin-induced p300 HAT activity. To explore the potential signaling pathways involved in bombesin-induced p300 HAT activity, we examined Src and PKCdelta pathways that mediate bombesin signaling. Inhibitors of Src kinase activity or Src kinase siRNA blocked bombesin-induced p300 HAT activity, whereas PKCdelta inhibitors or PKCdelta siRNA significantly increased bombesin-induced p300 HAT activity suggesting that Src kinase and PKCdelta kinase are involved in the regulation of p300 HAT activity. As AR is acetylated in the presence of 100 nM DHT, we next examined whether bombesin-induced p300 HAT activity would result in enhanced AR acetylation. Bombesin-induced AR acetylation at the same motif KLKK observed in DHT-induced acetylation. Elimination of p300 using p300 siRNA reduced AR acetylation, demonstrating that AR acetylation was

  12. Urinary mutagenicity and N-acetylation phenotype in textile industry workers exposed to arylamines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinues, B.; Perez, J.; Bernal, M.L.

    1992-09-15

    Primary aromatic amines have been identified epidemiologically as human carcinogens. It has been suggested that the target organ affected by aromatic amines is dependent on the rate of metabolic activation. Epidemiological studies have shown an association between low acetyl transferase activity and bladder cancer risk. On this basis, our working hypothesis was that the slow acetylators could follow in a higher extent the metabolic pathway independent of N-acetylation, leading to the excretion of conjugates of electrophyles with glucuronic acid. The instability of these glucuronides could be responsible for the association between arylamine-induced bladder cancer and slow acetylator phenotype. A totalmore » of 153 individuals were included in this study: 70 exposed to arylamines (working in textile industry) and 83 nonexposed. The following parameters were determined in urine: mutagenic index in the absence of metabolic activation, S9; mutagenic index in the presence of S9; and the mutagenic index after incubation of the urine with beta-glucuronidase. All individuals were phenotyped according to their capacity of N-acetylation by using isoniazid as drug test. The results show that the mutagenic index after incubation of the urine with beta-glucuronidase is statistically higher in exposed subjects when compared with nonexposed individuals (P less than 0.001), this parameter being statistically higher among exposed subjects who were slow acetylators than among rapid metabolizers, independent of the fact that they were smokers or nonsmokers. There were no significant differences between groups for the mutagenicity in urine not incubated with beta-glucuronidase.« less

  13. Acetylation of aromatic cysteine conjugates by recombinant human N-acetyltransferase 8.

    PubMed

    Deol, Reema; Josephy, P David

    2017-03-01

    1. The mercapturic acid (MA) pathway is a metabolic route for the processing of glutathione conjugates to MA (N-acetylcysteine conjugates). An N-acetyltransferase enzyme, NAT8, catalyzes the transfer of an acetyl group from acetyl-CoA to the cysteine amino group, producing a MA, which is excreted in the urine. We expressed human NAT8 in HEK293T cells and developed an HPLC-MS method for the quantitation of the S-aryl-substituted cysteine conjugates and their MA. 2. We measured the activity of the enzyme for acetylation of benzyl-, 4-nitrobenzyl-, and 1-menaphthylcysteine substrates. 3. NAT8 catalyzed the acetylation of all three cysteine conjugates with similar Michaelis-Menten kinetics.

  14. Structural Basis for the De-N-acetylation of Poly-β-1,6-N-acetyl-d-glucosamine in Gram-positive Bacteria*

    PubMed Central

    Little, Dustin J.; Bamford, Natalie C.; Pokrovskaya, Varvara; Robinson, Howard; Nitz, Mark; Howell, P. Lynne

    2014-01-01

    Exopolysaccharides are required for the development and integrity of biofilms produced by a wide variety of bacteria. In staphylococci, partial de-N-acetylation of the exopolysaccharide poly-β-1,6-N-acetyl-d-glucosamine (PNAG) by the extracellular protein IcaB is required for biofilm formation. To understand the molecular basis for PNAG de-N-acetylation, the structure of IcaB from Ammonifex degensii (IcaBAd) has been determined to 1.7 Å resolution. The structure of IcaBAd reveals a (β/α)7 barrel common to the family four carbohydrate esterases (CE4s) with the canonical motifs circularly permuted. The metal dependence of IcaBAd is similar to most CE4s showing the maximum rates of de-N-acetylation with Ni2+, Co2+, and Zn2+. From docking studies with β-1,6-GlcNAc oligomers and structural comparison to PgaB from Escherichia coli, the Gram-negative homologue of IcaB, we identify Arg-45, Tyr-67, and Trp-180 as key residues for PNAG binding during catalysis. The absence of these residues in PgaB provides a rationale for the requirement of a C-terminal domain for efficient deacetylation of PNAG in Gram-negative species. Mutational analysis of conserved active site residues suggests that IcaB uses an altered catalytic mechanism in comparison to other characterized CE4 members. Furthermore, we identified a conserved surface-exposed hydrophobic loop found only in Gram-positive homologues of IcaB. Our data suggest that this loop is required for membrane association and likely anchors IcaB to the membrane during polysaccharide biosynthesis. The work presented herein will help guide the design of IcaB inhibitors to combat biofilm formation by staphylococci. PMID:25359777

  15. N-Terminal Acetylation Inhibits Protein Targeting to the Endoplasmic Reticulum

    PubMed Central

    Forte, Gabriella M. A.; Pool, Martin R.; Stirling, Colin J.

    2011-01-01

    Amino-terminal acetylation is probably the most common protein modification in eukaryotes with as many as 50%–80% of proteins reportedly altered in this way. Here we report a systematic analysis of the predicted N-terminal processing of cytosolic proteins versus those destined to be sorted to the secretory pathway. While cytosolic proteins were profoundly biased in favour of processing, we found an equal and opposite bias against such modification for secretory proteins. Mutations in secretory signal sequences that led to their acetylation resulted in mis-sorting to the cytosol in a manner that was dependent upon the N-terminal processing machinery. Hence N-terminal acetylation represents an early determining step in the cellular sorting of nascent polypeptides that appears to be conserved across a wide range of species. PMID:21655302

  16. Thermal, structural and electrochemical properties of new aliphatic-aromatic imine with piperazine moieties blended with titanium dioxide

    NASA Astrophysics Data System (ADS)

    Różycka, Anna; Fryń, Patryk; Iwan, Agnieszka; Bogdanowicz, Krzysztof Artur; Filapek, Michal; Górska, Natalia; Dąbczyński, Paweł; Rysz, Jakub; Pociecha, Damian; Hreniak, Agnieszka; Marzec, Monika

    2018-02-01

    A new piperazine imine, (7E)-N-((4-((E)-(4-hexadecylphenylimino)methyl)piperazin-1-yl)methylene)-4-dodecylbenzenamine, has been synthesized by the condensation of 1,4-piperazinedicarboxaldehyde with 4-hexadecylaniline. The imine was characterized by cyclic voltammetry, Fourier transform middle-infrared absorption spectroscopy and X-ray diffraction. Thermal properties of imine was analyzed by differential scanning calorimetry method during first and second heating scan at 10 and 20 °C/min. Texture of imine was investigated by polarized optical microscopy and atomic force microscopy. Furthermore, imine was blended with titanium dioxide in anatase form and fully characterized by the same methods. Piperazine imine and its mixture with titanium dioxide exhibited only a transition from crystal to isotropic state. Imine exhibits two-step reduction wave attributed to one-electron transfer in each step as was found by cyclic voltammetry. Both titanium dioxide and poly(3-hexylthiophene) change the electrochemical properties of piperazine imine, however, in different ways. Studied imine blended with titanium dioxide exhibited higher value of energy band gap than pure piperazine imine and lower Eg than pure poly(3-hexylthiophene).

  17. Catalytic properties and heat stabilities of novel recombinant human N-acetyltransferase 2 allozymes support existence of genetic heterogeneity within the slow acetylator phenotype.

    PubMed

    Hein, David W; Doll, Mark A

    2017-08-01

    Human N-acetyltransferase 2 (NAT2) catalyzes the N-acetylation of numerous aromatic amine drugs such as sulfamethazine (SMZ) and hydrazine drugs such as isoniazid (INH). NAT2 also catalyzes the N-acetylation of aromatic amine carcinogens such as 2-aminofluorene and the O- and N,O-acetylation of aromatic amine and heterocyclic amine metabolites. Genetic polymorphism in NAT2 modifies drug efficacy and toxicity as well as cancer risk. Acetyltransferase catalytic activities and heat stability associated with six novel NAT2 haplotypes (NAT2*6C, NAT2*14C, NAT2*14D, NAT2*14E, NAT2*17, and NAT2*18) were compared with that of the reference NAT2*4 haplotype following recombinant expression in Escherichia coli. N-acetyltransferase activities towards SMZ and INH were significantly (p < 0.0001) lower when catalyzed by the novel recombinant human NAT2 allozymes compared to NAT2 4. SMZ and INH N-acetyltransferase activities catalyzed by NAT2 14C and NAT2 14D were significantly lower (p < 0.001) than catalyzed by NAT2 6C and NAT2 14E. N-Acetylation catalyzed by recombinant human NAT2 17 was over several hundred-fold lower than by recombinant NAT2 4 precluding measurement of its kinetic or heat inactivation constants. Similar results were observed for the O-acetylation of N-hydroxy-2-aminofluorene and N-hydroxy-2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine and the intramolecular N,O-acetylation of N-hydroxy-N-acetyl-2-aminofluorene. The apparent V max of the novel recombinant NAT2 allozymes NAT2 6C, NAT2 14C, NAT2 14D, and NAT2 14E towards AF, 4-aminobiphenyl (ABP), and 3,2'-dimethyl-4-aminobiphenyl (DMABP) were each significantly (p < 0.001) lower while their apparent K m values did not differ significantly (p > 0.05) from recombinant NAT2 4. The apparent V max catalyzed by NAT2 14C and NAT2 14D were significantly lower (p < 0.05) than the apparent V max catalyzed by NAT2 6C and NAT2 14E towards AF, ABP, and DMABP. Heat inactivation rate constants for recombinant

  18. Thermally Induced Denitrogenative Annulation for the Synthesis of Dihydroquinolinimines and Chroman-4-imines.

    PubMed

    Chou, Chih-Hung; Chen, Ying-Yu; Rajagopal, Basker; Tu, Hsiu-Chung; Chen, Kuan-Lin; Wang, Sheng-Fu; Liang, Chien-Fu; Tyan, Yu-Chang; Lin, Po-Chiao

    2016-03-04

    A rapid growth in synthetic methods for the preparation of diverse organic molecules using N-sulfonyl-1,2,3-triazoles is of great interest in organic synthesis. Transition metals are generally used to activate the α-imino diazo intermediates. Metal-free methods have not been studied in detail, but can be a good complement to transition metal catalysis in the mild reaction conditions. We herein report a novel method for the preparation of 2,3-dihydroquinolin-4-imine and chroman-4-imine analogs from their corresponding N-sulfonyl-1,2,3-triazoles in the absence of metal catalysts. To achieve intramolecular annulation, the introduction of an electron-donating group is required at the meta position of N-sulfonyl-1,2,3-triazole methyl anilines. The inclusion of tailored substituents on the aniline moieties and nitrogen atoms enhances the nucleophilicity of the phenyl π-electrons, thus allowing them to undergo a Friedel-Crafts-type reaction with the highly electrophilic ketenimines. This metal-free method was carefully optimized to generate a variety of dihydroquinolin-4-imines and chroman-4-imines in moderate-to-good yields. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mesoporous imine-based organic polymer: catalyst-free synthesis in water and application in CO2 conversion.

    PubMed

    Yu, Xiaoxiao; Yang, Zhenzhen; Guo, Shien; Liu, Zhenghui; Zhang, Hongye; Yu, Bo; Zhao, Yanfei; Liu, Zhimin

    2018-06-22

    A mesoporous imine-functionalized organic polymer (Imine-POP) was prepared based on the reaction of an aryl ammonium salt with an aromatic aldehyde in water without any catalyst and template. The Pd coordinated Imine-POP exhibited high catalytic activity for the N-formylation of amines with CO2/H2 at 100 °C, affording a series of formamides in high yields.

  20. Purification and characterization of enantioselective N-acetyl-β-Phe acylases from Burkholderia sp. AJ110349.

    PubMed

    Imabayashi, Yuki; Suzuki, Shun'ichi; Kawasaki, Hisashi; Nakamatsu, Tsuyoshi

    2016-01-01

    For the production of enantiopure β-amino acids, enantioselective resolution of N-acyl β-amino acids using acylases, especially those recognizing N-acetyl-β-amino acids, is one of the most attractive methods. Burkholderia sp. AJ110349 had been reported to exhibit either (R)- or (S)-enantiomer selective N-acetyl-β-Phe amidohydrolyzing activity, and in this study, both (R)- and (S)-enantioselective N-acetyl-β-Phe acylases were purified to be electrophoretically pure and determined the sequences, respectively. They were quite different in terms of enantioselectivities and in their amino acids sequences and molecular weights. Although both the purified acylases were confirmed to catalyze N-acetyl hydrolyzing activities, neither of them show sequence similarities to the N-acetyl-α-amino acid acylases reported thus far. Both (R)- and (S)-enantioselective N-acetyl-β-Phe acylase were expressed in Escherichia coli. Using these recombinant strains, enantiomerically pure (R)-β-Phe (>99% ee) and (S)-β-Phe (>99% ee) were obtained from the racemic substrate.

  1. Aliphatic Imines in Titanium-Mediated Reductive Cross-Coupling: Unique Reactivity of Ti(Oi-Pr)4/n-BuLi

    PubMed Central

    Tarselli, Michael A.; Micalizio, Glenn C.

    2009-01-01

    A procedure for the coupling of aliphatic imines with allylic and allenic alkoxides is described. The success of these studies was enabled by a unique reactivity profile of Ti(IV) isopropoxide/n-BuLi compared to well-known Ti(IV) isopropoxide/R-MgX systems. PMID:19810765

  2. Lifespan extension and increased resistance to environmental stressors by N-Acetyl-L-Cysteine in Caenorhabditis elegans

    PubMed Central

    Oh, Seung-Il; Park, Jin-Kook; Park, Sang-Kyu

    2015-01-01

    OBJECTIVE: This study was performed to determine the effect of N-acetyl-L-cysteine, a modified sulfur-containing amino acid that acts as a strong cellular antioxidant, on the response to environmental stressors and on aging in C. elegans. METHOD: The survival of worms under oxidative stress conditions induced by paraquat was evaluated with and without in vivo N-acetyl-L-cysteine treatment. The effect of N-acetyl-L-cysteine on the response to other environmental stressors, including heat stress and ultraviolet irradiation (UV), was also monitored. To investigate the effect on aging, we examined changes in lifespan, fertility, and expression of age-related biomarkers in C. elegans after N-acetyl-L-cysteine treatment. RESULTS: Dietary N-acetyl-L-cysteine supplementation significantly increased resistance to oxidative stress, heat stress, and UV irradiation in C. elegans. In addition, N-acetyl-L-cysteine supplementation significantly extended both the mean and maximum lifespan of C. elegans. The mean lifespan was extended by up to 30.5% with 5 mM N-acetyl-L-cysteine treatment, and the maximum lifespan was increased by 8 days. N-acetyl-L-cysteine supplementation also increased the total number of progeny produced and extended the gravid period of C. elegans. The green fluorescent protein reporter assay revealed that expression of the stress-responsive genes, sod-3 and hsp-16.2, increased significantly following N-acetyl-L-cysteine treatment. CONCLUSION: N-acetyl-L-cysteine supplementation confers a longevity phenotype in C. elegans, possibly through increased resistance to environmental stressors. PMID:26039957

  3. Acetyl transfer in arylamine metabolism

    PubMed Central

    Booth, J.

    1966-01-01

    1. N-Hydroxyacetamidoaryl compounds (hydroxamic acids) are metabolites of arylamides, and an enzyme that transfers the acetyl group from these derivatives to arylamines has been found in rat tissues. The reaction products were identified by thin-layer chromatography and a spectrophotometric method, with 4-amino-azobenzene as acetyl acceptor, was used to measure enzyme activity. 2. The acetyltransferase was in the soluble fraction of rat liver, required a thiol for maximum activity and had a pH optimum between 6·0 and 7·5. 3. The soluble fractions of various rat tissues showed decreasing activity in the following order: liver, adrenal, kidney, lung, spleen, testis, heart; brain was inactive. 4. With the exception of aniline and aniline derivatives all the arylamines tested were effective as acetyl acceptors but aromatic compounds with side-chain amino groups were inactive. 5. The N-hydroxyacetamido derivatives of 2-naphthylamine, 4-amino-biphenyl and 2-aminofluorene were active acetyl donors but N-hydroxyacetanilide showed only slight activity. Acetyl-CoA was not a donor. 6. Some properties of the enzyme are compared with those of other acetyltransferases. PMID:5969287

  4. Conformational studies of bacterial peptidoglycan: structure and stereochemistry of N-acetyl-β- D-glucosamine and N-acetyl-β- D-muramic acid

    NASA Astrophysics Data System (ADS)

    Yadav, P. N. S.; Rai, D. K.; Yadav, J. S.

    1989-03-01

    The energies of various conformations of N-acetyl-β- D-glucosamine (NAG) and its 3-O- D-lactic acid derivative N-acetyl-β- D-muramic acid (NAM) have been calculated by geometry optimization using the molecular mechanics program MM2. The geometries of these systems have been analyzed in the light of ring torsion, bond lengths, bond angles and conformational states of side groups of the pyranosyl ring and compared with available experimental data of similar pyranose derivatives. The present study indicates the presence of hydrogen bonds to stabilize the side group conformations. Discrepancies with experimental data that are seen in a few cases are ascribed to the nature of the side groups and their geometry.

  5. Reactivity measurement in estimation of benzoquinone and benzoquinone derivatives’ allergenicity

    PubMed Central

    Mbiya, Wilbes; Chipinda, Itai; Simoyi, Reuben H.; Siegel, Paul D.

    2015-01-01

    Benzoquinone (BQ) and benzoquinone derivatives (BQD) are used in the production of dyes and cosmetics. While BQ, an extreme skin sensitizer, is an electrophile known to covalently modify proteins via Michael Addition (MA) reaction whilst halogen substituted BQD undergo nucleophilic vinylic substitution (SNV) mechanism onto amine and thiol moieties on proteins, the allergenic effects of adding substituents on BQ have not been reported. The effects of inserting substituents on the BQ ring has not been studied in animal assays. However, mandated reduction/elimination of animals used in cosmetics testing in Europe has led to an increased need for alternatives for the prediction of skin sensitization potential. Electron withdrawing and electron donating substituents on BQ were assessed for effects on BQ reactivity toward nitrobenzene thiol (NBT). The NBT binding studies demonstrated that addition of EWG to BQ as exemplified by the chlorine substituted BQDs increased reactivity while addition of EDG as in the methyl substituted BQDs reduced reactivity. BQ and BQD skin allerginicity was evaluated in the murine local lymph node assay (LLNA). BQD with electron withdrawing groups had the highest chemical potency followed by unsubstituted BQ and the least potent were the BQD with electron donating groups. The BQD results demonstrate the impact of inductive effects on both BQ reactivity and allergenicity, and suggest the potential utility of chemical reactivity data for electrophilic allergen identification and potency ranking. PMID:26612505

  6. Human acetyl-CoA:glucosamine-6-phosphate N-acetyltransferase 1 has a relaxed donor specificity and transfers acyl groups up to four carbons in length.

    PubMed

    Brockhausen, Inka; Nair, Dileep G; Chen, Min; Yang, Xiaojing; Allingham, John S; Szarek, Walter A; Anastassiades, Tassos

    2016-04-01

    Glucosamine-6-phosphate N-acetyltransferase1 (GNA1) catalyses the transfer of an acetyl group from acetyl coenzyme A (AcCoA) to glucosamine-6-phosphate (GlcN6P) to form N-acetylglucosamine-6-phosphate (GlcNAc6P), which is an essential intermediate in UDP-GlcNAc biosynthesis. An analog of GlcNAc, N-butyrylglucosamine (GlcNBu) has shown healing properties for bone and articular cartilage in animal models of arthritis. The goal of this work was to examine whether GNA1 has the ability to transfer a butyryl group from butyryl-CoA to GlcN6P to form GlcNBu6P, which can then be converted to GlcNBu. We developed fluorescent and radioactive assays and examined the donor specificity of human GNA1. Acetyl, propionyl, n-butyryl, and isobutyryl groups were all transferred to GlcN6P, but isovaleryl-CoA and decanoyl-CoA did not serve as donor substrates. Site-specific mutants were produced to examine the role of amino acids potentially affecting the size and properties of the AcCoA binding pocket. All of the wild type and mutant enzymes showed activities of both acetyl and butyryl transfer and can therefore be used for the enzymatic synthesis of GlcNBu for biomedical applications.

  7. Isolation of an N-acetyl-DL-phenylalanine beta-naphthyl esterase from rabbit peritoneal polymorphonuclear leukocytes.

    PubMed

    Tsung, P; Kegeles, S W; Showell, H J; Becker, E L

    1975-09-22

    An N-acetyl-DL-phenylalanine beta-naphthyl esterase has been purified 26-fold from rabbit peritoneal polymorphonuclear leukocytes. The purified enzyme was inhibited by 10(-7) M p-nitrophenylethyl-5-chloropentylphosphonate. The apparent Km for hydrolysis of N-acetyl-DL-phenylalanine beta-naphthyl ester is 71 muM. Optimal reaction rates were observed at pH 6-8. No divalent cation requirement for the activation of the enzyme activity was observed. The esterase activity was neither inhibited nor stimulated by bacterial factor, complement component C5a, guanosine 3',5'-monophosphate (cyclic GMP) and adenosine 3',5'-monophosphate (cyclic AMP) which are attractants or repellents for polymorphonuclear leukocytes. High chemotactic activity was observed in the partially purified fraction of the enzyme. The chemotactic activity, like the enzyme activity, was completely inhibited by 10(-7) M phosphonate.

  8. Aliphatic imines in titanium-mediated reductive cross-coupling: unique reactivity of Ti(O-i-Pr)4/n-BuLi.

    PubMed

    Tarselli, Michael A; Micalizio, Glenn C

    2009-10-15

    A procedure for the coupling of aliphatic imines with allylic and allenic alkoxides is described. The success of these studies was enabled by a unique reactivity profile of Ti(IV) isopropoxide/n-BuLi compared to well-known Ti(IV) isopropoxide/RMgX systems.

  9. [Synthesis and biological activity of 1,4-benzoquinone-guanylhydrazone-thiosemicarbazone analogs. 1. Substitution at the S atom].

    PubMed

    Schulze, W; Gutsche, W; Wohlrabe, K; Fleck, W; Tresselt, D

    1985-08-01

    The synthesis of S-substituted derivatives of 1,4-benzoquinone-guanylhydrazone-thiosemicarbazone is described. The obtained 1,4-benzoquinone-guanylhydrazone-S-alkyl (resp. aralkyl)-isothiosemicarbazones, in comparison with the unsubstituted standard compound, showed a significantly decreased biological activity against the murine leukemias L 1210 and P 388 as well as against the growth of several kinds of bacteria. Therefore the S-substitution seems not to be useful for reaching a maximum activity.

  10. Anti-p-benzoquinone antibody level as a prospective biomarker to identify smokers at risk for COPD.

    PubMed

    Banerjee, Santanu; Bhattacharyya, Parthasarathi; Mitra, Subhra; Kundu, Somenath; Panda, Samiran; Chatterjee, Indu B

    2017-01-01

    Identification of smokers having predisposition to COPD is important for early intervention to reduce the huge global burden of the disease. Using a guinea pig model, we have shown that p -benzoquinone ( p -BQ) derived from cigarette smoke (CS) in the lung is a causative factor for CS-induced emphysema. p -BQ is also derived from CS in smokers and it elicits the production of anti- p -BQ antibody in humans. We therefore hypothesized that anti- p -BQ antibody might have a protective role against COPD and could be used as a predictive biomarker for COPD in smokers. The objective of this study was to compare the serum anti- p -BQ antibody level between smokers with and without COPD for the evaluation of the hypothesis. Serum anti- p -BQ antibody concentrations of current male smokers with (n=227) or without (n=308) COPD were measured by an indirect enzyme-linked immunoabsorbent assay (ELISA) developed in our laboratory. COPD was diagnosed by spirometry according to Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines. A significant difference was observed in the serum anti- p -BQ antibody level between smokers with and without COPD (Mann-Whitney U -test =4,632.5, P =0.000). Receiver operating characteristic (ROC) curve analysis indicated that the ELISA had significant precision (area under the curve [AUC] =0.934, 95% confidence interval [CI]: 0.913-0.935) for identifying smokers with COPD from their low antibody level. The antibody cutoff value of 29.4 mg/dL was constructed from the ROC coordinates to estimate the risk for COPD in smokers. While 90.3% of smokers with COPD had a low antibody value (≤29.4 mg/dL), the majority (86.4%) of smokers without COPD had a high antibody value (≤29.4 mg/dL); 13.6% of current smokers without COPD having an antibody level below this cutoff value (odds ratio [OR] =59.3, 95% CI: 34.15-101.99) were considered to be at risk for COPD. Our results indicate that serum anti- p -BQ antibody level may be used as a

  11. Structural and electrochemical studies of TiO2 complexes with (4,4'-((1E,1'E)-(2,5-bis(octyloxy)-1,4-phenylene)bis(ethene-2,1-diyl))bis-(E)-N-(2,5-bis(octyloxy)benzylidene)) imine derivative bases towards organic devices.

    PubMed

    Rozycka, Anna; Iwan, Agnieszka; Bogdanowicz, Krzysztof Artur; Filapek, Michal; Górska, Natalia; Hreniak, Agnieszka; Marzec, Monika

    2018-06-12

    Three (4,4'-((1E,1'E)-(2,5-bis(octyloxy)-1,4-phenylene)bis(ethene-2,1-diyl))bis-(E)-N-(2,5-bis(octyloxy)benzylidene)) imine derivatives were synthesized via a condensation reaction with p-toluenesulfonic acid as a catalyst. The effects of the end groups and vinylene (-HC[double bond, length as m-dash]CH-) moieties on the structural, thermal, optical, electrochemical and photovoltaic properties of imines were investigated to check the influence of TiO2 on the imine properties. The thermal behavior of imines and their complexes with TiO2 was widely investigated using FT-IR, XRD, DSC and POM methods in order to determine the order type in the imine structure. All imines present the highest occupied molecular orbital (HOMO) levels of about -5.39 eV (SAI1 and SAI2) and -5.27 eV (SAI3) and the lowest unoccupied molecular orbital (LUMO) levels at about -3.17 eV. The difference of the end groups in the imines in each case did not affect redox properties. Generally, both oxidation and reduction are easier after TiO2 addition and it also changes the HOMO-LUMO levels of imines. Moreover, changes in the characteristic bands for imines in the region 1500-1700 cm-1 observed as a drastic decrease of intensity or even disappearance of bands in the imine : TiO2 mixture suggest the formation of a complex (C[double bond, length as m-dash]N)-TiO2. Organic devices with the configuration of ITO/TiO2/SAIx (or SAIx : TiO2)/Au were fabricated and investigated in the presence and absence of visible light irradiation with an intensity of 93 mW cm-2. In all imines and complexes with TiO2, the generation of the photocurrent indicates their use as photodiodes and the best result was observed for SAI3 : TiO2 complexes.

  12. Diastereo- and regioselective addition of thioamide dianions to imines and aziridines: synthesis of N-thioacyl-1,2-diamines and N-thioacyl-1,3-diamines.

    PubMed

    Shibahara, Fumitoshi; Kobayashi, Shun-ichiro; Maruyama, Toshifumi; Murai, Toshiaki

    2013-01-02

    Addition reactions of thioamide dianions that were derived from N-arylmethyl thioamides to imines and aziridines were carried out. The reactions of imines gave the addition products of N-thioacyl-1,2-diamines in a highly diastereoselective manner in good-to-excellent yields. The diastereomeric purity of these N-thioacyl-1,2-diamines could be enriched by simple recrystallization. The reduction of N-thioacyl-1,2-diamines with LiAlH(4) gave their corresponding 1,2-diamines in moderate-to-good yields with retention of their stereochemistry. The oxidative-desulfurization/cyclization of an N-thioacyl-1,2-diamine in CuCl(2)/O(2) and I(2)/pyridine systems gave the cyclized product in moderate yield and the trans isomer was obtained as the sole product. On the other hand, a similar cyclization reaction with antiformin (aq. NaClO) as an oxidant gave the cis isomer as the major product. The reactions of N-tosylaziridines gave the addition products of N-thioacyl-1,3-diamines with low diastereoselectivity but high regioselectivity and in good-to-excellent yields. The use of AlMe(3) as an additive improved the efficiency and regioselectivity of the reaction. The stereochemistry of the obtained products was determined by X-ray diffraction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Discovery of β-1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase involved in the metabolism of N-glycans.

    PubMed

    Nihira, Takanori; Suzuki, Erika; Kitaoka, Motomitsu; Nishimoto, Mamoru; Ohtsubo, Ken'ichi; Nakai, Hiroyuki

    2013-09-20

    A gene cluster involved in N-glycan metabolism was identified in the genome of Bacteroides thetaiotaomicron VPI-5482. This gene cluster encodes a major facilitator superfamily transporter, a starch utilization system-like transporter consisting of a TonB-dependent oligosaccharide transporter and an outer membrane lipoprotein, four glycoside hydrolases (α-mannosidase, β-N-acetylhexosaminidase, exo-α-sialidase, and endo-β-N-acetylglucosaminidase), and a phosphorylase (BT1033) with unknown function. It was demonstrated that BT1033 catalyzed the reversible phosphorolysis of β-1,4-D-mannosyl-N-acetyl-D-glucosamine in a typical sequential Bi Bi mechanism. These results indicate that BT1033 plays a crucial role as a key enzyme in the N-glycan catabolism where β-1,4-D-mannosyl-N-acetyl-D-glucosamine is liberated from N-glycans by sequential glycoside hydrolase-catalyzed reactions, transported into the cell, and intracellularly converted into α-D-mannose 1-phosphate and N-acetyl-D-glucosamine. In addition, intestinal anaerobic bacteria such as Bacteroides fragilis, Bacteroides helcogenes, Bacteroides salanitronis, Bacteroides vulgatus, Prevotella denticola, Prevotella dentalis, Prevotella melaninogenica, Parabacteroides distasonis, and Alistipes finegoldii were also suggested to possess the similar metabolic pathway for N-glycans. A notable feature of the new metabolic pathway for N-glycans is the more efficient use of ATP-stored energy, in comparison with the conventional pathway where β-mannosidase and ATP-dependent hexokinase participate, because it is possible to directly phosphorylate the D-mannose residue of β-1,4-D-mannosyl-N-acetyl-D-glucosamine to enter glycolysis. This is the first report of a metabolic pathway for N-glycans that includes a phosphorylase. We propose 4-O-β-D-mannopyranosyl-N-acetyl-D-glucosamine:phosphate α-D-mannosyltransferase as the systematic name and β-1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase as the short name for BT1033.

  14. Identification of benzoquinones in pretreated lignocellulosic feedstocks and inhibitory effects on yeast.

    PubMed

    Stagge, Stefan; Cavka, Adnan; Jönsson, Leif J

    2015-12-01

    Pretreatment of lignocellulosic biomass under acidic conditions gives rise to by-products that inhibit fermenting microorganisms. An analytical procedure for identification of p-benzoquinone (BQ) and 2,6-dimethoxybenzoquinone (DMBQ) in pretreated biomass was developed, and the inhibitory effects of BQ and DMBQ on the yeast Saccharomyces cerevisiae were assessed. The benzoquinones were analyzed using ultra-high performance liquid chromatography-electrospray ionization-triple quadrupole-mass spectrometry after derivatization with 2,4-dinitrophenylhydrazine. Pretreatment liquids examined with regard to the presence of BQ and DMBQ originated from six different lignocellulosic feedstocks covering agricultural residues, hardwood, and softwood, and were produced through impregnation with sulfuric acid or sulfur dioxide at varying pretreatment temperature (165-204 °C) and residence time (6-20 min). BQ was detected in all six pretreatment liquids in concentrations ranging up to 6 mg/l, while DMBQ was detected in four pretreatment liquids in concentrations ranging up to 0.5 mg/l. The result indicates that benzoquinones are ubiquitous as by-products of acid pretreatment of lignocellulose, regardless of feedstock and pretreatment conditions. Fermentation experiments with BQ and DMBQ covered the concentration ranges 2 mg/l to 1 g/l and 20 mg/l to 1 g/l, respectively. Even the lowest BQ concentration tested (2 mg/l) was strongly inhibitory to yeast, while 20 mg/l DMBQ gave a slight negative effect on ethanol formation. This work shows that benzoquinones should be regarded as potent and widespread inhibitors in lignocellulosic hydrolysates, and that they warrant attention besides more well-studied inhibitory substances, such as aliphatic carboxylic acids, phenols, and furan aldehydes.

  15. Fabricating pH-stable and swellable very thin hyperbranched poly(ethylene imine)-oligosaccharide films fabricated without precoating: first view on protein adsorption.

    PubMed

    Warenda, Monika; Richter, Anne; Schmidt, Diana; Janke, Andreas; Müller, Martin; Simon, Frank; Zimmermann, Ralf; Eichhorn, Klaus-Jochen; Voit, Brigitte; Appelhans, Dietmar

    2012-09-14

    For using successful (ultra)thin dendritic macromolecule films in (bio)sensing and microfluidic devices and for obtaining reproducible film properties, alteration effects arising from precoatings have to be avoided. Here, oligosaccharide-modified hyperbranched poly(ethylene imine)s (PEI-OS) were used to fabricate very thin PEI-OS films (15-20 nm in dry state), cross-linked with citric acid under condensation, and vacuum condition. However, no reactive precoating is necessary to obtain stable films, which allows very simple film preparation and avoids alteration of the PEIS-OS film properties arising from precoating. Several methods [(in situ) ellipsometry, AFM, XPS, (in situ) ATR-IR, streaming potential measurements] were applied to characterize homogeneity, surface morphology, and stability of these PEI-OS films between pH 2 and pH 10, but also the low protein adsorption behavior. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Inhibition of FoxO1 acetylation by INHAT subunit SET/TAF-Iβ induces p21 transcription.

    PubMed

    Chae, Yun-Cheol; Kim, Kee-Beom; Kang, Joo-Young; Kim, Se-Ryeon; Jung, Hyeon-Soo; Seo, Sang-Beom

    2014-08-25

    Post-translational modification of forkhead family transcription factor, FoxO1, is an important regulatory mode for its diverse activities. FoxO1 is acetylated by HAT coactivators and its transcriptional activity is decreased via reduced DNA binding affinity. Here, we report that SET/TAF-Iβ inhibited p300-mediated FoxO1 acetylation in an INHAT domain-dependent manner. SET/TAF-Iβ interacted with FoxO1 and activated transcription of FoxO1 target gene, p21. Moreover, SET/TAF-Iβ inhibited acetylation of FoxO1 and increased p21 transcription induced by oxidative stress. Our results suggest that SET/TAF-Iβ inhibits FoxO1 acetylation and activates its transcriptional activity toward p21. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Palladium(II) complexes with highly basic imidazolin-2-imines and their reactivity toward small bio-molecules.

    PubMed

    Bogojeski, Jovana; Volbeda, Jeroen; Freytag, Matthias; Tamm, Matthias; Bugarčić, Živadin D

    2015-10-21

    A series of novel Pd(ii) complexes with chelating mono(imidazolin-2-imine) and bis(imidazolin-2-imine) ligands were synthesized. The crystal structures of [Pd(DMEAIm(iPr))Cl2] and [Pd(DPENIm(iPr))Cl2] were determined by X-ray diffraction analysis. The reactivity of the six Pd(ii) complexes, namely, [Pd(en)Cl2], [Pd(EAIm(iPr))Cl2], [Pd(DMEAIm(iPr))Cl2], [Pd(DPENIm(iPr))Cl2], [Pd(BL(iPr))Cl2] and [Pd(DACH(Im(iPr))2)Cl2], were investigated. Spectrophotometric acid-base titrations were performed to determine the pKa values of the coordinated water molecules in [Pd(en)(H2O)2](2+), [Pd(EAIm(iPr))(H2O)2](2+), [Pd(DMEAIm(iPr))(H2O)2](2+), [Pd(DPENIm(iPr))(H2O)2](2+), [Pd(BL(iPr))(H2O)2](2+) and [Pd(DACH(Im(iPr))2)(H2O)2](2+). The substitution of the chloride ligands in these complexes by TU, l-Met, l-His and Gly was studied under pseudo-first-order conditions as a function of the nucleophile concentration and temperature using stopped-flow techniques; the sulfur-donor nucleophiles have shown better reactivity than nitrogen-donor nucleophiles. The obtained results indicate that there is a clear correlation between the nature of the imidazolin-2-imine ligands and the acid-base characteristics and reactivity of the resulting Pd(ii) complexes; the order of reactivity of the investigated Pd(ii) complexes is: [Pd(en)Cl2] > [Pd(EAIm(iPr))Cl2] > [Pd(DMEAIm(iPr))Cl2] > [Pd(DPENIm(iPr))Cl2] > [Pd(BL(iPr))Cl2] > [Pd(DACH(Im(iPr))2)Cl2]. The solubility measurements revealed good solubility of the studied imidazolin-2-imine complexes in water, despite the fact that these Pd(ii) complexes are neutral complexes. Based on the performed studies, three unusual features of the novel imidazolin-2-imine Pd(ii) complexes are observed, that is, good solubility in water, very low reactivity and high pKa values. The coordination geometries around the palladium atoms are distorted square-planar; the [Pd(DMEAIm(iPr))Cl2] complex displays Pd-N distances of 2.013(2) and 2.076(2) Å, while the [Pd

  18. RNA content in the nucleolus alters p53 acetylation via MYBBP1A

    PubMed Central

    Kuroda, Takao; Murayama, Akiko; Katagiri, Naohiro; Ohta, Yu-mi; Fujita, Etsuko; Masumoto, Hiroshi; Ema, Masatsugu; Takahashi, Satoru; Kimura, Keiji; Yanagisawa, Junn

    2011-01-01

    A number of external and internal insults disrupt nucleolar structure, and the resulting nucleolar stress stabilizes and activates p53. We show here that nucleolar disruption induces acetylation and accumulation of p53 without phosphorylation. We identified three nucleolar proteins, MYBBP1A, RPL5, and RPL11, involved in p53 acetylation and accumulation. MYBBP1A was tethered to the nucleolus through nucleolar RNA. When rRNA transcription was suppressed by nucleolar stress, MYBBP1A translocated to the nucleoplasm and facilitated p53–p300 interaction to enhance p53 acetylation. We also found that RPL5 and RPL11 were required for rRNA export from the nucleolus. Depletion of RPL5 or RPL11 blocked rRNA export and counteracted reduction of nucleolar RNA levels caused by inhibition of rRNA transcription. As a result, RPL5 or RPL11 depletion inhibited MYBBP1A translocation and p53 activation. Our observations indicated that a dynamic equilibrium between RNA generation and export regulated nucleolar RNA content. Perturbation of this balance by nucleolar stress altered the nucleolar RNA content and modulated p53 activity. PMID:21297583

  19. Anti-p-benzoquinone antibody level as a prospective biomarker to identify smokers at risk for COPD

    PubMed Central

    Banerjee, Santanu; Bhattacharyya, Parthasarathi; Mitra, Subhra; Kundu, Somenath; Panda, Samiran; Chatterjee, Indu B

    2017-01-01

    Background and objective Identification of smokers having predisposition to COPD is important for early intervention to reduce the huge global burden of the disease. Using a guinea pig model, we have shown that p-benzoquinone (p-BQ) derived from cigarette smoke (CS) in the lung is a causative factor for CS-induced emphysema. p-BQ is also derived from CS in smokers and it elicits the production of anti-p-BQ antibody in humans. We therefore hypothesized that anti-p-BQ antibody might have a protective role against COPD and could be used as a predictive biomarker for COPD in smokers. The objective of this study was to compare the serum anti-p-BQ antibody level between smokers with and without COPD for the evaluation of the hypothesis. Methods Serum anti-p-BQ antibody concentrations of current male smokers with (n=227) or without (n=308) COPD were measured by an indirect enzyme-linked immunoabsorbent assay (ELISA) developed in our laboratory. COPD was diagnosed by spirometry according to Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines. Results and discussion A significant difference was observed in the serum anti-p-BQ antibody level between smokers with and without COPD (Mann–Whitney U-test =4,632.5, P=0.000). Receiver operating characteristic (ROC) curve analysis indicated that the ELISA had significant precision (area under the curve [AUC] =0.934, 95% confidence interval [CI]: 0.913–0.935) for identifying smokers with COPD from their low antibody level. The antibody cutoff value of 29.4 mg/dL was constructed from the ROC coordinates to estimate the risk for COPD in smokers. While 90.3% of smokers with COPD had a low antibody value (≤29.4 mg/dL), the majority (86.4%) of smokers without COPD had a high antibody value (≤29.4 mg/dL); 13.6% of current smokers without COPD having an antibody level below this cutoff value (odds ratio [OR] =59.3, 95% CI: 34.15–101.99) were considered to be at risk for COPD. Conclusion and future directions

  20. Effect of Anti-Hepatotoxic Agents Against Microcystin-LR Toxicity in Cultured Rat Hepatocytes

    DTIC Science & Technology

    1989-01-10

    mechanisms of both agents against microcystin-LR indced toxicosis. Toxins such as acetaminophen, N-acetyl-p-benzoquinone, bromobenzeiv, dicoumarol, menadione ...ORRENIUS, S. (1984). Menadione -imduced cytoxicity is associated with protein thiol oxidation and alteration in intracellular Ca+ 2 homeostasis. Arch...G. AND ORRENIUS, S. (1985). inhibition of hepatocyte plasma membrane Ca+ 2-ATPase activity by menadione metabolism and its restoration by thiols

  1. Evaluation of the inhibitory effect of N-acetyl-L-cysteine on Babesia and Theileria parasites.

    PubMed

    Rizk, Mohamed Abdo; El-Sayed, Shimaa Abd El-Salam; AbouLaila, Mahmoud; Yokoyama, Naoaki; Igarashi, Ikuo

    2017-08-01

    N-acetyl-L-cysteine is known to have antibacterial, antiviral, antimalarial, and antioxidant activities. Therefore, the in vitro inhibitory effect of this hit was evaluated in the present study on the growth of Babesia and Theileria parasites. The in vitro growth of Babesia bovis, Babesia bigemina, Babesia divergens, Theileria equi, and Babesia caballi that were tested was significantly inhibited (P < 0.05) by micromolar concentrations of N-acetyl-L-cysteine. The inhibitory effect of N-acetyl-L-cysteine was synergistically potentiated when used in combination with diminazene aceturate on B. bovis and B. caballi cultures. These results indicate that N-acetyl-L-cysteine might be used as a drug for the treatment of babesiosis, especially when used in combination with diminazene aceturate. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Regulation of Nur77 protein turnover through acetylation and deacetylation induced by p300 and HDAC1.

    PubMed

    Kang, Shin-Ae; Na, Hyelin; Kang, Hyun-Jin; Kim, Sung-Hye; Lee, Min-Ho; Lee, Mi-Ock

    2010-09-15

    Although the roles of Nur77, an orphan member of the nuclear hormone receptor superfamily, in the control of cellular proliferation, apoptosis, inflammation, and glucose metabolism, are well recognized, the molecular mechanism regulating the activity and expression of Nur77 is not fully understood. Acetylation of transcription factors has emerged recently as a major post-translational modification that regulates protein stability and transcriptional activity. Here, we examined whether Nur77 is acetylated, and we characterized potential associated factors. First, Nur77 was found to be an acetylated protein when examined by immunoprecipitation and western blotting using acetyl protein-specific antibodies. Second, expression of p300, which possesses histone acetyltransferase activity, enhanced the acetylation and protein stability of Nur77. Treatment with a histone deacetylase (HDAC) inhibitor, trichostatin A, also increased Nur77 acetylation. Among the several types of HDACs, HDAC1 was found as the major enzyme affecting protein level of Nur77. HDAC1 decreased the acetylation level, protein level, and transcriptional activity of Nur77. Interestingly, overexpression of Nur77 induced expression of both p300 and HDAC1. Finally, the expression of Nur77 increased along with that of p300, but decreased with induction of HDAC1 after treatment with epithelial growth factor, nerve growth factor, or 6-mercaptopurine, suggesting that the self-control of the acetylation status contributes to the transient induction of Nur77 protein. Taken together, these results demonstrate that acetylation of Nur77 is modulated by p300 and HDAC1, and suggest that acetylation is an important post-translational modification for the rapid turnover of Nur77 protein. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Radiolysis of N-acetyl amino acids as model compounds for radiation degradation of polypeptides

    NASA Astrophysics Data System (ADS)

    Wayne Garrett, R.; Hill, David J. T.; Ho, Sook-Ying; O'Donnell, James H.; O'Sullivan, Paul W.; Pomery, Peter J.

    Radiation chemical yields of (i) the volatile radiolysis products and (ii) the trapped free radicals from the y-radiolysis of the N-acetyl derivatives of glycine, L-valine, L-phenylalanine and L-tyrosine in the polycrystalline state have been determined at room temperature (303 K). Carbon dioxide was found to be the major molecular product for all these compounds with G(CO 2) varying from 0.36 for N-acetyl-L-tyrosine to 8 for N-acetyl-L-valine. There was evidence for some scission of the N-C α bond, indicated by the production of acetamide and the corresponding aliphatic acid, but the determination reaction was found to be of much lesser importance than the decarboxylation reaction. A protective effect of the aromatic ring in N-acetyl-L-phenylalanine and in N-acetyl-L-tyrosine was indicated by the lower yields of volatile products for these compounds. The yields of trapped free radicals were found to vary with the nature of the amino acid side chain, increasing with chain length and chain branching. The radical yields were decreased by incorporation of an aromatic moiety in the side chain, this effect being greater for the tyrosyl side chain than for the phenyl side chain. The G(R·) values showed a good correlation with G(CO 2) indicating that a common reaction may be involved in radical production and carbon dioxide formation.

  4. Catabolism and Detoxification of 1-Aminoalkylphosphonic Acids: N-Acetylation by the phnO Gene Product

    PubMed Central

    Hove-Jensen, Bjarne; McSorley, Fern R.; Zechel, David L.

    2012-01-01

    In Escherichia coli uptake and catabolism of organophosphonates are governed by the phnCDEFGHIJKLMNOP operon. The phnO cistron is shown to encode aminoalkylphosphonate N-acetyltransferase, which utilizes acetylcoenzyme A as acetyl donor and aminomethylphosphonate, (S)- and (R)-1-aminoethylphosphonate, 2-aminoethyl- and 3-aminopropylphosphonate as acetyl acceptors. Aminomethylphosphonate, (S)-1-aminoethylphosphonate, 2-aminoethyl- and 3-aminopropylphosphonate are used as phosphate source by E. coli phn+ strains. 2-Aminoethyl- or 3-aminopropylphosphonate but not aminomethylphosphonate or (S)-1-aminoethylphosphonate is used as phosphate source by phnO strains. Neither phn+ nor phnO strains can use (R)-1-aminoethylphosphonate as phosphate source. Utilization of aminomethylphosphonate or (S)-1-aminoethylphosphonate requires the expression of phnO. In the absence of phnO-expression (S)-1-aminoethylphosphonate is bacteriocidal and rescue of phnO strains requires the simultaneous addition of d-alanine and phosphate. An intermediate of the carbon-phosphorus lyase pathway, 5′-phospho-α-d-ribosyl 1′-(2-N-acetamidoethylphosphonate), a substrate for carbon-phosphorus lyase, was found to accumulate in cultures of a phnP mutant strain. The data show that the physiological role of N-acetylation by phnO-specified aminoalkylphosphonate N-acetyltransferase is to detoxify (S)-1-aminoethylphosphonate, an analog of d-alanine, and to prepare (S)-1-aminoethylphosphonate and aminomethylphosphonate for utilization of the phosphorus-containing moiety. PMID:23056305

  5. Highly active, low-valence molybdenum- and tungsten-amide catalysts for bifunctional imine-hydrogenation reactions.

    PubMed

    Chakraborty, Subrata; Blacque, Olivier; Fox, Thomas; Berke, Heinz

    2014-01-01

    The reactions of [M(NO)(CO)4(ClAlCl3)] (M=Mo, W) with (iPr2PCH2CH2)2NH, (PN(H)P) at 90 °C afforded [M(NO)(CO)(PN(H)P)Cl] complexes (M=Mo, 1a; W, 1b). The treatment of compound 1a with KOtBu as a base at room temperature yielded the alkoxide complex [Mo(NO)(CO)(PN(H)P)(OtBu)] (2a). In contrast, with the amide base Na[N(SiMe3 )2 ], the PN(H) P ligand moieties in compounds 1a and 1b could be deprotonated at room temperature, thereby inducing dehydrochlorination into amido complexes [M(NO)(CO)(PNP)] (M=Mo, 3a; W, 3b; PNP=(iPr2PCH2CH2)2N)). Compounds 3a and 3b have pseudo-trigonal-bipyramidal geometries, in which the amido nitrogen atom is in the equatorial plane. At room temperature, compounds 3a and 3b were capable of adding dihydrogen, with heterolytic splitting, thereby forming pairs of isomeric amine-hydride complexes [Mo(NO)(CO)H(PN(H)P)] (4a(cis) and 4a(trans)) and [W(NO)(CO)H(PN(H)P)] (4b(cis) and 4b(trans); cis and trans correspond to the position of the H and NO groups). H2 approaches the Mo/W=N bond in compounds 3a,b from either the CO-ligand side or from the NO-ligand side. Compounds 4a(cis) and 4a(trans) were only found to be stable under a H2 atmosphere and could not be isolated. At 140 °C and 60 bar H2 , compounds 3a and 3b catalyzed the hydrogenation of imines, thereby showing maximum turnover frequencies (TOFs) of 2912 and 1120 h(-1), respectively, for the hydrogenation of N-(4-methoxybenzylidene)aniline. A Hammett plot for various para-substituted imines revealed linear correlations with a negative slope of -3.69 for para substitution on the benzylidene side and a positive slope of 0.68 for para substitution on the aniline side. Kinetics analysis revealed the initial rate of the hydrogenation reactions to be first order in c(cat.) and zeroth order in c(imine). Deuterium kinetic isotope effect (DKIE) experiments furnished a low kH /kD value (1.28), which supported a Noyori-type metal-ligand bifunctional mechanism with H2 addition as the rate

  6. Total synthesis of (+)-batzelladine A and (-)-batzelladine D via [4 + 2]-annulation of vinyl carbodiimides with N-alkyl imines.

    PubMed

    Arnold, Michael A; Day, Kenneth A; Durón, Sergio G; Gin, David Y

    2006-10-11

    A diastereoselective [4 + 2]-annulation of vinyl carbodiimides with chiral N-alkyl imines has been developed to access the stereochemically rich polycyclic guanidine cores of the batzelladine alkaloids. Application of this strategy, together with additional key steps such as long-range directed hydrogenation and diastereoselective intramolecular iodo-amination, led to highly convergent total syntheses of (-)-batzelladine D and (+)-batzelladine A with excellent stereocontrol.

  7. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false N-Acetyl-L-methionine. 172.372 Section 172.372 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional...

  8. Mycobacterium tuberculosis Arylamine N-Acetyltransferase Acetylates and Thus Inactivates para-Aminosalicylic Acid.

    PubMed

    Wang, Xude; Yang, Shanshan; Gu, Jing; Deng, Jiaoyu

    2016-12-01

    Mycobacterium tuberculosis arylamine N-acetyltransferase (TBNAT) is able to acetylate para-aminosalicylic acid (PAS) both in vitro and in vivo as determined by high-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (ESI-MS) techniques. The antituberculosis activity of the acetylated PAS is significantly reduced. As a result, overexpression of TBNAT in M. tuberculosis results in PAS resistance, as determined by MIC tests and drug exposure experiments. Taken together, our results suggest that TBNAT from M. tuberculosis is able to inactivate PAS by acetylating the compound. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Pharmacokinetics and N-acetylation metabolism of S-methyl-l-cysteine and trans-S-1-propenyl-l-cysteine in rats and dogs.

    PubMed

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji

    2016-11-01

    1. Pharmacokinetics and N-acetylation metabolism of S-methyl-L-cysteine (SMC) and trans-S-1-propenyl-L-cysteine (S1PC) were examined in rats and dogs. SMC and S1PC (2-5 mg/kg) were well absorbed in both species with high bioavailability (88-100%). 2. SMC and S1PC were excreted only to a small extent in the urine of rats and dogs. The small renal clearance values (<0.03 l/h/kg) indicated the extensive renal reabsorption of SMC and S1PC, which potentially contributed to their long elimination half-lives (>5 h) in dogs. 3. S1PC, but not SMC, underwent N-acetylation extensively in vivo, which can be explained by the relative activities of N-acetylation of S1PC/SMC and deacetylation of their N-acetylated forms, N-acetyl-S1PC/N-acetyl-SMC, in the liver and kidney in vitro. The activities for S1PC N-acetylation were similar to or higher than those for N-acetyl-S1PC deacetylation in liver S9 fractions of rat and dog, whereas liver and kidney S9 fractions of rat and dog had little activity for SMC N-acetylation or considerably higher activities for N-acetyl-SMC deacetylation. 4. Our study demonstrated that the pharmacokinetics of SMC and S1PC in rats and dogs was characterized by high bioavailability and extensive renal reabsorption; however, the extent of undergoing the N-acetylation metabolism was extremely different between SMC and S1PC.

  10. New spectrophotometric and radiochemical assays for acetyl-CoA: arylamine N-acetyltransferase applicable to a variety of arylamines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andres, H.H.; Klem, A.J.; Szabo, S.M.

    1985-03-01

    Simple and sensitive spectrophotometric and radiochemical procedures are described for the assay of acetyl-CoA:arylamine N-acetyltransferase (NAT), which catalyzes the reaction acetyl-CoA + arylamine----N-acetylated arylamine + CoASH. The methods are applicable to crude tissue homogenates and blood lysates. The spectrophotometric assay is characterized by two features: (i) NAT activity is measured by quantifying the disappearance of the arylamine substrate as reflected by decreasing Schiff's base formation with dimethylaminobenzaldehyde. (ii) During the enzymatic reaction, the inhibitory product CoASH is recycled by the system acetyl phosphate/phosphotransacetylase to the substrate acetyl-CoA. The radiochemical procedure depends on enzymatic synthesis of (/sup 3/H)acetyl-CoA in the assaymore » using (/sup 3/H)acetate, ATP, CoASH, and acetyl-CoA synthetase. NAT activity is measured by quantifying N-(/sup 3/H)acetylarylamine after separation from (/sup 3/H)acetate by extraction. Product inhibition by CoASH is prevented in this system by the use of acetyl-CoA synthetase.« less

  11. N-Acetyl cysteine and clomiphene citrate for induction of ovulation in polycystic ovary syndrome: a cross-over trial.

    PubMed

    Badawy, Ahmed; State, Omnia; Abdelgawad, Soma

    2007-01-01

    To compare clomiphene citrate plus N-acetyl cysteine versus clomiphene citrate for inducing ovulation in patients with polycystic ovary syndrome. Prospective cross-over trial. University teaching hospital and a private practice setting. Five hundred and seventy-three patients were treated with clomiphene citrate for one menstrual cycle among which 470 patients were treated with clomiphene citrate plus N-acetyl cysteine for another cycle. All women suffered from polycystic ovary syndrome. Patients had clomiphene citrate 50-mg tablets twice daily alone or with N-acetyl cysteine 1,200 mg/day orally for 5 days starting on day 3 of the menstrual cycle. Primary outcomes were number of mature follicles, serum E2, serum progesterone, and endometrial thickness. Secondary outcome was the occurrence of pregnancy. Ovulation rate improved significantly after the addition of N-acetyl cysteine (17.9% versus 52.1%). Although the number of mature follicles was more in the N-acetyl cysteine group (2.1+/-0.88 versus 3.2+/-0.93), the difference was not statistically significant. The mean E2 levels (pg/ml) at the time of human chorionic gonadotropine injection, serum progesterone levels (ng/ml) on days 21-23 of the cycle, and the endometrial thickness were significantly improved in the N-acetyl cysteine group. The overall pregnancy rate was 11.5% in the N-acetyl cysteine group. Insulin resistance occurred in 260 patients (55.4%). There was no significant difference between the insulin resistance group (n = 260) and non-insulin resistance group (n = 210) as regards ovulation rate, number of follicles, serum E2 (pg/ml), serum progesterone (ng/ml), endometrial thickness (mm), or pregnancy rate. N-Acetyl cysteine is proved effective in inducing or augmenting ovulation in polycystic ovary patients.

  12. Analysis of benzoquinone decomposition in solution plasma process

    NASA Astrophysics Data System (ADS)

    Bratescu, M. A.; Saito, N.

    2016-01-01

    The decomposition of p-benzoquinone (p-BQ) in Solution Plasma Processing (SPP) was analyzed by Coherent Anti-Stokes Raman Spectroscopy (CARS) by monitoring the change of the anti-Stokes signal intensity of the vibrational transitions of the molecule, during and after SPP. Just in the beginning of the SPP treatment, the CARS signal intensities of the ring vibrational molecular transitions increased under the influence of the electric field of plasma. The results show that plasma influences the p-BQ molecules in two ways: (i) plasma produces a polarization and an orientation of the molecules in the local electric field of plasma and (ii) the gas phase plasma supplies, in the liquid phase, hydrogen and hydroxyl radicals, which reduce or oxidize the molecules, respectively, generating different carboxylic acids. The decomposition of p-BQ after SPP was confirmed by UV-visible absorption spectroscopy and liquid chromatography.

  13. Transactivation of bad by vorinostat-induced acetylated p53 enhances doxorubicin-induced cytotoxicity in cervical cancer cells.

    PubMed

    Lee, Sook-Jeong; Hwang, Sung-Ook; Noh, Eun Joo; Kim, Dong-Uk; Nam, Miyoung; Kim, Jong Hyeok; Nam, Joo Hyun; Hoe, Kwang-Lae

    2014-02-14

    Vorinostat (VOR) has been reported to enhance the cytotoxic effects of doxorubicin (DOX) with fewer side effects because of the lower DOX dosage in breast cancer cells. In this study, we investigated the novel mechanism underlying the synergistic cytotoxic effects of VOR and DOX co-treatment in cervical cancer cells HeLa, CaSki and SiHa cells. Co-treatment with VOR and DOX at marginal doses led to the induction of apoptosis through caspase-3 activation, poly (ADP-ribose) polymerase cleavage and DNA micronuclei. Notably, the synergistic growth inhibition induced by the co-treatment was attributed to the upregulation of the pro-apoptotic protein Bad, as the silencing of Bad expression using small interfering RNA (siRNA) abolished the phenomenon. As siRNA against p53 did not result in an increase in acetylated p53 and the consequent upregulation of Bad, the observed Bad upregulation was mediated by acetylated p53. Moreover, a chromatin immunoprecipitation analysis showed that the co-treatment of HeLa cells with VOR and DOX increased the recruitment of acetylated p53 to the bad promoter, with consequent bad transactivation. Conversely, C33A cervical cancer cells containing mutant p53 co-treated with VOR and DOX did not exhibit Bad upregulation, acetylated p53 induction or consequent synergistic growth inhibition. Together, the synergistic growth inhibition of cervical cancer cell lines induced by co-treatment with VOR and DOX can be attributed to the upregulation of Bad, which is induced by acetylated p53. These results show for the first time that the acetylation of p53, rather than histones, is a mechanism for the synergistic growth inhibition induced by VOR and DOX co-treatments.

  14. Lactose-egg yolk diluent supplemented with N-acetyl-D-glucosamine affect acrosome morphology and motility of frozen-thawed boar sperm.

    PubMed

    Yi, Y J; Im, G S; Park, C S

    2002-12-16

    These experiments were carried out to investigate the effect of N-acetyl-D-glucosamine, and to obtain additional information about the effect of orvus es paste (OEP) and egg yolk concentration in the freezing of boar sperm in the maxi-straw. The highest post-thaw acrosomes of normal apical ridge (NAR) and motility were obtained with 0.025 or 0.05% N-acetyl-D-glucosamine concentration in the first diluent. However, there were no effects of N-acetyl-D-glucosamine among the diluents with or without N-acetyl-D-glucosamine at the second dilution. The N-acetyl-D-glucosamine in the first and second diluents was added at room temperatures (20-23 degrees C) and 5 degrees C, respectively. It is suggested that the temperature of N-acetyl-D-glucosamine addition is important for the effect of boar sperm protection during freezing and thawing. When the 0.05% N-acetyl-D-glucosamine was supplemented in the first diluent, the optimum final OEP content was 0.5%. The optimum content of egg yolk in the diluent with 0.05% N-acetyl-D-glucosamine concentration was 20% and egg yolk was one of the main cryoprotective agents. In conclusion, we found out that the diluent with 0.025 or 0.05% soluble N-acetyl-D-glucosamine in the first diluent, 0.5% final orvus es paste concentration and 20% egg yolk concentration significantly enhanced NAR acrosomes and motility of boar sperm after freezing and thawing. Copyright 2002 Elsevier Science B.V.

  15. Reversible Lysine Acetylation Regulates Activity of Human Glycine N-Acyltransferase-like 2 (hGLYATL2)

    PubMed Central

    Waluk, Dominik P.; Sucharski, Filip; Sipos, Laszlo; Silberring, Jerzy; Hunt, Mary C.

    2012-01-01

    Lysine acetylation is a major post-translational modification of proteins and regulates many physiological processes such as metabolism, cell migration, aging, and inflammation. Proteomic studies have identified numerous lysine-acetylated proteins in human and mouse models (Kim, S. C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., Cheng, T., Kho, Y., Xiao, H., Xiao, L., Grishin, N. V., White, M., Yang, X. J., and Zhao, Y. (2006) Mol. Cell 23, 607–618). One family of proteins identified in this study was the murine glycine N-acyltransferase (GLYAT) enzymes, which are acetylated on lysine 19. Lysine 19 is a conserved residue in human glycine N-acyltransferase-like 2 (hGLYATL2) and in several other species, showing that this residue may be important for enzyme function. Mutation of lysine 19 in recombinant hGLYATL2 to glutamine (K19Q) and arginine (K19R) resulted in a 50–80% lower production of N-oleoyl glycine and N-arachidonoylglycine, indicating that lysine 19 is important for enzyme function. LC/MS/MS confirmed that Lys-19 is not acetylated in wild-type hGLYATL2, indicating that Lys-19 requires to be deacetylated for full activity. The hGLYATL2 enzyme conjugates medium- and long-chain saturated and unsaturated acyl-CoA esters to glycine, resulting in the production of N-oleoyl glycine and also N-arachidonoyl glycine. N-Oleoyl glycine and N-arachidonoyl glycine are structurally and functionally related to endocannabinoids and have been identified as signaling molecules that regulate functions like the perception of pain and body temperature and also have anti-inflammatory properties. In conclusion, acetylation of lysine(s) in hGLYATL2 regulates the enzyme activity, thus linking post-translational modification of proteins with the production of biological signaling molecules, the N-acyl glycines. PMID:22408254

  16. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-{kappa}B p65 subunit and cytotoxicity in renal proximal tubule cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Yu Jin; Lee, Jung Eun; Lee, Ae Sin

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Cisplatin increases acetylation of NF-{kappa}B p65 subunit in HK2 cells. Black-Right-Pointing-Pointer SIRT1 overexpression decreases cisplatin-induced p65 acetylation and -cytotoxicity. Black-Right-Pointing-Pointer Resveratrol decreased cisplatin-induced cell viability through deacetylation of p65. -- Abstract: As the increased acetylation of p65 is linked to nuclear factor-{kappa}B (NF-{kappa}B) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD{sup +})-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistancemore » in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-{kappa}B p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-{kappa}B during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-{kappa}B p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-{kappa}B through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.« less

  17. A Mechanistic and Structural Analysis of the Inhibition of the 90-kDa Heat Shock Protein by the Benzoquinone and Hydroquinone AnsamycinsS⃞

    PubMed Central

    Reigan, Philip; Siegel, David; Guo, Wenchang

    2011-01-01

    The benzoquinone ansamycins inhibit the ATPase activity of the 90-kDa heat shock protein (Hsp90), disrupting the function of numerous client proteins involved in oncogenesis. In this study, we examine the role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the metabolism of trans- and cis-amide isomers of the benzoquinone ansamycins and their mechanism of Hsp90 inhibition. Inhibition of purified human Hsp90 by a series of benzoquinone ansamycins was examined in the presence and absence of NQO1, and their relative rate of NQO1-mediated reduction was determined. Computational-based molecular docking simulations indicated that the trans- but not the cis-amide isomers of the benzoquinone ansamycins could be accommodated by the NQO1 active site, and the ranking order of binding energies correlated with the relative reduction rate using purified human NQO1. The trans-cis isomerization of the benzoquinone ansamycins in Hsp90 inhibition has been disputed in recent reports. Previous computational studies have used the closed or cocrystallized Hsp90 structures in an attempt to explore this isomerization step; however, we have successfully docked both the trans- and cis-amide isomers of the benzoquinone ansamycins into the open Hsp90 structure. The results of these studies indicate that both trans- and cis-amide isomers of the hydroquinone ansamycins exhibited increased binding affinity for Hsp90 relative to their parent quinones. Our data support a mechanism in which trans- rather than cis-amide forms of benzoquinone ansamycins are metabolized by NQO1 to hydroquinone ansamycins and that Hsp90-mediated trans-cis isomerization via tautomerization plays an important role in subsequent Hsp90 inhibition. PMID:21285336

  18. Total Synthesis of (+)-Batzelladine A and (−)-Batzelladine D via [4 + 2]-Annulation of Vinyl Carbodiimides with N-Alkyl Imines

    PubMed Central

    Arnold, Michael A.; Day, Kenneth A.; Durón, Sergio G.; Gin, David Y.

    2008-01-01

    A diastereoselective [4 + 2]-annulation of vinyl carbodiimides with chiral N-alkyl imines has been developed to access the stereochemically rich polycyclic guanidine cores of the batzelladine alkaloids. Application of this strategy, together with additional key steps such as long-range directed hydrogenation and diastereoselective intramolecular iodo-amination, led to highly convergent total syntheses of (−)-batzelladine D and (+)-batzelladine A with excellent stereocontrol. PMID:17017806

  19. Improved expression, purification and crystallization of a putative N-acetyl-γ-glutamyl-phosphate reductase from rice (Oryza sativa)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura-Ohnuma, Jun; Nonaka, Tsuyoshi; Katoh, Shizue

    2005-12-01

    Crystals of OsAGPR were obtained using the sitting-drop vapour-diffusion method at 293 K and diffract X-rays to at least 1.8 Å resolution. They belong to the hexagonal space group P6{sub 1}, with unit-cell parameters a = 86.11, c = 316.3 Å. N-Acetyl-γ-glutamyl-phosphate reductase (AGPR) catalyzes the third step in an eight-step arginine-biosynthetic pathway that starts with glutamate. This enzyme converts N-acetyl-γ-glutamyl phosphate to N-acetylglutamate-γ-semialdehyde by an NADPH-dependent reductive dephosphorylation. AGPR from Oryza sativa (OsAGPR) was expressed in Escherichia coli at 291 K as a soluble fusion protein with an upstream thioredoxin-hexahistidine [Trx-(His){sub 6}] extension. OsAGPR(Ala50–Pro366) was purified and crystals weremore » obtained using the sitting-drop vapour-diffusion method at 293 K and diffract X-rays to at least 1.8 Å resolution. They belong to the hexagonal space group P6{sub 1}, with unit-cell parameters a = 86.11, c = 316.3 Å.« less

  20. miRNA-122 Protects Mice and Human Hepatocytes from Acetaminophen Toxicity by Regulating Cytochrome P450 Family 1 Subfamily A Member 2 and Family 2 Subfamily E Member 1 Expression.

    PubMed

    Chowdhary, Vivek; Teng, Kun-Yu; Thakral, Sharda; Zhang, Bo; Lin, Cho-Hao; Wani, Nissar; Bruschweiler-Li, Lei; Zhang, Xiaoli; James, Laura; Yang, Dakai; Junge, Norman; Brüschweiler, Rafael; Lee, William M; Ghoshal, Kalpana

    2017-12-01

    Acetaminophen toxicity is a leading cause of acute liver failure (ALF). We found that miRNA-122 (miR-122) is down-regulated in liver biopsy specimens of patients with ALF and in acetaminophen-treated mice. A marked decrease in the primary miR-122 expression occurs in mice on acetaminophen overdose because of suppression of its key transactivators, hepatocyte nuclear factor (HNF)-4α and HNF6. More importantly, the mortality rates of male and female liver-specific miR-122 knockout (LKO) mice were significantly higher than control mice when injected i.p. with an acetaminophen dose not lethal to the control. LKO livers exhibited higher basal expression of cytochrome P450 family 2 subfamily E member 1 (CYP2E1) and cytochrome P450 family 1 subfamily A member 2 (CYP1A2) that convert acetaminophen to highly reactive N-acetyl-p-benzoquinone imine. Upregulation of Cyp1a2 primary transcript and mRNA in LKO mice correlated with the elevation of aryl hydrocarbon receptor (AHR) and mediator 1 (MED1), two transactivators of Cyp1a2. Analysis of ChIP-seq data in the ENCODE (Encyclopedia of DNA Element) database identified association of CCCTC-binding factor (CTCF) with Ahr promoter in mouse livers. Both MED1 and CTCF are validated conserved miR-122 targets. Furthermore, depletion of Ahr, Med1, or Ctcf in Mir122 -/- hepatocytes reduced Cyp1a2 expression. Pulse-chase studies found that CYP2E1 protein level is upregulated in LKO hepatocytes. Notably, miR-122 depletion sensitized differentiated human HepaRG cells to acetaminophen toxicity that correlated with upregulation of AHR, MED1, and CYP1A2 expression. Collectively, these results reveal a critical role of miR-122 in acetaminophen detoxification and implicate its therapeutic potential in patients with ALF. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. pH-dependent optical properties of N-acetyl-L-cysteine-capped ZnSe(S) nanocrystals with intense/stable emissions

    NASA Astrophysics Data System (ADS)

    Soheyli, Ehsan; Sahraei, Reza; Nabiyouni, Gholamreza

    2017-03-01

    In the present study, a series of aqueous-based ZnSe(S) nanocrystals (NCs) was prepared at different solution pH ranging from 8 to 11.9, and using N-acetyl-L-cysteine (NAC) as capping agent. In addition to zinc blende structure, the X-ray diffraction studies demonstrated the quantum size regime of the ZnSe(S) NCs. To gain further insight toward the influence of the quantum confinement and pH values on optical properties of the as-prepared NCs, their UV-visible absorption and photoluminescence spectra were systematically analyzed. The absorption spectra experienced a red shift from 340 to 382 nm as the pH increased from 8.0 to 11.9, indicating the growth of the as-prepared ZnSe(S) NCs. The emission spectra also show the obvious red shift and the relative area of excitonic to trap emission, firstly increases from pH = 8.0 to 10.7, and then decreases by further increasing of the solution pH. The initial behavior might be due to the improved surface passivation of the trap dangling states by better deprotonation of thiol groups in NAC, whereas at pH >10.7, the faster growth rate of the ZnSe(s) NCs may lead to the formation of many defect sites. All of these phenomena were combined in the scheme which displays the effect of quantum confinement and solution pH on variation of the excitonic and trap-related emissions.

  2. N-acetyl-L-cysteine combined with mesalamine in the treatment of ulcerative colitis: Randomized, placebo-controlled pilot study

    PubMed Central

    Guijarro, Luis G; Mate, Jose; Gisbert, Javier P; Perez-Calle, Jose Luis; Marín-Jimenez, Ignacio; Arriaza, Encarna; Olleros, Tomás; Delgado, Mario; Castillejo, Maria S; Prieto-Merino, David; Lara, Venancio Gonzalez; Peña, Amado Salvador

    2008-01-01

    AIM: To evaluate the effectiveness and safety of oral N-acetyl-L-cysteine (NAC) co-administration with mesalamine in ulcerative colitis (UC) patients. METHODS: Thirty seven patients with mild to moderate UC were randomized to receive a four-wk course of oral mesalamine (2.4 g/d) plus N-acetyl-L-cysteine (0.8 g/d) (group A) or mesalamine plus placebo (group B). Patients were monitored using the Modified Truelove-Witts Severity Index (MTWSI). The primary endpoint was clinical remission (MTWSI ≤ 2) at 4 wk. Secondary endpoints were clinical response (defined as a reduction from baseline in the MTWSI of ≥ 2 points) and drug safety. The serum TNF-α, interleukin-6, interleukin-8 and MCP-1 were evaluated at baseline and at 4 wk of treatment. RESULTS: Analysis per-protocol criteria showed clinical remission rates of 63% and 50% after 4 wk treatment with mesalamine plus N-acetyl-L-cysteine (group A) and mesalamine plus placebo (group B) respectively (OR = 1.71; 95% CI: 0.46 to 6.36; P = 0.19; NNT = 7.7). Analysis of variance (ANOVA) of data indicated a significant reduction of MTWSI in group A (P = 0.046) with respect to basal condition without significant changes in the group B (P = 0.735) during treatment. Clinical responses were 66% (group A) vs 44% (group B) after 4 wk of treatment (OR = 2.5; 95% CI: 0.64 to 9.65; P = 0.11; NNT = 4.5). Clinical improvement in group A correlated with a decrease of IL-8 and MCP-1. Rates of adverse events did not differ significantly between both groups. CONCLUSION: In group A (oral NAC combined with mesalamine) contrarily to group B (mesalamine alone), the clinical improvement correlates with a decrease of chemokines such as MCP-1 and IL-8. NAC addition not produced any side effects. PMID:18473409

  3. Silyl Ketene Imines: Highly Versatile Nucleophiles for Catalytic, Asymmetric Synthesis

    PubMed Central

    Denmark, Scott E.; Wilson, Tyler W.

    2012-01-01

    This Minireview provides an overview on the development of silyl ketene imines and their recent applications in catalytic, enantioselective reactions. The unique structure of the ketene imine allows a diverse range of reactivity patterns and provides solutions to existing challenges in the enantioselective construction of quaternary stereogenic carbon centers and cross-benzoin adducts. A variety of reactions for which silyl ketene imines have been applied are presented with an overall goal of inspiring new uses for these underutilized nucleophiles. PMID:22968901

  4. Inhibition of SIRT1 Catalytic Activity Increases p53 Acetylation but Does Not Alter Cell Survival following DNA Damage

    PubMed Central

    Solomon, Jonathan M.; Pasupuleti, Rao; Xu, Lei; McDonagh, Thomas; Curtis, Rory; DiStefano, Peter S.; Huber, L. Julie

    2006-01-01

    Human SIRT1 is an enzyme that deacetylates the p53 tumor suppressor protein and has been suggested to modulate p53-dependent functions including DNA damage-induced cell death. In this report, we used EX-527, a novel, potent, and specific small-molecule inhibitor of SIRT1 catalytic activity to examine the role of SIRT1 in p53 acetylation and cell survival after DNA damage. Treatment with EX-527 dramatically increased acetylation at lysine 382 of p53 after different types of DNA damage in primary human mammary epithelial cells and several cell lines. Significantly, inhibition of SIRT1 catalytic activity by EX-527 had no effect on cell growth, viability, or p53-controlled gene expression in cells treated with etoposide. Acetyl-p53 was also increased by the histone deacetylase (HDAC) class I/II inhibitor trichostatin A (TSA). EX-527 and TSA acted synergistically to increase acetyl-p53 levels, confirming that p53 acetylation is regulated by both SIRT1 and HDACs. While TSA alone reduced cell survival after DNA damage, the combination of EX-527 and TSA had no further effect on cell viability and growth. These results show that, although SIRT1 deacetylates p53, this does not play a role in cell survival following DNA damage in certain cell lines and primary human mammary epithelial cells. PMID:16354677

  5. Genetically Epilepsy-Prone Rats Have Increased Brain Regional Activity of an Enzyme Which Liberates Glutamate from N-acetyl-aspartyl-glutamate

    DTIC Science & Technology

    1992-01-01

    DISTRIBUTION C OOt .APPROVED FOR PUPLIC RELEASE: DISTRIBUTION UNLIMITED Ii. A STRA T (Minls.m200oids N-Acetylated-a- 1 n (’ed acidic dip cpL,2ase (N...aspartate (NAA) and the excitatory amino acid , glutamate (CLU). Although there is evidence that NAAG might be a neurotransmitter, this dipoptide could...Genetics; Itippocampus: E-ctlsatlltmt pilepsy-, Glutamate: N-Acetylated-o-1 inked acidic dipeptidasc-: Enrniatic: IIrosz:NAAG: Aspartalc N-Acetylated-a

  6. Neuroprotection in rabbit retina with N-acetyl-aspartylglutamate and 2-phosphonyl-methyl pentanedioic acid

    NASA Astrophysics Data System (ADS)

    Hacker, Henry D.; Yourick, Debra L.; Koenig, Michael K.; Slusher, Barbara S.; Meyerhoff, James L.

    1999-06-01

    Retinal tissue is subject to ischemia from diabetic retinopathy and other conditions that affect the retinal vasculature such as lupus erythematosus and temporal arteritis. There is evidence in animal models of reversible ischemia that a therapeutic window exists during early recovery when agents that reduce glutamate activity at its receptor sites can rescue neurons from injury. To model ischemia, we used sodium cyanide (NaCN), to inhibit oxidative metabolism, and 2-deoxyglucose (2-DG) to inhibit glycolysis. Dissociated rabbit retina cells were studied to evaluate the potential neuroprotective effects of N-acetyl-aspartyl-glutamate (MAAG), which competes with glutamate as a low-potency agonist at the NMDA receptor complex. N-acetylated α-linked acidic dipeptidase (NAALADase; the NAAG-hydrolyzing enzyme) is responsible for the hydrolysis of NAAG into glutamate, a neurotransmitter and potent excitotoxin, and N-acetylaspartate. 2-Phosphonyl-methyl pentanedioic acid (PMPA) and β-linked NAAG (β-NAAG), inhibitors of NAALADase, were also tested, since inhibition of NAALADase could reduce synaptic glutamate and increase the concentration of NAAG. We found that metabolic inhibition with NaCN/2-DG for 1 hour caused 50% toxicity as assessed with the MTT assay. Co-treatment with NAAG resulted in dose-dependent protection of up to 55% (p<0.005). When the non-hydrolyzable, NAALADase inhibitor β-NAAG was employed dose-dependent protection of up to 37% was observed (p<0.001). PMPA also showed 48% protection (p<.05-.001) against these insults. These data suggest that NAAG may antagonize the effect of glutamate at the NMDA receptor complex in retina. Inhibition of NAALADase by PMPA and β-NAAG may increase the activity of endogenous NAAG.

  7. Effect of N-acetyl cysteine on orthodontic primers cytotoxicity.

    PubMed

    D'Antò, Vincenzo; Spagnuolo, Gianrico; Schweikl, Helmut; Rengo, Sandro; Ambrosio, Luigi; Martina, Roberto; Valletta, Rosa

    2011-02-01

    The aims of this study were to evaluate the cytotoxicity of four orthodontic primers, including two hydrophilic and two hydrophobic materials, and to investigate the role of the reactive oxygen species (ROS) in induced cell damage. Moreover, the effects of the anti-oxidant N-acetyl cysteine (NAC) on primers toxicity was analyzed. Human gingival fibroblasts (HGF) were exposed to different concentrations of primers (0-0.25 mg/ml) in the presence or absence of NAC, and the cytotoxicity was assessed by the MTT assay, while cell death was quantified by flow cytometry after propidium iodide staining. The increase in the induced ROS levels was detected by flow cytometry measuring the fluorescence of the oxidation-sensitive dye 2',7'-dichlorofluorescein diacetate (DCFH-DA). All materials decreased cell viability in a dose-related manner after a 24 h exposure period. Cytotoxicity of orthodontic primers based on concentrations which caused a 50% decrease in cell viability (TC₅₀) in HGF was ranked as follows (median values): Eagle Fluorsure (0.078 mg/ml)>Transbond XT (0.081 mg/ml)>Transbond MIP (0.128 mg/ml)>Ortho solo (0.130 mg/ml). Moreover, in HGF cells, all materials induced a dose-dependent increase in ROS levels compared to untreated cells. Incubation of HGF with NAC significantly reduced ROS production and decreased the cell damage and cytotoxicity caused by all materials tested (p<0.001). Our results suggested that hydrophilic primers were less cytotoxic than hydrophobic materials. Moreover, we demonstrated a major role of ROS in the induction of cell death since the antioxidant N-acetyl cysteine was able to prevent cell damage induced by all materials tested. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Multiconfiguration Self-Consistent Field Study on Formonitrile Imine and N-Substituted Nitrile Imines HCN2-R: Energy Component Analysis of the Pseudo-Jahn-Teller Effect.

    PubMed

    Toyota, Azumao; Muramatsu, Takashi; Koseki, Shiro

    2017-03-23

    Stable geometrical structures for formonitrile imine (1) and N-substituted nitrile imines HCN 2 -R (R = Li, BeH, BH 2 , CH 3 , CN, CCH, C 6 H 5 , NH 2 , OH, and F) (2-11) were examined by using the multiconfiguration self-consistent-field (MCSCF) method followed by second-order configuration interaction (SOCI) calculations and second-order multiconfiguration quasi-degenerate perturbation theory (MCQDPT2) calculations, together with the aug-cc-pVTZ basis sets. The results show that 1 suffers a pseudo-Jahn-Teller (JT) distortion from a linear C ∞v structure to a C 1 structure via a planar bent C s structure. Each of the others is found to undergo pseudo-JT distortion from a symmetrical structure to a planar bent C s structure for 2, 3, and 7 and to a C 1 structure for 4, 5, 6, 8, 9, 10, and 11. At the stationary structures of 1-11, the structural characteristics were briefly discussed in terms of allenic and propargylic. To elucidate the nature of pseudo-JT distortions, energy component analyses were carried out at the MCSCF+SOCI level of theory at all of the stationary structures for the relevant molecules. In most of the molecules examined, pseudo-JT stabilizations were classified into two groups, one in which the stability arises from a lowering of the energy of the attractive term V en and the other in which the stability results from a lowering of the energy of the repulsive terms V nn and V ee . In addition to the above two groups, it was also found that the following three groups are responsible for the pseudo-JT stabilizations in a certain stage of the structural changes. Namely, one is a lowering of the energy of the term V ee observed in 6, another is a lowering of the energy of the terms V ee and V en observed in 9-11, and the other is a lowering of the energy of the terms V en and V nn observed in 10. These energetic behaviors were accounted in terms of an elongation or a contraction of the molecular skeleton, a migration of electrons from one part of

  9. Acetylation within the N- and C-Terminal Domains of Src Regulates Distinct Roles of STAT3-Mediated Tumorigenesis.

    PubMed

    Huang, Chao; Zhang, Zhe; Chen, Lihan; Lee, Hank W; Ayrapetov, Marina K; Zhao, Ting C; Hao, Yimei; Gao, Jinsong; Yang, Chunzhang; Mehta, Gautam U; Zhuang, Zhengping; Zhang, Xiaoren; Hu, Guohong; Chin, Y Eugene

    2018-06-01

    Posttranslational modifications of mammalian c-Src N-terminal and C-terminal domains regulate distinct functions. Myristoylation of G 2 controls its cell membrane association and phosphorylation of Y419/Y527 controls its activation or inactivation, respectively. We provide evidence that Src-cell membrane association-dissociation and catalytic activation-inactivation are both regulated by acetylation. In EGF-treated cells, CREB binding protein (CBP) acetylates an N-terminal lysine cluster (K5, K7, and K9) of c-Src to promote dissociation from the cell membrane. CBP also acetylates the C-terminal K401, K423, and K427 of c-Src to activate intrinsic kinase activity for STAT3 recruitment and activation. N-terminal domain phosphorylation (Y14, Y45, and Y68) of STAT3 by c-Src activates transcriptionally active dimers of STAT3. Moreover, acetyl-Src translocates into nuclei, where it forms the Src-STAT3 enhanceosome for gene regulation and cancer cell proliferation. Thus, c-Src acetylation in the N-terminal and C-terminal domains play distinct roles in Src activity and regulation. Significance: CBP-mediated acetylation of lysine clusters in both the N-terminal and C-terminal regions of c-Src provides additional levels of control over STAT3 transcriptional activity. Cancer Res; 78(11); 2825-38. ©2018 AACR . ©2018 American Association for Cancer Research.

  10. Co-Administration of Metformin and N-Acetyl Cysteine Fails to Improve Clinical Manifestations in PCOS Individual Undergoing ICSI

    PubMed Central

    Cheraghi, Ebrahim; Soleimani Mehranjani, Malek; Shariatzadeh, Mohammad Ali; Nasr Esfahani, Mohammad Hossein; Ebrahimi, Zahra

    2014-01-01

    Background Studies have demonstrated the efficacy of metformin (MTF ) in reducing insulin resistance and N-acetyl cysteine (NAC) in inhibiting oxidative stress which are involved in the pathogenesis of polycystic ovarian syndrome (PCOS). We aimed to compare the effects of MTF and NAC combination on serum metabolite and hormonal levels during the course of ovulation induction in PCOS individual candidates of intracytoplasmic sperm injection (ICSI). Materials and Methods In this prospective randomized clinical trial, placebo con- trolled pilot study, 80 patients of polycystic ovarian syndrome at the age of 25-35 years were divided into 4 groups (n=20): i. NAC=treated with N-acetyl cysteine (600 mg three times daily), ii. MTF=treated with metformin (500 mg three times daily), iii. MTF+NAC=treated with N-acetyl cysteine plus metformin (the offered doses) and iv. placebo (PLA). A total number of 20 patients (6 from MTF group, 4 from NAC group, 6 from MTF+NAC group and 4 from PLA group) were dropped of the study. The drugs were administrated from day 3 of menses of previous cycle until ovum pick-up. Results Serum levels of luteinizing hormone (LH), total testosterone, cholester- ol and triglyceride, insulin and leptin significantly reduced in the MTF and NAC groups compared to the placebo (p<0.01). But levels of LH, total testosterone, cholesterol and triglyceride had no significant reduction in the MTF+NAC groups compared to the placebo. The serum levels of malonyldialdehyde (MDA), insulin and leptin reduced significantly after treatment in the MTF+NAC group compared to the placebo (p<0.05). Conclusion Considering the adverse effect of combination therapy, we proposed the conadministration might have no beneficial effect for PCOS patient during course of ovulation induction of ICSI (Registration Number: IRCT201204159476N1). PMID:25083175

  11. Impact of peptidoglycan O-acetylation on autolytic activities of the Enterococcus faecalis N-acetylglucosaminidase AtlA and N-acetylmuramidase AtlB.

    PubMed

    Emirian, Aurélie; Fromentin, Sophie; Eckert, Catherine; Chau, Françoise; Dubost, Lionel; Delepierre, Muriel; Gutmann, Laurent; Arthur, Michel; Mesnage, Stéphane

    2009-09-17

    Autolysins are potentially lethal enzymes that partially hydrolyze peptidoglycan for incorporation of new precursors and septum cleavage after cell division. Here, we explored the impact of peptidoglycan O-acetylation on the enzymatic activities of Enterococcus faecalis major autolysins, the N-acetylglucosaminidase AtlA and the N-acetylmuramidase AtlB. We constructed isogenic strains with various O-acetylation levels and used them as substrates to assay E. faecalis autolysin activities. Peptidoglycan O-acetylation had a marginal inhibitory impact on the activities of these enzymes. In contrast, removal of cell wall glycopolymers increased the AtlB activity (37-fold), suggesting that these polymers negatively control the activity of this enzyme.

  12. Electric-field triggered controlled release of bioactive volatiles from imine-based liquid crystalline phases.

    PubMed

    Herrmann, Andreas; Giuseppone, Nicolas; Lehn, Jean-Marie

    2009-01-01

    Application of an electric field to liquid crystalline film forming imines with negative dielectric anisotropy, such as N-(4-methoxybenzylidene)-4-butylaniline (MBBA, 1), results in the expulsion of compounds that do not participate in the formation of the liquid crystalline phase. Furthermore, amines and aromatic aldehydes undergo component exchange with the imine by generating constitutional dynamic libraries. The strength of the electric field and the duration of its application to the liquid crystalline film influence the release rate of the expelled compounds and, at the same time, modulate the equilibration of the dynamic libraries. The controlled release of volatile organic molecules with different chemical functionalities from the film was quantified by dynamic headspace analysis. In all cases, higher headspace concentrations were detected in the presence of an electric field. These results point to the possibility of using imine-based liquid crystalline films to build devices for the controlled release of a broad variety of bioactive volatiles as a direct response to an external electric signal.

  13. Photoinduced electron transfer between benzyloxy dendrimer phthalocyanine and benzoquinone

    NASA Astrophysics Data System (ADS)

    Zhang, Tiantian; Ma, Dongdong; Pan, Sujuan; Wu, Shijun; Jiang, Yufeng; Zeng, Di; Yang, Hongqin; Peng, Yiru

    2016-10-01

    Photo-induced electron transfer (PET) is an important and fundamental process in natural photosynthesis. To mimic such interesting PET process, a suitable donor and acceptor couple were properly chosen. Dendrimer phthalocyanines and their derivatives have emerged as promising materials for artificial photosynthesis systems. In this paper, the electron transfer between the light harvest dendrimer phthalocyanine (donor) and the 1,4-benzoquinone (acceptor) was studied by UV/Vis and fluorescence spectroscopic methods. It was found that fluorescence of phthalocyanine was quenched by benzoquinone (BQ) via excited state electron transfer, from the phthalocyanine to the BQ upon excitation at 610 nm. The Stern-Volmer constant (KSV) of electron transfer was calculated. Our study suggests that this dendritic phthalocyanine is an effective new electron donor and transmission complex and could be used as a potential artificial photosynthesis system.

  14. Acetyl coenzyme A synthetase is acetylated on multiple lysine residues by a protein acetyltransferase with a single Gcn5-type N-acetyltransferase (GNAT) domain in Saccharopolyspora erythraea.

    PubMed

    You, Di; Yao, Li-Li; Huang, Dan; Escalante-Semerena, Jorge C; Ye, Bang-Ce

    2014-09-01

    Reversible lysine acetylation (RLA) is used by cells of all domains of life to modulate protein function. To date, bacterial acetylation/deacetylation systems have been studied in a few bacteria (e.g., Salmonella enterica, Bacillus subtilis, Escherichia coli, Erwinia amylovora, Mycobacterium tuberculosis, and Geobacillus kaustophilus), but little is known about RLA in antibiotic-producing actinomycetes. Here, we identify the Gcn5-like protein acetyltransferase AcuA of Saccharopolyspora erythraea (SacAcuA, SACE_5148) as the enzyme responsible for the acetylation of the AMP-forming acetyl coenzyme A synthetase (SacAcsA, SACE_2375). Acetylated SacAcsA was deacetylated by a sirtuin-type NAD(+)-dependent consuming deacetylase (SacSrtN, SACE_3798). In vitro acetylation/deacetylation of SacAcsA enzyme was studied by Western blotting, and acetylation of lysine residues Lys(237), Lys(380), Lys(611), and Lys(628) was confirmed by mass spectrometry. In a strain devoid of SacAcuA, none of the above-mentioned Lys residues of SacAcsA was acetylated. To our knowledge, the ability of SacAcuA to acetylate multiple Lys residues is unique among AcuA-type acetyltransferases. Results from site-specific mutagenesis experiments showed that the activity of SacAcsA was controlled by lysine acetylation. Lastly, immunoprecipitation data showed that in vivo acetylation of SacAcsA was influenced by glucose and acetate availability. These results suggested that reversible acetylation may also be a conserved regulatory posttranslational modification strategy in antibiotic-producing actinomycetes. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. Role of N-Acetyl-Seryl-Aspartyl-Lysyl-Proline in the Antifibrotic and Anti-Inflammatory Effects of the Angiotensin-Converting Enzyme Inhibitor Captopril in Hypertension

    PubMed Central

    Peng, Hongmei; Carretero, Oscar A.; Liao, Tang-Dong; Peterson, Edward L.; Rhaleb, Nour-Eddine

    2012-01-01

    Angiotensin-converting enzyme inhibitors (ACEis) are known to have antifibrotic effects on the heart and kidney in both animal models and humans. N-acetyl-seryl-aspartyl-lysyl-proline is a natural inhibitor of proliferation of hematopoietic stem cells and a natural substrate of ACEi that was reported to prevent cardiac and renal fibrosis in vivo. However, it is not clear whether N-acetyl-seryl-aspartyl-lysyl-proline participates in the antifibrotic effects of ACEi. To clarify this issue, we used a model of aldosterone-salt–induced hypertension in rats treated with the ACEi captopril either alone or combined with an anti-N-acetyl-seryl-aspartyl-lysyl-proline monoclonal antibody. These hypertensive rats had the following: (1) left ventricular and renal hypertrophy, as well as increased collagen deposition in the left ventricular and the kidney; (2) glomerular matrix expansion; and (3) increased ED1-positive cells and enhanced phosphorylated-p42/44 mitogen-activated protein kinase in the left ventricle and kidney. The ACEi alone significantly lowered systolic blood pressure (P=0.008) with no effect on organ hypertrophy; it significantly lowered left ventricular collagen content, and this effect was blocked by the monoclonal antibody as confirmed by the histological data. As expected, the ACEi significantly decreased renal collagen deposition and glomerular matrix expansion, and these effects were attenuated by the monoclonal antibody. Likewise, the ACEi significantly decreased ED1-positive cells and inhibited p42/44 mitogen-activated protein kinase phosphorylation in the left ventricle and kidney, and these effects were blocked by the monoclonal antibody. We concluded that in aldosterone-salt–induced hypertension, the antifibrotic effect of ACEi on the heart and kidney, is partially mediated by N-acetyl-seryl-aspartyl-lysyl-proline, resulting in decreased inflammatory cell infiltration and p42/44 mitogen-activated protein kinase activation. PMID:17283252

  16. Acetylation of spermidine and methylglyoxal bis(guanylhydrazone) in baby-hamster kidney cells (BHK-21/C13).

    PubMed Central

    Wallace, H M; Nuttall, M E; Robinson, F C

    1988-01-01

    Treatment of BHK-21/C13 cells with methylglyoxal bis(guanylhydrazone) (MGBG) induced the cytosolic form of spermidine N1-acetyltransferase. It stabilized the enzyme against proteolytic degradation, but the drug did not affect the enzyme activity in vitro. MGBG was itself acetylated by BHK-21/C13 cells, but at only one-tenth the rate at which spermidine was acetylated. Acetylation occurred almost exclusively in the nuclear fraction. The product was identified as N-acetyl-MGBG by h.p.l.c., by using [3H]acetyl-CoA and [14C]MGBG as co-substrates. The results suggest that the acetylation of MGBG by BHK-21/C13 cells occurs by a different acetyltransferase enzyme from that which acetylates spermidine. PMID:3421945

  17. Trifluoperazine inhibits acetaminophen-induced hepatotoxicity and hepatic reactive nitrogen formation in mice and in freshly isolated hepatocytes.

    PubMed

    Banerjee, Sudip; Melnyk, Stepan B; Krager, Kimberly J; Aykin-Burns, Nukhet; McCullough, Sandra S; James, Laura P; Hinson, Jack A

    2017-01-01

    The hepatotoxicity of acetaminophen (APAP) occurs by initial metabolism to N-acetyl-p-benzoquinone imine which depletes GSH and forms APAP-protein adducts. Subsequently, the reactive nitrogen species peroxynitrite is formed from nitric oxide (NO) and superoxide leading to 3-nitrotyrosine in proteins. Toxicity occurs with inhibited mitochondrial function. We previously reported that in hepatocytes the nNOS (NOS1) inhibitor NANT inhibited APAP toxicity, reactive nitrogen and oxygen species formation, and mitochondrial dysfunction. In this work we examined the effect of trifluoperazine (TFP), a calmodulin antagonist that inhibits calcium induced nNOS activation, on APAP hepatotoxicity and reactive nitrogen formation in murine hepatocytes and in vivo . In freshly isolated hepatocytes TFP inhibited APAP induced toxicity, reactive nitrogen formation (NO, GSNO, and 3-nitrotyrosine in protein), reactive oxygen formation (superoxide), loss of mitochondrial membrane potential, decreased ATP production, decreased oxygen consumption rate, and increased NADH accumulation. TFP did not alter APAP induced GSH depletion in the hepatocytes or the formation of APAP protein adducts which indicated that reactive metabolite formation was not inhibited. Since we previously reported that TFP inhibits the hepatotoxicity of APAP in mice without altering hepatic APAP-protein adduct formation, we examined the APAP treated mouse livers for evidence of reactive nitrogen formation. 3-Nitrotyrosine in hepatic proteins and GSNO were significantly increased in APAP treated mouse livers and decreased in the livers of mice treated with APAP plus TFP. These data are consistent with a hypothesis that APAP hepatotoxicity occurs with altered calcium metabolism, activation of nNOS leading to increased reactive nitrogen formation, and mitochondrial dysfunction.

  18. Mechanism of amido-thiourea catalyzed enantioselective imine hydrocyanation: transition state stabilization via multiple non-covalent interactions.

    PubMed

    Zuend, Stephan J; Jacobsen, Eric N

    2009-10-28

    An experimental and computational investigation of amido-thiourea promoted imine hydrocyanation has revealed a new and unexpected mechanism of catalysis. Rather than direct activation of the imine by the thiourea, as had been proposed previously in related systems, the data are consistent with a mechanism involving catalyst-promoted proton transfer from hydrogen isocyanide to imine to generate diastereomeric iminium/cyanide ion pairs that are bound to catalyst through multiple noncovalent interactions; these ion pairs collapse to form the enantiomeric alpha-aminonitrile products. This mechanistic proposal is supported by the observation of a statistically significant correlation between experimental and calculated enantioselectivities induced by eight different catalysts (P < 0.01). The computed models reveal a basis for enantioselectivity that involves multiple stabilizing and destabilizing interactions between substrate and catalyst, including thiourea-cyanide and amide-iminium interactions.

  19. Interactive transport of guanidinylated poly(propylene imine)-based dendrimers through liposomal and cellular membranes.

    PubMed

    Tsogas, Ioannis; Sideratou, Zili; Tsiourvas, Dimitris; Theodossiou, Theodossis A; Paleos, Constantinos M

    2007-10-15

    The ability of guanidinylated poly(propylene imine) dendrimers to translocate across lipid bilayers was assessed by employing either a model phosphate-bearing liposomal membrane system or A549 human lung carcinoma cells. Two dendrimer generations, differing in the number of surface guanidinium groups, were employed, while surface acetylation or the use of spacers affected the binding of the guanidinium group to the phosphate moiety and finally the transport efficiency. Following adhesion of dendrimers with liposomes, fusion or transport occurred. Transport through the liposomal bilayer was observed at low guanidinium/phosphate molar ratios, and was enhanced when the bilayer was in the liquid-crystalline phase. For effective transport through the liposomal membrane, an optimum balance between the binding strength and the degree of hydrophobicity of the guanidinylated dendrimer is required. In experiments performed in vitro with cells, efficient penetration and internalization in subcellular organelles and cytosol was observed.

  20. Acetylation of nucleosomal histones by p300 facilitates transcription from tax-responsive human T-cell leukemia virus type 1 chromatin template.

    PubMed

    Lu, Hanxin; Pise-Masison, Cynthia A; Fletcher, Terace M; Schiltz, R Louis; Nagaich, Akhilesh K; Radonovich, Michael; Hager, Gordon; Cole, Philip A; Brady, John N

    2002-07-01

    Expression of human T-cell leukemia virus type 1 (HTLV-1) is regulated by the viral transcriptional activator Tax. Tax activates viral transcription through interaction with the cellular transcription factor CREB and the coactivators CBP/p300. One key property of the coactivators is the presence of histone acetyltransferase (HAT) activity, which enables p300/CBP to modify nucleosome structure. The data presented in this manuscript demonstrate that full-length p300 and CBP facilitate transcription of a reconstituted chromatin template in the presence of Tax and CREB. The ability of p300 and CBP to activate transcription from the chromatin template is dependent upon the HAT activity. Moreover, the coactivator HAT activity must be tethered to the template by Tax and CREB, since a p300 mutant that fails to interact with Tax did not facilitate transcription or acetylate histones. p300 acetylates histones H3 and H4 within nucleosomes located in the promoter and 5' proximal regions of the template. Nucleosome acetylation is accompanied by an increase in the level of binding of RNA polymerase II transcription factor TFIID and RNA polymerase II to the promoter. Interestingly, we found distinct transcriptional activities between CBP and p300. CBP, but not p300, possesses an N-terminal activation domain which directly activates Tax-mediated HTLV-1 transcription from a naked DNA template. Finally, using the chromatin immunoprecipitation assay, we provide the first direct experimental evidence that p300 and CBP are associated with the HTLV-1 long terminal repeat in vivo.

  1. Poly-Cross-Linked PEI Through Aromatically Conjugated Imine Linkages as a New Class of pH-Responsive Nucleic Acids Packing Cationic Polymers

    PubMed Central

    Chen, Shun; Jin, Tuo

    2016-01-01

    Cationic polyimines polymerized through aromatically conjugated bis-imine linkages and intra-molecular cross-linking were found to be a new class of effective transfection materials for their flexibility in structural optimization, responsiveness to intracellular environment, the ability to facilitate endosome escape and cytosol release of the nucleic acids, as well as self-metabolism. When three phthalaldehydes of different substitution positions were used to polymerize highly branched low-molecular weight polyethylenimine (PEI 1.8K), the product through ortho-phthalimines (named PPOP) showed significantly higher transfection activity than its two tere- and iso-analogs (named PPTP and PPIP). Physicochemical characterization confirmed the similarity of three polyimines in pH-responded degradability, buffer capacity, as well as the size and Zeta potential of the polyplexes formed from the polymers. A mechanistic speculation may be that the ortho-positioned bis-imine linkage of PPOP may only lead to the straight trans-configuration due to steric hindrance, resulting in larger loops of intra-polymer cross-linking and more flexible backbone. PMID:26869931

  2. Biodegradation kinetics of 1,4-benzoquinone in batch and continuous systems.

    PubMed

    Kumar, Pardeep; Nemati, Mehdi; Hill, Gordon A

    2011-11-01

    Combining chemical and biological treatments is a potentially economic approach to remove high concentration of recalcitrant compounds from wastewaters. In the present study, the biodegradation of 1,4-benzoquinone, an intermediate compound formed during phenol oxidation by chlorine dioxide, was investigated using Pseudomonas putida (ATCC 17484) in batch and continuous bioreactors. Batch experiments were conducted to determine the effects of 1,4-benzoquinone concentration and temperature on the microbial activity and biodegradation kinetics. Using the generated data, the maximum specific growth rate and biodegradation rate were determined as 0.94 h(-1) and 6.71 mg of 1,4-benzoquinone l(-1) h(-1). Biodegradation in a continuous bioreactor indicated a linear relationship between substrate loading and biodegradation rates prior to wash out of the cells, with a maximum biodegradation rate of 246 mg l(-1) h(-1) observed at a loading rate of 275 mg l(-1) h(-1) (residence time: 1.82 h). Biokinetic parameters were also determined using the steady state substrate and biomass concentrations at various dilution rates and compared to those obtained in batch cultures.

  3. Zinc(II) mediated imine-enamine tautomerization as a new chemosensory protocol

    NASA Astrophysics Data System (ADS)

    Basa, Premnath

    Zinc (II) and copper (II) are prime transition cations that are not only abundant in free state in the human body but also in bound form. They play a key role in enzymes, electron transport, and oxygen transport systems. Recently, these cations have gained interest because of their implications in Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders. Although numerous fluorescent chemosensors are currently available, less is known about their homeostasis or their etiological role in serious neurological disorders. Therefore, the current research is dedicated to developing novel chemosensors with excellent photophysical and photochemical properties and investigating their potential application for real-life problems. The dynamic nature of imines has been well utilized for the selective detection of zinc by blocking the E/Z isomerization process. However, other mechanistic pathways are available for imines; analyte-induced imine hydrolysis and metal-triggered tautomerization approaches are proving to be attractive sensory protocols. The current project is focused on understanding the basic principles that dictate Zn(II)-triggered tautomerization as a new "OFF-ON" type chemosensor. Synthesis of target compounds was achieved and confirmed through elemental analysis, 1H NMR and 13C NMR, ESI-MS, FTIR, and single-crystal XRD techniques. Zinc sensitivity and selectivity in the presence of 16 other transition, alkali, and alkaline earth cations was monitored by means of various spectroscopic and spectrometric techniques (fluorescence, UV-Vis absorbance, NMR and ESI-MS). The environmental parameters (solvents, pH) of zinc-induced fluorescence were also investigated and details will be discussed. A second project that describes Cu(II)-catalyzed imine hydrolysis via colorimetric and fluorescence change was also investigated.

  4. Phenanthridine synthesis through iron-catalyzed intramolecular N-arylation of O-acetyl oxime.

    PubMed

    Deb, Indubhusan; Yoshikai, Naohiko

    2013-08-16

    O-Acetyl oximes derived from 2'-arylacetophenones undergo N-O bond cleavage/intramolecular N-arylation in the presence of a catalytic amount of iron(III) acetylacetonate in acetic acid. In combination with the conventional cross-coupling or directed C-H arylation, the reaction offers a convenient route to substituted phenanthridines.

  5. Redox potentials and pKa for benzoquinone from density functional theory based molecular dynamics.

    PubMed

    Cheng, Jun; Sulpizi, Marialore; Sprik, Michiel

    2009-10-21

    The density functional theory based molecular dynamics (DFTMD) method for the computation of redox free energies presented in previous publications and the more recent modification for computation of acidity constants are reviewed. The method uses a half reaction scheme based on reversible insertion/removal of electrons and protons. The proton insertion is assisted by restraining potentials acting as chaperones. The procedure for relating the calculated deprotonation free energies to Brønsted acidities (pK(a)) and the oxidation free energies to electrode potentials with respect to the normal hydrogen electrode is discussed in some detail. The method is validated in an application to the reduction of aqueous 1,4-benzoquinone. The conversion of hydroquinone to quinone can take place via a number of alternative pathways consisting of combinations of acid dissociations, oxidations, or dehydrogenations. The free energy changes of all elementary steps (ten in total) are computed. The accuracy of the calculations is assessed by comparing the energies of different pathways for the same reaction (Hess's law) and by comparison to experiment. This two-sided test enables us to separate the errors related with the restrictions on length and time scales accessible to DFTMD from the errors introduced by the DFT approximation. It is found that the DFT approximation is the main source of error for oxidation free energies.

  6. When is an imine not an imine? Unusual reactivity of a series of Cu(II) imine-pyridine complexes and their exploitation for the Henry reaction.

    PubMed

    Cooper, Christine J; Jones, Matthew D; Brayshaw, Simon K; Sonnex, Benjamin; Russell, Mark L; Mahon, Mary F; Allan, David R

    2011-04-14

    In this paper we report the synthesis and solid-state structures for a series of pyridine based Cu(II) complexes and preliminary data for the asymmetric Henry reaction. Interestingly, the solid-state structures indicate the incorporation of an alcohol into one of the imine groups of the ligand, forming a rare α-amino ether group. The complexes have been studied via single crystal X-ray diffraction, EPR spectroscopy and mass spectrometry. Intriguingly, it has been observed that the alcohol only adds to one of the imine moieties. Density functional theory (DFT) calculations have also been employed to rationalise the observed structures. The Cu(II) complexes have been tested in the asymmetric Henry reaction (benzaldehyde + nitromethane or nitroethane) with ee's up to 84% being achieved as well as high conversions and modest diastereoselectivities. © The Royal Society of Chemistry 2011

  7. Mechanism of Amido-Thiourea Catalyzed Enantioselective Imine Hydrocyanation: Transition State Stabilization via Multiple Non-Covalent Interactions

    PubMed Central

    Zuend, Stephan J.

    2009-01-01

    An experimental and computational investigation of amido-thiourea promoted imine hydrocyanation has revealed a new and unexpected mechanism of catalysis. Rather than direct activation of the imine by the thiourea, as had been proposed previously in related systems, the data are consistent with a mechanism involving catalyst-promoted proton transfer from hydrogen isocyanide to imine to generate diastereomeric iminium/cyanide ion pairs that are bound to catalyst through multiple non-covalent interactions; these ion pairs collapse to form the enantiomeric α-aminonitrile products. This mechanistic proposal is supported by the observation of a statistically significant correlation between experimental and calculated enantioselectivities induced by eight different catalysts (P ≪ 0.01). The computed models reveal a basis for enantioselectivity that involves multiple stabilizing and destabilizing interactions between substrate and catalyst, including thiourea-cyanide and amide-iminium interactions. PMID:19778044

  8. Therapeutic effect of Cryptotanshinone on experimental rheumatoid arthritis through downregulating p300 mediated-STAT3 acetylation.

    PubMed

    Wang, Ying; Zhou, Chun; Gao, Hui; Li, Cuixian; Li, Dong; Liu, Peiqing; Huang, Min; Shen, Xiaoyan; Liu, Liang

    2017-08-15

    The balance between T helper 17 (Th17) cells and regulatory T (Treg) cells, plays a critical role in rheumatoid arthritis (RA). The differentiation of Th17 cells requires the activation of STAT3, which determines the balance of Th17/Treg. Here, we investigated the therapeutic effect of Cryptotanshinone (CTS) on collagen induced mouse arthritis and explored the underlying mechanisms. Arthritis was induced in DBA/1 mice with bovine collagen type II and complete Freund's adjuvant. CTS was given at 20mgkg -1 d -1 or 60mgkg -1 d -1 by gavage for 6weeks. The immuno-inflammation and joint destruction were evaluated and the balance of Th17/Treg was determined. STAT3 acetylation and phosphorylation were detected by western blotting, and the involvement of p300 was investigated by siRNA and plasmid overexpression. CTS at a dose of 60mgkg -1 d -1 ameliorated the inflammation and joint destruction in CIA mice. It improved Th17/Treg imbalance, and inhibited both acetylation and phosphorylation of STAT3. CTS reduced p300 expression and its binding to STAT3, but increased phosphorylated AMPK. Knockdown of p300 mimicked the inhibitory effect of CTS on STAT3 acetylation and phosphorylation, which could be partially rescued by overexpression of p300-WT, but not p300-dominant negative (DN) construct. Our study suggested that the anti-arthritis effects of CTS were attained through suppression of p300-mediated STAT3 acetylation. Our data suggest that CTS might be a potential immune modulator for RA treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. N-acetyl-l-methionine is a superior protectant of human serum albumin against photo-oxidation and reactive oxygen species compared to N-acetyl-L-tryptophan.

    PubMed

    Kouno, Yousuke; Anraku, Makoto; Yamasaki, Keishi; Okayama, Yoshiro; Iohara, Daisuke; Ishima, Yu; Maruyama, Toru; Kragh-Hansen, Ulrich; Hirayama, Fumitoshi; Otagiri, Masaki

    2014-09-01

    Sodium octanoate (Oct) and N-acetyl-l-tryptophan (N-AcTrp) are widely used as stabilizers during pasteurization and storage of albumin products. However, exposure to light photo-degrades N-AcTrp with the formation of potentially toxic compounds. Therefore, we have examined the usefulness of N-acetyl-l-methionine (N-AcMet) in comparison with N-AcTrp for long-term stability, including photo stability, of albumin products. Recombinant human serum albumin (rHSA) with and without additives was photo-irradiated for 4weeks. The capability of the different stabilizers to scavenge reactive oxygen species (ROS) was examined by ESR spectrometry. Carbonyl contents were assessed by a spectrophotometric method using fluoresceinamine and Western blotting, whereas the structure of rHSA was examined by SDS-PAGE, far-UV circular dichroism and differential scanning calorimetry. Binding was determined by ultrafiltration. N-AcMet was found to be a superior ROS scavenger both before and after photo-irradiation. The number of carbonyl groups formed was lowest in the presence of N-AcMet. According to SDS-PAGE, N-AcMet stabilizes the monomeric form of rHSA, whereas N-AcTrp induces degradation of rHSA during photo-irradiation. The decrease in α-helical content of rHSA was the smallest in the presence of Oct, without or with N-AcMet. Photo-irradiation did not affect the denaturation temperature or calorimetric enthalpy of rHSA, when N-AcMet was present. The weakly bound N-AcMet is a superior protectant of albumin, because it is a better ROS-protector and structural stabilizer than N-AcTrp, and it is probable and also useful for other protein preparations. N-AcMet is an effective stabilizer of albumin during photo-irradiation, while N-Ac-Trp promotes photo-oxidative damage to albumin. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Synthesis, evaluation, and mechanism of N,N,N-trimethyl-D-glucosamine-(1→4)-chitooligosaccharides as selective inhibitors of glycosyl hydrolase family 20 β-N-acetyl-D-hexosaminidases.

    PubMed

    Yang, You; Liu, Tian; Yang, Yongliang; Wu, Qingyue; Yang, Qing; Yu, Biao

    2011-02-11

    GH20 β-N-acetyl-D-hexosaminidases are enzymes involved in many vital processes. Inhibitors that specifically target GH20 enzymes in pests are of agricultural and economic importance. Structural comparison has revealed that the bacterial chitindegrading β-N-acetyl-D-hexosaminidases each have an extra +1 subsite in the active site; this structural difference could be exploited for the development of selective inhibitors. N,N,Ntrimethyl-D-glucosamine (TMG)-chitotriomycin, which contains three GlcNAc residues, is a natural selective inhibitor against bacterial and insect β-N-acetyl-D-hexosaminidases. However, our structural alignment analysis indicated that the two GlcNAc residues at the reducing end might be unnecessary. To prove this hypothesis, we designed and synthesized a series of TMG-chitotriomycin analogues containing one to four GlcNAc units. Inhibitory kinetics and molecular docking showed that TMG-(GlcNAc)(2), is as active as TMG-chitotriomycin [TMG-(GlcNAc)(3)]. The selective inhibition mechanism of TMG-chitotriomycin was also explained. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Quantitative determination of sulfisoxazole and its three N-acetylated metabolites using HPLC-MS/MS, and the saturable pharmacokinetics of sulfisoxazole in mice.

    PubMed

    Oh, Kyungsoo; Baek, Moon-Chang; Kang, Wonku

    2016-09-10

    Sulfisoxazole (SFX) is still used in combination with trimethoprim in cattle despite adverse drug reactions (e.g., urolithiasis). Recently, SFX is known to be a promising repositioned drug candidate for pulmonary hypertension and cancer. We developed a simultaneous determination method of SFX and its N-acetylated metabolites (N(1)-acetyl SFX, N1AS; N(4)-acetyl SFX, N4AS; diacetyl SFX, DAS) using HPLC-MS/MS for the first time, and examined the pharmacokinetics of SFX in mice. N1AS and DAS were converted rapidly to SFX and N4AS, respectively, in mouse plasma. The time courses of plasma SFX and N4AS concentrations were well-characterised following the oral administration of SFX to mice. The absorption, metabolism, and/or excretion of SFX given at >700mg/kg may be saturable, and in contrast to humans and rats, the extent of systemic exposure of mice to N4AS was much greater than that of SFX. Interestingly, the acetyl groups at both N1- and N4-positions were degraded during the ionisation required to generate precursor ions. In additional experiments the carboxyl group of N-acetyl-5-aminosalicylic acid (NA5AS) was lost instead of the acetyl group during the ionisation, and acetaminophen (AAP) appeared. As the acetyl and carboxyl groups of some substances can be degraded during ionisation in the mass spectrometer, caution is appropriate when it is sought to simultaneously quantify similar structures containing these moieties; chromatographic separation is essential. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Identification and analysis of o-acetylated sialoglycoproteins.

    PubMed

    Mandal, Chandan; Mandal, Chitra

    2013-01-01

    5-N-acetylneuraminic acid, commonly known as sialic acid (Sia), constitutes a family of N- and O-substituted 9-carbon monosaccharides. Frequent modification of O-acetylations at positions C-7, C-8, or C-9 of Sias generates a family of O-acetylated sialic acid (O-AcSia) and plays crucial roles in many cellular events like cell-cell adhesion, proliferation, migration, etc. Therefore, identification and analysis of O-acetylated sialoglycoproteins (O-AcSGPs) are important. In this chapter, we describe several approaches for successful identification of O-AcSGPs. We broadly divide them into two categories, i.e., invasive and noninvasive methods. Several O-AcSias-binding probes are used for this purpose. Detailed methodologies for step-by-step identification using these probes have been discussed. We have also included a few invasive analytical methods for identification and quantitation of O-AcSias. Several indirect methods are also elaborated for such purpose, in which O-acetyl group from sialic acids is initially removed followed by detection of Sias by several approaches. For molecular identification, we have described methods for affinity purification of O-AcSGPs using an O-AcSias-binding lectin as an affinity matrix followed by sequencing using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF-TOF) mass spectroscopy (MS). In spite of special attention, loss of O-acetyl groups due to its sensitivity towards alkaline pH and high temperature along with migration of labile O-acetyl groups from C7-C8-C9 during sample preparation is difficult to avoid. Therefore there is always a risk for underestimation of O-AcSias.

  13. Synthesis and characterization of two new TiO2-containing benzothiazole-based imine composites for organic device applications.

    PubMed

    Różycka, Anna; Iwan, Agnieszka; Bogdanowicz, Krzysztof Artur; Filapek, Michal; Górska, Natalia; Pociecha, Damian; Malinowski, Marek; Fryń, Patryk; Hreniak, Agnieszka; Rysz, Jakub; Dąbczyński, Paweł; Marzec, Monika

    2018-01-01

    The effect of the presence of titanium dioxide in two new imines, ( E , E )-(butane-1,4-diyl)bis(oxybutane-4,1-diyl) bis(4-{[(benzo[ d ][1,3]thiazol-2-yl)methylidene]amino}benzoate) (SP1) and ( E )- N -[(benzo[ d ][1,3]thiazol-2-yl)methylidene]-4-dodecylaniline (SP2), on the properties and stability of imine:TiO 2 composites for organic device applications were examined. The investigated titanium dioxide (in anatase form, obtained via the sol-gel method) exhibited a surface area of 59.5 m 2 /g according to Brunauer-Emmett-Teller theory, and its structure is a combination of both meso- and microporous. The average pore diameter calculated by the Barrett-Joyner-Halenda method was 6.2 nm and the cumulative volume of pores was 0.117 m 3 /g. The imine SP1 exhibited columnar organization (Col), while SP2 revealed a hexagonal columnar crystalline phase (Col hk ). The imine:TiO 2 mixtures in various weight ratio (3:0, 3:1, 3:2, 3:3) showed a lower energy gap and HOMO-LUMO energy levels compared to pure TiO 2 . This implies that TiO 2 provides not only a larger surface area for sensitizer adsorption and good electron collection, but also causes a shift of the imine energy levels resulting from intermolecular interaction. Also the temperature of the phase transition was slightly affected with the increase of TiO 2 concentration in imine-based composites. The changes observed in the Fourier transform middle-infrared absorption (FT-MIR) spectra confirmed the significant influence of TiO 2 on structural properties of both investigated imines. Similar interactions of oxygen vacancies existing on the TiO 2 surface with SP1 and SP2 were observed. The imine:TiO 2 mixtures showed good air stability and reusability, which demonstrates its potential for organic device applications.

  14. Synthesis and characterization of two new TiO2-containing benzothiazole-based imine composites for organic device applications

    PubMed Central

    Różycka, Anna; Bogdanowicz, Krzysztof Artur; Filapek, Michal; Górska, Natalia; Pociecha, Damian; Malinowski, Marek; Fryń, Patryk; Hreniak, Agnieszka; Rysz, Jakub; Dąbczyński, Paweł

    2018-01-01

    The effect of the presence of titanium dioxide in two new imines, (E,E)-(butane-1,4-diyl)bis(oxybutane-4,1-diyl) bis(4-{[(benzo[d][1,3]thiazol-2-yl)methylidene]amino}benzoate) (SP1) and (E)-N-[(benzo[d][1,3]thiazol-2-yl)methylidene]-4-dodecylaniline (SP2), on the properties and stability of imine:TiO2 composites for organic device applications were examined. The investigated titanium dioxide (in anatase form, obtained via the sol–gel method) exhibited a surface area of 59.5 m2/g according to Brunauer–Emmett–Teller theory, and its structure is a combination of both meso- and microporous. The average pore diameter calculated by the Barrett–Joyner–Halenda method was 6.2 nm and the cumulative volume of pores was 0.117 m3/g. The imine SP1 exhibited columnar organization (Col), while SP2 revealed a hexagonal columnar crystalline phase (Colhk). The imine:TiO2 mixtures in various weight ratio (3:0, 3:1, 3:2, 3:3) showed a lower energy gap and HOMO–LUMO energy levels compared to pure TiO2. This implies that TiO2 provides not only a larger surface area for sensitizer adsorption and good electron collection, but also causes a shift of the imine energy levels resulting from intermolecular interaction. Also the temperature of the phase transition was slightly affected with the increase of TiO2 concentration in imine-based composites. The changes observed in the Fourier transform middle-infrared absorption (FT-MIR) spectra confirmed the significant influence of TiO2 on structural properties of both investigated imines. Similar interactions of oxygen vacancies existing on the TiO2 surface with SP1 and SP2 were observed. The imine:TiO2 mixtures showed good air stability and reusability, which demonstrates its potential for organic device applications. PMID:29600135

  15. Asymmetric synthesis of α-alkenyl homoallylic primary amines via 1,2-addition of Grignard reagent to α,β-unsaturated phosphonyl imines.

    PubMed

    Xiong, Yiwen; Mei, Haibo; Xie, Chen; Han, Jianlin; Li, Guigen; Pan, Yi

    2013-01-01

    A series of chiral N -phosphonyl protected α-alkenyl homoallylic primary amines were synthesized by asymmetric addition of allylmagnesium bromide Grignard reagent towards chiral α,β-unsaturated imines. Only 1,2-adduct was obtained for all the imines with good yields and excellent diastereoselectivities. The chiral auxiliary could be easily removed under simple conditions, giving free multiple functionalized primary amines.

  16. N-Heterocyclic Carbene-Catalyzed Alcohol Acetylation: An Organic Experiment Using Organocatalysis

    ERIC Educational Resources Information Center

    Morgan, John P.; Shrimp, Jonathan H.

    2014-01-01

    Undergraduate students in the teaching laboratory have successfully used N-heterocyclic carbenes (NHCs) as organocatalysts for the acetylation of primary alcohols, despite the high water sensitivity of uncomplexed ("free") NHCs. The free NHC readily reacted with chloroform, resulting in an air- and moisture-stable adduct that liberates…

  17. Unique proline-benzoquinone pigment from the colored nectar of "bird's Coca cola tree" functions in bird attractions.

    PubMed

    Luo, Shi-Hong; Liu, Yan; Hua, Juan; Niu, Xue-Mei; Jing, Shu-Xi; Zhao, Xu; Schneider, Bernd; Gershenzon, Jonathan; Li, Sheng-Hong

    2012-08-17

    The major pigment responsible for the dark brown nectar of the "bird's Coca cola tree", Leucosceptrum canum (Labiatae), was isolated and identified as a unique symmetric proline-quinone conjugate, 2,5-di-(N-(-)-prolyl)-para-benzoquinone (DPBQ). Behavioral experiments with both isolated and synthetic authentic samples indicated that DPBQ functions mainly as a color attractant to bird pollinators.

  18. o-Naphthoquinone-Catalyzed Aerobic Oxidation of Amines to (Ket)imines: A Modular Catalyst Approach.

    PubMed

    Goriya, Yogesh; Kim, Hun Young; Oh, Kyungsoo

    2016-10-07

    A modular aerobic oxidation of amines to imines has been achieved using an ortho-naphthoquinone (o-NQ) catalyst. The cooperative catalyst system of o-NQ and Cu(OAc) 2 enabled the formation of homocoupled imines from benzylamines, while the presence of TFA helped the formation of cross-coupled imines in excellent yields. The current mild aerobic oxidation protocol could also be applied to the oxidation of secondary amines to imines or ketimines with the help of cocatalyst, Ag 2 CO 3 , with excellent yields.

  19. The acetylation of insulin

    PubMed Central

    Lindsay, D. G.; Shall, S.

    1971-01-01

    The acetylation of the free amino groups of insulin was studied by reaction of the hormone with N-hydroxysuccinimide acetate at pH6.9 and 8.5. The products formed were separated by chromatography on DEAE-Sephadex and were characterized by isoelectric focusing, by end-group analysis, by the incorporation of [3H]acetyl groups in the molecule, and by treatment with trypsin that had been treated with 1-chloro-4-phenyl-3-toluene-p-sulphonamidobutan-2-one (`tosylphenylalanyl chloromethyl ketone'). Three monosubstituted products, two disubstituted products and one trisubstituted derivative were prepared. The α-amino groups of the terminal residues and the ∈-amino group of the lysine-B29 were the sites of reaction. Acetylation of any of the free amino groups did not affect the biological activity of insulin. It was demonstrated, however, that substitution at the glycine-A1 amino group by the larger residues, acetoacetyl or thiazolidinecarbonyl, produced a decrease in biological activity. Modification of the lysine-B29 or phenylalanine-B1 amino groups with these larger reagents did not affect the biological activity. Modification of the phenylalanine-B1 amino group by any of the three substituents resulted in a large decrease in the affinity of insulin for anti-insulin antibodies raised in the guinea pig. Modification of the other two amino groups did not affect the reaction with antibody. These observations are correlated with the tertiary structure of insulin. ImagesFig. 4. PMID:5113488

  20. Room-temperature chromium(II)-catalyzed direct arylation of pyridines, aryl oxazolines, and imines using arylmagnesium reagents.

    PubMed

    Kuzmina, Olesya M; Knochel, Paul

    2014-10-03

    We report a CrCl2-catalyzed oxidative arylation of various pyridines, aryl oxazolines, and aryl imines using aromatic Grignard reagents in the presence of 2,3-dichlorobutane (DCB). Most of the reactions proceed rapidly at 25 °C and do not require any additional ligand. Benzo[h]quinoline, 2-arylpyridine, aryl oxazoline, and imines were successfully arylated in good yields under these conditions. A TMS-substituent was used to prevent double arylation. After oxidative cross-coupling the TMS-group was further converted to a second ortho-aryl substituent. Remarkably, inexpensive aryl N-butylimine derivatives are excellent substrates for this oxidative arylation.

  1. Acetylation of the human T-cell leukemia virus type 1 Tax oncoprotein by p300 promotes activation of the NF-{kappa}B pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lodewick, Julie; Lamsoul, Isabelle; Polania, Angela

    The oncogenic potential of the HTLV-1 Tax protein involves activation of the NF-{kappa}B pathway, which depends on Tax phosphorylation, ubiquitination and sumoylation. We demonstrate that the nuclei of Tax-expressing cells, including HTLV-1 transformed T-lymphocytes, contain a pool of Tax molecules acetylated on lysine residue at amino acid position 346 by the transcriptional coactivator p300. Phosphorylation of Tax on serine residues 300/301 was a prerequisite for Tax localization in the nucleus and correlated with its subsequent acetylation by p300, whereas sumoylation, resulting in the formation of Tax nuclear bodies in which p300 was recruited, favored Tax acetylation. Overexpression of p300 markedlymore » increased Tax acetylation and the ability of a wild type HTLV-1 provirus, -but not of a mutant provirus carrying an acetylation deficient Tax gene-, to activate gene expression from an integrated NF-{kappa}B-controlled promoter. Thus, Tax acetylation favors NF-{kappa}B activation and might play an important role in HTLV-1-induced cell transformation.« less

  2. Low-dose D-methionine and N-acetyl-L-cysteine for protection from permanent noise-induced hearing loss in chinchillas.

    PubMed

    Clifford, Royce E; Coleman, John K M; Balough, Ben J; Liu, Jianzhong; Kopke, Richard D; Jackson, Ronald L

    2011-12-01

    Despite efforts at public health awareness and stringent industrial standards for hearing protection, noise-induced hearing loss (NIHL) remains a formidable public health concern. Although many antioxidants have proven to be beneficial in the laboratory for prevention of permanent NIHL, low-dose combinations of compounds with different biochemical mechanisms of action may allow long-term administration with fewer side effects and equal efficacy. The mixture of D-methionine and N-acetyl-L-cysteine administered at levels less than 10% of standard dosing has not been previously reported. Twenty-six female adult Chinchilla laniger were placed in 4 study groups, consisting of (1) a group receiving combination 12.5 mg/kg each D-methionine and N-acetyl-L-cysteine (DMET/NAC group), (2) a group receiving 12.5 mg/kg D-methionine (DMET-only group), (3) a group receiving 12.5 mg/kg N-acetyl-L-cysteine (NAC-only group), and (4) saline controls. Laboratory. All groups received twice-daily intraperitoneal injections 2 days prior to noise exposure, 1 hour before and after exposure on day 3, and for 2 days subsequently, totaling 10 doses of 125 mg/kg for each antioxidant over 5 days. Although NAC-only animals paralleled saline control recovery during 3 weeks, the DMET-only group revealed gradual improvement with statistically significant recovery in the middle frequencies. The DMET/NAC group showed significant improvement at most frequencies compared with controls (P < .001 and P < .05). Significant recovery of hearing was observed following continuous noise exposure with either DMET only or a combination of low-dose DMET/NAC, demonstrating a considerably lower dose of antioxidants required than previously reported for hearing recovery following acoustic trauma.

  3. Chemoselective organocatalytic aerobic oxidation of primary amines to secondary imines.

    PubMed

    Wendlandt, Alison E; Stahl, Shannon S

    2012-06-01

    Biomimetic aerobic oxidation of primary benzylic amines has been achieved by using a quinone catalyst. Excellent selectivity is observed for primary, unbranched benzylic amines relative to secondary/tertiary amines, branched benzylic amines, and aliphatic amines. The exquisite selectivity for benzylic amines enables oxidative self-sorting within dynamic mixtures of amines and imines to afford high yields of cross-coupled imine products.

  4. Micronutrients, N-Acetyl Cysteine, Probiotics and Prebiotics, a Review of Effectiveness in Reducing HIV Progression

    PubMed Central

    Hummelen, Ruben; Hemsworth, Jaimie; Reid, Gregor

    2010-01-01

    Low serum concentrations of micronutrients, intestinal abnormalities, and an inflammatory state have been associated with HIV progression. These may be ameliorated by micronutrients, N-acetyl cysteine, probiotics, and prebiotics. This review aims to integrate the evidence from clinical trials of these interventions on the progression of HIV. Vitamin B, C, E, and folic acid have been shown to delay the progression of HIV. Supplementation with selenium, N-acetyl cysteine, probiotics, and prebiotics has considerable potential, but the evidence needs to be further substantiated. Vitamin A, iron, and zinc have been associated with adverse effects and caution is warranted for their use. PMID:22254046

  5. Ginsenoside Rg3 Inhibits Melanoma Cell Proliferation through Down-Regulation of Histone Deacetylase 3 (HDAC3) and Increase of p53 Acetylation

    PubMed Central

    Shan, Xiu; Fu, Yuan-Shan; Aziz, Faisal; Wang, Xiao-Qi; Yan, Qiu; Liu, Ji-Wei

    2014-01-01

    Malignant melanoma is an aggressive and deadly form of skin cancer, and despite recent advances in available therapies, is still lacking in completely effective treatments. Rg3, a monomer extracted from ginseng roots, has been attempted for the treatment of many cancers. It is reported that the expressions of histone deacetylase 3 (HDAC3) and p53 acetylation correlate with tumor cell growth. However, the antitumor effect of Rg3 on melanoma and the mechanism by which it regulates HDAC3 expression and p53 acetylation remain unknown. We found high expression of HDAC3 in human melanoma tissues to be significantly correlated to lymph node metastasis and clinical stage of disease (p<0.05). In melanoma cells, Rg3 inhibited cell proliferation and induced G0/G1 cell cycle arrest. Rg3 also decreased the expression of HDAC3 and increased the acetylation of p53 on lysine (k373/k382). Moreover, suppression of HDAC3 by either siRNA or a potent HDAC3 inhibitor (MS-275) inhibited cell proliferation, increased p53 acetylation and transcription activity. In A375 melanoma xenograft studies, we demonstrated that Rg3 and HDAC3 short hairpin RNA (shHDAC3) inhibited the growth of xenograft tumors with down-regulation of HDAC3 expression and up-regulation of p53 acetylation. In conclusion, Rg3 has antiproliferative activity against melanoma by decreasing HDAC3 and increasing acetylation of p53 both in vitro and in vivo. Thus, Rg3 serves as a potential therapeutic agent for the treatment of melanoma. PMID:25521755

  6. Metal Complexes of New Bioactive Pyrazolone Phenylhydrazones; Crystal Structure of 4-Acetyl-3-methyl-1-phenyl-2-pyrazoline-5-one phenylhydrazone Ampp-Ph

    PubMed Central

    Idemudia, Omoruyi G.; Sadimenko, Alexander P.; Hosten, Eric C.

    2016-01-01

    The condensation reaction of phenylhydrazine and dinitrophenylhydrazine with 4-acetyl and 4-benzoyl pyrazolone precipitated air-stable acetyldinitrophenylhydrazone Ampp-Dh, benzoylphenylhydrazone Bmpp-Ph and benzoyldinitrophenylhydrazone Bmpp-Dh in their keto imine form; a study inspired by the burning interest for the development of new bioactive materials with novel properties that may become alternative therapeutic agents. Elemental analysis, FTIR, 1H, and 13C NMR, and mass spectroscopy have been used to justify their proposed chemical structures, which were in agreement with the single crystal structure of Bmpp-Dh earlier reported according to X-ray crystallography. The single crystal structure of 4-acetyl-3-methyl-1-phenyl--pyrazoline-5-one phenylhydrazone Ampp-Ph, which crystallizes in a triclinic crystal system with a P-1 (No. 2) space group is presented. Octahedral Mn(II), Ni(II), Co(II), and Cu(II) complexes of these respective ligands with two molecules each of the bidentate Schiff base, coordinating to the metal ion through the azomethine nitrogen C=N and the keto oxygen C=O, which were afforded by the reaction of aqueous solutions of the corresponding metal salts with the ligands are also reported. Their identity and proposed structures were according to elemental analysis, FTIR spectroscopy, UV-VIS spectrophotometry (electronic spectra) and Bohr magnetic moments, as well as thermogravimetric analysis (TGA) results. A look at the antibacterial and antioxidant activities of synthesized compounds using the methods of the disc diffusion against some selected bacterial isolates and 1,1-diphenyl-2-picryl-hydrazil (DPPH) respectively, showed biological activities in relation to employed standard medicinal drugs. PMID:27213342

  7. Computational Study of Environmental Effects on Torsional Free Energy Surface of N-Acetyl-N'-methyl-L-alanylamide Dipeptide

    ERIC Educational Resources Information Center

    Carlotto, Silvia; Zerbetto, Mirco

    2014-01-01

    We propose an articulated computational experiment in which both quantum mechanics (QM) and molecular mechanics (MM) methods are employed to investigate environment effects on the free energy surface for the backbone dihedral angles rotation of the small dipeptide N-Acetyl-N'-methyl-L-alanylamide. This computation exercise is appropriate for an…

  8. Vibronic spectra of the p-benzoquinone radical anion and cation: a matrix isolation and computational study.

    PubMed

    Piech, Krzysztof; Bally, Thomas; Ichino, Takatoshi; Stanton, John

    2014-02-07

    The electronic and vibrational absorption spectra of the radical anion and cation of p-benzoquinone (PBQ) in an Ar matrix between 500 and 40,000 cm(-1) are presented and discussed in detail. Of particular interest is the radical cation, which shows very unusual spectroscopic features that can be understood in terms of vibronic coupling between the ground and a very low-lying excited state. The infrared spectrum of PBQ˙(+) exhibits a very conspicuous and complicated pattern of features above 1900 cm(-1) that is due to this electronic transition, and offers an unusually vivid demonstration of the effects of vibronic coupling in what would usually be a relatively simple region of the electromagnetic spectrum associated only with vibrational transitions. As expected, the intensities of most of the IR transitions leading to levels that couple the ground to the very low-lying first excited state of PBQ˙(+) increase by large factors upon ionization, due to "intensity borrowing" from the D0 → D1 electronic transition. A notable exception is the antisymmetric C=O stretching vibration, which contributes significantly to the vibronic coupling, but has nevertheless quite small intensity in the cation spectrum. This surprising feature is rationalized on the basis of a simple perturbation analysis.

  9. S-Nitroso-N-acetyl-L-cysteine ethyl ester (SNACET) and N-acetyl-L-cysteine ethyl ester (NACET)-Cysteine-based drug candidates with unique pharmacological profiles for oral use as NO, H2S and GSH suppliers and as antioxidants: Results and overview.

    PubMed

    Tsikas, Dimitrios; Schwedhelm, Kathrin S; Surdacki, Andrzej; Giustarini, Daniela; Rossi, Ranieri; Kukoc-Modun, Lea; Kedia, George; Ückert, Stefan

    2018-02-01

    S -Nitrosothiols or thionitrites with the general formula RSNO are formally composed of the nitrosyl cation (NO + ) and a thiolate (RS - ), the base of the corresponding acids RSH. The smallest S -nitrosothiol is HSNO and derives from hydrogen sulfide (HSH, H 2 S). The most common physiological S -nitrosothiols are derived from the amino acid L-cysteine (CysSH). Thus, the simplest S -nitrosothiol is S -nitroso-L-cysteine (CysSNO). CysSNO is a spontaneous potent donor of nitric oxide (NO) which activates soluble guanylyl cyclase to form cyclic guanosine monophosphate (cGMP). This activation is associated with multiple biological actions that include relaxation of smooth muscle cells and inhibition of platelet aggregation. Like NO, CysSNO is a short-lived species and occurs physiologically at concentrations around 1 nM in human blood. CysSNO can be formed from CysSH and higher oxides of NO including nitrous acid (HONO) and its anhydride (N 2 O 3 ). The most characteristic feature of RSNO is the S-transnitrosation reaction by which the NO + group is reversibly transferred to another thiolate. By this way numerous RSNO can be formed such as the low-molecular-mass S -nitroso- N -acetyl-L-cysteine (SNAC) and S -nitroso-glutathione (GSNO), and the high-molecular-mass S -nitrosol-L-cysteine hemoglobin (HbCysSNO) present in erythrocytes and S -nitrosol-L-cysteine albumin (AlbCysSNO) present in plasma at concentrations of the order of 200 nM. All above mentioned RSNO exert NO-related biological activity, but they must be administered intravenously. This important drawback can be overcome by lipophilic charge-free RSNO. Thus, we prepared the ethyl ester of SNAC, the S -nitroso- N -acetyl-L-cysteine ethyl ester (SNACET), from synthetic N -acetyl-L-cysteine ethyl ester (NACET). Both NACET and SNACET have improved pharmacological features over N -acetyl-L-cysteine (NAC) and S -nitroso- N -acetyl-L-cysteine (SNAC), respectively, including higher oral bioavailability. SNACET

  10. A randomised, double blind, placebo-controlled trial of a fixed dose of N-acetyl cysteine in children with autistic disorder.

    PubMed

    Dean, Olivia M; Gray, Kylie M; Villagonzalo, Kristi-Ann; Dodd, Seetal; Mohebbi, Mohammadreza; Vick, Tanya; Tonge, Bruce J; Berk, Michael

    2017-03-01

    Oxidative stress, inflammation and heavy metals have been implicated in the aetiology of autistic disorder. N-acetyl cysteine has been shown to modulate these pathways, providing a rationale to trial N-acetyl cysteine for autistic disorder. There are now two published pilot studies suggesting efficacy, particularly in symptoms of irritability. This study aimed to explore if N-acetyl cysteine is a useful treatment for autistic disorder. This was a placebo-controlled, randomised clinical trial of 500 mg/day oral N-acetyl cysteine over 6 months, in addition to treatment as usual, in children with a Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision diagnosis of autistic disorder. The study was conducted in Victoria, Australia. The primary outcome measures were the Social Responsiveness Scale, Children's Communication Checklist-Second Edition and the Repetitive Behavior Scale-Revised. Additionally, demographic data, the parent-completed Vineland Adaptive Behavior Scales, Social Communication Questionnaire and clinician-administered Autism Diagnostic Observation Schedule were completed. A total of 102 children were randomised into the study, and 98 (79 male, 19 female; age range: 3.1-9.9 years) attended the baseline appointment with their parent/guardian, forming the Intention to Treat sample. There were no differences between N-acetyl cysteine and placebo-treated groups on any of the outcome measures for either primary or secondary endpoints. There was no significant difference in the number and severity of adverse events between groups. This study failed to demonstrate any benefit of adjunctive N-acetyl cysteine in treating autistic disorder. While this may reflect a true null result, methodological issues particularly the lower dose utilised in this study may be confounders.

  11. Increased resistance to acetaminophen hepatotoxicity in mice lacking glutathione S-transferase Pi

    PubMed Central

    Henderson, Colin J.; Wolf, C. Roland; Kitteringham, Neil; Powell, Helen; Otto, Diana; Park, B. Kevin

    2000-01-01

    Overdose of acetaminophen, a widely used analgesic drug, can result in severe hepatotoxicity and is often fatal. This toxic reaction is associated with metabolic activation by the P450 system to form a quinoneimine metabolite, N-acetyl-p-benzoquinoneimine (NAPQI), which covalently binds to proteins and other macromolecules to cause cellular damage. At low doses, NAPQI is efficiently detoxified, principally by conjugation with glutathione, a reaction catalyzed in part by the glutathione S-transferases (GST), such as GST Pi. To assess the role of GST in acetaminophen hepatotoxicity, we examined acetaminophen metabolism and liver damage in mice nulled for GstP (GstP1/P2(−/−)). Contrary to our expectations, instead of being more sensitive, GstP null mice were highly resistant to the hepatotoxic effects of this compound. No significant differences between wild-type (GstP1/P2(+/+)) mice and GstP1/P2(−/−) nulls in either the rate or route of metabolism, particularly to glutathione conjugates, or in the levels of covalent binding of acetaminophen-reactive metabolites to cellular protein were observed. However, although a similar rapid depletion of hepatic reduced glutathione (GSH) was found in both GstP1/P2(+/+) and GstP1/P2(−/−) mice, GSH levels only recovered in the GstP1/P2(−/−) mice. These data demonstrate that GstP does not contribute in vivo to the formation of glutathione conjugates of acetaminophen but plays a novel and unexpected role in the toxicity of this compound. This study identifies new ways in which GST can modulate cellular sensitivity to toxic effects and suggests that the level of GST Pi may be an important and contributing factor in the sensitivity of patients with acetaminophen-induced hepatotoxicity. PMID:11058152

  12. Epidermal Growth Factor Receptor activation promotes ADA3 acetylation through the AKT-p300 pathway

    PubMed Central

    Srivastava, Shashank; Mohibi, Shakur; Mirza, Sameer; Band, Hamid; Band, Vimla

    2017-01-01

    ABSTRACT The ADA3 (Alteration/Deficiency in Activation 3) protein is an essential adaptor component of several Lysine Acetyltransferase (KAT) complexes involved in chromatin modifications. Previously, we and others have demonstrated a crucial role of ADA3 in cell cycle progression and in maintenance of genomic stability. Recently, we have shown that acetylation of ADA3 is key to its role in cell cycle progression. Here, we demonstrate that AKT activation downstream of Epidermal Growth Factor Receptor (EGFR) family proteins stimulation leads to phosphorylation of p300, which in turn promotes the acetylation of ADA3. Inhibition of upstream receptor tyrosine kinases (RTKs), HER1 (EGFR)/HER2 by lapatinib and the accompanying reduction of phospho-AKT levels led to a decrease in p300 phosphorylation and ADA3 protein levels. The p300/PCAF inhibitor garcinol also destabilized the ADA3 protein in a proteasome-dependent manner and an ADA3 mutant with K→R mutations exhibited a marked increase in half-life, consistent with opposite role of acetylation and ubiquitination of ADA3 on shared lysine residues. ADA3 knockdown led to cell cycle inhibitory effects, as well as apoptosis similar to those induced by lapatinib treatment of HER2+ breast cancer cells, as seen by accumulation of CDK inhibitor p27, reduction in mitotic marker pH3(S10), and a decrease in the S-phase marker PCNA, as well as the appearance of cleaved PARP. Taken together our results reveal a novel RTK-AKT-p300-ADA3 signaling pathway involved in growth factor-induced cell cycle progression. PMID:28759294

  13. The biochemical characterization of three imine-reducing enzymes from Streptosporangium roseum DSM43021, Streptomyces turgidiscabies and Paenibacillus elgii.

    PubMed

    Scheller, Philipp N; Nestl, Bettina M

    2016-12-01

    Recently imine reductases (IREDs) have emerged as promising biocatalysts for the synthesis of a wide variety of chiral amines. To promote their application, many novel enzymes were reported, but only a few of them were biochemically characterized. To expand the available knowledge about IREDs, we report the characterization of two recently identified (R)-selective IREDs from Streptosporangium roseum DSM43021 and Streptomyces turgidiscabies and one (S)-selective IRED from Paenibacillus elgii. The biochemical properties including pH profiles, temperature stabilities, and activities of the enzymes in the presence of organic solvents were investigated. All three enzymes showed relatively broad pH spectra with maximum activities in the neutral range. While the (R)-selective IREDs displayed only limited thermostabilities, the (S)-selective enzyme was found to be the most thermostable IRED known to date. The activity of this IRED proved also to be most tolerant towards the investigated co-solvents DMSO and methanol. We further studied activities and selectivities towards a panel of cyclic imine model substrates to compare these enzymes with other IREDs. In biotransformations, IREDs showed high conversions and the amine products were obtained with up to 99 % ee. By recording the kinetic constants for these compounds, substrate preferences of the IREDs were investigated and it was shown that the (S)-IRED favors the transformation of bulky imines contrary to the (R)-selective IREDs. Finally, novel exocyclic imine substrates were tested and also high activities and selectivities detected.

  14. Formation and stability of gas-phase o-benzoquinone from oxidation of ortho-hydroxyphenyl: A combined neutral and distonic radical study

    DOE PAGES

    Prendergast, Matthew B.; Kirk, Benjamin B.; Savee, John D.; ...

    2015-10-19

    Gas-phase product detection studies of o-hydroxyphenyl radical and O 2 are reported at 373, 500, and 600 K, at 4 Torr (533.3 Pa), using VUV time-resolved synchrotron photoionisation mass spectrometry. The dominant products are assigned as o-benzoquinone (C 6H 4O 2, m/z 108) and cyclopentadienone (C 5H 4O, m/z 80). It is concluded that cyclopentadienone forms as a secondary product from prompt decomposition of o-benzoquinone (and dissociative ionization of o-benzoquinone may contribute to the m/z 80 signal at photon energies ≳9.8 eV). Ion-trap reactions of the distonic o-hydroxyphenyl analogue, the 5-ammonium-2-hydroxyphenyl radical cation, with O 2 are also reported andmore » concur with the assignment of o-benzoquinone as the dominant product. In addition, the ion-trap study also provides support for a mechanism where cyclopentadienone is produced by decarbonylation of o-benzoquinone. Kinetic studies compare oxidation of the ammonium-tagged o-hydroxyphenyl and o-methylphenyl radical cations along with trimethylammonium-tagged analogues. Reaction efficiencies are found to be ca. 5% for both charge-tagged o-hydroxyphenyl and o-methylphenyl radicals irrespective of the charged substituent. G3X-K quantum chemical calculations are deployed to rationalise experimental results for o-hydroxyphenyl + O 2 and its charge-tagged counterpart. The prevailing reaction mechanism, after O 2 addition, involves a facile 1,5-H shift in the peroxyl radical and subsequent elimination of OH to yield o-benzoquinone that is reminiscent of the Waddington mechanism for β-hydroxyperoxyl radicals. These results suggest o-hydroxyphenyl + O 2 and decarbonylation of o-benzoquinone serve as plausible OH and CO sources in combustion.« less

  15. Structural Investigation of a Novel N-Acetyl Glucosamine Binding Chi-Lectin Which Reveals Evolutionary Relationship with Class III Chitinases

    PubMed Central

    Patil, Dipak N.; Datta, Manali; Dev, Aditya; Dhindwal, Sonali; Singh, Nirpendra; Dasauni, Pushpanjali; Kundu, Suman; Sharma, Ashwani K.; Tomar, Shailly; Kumar, Pravindra

    2013-01-01

    The glycosyl hydrolase 18 (GH18) family consists of active chitinases as well as chitinase like lectins/proteins (CLPs). The CLPs share significant sequence and structural similarities with active chitinases, however, do not display chitinase activity. Some of these proteins are reported to have specific functions and carbohydrate binding property. In the present study, we report a novel chitinase like lectin (TCLL) from Tamarindus indica. The crystal structures of native TCLL and its complex with N-acetyl glucosamine were determined. Similar to the other CLPs of the GH18 members, TCLL lacks chitinase activity due to mutations of key active site residues. Comparison of TCLL with chitinases and other chitin binding CLPs shows that TCLL has substitution of some chitin binding site residues and more open binding cleft due to major differences in the loop region. Interestingly, the biochemical studies suggest that TCLL is an N-acetyl glucosamine specific chi-lectin, which is further confirmed by the complex structure of TCLL with N-acetyl glucosamine complex. TCLL has two distinct N-acetyl glucosamine binding sites S1 and S2 that contain similar polar residues, although interaction pattern with N-acetyl glucosamine varies extensively among them. Moreover, TCLL structure depicts that how plants utilize existing structural scaffolds ingenuously to attain new functions. To date, this is the first structural investigation of a chi-lectin from plants that explore novel carbohydrate binding sites other than chitin binding groove observed in GH18 family members. Consequently, TCLL structure confers evidence for evolutionary link of lectins with chitinases. PMID:23717482

  16. Crystal structure of the dopamine N-acetyltransferase–acetyl-CoA complex provides insights into the catalytic mechanism

    PubMed Central

    Cheng, Kuo-Chang; Liao, Jhen-Ni; Lyu, Ping-Chiang

    2012-01-01

    The daily cycle of melatonin biosynthesis in mammals is regulated by AANAT (arylalkylamine N-acetyltransferase; EC 2.3.1.87), making it an attractive target for therapeutic control of abnormal melatonin production in mood and sleep disorders. Drosophila melanogaster Dat (dopamine N-acetyltransferase) is an AANAT. Until the present study, no insect Dat structure had been solved, and, consequently, the structural basis for its acetyl-transfer activity was not well understood. We report in the present paper the high-resolution crystal structure for a D. melanogaster Dat–AcCoA (acetyl-CoA) complex obtained using one-edge (selenium) single-wavelength anomalous diffraction. A binding study using isothermal titration calorimetry suggested that the cofactor bound to Dat first before substrate. Examination of the complex structure and a substrate-docked model indicated that Dat contains a novel AANAT catalytic triad. Site-directed mutagenesis, kinetic studies and pH-rate profiles confirmed that Glu47, Ser182 and Ser186 were critical for catalysis. Collectively, the results of the present study suggest that Dat possesses a specialized active site structure dedicated to a catalytic mechanism. PMID:22716280

  17. Genetic and nutrient modulation of acetyl-CoA levels in Synechocystis for n-butanol production.

    PubMed

    Anfelt, Josefine; Kaczmarzyk, Danuta; Shabestary, Kiyan; Renberg, Björn; Rockberg, Johan; Nielsen, Jens; Uhlén, Mathias; Hudson, Elton P

    2015-10-16

    There is a strong interest in using photosynthetic cyanobacteria as production hosts for biofuels and chemicals. Recent work has shown the benefit of pathway engineering, enzyme tolerance, and co-factor usage for improving yields of fermentation products. An n-butanol pathway was inserted into a Synechocystis mutant deficient in polyhydroxybutyrate synthesis. We found that nitrogen starvation increased specific butanol productivity up to threefold, but cessation of cell growth limited total n-butanol titers. Metabolite profiling showed that acetyl-CoA increased twofold during nitrogen starvation. Introduction of a phosphoketolase increased acetyl-CoA levels sixfold at nitrogen replete conditions and increased butanol titers from 22 to 37 mg/L at day 8. Flux balance analysis of photoautotrophic metabolism showed that a Calvin-Benson-Bassham-Phosphoketolase pathway had higher theoretical butanol productivity than CBB-Embden-Meyerhof-Parnas and a reduced butanol ATP demand. These results demonstrate that phosphoketolase overexpression and modulation of nitrogen levels are two attractive routes toward increased production of acetyl-CoA derived products in cyanobacteria and could be implemented with complementary metabolic engineering strategies.

  18. Preparation and characterization of N-benzoyl-O-acetyl-chitosan.

    PubMed

    Cai, Jinping; Dang, Qifeng; Liu, Chengsheng; Fan, Bing; Yan, Jingquan; Xu, Yanyan; Li, Jingjing

    2015-01-01

    A novel amphipathic chitosan derivative, N-benzoyl-O-acetyl-chitosan (BACS), was prepared by using the selective partial acylation of chitosan (CS), benzoyl chloride, and acetic acid under high-intensity ultrasound. The chemical structure and physical properties of BACS were characterized by FTIR, (1)H NMR, TGA, and XRD techniques. The degrees of substitution of benzoyl and acetyl for the chitosan derivatives were 0.26 and 1.15, respectively, which were calculated from the peak areas in NMR spectra by using the combined integral methods. The foaming properties of CS and BACS were determined and the results suggested BACS had better foam capacity and stability than those of chitosan. In addition, the antimicrobial activities of CS and BACS were also investigated against two species of bacteria (Escherichia coli and Staphylococcus aureus) and a fungus (Aspergillus niger), the results indicated that the antibacterial and antifungal activities of BACS were much stronger than those of the parent chitosan. These findings suggested that BACS was preferable for use as a food additive with a dual role of both foaming agent and food preservative. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Antineoplastic and cytogenetic effects of complexes of Pd (II) with 4N-substituted derivatives of 2-acetyl-pyridine-thiosemicarbazone.

    PubMed

    Papageorgiou, A; Iakovidou, Z; Mourelatos, D; Mioglou, E; Boutis, L; Kotsis, A; Kovala-Demertzi, D; Domopoulou, A; West, D X; Dermetzis, M A

    1997-01-01

    The effect of novel Pd(II) complexes with derivatives of 2-acetyl-pyridinethisemicarbazone, N4-ethyl (HAc4Et) and 3-hexamethyleneiminylthiosemicarbazone (HAchexim), on Sister Chromatid Exchange (SCE) rates and human lymphocyte proliferation kinetics was studied. Also, the effect of Pd(II) complexes on DNA synthesis of P388 and L1210 cell cultures and against Leukemia P388 was investigated. Among these compounds, the compound Bis(3-hexamethyleneiminyl-2-acetylpyridine-thisemicarbazonato++ +) palladium (II) was found to be distinctly effective against Leukemia P388, in inhibiting incorporation of 3H-thymidine into DNA and in inducing SCEs and cell division delays.

  20. Stereodivergent Mannich reaction of bis(trimethylsilyl)ketene acetals with N-tert-butanesulfinyl imines by Lewis acid or Lewis base activation, a one-pot protocol to obtain chiral β-amino acids.

    PubMed

    Cantú-Reyes, Margarita; Alvarado-Beltrán, Isabel; Ballinas-Indilí, Ricardo; Álvarez-Toledano, Cecilio; Hernández-Rodríguez, Marcos

    2017-09-20

    We report a one-pot synthesis of chiral β 2,2,3 -amino acids by the Mannich addition of bistrimethylsilyl ketene acetals to N-tert-butanesulfinyl imines followed by the removal of the chiral auxiliary. The synthesis and isolation of pure β-amino acid hydrochlorides were conducted under mild conditions, without strong bases and this method is operationally simple. The stereoselective reaction was promoted by two different activation methods that lead to different stereoisomers: (1) Lewis Acid (LA) catalysis with boron trifluoride diethyl etherate and (2) Lewis Base (LB) catalysis with tetrabutylammonium difluorotriphenylsilicate. The reaction presented good diastereoselectivity with LB activation and moderate to good dr with LA catalysis. The exceptions in both protocols were imines with electron donating groups in the aromatic ring.

  1. P300/CBP acts as a coactivator to cartilage homeoprotein-1 (Cart1), paired-like homeoprotein, through acetylation of the conserved lysine residue adjacent to the homeodomain.

    PubMed

    Iioka, Takashi; Furukawa, Keizo; Yamaguchi, Akira; Shindo, Hiroyuki; Yamashita, Shunichi; Tsukazaki, Tomoo

    2003-08-01

    The paired-like homeoprotein, Cart1, is involved in skeletal development. We describe here that the general coactivator p300/CBP controls the transcription activity of Cart1 through acetylation of a lysine residue that is highly conserved in other homeoproteins. Acetylation of this residue increases the interaction between p300/CBP and Cart1 and enhances its transcriptional activation. Cart1 encodes a paired-like homeoprotein expressed selectively in chondrocyte lineage during embryonic development. Although its target gene remains unknown, gene disruption studies have revealed that Cart1 plays an important role for craniofacial bone formation as well as limb development by cooperating with another homeoprotein, Alx4. In this report, we study the functional involvement of p300/CBP, coactivators with intrinsic histone acetyltransferase (HAT) activity, in the transcriptional control of Cart1. To study the transcription activity of Cart1, a reporter construct containing a putative Cart1 binding site was transiently transfected with the expression vectors of each protein. The interaction between p300/CBP and Cart1 was investigated by glutathione S-transferase (GST) pull-down, yeast two-hybrid, and immunoprecipitation assays. In vitro acetylation assay was performed with the recombinant p300-HAT domain and Cart1 in the presence of acetyl-CoA. p300 and CBP stimulate Cart1-dependent transcription activity, and this transactivation is inhibited by E1A and Tax, oncoproteins that suppress the activity of p300/CBP. Cart1 binds to p300 in vivo and in vitro, and this requires the homeodomain of Cart 1 and N-terminal 139 amino acids of p300. Confocal microscopy analysis shows that Cart1 recruits overexpressed and endogenous p300 to a Cart1-specific subnuclear compartment. Cart1 is acetylated in vivo and sodium butyrate and trichostatin A, histone deacetylase inhibitors, markedly enhance the transcription activity of Cart1. Deletion and mutagenesis analysis identifies the 131st

  2. Acetylation of Mammalian ADA3 Is Required for Its Functional Roles in Histone Acetylation and Cell Proliferation.

    PubMed

    Mohibi, Shakur; Srivastava, Shashank; Bele, Aditya; Mirza, Sameer; Band, Hamid; Band, Vimla

    2016-10-01

    Alteration/deficiency in activation 3 (ADA3) is an essential component of specific histone acetyltransferase (HAT) complexes. We have previously shown that ADA3 is required for establishing global histone acetylation patterns and for normal cell cycle progression (S. Mohibi et al., J Biol Chem 287:29442-29456, 2012, http://dx.doi.org/10.1074/jbc.M112.378901). Here, we report that these functional roles of ADA3 require its acetylation. We show that ADA3 acetylation, which is dynamically regulated in a cell cycle-dependent manner, reflects a balance of coordinated actions of its associated HATs, GCN5, PCAF, and p300, and a new partner that we define, the deacetylase SIRT1. We use mass spectrometry and site-directed mutagenesis to identify major sites of ADA3 acetylated by GCN5 and p300. Acetylation-defective mutants are capable of interacting with HATs and other components of HAT complexes but are deficient in their ability to restore ADA3-dependent global or locus-specific histone acetylation marks and cell proliferation in Ada3-deleted murine embryonic fibroblasts (MEFs). Given the key importance of ADA3-containing HAT complexes in the regulation of various biological processes, including the cell cycle, our study presents a novel mechanism to regulate the function of these complexes through dynamic ADA3 acetylation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Acetylation of Mammalian ADA3 Is Required for Its Functional Roles in Histone Acetylation and Cell Proliferation

    PubMed Central

    Mohibi, Shakur; Srivastava, Shashank; Bele, Aditya; Mirza, Sameer; Band, Hamid

    2016-01-01

    Alteration/deficiency in activation 3 (ADA3) is an essential component of specific histone acetyltransferase (HAT) complexes. We have previously shown that ADA3 is required for establishing global histone acetylation patterns and for normal cell cycle progression (S. Mohibi et al., J Biol Chem 287:29442–29456, 2012, http://dx.doi.org/10.1074/jbc.M112.378901). Here, we report that these functional roles of ADA3 require its acetylation. We show that ADA3 acetylation, which is dynamically regulated in a cell cycle-dependent manner, reflects a balance of coordinated actions of its associated HATs, GCN5, PCAF, and p300, and a new partner that we define, the deacetylase SIRT1. We use mass spectrometry and site-directed mutagenesis to identify major sites of ADA3 acetylated by GCN5 and p300. Acetylation-defective mutants are capable of interacting with HATs and other components of HAT complexes but are deficient in their ability to restore ADA3-dependent global or locus-specific histone acetylation marks and cell proliferation in Ada3-deleted murine embryonic fibroblasts (MEFs). Given the key importance of ADA3-containing HAT complexes in the regulation of various biological processes, including the cell cycle, our study presents a novel mechanism to regulate the function of these complexes through dynamic ADA3 acetylation. PMID:27402865

  4. Biomimetic Artificial Epigenetic Code for Targeted Acetylation of Histones.

    PubMed

    Taniguchi, Junichi; Feng, Yihong; Pandian, Ganesh N; Hashiya, Fumitaka; Hidaka, Takuya; Hashiya, Kaori; Park, Soyoung; Bando, Toshikazu; Ito, Shinji; Sugiyama, Hiroshi

    2018-06-13

    While the central role of locus-specific acetylation of histone proteins in eukaryotic gene expression is well established, the availability of designer tools to regulate acetylation at particular nucleosome sites remains limited. Here, we develop a unique strategy to introduce acetylation by constructing a bifunctional molecule designated Bi-PIP. Bi-PIP has a P300/CBP-selective bromodomain inhibitor (Bi) as a P300/CBP recruiter and a pyrrole-imidazole polyamide (PIP) as a sequence-selective DNA binder. Biochemical assays verified that Bi-PIPs recruit P300 to the nucleosomes having their target DNA sequences and extensively accelerate acetylation. Bi-PIPs also activated transcription of genes that have corresponding cognate DNA sequences inside living cells. Our results demonstrate that Bi-PIPs could act as a synthetic programmable histone code of acetylation, which emulates the bromodomain-mediated natural propagation system of histone acetylation to activate gene expression in a sequence-selective manner.

  5. Immobilized enzymes to convert N-sulfo, N-acetyl heparosan to a critical intermediate in the production of bioengineered heparin.

    PubMed

    Xiong, Jian; Bhaskar, Ujjwal; Li, Guoyun; Fu, Li; Li, Lingyun; Zhang, Fuming; Dordick, Jonathan S; Linhardt, Robert J

    2013-09-10

    Heparin is a critically important anticoagulant drug that is prepared from pig intestine. In 2007-2008, there was a crisis in the heparin market when the raw material was adulterated with the toxic polysaccharide, oversulfated chondroitin sulfate, which was associated with 100 deaths in the U.S. alone. As the result of this crisis, our laboratory and others have been actively pursuing alternative sources for this critical drug, including synthetic heparins and bioengineered heparin. In assessing the bioengineering processing costs it has become clear that the use of both enzyme-catalyzed cofactor recycling and enzyme immobilization will be needed for commercialization. In the current study, we examine the use of immobilization of C₅-epimerase and 2-O-sulfotransferase involved in the first enzymatic step in the bioengineered heparin process, as well as arylsulfotransferase-IV involved in cofactor recycling in all three enzymatic steps. We report the successful immobilization of all three enzymes and their use in converting N-sulfo, N-acetyl heparosan into N-sulfo, N-acetyl 2-O-sulfo heparin. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Interaction of single-walled carbon nanotubes with poly(propyl ether imine) dendrimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayamurugan, G.; Rajesh, Y. B. R. D.; Jayaraman, N.

    2011-03-14

    We study the complexation of nontoxic, native poly(propyl ether imine) dendrimers with single-walled carbon nanotubes (SWNTs). The interaction was monitored by measuring the quenching of inherent fluorescence of the dendrimer. The dendrimer-nanotube binding also resulted in the increased electrical resistance of the hole doped SWNT, due to charge-transfer interaction between dendrimer and nanotube. This charge-transfer interaction was further corroborated by observing a shift in frequency of the tangential Raman modes of SWNT. We also report the effect of acidic and neutral pH conditions on the binding affinities. Experimental studies were supplemented by all atom molecular dynamics simulations to provide amore » microscopic picture of the dendrimer-nanotube complex. The complexation was achieved through charge transfer and hydrophobic interactions, aided by multitude of oxygen, nitrogen, and n-propyl moieties of the dendrimer.« less

  7. Kinetics of de-N-acetylation of the chitin disaccharide in aqueous sodium hydroxide solution.

    PubMed

    Khong, Thang Trung; Aachmann, Finn L; Vårum, Kjell M

    2012-05-01

    Chitosan is prepared from chitin, a process which is carried out at highly alkaline conditions, and that can be performed either on chitin in solution (homogeneous deacetylation) or heterogeneously with the chitin as a solid throughout the reaction. We report here a study of the de-N-acetylation reaction of the chitin dimer (GlcNAc-GlcNAc) in solution. The reaction was followed by (1)H NMR spectroscopy in deuterated aqueous sodium hydroxide solution as a function of time, sodium-hydroxide concentration and temperature. The (1)H NMR spectrum of GlcNAc-GlcNAc in 2.77 M deuterated aqueous sodium hydroxide solution was assigned. The interpretation of the (1)H NMR spectra allowed us to determine the rates of de-N-acetylation of the reducing and non-reducing ends, showing that the reaction rate at the reducing end is twice the rate at the non-reducing end. The total deacetylation reaction rate was determined as a function of the hydroxide ion concentration, showing for the first time that this de-N-acetylation reaction is second order with respect to hydroxide ion concentration. No significant difference in the deacetylation rates in deuterated water compared to water was observed. The activation energy for the reaction (26-54 °C) was determined to 114.4 and 98.6 kJ/mol at 2.77 and 5.5 M in deuterated aqueous sodium hydroxide solution, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Potential involvement of N-terminal acetylation in the quantitative regulation of the ε subunit of chloroplast ATP synthase under drought stress.

    PubMed

    Hoshiyasu, Saki; Kohzuma, Kaori; Yoshida, Kazuo; Fujiwara, Masayuki; Fukao, Yoichiro; Yokota, Akiho; Akashi, Kinya

    2013-01-01

    In plants, modulation of photosynthetic energy conversion in varying environments is often accompanied by adjustment of the abundance of photosynthetic components. In wild watermelon (Citrullus lanatus L.), proteome analysis revealed that the ε subunit of chloroplast ATP synthase occurs as two distinct isoforms with largely-different isoelectric points, although encoded by a single gene. Mass spectrometry (MS) analysis of the ε isoforms indicated that the structural difference between the ε isoforms lies in the presence or absence of an acetyl group at the N-terminus. The protein level of the non-acetylated ε isoform preferentially decreased in drought, whereas the abundance of the acetylated ε isoform was unchanged. Moreover, metalloprotease activity that decomposed the ε subunit was detected in a leaf extract from drought-stressed plants. Furthermore, in vitro assay suggested that the non-acetylated ε subunit was more susceptible to degradation by metalloaminopeptidase. We propose a model in which quantitative regulation of the ε subunit involves N-terminal acetylation and stress-induced proteases.

  9. N-Acetylaspartate reductions in brain injury: impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation

    PubMed Central

    Moffett, John R.; Arun, Peethambaran; Ariyannur, Prasanth S.; Namboodiri, Aryan M. A.

    2013-01-01

    N-Acetylaspartate (NAA) is employed as a non-invasive marker for neuronal health using proton magnetic resonance spectroscopy (MRS). This utility is afforded by the fact that NAA is one of the most concentrated brain metabolites and that it produces the largest peak in MRS scans of the healthy human brain. NAA levels in the brain are reduced proportionately to the degree of tissue damage after traumatic brain injury (TBI) and the reductions parallel the reductions in ATP levels. Because NAA is the most concentrated acetylated metabolite in the brain, we have hypothesized that NAA acts in part as an extensive reservoir of acetate for acetyl coenzyme A synthesis. Therefore, the loss of NAA after TBI impairs acetyl coenzyme A dependent functions including energy derivation, lipid synthesis, and protein acetylation reactions in distinct ways in different cell populations. The enzymes involved in synthesizing and metabolizing NAA are predominantly expressed in neurons and oligodendrocytes, respectively, and therefore some proportion of NAA must be transferred between cell types before the acetate can be liberated, converted to acetyl coenzyme A and utilized. Studies have indicated that glucose metabolism in neurons is reduced, but that acetate metabolism in astrocytes is increased following TBI, possibly reflecting an increased role for non-glucose energy sources in response to injury. NAA can provide additional acetate for intercellular metabolite trafficking to maintain acetyl CoA levels after injury. Here we explore changes in NAA, acetate, and acetyl coenzyme A metabolism in response to brain injury. PMID:24421768

  10. Susceptibility of N-acetyltransferase 2 slow acetylators to antituberculosis drug-induced liver injury: a meta-analysis.

    PubMed

    Shi, Jing; Xie, Min; Wang, Jianmiao; Xu, Yongjian; Liu, Xiansheng

    2015-12-01

    This study aimed to evaluate the association between N-acetyltransferase 2 (NAT2) gene polymorphisms and the risk of antituberculosis drug-induced liver injury (ATLI). A meta-analysis was performed including 27 studies with 1289 cases and 5462 controls. Odds ratio with 95% CI was used to evaluate the strength of association. Our meta-analysis found that NAT2 slow acetylators were associated with increased risk of ATLI compared with fast and intermediate acetylators when standard dose of isoniazid was administrated (odds ratio: 3.08; 95% CI: 2.29-4.15). Individuals with NAT2 slow acetylators may have increased risk of ATLI when standard dose of isoniazid was used. Detection of NAT2 genotype may benefit to the prevention of ATLI.

  11. Acetylation of the c-MYC oncoprotein is required for cooperation with the HTLV-1 p30{sup II} accessory protein and the induction of oncogenic cellular transformation by p30{sup II}/c-MYC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romeo, Megan M.; Ko, Bookyung; Kim, Janice

    2015-02-15

    The human T-cell leukemia retrovirus type-1 (HTLV-1) p30{sup II} protein is a multifunctional latency-maintenance factor that negatively regulates viral gene expression and deregulates host signaling pathways involved in aberrant T-cell growth and proliferation. We have previously demonstrated that p30{sup II} interacts with the c-MYC oncoprotein and enhances c-MYC-dependent transcriptional and oncogenic functions. However, the molecular and biochemical events that mediate the cooperation between p30{sup II} and c-MYC remain to be completely understood. Herein we demonstrate that p30{sup II} induces lysine-acetylation of the c-MYC oncoprotein. Acetylation-defective c-MYC Lys→Arg substitution mutants are impaired for oncogenic transformation with p30{sup II} in c-myc{sup −/−}more » HO15.19 fibroblasts. Using dual-chromatin-immunoprecipitations (dual-ChIPs), we further demonstrate that p30{sup II} is present in c-MYC-containing nucleoprotein complexes in HTLV-1-transformed HuT-102 T-lymphocytes. Moreover, p30{sup II} inhibits apoptosis in proliferating cells expressing c-MYC under conditions of genotoxic stress. These findings suggest that c-MYC-acetylation is required for the cooperation between p30{sup II}/c-MYC which could promote proviral replication and contribute to HTLV-1-induced carcinogenesis. - Highlights: • Acetylation of c-MYC is required for oncogenic transformation by HTLV-1 p30{sup II}/c-MYC. • Acetylation-defective c-MYC mutants are impaired for foci-formation by p30{sup II}/c-MYC. • The HTLV-1 p30{sup II} protein induces lysine-acetylation of c-MYC. • p30{sup II} is present in c-MYC nucleoprotein complexes in HTLV-1-transformed T-cells. • HTLV-1 p30{sup II} inhibits apoptosis in c-MYC-expressing proliferating cells.« less

  12. Chemotactic activity from rabbit peritoneal neutrophils. Lack of identity with N-acetyl-DL-phenylalanine beta-napthyl esterase.

    PubMed

    Tsung, P K; Showell, H J; Kegeles, S W; Becker, E L

    1976-08-12

    The chemotactic and N-acetyl-DL-phenylalanine beta-naphthyl esterase activities of rabbit peritoneal neutrophils are separable from each other by both DEAE cellulose and Sephadex G-100 column chromatography. Partially purified esterase obtained from DEAE-cellulose chromatography had molecular weight of 70 000. However, the partially purified fraction contained chemotactic activities with major activity in molecular weight of 28000 and minor activities in the molecular weights of 45000, 21900, 14500 and 10500. Esterase activity is inhibited by 10(-7) M p-nitrophenylethyl-5-chloropentylphosphonate but chemotactic activity is not.

  13. Design of pH-sensitive methotrexate prodrug-targeted curcumin nanoparticles for efficient dual-drug delivery and combination cancer therapy.

    PubMed

    Xie, Jiajiang; Fan, Zhongxiong; Li, Yang; Zhang, Yinying; Yu, Fei; Su, Guanghao; Xie, Liya; Hou, Zhenqing

    2018-01-01

    We designed acid-labile methotrexate (MTX) targeting prodrug self-assembling nanoparticles loaded with curcumin (CUR) drug for simultaneous delivery of multi-chemotherapeutic drugs and combination cancer therapy. A dual-acting MTX, acting as both an anticancer drug and as a tumor-targeting ligand, was coupled to 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[aldehyde(polyethylene glycol)-2000] via Schiff's base reaction. The synthesized prodrug conjugate (DSPE-PEG-Imine-MTX) could be self-assembled into micellar nanoparticles (MTX-Imine-M) in aqueous solution, which encapsulated CUR into their core by hydrophobic interactions (MTX-Imine-M-CUR). The prepared MTX-Imine-M-CUR nanoparticles were composed of an inner hydrophobic DSPE/CUR core and an outside hydrophilic bishydroxyl poly (ethyleneglycol) (PEG) shell with a self-targeting MTX prodrug corona. The imine linker between 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[aldehyde(polyethyleneglycol)-2000] and MTX, as a dynamic covalent bond, was strong enough to remain intact in physiological pH, even though it is rapidly cleaved in acidic pH. The MTX-Imine-M-CUR could codeliver MTX and CUR selectively and efficiently into the cancer cells via folate receptor-mediated endocytosis followed by the rapid intracellular release of CUR and the active form of MTX via the acidity of endosomes/lysosomes. Moreover, the MTX-Imine-M-CUR resulted in significantly higher in vitro and in vivo anticancer activity than pH-insensitive DSPE-PEGAmide-MTX assembling nanoparticles loaded with CUR (MTX-Amide-M-CUR), MTX unconjugated DSPE-PEG assembling micellar nanoparticles loaded with CUR (M-CUR), combination of both free drugs, and individual free drugs. The smart system provided a simple, yet feasible, drug delivery strategy for targeted combination chemotherapy.

  14. N-Acetylaspartate Metabolism Outside the Brain: Lipogenesis, Histone Acetylation, and Cancer

    PubMed Central

    Bogner-Strauss, Juliane G.

    2017-01-01

    N-acetylaspartate (NAA) is a highly abundant brain metabolite. Aberrant NAA concentrations have been detected in many pathological conditions and although the function of NAA has been extensively investigated in the brain it is still controversial. Only recently, a role of NAA has been reported outside the brain. In brown adipocytes, which show high expression of the NAA-producing and the NAA-cleaving enzyme, the metabolism of NAA has been implicated in lipid synthesis and histone acetylation. Increased expression of N-acetyltransferase 8-like (Nat8l, the gene encoding the NAA synthesizing enzyme) induces de novo lipogenesis and the brown adipocyte phenotype. Accordingly silencing of aspartoacylase, the NAA-cleaving enzyme, reduced brown adipocyte differentiation mechanistically by decreasing histone acetylation and gene transcription. Notably, the expression of Nat8l and the amount of NAA were also shown to be increased in several tumors and inversely correlate with patients’ survival. Additionally, Nat8l silencing reduced cell proliferation in tumor and non-tumor cells, while NAA supplementation could rescue it. However, the mechanism behind has not yet been clarified. It remains to be addressed whether NAA per se and/or its catabolism to acetate and aspartate, metabolites that have both been implicated in tumor growth, are valuable targets for future therapies. PMID:28979238

  15. Two-year serial whole-brain N-acetyl-L-aspartate in patients with relapsing-remitting multiple sclerosis.

    PubMed

    Rigotti, D J; Inglese, M; Kirov, I I; Gorynski, E; Perry, N N; Babb, J S; Herbert, J; Grossman, R I; Gonen, O

    2012-05-01

    To test the hypotheses that 1) patients with relapsing-remitting multiple sclerosis (RR-MS) exhibit a quantifiable decline in their whole-brain concentration of the neural marker N-acetyl-L-aspartate (WBNAA), that is 2) more sensitive than clinical changes and 3) may provide a practical outcome measure for proof-of-concept and larger phase III clinical trials. Nineteen patients (5 men and 14 women) with clinically definite RR-MS, who were 33 ± 5 years old (mean ± SD), had a disease duration of 47 ± 28 months, and had a median Expanded Disability Status Scale (EDSS) score of 1.0 (range 0-5.5), underwent MRI and proton magnetic resonance spectroscopy ((1)H-MRS) semiannually for 2 years (5 time points). Eight matched control subjects underwent the protocol annually (3 time points). Their global N-acetyl-L-aspartate (1)H-MRS signal was converted into absolute amounts by phantom replacement and into WBNAA by dividing with the brain parenchymal volume, V(B), from MRI segmentation. The baseline WBNAA of the patients (10.5 ± 1.7 mM) was significantly lower than that of the controls (12.3 ± 1.3 mM; p < 0.002) and declined significantly (5%/year, p < 0.002) vs that for the controls who did not show a decline (0.4%/year, p > 0.7). Likewise, V(B) values of the patients also declined significantly (0.5%/year, p < 0.0001), whereas those of the controls did not (0.2%/year, p = 0.08). The mean EDSS score of the patients increased insignificantly from 1.0 to 1.5 (range 0-6.0) and did not correlate with V(B) or WBNAA. WBNAA of patients with RR-MS declined significantly at both the group and individual levels over a 2-year time period common in clinical trials. Because of the small sample sizes required to establish power, WBNAA can be incorporated into future studies.

  16. Systemic exposure of Paracetamol (acetaminophen) was enhanced by quercetin and chrysin co-administration in Wistar rats and in vitro model: risk of liver toxicity.

    PubMed

    Pingili, Ravindra Babu; Pawar, A Krishnamanjari; Challa, Siva R

    2015-01-01

    Intestinal P-glycoprotein (P-gp) and drug-metabolizing enzymes (DMEs) play an important role in the first-pass-metabolism (FPM) and pharmacokinetics (PK) of majority of drugs. Paracetamol is primarily metabolized by conjugation reactions and a little amount (∼15%) undergoes cytochrome P450 (CYP2E1)-mediated oxidative metabolism produces a hepatotoxic metabolite, N-acetyl-p-benzoquinonimine (NAPQI). Quercetin and chrysin are naturally occurring flavonoids, reported as modulators of P-gp and DMEs. Therefore, the objective of this study was to evaluate the effects of quercetin and chrysin on the pharmacokinetics of paracetamol using rats and non-everted gut sacs in vitro. Paracetamol was given orally (100 mg/kg) to rats alone and in combination with quercetin (5, 10 and 20 mg/kg) and chrysin (50, 100 and 200 mg/kg) once daily for 21 consecutive days. Blood samples were collected on the 1st day in single dose pharmacokinetic study (SDS) and on the 21st day in multiple pharmacokinetic studies (MDS). The plasma concentrations of paracetamol were determined by HPLC and PK parameters were calculated by using Kinetica (Version 5.1). The maximum plasma concentration (Cmax) and area under the curve (AUC0-12) of paracetamol was significantly increased by quercetin and chrysin co-administration in SDS and MDS. In non-everted rat gut sac method, the absorption of paracetamol was increased by presence of P-gp inhibitors (verapamil, quinidine and ketoconazole), quercetin and chrysin (50 μg/mL). Our findings suggested that the quercetin and chrysin might be inhibited the P-gp and metabolism of paracetamol; thereby increased the systemic exposure of paracetamol. Further studies are needed to evaluate whether the quercetin or chrysin are involved in the formation of NAPQI by CYP2E1 or not on isolated rat hepatocytes or using cell lines.

  17. Converting drugs into gelators: supramolecular hydrogels from N-acetyl-L-cysteine and coinage-metal salts.

    PubMed

    Casuso, Pablo; Carrasco, Pedro; Loinaz, Iraida; Grande, Hans J; Odriozola, Ibon

    2010-12-07

    Here we present the concept of metallophilic hydrogels, supramolecular systems in which the gelator species are metal-thiolates that self-assemble through metallophilic attractions. The principle is applied for a small drug, the mucolytic agent N-acetyl-l-cysteine (NAC), which readily forms hydrogels in the presence of Au(iii), Ag(i) and Cu(ii) salts. The resulting transparent hydrogels present pH induced sol/gel transition. Scanning electron microscopy (SEM) measurements reveal a microporous structure in form of flakes for the three of them. The low pH at which these hydrogels are formed (pH < 4) limits their direct use as drug-delivery systems, but still this system constitutes a novel method for easy and fast conversion of small drugs into potent hydrogelators. Future developments will help to fully develop the idea in order to create a new class of supramolecular drug-delivery systems.

  18. A Method to Determine Lysine Acetylation Stoichiometries

    DOE PAGES

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; ...

    2014-01-01

    Lysine acetylation is a common protein posttranslational modification that regulates a variety of biological processes. A major bottleneck to fully understanding the functional aspects of lysine acetylation is the difficulty in measuring the proportion of lysine residues that are acetylated. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of protein lysine acetylation. Using this technique, we determined the modification occupancy for ~750 acetylated peptides from mammalian cell lysates. Furthermore, the acetylation on N-terminal tail of histone H4 was cross-validated by treating cells with sodiummore » butyrate, a potent deacetylase inhibitor, and comparing changes in stoichiometry levels measured by our method with immunoblotting measurements. Of note we observe that acetylation stoichiometry is high in nuclear proteins, but very low in mitochondrial and cytosolic proteins. In summary, our method opens new opportunities to study in detail the relationship of lysine acetylation levels of proteins with their biological functions.« less

  19. Regulation of N-acetyl cysteine on gut redox status and major microbiota in weaned piglets.

    PubMed

    Xu, C C; Yang, S F; Zhu, L H; Cai, X; Sheng, Y S; Zhu, S W; Xu, J X

    2014-04-01

    This study was conducted to explore the regulation of N-acetyl cysteine (NAC) on gut redox status and proliferation of selected microbiota in weaned piglets. A total of 150 newborn piglets from 15 litters were randomly divided by litter to the control group (normally suckling), the weaning group (fed the basal diet), and the NAC group (basal + NAC diet) with 5 litters per group. Activities of total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and inhibition capacity of hydroxyl radical (IHR), and contents of malondialdehyde (MDA), H2O2, and NO in the ileum, colon, and cecum were analyzed to profile oxidative stress states. The real-time absolute quantitative PCR reaction was employed to quantify the amounts of total bacteria, Lactobacillus, Bifidobacterium, and Escherichia coli. The N-acetyl cysteine, as a universal antioxidant, was used to improve the redox status. Results showed that weaning stress resulted in the occurrence of gut oxidative stress and changes of gut microbiota (P < 0.05). Compared with the weaned piglets, the activities of ileal, colonic, and cecal T-AOC; ileal and colonic GSH-Px; cecal SOD; and colonic and cecal IHR were enhanced (P < 0.05), and the concentrations of ileal and cecal H2O2, ileal and colonic NO, and colonic MDA were reduced (P < 0.05) in the NAC-treated piglets. An increase (P < 0.05) in gut Lactobacillus and Bifidobacterium, accompanied with a decrease (P < 0.05) in Escherichia coli counts, was also observed in the NAC group. Bivariate correlation indicated that Lactobacillus and Bifidobacterium were positively correlated (P < 0.05) with the activities of T-AOC, GSH-Px, and SOD and inversely related (P < 0.05) to increased levels of H2O2, NO, OH, and MDA, and Escherichia coli showed a strong positive association (P < 0.05) with increased levels of free radicals and MDA and a negative association (P < 0.05) with the activities of antioxidant enzymes in intestines of weaned piglets. We

  20. Pd-catalyzed one-pot synthesis of polysubstituted acrylamidines from isocyanides, diazo compounds, and imines.

    PubMed

    Yan, Xu; Liao, Jinxi; Lu, Yongzhi; Liu, Jinsong; Zeng, Youlin; Cai, Qian

    2013-05-17

    A novel and efficient Pd-catalyzed one-pot reaction of ethyl diazoacetate, isocyanides, and imines for the synthesis of acrylamidines was developed. The multicomponent reaction may have occurred through an unpredicted ring-opening process of the ketenimine-imine [2 + 2] intermediate to form the acrylamidine products.

  1. Holo Structure and Steady State Kinetics of the Thiazolinyl Imine Reductases for Siderophore Biosynthesis

    PubMed Central

    Meneely, Kathleen M.; Ronnebaum, Trey A.; Riley, Andrew P.; Prisinzano, Thomas E.; Lamb, Audrey L.

    2016-01-01

    Thiazolinyl imine reductases catalyze the NADPH-dependent reduction of a thiazoline to a thiazolidine, a required step in the formation of the siderophores yersiniabactin (Yersinia spp.) and pyochelin (Pseudomonas aeruginosa). These stand-alone nonribosomal peptide tailoring domains are structural homologues of sugar oxidoreductases. Two closed structures of the thiazolinyl imine reductase from Yersinia enterocolitica (Irp3) are presented here: an NADP+-bound structure to 1.45 Å resolution and a holo structure to 1.28 Å resolution with NADP+ and a substrate analogue bound. Michaelis—Menten kinetics were measured using the same substrate analogue and the homologue from P. aeruginosa, PchG. The data presented here support the hypothesis that tyrosine 128 is the likely general acid residue for catalysis and also highlight the phosphopantetheine tunnel for tethering of the substrate to the nonribosomal peptide synthetase module during assembly line biosynthesis of the siderophore. PMID:27601130

  2. Ecdysteroid-stimulated synthesis and secretion of an N-acetyl-D-glucosamine-rich glycopeptide in a lepidopteran cell line derived from imaginal discs.

    PubMed

    Porcheron, P; Morinière, M; Coudouel, N; Oberlander, H

    1991-01-01

    Hormone-regulated processing of N-acetyl-D-glucosamine was studied in an insect cell line derived from imaginal wing discs of the Indian meal moth, Plodia interpunctella (Hübner). The cell line, IAL-PID2, responded to treatment with 20-hydroxyecdysone with increased incorporation of GlcNAc into glycoproteins. Cycloheximide and tunicamycin counteracted the action of the hormone. In particular, treatment with 20-hydroxyecdysone resulted in the secretion of a 5,000 dalton N-acetyl-D-glucosamine-rich glycopeptide by the IAL-PID2 cells. Accumulation of this peptide was prevented by the use of teflubenzuron, a potent chitin synthesis inhibitor. A glycopeptide of similar molecular weight was observed in imaginal discs of P. interpunctella treated with 20-hydroxyecdysone in vitro, under conditions that induce chitin synthesis. Although the function of the 5,000 dalton glycopeptide is not known, we believe that the PID2 cell line is a promising model for molecular analysis of ecdysteroid-regulated processing of aminosugars by epidermal cells during insect development.

  3. Rapid and sensitive spectrofluorimetric determination of enrofloxacin, levofloxacin and ofloxacin with 2,3,5,6-tetrachloro- p-benzoquinone

    NASA Astrophysics Data System (ADS)

    Ulu, Sevgi Tatar

    2009-06-01

    A highly sensitive spectrofluorimetric method was developed for the first time, for the analysis of three fluoroquinolones (FQ) antibacterials, namely enrofloxacin (ENR), levofloxacin (LEV) and ofloxacin (OFL) in pharmaceutical preparations through charge transfer (CT) complex formation with 2,3,5,6-tetrachloro- p-benzoquinone (chloranil,CLA). At the optimum reaction conditions, the FQ-CLA complexes showed excitation maxima ranging from 359 to 363 nm and emission maxima ranging from 442 to 488 nm. Rectilinear calibration graphs were obtained in the concentration range of 50-1000, 50-1000 and 25-500 ng mL -1 for ENR, LEV and OFL, respectively. The detection limit was found to be 17 ng mL -1 for ENR, 17 ng mL -1 for LEV, 8 ng mL -1 for OFL, respectively. Excipients used as additive in commercial formulations did not interfere in the analysis. The method was validated according to the ICH guidelines with respect to specificity, linearity, accuracy, precision and robustness. The proposed method was successfully applied to the analysis of pharmaceutical preparations. The results obtained were in good agreement with those obtained using the official method; no significant difference in the accuracy and precision as revealed by the accepted values of t- and F-tests, respectively.

  4. Studies on N-Acetyltransferase (NAT2) Genotype Relationships in Emiratis: Confirmation of the Existence of Phenotype Variation among Slow Acetylators.

    PubMed

    Al-Ahmad, Mohammad M; Amir, Naheed; Dhanasekaran, Subramanian; John, Anne; Abdulrazzaq, Yousef M; Ali, Bassam R; Bastaki, Salim

    2017-09-01

    Individuals with slow N-acetylation phenotype often experience toxicity from drugs such as isoniazid, sulfonamides, procainamide, and hydralazine, whereas rapid acetylators may not respond to these medications. The highly polymorphic N-acetyltransferase 2 enzyme encoded by the NAT2 gene is one of the N-acetylators in humans with a clear impact on the metabolism of a significant number of important drugs. However, there are limited studies on N-acetylation phenotypes and NAT2 genotypes among Emiratis, and thus this study was carried out to fill this gap. Five hundred seventy-six Emirati subjects were asked to consume a soft drink containing caffeine (a nontoxic and reliable probe for predicting the acetylation phenotype) and then provide a buccal swab along with a spot urine sample. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to determine the genotype of each individual. Phenotyping was carried out by analyzing the caffeine metabolites using high-performance liquid chromatography (HPLC) analysis. We found that 78.5%, 19.1%, and 2.4% of the Emirati subjects were slow, intermediate, and rapid acetylators, respectively. In addition, we found that 77.4% of the subjects were homozygous or heterozygous for two nonreference alleles, whereas 18.4% and 4.2% were heterozygous or homozygous for the reference allele (NAT2*4), respectively. The most common genotypes found were NAT2*5B/*7B, NAT2*5B/*6A, NAT2*7B/*14B, and NAT2*4/*5B, with frequencies of 0.255, 0.135, 0.105, and 0.09, respectively. The degree of phenotype/genotype concordance was 96.2%. The NAT2*6A/*6A, NAT2*6A/*7B, NAT2*7B/*7B, and NAT2*5A/*5B genotypes were found to be associated with the lowest 5-acetylamino-6-formylamino-3-methyluracil/1-methylxanthine (AFMU/1X) ratios. There is a high percentage of slow acetylators among Emiratis, which correlates with the presence of nonreference alleles for the NAT2 gene. Individuals who carried NAT2*6A/*6A, NAT2*6A/*7B, NAT2*7B/*7B

  5. Enantioselective construction of quaternary stereogenic carbon atoms by the Lewis base catalyzed additions of silyl ketene imines to aldehydes.

    PubMed

    Denmark, Scott E; Wilson, Tyler W; Burk, Matthew T

    2014-07-21

    Silyl ketene imines derived from a variety of α-branched nitriles have been developed as highly useful reagents for the construction of quaternary stereogenic centers via the aldol addition reaction. In the presence of SiCl4 and the catalytic action of a chiral phosphoramide, silyl ketene imines undergo extremely rapid and high yielding addition to a wide variety of aromatic aldehydes with excellent diastereo- and enantioselectivity. Of particular note are the high yields and selectivities obtained from electron-rich, electron-poor, and hindered aldehydes. Linear aliphatic aldehydes did react with good diastereo- and enantioselectivity in the presence of nBu4N(+)I(-), but branched aldehydes were much less reactive. Semiempirical calculations provided a rationalization of the observed diastereo- and enantioselectivity via open transitions states. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Rhodium-catalyzed asymmetric hydrogenation of unprotected NH imines assisted by a thiourea.

    PubMed

    Zhao, Qingyang; Wen, Jialin; Tan, Renchang; Huang, Kexuan; Metola, Pedro; Wang, Rui; Anslyn, Eric V; Zhang, Xumu

    2014-08-04

    Asymmetric hydrogenation of unprotected NH imines catalyzed by rhodium/bis(phosphine)-thiourea provided chiral amines with up to 97% yield and 95% ee. (1)H NMR studies, coupled with control experiments, implied that catalytic chloride-bound intermediates were involved in the mechanism through a dual hydrogen-bonding interaction. Deuteration experiments proved that the hydrogenation proceeded through a pathway consistent with an imine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. NagA-dependent uptake of N-acetyl-glucosamine and N-acetyl-chitin oligosaccharides across the outer membrane of Caulobacter crescentus.

    PubMed

    Eisenbeis, Simone; Lohmiller, Stefanie; Valdebenito, Marianne; Leicht, Stefan; Braun, Volkmar

    2008-08-01

    Among the 67 predicted TonB-dependent outer membrane transporters of Caulobacter crescentus, NagA was found to be essential for growth on N-acetyl-beta-D-glucosamine (GlcNAc) and larger chitin oligosaccharides. NagA (93 kDa) has a predicted typical domain structure of an outer membrane transport protein: a signal sequence, the TonB box EQVVIT, a hatch domain of 147 residues, and a beta-barrel composed of 22 antiparallel beta-strands linked by large surface loops and very short periplasmic turns. Mutations in tonB1 and exbBD, known to be required for maltose transport via MalA in C. crescentus, and in two additional predicted tonB genes (open reading frames cc2327 and cc3508) did not affect NagA-mediated GlcNAc uptake. nagA is located in a gene cluster that encodes a predicted PTS sugar transport system and two enzymes that convert GlcNAc-6-P to fructose-6-P. Since a nagA insertion mutant did not grow on and transport GlcNAc, diffusion of GlcNAc through unspecific porins in the outer membrane is excluded. Uptake of GlcNAc into tonB and exbBD mutants and reduction but not abolishment of GlcNAc transport by agents which dissipate the electrochemical potential of the cytoplasmic membrane (0.1 mM carbonyl cyanide 3-chlorophenylhydrazone and 1 mM 2,4-dinitrophenol) suggest diffusion of GlcNAc through a permanently open pore of NagA. Growth on (GlcNAc)(3) and (GlcNAc)(5) requires ExbB and ExbD, indicating energy-coupled transport by NagA. We propose that NagA forms a small pore through which GlcNAc specifically diffuses into the periplasm and functions as an energy-coupled transporter for the larger chitin oligosaccharides.

  8. Visible light induced green transformation of primary amines to imines using a silicate supported anatase photocatalyst.

    PubMed

    Zavahir, Sifani; Zhu, Huaiyong

    2015-01-26

    Catalytic oxidation of amine to imine is of intense present interest since imines are important intermediates for the synthesis of fine chemicals, pharmaceuticals, and agricultural chemicals. However, considerable efforts have been made to develop efficient methods for the oxidation of secondary amines to imines, while little attention has until recently been given to the oxidation of primary amines, presumably owing to the high reactivity of generated imines of primary amines that are easily dehydrogenated to nitriles. Herein, we report the oxidative coupling of a series of primary benzylic amines into corresponding imines with dioxygen as the benign oxidant over composite catalysts of TiO2 (anatase)-silicate under visible light irradiation of λ > 460 nm. Visible light response of this system is believed to be as a result of high population of defects and contacts between silicate and anatase crystals in the composite and the strong interaction between benzylic amine and the catalyst. It is found that tuning the intensity and wavelength of the light irradiation and the reaction temperature can remarkably enhance the reaction activity. Water can also act as a green medium for the reaction with an excellent selectivity. This report contributes to the use of readily synthesized, environmentally benign, TiO2 based composite photocatalyst and solar energy to realize the transformation of primary amines to imine compounds.

  9. Maize root lectins mediate the interaction with Herbaspirillum seropedicae via N-acetyl glucosamine residues of lipopolysaccharides.

    PubMed

    Balsanelli, Eduardo; Tuleski, Thalita Regina; de Baura, Valter Antonio; Yates, Marshall Geoffrey; Chubatsu, Leda Satie; Pedrosa, Fabio de Oliveira; de Souza, Emanuel Maltempi; Monteiro, Rose Adele

    2013-01-01

    Herbaspirillum seropedicae is a plant growth-promoting diazotrophic betaproteobacterium which associates with important crops, such as maize, wheat, rice and sugar-cane. We have previously reported that intact lipopolysaccharide (LPS) is required for H. seropedicae attachment and endophytic colonization of maize roots. In this study, we present evidence that the LPS biosynthesis gene waaL (codes for the O-antigen ligase) is induced during rhizosphere colonization by H. seropedicae. Furthermore a waaL mutant strain lacking the O-antigen portion of the LPS is severely impaired in colonization. Since N-acetyl glucosamine inhibits H. seropedicae attachment to maize roots, lectin-like proteins from maize roots (MRLs) were isolated and mass spectrometry (MS) analysis showed that MRL-1 and MRL-2 correspond to maize proteins with a jacalin-like lectin domain, while MRL-3 contains a B-chain lectin domain. These proteins showed agglutination activity against wild type H. seropedicae, but failed to agglutinate the waaL mutant strain. The agglutination reaction was severely diminished in the presence of N-acetyl glucosamine. Moreover addition of the MRL proteins as competitors in H. seropedicae attachment assays decreased 80-fold the adhesion of the wild type to maize roots. The results suggest that N-acetyl glucosamine residues of the LPS O-antigen bind to maize root lectins, an essential step for efficient bacterial attachment and colonization.

  10. Maize Root Lectins Mediate the Interaction with Herbaspirillum seropedicae via N-Acetyl Glucosamine Residues of Lipopolysaccharides

    PubMed Central

    Balsanelli, Eduardo; Tuleski, Thalita Regina; de Baura, Valter Antonio; Yates, Marshall Geoffrey; Chubatsu, Leda Satie; de Oliveira Pedrosa, Fabio; de Souza, Emanuel Maltempi; Monteiro, Rose Adele

    2013-01-01

    Herbaspirillum seropedicae is a plant growth-promoting diazotrophic betaproteobacterium which associates with important crops, such as maize, wheat, rice and sugar-cane. We have previously reported that intact lipopolysaccharide (LPS) is required for H. seropedicae attachment and endophytic colonization of maize roots. In this study, we present evidence that the LPS biosynthesis gene waaL (codes for the O-antigen ligase) is induced during rhizosphere colonization by H. seropedicae. Furthermore a waaL mutant strain lacking the O-antigen portion of the LPS is severely impaired in colonization. Since N-acetyl glucosamine inhibits H. seropedicae attachment to maize roots, lectin-like proteins from maize roots (MRLs) were isolated and mass spectrometry (MS) analysis showed that MRL-1 and MRL-2 correspond to maize proteins with a jacalin-like lectin domain, while MRL-3 contains a B-chain lectin domain. These proteins showed agglutination activity against wild type H. seropedicae, but failed to agglutinate the waaL mutant strain. The agglutination reaction was severely diminished in the presence of N-acetyl glucosamine. Moreover addition of the MRL proteins as competitors in H. seropedicae attachment assays decreased 80-fold the adhesion of the wild type to maize roots. The results suggest that N-acetyl glucosamine residues of the LPS O-antigen bind to maize root lectins, an essential step for efficient bacterial attachment and colonization. PMID:24130823

  11. Structure and spectroscopic propierties of imine acetaldehyde: a possible interstellar molecule

    NASA Astrophysics Data System (ADS)

    Redondo, Pilar; Largo, Antonio; Barrientos, Carmen

    2018-05-01

    A previous theoretical study shows that imine acetaldehyde can be obtained from the reaction between protonated vinyl alcohol and azanone. Therefore, imine acetaldehyde could be considered as a good molecule candidate to be found in space and could evolve to more complex organic molecules of prebiotic interest. In the present work, we carried out a computational study of the different conformers of imine acetaldehyde. For characterize its conformers we apply a composite approach which considers the extrapolation to the complete basis set (CBS) limit and core-valence (CV) electron correlation corrections at the at the CC level including single and double excitations and a perturbative treatment of triple excitations (CCSD(T)). This approach provides bond distances with an accuracy of 0.001-0.002 Åand angles accurate to 0.05-0.1°. Vibrational harmonic and anharmonic frequencies and IR intensities are also reported at the CCSD level. The most stable structure corresponds to an antiperiplanar disposition of the oxygen atom and of NH group with the hydrogen atom of the NH group addressed outside the skeleton. Interconversion processes between the four conformers characterized are studied. The lowest isomerization barrier is estimated to be around 1.2 kcal mol-1, making these processes unlikely under low temperature conditions, such as those reigning in the interstellar medium. The reported, at "spectroscopic" accuracy, stabilities, molecular structures, as well as spectroscopic parameters for the four imine acetaldehyde conformers that could help in their laboratory or astronomical detection.

  12. From Arylamine N-Acetyltransferase to Folate-Dependent Acetyl CoA Hydrolase: Impact of Folic Acid on the Activity of (HUMAN)NAT1 and Its Homologue (MOUSE)NAT2

    PubMed Central

    Laurieri, Nicola; Dairou, Julien; Egleton, James E.; Stanley, Lesley A.; Russell, Angela J.; Dupret, Jean-Marie; Sim, Edith; Rodrigues-Lima, Fernando

    2014-01-01

    Acetyl Coenzyme A-dependent N-, O- and N,O-acetylation of aromatic amines and hydrazines by arylamine N-acetyltransferases is well characterised. Here, we describe experiments demonstrating that human arylamine N-acetyltransferase Type 1 and its murine homologue (Type 2) can also catalyse the direct hydrolysis of acetyl Coenzyme A in the presence of folate. This folate-dependent activity is exclusive to these two isoforms; no acetyl Coenzyme A hydrolysis was found when murine arylamine N-acetyltransferase Type 1 or recombinant bacterial arylamine N-acetyltransferases were incubated with folate. Proton nuclear magnetic resonance spectroscopy allowed chemical modifications occurring during the catalytic reaction to be analysed in real time, revealing that the disappearance of acetyl CH 3 from acetyl Coenzyme A occurred concomitantly with the appearance of a CH 3 peak corresponding to that of free acetate and suggesting that folate is not acetylated during the reaction. We propose that folate is a cofactor for this reaction and suggest it as an endogenous function of this widespread enzyme. Furthermore, in silico docking of folate within the active site of human arylamine N-acetyltransferase Type 1 suggests that folate may bind at the enzyme’s active site, and facilitate acetyl Coenzyme A hydrolysis. The evidence presented in this paper adds to our growing understanding of the endogenous roles of human arylamine N-acetyltransferase Type 1 and its mouse homologue and expands the catalytic repertoire of these enzymes, demonstrating that they are by no means just xenobiotic metabolising enzymes but probably also play an important role in cellular metabolism. These data, together with the characterisation of a naphthoquinone inhibitor of folate-dependent acetyl Coenzyme A hydrolysis by human arylamine N-acetyltransferase Type 1/murine arylamine N-acetyltransferase Type 2, open up a range of future avenues of exploration, both for elucidating the developmental role of

  13. Synthesis and characterization of N-parinaroyl analogs of ganglioside GM3 and de-N-acetyl GM3. Interactions with the EGF receptor kinase

    NASA Technical Reports Server (NTRS)

    Song, W.; Welti, R.; Hafner-Strauss, S.; Rintoul, D. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    A specific plasma membrane glycosphingolipid, known as ganglioside GM3, can regulate the intrinsic tyrosyl kinase activity of the epidermal growth factor (EGF) receptor; this modulation is not associated with alterations in hormone binding to the receptor. GM3 inhibits EGF receptor tyrosyl kinase activity in detergent micelles, in plasma membrane vesicles, and in whole cells. In addition, immunoaffinity-purified EGF receptor preparations contain ganglioside GM3 (Hanai et al. (1988) J. Biol. Chem. 263, 10915-10921), implying that the glycosphingolipid is intimately associated with the receptor kinase in cell membranes. Both the nature of this association and the molecular mechanism of kinase inhibition remain to be elucidated. In this report, we describe the synthesis of a fluorescent analog of ganglioside GM3, in which the native fatty acid was replaced with trans-parinaric acid. This glycosphingolipid inhibited the receptor kinase activity in a manner similar to that of the native ganglioside. A modified fluorescent glycosphingolipid, N-trans-parinaroyl de-N-acetyl ganglioside GM3, was also prepared. This analog, like the nonfluorescent de-N-acetyl ganglioside GM3, had no effect on receptor kinase activity. Results from tryptophan fluorescence quenching and steady-state anisotropy measurements in membranes containing these fluorescent probes and the human EGF receptor were consistent with the notion that GM3, but not de-N-acetyl GM3, interacts specifically with the receptor in intact membranes.

  14. Autoinduced catalysis and inverse equilibrium isotope effect in the frustrated Lewis pair catalyzed hydrogenation of imines.

    PubMed

    Tussing, Sebastian; Greb, Lutz; Tamke, Sergej; Schirmer, Birgitta; Muhle-Goll, Claudia; Luy, Burkhard; Paradies, Jan

    2015-05-26

    The frustrated Lewis pair (FLP)-catalyzed hydrogenation and deuteration of N-benzylidene-tert-butylamine (2) was kinetically investigated by using the three boranes B(C6F5)3 (1), B(2,4,6-F3-C6H2)3 (4), and B(2,6-F2-C6H3)3 (5) and the free activation energies for the H2 activation by FLP were determined. Reactions catalyzed by the weaker Lewis acids 4 and 5 displayed autoinductive catalysis arising from a higher free activation energy (2 kcal mol(-1)) for the H2 activation by the imine compared to the amine. Surprisingly, the imine reduction using D2 proceeded with higher rates. This phenomenon is unprecedented for FLP and resulted from a primary inverse equilibrium isotope effect. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Homology modeling and prediction of the amino acid residues participating in the transfer of acetyl-CoA to arylalkylamine by the N-acetyltransferase from Chryseobacterium sp.

    PubMed

    Takenaka, Shinji; Ozeki, Takahiro; Tanaka, Kosei; Yoshida, Ken-Ichi

    2017-11-01

    To predict the amino acid residues playing important roles in acetyl-CoA and substrate binding and to study the acetyl group transfer mechanism of Chryseobacterium sp. 5-3B N-acetyltransferase (5-3B NatA). A 3-dimensional homology model of 5-3B NatA was constructed to compare the theoretical structure of this compound with the structures of previously reported proteins belonging to the bacterial GCN5 N-acetyltransferase family. Homology modeling of the 5-3B NatA structure and a characterization of the enzyme's kinetic parameters identified the essential amino acid residues involved in binding and acetyl-group transfer. 126 Leu, 132 Leu, and 135 Lys were implicated in the binding of phosphopantothenic acid, and 100 Tyr and 131 Lys in that of adenosyl biphosphate. The data supported the participation of 83 Glu and 133 Tyr in catalyzing acetyl-group transfer to L-2-phenylglycine. 5-3B NatA catalyzes the enantioselective N-acetylation of L-2-phenylglycine via a ternary complex comprising the enzyme, acetyl-CoA, and the substrate.

  16. Intramolecular Aza-Diels-Alder Reactions of ortho-Quinone Methide Imines: Rapid, Catalytic, and Enantioselective Assembly of Benzannulated Quinolizidines.

    PubMed

    Kretzschmar, Martin; Hofmann, Fabian; Moock, Daniel; Schneider, Christoph

    2018-04-16

    Aza-Diels-Alder reactions (ADARs) are powerful processes that furnish N-heterocycles in a straightforward fashion. Intramolecular variants offer the additional possibility of generating bi- and polycyclic systems with high stereoselectivity. We report herein a novel Brønsted acid catalyzed process in which ortho-quinone methide imines tethered to the dienophile via the N substituent react in an intramolecular ADAR to form complex quinolizidines and oxazinoquinolines in a one-step process. The reactions proceed under very mild conditions, with very good yields and good to very good diastereo- and enantioselectivities. Furthermore, the process was extended to a domino reaction that efficiently combines substrate synthesis, ortho-quinone methide imine formation, and ADAR. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Internalization and desensitization of the human glucose-dependent-insulinotropic receptor is affected by N-terminal acetylation of the agonist.

    PubMed

    Ismail, Sadek; Dubois-Vedrenne, Ingrid; Laval, Marie; Tikhonova, Irina G; D'Angelo, Romina; Sanchez, Claire; Clerc, Pascal; Gherardi, Marie-Julie; Gigoux, Véronique; Magnan, Remi; Fourmy, Daniel

    2015-10-15

    How incretins regulate presence of their receptors at the cell surface and their activity is of paramount importance for the development of therapeutic strategies targeting these receptors. We have studied internalization of the human Glucose-Insulinotropic Polypeptide receptor (GIPR). GIP stimulated rapid robust internalization of the GIPR, the major part being directed to lysosomes. GIPR internalization involved mainly clathrin-coated pits, AP-2 and dynamin. However, neither GIPR C-terminal region nor β-arrestin1/2 was required. Finally, N-acetyl-GIP recognized as a dipeptidyl-IV resistant analogue, fully stimulated cAMP production with a ∼15-fold lower potency than GIP and weakly stimulated GIPR internalization and desensitization of cAMP response. Furthermore, docking N-acetyl-GIP in the binding site of modeled GIPR showed slighter interactions with residues of helices 6 and 7 of GIPR compared to GIP. Therefore, incomplete or partial activity of N-acetyl-GIP on signaling involved in GIPR desensitization and internalization contributes to the enhanced incretin activity of this peptide. Copyright © 2015. Published by Elsevier Ireland Ltd.

  18. Tridentate N2S ligand from 2,2′-dithiodibenzaldehyde and N,N-dimethylethylenediamine: Synthesis, structure, and characterization of a Ni(II) complex with relevance to Ni Superoxide Dismutase

    PubMed Central

    Zimmerman, Joshua R.; Smucker, Bradley W.; Dain, Ryan P.; VanStipdonk, Michael J.

    2011-01-01

    Nickel Superoxide Dismutase (NiSOD) and the A-cluster of Carbon Monoxide Dehydrogenase/Acetyl Coenzyme A Synthase (CODH/ACS) both feature active sites with Ni coordinated by thiolate and amide donors. It is likely that the particular set of donors is important in tuning the redox potential of the Ni center(s). We report herein an expansion of our efforts involving the use of 2,2′-dithiodibenzaldehyde (DTDB) as a synthon for metal-thiolate complexes to reactions with Ni complexes of N,N-dimethylethylenediamine (dmen). In the presence of coordinating counterions, these reactions result in monomeric square-planar complexes of the tridentate N2S donor ligand derived from the Schiff-base condensation of dmen and DTDB. In the absence of a coordinating counterion, we have isolated a Ni(II) complex with an asymmetric N2S2 donor set involving one amine and one imine N donor in addition to two thiolate donors. This latter complex is discussed with respect to its relevance to the active site of NiSOD. PMID:21666847

  19. Proteomic Analysis of Acetaminophen-Induced Changes in Mitochondrial Protein Expression Using Spectral Counting

    PubMed Central

    Stamper, Brendan D.; Mohar, Isaac; Kavanagh, Terrance J.; Nelson, Sidney D.

    2011-01-01

    Comparative proteomic analysis following treatment with acetaminophen (APAP) was performed on two different models of APAP-mediated hepatocellular injury in order to both identify common targets for adduct formation and track drug-induced changes in protein expression. Male C57BL/6 mice were used as a model for APAP-mediated liver injury in vivo and TAMH cells were used as a model for APAP-mediated cytotoxicity in vitro. SEQUEST was unable to identify the precise location of sites of adduction following treatment with APAP in either system. However, semiquantitative analysis of the proteomic datasets using spectral counting revealed a downregulation of P450 isoforms associated with APAP bioactivation, and an upregulation of proteins related to the electron transport chain by APAP compared to control. Both mechanisms are likely compensatory in nature as decreased P450 expression is likely to attenuate toxicity associated with N-acetyl-p-quinoneimine (NAPQI) formation, whereas APAP-induced electron transport chain component upregulation may be an attempt to promote cellular bioenergetics. PMID:21329376

  20. Peroxisome proliferator-activated receptor (PPAR)-binding protein (PBP) but not PPAR-interacting protein (PRIP) is required for nuclear translocation of constitutive androstane receptor in mouse liver.

    PubMed

    Guo, Dongsheng; Sarkar, Joy; Ahmed, Mohamed R; Viswakarma, Navin; Jia, Yuzhi; Yu, Songtao; Sambasiva Rao, M; Reddy, Janardan K

    2006-08-25

    The constitutive androstane receptor (CAR) regulates transcription of phenobarbital-inducible genes that encode xenobiotic-metabolizing enzymes in liver. CAR is localized to the hepatocyte cytoplasm but to be functional, it translocates into the nucleus in the presence of phenobarbital-like CAR ligands. We now demonstrate that adenovirally driven EGFP-CAR, as expected, translocates into the nucleus of normal wild-type hepatocytes following phenobarbital treatment under both in vivo and in vitro conditions. Using this approach we investigated the role of transcription coactivators PBP and PRIP in the translocation of EGFP-CAR into the nucleus of PBP and PRIP liver conditional null mouse hepatocytes. We show that coactivator PBP is essential for nuclear translocation of CAR but not PRIP. Adenoviral expression of both PBP and EGFP-CAR restored phenobarbital-mediated nuclear translocation of exogenously expressed CAR in PBP null livers in vivo and in PBP null primary hepatocytes in vitro. CAR translocation into the nucleus of PRIP null livers resulted in the induction of CAR target genes such as CYP2B10, necessary for the conversion of acetaminophen to its hepatotoxic intermediate metabolite, N-acetyl-p-benzoquinone imine. As a consequence, PRIP-deficiency in liver did not protect from acetaminophen-induced hepatic necrosis, unlike that exerted by PBP deficiency. These results establish that transcription coactivator PBP plays a pivotal role in nuclear localization of CAR, that it is likely that PBP either enhances nuclear import or nuclear retention of CAR in hepatocytes, and that PRIP is redundant for CAR function.

  1. Metabolomic Analysis of Blood Plasma after Oral Administration of N-acetyl-d-Glucosamine in Dogs

    PubMed Central

    Osaki, Tomohiro; Kurozumi, Seiji; Sato, Kimihiko; Terashi, Taro; Azuma, Kazuo; Murahata, Yusuke; Tsuka, Takeshi; Ito, Norihiko; Imagawa, Tomohiro; Minami, Saburo; Okamoto, Yoshiharu

    2015-01-01

    N-acetyl-d-glucosamine (GlcNAc) is a monosaccharide that polymerizes linearly through (1,4)-β-linkages. GlcNAc is the monomeric unit of the polymer chitin. GlcNAc is a basic component of hyaluronic acid and keratin sulfate found on the cell surface. The aim of this study was to examine amino acid metabolism after oral GlcNAc administration in dogs. Results showed that plasma levels of ectoine were significantly higher after oral administration of GlcNAc than prior to administration (p < 0.001). To our knowledge, there have been no reports of increased ectoine concentrations in the plasma. The mechanism by which GlcNAc administration leads to increased ectoine plasma concentration remains unclear; future studies are required to clarify this mechanism. PMID:26262626

  2. Early life socioeconomic status, chronic physiological stress and hippocampal N-acetyl aspartate concentrations.

    PubMed

    McLean, John; Krishnadas, Rajeev; Batty, G David; Burns, Harry; Deans, Kevin A; Ford, Ian; McConnachie, Alex; McGinty, Agnes; McLean, Jennifer S; Millar, Keith; Sattar, Naveed; Shiels, Paul G; Tannahill, Carol; Velupillai, Yoga N; Packard, Chris J; Condon, Barrie R; Hadley, Donald M; Cavanagh, Jonathan

    2012-12-01

    Early life socioeconomic deprivation has been associated with cognitive and behavioural changes that persist through towards adulthood. In this study, we investigated whether early life socioeconomic status is associated with changes in the hippocampus N-acetyl aspartate (NAA), using the non-invasive technique of magnetic resonance spectroscopy (MRS). We performed proton magnetic resonance spectroscopy ((1)H-MRS) of the hippocampus at 3T in 30 adult males, selected from the PSOBID cohort. We conducted multiple regression analysis to examine the relationship between early socioeconomic status (SES) and concentration of N-acetyl-aspartate in the hippocampus. We also examined whether the relationship between these variables was mediated by markers of chronic physiological stress. Greater socioeconomic deprivation was associated with lower hippocampal NAA concentrations bilaterally. The relationship between early life SES and hippocampal NAA concentrations was mediated by allostatic load index - a marker of chronic physiological stress. Greater early life socioeconomic deprivation was associated with lower concentrations of NAA reflecting lesser neuronal integrity. This relationship was mediated by greater physiological stress. Further work, to better understand the biological processes underlying the effects of poverty, physiological stress on hippocampal metabolites is necessary. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. In Situ Infrared Spectroscopy of Oligoaniline Intermediates Created under Alkaline Conditions.

    PubMed

    Šeděnková, Ivana; Stejskal, Jaroslav; Trchová, Miroslava

    2014-12-26

    The progress of the oxidation of aniline with ammonium peroxydisulfate in an alkaline aqueous medium has been monitored in situ by attenuated total reflection (ATR) Fourier transform infrared spectroscopy. The growth of the microspheres and of the film at the ATR crystal surface, as well as the changes proceeding in the surrounding aqueous medium, are reflected in the spectra. The evolution of the spectra and the changes in the molecular structure occurring during aniline oxidation in alkaline medium are discussed with the help of differential spectra. Several processes connected with the various stages of aniline oxidation were distinguished. The progress of hydrolysis of the aniline in water and further an oxidation of aminophenol to benzoquinone imines in the presence of peroxydisulfate in alkaline medium have been detected in the spectra in real time. The precipitated solid oxidation product was analyzed by mass spectrometry. It is composed of oligomers, mainly trimers to octamers, of various molecular structures incorporating in addition to aniline constitutional units also p-benzoquinone or p-benzoquinoneimine moieties.

  4. Substrate-bound Crystal Structures Reveal Features Unique to Mycobacterium tuberculosis N-Acetyl-glucosamine 1-Phosphate Uridyltransferase and a Catalytic Mechanism for Acetyl Transfer

    PubMed Central

    Jagtap, Pravin Kumar Ankush; Soni, Vijay; Vithani, Neha; Jhingan, Gagan Deep; Bais, Vaibhav Singh; Nandicoori, Vinay Kumar; Prakash, Balaji

    2012-01-01

    N-Acetyl-glucosamine-1-phosphate uridyltransferase (GlmU), a bifunctional enzyme involved in bacterial cell wall synthesis is exclusive to prokaryotes. GlmU, now recognized as a promising target to develop new antibacterial drugs, catalyzes two key reactions: acetyl transfer and uridyl transfer at two independent domains. Hitherto, we identified GlmU from Mycobacterium tuberculosis (GlmUMtb) to be unique in possessing a 30-residue extension at the C terminus. Here, we present the crystal structures of GlmUMtb in complex with substrates/products bound at the acetyltransferase active site. Analysis of these and mutational data, allow us to infer a catalytic mechanism operative in GlmUMtb. In this SN2 reaction, His-374 and Asn-397 act as catalytic residues by enhancing the nucleophilicity of the attacking amino group of glucosamine 1-phosphate. Ser-416 and Trp-460 provide important interactions for substrate binding. A short helix at the C-terminal extension uniquely found in mycobacterial GlmU provides the highly conserved Trp-460 for substrate binding. Importantly, the structures reveal an uncommon mode of acetyl-CoA binding in GlmUMtb; we term this the U conformation, which is distinct from the L conformation seen in the available non-mycobacterial GlmU structures. Residues, likely determining U/L conformation, were identified, and their importance was evaluated. In addition, we identified that the primary site for PknB-mediated phosphorylation is Thr-418, near the acetyltransferase active site. Down-regulation of acetyltransferase activity upon Thr-418 phosphorylation is rationalized by the structures presented here. Overall, this work provides an insight into substrate recognition, catalytic mechanism for acetyl transfer, and features unique to GlmUMtb, which may be exploited for the development of inhibitors specific to GlmU. PMID:22969087

  5. Synthesis, Spectral investigation (¹H, ¹³C) and Anti-microbial Screening of benzophenone imines.

    PubMed

    Khosa, Muhammad Kaleem; Jamal, Muhammad Asghar; Saif, Muhammad Jawad; Muneer, Majid; Rehman, Fazalur; Farman, Muhammad; Shoaib, Hafiz Muhammad; Shahid, Muhammad; Hameed, Shabnam

    2015-11-01

    New series of benzophenone imines with general formula Ph2-C=NR; R = Benzyl, 4-Fluorobenzyl, Naphthyl, Phenyl, 4-Nitrophenyl were synthesized by condensation of dichlorodiphenylmethane and different aromatic primary amines (1:1) Those imines were characterized by different physiochemical and spectroscopic techniques like melting point, elemental analysis, FT-IR, multinuclear NMR (¹H, ¹³C). After characterization, imines were subjected to anti-microbial activities. All compounds showed promising activity against different bacterial strains like Escherichia coli, Bacillussubtilis, Pasturellam ultocida and Staphylococcus aureus as well as fungal strains like Alternata alternaria, Ganoderma lucidium, Penicillium notatum and Trichoderma harzianum using Amoxicillin and Flucanazole as a standard drugs respectively.

  6. Cyclic imine toxins from dinoflagellates: a growing family of potent antagonists of the nicotinic acetylcholine receptors.

    PubMed

    Molgó, Jordi; Marchot, Pascale; Aráoz, Rómulo; Benoit, Evelyne; Iorga, Bogdan I; Zakarian, Armen; Taylor, Palmer; Bourne, Yves; Servent, Denis

    2017-08-01

    We present an overview of the toxicological profile of the fast-acting, lipophilic macrocyclic imine toxins, an emerging family of organic compounds associated with algal blooms, shellfish contamination and neurotoxicity. Worldwide, shellfish contamination incidents are expanding; therefore, the significance of these toxins for the shellfish food industry deserves further study. Emphasis is directed to the dinoflagellate species involved in their production, their chemical structures, and their specific mode of interaction with their principal natural molecular targets, the nicotinic acetylcholine receptors, or with the soluble acetylcholine-binding protein, used as a surrogate receptor model. The dinoflagellates Karenia selliformis and Alexandrium ostenfeldii / A. peruvianum have been implicated in the biosynthesis of gymnodimines and spirolides, while Vulcanodinium rugosum is the producer of pinnatoxins and portimine. The cyclic imine toxins are characterized by a macrocyclic skeleton comprising 14-27 carbon atoms, flanked by two conserved moieties, the cyclic imine and the spiroketal ring system. These phycotoxins generally display high affinity and broad specificity for the muscle type and neuronal nicotinic acetylcholine receptors, a feature consistent with their binding site at the receptor subunit interfaces, composed of residues highly conserved among all nAChRs, and explaining the diverse toxicity among animal species. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.

  7. Syntheses and Immunological Evaluation of Self-Adjuvanting Clustered N-Acetyl and N-Propionyl Sialyl-Tn Combined with A T-helper Cell Epitope as Antitumor Vaccine Candidates.

    PubMed

    Chang, Tsung-Che; Manabe, Yoshiyuki; Fujimoto, Yukari; Ohshima, Shino; Kametani, Yoshie; Kabayama, Kazuya; Nimura, Yuka; Lin, Chun-Cheng; Fukase, Koichi

    2018-05-16

    Sialyl-Tn (STn) is a tumor-associated carbohydrate antigen (TACA) rarely observed on healthy tissues. We synthesized two fully synthetic N-acetyl and N-propionyl STn trimer (triSTn) vaccines possessing a T-helper epitope and a TLR2 agonist, since the clustered STn antigens are highly expressed on many cancer cells. Immunization of both vaccines in mice induced the anti-triSTn IgG antibodies, which recognized triSTn-expressing cell lines PANC-1 and HepG2. The N-propionyl triSTn vaccine induced the triSTn-specific IgGs, while IgGs induced by the N-acetyl triSTn vaccine were less specific. These results illustrated that N-propionyl triSTn is a valuable unnatural TACA for anticancer vaccines. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The oxidation/reduction kinetics of the plastoquinone pool controls the appearance of the I-peak in the O-J-I-P chlorophyll fluorescence rise: effects of various electron acceptors.

    PubMed

    Joly, David; Carpentier, Robert

    2007-07-27

    Quantitative analysis of the fluorescence induction (FI) rise was used in this study to elucidate the complex effects of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) on thylakoids. Reduced TMPD molecules, responsible for the ADRY agent effect, caused an increase in the amplitude of the O-J rise. Also, only oxidized TMPD molecules were shown to have the ability to bind the Q(B) pocket of photosystem II (PSII). On the other hand, the I-P rise was slowed in proportion with the oxidized TMPD concentration, inducing the clear appearance of the I-peak. While this property was previously thought to be unique to TMPD, this study shows that some artificial electron acceptors of PSII, silicomolybdate, 2,5-dichloro-p-benzoquinone, and phenyl-p-benzoquinone, have a similar effect. These results demonstrated a major role of the oxido-reduction kinetics of the PQ-pool in the resolution of J-I and I-P phases in the FI of isolated thylakoids.

  9. A high-pressure liquid chromatographic method for the determination of N-acetyl-p-aminophenol (acetaminophen) in serum or plasma using a direct injection technique.

    PubMed

    Manno, B R; Manno, J E; Dempsey, C A; Wood, M A

    1981-01-01

    N-Acetyl-p-aminophenol (acetaminophen) is becoming more prevalent as an intoxicant in accidental or intentional overdose, therefore, a direct injection ultra-micro high-pressure liquid chromatographic (HPLC) method has been developed for its quantitation. The HPLC analysis was performed using a Model 110 Solvent Metering Pump equipped with a Model 110-19 Pressure Filter (Altex Scientific, Berkeley, CA), a Model 7120 Rheodyne Injector (Rheodyne, Berkeley, CA) or a Model U6K Injector (Waters Associates, Milford, MA) a Model 440 Absorbance Detector (Water's Associates), and a Model 3380A Recorder Integrator (Hewlett Packard, Avondale, PA). A commercially prepared muBonapak C18 Column (Water's Associates) was used. Acetaminophen was eluted with a mixture of 0.01 mol/L aqueous sodium acetate, pH 4.0: acetonitrile (93:7) and the absorbance detector was operated wih a 254 nm filter. The method, which requires only 2 microL of serum or plasma for analysis, offers several distinct advantages to the analyst. No pre- or post-column extraction or other manipulation of the specimen is required to obtain a quantitative result. Rapid processing of the specimen is possible because both acetaminophen and the internal standard are eluted in less than 10 minutes. The small sample (2 microL) is ideal for use with pediatric patients.

  10. Coupling the Torpedo microplate-receptor binding assay with mass spectrometry to detect cyclic imine neurotoxins.

    PubMed

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M; Zakarian, Armen; Molgó, Jordi

    2012-12-04

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility.

  11. Coupling the Torpedo Microplate-Receptor Binding Assay with Mass Spectrometry to Detect Cyclic Imine Neurotoxins

    PubMed Central

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M.; Zakarian, Armen; Molgó, Jordi

    2014-01-01

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility. PMID:23131021

  12. FGFR1 is essential for N-acetyl-seryl-aspartyl-lysyl-proline regulation of mitochondrial dynamics by upregulating microRNA let-7b-5p.

    PubMed

    Hu, Qiongying; Li, Jinpeng; Nitta, Kyoko; Kitada, Munehiro; Nagai, Takako; Kanasaki, Keizo; Koya, Daisuke

    2018-01-15

    Fibroblast growth factor receptor (FGFR) 1 plays a key role in endothelial homeostasis by inducing microRNA (miR) let-7. Our previous paper showed that anti-fibrotic effects of N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) were associated with restoring diabetes-suppressed expression of FGFR1 and miR let-7, the key contributor of mitochondrial biogenesis, which is regulated by mitochondrial membrane GTPase proteins (MFN2 and OPA1). Here, we found that the FGFR1 signaling pathway was critical for AcSDKP in maintaining endothelial mitochondrial biogenesis through induction of miR let-7b-5p. In endothelial cells, AcSDKP restored the triple cytokines (TGF-β2, interleukin-1β, tumor necrosis factor-α)-suppressed miR let-7b-5p and protein levels of the mitochondrial membrane GTPase. This effect of AcSDKP was lost with either fibroblast growth factor receptor substrate 2 (FRS2) siRNA or neutralizing FGFR1-treated cells. Similarly, AcSDKP had no effect on the miR let-7b-5p inhibitor-suppressed GTPase levels in endothelial cells. In addition, a miR let-7b-5p mimic restored the levels of FRS2 siRNA-reduced GTPases in endothelial cells. These findings were also confirmed using MitoTracker Green and an immunofluorescence assay. Our results demonstrated that the AcSDKP-FGFR1 signaling pathway is critical for maintaining mitochondrial dynamics by control of miR let-7b-5p in endothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Designing multistep transformations using the Hammett equation: imine exchange on a copper(I) template.

    PubMed

    Schultz, David; Nitschke, Jonathan R

    2006-08-02

    Herein, we quantify how imine exchange may be used to selectively transform one metallo-organic structure into another. A series of imine exchange reactions were studied, involving a set of 4-substituted anilines, their 2-pyridylimines and 1,10-phenanthrolyl-2,9-diimines, as well as the copper complexes of these imine ligands. Electron-rich anilines were found to displace electron-poor anilines in all cases. Linear free energy relationships (LFERs) were discovered connecting the electron-donating or -withdrawing character of the 4-substituent of an aniline, as measured by the Hammett sigma(para) parameter, to that aniline's ability to compete with unsubstituted aniline to form imines. The quality of these LFERs allowed for quantitative predictions: to obtain the desired degree of selectivity in an imine exchange between anilines A and B, the required sigma(para) differential could be predicted using a variant of the Hammett equation, log(K(AB)) = rho(sigma(A) - sigma(B)). We validated this methodology by designing and executing a three-step transformation of a series of copper(I)-containing structures. Each step proceeded in predictably high yield, as calculated from sigma differentials. At each step in the series of transformations, macrocyclic structures could be created or destroyed through the selection of mono- or di-amines as subcomponents. The same methodology could be used to predict the formation of a diverse dynamic library of helicates from a set of four aniline precursors, as well as the collapse of this library into one helicate upon the addition of a fifth aniline.

  14. A bioinformatics-based overview of protein Lys-Ne-acetylation

    USDA-ARS?s Scientific Manuscript database

    Among posttranslational modifications, there are some conceptual similarities between Lys-N'-acetylation and Ser/Thr/Tyr O-phosphorylation. Herein we present a bioinformatics-based overview of reversible protein Lys-acetylation, including some comparisons with reversible protein phosphorylation. T...

  15. Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications.

    PubMed

    Ghanta, Sirisha; Grossmann, Ruth E; Brenner, Charles

    2013-01-01

    Hormone systems evolved over 500 million years of animal natural history to motivate feeding behavior and convert excess calories to fat. These systems produced vertebrates, including humans, who are famine-resistant but sensitive to obesity in environments of persistent overnutrition. We looked for cell-intrinsic metabolic features, which might have been subject to an evolutionary drive favoring lipogenesis. Mitochondrial protein acetylation appears to be such a system. Because mitochondrial acetyl-coA is the central mediator of fuel oxidation and is saturable, this metabolite is postulated to be the fundamental indicator of energy excess, which imprints a memory of nutritional imbalances by covalent modification. Fungal and invertebrate mitochondria have highly acetylated mitochondrial proteomes without an apparent mitochondrially targeted protein lysine acetyltransferase. Thus, mitochondrial acetylation is hypothesized to have evolved as a nonenzymatic phenomenon. Because the pKa of a nonperturbed Lys is 10.4 and linkage of a carbonyl carbon to an ε amino group cannot be formed with a protonated Lys, we hypothesize that acetylation occurs on residues with depressed pKa values, accounting for the propensity of acetylation to hit active sites and suggesting that regulatory Lys residues may have been under selective pressure to avoid or attract acetylation throughout animal evolution. In addition, a shortage of mitochondrial oxaloacetate under ketotic conditions can explain why macronutrient insufficiency also produces mitochondrial hyperacetylation. Reduced mitochondrial activity during times of overnutrition and undernutrition would improve fitness by virtue of resource conservation. Micronutrient insufficiency is predicted to exacerbate mitochondrial hyperacetylation. Nicotinamide riboside and Sirt3 activity are predicted to relieve mitochondrial inhibition.

  16. Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications

    PubMed Central

    Ghanta, Sirisha; Grossmann, Ruth E.; Brenner, Charles

    2014-01-01

    Hormone systems evolved over 500 million years of animal evolution to motivate feeding behavior and convert excess calories to fat. These systems produced vertebrates, including humans, who are famine-resistant but sensitive to obesity in environments of persistent overnutrition. We looked for cell-intrinsic metabolic features, which might have been subject to an evolutionary drive favoring lipogenesis. Mitochondrial protein acetylation appears to be such a system. Because mitochondrial acetyl-coA is the central mediator of fuel oxidation and is saturable, this metabolite is postulated to be the fundamental indicator of energy excess, which imprints a memory of nutritional imbalances by covalent modification. Fungal and invertebrate mitochondria have highly acetylated mitochondrial proteomes without an apparent mitochondrially-targeted protein lysine acetyltransferase. Thus, mitochondrial acetylation is hypothesized to have evolved as a nonenzymatic phenomenon. Because the pKa of a nonperturbed Lys is 10.4 and linkage of a carbonyl carbon to an ε amino group cannot be formed with a protonated Lys, we hypothesize that acetylation occurs on residues with depressed pKa values, accounting for the propensity of acetylation to hit active sites and suggesting that regulatory Lys residues may have been under selective pressure to avoid or attract acetylation throughout animal evolution. In addition, a shortage of mitochondrial oxaloacetate under ketotic conditions can explain why macronutrient insufficiency also produces mitochondrial hyperacetylation. Reduced mitochondrial activity during times of overnutrition and undernutrition would improve fitness by virtue of resource conservation. Micronutrient insufficiency is predicted to exacerbate mitochondrial hyperacetylation. Nicotinamide riboside and Sirt3 activity are predicted to relieve mitochondrial inhibition. PMID:24050258

  17. N-terminal acetylation -an Essential Protein Modification Emerges as an Important Regulator of Stress Responses.

    PubMed

    Linster, Eric; Wirtz, Markus

    2018-06-26

    N-terminal acetylation (NTA) is a prevalent protein modification in eukaryotes. The majority of proteins is acetylated at their N-terminus in a co-translational manner by ribosome-associated N-terminal acetyltransferases (NAT). However, the recent discovery of Golgi-membrane localized NATs in metazoan, and plastid-localized NATs in plants challenged the dogma of static, co-translational imprinting of the proteome by NTA. Indeed, NTA by the cytosolic NatA is highly dynamic and under hormonal control in plants. Such active control has not been evidenced yet in other eukaryotes and might be an adaptation to the sessile lifestyle of plants forcing them to cope with diverse environmental challenges. The function of NTA for individual proteins is distinct and yet unpredictable. In yeast and humans, NTA has been shown to affect protein-protein interactions, subcellular localization, folding, aggregation, or degradation of a handful of proteins. In particular, the impact of NTA on the protein-turnover is documented by diverse examples in yeast. Consequently, NTA has recently dicovered to be a degradation signal in a distinct branch of the N-end rule pathway ubiquitin-mediated proteolysis. In this review, we summarize the current knowledge on the NAT machinery in higher plants and discuss the potential function of NTA during biotic and abiotic stresses.

  18. Examining the free radical bonding mechanism of benzoquinone- and hydroquinone-methanol passivation of silicon surfaces

    NASA Astrophysics Data System (ADS)

    Kotulak, Nicole A.; Chen, Meixi; Schreiber, Nikolas; Jones, Kevin; Opila, Robert L.

    2015-11-01

    The surface passivation of p-benzoquinone (BQ) and hydroquinone (HQ) when dissolved in methanol (ME) has been examined through effective lifetime testing of crystalline silicon (c-Si) wafers treated with the aforementioned solutions. Changes in the availability of both photons and protons in the solutions were demonstrated to affect the level of passivation achieved. The requirement of both excess protons and ambient light exposure to maintain high effective lifetimes supports the presence of a free radical species that drives the surface passivation. Surface analysis suggests a 1:1 ratio of HQ-like bonds to methoxy bonds on the c-Si surface after treatment with a BQ/ME solution.

  19. Loss of p300 and CBP disrupts histone acetylation at the mouse Sry promoter and causes XY gonadal sex reversal

    PubMed Central

    Carré, Gwenn-Aël; Siggers, Pam; Xipolita, Marilena; Brindle, Paul; Lutz, Beat; Wells, Sara; Greenfield, Andy

    2018-01-01

    Abstract CREB-binding protein (CBP, CREBBP, KAT3A) and its closely related paralogue p300 (EP300, KAT3B), together termed p300/CBP, are histone/lysine acetyl-transferases that control gene expression by modifying chromatin-associated proteins. Here, we report roles for both of these chromatin-modifying enzymes in mouse sex determination, the process by which the embryonic gonad develops into a testis or an ovary. By targeting gene ablation to embryonic gonadal somatic cells using an inducible Cre line, we show that gonads lacking either gene exhibit major abnormalities of XY gonad development at 14.5 dpc, including partial sex reversal. Embryos lacking three out of four functional copies of p300/Cbp exhibit complete XY gonadal sex reversal and have greatly reduced expression of the key testis-determining genes Sry and Sox9. An analysis of histone acetylation at the Sry promoter in mutant gonads at 11.5 dpc shows a reduction in levels of the positive histone mark H3K27Ac. Our data suggest a role for CBP/p300 in testis determination mediated by control of histone acetylation at the Sry locus and reveal a novel element in the epigenetic control of Sry and mammalian sex determination. They also suggest possible novel causes of human disorders of sex development (DSD). PMID:29145650

  20. Inhibitory Effect of Flavonoids on the Efflux of N-Acetyl 5-Aminosalicylic Acid Intracellularly Formed in Caco-2 Cells

    PubMed Central

    Shin, Yoshimura; Kentaro, Kawano; Ryusuke, Matsumura; Narumi, Sugihara; Koji, Furuno

    2009-01-01

    N-acetyl 5-aminosalicylic acid (5-AcASA) that was intracellularly formed from 5-aminosalicylic acid (5-ASA) at 200 μM was discharged 5.3, 7.1, and 8.1-fold higher into the apical site than into the basolateral site during 1, 2, and 4-hour incubations, respectively, in Caco-2 cells grown in Transwells. The addition of flavonols (100 μM) such as fisetin and quercetin with 5-ASA remarkably decreased the apically directed efflux of 5-AcASA. When 5-ASA (200 μM) was added to Caco-2 cells grown in tissue culture dishes, the formation of 5-AcASA decreased, and, in addition, the formed 5-AcASA was found to be accumulated within the cells in the presence of such flavonols. Thus, the decrease in 5-AcASA efflux by such flavonols was attributed not only to the inhibition of N-acetyl-conjugation of 5-ASA but to the predominant cellular accumulation of 5-AcASA. Various flavonoids also had both of the effects with potencies that depend on their specific structures. The essential structure of flavonoids was an absence of a hydroxyl substitution at the C5 position on the A-ring of flavone structure for the inhibitory effect on the N-acetyl-conjugation of 5-ASA, and a presence of hydroxyl substitutions at the C3′ or C4′ position on the B-ring of flavone structure for the promoting effect on the cellular accumulation of 5-AcASA. Both the decrease in 5-AcASA apical efflux and the increase in 5-AcASA cellular accumulation were also caused by MK571 and indomethacin, inhibitors of MRPs, but not by quinidine, cyclosporin A, P-glycoprotein inhibitors, and mitoxantrone, a BCRP substrate. These results suggest that certain flavonoids suppress the apical efflux of 5-AcASA possibly by inhibiting MRPs pumps located on apical membranes in Caco-2 cells. PMID:19688110

  1. The activity of N-acetyl-β-d-hexosaminidase A and B and β-glucuronidase in nasal polyps and hypertrophic nasal concha.

    PubMed

    Chojnowska, Sylwia; Minarowska, Alina; Waszkiewicz, Napoleon; Kępka, Alina; Zalewska-Szajda, Beata; Gościk, Elżbieta; Kowal, Krzysztof; Olszewska, Ewa; Konarzewska-Duchnowska, Emilia; Minarowski, Łukasz; Zwierz, Krzysztof; Ładny, Jerzy Robert; Szajda, Sławomir Dariusz

    2014-01-01

    Nasal polyps and hypertrophic lower nasal conchae are common disorders of nasal cavity. The majority of etiopathogenetic theories indicate inflammatory background of polyps and hypertrophic concha. N-acetyl-β-D-hexosaminidase and β-glucuronidase are lysosomal exoglycosidases revealing accelerated activity in inflammatory processes. The aim of the study was to evaluate the catabolism of glycoconjugates in nasal polyps and hypertrophic nasal concha basing on the activity of N-acetyl-β-D-hexosaminidase (HEX) and β-glucuronidase (GLU). Material consisted of nasal polyps taken from 40 patients during polypectomy in patients with chronic rhinosinusitis with nasal polyps (CRSwNP) and hypertrophic lower nasal conchae taken from 20 patients during mucotomy. The activity of HEX, HEX A, HEX B and GLU in supernatant of homogenates of nasal polyps and hypertrophic lower nasal concha tissues has been estimated using colorimetric method. Statistically significant decrease has been observed in concentration of the activity (per 1mg of tissue) of HEX (p<0.05), HEX B (p<0.001) and specific activity (per 1mg of protein) of HEX B (p<0.001) in nasal polyps tissue in comparison to hypertrophic lower nasal conchae tissue. Decrease in the activity and specific activity concentration of the majority of examined lysosomal exoglycosidases (increasing in inflammations) in comparison to hypertrophic lower nasal conchae suggests electrolytes disorders and questions the inflammatory background of nasal polyps. Copyright © 2013 Polish Otorhinolaryngology - Head and Neck Surgery Society. Published by Elsevier Urban & Partner Sp. z.o.o. All rights reserved.

  2. Electron impact ionization dynamics of para-benzoquinone

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Ali, E.; Ning, C. G.; Colgan, J.; Ingólfsson, O.; Madison, D. H.; Brunger, M. J.

    2016-10-01

    Triple differential cross sections (TDCSs) for the electron impact ionization of the unresolved combination of the 4 highest occupied molecular orbitals (4b3g, 5b2u, 1b1g, and 2b3u) of para-benzoquinone are reported. These were obtained in an asymmetric coplanar geometry with the scattered electron being observed at the angles -7.5°, -10.0°, -12.5° and -15.0°. The experimental cross sections are compared to theoretical calculations performed at the molecular 3-body distorted wave level, with a marginal level of agreement between them being found. The character of the ionized orbitals, through calculated momentum profiles, provides some qualitative interpretation for the measured angular distributions of the TDCS.

  3. A Chemical Biology Solution to Problems with Studying Biologically Important but Unstable 9-O-Acetyl Sialic Acids.

    PubMed

    Khedri, Zahra; Xiao, An; Yu, Hai; Landig, Corinna Susanne; Li, Wanqing; Diaz, Sandra; Wasik, Brian R; Parrish, Colin R; Wang, Lee-Ping; Varki, Ajit; Chen, Xi

    2017-01-20

    9-O-Acetylation is a common natural modification on sialic acids (Sias) that terminate many vertebrate glycan chains. This ester group has striking effects on many biological phenomena, including microbe-host interactions, complement action, regulation of immune responses, sialidase action, cellular apoptosis, and tumor immunology. Despite such findings, 9-O-acetyl sialoglycoconjugates have remained largely understudied, primarily because of marked lability of the 9-O-acetyl group to even small pH variations and/or the action of mammalian or microbial esterases. Our current studies involving 9-O-acetylated sialoglycans on glycan microarrays revealed that even the most careful precautions cannot ensure complete stability of the 9-O-acetyl group. We now demonstrate a simple chemical biology solution to many of these problems by substituting the oxygen atom in the ester with a nitrogen atom, resulting in sialic acids with a chemically and biologically stable 9-N-acetyl group. We present an efficient one-pot multienzyme method to synthesize a sialoglycan containing 9-acetamido-9-deoxy-N-acetylneuraminic acid (Neu5Ac9NAc) and compare it to the one with naturally occurring 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac 2 ). Conformational resemblance of the two molecules was confirmed by computational molecular dynamics simulations. Microarray studies showed that the Neu5Ac9NAc-sialoglycan is a ligand for viruses naturally recognizing Neu5,9Ac 2 , with a similar affinity but with much improved stability in handling and study. Feeding of Neu5Ac9NAc or Neu5,9Ac 2 to mammalian cells resulted in comparable incorporation and surface expression as well as binding to 9-O-acetyl-Sia-specific viruses. However, cells fed with Neu5Ac9NAc remained resistant to viral esterases and showed a slower turnover. This simple approach opens numerous research opportunities that have heretofore proved intractable.

  4. [The biosynthesis of low-molecular-weight nitrogen-containing secondary metabolite-alkaloids by the resident strains of Penicillium chrysogenum and Penicillium expansum isolated on the board of the Mir space station ].

    PubMed

    Kozlovskiĭ, A G; Zhelifonova, V P; Adanin, V M; Antipova, T V; Shnyreva, A V; Viktorov, A N

    2002-01-01

    The analysis of the absorption spectra of the low-molecular-weight nitrogen-containing secondary metabolites--alkaloids--of 4 Penicillium chrysogenum strains and 6 Penicillium expansum strains isolated on board the Mir space station showed that all these strains synthesize metabolites of alkaloid origin (roquefortine, 3,12-dihydroroquefortine, meleagrin, viridicatin, viridicatol, isorugulosuvin, rugulosuvin B, N-acetyl-tryptamine, and a "yellow metabolite" containing the benzoquinone chromophore).

  5. Histone acetylation rescues contextual fear conditioning in nNOS KO mice and accelerates extinction of cued fear conditioning in wild type mice.

    PubMed

    Itzhak, Yossef; Anderson, Karen L; Kelley, Jonathan B; Petkov, Martin

    2012-05-01

    Epigenetic regulation of chromatin structure is an essential molecular mechanism that contributes to the formation of synaptic plasticity and long-term memory (LTM). An important regulatory process of chromatin structure is acetylation and deacetylation of histone proteins. Inhibition of histone deacetylase (HDAC) increases acetylation of histone proteins and facilitate learning and memory. Nitric oxide (NO) signaling pathway has a role in synaptic plasticity, LTM and regulation of histone acetylation. We have previously shown that NO signaling pathway is required for contextual fear conditioning. The present study investigated the effects of systemic administration of the HDAC inhibitor sodium butyrate (NaB) on fear conditioning in neuronal nitric oxide synthase (nNOS) knockout (KO) and wild type (WT) mice. The effect of single administration of NaB on total H3 and H4 histone acetylation in hippocampus and amygdala was also investigated. A single administration of NaB prior to fear conditioning (a) rescued contextual fear conditioning of nNOS KO mice and (b) had long-term (weeks) facilitatory effect on the extinction of cued fear memory of WT mice. The facilitatory effect of NaB on extinction of cued fear memory of WT mice was confirmed in a study whereupon NaB was administered during extinction. Results suggest that (a) the rescue of contextual fear conditioning in nNOS KO mice is associated with NaB-induced increase in H3 histone acetylation and (b) the accelerated extinction of cued fear memory in WT mice is associated with NaB-induced increase in H4 histone acetylation. Hence, a single administration of HDAC inhibitor may rescue NO-dependent cognitive deficits and afford a long-term accelerating effect on extinction of fear memory of WT mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Acetylation of the c-MYC oncoprotein is required for cooperation with the HTLV-1 p30II accessory protein and the induction of oncogenic cellular transformation by p30II/c-MYC

    PubMed Central

    Romeo, Megan M.; Ko, Bookyung; Kim, Janice; Brady, Rebecca; Heatley, Hayley C.; He, Jeffrey; Harrod, Carolyn K.; Barnett, Braden; Ratner, Lee; Lairmore, Michael D.; Martinez, Ernest; Lüscher, Bernhard; Robson, Craig N.; Henriksson, Marie; Harrod, Robert

    2014-01-01

    The human T-cell leukemia retrovirus type-1 (HTLV-1) p30II protein is a multifunctional latency-maintenance factor that negatively regulates viral gene expression and deregulates host signaling pathways involved in aberrant T-cell growth and proliferation. We have previously demonstrated that p30II interacts with the c-MYC oncoprotein and enhances c-MYC-dependent transcriptional and oncogenic functions. However, the molecular and biochemical events that mediate the cooperation between p30II and c-MYC remain to be completely understood. Herein we demonstrate that p30II induces lysine-acetylation of the c-MYC oncoprotein. Acetylation-defective c-MYC Lys→Arg substitution mutants are impaired for oncogenic transformation with p30II in c-myc−/− HO15.19 fibroblasts. Using dual-chromatin-immunoprecipitations (dual-ChIPs), we further demonstrate that p30II is present in c-MYC-containing nucleoprotein complexes in HTLV-1-transformed HuT-102 T-lymphocytes. Moreover, p30II inhibits apoptosis in proliferating cells expressing c-MYC under conditions of genotoxic stress. These findings suggest that c-MYC-acetylation is required for the cooperation between p30II/c-MYC which could promote proviral replication and contribute to HTLV-1-induced carcinogenesis. PMID:25569455

  7. Iron-Catalyzed Intramolecular C(sp(2))-N Cyclization of 1-(N-Arylpyrrol-2-yl)ethanone O-Acetyl Oximes toward Pyrrolo[1,2-a]quinoxaline Derivatives.

    PubMed

    Zhang, Zhiguo; Li, Junlong; Zhang, Guisheng; Ma, Nana; Liu, Qingfeng; Liu, Tongxin

    2015-07-02

    An efficient and convenient iron-catalyzed protocol has been developed for the synthesis of substituted pyrrolo[1,2-a]quinoxalines from 1-(N-arylpyrrol-2-yl)ethanone O-acetyl oximes through N-O bond cleavage and intramolecular directed C-H arylation reactions in acetic acid.

  8. Artificial neural network - Genetic algorithm to optimize wheat germ fermentation condition: Application to the production of two anti-tumor benzoquinones.

    PubMed

    Zheng, Zi-Yi; Guo, Xiao-Na; Zhu, Ke-Xue; Peng, Wei; Zhou, Hui-Ming

    2017-07-15

    Methoxy-ρ-benzoquinone (MBQ) and 2, 6-dimethoxy-ρ-benzoquinone (DMBQ) are two potential anticancer compounds in fermented wheat germ. In present study, modeling and optimization of added macronutrients, microelements, vitamins for producing MBQ and DMBQ was investigated using artificial neural network (ANN) combined with genetic algorithm (GA). A configuration of 16-11-1 ANN model with Levenberg-Marquardt training algorithm was applied for modeling the complicated nonlinear interactions among 16 nutrients in fermentation process. Under the guidance of optimized scheme, the total contents of MBQ and DMBQ was improved by 117% compared with that in the control group. Further, by evaluating the relative importance of each nutrient in terms of the two benzoquinones' yield, macronutrients and microelements were found to have a greater influence than most of vitamins. It was also observed that a number of interactions between nutrients affected the yield of MBQ and DMBQ remarkably. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Purification and properties of an O-acetyl-transferase from Escherichia coli that can O-acetylate polysialic acid sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higa, H.; Varki, A.

    1986-05-01

    Certain strains of bacteria synthesize an outer polysialic acid (K1) capsule. Some strains of K1/sup +/ E.coli are also capable of adding O-acetyl-esters to the exocyclic hydroxyl groups of the sialic acid residues. Both the capsule and the O-acetyl modification have been correlated with differences in antigenicity and pathogenicity. The authors have developed an assay for an O-acetyl-transferase in E.coli that transfers O-(/sup 3/H)acetyl groups from (/sup 3/H)acetyl-Coenzyme A to colominic acid (fragments of the polysialic acid capsule). Using this assay, the enzyme was solubilized, and purified approx. 600-fold using a single affinity chromatography step with Procion Red-A Agarose. Themore » enzyme also binds to Coenzyme A Sepharose, and can be eluted with high salt or Coenzyme A. The partially purified enzyme has a pH optimum of 7.0 - 7.5, is unaffected by divalent cations, is inhibited by high salt concentrations, is inhibited by Coenzyme A (50% inhibition at 100 ..mu..M), and shows an apparent Km for colominic acid of 3.7 mM (sialic acid concentration). This enzyme could be involved in the O-acetyl +/- form variation seen in some strains of K1/sup +/ E.coli.« less

  10. Noninvasive Measurement of Murine Hepatic Acetyl-CoA 13C-Enrichment Following Overnight Feeding with 13C-Enriched Fructose and Glucose

    PubMed Central

    Carvalho, Filipa; Duarte, Joao; Simoes, Ana Rita; Cruz, Pedro F.; Jones, John G.

    2013-01-01

    The 13C-isotopomer enrichment of hepatic cytosolic acetyl-CoA of overnight-fed mice whose drinking water was supplemented with [U-13C]fructose, and [1-13C]glucose and p-amino benzoic acid (PABA) was quantified by 13C NMR analysis of urinary N-acetyl-PABA. Four mice were given normal chow plus drinking water supplemented with 5% [1-13C]glucose, 2.5% [U-13C]fructose, and 2.5% fructose (Solution 1) overnight. Four were given chow and water containing 17.5% [1-13C]glucose, 8.75% [U-13C]fructose and 8.75% fructose (Solution 2). PABA (0.25%) was present in both studies. Urinary N-acetyl-PABA was analyzed by 13C NMR. In addition to [2-13C]- and [1,2-13C]acetyl isotopomers from catabolism of [U-13C]fructose and [1-13C]glucose to acetyl-CoA, [1-13C]acetyl was also found indicating pyruvate recycling activity. This precluded precise estimates of [1-13C]glucose contribution to acetyl-CoA while that of [U-13C]fructose was unaffected. The fructose contribution to acetyl-CoA from Solutions 1 and 2 was 4.0 ± 0.4% and 10.6 ± 0.6%, respectively, indicating that it contributed to a minor fraction of lipogenic acetyl-CoA under these conditions. PMID:23841082

  11. Histone acetylation regulates the time of replication origin firing.

    PubMed

    Vogelauer, Maria; Rubbi, Liudmilla; Lucas, Isabelle; Brewer, Bonita J; Grunstein, Michael

    2002-11-01

    The temporal firing of replication origins throughout S phase in yeast depends on unknown determinants within the adjacent chromosomal environment. We demonstrate here that the state of histone acetylation of surrounding chromatin is an important regulator of temporal firing. Deletion of RPD3 histone deacetylase causes earlier origin firing and concurrent binding of the replication factor Cdc45p to origins. In addition, increased acetylation of histones in the vicinity of the late origin ARS1412 by recruitment of the histone acetyltransferase Gcn5p causes ARS1412 alone to fire earlier. These data indicate that histone acetylation is a direct determinant of the timing of origin firing.

  12. Influence of Endo- and Exocyclic Heteroatoms on Stabilities and 1,3-Dipolar Cycloaddition Reactivities of Mesoionic Azomethine Ylides and Imines.

    PubMed

    Champagne, Pier Alexandre; Houk, K N

    2017-10-20

    The geometries, stabilities, and 1,3-dipolar cycloaddition reactivities of 24 mesoionic azomethine ylides and imines were investigated using density functional theory calculations at the M06-2X/6-311+G-(d,p)/M06-2X/6-31G-(d) level. The computed structures highlight how the commonly used "aromatic" resonance form should be replaced by two more accurate resonance structures. Stabilities of the dipoles were assessed by various homodesmotic schemes and are consistent with these compounds being nonaromatic. The activation free energies with ethylene or acetylene range from 11.8 to 36.6 kcal/mol. Within each dipole type, the predicted cycloaddition reactivities correlate with the reaction energies and the resonance stabilization energies provided by the various substituents. Endocyclic (X) heteroatoms increase the reactivity of the 1,3-dipoles in the order of O > NH ≅ S, whereas exocyclic (Y) substituents increase it in the order of CH 2 > NH > O > S. Distortion/interaction analysis indicated that the difference in reactivity between differently substituted 1,3-dipoles is driven by distortion, whereas the difference between azomethine ylides and imines is related to lower interaction energies of imines with the dipolarophiles.

  13. LC-MS/MS analysis of uncommon paracetamol metabolites derived through in vitro polymerization and nitration reactions in liquid nitrogen.

    PubMed

    Trettin, Arne; Jordan, Jens; Tsikas, Dimitrios

    2014-09-01

    Paracetamol (acetaminophen, APAP) is a commonly used analgesic drug. Known paracetamol metabolites include the glucuronide, sulfate and mercapturate. N-Acetyl-benzoquinonimine (NAPQI) is considered the toxic intermediate metabolite of paracetamol. In vitro and in vivo studies indicate that paracetamol is also metabolized to additional poorly characterized metabolites. For example, metabolomic studies in urine samples of APAP-treated mice revealed metabolites such as APAP-sulfate-APAP and APAP-S-S-APAP in addition to the classical phase II metabolites. Here, we report on the development and application of LC-MS and LC-MS/MS approaches to study reactions of unlabelled and (2)H-labelled APAP with unlabelled and (15)N-labelled nitrite in aqueous phosphate buffers (pH 7.4) upon their immersion into liquid nitrogen (-196°C). In mechanistic studies, these reactions were also studied in aqueous buffer prepared in (18)O-labelled water. LC-MS and LC-MS/MS analyses were performed on a reverse-phase material (C18) using gradient elution (2mM ammonium acetate/acetonitrile), in positive and negative electrospray mode. We identified a series of APAP metabolites including di-, tri- and tetra-APAP, mono- and di-nitro-APAP and nitric ester of di-APAP. Our study indicates that nitrite induces oxidation, i.e., polymerization and nitration of APAP, when buffered APAP/nitrite solutions are immersed into liquid nitrogen. These reactions are specific for nitrite with respect to nitrate and do not proceed via intermediate formation of NAPQI. Potassium ions and physiological saline but not thiols inhibit nitrite- and shock-freeze-induced reactions of paracetamol. The underlying mechanism likely involves in situ formation of NO2 radicals from nitrite secondary to profound pH reduction (down to pH 1) and disproportionation. Polymeric paracetamol species can be analyzed as pentafluorobenzyl derivatives by LC-MS but not by GC-MS. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Pseudocapacitance and excellent cyclability of 2,5-dimethoxy-1,4-benzoquinone on graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boota, Muhammad; Chen, Chi; Bécuwe, Matthieu

    2016-01-01

    Non-covalent functionalization of 2,5-dimethoxy-1,4-benzoquinone and hydroquinone on reduced graphene oxide sheets led to the formation of a redox-active three-dimensional gel architectureviaa one-step hydrothermal method, where the former exhibited high gravimetric and volumetric capacitance and 99% capacitance retention after 25000 cycles at 50 mV s -1.

  15. Highly efficient oxidation of amines to imines by singlet oxygen and its application in Ugi-type reactions.

    PubMed

    Jiang, Gaoxi; Chen, Jian; Huang, Jie-Sheng; Che, Chi-Ming

    2009-10-15

    A variety of secondary benzylic amines were oxidized to imines in 90% to >99% yields by singlet oxygen generated from oxygen and a porphyrin photosensitizer. On the basis of these reactions, a protocol was developed for oxidative Ugi-type reactions with singlet oxygen as the oxidant. This protocol has been used to synthesize C1- and N-functionalized benzylic amines in up to 96% yields.

  16. A step-by-step approach to study the influence of N-acetylation on the adjuvanticity of N,N,N-trimethyl chitosan (TMC) in an intranasal nanoparticulate influenza virus vaccine.

    PubMed

    Verheul, Rolf J; Hagenaars, Niels; van Es, Thomas; van Gaal, Ethlinn V B; de Jong, Pascal H J L F; Bruijns, Sven; Mastrobattista, Enrico; Slütter, Bram; Que, Ivo; Heldens, Jacco G M; van den Bosch, Han; Glansbeek, Harrie L; Hennink, Wim E; Jiskoot, Wim

    2012-03-12

    Recently we reported that reacetylation of N,N,N-trimethyl chitosan (TMC) reduced the adjuvant effect of TMC in mice after intranasal (i.n.) administration of whole inactivated influenza virus (WIV) vaccine. The aim of the present study was to elucidate the mechanism of this lack of adjuvanticity. Reacetylated TMC (TMC-RA, degree of acetylation 54%) was compared with TMC (degree of acetylation 17%) at six potentially critical steps in the induction of an immune response after i.n. administration in mice. TMC-RA was degraded in a nasal wash to a slightly larger extent than TMC. The local i.n. distribution and nasal clearance of WIV were similar for both TMC types. Fluorescently labeled WIV was taken up more efficiently by Calu-3 cells when formulated with TMC-RA compared to TMC and both TMCs significantly reduced transport of WIV over a Calu-3 monolayer. Murine bone-marrow derived dendritic cell activation was similar for plain WIV, and WIV formulated with TMC-RA or TMC. The inferior adjuvant effect in mice of TMC-RA over that of TMC might be caused by a slightly lower stability of TMC-RA-WIV in the nasal cavity, rather than by any of the other factors studied in this paper. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Characterization of the N-Acetyl-5-neuraminic Acid-binding Site of the Extracytoplasmic Solute Receptor (SiaP) of Nontypeable Haemophilus influenzae Strain 2019

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Jason W.; Coussens, Nathan P.; Allen, Simon

    Nontypeable Haemophilus influenzae is an opportunistic human pathogen causing otitis media in children and chronic bronchitis and pneumonia in patients with chronic obstructive pulmonary disease. The outer membrane of nontypeable H. influenzae is dominated by lipooligosaccharides (LOS), many of which incorporate sialic acid as a terminal nonreducing sugar. Sialic acid has been demonstrated to be an important factor in the survival of the bacteria within the host environment. H. influenzae is incapable of synthesizing sialic acid and is dependent on scavenging free sialic acid from the host environment. To achieve this, H. influenzae utilizes a tripartite ATP-independent periplasmic transporter. Inmore » this study, we characterize the binding site of the extracytoplasmic solute receptor (SiaP) from nontypeable H. influenzae strain 2019. A crystal structure of N-acetyl-5-neuraminic acid (Neu5Ac)-bound SiaP was determined to 1.4 {angstrom} resolution. Thermodynamic characterization of Neu5Ac binding shows this interaction is enthalpically driven with a substantial unfavorable contribution from entropy. This is expected because the binding of SiaP to Neu5Ac is mediated by numerous hydrogen bonds and has several buried water molecules. Point mutations targeting specific amino acids were introduced in the putative binding site. Complementation with the mutated siaP constructs resulted either in full, partial, or no complementation, depending on the role of specific residues. Mass spectrometry analysis of the O-deacylated LOS of the R127K point mutation confirmed the observation of reduced incorporation of Neu5Ac into the LOS. The decreased ability of H. influenzae to import sialic acid had negative effects on resistance to complement-mediated killing and viability of biofilms in vitro, confirming the importance of sialic acid transport to the bacterium.« less

  18. Electron-impact electronic-state excitation of para-benzoquinone

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; da Costa, R. F.; Kossoski, F.; Varella, M. T. do N.; Bettega, M. H. F.; Ferreira da Silva, F.; Limão-Vieira, P.; García, G.; Lima, M. A. P.; White, R. D.; Brunger, M. J.

    2018-03-01

    Angle resolved electron energy loss spectra (EELS) for para-benzoquinone (C6H4O2) have been recorded for incident electron energies of 20, 30, and 40 eV. Measured differential cross sections (DCSs) for electronic band features, composed of a combination of energetically unresolved electronic states, are subsequently derived from those EELS. Where possible, the obtained DCSs are compared with those calculated using the Schwinger multichannel method with pseudopotentials. These calculations were performed using a minimum orbital basis single configuration interaction framework at the static exchange plus polarisation level. Here, quite reasonable agreement between the experimental cross sections and the theoretical cross sections for the summation of unresolved states was observed.

  19. Histone Deacetylase Inhibitor Improves the Development and Acetylation Levels of Cat–Cow Interspecies Cloned Embryos

    PubMed Central

    Wittayarat, Manita; Sato, Yoko; Do, Lanh Thi Kim; Morita, Yasuhiro; Chatdarong, Kaywalee; Techakumphu, Mongkol; Taniguchi, Masayasu

    2013-01-01

    Abstract Abnormal epigenetic reprogramming, such as histone acetylation, might cause low efficiency of interspecies somatic cell nuclear transfer (iSCNT). This study was conducted to evaluate the effects of trichostatin A (TSA) on the developmental competence and histone acetylation of iSCNT embryos reconstructed from cat somatic cells and bovine cytoplasm. The iSCNT cat and parthenogenetic bovine embryos were treated with various concentrations of TSA (0, 25, 50, or 100 nM) for 24 h, respectively, following fusion and activation. Treatment with 50 nM TSA produced significantly higher rates of cleavage and blastocyst formation (84.3% and 4.6%, respectively) of iSCNT embryos than the rates of non-TSA–treated iSCNT embryos (63.8% and 0%, respectively). Similarly, the treatment of 50 nM TSA increased the blastocyst formation rate of parthenogenetic bovine embryos. The acetylation levels of histone H3 lysine 9 (H3K9) in the iSCNT embryos with the treatment of 50 nM TSA were similar to those of in vitro–fertilized embryos and significantly higher (p<0.05) than those of non-TSA–treated iSCNT embryos (control), irrespective of the embryonic development stage (two-cell, four-cell, and eight-cell stages). These results indicated that the treatment of 50 nM TSA postfusion was beneficial for development to the blastocyst stage of iSCNT cat embryos and correlated with the increasing levels of acetylation at H3K9. PMID:23790014

  20. Enhancement of DMNQ-induced hepatocyte toxicity by cytochrome P450 inhibition.

    PubMed

    Ishihara, Yasuhiro; Shiba, Dai; Shimamoto, Norio

    2006-07-15

    Two mechanisms have been proposed to explain quinone cytotoxicity: oxidative stress via the redox cycle and the arylation of intracellular nucleophiles. As the redox cycle is catalyzed by NADPH cytochrome P450 reductase, cytochrome P450 systems are expected to be related to the cytotoxicity induced by redox-cycling quinones. Thus, we investigated the relationship between cytochrome P450 systems and quinone toxicity for rat primary hepatocytes using an arylator, 1,4-benzoquinone (BQ), and a redox cycler, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ). The hepatocyte toxicity of both BQ and DMNQ increased in a time- and dose-dependent manner. Pretreatment with cytochrome P450 inhibitors, such as SKF-525A (SKF), ketoconazole and 2-methy-1,2-di-3-pyridyl-1-propanone, enhanced the hepatocyte toxicity induced by DMNQ but did not affect BQ-induced hepatocyte toxicity. The production of superoxide anion and the levels of glutathione disulfide and thiobarbituric-acid-reactive substances were increased by treatment with DMNQ, and SKF pretreatment further enhanced their increases. In addition, NADPH oxidation in microsomes was increased by treatment with DMNQ and further augmented by pretreatment with SKF, and a NADPH cytochrome P450 reductase inhibitor, diphenyleneiodonium chloride completely suppressed NADPH oxidations increased by treatment with either DMNQ- or DMNQ + SKF. Pretreatment with antioxidants, such as alpha-tocopherol, reduced glutathione, N-acetyl cysteine or an iron ion chelator deferoxamine, totally suppressed DMNQ- and DMNQ + SKF-induced hepatocyte toxicity. These results indicate that the hepatocyte toxicity of redox-cycling quinones is enhanced under cytochrome P450 inhibition, and that this enhancement is caused by the potentiation of oxidative stress.

  1. Modulation of Protein Phosphorylation, N-Glycosylation and Lys-Acetylation in Grape (Vitis vinifera) Mesocarp and Exocarp Owing to Lobesia botrana Infection*

    PubMed Central

    Melo-Braga, Marcella N.; Verano-Braga, Thiago; León, Ileana R.; Antonacci, Donato; Nogueira, Fábio C. S.; Thelen, Jay J.; Larsen, Martin R.; Palmisano, Giuseppe

    2012-01-01

    Grapevine (Vitis vinifera) is an economically important fruit crop that is subject to many types of insect and pathogen attack. To better elucidate the plant response to Lobesia botrana pathogen infection, we initiated a global comparative proteomic study monitoring steady-state protein expression as well as changes in N-glycosylation, phosphorylation, and Lys-acetylation in control and infected mesocarp and exocarp from V. vinifera cv Italia. A multi-parallel, large-scale proteomic approach employing iTRAQ labeling prior to three peptide enrichment techniques followed by tandem mass spectrometry led to the identification of a total of 3059 proteins, 1135 phosphorylation sites, 323 N-linked glycosylation sites and 138 Lys-acetylation sites. Of these, we could identify changes in abundance of 899 proteins. The occupancy of 110 phosphorylation sites, 10 N-glycosylation sites and 20 Lys-acetylation sites differentially changed during L. botrana infection. Sequence consensus analysis for phosphorylation sites showed eight significant motifs, two of which containing up-regulated phosphopeptides (X-G-S-X and S-X-X-D) and two containing down-regulated phosphopeptides (R-X-X-S and S-D-X-E) in response to pathogen infection. Topographical distribution of phosphorylation sites within primary sequences reveal preferential phosphorylation at both the N- and C termini, and a clear preference for C-terminal phosphorylation in response to pathogen infection suggesting induction of region-specific kinase(s). Lys-acetylation analysis confirmed the consensus X-K-Y-X motif previously detected in mammals and revealed the importance of this modification in plant defense. The importance of N-linked protein glycosylation in plant response to biotic stimulus was evident by an up-regulated glycopeptide belonging to the disease resistance response protein 206. This study represents a substantial step toward the understanding of protein and PTMs-mediated plant-pathogen interaction shedding

  2. A novel member of the GCN5-related N-acetyltransferase superfamily from Caenorhabditis elegans preferentially catalyses the N-acetylation of thialysine [S-(2-aminoethyl)-L-cysteine

    PubMed Central

    2004-01-01

    The putative diamine N-acetyltransferase D2023.4 has been cloned from the model nematode Caenorhabditis elegans. The 483 bp open reading frame of the cDNA encodes a deduced polypeptide of 18.6 kDa. Accordingly, the recombinantly expressed His6-tagged protein forms an enzymically active homodimer with a molecular mass of approx. 44000 Da. The protein belongs to the GNAT (GCN5-related N-acetyltransferase) superfamily, and its amino acid sequence exhibits considerable similarity to mammalian spermidine/spermine-N1-acetyltransferases. However, neither the polyamines spermidine and spermine nor the diamines putrescine and cadaverine were efficiently acetylated by the protein. The smaller diamines diaminopropane and ethylenediamine, as well as L-lysine, represent better substrates, but, surprisingly, the enzyme most efficiently catalyses the N-acetylation of amino acids analogous with L-lysine. As determined by the kcat/Km values, the C. elegans N-acetyltransferase prefers thialysine [S-(2-aminoethyl)-L-cysteine], followed by O-(2-aminoethyl)-L-serine and S-(2-aminoethyl)-D,L-homocysteine. Reversed-phase HPLC and mass spectrometric analyses revealed that N-acetylation of L-lysine and L-thialysine occurs exclusively at the amino moiety of the side chain. Remarkably, heterologous expression of C. elegans N-acetyltransferase D2023.4 in Escherichia coli, which does not possess a homologous gene, results in a pronounced resistance against the anti-metabolite thialysine. Furthermore, C. elegans N-acetyltransferase D2023.4 exhibits the highest homology with a number of GNATs found in numerous genomes from bacteria to mammals that have not been biochemically characterized so far, suggesting a novel group of GNAT enzymes closely related to spermidine/spermine-N1-acetyltransferase, but with a distinct substrate specificity. Taken together, we propose to name the enzyme ‘thialysine Nε-acetyltransferase’. PMID:15283700

  3. SENIEUR status of the originating cell donor negates certain 'anti-immunosenescence' effects of ebselen and N-acetyl cysteine in human T cell clone cultures.

    PubMed

    Marthandan, Shiva; Freeburn, Robin; Steinbrecht, Susanne; Pawelec, Graham; Barnett, Yvonne

    2014-01-01

    Damage to T cells of the immune system by reactive oxygen species may result in altered cell function or cell death and thereby potentially impact upon the efficacy of a subsequent immune response. Here, we assess the impact of the antioxidants Ebselen and N-acetyl cysteine on a range of biological markers in human T cells derived from a SENIEUR status donor. In addition, the impact of these antioxidants on different MAP kinase pathways in T cells from donors of different ages was also examined. T cell clones were derived from healthy 26, 45 and SENIEUR status 80 year old people and the impact of titrated concentrations of Ebselen or N-acetyl cysteine on their proliferation and in vitro lifespan, GSH:GSSG ratio as well as levels of oxidative DNA damage and on MAP kinase signaling pathways was examined. In this investigation neither Ebselen nor N-acetyl cysteine supplementation had any impact on the biological endpoints examined in the T cells derived from the SENIEUR status 80 year old donor. This is in contrast to the anti-immunosenescent effects of these antioxidants on T cells from donors of 26 or 45 years of age. The analysis of MAP kinases showed that pro-apoptotic pathways become activated in T cells with increasing in vitro age and that Ebselen or N-acetyl cysteine could decrease activation (phosphorylation) in T cells from 26 or 45 year old donors, but not from the SENIEUR status 80 year old donor. The results of this investigation demonstrate that the biological phenotype of SENIEUR status derived human T cells negates the anti-immunosenescence effects of Ebselen and also N-acetyl cysteine. The results highlight the importance of pre-antioxidant intervention evaluation to determine risk-benefit.

  4. p-Benzoquinone-induced aggregation and perturbation of structure and chaperone function of α-crystallin is a causative factor of cigarette smoke-related cataractogenesis.

    PubMed

    Chowdhury, Aritra; Choudhury, Aparajita; Chakraborty, Shruti; Ghosh, Arunava; Banerjee, Victor; Ganguly, Shinjini; Bhaduri, Gautam; Banerjee, Rajat; Das, Kalipada; Chatterjee, Indu B

    2018-02-01

    Cigarette smoking is a significant risk factor for cataract. However, the mechanism by which cigarette smoke (CS) causes cataract remains poorly understood. We had earlier shown that in CS-exposed guinea pig, p-benzoquinone (p-BQ) derived from CS in the lungs is carried by the circulatory system to distant organs and induces various smoke-related pathogeneses. Here, we observed that CS exposure caused accumulation of the p-BQ-protein adduct in the eye lens of guinea pigs. We also observed accumulation of the p-BQ-protein adduct in resected lens from human smokers with cataract. No such accumulation was observed in the lens of never smokers. p-BQ is a strong arylating agent that forms Michael adducts with serum albumin and haemoglobin resulting in alterations of structure and function. A major protein in the mammalian eye lens is αA-crystallin, which is a potent molecular chaperone. αA-crystallin plays a key role in maintaining the integrity and transparency of the lens. SDS-PAGE indicated that p-BQ induced aggregation of αA-crystallin. Various biophysical techniques including UV-vis spectroscopy, fluorescence spectroscopy, FT-IR, bis-ANS titration suggested a perturbation of structure and chaperone function of αA-crystallin upon p-BQ modification. Our results indicate that p-BQ is a causative agent involved in the modification of αA-crystallin and pathogenesis of CS-induced cataract. Our findings would educate public about the impacts of smoking on eye health and help to discourage them from smoking. The study might also help scientists to develop new drugs for the intervention of CS-induced cataract at an early stage. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Quantification of N-Acetyl Aspartyl Glutamate in Human Brain using Proton Magnetic Resonance Spectroscopy at 7 T

    NASA Astrophysics Data System (ADS)

    Elywa, M.

    2015-07-01

    The separation of N-acetyl aspartyl glutamate (NAAG) from N-acetyl aspartate (NAA) and other metabolites, such as glutamate, by in vivo proton magnetic resonance spectroscopy at 7 T is described. This method is based on the stimulated echo acquisition mode (STEAM), with short and long echo time (TE) and allows quantitative measurements of NAAG in the parietal and pregenual anterior cingulate cortex (pgACC) of human brain. Two basesets for the LCModel have been established using nuclear magnetic resonance simulator software (NMR-SIM). Six healthy volunteers (age 25-35 years) have been examined at 7 T. It has been established that NAAG can be separated and quantified in the parietal location and does not get quantified in the pgACC location when using a short echo time, TE = 20 ms. On the other hand, by using a long echo time, TE = 74 ms, NAAG can be quantified in pgACC structures.

  6. The Global Acetylome of the Human Pathogen Vibrio cholerae V52 Reveals Lysine Acetylation of Major Transcriptional Regulators

    PubMed Central

    Jers, Carsten; Ravikumar, Vaishnavi; Lezyk, Mateusz; Sultan, Abida; Sjöling, Åsa; Wai, Sun N.; Mijakovic, Ivan

    2018-01-01

    Protein lysine acetylation is recognized as an important reversible post translational modification in all domains of life. While its primary roles appear to reside in metabolic processes, lysine acetylation has also been implicated in regulating pathogenesis in bacteria. Several global lysine acetylome analyses have been carried out in various bacteria, but thus far there have been no reports of lysine acetylation taking place in the important human pathogen Vibrio cholerae. In this study, we analyzed the lysine acetylproteome of the human pathogen V. cholerae V52. By applying a combination of immuno-enrichment of acetylated peptides and high resolution mass spectrometry, we identified 3,402 acetylation sites on 1,240 proteins. Of the acetylated proteins, more than half were acetylated on two or more sites. As reported for other bacteria, we observed that many of the acetylated proteins were involved in metabolic and cellular processes and there was an over-representation of acetylated proteins involved in protein synthesis. Of interest, we demonstrated that many global transcription factors such as CRP, H-NS, IHF, Lrp and RpoN as well as transcription factors AphB, TcpP, and PhoB involved in direct regulation of virulence in V. cholerae were acetylated. In conclusion, this is the first global protein lysine acetylome analysis of V. cholerae and should constitute a valuable resource for in-depth studies of the impact of lysine acetylation in pathogenesis and other cellular processes. PMID:29376036

  7. Survey of the human acetylator polymorphism in spontaneous disorders.

    PubMed Central

    Evans, D A

    1984-01-01

    There is ample evidence that the human acetylator phenotypes are associated with drug induced phenomena. It is principally the slow acetylators who exhibit toxic adverse effects because of their relative inability to detoxify the original drug compounds. In rare instances, however, it is the rapid acetylators who are at a disadvantage. In the matter of association of spontaneous disease with either acetylator phenotype, there are two groups of disorders to consider. First, disorders in which carcinogenic amines are known to be an aetiological factor. This is because these amines are substrates for the polymorphic N-acetyltransferase activity and hence there is a possible rational basis for searching for an association. Secondly, other disorders where searches for associations are based more on hunches. In the first group there is a definite statistical association between cancer of the bladder and the slow acetylator phenotype. In prevalence studies the slow phenotype is 39% more associated with bladder cancer than is the rapid phenotype. On the basis of the evidence now available it is not possible to say whether this association is because slow acetylators develop the disease more frequently or whether they survive longer. In the second group the relevant studies show (1) a greatly increased prevalence of slow acetylators in Gilbert's disease; (2) a confirmed association between the rapid acetylator phenotype and diabetes; (3) a possible association between the rapid acetylator phenotype and breast cancer; (4) a possible association between the slow acetylator phenotype and leprosy in Chinese patients; (5) an earlier age of onset of thyrotoxicosis (Graves' disease) in slow acetylators than in rapid acetylators; (6) no evidence of an association between either phenotype and spontaneous systemic lupus erythematosus. PMID:6387123

  8. O2-Promoted Allylic Acetoxylation of Alkenes: Assessment of "Push" vs. "Pull" Mechanisms and Comparison between O2 and Benzoquinone.

    PubMed

    Diao, Tianning; Stahl, Shannon S

    2014-12-14

    Palladium-catalyzed acetoxylation of allylic C-H bonds has been the subject of extensive study. These reactions proceed via allyl-palladium(II) intermediates that react with acetate to afford the allyl acetate product. Benzoquinone and molecular oxygen are two common oxidants for these reactions. Benzoquinone has been shown to promote allyl acetate formation from well-defined π-allyl palladium(II) complexes. Here, we assess the ability of O 2 to promote similar reactions with a series of "unligated" π-allyl palladium(II) complexes (i.e., in the absence of ancillary phosphorus, nitrogen or related donor ligands). Stoichiometric and catalytic allyl acetate formation is observed under aerobic conditions with several different alkenes. Mechanistic studies are most consistent with a "pull" mechanism in which O 2 traps the Pd 0 intermediate following reversible C-O bond-formation from an allyl-palladium(II) species. A "push" mechanism, involving oxidatively induced C-O bond formation, does not appear to participate. These results and conclusions are compared with benzoquinone-promoted allylic acetoxylation, in which a "push" mechanism seems to be operative.

  9. Acetylation contributes to hypertrophy-caused maturational delay of cardiac energy metabolism.

    PubMed

    Fukushima, Arata; Zhang, Liyan; Huqi, Alda; Lam, Victoria H; Rawat, Sonia; Altamimi, Tariq; Wagg, Cory S; Dhaliwal, Khushmol K; Hornberger, Lisa K; Kantor, Paul F; Rebeyka, Ivan M; Lopaschuk, Gary D

    2018-05-17

    A dramatic increase in cardiac fatty acid oxidation occurs following birth. However, cardiac hypertrophy secondary to congenital heart diseases (CHDs) delays this process, thereby decreasing cardiac energetic capacity and function. Cardiac lysine acetylation is involved in modulating fatty acid oxidation. We thus investigated what effect cardiac hypertrophy has on protein acetylation during maturation. Eighty-four right ventricular biopsies were collected from CHD patients and stratified according to age and the absence (n = 44) or presence of hypertrophy (n = 40). A maturational increase in protein acetylation was evident in nonhypertrophied hearts but not in hypertrophied hearts. The fatty acid β-oxidation enzymes, long-chain acyl CoA dehydrogenase (LCAD) and β-hydroxyacyl CoA dehydrogenase (βHAD), were hyperacetylated and their activities positively correlated with their acetylation after birth in nonhypertrophied hearts but not hypertrophied hearts. In line with this, decreased cardiac fatty acid oxidation and reduced acetylation of LCAD and βHAD occurred in newborn rabbits subjected to cardiac hypertrophy due to an aortocaval shunt. Silencing the mRNA of general control of amino acid synthesis 5-like protein 1 reduced acetylation of LCAD and βHAD as well as fatty acid oxidation rates in cardiomyocytes. Thus, hypertrophy in CHDs prevents the postnatal increase in myocardial acetylation, resulting in a delayed maturation of cardiac fatty acid oxidation.

  10. Tetrachloro-p-benzoquinone induces hepatic oxidative damage and inflammatory response, but not apoptosis in mouse: The prevention of curcumin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Demei; Hu, Lihua; Su, Chuanyang

    2014-10-15

    This study investigated the protective effects of curcumin on tetrachloro-p-benzoquinone (TCBQ)-induced hepatotoxicity in mice. TCBQ-treatment causes significant liver injury (the elevation of serum AST and ALT activities, histopathological changes in liver section including centrilobular necrosis and inflammatory cells), oxidative stress (the elevation of TBAR level and the inhibition of SOD and catalase activities) and inflammation (up-regulation of iNOS, COX-2, IL-1β, IL-6, TNF-α and NF-κB). However, these changes were alleviated upon pretreatment with curcumin. Interestingly, TCBQ has no effect on caspase family genes or B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X (Bax) protein expressions, which implied that TCBQ-induced hepatotoxicity is independent ofmore » apoptosis. Moreover, curcumin was shown to induce phase II detoxifying/antioxidant enzymes HO-1 and NQO1 through the activation of nuclear factor erythroid-derived 2-like 2 (Nrf2). In summary, the protective mechanisms of curcumin against TCBQ-induced hepatoxicity may be related to the attenuation of oxidative stress, along with the inhibition of inflammatory response via the activation of Nrf2 signaling. - Highlights: • TCBQ-intoxication significantly increased AST and ALT activities. • TCBQ-intoxication induced oxidative stress in mice liver. • TCBQ-intoxication induced inflammatory response in mice liver. • TCBQ-intoxication induced hepatotoxicity is independent of apoptosis. • Curcumin relieved TCBQ-induced liver damage remarkably.« less

  11. Evidence for lysine acetylation in the coat protein of a polerovirus.

    PubMed

    Cilia, Michelle; Johnson, Richard; Sweeney, Michelle; DeBlasio, Stacy L; Bruce, James E; MacCoss, Michael J; Gray, Stewart M

    2014-10-01

    Virions of the RPV strain of Cereal yellow dwarf virus-RPV were purified from infected oat tissue and analysed by MS. Two conserved residues, K147 and K181, in the virus coat protein, were confidently identified to contain epsilon-N-acetyl groups. While no functional data are available for K147, K181 lies within an interfacial region critical for virion assembly and stability. The signature immonium ion at m/z 126.0919 demonstrated the presence of N-acetyllysine, and the sequence fragment ions enabled an unambiguous assignment of the epsilon-N-acetyl modification on K181. We hypothesize that selection favours acetylation of K181 in a fraction of coat protein monomers to stabilize the capsid by promoting intermonomer salt bridge formation.

  12. N-silyl oxyketene imines are underused yet highly versatile reagents for catalytic asymmetric synthesis

    NASA Astrophysics Data System (ADS)

    Denmark, Scott E.; Wilson, Tyler W.

    2010-11-01

    The reactions of acyl anion equivalents (d1 synthons) with carbonyl electrophiles allow for the construction of a wide range of molecules useful for the synthesis of biologically active compounds, natural products and chiral ligands. Despite their utility, significant challenges still exist for developing catalytic, enantioselective variants of these reactions. For example, the asymmetric benzoin process, arguably the most characteristic reaction of d synthetic equivalents, finds no general solution for reactions involving aliphatic acyl anions. In this Article, we introduce a new class of stable, isolable silyl ketene imines derived from protected cyanohydrins. These nucleophiles serve as acyl anion equivalents in Lewis base catalysed aldol addition reactions and allow for the preparation of cross-benzoin and glycolate-aldol products in high yield and with exceptional diastereo- and enantioselectivities.

  13. Replacing the acetyl linkage in aspirin with choline and magnesium moieties reduces the occurrence of gastric mucosal injury.

    PubMed

    Danesh, B J; Nelson, L M; Russell, R I; Docherty, C

    1987-02-01

    The acetyl moiety in aspirin (acetyl salicylic acid: ASA) is considered to play a major part in the pathogenesis of ASA-induced mucosal injury. At equivalent salicylate doses and pH values, the induction of acute gastric mucosal haemorrhagic erosions in rats by ASA and choline magnesium trisalicylate (CMT), a new non-acetylated salicylate, with and without the potentiating damaging effect of taurodeoxycholic acid (TDCA) were compared. Test solutions were administered by per oral intubation to five groups of fasting Sprague-Dawley rats (n = 24). Gastric mucosa were examined after 4 hours and mucosal injury assessed by a lesion-scoring system. The incidence and severity (median lesion scores with quartiles) of the lesions were 83% and 13 (7:20) respectively for ASA (128 mg kg-1) compared with 17% and 0 (0:0) for CMT (128 mg kg-1) (P less than 0.001 and P less than 0.001). TDCA increased mucosal damage to 100% and 29 (20:34) for ASA compared with 30% and 0 (0:4) for CMT (P less than 0.001) and P less than 0.001). Serum salicylate levels (median values of 1.4 for ASA and 1.5 mmol litre-1 for CMT) were not significantly different. It is concluded that replacing the acetyl moiety in ASA with choline and magnesium moieties reduces the ASA-induced mucosal injury, without affecting blood salicylate concentrations.

  14. Reactions of the melatonin metabolite N(1)-acetyl-5-methoxykynuramine with carbamoyl phosphate and related compounds.

    PubMed

    Kuesel, Jana T; Hardeland, Rüdiger; Pfoertner, Henrike; Aeckerle, Nelia

    2010-01-01

    N-[2-(6-methoxyquinazolin-4-yl)-ethyl] acetamide (MQA) is a compound formed from the melatonin metabolite N(1)-acetyl-5-methoxykynuramine (AMK). We followed MQA production in reaction systems containing various putative reaction partners, in the absence and presence of hydrogen peroxide and/or copper(II). Although MQA may be formally described as a condensation product of either N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) with ammonia, or AMK with formamide, none of these combinations led to substantial quantities of MQA. However, MQA formation was observed in mixtures containing AMK, hydrogen peroxide, hydrogen carbonate and ammonia, or AMK, hydrogen peroxide, copper(II) and potentially carbamoylating agents, such as potassium cyanate or, more efficiently, carbamoyl phosphate. In the presence of hydrogen peroxide, copper(II) and carbamoyl phosphate, MQA was the major product obtained from AMK, but the omission of copper(II) mainly led to another metabolite, 3-acetamidomethyl-6-methoxycinnolinone (AMMC). This was caused by nitric oxide (NO) generated under oxidative conditions from carbamoyl phosphate, as shown by an NO spin trap. MQA formation with carbamoyl phosphate was not due to the possible decomposition product, formamide. The reaction of AMK with carbamoyl phosphate under oxidative conditions, in which inorganic phosphate and water are released and which differs from the typical process of carbamoylation via isocyanate, may be considered as a new physiological route of MQA formation.

  15. Increased influenza A virus sialidase activity with N-acetyl-9-O-acetylneuraminic acid-containing substrates resulting from influenza C virus O-acetylesterase action.

    PubMed

    Muñoz-Barroso, I; García-Sastre, A; Villar, E; Manuguerra, J C; Hannoun, C; Cabezas, J A

    1992-09-01

    Influenza virus type C (Johannesburg/1/66) was used as a source for the enzyme O-acetylesterase (EC 3.1.1.53) with several natural sialoglycoconjugates as substrates. The resulting products were immediately employed as substrates using influenza virus type A [(Singapore/6/86) (H1N1) or Shanghai/11/87 (H3N2)] as a source for sialidase (neuraminidase, EC 3.2.1.18). A significant increase in the percentage of sialic acid released was found when the O-acetyl group was cleaved by O-acetylesterase activity from certain substrates (bovine submandibular gland mucin, rat serum glycoproteins, human saliva glycoproteins, mouse erythrocyte stroma, chick embryonic brain gangliosides and bovine brain gangliosides). A common feature of all these substrates is that they contain N-acetyl-9-O-acetylneuraminic acid residues. By contrast, no significant increase in the release of sialic acid was detected when certain other substrates could not be de-O-acetylated by the action of influenza C esterase, either because they lacked O-acetylsialic acid (human glycophorin A, alpha 1-acid glycoprotein from human serum, fetuin and porcine submandibular gland mucin) or because the 4-O-acetyl group was scarcely cleaved by the viral O-acetylesterase (equine submandibular gland mucin). The biological significance of these facts is discussed, relative to the infective capacity of influenza C virus.

  16. A Novel Benzoquinone Compound Isolated from Deep-Sea Hydrothermal Vent Triggers Apoptosis of Tumor Cells.

    PubMed

    Xu, Chenxi; Sun, Xumei; Jin, Min; Zhang, Xiaobo

    2017-06-26

    Microorganisms are important sources for screening bioactive natural products. However, natural products from deep-sea microbes have not been extensively explored. In this study, the metabolites of bacteriophage GVE2 -infected ( Geobacillus sp. E263 virus) thermophilic bacterium Geobacillus sp. E263, which was isolated from a deep-sea hydrothermal vent, were characterized. A novel quinoid compound, which had anti-tumor activity, was isolated from the phage-challenged thermophile. The chemical structure analysis showed that this novel quinoid compound was 2-amino-6-hydroxy-[1,4]-benzoquinone. The results indicated that 2-amino-6-hydroxy-[1,4]-benzoquinone and its two derivatives could trigger apoptosis of gastric cancer cells and breast cancer cells by inducing the accumulation of intracellular reactive oxygen species. Therefore, our study highlighted that the metabolites from the phage-challenged deep-sea microbes might be a kind of promising sources for anti-tumor drug discovery, because of the similarity of metabolic disorder between bacteriophage-infected microbes and tumor cells.

  17. 2-(4′-CHLOROPHENYL)-1,4-BENZOQUINONE INCREASES THE FREQUENCY OF MICRONUCLEI AND SHORTENS TELOMERES

    PubMed Central

    Jacobus, J.A.; Flor, S.; Klingelhutz, A.; Robertson, L.W.; Ludewig, G.

    2008-01-01

    The toxicity of polychlorinated biphenyls (PCBs) has been attributed widely to receptor-mediated effects, buttressed by the popularity of the Toxic Equivalency Factor. We propose that a crucial toxic mechanism of lower-chlorinated PCBs is their enzymatic biotransformation to electrophiles, including quinoid metabolites, that bind intracellular sulfhydryl groups, such as those found in microtubulin and enzymes like telomerase. To test this hypothesis, we have examined micronuclei induction, cell cycle, and telomere shortening in cells in culture. Our findings show a large increase in micronuclei frequency and cell cycle perturbation in V79 cells, and a marked decrease in telomere length in HaCaT cells exposed to 2-(4′-chlorophenyl)-1,4-benzoquinone (PCB3pQ). PMID:18438462

  18. Production of Nα-acetylated thymosin α1 in Escherichia coli

    PubMed Central

    2011-01-01

    Background Thymosin α1 (Tα1), a 28-amino acid Nα-acetylated peptide, has a powerful general immunostimulating activity. Although biosynthesis is an attractive means of large-scale manufacture, to date, Tα1 can only be chemosynthesized because of two obstacles to its biosynthesis: the difficulties in expressing small peptides and obtaining Nα-acetylation. In this study, we describe a novel production process for Nα-acetylated Tα1 in Escherichia coli. Results To obtain recombinant Nα-acetylated Tα1 efficiently, a fusion protein, Tα1-Intein, was constructed, in which Tα1 was fused to the N-terminus of the smallest mini-intein, Spl DnaX (136 amino acids long, from Spirulina platensis), and a His tag was added at the C-terminus. Because Tα1 was placed at the N-terminus of the Tα1-Intein fusion protein, Tα1 could be fully acetylated when the Tα1-Intein fusion protein was co-expressed with RimJ (a known prokaryotic Nα-acetyltransferase) in Escherichia coli. After purification by Ni-Sepharose affinity chromatography, the Tα1-Intein fusion protein was induced by the thiols β-mercaptoethanol or d,l-dithiothreitol, or by increasing the temperature, to release Tα1 through intein-mediated N-terminal cleavage. Under the optimal conditions, more than 90% of the Tα1-Intein fusion protein was thiolyzed, and 24.5 mg Tα1 was obtained from 1 L of culture media. The purity was 98% after a series of chromatographic purification steps. The molecular weight of recombinant Tα1 was determined to be 3107.44 Da by mass spectrometry, which was nearly identical to that of the synthetic version (3107.42 Da). The whole sequence of recombinant Tα1 was identified by tandem mass spectrometry and its N-terminal serine residue was shown to be acetylated. Conclusions The present data demonstrate that Nα-acetylated Tα1 can be efficiently produced in recombinant E. coli. This bioprocess could be used as an alternative to chemosynthesis for the production of Tα1. The described

  19. Acetyl-coenzyme A deacylase activity in liver is not an artifact. Subcellular distribution and substrate specificity of acetyl-coenzyme A deacylase activities in rat liver

    PubMed Central

    Grigat, Klaus-P.; Koppe, Klaus; Seufert, Claus-D.; Söling, Hans-D

    1979-01-01

    Whole liver and isolated liver mitochondria are able to release free acetate, especially under conditions of increased fatty acid oxidation. In the present paper it is shown that rat liver contains acetyl-CoA deacylase (EC 3.1.2.1) activity (0.72μmol/min per g wet wt. of liver at 30°C and 0.5mm-acetyl-CoA). At 0.5mm-acetyl-CoA 73% of total enzyme activity was found in the mitochondria, 8% in the lysosomal fraction and 19% in the postmicrosomal supernatant. Mitochondrial subfractionation shows that mitochondrial acetyl-CoA deacylase activity is restricted to the matrix space. Mitochondrial acetyl-CoA deacylase showed almost no activity with either butyryl- or hexanoyl-CoA. Acetyl-CoA hydrolase activity from purified rat liver lysosomes exhibited a very low affinity for acetyl-CoA (apparent Km>15mm compared with an apparent Km value of 0.5mm for the mitochondrial enzyme) and reacted at about the same rate with acetyl-, n-butyryl- and hexanoyl-CoA. We could not confirm the findings of Costa & Snoswell [(1975) Biochem. J. 152, 167–172] according to which mitochondrial acetyl-CoA deacylase was considered to be an artifact resulting from the combined actions of acetyl-CoA–l-carnitine acetyltransferase (EC 2.3.1.7) and acetylcarnitine hydrolase. The results are in line with the concept that free acetate released by the liver under physiological conditions stems from the intramitochondrial deacylation of acetyl-CoA. PMID:34392

  20. Elastic scattering and vibrational excitation for electron impact on para-benzoquinone

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Blanco, F.; García, G.; da Costa, R. F.; Kossoski, F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; White, R. D.; Brunger, M. J.

    2017-12-01

    We report on theoretical elastic and experimental vibrational-excitation differential cross sections (DCSs) for electron scattering from para-benzoquinone (C6H4O2), in the intermediate energy range 15-50 eV. The calculations were conducted with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that also now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (Nopen) at the static-exchange-plus-polarisation (Nopench-SEP) level was used to calculate the scattering amplitudes using a channel coupling scheme that ranges from 1ch-SE up to the 89ch-SEP level of approximation. We found that in going from the 38ch-SEP to the 89ch-SEP, at all energies considered here, the elastic DCSs did not change significantly in terms of both their shapes and magnitudes. This is a good indication that our SMCPP 89ch-SEP elastic DCSs are converged with respect to the multichannel coupling effect for the investigated intermediate energies. While agreement between our IAM-SCAR+I and SMCPP 89ch-SEP computations improves as the incident electron energy increases from 15 eV, overall the level of accord is only marginal. This is particularly true at middle scattering angles, suggesting that our SCAR and interference corrections are failing somewhat for this molecule below 50 eV. We also report experimental DCS results, using a crossed-beam apparatus, for excitation of some of the unresolved ("hybrid") vibrational quanta (bands I-III) of para-benzoquinone. Those data were derived from electron energy loss spectra that were measured over a scattered electron angular range of 10°-90° and put on an absolute scale using our elastic SMCPP 89ch-SEP DCS results. The energy resolution of our measurements was ˜80 meV, which is why, at least in part, the observed vibrational features were only partially resolved. To

  1. Structural characterization of molecular complexes formed by trimethoprim and cimitidine with 2,3,5,6-tetrachloro-1,4-benzoquinone

    NASA Astrophysics Data System (ADS)

    Balraj, C.; Ganesh, K.; Elango, K. P.

    2011-07-01

    Spectroscopic and spectrofluorimetric techniques have been employed to investigate the structure of the charge transfer (CT) complexes of Trimethoprim (TMP) and Cimitidine (CTD) drugs with 2,3,5,6-tetrachloro-1,4-benzoquinone ( p-chloranil, p-CHL). The stoichiometry of the complexes was found to be 1:2 for TMP- p-CHL system and 1:1 for CTD- p-CHL system. The thermodynamic results indicated that the formation of molecular complex between the donors and the acceptor is spontaneous and endothermic. The results of electronic spectral studies indicated that the formation constant for CTD- p-CHL system is found to be higher than that for TMP- p-CHL system. The observation is well supported by the results of fluorescence quenching studies and the association constants calculated for CTD- p-CHL system is 36.2 × 10 3 mol L -1 and that for TMP- p-CHL system is 2.6 × 10 3 mol L -1. The kinetic results, in both the cases, indicated that the interaction is first order each with respect to the concentration of the donor and the acceptor. The physico-chemical parameters viz. oscillator strength, dipole moment, ionization potential and dissociation energy of the complexes were also determined and discussed. Structural characterization of the complexes were done using FT-IR and 1H NMR spectral techniques and the results indicated that, in TMP, the free NH 2 group while in CTD the pyrazole N sbnd H moiety involves in complexation with the acceptor, p-CHL.

  2. Highly efficient hydrogenation of carbon dioxide to formate catalyzed by iridium(iii) complexes of imine-diphosphine ligands.

    PubMed

    Liu, Chong; Xie, Jian-Hua; Tian, Gui-Long; Li, Wei; Zhou, Qi-Lin

    2015-05-01

    A new iridium catalyst containing an imine-diphosphine ligand has been developed, which showed high efficiency for the hydrogenation of CO 2 to formate (yield up to 99%, TON up to 450 000). A possible catalytic mechanism is proposed, in which the imine group of the catalyst plays a key role in the cleavage of H 2 and the activation of CO 2 .

  3. N-Acetyl-S-(n-Propyl)-L-Cysteine in Urine from Workers Exposed to 1-Bromopropane in Foam Cushion Spray Adhesives

    PubMed Central

    Hanley, Kevin W.; Petersen, Martin R.; Cheever, Kenneth L.; Luo, Lian

    2009-01-01

    1-Bromopropane (1-BP) has been marketed as an alternative for ozone depleting and other solvents; it is used in aerosol products, adhesives, metal, precision, and electronics cleaning solvents. Mechanisms of toxicity of 1-BP are not fully understood, but it may be a neurological and reproductive toxicant. Sparse exposure information prompted this study using 1-BP air sampling and urinary metabolites. Mercapturic acid conjugates are excreted in urine from 1-BP metabolism involving debromination. Research objectives were to evaluate the utility of urinary N-acetyl-S-(n-propyl)-L-cysteine (AcPrCys) for assessing exposure to 1-BP and compare it to urinary bromide [Br(−)] previously reported for these workers. Forty-eight-hour urine specimens were obtained from 30 workers at two factories where 1-BP spray adhesives were used to construct polyurethane foam seat cushions. Urine specimens were also obtained from 21 unexposed control subjects. All the workers' urine was collected into composite samples representing three time intervals: at work, after work but before bedtime, and upon awakening. Time-weighted average (TWA) geometric mean breathing zone concentrations were 92.4 and 10.5 p.p.m. for spraying and non-spraying jobs, respectively. Urinary AcPrCys showed the same trend as TWA exposures to 1-BP: higher levels were observed for sprayers. Associations of AcPrCys concentrations, adjusted for creatinine, with 1-BP TWA exposure were statistically significant for both sprayers (P < 0.05) and non-sprayers (P < 0.01). Spearman correlation coefficients for AcPrCys and Br(−) analyses determined from the same urine specimens were highly correlated (P < 0.0001). This study confirms that urinary AcPrCys is an important 1-BP metabolite and an effective biomarker for highly exposed foam cushion workers. PMID:19706636

  4. Slow acetylator mutations in the human polymorphic N-acetyltransferase gene in 786 Asians, blacks, Hispanics, and whites: Application to metabolic epidemiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, H.J.; Chunya Han; Lin, B.K.

    1993-04-01

    The aim was to determine the population frequencies of the major slow acetylator alleles of the polymorphic N-acetyltransferase (NA T2) gene, whose locus maps to chromosome 8. The authors used allele-specific PCR amplification on 786 dried blood spots obtained from Hong Kong Chinese, US Koreans, US blacks, US Hispanics, Germans, and US whites. Their results show that four slow acetylator alleles can be detected as mutations at positions 481, 590, and 857 in the NA T2 gene. Recognized base substitutions at positions 341 and 803 need not be determined, because they were almost always associated with the 481T mutation. Themore » known mutation at position 282 was strongly associated with the 590A mutation. The 481T, 590A, and 857A mutations accounted for virtually all of the slow acetylator alleles in Asian and white populations. The 857A mutation proved to be an Asiatic allele. The results will be useful in large-scale epidemiologic studies of cancer and other conditions potentially associated with the acetylator polymorphism. 20 refs., 3 figs., 4 tabs.« less

  5. The effect of acetaminophen on ubiquitin homeostasis in Saccharomyces cerevisiae.

    PubMed

    Huseinovic, Angelina; van Leeuwen, Jolanda S; van Welsem, Tibor; Stulemeijer, Iris; van Leeuwen, Fred; Vermeulen, Nico P E; Kooter, Jan M; Vos, J Chris

    2017-01-01

    Acetaminophen (APAP), although considered a safe drug, is one of the major causes of acute liver failure by overdose, and therapeutic chronic use can cause serious health problems. Although the reactive APAP metabolite N-acetyl-p-benzoquinoneimine (NAPQI) is clearly linked to liver toxicity, toxicity of APAP is also found without drug metabolism of APAP to NAPQI. To get more insight into mechanisms of APAP toxicity, a genome-wide screen in Saccharomyces cerevisiae for APAP-resistant deletion strains was performed. In this screen we identified genes related to the DNA damage response. Next, we investigated the link between genotype and APAP-induced toxicity or resistance by performing a more detailed screen with a library containing mutants of 1522 genes related to nuclear processes, like DNA repair and chromatin remodelling. We identified 233 strains that had an altered growth rate relative to wild type, of which 107 showed increased resistance to APAP and 126 showed increased sensitivity. Gene Ontology analysis identified ubiquitin homeostasis, regulation of transcription of RNA polymerase II genes, and the mitochondria-to-nucleus signalling pathway to be associated with APAP resistance, while histone exchange and modification, and vesicular transport were connected to APAP sensitivity. Indeed, we observed a link between ubiquitin levels and APAP resistance, whereby ubiquitin deficiency conferred resistance to APAP toxicity while ubiquitin overexpression resulted in sensitivity. The toxicity profile of various chemicals, APAP, and its positional isomer AMAP on a series of deletion strains with ubiquitin deficiency showed a unique resistance pattern for APAP. Furthermore, exposure to APAP increased the level of free ubiquitin and influenced the ubiquitination of proteins. Together, these results uncover a role for ubiquitin homeostasis in APAP-induced toxicity.

  6. Intrinsic Tau Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation

    PubMed Central

    Cohen, Todd J.; Constance, Brian H.; Hwang, Andrew W.; James, Michael; Yuan, Chao-Xing

    2016-01-01

    Tau proteins are abnormally aggregated in a range of neurodegenerative tauopathies including Alzheimer’s disease (AD). Recently, tau has emerged as an extensively post-translationally modified protein, among which lysine acetylation is critical for normal tau function and its pathological aggregation. Here, we demonstrate that tau isoforms have different propensities to undergo lysine acetylation, with auto-acetylation occurring more prominently within the lysine-rich microtubule-binding repeats. Unexpectedly, we identified a unique intrinsic property of tau in which auto-acetylation induces proteolytic tau cleavage, thereby generating distinct N- and C-terminal tau fragments. Supporting a catalytic reaction-based mechanism, mapping and mutagenesis studies showed that tau cysteines, which are required for acetyl group transfer, are also essential for auto-proteolytic tau processing. Further mass spectrometry analysis identified the C-terminal 2nd and 4th microtubule binding repeats as potential sites of auto-cleavage. The identification of acetylation-mediated auto-proteolysis provides a new biochemical mechanism for tau self-regulation and warrants further investigation into whether auto-catalytic functions of tau are implicated in AD and other tauopathies. PMID:27383765

  7. Intrinsic Tau Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation.

    PubMed

    Cohen, Todd J; Constance, Brian H; Hwang, Andrew W; James, Michael; Yuan, Chao-Xing

    2016-01-01

    Tau proteins are abnormally aggregated in a range of neurodegenerative tauopathies including Alzheimer's disease (AD). Recently, tau has emerged as an extensively post-translationally modified protein, among which lysine acetylation is critical for normal tau function and its pathological aggregation. Here, we demonstrate that tau isoforms have different propensities to undergo lysine acetylation, with auto-acetylation occurring more prominently within the lysine-rich microtubule-binding repeats. Unexpectedly, we identified a unique intrinsic property of tau in which auto-acetylation induces proteolytic tau cleavage, thereby generating distinct N- and C-terminal tau fragments. Supporting a catalytic reaction-based mechanism, mapping and mutagenesis studies showed that tau cysteines, which are required for acetyl group transfer, are also essential for auto-proteolytic tau processing. Further mass spectrometry analysis identified the C-terminal 2nd and 4th microtubule binding repeats as potential sites of auto-cleavage. The identification of acetylation-mediated auto-proteolysis provides a new biochemical mechanism for tau self-regulation and warrants further investigation into whether auto-catalytic functions of tau are implicated in AD and other tauopathies.

  8. β2-AR activation induces chemoresistance by modulating p53 acetylation through upregulating Sirt1 in cervical cancer cells.

    PubMed

    Chen, Hongyu; Zhang, Wei; Cheng, Xiang; Guo, Liang; Xie, Shuai; Ma, Yuanfang; Guo, Ning; Shi, Ming

    2017-07-01

    It has been suggested that β2-adrenergic receptor (β2-AR)-mediated signaling induced by catecholamines regulates the degradation of p53. However, the underlying molecular mechanisms were not known. In the present study, we demonstrated that catecholamines upregulated the expression of silent information regulator 1 (Sirt1) through activating β2-AR-mediated signaling pathway, since selective β2-AR antagonist ICI 118, 551 and non-selective β-blocker proprenolol effectively repressed isoproterenol (ISO)-induced Sirt1 expression. Catecholamines inhibited doxorubicin (DOX)-induced p53 acetylation and transcription-activation activities by inducing the expression of Sirt1. Knockdown of the Sirt1 expression by the specific siRNA remarkably blocked the inhibitory effects of ISO on DOX-induced p53 acetylation. In addition, we demonstrated that catecholamines induced resistance of cervical cancer cells to chemotherapeutics both in vitro and in vivo and that β2-AR was overexpressed in cervical cancer tissues. Our data suggest that the p53-dependent, chemotherapeutics-induced cytotoxicity in cervical cancer cells may be compromised by catecholamines-induced upregulation of the Sirt1 expression through activating the β2-AR signaling. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  9. Acetylation-mediated Siah2 stabilization enhances PHD3 degradation in Helicobacter pylori-infected gastric epithelial cancer cells.

    PubMed

    Kokate, Shrikant Babanrao; Dixit, Pragyesh; Das, Lopamudra; Rath, Suvasmita; Roy, Arjama Dhar; Poirah, Indrajit; Chakraborty, Debashish; Rout, Niranjan; Singh, Shivaram Prasad; Bhattacharyya, Asima

    2018-04-24

    Gastric epithelial cells infected with Helicobacter pylori acquire highly invasive and metastatic characteristics. The seven in absentia homolog (Siah)2, an E3 ubiquitin ligase, is one of the major proteins that induces invasiveness of infected gastric epithelial cells. We find that p300-driven acetylation of Siah2 at lysine 139 residue stabilizes the molecule in infected cells, thereby substantially increasing its efficiency to degrade prolyl hydroxylase (PHD)3 in the gastric epithelium. This enhances the accumulation of an oncogenic transcription factor hypoxia-inducible factor 1α (Hif1α) in H. pylori-infected gastric cancer cells in normoxic condition and promotes invasiveness of infected cells. Increased acetylation of Siah2, Hif1α accumulation, and the absence of PHD3 in the infected human gastric metastatic cancer biopsy samples and in invasive murine gastric cancer tissues further confirm that the acetylated Siah2 (ac-Siah2)-Hif1α axis is crucial in promoting gastric cancer invasiveness. This study establishes the importance of a previously unrecognized function of ac-Siah2 in regulating invasiveness of H. pylori-infected gastric epithelial cells.-Kokate, S. B., Dixit, P., Das, L., Rath, S., Roy, A. D., Poirah, I., Chakraborty, D., Rout, N., Singh, S. P., Bhattacharyya, A. Acetylation-mediated Siah2 stabilization enhances PHD3 degradation in Helicobacter pylori-infected gastric epithelial cancer cells.

  10. Concurrent acetylation of FoxO1/3a and p53 due to sirtuins inhibition elicit Bim/PUMA mediated mitochondrial dysfunction and apoptosis in berberine-treated HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Shatrunajay; Department of Medical Elementology and Toxicology, Jamia Hamdard; Sharma, Ankita

    Post-translational modifications i.e. phosphorylation and acetylation are pivotal requirements for proper functioning of eukaryotic proteins. The current study aimed to decode the impact of acetylation/deacetylation of non-histone targets i.e. FoxO1/3a and p53 of sirtuins (NAD{sup +} dependent enzymes with lysine deacetylase activity) in berberine treated human hepatoma cells. Berberine (100 μM) inhibited sirtuins significantly (P < 0.05) at transcriptional level as well as at translational level. Combination of nicotinamide (sirtuin inhibitor) with berberine potentiated sirtuins inhibition and increased the expression of FoxO1/3a and phosphorylation of p53 tumor suppressor protein. As sirtuins deacetylate non-histone targets including FoxO1/3a and p53, berberine increasedmore » the acetylation load of FoxO1/3a and p53 proteins. Acetylated FoxO and p53 proteins transcriptionally activate BH3-only proteins Bim and PUMA (3.89 and 3.87 fold respectively, P<0.001), which are known as direct activator of pro-apoptotic Bcl-2 family protein Bax that culminated into mitochondria mediated activation of apoptotic cascade. Bim/PUMA knock-down showed no changes in sirtuins' expression while cytotoxicity induced by berberine and nicotinamide was curtailed up to 28.3% (P < 0.001) and it restored pro/anti apoptotic protein ratio in HepG2 cells. Sirtuins inhibition was accompanied by decline in NAD{sup +}/NADH ratio, ATP generation, enhanced ROS production and decreased mitochondrial membrane potential. TEM analysis confirmed mitochondrial deterioration and cell damage. SRT-1720 (1–10 μM), a SIRT-1 activator, when pre-treated with berberine (25 μM), reversed sirtuins expression comparable to control and significantly restored the cell viability (P < 0.05). Thus, our findings suggest that berberine mediated sirtuins inhibition resulting into FoxO1/3a and p53 acetylation followed by BH3-only protein Bim/PUMA activation may in part be responsible for mitochondria

  11. Solid-phase receptor-based assay for the detection of cyclic imines by chemiluminescence, fluorescence, or colorimetry.

    PubMed

    Rodríguez, Laura P; Vilariño, Natalia; Molgó, Jordi; Aráoz, Rómulo; Antelo, Alvaro; Vieytes, Mercedes R; Botana, Luis M

    2011-08-01

    The spirolides and gymnodimines are marine phycotoxins included in the group of cyclic imines. The toxicity of these compounds to humans is still unknown, although their toxicity by intraperitoneal injection in rodents is very high. A receptor-based method was developed using the competition of the 13-desmethyl spirolide C with biotin-labeled α-bungarotoxin for binding to nicotinic acetylcholine receptors and the immobilization of the α-bungarotoxin-receptor complex on streptavidin-coated surfaces. The quantification of the immobilized receptor can be achieved using a specific antibody. Finally, after the addition of a secondary antibody labeled with horseradish peroxidase, three alternative substrates of this enzyme generate a chemiluminescent, fluorescent, or colorimetric signal. The assay performs well in shellfish extracts and the detection range is 5-150 nM of 13-desmethyl spirolide C in shellfish extracts, which is at least 5 times more sensitive than the existing fluorescence polarization assay. This assay can also detect gymnodimine, although with 10 times lower sensitivity than the spirolide. The detection of cyclic imines with microplate assays would be useful for screening purposes in order to reduce the number of samples to be processed by bioassays or analytical methods.

  12. RAPID TEST FOR CHITINASE ACTIVITY THAT USES 4-METHYLUMBELLIFERYL-NU-ACETYL-BETA-D-GLUCOSAMINIDE

    EPA Science Inventory

    One hundred and one strains of bacteria from environmental and clinical sources, most of which were Gram negative, were tested for n-acetyl-Beta-D-glucosaminidase activity using a filter paper spot test with 4-methylumbelliferyl-N-acetyl-Beta-D-glucosaminide (4-MNABetaG) as subst...

  13. Escherichia coli O157:H7 Strain EDL933 Harbors Multiple Functional Prophage-Associated Genes Necessary for the Utilization of 5-N-Acetyl-9-O-Acetyl Neuraminic Acid as a Growth Substrate

    PubMed Central

    Saile, Nadja; Voigt, Anja; Kessler, Sarah; Stressler, Timo; Fischer, Lutz

    2016-01-01

    ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain EDL933 harbors multiple prophage-associated open reading frames (ORFs) in its genome which are highly homologous to the chromosomal nanS gene. The latter is part of the nanCMS operon, which is present in most E. coli strains and encodes an esterase which is responsible for the monodeacetylation of 5-N-acetyl-9-O-acetyl neuraminic acid (Neu5,9Ac2). Whereas one prophage-borne ORF (z1466) has been characterized in previous studies, the functions of the other nanS-homologous ORFs are unknown. In the current study, the nanS-homologous ORFs of EDL933 were initially studied in silico. Due to their homology to the chromosomal nanS gene and their location in prophage genomes, we designated them nanS-p and numbered the different nanS-p alleles consecutively from 1 to 10. The two alleles nanS-p2 and nanS-p4 were selected for production of recombinant proteins, their enzymatic activities were investigated, and differences in their temperature optima were found. Furthermore, a function of these enzymes in substrate utilization could be demonstrated using an E. coli C600ΔnanS mutant in a growth medium with Neu5,9Ac2 as the carbon source and supplementation with the different recombinant NanS-p proteins. Moreover, generation of sequential deletions of all nanS-p alleles in strain EDL933 and subsequent growth experiments demonstrated a gene dose effect on the utilization of Neu5,9Ac2. Since Neu5,9Ac2 is an important component of human and animal gut mucus and since the nutrient availability in the large intestine is limited, we hypothesize that the presence of multiple Neu5,9Ac2 esterases provides them a nutrient supply under certain conditions in the large intestine, even if particular prophages are lost. IMPORTANCE In this study, a group of homologous prophage-borne nanS-p alleles and two of the corresponding enzymes of enterohemorrhagic E. coli (EHEC) O157:H7 strain EDL933 that may be important to provide

  14. Characterization of O-acetylation in sialoglycans by MALDI-MS using a combination of methylamidation and permethylation

    NASA Astrophysics Data System (ADS)

    Wu, Zhaoguan; Li, Henghui; Zhang, Qiwei; Liu, Xin; Zheng, Qi; Li, Jianjun

    2017-04-01

    O-Acetylation of sialic acid in protein N-glycans is an important modification and can occur at either 4-, 7-, 8- or 9-position in various combinations. This modification is usually labile under alkaline reaction conditions. Consequently, a permethylation-based analytical method, which has been widely used in glycomics studies, is not suitable for profiling O-acetylation of sialic acids due to the harsh reaction conditions. Alternatively, methylamidation can be used for N-glycan analysis without affecting the base-labile modification of sialic acid. In this report, we applied both permethylation and methylamidation approaches to the analysis of O-acetylation in sialic acids. It has been demonstrated that methylamidation not only stabilizes sialic acids during MALDI processing but also allow for characterization of their O-acetylation pattern. In addition, LC-MS/MS experiments were carried out to distinguish between the O-acetylated glycans with potential isomeric structures. The repeatability of methylamidation was examined to evaluate the applicability of the approach to profiling of O-acetylation in sialic acids. In conclusion, the combination of methylamidation and permethylation methodology is a powerful MALDI-TOF MS-based tool for profiling O-acetylation in sialic acids applicable to screening of N-glycans.

  15. In situ generation of N-Boc-protected alkenyl imines: controlling the E/Z geometry of alkenyl moieties in the Mukaiyama-Mannich reaction.

    PubMed

    Bai, Jian-Fei; Sasagawa, Hajime; Yurino, Taiga; Kano, Taichi; Maruoka, Keiji

    2017-07-18

    Readily available Boc-protected Z-alkenyl aminals could be used as Z-alkenyl and E-alkenyl imine precursors under acidic conditions. In the Mukaiyama-Mannich reaction of Z-alkenyl Boc-aminals, the E/Z geometry of the products was controlled by the catalyst used. The present method was also applied to asymmetric Mukaiyama-Mannich reactions.

  16. Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters.

    PubMed

    Heleno, Sandrina A; Ferreira, Isabel C F R; Esteves, Ana P; Ćirić, Ana; Glamočlija, Jasmina; Martins, Anabela; Soković, Marina; Queiroz, Maria João R P

    2013-08-01

    Mushroom extracts or isolated compounds may be useful in the search of new potent antimicrobial agents. Herein, it is described the synthesis of protected (acetylated) glucuronide derivatives of p-hydroxybenzoic and cinnamic acids, two compounds identified in the medicinal mushroom Ganoderma lucidum. Their antimicrobial and demelanizing activities were evaluated and compared to the parent acids and G. lucidum extract. p-Hydroxybenzoic and cinnamic acids, as also their protected glucuronide derivatives revealed high antimicrobial (antibacterial and antifungal) activity, even better than the one showed by commercial standards. Despite the variation in the order of parent acids and the protected glucuronide derivatives, their antimicrobial activity was always higher than the one revealed by the extract. Nevertheless, the extract was the only one with demelanizing activity against Aspergillus niger. The acetylated glucuronide derivatives could be deprotected to obtain glucuronide metabolites, which circulate in the human organism as products of the metabolism of the parent compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. O2-Promoted Allylic Acetoxylation of Alkenes: Assessment of “Push” vs. “Pull” Mechanisms and Comparison between O2 and Benzoquinone

    PubMed Central

    Diao, Tianning

    2014-01-01

    Palladium-catalyzed acetoxylation of allylic C–H bonds has been the subject of extensive study. These reactions proceed via allyl-palladium(II) intermediates that react with acetate to afford the allyl acetate product. Benzoquinone and molecular oxygen are two common oxidants for these reactions. Benzoquinone has been shown to promote allyl acetate formation from well-defined π-allyl palladium(II) complexes. Here, we assess the ability of O2 to promote similar reactions with a series of “unligated” π-allyl palladium(II) complexes (i.e., in the absence of ancillary phosphorus, nitrogen or related donor ligands). Stoichiometric and catalytic allyl acetate formation is observed under aerobic conditions with several different alkenes. Mechanistic studies are most consistent with a “pull” mechanism in which O2 traps the Pd0 intermediate following reversible C–O bond-formation from an allyl-palladium(II) species. A “push” mechanism, involving oxidatively induced C–O bond formation, does not appear to participate. These results and conclusions are compared with benzoquinone-promoted allylic acetoxylation, in which a “push” mechanism seems to be operative. PMID:25435646

  18. A novel acetylation cycle of transcription co-activator Yes-associated protein that is downstream of Hippo pathway is triggered in response to SN2 alkylating agents.

    PubMed

    Hata, Shoji; Hirayama, Jun; Kajiho, Hiroaki; Nakagawa, Kentaro; Hata, Yutaka; Katada, Toshiaki; Furutani-Seiki, Makoto; Nishina, Hiroshi

    2012-06-22

    Yes-associated protein (YAP) is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes. Although cytoplasmic retention of YAP is known to be mediated by Hippo pathway-dependent phosphorylation, post-translational modifications that regulate YAP in the nucleus remain unclear. Here we report the discovery of a novel cycle of acetylation/deacetylation of nuclear YAP induced in response to S(N)2 alkylating agents. We show that after treatment of cells with the S(N)2 alkylating agent methyl methanesulfonate, YAP phosphorylation mediated by the Hippo pathway is markedly reduced, leading to nuclear translocation of YAP and its acetylation. This YAP acetylation occurs on specific and highly conserved C-terminal lysine residues and is mediated by the nuclear acetyltransferases CBP (CREB binding protein) and p300. Conversely, the nuclear deacetylase SIRT1 is responsible for YAP deacetylation. Intriguingly, we found that YAP acetylation is induced specifically by S(N)2 alkylating agents and not by other DNA-damaging stimuli. These results identify a novel YAP acetylation cycle that occurs in the nucleus downstream of the Hippo pathway. Intriguingly, our findings also indicate that YAP acetylation is involved in responses to a specific type of DNA damage.

  19. Intracellular processing of poly(ethylene imine)/ribozyme complexes can be observed in living cells by using confocal laser scanning microscopy and inhibitor experiments.

    PubMed

    Merdan, Thomas; Kunath, Klaus; Fischer, Dagmar; Kopecek, Jindrich; Kissel, Thomas

    2002-02-01

    Critical steps in the subcellular processing of poly(ethylene imine)/nucleic acid complexes, especially endosomal/lysosomal escape, were visualized by using living cell confocal laser scanning microscopy (CSLM) to obtain an insight into their mechanism. Living cell confocal microscopy was used to examine the intracellular fate of poly(ethylene imine)/ribozyme and poly(L-lysine)/ribozyme complexes over time, in the presence of and without bafilomycin Al, a selective inhibitor of endosomal/lysosomal acidification. The compartment of complex accumulation was identified by confocal microscopy with a fluorescent acidotropic dye. To confirm microscopic data, luciferase reporter gene expression was determined under similar experimental conditions. Poly(ethylene imine)/ribozyme complexes accumulate in acidic vesicles, most probably lysosomes. Release of complexes occurs in a sudden event, very likely due to bursting of these organelles. After release, poly(ethylene imine) and ribozyme spread throughout the cell, during which slight differences in distribution between cytosol and nucleus are visible. No lysosomal escape was observed with poly(L-lysine)/ribozyme complexes or when poly(ethylene imine)/ ribozyme complexes were applied together with bafilomycin A1. Poly(ethylene imine)/plasmid complexes exhibited a high luciferase expression, which was reduced approximately 200-fold when lysosomal acidification was suppressed with bafilomycin A1. Our data provide, for the first time, direct experimental evidence for the escape of poly(ethylene imine)/nucleic acid complexes from the endosomal/lysosomal compartment. CLSM, in conjunction with living cell microscopy, is a promising tool for studying the subcellular fate of polyplexes in nucleic acid/gene delivery.

  20. In vitro effects of N-acetyl cysteine alone and in combination with antibiotics on Prevotella intermedia.

    PubMed

    Moon, Ji-Hoi; Jang, Eun-Young; Shim, Kyu Sang; Lee, Jin-Yong

    2015-05-01

    N-acetyl cysteine (NAC) is an antioxidant that possesses anti-inflammatory activities in tissues. In the field of dentistry, NAC was demonstrated to prevent the expression of LPS-induced inflammatory mediators in phagocytic cells and gingival fibroblasts during the inflammatory process, but the effect of NAC on oral pathogens has been rarely studied. Here, we examined the effect of NAC against planktonic and biofilm cells of Prevotella intermedia, a major oral pathogen. NAC showed antibacterial activity against the planktonic P. intermedia with MIC value of 3 mg/ml and significantly decreased biofilm formation by the bacterium even at sub MIC. NAC did not affect the antibiotic susceptibility of planktonic P. intermedia, showing indifference (fractional inhibitory concentration index of 0.5-4) results against the bacterium in combination with ampicillin, ciprofloxacin, tetracycline or metronidazole. On the other hand, viability of the pre-established bacterial biofilm exposed to the antibiotics except metronidazole was increased in the presence of NAC. Collectively, NAC may be used for prevention of the biofilm formation by P. intermedia rather than eradication of the pre-established bacterial biofilm. Further studies are required to explore antibacterial and anti-biofilm activity of NAC against mixed population of oral bacteria and its modulatory effect on antibiotics used for oral infectious diseases.

  1. Mapping sugar beet pectin acetylation pattern.

    PubMed

    Ralet, Marie-Christine; Cabrera, Juan Carlos; Bonnin, Estelle; Quéméner, Bernard; Hellìn, Pilar; Thibault, Jean-François

    2005-08-01

    Homogalacturonan-derived partly methylated and/or acetylated oligogalacturonates were recovered after enzymatic hydrolysis (endo-polygalacturonase+pectin methyl esterase+side-chain degrading enzymes) of sugar beet pectin followed by anion-exchange and size exclusion chromatography. Around 90% of the GalA and 75% of the acetyl groups present in the initial sugar beet pectin were recovered as homogalacturonan-derived oligogalacturonates, the remaining GalA and acetyl belonging to rhamnogalacturonic regions. Around 50% of the acetyl groups present in sugar beet homogalacturonans were recovered as partly methylated and/or acetylated oligogalacturonates of degree of polymerisation 5 whose structures were determined by electrospray ionization ion trap mass spectrometry (ESI-IT-MSn). 2-O-acetyl- and 3-O-acetyl-GalA were detected in roughly similar amounts but 2,3-di-O-acetylation was absent. Methyl-esterified GalA residues occurred mainly upstream 2-O-acetyl GalA. Oligogalacturonates containing GalA residues that are at once methyl- and acetyl-esterified were recovered in very limited amounts. A tentative mapping of the distribution of acetyl and methyl esters within sugar beet homogalacturonans is proposed. Unsubstituted GalA residues are likely to be present in limited amounts (approximately 10% of total GalA residues), due to the fact that methyl and acetyl groups are assumed to be most often not carried by the same residues.

  2. Lysine acetylation sites in bovine foamy virus transactivator BTas are important for its DNA binding activity.

    PubMed

    Chang, Rui; Tan, Juan; Xu, Fengwen; Han, Hongqi; Geng, Yunqi; Li, Yue; Qiao, Wentao

    2011-09-15

    Cellular acetylation signaling is important for viral gene regulation, particularly during the transactivation of retroviruses. The regulatory protein of bovine foamy virus (BFV), BTas, is a transactivator that augments viral gene transcription from both the long terminal repeat (LTR) promoter and the internal promoter (IP). In this study, we report that the histone acetyltransferase (HAT), p300, specifically acetylates BTas both in vivo and in vitro. Further studies demonstrated that BTas acetylation markedly enhances its transactivation activity. Mutagenesis analysis identified three lysines at positions 66, 109 and 110 in BTas that are acetylated by p300. The K110R mutant lost its binding to BFV promoter as well as its ability to activate BFV promoter. The acetylation of K66 and K109 may contribute to increased BTas binding ability. These results suggest that the p300-acetylated lysines of BTas are important for transactivation of BFV promoters and therefore have an important role in BFV replication. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. N-acetylglucosamine sensing by a GCN5-related N-acetyltransferase induces transcription via chromatin histone acetylation in fungi.

    PubMed

    Su, Chang; Lu, Yang; Liu, Haoping

    2016-10-03

    N-acetylglucosamine (GlcNAc) exists ubiquitously as a component of the surface on a wide range of cells, from bacteria to humans. Many fungi are able to utilize environmental GlcNAc to support growth and induce cellular development, a property important for their survival in various host niches. However, how the GlcNAc signal is sensed and subsequently transduced is largely unknown. Here, we identify a gene that is essential for GlcNAc signalling (NGS1) in Candida albicans, a commensal and pathogenic yeast of humans. Ngs1 can bind GlcNAc through the N-terminal β-N-acetylglucosaminidase homology domain. This binding activates N-acetyltransferase activity in the C-terminal GCN5-related N-acetyltransferase domain, which is required for GlcNAc-induced promoter histone acetylation and transcription. Ngs1 is targeted to the promoters of GlcNAc-inducible genes constitutively by the transcription factor Rep1. Ngs1 is conserved in diverse fungi that have GlcNAc catabolic genes. Thus, fungi use Ngs1 as a GlcNAc-sensor and transducer for GlcNAc-induced transcription.

  4. N-acetylglucosamine sensing by a GCN5-related N-acetyltransferase induces transcription via chromatin histone acetylation in fungi

    PubMed Central

    Su, Chang; Lu, Yang; Liu, Haoping

    2016-01-01

    N-acetylglucosamine (GlcNAc) exists ubiquitously as a component of the surface on a wide range of cells, from bacteria to humans. Many fungi are able to utilize environmental GlcNAc to support growth and induce cellular development, a property important for their survival in various host niches. However, how the GlcNAc signal is sensed and subsequently transduced is largely unknown. Here, we identify a gene that is essential for GlcNAc signalling (NGS1) in Candida albicans, a commensal and pathogenic yeast of humans. Ngs1 can bind GlcNAc through the N-terminal β-N-acetylglucosaminidase homology domain. This binding activates N-acetyltransferase activity in the C-terminal GCN5-related N-acetyltransferase domain, which is required for GlcNAc-induced promoter histone acetylation and transcription. Ngs1 is targeted to the promoters of GlcNAc-inducible genes constitutively by the transcription factor Rep1. Ngs1 is conserved in diverse fungi that have GlcNAc catabolic genes. Thus, fungi use Ngs1 as a GlcNAc-sensor and transducer for GlcNAc-induced transcription. PMID:27694804

  5. An experimental and theoretical investigation into the electronically excited states of para-benzoquinone

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Limão-Vieira, P.; Mendes, M.; Jones, N. C.; Hoffmann, S. V.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Ingólfsson, O.; Lima, M. A. P.; Brunger, M. J.

    2017-05-01

    We report on a combination of experimental and theoretical investigations into the structure of electronically excited para-benzoquinone (pBQ). Here synchrotron photoabsorption measurements are reported over the 4.0-10.8 eV range. The higher resolution obtained reveals previously unresolved pBQ spectral features. Time-dependent density functional theory calculations are used to interpret the spectrum and resolve discrepancies relating to the interpretation of the Rydberg progressions. Electron-impact energy loss experiments are also reported. These are combined with elastic electron scattering cross section calculations performed within the framework of the independent atom model-screening corrected additivity rule plus interference (IAM-SCAR + I) method to derive differential cross sections for electronic excitation of key spectral bands. A generalized oscillator strength analysis is also performed, with the obtained results demonstrating that a cohesive and reliable quantum chemical structure and cross section framework has been established. Within this context, we also discuss some issues associated with the development of a minimal orbital basis for the single configuration interaction strategy to be used for our high-level low-energy electron scattering calculations that will be carried out as a subsequent step in this joint experimental and theoretical investigation.

  6. Higher visceral fat is associated with lower cerebral N-acetyl-aspartate ratios in middle-aged adults.

    PubMed

    Kaur, Sonya; Birdsill, Alex C; Steward, Kayla; Pasha, Evan; Kruzliak, Peter; Tanaka, Hirofumi; Haley, Andreana P

    2017-06-01

    Excessive adipose tissue, particularly with a central distribution, consists of visceral fat, which is metabolically active and could impinge upon central nervous system functioning. The aim of the current study was to examine levels of visceral adiposity in relation to key cerebral metabolite ratios localized in the occipitoparietal grey matter. Seventy-three adults, aged between 40 and 60 years, underwent structural magnetic resonance imaging and single voxel 1 H Magnetic Resonance Spectroscopy ( 1 H MRS). Visceral fat was assessed using Dual Energy X Ray Absorptiometry (DXA). Individuals with higher visceral fat mass and volume had significantly lower ratios of N-acetyl-aspartate to total creatine (phosphocreatine + creatine, PCr + Cr) (NAA/PCr + Cr) (β = -0.29, p = 0.03, β = -0.28, p = 0.04). They also had significantly higher ratios of myo-inositol to total creatine (mI/PCr + Cr ) (β = 0.36, p = 0.01, β = 0.36, p = 0.01). Visceral fat mass and volume were not significantly related to ratios of glutamate to total creatine (Glu/PCr + Cr). While future studies are necessary, these results indicate central adiposity is associated with metabolic changes that could impinge upon the central nervous system in middle age.

  7. The tetrapeptide N-acetyl-Pro-Pro-Tyr-Leu in skin care formulations-Physicochemical and release studies.

    PubMed

    Olejnik, Anna; Schroeder, Grzegorz; Nowak, Izabela

    2015-08-15

    Recently there has been a growth of interest in the novel skin care formulations containing active ingredients such as low molecular weight peptides. In this paper we present new skincare formulations such as hydrogels, oil-in-water emulsions and water-in-oil emulsion containing a tetrapeptide (N-acetyl-Pro-Pro-Tyr-Leu). These formulations were characterized in terms of physicochemical parameters (pH, viscosity), stability and particle size distribution. Additionally, the diffusion parameters of the peptide in the obtained formulations were calculated based on the Einstein-Smoluchowski equation. Furthermore, in order to determine the penetration of the tetrapeptide through membranes its release kinetics were investigated. On the basis of release curves, the release rate constants were determined. The results proved that the properties of the formulations strongly determined the release rate of the tetrapeptide. The higher viscosity of the semisolid, the slower was the permeation through the membrane. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. H2O2 accelerates cellular senescence by accumulation of acetylated p53 via decrease in the function of SIRT1 by NAD+ depletion.

    PubMed

    Furukawa, Ayako; Tada-Oikawa, Saeko; Kawanishi, Shosuke; Oikawa, Shinji

    2007-01-01

    It has been reported that p53 acetylation, which promotes cellular senescence, can be regulated by the NAD(+)-dependent deacetylase SIRT1, the human homolog of yeast Sir2, a protein that modulates lifespan. To clarify the role of SIRT1 in cellular senescence induced by oxidative stress, we treated normal human diploid fibroblast TIG-3 cells with H(2)O(2) and examined DNA cleavage, depletion of intracellular NAD(+), expression of p21, SIRT1, and acetylated p53, cell cycle arrest, and senescence-associated beta-galactosidase (SA-beta-gal) activity. DNA cleavage was observed immediately in TIG-3 cells treated with H(2)O(2), though no cell death was observed. NAD(+) levels in TIG-3 cells treated with H(2)O(2) were also decreased significantly. Pre-incubation with the poly (ADP-ribose) polymerase (PARP) inhibitor resulted in preservation of intracellular NAD(+) levels. The amount of acetylated p53 was increased in TIG-3 cells at 4h after H(2)O(2) treatment, while there was little to no decrease in SIRT1 protein expression. The expression level of p21 was increased at 12h and continued to increase for up to 24h. Additionally, exposure of TIG-3 cells to H(2)O(2) induced cell cycle arrest at 24h and increased SA-beta-gal activity at 48h. This pathway likely plays an important role in the acceleration of cellular senescence by oxidative stress.

  9. Crystal structure of product-bound complex of UDP-N-acetyl-D-mannosamine dehydrogenase from Pyrococcus horikoshii OT3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pampa, K.J., E-mail: sagarikakj@gmail.com; Lokanath, N.K.; Girish, T.U.

    Highlights: • Determined the structure of UDP-D-ManNAcADH to a resolution of 1.55 Å. • First complex structure of PhUDP-D-ManNAcADH with UDP-D-ManMAcA. • The monomeric structure consists of three distinct domains. • Cys258 acting as catalytic nucleophilic and Lys204 acts as acid/base catalyst. • Oligomeric state plays an important role for the catalytic function. - Abstract: UDP-N-acetyl-D-mannosamine dehydrogenase (UDP-D-ManNAcDH) belongs to UDP-glucose/GDP-mannose dehydrogenase family and catalyzes Uridine-diphospho-N-acetyl-D-mannosamine (UDP-D-ManNAc) to Uridine-diphospho-N-acetyl-D-mannosaminuronic acid (UDP-D-ManNAcA) through twofold oxidation of NAD{sup +}. In order to reveal the structural features of the Pyrococcus horikoshii UDP-D-ManNAcADH, we have determined the crystal structure of the product-bound enzyme bymore » X-ray diffraction to resolution of 1.55 Å. The protomer folds into three distinct domains; nucleotide binding domain (NBD), substrate binding domain (SBD) and oligomerization domain (OD, involved in the dimerization). The clear electron density of the UDP-D-ManNAcA is observed and the residues binding are identified for the first time. Crystal structures reveal a tight dimeric polymer chains with product-bound in all the structures. The catalytic residues Cys258 and Lys204 are conserved. The Cys258 acts as catalytic nucleophile and Lys204 as acid/base catalyst. The product is directly interacts with residues Arg211, Thr249, Arg244, Gly255, Arg289, Lys319 and Arg398. In addition, the structural parameters responsible for thermostability and oligomerization of the three dimensional structure are analyzed.« less

  10. In Vitro Biosynthesis and Chemical Identification of UDP-N-acetyl-d-quinovosamine (UDP-d-QuiNAc)*

    PubMed Central

    Li, Tiezheng; Simonds, Laurie; Kovrigin, Evgenii L.; Noel, K. Dale

    2014-01-01

    N-acetyl-d-quinovosamine (2-acetamido-2,6-dideoxy-d-glucose, QuiNAc) occurs in the polysaccharide structures of many Gram-negative bacteria. In the biosynthesis of QuiNAc-containing polysaccharides, UDP-QuiNAc is the hypothetical donor of the QuiNAc residue. Biosynthesis of UDP-QuiNAc has been proposed to occur by 4,6-dehydration of UDP-N-acetyl-d-glucosamine (UDP-GlcNAc) to UDP-2-acetamido-2,6-dideoxy-d-xylo-4-hexulose followed by reduction of this 4-keto intermediate to UDP-QuiNAc. Several specific dehydratases are known to catalyze the first proposed step. A specific reductase for the last step has not been demonstrated in vitro, but previous mutant analysis suggested that Rhizobium etli gene wreQ might encode this reductase. Therefore, this gene was cloned and expressed in Escherichia coli, and the resulting His6-tagged WreQ protein was purified. It was tested for 4-reductase activity by adding it and NAD(P)H to reaction mixtures in which 4,6-dehydratase WbpM had acted on the precursor substrate UDP-GlcNAc. Thin layer chromatography of the nucleotide sugars in the mixture at various stages of the reaction showed that WbpM converted UDP-GlcNAc completely to what was shown to be its 4-keto-6-deoxy derivative by NMR and that addition of WreQ and NADH led to formation of a third compound. Combined gas chromatography-mass spectrometry analysis of acid hydrolysates of the final reaction mixture showed that a quinovosamine moiety had been synthesized after WreQ addition. The two-step reaction progress also was monitored in real time by NMR. The final UDP-sugar product after WreQ addition was purified and determined to be UDP-d-QuiNAc by one-dimensional and two-dimensional NMR experiments. These results confirmed that WreQ has UDP-2-acetamido-2,6-dideoxy-d-xylo-4-hexulose 4-reductase activity, completing a pathway for UDP-d-QuiNAc synthesis in vitro. PMID:24817117

  11. Concurrent acetylation of FoxO1/3a and p53 due to sirtuins inhibition elicit Bim/PUMA mediated mitochondrial dysfunction and apoptosis in berberine-treated HepG2 cells.

    PubMed

    Shukla, Shatrunajay; Sharma, Ankita; Pandey, Vivek Kumar; Raisuddin, Sheikh; Kakkar, Poonam

    2016-01-15

    Post-translational modifications i.e. phosphorylation and acetylation are pivotal requirements for proper functioning of eukaryotic proteins. The current study aimed to decode the impact of acetylation/deacetylation of non-histone targets i.e. FoxO1/3a and p53 of sirtuins (NAD(+) dependent enzymes with lysine deacetylase activity) in berberine treated human hepatoma cells. Berberine (100 μM) inhibited sirtuins significantly (P<0.05) at transcriptional level as well as at translational level. Combination of nicotinamide (sirtuin inhibitor) with berberine potentiated sirtuins inhibition and increased the expression of FoxO1/3a and phosphorylation of p53 tumor suppressor protein. As sirtuins deacetylate non-histone targets including FoxO1/3a and p53, berberine increased the acetylation load of FoxO1/3a and p53 proteins. Acetylated FoxO and p53 proteins transcriptionally activate BH3-only proteins Bim and PUMA (3.89 and 3.87 fold respectively, P<0.001), which are known as direct activator of pro-apoptotic Bcl-2 family protein Bax that culminated into mitochondria mediated activation of apoptotic cascade. Bim/PUMA knock-down showed no changes in sirtuins' expression while cytotoxicity induced by berberine and nicotinamide was curtailed up to 28.3% (P<0.001) and it restored pro/anti apoptotic protein ratio in HepG2 cells. Sirtuins inhibition was accompanied by decline in NAD(+)/NADH ratio, ATP generation, enhanced ROS production and decreased mitochondrial membrane potential. TEM analysis confirmed mitochondrial deterioration and cell damage. SRT-1720 (1-10 μM), a SIRT-1 activator, when pre-treated with berberine (25 μM), reversed sirtuins expression comparable to control and significantly restored the cell viability (P<0.05). Thus, our findings suggest that berberine mediated sirtuins inhibition resulting into FoxO1/3a and p53 acetylation followed by BH3-only protein Bim/PUMA activation may in part be responsible for mitochondria-mediated apoptosis. Copyright © 2015

  12. Postmortem Toxicology Findings of Acetyl Fentanyl, Fentanyl, and Morphine in Heroin Fatalities in Tampa, Florida

    PubMed Central

    Pearson, Julia; Poklis, Justin; Poklis, Alphonse; Wolf, Carl; Mainland, Mary; Hair, Laura; Devers, Kelly; Chrostowski, Leszek; Arbefeville, Elise; Merves, Michele

    2017-01-01

    In the last two years, an epidemic of 40 fatal heroin overdose cases has occurred in the Tampa area of Florida. Of these cases, 14 involved fentanyl and acetyl fentanyl. Victim demographics, case histories, toxicology findings, and causes and manners of death for all 40 deaths are presented. In 26 deaths in which acetyl fentanyl or fentanyl were not involved, free and total peripheral blood morphine concentrations were consistent with fatal heroin intoxications, averaging 0.16 mg/L and 0.35 mg/L, respectively. In the heroin cases with fentanyl present (n=7), the average free morphine concentration was 0.040 mg/L, the average total morphine concentration was 0.080 mg/L, and the average fentanyl concentration was 0.012 mg/L. In the cases with heroin, fentanyl, and acetyl fentanyl (n=3), the average free morphine concentration was 0.010 mg/L, the average total morphine concentration was 0.030 mg/L, the average fentanyl concentration was 0.018 mg/L, and the average acetyl fentanyl concentration was 0.008 mg/L. In the cases involving only acetyl fentanyl (without heroin or fentanyl, n=4), the average acetyl fentanyl concentration was 0.47 mg/L and the average acetyl norfentanyl concentration was 0.053 mg/L. The presented cases, with associated drug concentrations, case histories, demographics, and causes and manners of death may help provide assistance with the interpretation of the postmortem findings. Based on case circumstances, autopsy results, and toxicology results, it is evident that fentanyl and/or acetyl fentanyl, when present, contributed to the cause of death. PMID:29034049

  13. PLLA scaffolds surface-engineered via poly (propylene imine) dendrimers for improvement on its biocompatibility/controlled pH biodegradability

    NASA Astrophysics Data System (ADS)

    Ganjalinia, Atiyeah.; Akbari, Somaye.; Solouk, Atefeh.

    2017-02-01

    Novel aminolyzed Poly (L) Lactic Acid (PLLA) films and electrospun nanofibrous scaffolds were fabricated and characterized as potential substrates for tissue engineering. The second generation polypropylene imine dendrimer (PPI-G2) was used as the aminolysis agent to functionalize the inert surface of PLLA substrates directly without any pre-modification process. The effect of the solvent type, G2 concentration, reaction temperature and time were studied by following weight reduction percentage, FTIR and contact angle measurements due to determined optimum conditions. In addition, the modified scaffolds abbreviated by PLLA/G2 were analyzed using mechanical properties, SEM images and dye assays as host-guest modeling. The results indicate that under the 0.5 (wt.%) G2 concentration, ethanol as the solvent, room temperature and 4 h of treatment, the optimum conditions were obtained. It was shown that the hydrophilic properties of PLLA/G2 were greatly enhanced. Also, pH value analysis revealed that after 4 weeks, the biodegradation of PLLA caused massive immune cells infusion and inflammation in the medium through increasing the acidic rate by secretion the lactic acid, whereas the PLLA/G2 scaffolds greatly reduced and stabilize the acidic rate through aminolysis reaction. Finally, promoted cell adhesion and viability underlined the favorable properties of PLLA/G2 scaffolds as a biodegradable biomaterial for biomedical implants.

  14. Antiplasmodial Drugs in the Gas Phase: A CID and DFT Study of Quinolon-4( 1H)-Imine Derivatives

    NASA Astrophysics Data System (ADS)

    Amorim Madeira, Paulo J.; Sitoe, Ana Raquel Fernandes; Gonçalves, Daniel; Rodrigues, Tiago; Guedes, Rita C.; Lopes, Francisca; Moreira, Rui; Bronze, M. Rosário

    2014-09-01

    The gas-phase behavior of 12 quinolon-4( 1H)-imine derivatives with antiplasmodial activity was investigated using electrospray ionization tandem mass spectrometry together with collision induced dissociation and density functional theory (DFT) calculations. The most probable protonation site was predicted by calculating the proton affinity (PA) values for each possible protonation site and it was found to be the imine nitrogen for all compounds under study. Fragmentation pathways of the protonated molecules were proposed and the assignment of product ion structures was performed taking into account theoretical calculations. The nature of the quinoline substituent was found to influence the gas-phase behavior of the compounds under study. The data acquired allowed to bracket the proton affinity of the quinolin-4-imine scaffold, which can be a useful starting point to choose appropriate references for determining PA values of this scaffold.

  15. Quinone-induced protein modifications: Kinetic preference for reaction of 1,2-benzoquinones with thiol groups in proteins.

    PubMed

    Li, Yuting; Jongberg, Sisse; Andersen, Mogens L; Davies, Michael J; Lund, Marianne N

    2016-08-01

    Oxidation of polyphenols to quinones serves as an antioxidative mechanism, but the resulting quinones may induce damage to proteins as they react through a Michael addition with nucleophilic groups, such as thiols and amines to give protein adducts. In this study, rate constants for the reaction of 4-methylbenzoquinone (4MBQ) with proteins, thiol and amine compounds were determined under pseudo first-order conditions by UV-vis stopped-flow spectrophotometry. The chemical structures of the adducts were identified by LC-ESI-MS/MS. Proteins with free thiols were rapidly modified by 4MBQ with apparent second order rate constants, k2 of (3.1±0.2)×10(4)M(-1)s(-1) for bovine serum albumin (BSA) and (4.8±0.2)×10(3)M(-1)s(-1) for human serum albumin at pH 7.0. These values are at least 12-fold greater than that for α-lactalbumin (4.0±0.2)×10(2)M(-1)s(-1), which does not contain any free thiols. Reaction of Cys-34 of BSA with N-ethylmaleimide reduced the thiol concentration by ~59%, which resulted in a decrease in k2 by a similar percentage, consistent with rapid adduction at Cys-34. Reaction of 4MBQ with amines (Gly, Nα-acetyl-l-Lys, Nε-acetyl-l-Lys and l-Lys) and the guanidine group of Nα-acetyl-l-Arg was at least 5×10(5) slower than with low-molecular-mass thiols (l-Cys, Nα-acetyl-l-Cys, glutathione). The thiol-quinone interactions formed colorless thiol-phenol products via an intermediate adduct, while the amine-quinone interactions generated colored amine-quinone products that require oxygen involvement. These data provide strong evidence for rapid modification of protein thiols by quinone species which may be of considerable significance for biological and food systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The role of proton shuttling mechanisms in solvent-free and catalyst-free acetalization reactions of imines.

    PubMed

    Lillo, Victor J; Mansilla, Javier; Saá, José M

    2018-06-06

    Proton transfer is central to the understanding of chemical processes. More so in addition reactions of the type NuH + E → Nu-EH taking place under solvent-free and catalyst-free conditions. Herein we show that the addition of alcohols or amines (the NuH component) to imine derivatives (the E component), in 1 : 1 ratio, under solvent-free and catalyst-free conditions, are efficient methods to access N,O and N,N-acetal derivatives. In addition, computational studies reveal that they are catalyzed reactions involving two or even three NuH molecules operating in a cooperative manner as H-bonded NuH(NuH)nNuH associates (many body effects) in the transition state through a concerted proton shuttling mechanism (addition of alcohols) or stepwise proton shuttling mechanism (addition of amines), thereby facilitating the key proton transfer step.

  17. Novel function of HATs and HDACs in homologous recombination through acetylation of human RAD52 at double-strand break sites

    PubMed Central

    Kato, Takamitsu A.; Suzuki, Takehiro; Dohmae, Naoshi; Takizawa, Kazuya; Nakazawa, Yuka; Genet, Matthew D.; Saotome, Mika; Hama, Michio; Nakajima, Nakako Izumi; Hazawa, Masaharu; Tomita, Masanori; Koike, Manabu; Noshiro, Katsuko; Tomiyama, Kenichi; Obara, Chizuka; Gotoh, Takaya; Ui, Ayako; Fujimori, Akira; Nakayama, Fumiaki; Sugasawa, Kaoru; Okayasu, Ryuichi; Tajima, Katsushi

    2018-01-01

    The p300 and CBP histone acetyltransferases are recruited to DNA double-strand break (DSB) sites where they induce histone acetylation, thereby influencing the chromatin structure and DNA repair process. Whether p300/CBP at DSB sites also acetylate non-histone proteins, and how their acetylation affects DSB repair, remain unknown. Here we show that p300/CBP acetylate RAD52, a human homologous recombination (HR) DNA repair protein, at DSB sites. Using in vitro acetylated RAD52, we identified 13 potential acetylation sites in RAD52 by a mass spectrometry analysis. An immunofluorescence microscopy analysis revealed that RAD52 acetylation at DSBs sites is counteracted by SIRT2- and SIRT3-mediated deacetylation, and that non-acetylated RAD52 initially accumulates at DSB sites, but dissociates prematurely from them. In the absence of RAD52 acetylation, RAD51, which plays a central role in HR, also dissociates prematurely from DSB sites, and hence HR is impaired. Furthermore, inhibition of ataxia telangiectasia mutated (ATM) protein by siRNA or inhibitor treatment demonstrated that the acetylation of RAD52 at DSB sites is dependent on the ATM protein kinase activity, through the formation of RAD52, p300/CBP, SIRT2, and SIRT3 foci at DSB sites. Our findings clarify the importance of RAD52 acetylation in HR and its underlying mechanism. PMID:29590107

  18. Introducing the New Class of N-Phosphoryl Ynamides via Cu(I)-Catalyzed Amidations of Alkynyl Bromides

    PubMed Central

    Walton, Mary C.; North, Troy D.

    2011-01-01

    We describe here the first synthesis of N-phosphoryl ynamides featuring C- and P-chirality via copper(I)-catalyzed amidative cross-couplings between phosphoramidates and phosphordiamidates with alkynyl bromides. Also featured is a tandem aza-Claisen–hetero-[2+2] cycloaddition for the synthesis of N-phosphoryl azetidin-2-imines. PMID:21848304

  19. N-acetyl cysteine for depressive symptoms in bipolar disorder--a double-blind randomized placebo-controlled trial.

    PubMed

    Berk, Michael; Copolov, David L; Dean, Olivia; Lu, Kristy; Jeavons, Sue; Schapkaitz, Ian; Anderson-Hunt, Murray; Bush, Ashley I

    2008-09-15

    Treatment-resistant subthreshold depression is a major problem in bipolar disorder. Both depression and bipolar disorder are complicated by glutathione depletion. We hypothesized that treatment with N-acetyl cysteine (NAC), a safe, orally bioavailable precursor of glutathione, may improve the depressive component of bipolar disorder. A randomized, double-blind, multicenter, placebo-controlled study of individuals (n = 75) with bipolar disorder in the maintenance phase treated with NAC (1 g twice daily) adjunctive to usual medication over 24 weeks, with a 4-week washout. The two primary outcomes were the Montgomery Asberg Depression Rating Scale (MADRS) and time to a mood episode. Secondary outcomes included the Bipolar Depression Rating Scale and 11 other ratings of clinical status, quality of life, and functioning. NAC treatment caused a significant improvement on the MADRS (least squares mean difference [95% confidence interval]: -8.05 [-13.16, -2.95], p = .002) and most secondary scales at end point. Benefit was evident by 8 weeks on the Global Assessment of Functioning Scale and Social and Occupational Functioning Assessment Scale and at 20 weeks on the MADRS. Improvements were lost after washout. There was no effect of NAC on time to a mood episode (log-rank test: p = .968) and no significant between-group differences in adverse events. Effect sizes at end point were medium to high for improvements in MADRS and 9 of the 12 secondary readouts. NAC appears a safe and effective augmentation strategy for depressive symptoms in bipolar disorder.

  20. Histone deacetylase inhibitors, valproic acid and trichostatin-A induce apoptosis and affect acetylation status of p53 in ERG-positive prostate cancer cells

    PubMed Central

    FORTSON, WENDELL S.; KAYARTHODI, SHUBHALAXMI; FUJIMURA, YASUO; XU, HUALI; MATTHEWS, ROLAND; GRIZZLE, WILLIAM E.; RAO, VEENA N.; BHAT, GANAPATHY K.; REDDY, E. SHYAM P.

    2012-01-01

    An ETS family member, ETS Related Gene (ERG) is involved in the Ewing family of tumors as well as leukemias. Rearrangement of the ERG gene with the TMPRSS2 gene has been identified in the majority of prostate cancer patients. Additionally, overexpression of ERG is associated with un- favorable prognosis in prostate cancer patients similar to leukemia patients. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) regulate transcription as well as epigenetic status of genes through acetylation of both histones and transcription factors. Deregulation of HATs and HDACs is frequently seen in various cancers, including prostate cancer. Many cellular oncogenes as well as tumor viral proteins are known to target either or both HATs and HDACs. Several studies have demonstrated that there are alterations of HDAC activity in prostate cancer cells. Recently, we found that ERG binds and inhibits HATs, which suggests that ERG is involved in deregulation of protein acetylation. Additionally, it has been shown that ERG is associated with a higher expression of HDACs. In this study, we tested the effect of the HDAC inhibitors valproic acid (VPA) and trichostatin-A (TSA) on ERG-positive prostate cancer cells (VCaP). We found that VPA and TSA induce apoptosis, upregulate p21/Waf1/CIP1, repress TMPRSS2-ERG expression and affect acetylation status of p53 in VCaP cells. These results suggest that HDAC inhibitors might restore HAT activity through two different ways: by inhibiting HDAC activity and by repressing HAT targeting oncoproteins such as ERG. PMID:21519790

  1. Biologic properties and vaccine potential of the staphylococcal poly-N-acetyl glucosamine surface polysaccharide.

    PubMed

    Maira-Litran, Tomas; Kropec, Andrea; Goldmann, Donald; Pier, Gerald B

    2004-02-17

    Staphylococci have become the most common causes of nosocomial bacterial infections, and this fact, along with increasing problems associated with antimicrobial resistance, spurs the need for finding immunotherapeutic alternatives to prevent and possibly treat these infections. Most virulent, clinical isolates of both coagulase-negative staphylococci (CoNS) and Staphylococcus aureus carry the ica locus which encodes proteins that synthesize a polymer of beta-1-6 linked N-acetyl glucosamine residues (PNAG). Animal studies have shown purified PNAG can elicit protective immunity against both CoNS and S. aureus, suggesting its potential as a broadly protective vaccine for many clinically important strains of staphylococci.

  2. Icariin Improves Cognitive Impairment after Traumatic Brain Injury by Enhancing Hippocampal Acetylation.

    PubMed

    Zhang, Zi-Gang; Wang, Xin; Zai, Jin-Hai; Sun, Cai-Hua; Yan, Bing-Chun

    2018-05-01

    To examine the effect of icariin (ICA) on the cognitive impairment induced by traumatic brain injury (TBI) in mice and the underlying mechanisms related to changes in hippocampal acetylation level. The modifified free-fall method was used to establish the TBI mouse model. Mice with post-TBI cognitive impairment were randomly divided into 3 groups using the randomised block method (n=7): TBI (vehicle-treated), low-dose (75 mg/kg) and high-dose (150 mg/kg) of ICA groups. An additional sham-operated group (vehicle-treated) was employed. The vehicle or ICA was administrated by gavage for 28 consecutive days. The Morris water maze (MWM) test was conducted. Acetylcholine (ACh) content, mRNA and protein levels of choline acetyltransferase (ChAT), and protein levels of acetylated H3 (Ac-H3) and Ac-H4 were detected in the hippocampus. Compared with the sham-operated group, the MWM performance, hippocampal ACh content, mRNA and protein levels of ChAT, and protein levels of Ac-H3 and Ac-H4 were signifificantly decreased in the TBI group (P<0.05). High-dose of ICA signifificantly ameliorated the TBI-induced weak MWM performance, increased hippocampal ACh content, and mRNA and protein levels of ChAT, as well as Ac-H3 protein level compared with the TBI group (P<0.05). ICA improved post-TBI cognitive impairment in mice by enhancing hippocampal acetylation, which improved hippocampal cholinergic function and ultimately improved cognition.

  3. Anodic oxidation of benzoquinone using diamond anode.

    PubMed

    Panizza, Marco

    2014-01-01

    The anodic degradation of 1,4-benzoquinone (BQ), one of the most toxic xenobiotic, was investigated by electrochemical oxidation at boron-doped diamond anode. The electrolyses have been performed in a single-compartment flow cell in galvanostatic conditions. The influence of applied current (0.5-2 A), BQ concentration (1-2 g dm(-3)), temperature (20-45 °C) and flow rate (100-300 dm(3) h(-1)) has been studied. BQ decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by high-performance liquid chromatograph (HPLC) and chemical oxygen demand (COD) measurements. The results obtained show that the use of diamond anode leads to total mineralization of BQ in any experimental conditions due to the production of oxidant hydroxyl radicals electrogenerated from water discharge. The decay kinetics of BQ removal follows a pseudo-first-order reaction, and the rate constant increases with rising current density. The COD removal rate was favoured by increasing of applied current, recirculating flow rate and it is almost unaffected by solution temperature.

  4. Mechanistic investigations of imine hydrogenation catalyzed by dinuclear iridium complexes.

    PubMed

    Martín, Marta; Sola, Eduardo; Tejero, Santiago; López, José A; Oro, Luis A

    2006-05-15

    Treatment of [Ir2(mu-H)(mu-Pz)2H3(NCMe)(PiPr3)2] (1) with one equivalent of HBF4 or [PhNH=CHPh]BF4 affords efficient catalysts for the homogeneous hydrogenation of N-benzylideneaniline. The reaction of 1 with HBF4 leads to the trihydride-dihydrogen complex [Ir2(mu-H)(mu-Pz)2H2(eta2-H2)(NCMe)(PiPr3)2]BF4 (2), which has been characterized by NMR spectroscopy and DFT calculations on a model complex. Complex 2 reacts with imines such as tBuN=CHPh or PhN=CHPh to afford amine complexes [Ir2(mu-H)(mu-Pz)2H2(NCMe){L}(PiPr3)2]BF4 (L = NH(tBu)CH2Ph, 3; NH(Ph)CH2Ph, 4) through a sequence of proton- and hydride-transfer steps. Dihydrogen partially displaces the amine ligand of 4 to form 2; this complements a possible catalytic cycle for the N-benzylideneaniline hydrogenation in which the amine-by-dihydrogen substitution is the turnover-determining step. The rates of ligand substitution in 4 and its analogues with labile ligands other than amine are dependent upon the nature of the leaving ligand and independent on the incoming ligand concentration, in agreement with dissociative substitutions. Water complex [Ir2(mu-H)(mu-Pz)2H2(NCMe)(OH2)(PiPr3)2]BF4 (7) hydrolyzes N-benzylideneaniline, which eventually affords the poor hydrogenation catalyst [Ir2(mu-H)(mu-Pz)2H2(NCMe)(NH2Ph)(PiPr3)2]BF4 (11). The rate law for the catalytic hydrogenation in 1,2-dichloroethane with complex [Ir2(mu-H)(mu-Pz)2H2(OSO2CF3)(NCMe)(PiPr3)2] (8) as catalyst precursor is rate = k[8]{p(H2)}; this is in agreement with the catalytic cycle deduced from the stochiometric experiments. The hydrogenation reaction takes place at a single iridium center of the dinuclear catalyst, although ligand modifications at the neighboring iridium center provoke changes in the hydrogenation rate. Even though this catalyst system is also capable of effectively hydrogenating alkenes, N-benzylideneaniline can be selectively hydrogenated in the presence of simple alkenes.

  5. Unexpected Diversity of Escherichia coli Sialate O-Acetyl Esterase NanS

    PubMed Central

    Rangel, Ariel; Steenbergen, Susan M.

    2016-01-01

    ABSTRACT The sialic acids (N-acylneuraminates) are a group of nine-carbon keto-sugars existing mainly as terminal residues on animal glycoprotein and glycolipid carbohydrate chains. Bacterial commensals and pathogens exploit host sialic acids for nutrition, adhesion, or antirecognition, where N-acetyl- or N-glycolylneuraminic acids are the two predominant chemical forms of sialic acids. Each form may be modified by acetyl esters at carbon position 4, 7, 8, or 9 and by a variety of less-common modifications. Modified sialic acids produce challenges for colonizing bacteria, because the chemical alterations to N-acetylneuraminic acid (Neu5Ac) confer increased resistance to sialidase and aldolase activities essential for the catabolism of host sialic acids. Bacteria with O-acetyl sialate esterase(s) utilize acetylated sialic acids for growth, thereby gaining a presumed metabolic advantage over competitors lacking this activity. Here, we demonstrate the esterase activity of Escherichia coli NanS after purifying it as a C-terminal HaloTag fusion. Using a similar approach, we show that E. coli strain O157:H7 Stx prophage or prophage remnants invariably include paralogs of nanS often located downstream of the Shiga-like toxin genes. These paralogs may include sequences encoding N- or C-terminal domains of unknown function where the NanS domains can act as sialate O-acetyl esterases, as shown by complementation of an E. coli strain K-12 nanS mutant and the unimpaired growth of an E. coli O157 nanS mutant on O-acetylated sialic acid. We further demonstrate that nanS homologs in Streptococcus spp. also encode active esterase, demonstrating an unexpected diversity of bacterial sialate O-acetyl esterase. IMPORTANCE The sialic acids are a family of over 40 naturally occurring 9-carbon keto-sugars that function in a variety of host-bacterium interactions. These sugars occur primarily as terminal carbohydrate residues on host glycoproteins and glycolipids. Available evidence

  6. NeuA sialic acid O-acetylesterase activity modulates O-acetylation of capsular polysaccharide in group B Streptococcus.

    PubMed

    Lewis, Amanda L; Cao, Hongzhi; Patel, Silpa K; Diaz, Sandra; Ryan, Wesley; Carlin, Aaron F; Thon, Vireak; Lewis, Warren G; Varki, Ajit; Chen, Xi; Nizet, Victor

    2007-09-21

    Group B Streptococcus (GBS) is a common cause of neonatal sepsis and meningitis. A major GBS virulence determinant is its sialic acid (Sia)-capped capsular polysaccharide. Recently, we discovered the presence and genetic basis of capsular Sia O-acetylation in GBS. We now characterize a GBS Sia O-acetylesterase that modulates the degree of GBS surface O-acetylation. The GBS Sia O-acetylesterase operates cooperatively with the GBS CMP-Sia synthetase, both part of a single polypeptide encoded by the neuA gene. NeuA de-O-acetylation of free 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac(2)) was enhanced by CTP and Mg(2+), the substrate and co-factor, respectively, of the N-terminal GBS CMP-Sia synthetase domain. In contrast, the homologous bifunctional NeuA esterase from Escherichia coli K1 did not display cofactor dependence. Further analyses showed that in vitro, GBS NeuA can operate via two alternate enzymatic pathways: de-O-acetylation of Neu5,9Ac(2) followed by CMP activation of Neu5Ac or activation of Neu5,9Ac(2) followed by de-O-acetylation of CMP-Neu5,9Ac(2). Consistent with in vitro esterase assays, genetic deletion of GBS neuA led to accumulation of intracellular O-acetylated Sias, and overexpression of GBS NeuA reduced O-acetylation of Sias on the bacterial surface. Site-directed mutagenesis of conserved asparagine residue 301 abolished esterase activity but preserved CMP-Sia synthetase activity, as evidenced by hyper-O-acetylation of capsular polysaccharide Sias on GBS expressing only the N301A NeuA allele. These studies demonstrate a novel mechanism regulating the extent of capsular Sia O-acetylation in intact bacteria and provide a genetic strategy for manipulating GBS O-acetylation in order to explore the role of this modification in GBS pathogenesis and immunogenicity.

  7. Characterization of the chemical reactivity and nephrotoxicity of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide, a potential reactive metabolite of trichloroethylene

    PubMed Central

    Irving, Roy M.; Pinkerton, Marie E.; Elfarra, Adnan A.

    2012-01-01

    N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NA-DCVC) has been detected in the urine of humans exposed to trichloroethylene and its related sulfoxide, N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (NA-DCVCS), has been detected as hemoglobin adducts in blood of rats dosed with S-(1,2-dichlorovinyl)-L-cysteine (DCVC) or S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (DCVCS). Because the in vivo nephrotoxicity of NA-DCVCS was unknown, in this study, male Sprague-Dawley rats were dosed (i.p.) with 230 µmol/kg b.w. NA-DCVCS or its potential precursors, DCVCS or NA-DCVC. At 24 h post treatment, rats given NA-DCVC or NA-DCVCS exhibited kidney lesions and effects on renal function distinct from those caused by DCVCS. NA-DCVC and NA-DCVCS primarily affected the cortico-medullary proximal tubules (S2–S3 segments) while DCVCS primarily affected the outer cortical proximal tubules (S1–S2 segments). When NA-DCVCS or DCVCS was incubated with GSH in phosphate buffer pH 7.4 at 37°C, the corresponding glutathione conjugates were detected, but NA-DCVC was not reactive with GSH. Because NA-DCVCS exhibited a longer half-life than DCVCS and addition of rat liver cytosol enhanced GSH conjugate formation, catalysis of GSH conjugate formation by the liver could explain the lower toxicity of NA-DCVCS in comparison with DCVCS. Collectively, these results provide clear evidence that NA-DCVCS formation could play a significant role in DCVC, NA-DCVC, and trichloroethylene nephrotoxicity. They also suggest a role for hepatic metabolism in the mechanism of NA-DCVC nephrotoxicity. PMID:23253325

  8. Characterization of the chemical reactivity and nephrotoxicity of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide, a potential reactive metabolite of trichloroethylene.

    PubMed

    Irving, Roy M; Pinkerton, Marie E; Elfarra, Adnan A

    2013-02-15

    N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NA-DCVC) has been detected in the urine of humans exposed to trichloroethylene and its related sulfoxide, N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (NA-DCVCS), has been detected as hemoglobin adducts in blood of rats dosed with S-(1,2-dichlorovinyl)-L-cysteine (DCVC) or S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (DCVCS). Because the in vivo nephrotoxicity of NA-DCVCS was unknown, in this study, male Sprague-Dawley rats were dosed (i.p.) with 230 μmol/kg b.w. NA-DCVCS or its potential precursors, DCVCS or NA-DCVC. At 24 h post treatment, rats given NA-DCVC or NA-DCVCS exhibited kidney lesions and effects on renal function distinct from those caused by DCVCS. NA-DCVC and NA-DCVCS primarily affected the cortico-medullary proximal tubules (S(2)-S(3) segments) while DCVCS primarily affected the outer cortical proximal tubules (S(1)-S(2) segments). When NA-DCVCS or DCVCS was incubated with GSH in phosphate buffer pH 7.4 at 37°C, the corresponding glutathione conjugates were detected, but NA-DCVC was not reactive with GSH. Because NA-DCVCS exhibited a longer half-life than DCVCS and addition of rat liver cytosol enhanced GSH conjugate formation, catalysis of GSH conjugate formation by the liver could explain the lower toxicity of NA-DCVCS in comparison with DCVCS. Collectively, these results provide clear evidence that NA-DCVCS formation could play a significant role in DCVC, NA-DCVC, and trichloroethylene nephrotoxicity. They also suggest a role for hepatic metabolism in the mechanism of NA-DCVC nephrotoxicity. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Generation and exploitation of acyclic azomethine imines in chiral Brønsted acid catalysis

    NASA Astrophysics Data System (ADS)

    Hashimoto, Takuya; Kimura, Hidenori; Kawamata, Yu; Maruoka, Keiji

    2011-08-01

    Successful implementation of a catalytic asymmetric synthesis strategy to produce enantiomerically enriched compounds requires the adoption of suitable prochiral substrates. The combination of an azomethine imine electrophile with various nucleophiles could give straightforward access to a number of synthetically useful chiral hydrazines, but is used rarely. Here we report the exploitation of acyclic azomethine imines as a new type of prochiral electrophile. They can be generated in situ by the condensation of N‧-benzylbenzoylhydrazide with a variety of aldehydes in the presence of a catalytic amount of an axially chiral dicarboxylic acid. By trapping these electrophiles with alkyl diazoacetate or (diazomethyl)phosphonate nucleophiles, we produced a diverse array of chiral α-diazo-β-hydrazino esters and phosphonates with excellent enantioselectivities.

  10. Loss-of-Function Mutation of REDUCED WALL ACETYLATION2 in Arabidopsis Leads to Reduced Cell Wall Acetylation and Increased Resistance to Botrytis cinerea1[W][OA

    PubMed Central

    Manabe, Yuzuki; Nafisi, Majse; Verhertbruggen, Yves; Orfila, Caroline; Gille, Sascha; Rautengarten, Carsten; Cherk, Candice; Marcus, Susan E.; Somerville, Shauna; Pauly, Markus; Knox, J. Paul; Sakuragi, Yumiko; Scheller, Henrik Vibe

    2011-01-01

    Nearly all polysaccharides in plant cell walls are O-acetylated, including the various pectic polysaccharides and the hemicelluloses xylan, mannan, and xyloglucan. However, the enzymes involved in the polysaccharide acetylation have not been identified. While the role of polysaccharide acetylation in vivo is unclear, it is known to reduce biofuel yield from lignocellulosic biomass by the inhibition of microorganisms used for fermentation. We have analyzed four Arabidopsis (Arabidopsis thaliana) homologs of the protein Cas1p known to be involved in polysaccharide O-acetylation in Cryptococcus neoformans. Loss-of-function mutants in one of the genes, designated REDUCED WALL ACETYLATION2 (RWA2), had decreased levels of acetylated cell wall polymers. Cell wall material isolated from mutant leaves and treated with alkali released about 20% lower amounts of acetic acid when compared with the wild type. The same level of acetate deficiency was found in several pectic polymers and in xyloglucan. Thus, the rwa2 mutations affect different polymers to the same extent. There were no obvious morphological or growth differences observed between the wild type and rwa2 mutants. However, both alleles of rwa2 displayed increased tolerance toward the necrotrophic fungal pathogen Botrytis cinerea. PMID:21212300

  11. A modeling study for structure features of β-N-acetyl-D-hexosaminidase from Ostrinia furnacalis and its novel inhibitor allosamidin: species selectivity and multi-target characteristics.

    PubMed

    Wang, Yanli; Liu, Tian; Yang, Qing; Li, Zhong; Qian, Xuhong

    2012-04-01

    Insect β-N-acetyl-D-hexosaminidase, a chitin degrading enzyme, is physiologically important during the unique life cycle of the insect. OfHex1, a β-N-acetyl-D-hexosaminidase from the insect, Ostrinia furna, which was obtained by our laboratory (Gen Bank No.: ABI81756.1), was studied by molecular modeling as well as by molecular docking with its inhibitor, allosamidin. 3D model of OfHex1 was built through the ligand-supported homology modeling approach. The binding modes of its substrate and inhibitor were proposed through docking and cluster analysis. The pocket's size and shape of OfHex1 differ from that of human β-N-acetyl-D-hexosaminidase, which determined that allosamidin can selectively inhibit OfHex1 instead of human β-N-acetyl-D-hexosaminidase. Moreover, the multi-target characteristics of allosamidin that inhibit enzymes from different families, OfHex1 (EC 3.2.1.52; GH20) and chitinase (EC 3.2.1.14; GH18), were compared. The common -1/+1 sugar-binding site of chitinase and OfHex1, and the -2/-3 sugar-binding site in chitinase contribute to the binding of allosamidin. This work, at molecular level, proved that OfHex1 could be a potential species-specific target for novel green pesticide design and also provide the possibility to develop allosamidin or its derivatives as a new type of insecticide to 'hit two birds with one stone', which maybe become a novel strategy in pest control. © 2011 John Wiley & Sons A/S.

  12. Cloning, expression profiling, and acetylation identification of alpha-tubulin N-acetyltransferase 1 from Bombyx mori.

    PubMed

    Zhou, Huaixiang; Cheng, Xusheng; Xu, Xiaoyuan; Jiang, Tianlong; Zhou, Haimeng; Sheng, Qing; Nie, Zuoming

    2018-03-22

    Alpha-tubulin N-acetyltransferase 1 (ATAT1) is an acetyltransferase specific to α-tubulin and performs important functions in many cellular processes. Bombyx mori is an economic insect and also known as a model lepidoptera insect. In this study, we cloned a B. mori ATAT1 gene (BmATAT1) (Gen Bank accession number: XP_004932777.1). BmATAT1 contained an open reading frame (ORF) of 1,065 bp encoding 355 amino acids (aa). Expression profiling of BmATAT1 protein showed that the expression levels of BmATAT1 at different developmental stages and different tissues in fifth-instar larvae differ. BmATAT1 was highly expressed at the egg stage and in the head of the fifth-instar larvae. Subcellular localization showed that BmATAT1 was distributed in the cytoplasm and nucleus. Furthermore, BmATAT1 may lead to time-dependent induction of cell cycle arrest in the G2/M phase by flow cytometry analysis. Interestingly, using site-specific mutation, immunoprecipitation, and Western blotting, we further found a BmATAT1 acetylated site at K156, suggesting that this acetyltransferase could be regulated by acetylation itself. © 2018 Wiley Periodicals, Inc.

  13. Molecular dynamics simulations of trans- and cis- N-acetyl- N'-methylamides of XaaPro dipeptides

    NASA Astrophysics Data System (ADS)

    Hoon Choi, Seung; Yun Yu, Jeong; Kwang Shin, Jae; Shik Jhon, Mu

    1994-07-01

    The occurrence of cis imide bonds in proteins is much higher than that of cis amide bonds due to the unique properties of proline. In order to examine the relationship between the high occurrence of these cis imide bonds and the residues preceding the proline, we perform molecular dynamics simulations of trans- and cis- N-acetyl- N'-methylamides of XaaPro dipeptides (AcXaaProNHMe). We investigate the conformational energies and structures of trans- and cis-AcXaa where Xaa has 12 amino acids in the vacuum state and 5 amino acids in the solution state. It is found that the occurrence of the cis imide bonds is strongly affected by the residue preceding the proline, and the dihedral angles (φ,ψ) of the backbone in AcXaaProNHMe are influenced by the configuration of the imide bond. We also find that the equilibrium properties of XaaPro in solution simulations are more similar to the statistics of X-ray crystallographic data than are those in vacuum simulations and solvation causes a remarkable change in the conformation of the pyrrolidine ring from the endo to the exo form.

  14. Acetyl Phosphate as a Primordial Energy Currency at the Origin of Life

    NASA Astrophysics Data System (ADS)

    Whicher, Alexandra; Camprubi, Eloi; Pinna, Silvana; Herschy, Barry; Lane, Nick

    2018-03-01

    Metabolism is primed through the formation of thioesters via acetyl CoA and the phosphorylation of substrates by ATP. Prebiotic equivalents such as methyl thioacetate and acetyl phosphate have been proposed to catalyse analogous reactions at the origin of life, but their propensity to hydrolyse challenges this view. Here we show that acetyl phosphate (AcP) can be synthesised in water within minutes from thioacetate (but not methyl thioacetate) under ambient conditions. AcP is stable over hours, depending on temperature, pH and cation content, giving it an ideal poise between stability and reactivity. We show that AcP can phosphorylate nucleotide precursors such as ribose to ribose-5-phosphate and adenosine to adenosine monophosphate, at modest ( 2%) yield in water, and at a range of pH. AcP can also phosphorylate ADP to ATP in water over several hours at 50 °C. But AcP did not promote polymerization of either glycine or AMP. The amino group of glycine was preferentially acetylated by AcP, especially at alkaline pH, hindering the formation of polypeptides. AMP formed small stacks of up to 7 monomers, but these did not polymerise in the presence of AcP in aqueous solution. We conclude that AcP can phosphorylate biologically meaningful substrates in a manner analogous to ATP, promoting the origins of metabolism, but is unlikely to have driven polymerization of macromolecules such as polypeptides or RNA in free solution. This is consistent with the idea that a period of monomer (cofactor) catalysis preceded the emergence of polymeric enzymes or ribozymes at the origin of life.

  15. The effect of acetaminophen on ubiquitin homeostasis in Saccharomyces cerevisiae

    PubMed Central

    Huseinovic, Angelina; van Leeuwen, Jolanda S.; van Welsem, Tibor; Stulemeijer, Iris; van Leeuwen, Fred; Vermeulen, Nico P. E.; Kooter, Jan M.; Vos, J. Chris

    2017-01-01

    Acetaminophen (APAP), although considered a safe drug, is one of the major causes of acute liver failure by overdose, and therapeutic chronic use can cause serious health problems. Although the reactive APAP metabolite N-acetyl-p-benzoquinoneimine (NAPQI) is clearly linked to liver toxicity, toxicity of APAP is also found without drug metabolism of APAP to NAPQI. To get more insight into mechanisms of APAP toxicity, a genome-wide screen in Saccharomyces cerevisiae for APAP-resistant deletion strains was performed. In this screen we identified genes related to the DNA damage response. Next, we investigated the link between genotype and APAP-induced toxicity or resistance by performing a more detailed screen with a library containing mutants of 1522 genes related to nuclear processes, like DNA repair and chromatin remodelling. We identified 233 strains that had an altered growth rate relative to wild type, of which 107 showed increased resistance to APAP and 126 showed increased sensitivity. Gene Ontology analysis identified ubiquitin homeostasis, regulation of transcription of RNA polymerase II genes, and the mitochondria-to-nucleus signalling pathway to be associated with APAP resistance, while histone exchange and modification, and vesicular transport were connected to APAP sensitivity. Indeed, we observed a link between ubiquitin levels and APAP resistance, whereby ubiquitin deficiency conferred resistance to APAP toxicity while ubiquitin overexpression resulted in sensitivity. The toxicity profile of various chemicals, APAP, and its positional isomer AMAP on a series of deletion strains with ubiquitin deficiency showed a unique resistance pattern for APAP. Furthermore, exposure to APAP increased the level of free ubiquitin and influenced the ubiquitination of proteins. Together, these results uncover a role for ubiquitin homeostasis in APAP-induced toxicity. PMID:28291796

  16. Recovery of active N-acetyl-D-glucosamine 2-epimerase from inclusion bodies by solubilization with non-denaturing buffers.

    PubMed

    Lu, Shih-Chin; Lin, Sung-Chyr

    2012-01-05

    Overexpression of recombinant N-acetyl-D-glucosamine 2-epimerase, one of the key enzymes for the synthesis of N-acetylneuraminic acid, in E. coli led to the formation of protein inclusion bodies. In this study we report the recovery of active epimerase from inclusion bodies by direct solubilization with Tris buffer. At pH 7.0, 25% of the inclusion bodies were solubilized with Tris buffer. The specific activity of the solubilized proteins, 2.08±0.02 U/mg, was similar to that of the native protein, 2.13±0.01 U/mg. The result of circular dichroism spectroscopy analysis indicated that the structure of the solubilized epimerase obtained with pH 7.0 Tris buffer was similar to that of the native epimerase purified from the clarified cell lysate. As expected, the extent of deviation in CD spectra increased with buffer pH. The total enzyme activity recovered by solubilization from inclusion bodies, 170.41±10.06 U/l, was more than 2.5 times higher than that from the clarified cell lysate, 67.32±5.53 U/l. The results reported in this study confirm the hypothesis that the aggregation of proteins into inclusion bodies is reversible and suggest that direct solubilization with non-denaturing buffers is a promising approach for the recovery of active proteins from inclusion bodies, especially for aggregation-prone multisubunit proteins. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. O-Acetylation of Plant Cell Wall Polysaccharides

    PubMed Central

    Gille, Sascha; Pauly, Markus

    2011-01-01

    Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides – the reduced wall acetylation (RWA) and the trichome birefringence-like (TBL) proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria, and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation. From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of, e.g., lignocellulosic based biofuel production. PMID:22639638

  18. Genetic incorporation of Nε-acetyllysine reveals a novel acetylation-sumoylation switch in yeast.

    PubMed

    Kim, Sang-Woo; Lee, Kyung Jin; Kim, Sinil; Kim, Jihyo; Cho, Kyukwang; Ro, Hyeon-Su; Park, Hee-Sung

    2017-11-01

    The lysine acetylation of proteins plays a key role in regulating protein functions, thereby controlling a wide range of cellular processes. Despite the prevalence and significance of lysine acetylation in eukaryotes, however, its systematic study has been challenged by the technical limitations of conventional approaches for selective lysine acetylation in vivo. Here, we report the in vivo study of lysine acetylation via the genetic incorporation of N ε -acetyllysine in yeast. We demonstrate that a newly discovered acetylation-sumoylation switch precisely controls the localization and cellular function of the yeast septin protein, Cdc11, during the cell cycle. This approach should facilitate the comprehensive in vivo study of lysine acetylation across a wide range of proteins in eukaryotic organisms. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Evolution of a Histone H4-K16 Acetyl-Specific DNA Aptamer

    PubMed Central

    Williams, Berea A. R.; Lin, Liyun; Lindsay, Stuart M.; Chaput, John C.

    2009-01-01

    We report the in vitro selection of DNA aptamers that bind to histone H4 proteins acetylated at lysine 16. The best aptamer identified in this selection binds to the target protein with a Kd of 21 nM, and discriminates against both the non-acetylated protein and histone H4 proteins acetylated at lysine 8. Comparative binding assays performed with a chip-quality antibody reveal that this aptamer binds to the acetylated histone target with similar affinity to a commercial antibody, but shows significantly greater specificity (15-fold versus 2,400-fold) for the target molecule. This result demonstrates that aptamers that are both modification and location specific can be generated to bind specific protein post-translational modifications. PMID:19385619

  20. Smad Acetylation: A New Level of Regulation in TGF-Beta Signaling

    DTIC Science & Technology

    2005-07-01

    Our lab has determined that Smad2, but not Smad3 , can be acetylated by the acetyltransferase protein p300 in vivo and in vitro. The residues...terminal of Smad2 and Smad3 , allowing oligomerization with the common mediator Smad4 [9-10]. The Smad2/3/4 complex then translocates to the nucleus where...Smad2, but not Smad3 , could be acetylated in a p300 dependent manner. Both in vivo and in vitro data support the conclusion that only Smad2 could be

  1. Discovery and characterization of sialic acid O-acetylation in group B Streptococcus.

    PubMed

    Lewis, Amanda L; Nizet, Victor; Varki, Ajit

    2004-07-27

    Group B Streptococcus (GBS) is the leading cause of human neonatal sepsis and meningitis. The GBS capsular polysaccharide is a major virulence factor and the active principle of vaccines in phase II trials. All GBS capsules have a terminal alpha 2-3-linked sialic acid [N-acetylneuraminic acid (Neu5Ac)], which interferes with complement-mediated killing. We show here that some of the Neu5Ac residues of the GBS type III capsule are O-acetylated at carbon position 7, 8, or 9, a major modification evidently missed in previous studies. Data are consistent with initial O-acetylation at position 7, and subsequent migration of the O-acetyl ester at positions 8 and 9. O-acetylation was also present on several other GBS serotypes (Ia, Ib, II, V, and VI). Deletion of the CMP-Neu5Ac synthase gene neuA by precise, in-frame allelic replacement gave intracellular accumulation of O-acetylated Neu5Ac, whereas overexpression markedly decreased O-acetylation. Given the known GBS Neu5Ac biosynthesis pathway, these data indicate that O-acetylation occurs on free Neu5Ac, competing with the CMP-Neu5Ac synthase. O-acetylation often generates immunogenic epitopes on bacterial capsular polysaccharides and can modulate human alternate pathway complement activation. Thus, our discovery has important implications for GBS pathogenicity, immunogenicity, and vaccine design.

  2. Metal-free, mild, nonepimerizing, chemo- and enantio- or diastereoselective N-alkylation of amines by alcohols via oxidation/imine-iminium formation/reductive amination: a pragmatic synthesis of octahydropyrazinopyridoindoles and higher ring analogues.

    PubMed

    Khan, Imran A; Saxena, Anil K

    2013-12-06

    A mild step and atom-economical nonepimerizing chemo- and enantioselective N-alkylating procedure has been developed via oxidation/imine-iminium formation/reduction cascade using TEMPO-BAIB-HEH-Brønsted acid catalysis in DMPU as solvent and a stoichiometric amount of amine. The optimized conditions were further extended for the nonenzymatic kinetic resolution of the chiral amine thus formed under nonenzymatic in situ hydrogen-transfer conditions using VAPOL-derived phosphoric acid (VAPOL-PA) as the Brønsted acid catalyst. The enantioselective cascade of the presented reaction was successfully utilized in the synthesis of octahydropyrazinopyridoindole and its higher ring analogues.

  3. 3-Acetyl-8-methoxy-2[H]-chromen-2-one derived Schiff bases as potent antiproliferative agents: Insight into the influence of 4(N)-substituents on the in vitro biological activity

    NASA Astrophysics Data System (ADS)

    Kalaiarasi, G.; Rex Jeya Rajkumar, S.; Aswini, G.; Dharani, S.; Fronczek, Frank R.; Prabhakaran, R.

    2018-07-01

    A series of 3-acetyl-8-methoxycoumarin appended thiosemicarbazones (1-4) was prepared from the reaction of 3-acetyl-8-methoxycoumarin with 4(N)-substituted thiosemicarbazides in a view of ascertaining their biological properties with the change of N-terminal substitution in the thiosemicarbazide moiety. Comprehensive characterization was brought about by various spectral and analytical methods. The molecular structures of all the compounds were determined by single crystal X-ray diffraction analysis. Binding studies with Calf thymus DNA (CT-DNA) and proteins such as Bovine Serum Albumin (BSA) and Human Serum Albumin (HSA) indicated an intercalative mode of binding with DNA and static quenching mechanism with proteins. The compounds cleaved plasmid DNA (pBR322) and acted well as free radical scavengers. A good spectrum of antimicrobial activity was observed against four bacterial and five fungal pathogens. The compounds exhibited profound antiproliferative activity on MCF-7 (human breast cancer) and A549 (human lung carcinoma) cell lines. Assay on human normal keratinocyte cell line HaCaT showed that the compounds were non-toxic to normal cells.

  4. Arabidopsis and Maize RidA Proteins Preempt Reactive Enamine/Imine Damage to Branched-Chain Amino Acid Biosynthesis in Plastids[C][W][OPEN

    PubMed Central

    Niehaus, Thomas D.; Nguyen, Thuy N.D.; Gidda, Satinder K.; ElBadawi-Sidhu, Mona; Lambrecht, Jennifer A.; McCarty, Donald R.; Downs, Diana M.; Cooper, Arthur J.L.; Fiehn, Oliver; Mullen, Robert T.; Hanson, Andrew D.

    2014-01-01

    RidA (for Reactive Intermediate Deaminase A) proteins are ubiquitous, yet their function in eukaryotes is unclear. It is known that deleting Salmonella enterica ridA causes Ser sensitivity and that S. enterica RidA and its homologs from other organisms hydrolyze the enamine/imine intermediates that Thr dehydratase forms from Ser or Thr. In S. enterica, the Ser-derived enamine/imine inactivates a branched-chain aminotransferase; RidA prevents this damage. Arabidopsis thaliana and maize (Zea mays) have a RidA homolog that is predicted to be plastidial. Expression of either homolog complemented the Ser sensitivity of the S. enterica ridA mutant. The purified proteins hydrolyzed the enamines/imines formed by Thr dehydratase from Ser or Thr and protected the Arabidopsis plastidial branched-chain aminotransferase BCAT3 from inactivation by the Ser-derived enamine/imine. In vitro chloroplast import assays and in vivo localization of green fluorescent protein fusions showed that Arabidopsis RidA and Thr dehydratase are chloroplast targeted. Disrupting Arabidopsis RidA reduced root growth and raised the root and shoot levels of the branched-chain amino acid biosynthesis intermediate 2-oxobutanoate; Ser treatment exacerbated these effects in roots. Supplying Ile reversed the root growth defect. These results indicate that plastidial RidA proteins can preempt damage to BCAT3 and Ile biosynthesis by hydrolyzing the Ser-derived enamine/imine product of Thr dehydratase. PMID:25070638

  5. Crystal structure of tabtoxin resistance protein complexed with acetyl coenzyme A reveals the mechanism for beta-lactam acetylation.

    PubMed

    He, Hongzhen; Ding, Yi; Bartlam, Mark; Sun, Fei; Le, Yi; Qin, Xincheng; Tang, Hong; Zhang, Rongguang; Joachimiak, Andrzej; Liu, Jinyuan; Zhao, Nanming; Rao, Zihe

    2003-01-31

    Tabtoxin resistance protein (TTR) is an enzyme that renders tabtoxin-producing pathogens, such as Pseudomonas syringae, tolerant to their own phytotoxins. Here, we report the crystal structure of TTR complexed with its natural cofactor, acetyl coenzyme A (AcCoA), to 1.55A resolution. The binary complex forms a characteristic "V" shape for substrate binding and contains the four motifs conserved in the GCN5-related N-acetyltransferase (GNAT) superfamily, which also includes the histone acetyltransferases (HATs). A single-step mechanism is proposed to explain the function of three conserved residues, Glu92, Asp130 and Tyr141, in catalyzing the acetyl group transfer to its substrate. We also report that TTR possesses HAT activity and suggest an evolutionary relationship between TTR and other GNAT members.

  6. Cloning of a Gene Cluster Involved in the Catabolism of p-Nitrophenol by Arthrobacter sp. Strain JS443 and Characterization of the p-Nitrophenol Monooxygenase▿

    PubMed Central

    Perry, Lynda L.; Zylstra, Gerben J.

    2007-01-01

    The npd gene cluster, which encodes the enzymes of a p-nitrophenol catabolic pathway from Arthrobacter sp. strain JS443, was cloned and sequenced. Three genes, npdB, npdA1, and npdA2, were independently expressed in Escherichia coli in order to confirm the identities of their gene products. NpdA2 is a p-nitrophenol monooxygenase belonging to the two-component flavin-diffusible monooxygenase family of reduced flavin-dependent monooxygenases. NpdA1 is an NADH-dependent flavin reductase, and NpdB is a hydroxyquinol 1,2-dioxygenase. The npd gene cluster also includes a putative maleylacetate reductase gene, npdC. In an in vitro assay containing NpdA2, an E. coli lysate transforms p-nitrophenol stoichiometrically to hydroquinone and hydroxyquinol. It was concluded that the p-nitrophenol catabolic pathway in JS443 most likely begins with a two-step transformation of p-nitrophenol to hydroxy-1,4-benzoquinone, catalyzed by NpdA2. Hydroxy-1,4-benzoquinone is reduced to hydroxyquinol, which is degraded through the hydroxyquinol ortho cleavage pathway. The hydroquinone detected in vitro is a dead-end product most likely resulting from chemical or enzymatic reduction of the hypothetical intermediate 1,4-benzoquinone. NpdA2 hydroxylates a broad range of chloro- and nitro-substituted phenols, resorcinols, and catechols. Only p-nitro- or p-chloro-substituted phenols are hydroxylated twice. Other substrates are hydroxylated once, always at a position para to a hydroxyl group. PMID:17720792

  7. Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan®): part II. Fine structures of O-acetylated residues.

    PubMed

    Xing, Xiaohui; Cui, Steve W; Nie, Shaoping; Phillips, Glyn O; Goff, H Douglas; Wang, Qi

    2015-03-06

    Main objective of this study was to investigate the detailed structural information about O-acetylated sugar residues in Dendronan(®). A water solution (2%, w/w) of Dendronan(®) was treated with endo-β-mannanase to produce oligosaccharides rich in O-acetylated sugar residues. The oligosaccharides were partly recovered by ethanol precipitation (70%, w/w). The recovered sample (designated Hydrolyzed Dendrobium officinale Polysaccharide, HDOP) had a yield of 24.7% based on the dry weight of Dendronan(®) and was highly O-acetylated. A D2O solution of HDOP (6%, w/w) generated strong signals in (1)H, (13)C, 2D (1)H-(1)H COSY, 2D (1)H-(1)H TOCSY, 2D (1)H-(1)H NOESY, 2D (1)H-(13)C HMQC, and 2D (1)H-(13)C HMBC NMR spectra. Results of NMR analyses showed that the majority of O-acetylated mannoses were mono-substituted with acetyl groups at O-2 or O-3 position. There were small amounts of mannose residues with di-O-acetyl substitution at both O-2 and O-3 positions. Minor levels of mannoses with 6-O-acetyl, 2,6-di-O-acetyl, and 3,6-di-O-acetyl substitutions were also identified. Much information about sugar residue sequence was extracted from 2D (1)H-(13)C HMBC and 2D (1)H-(1)H NOESY spectra. (1)J(C-H) coupling constants of major sugar residues were obtained. Evidences for the existence of branches or O-acetylated glucoses in HDOP were not found. The major structure of Dendronan(®) is shown as follows: [Formula: see text] M: β-D-mannopyranose; G: β-D-glucopyranose; a: O-acetyl group. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  8. Role of Histone Acetylation in the Assembly and Modulation of Chromatin Structures

    PubMed Central

    Annunziato, Anthony T.; Hansen, Jeffrey C.

    2000-01-01

    The acetylation of the core histone N-terminal “tail” domains is now recognized as a highly conserved mechanism for regulating chromatin functional states. The following article examines possible roles of acetylation in two critically important cellular processes: replication-coupled nucleosome assembly, and reversible transitions in chromatin higher order structure. After a description of the acetylation of newly synthesized histones, and of the likely acetyltransferases involved, an overview of histone octamer assembly is presented. Our current understanding of the factors thought to assemble chromatin in vivo is then described. Genetic and biochemical investigations of the function the histone tails, and their acetylation, in nucleosome assembly are detailed, followed by an analysis of the importance of histone deacetylation in the maturation of newly replicated chromatin. In the final section the involvement of the histone tail domains in chromatin higher order structures is addressed, along with the role of histone acetylation in chromatin folding. Suggestions for future research are offered in the concluding remarks. PMID:11097424

  9. Effects of histone acetylation and DNA methylation on p21( WAF1) regulation.

    PubMed

    Fang, Jing-Yuan; Lu, You-Yong

    2002-06-01

    Cell cycle progression is regulated by interactions between cyclins and cyclin-dependent kinases (CDKs). p21(WAF1) is one of the CIP/KIP family which inhibits CDKs activity. Increased expression of p21(WAF1) may play an important role in the growth arrest induced in transformed cells. Although the stability of the p21( WAF1) mRNA could be altered by different signals, cell differentiation and numerous influencing factors. However, recent studies suggest that two known mechanisms of epigenesis, i.e.gene inactivation by methylation in promoter region and changes to an inactive chromatin by histone deacetylation, seem to be the best candidate mechanisms for inactivation of p21( WAF1). To date, almost no coding region p21(WAF1) mutations have been found in tumor cells, despite extensive screening of hundreds of various tumors. Hypermethylation of the p21(WAF1) promoter region may represent an alternative mechanism by which the p21(WAF1/CIP1) gene can be inactivated. The reduction of cellular DNMT protein levels also induces a corresponding rapid increase in the cell cycle regulator p21(WAF1) protein demonstrating a regulatory link between DNMT and p21(WAF1) which is independent of methylation of DNA. Both histone hyperacetylation and hypoacetylation appear to be important in the carcinoma process, and induction of the p21(WAF1) gene by histone hyperacetylation may be a mechanism by which dietary fiber prevents carcinogenesis. Here, we review the influence of histone acetylation and DNA methylation on p21(WAF1) transcription, and affection of pathways or factors associated such as p 53, E2A, Sp1 as well as several histone deacetylation inhibitors.

  10. Central N-acetyl aspartylglutamate deficit: a possible pathogenesis of schizophrenia.

    PubMed

    Tsai, Shih-Jen

    2005-09-01

    The "glutamate hypothesis" of schizophrenia has emerged from the finding that phencyclidine (PCP) induces psychotic-like behaviors in rodents, possibly by blocking the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor, thereby causing increased glutamate release. N-acetyl aspartylglutamate (NAAG), an endogenous peptide abundant in mammalian nervous systems, is localized in certain brain cells, including cortical and hippocampal pyramidal neurons. NAAG is synthesized from N-acetylaspartate (NAA) and glutamate, and NAA availability may limit the rate of NAAG synthesis. Although NAAG is known to have some neurotransmitter-like functions, NAA does not. NAAG is a highly selective agonist of the type 3 metabotropic glutamate receptor (mGluR3, a presynaptic autoreceptor) and can inhibit glutamate release. In addition, at low levels, NAAG is an NMDA receptor antagonist, and blocking of NMDA receptors may increase glutamate release. Taken together, low central NAAG levels may antagonize the effect of glutamate at NMDA receptors and decrease its agonistic effect on presynaptic mGluR3; both activities could increase glutamate release, similar to the increase demonstrated in the PCP model of schizophrenia. In this report, it is suggested that the central NAAG deficit, possibly through decreased synthesis or increased degradation of NAAG, may play a role in the pathogenesis of schizophrenia. Evidence is presented and discussed from magnetic resonance, postmortem, animal model, schizophrenia treatment, and genetic studies. The central NAAG deficit model of schizophrenia could explain the disease process, from the perspectives of both neurodevelopment and neurodegeneration, and may point to potential treatments for schizophrenia.

  11. Acetylome Profiling Reveals Extensive Lysine Acetylation of the Fatty Acid Metabolism Pathway in the Diatom Phaeodactylum tricornutum.

    PubMed

    Chen, Zhuo; Luo, Ling; Chen, Runfa; Hu, Hanhua; Pan, Yufang; Jiang, Haibo; Wan, Xia; Jin, Hu; Gong, Yangmin

    2018-03-01

    N ε -lysine acetylation represents a highly dynamic and reversibly regulated post-translational modification widespread in almost all organisms, and plays important roles for regulation of protein function in diverse metabolic pathways. However, little is known about the role of lysine acetylation in photosynthetic eukaryotic microalgae. We integrated proteomic approaches to comprehensively characterize the lysine acetylome in the model diatom Phaeodactylum tricornutum In total, 2324 acetylation sites from 1220 acetylated proteins were identified, representing the largest data set of the lysine acetylome in plants to date. Almost all enzymes involved in fatty acid synthesis were found to be lysine acetylated. Six putative lysine acetylation sites were identified in a plastid-localized long-chain acyl-CoA synthetase. Site-directed mutagenesis and site-specific incorporation of N-acetyllysine in acyl-CoA synthetase show that acetylation at K407 and K425 increases its enzyme activity. Moreover, the nonenzymatically catalyzed overall hyperacetylation of acyl-CoA synthetase by acetyl-phosphate can be effectively deacetylated and reversed by a sirtuin-type NAD + -dependent deacetylase with subcellular localization of both the plastid and nucleus in Phaeodactylum This work indicates the regulation of acyl-CoA synthetase activity by site-specific lysine acetylation and highlights the potential regulation of fatty acid metabolism by lysine actetylation in the plastid of the diatom Phaeodactylum . © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Detection of N-acetylated forms of alpha-MSH and beta-endorphin in the intermediate pituitary of the holostean fishes, Lepisosteus spatula, Lepisosteus osseus, and Amia calva.

    PubMed

    Dores, R M; Keller, H; White, Y; Marra, L E; Youson, J H

    1994-01-01

    Acid extracts of the intermediate pituitaries of the gars, L. spatula and L. osseus, were fractionated by Sephadex G-50 column chromatography and analyzed by radioimmunoassay. This procedure revealed that immunoreactive forms of N-acetylated beta-endorphin- and alpha-MSH-sized material were present in equimolar amounts and represented the major end products of the POMC biosynthetic pathway in these species. Cation-exchange chromatography indicated that multiple N-acetylated forms of beta-endorphin were present in the intermediate pituitaries of the two species of gar, and that these forms differed in their net positive charge and in their apparent molecular weight. Reversed-phase HPLC analysis of the alpha-MSH-related material indicated that up to 90% of the total MSH in the pituitary of the gar was N-acetylated. Furthermore, the predominant form of alpha-MSH in both species of gar was N,O-diacetyl-ACTH(1-13)-NH2. Nearly identical results were obtained following the analysis of alpha-MSH-related peptides in the intermediate pituitary of the bowfin, A. calva. The pattern of posttranslational processing of POMC observed in the intermediate pituitaries of holostean fishes is very similar to the processing events observed in lungfishes, turtles, and mammals; hence, the processing of POMC has been remarkably conserved during vertebrate evolution.

  13. Insights into the O-Acetylation Reaction of Hydroxylated Heterocyclic Amines by Human Arylamine N-Acetyltransferases: A Computational Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, E Y; Felton, J S; Lightstone, F C

    2006-06-06

    A computational study was performed to better understand the differences between human arylamine N-acetyltransferase (NAT) 1 and 2. Homology models were constructed from available crystal structures and comparisons of the active site residues 125, 127, and 129 for these two enzymes provide insight into observed substrate differences. The NAT2 model provided a basis for understanding how some of the common mutations may affect the structure of the protein. Molecular dynamics simulations of the human NAT models and the template structure (NAT from Mycobacterium smegmatis) were performed and showed the models to be stable and reasonable. Docking studies of hydroxylated heterocyclicmore » amines in the models of NAT1 and NAT2 probed the differences exhibited by these two proteins with mutagenic agents. The hydroxylated heterocyclic amines were only able to fit into the NAT2 active site, and an alternative binding site by the P-loop was found using our models and will be discussed. Additionally, quantum mechanical calculations were performed to study the O-acetylation reaction of the hydroxylated heterocyclic amines N-OH MeIQx and N-OH PhIP. This study has given us insight into why there are substrate differences among isoenzymes and explains some of the polymorphic activity differences.« less

  14. Lower "N"-Acetyl-Aspartate Levels in Prefrontal Cortices in Pediatric Bipolar Disorder: A (Superscript 1]H Magnetic Resonance Spectroscopy Study

    ERIC Educational Resources Information Center

    Caetano, Sheila C.; Olvera, Rene L.; Hatch, John P.; Sanches, Marsal; Chen, Hua Hsuan; Nicoletti, Mark; Stanley, Jeffrey A.; Fonseca, Manoela; Hunter, Kristina; Lafer, Beny; Pliszka, Steven R.; Soares, Jair C.

    2011-01-01

    Objective: The few studies applying single-voxel [superscript 1]H spectroscopy in children and adolescents with bipolar disorder (BD) have reported low "N"-acetyl-aspartate (NAA) levels in the dorsolateral prefrontal cortex (DLPFC), and high myo-inositol/phosphocreatine plus creatine (PCr+Cr) ratios in the anterior cingulate. The aim of this study…

  15. DEPLETION OF CELLULAR PROTEIN THIOLS AS AN INDICATOR OF ARYLATION IN ISOLATED TROUT HEPATOCYTES EXPOSED TO 1,4-BENZOQUINONE

    EPA Science Inventory

    A method for the measurement of protein thiols (PrSH), un-reacted as well as oxidized, i.e. dithiothreitol recoverable, was adapted for the determination of PrSH depletion in isolated rainbow trout hepatocytes exposed to an arylating agent, 1,4-benzoquinone (BQ). Toxicant analysi...

  16. N-Acetyl-S-(N,N-diethylcarbamoyl) cysteine in rat nucleus accumbens, medial prefrontal cortex, and in RAT and human plasma after disulfiram administration

    PubMed Central

    Winefield, Robert D.; Heemskerk, Anthonius A.M.; Kaul, Swetha; Williams, Todd D.; Caspers, Michael J.; Prisinzano, Thomas E.; McCance-Katz, Elinore F.; Lunte, Craig E.

    2015-01-01

    Disulfiram (DSF), a treatment for alcohol use disorders, has shown some clinical effectiveness in treating addiction to cocaine, nicotine, and pathological gambling. The mechanism of action of DSF for treating these addictions is unclear but it is unlikely to involve the inhibition of liver aldehyde dehydrogenase (ALDH2). DSF is a pro-drug and forms a number of metabolites, one of which is N-acetyl-S-(N,N-diethylcarbamoyl) cysteine (DETC-NAC). Here we describe a LCMS/MS method on a QQQ type instrument to quantify DETC-NAC in plasma and intracellular fluid from mammalian brain. An internal standard, the N,N-di-isopropylcarbamoyl homolog (MIM: 291 > 128) is easily separable from DETC-NAC (MIM: 263 > 100) on C18 RP media with a methanol gradient. The method's linear range is 0.5–500 nM from plasma and dialysate salt solution with all precisions better than 10% RSD. DETC-NAC and internal standards were recovered at better than 95% from all matrices, perchloric acid precipitation (plasma) or formic acid addition (salt) and is stable in plasma or salt at low pH for up to 24 h. Stability is observed through three freeze-thaw cycles per day for 7 days. No HPLC peak area matrix effect was greater than 10%. A human plasma sample from a prior analysis for S-(N,N-diethylcarbamoyl) glutathione (CARB) was found to have DETC NAC as well. In other human plasma samples from 62.5 mg/d and 250mg/d dosing, CARB concentration peaks at 0.3 and 4 nM at 3 h followed by DETC-NAC peaks of 11 and 70 nM 2 h later. Employing microdialysis sampling, DETC-NAC levels in the nucleus accumbens (NAc), medial prefrontal cortex (mPFC), and plasma of rats treated with DSF reached 1.1, 2.5 and 80 nM at 6 h. The correlation between the appearance and long duration of DETC-NAC concentration in rat brain and the persistence of DSF-induced changes in neurotransmitters observed by Faiman et al. (Neuropharmacology, 2013, 75C, 95–105) is discussed. PMID:25720821

  17. Ion-exchange equilibrium of N-acetyl-D-neuraminic acid on a strong anionic exchanger.

    PubMed

    Wu, Jinglan; Ke, Xu; Zhang, Xudong; Zhuang, Wei; Zhou, Jingwei; Ying, Hanjie

    2015-09-15

    N-acetyl-D-neuraminic acid (Neu5Ac) is a high value-added product widely applied in the food industry. A suitable equilibrium model is required for purification of Neu5Ac based on ion-exchange chromatography. Hence, the equilibrium uptake of Neu5Ac on a strong anion exchanger, AD-1 was investigated experimentally and theoretically. The uptake of Neu5Ac by the hydroxyl form of the resin occurred primarily by a stoichiometric exchange of Neu5Ac(-) and OH(-). The experimental data showed that the selectivity coefficient for the exchange of Neu5Ac(-) with OH(-) was a non-constant quantity. Subsequently, the Saunders' model, which took into account the dissociation reactions of Neu5Ac and the condition of electroneutrality, was used to correlate the Neu5Ac sorption isotherms at various solution pHs and Neu5Ac concentrations. The model provided an excellent fit to the binary exchange data for Cl(-)/OH(-) and Neu5Ac(-)/OH(-), and an approximate prediction of equilibrium in the ternary system Cl(-)/Neu5Ac(-)/OH(-). This basic information combined with the general mass transfer model could lay the foundation for the prediction of dynamic behavior of fixed bed separation process afterwards. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Sequential Dy(OTf)3 -Catalyzed Solvent-Free Per-O-Acetylation and Regioselective Anomeric De-O-Acetylation of Carbohydrates.

    PubMed

    Yan, Yi-Ling; Guo, Jiun-Rung; Liang, Chien-Fu

    2017-09-19

    Dysprosium(III) trifluoromethanesulfonate-catalyzed per-O-acetylation and regioselective anomeric de-O-acetylation of carbohydrates can be tuned by adjusting the reaction medium. In this study, the per-O-acetylation of unprotected sugars by using a near-stoichiometric amount of acetic anhydride under solvent-free conditions resulted in the exclusive formation of acetylated saccharides as anomeric mixtures, whereas anomeric de-O-acetylation in methanol resulted in a moderate-to-excellent yield. Reactions with various unprotected monosaccharides or disaccharides followed by a semi-one-pot sequential conversion into the corresponding acetylated glycosyl hemiacetal also resulted in high yields. Furthermore, the obtained hemiacetals could be successfully transformed into trichloroimidates after Dy(OTf) 3 -catalyzed glycosylation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis, crystal structure and DFT studies of N-(4-acetyl-5,5-dimethyl-4,5-dihydro-1,3,4-thiadiazol-2-yl)acetamide

    NASA Astrophysics Data System (ADS)

    Gautam, P.; Gautam, D.; Chaudhary, R. P.

    2013-12-01

    The title compound N-(4-acetyl-5,5-dimethyl-4,5-dihydro-1,3,4-thiadiazol-2-yl)acetamide ( III) was obtained from the reaction of 2-(propan-2-ylidene)hydrazinecarbothioamide ( II) with acetic anhydride instead of formation of the desired thiosemcarbazide derivative of Meldrum acid. The structures of II and III were established by elemental analysis, IR, NMR, Mass and X-ray crystallographic studies. II crystallizes in triclinic system, sp. gr. Z = 2; III crystallizes in the monoclinic system, sp. gr. P21/ c, Z = 8. Density functional theory (DFT) calculations have been carried out for III. 1H and 13C NMR of III has been calculated and correlated with experimental results.

  20. Crystal structure of tabtoxin resistance protein complexed with acetyl coenzyme A reveals the mechanism for {beta}-lactam acetylation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, H.; Ding, Y.; Bartlam, M.

    2003-01-31

    Tabtoxin resistance protein (TTR) is an enzyme that renders tabtoxin-producing pathogens, such as Pseudomonas syringae, tolerant to their own phytotoxins. Here, we report the crystal structure of TTR complexed with its natural cofactor, acetyl coenzyme A (AcCoA), to 1.55 {angstrom} resolution. The binary complex forms a characteristic 'V' shape for substrate binding and contains the four motifs conserved in the GCN5-related N-acetyltransferase (GNAT) superfamily, which also includes the histone acetyltransferases (HATs). A single-step mechanism is proposed to explain the function of three conserved residues, Glu92, Asp130 and Tyr141, in catalyzing the acetyl group transfer to its substrate. We also reportmore » that TTR possesses HAT activity and suggest an evolutionary relationship between TTR and other GNAT members.« less

  1. Structural, kinetic, and docking studies of artificial imine reductases based on biotin-streptavidin technology: an induced lock-and-key hypothesis.

    PubMed

    Robles, Victor Muñoz; Dürrenberger, Marc; Heinisch, Tillmann; Lledós, Agustí; Schirmer, Tilman; Ward, Thomas R; Maréchal, Jean-Didier

    2014-11-05

    An artificial imine reductase results upon incorporation of a biotinylated Cp*Ir moiety (Cp* = C5Me5(-)) within homotetrameric streptavidin (Sav) (referred to as Cp*Ir(Biot-p-L)Cl] ⊂ Sav). Mutation of S112 reveals a marked effect of the Ir/streptavidin ratio on both the saturation kinetics as well as the enantioselectivity for the production of salsolidine. For [Cp*Ir(Biot-p-L)Cl] ⊂ S112A Sav, both the reaction rate and the selectivity (up to 96% ee (R)-salsolidine, kcat 14-4 min(-1) vs [Ir], KM 65-370 mM) decrease upon fully saturating all biotin binding sites (the ee varying between 96% ee and 45% ee R). In contrast, for [Cp*Ir(Biot-p-L)Cl] ⊂ S112K Sav, both the rate and the selectivity remain nearly constant upon varying the Ir/streptavidin ratio [up to 78% ee (S)-salsolidine, kcat 2.6 min(-1), KM 95 mM]. X-ray analysis complemented with docking studies highlight a marked preference of the S112A and S112K Sav mutants for the SIr and RIr enantiomeric forms of the cofactor, respectively. Combining both docking and saturation kinetic studies led to the formulation of an enantioselection mechanism relying on an "induced lock-and-key" hypothesis: the host protein dictates the configuration of the biotinylated Ir-cofactor which, in turn, by and large determines the enantioselectivity of the imine reductase.

  2. Doxorubicin-loaded aromatic imine-contained amphiphilic branched star polymer micelles: synthesis, self-assembly, and drug delivery

    PubMed Central

    Qiu, Liang; Hong, Chun-Yan; Pan, Cai-Yuan

    2015-01-01

    Redox-and pH-sensitive branched star polymers (BSPs), BP(DMAEMA-co-MAEBA-co-DTDMA)(PMAIGP)ns, have been successively prepared by two steps of reversible addition–fragmentation chain transfer (RAFT) polymerization. The first step is RAFT polymerization of 2-(N,N-dimethylaminoethyl)methacrylate (DMAEMA) and p-(methacryloxyethoxy) benzaldehyde (MAEBA) in the presence of divinyl monomer, 2,2′-dithiodiethoxyl dimethacrylate (DTDMA). The resultant branched polymers were used as a macro-RAFT agent in the subsequent RAFT polymerization. After hydrolysis of the BSPs to form BP(DMAEMA-co-MAEBA-co-DTDMA)(PMAGP)ns (BSP-H), the anticancer drug doxorubicin (DOX) was covalently linked to branched polymer chains by reaction of primary amine of DOX and aldehyde groups in the polymer chains. Their compositions, structures, molecular weights, and molecular weight distributions were respectively characterized by nuclear magnetic resonance spectra and gel permeation chromatography measurements. The DOX-loaded micelles were fabricated by self-assembly of DOX-containing BSPs in water, which were characterized by transmission electron microscopy and dynamic light scattering. Aromatic imine linkage is stable in neutral water, but is acid-labile; controlled release of DOX from the BSP-H-DOX micelles was realized at pH values of 5 and 6, and at higher acidic solution, fast release of DOX was observed. In vitro cytotoxicity experiment results revealed low cytotoxicity of the BSPs and release of DOX from micelles in HepG2 and HeLa cells. Confocal laser fluorescence microscopy observations showed that DOX-loaded micelles have specific interaction with HepG2 cells. Thus, this type of BSP micelle is an efficient drug delivery system. PMID:26056444

  3. A metalloenzyme-like catalytic system for the chemoselective oxidative cross-coupling of primary amines to imines under ambient conditions.

    PubMed

    Largeron, Martine; Fleury, Maurice-Bernard

    2015-02-23

    The direct oxidative cross-coupling of primary amines is a challenging transformation as homocoupling is usually preferred. We report herein the chemoselective preparation of cross-coupled imines through the synergistic combination of low loadings of Cu(II) metal-catalyst and o-iminoquinone organocatalyst under ambient conditions. This homogeneous cooperative catalytic system has been inspired by the reaction of copper amine oxidases, a family of metalloenzymes with quinone organic cofactors that mediate the selective oxidation of primary amines to aldehydes. After optimization, the desired cross-coupled imines are obtained in high yields with broad substrate scope through a transamination process that leads to the homocoupled imine intermediate, followed by dynamic transimination. The ability to carry out the reactions at room temperature and with ambient air, rather than molecular oxygen as the oxidant, and equimolar amounts of each coupling partner is particularly attractive from an environmentally viewpoint. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Acetylation of NDPK-D Regulates Its Subcellular Localization and Cell Survival

    PubMed Central

    Fujita, Yuki; Fujiwara, Kei; Zenitani, Shigetake; Yamashita, Toshihide

    2015-01-01

    Nucleoside diphosphate kinases (NDPK) are ubiquitous enzymes that catalyze the reversible phosphotransfer of γ-phosphates between di- and triphosphonucleosides. NDPK-D (Nm23-H4) is the only member of the NDPK family with a mitochondrial targeting sequence. Despite the high expression of NDPK-D in the developing central nervous system, its function remains to be determined. In this study, we show that NDPK-D knockdown induces apoptosis in neuroblastoma cells as well as in mouse cortex, suggesting that NDPK-D is required for neuronal survival. We identified NDPK-D as a binding partner of NAD+-dependent histone deacetylase, SIRT1, by yeast two-hybrid screening. NDPK-D co-localized with SIRT1, and the association of these molecules was confirmed by co-immunoprecipitation. Inhibition of SIRT1 increases the acetylation of NDPK-D. Overexpression of NDPK-D along with SIRT1, or mutation in the acetylated lysine residues in NDPK-D, increases its nuclear accumulation. Furthermore, the NDPK-D acetylation-mimic mutant increased apoptosis in N1E-115 cells. Our data demonstrate that acetylation regulates the shuttling of NDPK-D between nucleus and cytoplasm, and increased acetylation of NDPK-D causes apoptosis. PMID:26426123

  5. New cytotoxic diterpenylnaphthohydroquinone derivatives obtained from a natural diterpenoid.

    PubMed

    Miguel Del Corral, José M; Castro, M Angeles; Lucena Rodri Guez, M; Chamorro, Pablo; Cuevas, Carmen; San Feliciano, Arturo

    2007-09-01

    Diterpenylquinone/hydroquinone derivatives were prepared through Diels-Alder cycloaddition between natural myrcecommunic acid or its methyl ester and p-benzoquinone (p-BQ), using BF(3).Et(2)O as catalyst or under microwave (Mw) irradiation. Acetyl, methyl and benzyl derivatives of several diterpenylnaphthohydroquinone were prepared from cycloadducts following two basic synthetic strategies, either protection before aromatisation or viceversa. Some of them were further functionalised at the B-ring of the decaline core. Most of the new compounds were evaluated and some of them resulted cytotoxic against several tumour cell lines with IC(50) values under the microM level.

  6. Fourier transform infrared spectra and molecular structure of 5-methoxytryptamine, N-acetyl-5-methoxytryptamine and N-phenylsulfonamide-5-methoxytryptamine

    NASA Astrophysics Data System (ADS)

    Bayari, S.; Ide, S.

    2003-04-01

    5-Methoxytryptamine (5-MT) is a potent antioxidant and has radioprotective action. N-acetyl-5-methoxytryptamine (melatonin, NA-5-MT) is a free radical scavenger and antioxidant, which protects against oxidative damage due to a variety of toxicants. The infrared spectra of 5-MT, NA-5-MT and new synthesized N-phenylsulfonamide-5-methoxytryptamine (PS-5-MT) were investigated in the region between 4000 and 400 cm -1. Vibrational assignments of the molecules have been made for fundamental modes on the basis of the group vibrational concept, infrared intensity and comparison with the assignments for related molecules. X-ray powder diffraction patterns of molecules were also recorded. In order to optimize the geometries of the molecules, molecular mechanic calculations (MM3) were performed. Conformational analysis of 5-MT, NA-5-MT and PS-5-MT was also established by the using PM3 method.

  7. Interferon regulatory factor 1 and histone H4 acetylation in systemic lupus erythematosus

    PubMed Central

    Leung, Yiu Tak; Shi, Lihua; Maurer, Kelly; Song, Li; Zhang, Zhe; Petri, Michelle; Sullivan, Kathleen E

    2015-01-01

    Histone acetylation modulates gene expression and has been described as increased in systemic lupus erythematosus (SLE). We investigated interferon regulatory factor 1 (IRF1) interactions that influence H4 acetylation (H4ac) in SLE. Intracellular flow cytometry for H4 acetylated lysine (K) 5, K8, K12, and K16 was performed. Histone acetylation was defined in monocytes and T cells from controls and SLE patients. RNA-Seq studies were performed on monocytes to look for an imbalance in histone acetyltransferases and histone deacetylase enzyme expression. Expression levels were validated using real-time quantitative RT-PCR. IRF1 induction of H4ac was evaluated using D54MG cells overexpressing IRF1. IRF1 protein interactions were studied using co-immunoprecipitation assays. IRF1-dependent recruitment of histone acetyltransferases to target genes was examined by ChIP assays using p300 antibody. Flow cytometry data showed significantly increased H4K5, H4K8, H4K12, and H4K16 acetylation in SLE monocytes. HDAC3 and HDAC11 gene expression were decreased in SLE monocytes. PCAF showed significantly higher gene expression in SLE than controls. IRF1-overexpressing D54MG cells were associated with significantly increased H4K5, H4K8, and H4K12 acetylation compared to vector-control D54MG cells both globally and at specific target genes. Co-immunoprecipitation studies using D54MG cells revealed IRF1 protein-protein interactions with PCAF, P300, CBP, GCN5, ATF2, and HDAC3. ChIP experiments demonstrated increased p300 recruitment to known IRF1 targets in D54MG cells overexpressing IRF1. In contrast, p300 binding to IRF1 targets decreased in D54MG cells with IRF1 knockdown. SLE appears to be associated with an imbalance in histone acetyltransferases and histone deacetylase enzymes favoring pathologic H4 acetylation. Furthermore, IRF1 directly interacts with chromatin modifying enzymes, supporting a model where recruitment to specific target genes is mediated in part by IRF1. PMID

  8. Inflammatory stimuli induce inhibitory S-nitrosylation of the deacetylase SIRT1 to increase acetylation and activation of p53 and p65.

    PubMed

    Shinozaki, Shohei; Chang, Kyungho; Sakai, Michihiro; Shimizu, Nobuyuki; Yamada, Marina; Tanaka, Tomokazu; Nakazawa, Harumasa; Ichinose, Fumito; Yamada, Yoshitsugu; Ishigami, Akihito; Ito, Hideki; Ouchi, Yasuyoshi; Starr, Marlene E; Saito, Hiroshi; Shimokado, Kentaro; Stamler, Jonathan S; Kaneki, Masao

    2014-11-11

    Inflammation increases the abundance of inducible nitric oxide synthase (iNOS), leading to enhanced production of nitric oxide (NO), which can modify proteins by S-nitrosylation. Enhanced NO production increases the activities of the transcription factors p53 and nuclear factor κB (NF-κB) in several models of disease-associated inflammation. S-nitrosylation inhibits the activity of the protein deacetylase SIRT1. SIRT1 limits apoptosis and inflammation by deacetylating p53 and p65 (also known as RelA), a subunit of NF-κB. We showed in multiple cultured mammalian cell lines that NO donors or inflammatory stimuli induced S-nitrosylation of SIRT1 within CXXC motifs, which inhibited SIRT1 by disrupting its ability to bind zinc. Inhibition of SIRT1 reduced deacetylation and promoted activation of p53 and p65, leading to apoptosis and increased expression of proinflammatory genes. In rodent models of systemic inflammation, Parkinson's disease, or aging-related muscular atrophy, S-nitrosylation of SIRT1 correlated with increased acetylation of p53 and p65 and activation of p53 and NF-κB target genes, suggesting that S-nitrosylation of SIRT1 may represent a proinflammatory switch common to many diseases and aging. Copyright © 2014, American Association for the Advancement of Science.

  9. Inflammatory stimuli induce inhibitory S-nitrosylation of the deacetylase SIRT1 to increase acetylation and activation of p53 and p65

    PubMed Central

    Shinozaki, Shohei; Chang, Kyungho; Sakai, Michihiro; Shimizu, Nobuyuki; Yamada, Marina; Tanaka, Tomokazu; Nakazawa, Harumasa; Ichinose, Fumito; Yamada, Yoshitsugu; Ishigami, Akihito; Ito, Hideki; Ouchi, Yasuyoshi; Starr, Marlene E.; Saito, Hiroshi; Shimokado, Kentaro; Stamler, Jonathan S.; Kaneki, Masao

    2015-01-01

    Inflammation increases the abundance of inducible nitric oxide synthase (iNOS), leading to enhanced production of nitric oxide (NO), which can modify proteins by S-nitrosylation. Enhanced NO production increases the activities of the transcription factors p53 and nuclear factor κB (NF-κB) in several models of disease-associated inflammation. S-Nitrosylation inhibits the activity of the protein deacetylase SIRT1. SIRT1 limits apoptosis and inflammation by deacetylating p53 and p65 (also known as RelA), a subunit of NF-κB. We showed in multiple cultured mammalian cell lines that NO donors or inflammatory stimuli induced S-nitrosylation of SIRT1 within CXXC motifs, which inhibited SIRT1 by disrupting its ability to bind zinc. Inhibition of SIRT1 reduced deacetylation and promoted activation of p53 and p65, leading to apoptosis and increased expression of proinflammatory genes. In rodent models of systemic inflammation, Parkinson’s disease, or aging-related muscular atrophy, S-nitrosylation of SIRT1 correlated with increased acetylation of p53 and p65 and activation of p53 and NF-κB target genes, suggesting that S-nitrosylation of SIRT1 may represent a proinflammatory switch common to many diseases and aging. PMID:25389371

  10. [A novel gene (Aa-accA ) encoding acetyl-CoA carboxyltransferase alpha-subunit of Alkalimonas amylolytica N10 enhances salt and alkali tolerance of Escherichia coli and tobacco BY-2 cells].

    PubMed

    Xian, Mingjie; Zhai, Lei; Zhong, Naiqin; Ma, Yiwei; Xue, Yanfen; Ma, Yanhe

    2013-08-04

    Acetyl-CoA carboxylase (ACC) catalyzes the first step of fatty acid synthesis. In most bacteria, ACC is composed of four subunits encoded by accA, accB, accC, and accD. Of them, accA encodes acetyl-CoA carboxyltransferase alpha-subunit. Our prior work on proteomics of Alkalimonas amylolytica N10 showed that the expression of the Aa-accA has a remarkable response to salt and alkali stress. This research aimed to find out the Aa-accA gene contributing to salt and alkali tolerance. The Aa-accA was amplified by PCR from A. amylolytica N10 and expressed in E. coli K12 host. The effects of Aa-accA expression on the growth of transgenic strains were examined under different NaCl concentration and pH conditions. Transgenic tobacco BY-2 cells harboring Aa-accA were also generated via Agrobacterium-mediated transformation. The viability of BY-2 cells was determined with FDA staining method after salt and alkali shock. The Aa-accA gene product has 318 amino acids and is homologous to the carboxyl transferase domain of acyl-CoA carboxylases. It showed 76% identity with AccA (acetyl-CoA carboxylase carboxyltransferase subunit alpha) from E. coli. Compared to the wild-type strains, transgenic E. coli K12 strain containing Aa-accA showed remarkable growth superiority when grown in increased NaCl concentrations and pH levels. The final cell density of the transgenic strains was 2.6 and 3.5 times higher than that of the control type when they were cultivated in LB medium containing 6% (W/V) NaCl and at pH 9, respectively. Complementary expression of Aa-accA in an accA-depletion E. coli can recover the tolerance of K12 delta accA to salt and alkali stresses to some extent. Similar to the transgenic E. coli, transgenic tobacco BY-2 cells showed higher percentages of viability compared to the wild BY-2 cells under the salt or alkali stress condition. We found that Aa-accA from A. amylolytica N10 overexpression enhances the tolerance of both transgenic E. coli and tobacco BY-2 cells to

  11. Temporal Regulation of the Bacillus subtilis Acetylome and Evidence for a Role of MreB Acetylation in Cell Wall Growth.

    PubMed

    Carabetta, Valerie J; Greco, Todd M; Tanner, Andrew W; Cristea, Ileana M; Dubnau, David

    2016-05-01

    N ε -Lysine acetylation has been recognized as a ubiquitous regulatory posttranslational modification that influences a variety of important biological processes in eukaryotic cells. Recently, it has been realized that acetylation is also prevalent in bacteria. Bacteria contain hundreds of acetylated proteins, with functions affecting diverse cellular pathways. Still, little is known about the regulation or biological relevance of nearly all of these modifications. Here we characterize the cellular growth-associated regulation of the Bacillus subtilis acetylome. Using acetylation enrichment and quantitative mass spectrometry, we investigate the logarithmic and stationary growth phases, identifying over 2,300 unique acetylation sites on proteins that function in essential cellular pathways. We determine an acetylation motif, EK(ac)(D/Y/E), which resembles the eukaryotic mitochondrial acetylation signature, and a distinct stationary-phase-enriched motif. By comparing the changes in acetylation with protein abundances, we discover a subset of critical acetylation events that are temporally regulated during cell growth. We functionally characterize the stationary-phase-enriched acetylation on the essential shape-determining protein MreB. Using bioinformatics, mutational analysis, and fluorescence microscopy, we define a potential role for the temporal acetylation of MreB in restricting cell wall growth and cell diameter. The past decade highlighted N ε -lysine acetylation as a prevalent posttranslational modification in bacteria. However, knowledge regarding the physiological importance and temporal regulation of acetylation has remained limited. To uncover potential regulatory roles for acetylation, we analyzed how acetylation patterns and abundances change between growth phases in B. subtilis . To demonstrate that the identification of cell growth-dependent modifications can point to critical regulatory acetylation events, we further characterized MreB, the cell

  12. The Epoxidation of 2,5-Di-tert-butyl-1,4-benzoquinone: A Consecutive Reaction for the Physical Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Hairfield, E. M.; And Others

    1985-01-01

    Reports a consecutive first-order reaction for which the concentrations of reactant, intermediate, and products can be determined simulataneously. This reaction is the epoxidation of 2,5-di-tert-butyl-1,4-benzoquinone (I) by alkaline hydroperoxidation using tert-butyl hydroperoxide and benzyltrimethylammonium hydroxide (Triton B) catalyst.…

  13. Acetylator Status Impacts Amifampridine Phosphate (Firdapse™) Pharmacokinetics and Exposure to a Greater Extent Than Renal Function.

    PubMed

    Haroldsen, Peter E; Sisic, Zlatko; Datt, Joe; Musson, Donald G; Ingenito, Gary

    2017-07-01

    The purpose of this study is to evaluate safety, tolerability, and pharmacokinetic (PK) properties of amifampridine phosphate (Firdapse™) and its major inactive 3-N-acetyl metabolite in renally impaired and healthy individuals with slow acetylator (SA) and rapid acetylator (RA) phenotypes. This was a Phase I, multicenter, open-label study of the PK properties and safety profile of amifampridine phosphate in individuals with normal, mild, moderate, or severely impaired renal function. Amifampridine phosphate was given as a single 10 mg (base equivalent) dose, and the plasma and urine PK properties of amifampridine and its 3-N-acetyl metabolite were determined. The safety profile was evaluated by monitoring adverse events (AEs), clinical laboratory tests, and physical examinations. Amifampridine clearance was predominantly metabolic through N-acetylation, regardless of renal function in both acetylator phenotypes. In individuals with normal renal function, mean renal clearance represented approximately 3% and 18% of the total clearance of amifampridine in RA and SA, respectively. Large differences in amifampridine exposure were observed between acetylation phenotypes across renal function levels. Mean amifampridine exposure values of AUC 0-∞ and C max were up to 8.8-fold higher in the SA group compared with the RA group across renal function levels. By comparison, mean AUC 0-∞ was less affected by renal function within an acetylator group, only 2- to 3-fold higher in individuals with severe renal impairment (RI) compared with those with normal renal function. Exposure to amifampridine in the SA group with normal renal function was higher (AUC 0-∞, approximately 1.8-fold; C max, approximately 4.1-fold) than the RA group with severe RI. Exposure to the inactive 3-N-acetyl metabolite was higher than amifampridine in both acetylator groups, independent of renal function level. The metabolite is cleared by renal excretion, and exposure was clearly dependent on

  14. Acetylation of the RhoA GEF Net1A controls its subcellular localization and activity

    PubMed Central

    Song, Eun Hyeon; Oh, Wonkyung; Ulu, Arzu; Carr, Heather S.; Zuo, Yan; Frost, Jeffrey A.

    2015-01-01

    ABSTRACT Net1 isoform A (Net1A) is a RhoA GEF that is required for cell motility and invasion in multiple cancers. Nuclear localization of Net1A negatively regulates its activity, and we have recently shown that Rac1 stimulates Net1A relocalization to the plasma membrane to promote RhoA activation and cytoskeletal reorganization. However, mechanisms controlling the subcellular localization of Net1A are not well understood. Here, we show that Net1A contains two nuclear localization signal (NLS) sequences within its N-terminus and that residues surrounding the second NLS sequence are acetylated. Treatment of cells with deacetylase inhibitors or expression of active Rac1 promotes Net1A acetylation. Deacetylase inhibition is sufficient for Net1A relocalization outside the nucleus, and replacement of the N-terminal acetylation sites with arginine residues prevents cytoplasmic accumulation of Net1A caused by deacetylase inhibition or EGF stimulation. By contrast, replacement of these sites with glutamine residues is sufficient for Net1A relocalization, RhoA activation and downstream signaling. Moreover, the N-terminal acetylation sites are required for rescue of F-actin accumulation and focal adhesion maturation in Net1 knockout MEFs. These data indicate that Net1A acetylation regulates its subcellular localization to impact on RhoA activity and actin cytoskeletal organization. PMID:25588829

  15. Mechanism of p-substituted phenol oxidation at a Ti4O7 reactive electrochemical membrane.

    PubMed

    Zaky, Amr M; Chaplin, Brian P

    2014-05-20

    This research investigated the removal mechanisms of p-nitrophenol, p-methoxyphenol, and p-benzoquinone at a porous Ti4O7 reactive electrochemical membrane (REM) under anodic polarization. Cross-flow filtration experiments and density functional theory (DFT) calculations indicated that p-benzoquinone removal was primarily due to reaction with electrochemically formed OH(•), while the dominant removal mechanism of p-nitrophenol and p-methoxyphenol was a function of the anodic potential. At low anodic potentials (1.7-1.8 V/SHE), p-nitrophenol and p-methoxyphenol were removed primarily by an electrochemical adsorption/polymerization mechanism on the REM. Increasing anodic potentials (1.9-3.2 V/SHE) resulted in the electroassisted adsorption mechanism contributing far less to p-methoxyphenol removal compared to p-nitrophenol. DFT calculations indicated that an increase in anodic potential resulted in a shift in p-methoxyphenol removal from a 1e(-) direct electron transfer (DET) reaction that resulted in radical formation and significant adsorption/polymerization, to a 2e(-) DET reaction that formed nonadsorbing products (i.e., p-benzoquinone). However, the anodic potentials were too low for the 2e(-) DET reaction to be thermodynamically favorable for p-nitrophenol. The decreased COD adsorption for p-nitrophenol at higher anodic potentials was attributed to reaction of soluble/adsorbed organics with OH(•). These results provide the first mechanistic explanation for p-substituted phenolic compound removal during advanced electrochemical oxidation processes.

  16. Chemopreventive efficacy of anethole trithione, N-acetyl-L-cysteine, miconazole and phenethylisothiocyanate in the DMBA-induced rat mammary cancer model.

    PubMed

    Lubet, R A; Steele, V E; Eto, I; Juliana, M M; Kelloff, G J; Grubbs, C J

    1997-07-03

    The chemopreventive efficacy of N-acetyl-L-cysteine (NAC), anethole trithione, miconazole and phenethylisothiocyanate (PEITC), each of which would be expected to alter carcinogen metabolism, was examined in the dimethylbenzanthracene (DMBA) mammary carcinogenesis model. In this protocol, animals were exposed to non-toxic doses of the chemopreventives in the diet beginning 7 days prior to DMBA administration and then continuously throughout the duration of the assay (100 days post carcinogen). Miconazole, an antifungal agent with relatively broad inhibitory activity toward a variety of cytochromes P450, increased mammary tumor latency, decreased tumor incidence at the highest dose and decreased tumor multiplicity up to 60%. Anethole trithione, a substituted dithiolthione and an analog of the relatively broad-spectrum chemopreventive oltipraz, was administered in the diet and significantly inhibited mammary cancer multiplicity but not cancer incidence. NAC, an antimucolytic agent, failed to inhibit DMBA-induced mammary tumorigenesis. Surprisingly, treatment with DMBA plus PEITC, a potent inhibitor of cytochrome P450 2E1, actually increased the multiplicity of tumors relative to that observed with DMBA alone.

  17. Enantioselective construction of quaternary stereogenic carbons by the Lewis base catalyzed additions of silyl ketene imines to aldehydes.

    PubMed

    Denmark, Scott E; Wilson, Tyler W; Burk, Matthew T; Heemstra, John R

    2007-12-05

    Silyl ketene imines derived from a variety of alpha-branched nitriles have been developed as highly useful reagents for the construction of quaternary stereogenic centers via the aldol addition reaction. In the presence of SiCl4 and the catalytic action of chiral phosphoramide (R,R)-5, silyl ketene imines undergo extremely rapid and high yielding addition to a wide variety of aromatic aldehydes with excellent diastereo- and enantioselectivity. Of particular note is the high yields and selectivities obtained from electron-rich, electron-poor, and hindered aldehydes. The nitrile function serves as a useful precursor for further synthetic manipulation.

  18. A cytotoxic meroterpenoid benzoquinone from roots of Cordia globosa.

    PubMed

    Alencar de Menezes, Jane Eire; Lemos, Telma Leda; Pessoa, Otília Deusdênia; Braz-Filho, Raimundo; Montenegro, Raquel C; Wilke, Diego Veras; Costa-Lotufo, Letícia V; Pessoa, Cláudia; de Moraes, Manoel Odorico; Silveira, Edilberto R

    2005-01-01

    (1a S*,1b S*,7a S*,8a S*)-4,5-Dimethoxy-1a,7a-dimethyl-1,1a,1b,2,7, 7a,8,8a-octahydrocyclopropa cyclopenta[1,2-b]naphthalene-3,6-dione (1), a new meroterpenoid benzoquinone, and microphyllaquinone (2), a known naphthoquinone, have been isolated from roots of Cordia globosa. Both structure determinations were performed by conventional spectroscopic methods, including inverse detection NMR techniques, and by comparison with data from the literature for related compounds. Compound 1 displayed considerable cytotoxic activity against several cancer cell lines with IC50 values in the range of 1.2 to 5.0 microg/mL. The cytotoxic activity seemed to be related to DNA synthesis inhibition, as revealed by the reduction of 5-bromo-2'-deoxyuridine incorporation, and apoptosis induction, as indicated by the acridine orange/ethidium bromide assay and morphological changes after 24 h of incubation on leukemic cells.

  19. Pulmonary fatty acid synthesis. I. Mitochondrial acetyl transfer by rat lung in vitro.

    PubMed

    Evans, R M; Scholz, R W

    1977-04-01

    Incorporation of tritiated water into fatty acids by rat adipose tissue and lung tissue slices incubated with 5 mM glucose indicated a level of fatty acid synthesis in rat lung approximately 15% that observed in adipose tissue in vitro. (-)-Hydroxycitrate, and inhibitor of ATP citrate lyase, markedly reduced tritiated water incorporation into fatty acids by lung tissue slices. The effects of (-)-hydroxycitrate and n-butymalonate on the incorporation of 14C-labeled glucose, pyruvate, acetate, and citrate suggested that citrate is a major acetyl carrier for de novo fatty acid synthesis in lung tissue. Alternative mechanisms to citrate as an acetyl carrier were also considered. Lung mitochondrial preparations formed significant levels of acetylcarnitine in the presence of pyruvate and carnitine. However, the effect of carnitine on the incorporation of 14C-labeled glucose, pyruvate, acetate, and citrate into fatty acids by lung tissue slices indicated that acetylcarnitine may not be a significant acetyl carrier for fatty acid synthesis but may serve as an acetyl "buffer" in the control of mitochondrial acetyl-CoA levels. Additionally, it appears unlikely that either acetylaspartate or acetoacetate are of major importance in acetyl transfer in lung tissue.

  20. AtaT blocks translation initiation by N-acetylation of the initiator tRNAfMet.

    PubMed

    Jurėnas, Dukas; Chatterjee, Sneha; Konijnenberg, Albert; Sobott, Frank; Droogmans, Louis; Garcia-Pino, Abel; Van Melderen, Laurence

    2017-06-01

    Toxin-antitoxin (TA) loci are prevalent in bacterial genomes. They are suggested to play a central role in dormancy and persister states. Under normal growth conditions, TA toxins are neutralized by their cognate antitoxins, and under stress conditions, toxins are freed and inhibit essential cellular processes using a variety of mechanisms. Here we characterize ataR-ataT, a novel TA system, from enterohemorrhagic Escherichia coli. We show that the toxin AtaT is a GNAT family enzyme that transfers an acetyl group from acetyl coenzyme A to the amine group of the methionyl aminoacyl moiety of initiator tRNA. AtaT specifically modifies Met-tRNA fMet , but no other aminoacyl-tRNAs, including the elongator Met-tRNA Met . We demonstrate that once acetylated, AcMet-tRNA fMet fails to interact with initiation factor-2 (IF2), resulting in disruption of the translation initiation complex. This work reveals a new mechanism of translation inhibition and confirms Met-tRNA fMet as a prime target to efficiently block cell growth.

  1. Early increase in marker of neuronal integrity with antidepressant treatment of major depression: 1H-magnetic resonance spectroscopy of N-acetyl-aspartate.

    PubMed

    Taylor, Matthew J; Godlewska, Beata R; Norbury, Ray; Selvaraj, Sudhakar; Near, Jamie; Cowen, Philip J

    2012-11-01

    Increasing interest surrounds potential neuroprotective or neurotrophic actions of antidepressants. While growing evidence points to important early clinical and neuropsychological effects of antidepressants, the time-course of any effect on neuronal integrity is unclear. This study used magnetic resonance spectroscopy to assess effects of short-term treatment with escitalopram on N-acetyl-aspartate (NAA), a marker of neuronal integrity. Thirty-nine participants with major depression were randomly assigned to receive either 10 mg escitalopram or placebo daily in a double-blind, parallel group design. On the seventh day of treatment, PRESS data were obtained from a 30×30×20 mm voxel placed in medial frontal cortex. Age and gender-matched healthy controls who received no treatment were also scanned. Levels of NAA were significantly higher in patients treated with escitalopram than in either placebo-treated patients (p<0.01) or healthy controls (p<0.01). Our findings are consistent with the proposition that antidepressant treatment in depressed patients can produce early changes in neuronal integrity.

  2. Metabolism and acetylation contribute to leucine-mediated inhibition of cardiac glucose uptake.

    PubMed

    Renguet, Edith; Ginion, Audrey; Gélinas, Roselle; Bultot, Laurent; Auquier, Julien; Robillard Frayne, Isabelle; Daneault, Caroline; Vanoverschelde, Jean-Louis; Des Rosiers, Christine; Hue, Louis; Horman, Sandrine; Beauloye, Christophe; Bertrand, Luc

    2017-08-01

    High plasma leucine levels strongly correlate with type 2 diabetes. Studies of muscle cells have suggested that leucine alters the insulin response for glucose transport by activating an insulin-negative feedback loop driven by the mammalian target of rapamycin/p70 ribosomal S6 kinase (mTOR/p70S6K) pathway. Here, we examined the molecular mechanism involved in leucine's action on cardiac glucose uptake. Leucine was indeed able to curb glucose uptake after insulin stimulation in both cultured cardiomyocytes and perfused hearts. Although leucine activated mTOR/p70S6K, the mTOR inhibitor rapamycin did not prevent leucine's inhibitory action on glucose uptake, ruling out the contribution of the insulin-negative feedback loop. α-Ketoisocaproate, the first metabolite of leucine catabolism, mimicked leucine's effect on glucose uptake. Incubation of cardiomyocytes with [ 13 C]leucine ascertained its metabolism to ketone bodies (KBs), which had a similar negative impact on insulin-stimulated glucose transport. Both leucine and KBs reduced glucose uptake by affecting translocation of glucose transporter 4 (GLUT4) to the plasma membrane. Finally, we found that leucine elevated the global protein acetylation level. Pharmacological inhibition of lysine acetyltransferases counteracted this increase in protein acetylation and prevented leucine's inhibitory action on both glucose uptake and GLUT4 translocation. Taken together, these results indicate that leucine metabolism into KBs contributes to inhibition of cardiac glucose uptake by hampering the translocation of GLUT4-containing vesicles via acetylation. They offer new insights into the establishment of insulin resistance in the heart. NEW & NOTEWORTHY Catabolism of the branched-chain amino acid leucine into ketone bodies efficiently inhibits cardiac glucose uptake through decreased translocation of glucose transporter 4 to the plasma membrane. Leucine increases protein acetylation. Pharmacological inhibition of acetylation

  3. Mechanistic and Structural Analysis of a Drosophila melanogaster Enzyme, Arylalkylamine N-Acetyltransferase Like 7, an Enzyme That Catalyzes the Formation of N-Acetylarylalkylamides and N-Acetylhistamine.

    PubMed

    Dempsey, Daniel R; Jeffries, Kristen A; Handa, Sumit; Carpenter, Anne-Marie; Rodriguez-Ospina, Santiago; Breydo, Leonid; Merkler, David J

    2015-04-28

    Arylalkylamine N-acetyltransferase like 7 (AANATL7) catalyzes the formation of N-acetylarylalkylamides and N-acetylhistamine from acetyl-CoA and the corresponding amine substrate. AANATL7 is a member of the GNAT superfamily of >10000 GCN5-related N-acetyltransferases, many members being linked to important roles in both human metabolism and disease. Drosophila melanogaster utilizes the N-acetylation of biogenic amines for the inactivation of neurotransmitters, the biosynthesis of melatonin, and the sclerotization of the cuticle. We have expressed and purified D. melanogaster AANATL7 in Escherichia coli and used the purified enzyme to define the substrate specificity for acyl-CoA and amine substrates. Information about the substrate specificity provides insight into the potential contribution made by AANATL7 to fatty acid amide biosynthesis because D. melanogaster has emerged as an important model system contributing to our understanding of fatty acid amide metabolism. Characterization of the kinetic mechanism of AANATL7 identified an ordered sequential mechanism, with acetyl-CoA binding first followed by histamine to generate an AANATL7·acetyl-CoA·histamine ternary complex prior to catalysis. Successive pH-activity profiling and site-directed mutagenesis experiments identified two ionizable groups: one with a pKa of 7.1 that is assigned to Glu-26 as a general base and a second pKa of 9.5 that is assigned to the protonation of the thiolate of the coenzyme A product. Using the data generated herein, we propose a chemical mechanism for AANATL7 and define functions for other important amino acid residues involved in substrate binding and regulation of catalysis.

  4. Preparation, structure, and luminescence of dinuclear lanthanide complexes of a novel imine-amine phenolate macrocycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, K.D.; Kahwa, I.A.; Williams, D.J.

    1994-03-30

    Metal-free condensation of 2,6-diformyl-p-cresol with 3,6-dioxa-1,8-octanediamine followed by reduction with sodium tetrahydroborate and addition of lanthanide(III) nitrate salts, in that order, yield (slowly) crystalline dinuclear complexes of a novel imine-amine phenolate macrocycle 2. The decacoordination geometry of the identical Pr[sup 3+] ions in a C[sub 2v] 4A,6B-extended dodecahedron made up of two bidentate NO[sub 3]-ions, two phenolate and two either oxygens, and one imine and one amine nitrogens. Dinuclear lanthanide complexes of 2 appear to be more stable than those of the totally reduced chelate 2 in alcoholic media. The Tb[sub 2]2(NO[sub 3])[sub 4][center dot]1.2CH[sub 3]-OH and (La[sub 0.97]Tb[sub 0.03])[submore » 2]2(NO[sub 3])[sub 4][center dot]1.2CH[sub 3]OH compounds exhibit strong Tb[sup 3+] ([sup 5]D[sub 4] [yields] [sup 7]F[sub J]) emission sensitized by the single state of 2 at both 77 and 295 K. No Tb[sup 3+]-Tb[sup 3+] self-quenching or N-H trapping effects are observed at 77 K (decay rate is 598 s[sup [minus]1]); the coordination cavities of 2 are therefore potentially good hosts for Tb[sup 3+] in luminescent diagnostic agents. At room temperature the complex decay kinetics of Tb[sup 3+] in Tb[sub 2]2(NO[sub 3])[sub 4][center dot]1.2CH[sub 3]OH are similar to those of Tb[sub 2]1(NO[sub 3])[sub 4][center dot]H[sub 2]O. But for the dilute complex, (La[sub 0.97]-Tb[sub 0.03])[sub 2]2(NO[sub 3])[sub 4][center dot]1.35CH[sub 3]OH, unusual thermal equilibration of the ligand triplet and Tb[sup 3+] [sup 5]D[sub 4] states occurs at room temperature; the ligand-to-Tb[sup 3+] energy-transfer rate is [approx]4.36 x 10[sup 4] s[sup [minus]1], while Tb[sup 3+]-to-ligand back-energy-transfer is [approx]7.1 x 10[sup 4] s[sup [minus]1].« less

  5. Peripheral Effects of FAAH Deficiency on Fuel and Energy Homeostasis: Role of Dysregulated Lysine Acetylation

    PubMed Central

    Vaitheesvaran, Bhavapriya; Yang, Li; Hartil, Kirsten; Glaser, Sherrye; Yazulla, Stephen; Bruce, James E.; Kurland, Irwin J.

    2012-01-01

    Background FAAH (fatty acid amide hydrolase), primarily expressed in the liver, hydrolyzes the endocannabinoids fatty acid ethanolamides (FAA). Human FAAH gene mutations are associated with increased body weight and obesity. In our present study, using targeted metabolite and lipid profiling, and new global acetylome profiling methodologies, we examined the role of the liver on fuel and energy homeostasis in whole body FAAH−/− mice. Methodology/Principal Findings FAAH−/− mice exhibit altered energy homeostasis demonstrated by decreased oxygen consumption (Indirect calorimetry). FAAH−/− mice are hyperinsulinemic and have adipose, skeletal and hepatic insulin resistance as indicated by stable isotope phenotyping (SIPHEN). Fed state skeletal muscle and liver triglyceride levels was increased 2–3 fold, while glycogen was decreased 42% and 57% respectively. Hepatic cholesterol synthesis was decreased 22% in FAAH−/− mice. Dysregulated hepatic FAAH−/− lysine acetylation was consistent with their metabolite profiling. Fasted to fed increases in hepatic FAAH−/− acetyl-CoA (85%, p<0.01) corresponded to similar increases in citrate levels (45%). Altered FAAH−/− mitochondrial malate dehydrogenase (MDH2) acetylation, which can affect the malate aspartate shuttle, was consistent with our observation of a 25% decrease in fed malate and aspartate levels. Decreased fasted but not fed dihydroxyacetone-P and glycerol-3-P levels in FAAH−/− mice was consistent with a compensating contribution from decreased acetylation of fed FAAH−/− aldolase B. Fed FAAH−/− alcohol dehydrogenase (ADH) acetylation was also decreased. Conclusions/Significance Whole body FAAH deletion contributes to a pre-diabetic phenotype by mechanisms resulting in impairment of hepatic glucose and lipid metabolism. FAAH−/− mice had altered hepatic lysine acetylation, the pattern sharing similarities with acetylation changes reported with chronic alcohol treatment

  6. Diastereoselective addition of 2H-2-oxo-1,4,2-oxazaphosphinanes to aldehydes and imines.

    PubMed

    Pirat, Jean-Luc; Monbrun, Jérôme; Virieux, David; Volle, Jean-Noël; Tillard, Monique; Cristau, Henri-Jean

    2005-09-02

    [reaction: see text] Diastereoselective additions of 2-hydrogeno-2-oxo-1,4,2-oxazaphosphinanes to aldehydes and imines are described. alpha,alpha'-Diaminophosphinic and alpha-amino-alpha'-hydroxyphosphinic derivatives were obtained with de's ranging from 24 to 90%.

  7. Identification of cancer chemopreventive isothiocyanates as direct inhibitors of the arylamine N-acetyltransferase-dependent acetylation and bioactivation of aromatic amine carcinogens.

    PubMed

    Duval, Romain; Xu, Ximing; Bui, Linh-Chi; Mathieu, Cécile; Petit, Emile; Cariou, Kevin; Dodd, Robert H; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-02-23

    Aromatic amines (AAs) are chemicals of industrial, pharmacological and environmental relevance. Certain AAs, such as 4-aminobiphenyl (4-ABP), are human carcinogens that require enzymatic metabolic activation to reactive chemicals to form genotoxic DNA adducts. Arylamine N-acetyltransferases (NAT) are xenobiotic metabolizing enzymes (XME) that play a major role in this carcinogenic bioactivation process. Isothiocyanates (ITCs), including benzyl-ITC (BITC) and phenethyl-ITC (PEITC), are phytochemicals known to have chemopreventive activity against several aromatic carcinogens. In particular, ITCs have been shown to modify the bioactivation and subsequent mutagenicity of carcinogenic AA chemicals such as 4-ABP. However, the molecular and biochemical mechanisms by which these phytochemicals may modulate AA carcinogens bioactivation and AA-DNA damage remains poorly understood. This manuscript provides evidence indicating that ITCs can decrease the metabolic activation of carcinogenic AAs via the irreversible inhibition of NAT enzymes and subsequent alteration of the acetylation of AAs. We demonstrate that BITC and PEITC react with NAT1 and inhibit readily its acetyltransferase activity (k(i) = 200 M(-1).s(-1) and 66 M(-1).s(-1) for BITC and PEITC, respectively). Chemical labeling, docking approaches and substrate protection assays indicated that inhibition of the acetylation of AAs by NAT1 was due to the chemical modification of the enzyme active site cysteine. Moreover, analyses of AAs acetylation and DNA adducts in cells showed that BITC was able to modulate the endogenous acetylation and bioactivation of 4-ABP. In conclusion, we show that direct inhibition of NAT enzymes may be an important mechanism by which ITCs exert their chemopreventive activity towards AA chemicals.

  8. Multicomponent Synthesis of a N-Protected Alpha-Amino Ester: Ethyl 2-((4-Methoxyphenyl)Amino)-3-Phenylpropanoate

    ERIC Educational Resources Information Center

    Le Gall, Erwan; Pignon, Antoine

    2012-01-01

    This laboratory experiment describes the preparation of a N-protected phenylalanine ethyl ester by a zinc-mediated Mannich-like multicomponent reaction between benzyl bromide, "p"-anisidine, and ethyl glyoxylate. The one-step reaction involves the in situ metallation of benzyl bromide into a benzylzinc reagent and its addition onto imine (Barbier…

  9. Stability of dendriplexes formed by anti-HIV genetic material and poly(propylene imine) dendrimers in the presence of glucosaminoglycans.

    PubMed

    Szewczyk, Michal; Drzewinska, Joanna; Dzmitruk, Volha; Shcharbin, Dzmitry; Klajnert, Barbara; Appelhans, Dietmar; Bryszewska, Maria

    2012-12-20

    There are several barriers to the application of dendriplexes formed by poly(propylene imine) dendrimers and genetic material for gene therapy. One limitation is their interaction with extracellular matrix components such as glucosaminoglycans. These can displace the genetic material from the dendriplexes, affecting their transfection activity. In this study, we analyzed the interaction between dendriplexes and the four main glucosaminoglycans (heparin, heparan sulfate, chondroitin sulfate, and hyaluronic acid) by fluorescence polarization and gel electrophoresis. Dendriplexes were formed by combining three anti-HIV antisense oligodeoxynucleotides with three poly(propylene imine) dendrimers of the fourth generation: unmodified and partially modified with maltose and maltotriose (open shell glycodendrimers). The data showed that the effect of glucosaminoglycans on dendriplexes depends on the glucosaminoglycan type and the oligosaccharide serving as the surface group of the dendrimer. Heparin at physiological concentrations destroys dendriplexes formed by open shell glycodendrimers, but dendriplexes based on unmodified poly(propylene imine) dendrimers are stable in its presence. The other glucosaminoglycans at physiological concentrations cannot destroy dendriplexes formed by any of the dendrimers studied.

  10. Comprehensive profiling of lysine acetylation suggests the widespread function is regulated by protein acetylation in the silkworm, Bombyx mori.

    PubMed

    Nie, Zuoming; Zhu, Honglin; Zhou, Yong; Wu, Chengcheng; Liu, Yue; Sheng, Qing; Lv, Zhengbing; Zhang, Wenping; Yu, Wei; Jiang, Caiying; Xie, Longfei; Zhang, Yaozhou; Yao, Juming

    2015-09-01

    Lysine acetylation in proteins is a dynamic and reversible PTM and plays an important role in diverse cellular processes. In this study, using lysine-acetylation (Kac) peptide enrichment coupled with nano HPLC/MS/MS, we initially identified the acetylome in the silkworms. Overall, a total of 342 acetylated proteins with 667 Kac sites were identified in silkworm. Sequence motifs analysis around Kac sites revealed an enrichment of Y, F, and H in the +1 position, and F was also enriched in the +2 and -2 positions, indicating the presences of preferred amino acids around Kac sites in the silkworm. Functional analysis showed the acetylated proteins were primarily involved in some specific biological processes. Furthermore, lots of nutrient-storage proteins, such as apolipophorin, vitellogenin, storage proteins, and 30 K proteins, were highly acetylated, indicating lysine acetylation may represent a common regulatory mechanism of nutrient utilization in the silkworm. Interestingly, Ser2 proteins, the coating proteins of larval silk, were found to contain many Kac sites, suggesting lysine acetylation may be involved in the regulation of larval silk synthesis. This study is the first to identify the acetylome in a lepidoptera insect, and expands greatly the catalog of lysine acetylation substrates and sites in insects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. ATP-citrate lyase links cellular metabolism to histone acetylation.

    PubMed

    Wellen, Kathryn E; Hatzivassiliou, Georgia; Sachdeva, Uma M; Bui, Thi V; Cross, Justin R; Thompson, Craig B

    2009-05-22

    Histone acetylation in single-cell eukaryotes relies on acetyl coenzyme A (acetyl-CoA) synthetase enzymes that use acetate to produce acetyl-CoA. Metazoans, however, use glucose as their main carbon source and have exposure only to low concentrations of extracellular acetate. We have shown that histone acetylation in mammalian cells is dependent on adenosine triphosphate (ATP)-citrate lyase (ACL), the enzyme that converts glucose-derived citrate into acetyl-CoA. We found that ACL is required for increases in histone acetylation in response to growth factor stimulation and during differentiation, and that glucose availability can affect histone acetylation in an ACL-dependent manner. Together, these findings suggest that ACL activity is required to link growth factor-induced increases in nutrient metabolism to the regulation of histone acetylation and gene expression.

  12. Pyrazolates advance cerium chemistry: a CeIII/CeIV redox equilibrium with benzoquinone.

    PubMed

    Werner, Daniel; Deacon, Glen B; Junk, Peter C; Anwander, Reiner

    2017-05-16

    Two stable cerium(iv) 3,5-dialkylpyrazolate complexes are presented, namely dimeric [Ce(Me 2 pz) 4 ] 2 (Me 2 pz = 3,5-dimethylpyrazolate) and monomeric Ce(tBu 2 pz) 4 (tBu 2 pz = 3,5-di-tert-butylpyrazolate) along with their trivalent counterparts [Ce(Me 2 pz) 3 ] and [Ce(tBu 2 pz) 3 ] 2 . All complexes were obtained from protonolysis reactions employing the silylamide precursors Ce[N(SiHMe 2 ) 2 ] 4 and Ce[N(SiMe 3 ) 2 ] 3 . Treatment of homoleptic Ce IV and Ce III Me 2 pz complexes with 1,4-hydroquinone (H 2 hq) or 1,4-benzoquinone (bq), respectively, ultimately gave the same trimetallic Ce III species via a cerium redox equilibrium. The Ce III complex Ce 3 (Me 2 pz) 5 (pchd) 2 (L) (pchd = 1,4-bis(3,5-dimethylpyrazol-1-yl)cyclohex-2,5-diene-1,4-diolato; L = Me 2 pzH or (thf) 2 ) results from a di-1,4-pyrazolyl attack on pre-coordinated bq. The reduction of bq by [Ce(Me 2 pz) 3 (thf)] 2 , and re-oxidation by the resulting Ce IV species was supported by UV-vis spectroscopic investigations. Comparisons with the redox-innocent complexes [Ln(Me 2 pz) 3 (thf)] 2 (Ln = La and Pr) revealed far less selective reactions with bq, giving hexametallic and octametallic rare-earth metal side products containing 2-Me 2 pz substituted hq ligands.

  13. The crystal structure of N-acetyl-L-glutamate synthase from Neisseria gonorrhoeae provides insights into mechanisms of catalysis and regulation.

    PubMed

    Shi, Dashuang; Sagar, Vatsala; Jin, Zhongmin; Yu, Xiaolin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M; Tuchman, Mendel

    2008-03-14

    The crystal structures of N-acetylglutamate synthase (NAGS) in the arginine biosynthetic pathway of Neisseria gonorrhoeae complexed with acetyl-CoA and with CoA plus N-acetylglutamate have been determined at 2.5- and 2.6-A resolution, respectively. The monomer consists of two separately folded domains, an amino acid kinase (AAK) domain and an N-acetyltransferase (NAT) domain connected through a 10-A linker. The monomers assemble into a hexameric ring that consists of a trimer of dimers with 32-point symmetry, inner and outer ring diameters of 20 and 100A, respectively, and a height of 110A(.) Each AAK domain interacts with the cognate domains of two adjacent monomers across two 2-fold symmetry axes and with the NAT domain from a second monomer of the adjacent dimer in the ring. The catalytic sites are located within the NAT domains. Three active site residues, Arg316, Arg425, and Ser427, anchor N-acetylglutamate in a position at the active site to form hydrogen bond interactions to the main chain nitrogen atoms of Cys356 and Leu314, and hydrophobic interactions to the side chains of Leu313 and Leu314. The mode of binding of acetyl-CoA and CoA is similar to other NAT family proteins. The AAK domain, although catalytically inactive, appears to bind arginine. This is the first reported crystal structure of any NAGS, and it provides insights into the catalytic function and arginine regulation of NAGS enzymes.

  14. Nail-biting stuff? The effect of N-acetyl cysteine on nail-biting.

    PubMed

    Berk, Michael; Jeavons, Sue; Dean, Olivia M; Dodd, Seetal; Moss, Kirsteen; Gama, Clarissa S; Malhi, Gin S

    2009-07-01

    N-acetyl cysteine (NAC) is a widely available nutraceutical with a variety of actions. As a precursor of cysteine and glutathione, it has antioxidant properties that may impact on mood and contribute to an effect on impulsivity and obsessive behaviour. Via its additional effect on glutamate via the cystine-glutamate exchange system, NAC has been shown to mediate impulsivity in preclinical models of addiction, reduce craving, and cue extinction. Further, by boosting glutathione, NAC acts as a potent antioxidant and has been shown in two positive, large-scale randomized placebo-controlled trials to affect negative symptoms in schizophrenia and depression in bipolar disorder. We describe three cases in which its actions specifically on nail-biting and associated anxiety may offer a potential treatment. The spontaneous findings are reported as part of an ongoing treatment trial examining the utility of NAC in bipolar disorder. Its actions, if robustly replicated, also point to potential treatment targets in glutathione or glutamate pathways in the brain.

  15. Prediction of the chemo- and regioselectivity of Diels-Alder reactions of o-benzoquinone derivatives with thiophenes by means of DFT-based reactivity indices

    NASA Astrophysics Data System (ADS)

    Ghomri, Amina; Mekelleche, Sidi Mohamed

    2014-03-01

    Global and local reactivity indices derived from density functional theory were used to elucidate the regio- and chemoselectivity of Diels-Alder reactions of masked o-benzoquinones with thiophenes acting as dienophiles. The polarity of the studied reactions is evaluated in terms of the difference of electrophilicity powers between the diene and dienophile partners. Preferential cyclisation modes of these cycloadditions are predicted using Domingo's polar model based on the local electrophilicity index, ωk, of the electrophile and the local nucleophilicity index, Nuk, of the nucleophile. The theoretical calculations, carried out at the B3LYP/6-311G(d,p) level of theory, are in good agreement with experimental findings.

  16. Extraction and properties of protein from camelina engineered to produce acetyl-triacylglycerols (camelina acetyl-TAG)

    USDA-ARS?s Scientific Manuscript database

    Camelina (Camelina sativa, Brassicaceae) has attracted interest for its seed oil as alternative feedstock for biofuels production. Researchers at Michigan State University successfully engineered camelina to produce seeds with oil containing high levels of acetyl-triacylglerol (acetyl-TAG) by incorp...

  17. Merging constitutional and motional covalent dynamics in reversible imine formation and exchange processes.

    PubMed

    Kovaříček, Petr; Lehn, Jean-Marie

    2012-06-06

    The formation and exchange processes of imines of salicylaldehyde, pyridine-2-carboxaldehyde, and benzaldehyde have been studied, showing that the former has features of particular interest for dynamic covalent chemistry, displaying high efficiency and fast rates. The monoimines formed with aliphatic α,ω-diamines display an internal exchange process of self-transimination type, inducing a local motion of either "stepping-in-place" or "single-step" type by bond interchange, whose rate decreases rapidly with the distance of the terminal amino groups. Control of the speed of the process over a wide range may be achieved by substituents, solvent composition, and temperature. These monoimines also undergo intermolecular exchange, thus merging motional and constitutional covalent behavior within the same molecule. With polyamines, the monoimines formed execute internal motions that have been characterized by extensive one-dimensional, two-dimensional, and EXSY proton NMR studies. In particular, with linear polyamines, nondirectional displacement occurs by shifting of the aldehyde residue along the polyamine chain serving as molecular track. Imines thus behave as simple prototypes of systems displaying relative motions of molecular moieties, a subject of high current interest in the investigation of synthetic and biological molecular motors. The motional processes described are of dynamic covalent nature and take place without change in molecular constitution. They thus represent a category of dynamic covalent motions, resulting from reversible covalent bond formation and dissociation. They extend dynamic covalent chemistry into the area of molecular motions. A major further step will be to achieve control of directionality. The results reported here for imines open wide perspectives, together with other chemical groups, for the implementation of such features in multifunctional molecules toward the design of molecular devices presenting a complex combination of

  18. The asymmetric synthesis of terminal aziridines by methylene transfer from sulfonium ylides to imines.

    PubMed

    Kavanagh, Sarah A; Piccinini, Alessandro; Connon, Stephen J

    2013-06-07

    A new ylide-based protocol for the asymmetric aziridination of imines via methylene transfer has been developed involving the use of a simple chiral sulfonium salt and an organic strong base. A systematic study identified triisopropylphenyl sulfonylimines as optimal substrates for the process. Unexpectedly, hindered C2-symmetric sulfonyl salts incorporating bulky ethers at C-2 and C-5--which had previously been useful in the corresponding epoxidation chemistry--decomposed in these aziridination reactions via competing elimination pathways. Under optimised conditions it was found that a simple salt derived from (2R,5R)-2,5-diisopropyl thiolane could mediate asymmetric methylene transfer to a range of imines with uniformly excellent yields with 19-30% ee. Since this is a similar level of enantiomeric excess to that obtained using these same salts in epoxidation chemistry, it was concluded that if more bulky sulfonium salts could be devised which were resistant to decomposition under the reaction conditions, that highly enantioselective aziridine formation by methylene transfer would be possible.

  19. Structural Determinants of an Insect β-N-Acetyl-d-hexosaminidase Specialized as a Chitinolytic Enzyme*

    PubMed Central

    Liu, Tian; Zhang, Haitao; Liu, Fengyi; Wu, Qingyue; Shen, Xu; Yang, Qing

    2011-01-01

    β-N-Acetyl-d-hexosaminidase has been postulated to have a specialized function. However, the structural basis of this specialization is not yet established. OfHex1, the enzyme from the Asian corn borer Ostrinia furnacalis (one of the most destructive pests) has previously been reported to function merely in chitin degradation. Here the vital role of OfHex1 during the pupation of O. furnacalis was revealed by RNA interference, and the crystal structures of OfHex1 and OfHex1 complexed with TMG-chitotriomycin were determined at 2.1 Å. The mechanism of selective inhibition by TMG-chitotriomycin was related to the existence of the +1 subsite at the active pocket of OfHex1 and a key residue, Trp490, at this site. Mutation of Trp490 to Ala led to a 2,277-fold decrease in sensitivity toward TMG-chitotriomycin as well as an 18-fold decrease in binding affinity for the substrate (GlcNAc)2. Although the overall topology of the catalytic domain of OfHex1 shows a high similarity with the human and bacterial enzymes, OfHex1 is distinguished from these enzymes by large conformational changes linked to an “open-close” mechanism at the entrance of the active site, which is characterized by the “lid” residue, Trp448. Mutation of Trp448 to Ala or Phe resulted in a more than 1,000-fold loss in enzyme activity, due mainly to the effect on kcat. The current work has increased our understanding of the structure-function relationship of OfHex1, shedding light on the structural basis that accounts for the specialized function of β-N-acetyl-d-hexosaminidase as well as making the development of species-specific pesticides a likely reality. PMID:21106526

  20. Acetylation and characterization of banana (Musa paradisiaca) starch.

    PubMed

    Bello-Pérez, L A; Contreras-Ramos, S M; Jìmenez-Aparicio, A; Paredes-López, O

    2000-01-01

    Banana native starch was acetylated and some of its functional properties were evaluated and compared to corn starch. In general, acetylated banana starch presented higher values in ash, protein and fat than corn acetylated starch. The modified starches had minor tendency to retrogradation assessed as % transmittance of starch pastes. At high temperature acetylated starches presented a water retention capacity similar to their native counterpart. The acetylation considerably increased the solubility of starches, and a similar behavior was found for swelling power. When freeze-thaw stability was studied, acetyl banana starch drained approximately 60% of water in the first and second cycles, but in the third and fourth cycles the percentage of separated water was low. However, acetyl corn starch showed lower freeze-thaw stability than the untreated sample. The modification increased the viscosity of banana starch pastes.

  1. Syntheses of poly(phenoxy-imine)s anchored with carboxyl group: Characterization and photovoltaic studies

    NASA Astrophysics Data System (ADS)

    Kaya, İsmet; Ayten, Bahar; Şenol, Dilek

    2018-04-01

    A serious of pyridine based Schiff bases (M1, M2, and M3) were synthesized via condensation reaction of 4-aminosalicyclic acid with 2-pyridinecarboxaldehyde, 3-pyridine carboxyaldehyde and 4-pyridinecarboxaldehyde, respectively. The transformation of Schiff bases into their poly(phenoxy-imine) species (P1, P2, P3) was obtained using oxidative polycondensation (OP) by NaOCl as the oxidant in alkaline medium at 70 °C. The structures of the synthesized compounds were characterized by solubility test, FT-IR, UV-Vis and NMR techniques. Thermal data were obtained by TG-DTA and DSC techniques. Photoluminescence (PL) properties of the synthesized materials were examined in organic solvent. Fluorescence measurements were carried out in various concentrated solutions to determine the optimum concentrations and PL intensities. P3 could be used in light-emitting diodes due to its multicolor (white, blue, green and yellow) light-emitting property. The efficiency (η) of a solar cell of P1, P2 and P3 were determined by single channel Potentiostat/Galvanostat with electrochemical impedance spectroscopy. The order of conductivities was found to be as P3>P2>P1 as a result of iodine doping. The best performing photovoltaic cell with Isc (mA cm-2), Voc (V), FF, and η (%) as -0.642, 0.399, 0.461 and -0.118 was obtained for P3.

  2. [Distribution of acetylator phenotypes in the normal Moscow city population and in chronic alcoholism].

    PubMed

    Lil'in, E T; Korsunskaia, M P; Meksin, V A; Drozdov, E S; Nazarov, V V

    1984-09-01

    The distribution of acetylator phenotypes was studied in 169 normal individuals of Moscow Russian population and 75 inhabitants of Moscow suffering from chronic alcoholism. Polymorphism was found by means of acetylation in both groups studied. The proportion of repeatability of rapid and slow acetylators amounts to 48 and 52% among normal individuals, 44 and 56% among those who suffer from chronic alcoholism. The comparative analyses of such repeatability within the classes resulted in authentic increase of the rate of rapid acetylators among the chronic alcoholics (chi 2 = 18.32; p less than 0.01); in comparison with normal individual groups, (the modes being in classes 50-60% and 80-90%, with the antimode 70-80%), a shift of one of the modes from the 50-60% class into the 60-70% class was traced among diseased individuals. It is supposed that chronic alcohol consumption stimulates the process of acetylation; possible reasons for this stimulation are discussed.

  3. Nonhistone protein acetylation as cancer therapy targets

    PubMed Central

    Singh, Brahma N; Zhang, Guanghua; Hwa, Yi L; Li, Jinping; Dowdy, Sean C; Jiang, Shi-Wen

    2012-01-01

    Acetylation and deacetylation are counteracting, post-translational modifications that affect a large number of histone and nonhistone proteins. The significance of histone acetylation in the modification of chromatin structure and dynamics, and thereby gene transcription regulation, has been well recognized. A steadily growing number of nonhistone proteins have been identified as acetylation targets and reversible lysine acetylation in these proteins plays an important role(s) in the regulation of mRNA stability, protein localization and degradation, and protein–protein and protein–DNA interactions. The recruitment of histone acetyltransferases (HATs) and histone deacetylases (HDACs) to the transcriptional machinery is a key element in the dynamic regulation of genes controlling cellular proliferation, differentiation and apoptosis. Many nonhistone proteins targeted by acetylation are the products of oncogenes or tumor-suppressor genes and are directly involved in tumorigenesis, tumor progression and metastasis. Aberrant activity of HDACs has been documented in several types of cancers and HDAC inhibitors (HDACi) have been employed for therapeutic purposes. Here we review the published literature in this field and provide updated information on the regulation and function of nonhistone protein acetylation. While concentrating on the molecular mechanism and pathways involved in the addition and removal of the acetyl moiety, therapeutic modalities of HDACi are also discussed. PMID:20553216

  4. New, simplified, interpolation method for estimation of microscopic nuclear masses based on the p-factor, P = N/sub P/N/sub N//(N/sub p/+N/sub n/)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haustein, P.E.; Brenner, D.S.; Casten, R.F.

    1987-12-10

    A new semi-empirical method, based on the use of the P-factor (P = N/sub p/N/sub n//(N/sub p/+N/sub n/)), is shown to simplify significantly the systematics of atomic masses. Its uses is illustrated for actinide nuclei where complicated patterns of mass systematics seen in traditional plots versus Z, N, or isospin are consolidated and transformed into linear ones extending over long isotopic and isotonic sequences. The linearization of the systematics by this procedure provides a simple basis for mass prediction. For many unmeasured nuclei beyond the known mass surface, the P-factor method operates by interpolation among data for known nuclei rathermore » than by extrapolation, as is common in other mass models.« less

  5. 17β-Estradiol regulates histone alterations associated with memory consolidation and increases Bdnf promoter acetylation in middle-aged female mice

    PubMed Central

    Fortress, Ashley M.; Kim, Jaekyoon; Poole, Rachel L.; Gould, Thomas J.

    2014-01-01

    Histone acetylation is essential for hippocampal memory formation in young adult rodents. Although dysfunctional histone acetylation has been associated with age-related memory decline in male rodents, little is known about whether histone acetylation is altered by aging in female rodents. In young female mice, the ability of 17β-estradiol (E2) to enhance object recognition memory consolidation requires histone H3 acetylation in the dorsal hippocampus. However, the extent to which histone acetylation is regulated by E2 in middle-aged females is unknown. The mnemonic benefits of E2 in aging females appear to be greatest in middle age, and so pinpointing the molecular mechanisms through which E2 enhances memory at this age could lead to the development of safer and more effective treatments for maintaining memory function without the side effects of current therapies. Here, we show that dorsal hippocampal infusion of E2 rapidly enhanced object recognition and spatial memory, and increased histone H3 acetylation in the dorsal hippocampus, while also significantly reducing levels of histone deacetylase (HDAC2 and HDAC3) proteins. E2 specifically increased histone H3 acetylation at Bdnf promoters pII and pIV in the dorsal hippocampus of both young and middle-aged mice, despite age-related decreases in pI and pIV acetylation. Furthermore, levels of mature BDNF and pro-BDNF proteins in the dorsal hippocampus were increased by E2 in middle-aged females. Together, these data suggest that the middle-aged female dorsal hippocampus remains epigenetically responsive to E2, and that E2 may enhance memory in middle-aged females via epigenetic regulation of Bdnf. PMID:25128537

  6. Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold-silver alloy nanoparticles.

    PubMed

    Liu, Hui; Shen, Mingwu; Zhao, Jinglong; Guo, Rui; Cao, Xueyan; Zhang, Guixiang; Shi, Xiangyang

    2012-06-01

    In this study, amine-terminated generation 5 poly(amidoamine) dendrimers were used as templates or stabilizers to synthesize dendrimer-entrapped or dendrimer-stabilized Au-Ag alloy nanoparticles (NPs) with different gold atom/silver atom/dendrimer molar ratios with the assistance of sodium borohydride reduction chemistry. Following a one-step acetylation reaction to transform the dendrimer terminal amines to acetyl groups, a series of dendrimer-entrapped or dendrimer-stabilized Au-Ag alloy NPs with terminal acetyl groups were formed. The formed Au-Ag alloy NPs before and after acetylation reaction were characterized using different techniques. We showed that the optical property and the size of the bimetallic NPs were greatly affected by the metal composition. At the constant total metal atom/dendrimer molar ratio, the size of the alloy NPs decreased with the gold content. The formed Au-Ag alloy NPs were stable at different pH (pH 5-8) and temperature (4-50°C) conditions. X-ray absorption coefficient measurements showed that the attenuation of the binary NPs was dependent on both the gold content and the surface modification. With the increase of gold content in the binary NPs, their X-ray attenuation intensity was significantly enhanced. At a given metal composition, the X-ray attenuation intensity of the binary NPs was enhanced after acetylation. Cytotoxicity assays showed that after acetylation, the cytocompatibility of Au-Ag alloy NPs was significantly improved. With the controllable particle size and optical property, metal composition-dependent X-ray attenuation characteristics, and improved cytocompatibility after acetylation, these dendrimer-entrapped or dendrimer-stabilized Au-Ag alloy NPs should have a promising potential for CT imaging and other biomedical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Identification of Bacillus anthracis by Using Monoclonal Antibody to Cell Wall Galactose-N-Acetylglucosamine Polysaccharide

    DTIC Science & Technology

    1990-02-01

    which appear to be directed to an epitope associated with the galactose-N-acetyl-D- glucosamine polysaccharide. Both demonstrated specificity in their...liquid composed primarily of D-galactose and N-acetyl-D-glu - R medium (28) buffered with 50 mM Tris hydrochloride , pH cosamine (12, 13) (Gal-NAG...Ascites fluid (5 ml) was dialyzed (Cel-Line Associates, Inc., Newfield, N.J.). Suspensions against 20 mM Tris hydrochloride (pH 8.0) for 18 to 20 h, were

  8. Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current-spreading layer.

    PubMed

    Zhang, Zi-Hui; Tan, Swee Tiam; Liu, Wei; Ju, Zhengang; Zheng, Ke; Kyaw, Zabu; Ji, Yun; Hasanov, Namig; Sun, Xiao Wei; Demir, Hilmi Volkan

    2013-02-25

    This work reports both experimental and theoretical studies on the InGaN/GaN light-emitting diodes (LEDs) with optical output power and external quantum efficiency (EQE) levels substantially enhanced by incorporating p-GaN/n-GaN/p-GaN/n-GaN/p-GaN (PNPNP-GaN) current spreading layers in p-GaN. Each thin n-GaN layer sandwiched in the PNPNP-GaN structure is completely depleted due to the built-in electric field in the PNPNP-GaN junctions, and the ionized donors in these n-GaN layers serve as the hole spreaders. As a result, the electrical performance of the proposed device is improved and the optical output power and EQE are enhanced.

  9. Hydrogenation of imines catalysed by ruthenium(II) complexes based on lutidine-derived CNC pincer ligands.

    PubMed

    Hernández-Juárez, Martín; Vaquero, Mónica; Álvarez, Eleuterio; Salazar, Verónica; Suárez, Andrés

    2013-01-14

    The preparation of new Ru(II) complexes incorporating fac-coordinated lutidine-derived CNC ligands is reported. These derivatives are selectively deprotonated by (t)BuOK at one of the methylene arms of the pincer, leading to catalytically active species in the hydrogenation of imines.

  10. Ancient Regulatory Role of Lysine Acetylation in Central Metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayasu, Ernesto S.; Burnet, Meagan C.; Walukiewicz, Hanna E.

    ABSTRACT Lysine acetylation is a common protein post-translational modification in bacteria and eukaryotes. Unlike phosphorylation, whose functional role in signaling has been established, it is unclear what regulatory mechanism acetylation plays and whether it is conserved across evolution. By performing a proteomic analysis of 48 phylogenetically distant bacteria, we discovered conserved acetylation sites on catalytically essential lysine residues that are invariant throughout evolution. Lysine acetylation removes the residue’s charge and changes the shape of the pocket required for substrate or cofactor binding. Two-thirds of glycolytic and tricarboxylic acid (TCA) cycle enzymes are acetylated at these critical sites. Our data suggestmore » that acetylation may play a direct role in metabolic regulation by switching off enzyme activity. We propose that protein acetylation is an ancient and widespread mechanism of protein activity regulation. IMPORTANCEPost-translational modifications can regulate the activity and localization of proteins inside the cell. Similar to phosphorylation, lysine acetylation is present in both eukaryotes and prokaryotes and modifies hundreds to thousands of proteins in cells. However, how lysine acetylation regulates protein function and whether such a mechanism is evolutionarily conserved is still poorly understood. Here, we investigated evolutionary and functional aspects of lysine acetylation by searching for acetylated lysines in a comprehensive proteomic data set from 48 phylogenetically distant bacteria. We found that lysine acetylation occurs in evolutionarily conserved lysine residues in catalytic sites of enzymes involved in central carbon metabolism. Moreover, this modification inhibits enzymatic activity. Our observations suggest that lysine acetylation is an evolutionarily conserved mechanism of controlling central metabolic activity by directly blocking enzyme active sites.« less

  11. Ancient Regulatory Role of Lysine Acetylation in Central Metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayasu, Ernesto S.; Burnet, Meagan C.; Walukiewicz, Hanna E.

    ABSTRACT Lysine acetylation is a common protein post-translational modification in bacteria and eukaryotes. Unlike phosphorylation, whose functional role in signaling has been established, it is unclear what regulatory mechanism acetylation plays and whether it is conserved across evolution. By performing a proteomic analysis of 48 phylogenetically distant bacteria, we discovered conserved acetylation sites on catalytically essential lysine residues that are invariant throughout evolution. Lysine acetylation removes the residue’s charge and changes the shape of the pocket required for substrate or cofactor binding. Two-thirds of glycolytic and tricarboxylic acid (TCA) cycle enzymes are acetylated at these critical sites. Our data suggestmore » that acetylation may play a direct role in metabolic regulation by switching off enzyme activity. We propose that protein acetylation is an ancient and widespread mechanism of protein activity regulation. IMPORTANCE Post-translational modifications can regulate the activity and localization of proteins inside the cell. Similar to phosphorylation, lysine acetylation is present in both eukaryotes and prokaryotes and modifies hundreds to thousands of proteins in cells. However, how lysine acetylation regulates protein function and whether such a mechanism is evolutionarily conserved is still poorly understood. Here, we investigated evolutionary and functional aspects of lysine acetylation by searching for acetylated lysines in a comprehensive proteomic data set from 48 phylogenetically distant bacteria. We found that lysine acetylation occurs in evolutionarily conserved lysine residues in catalytic sites of enzymes involved in central carbon metabolism. Moreover, this modification inhibits enzymatic activity. Our observations suggest that lysine acetylation is an evolutionarily conserved mechanism of controlling central metabolic activity by directly blocking enzyme active sites.« less

  12. Ancient Regulatory Role of Lysine Acetylation in Central Metabolism

    DOE PAGES

    Nakayasu, Ernesto S.; Burnet, Meagan C.; Walukiewicz, Hanna E.; ...

    2017-11-28

    ABSTRACT Lysine acetylation is a common protein post-translational modification in bacteria and eukaryotes. Unlike phosphorylation, whose functional role in signaling has been established, it is unclear what regulatory mechanism acetylation plays and whether it is conserved across evolution. By performing a proteomic analysis of 48 phylogenetically distant bacteria, we discovered conserved acetylation sites on catalytically essential lysine residues that are invariant throughout evolution. Lysine acetylation removes the residue’s charge and changes the shape of the pocket required for substrate or cofactor binding. Two-thirds of glycolytic and tricarboxylic acid (TCA) cycle enzymes are acetylated at these critical sites. Our data suggestmore » that acetylation may play a direct role in metabolic regulation by switching off enzyme activity. We propose that protein acetylation is an ancient and widespread mechanism of protein activity regulation. IMPORTANCE Post-translational modifications can regulate the activity and localization of proteins inside the cell. Similar to phosphorylation, lysine acetylation is present in both eukaryotes and prokaryotes and modifies hundreds to thousands of proteins in cells. However, how lysine acetylation regulates protein function and whether such a mechanism is evolutionarily conserved is still poorly understood. Here, we investigated evolutionary and functional aspects of lysine acetylation by searching for acetylated lysines in a comprehensive proteomic data set from 48 phylogenetically distant bacteria. We found that lysine acetylation occurs in evolutionarily conserved lysine residues in catalytic sites of enzymes involved in central carbon metabolism. Moreover, this modification inhibits enzymatic activity. Our observations suggest that lysine acetylation is an evolutionarily conserved mechanism of controlling central metabolic activity by directly blocking enzyme active sites.« less

  13. Molecular complexes of L-phenylalanine with substituted 1,4-benzoquinones in aqueous medium: Spectral and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Ganesh, K.; El-Mossalamy, E. H.; Satheshkumar, A.; Balraj, C.; Elango, K. P.

    2013-12-01

    Various spectral techniques such as UV-Vis, FT-IR, and fluorescence have been employed to investigate the charge transfer interaction of L-phenylalanine (LPA) with substituted 1,4-benzoquinones (MQ1-4). Kinetic and thermodynamic properties of the complexes were determined in aqueous medium at physiological condition (pH = 7). The interaction of MQ1-4 with L-phenylalanine (LPA) was found to proceed through the formation of donor-acceptor complex, yielding a radical anion. The stoichiometry of the complexes was determined by Jobs continuous variation method and was found to be 1:1 in all the cases. Fluorescence quenching studies showed that the interaction between the donor and the acceptors is spontaneous. The results indicated that the progressive replacement of chlorine atom (-I effect) by methoxy group (+M effect) in the quinone decreased the electron acceptor property of the quinone. The order of the experimentally measured association constant of these complexes was well supported by DFT/B3LYP calculations.

  14. N-Acetyl-L-cysteine Effects on Multi-species Oral Biofilm Formation and Bacterial Ecology

    PubMed Central

    Rasmussen, Karin; Nikrad, Julia; Reilly, Cavan; Li, Yuping; Jones, Robert S.

    2015-01-01

    Future therapies for the treatment of dental decay have to consider the importance of preserving bacterial ecology while reducing biofilm adherence to teeth. A multi-species plaque derived (MSPD) biofilm model was used to assess how concentrations of N-acetyl-L-cysteine (0, 0.1%, 1%, 10%) affected the growth of complex oral biofilms. Biofilms were grown (n=96) for 24 hours on hydroxyapatite disks in BMM media with 0.5% sucrose. Bacterial viability and biomass formation was examined on each disk using a microtiter plate reader. In addition, fluorescence microscopy and Scanning Electron Microscopy was used to qualitatively examine the effect of NAC on bacterial biofilm aggregation, extracellular components, and bacterial morphology. The total biomass was significantly decreased after exposure of both 1% (from 0.48, with a 95% confidence interval of (0.44, 0.57) to 0.35, with confidence interval (0.31, 0.38)) and 10% NAC (0.14 with confidence interval (0.11, 0.17)). 16S rRNA amplicon sequencing analysis indicated that 1% NAC reduced biofilm adherence while preserving biofilm ecology. PMID:26518358

  15. Kinetics of photoinduced electron transfer reactions of ruthenium(II) complexes and phenols, tyrosine, N-acetyl-tyrosine and tryptophan in aqueous solutions measured with modulated fluorescence spectroscopy.

    PubMed

    Nguyen, Truong X; Landgraf, Stephan; Grampp, Günter

    2017-01-01

    Photooxidation kinetics of phenol, 1-naphthol, 2-naphthol, tyrosine (TyrOH) and N-acetyl-tyrosine (AcTyrOH), tryptophan (TrpH) by ruthenium(II) polypyridyl complexes: [Ru(bpy) 3 ]Cl 2 (1), [Ru(phen) 3 ]Cl 2 (2), [Ru(bpy)(phen)(bpg)]Cl 2 (3), and [Ru(dpq) 2 (bxbg)]Cl 2 (4) where bpy is 2,2'-bipyridine, phen - 1,10-phenanthroline, bpg - bipyridine-glycoluril, dpq - dipyrido[3,2-d:2',3'-f]quinoxaline, and bxbg - bis(o-xylene)bipyridine-glycoluril are investigated. Rate constants have been measured by steady-state luminescence and phase-modulation fluorometry in aqueous solutions at different pH's. The rates for the oxidation of the phenols and phenolic aromatic amino acids spreads over a wide range from 4.2×10 6 to 6.8×10 9 M -1 s -1 , depending on pH and the nature of solutes. At pH>pK a of the quenchers, the presence of reactive species (PhO - ) in the alkaline solutions is accounted for the rapid ET rates. In the pH range between 4 and 10 (pHK a ), the ETPT mechanism becomes dominate and the rate constants are relatively low. It reveals that the important parameters that influence the quenching reaction rates, others than the driving forces ∆G 0 are the steric and hydrophobic interactions arising from the structure of the compounds. This is clearly seen in the case of photoreaction between the Ru(phen) 3 2+ complex and AcTyrOH. Phen ligands and acetyl group cause a steric effect, but strengthen the hydrophobic interactions and thus promote the quenching process. The pH-dependent equation of the observed rate constant for PhOH/AcTyrOH oxidation is expressed as a sum of rates for its protonated, neutral and deprotonated forms. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The Crystal Structure of N-Acetyl-L-glutamate Synthase from Neisseria gonorrhoeae Provides Insights into Mechanisms of Catalysis and Regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Dashuang; Sagar, Vatsala; Jin, Zhongmin

    2010-01-07

    The crystal structures of N-acetylglutamate synthase (NAGS) in the arginine biosynthetic pathway of Neisseria gonorrhoeae complexed with acetyl-CoA and with CoA plus N-acetylglutamate have been determined at 2.5- and 2.6-A resolution, respectively. The monomer consists of two separately folded domains, an amino acid kinase (AAK) domain and an N-acetyltransferase (NAT) domain connected through a 10-A linker. The monomers assemble into a hexameric ring that consists of a trimer of dimers with 32-point symmetry, inner and outer ring diameters of 20 and 100A, respectively, and a height of 110A(.) Each AAK domain interacts with the cognate domains of two adjacent monomersmore » across two 2-fold symmetry axes and with the NAT domain from a second monomer of the adjacent dimer in the ring. The catalytic sites are located within the NAT domains. Three active site residues, Arg316, Arg425, and Ser427, anchor N-acetylglutamate in a position at the active site to form hydrogen bond interactions to the main chain nitrogen atoms of Cys356 and Leu314, and hydrophobic interactions to the side chains of Leu313 and Leu314. The mode of binding of acetyl-CoA and CoA is similar to other NAT family proteins. The AAK domain, although catalytically inactive, appears to bind arginine. This is the first reported crystal structure of any NAGS, and it provides insights into the catalytic function and arginine regulation of NAGS enzymes.« less

  17. Biotransformation and bioactivation reactions - 2015 literature highlights.

    PubMed

    Baillie, Thomas A; Dalvie, Deepak; Rietjens, Ivonne M C M; Cyrus Khojasteh, S

    2016-05-01

    Since 1972, Drug Metabolism Reviews has been recognized as one of the principal resources for researchers in pharmacological, pharmaceutical and toxicological fields to keep abreast of advances in drug metabolism science in academia and the pharmaceutical industry. With a distinguished list of authors and editors, the journal covers topics ranging from relatively mature fields, such as cytochrome P450 enzymes, to a variety of emerging fields. We hope to continue this tradition with the current compendium of mini-reviews that highlight novel biotransformation processes that were published during the past year. Each review begins with a summary of the article followed by our comments on novel aspects of the research and their biological implications. This collection of highlights is not intended to be exhaustive, but rather to be illustrative of recent research that provides new insights or approaches that advance the field of drug metabolism. Abbreviations NAPQI N-acetyl-p-benzoquinoneimine ALDH aldehyde dehydrogenase AO aldehyde oxidase AKR aldo-keto reductase CES carboxylesterase CSB cystathionine β-synthase CSE cystathionine γ-lyase P450 cytochrome P450 DHPO 2,3-dihydropyridin-4-one ESI electrospray FMO flavin monooxygenase GSH glutathione GSSG glutathione disulfide ICPMS inductively coupled plasma mass spectrometry i.p. intraperitoneal MDR multidrug-resistant NNAL 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol NNK 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone oaTOF orthogonal acceleration time-of-flight PBK physiologically based kinetic PCP pentachlorophenol SDR short-chain dehydrogenase/reductase SULT sulfotransferase TB tuberculosis.

  18. Effects of N-acetyl cysteine on cognitive function in bipolar disorder.

    PubMed

    Dean, Olivia M; Bush, Ashley I; Copolov, David L; Kohlmann, Kristy; Jeavons, Susan; Schapkaitz, Ian; Anderson-Hunt, Murray; Berk, Michael

    2012-10-01

    Bipolar disorder is characterized by progressive changes in cognition with declines in executive functioning, memory and sustained attention. Current pharmacotherapies for bipolar disorder target mood symptoms but have not addressed these cognitive changes resulting in euthymic individuals who still experience cognitive deficits. N-acetyl cysteine (NAC) has been shown to have effects on antioxidant status, glutamate transmission, inflammation and neurogenesis. Adjunctive treatment with NAC improves the symptoms experienced by those with bipolar disorder, particularly depression, and it was hypothesized that cognition may also be improved following NAC treatment. As part of a larger randomized, double-blind, placebo-controlled trial, participants in the current report were tested at baseline and 6 months to assess changes in cognitive function following either 2000 mg of NAC daily or placebo. This study failed to find changes in cognitive function following treatment with NAC compared to placebo. While an important pilot study, this study had a small sample size and included a limited battery of cognitive tests. Further investigations on the effects of NAC on cognitive performance in bipolar disorder are required. © 2012 The Authors. Psychiatry and Clinical Neurosciences © 2012 Japanese Society of Psychiatry and Neurology.

  19. Crystal Structure of TDP-Fucosamine Acetyl Transferase (WECD) from Escherichia Coli, an Enzyme Required for Enterobacterial Common Antigen Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung,M.; Rangarajan, E.; Munger, C.

    2006-01-01

    Enterobacterial common antigen (ECA) is a polysaccharide found on the outer membrane of virtually all gram-negative enteric bacteria and consists of three sugars, N-acetyl-D-glucosamine, N-acetyl-D-mannosaminuronic acid, and 4-acetamido-4,6-dideoxy-D-galactose, organized into trisaccharide repeating units having the sequence {yields}(3)-{alpha}-D-Fuc4NAc-(1{yields}4)-{beta}-D-ManNAcA-(1{yields}4)-{alpha}-D-GlcNAc-(1{yields}). While the precise function of ECA is unknown, it has been linked to the resistance of Shiga-toxin-producing Escherichia coli (STEC) O157:H7 to organic acids and the resistance of Salmonella enterica to bile salts. The final step in the synthesis of 4-acetamido-4,6-dideoxy-D-galactose, the acetyl-coenzyme A (CoA)-dependent acetylation of the 4-amino group, is carried out by TDP-fucosamine acetyltransferase (WecD). We have determined the crystal structuremore » of WecD in apo form at a 1.95-Angstroms resolution and bound to acetyl-CoA at a 1.66-Angstroms resolution. WecD is a dimeric enzyme, with each monomer adopting the GNAT N-acetyltransferase fold, common to a number of enzymes involved in acetylation of histones, aminoglycoside antibiotics, serotonin, and sugars. The crystal structure of WecD, however, represents the first structure of a GNAT family member that acts on nucleotide sugars. Based on this cocrystal structure, we have used flexible docking to generate a WecD-bound model of the acetyl-CoA-TDP-fucosamine tetrahedral intermediate, representing the structure during acetyl transfer. Our structural data show that WecD does not possess a residue that directly functions as a catalytic base, although Tyr208 is well positioned to function as a general acid by protonating the thiolate anion of coenzyme A.« less

  20. Global analysis of lysine acetylation in strawberry leaves.

    PubMed

    Fang, Xianping; Chen, Wenyue; Zhao, Yun; Ruan, Songlin; Zhang, Hengmu; Yan, Chengqi; Jin, Liang; Cao, Lingling; Zhu, Jun; Ma, Huasheng; Cheng, Zhongyi

    2015-01-01

    Protein lysine acetylation is a reversible and dynamic post-translational modification. It plays an important role in regulating diverse cellular processes including chromatin dynamic, metabolic pathways, and transcription in both prokaryotes and eukaryotes. Although studies of lysine acetylome in plants have been reported, the throughput was not high enough, hindering the deep understanding of lysine acetylation in plant physiology and pathology. In this study, taking advantages of anti-acetyllysine-based enrichment and high-sensitive-mass spectrometer, we applied an integrated proteomic approach to comprehensively investigate lysine acetylome in strawberry. In total, we identified 1392 acetylation sites in 684 proteins, representing the largest dataset of acetylome in plants to date. To reveal the functional impacts of lysine acetylation in strawberry, intensive bioinformatic analysis was performed. The results significantly expanded our current understanding of plant acetylome and demonstrated that lysine acetylation is involved in multiple cellular metabolism and cellular processes. More interestingly, nearly 50% of all acetylated proteins identified in this work were localized in chloroplast and the vital role of lysine acetylation in photosynthesis was also revealed. Taken together, this study not only established the most extensive lysine acetylome in plants to date, but also systematically suggests the significant and unique roles of lysine acetylation in plants.

  1. Chiroptical Properties of Imines Derived from R-(+)-Norbornenone: The Role of Electronegativity Differences.

    PubMed

    Wiberg, Kenneth B

    2017-11-02

    To allow a comparison with the specific rotations of R-(+)-5-methylenenorbornene (1) and R-(+)-norbornenone (2) we performed calculations at the LC-wPBE/aug-cc-pVTZ level for the imines (5a and 5b) derived from norbornenone and also for their protonated derivative (6). In accord with our results for simpler systems, the specific rotations increase in the order of 1 < 5 < 2 ≈ 6. In addition, the specific rotation of the protonated ketone was calculated and found to be considerably larger than that for 2 or 6. These rotations were found to be linearly dependent on the Hirshfeld charges at the carbon of the exocyclic double bond. This leads to the conclusion that charge transfer from the endocyclic double bond to the π* MO of the exocyclic double bond is an important component of the process that leads to the optical activity of these compounds.

  2. Evidence for the role of oxidative stress in the acetylation of histone H3 by ethanol in rat hepatocytes

    PubMed Central

    Choudhury, Mahua; Park, Pil-Hoon; Jackson, Daniel; Shukla, Shivendra D.

    2010-01-01

    The relationship between ethanol induced oxidative stress and acetylation of histone H3 at lysine 9 (H3AcK9) remains unknown and was therefore investigated in primary cultures of rat hepatocytes. Cells were treated with ethanol and a select group of pharmacological agents and the status of H3AcK9 and reactive oxygen species (ROS) were monitored. When hepatocytes were exposed to ethanol (50 mM, 24 hr) in the presence of N-acetyl cystein (ROS reducer) or dietary antioxidants (quercetin, resveratrol), or NADPH oxidase inhibitor apocynin, ethanol induced increases in ROS and H3AcK9, both were significantly reduced. On the other hand, l-buthionine-sulfoximine (ROS inducer) and inhibitor of mitochondrial complex I (rotenone) and III (antimycin) increased ethanol induced H3AcK9 (p<0.01). Oxidative stress also affected ethanol induced alcohol dehydrogenase 1 (ADH1) mRNA expression. These results demonstrate for the first time that oxidative stress is involved in the ethanol induced histone H3 acetylation in hepatocytes. PMID:20705415

  3. Evidence for the role of oxidative stress in the acetylation of histone H3 by ethanol in rat hepatocytes.

    PubMed

    Choudhury, Mahua; Park, Pil-Hoon; Jackson, Daniel; Shukla, Shivendra D

    2010-09-01

    The relationship between ethanol-induced oxidative stress and acetylation of histone H3 at lysine 9 (H3AcK9) remains unknown and was therefore investigated in primary cultures of rat hepatocytes. Cells were treated with ethanol, and a select group of pharmacological agents and the status of H3AcK9 and reactive oxygen species (ROS) were monitored. Pretreatment of hepatocytes with N-acetyl cystein (ROS reducer), or dietary antioxidants (quercetin, reserveratrol), or NADPH (reduced nicotinamide adenine dinucleotide phosphate) oxidase inhibitor apocynin, significantly reduced ethanol (50 mM, 24 h) induced increases in ROS and H3AcK9. In contrast, l-buthionine sulfoximine (ROS inducer) and inhibitor of mitochondrial complexes I (rotenone) and III (antimycin) increased ethanol-induced H3AcK9 (P<.01). Oxidative stress also affected ethanol-induced alcohol dehydrogenase 1 mRNA expression. These results demonstrate for the first time that oxidative stress is involved in the ethanol-induced histone H3 acetylation in hepatocytes. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Quantification of N-acetyl- and N-glycolylneuraminic acids by a stable isotope dilution assay using high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Allevi, Pietro; Femia, Eti Alessandra; Costa, Maria Letizia; Cazzola, Roberta; Anastasia, Mario

    2008-11-28

    The present report describes a method for the quantification of N-acetyl- and N-glycolylneuraminic acids without any derivatization, using their (13)C(3)-isotopologues as internal standards and a C(18) reversed-phase column modified by decylboronic acid which allows for the first time a complete chromatographic separation between the two analytes. The method is based on high-performance liquid chromatographic coupled with electrospray ion-trap mass spectrometry. The limit of quantification of the method is 0.1mg/L (2.0ng on column) for both analytes. The calibration curves are linear for both sialic acids over the range of 0.1-80mg/L (2.0-1600ng on column) with a correlation coefficient greater than 0.997. The proposed method was applied to the quantitative determination of sialic acids released from fetuin as a model of glycoproteins.

  5. STABILITY OF HEMOGLOBIN AND ALBUMIN ADDUCTS OF BENZENE OXIDE AND 1,4-BENZOQUINONE AFTER ADMINISTRATION OF BENZENE TO F344 RATS

    EPA Science Inventory

    The stability of cysteinyl adducts of benzene oxide (BO) and mono-S-substituted cysteinyl adducts of 1,4-benzoquinone (1,4-BQ) was investigated in both hemoglobin (Hb) and albumin (Alb) following administration of a single oral dose of 400 mg [U-14C/13C6]benzene/kg body weight ...

  6. Pediatric oral formulation of dendrimer-N-acetyl-l-cysteine conjugates for the treatment of neuroinflammation.

    PubMed

    Yellepeddi, Venkata K; Mohammadpour, Raziye; Kambhampati, Siva P; Sayre, Casey; Mishra, Manoj K; Kannan, Rangaramanujam M; Ghandehari, Hamidreza

    2018-04-20

    N-Acetyl-l-cysteine (NAC) commonly used as an antidote in acetaminophen poisoning has shown promise in the treatment of neurological disorders such as cerebral palsy (CP). However, NAC suffers from drawbacks such as poor oral bioavailability and suboptimal blood-brain-barrier (BBB) permeability limiting its clinical success. It was previously demonstrated that intravenous administration of dendrimer-NAC (D-NAC) conjugates have shown significant promise in the targeted treatment of neuroinflammation, in multiple preclinical models. Development of an oral formulation of D-NAC may open new administrative routes for this compound. Here, we report the gastrointestinal stability, in vitro transepithelial permeability, and in vivo oral absorption and pharmacokinetics in rats of a pediatric formulation of D-NAC containing Capmul MCM (glycerol monocaprylate) as a penetration enhancer. D-NAC was stable for 6 h in all five simulated gastrointestinal fluids with no signs of chemical degradation. The apparent permeability (P app ) of D-NAC increased 9-fold in the formulation containing Capmul. The area under the curve [AUC] 0-∞ of D-NAC with Capmul increased by 47% when compared to D-NAC alone. These results indicate that an oral pediatric formulation containing D-NAC and Capmul can be an effective option for the treatment of neuroinflammation. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Post-translational Acetylation of MbtA Modulates Mycobacterial Siderophore Biosynthesis*

    PubMed Central

    Vergnolle, Olivia; Xu, Hua; Tufariello, JoAnn M.; Favrot, Lorenza; Malek, Adel A.; Jacobs, William R.; Blanchard, John S.

    2016-01-01

    Iron is an essential element for life, but its soluble form is scarce in the environment and is rarer in the human body. Mtb (Mycobacterium tuberculosis) produces two aryl-capped siderophores, mycobactin (MBT) and carboxymycobactin (cMBT), to chelate intracellular iron. The adenylating enzyme MbtA catalyzes the first step of mycobactin biosynthesis in two half-reactions: activation of the salicylic acid as an acyl-adenylate and ligation onto the acyl carrier protein (ACP) domain of MbtB to form covalently salicylated MbtB-ACP. We report the first apo-MbtA structure from Mycobacterium smegmatis at 2.3 Å. We demonstrate here that MbtA activity can be reversibly, post-translationally regulated by acetylation. Indeed the mycobacterial Pat (protein lysine acetyltransferase), Rv0998, specifically acetylates MbtA on lysine 546, in a cAMP-dependent manner, leading to enzyme inhibition. MbtA acetylation can be reversed by the NAD+-dependent DAc (deacetyltransferase), Rv1151c. Deletion of Pat and DAc genes in Mtb revealed distinct phenotypes for strains lacking one or the other gene at low pH and limiting iron conditions. This study establishes a direct connection between the reversible acetylation system Pat/DAc and the ability of Mtb to adapt in limited iron conditions, which is critical for mycobacterial infection. PMID:27566542

  8. Expression, purification, and characterization of human acetyl-CoA carboxylase 2.

    PubMed

    Kim, Ki Won; Yamane, Harvey; Zondlo, James; Busby, James; Wang, Minghan

    2007-05-01

    The full-length human acetyl-CoA carboxylase 1 (ACC1) was expressed and purified to homogeneity by two separate groups (Y.G. Gu, M. Weitzberg, R.F. Clark, X. Xu, Q. Li, T. Zhang, T.M. Hansen, G. Liu, Z. Xin, X. Wang, T. McNally, H. Camp, B.A. Beutel, H.I. Sham, Synthesis and structure-activity relationships of N-{3-[2-(4-alkoxyphenoxy)thiazol-5-yl]-1-methylprop-2-ynyl}carboxy derivatives as selective acetyl-CoA carboxylase 2 inhibitors, J. Med. Chem. 49 (2006) 3770-3773; D. Cheng, C.H. Chu, L. Chen, J.N. Feder, G.A. Mintier, Y. Wu, J.W. Cook, M.R. Harpel, G.A. Locke, Y. An, J.K. Tamura, Expression, purification, and characterization of human and rat acetyl coenzyme A carboxylase (ACC) isozymes, Protein Expr. Purif., in press). However, neither group was successful in expressing the full-length ACC2 due to issues of solubility and expression levels. The two versions of recombinant human ACC2 in these reports are either truncated (lacking 1-148 aa) or have the N-terminal 275 aa replaced with the corresponding ACC1 region (1-133 aa). Despite the fact that ACC activity was observed in both cases, these constructs are not ideal because the N-terminal region of ACC2 could be important for the correct folding of the catalytic domains. Here, we report the high level expression and purification of full-length human ACC2 that lacks only the N-terminal membrane attachment sequence (1-20 and 1-26 aa, respectively) in Trichoplusia ni cells. In addition, we developed a sensitive HPLC assay to analyze the kinetic parameters of the recombinant enzyme. The recombinant enzyme is a soluble protein and has a K(m) value of 2 microM for acetyl-CoA, almost 30-fold lower than that reported for the truncated human ACC2. Our recombinant enzyme also has a lower K(m) value for ATP (K(m)=52 microM). Although this difference could be ascribed to different assay conditions, our data suggest that the longer human ACC2 produced in our system may have higher affinities for the substrates and could

  9. Functional Characterization of ATM Kinase Using Acetylation-Specific Antibodies.

    PubMed

    Sun, Yingli; Du, Fengxia

    2017-01-01

    The activation of ATM is critical in the DNA double strand breaks repair pathway. Acetylation of ATM by Tip60 histone acetyltransferase (HAT) plays a key role in the activation of ATM kinase activity in response to DNA damage. ATM forms a stable complex with Tip60 through the FATC domain of ATM. Tip60 acetylates lysine3016 of ATM, and this acetylation induces the activation of ATM. Several techniques are included in the study of ATM acetylation by Tip60, such as in vitro kinase assay, systematic mutagenesis, western blots. Here, we describe how to study the acetylation of ATM using acetylation-specific antibodies.

  10. Nudged elastic band method and density functional theory calculation for finding a local minimum energy pathway of p-benzoquinone and phenol fragmentation in mass spectrometry.

    PubMed

    Sugimura, Natsuhiko; Igarashi, Yoko; Aoyama, Reiko; Shibue, Toshimichi

    2017-02-01

    Analysis of the fragmentation pathways of molecules in mass spectrometry gives a fundamental insight into gas-phase ion chemistry. However, the conventional intrinsic reaction coordinates method requires knowledge of the transition states of ion structures in the fragmentation pathways. Herein, we use the nudged elastic band method, using only the initial and final state ion structures in the fragmentation pathways, and report the advantages and limitations of the method. We found a minimum energy path of p-benzoquinone ion fragmentation with two saddle points and one intermediate structure. The primary energy barrier, which corresponded to the cleavage of the C-C bond adjacent to the CO group, was calculated to be 1.50 eV. An additional energy barrier, which corresponded to the cleavage of the CO group, was calculated to be 0.68 eV. We also found an energy barrier of 3.00 eV, which was the rate determining step of the keto-enol tautomerization in CO elimination from the molecular ion of phenol. The nudged elastic band method allowed the determination of a minimum energy path using only the initial and final state ion structures in the fragmentation pathways, and it provided faster than the conventional intrinsic reaction coordinates method. In addition, this method was found to be effective in the analysis of the charge structures of the molecules during the fragmentation in mass spectrometry.

  11. Acetyl diacylglycerol produced by modified camelina (Camelina sativa)

    USDA-ARS?s Scientific Manuscript database

    Acetyl diacylglyceride (Acetyl-TAG) is a component of a commercial product, ACETEM, manufactured by transesterification reaction of triglycerides, glycerol, and triacetin or by acetylation of mono- and diglycerides with acetic acid anhydride. ACETEM is commonly used as foaming agents and coatings in...

  12. Purification and characterization of an N alpha-acetyltransferase from Saccharomyces cerevisiae.

    PubMed

    Lee, F J; Lin, L W; Smith, J A

    1988-10-15

    N alpha-Acetyltransferase, which catalyzes the transfer of an acetyl group from acetyl coenzyme A to the alpha-NH2 group of proteins and peptides, was isolated from Saccharomyces cerevisiae and demonstrated by protein sequence analysis to be NH2-terminally blocked. The enzyme was purified 4,600-fold to apparent homogeneity by successive purification steps using DEAE-Sepharose, hydroxylapatite, DE52 cellulose, and Affi-Gel blue. The Mr of the native enzyme was estimated to be 180,000 +/- 10,000 by gel filtration chromatography, and the Mr of each subunit was estimated to be 95,000 +/- 2,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has a pH optimum near 9.0, and its pI is 4.3 as determined by chromatofocusing on Mono-P. The enzyme catalyzed the transfer of an acetyl group to various synthetic peptides, including human adrenocorticotropic hormone (ACTH) (1-24) and its [Phe2] analogue, yeast alcohol dehydrogenase I (1-24), yeast alcohol dehydrogenase II (1-24), and human superoxide dismutase (1-24). These peptides contain either Ser or Ala as NH2-terminal residues which together with Met are the most commonly acetylated NH2-terminal residues (Persson, B., Flinta, C., von Heijne, G., and Jornvall, H. (1985) Eur. J. Biochem. 152, 523-527). Yeast enolase, containing a free NH2-terminal Ala residue, is known not to be N alpha-acetylated in vivo (Chin, C. C. Q., Brewer, J. M., and Wold, F. (1981) J. Biol. Chem. 256, 1377-1384), and enolase (1-24), a synthetic peptide mimicking the protein's NH2 terminus, was not acetylated in vitro by yeast acetyltransferase. The enzyme did not catalyze the N alpha-acetylation of other synthetic peptides including ACTH(11-24), ACTH(7-38), ACTH(18-39), human beta-endorphin, yeast superoxide dismutase (1-24). Each of these peptides has an NH2-terminal residue which is rarely acetylated in proteins (Lys, Phe, Arg, Tyr, Val, respectively). Among a series of divalent cations, Cu2+ and Zn2+ were demonstrated to be

  13. Single nucleotide polymorphism coverage and inference of N-acetyltransferase-2 acetylator phenotypes in wordwide population groups.

    PubMed

    Suarez-Kurtz, Guilherme; Fuchshuber-Moraes, Mateus; Struchiner, Claudio J; Parra, Esteban J

    2016-08-01

    Several algorithms have been proposed to reduce the genotyping effort and cost, while retaining the accuracy of N-acetyltransferase-2 (NAT2) phenotype prediction. Data from the 1000 Genomes (1KG) project and an admixed cohort of Black Brazilians were used to assess the accuracy of NAT2 phenotype prediction using algorithms based on paired single nucleotide polymorphisms (SNPs) (rs1041983 and rs1801280) or a tag SNP (rs1495741). NAT2 haplotypes comprising SNPs rs1801279, rs1041983, rs1801280, rs1799929, rs1799930, rs1208 and rs1799931 were assigned according to the arylamine N-acetyltransferases database. Contingency tables were used to visualize the agreement between the NAT2 acetylator phenotypes on the basis of these haplotypes versus phenotypes inferred by the prediction algorithms. The paired and tag SNP algorithms provided more than 96% agreement with the 7-SNP derived phenotypes in Europeans, East Asians, South Asians and Admixed Americans, but discordance of phenotype prediction occurred in 30.2 and 24.8% 1KG Africans and in 14.4 and 18.6% Black Brazilians, respectively. Paired SNP panel misclassification occurs in carriers of NATs haplotypes *13A (282T alone), *12B (282T and 803G), *6B (590A alone) and *14A (191A alone), whereas haplotype *14, defined by the 191A allele, is the major culprit of misclassification by the tag allele. Both the paired SNP and the tag SNP algorithms may be used, with economy of scale, to infer NAT2 acetylator phenotypes, including the ultra-slow phenotype, in European, East Asian, South Asian and American populations represented in the 1KG cohort. Both algorithms, however, perform poorly in populations of predominant African descent, including admixed African-Americans, African Caribbeans and Black Brazilians.

  14. Fluoroalkylated α,β-unsaturated imines as synthons for the preparation of fluorinated triazinane-2,4-diones and dihydropyrimidin-2(1H)-ones.

    PubMed

    Fernández de Trocóniz, Guillermo; Ochoa de Retana, Ana M; Rubiales, Gloria; Palacios, Francisco

    2014-06-06

    A regioselective addition of isocyanates to fluoroalkylated α,β-unsaturated imines 1 is described. Fluoroalkyl-substituted triazinane-2,4-diones 4 are obtained by the reaction of phenyl isocyanate with fluorinated imines 1, while fluorinated dihydropyridin-2(1H)-ones 7 are prepared when tosyl isocyanate is used. Tetrahydro-pyridin-2(1H)-one 10 is obtained by catalytic reduction of dihydropyridin-2(1H)-one 7. Computational studies are performed to explain the different behaviors of both isocyanates and the mechanisms of the processes.

  15. Intramolecular hydrogen-bond activation for the addition of nucleophilic imines: 2-hydroxybenzophenone as a chemical auxiliary.

    PubMed

    Choubane, Houcine; Garrido-Castro, Alberto F; Alvarado, Cuauhtemoc; Martín-Somer, Ana; Guerrero-Corella, Andrea; Daaou, Mortada; Díaz-Tendero, Sergio; Carmen Maestro, M; Fraile, Alberto; Alemán, José

    2018-03-29

    The addition of nucleophilic imines, using 2-hydroxybenzophenone as a chemical auxiliary, is presented. An intramolecular six-membered ring via hydrogen bonding that enhances the reactivity and selectivity is the key of this strategy, which is supported by DFT calculations and experimental trials.

  16. Enantioselective Reduction of Ketones and Imines Catalyzed by (CN-Box)Re(V)-Oxo Complexes

    PubMed Central

    Nolin, Kristine A.; Ahn, Richard W.; Kobayashi, Yusuke; Kennedy-Smith, Joshua J.

    2012-01-01

    The development and application of chiral, non-racemic Re(V)-oxo complexes to the enantioselective reduction of prochiral ketones is described. In addition to the enantioselective reduction of prochiral ketones, we report the application of these complexes to (1) a tandem Meyer-Schuster rearrangement/reduction to access enantioenriched allylic alcohols and (2) the enantioselective reduction of imines. PMID:20623567

  17. The isomerization of allylrhodium intermediates in the rhodium-catalyzed nucleophilic allylation of cyclic imines.

    PubMed

    Hepburn, Hamish B; Lam, Hon Wai

    2014-10-20

    Allylrhodium species generated from potassium allyltrifluoroborates can undergo isomerization by 1,4-rhodium(I) migration to give more complex isomers, which then react with cyclic imines to provide products with up to three new stereochemical elements. High enantioselectivities are obtained using chiral diene-rhodium complexes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Identification of zinc finger transcription factor EGR2 as a novel acetylated protein.

    PubMed

    Noritsugu, Kota; Ito, Akihiro; Nakao, Yoichi; Yoshida, Minoru

    2017-08-05

    EGR2 is a zinc finger transcription factor that regulates myelination in the peripheral nervous system and T cell anergy. The transcriptional activity of EGR2 is known to be regulated by its co-activators and/or co-repressors. Although the activity of transcription factors is generally regulated not only by interactions with co-regulators but also posttranslational modifications including acetylation, little is known about posttranslational modifications of EGR2. Here we show that EGR2 is a novel acetylated protein. Through immunoblotting analyses using an antibody that specifically recognizes the acetylated form of EGR2, CBP and p300 were identified as acetyltransferases, while HDAC6, 10 and SIRT1 were identified as deacetylases of EGR2. Although the NuRD complex containing HDAC1 and HDAC2 is known to associate with EGR2, the present study suggests that acetylation of EGR2 is regulated independently of NuRD. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Reduced hippocampal N-acetyl-aspartate (NAA) as a biomarker for overweight.

    PubMed

    Coplan, Jeremy D; Fathy, Hassan M; Abdallah, Chadi G; Ragab, Sherif A; Kral, John G; Mao, Xiangling; Shungu, Dikoma C; Mathew, Sanjay J

    2014-01-01

    We previously demonstrated an inverse relationship between both dentate gyrus neurogenesis - a form of neuroplasticity - and expression of the antiapoptotic gene marker, BCL-2 and adult macaque body weight. We therefore explored whether a similar inverse correlation existed in humans between body mass index (BMI) and hippocampal N-acetyl-aspartate (NAA), a marker of neuronal integrity and putatively, neuroplasticity. We also studied the relationship of a potentially neurotoxic process, worry, to hippocampal NAA in patients with generalized anxiety disorder (GAD) and control subjects (CS). We combined two previously studied cohorts of GAD and control subjects. Using proton magnetic resonance spectroscopy imaging ((1)H MRSI) in medication-free patients with GAD (n = 29) and a matched healthy control group (n = 22), we determined hippocampal concentrations of (1) NAA (2) choline containing compounds (CHO), and (3) Creatine + phosphocreatine (CR). Data were combined from 1.5 T and 3 T scans by converting values from each cohort to z-scores. Overweight and GAD diagnosis were used as categorical variables while the Penn State Worry Questionnaire (PSWQ) and Anxiety Sensitivity Index (ASI) were used as dependent variables. Overweight subjects (BMI ≥ 25) exhibited lower NAA levels in the hippocampus than normal-weight subjects (BMI < 25) (partial Eta-squared = 0.14) controlling for age, sex and psychiatric diagnosis, and the effect was significant for the right hippocampus in both GAD patients and control subjects. An inverse linear correlation was noted in all subjects between right hippocampal NAA and BMI. High scores on the PSWQ predicted low hippocampal NAA and CR. Both BMI and worry were independent inverse predictors of hippocampal NAA. Overweight was associated with reduced NAA concentrations in the hippocampus with a strong effect size. Future mechanistic studies are warranted.

  20. Reduced hippocampal N-acetyl-aspartate (NAA) as a biomarker for overweight☆

    PubMed Central

    Coplan, Jeremy D.; Fathy, Hassan M.; Abdallah, Chadi G.; Ragab, Sherif A.; Kral, John G.; Mao, Xiangling; Shungu, Dikoma C.; Mathew, Sanjay J.

    2014-01-01

    Objective We previously demonstrated an inverse relationship between both dentate gyrus neurogenesis – a form of neuroplasticity – and expression of the antiapoptotic gene marker, BCL-2 and adult macaque body weight. We therefore explored whether a similar inverse correlation existed in humans between body mass index (BMI) and hippocampal N-acetyl-aspartate (NAA), a marker of neuronal integrity and putatively, neuroplasticity. We also studied the relationship of a potentially neurotoxic process, worry, to hippocampal NAA in patients with generalized anxiety disorder (GAD) and control subjects (CS). Methods We combined two previously studied cohorts of GAD and control subjects. Using proton magnetic resonance spectroscopy imaging (1H MRSI) in medication-free patients with GAD (n = 29) and a matched healthy control group (n = 22), we determined hippocampal concentrations of (1) NAA (2) choline containing compounds (CHO), and (3) Creatine + phosphocreatine (CR). Data were combined from 1.5 T and 3 T scans by converting values from each cohort to z-scores. Overweight and GAD diagnosis were used as categorical variables while the Penn State Worry Questionnaire (PSWQ) and Anxiety Sensitivity Index (ASI) were used as dependent variables. Results Overweight subjects (BMI ≥ 25) exhibited lower NAA levels in the hippocampus than normal-weight subjects (BMI < 25) (partial Eta-squared = 0.14) controlling for age, sex and psychiatric diagnosis, and the effect was significant for the right hippocampus in both GAD patients and control subjects. An inverse linear correlation was noted in all subjects between right hippocampal NAA and BMI. High scores on the PSWQ predicted low hippocampal NAA and CR. Both BMI and worry were independent inverse predictors of hippocampal NAA. Conclusion Overweight was associated with reduced NAA concentrations in the hippocampus with a strong effect size. Future mechanistic studies are warranted. PMID:24501701

  1. Acetylation Suppresses the Proapoptotic Activity of GD3 Ganglioside

    PubMed Central

    Malisan, Florence; Franchi, Luigi; Tomassini, Barbara; Ventura, Natascia; Condò, Ivano; Rippo, Maria Rita; Rufini, Alessandra; Liberati, Laura; Nachtigall, Claudia; Kniep, Bernhard; Testi, Roberto

    2002-01-01

    GD3 synthase is rapidly activated in different cell types after specific apoptotic stimuli. De novo synthesized GD3 accumulates and contributes to the apoptotic program by relocating to mitochondrial membranes and inducing the release of apoptogenic factors. We found that sialic acid acetylation suppresses the proapoptotic activity of GD3. In fact, unlike GD3, 9-O-acetyl-GD3 is completely ineffective in inducing cytochrome c release and caspase-9 activation on isolated mitochondria and fails to induce the collapse of mitochondrial transmembrane potential and cellular apoptosis. Moreover, cells which are resistant to the overexpression of the GD3 synthase, actively convert de novo synthesized GD3 to 9-O-acetyl-GD3. The coexpression of GD3 synthase with a viral 9-O-acetyl esterase, which prevents 9-O-acetyl-GD3 accumulation, reconstitutes GD3 responsiveness and apoptosis. Finally, the expression of the 9-O-acetyl esterase is sufficient to induce apoptosis of glioblastomas which express high levels of 9-O-acetyl-GD3. Thus, sialic acid acetylation critically controls the proapoptotic activity of GD3. PMID:12486096

  2. Separation and characterization of acetyl and non-acetyl hemicelluloses of Arundo donax by ammonium sulfate precipitation.

    PubMed

    Peng, Feng; Bian, Jing; Peng, Pai; Xiao, Huan; Ren, Jun-Li; Xu, Feng; Sun, Run-Cang

    2012-04-25

    Delignified Arundo donax was sequentially extracted with DMSO, saturated barium hydroxide, and 1.0 M aqueous NaOH solution. The yields of the soluble fractions were 10.2, 6.7, and 10.0% (w/w), respectively, of the dry Arundo donax materials. The DMSO-, Ba(OH)(2)- and NaOH-soluble hemicellulosic fractions were further fractionated into two subfractions by gradient 50% and 80% saturation ammonium sulfate precipitation, respectively. Monosaccharide, molecular weight, FT-IR, and 1D ((1)H and (13)C) and 2D (HSQC) NMR analysis revealed the differences in structural characteristics and physicochemical properties among the subfractions. The subfractions precipitated with 50% saturation ammonium sulfate had lower arabinose/xylose and glucuronic acid/xylose ratios but had higher molecular weight than those of the subfractions precipitated by 80% saturation ammonium sulfate. FT-IR and NMR analysis revealed that the highly acetylated DMSO-soluble hemicellulosic subfraction (H(D50)) could be precipitated with a relatively lower concentration of 50% saturated ammonium sulfate, and thus the gradient ammonium sulfate precipitation technique could discriminate acetyl and non-acetyl hemicelluloses. It was found that the DMSO-soluble subfraction H(D50) precipitated by 50% saturated ammonium sulfate mainly consisted of poorly substituted O-acetyl arabino-4-O-methylglucurono xylan with terminal units of arabinose linked on position 3 of xylose, 4-O-methylglucuronic acid residues linked on position 2 of the xylan bone, and the acetyl groups (degree of acetylation, 37%) linked on position 2 or 3. The DMSO-soluble subfraction H(D80) precipitated by 80% saturated ammonium sulfate was mainly composed of highly substituted arabino-4-O-methylglucurono xylan and β-d-glucan.

  3. Expression of mung bean pectin acetyl esterase in potato tubers: effect on acetylation of cell wall polymers and tuber mechanical properties.

    PubMed

    Orfila, Caroline; Dal Degan, Florence; Jørgensen, Bodil; Scheller, Henrik Vibe; Ray, Peter M; Ulvskov, Peter

    2012-07-01

    A mung bean (Vigna radiata) pectin acetyl esterase (CAA67728) was heterologously expressed in tubers of potato (Solanum tuberosum) under the control of the granule-bound starch synthase promoter or the patatin promoter in order to probe the significance of O-acetylation on cell wall and tissue properties. The recombinant tubers showed no apparent macroscopic phenotype. The enzyme was recovered from transgenic tubers using a high ionic strength buffer and the extract was active against a range of pectic substrates. Partial in vivo de-acetylation of cell wall polysaccharides occurred in the transformants, as shown by a 39% decrease in the degree of acetylation (DA) of tuber cell wall material (CWM). Treatment of CWM using a combination of endo-polygalacturonase and pectin methyl esterase extracted more pectin polymers from the transformed tissue compared to wild type. The largest effect of the pectin acetyl esterase (68% decrease in DA) was seen in the residue from this extraction, suggesting that the enzyme is preferentially active on acetylated pectin that is tightly bound to the cell wall. The effects of acetylation on tuber mechanical properties were investigated by tests of failure under compression and by determination of viscoelastic relaxation spectra. These tests suggested that de-acetylation resulted in a stiffer tuber tissue and a stronger cell wall matrix, as a result of changes to a rapidly relaxing viscoelastic component. These results are discussed in relation to the role of pectin acetylation in primary cell walls and its implications for industrial uses of potato fibres.

  4. A novel o-aminophenol oxidase responsible for formation of the phenoxazinone chromophore of grixazone.

    PubMed

    Suzuki, Hirokazu; Furusho, Yasuhide; Higashi, Tatsuichiro; Ohnishi, Yasuo; Horinouchi, Sueharu

    2006-01-13

    Grixazone contains a phenoxazinone chromophore and is a secondary metabolite produced by Streptomyces griseus. In the grixazone biosynthesis gene cluster, griF (encoding a tyrosinase homolog) and griE (encoding a protein similar to copper chaperons for tyrosinases) are encoded. An expression study of GriE and GriF in Escherichia coli showed that GriE activated GriF by transferring copper ions to GriF, as has been observed for a Streptomyces melanogenesis system in which the MelC1 copper chaperon transfers copper ions to MelC2 tyrosinase. In contrast with tyrosinases, GriF showed no monophenolase activity, although it oxidized various o-aminophenols as preferable substrates rather than catechol-type substrates. Deletion of the griEF locus on the chromosome resulted in accumulation of 3-amino-4-hydroxybenzaldehyde (3,4-AHBAL) and its acetylated compound, 3-acetylamino-4-hydroxybenzaldehyde. GriF oxidized 3,4-AHBAL to yield an o-quinone imine derivative, which was then non-enzymatically coupled with another molecule of the o-quinone imine to form a phenoxazinone. The coexistence of N-acetylcysteine in the in vitro oxidation of 3,4-AH-BAL by GriF resulted in the formation of grixazone A, suggesting that the -SH group of N-acetylcysteine is conjugated to the o-quinone imine formed from 3,4-AHBAL and that the conjugate is presumably coupled with another molecule of the o-quinone imine. GriF is thus a novel o-aminophenol oxidase that is responsible for the formation of the phenoxazinone chromophore in the grixazone biosynthetic pathway.

  5. Evaluation of the Effects of S-Allyl-L-cysteine, S-Methyl-L-cysteine, trans-S-1-Propenyl-L-cysteine, and Their N-Acetylated and S-Oxidized Metabolites on Human CYP Activities.

    PubMed

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji

    2016-01-01

    Three major organosulfur compounds of aged garlic extract, S-allyl-L-cysteine (SAC), S-methyl-L-cysteine (SMC), and trans-S-1-propenyl-L-cysteine (S1PC), were examined for their effects on the activities of five major isoforms of human CYP enzymes: CYP1A2, 2C9, 2C19, 2D6, and 3A4. The metabolite formation from probe substrates for the CYP isoforms was examined in human liver microsomes in the presence of organosulfur compounds at 0.01-1 mM by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Allicin, a major component of garlic, inhibited CYP1A2 and CYP3A4 activity by 21-45% at 0.03 mM. In contrast, a CYP2C9-catalyzed reaction was enhanced by up to 1.9 times in the presence of allicin at 0.003-0.3 mM. SAC, SMC, and S1PC had no effect on the activities of the five isoforms, except that S1PC inhibited CYP3A4-catalyzed midazolam 1'-hydroxylation by 31% at 1 mM. The N-acetylated metabolites of the three compounds inhibited the activities of several isoforms to a varying degree at 1 mM. N-Acetyl-S-allyl-L-cysteine and N-acetyl-S-methyl-L-cysteine inhibited the reactions catalyzed by CYP2D6 and CYP1A2, by 19 and 26%, respectively, whereas trans-N-acetyl-S-1-propenyl-L-cysteine showed weak to moderate inhibition (19-49%) of CYP1A2, 2C19, 2D6, and 3A4 activities. On the other hand, both the N-acetylated and S-oxidized metabolites of SAC, SMC, and S1PC had little effect on the reactions catalyzed by the five isoforms. These results indicated that SAC, SMC, and S1PC have little potential to cause drug-drug interaction due to CYP inhibition or activation in vivo, as judged by their minimal effects (IC 50 >1 mM) on the activities of five major isoforms of human CYP in vitro.

  6. Isolation and Characterization of Acetylated Derivative of Recombinant Insulin Lispro Produced in Escherichia coli.

    PubMed

    Szewczak, Joanna; Bierczyńska-Krzysik, Anna; Piejko, Marcin; Mak, Paweł; Stadnik, Dorota

    2015-07-01

    Insulin lispro is a rapid-acting insulin analogue produced by recombinant DNA technology. As a biosynthetic drug, the protein undergoes strict monitoring aiming for detection and characterization of impurities. The goal of this study was to isolate and identify a derivative of insulin lispro formed during biosynthesis. For this purpose, ion exchange chromatography in combination with endoproteinase Glu-C digestion, MALDI-TOF/TOF mass spectrometry and Edman sequencing were employed. Ion exchange chromatography analysis of related proteins in development batches of recombinant insulin lispro revealed the existence of unknown derivative in excess of the assumed limit. Its molecular mass was 42 Da higher than the theoretical mass of Lys(B31) insulin lispro--one of the expected process-related intermediates. Endoproteinase Glu-C cleavage enabled indication of the modified peptide. Tandem mass spectrometry (MS/MS) allowed to explore the location and type of the modification. The 42 amu shift was present in the mass of y-type ions, while b-type ions were in agreement with theoretical values. It suggested that the modification is present on B31 lysine. Further inquiry revealed the presence of two diagnostic ions for lysine acetylation at m/z 143.1 and 126.1. In addition, the peptide was isolated and sequenced by Edman degradation. Standards of phenylthiohydantoin derivatives of N-ε-acetyl-L-lysine and N-ε-trimethyl-L-lysine, not available commercially, were synthesized in the laboratory. The retention time of the modified residue confirmed its identity as N-ε-acetyl-L-lysine. The derivative of insulin lispro formed during biosynthesis of the drug was identified to be N-ε-acetyl-L-lysine (B31) insulin lispro.

  7. Synthesis of cis-C-Iodo-N-Tosyl-Aziridines using Diiodomethyllithium: Reaction Optimization, Product Scope and Stability, and a Protocol for Selection of Stationary Phase for Chromatography

    PubMed Central

    2013-01-01

    The preparation of C-iodo-N-Ts-aziridines with excellent cis-diastereoselectivity has been achieved in high yields by the addition of diiodomethyllithium to N-tosylimines and N-tosylimine–HSO2Tol adducts. This addition-cyclization protocol successfully provided a wide range of cis-iodoaziridines, including the first examples of alkyl-substituted iodoaziridines, with the reaction tolerating both aryl imines and alkyl imines. An ortho-chlorophenyl imine afforded a β-amino gem-diiodide under the optimized reaction conditions due to a postulated coordinated intermediate preventing cyclization. An effective protocol to assess the stability of the sensitive iodoaziridine functional group to chromatography was also developed. As a result of the judicious choice of stationary phase, the iodoaziridines could be purified by column chromatography; the use of deactivated basic alumina (activity IV) afforded high yield and purity. Rearrangements of electron-rich aryl-iodoaziridines have been promoted, selectively affording either novel α-iodo-N-Ts-imines or α-iodo-aldehydes in high yield. PMID:23738857

  8. Postmortem Tissue Distribution of Acetyl Fentanyl, Fentanyl and their Respective Nor-Metabolites Analyzed by Ultrahigh Performance Liquid Chromatography with Tandem Mass Spectrometry

    PubMed Central

    Poklis, Justin; Poklis, Alphonse; Wolf, Carl; Mainland, Mary; Hair, Laura; Devers, Kelly; Chrostowski, Leszek; Arbefeville, Elise; Merves, Michele; Pearson, Julia

    2015-01-01

    In the last two years, an epidemic of fatal narcotic overdose cases has occurred in the Tampa area of Florida. Fourteen of these deaths involved fentanyl and/or the new designer drug, acetyl fentanyl. Victim demographics, case histories, toxicology findings and causes and manners of death, as well as, disposition of fentanyl derivatives and their nor-metabolites in postmortem heart blood, peripheral blood, bile, brain, liver, urine and vitreous humor are presented. In the cases involving only acetyl fentanyl (without fentanyl, n=4), the average peripheral blood acetyl fentanyl concentration was 0.467 mg/L (range 0.31 to .60 mg/L) and average acetyl norfentanyl concentration was 0.053 mg/L (range 0.002 to 0.086 mg/L). In the cases involving fentanyl (without acetyl fentanyl, n=7), the average peripheral blood fentanyl concentration was 0.012 mg/L (range 0.004 to 0.027 mg/L) and average norfentanyl blood concentration was 0.001 mg/L (range 0.0002 to 0.003 mg/L). In the cases involving both acetyl fentanyl and fentanyl (n=3), the average peripheral blood acetyl fentanyl concentration was 0.008 mg/L (range 0.006 to 0.012 mg/L), the average peripheral blood acetyl norfentanyl concentration was 0.001 mg/L (range 0.001 to 0.002 mg/L), the average peripheral blood fentanyl concentration was 0.018 mg/L (range 0.015 to 0.021 mg/L) and the average peripheral blood norfentanyl concentration was 0.002 mg/L (range 0.001 mg/L to 0.003 mg/L). Based on the toxicology results, it is evident that when fentanyl and/or acetyl fentanyl were present, they contributed to the cause of death. A novel ultrahigh performance liquid chromatography (UPLC) tandem mass spectrometry (MS/MS) method to identify and quantify acetyl fentanyl, acetyl norfentanyl, fentanyl and norfentanyl in postmortem fluids and tissues is also presented. PMID:26583960

  9. Mechanistic and Structural Analysis of Drosophila melanogaster Arylalkylamine N-Acetyltransferases

    PubMed Central

    2015-01-01

    Arylalkylamine N-acetyltransferase (AANAT) catalyzes the penultimate step in the biosynthesis of melatonin and other N-acetylarylalkylamides from the corresponding arylalkylamine and acetyl-CoA. The N-acetylation of arylalkylamines is a critical step in Drosophila melanogaster for the inactivation of the bioactive amines and the sclerotization of the cuticle. Two AANAT variants (AANATA and AANATB) have been identified in D. melanogaster, in which AANATA differs from AANATB by the truncation of 35 amino acids from the N-terminus. We have expressed and purified both D. melanogaster AANAT variants (AANATA and AANATB) in Escherichia coli and used the purified enzymes to demonstrate that this N-terminal truncation does not affect the activity of the enzyme. Subsequent characterization of the kinetic and chemical mechanism of AANATA identified an ordered sequential mechanism, with acetyl-CoA binding first, followed by tyramine. We used a combination of pH–activity profiling and site-directed mutagenesis to study prospective residues believed to function in AANATA catalysis. These data led to an assignment of Glu-47 as the general base in catalysis with an apparent pKa of 7.0. Using the data generated for the kinetic mechanism, structure–function relationships, pH–rate profiles, and site-directed mutagenesis, we propose a chemical mechanism for AANATA. PMID:25406072

  10. Differential association for N-acetyltransferase 2 genotype and phenotype with bladder cancer risk in Chinese population.

    PubMed

    Quan, Lei; Chattopadhyay, Koushik; Nelson, Heather H; Chan, Kenneth K; Xiang, Yong-Bing; Zhang, Wei; Wang, Renwei; Gao, Yu-Tang; Yuan, Jian-Min

    2016-06-28

    N-acetyltransferase 2 (NAT2) is involved in both carcinogen detoxification through hepatic N-acetylation and carcinogen activation through local O-acetylation. NAT2 slow acetylation status is significantly associated with increased bladder cancer risk among European populations, but its association in Asian populations is inconclusive. NAT2 acetylation status was determined by both single nucleotide polymorphisms (SNPs) and caffeine metabolic ratio (CMR), in a population-based study of 494 bladder cancer patients and 507 control subjects in Shanghai, China. The CMR, a functional measure of hepatic N-acetylation, was significantly reduced in a dose-dependent manner among both cases and controls possessing the SNP-inferred NAT2 slow acetylation status (all P-values<5.0×10-10). The CMR-determined slow N-acetylation status (CMR<0.34) was significantly associated with a 50% increased risk of bladder cancer (odds ratio = 1.50, 95% confidence interval = 1.10-2.06) whereas the SNP-inferred slow acetylation statuses were significantly associated with an approximately 50% decreased risk of bladder cancer. The genotype-disease association was strengthened after the adjustment for CMR and was primarily observed among never smokers. The apparent differential associations for phenotypic and genetic measures of acetylation statuses with bladder cancer risk may reflect dual functions of NAT2 in bladder carcinogenesis because the former only measures the capacity of carcinogen detoxification pathway while the latter represents both carcinogen activation and detoxification pathways. Future studies are warranted to ascertain the specific role of N- and O-acetylation in bladder carcinogenesis, particularly in populations exposed to different types of bladder carcinogens.

  11. Acetyl chloride

    Integrated Risk Information System (IRIS)

    Acetyl chloride ; CASRN 75 - 36 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  12. Flow enthalpimetric determination of glucose, based on oxidation by 1,4-benzoquinone and use of an immobilized glucose oxidase column.

    PubMed

    Kiba, N; Tomiyasu, T; Furusawa, M

    1984-02-01

    A flow enthalpimetric method for the determination of glucose is presented. The method is based on the reaction of glucose with 1,4-benzoquinone in the presence of immobilized glucose oxidase. d-Glucose concentrations ranging from 0.02 to 75mM can be determined. The method is applicable to the determination of glucose in soft drinks, wines, beers, jams and serum.

  13. N-acetyl cysteine, L-cysteine, and beta-mercaptoethanol augment selenium-glutathione peroxidase activity in glucose-6-phosphate dehydrogenase-deficient human erythrocytes.

    PubMed

    Alicigüzel, Y; Aslan, M

    2004-09-01

    In glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes, failure to maintain normal levels of reduced glutathione (GSH) due to decreased NADPH regeneration in the hexose monophosphate pathway results in acute hemolytic anemia following exposure to oxidative insults, such as ingestion of Vicia fava beans or use of certain drugs. GSH is a source of protection against oxidative attack, used by the selenium-dependent glutathione peroxidase (Se-GSH-Px)/reductase (GR) system to detoxify hydrogen peroxide and organic peroxides, provided that sufficient GSH is made available. In this study, Se-GSH-Px activity was analyzed in G6PD-deficient patients in the presence of reducing agents such as N-Acetyl cysteine, L-cysteine, and beta-mercaptoethanol. Se-GSH-Px activity was decreased in G6PD-deficient red blood cells (RBCs). N-Acetyl cysteine, L-cysteine, and beta-mercaptoethanol increased Se-GSH-Px activity in G6PD-deficient human erythrocytes, indicating that other reducing agents can be utilized to complement Se-GSH-Px activity in G6PD deficiency. Based on the increased susceptibility of G6PD-deficient patients to oxidative stress, the reported increase in Se-GSH-Px activity can facilitate the detoxification of reactive oxygen species.

  14. Accumulation of Peptidoglycan O-Acetylation Leads to Altered Cell Wall Biochemistry and Negatively Impacts Pathogenesis Factors of Campylobacter jejuni.

    PubMed

    Ha, Reuben; Frirdich, Emilisa; Sychantha, David; Biboy, Jacob; Taveirne, Michael E; Johnson, Jeremiah G; DiRita, Victor J; Vollmer, Waldemar; Clarke, Anthony J; Gaynor, Erin C

    2016-10-21

    Campylobacter jejuni is a leading cause of bacterial gastroenteritis in the developed world. Despite its prevalence, its mechanisms of pathogenesis are poorly understood. Peptidoglycan (PG) is important for helical shape, colonization, and host-pathogen interactions in C. jejuni Therefore, changes in PG greatly impact the physiology of this organism. O-acetylation of peptidoglycan (OAP) is a bacterial phenomenon proposed to be important for proper cell growth, characterized by acetylation of the C6 hydroxyl group of N-acetylmuramic acid in the PG glycan backbone. The OAP gene cluster consists of a PG O-acetyltransferase A (patA) for translocation of acetate into the periplasm, a PG O-acetyltransferase B (patB) for O-acetylation, and an O-acetylpeptidoglycan esterase (ape1) for de-O-acetylation. In this study, reduced OAP in ΔpatA and ΔpatB had minimal impact on C. jejuni growth and fitness under the conditions tested. However, accumulation of OAP in Δape1 resulted in marked differences in PG biochemistry, including O-acetylation, anhydromuropeptide levels, and changes not expected to result directly from Ape1 activity. This suggests that OAP may be a form of substrate level regulation in PG biosynthesis. Ape1 acetylesterase activity was confirmed in vitro using p-nitrophenyl acetate and O-acetylated PG as substrates. In addition, Δape1 exhibited defects in pathogenesis-associated phenotypes, including cell shape, motility, biofilm formation, cell surface hydrophobicity, and sodium deoxycholate sensitivity. Δape1 was also impaired for chick colonization and adhesion, invasion, intracellular survival, and induction of IL-8 production in INT407 cells in vitro The importance of Ape1 in C. jejuni biology makes it a good candidate as an antimicrobial target. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Differential regulation and impact of fucosyltransferase VII and core 2 β1,6-N-acetyl-glycosaminyltransferase for generation of E-selectin and P-selectin ligands in murine CD4+ T cells

    PubMed Central

    Schroeter, Micha F; Ratsch, Boris A; Lehmann, Jeanette; Baumgrass, Ria; Hamann, Alf; Syrbe, Uta

    2012-01-01

    Ligands for E-selectin and P-selectin (E-lig and P-lig) are induced on CD4+ T cells upon differentiation into effector T cells. Glycosyltransferases, especially α 1,3-fucosyltransferase VII (FucT-VII) and core 2 β1,6-N-acetyl-glycosaminyltransferase I (C2GlcNAcT-I), are critical for their synthesis. We here analysed the signals that control the expression of E-lig, P-lig and mRNA coding for FucT-VII and C2GlcNAcT-I. In line with previous reports, we found that P-lig expression correlates with the regulation of C2GlcNAcT-I, whereas E-lig expression can occur at low levels of C2GlcNAcT-I mRNA but requires high FucT-VII mRNA expression. Interestingly, the two enzymes are regulated by different signals. Activation-induced C2GlcNAcT-I up-regulation under permissive (T helper type 1) conditions was strongly reduced by cyclosporin A (CsA), suggesting the involvement of T-cell receptor-dependent, calcineurin/NFAT-dependent signals in combination with interleukin-12 (IL-12) -mediated signals in the regulation of C2GlcNAcT-I. In contrast, expression of FucT-VII mRNA was not significantly inhibited by CsA. Interleukin-4 inhibited the expression of FucT-VII but IL-2 and IL-7 were found to support induction of FucT-VII and E-lig. E-selectin, P-selectin and their ligands initially appeared to have rather overlapping functions. These findings however, unravel striking differences in the regulation of E-lig and P-lig expression, dictated by the dominance of FucT-VII and C2GlcNAcT-I, respectively, and their dependency on signals from either promiscuous or homeostatic cytokines (FucT-VII) or a strong T-cell receptor signal in combination with inflammatory cytokines in case of C2GlcNAcT-I. PMID:23039181

  16. One Size Does Not Fit All: The Effect of Chain Length and Charge Density of Poly(ethylene imine) Based Copolymers on Delivery of pDNA, mRNA, and RepRNA Polyplexes.

    PubMed

    Blakney, Anna K; Yilmaz, Gokhan; McKay, Paul F; Becer, C Remzi; Shattock, Robin J

    2018-05-03

    Nucleic acid delivery systems are commonly translated between different modalities, such as DNA and RNA of varying length and structure, despite physical differences in these molecules that yield disparate delivery efficiency with the same system. Here, we synthesized a library of poly(2-ethyl-2-oxazoline)/poly(ethylene imine) copolymers with varying molar mass and charge densities in order to probe how pDNA, mRNA, and RepRNA polyplex characteristics affect transfection efficiency. The library was utilized in a full factorial design of experiment (DoE) screening, with outputs of luciferase expression, particle size, surface charge, and particle concentration. The optimal copolymer molar mass and charge density was found as 83 kDa/100%, 72 kDa/100%, and 45 kDa/80% for pDNA, RepRNA, and mRNA, respectively. While 10 of the synthesized copolymers enhanced the transfection efficiency of pDNA and mRNA, only 2 copolymers enhanced RepRNA transfection efficiency, indicating a narrow and more stringent design space for RepRNA. These findings suggest that there is not a "one size fits all" polymer for different nucleic acid species.

  17. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-Induced Lysine Acetylation of Mitochondrial Proteins.

    PubMed

    Davies, Michael N; Kjalarsdottir, Lilja; Thompson, J Will; Dubois, Laura G; Stevens, Robert D; Ilkayeva, Olga R; Brosnan, M Julia; Rolph, Timothy P; Grimsrud, Paul A; Muoio, Deborah M

    2016-01-12

    Lysine acetylation (AcK), a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis, we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT), an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-induced Lysine Acetylation of Mitochondrial Proteins

    PubMed Central

    Davies, Michael N.; Kjalarsdottir, Lilja; Thompson, J. Will; Dubois, Laura G.; Stevens, Robert D.; Ilkayeva, Olga R.; Brosnan, M. Julia; Rolph, Timothy P.; Grimsrud, Paul A.; Muoio, Deborah M.

    2016-01-01

    Lysine acetylation (AcK), a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT), an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK. PMID:26748706

  19. Entamoeba histolytica acetyl-CoA synthetase: biomarker of acute amoebic liver abscess

    PubMed Central

    Huat, Lim Boon; Garcia, Alfonso Olivos; Ning, Tan Zi; Kin, Wong Weng; Noordin, Rahmah; Azham, Siti Shafiqah Anaqi; Jie, Lee Zhi; Ching, Guee Cher; Chong, Foo Phiaw; Dam, Pim Chau

    2014-01-01

    Objective To characterize the Entamoeba histolytica (E. histolytica) antigen(s) recognized by moribound amoebic liver abscess hamsters. Methods Crude soluble antigen of E. histolytica was probed with sera of moribund hamsters in 1D- and 2D-Western blot analyses. The antigenic protein was then sent for tandem mass spectrometry analysis. The corresponding gene was cloned and expressed in Escherichia coli BL21-AI to produce the recombinant E. histolytica ADP-forming acetyl-CoA synthetase (EhACS) protein. A customised ELISA was developed to evaluate the sensitivity and specificity of the recombinant protein. Results A ∼75 kDa protein band with a pI value of 5.91-6.5 was found to be antigenic; and not detected by sera of hamsters in the control group. Tandem mass spectrometry analysis revealed the protein to be the 77 kDa E. histolytica ADP-forming acetyl-CoA synthetase (EhACS). The customised ELISA results revealed 100% sensitivity and 100% specificity when tested against infected (n=31) and control group hamsters (n=5) serum samples, respectively. Conclusions This finding suggested the significant role of EhACS as a biomarker for moribund hamsters with acute amoebic liver abscess (ALA) infection. It is deemed pertinent that future studies explore the potential roles of EhACS in better understanding the pathogenesis of ALA; and in the development of vaccine and diagnostic tests to control ALA in human populations. PMID:25182945

  20. Post-translational Acetylation of MbtA Modulates Mycobacterial Siderophore Biosynthesis.

    PubMed

    Vergnolle, Olivia; Xu, Hua; Tufariello, JoAnn M; Favrot, Lorenza; Malek, Adel A; Jacobs, William R; Blanchard, John S

    2016-10-14

    Iron is an essential element for life, but its soluble form is scarce in the environment and is rarer in the human body. Mtb (Mycobacterium tuberculosis) produces two aryl-capped siderophores, mycobactin (MBT) and carboxymycobactin (cMBT), to chelate intracellular iron. The adenylating enzyme MbtA catalyzes the first step of mycobactin biosynthesis in two half-reactions: activation of the salicylic acid as an acyl-adenylate and ligation onto the acyl carrier protein (ACP) domain of MbtB to form covalently salicylated MbtB-ACP. We report the first apo-MbtA structure from Mycobacterium smegmatis at 2.3 Å. We demonstrate here that MbtA activity can be reversibly, post-translationally regulated by acetylation. Indeed the mycobacterial Pat (protein lysine acetyltransferase), Rv0998, specifically acetylates MbtA on lysine 546, in a cAMP-dependent manner, leading to enzyme inhibition. MbtA acetylation can be reversed by the NAD + -dependent DAc (deacetyltransferase), Rv1151c. Deletion of Pat and DAc genes in Mtb revealed distinct phenotypes for strains lacking one or the other gene at low pH and limiting iron conditions. This study establishes a direct connection between the reversible acetylation system Pat/DAc and the ability of Mtb to adapt in limited iron conditions, which is critical for mycobacterial infection. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Adhesives for Achieving Durable Bonds with Acetylated Wood

    Treesearch

    Charles Frihart; Rishawn Brandon; James Beecher; Rebecca Ibach

    2017-01-01

    Acetylation of wood imparts moisture durability, decay resistance, and dimensional stability to wood; however, making durable adhesive bonds with acetylated wood can be more difficult than with unmodified wood. The usual explanation is that the acetylated surface has fewer hydroxyl groups, resulting in a harder-to-wet surface and in fewer hydrogen bonds between wood...

  2. Oxygen-dependent acetylation and dimerization of the corepressor CtBP2 in neural stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karaca, Esra; Lewicki, Jakub; Hermanson, Ola, E-mail: Ola.Hermanson@ki.se

    2015-03-01

    The transcriptional corepressor CtBP2 is essential for proper development of the nervous system. The factor exerts its repression by interacting in complexes with chromatin-modifying factors such as histone deacetylases (HDAC) 1/2 and the histone demethylase LSD1/KDM1. Notably, the histone acetyl transferase p300 acetylates CtBP2 and this is an important regulatory event of the activity and subcellular localization of the protein. We recently demonstrated an essential role for CtBPs as sensors of microenvironmental oxygen levels influencing the differentiation potential of neural stem cells (NSCs), but it is not known whether oxygen levels influence the acetylation levels of CtBP factors. Here wemore » show by using proximity ligation assay (PLA) that CtBP2 acetylation levels increased significantly in undifferentiated, proliferating NSCs under hypoxic conditions. CtBP2 interacted with the class III HDAC Sirt1 but this interaction was unaltered in hypoxic conditions, and treatment with the Sirt1 inhibitor Ex527 did not result in any significant change in total CtBP2 acetylation levels. Instead, we revealed a significant decrease in PLA signal representing CtBP2 dimerization in NSCs under hypoxic conditions, negatively correlating with the acetylation levels. Our results suggest that microenvironmental oxygen levels influence the dimerization and acetylation levels, and thereby the activity, of CtBP2 in proliferating NSCs.« less

  3. Enhanced paracellular and transcellular paclitaxel permeation by chitosan-vitamin E succinate- N-acetyl- l-cysteine copolymer on Caco-2 cell monolayer

    NASA Astrophysics Data System (ADS)

    Lian, He; Zhang, Tianhong; Sun, Jin; Pu, Xiaohui; Tang, Yilin; Zhang, Youxi; He, Zhonggui

    2014-04-01

    The aim of this study was to evaluate the underlying mechanism of enhanced oral absorption of paclitaxel (PTX)-loaded chitosan-vitamin E succinate- N-acetyl- l-cysteine (CS-VES-NAC) nanomicelles from the cellular level. In aqueous solution, CS-VES-NAC copolymer self-assembled into the polymeric nanomicelles, with the size ranging from 190 to 240 nm and the drug loading content as high as 20.5 %. Cytotoxicity results showed that the PTX-loaded nanomicelles exhibited the similar effect to PTX solution (PTX-Sol) on Caco-2 cells, but no toxicity observed for blank CS-VES-NAC nanomicelles. The cellular uptake of PTX was significantly increased by CS-VES-NAC nanomicelles, compared with that of PTX-Sol, due to the possible escapement of P-glycoprotein (P-gp) efflux pumps by endocytosis pathway. Confocal laser scanning microscope (CLSM) images also confirmed CS-VES-NAC nanomicelles could be effectively internalized by Caco-2 cells. More importantly, P app value of PTX-loaded CS-VES-NAC nanomicelles was 2.3-fold higher than that of PTX-Sol, and the efflux ratio decreased by more than 10.8-fold for the nanomicelles. As a consequence of opening of tight junctions and P-gp inhibition induced by free CS-VES-NAC copolymer, the P app value of PTX was almost increased up to 19.5-fold. All the results indicate that CS-VES-NAC copolymer hold great promises as nanocarrier for antitumor drug oral delivery by improving paracellular and transcellular permeation.

  4. Monoclonal antibodies against pools of mono- and polyacetylated peptides selectively recognize acetylated lysines within the context of the original antigen.

    PubMed

    Sandomenico, Annamaria; Focà, Annalia; Sanguigno, Luca; Caporale, Andrea; Focà, Giuseppina; Pignalosa, Angelica; Corvino, Giusy; Caragnano, Angela; Beltrami, Antonio Paolo; Antoniali, Giulia; Tell, Gianluca; Leonardi, Antonio; Ruvo, Menotti

    Post-translational modifications (PTMs) strongly influence the structure and function of proteins. Lysine side chain acetylation is one of the most widespread PTMs, and it plays a major role in several physiological and pathological mechanisms. Protein acetylation may be detected by mass spectrometry (MS), but the use of monoclonal antibodies (mAbs) is a useful and cheaper option. Here, we explored the feasibility of generating mAbs against single or multiple acetylations within the context of a specific sequence. As a model, we used the unstructured N-terminal domain of APE1, which is acetylated on Lys27, Lys31, Lys32 and Lys35. As immunogen, we used a peptide mixture containing all combinations of single or multi-acetylated variants encompassing the 24-39 protein region. Targeted screening of the resulting clones yielded mAbs that bind with high affinity to only the acetylated APE1 peptides and the acetylated protein. No binding was seen with the non-acetylated variant or unrelated acetylated peptides and proteins, suggesting a high specificity for the APE1 acetylated molecules. MAbs could not finely discriminate between the differently acetylated variants; however, they specifically bound the acetylated protein in mammalian cell extracts and in intact cells and tissue slices from both breast cancers and from a patient affected by idiopathic dilated cardiomyopathy. The data suggest that our approach is a rapid and cost-effective method to generate mAbs against specific proteins modified by multiple acetylations or other PTMs.

  5. Acetylation at lysine 346 controls the transforming activity of the HTLV-1 Tax oncoprotein in the Rat-1 fibroblast model

    PubMed Central

    2013-01-01

    Background Transformation by the Tax oncoprotein of the human T cell leukemia virus type 1 (HTLV-1) is governed by actions on cellular regulatory signals, including modulation of specific cellular gene expression via activation of signaling pathways, acceleration of cell cycle progression via stimulation of cyclin-dependent kinase activity leading to retinoblastoma protein (pRb) hyperphosphorylation and perturbation of survival signals. These actions control early steps in T cell transformation and development of Adult T cell leukemia (ATL), an aggressive malignancy of HTLV-1 infected T lymphocytes. Post-translational modifications of Tax by phosphorylation, ubiquitination, sumoylation and acetylation have been implicated in Tax-mediated activation of the NF-κB pathway, a key function associated with Tax transforming potential. Results In this study, we demonstrate that acetylation at lysine K346 in the carboxy-terminal domain of Tax is modulated in the Tax nuclear bodies by the acetyltransferase p300 and the deacetylases HDAC5/7 and controls phosphorylation of the tumor suppressor pRb by Tax-cyclin D3-CDK4-p21CIP complexes. This property correlates with the inability of the acetylation deficient K346R mutant, but not the acetylation mimetic K346Q mutant, to promote anchorage-independent growth of Rat-1 fibroblasts. By contrast, acetylation at lysine K346 had no effects on the ability of Tax carboxy-terminal PDZ-binding domain to interact with the tumor suppressor hDLG. Conclusions The identification of the acetyltransferase p300 and the deacetylase HDAC7 as enzymes modulating Tax acetylation points to new therapeutic targets for the treatment of HTLV-1 infected patients at risk of developing ATL. PMID:23880157

  6. Spectroscopic, potentiometric and theoretical studies on the binding properties of a novel tripodal polycatechol-imine ligand towards iron(III)

    NASA Astrophysics Data System (ADS)

    Kanungo, B. K.; Sahoo, Suban K.; Baral, Minati

    2008-12-01

    A novel multidentate tripodal ligand, cis, cis-1,3,5-tris[(2,3-dihydroxybenzylidene)aminomethyl]cyclohexane (TDBAC, L) containing one catechol unit in each arms of a tripodal amine, cis, cis-1,3,5-tris(aminomethyl)cyclohexane was investigated as a chelator for iron(III) through potentiometric and spectrophotometric methods in an aqueous medium of 0.1N ionic strength and 25 ± 1 °C as well as in ethanol by continuous variation method. From pH metric in water, three protonation constants characterized for the three-hydroxyl groups of the catechol units at ortho were used as input data to evaluate the stability constants of the complexes. Formation of monomeric complexes FeLH 3, FeLH 2, FeLH and FeL were depicted. In ethanol, formation of complexes FeL, Fe 2L and Fe 3L were characterized. Structures of the complexes were explained by using the experimental evidences and predicted through molecular modeling calculations. The ligand showed potential to coordinate iron(III) through three imine nitrogens and three catecholic oxygens at ortho to form a tris(iminocatecholate) type complex.

  7. Formation of water disinfection byproduct 2,6-dichloro-1,4-benzoquinone from chlorination of green algae.

    PubMed

    Ge, Fei; Xiao, Yao; Yang, Yixuan; Wang, Wei; Moe, Birget; Li, Xing-Fang

    2018-01-01

    We report that green algae in lakes and rivers can serve as precursors of halobenzoquinone (HBQ) disinfection byproducts (DBPs) produced during chlorination. Chlorination of a common green alga, Chlorella vulgaris, produced 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), the most prevalent HBQ DBP in disinfected water. Under varying pH conditions (pH6.0-9.0), 2,6-DCBQ formation ranged from 0.3 to 2.1μg/mg C with maximum formation at pH8.0. To evaluate the contribution of organic components of C. vulgaris to 2,6-DCBQ formation, we separated the organics into two fractions, the protein-rich fraction of intracellular organic matter (IOM) and the polysaccharide-laden fraction of extracellular organic matter (EOM). Chlorination of IOM and EOM produced 1.4μg/mg C and 0.7μg/mg C of 2,6-DCBQ, respectively. The IOM generated a two-fold higher 2,6-DCBQ formation potential than the EOM fraction, suggesting that proteins are potent 2,6-DCBQ precursors. This was confirmed by the chlorination of proteins extracted from C. vulgaris: the amount of 2,6-DCBQ produced is linearly correlated with the concentration of total algal protein (R 2 =0.98). These results support that proteins are the primary precursors of 2,6-DCBQ in algae, and control of green algal bloom outbreaks in source waters is important for management of HBQ DBPs. Copyright © 2017. Published by Elsevier B.V.

  8. Polyethylene imine modified hydrochar adsorption for chromium (VI) and nickel (II) removal from aqueous solution.

    PubMed

    Shi, Yuanji; Zhang, Tao; Ren, Hongqiang; Kruse, Andrea; Cui, Ruofan

    2018-01-01

    An adsorbent hydrochar was synthesized from corn cobs and modified with polyethylene imine (PEI). The hydrochars before and after modification were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis. FTIR and XPS revealed that the PEI was grafted onto the hydrochar via ether and imine bonds formed with glutaraldehyde. The maximum adsorption capacities for Cr(VI) (33.663mg/g) and Ni(II) (29.059mg/g) on the modified hydrochars were 365% and 43.7% higher, respectively, than those on the unmodified hydrochar. A pseudo-second-order model described the adsorption of Ni(II) and Cr(VI) on all the adsorbents. The adsorption of Cr(VI) was endothermic, spontaneous, increased disorder, and obeyed the Langmuir model. By contrast, the adsorption of Ni(II) was exothermic, spontaneous, decreased disorder, and obeyed the Freundlich model. XPS confirmed that the adsorption sites and mechanisms for Ni(II) and Cr(VI) on the modified hydrochars were different. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Characterizing Lysine Acetylation of Isocitrate Dehydrogenase in Escherichia coli.

    PubMed

    Venkat, Sumana; Chen, Hao; Stahman, Alleigh; Hudson, Denver; McGuire, Paige; Gan, Qinglei; Fan, Chenguang

    2018-06-22

    The Escherichia coli isocitrate dehydrogenase (ICDH) is one of the tricarboxylic acid cycle enzymes, playing key roles in energy production and carbon flux regulation. E. coli ICDH was the first bacterial enzyme shown to be regulated by reversible phosphorylation. However, the effect of lysine acetylation on E. coli ICDH, which has no sequence similarity with its counterparts in eukaryotes, is still unclear. Based on previous studies of E. coli acetylome and ICDH crystal structures, eight lysine residues were selected for mutational and kinetic analyses. They were replaced with acetyllysine by the genetic code expansion strategy or substituted with glutamine as a classic approach. Although acetylation decreased the overall ICDH activity, its effects were different site by site. Deacetylation tests demonstrated that the CobB deacetylase could deacetylate ICDH both in vivo and in vitro, but CobB was only specific for lysine residues at the protein surface. On the other hand, ICDH could be acetylated by acetyl-phosphate chemically in vitro. And in vivo acetylation tests indicated that the acetylation level of ICDH was correlated with the amounts of intracellular acetyl-phosphate. This study nicely complements previous proteomic studies to provide direct biochemical evidence for ICDH acetylation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Host-guest chemistry of dendrimer-drug complexes. 6. Fully acetylated dendrimers as biocompatible drug vehicles using dexamethasone 21-phosphate as a model drug.

    PubMed

    Yang, Kun; Weng, Liang; Cheng, Yiyun; Zhang, Hongfeng; Zhang, Jiahai; Wu, Qinglin; Xu, Tongwen

    2011-03-17

    Fully acetylated poly(amidoamine) (PAMAM) dendrimer was proposed as a biocompatible drug vehicle using dexamethasone 21-phosphate (Dp21) as a model drug. NMR techniques including (1)H NMR and 2D NOE NMR were used to characterize the host-guest chemistry of acetylated dendrimer/Dp21 and cationic dendrimer/Dp21 complexes. The pH-dependent micellization, complexation, and inclusion behaviors of Dp21 were observed in the presence of acetylated and cationic PAMAM dendrimers. Acetylated dendrimer only encapsulates Dp21 at acidic conditions, while cationic dendrimer can host Dp21 at both acidic and neutral conditions. The orientation of Dp21 molecules in the dendrimer cavities depends on the quaternization degree of tertiary amine groups of dendrimer and the protonation ratio of phosphate group of Dp21. A distinctive pH-dependent release behavior of Dp21 from the acetylated and nonacetylated dendritic matrix was observed: Dp21 exhibits a much slower release rate from acetylated dendrimer at lower pH conditions and a much faster release rate from nonacetylated dendrimer with decreasing pH values. Cytotoxicity studies further confirmed the biocompatibility of acetylated dendrimers, which are much safer in the delivery of therapeutics for the treatment of various diseases than nonacetylated dendrimers. The dendrimer-drug binding and release mechanisms provide a new insight for the design and optimization of biocompatible dendrimer-based drug delivery systems. © 2011 American Chemical Society

  11. Electron-Scavenging Chemistry of Benzoquinone on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.; Shen, Mingmin

    The chemistry of benzoquinone (BQ) on TiO2(110) was examined using temperature programmed desorption (TPD), electron energy loss spectroscopy (EELS) and Auger electron spectroscopy (AES). BQ adsorbs mostly molecularly on the clean surface, although EELS demonstrates that electrons from surface Ti3+ sites at oxygen vacancy sites (VO) are readily oxidized by the high electron scavenging ability of the molecule. In contrast, when the surface is covered with water, subsequently adsorbed BQ molecules that scavenge surface electrons also abstract H from surface OHbr groups to form hydroquinone (HQ), which desorbs at ~450 K. This work was supported by the US Department ofmore » Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less

  12. Modulation of biogenic amines content by poly(propylene imine) dendrimers in rats.

    PubMed

    Ciepluch, Karol; Ziemba, Barbara; Janaszewska, Anna; Appelhans, Dietmar; Klajnert, Barbara; Bryszewska, Maria; Fogel, Wiesława Agnieszka

    2012-09-01

    Biogenic amines and polyamines participate in all vital organism functions, their levels being important function determinants. Studies were performed to check whether repeated administration of poly(propylene imine) (PPI) dendrimers, synthetic macromolecules with diaminobutane core, and peripheral primary amine groups, may influence the endogenous level of amines, as represented by the two of them: spermidine, a natural derivative of diaminobutane, and histamine. The experiment was carried out on Wistar rats. Fourth generation PPI dendrimer, as well as maltotriose-modified fourth generation PPI dendrimers with (a) cationic open sugar shell and (b) neutral dense sugar shell that possess a higher biocompatibility, was used. Applying the combination of column chromatography on Cellex P and spectrofluorimetric assays of o-phthaldialdehyde, the final amine condensation products were employed to analyze tissue spermidine and histamine outside the central nervous system. Furthermore, radioenzymatic assay was used to measure histamine levels in the brain. The obtained results indicate that in some tissues, the endogenous concentrations of histamine and spermidine may be affected by dendrimers depending on their dose and type of dendrimers.

  13. The ratio of N-acetyl aspartate to glutamate correlates with disease duration of amyotrophic lateral sclerosis.

    PubMed

    Sako, Wataru; Abe, Takashi; Izumi, Yuishin; Harada, Masafumi; Kaji, Ryuji

    2016-05-01

    Glutamate (Glu)-induced excitotoxicity has been implicated in the neuronal loss of amyotrophic lateral sclerosis. To test the hypothesis that Glu in the primary motor cortex contributes to disease severity and/or duration, the Glu level was investigated using MR spectroscopy. Seventeen patients with amyotrophic lateral sclerosis were diagnosed according to the El Escorial criteria for suspected, possible, probable or definite amyotrophic lateral sclerosis, and enrolled in this cross-sectional study. We measured metabolite concentrations, including N-acetyl aspartate (NAA), creatine, choline, inositol, Glu and glutamine, and performed partial correlation between each metabolite concentration or NAA/Glu ratio and disease severity or duration using age as a covariate. Considering our hypothesis that Glu is associated with neuronal cell death in amyotrophic lateral sclerosis, we investigated the ratio of NAA to Glu, and found a significant correlation between NAA/Glu and disease duration (r=-0.574, p=0.02). The "suspected" amyotrophic lateral sclerosis patients showed the same tendency as possible, probable and definite amyotrophic lateral sclerosis patients in regard to correlation of NAA/Glu ratio with disease duration. The other metabolites showed no significant correlation. Our findings suggested that glutamatergic neurons are less vulnerable compared to other neurons and this may be because inhibitory receptors are mainly located presynaptically, which supports the notion of Glu-induced excitotoxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Enantioselective Synthesis of α-Mercapto-β-amino Esters via Rh(II)/Chiral Phosphoric Acid-Cocatalyzed Three-Component Reaction of Diazo Compounds, Thiols, and Imines.

    PubMed

    Xiao, Guolan; Ma, Chaoqun; Xing, Dong; Hu, Wenhao

    2016-12-02

    An enantioselective method for the synthesis of α-mercapto-β-amino esters has been developed via a rhodium(II)/chiral phosphoric acid-cocatalyzed three-component reaction of diazo compounds, thiols, and imines. This transformation is proposed to proceed through enantioselective trapping of the sulfonium ylide intermediate generated in situ from the diazo compound and thiol by the phosphoric acid-activated imine. With this method, a series of α-mercapto-β-amino esters were obtained in good yields with moderate to good stereoselectivities.

  15. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases.

    PubMed

    Mengel, Alexander; Ageeva, Alexandra; Georgii, Elisabeth; Bernhardt, Jörg; Wu, Keqiang; Durner, Jörg; Lindermayr, Christian

    2017-02-01

    Histone acetylation, which is an important mechanism to regulate gene expression, is controlled by the opposing action of histone acetyltransferases and histone deacetylases (HDACs). In animals, several HDACs are subjected to regulation by nitric oxide (NO); in plants, however, it is unknown whether NO affects histone acetylation. We found that treatment with the physiological NO donor S-nitrosoglutathione (GSNO) increased the abundance of several histone acetylation marks in Arabidopsis (Arabidopsis thaliana), which was strongly diminished in the presence of the NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. This increase was likely triggered by NO-dependent inhibition of HDAC activity, since GSNO and S-nitroso-N-acetyl-dl-penicillamine significantly and reversibly reduced total HDAC activity in vitro (in nuclear extracts) and in vivo (in protoplasts). Next, genome-wide H3K9/14ac profiles in Arabidopsis seedlings were generated by chromatin immunoprecipitation sequencing, and changes induced by GSNO, GSNO/2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or trichostatin A (an HDAC inhibitor) were quantified, thereby identifying genes that display putative NO-regulated histone acetylation. Functional classification of these genes revealed that many of them are involved in the plant defense response and the abiotic stress response. Furthermore, salicylic acid, which is the major plant defense hormone against biotrophic pathogens, inhibited HDAC activity and increased histone acetylation by inducing endogenous NO production. These data suggest that NO affects histone acetylation by targeting and inhibiting HDAC complexes, resulting in the hyperacetylation of specific genes. This mechanism might operate in the plant stress response by facilitating the stress-induced transcription of genes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  16. Molecular complexes of l-phenylalanine with substituted 1,4-benzoquinones in aqueous medium: spectral and theoretical investigations.

    PubMed

    Ganesh, K; El-Mossalamy, E H; Satheshkumar, A; Balraj, C; Elango, K P

    2013-12-01

    Various spectral techniques such as UV-Vis, FT-IR, and fluorescence have been employed to investigate the charge transfer interaction of L-phenylalanine (LPA) with substituted 1,4-benzoquinones (MQ(1-4)). Kinetic and thermodynamic properties of the complexes were determined in aqueous medium at physiological condition (pH=7). The interaction of MQ(1-4) with L-phenylalanine (LPA) was found to proceed through the formation of donor-acceptor complex, yielding a radical anion. The stoichiometry of the complexes was determined by Jobs continuous variation method and was found to be 1:1 in all the cases. Fluorescence quenching studies showed that the interaction between the donor and the acceptors is spontaneous. The results indicated that the progressive replacement of chlorine atom (-I effect) by methoxy group (+M effect) in the quinone decreased the electron acceptor property of the quinone. The order of the experimentally measured association constant of these complexes was well supported by DFT/B3LYP calculations. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate.

    PubMed

    Janik, Rafal; Thomason, Lynsie A M; Stanisz, Andrew M; Forsythe, Paul; Bienenstock, John; Stanisz, Greg J

    2016-01-15

    The gut microbiome has been shown to regulate the development and functions of the enteric and central nervous systems. Its involvement in the regulation of behavior has attracted particular attention because of its potential translational importance in clinical disorders, however little is known about the pathways involved. We previously have demonstrated that administration of Lactobacillus rhamnosus (JB-1) to healthy male BALB/c mice, promotes consistent changes in GABA-A and -B receptor sub-types in specific brain regions, accompanied by reductions in anxiety and depression-related behaviors. In the present study, using magnetic resonance spectroscopy (MRS), we quantitatively assessed two clinically validated biomarkers of brain activity and function, glutamate+glutamine (Glx) and total N-acetyl aspartate+N-acetyl aspartyl glutamic acid (tNAA), as well as GABA, the chief brain inhibitory neurotransmitter. Mice received 1×10(9) cfu of JB-1 per day for 4weeks and were subjected to MRS weekly and again 4weeks after cessation of treatment to ascertain temporal changes in these neurometabolites. Baseline concentrations for Glx, tNAA and GABA were equal to 10.4±0.3mM, 8.7±0.1mM, and 1.2±0.1mM, respectively. Delayed increases were first seen for Glx (~10%) and NAA (~37%) at 2weeks which persisted only to the end of treatment. However, Glx was still elevated 4weeks after treatment had ceased. Significantly elevated GABA (~25%) was only seen at 4weeks. These results suggest specific metabolic pathways in our pursuit of mechanisms of action of psychoactive bacteria. They also offer through application of standard clinical neurodiagnostic techniques, translational opportunities to assess biomarkers accompanying behavioral changes induced by alterations in the gut microbiome. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  18. A Chemogenomic Screen Reveals Novel Snf1p/AMPK Independent Regulators of Acetyl-CoA Carboxylase.

    PubMed

    Bozaquel-Morais, Bruno L; Madeira, Juliana B; Venâncio, Thiago M; Pacheco-Rosa, Thiago; Masuda, Claudio A; Montero-Lomeli, Monica

    2017-01-01

    Acetyl-CoA carboxylase (Acc1p) is a key enzyme in fatty acid biosynthesis and is essential for cell viability. To discover new regulators of its activity, we screened a Saccharomyces cerevisiae deletion library for increased sensitivity to soraphen A, a potent Acc1p inhibitor. The hits identified in the screen (118 hits) were filtered using a chemical-phenotype map to exclude those associated with pleiotropic drug resistance. This enabled the identification of 82 ORFs that are genetic interactors of Acc1p. The main functional clusters represented by these hits were "transcriptional regulation", "protein post-translational modifications" and "lipid metabolism". Further investigation of the "transcriptional regulation" cluster revealed that soraphen A sensitivity is poorly correlated with ACC1 transcript levels. We also studied the three top unknown ORFs that affected soraphen A sensitivity: SOR1 (YDL129W), SOR2 (YIL092W) and SOR3 (YJR039W). Since the C18/C16 ratio of lipid acyl lengths reflects Acc1p activity levels, we evaluated this ratio in the three mutants. Deletion of SOR2 and SOR3 led to reduced acyl lengths, suggesting that Acc1p is indeed down-regulated in these strains. Also, these mutants showed no differences in Snf1p/AMPK activation status and deletion of SNF1 in these backgrounds did not revert soraphen A sensitivity completely. Furthermore, plasmid maintenance was reduced in sor2Δ strain and this trait was shared with 18 other soraphen A sensitive hits. In summary, our screen uncovered novel Acc1p Snf1p/AMPK-independent regulators.

  19. Recognition of a novel type X═N-Hal···Hal (X = C, S, P; Hal = F, Cl, Br, I) halogen bonding.

    PubMed

    Gushchin, Pavel V; Kuznetsov, Maxim L; Haukka, Matti; Kukushkin, Vadim Yu

    2013-04-04

    The chlorination of the eight-membered platinum(II) chelates [PtCl2{NH═C(NR2)N(Ph)C(═NH)N(Ph)C(NR2)═NH}] (R = Me (1); R2 = (CH2)5 (2)) with uncomplexed imino group with Cl2 gives complexes bearing the ═N-Cl moiety [PtCl4{NH═C(NR2)N(Ph)C(═NCl)N(Ph)C(NR2)═NH}] (R = Me (3); R2 = (CH2)5 (4)). X-ray study for 3 revealed a novel type intermolecular halogen bonding ═N-Cl···Cl(-), formed between the Cl atom of the chlorinated imine and the chloride bound to the platinum(IV) center. The processing relevant structural data retrieved from the Cambridge Structural Database (CSDB) shows that this type of halogen bonding is realized in 18 more molecular species having X═N-Hal moieties (X = C, P, S, V, W; Hal = Cl, Br, I), but this weak ═N-Hal···Hal(-) bonding was totally neglected in the previous works. The presence of the halogen bonding in 3 was confirmed by theoretical calculations at the density functional theory (DFT, M06-2X) level, and its nature was analyzed.

  20. Protective effects of deferasirox and N-acetyl-L-cysteine on iron overload-injured bone marrow.

    PubMed

    Shen, J C; Zhang, Y C; Zhao, M F

    2017-10-19

    Using an iron overload mouse model, we explored the protective effect of deferasirox (DFX) and N-acetyl-L-cysteine (NAC) on injured bone marrow hematopoietic stem/progenitor cells (HSPC) induced by iron overload. Mice were intraperitoneally injected with 25 mg iron dextran every 3 days for 4 weeks to establish an iron overload (Fe) model. DFX or NAC were co-administered with iron dextran in two groups of mice (Fe+DFX and Fe+NAC), and the function of HSPCs was then examined. Iron overload markedly decreased the number of murine HSPCs in bone marrow. Subsequent colony-forming cell assays showed that iron overload also decreased the colony forming capacity of HSPCs, the effect of which could be reversed by DFX and NAC. The bone marrow hematopoiesis damage caused by iron overload could be alleviated by DFX and NAC.