Sample records for n-acetylcysteine decreases lactate

  1. N-acetylcysteine supplementation controls total antioxidant capacity, creatine kinase, lactate, and tumor necrotic factor-alpha against oxidative stress induced by graded exercise in sedentary men.

    PubMed

    Leelarungrayub, Donrawee; Khansuwan, Raphiphat; Pothongsunun, Prapas; Klaphajone, Jakkrit

    2011-01-01

    Aim of this study was to evaluate the effects of short-term (7 days) N-acetylcysteine (NAC) at 1,200 mg daily supplementation on muscle fatigue, maximal oxygen uptake (VO(2max)), total antioxidant capacity (TAC), lactate, creatine kinase (CK), and tumor necrotic factor-alpha (TNF-α). Twenty-nine sedentary men (13 controls; 16 in the supplement group) from a randomized control were included. At before and after supplementation, fatigue index (FI) was evaluated in the quadriceps muscle, and performed a graded exercise treadmill test to induce oxidative stress, and as a measure of VO(2max). Blood samples were taken before exercise and 20 minutes after it at before and after supplementation, to determine TAC, CK, lactate, and TNF-α levels. Results showed that FI and VO(2max) increased significantly in the supplement group. After exercise decreased the levels of TAC and increased lactate, CK, and TNF-α of both groups at before supplementation. After supplementation, lactate, CK, and TNF-α levels significantly increased and TAC decreased after exercise in the control group. Whereas the TAC and lactate levels did not change significantly, but CK and TNF-α increased significantly in the supplement group. Therefore, this results showed that NAC improved the muscle fatigue, VO(2max), maintained TAC, controlled lactate production, but had no influence on CK and TNF-α.

  2. Thiol-catalyzed formation of lactate and glycerate from glyceraldehyde. [significance in molecular evolution

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1983-01-01

    The rate of lactate formation from glyceraldehyde, catalyzed by N-acetyl-cysteine at ambient temperature in aqueous sodium phosphate (pH 7.0), is more rapid at higher sodium phosphate concentrations and remains essentially the same in the presence and absence of oxygen. The dramatic increase in the rate of glycerate formation that is brought about by this thiol, N-acetylcysteine, is accompanied by commensurate decreases in the rates of glycolate and formate production. It is suggested that the thiol-dependent formation of lactate and glycerate occurs by way of their respective thioesters. Attention is given to the significance of these reactions in the context of molecular evolution.

  3. A gargantuan acetaminophen level in an acidemic patient treated solely with intravenous N-acetylcysteine.

    PubMed

    Zell-Kanter, Michele; Coleman, Patrick; Whiteley, Patrick M; Leikin, Jerrold B

    2013-01-01

    The objective of this report is to describe an acidemic patient with one of the largest recorded acetaminophen ingestions in a patient with acidemia who was treated with supportive care and intravenous (IV) N-acetylcysteine. A 59-year-old female with a history of depression was found comatose. In the Emergency Department, she was obtunded with agonal respirations and immediately intubated. Activated charcoal was given through a nasogastric tube. An initial acetaminophen serum level was 1141 mg/L. The patient was started on IV N-acetylcysteine. The acetaminophen level peaked 2 hours later at 1193 mg/L. She was continued on the IV N-acetylcysteine protocol. The next day her aspartate aminotransferase was 3150 U/L, alanine aminotransferase was 2780 U/L, and creatinine phosphokinase was 16,197 U/L. There was no elevation in bilirubin or international normalized ratio (INR). Transaminase levels decreased on day 3 and normalized by day 4 when she was transferred to a psychiatric unit. Few cases have been reported of strikingly elevated acetaminophen levels in poisoned patients who did not receive hemodialysis. These patients did have increased lactate levels, and some had normal liver function tests. All of these patients received N-acetylcysteine and survived the poisoning without sequelae. This patient in this report was unique in that she had the highest reported serum acetaminophen level with acidosis and was treated successfully with only IV N-acetylcysteine and supportive care.

  4. Effect of N-Acetylcysteine on Adipose-Derived Stem Cell and Autologous Fat Graft Survival in a Mouse Model.

    PubMed

    Gillis, Joshua; Gebremeskel, Simon; Phipps, Kyle D; MacNeil, Lori A; Sinal, Christopher J; Johnston, Brent; Hong, Paul; Bezuhly, Michael

    2015-08-01

    Autologous fat grafting is a popular reconstructive technique, but is limited by inconsistent graft retention. The authors examined whether a widely available, clinically safe antioxidant, N-acetylcysteine, could improve adipose-derived stem cell survival and graft take when added to tumescent solution during fat harvest. Inguinal fat pads were harvested from C57BL/6 mice using tumescent solution with or without N-acetylcysteine. Flow cytometric, proliferation, and differentiation assays were performed on isolated primary adipose-derived stem cells and 3T3-L1 preadipocytes treated with or without hydrogen peroxide and/or N-acetylcysteine. N-Acetylcysteine-treated or control grafts were injected under recipient mouse scalps and assessed by serial micro-computed tomographic volumetric analysis. Explanted grafts underwent immunohistochemical analysis. In culture, N-acetylcysteine protected adipose-derived stem cells from oxidative stress and improved cell survival following hydrogen peroxide treatment. Combined exposure to both N-acetylcysteine and hydrogen peroxide led to a 200-fold increase in adipose-derived stem cell proliferation, significantly higher than with either agent alone. N-Acetylcysteine decreased differentiation of adipose-derived stem cells into mature adipocytes, as evidenced by decreased transcription of adipocyte differentiation markers and reduced Oil Red-O staining. In vivo, N-acetylcysteine treatment resulted in improved graft retention at 3 months compared with control (46 versus 17 percent; p = 0.027). N-Acetylcysteine-treated grafts demonstrated less fibrosis and inflammation, and a 33 percent increase in adipocyte density compared with controls (p < 0.001) that was not associated with increased vascularity. These findings provide proof of principle for the addition of N-acetylcysteine to tumescent harvest solution in the clinical setting to optimize fat graft yields.

  5. The effect of N-acetylcysteine on mechanical fatigue resistance of antibiotic-loaded bone cement.

    PubMed

    Sukur, Erhan; Akar, Abdulhalim; Topcu, Huseyin Nevzat; Cicekli, Ozgur; Kochai, Alauddin; Turker, Mehmet

    2018-05-31

    This biomechanical study evaluates the effect of N-acetylcysteine alone and in combination with the most commonly used antibiotic-loaded bone cement mixtures. We mixed eight bone cement mixture groups including combinations of N-acetylcysteine, gentamicin, teicoplanin, and vancomycin and applied a four-point bending test individually to each sample on days 1 and 15 using an MTS Acumen test device. The result was less than 50 MPa-the limit declared by the ISO (International Standards Organization)-in only the "gentamicin + bone cement + N-acetylcysteine" group. Mechanical fatigue resistance of the bone cement decreased significantly with the addition of N-acetylcysteine both on day 1 and day 15 (p <  0.001). With the addition of N-acetylcysteine into the "gentamicin + bone cement" and "vancomycin + bone cement" mixtures, a significant decrease in mechanical fatigue resistance was observed both on day 1 and day 15 (p <  0.001). In contrast, with the addition of N-acetylcysteine into the "teicoplanin + bone cement" mixture, no significant difference in mechanical fatigue resistance was observed on days 1 and 15 (p = 0.093, p = 0.356). Preliminary results indicate that adding N-acetylcysteine to teicoplanin-loaded bone cement does not significantly affect the cement's mechanical resistance, potentially leading to a new avenue for preventing and treating peri-prosthetic joint infection. N-acetylcysteine may, therefore, be considered as an alternative agent to be added to antibiotic-loaded bone cement mixtures used in the prevention of peri-prosthetic joint infection.

  6. The protective effect of N-acetylcysteine on oxidative stress in the brain caused by the long-term intake of aspartame by rats.

    PubMed

    Finamor, Isabela A; Ourique, Giovana M; Pês, Tanise S; Saccol, Etiane M H; Bressan, Caroline A; Scheid, Taína; Baldisserotto, Bernardo; Llesuy, Susana F; Partata, Wânia A; Pavanato, Maria A

    2014-09-01

    Long-term intake of aspartame at the acceptable daily dose causes oxidative stress in rodent brain mainly due to the dysregulation of glutathione (GSH) homeostasis. N-Acetylcysteine provides the cysteine that is required for the production of GSH, being effective in treating disorders associated with oxidative stress. We investigated the effects of N-acetylcysteine treatment (150 mg kg(-1), i.p.) on oxidative stress biomarkers in rat brain after chronic aspartame administration by gavage (40 mg kg(-1)). N-Acetylcysteine led to a reduction in the thiobarbituric acid reactive substances, lipid hydroperoxides, and carbonyl protein levels, which were increased due to aspartame administration. N-Acetylcysteine also resulted in an elevation of superoxide dismutase, glutathione peroxidase, glutathione reductase activities, as well as non-protein thiols, and total reactive antioxidant potential levels, which were decreased after aspartame exposure. However, N-acetylcysteine was unable to reduce serum glucose levels, which were increased as a result of aspartame administration. Furthermore, catalase and glutathione S-transferase, whose activities were reduced due to aspartame treatment, remained decreased even after N-acetylcysteine exposure. In conclusion, N-acetylcysteine treatment may exert a protective effect against the oxidative damage in the brain, which was caused by the long-term consumption of the acceptable daily dose of aspartame by rats.

  7. Prebiotic formation of 'energy-rich' thioesters from glyceraldehyde and N-acetylcysteine

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1984-01-01

    The 'energy-rich' thioester, N-acetyl-S-lactoylcysteine, is formed from low concentrations of glyceraldehyde and N-acetylcysteine under anaerobic conditions at ambient temperature in aqueous solutions of sodium phosphate (pH 7.0). Reactions with 2mM glyceraldehyde, 2mM N-acetylcysteine, and 500 mM sodium phosphate (pH 7.0) convert about 0.3 percent/day of the glyceraldehyde to lactoyl thioester. The formation of lactoyl thioester in similar reactions with 500 mM imidazole hydrochloride (pH 7.0) is supported by the thiol-dependence of lactate formation, which is 3-fold greater in the presence of thiol (0.11 percent/day) than in the absence of thiol (0.04 percent/day). The formation of lactoly thioester is thought to proceed by the phosphate (or imidazole)-catalyzed dehydration of glyceraldehyde, which adds to the thiol to form a hemithioacetal that rearranges to the thioester. A limited amount of a second thioester, N-acetyl-S-glyceroyl-cysteine, is also formed at the beginning of these reactions. The significance of these reactions to the origin of life is discussed.

  8. Prebiotic formation of `energy-rich' thioesters from glyceraldehyde and N-acetylcysteine

    NASA Astrophysics Data System (ADS)

    Weber, Arthur L.

    1984-03-01

    The ‘energy-rich’ thioester, N-acetyl-S-lactoylcysteine, is formed from low concentrations of glyceraldehyde and N-acetylcysteine under anaerobic conditions at ambient temperature in aqueous solutions of sodium phosphate (pH 7.0). Reactions with 2 mM glyceraldehyde, 2 mM N-acetylcysteine, and 500 mM sodium phosphate (pH 7.0) convert about 0.3%/day of the glyceraldehyde to lactoyl thioester. The formation of lactoyl thioester in similar reactions with 500 mM imidazole hydrochloride (pH 7.0) is supported by the thiol-dependence of lactate formation, which is 3-fold greater in the presence of thiol (0.11%/day) than in the absence of thiol (0.04%/day). The formation of lactoyl thioester is thought to proceed by the phosphate (or imidazole)-catalyzed dehydration of glyceraldehyde to give pyruvaldehyde, which adds to the thiol to form a hemithioacetal that rearranges to the thioester. A limited amount of a second thioester, N-acetyl-S-glyceroyl-cysteine, is also formed at the beginning of these reactions. The significance of these reactions to the origin of life is discussed.

  9. Influence of N-acetylcysteine on indirect indicators of tissue oxygenation in septic shock patients: results from a prospective, randomized, double-blind study.

    PubMed

    Spies, C D; Reinhart, K; Witt, I; Meier-Hellmann, A; Hannemann, L; Bredle, D L; Schaffartzik, W

    1994-11-01

    Deactivation of endothelium-derived relaxing factor due to an increased oxygen radical load during sepsis may contribute to an impairment in microcirculatory blood flow. We investigated whether treatment with the sulfhydryl donor and oxygen radical scavenger, N-acetylcysteine, would improve whole-body oxygen consumption (VO2), gastric intramucosal pH, and veno-arterial CO2 gradient (veno-arterial PCO2) during septic shock. Prospective, randomized, double-blind study conducted over 2 yrs. Septic shock patients admitted to the intensive care unit. Fifty-eight patients requiring hemodynamic monitoring (radial and pulmonary artery catheters) due to septic shock, were included in this study. All patients were examined within 72 hrs after the onset of sepsis. They were optimally resuscitated by conventional means with volume and inotropic agents, and exhibited stable clinical conditions (hemodynamic values, body temperature, hemoglobin, FIO2). A gastric tonometer was inserted to measure the gastric intramucosal pH. Subjects randomly received either 150 mg/kg of intravenous N-acetylcysteine or placebo over a 15-min period, then a continuous infusion of 12.5 mg/hr of N-acetylcysteine or placebo over approximately 90 mins. Infusion measurements were begun 60 mins after the beginning of infusion and lasted approximately 30 mins. The infusion was then discontinued and 2 hrs later the final measurements were taken. Basic patient characteristics (age, sex, Acute Physiology and Chronic Health Evaluation [APACHE] II scores, Multiple Organ Failure scores) did not differ significantly, nor did pre- and 2-hr postinfusion measurements differ between any of the groups. Thirteen (45%) patients responded (i.e., showed an increase in VO2 > 10%, reaching a mean of 19%) to the N-acetylcysteine infusion. The N-acetylcysteine responders also showed an increase in gastric intramucosal pH, a decrease in veno-arterial PCO2, an increase in oxygen delivery, cardiac index, stroke index, and left ventricular stroke work index, as well as a significant decrease in systemic vascular resistance in comparison to baseline. The N-acetylcysteine nonresponders, as well as the patients in the placebo group, did not show any significant changes in any of these variables. The N-acetylcysteine responders had a higher survival rate (69%) than the non-responders (19%) and were studied earlier after onset of sepsis (37 hrs) than the nonresponders (61 hrs). The only significant difference between the entire N-acetylcysteine group (which included responders plus nonresponders) and the placebo group was an increased VO2 in the entire N-acetylcysteine group during infusion measurements. N-acetylcysteine provided a transient improvement in tissue oxygenation in about half of the septic shock patients, as indicated by an increase in VO2 and gastric intramucosal pH and a decrease in veno-arterial PCO2. The higher survival rate in the N-acetylcysteine responders and the fact that half of the patients receiving N-acetylcysteine did not respond, suggests that, in some patients, sepsis irreversibly damages the microvasculature to the extent that N-acetylcysteine has no effect. If analyzed by intention to treat, the N-acetylcysteine did not produce effects that were significantly different from the placebo. Whether the N-acetylcysteine challenge was merely diagnostic or whether N-acetylcysteine can be effective in the treatment of sepsis deserves further investigation.

  10. Fenoldopam Use in a Burn Intensive Care Unit: A Retrospective Study

    DTIC Science & Technology

    2010-01-01

    randomized study of N - acetylcysteine , fenoldopam, and saline for prevention of radiocontrast-induced nephropathy. Catheterization and Cardiovascular...Am Med Assoc, 2003, 2284-2291. 12. Briguori C et al.: N - acetylcysteine versus fenoldopam mesylate to prevent contrast agent-associated...Renal effects of N - acetylcysteine in patients at risk for contrast nephropathy: decrease in oxidant stress-mediated renal tubular injury. Nephrol

  11. N-acetylcysteine decreased nicotine reward-like properties and withdrawal in mice.

    PubMed

    Bowers, M S; Jackson, A; Maldoon, P P; Damaj, M I

    2016-03-01

    N-acetylcysteine can increase extrasynaptic glutamate and reduce nicotine self-administration in rats and smoking rates in humans. The aim of this study was to determine if N-acetylcysteine modulates the development of nicotine place conditioning and withdrawal in mice. N-acetylcysteine was given to nicotine-treated male ICR mice. Experiment 1: reward-like behavior. N-acetylcysteine (0, 5, 15, 30, or 60 mg/kg, i.p.) was given 15 min before nicotine (0.5 mg/kg, s.c.) or saline (10 ml/kg, s.c.) in an unbiased conditioned place preference (CPP) paradigm. Conditioning for highly palatable food served as control. Experiment 2: spontaneous withdrawal. The effect of N-acetylcysteine (0, 15, 30, 120 mg/kg, i.p.) on anxiety-like behavior, somatic signs, and hyperalgesia was measured 18-24 h after continuous nicotine (24 mg/kg/day, 14 days). Experiment 3: mecamylamine-precipitated, withdrawal-induced aversion. The effect of N-acetylcysteine (0, 15, 30, 120 mg/kg, i.p.) on mecamylamine (3.5 mg/kg, i.p.)-precipitated withdrawal was determined after continuous nicotine (24 mg/kg, i.p., 28 days) using the conditioned place aversion (CPA) paradigm. Dose-related reductions in the development of nicotine CPP, somatic withdrawal signs, hyperalgesia, and CPA were observed after N-acetylcysteine pretreatment. No effect of N-acetylcysteine was found on palatable food CPP, anxiety-like behavior, or motoric capacity (crosses between plus maze arms). Finally, N-acetylcysteine did not affect any measure in saline-treated mice at doses effective in nicotine-treated mice. These are the first data suggesting that N-acetylcysteine blocks specific mouse behaviors associated with nicotine reward and withdrawal, which adds to the growing appreciation that N-acetylcysteine may have high clinical utility in combating nicotine dependence.

  12. N-acetylcysteine decreased nicotine reward-like properties and withdrawal in mice

    PubMed Central

    Bowers, M.S.; Jackson, A.; Maldoon, P.P.; Damaj, M. I.

    2016-01-01

    Rationale N-acetylcysteine can increase extrasynaptic glutamate and reduce nicotine self-administration in rats and smoking rates in humans. Objectives The aim of this study was to determine if N-acetylcysteine modulates the development of nicotine place conditioning and withdrawal in mice. Methods N-acetylcysteine was given to nicotine-treated male ICR mice. Experiment 1: reward-like behavior. N-acetylcysteine (0, 5, 15, 30, or 60 mg/kg, i.p.) was given 15 min before nicotine (0.5 mg/kg, s.c.) or saline (10 ml/kg, s.c.) in an unbiased conditioned place preference (CPP) paradigm. Conditioning for highly palatable food served as control. Experiment 2: spontaneous withdrawal. The effect of N-acetylcysteine (0, 15, 30, 120 mg/kg, i.p.) on anxiety-like behavior, somatic signs, and hyperalgesia were measured 18 - 24 hrs after continuous nicotine (24 mg/kg/day, 14 days). Experiment 3: Mecamylamine-precipitated, withdrawal-induced aversion. The effect of N-acetylcysteine (0, 15, 30, 120 mg/kg, i.p.) on mecamylamine (3.5 mg/kg, i.p.) precipitated withdrawal was determined after continuous nicotine (24 mg/kg, i.p., 28 days) using the conditioned place aversion (CPA) paradigm. Results Dose-related reductions in the development of nicotine CPP, somatic withdrawal signs, hyperalgesia, and CPA were observed after N-acetylcysteine pretreatment. No effect of N-acetylcysteine were found on palatable food CPP, anxiety-like behavior, or motoric capacity (crosses between plus maze arms). Finally, N-acetylcysteine did not affect any measure in saline-treated mice at doses effective in nicotine-treated mice. Conclusions These are the first data suggesting that N-acetylcysteine blocks specific mouse behaviors associated with nicotine reward and withdrawal, which adds to the growing appreciation that N-acetylcysteine may have high clinical utility in combating nicotine dependence. PMID:26676982

  13. Maternal melatonin or N-acetylcysteine therapy regulates hydrogen sulfide-generating pathway and renal transcriptome to prevent prenatal NG-Nitro-L-arginine-methyl ester (L-NAME)-induced fetal programming of hypertension in adult male offspring.

    PubMed

    Tain, You-Lin; Lee, Chien-Te; Chan, Julie Y H; Hsu, Chien-Ning

    2016-11-01

    Pregnancy is a critical time for fetal programming of hypertension. Nitric oxide deficiency during pregnancy causes hypertension in adult offspring. We examined whether maternal melatonin or N-acetylcysteine therapy can prevent N G -nitro-L-arginine-methyl ester-induced fetal programming of hypertension in adult offspring. Next, we aimed to identify potential gatekeeper pathways that contribute to N G -nitro-L-arginine-methyl ester -induced programmed hypertension using the next generation RNA sequencing technology. Pregnant Sprague-Dawley rats were assigned to 4 groups: control, N G -nitro-L-arginine-methyl ester, N G -nitro-L-arginine-methyl ester +melatonin, and N G -nitro-L-arginine-methyl ester+N-acetylcysteine. Pregnant rats received N G -nitro-L-arginine-methyl ester administration at 60 mg/kg/d subcutaneously during pregnancy alone, with additional 0.01% melatonin in drinking water, or with additional 1% N-acetylcysteine in drinking water during the entire pregnancy and lactation. Male offspring (n=8/group) were killed at 12 weeks of age. N G -nitro-L-arginine-methyl ester exposure during pregnancy induced programmed hypertension in adult male offspring, which was prevented by maternal melatonin or N-acetylcysteine therapy. Protective effects of melatonin and N-acetylcysteine against N G -nitro-L-arginine-methyl ester-induced programmed hypertension were associated with an increase in hydrogen sulfide-generating enzymes and hydrogen sulfide synthesis in the kidneys. Nitric oxide inhibition by N G -nitro-L-arginine-methyl ester in pregnancy caused >2000 renal transcripts to be modified during nephrogenesis stage in 1-day-old offspring kidney. Among them, genes belong to the renin-angiotensin system, and arachidonic acid metabolism pathways were potentially involved in the N G -nitro-L-arginine-methyl ester-induced programmed hypertension. However, melatonin and N-acetylcysteine reprogrammed the renin-angiotensin system and arachidonic acid pathway differentially. Our results indicated that antioxidant therapy, by melatonin or N-acetylcysteine, in pregnant rats with nitric oxide deficiency can prevent programmed hypertension in male adult offspring. Early intervention with specific antioxidants that target redox imbalance in pregnancy to reprogram hypertension may well allow us to reduce the future burden of hypertension. The roles of transcriptome changes that are induced by N G -nitro-L-arginine-methyl ester in the offspring kidney require further clarification. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. N-acetylcysteine supplementation decreases osteoclast differentiation and increases bone mass in mice fed a high-fat diet

    USDA-ARS?s Scientific Manuscript database

    Studies have demonstrated that obesity induced by high-fat diets increases bone resorption, decreases trabecular bone mass, and reduces bone strength in various animal models. This study investigated whether N-acetylcysteine (NAC), an antioxidant and a glutathione precursor, alters glutathione statu...

  15. N-Acetylcysteine as adjunctive treatment in severe malaria: A randomized double blinded placebo controlled clinical trial

    PubMed Central

    Charunwatthana, Prakaykaew; Faiz, M. Abul; Ruangveerayut, Ronnatrai; Maude, Richard; Rahman, M. Ridwanur; Roberts, L. Jackson; Moore, Kevin; Yunus, Emran Bin; Hoque, M. Gofranul; Hasan, Mahatab Uddin; Lee, Sue J.; Pukrittayakamee, Sasithon; Newton, Paul N.; White, Nicholas J.; Day, Nicholas P.J.; Dondorp, Arjen M.

    2009-01-01

    Objective Markers of oxidative stress are reported to be increased in severe malaria. It has been suggested that the antioxidant N-acetylcysteine (NAC) may be beneficial in treatment. We studied the efficacy and safety of parenteral N-acetylcysteine as an adjunct to artesunate treatment of severe falciparum malaria. Design A randomized double-blind placebo controlled trial on the use of high dose intravenous NAC as adjunctive treatment to artesunate. Setting A provincial hospital in Western Thailand and a tertiary referral hospital in Chittagong, Bangladesh. Patients One hundred and eight adult patients with severe falciparum malaria. Interventions Patients were randomized to receive N-acetylcysteine or placebo as adjunctive treatment to intravenous artesunate. Measurements and main results A total of 56 patients were treated with NAC and 52 received placebo. NAC had no significant effect on mortality, lactate clearance times (p=0.74) or coma recovery times (p=0.46). Parasite clearance time was increased from 30h (range 6h to 144h) to 36h (range 6h to 120h) (p=0.03), but this could be explained by differences in admission parasitemia. Urinary F2-isoprostane metabolites, measured as a marker of oxidative stress, were increased in severe malaria compared to patients with uncomplicated malaria and healthy volunteers. Admission red cell rigidity correlated with mortality, but did not improve with NAC. Conclusion Systemic oxidative stress is increased in severe malaria. Treatment with N-acetylcysteine had no effect on outcome in patients with severe falciparum malaria in this setting. PMID:19114891

  16. N-acetylcysteine reduces the renal oxidative stress and apoptosis induced by hemorrhagic shock.

    PubMed

    Moreira, Miriam Aparecida; Irigoyen, Maria Claudia; Saad, Karen Ruggeri; Saad, Paulo Fernandes; Koike, Marcia Kiyomi; Montero, Edna Frasson de Souza; Martins, José Luiz

    2016-06-01

    Renal ischemia/reperfusion injury induced by hemorrhagic shock (HS) and subsequent fluid resuscitation is a common cause of acute renal failure. The objective of this study was to evaluate the effect of combining N-acetylcysteine (NAC) with fluid resuscitation on renal injury in rats that underwent HS. Two groups of male Wistar rats were induced to controlled HS at 35 mm Hg mean arterial pressure for 60 min. After this period, the HS and fluid resuscitation (HS/R) group was resuscitated with lactate containing 50% of the blood that was withdrawn. The HS/R + NAC group was resuscitated with Ringer's lactate combined with 150 mg/kg of NAC and blood. The sham group animals were catheterized but were not subjected to shock. All animals were kept under anesthesia and euthanized after 120 min of fluid resuscitation or observation. Animals treated with NAC presented attenuation of histologic lesions, reduced oxidative stress, and apoptosis markers when compared with animals from the HS/R group. The serum creatinine was similar in all the groups. NAC is a promising drug for combining with fluid resuscitation to attenuate the kidney injury associated with HS. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. N-Acetylcysteine Restores Sevoflurane Postconditioning Cardioprotection against Myocardial Ischemia-Reperfusion Injury in Diabetic Rats.

    PubMed

    Lin, Jiefu; Wang, Tingting; Li, Yalan; Wang, Mengxia; Li, Haobo; Irwin, Michael G; Xia, Zhengyuan

    2016-01-01

    The effect of sevoflurane postconditioning (sevo-postC) cardioprotection is compromised in diabetes which is associated with increased oxidative stress. We hypothesized that antioxidant N-Acetylcysteine may enhance or restore sevo-postC cardioprotection in diabetes. Control or streptozotocin-induced Type 1 diabetic rats were either untreated or treated with N-Acetylcysteine for four weeks starting at five weeks after streptozotocin injection and were subjected to myocardial ischemia-reperfusion injury (IRI), in the absence or presence of sevo-postC. Diabetes showed reduction of cardiac STAT3 activation (p-STAT3) and adiponectin with concomitantly increase of FoxO1 and CD36, which associated with reduced sevo-postC cardioprotection. N-Acetylcysteine and sevo-postC synergistically reduced the infarct size in diabetic groups. N-Acetylcysteine remarkably increased cardiac p-STAT3 which was further enhanced by sevo-postC. N-Acetylcysteine but not sevo-postC decreased myocardial FoxO1 while sevo-postC but not N-Acetylcysteine significantly increased myocardiac adiponectin in diabetic rats. It is concluded that late stage diabetic rats displayed reduction of cardiac p-STAT3, adiponectin deficiency, and increase of FoxO1 and CD36 expression, which may be responsible for the loss of myocardial responsiveness to sevo-postC cardioprotection. N-Acetylcysteine restored Sevo-postC cardioprotection in diabetes possibly through enhancing cardiac p-STAT3 and adiponectin and reducing Fox1 and CD36.

  18. Efficacy and safety of inhaled N-acetylcysteine in idiopathic pulmonary fibrosis: A prospective, single-arm study.

    PubMed

    Okuda, Ryo; Matsushima, Hidekazu; Oba, Tomohiro; Kawabe, Rie; Matsubayashi, Minako; Amano, Masako; Nishizawa, Tomotaka; Honda, Koujiro

    2016-05-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with few treatment options. The efficacy of N-acetylcysteine in patients with IPF remains controversial. The aim of this research was to investigate the efficacy of inhaled N-acetylcysteine. This study was designed as a single-center, single-arm, prospective clinical trial. Each patient who had IPF received 352.4mg of inhaled N-acetylcysteine twice daily. In total, 28 patients were enrolled. The mean values of the respiratory function parameters at the initiation of therapy were as follows: forced vital capacity (FVC), 2.27L and %FVC, 76.2%. The mean change in FVC during 26 weeks prior to the inhaled N-acetylcysteine therapy was -170mL, a significant decrease (p=0.019). The mean change in FVC during 26 weeks after the initiation of inhaled N-acetylcysteine therapy was -70mL (p=0.06). When the patients were classified into two groups according to the degree of decline in FVC (≥100mL vs. <100mL) during the 26-week period prior to the initiation of therapy, inhaled N-acetylcysteine showed a greater efficacy in attenuating FVC decline in the ≥100-mL group than in the <100-mL group. Inhaled N-acetylcysteine therapy was effective in patients with mild-to-moderate IPF and was more beneficial in patients who had greater declines in FVC before the initiation of therapy. (UMIN title: Efficacy and safety of inhaled N-acetylcysteine in idiopathic pulmonary fibrosis, UMIN000016706, 2015/03/04.). Copyright © 2015 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  19. Possible involvement of the JAK/STAT signaling pathway in N-acetylcysteine-mediated antidepressant-like effects.

    PubMed

    Al-Samhari, Marwa M; Al-Rasheed, Nouf M; Al-Rejaie, Salim; Al-Rasheed, Nawal M; Hasan, Iman H; Mahmoud, Ayman M; Dzimiri, Nduna

    2016-03-01

    Advances in depression research have targeted inflammation and oxidative stress to develop novel types of treatment. The JAK/STAT signaling pathway plays pivotal roles in immune and inflammatory responses. The present study was designed to investigate the effects of N-acetylcysteine, a putative precursor of the antioxidant glutathione, in an animal model of depression, with an emphasis on the JAK/STAT signaling pathway. Fluoxetine, a classical antidepressant drug was also under investigation. Male Wistar rats were subjected to forced swimming test and given N-acetylcysteine and fluoxetine immediately after the pre-test session, 5 h later and 1 h before the test session of the forced swimming test. N-acetylcysteine decreased immobility time (P < 0.05), serum corticosterone (P < 0.001), and hydrogen peroxide (P < 0.001), while restored glutathione concentration. Treatment of the rats with N-acetylcysteine produced significant (P < 0.001) down-regulation of STAT3 mRNA expression and protein phosphorylation. On the other hand, N-acetylcysteine significantly (P < 0.001) increased SOCS3 gene expression; however, SOCS3 protein was not changed. In conclusion, our study suggests that modulation of the JAK/STAT pathway might mediate the antidepressant-like effects of N-acetylcysteine. Therefore, depression research may target the JAK/STAT signaling pathway to provide a novel effective therapy. © 2015 by the Society for Experimental Biology and Medicine.

  20. Possible involvement of the JAK/STAT signaling pathway in N-acetylcysteine-mediated antidepressant-like effects

    PubMed Central

    Al-Samhari, Marwa M; Al-Rasheed, Nouf M; Al-Rejaie, Salim; Al-Rasheed, Nawal M; Hasan, Iman H; Dzimiri, Nduna

    2015-01-01

    Advances in depression research have targeted inflammation and oxidative stress to develop novel types of treatment. The JAK/STAT signaling pathway plays pivotal roles in immune and inflammatory responses. The present study was designed to investigate the effects of N-acetylcysteine, a putative precursor of the antioxidant glutathione, in an animal model of depression, with an emphasis on the JAK/STAT signaling pathway. Fluoxetine, a classical antidepressant drug was also under investigation. Male Wistar rats were subjected to forced swimming test and given N-acetylcysteine and fluoxetine immediately after the pre-test session, 5 h later and 1 h before the test session of the forced swimming test. N-acetylcysteine decreased immobility time (P < 0.05), serum corticosterone (P < 0.001), and hydrogen peroxide (P < 0.001), while restored glutathione concentration. Treatment of the rats with N-acetylcysteine produced significant (P < 0.001) down-regulation of STAT3 mRNA expression and protein phosphorylation. On the other hand, N-acetylcysteine significantly (P < 0.001) increased SOCS3 gene expression; however, SOCS3 protein was not changed. In conclusion, our study suggests that modulation of the JAK/STAT pathway might mediate the antidepressant-like effects of N-acetylcysteine. Therefore, depression research may target the JAK/STAT signaling pathway to provide a novel effective therapy. PMID:26643864

  1. Detection and description of various stores of nitric oxide store in vascular wall.

    PubMed

    Vlasova, M A; Vanin, A F; Muller, B; Smirin, B V; Malyshev, I Yu; Manukhina, E B

    2003-09-01

    We analyzed the possibility of the existence of various NO pools in the vascular wall. Incubation of isolated rat aorta with dinitrosyl iron complex (NO donor) led to the formation of NO stores in the vascular wall detected by vascular relaxation response induced by diethyldithiocarbamate and N-acetylcysteine. Comparison of the effects of successive application of diethyldithiocarbamate and N-acetylcysteine revealed two NO pools (one pool responded to both agents, while other responded only to N-acetylcysteine). Inhibition of guanylate cyclase with methylene blue abolished the response to diethyldithiocarbamate, while the reaction to N-acetylcysteine decreased by the value, corresponding to diethyldithiocarbamate-dependent relaxation. It is hypothesized that in the vascular wall NO is stored in the form protein-bound dinitrosyl iron complexes and S-nitrosothiols in hydrophilic and hydrophobic cell compartments.

  2. Formation of the thioester, N-acetyl, S-lactoylcysteine, by reaction of N-acetylcysteine with pyruvaldehyde in aqueous solution. [in prebiotic evolution

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1982-01-01

    N-acetylcysteine reacts efficiently with pyruvaldehyde (methylglyoxal) in aqueous solution (pH 7.0) in the presence of a weak base, like imidazole or phosphate, to give the thioester, N-acetyl, S-lactoylcysteine. Reactions of 100 mM N-acetylcysteine with 14 mM, 24 mM and 41 mM pyruvaldehyde yield, respectively, 86%, 76% and 59% N-acetyl, S-lactoylcysteine based on pyruvaldehyde. The decrease in the percent yield at higher pyruvaldehyde concentrations suggests that during its formation the thioester is not only consumed by hydrolysis, but also by reaction with some substance in the pyruvaldehyde preparation. Indeed, purified N-acetyl, S-lactoylcysteine disappears much more rapidly in the presence of pyruvaldehyde than in its absence. Presumably, N-acetyl, S-lactoylcysteine synthesis occurs by rearrangement of the hemithioacetal of N-acetylcysteine and pyruvaldehyde. The significance of this pathway of thioester formation to molecular evolution is discussed.

  3. S-Nitrosylation and the Development of Pulmonary Hypertension

    DTIC Science & Technology

    2008-02-01

    endothelium . In the experiments performed, N -acetyl cysteine (NAC) is used as a tracer to 1) monitor SNO formation...antioxidant N - acetylcysteine (NAC) as a bait reactant to measure NO transfer reactions in blood and to study the vascular effects of these reactions in vivo...NAC was converted to S-nitroso- N - acetylcysteine (SNOAC), decreasing erythrocytic S-nitrosothiol content, both during whole- blood deoxygenation

  4. Serotonergic neurotoxic metabolites of ecstasy identified in rat brain.

    PubMed

    Jones, Douglas C; Duvauchelle, Christine; Ikegami, Aiko; Olsen, Christopher M; Lau, Serrine S; de la Torre, Rafael; Monks, Terrence J

    2005-04-01

    The selective serotonergic neurotoxicity of 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) depends on their systemic metabolism. We have recently shown that inhibition of brain endothelial cell gamma-glutamyl transpeptidase (gamma-GT) potentiates the neurotoxicity of both MDMA and MDA, indicating that metabolites that are substrates for this enzyme contribute to the neurotoxicity. Consistent with this view, glutathione (GSH) and N-acetylcysteine conjugates of alpha-methyl dopamine (alpha-MeDA) are selective neurotoxicants. However, neurotoxic metabolites of MDMA or MDA have yet to be identified in brain. Using in vivo microdialysis coupled to liquid chromatography-tandem mass spectroscopy and a high-performance liquid chromatography-coulometric electrode array system, we now show that GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA are present in the striatum of rats administered MDMA by subcutaneous injection. Moreover, inhibition of gamma-GT with acivicin increases the concentration of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA in brain dialysate, and there is a direct correlation between the concentrations of metabolites in dialysate and the extent of neurotoxicity, measured by decreases in serotonin (5-HT) and 5-hydroxyindole acetic (5-HIAA) levels. Importantly, the effects of acivicin are independent of MDMA-induced hyperthermia, since acivicin-mediated potentiation of MDMA neurotoxicity occurs in the context of acivicin-mediated decreases in body temperature. Finally, we have synthesized 5-(N-acetylcystein-S-yl)-N-methyl-alpha-MeDA and established that it is a relatively potent serotonergic neurotoxicant. Together, the data support the contention that MDMA-mediated serotonergic neurotoxicity is mediated by the systemic formation of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA (and alpha-MeDA). The mechanisms by which such metabolites access the brain and produce selective serotonergic neurotoxicity remain to be determined.

  5. N-acetylcysteine regimens for paracetamol overdose: Time for a change?

    PubMed

    Wong, Anselm; Graudins, Andis

    2016-12-01

    Paracetamol overdose is one of the commonest pharmaceutical poisonings in the world. For nearly four decades, intravenous acetylcysteine regimens have been used to treat most patients successfully and prevent or mitigate hepatotoxicity. However, the rate of occurrence of adverse reactions to acetylcysteine is quite high, and there is a potential for these to be reduced. Recent studies show that distributing the loading-dose of acetylcysteine over the first few hours of treatment may decrease the incidence of adverse reactions. In addition, varying the duration of acetylcysteine administration may potentially benefit certain cohorts of poisoned patients, depending on their risk of developing hepatotoxicity. © 2016 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  6. Efficacy of N-Acetylcysteine in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Sun, Tong; Liu, Jing; Zhao, De Wei

    2016-01-01

    Abstract There are a number of conflicting reports describing the clinical outcomes of using N-acetylcysteine for the treatment of idiopathic pulmonary fibrosis. We have, therefore, performed a meta-analysis to evaluate the efficacy of N-acetylcysteine, compared with control, for the treatment of idiopathic pulmonary fibrosis. Original controlled clinical trials evaluating the efficacy of N-acetylcysteine for the treatment of idiopathic pulmonary fibrosis were included in the analysis. Searches for relevant articles were carried out in July 2014 by 2 independent researchers using PubMed, Embase, Cochrane Central, and Google Scholar. Change in forced vital capacity, change in percentage of predicted vital capacity, change in percentage of predicted carbon monoxide diffusing capacity, changes in 6 minutes walking test distance, rate of adverse events, and rate of death were expressed as outcomes using RevMan 5.0.1. Five trials, with a total of 564 patients, were included in this meta-analysis. The meta-analysis showed that the control group had significant decreases in percentage of predicted vital capacity (standardized mean difference [SMD] = 0.37; 95% confidence interval [CI]: 0.13 to −0.62; P = 0.003) and 6 minutes walking test distance (SMD = 0.25; 95% CI: 0.02–0.48; P = 0.04). There were no statistically significant differences in forced vital capacity (SMD = 0.07; 95% CI: −0.13–0.27; P = 0.52), percentage of predicted carbon monoxide diffusing capacity (SMD = 0.12; 95% CI: −0.06–0.30; P = 0.18), rates of adverse events (odd ratio = 4.50; 95% CI: 0.19–106.41; P = 0.35), or death rates (odd ratio = 1.79; 95% CI: 0.3–5.12; P = 0.28) between the N-acetylcysteine group and the control group. N-Acetylcysteine was found to have a significant effect only on decreases in percentage of predicted vital capacity and 6 minutes walking test distance. N-acetylcysteine showed no beneficial effect on changes in forced vital capacity, changes in predicted carbon monoxide diffusing capacity, rates of adverse events, or death rates. PMID:27175674

  7. Efficacy of N-Acetylcysteine in Idiopathic Pulmonary Fibrosis: A Systematic Review and Meta-Analysis.

    PubMed

    Sun, Tong; Liu, Jing; Zhao, De Wei

    2016-05-01

    There are a number of conflicting reports describing the clinical outcomes of using N-acetylcysteine for the treatment of idiopathic pulmonary fibrosis. We have, therefore, performed a meta-analysis to evaluate the efficacy of N-acetylcysteine, compared with control, for the treatment of idiopathic pulmonary fibrosis.Original controlled clinical trials evaluating the efficacy of N-acetylcysteine for the treatment of idiopathic pulmonary fibrosis were included in the analysis. Searches for relevant articles were carried out in July 2014 by 2 independent researchers using PubMed, Embase, Cochrane Central, and Google Scholar. Change in forced vital capacity, change in percentage of predicted vital capacity, change in percentage of predicted carbon monoxide diffusing capacity, changes in 6 minutes walking test distance, rate of adverse events, and rate of death were expressed as outcomes using RevMan 5.0.1.Five trials, with a total of 564 patients, were included in this meta-analysis. The meta-analysis showed that the control group had significant decreases in percentage of predicted vital capacity (standardized mean difference [SMD] = 0.37; 95% confidence interval [CI]: 0.13 to -0.62; P = 0.003) and 6 minutes walking test distance (SMD = 0.25; 95% CI: 0.02-0.48; P = 0.04). There were no statistically significant differences in forced vital capacity (SMD = 0.07; 95% CI: -0.13-0.27; P = 0.52), percentage of predicted carbon monoxide diffusing capacity (SMD = 0.12; 95% CI: -0.06-0.30; P = 0.18), rates of adverse events (odd ratio = 4.50; 95% CI: 0.19-106.41; P = 0.35), or death rates (odd ratio = 1.79; 95% CI: 0.3-5.12; P = 0.28) between the N-acetylcysteine group and the control group.N-Acetylcysteine was found to have a significant effect only on decreases in percentage of predicted vital capacity and 6 minutes walking test distance. N-acetylcysteine showed no beneficial effect on changes in forced vital capacity, changes in predicted carbon monoxide diffusing capacity, rates of adverse events, or death rates.

  8. Massive acetaminophen overdose: effect of hemodialysis on acetaminophen and acetylcysteine kinetics.

    PubMed

    Ghannoum, Marc; Kazim, Sara; Grunbaum, Ami M; Villeneuve, Eric; Gosselin, Sophie

    2016-07-01

    Early onset acidosis from mitochondrial toxicity can be observed in massive acetaminophen poisoning prior to the development of hepatotoxicity. In this context, the efficacy of acetylcysteine to reverse mitochondrial toxicity remains unclear and hemodialysis may offer prompt correction of acidosis. Unfortunately, toxicokinetics of acetaminophen and acetylcysteine during extracorporeal treatments hemodialysis have seldom been described. An 18-year-old woman presented to the emergency department 60 minutes after ingestion of 100 g of acetaminophen, and unknown amounts of ibuprofen and ethanol. Initial assessment revealed an agitated patient. Her mental status worsened and she required intubation for airway protection. Investigations showed metabolic acidosis with lactate peaking at 8.6 mmol/L. Liver and coagulation profiles remained normal. Acetaminophen concentration peaked at 981 μg/ml (6496 μmol/L). Pending hemodialysis, the patient received 100 g of activated charcoal and an acetylcysteine infusion at 150 mg/kg over 1 hour, followed by 12.5 mg/kg/h for 4 hours. During hemodialysis, the infusion was maintained at 12.5 mg/kg/h to compensate for expected removal before it was decreased to 6.25 mg/kg for 20 hours after hemodialysis. The patient rapidly improved during hemodialysis and was discharged 48 hours post-admission. The acetaminophen elimination half-life was 5.2 hours prior to hemodialysis, 1.9-hours during hemodialysis and 3.6 hours post hemodialysis. The acetaminophen and acetylcysteine clearances by A-V gradient during hemodialysis were 160.4 ml/min and 190.3 ml/min, respectively. Hemodialysis removed a total of 20.6 g of acetaminophen and 17.9 g of acetylcysteine. This study confirms the high dialyzability of both acetaminophen and acetylcysteine. Hemodialysis appears to be a beneficial therapeutic option in cases of massive acetaminophen ingestion with coma and lactic acidosis. Additionally, these results suggest that the infusion rate of acetylcysteine must be more than double during hemodialysis to compensate for its ongoing removal and provide similar plasma concentrations to the usual acetylcysteine regimen.

  9. Effects of various drugs on canine tracheal mucociliary transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giordano, A.; Holsclaw, D.; Litt, M.

    1978-07-01

    A study of the effects of dehydration, atropine, terbutaline and N-acetylcysteine on canine tracheobronchial mucus is presented. Mucociliary clearance rates, mucus secretion volumes and mucus rheologic properties were studied. Clearance rates were studied by a radioisotope technique mucus collected by a canine Tracheal pouch method and rheologic studies performed on a microrheometer. Clearance rate was unaffected by dehydration and terbutaline, increased by N-acetylcysteine and decreased by atropine. Secretion volume was increased by terbutaline while dehydration and atropine were without effect. Rheologic factors were increased by dehydration and atropine while terbutaline was without an effect. The effects of N-acetylcysteine on secretionmore » volume and rheologic properties could not be studied because of the nature of the techniques employed.« less

  10. [Decreasing reperfusion damage with N-acetylcysteine in experimental pancreas transplantion].

    PubMed

    Mayer, H; Thies, J; Schmidt, J; Gebhard, M M; Herfarth, C; Klar, E

    1998-01-01

    In this study we investigated the effect of donor and recipient conditioning with N-acetylcysteine on the ischemia/reperfusion injury after experimental pancreas-transplantation. We performed standardized pancreaticoduodenal transplantation in male lewis rats. The pancreas was perfused with UW-solution, harvested and conserved at 4 degrees C. Cold ischemia time was 1.5 hours and 16 hours respectively. The microcirculation in the transplanted organ was quantified by means of intravital microscopy 1.5 hours after implantation and reperfusion in the recipient. After 16 hours of cold ischemia we found a significant reduction in capillary erythrocyte velocity and a significantly enhanced leucocyte/endothelium interaction. The treatment with N-acetylcysteine resulted in a significant improvement of these microcirculatory disorders after prolonged cold ischemia.

  11. N-acetylcysteine attenuates endotoxin-induced leukocyte-endothelial cell adhesion and macromolecular leakage in vivo.

    PubMed

    Schmidt, H; Schmidt, W; Müller, T; Böhrer, H; Gebhard, M M; Martin, E

    1997-05-01

    To determine the influence of N-acetylcysteine on endotoxin-induced leukocyte-endothelial cell adhesion, vascular leakage, and venular microhemodynamics. Randomized, blinded, controlled trial. Experimental laboratory. Thirty male Wistar rats. After pretreatment with N-acetylcysteine (150 mg/kg; n = 40; group A) or 0.9% saline solution (n = 10; group B) animals were given an intravenous infusion of endotoxin (Escherichia coli lipopolysaccharide 026:B6; 2 mg/kg/hr) over 120 mins. Animals in the control group (n = 10; group C) received a volume-equivalent infusion of 0.9% saline solution. Leukocyte adherence, red cell velocity (VRBC), vessel diameters, venular wall shear rate, and macromolecular leakage were determined in mesenteric postcapillary venules using in vivo videomicroscopy at baseline and at 30, 50, 90, and 120 mins after the start of the endotoxin challenge. Endotoxin exposure induced a marked increase in adherent leukocytes (group B: baseline, 391 +/- 24 cells/mm2; 120 mins, 1268 +/- 131 cells/mm2; p < .01). N-acetylcysteine pretreatment attenuated the adherence of leukocytes during endotoxemia (baseline, 366 +/- 28 cells/mm2; 120 mins, 636 +/- 49 cells/mm2; p < .01 vs. baseline; p < .01 vs. group B). Leukocyte adherence in control animals (group C) did not increase significantly. Administration of N-acetylcysteine did not influence the decrease in VRBC observed during endotoxemia. In group B1 VRBC decreased during the infusion of endotoxin from 2.0 +/- 0.2 mm/sec at baseline to 1.1 +/- 0.2 mm/ sec after 120 mins (p < .01 vs. baseline; p < .05 vs. group C), and in group A from 2.2 +/- 0.2 mm/sec to 1.1 +/- 0.1 mm/sec after 120 mins (p < .01 vs. baseline; p < .05 vs. group C). In group C, VRBC remained unchanged (baseline, 1.7 +/- 0.2 mm/sec; at 120 mins, 1.5 +/- 0.2 mm/sec). The venular diameters remained unchanged in all groups during the entire study period. After 120 mins, the venular wall shear rate decreased from 502 +/- 62 secs-1 at baseline to 272 +/- 46 sec-1 in group B (p < .01), and from 563 +/- 45 secs-1 at baseline to 283 +/- 31 secs-1 in group A (p < .01). No differences in venular wall shear rate were observed between these groups. In group C, the venular wall shear rate remained unchanged (baseline, 457 +/- 54 secs-1; at 120 mins, 409 +/- 51 secs-1). Macromolecular leakage, expressed as perivenular/intravenular fluorescence intensity after injection of fluorescence-labeled albumin, increased from 0.29 +/- 0.03 to 0.58 +/- 0.03 (p < .01) during the infusion of endotoxin in group B. In contrast, pretreatment with N-acetylcysteine diminished the extravasation of albumin (baseline, 0.27 +/- 0.01; at 120 mins, 0.37 +/- 0.02; p < .01 vs. baseline; p < .01 vs. group B). These results demonstrate that N-acetylcysteine attenuates endotoxin-induced alterations in leukocyte-endothelial cell adhesion and macromolecular leakage, suggesting N-acetylcysteine might be therapeutic in the prevention of endothelial damage in sepsis.

  12. Antioxidant treatment ameliorates experimental diabetes-induced depressive-like behaviour and reduces oxidative stress in brain and pancreas.

    PubMed

    Réus, Gislaine Z; Dos Santos, Maria Augusta B; Abelaira, Helena M; Titus, Stephanie E; Carlessi, Anelise S; Matias, Beatriz I; Bruchchen, Livia; Florentino, Drielly; Vieira, Andriele; Petronilho, Fabricia; Ceretta, Luciane B; Zugno, Alexandra I; Quevedo, João

    2016-03-01

    Studies have shown a relationship between diabetes mellitus (DM) and the development of major depressive disorder. Alterations in oxidative stress are associated with the pathophysiology of both diabetes mellitus and major depressive disorder. This study aimed to evaluate the effects of antioxidants N-acetylcysteine and deferoxamine on behaviour and oxidative stress parameters in diabetic rats. To this aim, after induction of diabetes by a single dose of alloxan, Wistar rats were treated with N-acetylcysteine or deferoxamine for 14 days, and then depressive-like behaviour was evaluated. Oxidative stress parameters were assessed in the prefrontal cortex, hippocampus, amygdala, nucleus accumbens and pancreas. Diabetic rats displayed depressive-like behaviour, and treatment with N-acetylcysteine reversed this alteration. Carbonyl protein levels were increased in the prefrontal cortex, hippocampus and pancreas of diabetic rats, and both N-acetylcysteine and deferoxamine reversed these alterations. Lipid damage was increased in the prefrontal cortex, hippocampus, amygdala and pancreas; however, treatment with N-acetylcysteine or deferoxamine reversed lipid damage only in the hippocampus and pancreas. Superoxide dismutase activity was decreased in the amygdala, nucleus accumbens and pancreas of diabetic rats. In diabetic rats, there was a decrease in catalase enzyme activity in the prefrontal cortex, amygdala, nucleus accumbens and pancreas, but an increase in the hippocampus. Treatment with antioxidants did not have an effect on the activity of antioxidant enzymes. In conclusion, animal model of diabetes produced depressive-like behaviour and oxidative stress in the brain and periphery. Treatment with antioxidants could be a viable alternative to treat behavioural and biochemical alterations induced by diabetes. Copyright © 2015 John Wiley & Sons, Ltd.

  13. N-acetylcysteine in Acute Organophosphorus Pesticide Poisoning: A Randomized, Clinical Trial.

    PubMed

    El-Ebiary, Ahmad A; Elsharkawy, Rasha E; Soliman, Nema A; Soliman, Mohammed A; Hashem, Ahmed A

    2016-08-01

    Organophosphorus poisoning is a major global health problem with hundreds of thousands of deaths each year. Research interest in N-acetylcysteine has grown among increasing evidence of the role of oxidative stress in organophosphorus poisoning. We aimed to assess the safety and efficacy of N-acetylcysteine as an adjuvant treatment in patients with acute organophosphorus poisoning. This was a randomized, controlled, parallel-group trial on 30 patients suffering from acute organophosphorus poisoning, who were admitted to the Poison Control Center of Tanta University Emergency Hospital, Tanta, Egypt, between April and September 2014. Interventions included oral N-acetylcysteine (600 mg three times daily for 3 days) as an added treatment to the conventional measures versus only the conventional treatment. Outcome measures included mortality, total dose of atropine administered, duration of hospitalization and the need for ICU admission and/or mechanical ventilation. A total of 46 patients were screened and 30 were randomized. No significant difference was found between both groups regarding demographic characteristics and the nature or severity of baseline clinical manifestations. No major adverse effects to N-acetylcysteine therapy were reported. Malondialdehyde significantly decreased and reduced glutathione significantly increased only in the NAC-treated patients. The patients on NAC therapy required less atropine doses than those who received only the conventional treatment; however, the length of hospital stay showed no significant difference between both groups. The study concluded that the use of N-acetylcysteine as an added treatment was apparently safe, and it reduced atropine requirements in patients with acute organophosphorus pesticide poisoning. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  14. The pharmacokinetics and extracorporeal removal of N-acetylcysteine during renal replacement therapies.

    PubMed

    Hernandez, Stephanie H; Howland, Maryann; Schiano, Thomas D; Hoffman, Robert S

    2015-01-01

    Acetaminophen-induced fulminant hepatic failure is associated with acute kidney injury, metabolic acidosis, and fluid and electrolyte imbalances, requiring treatment with renal replacement therapies. Although antidote, acetylcysteine, is potentially extracted by renal replacement therapies, pharmacokinetic data are lacking to guide potential dosing alterations. We aimed to determine the extracorporeal removal of acetylcysteine by various renal replacement therapies. Simultaneous urine, plasma and effluent specimens were serially collected to measure acetylcysteine concentrations in up to three stages: before, during and upon termination of renal replacement therapy. Alterations in pharmacokinetics were determined by applying standard pharmacokinetic equations. Over 2 years, 10 critically ill patients in fulminant hepatic failure requiring renal replacement therapy coincident with acetylcysteine were consecutively enrolled. All 10 patients required continuous venovenous hemofiltration (n = 10) and 2 of the 10 also required hemodialysis (n = 2). There was a significant alteration in the pharmacokinetics of acetylcysteine during hemodialysis; the area under the curve (AUC) decreased 41%, the mean extraction ratio was 51%, the mean hemodialytic clearance was 114.01 ml/kg/h, and a mean 166.75 mg/h was recovered in the effluent or 41% of the hourly dose. Alteration in the pharmacokinetics of acetylcysteine during continuous venovenous hemofiltration did not appear to be significant: the AUC decreased 13%, the mean clearance was 31.77 ml/kg/h and a mean 62.12 mg/h was recovered in the effluent or 14% of the hourly dose. There was no significant extraction of acetylcysteine from continuous venovenous hemofiltration. In contrast, there was significant extracorporeal removal of acetylcysteine during hemodialysis. A reasonable dose adjustment may be to double the IV infusion rate or possibly supplement with oral acetylcysteine during hemodialysis.

  15. N-Acetylcysteine supplementation reduces oxidative stress and DNA damage in children with β-thalassemia.

    PubMed

    Ozdemir, Zeynep Canan; Koc, Ahmet; Aycicek, Ali; Kocyigit, Abdurrahim

    2014-01-01

    There are several reports that increased oxidative stress and DNA damage were found in β-thalassemia major (β-TM) patients. In this study, we aimed to evaluate the effects of N-acetylcysteine (NAC) and vitamin E on total oxidative stress and DNA damage in children with β-TM. Seventy-five children with transfusion-dependent β-thalassemia (β-thal) were randomly chosen to receive 10 mg/kg/day of NAC or 10 IU/kg/day of vitamin E or no supplementation; 28 healthy controls were also included in the study. Serum total oxidant status (TOS) and total antioxidant capacity (TAC) were measured, oxidative stress index (OSI) was calculated, and mononuclear DNA damage was assessed by alkaline comet assay; they were determined before treatment and after 3 months of treatment. Total oxydent status, OSI, and DNA damage levels were significantly higher and TAC levels were significantly lower in the thalassemic children than in the healthy controls (p < 0.001). In both supplemented groups, mean TOS and OSI levels were decreased; TAC and pre transfusion hemoglobin (Hb) levels were significantly increased after 3 months (p ≤ 0.002). In the NAC group, DNA damage score decreased (p = 0.001). N-Acetylcysteine and vitamin E may be effective in reducing serum oxidative stress and increase pre transfusion Hb levels in children with β-thal. N-Acetylcysteine also can reduce DNA damage.

  16. Therapeutic effect of budesonide/formoterol, montelukast and N-acetylcysteine for bronchiolitis obliterans syndrome after hematopoietic stem cell transplantation.

    PubMed

    Kim, Sei Won; Rhee, Chin Kook; Kim, Yoo Jin; Lee, Seok; Kim, Hee Je; Lee, Jong Wook

    2016-05-26

    Bronchiolitis obliterans syndrome (BOS) after allogeneic hematopoietic stem cell transplantation (HSCT) is currently treated with systemic corticosteroids despite poor efficacy and side effects. This study investigated the therapeutic effect of budesonide/formoterol, montelukast and n-acetylcysteine, which are suggested as treatment options for BOS after HSCT. After diagnosis of BOS, 61 patients were treated with budesonide/formoterol, montelukast and n-acetylcysteine for 3 months. Pulmonary function test and COPD assessment test (CAT) were performed before and after the combination therapy. Therapeutic response was evaluated by changes in forced expiratory volume in 1 s (FEV1) or CAT score. After 3 months of combination treatment, mean FEV1 increased by 220 mL (p < 0.001) and residual volume decreased by 200 mL (p =0 .005). Median CAT score also significantly decreased from 15.5 to 11.0 (p = 0.001). The overall response rate to combination therapy was 82 %. Comparing the no-response group and the response group, the forced vital capacity (% predicted) decline between pre-HSCT and BOS diagnosis was significantly greater in the response group (p = 0.036). Combination treatment with budesonide/formoterol, montelukast and n-acetylcysteine significantly improved lung function and respiratory symptoms in patients with BOS after allogeneic HSCT without serious side effects.

  17. The effects of sildenafil and n-acetylcysteine on ischemia and reperfusion injury in gastrocnemius muscle and femoral artery endothelium.

    PubMed

    Aksu, Volkan; Yüksel, Volkan; Chousein, Serchat; Taştekin, Ebru; İşcan, Şahin; Sağiroğlu, Gönül; Canbaz, Suat; Sunar, Hasan

    2015-02-01

    We aimed to examine the effects of sildenafil and n-acetylcystein on ischemia/reperfusion injury in femoral artery endothelium and gastrocnemius muscle. 32 rats of Sprague-Dawley breed were randomly divided into four groups (n=8). Median laparotomy was performed, then a 120-minute ischemia was created by microvascular clamping of infrarenal aorta, followed by the release of clamping. In sildenafil group, 1 mg/kg of sildenafil infusion and in the n-acetylcystein group, 100 mg/kg of n-acetylcystein infusion was administered after release of clamps. Blood samples and tissue samples of femoral artery and gastrocnemius muscle were extracted for a histopathological evaluation. Serum levels of malondialdehyde in ischemia/reperfusion group (6.16±0.79) were higher compared to the control group (4.69±0.33), whereas a significant decrease was detected in sildenafil (5.17±0.50) and n-acetylcystein (4.96±0.49) groups. Femoral artery tissue sections of the control group, mean tumor necrosis factor alpha and hypoxy-induced factor-1 alpha immunoreactivity were found to be negative. In the ischemia/reperfusion group, mean tumor necrosis factor α immunoreactivity was intense and mean hypoxy-induced factor-1 alpha immunoreactivity was 51-75%. In the ischemia/reperfusion+Sildenafil and ischemia/reperfusion+NAS groups, mean tumor necrosis factor α immunoreactivity was slight and mean hypoxy-induced factor-1 alpha immunoreactivity was 26-50%. In conclusion, sildenafil and n-acetylcystein may reduce femoral artery endothelium and gastrocnemius muscle injury following lower extremity ischemia/reperfusion. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. Synaptic and cellular changes induced by the schizophrenia susceptibility gene G72 are rescued by N-acetylcysteine treatment

    PubMed Central

    Pósfai, B; Cserép, C; Hegedüs, P; Szabadits, E; Otte, D M; Zimmer, A; Watanabe, M; Freund, T F; Nyiri, G

    2016-01-01

    Genetic studies have linked the primate-specific gene locus G72 to the development of schizophrenia and bipolar disorder. Transgenic mice carrying the entire gene locus express G72 mRNA in dentate gyrus (DG) and entorhinal cortex, causing altered electrophysiological properties of their connections. These transgenic mice exhibit behavioral alterations related to psychiatric diseases, including cognitive deficits that can be reversed by treatment with N-acetylcysteine, which was also found to be effective in human patients. Here, we show that G72 transgenic mice have larger excitatory synapses with an increased amount of N-methyl-d-aspartate (NMDA) receptors in the molecular layer of DG, compared with wild-type littermates. Furthermore, transgenic animals have lower number of dentate granule cells with a parallel, but an even stronger decrease in the number of excitatory synapses in the molecular layer. Importantly, we also show that treatment with N-acetylcysteine can effectively normalize all these changes in transgenic animals, resulting in a state similar to wild-type mice. Our results show that G72 transcripts induce robust alterations in the glutamatergic system at the synaptic level that can be rescued with N-acetylcysteine treatment. PMID:27163208

  19. N-acetylcysteine prevents ketamine-induced adverse effects on development, heart rate and monoaminergic neurons in zebrafish.

    PubMed

    Robinson, Bonnie; Dumas, Melanie; Gu, Qiang; Kanungo, Jyotshna

    2018-06-08

    N-acetylcysteine, a precursor molecule of glutathione, is an antioxidant. Ketamine, a pediatric anesthetic, has been implicated in cardiotoxicity and neurotoxicity including modulation of monoaminergic systems in mammals and zebrafish. Here, we show that N-acetylcysteine prevents ketamine's adverse effects on development and monoaminergic neurons in zebrafish embryos. The effects of ketamine and N-acetylcysteine alone or in combination were measured on the heart rate, body length, brain serotonergic neurons and tyrosine hydroxylase-immunoreactive (TH-IR) neurons. In the absence of N-acetylcysteine, a concentration of ketamine that produces an internal embryo exposure level comparable to human anesthetic plasma concentrations significantly reduced heart rate and body length and those effects were prevented by N-acetylcysteine co-treatment. Ketamine also reduced the areas occupied by serotonergic neurons in the brain, whereas N-acetylcysteine co-exposure counteracted this effect. TH-IR neurons in the embryo brain and TH-IR cells in the trunk were significantly reduced with ketamine treatment, but not in the presence of N-acetylcysteine. In our continued search for compounds that can prevent ketamine toxicity, this study using specific endpoints of developmental toxicity, cardiotoxicity and neurotoxicity, demonstrates protective effects of N-acetylcysteine against ketamine's adverse effects. This is the first study that shows the protective effects of N-acetylcysteine on ketamine-induced developmental defects of monoaminergic neurons as observed in a whole organism. Published by Elsevier B.V.

  20. Role of N-acetylcysteine on fibrosis and oxidative stress in cirrhotic rats.

    PubMed

    Pereira-Filho, Gustavo; Ferreira, Clarissa; Schwengber, Alex; Marroni, Cláudio; Zettler, Cláudio; Marroni, Norma

    2008-01-01

    Hepatic cirrhosis is the final stage of liver dysfunction, characterized by diffuse fibrosis which is the main response to the liver injury. The inhalatory carbon tetrachloride is an effective experimental model that triggers cirrhosis and allows to obtain histological and physiological modifications similar to the one seen in humans. To investigate the effects of N-acetylcysteine (NAC) on the fibrosis and oxidative stress in the liver of cirrhotic rats, analyzing liver function tests, lipoperoxidation, activity of glutathione peroxidase enzyme, collagen quantification, histopathology, as well as the nitric oxide role. The animals were randomly in three experimental groups: control (CO); cirrhotic (CCl4) and CCl4 + NAC. Evaluate the lipid peroxidation, the glutathione peroxidase enzyme, the collagen and the expression of inducible nitric oxide synthase (iNOS). The cirrhotic group treated with N-acetylcysteine showed trough the histological analysis and collagen quantification lower degrees of fibrosis. This group has also shown less damage to the cellular membranes, less decrease on the glutathione peroxidase levels and less expression of inducible nitric oxide synthase when matched with the cirrhotic group without treatment. N-acetylcysteine seams to offer protection against hepatic fibrosis and oxidative stress in cirrhotic rat livers.

  1. Recommendations for the paracetamol treatment nomogram and side effects of N-acetylcysteine.

    PubMed

    Koppen, A; van Riel, A; de Vries, I; Meulenbelt, J

    2014-06-01

    Treatment of paracetamol intoxication consists of administration of N-acetylcysteine, preferably shortly after paracetamol ingestion. In most countries, the decision to treat patients with N-acetylcysteine depends on the paracetamol plasma concentration. In the literature, different arguments are given regarding when to treat paracetamol overdose. Some authors do not recommend treatment with N-acetylcysteine at low paracetamol plasma concentrations since unnecessary adverse effects may be induced. But no treatment with N-acetylcysteine at higher paracetamol plasma concentrations may lead to unnecessary severe morbidity and mortality. In this review, we provide an overview on the severity and prevalence of adverse side effects after N-acetylcysteine administration and the consequences these side effects may have for the treatment of paracetamol intoxication. The final conclusion is to continue using the guidelines of the Dutch National Poisons Information Centre for N-acetylcysteine administration in paracetamol intoxication.

  2. The metabolism of N-acetylcysteine by human endothelial cells.

    PubMed

    Cotgreave, I; Moldéus, P; Schuppe, I

    1991-06-21

    When human umbilical endothelial cells were depleted of their glutathione by incubation in a sulfur amino acid-free medium, subsequent incubation of the cells with this deficient medium supplemented with N-acetylcysteine resulted in a dose-dependent stimulation of the synthesis of cellular glutathione. Similarly, the inclusion of N-acetylcysteine in the medium during the period of depletion of glutathione caused a dose-dependent retardation of the depletion kinetics. In contrast, the incubation of control cells in normal medium supplemented with N-acetylcysteine did not increase cellular glutathione levels above controls. These observations indicate the presence of an N-deacetylase in/on the cells with specificity for N-acetylcysteine. Due to the large surface area of the endothelium in the vasculature it seems likely that endothelial cell N-deacetylation plays a role in the metabolic disposition of N-acetylcysteine, particularly when administered intravenously. N-Acetylcysteine is, however, a relatively poor precursor to glutathione biosynthesis in comparison to cystine. Thus, any cytoprotective, antioxidant effect exerted by N-acetylcysteine on the human endothelium is likely to be due to direct scavenging of reactive intermediates rather than by stimulated glutathione synthesis in the endothelial cells themselves.

  3. Genotoxic effect of ethacrynic acid and impact of antioxidants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, William M.; Hoffman, Jared D.; Loo, George, E-mail: g_loo@uncg.edu

    It is known that ethacrynic acid (EA) decreases the intracellular levels of glutathione. Whether the anticipated oxidative stress affects the structural integrity of DNA is unknown. Therefore, DNA damage was assessed in EA-treated HCT116 cells, and the impact of several antioxidants was also determined. EA caused both concentration-dependent and time-dependent DNA damage that eventually resulted in cell death. Unexpectedly, the DNA damage caused by EA was intensified by either ascorbic acid or trolox. In contrast, EA-induced DNA damage was reduced by N-acetylcysteine and by the iron chelator, deferoxamine. In elucidating the DNA damage, it was determined that EA increased themore » production of reactive oxygen species, which was inhibited by N-acetylcysteine and deferoxamine but not by ascorbic acid and trolox. Also, EA decreased glutathione levels, which were inhibited by N-acetylcysteine. But, ascorbic acid, trolox, and deferoxamine neither inhibited nor enhanced the capacity of EA to decrease glutathione. Interestingly, the glutathione synthesis inhibitor, buthionine sulfoxime, lowered glutathione to a similar degree as EA, but no noticeable DNA damage was found. Nevertheless, buthionine sulfoxime potentiated the glutathione-lowering effect of EA and intensified the DNA damage caused by EA. Additionally, in examining redox-sensitive stress gene expression, it was found that EA increased HO-1, GADD153, and p21mRNA expression, in association with increased nuclear localization of Nrf-2 and p53 proteins. In contrast to ascorbic acid, trolox, and deferoxamine, N-acetylcysteine suppressed the EA-induced upregulation of GADD153, although not of HO-1. Overall, it is concluded that EA has genotoxic properties that can be amplified by certain antioxidants. - Highlights: • Ethacrynic acid (EA) caused cellular DNA damage. • EA-induced DNA damage was potentiated by ascorbic acid or trolox. • EA increased ROS production, not inhibited by ascorbic acid or trolox. • EA decreased glutathione levels, not prevented by ascorbic acid or trolox. • Buthionine sulfoxime intensified the DNA damage caused by EA.« less

  4. S-phenyl-N-acetylcysteine in urine of rats and workers after exposure to benzene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jongeneelen, F.J.; Dirven, H.A.; Leijdekkers, C.M.

    1987-05-01

    An HPLC method for the determination of S-phenyl-N-acetylcysteine in urine is described. The sensitivity is 6 mumol/L (CV = 9%) urine. Exposure of rats to six different concentrations of benzene, ranging from 0-30 ppm, was highly associated with urinary excretion of S-phenyl-N-acetylcysteine (r = 0.86) and with total phenol (r = 0.81). A background level of phenol was found in urine of both non-exposed rats and of non-exposed referents. However, no background excretion of S-phenyl-N-acetylcysteine was found, either in rats or in humans. In urine of exposed rats, the level of S-phenyl-N-acetylcysteine was approximately five times lower than the phenolmore » level. Workers occupationally exposed to benzene, showing high levels of urinary phenol, revealed low concentrations of urinary S-phenyl-N-acetylcysteine. The biological monitoring of industrial exposure to benzene by determination of S-phenyl-N-acetylcysteine in urine is not better than the determination of phenol in urine.« less

  5. Randomized clinical trial on acute effects of i.v. iron sucrose during haemodialysis.

    PubMed

    Garcia-Fernandez, Nuria; Echeverria, Aitziber; Sanchez-Ibarrola, Alfonso; Páramo, José Antonio; Coma-Canella, Isabel

    2010-03-01

    Haemodialysis induces endothelial dysfunction by oxidation and inflammation. Intravenous iron administration during haemodialysis could worsen endothelial dysfunction. The aim of this study was to ascertain if iron produces endothelial dysfunction and the possible neutralizing effect of N-acetylcysteine when infused before iron. The oxidative and inflammatory effects of iron during haemodialysis were also assessed. Forty patients undergoing haemodialysis were studied in a randomized and cross-over design with and without N-acetylcysteine infused before iron sucrose (50 or 100 mg). Plasma Von Willebrand factor (vWF), soluble intercellular adhesion molecule-1 (sICAM-1) levels, malondialdehyde, total antioxidant capacity, CD11b/CD18 expression in monocytes, interleukin (IL)-8 in monocytes and plasma IL-8 were studied at baseline and during haemodialysis. Haemodialysis produced significant (P < 0.001) increase in plasma vWF, sICAM-1, malondialdehyde, IL-8 and CD11b/CD18 expression in monocytes, as well as decrease in total antioxidant capacity. Iron induced significant increase in plasma malondialdehyde and IL-8 in monocytes, but had no effect on total antioxidant capacity, CD11b/CD18 expression, plasma IL-8, vWF and sICAM-1. The addition of N-acetylcysteine to 50 mg of iron produced a significant (P = 0.040) decrease in malondialdehyde. Standard (100 mg) and low (50 mg) doses of iron during haemodialysis had no effects on endothelium. Iron only had minor effects on inflammation and produced an increase in oxidative stress, which was neutralized by N-acetylcysteine at low iron dose. Haemodialysis caused a significant increase in oxidative stress, inflammation and endothelial dysfunction markers.

  6. Transtympanic injections of N-acetylcysteine for the prevention of cisplatin-induced ototoxicity: a feasible method with promising efficacy.

    PubMed

    Riga, Maria G; Chelis, Leonidas; Kakolyris, Stylianos; Papadopoulos, Stergios; Stathakidou, Sofia; Chamalidou, Eleni; Xenidis, Nikolaos; Amarantidis, Kyriakos; Dimopoulos, Prokopios; Danielides, Vasilios

    2013-02-01

    Ototoxicity is a common and irreversible adverse effect of cisplatin treatment with great impact on the patients' quality of life. N-acetylcysteine is a low-molecular-weight agent which has shown substantial otoprotective activity. The role of transtympanic infusions of N-acetylcysteine was examined in a cohort of patients treated with cisplatin-based regimens. Twenty cisplatin-treated patients were subjected, under local anesthesia, to transtympanic N-acetylcysteine (10%) infusions in 1 ear, during the hydration procedure preceding intravenous effusion of cisplatin. The contralateral ear was used as control. The number of transtympanic infusions was respective to the number of administered cycles. Hearing acuity was evaluated before each cycle with pure tone audiometry by an audiologist blinded to the treated ear. A total of 84 transtympanic infusions were performed. In treated ears, no significant changes in auditory thresholds were recorded. In the control ears cisplatin induced a significant decrease of auditory thresholds at the 8000 Hz frequency band (P=0.008). At the same frequency (8000 Hz), the changes in auditory thresholds were significantly larger for the control ears than the treated ones (P=0.005). An acute pain starting shortly after the injection and lasting for a few minutes seemed to be the only significant adverse effect. Transtympanic injections of N-acetylcysteine seem to be a feasible and effective otoprotective strategy for the prevention of cisplatin-induced ototoxicity. Additional studies are required to further clarify the efficiency of this treatment and determine the optimal dosage and protocol.

  7. Effects of N-Acetylcysteine Addition to University of Wisconsin Solution on the Rate of Ischemia-Reperfusion Injury in Adult Orthotopic Liver Transplant.

    PubMed

    Aliakbarian, Mohsen; Nikeghbalian, Saman; Ghaffaripour, Sina; Bahreini, Amin; Shafiee, Mohammad; Rashidi, Mohammad; Rajabnejad, Yaser

    2017-08-01

    One of the main concerns in liver transplant is the prolonged ischemia time, which may lead to primary graft nonfunction or delayed function. N-acetylcysteine is known as a hepato-protective agent in different studies, which may improve human hepatocyte viability in steatotic donor livers. This study investigated whether N-acetylcysteine can decrease the rate of ischemia-reperfusion syndrome and improve short-term outcome in liver transplant recipients. This was a double-blind, randomized, control clinical trial of 115 patients. Between April 2012 and January 2013, patients with orthotopic liver transplant were randomly divided into 2 groups; in 49 cases N-acetylcysteine was added to University of Wisconsin solution as the preservative liquid (experimental group), and in 66 cases standard University of Wisconsin solution was used (control group). We compared postreperfusion hypotension, inotrope requirement before and after portal reperfusion, intermittent arterial blood gas analysis and potassium measurement, pathological review of transplanted liver, in-hospital complications, morbidity, and mortality. There was no significant difference between the groups regarding time to hepatic artery reperfusion, hospital stay, vascular complications, inotrope requirement before and after portal declamping, and blood gas analysis. Hypotension after portal reperfusion was significantly more common in experimental group compared with control group (P = .005). Retransplant and in-hospital mortality were comparable between the groups. Preservation of the liver inside Univer-sity of Wisconsin solution plus N-acetylcysteine did not change the rate of ischemia reperfusion injury and short-term outcome in liver transplant recipients.

  8. Mucolytic Activity Test of Shallot Extract (Allium Ascalonicum L) by in Vitro

    NASA Astrophysics Data System (ADS)

    Deswati, D. A.; Dhina, M. A.; Mubaroq, S. R.

    2018-01-01

    This paper aims to explain the results of research on the mucolytic activity of shallot extract is proportional to 0.2% N-Acetylcysteine. Shallot (Allium ascalonicum L.) is efficacious for treating cough. This research was conducted by examining the mucolytic activity of shallot extract made with various dose concentration 5%, 10%, 15%, 20%, and 25%. The mucolytic activity test was performed in vitro based on the decrease in the viscosity of the egg whites by using the Brookfield viscometer. The results showed that shallot extract with dose concentration of 5%, 10%, 15%, 20%, 25% had mucolytic activity by decreasing the viscosity of egg white solution. The effective concentration almost equal to 0.2% N-Acetylcysteine is at 25% concentration.

  9. A double-blind randomized controlled trial of N-acetylcysteine in cannabis-dependent adolescents

    PubMed Central

    Gray, Kevin M.; Carpenter, Matthew J.; Baker, Nathaniel L.; DeSantis, Stacia M.; Kryway, Elisabeth; Hartwell, Karen J.; McRae-Clark, Aimee L.; Brady, Kathleen T.

    2012-01-01

    Objective Preclinical findings suggest that the over-the-counter supplement N-acetylcysteine, via glutamate modulation in the nucleus accumbens, holds promise as a pharmacotherapy targeting substance dependence. We sought to investigate N-acetylcysteine as a novel cannabis cessation treatment in adolescents, a vulnerable group for whom existing treatments have limited efficacy. Method In this 8-week double-blind randomized placebo-controlled trial, treatment-seeking cannabis-dependent adolescents (age 15-21, N = 116) received N-acetylcysteine (1200 mg) or placebo twice daily, each added to a contingency management intervention and brief (≤10 minute) weekly cessation counseling. The primary efficacy measure was the odds of negative weekly urine cannabinoid tests during treatment among participants receiving N-acetylcysteine versus placebo, via intent-to-treat analysis. The primary tolerability measure was frequency of adverse events, compared by treatment group. Results N-acetylcysteine was well tolerated with minimal adverse events. N-acetylcysteine participants had more than twice the odds, compared to placebo participants, of submitting negative urine cannabinoid tests during treatment (odds ratio = 2.4, [95% CI: 1.1-5.2], p = 0.029). Exploratory secondary abstinence outcomes numerically favored N-acetylcysteine, but were not statistically significant. Conclusions This is the first randomized trial of pharmacotherapy for cannabis dependence in any age group yielding a positive primary cessation outcome via intent-to-treat analysis. Findings support N-acetylcysteine as a pharmacotherapy to complement psychosocial treatment for cannabis dependence in adolescents. Further research is needed to replicate these findings and explore the efficacy of N-acetylcysteine across a variety of treatment contexts and outcomes. Trial Registration clinicaltrials.gov identifier: NCT 01005810 PMID:22706327

  10. Effects of N-Acetylcysteine on Thresholds and Otoacoustic Emissions Following Noise Exposure

    DTIC Science & Technology

    2004-12-01

    EFFECTS OF N- ACETYLCYSTEINE ON THRESHOLDS AND OTOACOUSTIC EMISSIONS FOLLOWING NOISE EXPOSURE Barbara Acker-Mills, Ph.D*., CPT Martin Robinette...wearing ear plugs, muffs, etc.. The current study evaluated the effectiveness of one antioxidant, N- acetylcysteine (NAC), on temporary cochlear changes...4. TITLE AND SUBTITLE Effects Of N- Acetylcysteine On Thresholds And Otoacoustic Emissions Following Noise Exposure 5a. CONTRACT NUMBER 5b

  11. Rebamipide increases the amount of mucin-like substances on the conjunctiva and cornea in the N-acetylcysteine-treated in vivo model.

    PubMed

    Urashima, Hiroki; Okamoto, Takashi; Takeji, Yasuhiro; Shinohara, Hisashi; Fujisawa, Shigeki

    2004-08-01

    Rebamipide increases the amount of mucin-like substances in the stomach. We aimed to determine the effects of rebamipide on the amount of mucin-like substances in the conjunctiva and cornea of N-acetylcysteine-treated eyes. Furthermore, we attempted to evaluate the effects of rebamipide on the wound healing of N-acetylcysteine-treated eyes. The model was created by instilling 10% N-acetylcysteine solutions into rabbit eyes. Rebamipide was then applied on the day following the completion of N-acetylcysteine treatment. The amount of mucin-like substances on the conjunctiva and cornea was measured using the Alcian-blue binding method. The degree of damage was evaluated using scores based on the areas and densities of the cornea and conjunctival after staining using a rose Bengal solution under blind conditions. Rebamipide increased the level of mucin-like substances on the conjunctiva of N-acetylcysteine-treated eyes when instilled at concentrations of 0.3% or higher, and 1% rebamipide increased the amount of mucin-like substances covering the cornea. Moreover, 1% rebamipide improved the rose Bengal scores of the cornea and conjunctiva in N-acetylcysteine-treated eyes. Rebamipide increased mucin-like substances on the cornea and conjunctiva of N-acetylcysteine-treated eyes. In accordance with the mucin-increasing effects, rebamipide improved the rose Bengal scores for the cornea and conjunctiva of N-acetylcysteine-treated eyes. However, the relevance of these findings to dry eyes is unclear because it is not known whether the change in mucus expression in the N-acetylcysteine model is similar to what occurs in aqueous tear deficiency. Consequently, it may be worth trying on an animal model of keratoconjunctivitis sicca.

  12. N-Acetylcysteine and deferoxamine reduce pulmonary oxidative stress and inflammation in rats after coal dust exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinho, R.A.; Silveira, P.C.L.; Silva, L.A.

    2005-11-01

    Coal dust inhalation induces oxidative damage and inflammatory infiltration on lung parenchyma. Thus, the aim of this study was to determine whether N-acetylcysteine (NAC) administered alone or in combination with deferoxamine (DFX), significantly reduced the inflammatory infiltration and oxidative damage in the lungs of rats exposed to coal dust. Forty-two male Wistar rats (200-250 g) were exposed to the coal dust (3 mg/0.5 mL saline, 3 days/week, for 3 weeks) by intratracheal instillation. The animals were randomly divided into three groups: saline 0.9% (n = 8), supplemented with NAC (20 mg/kg of body weight/day, intraperitoneal injection (i.p.)) (n = 8),more » and supplemented with NAC (20 mg/kg of body weight/day, i.p.) plus DFX (20 mg/kg of body weight/week) (n = 8). Control animals received only saline solution (0.5 mL). Lactate dehydrogenase activity and total cell number were determined in the bronchoalveolar lavage fluid. We determined lipid peroxidation and oxidative protein damage parameters and catalase and superoxide dismutase activities in the lungs of animals. Intratracheal instillation of coal dust in the lungs of rats led to an inflammatory response and induced significant oxidative damage. The administration of NAC alone or in association with DFX reduced the inflammatory response and the oxidative stress parameters in rats exposed to coal dust.« less

  13. A multiantioxidant supplementation reduces damage from ischaemia reperfusion in patients after lower torso ischaemia. A randomised trial.

    PubMed

    Wijnen, M H W A; Roumen, R M H; Vader, H L; Goris, R J A

    2002-06-01

    open repair of intra-abdominal aortic aneurysm (AAA) is associated with lower torso ischaemia and reperfusion. to examine the effect of antioxidants on the activation and sequestration of white blood cells and muscle injury during AAA repair. forty-two patients undergoing elective infrarenal aneurysm repair, were randomised to either standard therapy (22 patients) or standard therapy with additional multiantioxidant supplementation (20 patients). Vitamin E and C, Allopurinol, N-acetylcysteine and mannitol was administered perioperatively. White blood cell count (WBC), serum creatine kinase, aspartateaminotransferase, lactate and lipofuscine were measured. WBC remained higher after reperfusion in the antioxidant group (p = 0.008). CK, ASAT and lipofuscine levels were significantly lower after reperfusion in the antioxidant group (p = 0.02, p = 0.018, p = 0.017). multi-antioxidant supplementation was associated with a reduction in serum CK and ASAT after AAA repair. This is likely due to a reduction in oxidative stress and a decreased leucocyte sequestration and activation. Copyright 2002 Elsevier Science Ltd.

  14. Prevention of gentamicin ototoxicity with N-acetylcysteine and vitamin A.

    PubMed

    Aladag, I; Guven, M; Songu, M

    2016-05-01

    To investigate the use of systemic N-acetylcysteine and vitamin A in the prevention of gentamicin ototoxicity in rats. Forty-two Wistar rats were divided into four groups according to treatment: intratympanic saline, intratympanic gentamicin, intraperitoneal vitamin A after intratympanic gentamicin, and intraperitoneal N-acetylcysteine after intratympanic gentamicin. Signal-to-noise ratio and distortion product otoacoustic emissions were evaluated in all groups. N-acetylcysteine had a significant protective effect at 1.5, 2, 3, 4, 6 and 8 kHz, whilst vitamin A had a significant protective effect at 2, 3, 4 and 6 kHz, as determined by the distortion product otoacoustic emission measurements. According to the signal-to-noise measurements, N-acetylcysteine had a significant protective effect at 1.5, 2, 3, 4, 6 and 8 kHz, whilst vitamin A had a significant protective effect at 3, 6 and 8 kHz. Gentamicin-induced hearing loss in rats may be prevented by the concomitant use of vitamin A and N-acetylcysteine. Specifically, N-acetylcysteine appeared to have a more protective effect than vitamin A for a greater range of noise frequencies.

  15. N-Acetylcysteine reduces cocaine-cue attentional bias and differentially alters cocaine self-administration based on dosing order.

    PubMed

    Levi Bolin, B; Alcorn, Joseph L; Lile, Joshua A; Rush, Craig R; Rayapati, Abner O; Hays, Lon R; Stoops, William W

    2017-09-01

    Disrupted glutamate homeostasis is thought to contribute to cocaine-use disorder, in particular, by enhancing the incentive salience of cocaine stimuli. n-Acetylcysteine might be useful in cocaine-use disorder by normalizing glutamate function. In prior studies, n-acetylcysteine blocked the reinstatement of cocaine seeking in laboratory animals and reduced the salience of cocaine stimuli and delayed relapse in humans. The present study determined the ability of maintenance on n-acetylcysteine (0 or 2400mg/day, counterbalanced) to reduce the incentive salience of cocaine stimuli, as measured by an attentional bias task, and attenuate intranasal cocaine self-administration (0, 30, and 60mg). Fourteen individuals (N=14) who met criteria for cocaine abuse or dependence completed this within-subjects, double-blind, crossover-design study. Cocaine-cue attentional bias was greatest following administration of 0mg cocaine during placebo maintenance, and was attenuated by n-acetylcysteine. Cocaine maintained responding during placebo and n-acetylcysteine maintenance, but the reinforcing effects of cocaine were significantly attenuated across both maintenance conditions in participants maintained on n-acetylcysteine first compared to participants maintained on placebo first. These results collectively suggest that a reduction in the incentive salience of cocaine-related stimuli during n-acetylcysteine maintenance may be accompanied by reductions in cocaine self-administration. These results are in agreement with, and link, prior preclinical and clinical trial results suggesting that n-acetylcysteine might be useful for preventing cocaine relapse by attenuating the incentive salience of cocaine cues. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Reversible skeletal abnormalities in gamma-glutamyl transpeptidase-deficient mice

    NASA Technical Reports Server (NTRS)

    Levasseur, Regis; Barrios, Roberto; Elefteriou, Florent; Glass, Donald A 2nd; Lieberman, Michael W.; Karsenty, Gerard

    2003-01-01

    Gamma-glutamyl transpeptidase (GGT) is a widely distributed ectopeptidase responsible for the degradation of glutathione in the gamma-glutamyl cycle. This cycle is implicated in the metabolism of cysteine, and absence of GGT causes a severe intracellular decrease in this amino acid. GGT-deficient (GGT-/-) mice have multiple metabolic abnormalities and are dwarf. We show here that this latter phenotype is due to a decreased of the growth plate cartilage total height resulting from a proliferative defect of chondrocytes. In addition, analysis of vertebrae and tibiae of GGT-/- mice revealed a severe osteopenia. Histomorphometric studies showed that this low bone mass phenotype results from an increased osteoclast number and activity as well as from a marked decrease in osteoblast activity. Interestingly, neither osteoblasts, osteoclasts, nor chondrocytes express GGT, suggesting that the observed defects are secondary to other abnormalities. N-acetylcysteine supplementation has been shown to reverse the metabolic abnormalities of the GGT-/- mice and in particular to restore the level of IGF-1 and sex steroids in these mice. Consistent with these previous observations, N-acetylcysteine treatment of GGT-/- mice ameliorates their skeletal abnormalities by normalizing chondrocytes proliferation and osteoblastic function. In contrast, resorbtion parameters are only partially normalized in GGT-/- N-acetylcysteine-treated mice, suggesting that GGT regulates osteoclast biology at least partly independently of these hormones. These results establish the importance of cysteine metabolism for the regulation of bone remodeling and longitudinal growth.

  17. N-Acetylcysteine Use in Non-Acetaminophen-Induced Acute Liver Failure.

    PubMed

    McPheeters, Chelsey M; VanArsdale, Vanessa M; Weant, Kyle A

    2016-01-01

    This article will review the available evidence related to the management of non-acetaminophen induced acute liver failure with N-acetylcysteine. Randomized controlled trials and a meta-analysis were included in this review. The efficacy of N-acetylcysteine in the treatment of acute liver failure from causes other than acetaminophen toxicity was evaluated. The efficacy of N-acetylcysteine in non-acetaminophen-induced acute liver failure is limited to specific patient populations. Patients classified as Coma Grade I or II are more likely to benefit from the use of this agent. The use of N-acetylcysteine is associated with improved transplant-free survival, not overall survival, in adults. N-Acetylcysteine does not improve the overall survival of patients with non-acetaminophen-induced acute liver failure but may be beneficial in those patients with Coma Grades I-II. Liver transplantation remains the only definitive therapy in advanced disease.

  18. Effects of histidine and n-acetylcysteine on experimental lesions induced by doxorubicin in sciatic nerve of rats.

    PubMed

    Farshid, Amir Abbas; Tamaddonfard, Esmaeal; Najafi, Sima

    2015-10-01

    In this study, the effect of separate and combined intraperitoneal (i.p.) injections of histidine and n-acetylcysteine were investigated on experimental damage induced by doxorubicin (DOX) in sciatic nerve of rats. DOX was i.p. injected at a dose of 4 mg/kg once weekly for four weeks. Histidine and n-acetylcysteine were i.p. injected at a same dose of 20 mg/kg. Cold and mechanical allodynia were recorded using acetone spray and von Frey filaments tests, respectively. The sciatic nerve damage was evaluated by light microscopy. Plasma levels of malondialdehyde (MDA) and total antioxidant capacity (TAC) were measured. Histidine and especially n-acetylcysteine at a same dose of 20 mg/kg suppressed cold and mechanical allodynia, improved sciatic nerve lesions and reversed MDA and TAC levels in DOX-treated groups. Combination treatment with histidine and n-acetylcysteine showed better responses when compared with them used alone. The results of the present study showed peripheral neuroprotective effects for histidine and n-acetylcysteine. Reduction of free radical-induced toxic effects may have a role in neuroprotective properties of histidine and n-acetylcysteine.

  19. Systemic inflammation and oxidative stress post-lung resection: Effect of pretreatment with N-acetylcysteine.

    PubMed

    Bastin, Anthony J; Davies, Nathan; Lim, Eric; Quinlan, Greg J; Griffiths, Mark J

    2016-01-01

    N-acetylcysteine has been used to treat a variety of lung diseases, where is it thought to have an antioxidant effect. In a randomized placebo-controlled double-blind study, the effect of N-acetylcysteine on systemic inflammation and oxidative damage was examined in patients undergoing lung resection, a human model of acute lung injury. Eligible adults were randomized to receive preoperative infusion of N-acetylcysteine (240 mg/kg over 12 h) or placebo. Plasma thiols, interleukin-6, 8-isoprostane, ischaemia-modified albumin, red blood cell glutathione and exhaled breath condensate pH were measured pre- and post-operatively as markers of local and systemic inflammation and oxidative stress. Patients undergoing lung resection and one-lung ventilation exhibited significant postoperative inflammation and oxidative damage. Postoperative plasma thiol concentration was significantly higher in the N-acetylcysteine-treated group. However, there was no significant difference in any of the measured biomarkers of inflammation or oxidative damage, or in clinical outcomes, between N-acetylcysteine and placebo groups. Preoperative administration of N-acetylcysteine did not attenuate postoperative systemic or pulmonary inflammation or oxidative damage after lung resection. NCT00655928 at ClinicalTrials.gov. © 2015 Asian Pacific Society of Respirology.

  20. Formation of the thioester, N,S-diacetylcysteine, from acetaldehyde and N,N'-diacetylcystine in aqueous solution with ultraviolet light

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1981-01-01

    The thioester, N,S-diacetylcysteine, is formed during the illumination of phosphate buffered (pH 7.0) aqueous solutions of acetaldehyde and N,N'-diacetylcystine with ultraviolet light. The yield of N,S-diacetylcysteine relative to N-acetylcysteine and unidentified products progressively increases as ultraviolet light below 239 nm, 253 nm and 281 nm is cut off with optical filters. When ultraviolet light below 320 nm is removed with an optical filter, there is no detectable reaction. Illumination of 0.025 M N,N'-diacetylcystine with 0.5 M and 1.0 M acetaldehyde with filtered ultraviolet light gives, respectively, 20% and 80% yields of N,S-diacetylcysteine. In the reaction with 1.0 M acetaldehyde, N-acetylcysteine forms early in the reaction and later decreases with its conversion to N,S-diacetylcysteine. The prebiotic significance of these reactions is discussed.

  1. A Double-Blind, Randomized, Controlled Pilot Trial of N-Acetylcysteine in Veterans With Posttraumatic Stress Disorder and Substance Use Disorders.

    PubMed

    Back, Sudie E; McCauley, Jenna L; Korte, Kristina J; Gros, Daniel F; Leavitt, Virginia; Gray, Kevin M; Hamner, Mark B; DeSantis, Stacia M; Malcolm, Robert; Brady, Kathleen T; Kalivas, Peter W

    2016-11-01

    The antioxidant N-acetylcysteine is being increasingly investigated as a therapeutic agent in the treatment of substance use disorders (SUDs). This study explored the efficacy of N-acetylcysteine in the treatment of posttraumatic stress disorder (PTSD), which frequently co-occurs with SUD and shares impaired prefrontal cortex regulation of basal ganglia circuitry, in particular at glutamate synapses in the nucleus accumbens. Veterans with PTSD and SUD per DSM-IV criteria (N = 35) were randomly assigned to receive a double-blind, 8-week course of N-acetylcysteine (2,400 mg/d) or placebo plus cognitive-behavioral therapy for SUD (between March 2013 and April 2014). Primary outcome measures included PTSD symptoms (Clinician-Administered PTSD Scale, PTSD Checklist-Military) and craving (Visual Analog Scale). Substance use and depression were also assessed. Participants treated with N-acetylcysteine compared to placebo evidenced significant improvements in PTSD symptoms, craving, and depression (β values < -0.33; P values < .05). Substance use was low for both groups, and no significant between-group differences were observed. N-acetylcysteine was well tolerated, and retention was high. This is the first randomized controlled trial to investigate N-acetylcysteine as a pharmacologic treatment for PTSD and SUD. Although preliminary, the findings provide initial support for the use of N-acetylcysteine in combination with psychotherapy among individuals with co-occurring PTSD and SUD. ClinicalTrials.gov identifier: NCT02499029. © Copyright 2016 Physicians Postgraduate Press, Inc.

  2. N-acetylcysteine, a glutamate modulator, in the treatment of trichotillomania: a double-blind, placebo-controlled study.

    PubMed

    Grant, Jon E; Odlaug, Brian L; Kim, Suck Won

    2009-07-01

    Trichotillomania is characterized by repetitive hair pulling that causes noticeable hair loss. Data on the pharmacologic treatment of trichotillomania are limited to conflicting studies of serotonergic medications. N-acetylcysteine, an amino acid, seems to restore the extracellular glutamate concentration in the nucleus accumbens and, therefore, offers promise in the reduction of compulsive behavior. To determine the efficacy and tolerability of N-acetylcysteine in adults with trichotillomania. Twelve-week, double-blind, placebo-controlled trial. Ambulatory care center. Fifty individuals with trichotillomania (45 women and 5 men; mean [SD] age, 34.3 [12.1] years). N-acetylcysteine (dosing range, 1200-2400 mg/d) or placebo was administered for 12 weeks. Patients were assessed using the Massachusetts General Hospital Hair Pulling Scale, the Clinical Global Impression scale, the Psychiatric Institute Trichotillomania Scale, and measures of depression, anxiety, and psychosocial functioning. Outcomes were examined using analysis of variance modeling analyses and linear regression in an intention-to-treat population. Patients assigned to receive N-acetylcysteine had significantly greater reductions in hair-pulling symptoms as measured using the Massachusetts General Hospital Hair Pulling Scale (P < .001) and the Psychiatric Institute Trichotillomania Scale (P = .001). Fifty-six percent of patients "much or very much improved" with N-acetylcysteine use compared with 16% taking placebo (P = .003). Significant improvement was initially noted after 9 weeks of treatment. This study, the first to our knowledge that examines the efficacy of a glutamatergic agent in the treatment of trichotillomania, found that N-acetylcysteine demonstrated statistically significant reductions in trichotillomania symptoms. No adverse events occurred in the N-acetylcysteine group, and N-acetylcysteine was well tolerated. Pharmacologic modulation of the glutamate system may prove to be useful in the control of a range of compulsive behaviors. clinicaltrials.gov Identifier: NCT00354770.

  3. Transport of pyruvate into mitochondria is involved in methylmercury toxicity

    PubMed Central

    Lee, Jin-Yong; Ishida, Yosuke; Takahashi, Tsutomu; Naganuma, Akira; Hwang, Gi-Wook

    2016-01-01

    We have previously demonstrated that the overexpression of enzymes involved in the production of pyruvate, enolase 2 (Eno2) and D-lactate dehydrogenase (Dld3) renders yeast highly sensitive to methylmercury and that the promotion of intracellular pyruvate synthesis may be involved in intensifying the toxicity of methylmercury. In the present study, we showed that the addition of pyruvate to culture media in non-toxic concentrations significantly enhanced the sensitivity of yeast and human neuroblastoma cells to methylmercury. The results also suggested that methylmercury promoted the transport of pyruvate into mitochondria and that the increased pyruvate concentrations in mitochondria were involved in intensifying the toxicity of methylmercury without pyruvate being converted to acetyl-CoA. Furthermore, in human neuroblastoma cells, methylmercury treatment alone decreased the mitochondrial membrane potential, and the addition of pyruvate led to a further significant decrease. In addition, treatment with N-acetylcysteine (an antioxidant) significantly alleviated the toxicity of methylmercury and significantly inhibited the intensification of methylmercury toxicity by pyruvate. Based on these data, we hypothesize that methylmercury exerts its toxicity by raising the level of pyruvate in mitochondria and that mitochondrial dysfunction and increased levels of reactive oxygen species are involved in the action of pyruvate. PMID:26899208

  4. Multidrug Resistance-Associated Protein 1 (MRP1) mediated vincristine resistance: effects of N-acetylcysteine and Buthionine Sulfoximine

    PubMed Central

    Akan, Ilhan; Akan, Selma; Akca, Hakan; Savas, Burhan; Ozben, Tomris

    2005-01-01

    Background Multidrug resistance mediated by the multidrug resistance-associated protein 1 (MRP1) decreases cellular drug accumulation. The exact mechanism of MRP1 involved multidrug resistance has not been clarified yet, though glutathione (GSH) is likely to have a role for the resistance to occur. N-acetylcysteine (NAC) is a pro-glutathione drug. DL-Buthionine (S,R)-sulfoximine (BSO) is an inhibitor of GSH synthesis. The aim of our study was to investigate the effect of NAC and BSO on MRP1-mediated vincristine resistance in Human Embryonic Kidney (HEK293) and its MRP1 transfected 293MRP cells. Human Embryonic Kidney (HEK293) cells were transfected with a plasmid encoding whole MRP1 gene. Both cells were incubated with vincristine in the presence or absence of NAC and/or BSO. The viability of both cells was determined under different incubation conditions. GSH, Glutathione S-Transferase (GST) and glutathione peroxidase (GPx) levels were measured in the cell extracts obtained from both cells incubated with different drugs. Results N-acetylcysteine increased the resistance of both cells against vincristine and BSO decreased NAC-enhanced MRP1-mediated vincristine resistance, indicating that induction of MRP1-mediated vincristine resistance depends on GSH. Vincristine decreased cellular GSH concentration and increased GPx activity. Glutathione S-Transferase activity was decreased by NAC. Conclusion Our results demonstrate that NAC and BSO have opposite effects in MRP1 mediated vincristine resistance and BSO seems a promising chemotherapy improving agent in MRP1 overexpressing tumor cells. PMID:16042792

  5. Effects of N-acetylcysteine and L-arginine in the antioxidant system of C2C12 cells.

    PubMed

    Da Silva, E P; Lambertucci, R H

    2015-06-01

    The aim of this study was to evaluate the effects of N-acetylcysteine or L-arginine in the antioxidant system of skeletal muscle cells in culture. We used C2C12 cells which were supplemented or not with N-acetylcysteine or L-arginine at different time points. Antioxidant enzymes' activities and protein expression were evaluated. Additionally, superoxide production by cytochrome c reduction method was carried out. It was observed that the supplementation with either N-acetylcysteine or L-arginine was capable to acutely reduce superoxide production (after 30 and 60 minutes). Surprisingly, N-acetylcysteine supplementation also induced an increased production of superoxide during the period of 24 hours. Moreover, both supplements were capable to improve the activity and protein expression of some antioxidants enzymes. In conclusion, we have found new evidences showing that N-acetylcysteine or L-arginine supplementation can provide some benefits to the antioxidant system of skeletal muscle cells in culture. Further studies have to be carried out to evaluate if such benefits could also occur in an in vivo model, with possible benefits for athletes' health and performance.

  6. N-acetylcysteine attenuates reactive-oxygen-species-mediated endoplasmic reticulum stress during liver ischemia-reperfusion injury

    PubMed Central

    Sun, Yong; Pu, Li-Yong; Lu, Ling; Wang, Xue-Hao; Zhang, Feng; Rao, Jian-Hua

    2014-01-01

    AIM: To investigate the effects of N-acetylcysteine (NAC) on endoplasmic reticulum (ER) stress and tissue injury during liver ischemia reperfusion injury (IRI). METHODS: Mice were injected with NAC (300 mg/kg) intraperitoneally 2 h before ischemia. Real-time polymerase chain reaction and western blotting determined ER stress molecules (GRP78, ATF4 and CHOP). To analyze the role of NAC in reactive oxygen species (ROS)-mediated ER stress and apoptosis, lactate dehydrogenase (LDH) was examined in cultured hepatocytes treated by H2O2 or thapsigargin (TG). RESULTS: NAC treatment significantly reduced the level of ROS and attenuated ROS-induced liver injury after IRI, based on glutathione, malondialdehyde, serum alanine aminotransferase levels, and histopathology. ROS-mediated ER stress was significantly inhibited in NAC-treated mice. In addition, NAC treatment significantly reduced caspase-3 activity and apoptosis after reperfusion, which correlated with the protein expression of Bcl-2 and Bcl-xl. Similarly, NAC treatment significantly inhibited LDH release from hepatocytes treated by H2O2 or TG. CONCLUSION: This study provides new evidence for the protective effects of NAC treatment on hepatocytes during IRI. Through inhibition of ROS-mediated ER stress, NAC may be critical to inhibit the ER-stress-related apoptosis pathway. PMID:25386077

  7. Minocycline and N-acetylcysteine: A Synergistic Drug Combination to Treat Traumatic Brain Injury

    DTIC Science & Technology

    2011-10-01

    AD_________________ Award Number: W81XWH-10-2-0171 TITLE: Minocycline and N-acetylcysteine: A... Minocycline and N-acetylcysteine: A Synergistic Drug Combination to Treat Traumatic Brain Injury 5b. GRANT NUMBER W81XWH-10-2-0171 5c. PROGRAM...combination of minocycline (MINO) and N-acetyl cysteine (NAC) synergistically improved brain function when dosed one hour following closed cortical

  8. Ozone-induced impairment of mucociliary transport and its prevention with N-acetylcysteine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allegra, L.; Moavero, N.E.; Rampoldi, C.

    1991-09-30

    The effects of an oxidizing gaseous pollutant on tracheal mucous velocity have been studied in conscious sheep. Acute (2 hours) exposure to 1.0 ppm of ozone showed an effect on tracheal mucous velocity that resulted in a significant decrease 40 minutes and 2 hours after exposure (35% and 40% of the baseline, respectively). Repeated exposure for longer periods (4 days, 5 hours/day) to 1.0 ppm of ozone also significantly decreased tracheal mucous velocity during the first and the second day (-47% and -70% of the baseline, respectively), but during the following days of exposure adaptation took place (tracheal mucous velocitymore » ranging from -42% to -55% of baseline). The tracheal mucous velocity still significantly decreased 5 days after the last exposure. N-Acetylcysteine, known both for its mucolytic and antioxidizing properties, has been demonstrated to prevent significantly all of the immediate effects of either short-term or long-term ozone exposures on mucociliary functions.« less

  9. Do Montelukast Sodium and N-Acetylcysteine Have a Nephroprotective Effect on Unilateral Ureteral Obstruction? A Placebo Controlled Trial in a Rat Model.

    PubMed

    Sunay, Melih; Karakan, Tolga; Aydın, Arif; Koca, Gökhan; Börcek, Pınar; Öğüş, Elmas

    2015-10-01

    We assessed the nephroprotective effects of montelukast sodium and N-acetylcysteine on secondary renal damage due to unilateral ureteral obstruction in a rat model. In this study 30 Wistar albino male rats were randomized into 3 groups, including placebo, N-acetylcysteine and montelukast sodium. Three rats served as the control group. The left ureter of the rats was sutured with 4-zero polyglactin sutures. Medications were given 3 days before obstruction and continued for 15 days. Dimercaptosuccinic acid renal scintigraphy was performed before obstruction and on day 15. Rats were sacrificed on day 15 and histopathological examinations were done. We biochemically assessed oxidative stress markers (myeloperoxidase and malondialdehyde), sulfhydryl and total nitrite for lipid peroxidation, oxidative protein damage and antioxidant levels, respectively. On pathological examination inflammation and tubular epithelial damage in the N-acetylcysteine and montelukast sodium groups were less than in the placebo group (p <0.05). No difference was seen in normal kidneys. Myeloperoxidase, malondialdehyde and total nitrite levels in the N-acetylcysteine group, and myeloperoxidase and malondialdehyde levels in the montelukast sodium group were lower than in the placebo group (p <0.05). No statistical difference was seen in sulfhydryl levels (p >0.05) or among the N-acetylcysteine, montelukast sodium and placebo groups on scintigraphy (p >0.05). No pathological, chemical and scintigraphic differences were seen among the N-acetylcysteine, montelukast sodium and sham treated groups (p >0.05). N-acetylcysteine and montelukast sodium have a protective effect against obstructive damage of the kidney. However, further investigations are needed. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Repeated N-Acetylcysteine Administration Alters Plasticity-Dependent Effects of Cocaine

    PubMed Central

    Madayag, Aric; Lobner, Doug; Kau, Kristen S.; Mantsch, John R.; Abdulhameed, Omer; Hearing, Matthew; Grier, Mark D.; Baker, David A.

    2010-01-01

    Cocaine produces a persistent reduction in cystine-glutamate exchange via system xc- in the nucleus accumbens that may contribute to pathological glutamate signaling linked to addiction. System xc- influences glutamate neurotransmission by maintaining basal, extracellular glutamate in the nucleus accumbens which, in turn, shapes synaptic activity by stimulating group II metabotropic glutamate autoreceptors. In the present study, we tested the hypothesis that a long-term reduction in system xc- activity is part of the plasticity produced by repeated cocaine that results in the establishment of compulsive drug seeking. To test this, the cysteine prodrug N-acetylcysteine was administered prior to daily cocaine to determine the impact of increased cystine-glutamate exchange on the development of plasticity-dependent cocaine seeking. Although N-acetylcysteine administered prior to cocaine did not alter the acute effects of cocaine on self-administration or locomotor activity, it prevented behaviors produced by repeated cocaine including escalation of drug intake, behavioral sensitization, and cocaine-primed reinstatement. Because sensitization or reinstatement was not evident even 2–3 weeks after the last injection of N-acetylcysteine, we examined whether N-acetylcysteine administered prior to daily cocaine also prevented the persistent reduction in system xc- activity produced by repeated cocaine. Interestingly, N-acetylcysteine pretreatment prevented cocaine-induced changes in 35S cystine transport via system xc-, basal glutamate, and cocaine-evoked glutamate in the nucleus accumbens when assessed at least three weeks after the last N-acetylcysteine pretreatment. These findings indicate that N-acetylcysteine selectively alters plasticity-dependent behaviors and that normal system xc- activity prevents pathological changes in extracellular glutamate that may be necessary for compulsive drug seeking. PMID:18094234

  11. N-Acetylcysteine in depressive symptoms and functionality: a systematic review and meta-analysis.

    PubMed

    Fernandes, Brisa S; Dean, Olivia M; Dodd, Seetal; Malhi, Gin S; Berk, Michael

    2016-04-01

    To assess the utility of N-acetylcysteine administration for depressive symptoms in subjects with psychiatric conditions using a systematic review and meta-analysis. A computerized literature search was conducted in MEDLINE, Embase, the Cochrane Library, SciELO, PsycINFO, Scopus, and Web of Knowledge. No year or country restrictions were used. The Boolean terms used for the electronic database search were (NAC OR N-acetylcysteine OR acetylcysteine) AND (depression OR depressive OR depressed) AND (trial). The last search was performed in November 2014. The literature was searched for double-blind, randomized, placebo-controlled trials using N-acetylcysteine for depressive symptoms regardless of the main psychiatric condition. Using keywords and cross-referenced bibliographies, 38 studies were identified and examined in depth. Of those, 33 articles were rejected because inclusion criteria were not met. Finally, 5 studies were included. Data were extracted independently by 2 investigators. The primary outcome measure was change in depressive symptoms. Functionality, quality of life, and manic and anxiety symptoms were also examined. A full review and meta-analysis were performed. Standardized mean differences (SMDs) and odds ratios (ORs) with 95% CIs were calculated. Five studies fulfilled our inclusion criteria for the meta-analysis, providing data on 574 participants, of whom 291 were randomized to receive N-acetylcysteine and 283 to placebo. The follow-up varied from 12 to 24 weeks. Two studies included subjects with bipolar disorder and current depressive symptoms, 1 included subjects with MDD in a current depressive episode, and 2 included subjects with depressive symptoms in the context of other psychiatric conditions (1 trichotillomania and 1 heavy smoking). Treatment with N-acetylcysteine improved depressive symptoms as assessed by Montgomery-Asberg Depression Rating Scale and Hamilton Depression Rating Scale when compared to placebo (SMD = 0.37; 95% CI = 0.19 to 0.55; P < .001). Subjects receiving N-acetylcysteine had better depressive symptoms scores on the Clinical Global Impressions-Severity of Illness scale at follow-up than subjects on placebo (SMD = 0.22; 95% CI = 0.03 to 0.41; P < .001). In addition, global functionality was better in N-acetylcysteine than in placebo conditions. There were no changes in quality of life. With regard to adverse events, only minor adverse events were associated with N-acetylcysteine (OR = 1.61; 95% CI = 1.01 to 2.59; P = .049). Administration of N-acetylcysteine ameliorates depressive symptoms, improves functionality, and shows good tolerability. © Copyright 2016 Physicians Postgraduate Press, Inc.

  12. Minocycline and N-acetylcysteine: A Synergistic Drug Combination to Treat Traumatic Brain Injury

    DTIC Science & Technology

    2012-10-01

    W81XWH-10-2-0171 TITLE: Minocycline and N-acetylcysteine: a synergistic drug combination to treat traumatic brain injury PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Minocycline and N-acetylcysteine: a synergistic drug combination to treat traumatic brain injury 5a. CONTRACT NUMBER 5b...The grantee previously found screened that the combination of minocycline (MINO) and N-acetyl cysteine (NAC) synergistically improved brain function

  13. The effects of N-Acetylcysteine on frontostriatal resting-state functional connectivity, withdrawal symptoms and smoking abstinence: A double-blind, placebo-controlled fMRI pilot study*

    PubMed Central

    Froeliger, B.; McConnell, P.A.; Stankeviciute, N.; McClure, E.A.; Kalivas, P.W.; Gray, K.M.

    2015-01-01

    BACKGROUND Chronic exposure to drugs of abuse disrupts frontostriatal glutamate transmission, which in turn meditates drug seeking. In animal models, N-acetylcysteine normalizes dysregulated frontostriatal glutamatergic neurotransmission and prevents reinstated drug seeking; however, the effects of N-Acetylcysteine on human frontostriatal circuitry function and maintaining smoking abstinence is unknown. Thus, the current study tested the hypothesis that N-Acetylcysteine would be associated with stronger frontostriatal resting-state functional connectivity (rsFC), attenuated nicotine withdrawal and would help smokers to maintain abstinence over the study period. METHODS The present study examined the effects of N-Acetylcysteine on frontostriatal rsFC, nicotine-withdrawal symptoms and maintaining abstinence. Healthy adult, non-treatment seeking smokers (N=16; mean (SD) age 36.5±11.9; cigs/day 15.8±6.1; yrs/smoking 15.7±8.9) were randomized to a double-blind course of 2400 mg N-Acetylcysteine (1200 mg b.i.d.) or placebo over the course of 3 ½ days of monetary-incentivized smoking abstinence. On each abstinent day, measures of mood and craving were collected digitally and participants attended a lab visit in order to assess smoking (i.e., expired-air carbon monoxide [CO]). On day 4, participants underwent fMRI scanning. RESULTS As compared to placebo (n=8), smokers in the N-Acetylcysteine group (n=8) maintained abstinence, reported less craving and higher positive affect (all p’s <.01), and concomitantly exhibited stronger rsFC between ventral striatal nodes, medial prefrontal cortex and precuneus—key default mode network nodes, and the cerebellum [p<.025; FWE]). CONCLUSIONS Taken together, these findings suggest that N-Acetylcysteine may positively affect potentially dysregulated corticostriatal connectivity, help to restructure reward processing, and help to maintain abstinence immediately following a quit attempt. PMID:26454838

  14. The effects of N-Acetylcysteine on frontostriatal resting-state functional connectivity, withdrawal symptoms and smoking abstinence: A double-blind, placebo-controlled fMRI pilot study.

    PubMed

    Froeliger, B; McConnell, P A; Stankeviciute, N; McClure, E A; Kalivas, P W; Gray, K M

    2015-11-01

    Chronic exposure to drugs of abuse disrupts frontostriatal glutamate transmission, which in turn meditates drug seeking. In animal models, N-Acetylcysteine normalizes dysregulated frontostriatal glutamatergic neurotransmission and prevents reinstated drug seeking; however, the effects of N-Acetylcysteine on human frontostriatal circuitry function and maintaining smoking abstinence is unknown. Thus, the current study tested the hypothesis that N-Acetylcysteine would be associated with stronger frontostriatal resting-state functional connectivity (rsFC), attenuated nicotine withdrawal and would help smokers to maintain abstinence over the study period. The present study examined the effects of N-Acetylcysteine on frontostriatal rsFC, nicotine-withdrawal symptoms and maintaining abstinence. Healthy adult, non-treatment seeking smokers (N=16; mean (SD) age 36.5±11.9; cigs/day 15.8±6.1; years/smoking 15.7±8.9) were randomized to a double-blind course of 2400mg N-Acetylcysteine (1200mg b.i.d.) or placebo over the course of 3½ days of monetary-incentivized smoking abstinence. On each abstinent day, measures of mood and craving were collected and participants attended a lab visit in order to assess smoking (i.e., expired-air carbon monoxide [CO]). On day 4, participants underwent fMRI scanning. As compared to placebo (n=8), smokers in the N-Acetylcysteine group (n=8) maintained abstinence, reported less craving and higher positive affect (all p's<.01), and concomitantly exhibited stronger rsFC between ventral striatal nodes, medial prefrontal cortex and precuneus-key default mode network nodes, and the cerebellum [p<.025; FWE]). Taken together, these findings suggest that N-Acetylcysteine may positively affect dysregulated corticostriatal connectivity, help to restructure reward processing, and help to maintain abstinence immediately following a quit attempt. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Status epilepticus following intravenous N-acetylcysteine therapy.

    PubMed

    Hershkovitz, E; Shorer, Z; Levitas, A; Tal, A

    1996-11-01

    A previously healthy 2 1/2-year-old girl developed status epilepticus followed by cortical blindness during intravenous N-acetylcysteine therapy for paracetamol ingestion. The child's vision was almost completely recovered during the 18 months follow-up period. We assume that the cortical blindness was a postictal sequela after prolonged seizure episode, most probably due to respiratory depression induced by N-acetylcysteine.

  16. A potential role for N-acetylcysteine in the management of methamphetamine dependence.

    PubMed

    McKetin, Rebecca; Dean, Olivia M; Baker, Amanda L; Carter, Greg; Turner, Alyna; Kelly, Peter J; Berk, Michael

    2017-03-01

    Methamphetamine dependence is a growing problem in Australia and globally. Currently, there are no approved pharmacotherapy options for the management of methamphetamine dependence. N-acetylcysteine is one potential pharmacotherapy option. It has received growing attention as a therapy for managing addictions because of its capacity to restore homeostasis to brain glutamate systems disrupted in addiction and thereby reduce craving and the risk of relapse. N-acetylcysteine also has antioxidant properties that protect against methamphetamine-induced toxicity and it may therefore assist in the management of the neuropsychiatric and neurocognitive effects of methamphetamine. This commentary overviews the actions of N-acetylcysteine and evidence for its efficacy in treating addiction with a particular focus on its potential utility for methamphetamine dependence. We conclude that the preliminary evidence indicates a need for full-scale trials to definitively establish whether N-acetylcysteine has a therapeutic benefit and the nature of this benefit, for managing methamphetamine dependence. [McKetin R, Dean O, Baker A. L, Carter G, Turner A, Kelly P. J, Berk M. A potential role for N-acetylcysteine in the management of methamphetamine dependence. Drug Alcohol Rev 2017;36:153-159]. © 2016 Australasian Professional Society on Alcohol and other Drugs.

  17. Topical N-acetylcysteine improves wound healing comparable to dexpanthenol: an experimental study.

    PubMed

    Oguz, Abdullah; Uslukaya, Omer; Alabalık, Ulas; Turkoglu, Ahmet; Kapan, Murat; Bozdag, Zubeyir

    2015-04-01

    In this study, we aimed to compare the effects of dexpanthenol and N-acetylcysteine on wound healing. The wound healing process is a multifaceted sequence of activities associated with tissue restoration process. A number of investigations and clinical studies have been performed to determine new approaches for the improvement of wound healing. A total of 30 rats were divided into 3 equal groups. A linear 2-cm incision was made in the rats' skin. No treatment was administered in the first (control) group. Dexpanthenol cream was administered to the rats in the second group and 3% N-acetylcysteine cream was administered to the rats in the third group. The wound areas of all of the rats were measured on certain days. On the 21st day, all wounds were excised and histologically evaluated. The epithelialization and granulation rates between the groups were revealed to be similar in microscopic evaluations. Although the fibrosis was remarkable in the control group as compared with the other groups, it was similar in N-acetylcysteine and dexpanthenol groups. Angiogenesis rate was remarkable in the N-acetylcysteine group compared with the others. In multiple-comparison analysis, Dexpanthenol and N-acetylcysteine groups had similar results in terms of wound healing rates (P < 0.05), which were both higher than in the control group (P > 0.05). The efficacy of N-acetylcysteine in wound healing is comparable to dexpanthenol, and both substances can be used to improve wound healing.

  18. Topical N-Acetylcysteine Improves Wound Healing Comparable to Dexpanthenol: An Experimental Study

    PubMed Central

    Oguz, Abdullah; Uslukaya, Omer; Alabalık, Ulas; Turkoglu, Ahmet; Kapan, Murat; Bozdag, Zubeyir

    2015-01-01

    In this study, we aimed to compare the effects of dexpanthenol and N-acetylcysteine on wound healing. The wound healing process is a multifaceted sequence of activities associated with tissue restoration process. A number of investigations and clinical studies have been performed to determine new approaches for the improvement of wound healing. A total of 30 rats were divided into 3 equal groups. A linear 2-cm incision was made in the rats' skin. No treatment was administered in the first (control) group. Dexpanthenol cream was administered to the rats in the second group and 3% N-acetylcysteine cream was administered to the rats in the third group. The wound areas of all of the rats were measured on certain days. On the 21st day, all wounds were excised and histologically evaluated. The epithelialization and granulation rates between the groups were revealed to be similar in microscopic evaluations. Although the fibrosis was remarkable in the control group as compared with the other groups, it was similar in N-acetylcysteine and dexpanthenol groups. Angiogenesis rate was remarkable in the N-acetylcysteine group compared with the others. In multiple-comparison analysis, Dexpanthenol and N-acetylcysteine groups had similar results in terms of wound healing rates (P < 0.05), which were both higher than in the control group (P > 0.05). The efficacy of N-acetylcysteine in wound healing is comparable to dexpanthenol, and both substances can be used to improve wound healing. PMID:25583306

  19. N-acetylcysteine for sepsis and systemic inflammatory response in adults.

    PubMed

    Szakmany, Tamas; Hauser, Balázs; Radermacher, Peter

    2012-09-12

    Death is common in systemic inflammatory response syndrome (SIRS) or sepsis-induced multisystem organ failure and it has been thought that antioxidants such as N-acetylcysteine could be beneficial. We assessed the clinical effectiveness of intravenous N-acetylcysteine for the treatment of patients with SIRS or sepsis. We searched the following databases: Cochrane Central Register of Clinical Trials (CENTRAL) (The Cochrane Library 2011, Issue 12); MEDLINE (January 1950 to January 2012); EMBASE (January 1980 to January 2012); CINAHL (1982 to January 2012); the NHS Trusts Clinical Trials Register and Current Controlled Trials (www.controlled-trials.com); LILACS; KoreaMED; MEDCARIB; INDMED; PANTELEIMON; Ingenta; ISI Web of Knowledge and the National Trials Register to identify all relevant randomized controlled trials available for review. We included only randomized controlled trials (RCTs) in the meta-analysis. We independently performed study selection, quality assessment and data extraction. We estimated risk ratios (RR) for dichotomous outcomes. We measured statistical heterogeneity using the I(2) statistic. We included 41 fully published studies (2768 patients). Mortality was similar in the N-acetylcysteine group and the placebo group (RR 1.06, 95% CI 0.79 to 1.42; I(2) = 0%). Neither did N-acetylcysteine show any significant effect on length of stay, duration of mechanical ventilation or incidence of new organ failure. Early application of N-acetylcysteine to prevent the development of an oxidato-inflammatory response did not affect the outcome, nor did late application that is after 24 hours of developing symptoms. Late application was associated with cardiovascular instability. Overall, this meta-analysis puts doubt on the safety and utility of intravenous N-acetylcysteine as an adjuvant therapy in SIRS and sepsis. At best, N-acetylcysteine is ineffective in reducing mortality and complications in this patient population. At worst, it can be harmful, especially when administered later than 24 hours after the onset of symptoms, by causing cardiovascular depression. Unless future RCTs provide evidence of treatment effect, clinicians should not routinely use intravenous N-acetylcysteine in SIRS or sepsis and academics should not promote its use.

  20. N-acetylcysteine attenuates the development of cardiac fibrosis and remodeling in a mouse model of heart failure.

    PubMed

    Giam, Beverly; Chu, Po-Yin; Kuruppu, Sanjaya; Smith, A Ian; Horlock, Duncan; Kiriazis, Helen; Du, Xiao-Jun; Kaye, David M; Rajapakse, Niwanthi W

    2016-04-01

    Oxidative stress plays a central role in the pathogenesis of heart failure. We aimed to determine whether the antioxidantN-acetylcysteine can attenuate cardiac fibrosis and remodeling in a mouse model of heart failure. Minipumps were implanted subcutaneously in wild-type mice (n = 20) and mice with cardiomyopathy secondary to cardiac specific overexpression of mammalian sterile 20-like kinase 1 (MST-1;n = 18) to administerN-acetylcysteine (40 mg/kg per day) or saline for a period of 8 weeks. At the end of this period, cardiac remodeling and function was assessed via echocardiography. Fibrosis, oxidative stress, and expression of collagen types I andIIIwere quantified in heart tissues. Cardiac perivascular and interstitial fibrosis were greater by 114% and 209%, respectively, inMST-1 compared to wild type (P ≤ 0.001). InMST-1 mice administeredN-acetylcysteine, perivascular and interstitial fibrosis were 40% and 57% less, respectively, compared to those treated with saline (P ≤ 0. 03). Cardiac oxidative stress was 119% greater inMST-1 than in wild type (P < 0.001) andN-acetylcysteine attenuated oxidative stress inMST-1 by 42% (P = 0.005). These data indicate thatN-acetylcysteine can blunt cardiac fibrosis and related remodeling in the setting of heart failure potentially by reducing oxidative stress. This study provides the basis to investigate the role ofN-acetylcysteine in chronic heart failure. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  1. Estrogen-Induced Depurination of DNA: A Novel Target for Breast Cancer Prevention

    DTIC Science & Technology

    2006-05-01

    of Dietary N- Acetylcysteine on Neonatal Initiation of Uterine Adenocarcinomas in Female CD-1 mice by Catechol Estrogens To begin to study the...ability of selected natural compounds to prevent estrogen-initiated cancers, we planned to study the effect of N- acetylcysteine (NAcCys) on the initiation...Jankowiak, R. Development of monoclonal antibodies to 4-hydroxyestrogen-2-N- acetylcysteine conjugates: Immunoaffinity and spectroscopic studies

  2. N-Acetylcysteine Prevents Retrograde Motor Neuron Death after Neonatal Peripheral Nerve Injury.

    PubMed

    Catapano, Joseph; Zhang, Jennifer; Scholl, David; Chiang, Cameron; Gordon, Tessa; Borschel, Gregory H

    2017-05-01

    Neuronal death may be an overlooked and unaddressed component of disability following neonatal nerve injuries, such as obstetric brachial plexus injury. N-acetylcysteine and acetyl-L-carnitine improve survival of neurons after adult nerve injury, but it is unknown whether they improve survival after neonatal injury, when neurons are most susceptible to retrograde neuronal death. The authors' objective was to examine whether N-acetylcysteine or acetyl-L-carnitine treatment improves survival of neonatal motor or sensory neurons in a rat model of neonatal nerve injury. Rat pups received either a sciatic nerve crush or transection injury at postnatal day 3 and were then randomized to receive either intraperitoneal vehicle (5% dextrose), N-acetylcysteine (750 mg/kg), or acetyl-L-carnitine (300 mg/kg) once or twice daily. Four weeks after injury, surviving neurons were retrograde-labeled with 4% Fluoro-Gold. The lumbar spinal cord and L4/L5 dorsal root ganglia were then harvested and sectioned to count surviving motor and sensory neurons. Transection and crush injuries resulted in significant motor and sensory neuron loss, with transection injury resulting in significantly less neuron survival. High-dose N-acetylcysteine (750 mg/kg twice daily) significantly increased motor neuron survival after neonatal sciatic nerve crush and transection injury. Neither N-acetylcysteine nor acetyl-L-carnitine treatment improved sensory neuron survival. Proximal neonatal nerve injuries, such as obstetric brachial plexus injury, produce significant retrograde neuronal death after injury. High-dose N-acetylcysteine significantly increases motor neuron survival, which may improve functional outcomes after obstetrical brachial plexus injury.

  3. Effect of N-acetylcysteine administration on the expression and activities of antioxidant enzymes and the malondialdehyde level in the blood of lead-exposed workers.

    PubMed

    Kasperczyk, Sławomir; Dobrakowski, Michał; Kasperczyk, Aleksandra; Machnik, Grzegorz; Birkner, Ewa

    2014-03-01

    We investigated whether treatment with N-acetylcysteine (NAC) reduces oxidative stress intensity and restores the expression and activities of superoxide dismutase (Sod1, SOD), catalase (Cat, CAT) and glutathione peroxidase (Gpx1, GPx) in lead-exposed workers. The exposed population was divided randomly into two groups. Workers in the first group (reference group, n=49) were not administered any drugs, while workers in the second group (n=122) were treated with NAC at three doses for 12 weeks (200 mg, 400 mg, 800 mg/day). NAC administered orally to lead-exposed workers normalized antioxidant enzyme activities in blood cells. Oxidative stress intensity measured as malondialdehyde (MDA) levels in serum, leukocytes and erythrocytes significantly decreased after NAC administration. NAC may be an alternative therapy for chronic lead intoxication. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The Role of N-Acetylcysteine in the Prevention of Contrast-Induced Nephrotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, Caron; Belli, Anna-Maria; Oliveira, David B.

    2006-06-15

    Purpose. To determine the role of prophylactic N-acetylcysteine in the prevention of contrast-induced nephrotoxicity. Methods. One hundred and sixteen patients undergoing noncoronary angiography, with or without pre-existing renal impairment, were randomly assigned to receive prophylactic oral N-acetylcysteine or no treatment. Serum creatinine (sCr) was measured prior to angiography and 48 hr after the procedure. Urine samples were collected before and after the examination for measurement of malondialdehyde (MDA) concentration. Contrast-induced nephrotoxicity (CIN) was defined as a rise in serum creatinine of 0.5 mg/dl (44 mmol/l) at 48 hr. Results. Complete data were available on 106 patients, 53 of whom hadmore » received N-acetylcysteine. There were no significant differences between the two groups in baseline characteristics, type of angiogram, or volume and concentration of contrast used. Three patients (2.8%), all of whom had received N-acetylcysteine, developed CIN. In the N-acetylcysteine group, the mean serum creatinine in patients with renal impairment was 151.0 {+-} 44.2 {mu}mol/l prior to the procedure and 155.6 {+-} 48.6 {mu}mol/l (p = 0.49) after the procedure. Respective values for those without renal impairment were 79.6 {+-} 15.1 {mu}mol/l and 81.2 {+-} 20.0 {mu}mol/l (p = 0.65). In the group that had not received N-acetylcysteine, the mean serum creatinine levels before and after the procedure were 150.0 {+-} 58.1 and 141.4 {+-} 48.0 {mu}mol/l (p = 0.17) in patients with renal impairment and 79.7 {+-} 14.2 and 81.4 {+-} 15.4 {mu}mol/l (p = 0.34) in those without renal impairment. In both groups, no significant change in urinary MDA concentration was observed. Conclusion. There is no benefit to the prophylactic administration of N-acetylcysteine in patients undergoing peripheral angiography using current contrast media.« less

  5. Oxidative stress is involved in Dasatinib-induced apoptosis in rat primary hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Tao; Luo, Peihua; Zhu, Hong

    2012-06-15

    Dasatinib, a multitargeted inhibitor of BCR–ABL and SRC kinases, exhibits antitumor activity and extends the survival of patients with chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL). However, some patients suffer from hepatotoxicity, which occurs through an unknown mechanism. In the present study, we found that Dasatinib could induce hepatotoxicity both in vitro and in vivo. Dasatinib reduced the cell viability of rat primary hepatocytes, induced the release of alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) in vitro, and triggered the ballooning degeneration of hepatocytes in Sprague–Dawley rats in vivo. Apoptotic markers (chromatin condensation, cleaved caspase-3 andmore » cleaved PARP) were detected to indicate that the injury induced by Dasatinib in hepatocytes in vitro was mediated by apoptosis. This result was further validated in vivo using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays. Here we found that Dasatinib dramatically increased the level of reactive oxygen species (ROS) in hepatocytes, reduced the intracellular glutathione (GSH) content, attenuated the activity of superoxide dismutase (SOD), generated malondialdehyde (MDA), a product of lipid peroxidation, decreased the mitochondrial membrane potential, and activated nuclear factor erythroid 2-related factor 2 (Nrf2) and mitogen-activated protein kinases (MAPK) related to oxidative stress and survival. These results confirm that oxidative stress plays a pivotal role in Dasatinib-mediated hepatotoxicity. N-acetylcysteine (NAC), a typical antioxidant, can scavenge free radicals, attenuate oxidative stress, and protect hepatocytes against Dasatinib-induced injury. Thus, relieving oxidative stress is a viable strategy for reducing Dasatinib-induced hepatotoxicity. -- Highlights: ►Dasatinib shows potential hepatotoxicity both in vitro and in vivo. ►Apoptosis plays a vital role in Dasatinib-induced hepatotoxicity. ►Dasatinib increases ROS and causes oxidative stress in hepatocytes. ►N-acetylcysteine protects hepatocytes against Dasatinib-induced injury.« less

  6. Trichotillomania: a good response to treatment with N-acetylcysteine.

    PubMed

    Barroso, Livia Ariane Lopes; Sternberg, Flavia; Souza, Maria Natalia Inacio de Fraia E; Nunes, Gisele Jacobino de Barros

    2017-01-01

    Trichotillomania is considered a behavioral disorder and is characterized by the recurring habit of pulling one's hair, resulting in secondary alopecia. It affects 1% of the adult population, and 2 to 4.4% of psychiatric patients meet the diagnostic criteria. It can occur at any age and is more prevalent in adolescents and females. Its occurrence in childhood is not uncommon and tends to have a more favorable clinical course. The scalp, eyebrows and eyelashes are the most commonly affected sites. Glutamate modulating agents, such as N-acetylcysteine, have been shown to be a promising treatment. N-acetylcysteine acts by reducing oxidative stress and normalizing glutaminergic transmission. In this paper, we report a case of trichotillomania with an excellent response to N-acetylcysteine.

  7. Neuroprotective effects of N-acetylcysteine amide on experimental focal penetrating brain injury in rats.

    PubMed

    Günther, Mattias; Davidsson, Johan; Plantman, Stefan; Norgren, Svante; Mathiesen, Tiit; Risling, Mårten

    2015-09-01

    We examined the effects of N-acetylcysteine amide (NACA) in the secondary inflammatory response following a novel method of focal penetrating traumatic brain injury (TBI) in rats. N-acetylcysteine (NAC) has limited but well-documented neuroprotective effects after experimental central nervous system ischemia and TBI, but its bioavailability is very low. We tested NACA, a modified form of NAC with higher membrane and blood-brain barrier permeability. Focal penetrating TBI was produced in male Sprague-Dawley rats randomly selected for NACA treatment (n=5) and no treatment (n=5). In addition, four animals were submitted to sham surgery. After 2 hours or 24 hours the brains were removed, fresh frozen, cut in 14 μm coronal sections and subjected to immunohistochemistry, immunofluorescence, Fluoro-Jade and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analyses. All treated animals were given 300 mg/kg NACA intraperitoneally (IP) 2 minutes post trauma. The 24 hour survival group was given an additional bolus of 300 mg/kg IP after 4 hours. NACA treatment decreased neuronal degeneration by Fluoro-Jade at 24 hours with a mean change of 35.0% (p<0.05) and decreased TUNEL staining indicative of apoptosis at 2 hours with a mean change of 38.7% (p<0.05). Manganese superoxide dismutase (MnSOD) increased in the NACA treatment group at 24 hours with a mean change of 35.9% (p<0.05). Levels of migrating macrophages and activated microglia (Ox-42/CD11b), nitric oxide-producing inflammatory enzyme iNOS, peroxynitrite marker 3-nitrotyrosine, NFκB translocated to the nuclei, cytochrome C and Bcl-2 were not affected. NACA treatment decreased neuronal degeneration and apoptosis and increased levels of antioxidative enzyme MnSOD. The antiapoptotic effect was likely regulated by pathways other than cytochrome C. Therefore, NACA prevents brain tissue damage after focal penetrating TBI, warranting further studies towards a clinical application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. [EFFECT OF ACETYLCYSTEINE, CORVITIN AND THEIR COMBINATION ON THE FUNCTIONAL STATE OF LIVER IN RATS WITH PARACETAMOL INDUCED TOXIC HEPATITIS].

    PubMed

    Ghonghadze, M; Antelava, N; Liluashvili, K; Okujava, M; Pachkoria, K

    2017-02-01

    Nowadays drug-induced hepatotoxicity is urgent problem worldwide. Currently more than 1000 drugs are hepatotoxic and most often are the reason of acute fulminant hepatitis and hepatocellular failure, the states requiring liver transplantation. The paracetamol induced liver toxicity is related with accumulation of its toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI), which is the free radical and enhances peroxidation of lipids, disturbs the energy status and causes death of hepatocytes. During our research we investigated and assessed the efficacy of acetylcysteine, corvitin and their combination in rat model of paracetamol induced acute toxic hepatitis. The study was performed on mature white male Wistar rates with body mass 150-180 g. 50 rats were randomly divided into 5 groups (10 rats in each group). To get the model of acute toxic hepatitis single intraperitoneal injection of paracetamol solution was used (750 mg/kg). Toxic hepatitis was treated with intrapertoneal administration of 40mg/kg acetylcysteine or 100mg/kg corvitin, as well as with combination of these drugs. Monotherapy with acetylcysteine and corvitin of paracetamol induced toxic hepatitis improved the liver function, decreased relative mass of the liver and animal mortality. The treatment of toxic hepatitis was most effective in the case of simultaneous administration of acetylcysteine and corvitin. The normal value of laboratory tests (ALT, ACT, alkaline phosphatase, total and unconjugated bilirubin) was reached and mortality was not more observed. On the bases of obtained data was concluded that acetylcysteine and corvitin have almost equal hepatoprotective activity. The combination of two drugs actually improves the liver function. The most pronounced hepatoprotective effect may be due to synergic action of acetylcysteine and corvitin and such regime can be recommended for correction of liver function.

  9. The effect of N-acetylcysteine on cardiac contractility to dobutamine in rats with streptozotocin-induced diabetes.

    PubMed

    Cheng, Xing; Xia, Zhengyuan; Leo, Joyce M; Pang, Catherine C Y

    2005-09-05

    We examined if myocardial depression at the acute phase of diabetes (3 weeks after injection of streptozotocin, 60 mg/kg i.v.) is due to activation of inducible nitric oxide synthase and production of peroxynitrite, and if treatment with N-acetylcysteine (1.2 g/day/kg for 3 weeks, antioxidant) improves cardiac function. Four groups of rats were used: control, N-acetylcysteine-treated control, diabetic and N-acetylcysteine-treated diabetic. Pentobarbital-anaesthetized diabetic rats, relative to the controls, had reduced left ventricular contractility to dobutamine (1-57 microg/min/kg). The diabetic rats also had increased myocardial levels of thiobarbituric acid reactive substances, immunostaining of inducible nitric oxide synthase and nitrotyrosine, and similar baseline 15-F2t-isoprostane. N-acetylcysteine did not affect responses in the control rats; but increased cardiac contractility to dobutamine, reduced myocardial immunostaining of inducible nitric oxide synthase and nitrotyrosine and level of 15-F2t-isoprostane, and increased cardiac contractility to dobutamine in the diabetic rats. Antioxidant supplementation in diabetes reduces oxidative stress and improves cardiac function.

  10. Inhibition of development of peripheral neuropathy in streptozotocin-induced diabetic rats with N-acetylcysteine.

    PubMed

    Sagara, M; Satoh, J; Wada, R; Yagihashi, S; Takahashi, K; Fukuzawa, M; Muto, G; Muto, Y; Toyota, T

    1996-03-01

    N-acetylcysteine (NAC) is a precursor of glutathione (GSH) synthesis, a free radical scavenger and an inhibitor of tumour necrosis factor alpha (TNF). Because these functions might be beneficial in diabetic complications, in this study we examined whether NAC inhibits peripheral neuropathy. Motor nerve conduction velocity (MNCV) was significantly decreased in streptozotocin-induced-diabetic Wistar rats compared to control rats. Oral administration of NAC reduced the decline of MNCV in diabetic rats. Structural analysis of the sural nerve disclosed significant reduction of fibres undergoing myelin wrinkling and inhibition of myelinated fibre atrophy in NAC-treated diabetic rats. NAC treatment had no effect on blood glucose levels or on the nerve glucose, sorbitol and cAMP contents, whereas it corrected the decreased GSH levels in erythrocytes, the increased lipid peroxide levels in plasma and the increased lipopolysaccharide-induced TNF activity in sera of diabetic rats. Thus, NAC inhibited the development of functional and structural abnormalities of the peripheral nerve in streptozotocin-induced diabetic rats.

  11. Prevention and reversal of selenite-induced cataracts by N-acetylcysteine amide in Wistar rats.

    PubMed

    Maddirala, Yasaswi; Tobwala, Shakila; Karacal, Humeyra; Ercal, Nuran

    2017-04-26

    The present study sought to evaluate the efficacy of N-acetylcysteine amide (NACA) eye drops in reversing the cataract formation induced by sodium selenite in male Wistar rat pups. Forty male Wistar rat pups were randomly divided into a control group, an N-acetylcysteine amide-only group, a sodium selenite-induced cataract group, and a NACA-treated sodium selenite-induced cataract group. Sodium selenite was injected intraperitoneally on postpartum day 10, whereas N-acetylcysteine amide was injected intraperitoneally on postpartum days 9, 11, and 13 in the respective groups. Cataracts were evaluated at the end of week 2 (postpartum day 14) when the rat pups opened their eyes. N-acetylcysteine amide eye drops were administered beginning on week 3 until the end of week 4 (postpartum days 15 to 30), and the rats were sacrificed at the end of week 4. Lenses were isolated and examined for oxidative stress parameters such as glutathione, lipid peroxidation, and calcium levels along with the glutathione reductase and thioltransferase enzyme activities. Casein zymography and Western blot of m-calpain were performed using the water soluble fraction of lens proteins. Morphological examination of the lenses in the NACA-treated group indicated that NACA was able to reverse the cataract grade. In addition, glutathione level, thioltransferase activity, m-calpain activity, and m-calpain level (as assessed by Western blot) were all significantly higher in the NACA-treated group than in the sodium selenite-induced cataract group. Furthermore, sodium selenite- injected rat pups had significantly higher levels of malondialdehyde, glutathione reductase enzyme activity, and calcium levels, which were reduced to control levels upon treatment with NACA. The data suggest that NACA has the potential to significantly improve vision and decrease the burden of cataract-related loss of function. Prevention and reversal of cataract formation could have a global impact. Development of pharmacological agents like NACA may eventually prevent cataract formation in high-risk populations and may prevent progression of early-stage cataracts. This brings a paradigm shift from expensive surgical treatment of cataracts to relatively inexpensive prevention of vision loss.

  12. Ulcers caused by bullous morphea: successful therapy with N-acetylcysteine and topical wound care.

    PubMed

    Rosato, E; Veneziano, M L; Di Mario, A; Molinaro, I; Pisarri, S; Salsano, F

    2013-01-01

    Bullous morphea is an uncommon form of localized scleroderma. The pathogenesis is unknown and treatment of coexistent ulcers is difficult. The pathogenesis of bullae formation in morphea is multifactorial, but reactive oxygen species production appears to play a key role. We report a patient with bullous morphea with long-standing ulcers whom we successfully treated with N-acetylcysteine and topical wound care. N-acetylcysteine, an antioxidant sulfhydryl substance, promotes the healing of ulcers in patients with bullous morphea.

  13. Mitochondrial Based Treatments that Prevent Post-Traumatic Osteoarthritis in a Translational Large Animal Intraarticular Fracture Survival Model

    DTIC Science & Technology

    2013-09-01

    included an oxidant scavenger, (N- Acetylcysteine ), a drug that reduces mitochondrial superoxide production by blocking electron flow through complex I...selection of compounds included an oxidant scavenger, (N- Acetylcysteine ), a drug that reduces mitochondrial superoxide production by blocking...2mM N- acetylcysteine 5 3. 5mM NAC 5 4. 20mM NAC 5 5. 20µM Cytochalasin B 5 6. 10µM Nocodazole 4 7. 2.5mM Amobarbital 5 Table. Dose

  14. Inhibition of Estrogen-Induced Growth of Breast Cancer by Targeting Mitochondria Oxidants

    DTIC Science & Technology

    2010-04-01

    acetylcysteine (NAC) and ebselen], inhibits estrogen induced expression of cell cycle genes as well as prevention of estrogen-induced growth of malignant breast...have completed proposed research in the original First Task (i) both antioxidants, N- acetylcysteine and ebselen, overexpression of ROS lowering genes...bioassay to test whether estrogen-induced conversion of normal cells to transformed cells is inhibited by treatment with N- acetylcysteine and

  15. Inhibition of Estrogen-induced Growth of Breast Cancer by Targeting Mitochondrial Oxidants

    DTIC Science & Technology

    2009-04-01

    chemical antioxidants, [N- acetylcysteine (NAC) and ebselen], inhibits estrogen induced expression of cell cycle genes as well as prevention of...the original First Task (i) both antioxidants, N- acetylcysteine and ebselen, overexpression of ROS lowering genes, such as, catalase or PrxIII; and... acetylcysteine and ebselen; overexpression of MnSOD, catalase, PrxIII, Trx2, or mtTFA silencing. Major findings are described in detail below: 1

  16. N-acetylcysteine prevents the geldanamycin cytotoxicity by forming geldanamycin-N-acetylcysteine adduct.

    PubMed

    Mlejnek, Petr; Dolezel, Petr

    2014-09-05

    Geldanamycin (GDN) is a benzoquinone ansamycin antibiotic with anti-proliferative activity on tumor cells. GDN cytotoxicity has been attributed to the disruption of heat shock protein 90 (Hsp90) binding and stabilizing client proteins, and by the induction of oxidative stress with concomitant glutathione (GSH) depletion. The later mechanism of cytotoxicity can be abrogated by N-acetylcysteine (NAC). It was suggested that NAC prevents GDN cytotoxicity mainly by the restoring of glutathione (GSH) level (Clark et al., 2009). Here we argue that NAC does not protect cells from the GDN cytotoxicity by restoring the level of GSH. A detailed LC/MS/MS analysis of cell extracts indicated formation of GDN adducts with GSH. The amount of the GDN-GSH adduct is proportional to the GDN concentration and increases with incubation time. While nanomolar and low micromolar GDN concentrations induce cell death without an apparent GSH decrease, only much higher micromolar GDN concentrations cause a significant GSH decrease. Therefore, only high micromolar GDN concentrations can cause cell death which might be related to GSH depletion. Addition of NAC leads to the formation of adducts with GDN which diminish formation of GDN adducts with GSH. NAC also forms stable adducts with GDN extracellularly. Although NAC induces an increase in the GSH pool, this effect is not crucial for abrogation of GDN cytotoxicity. Indeed, the presence of NAC in the growth medium causes a rapid conversion of GDN into the GDN-NAC adduct, which is the real cause of the abrogated GDN cytotoxicity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Antiatherogenic effects of S-nitroso-N-acetylcysteine in hypercholesterolemic LDL receptor knockout mice.

    PubMed

    Krieger, M H; Santos, K F R; Shishido, S M; Wanschel, A C B A; Estrela, H F G; Santos, L; De Oliveira, M G; Franchini, K G; Spadari-Bratfisch, R C; Laurindo, F R M

    2006-02-01

    The pathophysiology of the NO/NO synthase system and dysfunctional changes in the endothelium in the early phases of the atherogenic process are incompletely understood. In this study, we investigated the effects of the nitrosothiol NO donor S-nitroso-N-acetylcysteine (SNAC) in the early prevention of plaque development in the hypercholesterolemic LDLr-/- mice as well as the changes in endothelium-dependent relaxation and NO synthase expression. LDLr-/- mice were fed a 1.25% cholesterol-enriched diet for 15 days. Plasma cholesterol/triglyceride levels increased and this increase was accompanied by the development of aortic root lesions. Aortic vasorelaxation to acetylcholine was increased, although endothelium-independent relaxation in response to sodium nitroprusside did not change, which suggest stimulated NO release enhanced. This dysfunction was associated with enhanced aortic superoxide production and with increased levels of constitutive NOS isoform expression, particularly neuronal NOS. SNAC (S-nitroso-N-acetylcysteine) administration (0.51 micromol/kg/day i.p. for 15 days) decreased the extent of the plaque by 55% in hypercholesterolemic mice, but had no effects on vasomotor changes. It did, however, lead to a decrease in constitutive NOS expression. The SNAC induced only minor changes in plasma lipid profile. The present study has shown that, in early stages of plaque development in LDLr-/- mice, specific changes in NO/NO synthase system develop, that are characterized by increased endothelium-dependent vasorelaxation and increased constitutive NOS expression. Since the development of plaque and the indicator of endothelial cell dysfunction were prevented by SNAC, such treatment may constitute a novel strategy for the halting of progression of early plaque.

  18. Alanine synthesis from glyceraldehyde and ammonium ion in aqueous solution

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1985-01-01

    The formation of alanine (ala) form C(14)-glyceraldehyde and ammonium phosphate in the presence or absence of a thiol is reported. At ambient temperature, ala synthesis was six times more rapid in the presence of 3-mercaptopropionic acid than in its absence (0.6 and 0.1 percent, respectively, after 60 days). Similarly, the presence of another thiol, N-acetylcysteinate, increased the production of ala, as well as of lactate. The reaction pathway of thiol-catalyzed synthesis of ala, with the lactic acid formed in a bypath, is suggested. In this, dehydration of glyceraldehyde is followed by the formation of hemithioacetal. In the presence of ammonia, an imine is formed, which eventually yields ala. This pathway is consistent with the observation that the rate ratio of ala/lactate remains constant throughout the process. The fact that the reaction takes place under anaerobic conditions in the presence of H2O and with the low concentrations of simple substrates and catalysts makes it an attractive model prebiotic reaction in the process of molecular evolution.

  19. Evidence for the changing regimens of acetylcysteine.

    PubMed

    Chiew, Angela L; Isbister, Geoffrey K; Duffull, Stephen B; Buckley, Nicholas A

    2016-03-01

    Paracetamol overdose prior to the introduction of acetylcysteine was associated with significant morbidity. Acetylcysteine is now the mainstay of treatment for paracetamol poisoning and has effectively reduced rates of hepatotoxicity and death. The current three-bag intravenous regimen with an initial high loading dose was empirically derived four decades ago and has not changed since. This regimen is associated with a high rate of adverse effects due mainly to the high initial peak acetylcysteine concentration. Furthermore, there are concerns that the acetylcysteine concentration is not adequate for 'massive' overdoses and that the dose and duration may need to be altered. Various novel regimens have been proposed, looking to address these issues. Many of these modified regimens aim to decrease the rate of adverse reactions by slowing the loading dose and thereby decrease the peak concentration. We used a published population pharmacokinetic model of acetylcysteine to simulate these modified regimens. We determined mean peak and 20 h acetylcysteine concentrations and area under the under the plasma concentration-time curve to compare these regimens. Those regimens that resulted in a lower peak acetylcysteine concentration have been shown in studies to have a lower rate of adverse events. However, these studies were too small to show whether they are as effective as the traditional regimen. Further research is still needed to determine the optimum dose and duration of acetylcysteine that results in the fewest side-effects and treatment failures. Indeed, a more patient-tailored approach might be required, whereby the dose and duration are altered depending on the paracetamol dose ingested or paracetamol concentrations. © 2015 The British Pharmacological Society.

  20. Similarities between N-acetylcysteine and Glutathione in Binding to Lead(II) Ions

    PubMed Central

    Sisombath, Natalie S.; Jalilehvand, Farideh

    2015-01-01

    N -acetylcysteine is a natural thiol-containing antioxidant, a precursor for cysteine and glutathione, and a potential detoxifying agent for heavy metal ions. However, previous accounts of the efficiency of N-acetylcysteine (H2NAC) in excretion of lead are few and contradicting. Here we report results on the nature of lead(II) complexes formed with N-acetylcysteine in aqueous solution, which were obtained by combining information from several spectroscopic methods, including 207Pb, 13C and 1H NMR, Pb LIII-edge X-ray absorption, Ultraviolet-visible (UV-vis.) spectroscopy and electro-spray ionization mass spectrometry (ESI-MS). Two series of solutions were used containing CPb(II) = 10 and 100 mM, respectively, varying the H2NAC / Pb(II) mole ratios from 2.1 to 10.0 at pH = 9.1 – 9.4. The coordination environments obtained resemble those previously found for the Pb(II) glutathione system: at a ligand-to-lead mole ratio of 2.1 dimeric or oligomeric Pb(II) N-acetylcysteine complexes are formed, while a tri-thiolate [Pb(NAC)3]4− complex dominates in solutions with H2NAC/Pb(II) mole ratios > 3.0. PMID:26624959

  1. Blockage of glycolysis by targeting PFKFB3 alleviates sepsis-related acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells.

    PubMed

    Gong, Yuanqi; Lan, Haibing; Yu, Zhihong; Wang, Meng; Wang, Shu; Chen, Yu; Rao, Haiwei; Li, Jingying; Sheng, Zhiyong; Shao, Jianghua

    2017-09-16

    Sepsis-related acute lung injury (ALI) is characterized by excessive lung inflammation and apoptosis of alveolar epithelial cells resulting in acute hypoxemic respiratory failure. Recent studies indicated that anaerobic glycolysis play an important role in sepsis. However, whether inhibition of aerobic glycolysis exhibits beneficial effect on sepsis-induced ALI is not known. In vivo, a cecal ligation and puncture (CLP)-induced ALI mouse model was set up and mice treated with glycolytic inhibitor 3PO after CLP. The mice treated with the 3PO ameliorated the survival rate, histopathological changes, lung inflammation, lactate increased and lung apoptosis of mice with CLP-induced sepsis. In vitro, the exposure of human alveolar epithelial A549 cells to lipopolysaccharide (LPS) resulted in cell apoptosis, inflammatory cytokine production, enhanced glycolytic flux and reactive oxygen species (ROS) increased. While these changes were attenuated by 3PO treatment. Sequentially, treatment of A549 cells with lactate caused cell apoptosis and enhancement of ROS. Pretreatment with N-acetylcysteine (NAC) significantly lowered LPS and lactate-induced the generation of ROS and cell apoptosis in A549 cells. Therefore, these results indicate that anaerobic glycolysis may be an important contributor in cell apoptosis of sepsis-related ALI. Moreover, LPS specifically induces apoptotic insults to A549 cell through lactate-mediated enhancement of ROS. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. N-Acetylcysteine Reverses Cocaine Induced Metaplasticity

    PubMed Central

    Moussawi, Khaled; Pacchioni, Alejandra; Moran, Megan; Olive, M. Foster; Gass, Justin T.; Lavin, Antonieta; Kalivas, Peter W

    2009-01-01

    Cocaine addiction is characterized by an impaired ability to develop adaptive behaviors that can compete with cocaine seeking, implying a deficit in the ability to induce plasticity in cortico-accumbens circuitry critical for regulating motivated behavior. RWe found that rats withdrawn from cocaine self-administration had a marked in vivo deficit in the ability to develop long-term potentation (LTP) and depression (LTD) in the nucleus accumbens core subregion following stimulation of prefrontal cortex. N-acetylcysteine treatment prevents relapse in animal models and craving in humans by activating cystine-glutamate exchange and thereby stimulating extrasynaptic metabotropic glutamate receptors (mGluR). N-acetylcysteine treatment restored the ability to induce LTP and LTD by indirectly stimulating mGluR2/3 and mGluR5, respectively. Cocaine self-administration induces metaplasticity that inhibits the further induction of synaptic plasticity, and this impairment can be reversed by N-acetylcysteine, a drug that also prevents relapse. PMID:19136971

  3. Evaluation of in vitro storage characteristics of cold stored platelet concentrates with N acetylcysteine (NAC).

    PubMed

    Handigund, Mallikarjun; Bae, Tae Won; Lee, Jaehyeon; Cho, Yong Gon

    2016-02-01

    Platelets play a vital role in hemostasis and thrombosis, and their demand and usage has multiplied many folds over the years. However, due to the short life span and storage constraints on platelets, it is allowed to store them for up to 7 days at room temperature (RT); thus, there is a need for an alternative storage strategy for extension of shelf life. Current investigation involves the addition of 50 mM N acetylcysteine (NAC) in refrigerated concentrates. Investigation results revealed that addition of NAC to refrigerated concentrates prevented platelet activation and reduced the sialidase activity upon rewarming as well as on prolonged storage. Refrigerated concentrates with 50 mM NAC expressed a 23.91 ± 6.23% of CD62P (P-Selectin) and 22.33 ± 3.42% of phosphotidylserine (PS), whereas RT-stored platelets showed a 46.87 ± 5.23% of CD62P and 25.9 ± 6.48% of phosphotidylserine (PS) after 5 days of storage. Further, key metabolic parameters such as glucose and lactate accumulation indicated reduced metabolic activity. Taken together, investigation and observations indicate that addition of NAC potentially protects refrigerated concentrates by preventing platelet activation, stabilizing sialidase activity, and further reducing the metabolic activity. Hence, we believe that NAC can be a good candidate for an additive solution to retain platelet characteristics during cold storage and may pave the way for extension of storage shelf life. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Free radical generation from an aniline derivative in HepG2 cells: a possible captodative effect.

    PubMed

    Horinouchi, Yuya; Summers, Fiona A; Ehrenshaft, Marilyn; Mason, Ronald P

    2015-01-01

    Xenobiotic metabolism can induce the generation of protein radicals, which are believed to play an important role in the toxicity of chemicals and drugs. It is therefore important to identify chemical structures capable of inducing macromolecular free radical formation in living cells. In this study, we evaluated the ability of four structurally related environmental chemicals, aniline, nitrosobenzene, N,N-dimethylaniline, and N,N-dimethyl-4-nitrosoaniline (DMNA), to induce free radicals and cellular damage in the hepatoma cell line HepG2. Cytotoxicity was assessed using lactate dehydrogenase assays, and morphological changes were observed using phase contrast microscopy. Protein free radicals were detected by immuno-spin trapping using in-cell western experiments and confocal microscopy to determine the subcellular locale of free radical generation. DMNA induced free radical generation, lactate dehydrogenase release, and morphological changes in HepG2 cells, whereas aniline, nitrosobenzene, N,N-dimethylaniline did not. Confocal microscopy showed that DMNA induced free radical generation mainly in the cytosol. Preincubation of HepG2 cells with N-acetylcysteine and 2,2'-dipyridyl significantly prevented free radical generation on subsequent incubation with DMNA, whereas preincubation with apocynin and dimethyl sulfoxide had no effect. These results suggest that DMNA is metabolized to reactive free radicals capable of generating protein radicals which may play a critical role in DMNA toxicity. We propose that the captodative effect, the combined action of the electron-releasing dimethylamine substituent, and the electron-withdrawing nitroso substituent, leads to a thermodynamically stabilized radical, facilitating enhanced protein radical formation by DMNA. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Acquired 5-oxoproline acidemia successfully treated with N-acetylcysteine.

    PubMed

    Hundemer, Gregory L; Fenves, Andrew Z

    2017-04-01

    Acquired 5-oxoprolinemia is increasingly recognized as a cause of anion gap metabolic acidosis. It predominantly occurs in chronically ill, malnourished women with impaired renal function and chronic acetaminophen ingestion. Depletion of glutathione and cysteine stores leads to elevated 5-oxoproline levels. N-acetylcysteine, given its effect in repleting glutathione and cysteine stores, has been proposed as a potential treatment for 5-oxoprolinemia, though reports of its successful use are lacking. We present a case of 5-oxoproline metabolic acidosis that persisted despite discontinuation of acetaminophen. However, the acidosis rapidly resolved with N-acetylcysteine administration.

  6. Storing red blood cells with vitamin C and N-acetylcysteine prevents oxidative stress-related lesions: a metabolomics overview.

    PubMed

    Pallotta, Valeria; Gevi, Federica; D'alessandro, Angelo; Zolla, Lello

    2014-07-01

    Recent advances in red blood cell metabolomics have paved the way for further improvements of storage solutions. In the present study, we exploited a validated high performance liquid chromatography-mass spectrometry analytical workflow to determine the effects of vitamin C and N-acetylcysteine supplementation (anti-oxidants) on the metabolome of erythrocytes stored in citrate-phosphate-dextrose saline-adenine-glucose-mannitol medium under blood bank conditions. We observed decreased energy metabolism fluxes (glycolysis and pentose phosphate pathway). A tentative explanation of this phenomenon could be related to the observed depression of the uptake of glucose, since glucose and ascorbate are known to compete for the same transporter. Anti-oxidant supplementation was effective in modulating the redox poise, through the promotion of glutathione homeostasis, which resulted in decreased haemolysis and less accumulation of malondialdehyde and oxidation by-products (including oxidized glutathione and prostaglandins). Anti-oxidants improved storage quality by coping with oxidative stress at the expense of glycolytic metabolism, although reservoirs of high energy phosphate compounds were preserved by reduced cyclic AMP-mediated release of ATP.

  7. Acetaminophen and Acetylsalicylic Acid Exposure in a Preterm Infant after Maternal Overdose.

    PubMed

    Pavlek, Leeann; Kraft, Monica; Simmons, Caitlyn; Ryan, Mary; Prusakov, Pavel; Campbell, Amanda; Brandehoff, Nicklaus; Ng, Patrick C; Russell, Jason; Ciciora, Steven L; Fathi, Omid

    2018-06-26

    Here, we review the case of a 26 1/7 weeks' gestation premature female infant born to a mother who intentionally ingested a large quantity of Tylenol, aspirin, quetiapine, and prenatal vitamins. The neonate subsequently had markedly elevated levels of both Tylenol and aspirin when checked on the first day of life. While overall clinically stable, the neonate did demonstrate coagulopathy as evidenced by abnormal coagulation studies. Both poison control and a pediatric gastroenterologist/hepatologist were consulted. She successfully tolerated a course of N-acetylcysteine; her subsequent Tylenol level was markedly decreased and the neonate exhibited no further effects of toxicity. The salicylate level decreased on its own accord. To our knowledge, this is the first report of a neonate at 26 weeks' gestation that has been successfully managed for supratherapeutic concentrations of acetaminophen and acetylsalicylic acid secondary to maternal ingestion. While rare, this case may serve as a reference for the effectiveness of N-acetylcysteine in premature infants in such instances. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. N-acetylcysteine prevents nitrosative stress-associated depression of blood pressure and heart rate in streptozotocin diabetic rats.

    PubMed

    Nagareddy, Prabhakara Reddy; Xia, Zhengyuan; MacLeod, Kathleen M; McNeill, John H

    2006-04-01

    Previous studies have indicated that cardiovascular abnormalities such as depressed blood pressure and heart rate occur in streptozotocin (STZ) diabetic rats. Chronic diabetes, which is associated with increased expression of inducible nitric oxide synthase (iNOS) and oxidative stress, may produce peroxynitrite/nitrotyrosine and cause nitrosative stress. We hypothesized that nitrosative stress causes cardiovascular depression in STZ diabetic rats and therefore can be corrected by reducing its formation. Control and STZ diabetic rats were treated orally for 9 weeks with N-acetylcysteine (NAC), an antioxidant and inhibitor of iNOS. At termination, the mean arterial blood pressure (MABP) and heart rate (HR) were measured in conscious rats. Nitrotyrosine and endothelial nitric oxide synthase (eNOS) and iNOS expression were assessed in the heart and mesenteric arteries by immunohistochemistry and Western blot experiments. Untreated diabetic rats showed depressed MABP and HR that was prevented by treatment with NAC. In untreated diabetic rats, levels of 15-F(2t)-isoprostane, an indicator of lipid peroxidation increased, whereas plasma nitric oxide and antioxidant concentrations decreased. Furthermore, decreased eNOS and increased iNOS expression were associated with elevated nitrosative stress in blood vessel and heart tissue of untreated diabetic rats. N-acetylcysteine treatment of diabetic rats not only restored the antioxidant capacity but also reduced the expression of iNOS and nitrotyrosine and normalized the expression of eNOS to that of control rats in heart and superior mesenteric arteries. The results suggest that nitrosative stress depress MABP and HR following diabetes. Further studies are required to elucidate the mechanisms involved in nitrosative stress mediated depression of blood pressure and heart rate.

  9. Vitamin B5 and N-acetylcysteine in nonalcoholic steatohepatitis: a pre-clinical study in a dietary mouse model

    PubMed Central

    Machado, Mariana Verdelho; Kruger, Leandi; Jewell, Mark L.; Michelotti, Gregory Alexander; de Almeida Pereira, Thiago; Xie, Guanhua; Moylan, Cynthia A.; Diehl, Anna Mae

    2015-01-01

    Background Nonalcoholic fatty liver disease (NAFLD) is the number one cause of chronic liver disease and second indication for liver transplantation in the Western world. Effective therapy is still not available. Previously we showed a critical role for caspase-2 in the pathogenesis of nonalcoholic steatohepatitis (NASH), the potentially progressive form of NAFLD. An imbalance between free Coenzyme A (CoA) and acyl-CoA ratio is known to induce caspase-2 activation. Objectives We aimed to evaluate CoA metabolism and the effects of supplementation with CoA precursors, pantothenate and cysteine, in mouse models of NASH. Methods CoA metabolism was evaluated in methionine-choline deficient (MCD) and Western diet mouse models of NASH. MCD-diet fed mice were treated with pantothenate and N-acetylcysteine or placebo to determine effects on NASH. Results Liver free CoA content was reduced, pantothenate kinase (PANK), the rate-limiting enzyme in the CoA biosynthesis pathway, was down-regulated, and CoA degrading enzymes were increased in mice with NASH. Decreased hepatic free CoA content was associated with increased caspase-2 activity, and correlated with worse liver cell apoptosis, inflammation and fibrosis. Treatment with pantothenate and N-acetylcysteine did not inhibit caspase-2 activation, improve NASH, normalize PANK expression, or restore free CoA levels in MCD diet-fed mice. Conclusion In mice with NASH, hepatic CoA metabolism is impaired, leading to decreased free CoA content, activation of caspase-2, and increased liver cell apoptosis. Dietary supplementation with CoA precursors did not restore CoA levels or improve NASH, suggesting that alternative approaches are necessary to normalize free CoA during NASH. PMID:26403427

  10. Bioaccumulation and toxicodynamics of cadmium to freshwater planarian and the protective effect of N-acetylcysteine.

    PubMed

    Wu, Jui-Pin; Chen, Hon-Cheng; Li, Mei-Hui

    2012-08-01

    Although toxic responses of freshwater planarians after exposure to environmental toxicants can be observed through external toxicological end points, physiological responses inside the bodies of treated planarians have rarely been investigated. The present study was designed, using cadmium (Cd) as a reference toxicant, to determine its bioaccumulation and toxicodynamics in the freshwater planarian, Dugesia japonica, after acute toxicity was obtained. Accumulated Cd concentrations, metallothionein levels, and the oxidative status in planarians were determined after exposure to Cd. Furthermore, we hypothesized that the acute death of Cd-treated planarians was associated with increased oxidative stress. After Cd-treated planarians were coexposed to antioxidant, N-acetylcysteine (NAC), we found that NAC protected planarians from Cd lethality by maintaining the oxidative status and decreasing the bioaccumulation of Cd. The results of the present study support planarians being used as a practical model for toxicological studies of environmental contaminants in the future.

  11. Alpha-ketoglutarate and N-acetyl cysteine protect PC12 cells from cyanide-induced cytotoxicity and altered energy metabolism.

    PubMed

    Satpute, R M; Hariharakrishnan, J; Bhattacharya, R

    2008-01-01

    Cyanide is a rapidly acting neurotoxin that inhibits cellular respiration and energy metabolism leading to histotoxic hypoxia. This results in the dissipation of mitochondrial membrane potential (MMP) accompanied by decreased cellular ATP content which in turn is responsible for increased levels of intracellular calcium ions ([Ca(2+)](i)) and total lactic acid content of the cells. Rat pheochromocytoma (PC12) cells possess much of the biochemical machinery associated with synaptic neurons. In the present study, we evaluated the cytoprotective effects of alpha-ketoglutarate (A-KG) and N-acetylcysteine (NAC) against cyanide-induced cytotoxicity and altered energy metabolism in PC12 cells. Cyanide-antagonism by A-KG is attributed to cyanohydrin formation whereas NAC is known for its antioxidant properties. Data on leakage of intracellular lactate dehydrogenase and mitochondrial function (MTT assay) revealed that simultaneous treatment of A-KG (0.5 mM) and NAC (0.25 mM) significantly prevented the cytotoxicity of cyanide. Also, cellular ATP content was found to improve, followed by restoration of MMP, intracellular calcium [Ca(2+)](i) and lactic acid levels. Treatment with A-KG and NAC also attenuated the levels of peroxides generated by cyanide. The study indicates that combined administration of A-KG and NAC protected the cyanide-challenged PC12 cells by resolving the altered energy metabolism. The results have implications in the development of new treatment regimen for cyanide poisoning.

  12. The effect of short-term, high-dose oral N-acetylcysteine treatment on oxidative stress markers in cystic fibrosis patients with chronic P. aeruginosa infection -- a pilot study.

    PubMed

    Skov, Marianne; Pressler, Tacjana; Lykkesfeldt, Jens; Poulsen, Henrik Enghusen; Jensen, Peter Østrup; Johansen, Helle Krogh; Qvist, Tavs; Kræmer, Dorthe; Høiby, Niels; Ciofu, Oana

    2015-03-01

    Patients with cystic fibrosis (CF) and chronic Pseudomonas aeruginosa lung infection have increased oxidative stress as a result of an imbalance between the production of reactive oxygen species caused by inflammation and their inactivation by the impaired antioxidant systems. Supplementation with anti-oxidants is potentially beneficial for CF patients. The effect of 4 weeks of oral N-acetylcysteine (NAC) treatment (2400 mg/day divided into two doses) on biochemical parameters of oxidative stress was investigated in an open-label, controlled, randomized trial on 21 patients; 11 patients in the NAC group and 10 in the control group. Biochemical parameters of oxidative burden and plasma levels of antioxidants were assessed at the end of the study and compared to the baseline values in the two groups. A significant increase in the plasma levels of the antioxidant ascorbic acid (p=0.037) and a significant decrease in the levels of the oxidized form of ascorbic acid (dehydroascorbate) (p=0.004) compared to baseline were achieved after NAC treatment. No significant differences were observed in the control group. The parameters of oxidative burden did not change significantly compared to baseline in either of the groups. A better lung function was observed in the NAC treated group with a mean (SD) change compared to baseline of FEV1% predicted of 2.11 (4.6), while a decrease was observed in the control group (change -1.4 (4.6)), though not statistically significant. Treatment with N-acetylcysteine 1200 mg×2/day for 30 days significantly decreased the level of oxidized vitamin C and increased the level of vitamin C (primary end-points) and a not statistically significant improvement of lung function was observed in this group of patients. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  13. Protective effects of N-acetylcysteine on experimentally undescended testis.

    PubMed

    Uyeturk, Ugur; Cetinkaya, Ayhan; Ozyalvacli, Gulzade; Tekce, Buket Kin; Ozyalvacli, Mehmet Emin; Kemahli, Eray; Gucuk, Adnan

    2014-04-01

    We evaluated the efficacy of N-acetylcysteine for testicular damage induced by undescended testes in rats. Flutamide was injected in the abdomen of pregnant rats daily from days 14 to 20 of gestation. Male offspring with cryptorchidism were randomly divided into 2 groups. Healthy male rats without undescended testes comprised the control group (group 1). Group 2 (undescended testes without N-acetylcysteine) received no treatment. Group 3 (undescended testes plus N-acetylcysteine) received intraperitoneal N-acetylcysteine daily. At 70 days after experiment initiation the testes were removed for histopathological and biochemical analysis. Mean malonyl dialdehyde values were lowest in group 1 and highest in group 2. In group 3 malonyl dialdehyde levels were significantly lower than in group 2 (p <0.001). Conversely, mean glutathione peroxidase was highest in group 1 and lowest in group 2. Glutathione peroxidase levels in group 3 were significantly higher than in group 2 (p <0.001). Histopathological differences between groups 1 and 3 in the modified Johnsen score were not significant (p = 0.041). However, the differences between these groups and group 2 were significant (p <0.001). The median apoptotic cell count did not differ between groups 1 and 3 but it was significantly higher in group 2 than in the other groups (p = 0.03 and <0.001, respectively). N-acetylcysteine may alleviate undescended testis induced damage to testes through its antioxidant effects. The underlying mechanism of these effects merits further investigation. Long-term studies are also needed as well as comparative animal and human studies. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. N-acetylcysteine treatment blocks the development of ethanol-induced behavioural sensitization and related ΔFosB alterations.

    PubMed

    Morais-Silva, Gessynger; Alves, Gabrielle Cunha; Marin, Marcelo T

    2016-11-01

    Ethanol addiction is a serious public health problem that still needs more effective pharmacological treatment. A key factor in the development and maintenance of this disease is the advent of neuroadaptations in the mesocorticolimbic brain pathway upon chronic ethanol abuse. In general, these neuroadaptations are maladaptive and affect numerous neurotransmitter systems and intracellular molecules. One of these molecules is ΔFosB, a transcription factor that is altered after chronic drug use. Behavioural sensitization is a useful model for the study of the neuroadaptations related to addiction. Recent works have shown a role for the imbalance of glutamatergic neurotransmission in the symptoms found in addicted people. In this sense, the treatment with N-acetylcysteine, a l-cysteine prodrug that acts by restoring extrasynaptic concentrations of glutamate through the activation of cystine-glutamate antiporter, has shown promising results in the treatment of addiction. Thus, an animal model of behavioural sensitization was used to evaluate the effects of N-acetylcysteine treatment in the behavioural and molecular alterations induced by chronic ethanol administration. Swiss mice were subject to 13 days of daily ethanol administration to induce behavioural sensitization. Two hours before each ethanol administration and locomotor activity evaluation, the animals received intraperitoneally N-acetylcysteine injections. Immediately after the last test session, their brains were removed for ΔFosB and cystine-glutamate antiporter quantification. It was found that N-acetylcysteine treatment blocked ethanol-induced behavioural sensitization, the increase of ΔFosB content in the prefrontal cortex, and its reduction in the nucleus accumbens. The results suggest a possible use of N-acetylcysteine in ethanol-related disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Contribution of Cystine-Glutamate Antiporters to the Psychotomimetic Effects of Phencyclidine

    PubMed Central

    Baker, David. A.; Madayag, Aric; Kristiansen, Lars V.; Meador-Woodruff, James H.; Haroutunian, Vahram; Raju, Ilangovan

    2014-01-01

    Altered glutamate signaling contributes to a myriad of neural disorders, including schizophrenia. While synaptic levels are intensely studied, nonvesicular release mechanisms, including cystine-glutamate exchange, maintain high steady-state glutamate levels in the extrasynaptic space. The existence of extrasynaptic receptors, including metabotropic group II glutamate receptors (mGluR), pose nonvesicular release mechanisms as unrecognized targets capable of contributing to pathological glutamate signaling. We tested the hypothesis that activation of cystine-glutamate antiporters using the cysteine prodrug N-acetylcysteine would blunt psychotomimetic effects in the rodent phencyclidine (PCP) model of schizophrenia. First, we demonstrate that PCP elevates extracellular glutamate in the prefrontal cortex; an effect that is blocked by N-acetylcysteine pretreatment. To determine the relevance of the above finding, we assessed social interaction and found that N-acetylcysteine reverses social withdrawal produced by repeated PCP. In a separate paradigm, acute PCP resulted in working memory deficits assessed using a discrete trial T-maze task, and this effect was also reversed by N-acetylcysteine pretreatment. The capacity of N-acetylcysteine to restore working memory was blocked by infusion of the cystine-glutamate antiporter inhibitor (S)-4-carboxyphenylglycine into the prefrontal cortex or systemic administration of the group II mGluR antagonist LY341495 indicating that the effects of N-acetylcysteine requires cystine-glutamate exchange and group II mGluR activation. Lastly, protein levels from post mortem tissue obtained from schizophrenic patients revealed significant changes in the level of xCT, the active subunit for cystine-glutamate exchange, in the dorsolateral prefrontal cortex. These data advance cystine-glutamate antiporters as novel targets capable of reversing the psychotomimetic effects of PCP. PMID:17728701

  16. Combination of tauroursodeoxycholic acid and N-acetylcysteine exceeds standard treatment for acetaminophen intoxication.

    PubMed

    Paridaens, Annelies; Raevens, Sarah; Colle, Isabelle; Bogaerts, Eliene; Vandewynckel, Yves-Paul; Verhelst, Xavier; Hoorens, Anne; van Grunsven, Leo A; Van Vlierberghe, Hans; Geerts, Anja; Devisscher, Lindsey

    2017-05-01

    Acetaminophen overdose in mice is characterized by hepatocyte endoplasmic reticulum stress, which activates the unfolded protein response, and centrilobular hepatocyte death. We aimed at investigating the therapeutic potential of tauroursodeoxycholic acid, a hydrophilic bile acid known to have anti-apoptotic and endoplasmic reticulum stress-reducing capacities, in experimental acute liver injury induced by acetaminophen overdose. Mice were injected with 300 mg/kg acetaminophen, 2 hours prior to receiving tauroursodeoxycholic acid, N-acetylcysteine or a combination therapy, and were euthanized 24 hours later. Liver damage was assessed by serum transaminases, liver histology, terminal deoxynucleotidyl transferase dUTP nick end labelling staining, expression profiling of inflammatory, oxidative stress, unfolded protein response, apoptotic and pyroptotic markers. Acetaminophen overdose resulted in a significant increase in serum transaminases, hepatocyte cell death, unfolded protein response activation, oxidative stress, NLRP3 inflammasome activation, caspase 1 and pro-inflammatory cytokine expressions. Standard of care, N-acetylcysteine and, to a lesser extent, tauroursodeoxycholic treatment were associated with significantly lower transaminase levels, hepatocyte death, unfolded protein response activation, oxidative stress markers, caspase 1 expression and NLRP3 levels. Importantly, the combination of N-acetylcysteine and tauroursodeoxycholic acid improved serum transaminase levels, reduced histopathological liver damage, UPR-activated CHOP, oxidative stress, caspase 1 expression, NLRP3 levels, IL-1β levels and the expression of pro-inflammatory cytokines and this to a greater extend than N-acetylcysteine alone. These findings indicate that a combination strategy of N-acetylcysteine and tauroursodeoxycholic acid surpasses the standard of care in acetaminophen-induced liver injury in mice and might represent an attractive therapeutic opportunity for acetaminophen-intoxicated patients. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor.

    PubMed

    Stamler, J; Mendelsohn, M E; Amarante, P; Smick, D; Andon, N; Davies, P F; Cooke, J P; Loscalzo, J

    1989-09-01

    Recent evidence suggests that endothelium-derived relaxing factor exhibits properties of nitric oxide. Like nitric oxide, it inhibits platelet function and mediates its effects by elevating intracellular cyclic GMP. In this study we have investigated the role of reduced thiol in the mechanism of action of endothelium-derived relaxing factor on platelets. Bovine aortic endothelial cells were grown on microcarrier beads and pretreated with aspirin before use. Endothelial cells stimulated with bradykinin or exposed to stirred medium expressed a dose-dependent inhibition of platelet aggregation that was potentiated by the reduced thiol, N-acetylcysteine. Endothelial cell-mediated platelet inhibition was attenuated by methylene blue. Inhibition of platelet aggregation by endothelial cells was associated with a rise in platelet intracellular cyclic GMP, an effect that was enhanced by N-acetylcysteine. These data show that 1) the reduced thiol N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor and 2) this effect is associated with increasing intracellular platelet cyclic GMP levels.

  18. Metabolic differentiation and classification of abnormal Savda Munziq's pharmacodynamic role on rat models with different diseases by nuclear magnetic resonance-based metabonomics.

    PubMed

    Mamtimin, Batur; Xia, Guo; Mijit, Mahmut; Hizbulla, Mawlanjan; Kurbantay, Nazuk; You, Li; Upur, Halmurat

    2015-01-01

    Abnormal Savda Munziq (ASMq) is a traditional Uyghur herbal preparation used as a therapy for abnormal Savda-related diseases. In this study, we investigate ASMq's dynamic effects on abnormal Savda rat models under different disease conditions. Abnormal Savda rat models with hepatocellular carcinoma (HCC), type 2 diabetes mellitus (T2DM), and asthma dosed of ASMq. Serum samples of each animal tested by nuclear magnetic resonance spectroscopy and analyzed by orthogonal projection to latent structure with discriminant analysis. Compared with healthy controls, HCC rats had higher concentrations of amino acids, fat-related metabolites, lactate, myoinositol, and citrate, but lower concentrations of α-glucose, β-glucose, and glutamine. Following ASMq treatment, the serum acetone very low-density lipoprotein (VLDL), LDL, unsaturated lipids, acetylcysteine, and pyruvate concentration decreased, but α-glucose, β-glucose, and glutamine concentration increased (P < 0.05). T2DM rats had higher concentrations of α- and β-glucose, but lower concentrations of isoleucine, leucine, valine, glutamine, glycoprotein, lactate, tyrosine, creatine, alanine, carnitine, and phenylalanine. After ASMq treated T2DM groups showed reduced α- and β-glucose and increased creatine levels (P < 0.05). Asthma rats had higher acetate, carnitine, formate, and phenylalanine levels, but lower concentrations of glutamine, glycoprotein, lactate, VLDL, LDL, and unsaturated lipids. ASMq treatment showed increased glutamine and reduced carnitine, glycoprotein, formate, and phenylalanine levels (P < 0.05). Low immune function, decreased oxidative defense, liver function abnormalities, amino acid deficiencies, and energy metabolism disorders are common characteristics of abnormal Savda-related diseases. ASMq may improve the abnormal metabolism and immune function of rat models with different diseases combined abnormal Savda.

  19. 'Flooding' of the lungs and severe dyspnea in a patient with bronchoalveolar carcinoma.

    PubMed

    Keizer, Ron J; Beijnen, Jos H; Baas, Paul

    2011-09-01

    In this case report, we describe a patient with bronchoalveolar carcinoma that experienced severe bronchorrhea and dyspnea after inhalation of N-acetylcysteine. The adverse reactions occurred both after oral and nebulized administration of N-acetylcysteine, resulting in severe dyspnea and the feeling of 'drowning'. Bronchorrhea has previously been reported as an uncommon but serious complication of bronchoalveolar carcinoma. We strongly suspect the administration of N-acetylcysteine to be implicated, as the complications occurred immediately after administration of this drug. As the patient suffered from hyperhomocysteinemia, we speculate that an additive or synergistic interaction with homocysteine may have been involved as well.

  20. Minocycline and N-acetylcysteine: A Synergistic Drug Combination to Treat Traumatic Brain Injury

    DTIC Science & Technology

    2013-10-01

    Contract Number: W81XWH-10-2-0171 TITLE: Minocycline and...30September2012-29September2013 4. TITLE AND SUBTITLE Minocycline and N-acetylcysteine: a synergistic drug combination to treat...grantee previously found screened that the combination of minocycline (MINO) and N-acetyl cysteine (NAC) synergistically improved brain function when

  1. A Biomedical Application of Activated Carbon Adsorption: An Experiment Using Acetaminophen and N-Acetylcysteine.

    ERIC Educational Resources Information Center

    Rybolt, Thomas R.; And Others

    1988-01-01

    Illustrates an interesting biomedical application of adsorption from solution and demonstrates some of the factors that influence the in vivo adsorption of drug molecules onto activated charcoal. Uses acetaminophen and N-acetylcysteine for the determination. Suggests several related experiments. (MVL)

  2. Effect of N-acetylcysteine on microcirculation of mucosa in rat ileum in a model of intestinal inflammation.

    PubMed

    Ruh, Joachim; Schmidt, Eduard; Vogel, Frank

    2003-05-01

    Oxygen radicals are formed by the endothelium and blood cells and have specific functions in various organs systems. On the level of the microcirculation, oxygen radicals take part in the regulation of the leukocyte-endothelial interaction. The involvement of oxygen radicals has previously been found in conditions such as sepsis, ischemia-reperfusion, and inflammation. Indomethacin is a clinically applied nonsteroidal antiphlogistic, and in previous studies in the rat, it has been found to induce an inflammatory reaction in the small intestine characterized by edema and reddening of the intestinal epithelium, ulceration, and dysregulation in the intestinal-epithelial barrier function. In the present study, we investigated the effect of N-acetylcysteine on erythrocyte velocity and the arteriolar diameter of the main arteriole in single villi, thus providing insight in the perfusion of the mucosa in indomethacin-induced intestinal inflammation. N-Acetylcysteine is known to inactivate superoxide and its precursors. Therefore, we used N-acetylcysteine to investigate whether superoxide and its precursors participate in the regulation of blood supply to single villi in this animal model. We found that indomethacin induced an increase in villous perfusion that was significantly reduced by N-acetylcysteine, indicating that superoxide and its precursors may participate in the regulation of blood supply to the mucosa in this animal model of intestinal inflammation.

  3. Pilot study demonstrating metabolic and anti-proliferative effects of in vivo anti-oxidant supplementation with N-Acetylcysteine in Breast Cancer.

    PubMed

    Monti, Daniel; Sotgia, Federica; Whitaker-Menezes, Diana; Tuluc, Madalina; Birbe, Ruth; Berger, Adam; Lazar, Melissa; Cotzia, Paolo; Draganova-Tacheva, Rossitza; Lin, Zhao; Domingo-Vidal, Marina; Newberg, Andrew; Lisanti, Michael P; Martinez-Outschoorn, Ubaldo

    2017-06-01

    High oxidative stress as defined by hydroxyl and peroxyl activity is often found in the stroma of human breast cancers. Oxidative stress induces stromal catabolism, which promotes cancer aggressiveness. Stromal cells exposed to oxidative stress release catabolites such as lactate, which are up-taken by cancer cells to support mitochondrial oxidative phosphorylation. The transfer of catabolites between stromal and cancer cells leads to metabolic heterogeneity between these cells and increased cancer cell proliferation and reduced apoptosis in preclinical models. N-Acetylcysteine (NAC) is an antioxidant that reduces oxidative stress and reverses stromal catabolism and stromal-carcinoma cell metabolic heterogeneity, resulting in reduced proliferation and increased apoptosis of cancer cells in experimental models of breast cancer. The purpose of this clinical trial was to determine if NAC could reduce markers of stromal-cancer metabolic heterogeneity and markers of cancer cell aggressiveness in human breast cancer. Subjects with newly diagnosed stage 0 and I breast cancer who were not going to receive neoadjuvant therapy prior to surgical resection were treated with NAC before definitive surgery to assess intra-tumoral metabolic markers. NAC was administered once a week intravenously at a dose of 150 mg/kg and 600 mg twice daily orally on the days not receiving intravenous NAC. Histochemistry for the stromal metabolic markers monocarboxylate transporter 4 (MCT4) and caveolin-1 (CAV1) and the Ki67 proliferation assay and TUNEL apoptosis assay in carcinoma cells were performed in pre- and post-NAC specimens. The range of days on NAC was 14-27 and the mean was 19 days. Post-treatment biopsies showed significant decrease in stromal MCT4 and reduced Ki67 in carcinoma cells. NAC did not significantly change stromal CAV1 and carcinoma TUNEL staining. NAC was well tolerated. NAC as a single agent reduces MCT4 stromal expression, which is a marker of glycolysis in breast cancer with reduced carcinoma cell proliferation. This study suggests that modulating metabolism in the tumor microenvironment has the potential to impact breast cancer proliferation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Limited theraputic effect of n-acetylcysteine on hepatic insulin resistance in an experimental model of alcohol-induced steatohepatitis

    USDA-ARS?s Scientific Manuscript database

    Alcohol-related steatohepatitis is associated with increased oxidative stress, DNA damage, lipotoxicity, and insulin resistance in liver. Hypothesis: Since inflammation and oxidative stress can promote insulin resistance, effective treatment with anti-oxidants, e.g. N-acetylcysteine (NAC), may rest...

  5. Surgically Induced Necrotizing Scleritis Following Strabismus Surgery Treated Successfully with Topical N-acetylcysteine in a Child with Congenital Fibrosis of Extraocular Muscles and Varadi Papp Syndrome.

    PubMed

    Rajamani, Muralidhar; Nagasubramanian, Vidhya; Ayyavoo, Ahila; Raghupathy, Palany; Dandapani, Ramamurthy

    2017-03-01

    Surgically induced necrotizing scleritis (SINS) is a rare but serious disorder that can develop many years after strabismus surgery. It is generally treated with high-dose steroids or immunosuppression. We describe a patient with Varadi Papp syndrome and congenital fibrosis of the extraocular muscles, who developed surgically induced necrotizing scleritis a month after strabismus surgery and was successfully managed by oral vitamin C and topical N-acetylcysteine 10%. While SINS is conventionally treated with steroids/immunosuppression, a conservative approach may be tried in milder cases. The role of topical N-acetylcysteine in managing this complication needs to be explored.

  6. Acetylcysteine reduces plasma homocysteine concentration and improves pulse pressure and endothelial function in patients with end-stage renal failure.

    PubMed

    Scholze, Alexandra; Rinder, Christiane; Beige, Joachim; Riezler, Reiner; Zidek, Walter; Tepel, Martin

    2004-01-27

    Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure. We investigated the metabolic and hemodynamic effects of intravenous administration of acetylcysteine, a thiol-containing antioxidant, during a hemodialysis session in a prospective, randomized, placebo-controlled crossover study in 20 patients with end-stage renal failure. Under control conditions, a hemodialysis session reduced plasma homocysteine concentration to 58+/-22% predialysis (mean+/-SD), whereas in the presence of acetylcysteine, the plasma homocysteine concentration was significantly more reduced to 12+/-7% predialysis (P<0.01). The reduction of plasma homocysteine concentration was significantly correlated with a reduction of pulse pressure. A 10% decrease in plasma homocysteine concentration was associated with a decrease of pulse pressure by 2.5 mm Hg. Analysis of the second derivative of photoplethysmogram waveform showed changes of arterial wave reflectance during hemodialysis in the presence of acetylcysteine, indicating improved endothelial function. Acetylcysteine-dependent increase of homocysteine removal during a hemodialysis session improves plasma homocysteine concentration, pulse pressure, and endothelial function in patients with end-stage renal failure.

  7. Discovery of Hyperpolarized Molecular Imaging Biomarkers in a Novel Prostate Tissue Slice Culture Model

    DTIC Science & Technology

    2011-06-01

    we tested was the addition ofN- acetylcysteine (NAC) to the medium. NAC protects cells from oxidative damage, and it is possible that our inability...of tissue procurement and spectral studies • Obtained preliminary data that an anti-oxidant, N- acetylcysteine , might extend longevity of TSCs

  8. Precise determination of N-acetylcysteine in pharmaceuticals by microchip electrophoresis.

    PubMed

    Rudašová, Marína; Masár, Marián

    2016-01-01

    A novel microchip electrophoresis method for the rapid and high-precision determination of N-acetylcysteine, a pharmaceutically active ingredient, in mucolytics has been developed. Isotachophoresis separations were carried out at pH 6.0 on a microchip with conductivity detection. The methods of external calibration and internal standard were used to evaluate the results. The internal standard method effectively eliminated variations in various working parameters, mainly run-to-run fluctuations of an injected volume. The repeatability and accuracy of N-acetylcysteine determination in all mucolytic preparations tested (Solmucol 90 and 200, and ACC Long 600) were more than satisfactory with the relative standard deviation and relative error values <0.7 and <1.9%, respectively. A recovery range of 99-101% of N-acetylcysteine in the analyzed pharmaceuticals predetermines the proposed method for accurate analysis as well. This work, in general, indicates analytical possibilities of microchip isotachophoresis for the quantitative analysis of simplified samples such as pharmaceuticals that contain the analyte(s) at relatively high concentrations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. SPICE/K2 Synthetic Marijuana-Induced Toxic Hepatitis Treated with N-Acetylcysteine

    PubMed Central

    Sheikh, Israr A.; Lukšič, Miha; Ferstenberg, Richard; Culpepper-Morgan, Joan A.

    2014-01-01

    Patient: Male, 45 Final Diagnosis: Spice/K2 induced liver injury Symptoms: Lethargy • somnolence • fatigue Medication: N-acetylcysteine Clinical Procedure: — Specialty: Gastroenterology Objective: Rare disease Background: Spice/K2 is one of several street names for synthetic marijuana. These hallucinogens are increasingly sold over the internet and in “head” shops. They are usually household herbs that are sprayed with chemicals that become centrally active compounds when burned together and inhaled by smoking. Case Report: We present a case of a 45-year-old male substance abuser who was admitted with evidence of hepatocellular necrosis and worsening liver failure. Tests for acetaminophen were negative, as were tests for alcohol. The patient was empirically treated with N-acetylcysteine. Hepatocellular damage was abated and the patient made a full recovery. Upon regaining consciousness, the patient admitted to smoking Spice/K2. Other toxicities have been reported with synthetic marijuana use, but not liver toxicity. Conclusions: Physicians need to have a high index of suspicion for unknown hepatotoxins in substance abusers. N-acetylcysteine can be given if there is no contraindication. PMID:25548903

  10. Antiinflammatory Effect of N-Acetylcysteine Combined with Exogenous Surfactant in Meconium-Induced Lung Injury.

    PubMed

    Mikolka, P; Kopincova, J; Mikusiakova, L Tomcikova; Kosutova, P; Calkovska, A; Mokra, D

    2016-01-01

    Neonatal meconium aspiration syndrome (MAS) can be treated by exogenous surfactant (S). However, aspirated meconium initiates local inflammation and oxidation which may inactivate surfactant and reduce its action. This experimental study estimated whether combined use of surfactant and the antioxidant N-acetylcysteine (NAC) can enhance effectiveness of therapy. Meconium-instilled rabbits were non-treated (M), treated with monotherapies (M + S, M + NAC), combined therapy (M + S + NAC), or received saline instead of meconium (controls, C). Surfactant therapy consisted of two lung lavages (BAL) with diluted Curosurf (5 mg phospholipids/ml, 10 ml/kg) followed by undiluted Curosurf (100 mg phospholipids/kg). N-acetylcysteine (Acc Injekt, 10 mg/kg) was given intravenously in M + S + NAC group 10 min after surfactant therapy. Animals were oxygen-ventilated for additional 5 h. Then, differential white cell count in the blood (WBC) was determined. Left lung was saline-lavaged and differential cell count in BAL was determined. In right lung tissue, wet/dry weight ratio, oxidation markers (TBARS, 3NT) and interleukines (IL-2, IL-6, IL-13, and TNFα) using ELISA and RT-PCR were estimated. Combined S + NAC therapy significantly decreased W/D ratio, TBARS, 3NT, and IL, whereas the effect of monotherapies (either S or NAC) was less obvious. In conclusion, addition of NAC to surfactant treatment may enhance the therapeutic outcome in MAS.

  11. Pharmacokinetic modelling of modified acetylcysteine infusion regimens used in the treatment of paracetamol poisoning.

    PubMed

    Wong, Anselm; Landersdorfer, Cornelia; Graudins, Andis

    2017-09-01

    Paracetamol overdose is common and is treated with acetylcysteine to prevent the development of hepatotoxicity. N-acetyl-p-benzoquinone imine (NAPQI) is the toxic metabolite of paracetamol overdose. We aimed to assess the expected acetylcysteine concentration time profiles following delivery of modified acetylcysteine regimens proposed for those at high and low risk of hepatotoxicity. In addition, we will determine acetylcysteine concentrations post-cessation of abbreviated infusions. We performed pharmacokinetic simulations using Berkeley Madonna (version 8.3.23.0) comparing the time course of acetylcysteine concentration during and after the cessation of an abbreviated 12-h regimen (250 mg/kg) using a two-bag infusion and compared this to the standard 21-h three-bag (300 mg/kg) regimen. We also simulated extended duration acetylcysteine regimens and other increased dosing strategies that have been recommended in specific paracetamol poisoning scenarios. A more sustained serum concentration is achieved when the acetylcysteine loading dose is delivered over 4 h using the two-bag compared to the 1-h loading dose of the three-bag regimen. When administering an abbreviated 12-h acetylcysteine regimen, circulating acetylcysteine is detectable for 8 h after cessation of the infusion. This may provide a continued hepatoprotective effect if NAPQI is still being generated after the infusion is ceased. This pharmacokinetic simulation study is an important step in determining plasma acetylcysteine concentrations that are likely to be achieved using various modified treatment regimens. Importantly, for patients at low risk of liver injury after acute overdose, acetylcysteine is likely to be detectable many hours post-cessation of a 12-h regimen. This should provide a safety factor against development of hepatotoxicity for any ongoing paracetamol metabolism after cessation of the acetylcysteine infusion.

  12. REACTIONS OF MERCAPTANS. I. FORMATION OF 2-METHYL-2-THIAZOLINE-4- CARBOXYLIC ACID FROM N-ACETYLCYSTEINE. II. A SPECTROPHOTOMETRIC METHOD FOR STUDY OF THE REACTION OF RADIATION-PROTECTIVE MERCAPTANS WITH ARYL DISULFIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, H.A. Jr.

    1962-08-01

    I. Methyl 2-methyl-2-thiazoline-4-carboxylate was synthesized and converted to the corresponding acid. The behavior of the carboxythiazoline in various concentrations of mineral acids was studied spectrophotometrically. The cyclization of N-acetylcysteine to form a thiazoline-ring compound in concentrated mineral acids was also studied by this means. N-Acetylcysteine in concentrated mineral acid solutions yielded 2-methyl-2-thiazoline-4-carboxylic acid, which also was obtained by controlied hydrolysis of the corresponding methyl ester. Hydrolysis of methyl 2-methyl2-thiazoline-4-carboxylate, pK 3.05, in 0.1M sodium hydroxide yielded the corresponding carboxythiazoline in solution, pK 2.20 and 4.95. The carboxythiazoline was hydrolyzed very slowly in 7M hydrochloric acid, but the velocity of reactionmore » increased with decreasing acid concentration to a maximum at about pH 1.7; the products were N- and Sacetylcysteine, as well as cysteine and acetic acid. At acid concentrations below 0.2M, the last two products were formed slowly, and a pseudo-equilibrium could be established between thiazolinium ion, N-, and S-acetylcysteine. Equilibrium constants were determined. II. 4,4'-Dithiobis (benzenesulfonic acid) (I) and 4,4'-dithiobis(1-naphthalenesulfonic acid) (II) were synthesized from sulfanilic and naphthionic acids, respectively. The absorption spectra of I and II and of the corresponding mercaptans were determined. The thiol-disuifide interchange reactions were studied by spectrophotometric means for the reactions of cysteine with I and with II, and the equilibrium constants were determined. The systems had spectra very similar to those of the respective mixed disuifides with cysteine, and it was not possible to determine the concentrations from absorbancy measurements. On the other hand, the mercaptide ions had spectra different from the other species, with maxima at 285 and 348 m mu , respectively, and the concentrations of the corresponding mercaptans could be calculated from the absorbancies at these wavelengths. By appropriate choice of the initial concentrations and of pH, the equilibrium concentrations could be made negligible, and the equilibrium constants determined.« less

  13. Storing red blood cells with vitamin C and N-acetylcysteine prevents oxidative stress-related lesions: a metabolomics overview

    PubMed Central

    Pallotta, Valeria; Gevi, Federica; D’Alessandro, Angelo; Zolla, Lello

    2014-01-01

    Background Recent advances in red blood cell metabolomics have paved the way for further improvements of storage solutions. Materials and methods In the present study, we exploited a validated high performance liquid chromatography-mass spectrometry analytical workflow to determine the effects of vitamin C and N-acetylcysteine supplementation (anti-oxidants) on the metabolome of erythrocytes stored in citrate-phosphate-dextrose saline-adenine-glucose-mannitol medium under blood bank conditions. Results We observed decreased energy metabolism fluxes (glycolysis and pentose phosphate pathway). A tentative explanation of this phenomenon could be related to the observed depression of the uptake of glucose, since glucose and ascorbate are known to compete for the same transporter. Anti-oxidant supplementation was effective in modulating the redox poise, through the promotion of glutathione homeostasis, which resulted in decreased haemolysis and less accumulation of malondialdehyde and oxidation by-products (including oxidized glutathione and prostaglandins). Discussion Anti-oxidants improved storage quality by coping with oxidative stress at the expense of glycolytic metabolism, although reservoirs of high energy phosphate compounds were preserved by reduced cyclic AMP-mediated release of ATP. PMID:25074788

  14. Antioxidant Therapies for Ulcerative Dermatitis: A Potential Model for Skin Picking Disorder.

    PubMed

    George, Nneka M; Whitaker, Julia; Vieira, Giovana; Geronimo, Jerome T; Bellinger, Dwight A; Fletcher, Craig A; Garner, Joseph P

    2015-01-01

    Skin Picking Disorder affects 4% of the general population, with serious quality of life impacts, and potentially life threatening complications. Standard psychoactive medications do not help most patients. Similarly, Mouse Ulcerative Dermatitis (skin lesions caused by excessive abnormal grooming behavior) is very common in widely used inbred strains of mice, and represents a serious animal welfare issue and cause of mortality. Treatment options for Ulcerative Dermatitis are largely palliative and ineffective. We have proposed mouse Ulcerative Dermatitis as a model for human Skin Picking Disorder based on similar epidemiology, behavior, and its comorbidity and mechanistic overlap with hair pulling (trichotillomania). We predicted that mouse Ulcerative Dermatitis would be treated by N-Acetylcysteine, as this compound is highly effective in treating both Skin Picking Disorder and Trichotillomania. Furthermore, we hypothesized that N-Acetylcysteine's mode of action is as a precursor to the production of the endogenous antioxidant glutathione in the brain, and therefore intranasal glutathione would also treat Ulcerative Dermatitis. Accordingly, we show in a heterogenous prospective trial, the significant reduction in Ulcerative Dermatitis lesion severity in mice receiving either N-acetylcysteine (oral administration) or glutathione (intranasal). The majority of mice treated with N-acetylcysteine improved slowly throughout the course of the study. Roughly half of the mice treated with glutathione showed complete resolution of lesion within 2-4 weeks, while the remainder did not respond. These findings are the first to show that the use of N-acetylcysteine and Glutathione can be curative for mouse Ulcerative Dermatitis. These findings lend additional support for mouse Ulcerative Dermatitis as a model of Skin Picking Disorder and also support oxidative stress and glutathione synthesis as the mechanism of action for these compounds. As N-Acetylcysteine is poorly tolerated by many patients, intranasal glutathione warrants further study as potential therapy in Skin Picking, trichotillomania and other body-focused repetitive behavior disorders.

  15. Enhanced inhibition of bacterial biofilm formation and reduced leukocyte toxicity by chloramphenicol:β-cyclodextrin:N-acetylcysteine complex.

    PubMed

    Aiassa, Virginia; Zoppi, Ariana; Becerra, M Cecilia; Albesa, Inés; Longhi, Marcela R

    2016-11-05

    The purpose of this study was to improve the physicochemical and biological properties of chloramphenicol (CP) by multicomponent complexation with β-cyclodextrin (β-CD) and N-acetylcysteine (NAC). The present work describes the ability of solid multicomponent complex (MC) to decrease biomass and cellular activity of Staphylococcus by crystal violet and XTT assay, and leukocyte toxicity, measuring the increase of reactive oxygen species by chemiluminescence, and using 123-dihydrorhodamine. In addition, MC was prepared by the freeze-drying or physical mixture methods, and then characterized by scanning electron microscopy and powder X-ray diffraction. Nuclear magnetic resonance and phase solubility studies provided information at the molecular level on the structure of the MC and its association binding constants, respectively. The results obtained allowed us to conclude that MC formation is an effective pharmaceutical strategy that can reduce CP toxicity against leukocytes, while enhancing its solubility and antibiofilm activity. Copyright © 2016. Published by Elsevier Ltd.

  16. Induction of apoptosis by pyrrolidinedithiocarbamate and N-acetylcysteine in vascular smooth muscle cells.

    PubMed

    Tsai, J C; Jain, M; Hsieh, C M; Lee, W S; Yoshizumi, M; Patterson, C; Perrella, M A; Cooke, C; Wang, H; Haber, E; Schlegel, R; Lee, M E

    1996-02-16

    Pyrrolidinedithiocarbamate (PDTC) and N-acetylcysteine (NAC) have been used as antioxidants to prevent apoptosis in lymphocytes, neurons, and vascular endothelial cells. We report here that PDTC and NAC induce apoptosis in rat and human smooth muscle cells. In rat aortic smooth muscle cells, PDTC induced cell shrinkage, chromatin condensation, and DNA strand breaks consistent with apoptosis. In addition, overexpression of Bcl-2 suppressed vascular smooth muscle cell death caused by PDTC and NAC. The viability of rat aortic smooth muscle cells decreased within 3 h of treatment with PDTC and was reduced to 30% at 12 h. The effect of PDTC and NAC on smooth muscle cells was not species specific because PDTC and NAC both caused dose-dependent reductions in viability in rat and human aortic smooth muscle cells. In contrast, neither PDTC nor NAC reduced viability in human aortic endothelial cells. The use of antioxidants to induce apoptosis in vascular smooth muscle cells may help prevent their proliferation in arteriosclerotic lesions.

  17. N-Acetylcysteine treatment of dystrophic mdx mice results in protein thiol modifications and inhibition of exercise induced myofibre necrosis.

    PubMed

    Terrill, Jessica R; Radley-Crabb, Hannah G; Grounds, Miranda D; Arthur, Peter G

    2012-05-01

    Oxidative stress is implicated as a factor that increases necrosis of skeletal muscles in Duchenne Muscular Dystrophy (DMD) and the dystrophic mdx mouse. Consequently, drugs that minimize oxidative stress are potential treatments for muscular dystrophy. This study examined the in vivo benefits to mdx mice of an antioxidant treatment with the cysteine precursor N-acetylcysteine (NAC), administered in drinking water. NAC was completely effective in preventing treadmill exercise-induced myofibre necrosis (assessed histologically) and the increased blood creatine kinase levels (a measure of sarcolemma leakiness) following exercise were significantly lower in the NAC treated mice. While NAC had no effect on malondialdehyde level or protein carbonylation (two indicators of irreversible oxidative damage), treatment with NAC for one week significantly decreased the oxidation of glutathione and protein thiols, and enhanced muscle protein thiol content. These data provide in vivo evidence for protective benefits of NAC treatment on dystropathology, potentially via protein thiol modifications. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Rationale, design, and baseline characteristics of the Acetylcystein for Contrast-Induced nephropaThy (ACT) Trial: a pragmatic randomized controlled trial to evaluate the efficacy of acetylcysteine for the prevention of contrast-induced nephropathy

    PubMed Central

    2009-01-01

    Background Aceltylcysteine has been evaluated in several small trials as a means of reducing the risk of contrast-induced nephropathy (CIN), however systematic reviews of these studies do not provide conclusive answers. Therefore, a large randomized controlled trial (RCT) is needed to provide a reliable answer as to whether acetylcysteine is effective in decreasing the risk of CIN in high-risk patients undergoing angiographic procedures. Methods ACT is a RCT of acetylcysteine versus placebo in 2,300 patients at-risk for CIN undergoing an intravascular angiographic procedure. The randomization list will be concealed. Participants, health care staff, investigators and outcome assessors will be blinded to whether patients receive acetylcysteine or placebo. All analysis will follow the intention-to-treat principle. The study drugs (acetylcysteine 1200 mg or placebo) will be administered orally twice daily for two doses before and two doses after the procedure. The primary outcome is the occurrence of CIN, defined as a 25% elevation of serum creatinine above baseline between 48 and 96 hours after angiography. Discussion The first patient entered the trial on September, 2008. Up to April 7, 2009, 810 patients had been included in 35 centers. The mean age was 69 (Standard deviation: 10), 18% had a baseline serum creatinine >1.5 mg/dL, 57% were diabetics and 13% had a history of heart failure. The ongoing ACT Trial is the largest multicentre RCT that will determine whether acetylcysteine is effective in decreasing the risk of CIN in patients at risk undergoing angiography. Trial registration Clinicaltrials.gov NCT00736866 PMID:19497091

  19. N-acetylcysteine does not prevent post-endoscopic retrograde cholangiopancreatography hyperamylasemia and acute pancreatitis

    PubMed Central

    Milewski, Janusz; Rydzewska, Grazyna; Degowska, Malgorzata; Kierzkiewicz, Maciej; Rydzewski, Andrzej

    2006-01-01

    AIM: Acute pancreatitis (AP) is the most common and often severe complication of endoscopic retrograde cholangiopancreatography (ERCP). The early step in the pathogenesis of acute pancreatitis is probably the capillary endothelial injury mediated by oxygen-derived free radicals. N-acetylcysteine - a free radical scavenger may be potentially effective in preventing post-ERCP acute pancreatitis and it is also known that N-acetylcysteine (ACC) can reduce the severity of disease in experimental model of AP. METHODS: One hundred and six patients were randomly allocated to two groups. Fifty-five patients were given N-acetylcysteine (two 600 mg doses orally 24 and 12 h before ERCP and 600 mg was given iv, twice a day for two days after the ERCP). The control group consisted of 51 patients who were given iv. isotonic saline twice a day for two days after the ERCP. Serum and urine amylase activities were measured before ERCP and 8 and 24 h after the procedure. The primary outcome parameter was post-ERCP acute pancreatitis and the secondary outcome parameters were differences between groups in serum and urine amylase activity. RESULTS: There were no significant differences in the rate of post-ERCP pancreatitis between two groups (10 patients overall, 4 in the ACC group and 6 in the control group). There were also no significant differences in baseline and post-ERCP serum and urine amylase activity between ACC group and control group. CONCLUSION: N-acetylcysteine fails to demonstrate any significant preventive effect on post-ERCP pancreatitis, as well as on serum and urine amylase activity. PMID:16773694

  20. N-acetylcysteine does not prevent post-endoscopic retrograde cholangiopancreatography hyperamylasemia and acute pancreatitis.

    PubMed

    Milewski, Janusz; Rydzewska, Grazyna; Degowska, Malgorzata; Kierzkiewicz, Maciej; Rydzewski, Andrzej

    2006-06-21

    Acute pancreatitis (AP) is the most common and often severe complication of endoscopic retrograde cholangiopancreatography (ERCP). The early step in the pathogenesis of acute pancreatitis is probably the capillary endothelial injury mediated by oxygen-derived free radicals. N-acetylcysteine - a free radical scavenger may be potentially effective in preventing post-ERCP acute pancreatitis and it is also known that N-acetylcysteine (ACC) can reduce the severity of disease in experimental model of AP. One hundred and six patients were randomly allocated to two groups. Fifty-five patients were given N-acetylcysteine (two 600 mg doses orally 24 and 12 h before ERCP and 600 mg was given iv, twice a day for two days after the ERCP). The control group consisted of 51 patients who were given iv. isotonic saline twice a day for two days after the ERCP. Serum and urine amylase activities were measured before ERCP and 8 and 24 h after the procedure. The primary outcome parameter was post-ERCP acute pancreatitis and the secondary outcome parameters were differences between groups in serum and urine amylase activity. There were no significant differences in the rate of post-ERCP pancreatitis between two groups (10 patients overall, 4 in the ACC group and 6 in the control group). There were also no significant differences in baseline and post-ERCP serum and urine amylase activity between ACC group and control group. N-acetylcysteine fails to demonstrate any significant preventive effect on post-ERCP pancreatitis, as well as on serum and urine amylase activity.

  1. N-acetylcysteine neither lowers plasma homocysteine concentrations nor improves brachial artery endothelial function in cardiac transplant recipients.

    PubMed

    Miner, S E S; Cole, D E C; Evrovski, J; Forrest, Q; Hutchison, S J; Holmes, K; Ross, H J

    2002-05-01

    N-acetylcysteine is a novel antioxidant that has been reported to reduce plasma homocysteine concentrations and improve endothelial function. Cardiac transplant recipients have a high incidence of coronary endothelial dysfunction and hyperhomocysteinemia, both of which may lead to the development of transplantation coronary artery disease. It was hypothesized that N-acetylcysteine would reduce plasma homocysteine concentrations and improve brachial endothelial function in cardiac transplant recipients. A cohort of stable cardiac transplant recipients was recruited from the outpatient clinic at the Toronto General Hospital, Toronto, Ontario. Brachial artery endothelial functions were studied according to standard techniques to determine flow-mediated dilation of the brachial artery. Plasma homocysteine concentrations were assayed using high performance liquid chromatography with electrochemical detection and pulsed integrated amperometry. After baseline testing, patients were treated in an unblinded fashion with N-acetylcysteine 500 mg/day. After 10 weeks of therapy, patients returned for follow-up endothelial function and homocysteine testing. Thirty-one patients were initially enrolled. Two patients withdrew due to excessive gastrointestinal upset. Two patients did not return for follow-up testing. The remaining 27 patients tolerated the treatment well. At baseline, 85% of the patients had hyperhomocysteinemia (greater than 15 mol/L) with a mean plasma concentration of 18.6 4.7 mol/L. No changes in homocysteine concentrations were seen at follow-up. At baseline, the average flow-mediated dilation was only 4.7 6.3%. No changes were seen at follow-up. Hyperhomocysteinemia and brachial endothelial dysfunction are common in stable cardiac transplant recipients and are unaffected by supplementation with N-acetylcysteine.

  2. N-Acetylcysteine's Role in Sepsis and Potential Benefit in Patients With Microcirculatory Derangements.

    PubMed

    Chertoff, Jason

    2018-02-01

    To review the data surrounding the utility of N-acetylcysteine (NAC) in sepsis and identify areas needed for additional research. A review of articles describing the mechanisms of action and clinical use of NAC in sepsis. Despite many advances in critical care medicine, still as many as 50% of patients with septic shock die. Treatments thus far have focused on resuscitation and restoration of macrocirculatory targets in the early phases of sepsis, with less focus on microcirculatory dysfunction. N-acetylcysteine, due to its anti-inflammatory and antioxidative properties, has been readily investigated in sepsis and has yielded largely incongruous and disappointing results. In addition to its known anti-inflammatory and antioxidative roles, one underappreciated property of NAC is its ability to vasodilate the microcirculation and improve locoregional blood flow. Some investigators have sought to capitalize on this mechanism with promising results, as evidenced by microcirculatory vasodilation, improvements in regional blood flow and oxygen delivery, and reductions in lactic acidosis, organ failure, and mortality. In addition to its antioxidant and anti-inflammatory properties, N-acetylcysteine possesses vasodilatory properties that could benefit the microcirculation in sepsis. It is imperative that we investigate these properties to uncover NAC's full potential for benefit in sepsis.

  3. Oral administration of the antioxidant, N-acetylcysteine, abrogates diabetes-induced endothelial dysfunction.

    PubMed

    Pieper, G M; Siebeneich, W

    1998-07-01

    Oxidative stress is believed to play an important role in the development of vascular complications associated with diabetes mellitus. In this study, we examined the efficacy of long-term treatment with the antioxidant, N-acetylcysteine, in preventing the development of defective endothelium-dependent relaxation in streptozotocin-induced, Sprague-Dawley diabetic rats. At 48 h after injection of streptozotocin, a portion of diabetic rats received 250 mg/L N-acetylcysteine in drinking water for a total duration of 8 weeks. Oral administration did not alter the increase in blood glucose or the reduction in serum insulin but did modestly reduce total glycosylated hemoglobin. In precontracted thoracic aortic rings suspended in isolated tissue baths, endothelium-dependent relaxation to acetylcholine was impaired in diabetic rings compared with control rings. Endothelium-independent relaxation to nitroglycerin was unaltered. Long-term oral administration of N-acetylcysteine did not alter responses to nitroglycerin but completely prevented the defective relaxation to acetylcholine. These studies indicate a dissociation between glycemic control and correction of endothelial dysfunction and suggest that long-term exposure to reactive oxygen subsequent to diabetes rather than hyperglycemia per se is responsible for the development of endothelial dysfunction in diabetes mellitus.

  4. External anal sphincter fatigue is not improved by N-acetylcysteine in an animal model.

    PubMed

    Healy, C F; McMorrow, C; O'Herlihy, C; O'Connell, P R; Jones, J F X

    2008-06-01

    Oxidative stress is associated with skeletal muscle fatigue. This study tests the hypotheses that N-acetylcysteine (NAC) reduces fatigue and accelerates recovery of the rat external anal sphincter (EAS). Fifteen female Wistar rats were killed humanely. The EAS was mounted as a ring preparation and electrically stimulated with 50 Hz trains of 200 ms in duration every 4 s for three and a half minutes. Three groups were analysed: a control group (n = 5), a group pretreated with NAC (10(-4) mol L(-1); n = 5) and a group pretreated with NAC (10(-3) mol L(-1); n = 5). A novel fatigue index was formulated and was compared to a conventional method of expressing fatigue. There was no significant difference at concentrations of NAC (10(-4) mol L(-1); P > 0.05). At high concentrations of NAC (10(-3) mol L(-1)) there was a significant depression in peak twitch amplitude before fatigue (P = 0.04). N-acetylcysteine in both concentrations used, did not alter fatigue or recovery of the rat EAS. There was a significant positive correlation between the two methods of expressing fatigue but the conventional method produced a higher fatigue index (22.4% on average). N-acetylcysteine does not ameliorate fatigue or accelerate recovery of the EAS and may not be a useful medical therapy for faecal incontinence.

  5. Effects of Pharmacologic Intervention on Oxygenation, Lung Water and Protein Leak in the Pseudomonas ARDS Porcine Model

    DTIC Science & Technology

    1988-07-01

    radicals. We studied the effects of N - acetylcysteine (NAC), and a combination of superoxide dismutase and catalase (SODC) in the model. In the NAC...pretreated with N - acetylcysteine (NAC, n =3) showed no differences from control pseudomonas pigs (Ps, n =S) in any parameters. Pigs given intravenous infusion of...hemodynamics and directly on the endothelium . The products of arachadonic acid metabolism produced by the circulating elements in the blood are thought

  6. Effects of high ambient temperature on urea-nitrogen recycling in lactating dairy cows.

    PubMed

    Obitsu, Taketo; Kamiya, Mitsuru; Kamiya, Yuko; Tanaka, Masahito; Sugino, Toshihisa; Taniguchi, Kohzo

    2011-08-01

    Effects of exposure to hot environment on urea metabolism were studied in lactating Holstein cows. Four cows were fed ad libitum a total mixed ration and housed in a temperature-controlled chamber at constant moderate (18°C) or high (28°C) ambient temperatures in a cross-over design. Urea nitrogen (N) kinetics was measured by determining urea isotopomer in urine after single injection of [(15) N(2) ]urea into the jugular vein. Both dry matter intake and milk yield were decreased under high ambient temperature. Intakes of total N and digestible N were decreased under high ambient temperature but urinary urea-N excretion was increased. The ratio of urea-N production to digestible N was increased, whereas the proportion of gut urea-N entry to urea-N production tended to be decreased under high ambient temperature. Neither return to the ornithine cycle, anabolic use nor fecal excretion of urea-N recycled to the gut was affected by ambient temperature. Under high ambient temperature, renal clearance of plasma urea was not affected but the gut clearance was decreased. Increase of urea-N production and reduction of gut urea-N entry, in relative terms, were associated with increased urinary urea-N excretion of lactating dairy cows in higher thermal environments. 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  7. Urinary excretion levels of water-soluble vitamins in pregnant and lactating women in Japan.

    PubMed

    Shibata, Katsumi; Fukuwatari, Tsutomu; Sasaki, Satoshi; Sano, Mitsue; Suzuki, Kahoru; Hiratsuka, Chiaki; Aoki, Asami; Nagai, Chiharu

    2013-01-01

    Recent studies have shown that the urinary excretion levels of water-soluble vitamins can be used as biomarkers for the nutritional status of these vitamins. To determine changes in the urinary excretion levels of water-soluble vitamins during pregnant and lactating stages, we surveyed and compared levels of nine water-soluble vitamins in control (non-pregnant and non-lactating women), pregnant and lactating women. Control women (n=37), women in the 2nd (16-27 wk, n=24) and 3rd trimester of pregnancy (over 28 wk, n=32), and early- (0-5 mo, n=54) and late-stage lactating (6-11 mo, n=49) women took part in the survey. The mean age of subjects was ~30 y, and mean height was ~160 cm. A single 24-h urine sample was collected 1 d after the completion of a validated, self-administered comprehensive diet history questionnaire to measure water-soluble vitamins or metabolites. The average intake of each water-soluble vitamin was ≍ the estimated average requirement value and adequate intake for the Japanese Dietary Reference Intakes in all life stages, except for vitamin B6 and folate intakes during pregnancy. No change was observed in the urinary excretion levels of vitamin B2, vitamin B6, vitamin B12, biotin or vitamin C among stages. Urine nicotinamide and folate levels were higher in pregnant women than in control women. Urine excretion level of vitamin B1 decreased during lactation and that of pantothenic acid decreased during pregnancy and lactation. These results provide valuable information for setting the Dietary Reference Intakes of water-soluble vitamins for pregnant and lactating women.

  8. N-Acetylcysteine prevents congenital heart defects induced by pregestational diabetes

    PubMed Central

    2014-01-01

    Background Pregestational diabetes is a major risk factor of congenital heart defects (CHDs). Glutathione is depleted and reactive oxygen species (ROS) production is elevated in diabetes. In the present study, we aimed to examine whether treatment with N-acetylcysteine (NAC), which increases glutathione synthesis and inhibits ROS production, prevents CHDs induced by pregestational diabetes. Methods Female mice were treated with streptozotocin (STZ) to induce pregestational diabetes prior to breeding with normal males to produce offspring. Some diabetic mice were treated with N-acetylcysteine (NAC) in drinking water from E0.5 to the end of gestation or harvesting of the embryos. CHDs were identified by histology. ROS levels, cell proliferation and gene expression in the fetal heart were analyzed. Results Our data show that pregestational diabetes resulted in CHDs in 58% of the offspring, including ventricular septal defect (VSD), atrial septal defect (ASD), atrioventricular septal defects (AVSD), transposition of great arteries (TGA), double outlet right ventricle (DORV) and tetralogy of Fallot (TOF). Treatment with NAC in drinking water in pregestational diabetic mice completely eliminated the incidence of AVSD, TGA, TOF and significantly diminished the incidence of ASD and VSD. Furthermore, pregestational diabetes increased ROS, impaired cell proliferation, and altered Gata4, Gata5 and Vegf-a expression in the fetal heart of diabetic offspring, which were all prevented by NAC treatment. Conclusions Treatment with NAC increases GSH levels, decreases ROS levels in the fetal heart and prevents the development of CHDs in the offspring of pregestational diabetes. Our study suggests that NAC may have therapeutic potential in the prevention of CHDs induced by pregestational diabetes. PMID:24533448

  9. Comparison of captopril and enalapril to study the role of the sulfhydryl-group in improvement of endothelial dysfunction with ACE inhibitors in high dieted methionine mice.

    PubMed

    Liu, Yu-Hui; Liu, Li-Ying; Wu, Jin-Xiang; Chen, Shuang-Xiu; Sun, Yin-Xue

    2006-01-01

    To examine the role of sulfhydryl (-SH) group in improvement of endothelial dysfunction with angiotensin-converting enzyme (ACE) inhibitors in experimental high dose of methionine dieted rats. We compared the effects of Captopril (an ACE inhibitor with -SH group), enalapril (an ACE-inhibitor without -SH group), N-acetylcysteine (only -SH group not ACE inhibitor) on endothelial dysfunction injured by methionine-induced hyperhomocysteinemia (HHcy) in rats. Male Sprague-Dawley rats were divided randomly into seven groups: control group, L-methionine group, low dose Captopril (15 mg/kg), middle dose Captopril (30 mg/kg), high dose Captopril (45 mg/kg), enalapril (20 mg/kg), N-acetylcysteine (200 mg/kg); control group were intragastric gavaged by water and others groups were intragastric gavaged by L-methionine and drugs in water one time every day. Acetylcholine (ACh)-induced endothelium-dependent relaxation (EDR), sodium nitroprusside (SNP)-induced endothelium-independent relaxation of aortic rings were examined. Paraoxonase1 (PON1) and ACE activity, malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD) in serum were analyzed. It was found that a single intragastric gavage by L-methionine resulted in inhibition of endothelium-dependent relaxation, markedly increased the serum level of malondialdehyde and decreased the activity of PON1 and SOD, similarly decreased the level of NO in the serum; but had no effects on endothelium-independent relaxation and angiotensin-converting enzyme activity compared with the control group. Given the treatment with three doses of Captopril (15 approximately 45 mg/kg) markedly attenuated inhibition of vasodilator responses to ACh, and eliminated the increased level of malondialdehyde, the decreased level of NO, activity of PON1 and SOD in serum by single intragastric gavaged L-methionine. However, there were some significant differences among Captopril (30 mg/kg or 45 mg/kg), enalapril (20 mg/kg), and N-acetylcysteine particular in the activity of PON1 and ACE. These results suggested that Captopril can protect the vascular endothelium against the damages induced by L-methionine in rats, and the beneficial effects of Captopril may be related to attenuating the decrease in PON1 activity and NO levels. Furthermore, this protective effect may be concerned with the sulfhydryl group.

  10. N-Acetylcysteine in the Treatment of Pediatric Trichotillomania: A Randomized, Double-Blind, Placebo-Controlled Add-On Trial

    ERIC Educational Resources Information Center

    Bloch, Michael H.; Panza, Kaitlyn E.; Grant, Jon E.; Pittenger, Christopher; Leckman, James F.

    2013-01-01

    Objective: To examine the efficacy of N-acetylcysteine (NAC) for the treatment of pediatric trichotillomania (TTM) in a double-blind, placebo-controlled, add-on study. Method: A total of 39 children and adolescents aged 8 to 17 years with pediatric trichotillomania were randomly assigned to receive NAC or matching placebo for 12 weeks. Our primary…

  11. Effect of acetylcysteine on adaptation of intestinal smooth muscle after small bowel bypass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisbrodt, N.W.; Belloso, R.M.; Biskin, L.C.

    1986-03-05

    The authors have postulated that the adaptive changes in function and structure of bypassed segments of small bowel are due in part to the change in intestinal contents following operation. The purpose of these experiments was to determine if a mucolytic agent could alter the adaptation. Rats were anesthetized and a 70% jejunoileal bypass was performed. The bypassed segments then were perfused with either saline or acetylcysteine for 3-12 days. Then, either intestinal transit was determined using Cr-51, or segments were taken for morphometric analysis. Transit, as assessed by the geometric center, was increased 32% by acetylcysteine treatment. Treatment alsomore » caused a decrease in hypertrophy of the muscularis. Muscle wet weight, muscle cross-sectional area, and muscle layer thickness all were significantly less in those animals infused with acetyl-cysteine. No decreases in hypertrophy were seen in the in-continuity segments. These data indicate that alterations in intestinal content can affect the course of adaptation of intestinal muscle in response to small bowel bypass.« less

  12. Oxidative transformation of tunichromes - Model studies with 1,2-dehydro-N-acetyldopamine and N-acetylcysteine.

    PubMed

    Kuang, Qun F; Abebe, Adal; Evans, Jason; Sugumaran, Manickam

    2017-08-01

    Tunichromes are 1,2-dehydrodopa containing bioactive peptidyl derivatives found in blood cells of several tunicates. They have been implicated in metal sequestering, tunic formation, wound healing and defense reaction. Earlier studies conducted on these compounds indicate their extreme liability, high reactivity and easy oxidative polymerization. Their reactions are also complicated by the presence of multiple dehydrodopyl units. Since they have been invoked in crosslinking and covalent binding, to understand the reactivities of these novel compounds, we have taken a simple model compound that possess the tunichrome reactive group viz., 1,2-dehydro-N-acetyldopamine (Dehydro NADA) and examined its reaction with N-acetylcysteine in presence of oxygen under both enzymatic and nonenzymatic conditions. Ultraviolet and visible spectral studies of reaction mixtures containing dehydro NADA and N-acetylcysteine in different molar ratios indicated the production of side chain and ring adducts of N-acetylcysteine to dehydro NADA. Liquid chromatography and mass spectral studies supported this contention and confirmed the production of several different products. Mass spectral analysis of these products show the potentials of dehydro NADA to form side chain adducts that can lead to polymeric products. This is the first report demonstrating the ability of dehydro dopyl units to form adducts and crosslinks with amino acid side chains. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effects of acetylcysteine and probucol on contrast medium-induced depression of intrinsic renal glutathione peroxidase activity in diabetic rats.

    PubMed

    Yen, Hsueh-Wei; Lee, Hsiang-Chun; Lai, Wen-Te; Sheu, Sheng-Hsiung

    2007-04-01

    Antioxidants such as N-acetylcysteine and probucol have been used to protect patients from contrast media-induced nephrotoxicity. The mechanisms underlying these protective effects are not well understood. We hypothesized that acetylcysteine and probucol alter the activity of endogenous antioxidant enzyme activity. Four weeks after induction of diabetes with streptozotocin, diabetic and nondiabetic rats were divided into three groups. Group 1 rats did not receive any antioxidant agents. Group 2 rats were treated with acetylcysteine and group 3 rats with probucol for 1 week before injection of the contrast medium diatrizoate (DTZ). We found that diabetic rats had higher renal glutathione peroxidase (GPx) activity than normal rats. DTZ suppressed renal GPx activity significantly in both group 1 diabetic and normal rats. Interestingly, renal GPx activity in both diabetic and normal rats pretreated with acetylcysteine or probucol was not inhibited by DTZ. Renal superoxide dismutase (SOD) increased significantly in normal rats after DTZ injection, but not in diabetic rats. Finally, acetylcysteine or probucol did not significantly influence renal SOD. These findings suggest that the renal protective effects of acetylcysteine and probucol against contrast-induced oxidative stress and nephrotoxicity may be mediated by altering endogenous GPx activity.

  14. n-Octyl gallate as inhibitor of pyruvate carboxylation and lactate gluconeogenesis.

    PubMed

    Eler, Gabrielle Jacklin; Santos, Israel Souza; de Moraes, Amarilis Giaretta; Comar, Jurandir Fernando; Peralta, Rosane Marina; Bracht, Adelar

    2015-04-01

    The alkyl gallates are found in several natural and industrial products. In the latter products, these compounds are added mainly for preventing oxidation. In the present work, the potencies of methyl gallate, n-propyl gallate, n-pentyl gallate, and n-octyl gallate as inhibitors of pyruvate carboxylation and lactate gluconeogenesis were evaluated. Experiments were done with isolated mitochondria and the isolated perfused rat liver. The potency of the gallic acid esters as inhibitors of pyruvate carboxylation in isolated mitochondria obeyed the following decreasing sequence: n-octyl gallate > n-pentyl gallate > n-propyl gallate > methyl gallate. A similar sequence of decreasing potency for lactate gluconeogenesis inhibition in the perfused liver was found in terms of the portal venous concentration. Both actions correlate with the lipophilicity of the compounds. The effects are harmful at high concentrations. At appropriate concentrations, however, octyl gallate should act therapeutically because its inhibitory action on gluconeogenesis will contribute further to its proposed antihyperglycemic effects. © 2014 Wiley Periodicals, Inc.

  15. A Randomised, Double Blind Trial of N-Acetylcysteine for Hearing Protection during Stapes Surgery

    PubMed Central

    Bagger-Sjöbäck, Dan; Strömbäck, Karin; Hakizimana, Pierre; Plue, Jan; Larsson, Christina; Hultcrantz, Malou; Papatziamos, Georgios; Smeds, Henrik; Danckwardt-Lillieström, Niklas; Hellström, Sten; Johansson, Ann; Tideholm, Bo; Fridberger, Anders

    2015-01-01

    Background Otosclerosis is a disorder that impairs middle ear function, leading to conductive hearing loss. Surgical treatment results in large improvement of hearing at low sound frequencies, but high-frequency hearing often suffers. A likely reason for this is that inner ear sensory cells are damaged by surgical trauma and loud sounds generated during the operation. Animal studies have shown that antioxidants such as N-Acetylcysteine can protect the inner ear from noise, surgical trauma, and some ototoxic substances, but it is not known if this works in humans. This trial was performed to determine whether antioxidants improve surgical results at high frequencies. Methods We performed a randomized, double-blind and placebo-controlled parallel group clinical trial at three Swedish university clinics. Using block-stratified randomization, 156 adult patients undergoing stapedotomy were assigned to intravenous N-Acetylcysteine (150 mg/kg body weight) or matching placebo (1:1 ratio), starting one hour before surgery. The primary outcome was the hearing threshold at 6 and 8 kHz; secondary outcomes included the severity of tinnitus and vertigo. Findings One year after surgery, high-frequency hearing had improved 2.7 ± 3.8 dB in the placebo group (67 patients analysed) and 2.4 ± 3.7 dB in the treated group (72 patients; means ± 95% confidence interval, p = 0.54; linear mixed model). Surgery improved tinnitus, but there was no significant intergroup difference. Post-operative balance disturbance was common but improved during the first year, without significant difference between groups. Four patients receiving N-Acetylcysteine experienced mild side effects such as nausea and vomiting. Conclusions N-Acetylcysteine has no effect on hearing thresholds, tinnitus, or balance disturbance after stapedotomy. Trial Registration ClinicalTrials.gov NCT00525551 PMID:25763866

  16. N-acetylcysteine attenuates TNF-alpha-induced human vascular endothelial cell apoptosis and restores eNOS expression.

    PubMed

    Xia, Zhengyuan; Liu, Min; Wu, Yong; Sharma, Vijay; Luo, Tao; Ouyang, Jingping; McNeill, John H

    2006-11-21

    The circulatory inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) is increased in pathological conditions, such as diabetes, which initiate or exacerbate vascular endothelial injury. Both nitric oxide (NO) and reactive oxygen species may play a dual role (i.e., inhibiting or promoting) in TNF-alpha-induced endothelial cell apoptosis. We investigated the effects of the antioxidant N-acetylcysteine on TNF-alpha-induced apoptosis in human vascular endothelial cell (cell line ECV304) apoptosis, NO production and lipid peroxidation. Cultured vascular endothelial cell (ECV304) were either not treated (control), or treated with TNF-alpha (40 ng/ml) alone or TNF-alpha in the presence of N-acetylcysteine at 30 mmol/l or 1 mmol/l, respectively, for 24 h. Cell viability was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. Cell apoptosis was assessed by flow cytometry. TNF-alpha-induced endothelial cell apoptosis was associated with increased inducible NO synthase but reduced endothelial NO synthase (eNOS) protein expression. NO production and the levels of the lipid peroxidation product malondialdehyde were concomitantly increased. Treatment with NAC at 30 mmol/l restored eNOS expression and further increased NO production as compared to TNF-alpha alone, resulting in improved cell viability and reduced apoptosis. This was accompanied by increased superoxide dismutase activity, increased glutathione peroxidase production and reduced malondialdehyde levels. N-acetylcysteine at 1 mmol/l, however, did not have significant effects on TNF-alpha-induced endothelial cell apoptosis and cell viability despite it slightly enhanced glutathione peroxidase production. N-acetylcysteine attenuation of TNF-alpha-induced human vascular endothelial cell apoptosis is associated with the restoration of eNOS expression.

  17. N-acetylcysteine inhibits in vivo oxidation of native low-density lipoprotein

    PubMed Central

    Cui, Yuqi; Narasimhulu, Chandrakala A.; Liu, Lingjuan; Zhang, Qingbin; Liu, Patrick Z.; Li, Xin; Xiao, Yuan; Zhang, Jia; Hao, Hong; Xie, Xiaoyun; He, Guanglong; Cui, Lianqun; Parthasarathy, Sampath; Liu, Zhenguo

    2015-01-01

    Low-density lipoprotein (LDL) is non-atherogenic, while oxidized LDL (ox-LDL) is critical to atherosclerosis. N-acetylcysteine (NAC) has anti-atherosclerotic effect with largely unknown mechanisms. The present study aimed to determine if NAC could attenuate in vivo LDL oxidation and inhibit atherosclerosis. A single dose of human native LDL was injected intravenously into male C57BL/6 mice with and without NAC treatment. Serum human ox-LDL was detected 30 min after injection, reached the peak in 3 hours, and became undetectable in 12 hours. NAC treatment significantly reduced serum ox-LDL level without detectable serum ox-LDL 6 hours after LDL injection. No difference in ox-LDL clearance was observed in NAC-treated animals. NAC treatment also significantly decreased serum ox-LDL level in patients with coronary artery diseases and hyperlipidemia without effect on LDL level. Intracellular and extracellular reactive oxidative species (ROS) production was significantly increased in the animals treated with native LDL, or ox-LDL and in hyperlipidemic LDL receptor knockout (LDLR−/−) mice that was effectively prevented with NAC treatment. NAC also significantly reduced atherosclerotic plaque formation in hyperlipidemic LDLR−/− mice. NAC attenuated in vivo oxidation of native LDL and ROS formation from ox-LDL associated with decreased atherosclerotic plaque formation in hyperlipidemia. PMID:26536834

  18. Acetylcysteine for treatment of autism spectrum disorder symptoms.

    PubMed

    Stutzman, Danielle; Dopheide, Julie

    2015-11-15

    Successful use of acetylcysteine to control irritability and aggressive behaviors in a hospitalized adolescent patient with autism spectrum disorder (ASD) is described. A 17-year-old Hispanic male with ASD and intellectual disability was hospitalized for inpatient psychiatric treatment due to impulsive and violent behavior. Despite receiving various medications in the initial weeks of hospitalization, including intramuscular lorazepam and diphenhydramine injections (four days a week on average), the patient continued to exhibit aggressive and unpredictable behaviors. Treatment with 20% acetylcysteine oral solution was initiated at a dosage of 600 mg twice daily as an adjunct to quetiapine therapy. Over the next six weeks, reductions in the patient's aggressive behavior, tantrums, and irritability were noted. The use of as-needed medications to control aggression was decreased, and the dosage of quetiapine was lowered from 700 to 400 mg daily over the course of the hospitalization. Acetylcysteine was well tolerated, with no observed or reported adverse effects. Unlike clonidine or guanfacine (other medications used for ASD-related behavioral symptoms), acetylcysteine is not sedating; moreover, it lacks the metabolic, extrapyramidal, and endocrine adverse effects of atypical antipsychotics. Published data from small controlled trials and case reports suggest that acetylcysteine use is associated with improvements in irritability and aggression in prepubertal children with ASD; these therapeutic benefits may be associated with acetylcysteine's glutamatergic, dopaminergic, antioxidant, and anti-inflammatory properties. Treatment with acetylcysteine improved ASD symptoms, including irritability and aggression, in a teenage patient. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  19. Biological Activities and Potential Oral Applications of N-Acetylcysteine: Progress and Prospects

    PubMed Central

    Pei, Yanping; Liu, Huan; Yang, Yi; Yang, Yanwei

    2018-01-01

    N-Acetylcysteine (NAC), a cysteine prodrug and glutathione (GSH) precursor, has been used for several decades in clinical therapeutic practices as a mucolytic agent and for the treatment of disorders associated with GSH deficiency. Other therapeutic activities of NAC include inhibition of inflammation/NF-κB signaling and expression of proinflammatory cytokines. N-Acetylcysteine is also a nonantibiotic compound possessing antimicrobial property and exerts anticarcinogenic and antimutagenic effects against certain types of cancer. Recently, studies describing potentially important biological and pharmacological activities of NAC have stimulated interests in using NAC-based therapeutics for oral health care. The present review focused on the biological activities of NAC and its potential oral applications. The potential side effects of NAC and formulations for drug delivery were also discussed, with the intent of advancing NAC-associated treatment modalities in oral medicine. PMID:29849877

  20. Abundant Rodent Furan-Derived Urinary Metabolites Are Associated with Tobacco Smoke Exposure in Humans.

    PubMed

    Grill, Alex E; Schmitt, Thaddeus; Gates, Leah A; Lu, Ding; Bandyopadhyay, Dipankar; Yuan, Jian-Min; Murphy, Sharon E; Peterson, Lisa A

    2015-07-20

    Furan, a possible human carcinogen, is found in heat treated foods and tobacco smoke. Previous studies have shown that humans are capable of converting furan to its reactive metabolite, cis-2-butene-1,4-dial (BDA), and therefore may be susceptible to furan toxicity. Human risk assessment of furan exposure has been stymied because of the lack of mechanism-based exposure biomarkers. Therefore, a sensitive LC-MS/MS assay for six furan metabolites was applied to measure their levels in urine from furan-exposed rodents as well as in human urine from smokers and nonsmokers. The metabolites that result from direct reaction of BDA with lysine (BDA-N(α)-acetyllysine) and from cysteine-BDA-lysine cross-links (N-acetylcysteine-BDA-lysine, N-acetylcysteine-BDA-N(α)-acetyllysine, and their sulfoxides) were targeted in this study. Five of the six metabolites were identified in urine from rodents treated with furan by gavage. BDA-N(α)-acetyllysine, N-acetylcysteine-BDA-lysine, and its sulfoxide were detected in most human urine samples from three different groups. The levels of N-acetylcysteine-BDA-lysine sulfoxide were more than 10 times higher than that of the corresponding sulfide in many samples. The amount of this metabolite was higher in smokers relative to that in nonsmokers and was significantly reduced following smoking cessation. Our results indicate a strong relationship between BDA-derived metabolites and smoking. Future studies will determine if levels of these biomarkers are associated with adverse health effects in humans.

  1. Opposite in vivo effects of agents that stimulate or inhibit the glutamate/cysteine exchanger system xc- on the inhibition of hippocampal LTP by Aß.

    PubMed

    Zhang, Dainan; Jin, Baozhe; Ondrejcak, Tomas; Rowan, Michael J

    2016-12-01

    Aggregated amyloid ß-protein (Aß) is pathognomonic of Alzheimer's disease and certain assemblies of Aß are synaptotoxic. Excess glutamate or diminished glutathione reserve are both implicated in mediating or modulating Aß-induced disruption of synaptic plasticity. The system xc- antiporter promotes Na + -independent exchange of cystine with glutamate thereby providing a major source of extracellular glutamate and intracellular glutathione concentrations. Here we probed the ability of two drugs with opposite effects on system xc-, the inhibitor sulfasalazine and facilitator N-acetylcysteine, to modulate the ability of Aß1-42 to inhibit long-term potentiation (LTP) in the CA1 area of the anaesthetized rat. Whereas acute systemic treatment with sulfasalazine lowered the threshold for Aß to interfere with synaptic plasticity, N-acetylcysteine prevented the inhibition of LTP by Aß alone or in combination with sulfasalazine. Moreover acute N-acetylcysteine also prevented the inhibition of LTP by TNFα, a putative mediator of Aß actions, and repeated systemic N-acetylcysteine treatment for 7 days reversed the delayed deleterious effect of Aß on LTP. Since both of these drugs are widely used clinically, further evaluation of their potential beneficial and deleterious actions in early Alzheimer's disease seems warranted. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. An assessment of the variation in the concentration of acetylcysteine in infusions for the treatment of paracetamol overdose.

    PubMed

    Bailey, George P; Wood, David M; Archer, John R H; Rab, Edmund; Flanagan, Robert J; Dargan, Paul I

    2017-02-01

    Intravenous acetylcysteine is the treatment of choice for paracetamol poisoning. A previous UK study in 2001 found that 39% of measured acetylcysteine infusion concentrations differed by >20% from anticipated concentrations. In 2012, the UK Commission on Human Medicines made recommendations for the management of paracetamol overdose, including provision of weight-based acetylcysteine dosing tables. The aim of this study was to assess variation in acetylcysteine concentrations in administered infusions following the introduction of this guidance. A 6-month single-centre prospective study was undertaken at a UK teaching hospital. After preparation, 5-ml samples were taken from the first, second and third/any subsequent acetylcysteine infusions. Acetylcysteine was measured in diluted (1:50) samples by high-performance liquid chromatography. Comparisons between measured and expected concentrations based on prescribed weight-based dose and volume were made for each infusion. Ninety samples were collected. There was a variation of ≤10% in measured compared to expected concentration for 45 (50%) infusions, of 10-20% for 27 (30%) infusions, 20.1-50% for 14 (16%) infusions and >50% for four (4%) infusions. There was a median (interquartile range) variation in measured compared to expected concentration of -3.6 mg ml -1 (-6.7 to -2.3) for the first infusion, +0.2 mg ml -1 (-0.9 to +0.4) for the second infusion and -0.3 mg ml -1 (-0.6 to +0.2) for third and fourth infusions. There has been a moderate improvement in the variation in acetylcysteine dose administered by infusion. Further work is required to understand the continuing variation and consideration should be given to simplification of acetylcysteine regimes to decrease the risk of administration errors. © 2016 The British Pharmacological Society.

  3. Circulating levels of prolactin and progesterone in a wild population of red kangaroos (Macropus rufus) Marsupialia: Macropodidae

    USGS Publications Warehouse

    Muths, E.; Hinds, L. A.

    1996-01-01

    Circulating progesterone and prolactin levels were measured in shot and live-caught wild red kangaroos using radioimmunoassays validated for the red kangaroo. The objective of the study was to correlate hormone profiles with reproductive status and determine if red kangaroos follow the general pattern elucidated for other macropodids. During Phase 2a lactation (<70 days) plasma progesterone concentrations were <189 pg/ml (n= 41). This value increased to >600 pg/ml (n= 32) during the transition to Phase 3 lactation (181 to 235 days) when the quiescent corpus luteum and embryo were reactivated. Progesterone concentrations then decreased to <300 pg/ml (n= 29) during dual lactation when females were suckling a neonate and a young at foot. Concentrations of prolactin during Phase 2a were <6 ng/ml (n= 17). Coincident with the period of reactivation of the diapausing blastocyst (181 to 235 days), plasma prolactin concentrations increased to 15 ng/ml (n= 32), then decreased and remained low through the subsequent stage of dual lactation. These results indicate that progesterone and prolactin profiles in wild red kangaroos follow patterns found previously in other macropodid species, the tammar and Bennett's wallabies.

  4. N-acetylcysteine induces shedding of selectins from liver and intestine during orthotopic liver transplantation

    PubMed Central

    Taut, F J H; Schmidt, H; Zapletal, C M; Thies, J C; Grube, C; Motsch, J; Klar, E; Martin, E

    2001-01-01

    In orthotopic liver transplantation (OLT), N-acetylcysteine (NAC) reduces ischaemia/reperfusion (I/R) injury, improves liver synthesis function and prevents primary nonfunction of the graft. To further elucidate the mechanisms of these beneficial effects of NAC, we investigated influence of high-dose NAC therapy on the pattern of adhesion molecule release from liver and intestine during OLT. Nine patients receiving allograft OLT were treated with 150 mg NAC/kg during the first hour after reperfusion; 10 patients received the carrier only. One hour after reperfusion, samples of arterial, portal venous and hepatic venous plasma were taken and blood flow in the hepatic artery and the portal vein was measured. Absolute concentrations of sICAM-1, sVCAM-1, sP-selectin and sE-selectin were not markedly different. However, balance calculations showed release of selectins from NAC-treated livers as opposed to net uptake in controls (P ≤ 0·02 for sP-selectin). This shedding of selectins might be a contributing factor to the decrease in leucocyte adherence and improved haemodynamics found experimentally with NAC-treatment. PMID:11422213

  5. AFRRI Reports, Third-Fourth Quarters

    DTIC Science & Technology

    1998-02-01

    structural changes de- induce CPEs, and CPE was blocked by amantadine. N- scribed here for the effect of IV on J774.1 cells were Acetylcysteine and pyrrolidine...assayed. Inhibitors were N- acetylcysteine (NAC, 50 mM), pyrrolidine block CPEs (data not shown). dithiocarbamate (PDTC, 100 mM), deferoximine nesyiate (DEF...thyroid axis (34-39), partly due to suppression of TRH gene expression in the hypothala- mus (39). This inhibition may account for the depression of

  6. N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action

    PubMed Central

    Dean, Olivia; Giorlando, Frank; Berk, Michael

    2011-01-01

    There is an expanding field of research investigating the benefits of alternatives to current pharmacological therapies in psychiatry. N-acetylcysteine (NAC) is emerging as a useful agent in the treatment of psychiatric disorders. Like many therapies, the clinical origins of NAC are far removed from its current use in psychiatry. Whereas the mechanisms of NAC are only beginning to be understood, it is likely that NAC is exerting benefits beyond being a precursor to the antioxidant, glutathione, modulating glutamatergic, neurotropic and inflammatory pathways. This review outlines the current literature regarding the use of NAC in disorders including addiction, compulsive and grooming disorders, schizophrenia and bipolar disorder. N-acetylcysteine has shown promising results in populations with these disorders, including those in whom treatment efficacy has previously been limited. The therapeutic potential of this acetylated amino acid is beginning to emerge in the field of psychiatric research. PMID:21118657

  7. Antioxidant Therapies for Ulcerative Dermatitis: A Potential Model for Skin Picking Disorder

    PubMed Central

    George, Nneka M.; Whitaker, Julia; Vieira, Giovana; Geronimo, Jerome T.; Bellinger, Dwight A.; Fletcher, Craig A.; Garner, Joseph P.

    2015-01-01

    Skin Picking Disorder affects 4% of the general population, with serious quality of life impacts, and potentially life threatening complications. Standard psychoactive medications do not help most patients. Similarly, Mouse Ulcerative Dermatitis (skin lesions caused by excessive abnormal grooming behavior) is very common in widely used inbred strains of mice, and represents a serious animal welfare issue and cause of mortality. Treatment options for Ulcerative Dermatitis are largely palliative and ineffective. We have proposed mouse Ulcerative Dermatitis as a model for human Skin Picking Disorder based on similar epidemiology, behavior, and its comorbidity and mechanistic overlap with hair pulling (trichotillomania). We predicted that mouse Ulcerative Dermatitis would be treated by N-Acetylcysteine, as this compound is highly effective in treating both Skin Picking Disorder and Trichotillomania. Furthermore, we hypothesized that N-Acetylcysteine’s mode of action is as a precursor to the production of the endogenous antioxidant glutathione in the brain, and therefore intranasal glutathione would also treat Ulcerative Dermatitis. Accordingly, we show in a heterogenous prospective trial, the significant reduction in Ulcerative Dermatitis lesion severity in mice receiving either N-acetylcysteine (oral administration) or glutathione (intranasal). The majority of mice treated with N-acetylcysteine improved slowly throughout the course of the study. Roughly half of the mice treated with glutathione showed complete resolution of lesion within 2-4 weeks, while the remainder did not respond. These findings are the first to show that the use of N-acetylcysteine and Glutathione can be curative for mouse Ulcerative Dermatitis. These findings lend additional support for mouse Ulcerative Dermatitis as a model of Skin Picking Disorder and also support oxidative stress and glutathione synthesis as the mechanism of action for these compounds. As N-Acetylcysteine is poorly tolerated by many patients, intranasal glutathione warrants further study as potential therapy in Skin Picking, trichotillomania and other body-focused repetitive behavior disorders. PMID:26167859

  8. The effect of N-acetylcysteine on biofilms: Implications for the treatment of respiratory tract infections.

    PubMed

    Blasi, Francesco; Page, Clive; Rossolini, Gian Maria; Pallecchi, Lucia; Matera, Maria Gabriella; Rogliani, Paola; Cazzola, Mario

    2016-08-01

    In airway infections, biofilm formation has been demonstrated to be responsible for both acute and chronic events, and constitutes a genuine challenge in clinical practice. Difficulty in eradicating biofilms with systemic antibiotics has led clinicians to consider the possible role of non-antibiotic therapy. The aim of this review is to examine current evidence for the use of N-acetylcysteine (NAC) in the treatment of biofilm-related respiratory infections. Electronic searches of PUBMED up to September 2015 were conducted, searching for 'biofilm', 'respiratory tract infection', 'N-acetylcysteine', 'cystic fibrosis', 'COPD', 'bronchiectasis', 'otitis', and 'bronchitis' in titles and abstracts. Studies included for review were primarily in English, but a few in Italian were also selected. Biofilm formation may be involved in many infections, including ventilator-associated pneumonia, cystic fibrosis, bronchiectasis, bronchitis, and upper respiratory airway infections. Many in vitro studies have demonstrated that NAC is effective in inhibiting biofilm formation, disrupting preformed biofilms (both initial and mature), and reducing bacterial viability in biofilms. There are fewer clinical studies on the use of NAC in disruption of biofilm formation, although there is some evidence that NAC alone or in combination with antibiotics can decrease the risk of exacerbations of chronic bronchitis, chronic obstructive pulmonary disease, and rhinosinusitis. However, the usefulness of NAC in the treatment of cystic fibrosis and bronchiectasis is still matter of debate. Most of the studies published to date have used oral or intramuscular NAC formulations. Evidence from in vitro studies indicates that NAC has good antibacterial properties and the ability to interfere with biofilm formation and disrupt biofilms. Results from clinical studies have provided some encouraging findings that need to be confirmed and expanded using other routes of administration of NAC such as inhalation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Dual effects of phloretin and phloridzin on the glycation induced by methylglyoxal in model systems.

    PubMed

    Ma, Jinyu; Peng, Xiaofang; Zhang, Xinchen; Chen, Feng; Wang, Mingfu

    2011-08-15

    In the present study, the dual effects of phloretin and phloridzin on methylglyoxal (MGO)-induced glycation were investigated in three N(α)-acetyl amino acid (arginine, cysteine, and lysine) models and three N-terminal polypeptide (PP01, PP02, and PP03 containing arginine, cysteine, and lysine, respectively) models. In both N(α)-acetyl amino acids and N-terminal polypeptides models, the arginine residue was confirmed as the major target for modification induced by MGO. Meanwhile, MGO modification was significantly inhibited by the addition of phloretin or phloridzin via their MGO-trapping abilities, with phloretin being more effective. Interestingly, the cysteine residue was intact when solely incubated with MGO, whereas the consumption of N(α)-acetylcysteine and PP02 was promoted by the addition of phloretin. Additional adducts, [N(α)-acetylcysteine + 2MGO + phloretin-H(2)O] and [2N(α)-acetylcysteine + 2MGO + phloretin-2H(2)O] were formed in the model composed of N(α)-acetylcysteine, MGO, and phloretin. Another adduct, [PP02 + 2MGO + phloretin-H(2)O] was observed in the model composed of PP02, MGO, and phloretin. The generation of adducts indicates that phloretin could directly participate in the modification of the cysteine residue in the presence of MGO. When creatine kinase (model protein) was exposed to MGO, the addition of phloridzin did not show a significant effect on retaining the activity of creatine kinase impaired by MGO, whereas the addition of phloretin completely inactivated creatine kinase. Results of the mass spectrometric analysis of intact creatine kinase in different models demonstrated that phloretin could directly participate in the reaction between creatine kinase and MGO, which would lead to the inactivation of creatine kinase. Furthermore, the addition of N(α)-acetylcysteine was found to maintain the activity of creatine kinase incubated with phloretin and MGO. These results showed that phloretin and phloridzin could inhibit the modification of the arginine residue by MGO and that phloretin could directly participate in the reaction between the thiol group and MGO.

  10. N-acetylcysteine-induced vasodilation involves voltage-gated potassium channels in rat aorta.

    PubMed

    Han, Wei-Qing; Zhu, Ding-Liang; Wu, Ling-Yun; Chen, Qi-Zhi; Guo, Shu-Jie; Gao, Ping-Jin

    2009-05-22

    N-acetylcysteine (NAC) has a protective effect against vascular dysfunction by decreasing the level of reactive oxygen species (ROS) in experimental and human hypertension. This study was designed to examine whether NAC would relax vascular rings in vitro via nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway, extracellular Ca2+ and/or K+ channels. Rat aortic arteries were mounted in an organ bath, contracted with 0.1, 0.5 or 1 micromol/L phenylephrine to plateau, and the vasodilatory effect of NAC was examined in the absence or presence of ROS scavengers, inhibitors of NO-cGMP pathway or K+ channels. Vascular smooth muscle cells (VSMCs) were loaded with a calcium sensitive fluorescent dye fluo-3 AM, and [Ca2+](i) was determined with laser-scanning confocal microscopy. NAC (0.1-4 mmol/L) dose-dependently relaxed rat aorta pre-contracted with phenylephrine. Endothelium removal, endothelial nitric oxide synthase inhibitor N(omega)-Nitro-l-arginine (L-NNA) (100 micromol/L) or soluble guanylyl cyclase (sGC) inhibitor (ODQ) (10 micromol/L) did not affect NAC-induced vasodilation. In contrast, NAC-induced vasodilation was blunted after extracellular calcium was removed and calcium imaging showed that 4 mmol/L NAC quickly decreased [Ca2+](i) in fluo-3 AM loaded VSMCs. NAC-induced vasodilation was significantly reduced in the presence of voltage-gated K+ channels (Kv) inhibitor 4-aminopyridine (4-AP). The vasodilatory effect of NAC may be explained at least partly by activation of voltage-gated K+ channels.

  11. Dual behavior of N-acetylcysteine during ethanol-induced oxidative stress in embryonic chick brains.

    PubMed

    Bauer, Alison K; Fitzgerald, Mary; Ladzinski, Adam T; Lenhart Sherman, Sydney; Maddock, Benjamin H; Norr, Zoe M; Miller, Robert R

    2017-10-01

    Ethanol (EtOH) causes oxidative stress in embryos. Because N-acetylcysteine (NAC) failures and successes in ameliorating EtOH-induced oxidative stress have been reported, the objective was to determine if exogenous NAC ameliorated EtOH-induced oxidative stress within embryonic chick brains. Control eggs were injected with approximately 25 µl of water on day 0, 1, and 2 of development (E 0-2 ). Experimental eggs were injected with dosages of either 3.0 mmol EtOH/kg egg; 747 µmol NAC/kg egg; 3.0 mmol EtOH and 747 µmol NAC/kg egg; 1000 µmol NAC/kg egg; or 3.0 mmol EtOH and 1000 µmol NAC/kg during the first 3 days of development (E 0-2 ). At 11 days of development (E 11 ; late embryogenesis), brains were harvested and subsequently assayed for oxidative stress markers including the loss of long-chain membrane polyunsaturated fatty acids (PUFAs); the accumulation of lipid hydroperoxides (LPO); decreased glutathione (GSH) and glutathione/glutathione disulfide (GSSG) levels; and decreased glutathione peroxidase (GPx) activities. EtOH (3 mmol/kg egg), medium NAC (747 µmol/kg egg), and EtOH and medium NAC promoted oxidative stress. These treatments caused decreased brain membrane long-chain PUFAs; increased LPO levels; decreased GSH levels and GSH/GSSG levels; and decreased Se-dependent GPx activities. High NAC dosages (1000 µmol/kg egg) attenuated EtOH-induced oxidative stress within EtOH and high NAC-treated chick brains. Exogenous EtOH and/or medium NAC propagated oxidative stress. Meanwhile, high NAC ameliorated EtOH-induced oxidative stress.

  12. Bromelain and N-acetylcysteine inhibit proliferation and survival of gastrointestinal cancer cells in vitro: significance of combination therapy.

    PubMed

    Amini, Afshin; Masoumi-Moghaddam, Samar; Ehteda, Anahid; Morris, David Lawson

    2014-11-12

    Bromelain and N-acetylcysteine are two natural, sulfhydryl-containing compounds with good safety profiles which have been investigated for their benefits and application in health and disease for more than fifty years. As such, the potential values of these agents in cancer therapy have been variably reported in the literature. In the present study, the efficacy of bromelain and N-acetylcysteine in single agent and combination treatment of human gastrointestinal carcinoma cells was evaluated in vitro and the underlying mechanisms of effect were explored. The growth-inhibitory effects of bromelain and N-acetylcysteine, on their own and in combination, on a panel of human gastrointestinal carcinoma cell lines, including MKN45, KATO-III, HT29-5F12, HT29-5M21 and LS174T, were assessed by sulforhodamine B assay. Moreover, the influence of the treatment on the expression of a range of proteins involved in the regulation of cell cycle and survival was investigated by Western blot. The presence of apoptosis was also examined by TUNEL assay. Bromelain and N-acetylcysteine significantly inhibited cell proliferation, more potently in combination therapy. Drug-drug interaction in combination therapy was found to be predominantly synergistic or additive. Mechanistically, apoptotic bodies were detected in treated cells by TUNEL assay. Furthermore, Western blot analysis revealed diminution of cyclins A, B and D, the emergence of immunoreactive subunits of caspase-3, caspase-7, caspase-8 and cleaved PARP, withering or cleavage of procaspase-9, overexpression of cytochrome c, reduced expression of anti-apoptotic Bcl-2 and pro-survival phospho-Akt, the emergence of the autophagosomal marker LC3-II and deregulation of other autophagy-related proteins, including Atg3, Atg5, Atg7, Atg12 and Beclin 1. These results were more prominent in combination therapy. We report for the first time to our knowledge the growth-inhibitory and cytotoxic effects of bromelain and N-acetylcysteine, in particular in combination, on a panel of gastrointestinal cancer cell lines with different phenotypes and characteristics. These effects apparently resulted from cell cycle arrest, apoptosis and autophagy. Towards the development of novel strategies for the enhancement of microscopic cytoreduction, our results lay the basis for further evaluation of this formulation in locoregional approaches to peritoneal surface malignancies and carcinomatosis.

  13. Effect of N-acetylcysteine administration on homocysteine level, oxidative damage to proteins, and levels of iron (Fe) and Fe-related proteins in lead-exposed workers.

    PubMed

    Kasperczyk, Sławomir; Dobrakowski, Michał; Kasperczyk, Aleksandra; Romuk, Ewa; Rykaczewska-Czerwińska, Monika; Pawlas, Natalia; Birkner, Ewa

    2016-09-01

    N-Acetylcysteine (NAC) could be included in protocols designed for the treatment of lead toxicity. Therefore, in this study, we decided to investigate the influence of NAC administration on homocysteine (Hcy) levels, oxidative damage to proteins, and the levels of iron (Fe), transferrin (TRF), and haptoglobin (HPG) in lead (Pb)-exposed workers. The examined population (n = 171) was composed of male employees who worked with Pb. They were randomized into four groups. Workers who were not administered any antioxidants, drugs, vitamins, or dietary supplements were classified as the reference group (n = 49). The remaining three groups consisted of workers who were treated orally with NAC at three different doses (1 × 200, 2 × 200, or 2 × 400 mg) for 12 weeks. After the treatment, blood Pb levels significantly decreased in the groups receiving NAC compared with the reference group. The protein concentration was not affected by NAC administration. In contrast, Hcy levels significantly decreased or showed a strong tendency toward lower values depending on the NAC dose. Levels of the protein carbonyl groups were significantly decreased in all of the groups receiving NAC. Conversely, glutamate dehydrogenase activity was significantly elevated in all of the groups receiving NAC, while the level of protein thiol groups was significantly elevated only in the group receiving 200 mg of NAC. Treatment with NAC did not significantly affect Fe and TRF levels, whereas HPG levels showed a tendency toward lower values. Treatment with NAC normalized the level of Hcy and decreased oxidative stress as measured by the protein carbonyl content; this effect occurred in a dose-dependent manner. Moreover, small doses of NAC elevated the levels of protein thiol groups. Therefore, NAC could be introduced as an alternative therapy for chronic Pb toxicity in humans. © The Author(s) 2015.

  14. Effect of N-acetylcysteine on vascular endothelium function in aorta from oophorectomized rats.

    PubMed

    Delgado, J L; Landeras, J; Carbonell, L F; Parilla, J J; Abad, L; Quesada, T; Fiol, G; Hernández, I

    1999-01-01

    1. Experiments were performed to examine and to compare vascular endothelial function in aortic rings from oophorectomized and from ovary-intact rats and to test the effect of thiol compound as N-acetylcysteine on endothelial function. 2. In precontracted aortic rings from oophorectomized and intact rats, vascular endothelial function was evaluated by measuring changes in isometric force in response to cumulative doses of superoxide dismutase, acetylcholine and sodium nitroprusside. 3. In studies designed to assess the tone-related release of nitric oxide from aortic rings moderately precontracted with phenylephrine, superoxide dismutase produced a lower concentration-related relaxant response in aortic rings from oophorectomized rats than from ovary intact rats. 4. Acetylcholine caused a concentration- and endothelium-dependent relaxation of less magnitude in aortic rings from oophorectomized animals compared with those from ovary-intact rats. Addition of N-omega-nitro-L-arginine methyl ester eliminated the relaxation induced by both superoxide dismutase and acetylcholine. 5. No differences between groups were noticed in the concentration-relaxation curve induced by sodium nitroprusside. 6. Preincubation with N-acetylcysteine normalized the depressed vasorelaxant response to acetylcholine in the aortic rings from oophorectomized rats, whereas the concentration-response curve for acetylcholine in aortic rings from ovary-intact rats did not alter. 7. These results suggest that the absence of ovary estrogens is associated with a vascular endothelium dysfunction that can be reverted by addition of N-acetylcysteine, a thiol-containing compound with a free radical scavenger effect.

  15. N-acetylcysteine negatively regulates Notch3 and its malignant signaling

    PubMed Central

    Zhu, Juan-Juan; Liu, Xue-Xia; You, Hui; Gong, Mei-Ying; Zou, Ming; Cheng, Wen-Hsing; Zhu, Jian-Hong

    2016-01-01

    Notch3 receptor is expressed in a variety of cancers and the excised active intracellular domain (N3ICD) initiates its signaling cascade. N-acetylcysteine (NAC) as an antioxidant has been implicated in cancer prevention and therapy. In this study, we demonstrated a negative regulation of Notch3 by NAC in cancer cells. HeLa cells treated with NAC exhibited a time- and concentration-dependent decrease in Notch3 levels and its downstream effectors Hes1 and HRT1 in a manner independent of f-secretase or glutathione. In contrast, NAC did not affect protein levels of Notch1, the full length Notch3 precursor, or ectopically expressed N3ICD. Although SOD, catalase and NAC suppressed reactive oxygen species in HeLa cells, the first two antioxidants did not impact on Notch3 levels. While the mRNA expression of Notch3 was not altered by NAC, functional inhibition of lysosome, but not proteasome, blocked the NAC-dependent reduction of Notch3 levels. Furthermore, results from Notch3 silencing and N3ICD overexpression demonstrated that NAC prevented malignant phenotypes through down-regulation of Notch3 protein in multiple cancer cells. In summary, NAC reduces Notch3 levels through lysosome-dependent protein degradation, thereby negatively regulates Notch3 malignant signaling in cancer cells. These results implicate a novel NAC treatment in sensitizing Notch3-expressing tumors. PMID:27102435

  16. N-acetylcysteine negatively regulates Notch3 and its malignant signaling.

    PubMed

    Zhang, Xiong; Wang, Ya-Nan; Zhu, Juan-Juan; Liu, Xue-Xia; You, Hui; Gong, Mei-Ying; Zou, Ming; Cheng, Wen-Hsing; Zhu, Jian-Hong

    2016-05-24

    Notch3 receptor is expressed in a variety of cancers and the excised active intracellular domain (N3ICD) initiates its signaling cascade. N-acetylcysteine (NAC) as an antioxidant has been implicated in cancer prevention and therapy. In this study, we demonstrated a negative regulation of Notch3 by NAC in cancer cells. HeLa cells treated with NAC exhibited a time- and concentration-dependent decrease in Notch3 levels and its downstream effectors Hes1 and HRT1 in a manner independent of f-secretase or glutathione. In contrast, NAC did not affect protein levels of Notch1, the full length Notch3 precursor, or ectopically expressed N3ICD. Although SOD, catalase and NAC suppressed reactive oxygen species in HeLa cells, the first two antioxidants did not impact on Notch3 levels. While the mRNA expression of Notch3 was not altered by NAC, functional inhibition of lysosome, but not proteasome, blocked the NAC-dependent reduction of Notch3 levels. Furthermore, results from Notch3 silencing and N3ICD overexpression demonstrated that NAC prevented malignant phenotypes through down-regulation of Notch3 protein in multiple cancer cells. In summary, NAC reduces Notch3 levels through lysosome-dependent protein degradation, thereby negatively regulates Notch3 malignant signaling in cancer cells. These results implicate a novel NAC treatment in sensitizing Notch3-expressing tumors.

  17. Exploratory Application of Neuropharmacometabolomics in Severe Childhood Traumatic Brain Injury.

    PubMed

    Hagos, Fanuel T; Empey, Philip E; Wang, Pengcheng; Ma, Xiaochao; Poloyac, Samuel M; Bayır, Hülya; Kochanek, Patrick M; Bell, Michael J; Clark, Robert S B

    2018-05-07

    To employ metabolomics-based pathway and network analyses to evaluate the cerebrospinal fluid metabolome after severe traumatic brain injury in children and the capacity of combination therapy with probenecid and N-acetylcysteine to impact glutathione-related and other pathways and networks, relative to placebo treatment. Analysis of cerebrospinal fluid obtained from children enrolled in an Institutional Review Board-approved, randomized, placebo-controlled trial of a combination of probenecid and N-acetylcysteine after severe traumatic brain injury (Trial Registration NCT01322009). Thirty-six-bed PICU in a university-affiliated children's hospital. Twelve children 2-18 years old after severe traumatic brain injury and five age-matched control subjects. Probenecid (25 mg/kg) and N-acetylcysteine (140 mg/kg) or placebo administered via naso/orogastric tube. The cerebrospinal fluid metabolome was analyzed in samples from traumatic brain injury patients 24 hours after the first dose of drugs or placebo and control subjects. Feature detection, retention time, alignment, annotation, and principal component analysis and statistical analysis were conducted using XCMS-online. The software "mummichog" was used for pathway and network analyses. A two-component principal component analysis revealed clustering of each of the groups, with distinct metabolomics signatures. Several novel pathways with plausible mechanistic involvement in traumatic brain injury were identified. A combination of metabolomics and pathway/network analyses showed that seven glutathione-centered pathways and two networks were enriched in the cerebrospinal fluid of traumatic brain injury patients treated with probenecid and N-acetylcysteine versus placebo-treated patients. Several additional pathways/networks consisting of components that are known substrates of probenecid-inhibitable transporters were also identified, providing additional mechanistic validation. This proof-of-concept neuropharmacometabolomics assessment reveals alterations in known and previously unidentified metabolic pathways and supports therapeutic target engagement of the combination of probenecid and N-acetylcysteine treatment after severe traumatic brain injury in children.

  18. Effect of chitosan-N-acetylcysteine conjugate in a mouse model of botulinum toxin B-induced dry eye.

    PubMed

    Hongyok, Teeravee; Chae, Jemin J; Shin, Young Joo; Na, Daero; Li, Li; Chuck, Roy S

    2009-04-01

    To evaluate the effect of a thiolated polymer lubricant, chitosan-N-acetylcysteine conjugate (C-NAC), in a mouse model of dry eye. Eye drops containing 0.5% C-NAC, 0.3% C-NAC, a vehicle (control group), artificial tears, or fluorometholone were applied in a masked fashion in a mouse model of induced dry eye from 3 days to 4 weeks after botulinum toxin B injection. Corneal fluorescein staining was periodically recorded. Real-time reverse transcriptase-polymerase chain reaction and immunofluorescence staining were performed at the end of the study to evaluate inflammatory cytokine expressions. Mice treated with C-NAC, 0.5%, and fluorometholone showed a downward trend that was not statistically significant in corneal staining compared with the other groups. Chitosan-NAC formulations, fluorometholone, and artificial tears significantly decreased IL-1beta (interleukin 1beta), IL-10, IL-12alpha, and tumor necrosis factor alpha expression in ocular surface tissues. The botulinum toxin B-induced dry eye mouse model is potentially useful in evaluating new dry eye treatment. Evaluation of important molecular biomarkers suggests that C-NAC may impart some protective ocular surface properties. However, clinical data did not indicate statistically significant improvement of tear production and corneal staining in any of the groups tested. Topically applied C-NAC might protect the ocular surface in dry eye syndrome, as evidenced by decreased inflammatory cytokine expression.

  19. Change in Lactate Levels After Hemodialysis in Patients With End-Stage Renal Disease.

    PubMed

    Hourmozdi, Justin J; Gill, Jasreen; Miller, Joseph B; Markin, Abraham; Adams, Beth; Soi, Vivek; Jaehne, Anja K; Taylor, Andrew R; Langberg, Sam; Rodriguez, Lauren; Fox, Carynne; Uduman, Junior; Yessayan, Lenar T; Rivers, Emanuel P

    2018-06-01

    Patients with end-stage renal disease commonly visit the emergency department (ED). The purpose of this investigation is to examine the prevalence of baseline abnormal lactate levels and to evaluate the effects of hemodialysis on serum lactate levels. This was a prospective observational cohort study performed at an outpatient dialysis facility at an urban tertiary care hospital. The study consisted of 226 patients with end-stage renal disease who were receiving long-term hemodialysis and were enrolled during a 2-day period at the beginning of December 2015. Blood drawn for lactate levels was immediately analyzed before and after hemodialysis sessions. All patients completed their hemodialysis sessions. The prevalence of an abnormal lactate level (greater than 1.8 mmol/L) before hemodialysis was 17.7% (n=40). Overall, lactate levels decreased by 27% (SD 35%) after hemodialysis, with a decrease of 37% (SD 31%) for subgroups with a lactate level of 1.9 to 2.4 mmol/L, and 62% (SD 14%) with a lactate of 2.5 to 3.9 mmol/L. The data presented help providers understand the prevalence of abnormal lactate values in an outpatient end-stage renal disease population. After hemodialysis, lactate levels decreased significantly. This information may help medical providers interpret lactate values when patients with end-stage renal disease present to the ED. Copyright © 2017 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  20. An assessment of the variation in the concentration of acetylcysteine in infusions for the treatment of paracetamol overdose

    PubMed Central

    Bailey, George P.; Wood, David M.; Archer, John R. H.; Rab, Edmund; Flanagan, Robert J.

    2016-01-01

    Background Intravenous acetylcysteine is the treatment of choice for paracetamol poisoning. A previous UK study in 2001 found that 39% of measured acetylcysteine infusion concentrations differed by >20% from anticipated concentrations. In 2012, the UK Commission on Human Medicines made recommendations for the management of paracetamol overdose, including provision of weight‐based acetylcysteine dosing tables. The aim of this study was to assess variation in acetylcysteine concentrations in administered infusions following the introduction of this guidance. Methods A 6‐month single‐centre prospective study was undertaken at a UK teaching hospital. After preparation, 5‐ml samples were taken from the first, second and third/any subsequent acetylcysteine infusions. Acetylcysteine was measured in diluted (1:50) samples by high‐performance liquid chromatography. Comparisons between measured and expected concentrations based on prescribed weight‐based dose and volume were made for each infusion. Results Ninety samples were collected. There was a variation of ≤10% in measured compared to expected concentration for 45 (50%) infusions, of 10–20% for 27 (30%) infusions, 20.1–50% for 14 (16%) infusions and >50% for four (4%) infusions. There was a median (interquartile range) variation in measured compared to expected concentration of −3.6 mg ml−1 (−6.7 to −2.3) for the first infusion, +0.2 mg ml−1 (−0.9 to +0.4) for the second infusion and −0.3 mg ml−1 (−0.6 to +0.2) for third and fourth infusions. Conclusion There has been a moderate improvement in the variation in acetylcysteine dose administered by infusion. Further work is required to understand the continuing variation and consideration should be given to simplification of acetylcysteine regimes to decrease the risk of administration errors. PMID:27558662

  1. O-Raffinose Crosslinking Substantially Ameliorates the Vasoconstrictive and Nitric-Oxide-Inactivating Effects of Unmodified Human Hemoglobin in the Rat

    DTIC Science & Technology

    1997-07-11

    severity of the increase in MAP and SVR is accounted for by the profound depressant effect of Ao SFH on cardie output (Table III). We have not examined...1985. N- acetylcysteine potentiates inhibition of platelet aggregation by nitroglycerin. / Clin Invest 76:703-708. 34. Mendelsohn, M., S. O’Neill...D. George, and J. Loscalzo. 1990. Inhibition of fibrinogen binding to human platelets by S-nitroso-N- acetylcysteine . / Biol Chem 265:19028-19034. 27

  2. Effects of low dietary cation-anion difference induced by ruminal ammonium chloride infusion on performance, serum, and urine metabolites of lactating dairy cows.

    PubMed

    Wang, Kun; Nan, Xuemei; Zhao, Puyi; Liu, Wei; Drackley, James K; Liu, Shijie; Zhang, Kaizhan; Bu, Dengpan

    2018-05-01

    The objective of the present study was to determine ammonium chloride tolerance of lactating dairy cows, by examining effects of negative dietary cation anion difference (DCAD) induced by ruminal ammonium chloride infusion on performance, serum and urine minerals, serum metabolites and enzymes of lactating dairy cows. Four primiparous lactating Chinese Holstein cows fitted with ruminal cannulas were infused with increasing amounts (0, 150, 300, or 450 g/d) of ammonium chloride in a crossover design. The DCAD of the base diet was 279 mEq/kg dry matter (DM) using the DCAD formula (Na + K - Cl - S)/kg of DM. Ammonium chloride infusion added the equivalent of 0, 128, 330, and 536 mEq/kg DM of Cl in treatments. According to the different dry matter intakes (DMI), the resulting actual DCAD of the four treatments was 279, 151, -51, and -257 mEq/kg DM, respectively. DMI decreased linearly as DCAD decreased. Yields of milk, 4% fat-corrected milk, energy-corrected milk, milk fat, and milk protein decreased linearly as DCAD decreased. Concentrations of milk protein and milk urea nitrogen increased linearly with decreasing DCAD. Concentration of Cl- in serum increased linearly and concentration of PO43- in serum increased quadratically as DCAD decreased. Urine pH decreased linearly and calculated urine volume increased linearly with decreasing DCAD. Linear increases in daily urinary excretion of Cl - , Ca 2+ , PO 4 3- , urea N, and ammonium were observed as DCAD decreased. Activities of alanine aminotransferase, aspartate aminotransferase, and γ-glutamyl transferase in serum and urea N concentration in serum increased linearly as DCAD decreased. In conclusion, negative DCAD induced by ruminal ammonium chloride infusion resulted in a metabolic acidosis, had a negative influence on performance, and increased serum enzymes indicating potential liver and kidney damage in lactating dairy cows. Daily ammonium chloride intake by lactating dairy cows should not exceed 300 g, and 150 g/d per cow may be better.

  3. N-Acetylcysteine in the Treatment of Excoriation Disorder: A Randomized Clinical Trial.

    PubMed

    Grant, Jon E; Chamberlain, Samuel R; Redden, Sarah A; Leppink, Eric W; Odlaug, Brian L; Kim, Suck Won

    2016-05-01

    Excoriation (skin-picking) disorder (SPD) is a disabling, underrecognized condition in which individuals repeatedly pick at their skin, leading to noticeable tissue damage. To date, there has been no clearly effective pharmacologic or psychological treatment for SPD. To determine whether N-acetylcysteine, an amino acid that appears to restore extracellular glutamate concentration in the nucleus accumbens, will be more effective than placebo in reducing compulsive picking behavior. A randomized, double-blind trial was conducted at ambulatory care centers at the University of Minnesota (September 12, 2011, to June 15, 2012) and the University of Chicago (December 17, 2012, to June 26, 2015) and included 66 adults with SPD. Data analysis was performed from July 16 to September 9, 2015. N-acetylcysteine (dosing range, 1200-3000 mg/d) or placebo was administered for 12 weeks. Participants were assessed using measures of skin-picking severity, including the modified Yale-Brown Obsessive Compulsive Scale (NE-YBOCS); total scores range from 0 to 40, with higher scores reflective of greater symptom severity. Another measure of skin-picking severity was the Clinical Global Impression-Severity Scale; total scores range from 1 (normal) to 7 (among the most extremely ill patients), and improvement ratings range from 7 (very much worse) to 1 (very much improved). Selected cognitive tasks included the Intra-dimensional/Extra-dimensional Shift Task to examine cognitive flexibility, with the key outcome measures being the number of errors, and Stop-Signal Reaction Time task, which evaluates motor inhibition. Outcomes were examined using a linear mixed-effects model. Of the 66 participants (31 randomized to placebo and 35 to N-acetylcysteine) included in the analysis, 59 (89%) were women; mean (SD) age was 34.8 (11.0) years. Compared with placebo, N-acetylcysteine treatment was associated with significant improvements in the NE-YBOCS. At baseline, NE-YBOCS scores were 18.9 and 17.9 for the treatment and placebo groups, respectively, and at 12 weeks, the scores were 11.5 and 14.1 for the treatment and placebo groups, respectively (P = .048). For the Clinical Global Impression-Severity scale, baseline scores were 3.5 and 4.0 and 12-week scores were 3.0 and 4.2, respectively (P = .003). These effects were significant both in terms of treatment by time interactions and post hoc tests at 1 or more individual time points. At the study's end point, of the 53 participants who completed the study, 15 of the 32 participants (47%) receiving N-acetylcysteine were much or very much improved compared with 4 of the 21 participants (19%) receiving placebo (P = .03). There were no significant differences between the active and placebo arms in terms of psychosocial functioning. N-acetylcysteine treatment resulted in significant reductions in skin-picking symptoms and was well tolerated. The glutamate system may prove a beneficial target in treating SPD and other compulsive behaviors. clinicaltrials.gov Identifier: NCT01063348.

  4. [The application of N-acetylcysteine in optimization of specific pharmacological therapies].

    PubMed

    Hołyńska-Iwan, Iga; Wróblewski, Marcin; Olszewska-Słonina, Dorota; Tyrakowski, Tomasz

    2017-09-29

    Based on the analysis of data from clinical trials it could be postulated that N-acetylcysteine has a positive impact on the treatment of various diseases. However, less is known about specific molecular and physiological mechanisms underlying the reported therapeutic effects. N-acetylcysteine (NAC, N-acetyl-L-cysteine) is an amino acid derivative containing a thiol group. It is a precursor of L-cysteine and glutathione. NAC is well absorbed and safe for the body at doses up to 300 mg per kg of body weight. Side effects are relatively rare. NAC is used as an mucolytic agent in adjunctive therapy of respiratory diseases causing the retention of secretions, as well as an antidote in the treatment of paracetamol poisoning. Moreover, NAC protects against the toxic effects of reactive oxygen species and their active metabolites. NAC is involved in free radical scavenging processes via several independent mechanisms, including a direct reduction of free radicals, providing substrates for oxidation-reduction reactions and activation of antioxidant enzymes. In the blood, NAC decreases the level of low density lipoprotein peroxidation. In various tissues, NAC may increase the levels of glutathione and cysteine and stimulate the superoxide dismutase action. NAC is used as a supplement in the treatment of various diseases associated with impaired exterior and intracellular oxidative balance. NAC increases the concentrations of amino acids and their derivatives, including cysteine, cystine, and glutathione. It also stabilizes the antioxidant status of the cells and the intercellular spaces. NAC changes the levels of transcription factors, modifying the transcription of selected genes and acting on the protein translation. It works on the activation of several enzymes in the cells and outside the cells. Based on the analysis of data from clinical trials it can be concluded, that an administration of NAC may be beneficial for these groups of patients, in whom the reversible accumulation and the negative action of free radicals was observed.

  5. Delays during the administration of acetylcysteine for the treatment of paracetamol overdose

    PubMed Central

    Bailey, George P.; Najafi, Javad; Elamin, Muhammad E. M. O.; Waring, W. Stephen; Thomas, Simon H. L.; Archer, John R. H.; Wood, David M.

    2016-01-01

    Background The licensed intravenous acetylcysteine regimen for treating paracetamol overdose in most countries uses three separate infusions over 21 h. This complex regimen, requiring different infusion concentrations and rates, has been associated with administration errors. The aim of the present study was to assess the extent of administration delays occurring during this acetylcysteine regimen. Method A 6‐month retrospective observational study was conducted at three English teaching hospitals with clinical toxicology services from October 2014. Patients aged 16 years and over, treated with intravenous acetylcysteine for paracetamol overdose, were included. The start times for infusions were recorded and the delays compared with the prescribed infusion times were calculated. Anaphylactoid reactions, intravenous cannula problems, overdose intent and smoking status were recorded to assess their contribution to delays. Results From 263 cases identified, 198 met the study inclusion criteria. The median time between the start of infusions 1 and 3 was delayed from the intended 5 h by a median (interquartile range) of 90 (50–163) min, with 135 (68%) cases delayed by more than 1 h. Significantly longer delays were observed in patients with anaphylactoid reactions [median delay 267 (217–413) min, n = 8] and accidental/supratherapeutic overdose [median delay 170 (95–260) min, n = 29]. There were no significant differences between smokers and nonsmokers, or for patients with intravenous cannula problems. Conclusion Long delays were identified during the three‐infusion acetylcysteine regimen for the treatment of paracetamol overdose. These were of clinical significance and could lead to periods of subtherapeutic plasma acetylcysteine concentrations and potentially avoidable hepatotoxicity, as well as delaying hospital discharge. PMID:27412926

  6. Delays during the administration of acetylcysteine for the treatment of paracetamol overdose.

    PubMed

    Bailey, George P; Najafi, Javad; Elamin, Muhammad E M O; Waring, W Stephen; Thomas, Simon H L; Archer, John R H; Wood, David M; Dargan, Paul I

    2016-11-01

    The licensed intravenous acetylcysteine regimen for treating paracetamol overdose in most countries uses three separate infusions over 21 h. This complex regimen, requiring different infusion concentrations and rates, has been associated with administration errors. The aim of the present study was to assess the extent of administration delays occurring during this acetylcysteine regimen. A 6-month retrospective observational study was conducted at three English teaching hospitals with clinical toxicology services from October 2014. Patients aged 16 years and over, treated with intravenous acetylcysteine for paracetamol overdose, were included. The start times for infusions were recorded and the delays compared with the prescribed infusion times were calculated. Anaphylactoid reactions, intravenous cannula problems, overdose intent and smoking status were recorded to assess their contribution to delays. From 263 cases identified, 198 met the study inclusion criteria. The median time between the start of infusions 1 and 3 was delayed from the intended 5 h by a median (interquartile range) of 90 (50-163) min, with 135 (68%) cases delayed by more than 1 h. Significantly longer delays were observed in patients with anaphylactoid reactions [median delay 267 (217-413) min, n = 8] and accidental/supratherapeutic overdose [median delay 170 (95-260) min, n = 29]. There were no significant differences between smokers and nonsmokers, or for patients with intravenous cannula problems. Long delays were identified during the three-infusion acetylcysteine regimen for the treatment of paracetamol overdose. These were of clinical significance and could lead to periods of subtherapeutic plasma acetylcysteine concentrations and potentially avoidable hepatotoxicity, as well as delaying hospital discharge. © 2016 The British Pharmacological Society.

  7. N-acetylcysteine in Cleistanthus collinus Poisoning: A Report of Two Cases in Children.

    PubMed

    Sharma, Shreya; Rameshkumar, Ramachandran; Mahadevan, Subramanian

    2016-12-01

    Cleistanthus collinus, also known as Oduvanthalai in Tamil, is the most commonly encountered plant poison in southern India. The leaves are used for poisoning humans (suicide or homicide) and animals (cattle and fish) and as an abortifacient, especially in rural south India. Although this poisoning is commonly reported in adults, data regarding the use of N-acetylcysteine in pediatric poisoning is lacking. We report two previously healthy male siblings of pediatric age group who ingested the liquid extracted from crushed leaves of this plant given to them by their mother as a means of deliberate harm. Both patients developed distal renal tubular acidosis, with hypokalemia. The younger sibling also developed myocardial toxicity. Other significant findings noted include hypocalcemia, hypomagnesemia and elevated liver enzymes. Both patients received supportive care along with N-acetylcysteine infusion, and showed complete recovery within 10 days. © The Author [2016]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Computerized N-acetylcysteine physician order entry by template protocol for acetaminophen toxicity.

    PubMed

    Thompson, Trevonne M; Lu, Jenny J; Blackwood, Louisa; Leikin, Jerrold B

    2011-01-01

    Some medication dosing protocols are logistically complex for traditional physician ordering. The use of computerized physician order entry (CPOE) with templates, or order sets, may be useful to reduce medication administration errors. This study evaluated the rate of medication administration errors using CPOE order sets for N-acetylcysteine (NAC) use in treating acetaminophen poisoning. An 18-month retrospective review of computerized inpatient pharmacy records for NAC use was performed. All patients who received NAC for the treatment of acetaminophen poisoning were included. Each record was analyzed to determine the form of NAC given and whether an administration error occurred. In the 82 cases of acetaminophen poisoning in which NAC was given, no medication administration errors were identified. Oral NAC was given in 31 (38%) cases; intravenous NAC was given in 51 (62%) cases. In this retrospective analysis of N-acetylcysteine administration using computerized physician order entry and order sets, no medication administration errors occurred. CPOE is an effective tool in safely executing complicated protocols in an inpatient setting.

  9. N-Acetylcysteine for Nonsuicidal Self-Injurious Behavior in Adolescents: An Open-Label Pilot Study.

    PubMed

    Cullen, Kathryn R; Klimes-Dougan, Bonnie; Westlund Schreiner, Melinda; Carstedt, Patricia; Marka, Nicholas; Nelson, Katharine; Miller, Michael J; Reigstad, Kristina; Westervelt, Ana; Gunlicks-Stoessel, Meredith; Eberly, Lynn E

    2018-03-01

    Nonsuicidal self-injury (NSSI) is common in adolescents and young adults, and few evidence-based treatments are available for this significant problem. N-acetylcysteine (NAC) is a widely available nutritional supplement that has been studied in some psychiatric disorders relevant to NSSI including mood and addictive disorders. This pilot study tested the use of NAC as a potential treatment for NSSI in youth. Thirty-five female adolescents and young adults with NSSI aged 13-21 years were enrolled in this study that had an open-label, single-arm study design. All participants were given oral NAC as follows: 600 mg twice daily (weeks 1-2), 1200 mg twice daily (weeks 3-4), and 1800 mg twice daily (weeks 5-8). Patients were seen every 2 weeks throughout the trial, at which time youth reported the frequency of NSSI episodes. Levels of depression, impulsivity, and global psychopathology were measured at baseline and at the end of the trial using the Beck Depression Inventory-II (BDI-II), Barratt Impulsivity Scale, and Symptoms Checklist-90 (SCL-90). About two-thirds of the enrolled female youth completed the trial (24/35). NAC was generally well tolerated in this sample. NAC treatment was associated with a significant decrease in NSSI frequency at visit 6 and visit 8 compared to baseline. We also found that depression scores and global psychopathology scores (but not impulsivity scores) decreased after NAC treatment. Decrease in NSSI was not correlated with decrease in BDI-II or SCL-90 scores, suggesting these might be independent effects. We provide preliminary evidence that NAC may have promise as a potential treatment option for adolescents with NSSI. The current results require follow-up with a randomized, placebo-controlled trial to confirm efficacy.

  10. Chronic aspartame intake causes changes in the trans-sulphuration pathway, glutathione depletion and liver damage in mice.

    PubMed

    Finamor, Isabela; Pérez, Salvador; Bressan, Caroline A; Brenner, Carlos E; Rius-Pérez, Sergio; Brittes, Patricia C; Cheiran, Gabriele; Rocha, Maria I; da Veiga, Marcelo; Sastre, Juan; Pavanato, Maria A

    2017-04-01

    No-caloric sweeteners, such as aspartame, are widely used in various food and beverages to prevent the increasing rates of obesity and diabetes mellitus, acting as tools in helping control caloric intake. Aspartame is metabolized to phenylalanine, aspartic acid, and methanol. Our aim was to study the effect of chronic administration of aspartame on glutathione redox status and on the trans-sulphuration pathway in mouse liver. Mice were divided into three groups: control; treated daily with aspartame for 90 days; and treated with aspartame plus N-acetylcysteine (NAC). Chronic administration of aspartame increased plasma alanine aminotransferase (ALT) and aspartate aminotransferase activities and caused liver injury as well as marked decreased hepatic levels of reduced glutathione (GSH), oxidized glutathione (GSSG), γ-glutamylcysteine ​​(γ-GC), and most metabolites of the trans-sulphuration pathway, such as cysteine, S-adenosylmethionine (SAM), and S-adenosylhomocysteine ​​(SAH). Aspartame also triggered a decrease in mRNA and protein levels of the catalytic subunit of glutamate cysteine ligase (GCLc) and cystathionine γ-lyase, and in protein levels of methionine adenosyltransferase 1A and 2A. N-acetylcysteine prevented the aspartame-induced liver injury and the increase in plasma ALT activity as well as the decrease in GSH, γ-GC, cysteine, SAM and SAH levels and GCLc protein levels. In conclusion, chronic administration of aspartame caused marked hepatic GSH depletion, which should be ascribed to GCLc down-regulation and decreased cysteine levels. Aspartame triggered blockade of the trans-sulphuration pathway at two steps, cystathionine γ-lyase and methionine adenosyltransferases. NAC restored glutathione levels as well as the impairment of the trans-sulphuration pathway. Copyright © 2017. Published by Elsevier B.V.

  11. In Vitro Efficacy of Nonantibiotic Treatments on Biofilm Disruption of Gram-Negative Pathogens and an In Vivo Model of Infectious Endometritis Utilizing Isolates from the Equine Uterus

    PubMed Central

    McCue, Patrick M.; Borlee, Grace I.; Loncar, Kristen D.; Hennet, Margo L.

    2015-01-01

    In this study, we evaluated the ability of the equine clinical treatments N-acetylcysteine, EDTA, and hydrogen peroxide to disrupt in vitro biofilms and kill equine reproductive pathogens (Escherichia coli, Pseudomonas aeruginosa, or Klebsiella pneumoniae) isolated from clinical cases. N-acetylcysteine (3.3%) decreased biofilm biomass and killed bacteria within the biofilms of E. coli isolates. The CFU of recoverable P. aeruginosa and K. pneumoniae isolates were decreased, but the biofilm biomass was unchanged. Exposure to hydrogen peroxide (1%) decreased the biofilm biomass and reduced the CFU of E. coli isolates, K. pneumoniae isolates were observed to have a reduction in CFU, and minimal effects were observed for P. aeruginosa isolates. Chelating agents (EDTA formulations) reduced E. coli CFU but were ineffective at disrupting preformed biofilms or decreasing the CFU of P. aeruginosa and K. pneumoniae within a biofilm. No single nonantibiotic treatment commonly used in equine veterinary practice was able to reduce the CFU and biofilm biomass of all three Gram-negative species of bacteria evaluated. An in vivo equine model of infectious endometritis was also developed to monitor biofilm formation, utilizing bioluminescence imaging with equine P. aeruginosa isolates from this study. Following infection, the endometrial surface contained focal areas of bacterial growth encased in a strongly adherent “biofilm-like” matrix, suggesting that biofilms are present during clinical cases of infectious equine endometritis. Our results indicate that Gram-negative bacteria isolated from the equine uterus are capable of producing a biofilm in vitro, and P. aeruginosa is capable of producing biofilm-like material in vivo. PMID:26719448

  12. In Vitro Efficacy of Nonantibiotic Treatments on Biofilm Disruption of Gram-Negative Pathogens and an In Vivo Model of Infectious Endometritis Utilizing Isolates from the Equine Uterus.

    PubMed

    Ferris, Ryan A; McCue, Patrick M; Borlee, Grace I; Loncar, Kristen D; Hennet, Margo L; Borlee, Bradley R

    2016-03-01

    In this study, we evaluated the ability of the equine clinical treatments N-acetylcysteine, EDTA, and hydrogen peroxide to disrupt in vitro biofilms and kill equine reproductive pathogens (Escherichia coli, Pseudomonas aeruginosa, or Klebsiella pneumoniae) isolated from clinical cases. N-acetylcysteine (3.3%) decreased biofilm biomass and killed bacteria within the biofilms of E. coli isolates. The CFU of recoverable P. aeruginosa and K. pneumoniae isolates were decreased, but the biofilm biomass was unchanged. Exposure to hydrogen peroxide (1%) decreased the biofilm biomass and reduced the CFU of E. coli isolates, K. pneumoniae isolates were observed to have a reduction in CFU, and minimal effects were observed for P. aeruginosa isolates. Chelating agents (EDTA formulations) reduced E. coli CFU but were ineffective at disrupting preformed biofilms or decreasing the CFU of P. aeruginosa and K. pneumoniae within a biofilm. No single nonantibiotic treatment commonly used in equine veterinary practice was able to reduce the CFU and biofilm biomass of all three Gram-negative species of bacteria evaluated. An in vivo equine model of infectious endometritis was also developed to monitor biofilm formation, utilizing bioluminescence imaging with equine P. aeruginosa isolates from this study. Following infection, the endometrial surface contained focal areas of bacterial growth encased in a strongly adherent "biofilm-like" matrix, suggesting that biofilms are present during clinical cases of infectious equine endometritis. Our results indicate that Gram-negative bacteria isolated from the equine uterus are capable of producing a biofilm in vitro, and P. aeruginosa is capable of producing biofilm-like material in vivo. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. N-acetylcysteine and meso-2,3-dimercaptosuccinic acid alleviate oxidative stress and hepatic dysfunction induced by sodium arsenite in male rats.

    PubMed

    Abu El-Saad, Ahmed M; Al-Kahtani, Mohammed A; Abdel-Moneim, Ashraf M

    2016-01-01

    Environmental exposure to arsenic represents a serious challenge to humans and other animals. The aim of the present study was to test the protective effect of antioxidant N-acetylcysteine (NAC) either individually or in combination with a chelating agent, meso-2,3-dimercaptosuccinic acid (DMSA), against sodium arsenite oral toxicity in male rats. Five groups were used: control; arsenic group (orally administrated in a concentration of 2 mg/kg body weight [b.w.]); the other three groups were orally administrated sodium arsenite in a concentration of 2 mg/kg b.w. followed by either NAC (10 mg/kg b.w., intraperitoneally [i.p.]), DMSA (50 mg/kg b.w., i.p.) or NAC plus DMSA. Arsenic toxicity caused significant rise in serum aspartate aminotransferase, alanine aminotransferase and total bilirubin, and a significant decrease in total protein (TP) and albumin levels after 3 weeks of experimental period. In addition, arsenic-treated rats showed significantly higher arsenic content in liver and significant rise in hepatic malondialdehyde level. By contrast, sharp decreases in glutathione content and catalase and glutathione reductase activities were discernible. NAC and/or DMSA counteracted most of these physiologic and biochemical defects. NAC monotherapy was more effective than DMSA in increasing TP, while DMSA was more effective in decreasing alanine aminotransferase. The combined treatment was superior over monotherapies in recovery of TP and glutathione. Biochemical data were well supported by histopathological and ultrastructural findings. In conclusion, the combination therapy of NAC and DMSA may be an ideal choice against oxidative insult induced by arsenic poisoning.

  14. Prophylactic Management of Contrast-Induced Acute Kidney Injury in High-Risk Patients.

    PubMed

    Nahar, Diya

    2017-01-01

    Contrast-induced acute kidney injury (CI-AKI) has been linked to morbidity and mortality, especially in high-risk patients whose kidney function is compromised. Recently, many studies have been conducted to search for more novel, preventative methods of decreasing CI-AKI. Through a detailed analysis of recent studies, this article discusses recommendations for hydration, N-acetylcysteine, and statin therapy in relation to the prophylactic management of CI-AKI in high-risk patients. Copyright© by the American Nephrology Nurses Association.

  15. A clinical and pharmacoeconomic justification for intravenous acetylcysteine: a US perspective.

    PubMed

    Culley, Colleen M; Krenzelok, Edward P

    2005-01-01

    Paracetamol (acetaminophen) poisoning remains the most common exposure reported to US poison information centres and the leading cause of poisoning-related fatalities, despite the availability of an effective antidote, acetylcysteine. Oral acetylcysteine solution has been approved for the management of acetaminophen poisoning in the US for four decades. Until the recent approval of intravenous acetylcysteine in the US, it was necessary to compound the oral solution for intravenous administration. The effectiveness and tolerability of oral and intravenous acetylcysteine for the prevention of hepatotoxicity induced by paracetamol poisoning are well established in the literature. Intravenous acetylcysteine may be preferred over oral administration based on improved tolerability, ease of administration and the shortened course of therapy (20 hours intravenous vs 72 hours oral). The two intravenous acetylcysteine regimens documented in the literature, 48 hours and 20 hours, have similar efficacy when started within 8-10 hours of ingestion. Although there are no legal concerns with continuing the routine compounding of the oral solution to an intravenous product, new standards for pharmacy compounding of sterile preparations set forth by the US Pharmacopoeia highlight that the risk of compounding products for intravenous use must be assessed carefully. Changing the route of administration of a sterile oral solution to an intravenous preparation, when a commercial sterile and pyrogen-free product is available, may not be advisable. The best cost-containment strategies must be used for introduction of the more costly sterile, pyrogen-free intravenous acetylcysteine formulation by hospitals and healthcare systems. The intravenous acetylcysteine product is more cost effective when given for 20 hours than other treatment protocols based on the costs of acetylcysteine and hospitalisation. If used per protocol, the 20-hour intravenous acetylcysteine regimen may decrease hospital length of stay, thereby, offsetting the increased drug cost. Data conflict on the efficacy and administration of intravenous acetylcysteine for off-label uses, such as radiographic contrast media-induced nephropathy prevention and reperfusion in orthotopic liver transplantation. The costs for the intravenous formulation for these indications is significantly higher than use of the oral formulation for oral administration in radiographic contrast media-induced nephropathy prevention and compounded for intravenous use in orthotopic liver transplantation. The oral solution should be retained by healthcare systems for oral and inhalation applications, such as respiratory conditions, oral administration for radiographic contrast media nephropathy prevention, or the use of the 72-hour oral protocol to treat paracetamol poisoning, when the intravenous preparation cannot be used.

  16. High post-natal mortality associated with defects in lung maturation and reduced adiposity in mice with gestational exposure to high fat and N-acetylcysteine.

    PubMed

    Williams, Lyda; Charron, Maureen J; Sellers, Rani S

    2017-10-01

    Studies have demonstrated that maternal consumption of a high fat diet (HFD) increases offspring susceptibility to metabolic disease. This study was initiated to identify the mechanistic contribution of oxidative stress on this phenomenon. Two weeks prior to mating, dams were fed either HFD or Control diet with or without supplementation with the anti-oxidant N-acetylcysteine (NAC). Pups born to HFD dams had reduced crown rump length (CRL) at birth and higher neonatal mortality compared to pups from Control dams. Supplementation with NAC normalized CRL in pups from HFD dams, but notably increased mortality. Histological examination of the lungs postnatally and prenatally, revealed normal branching morphogenesis but delayed alveolarization in pups from dams fed HFD+NAC. Discontinuation of NAC at ED17.5 with re-introduction at PD3 improved offspring survival and lung maturation. Additionally, interscapular brown adipose tissue (BAT) was reduced in ED18.5 embryos from HFD dams. These findings suggest that increased mortality in offspring from dams fed HFD+NAC during pregnancy may in part be the result of delayed pulmonary alveolarization and decreased BAT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. N-acetylcysteine supplementation reduces oxidative stress for cytosine arabinoside in rat model.

    PubMed

    Balci, Yasemin Isik; Acer, Semra; Yagci, Ramazan; Kucukatay, Vural; Sarbay, Hakan; Bozkurt, Kerem; Polat, Aziz

    2017-02-01

    Cytosine arabinoside (ARA-C) is a pyrimidine analog that may cause keratoconjunctivitis when used in high doses. The underlying mechanism may be the increased amounts of reactive oxygen radicals that may damage the DNA synthesis of corneal and conjunctival epithelial cells. Topical corticosteroids are one of the prophylactic treatments for keratoconjunctivitis induced by ARA-C. Forty Wistar-type albino rats were included in this study the rats were divided into four groups. The first group (Group 1) received only ARA-C, the second group (Group 2) received ARA-C and N-acetylcysteine (NAC), the third group (Group 3) received only NAC and the fourth group (Group 4) was the control group. The total oxidant status (TOS), the total antioxidant capacity and the oxidative stress index (OSI) measurements of the cornea and the conjunctiva were evaluated in these four groups. The mean TOS and OSI value was the highest in Group 1 and the lowest in Group 3. The differences in TOS and OSI values were statistically significant between Group 1 and Group 2. There are decreases in TOS and OSI values in rats which received ARA-C with NAC administration. NAC may have a protective effect on ARA-C-induced keratoconjunctivitis.

  18. [The role of N-acetylcysteine against the injury of pulmonary artery induced by LPS].

    PubMed

    Huang, Xin-li; Ling, Yi-ling; Zhu, Tie-nian

    2002-11-01

    To investigate the alleviating effect of N-acetylcysteine (NAC) on lung injury induced by lipopolysaccharides (LPS) and its mechanism. The effects of NAC on changes of the pulmonary arterial reactivity and the ultrastructure of pulmonary arterial endothelium induced by LPS were observed with the isolated artery ring technique and scanning electron microscope (SEM). Malondialdehyde (MDA), nitric oxide (NO) contents and superoxide dismutase (SOD) activity of pulmonary artery tissues were detected. The exposure of pulmonary artery to LPS (4 microg/ml, 7 h) led to reduction of endothelium-dependent relaxation response to acetylcholine (ACh), which was reversed by the concomitant exposure to NAC (0.5 mmol/L, 7 h), whereas NAC itself had no effect on the response. Significant structural injury were observed under SEM in LPS group and alleviated the changes in LPS + NAC group. The MDA, NO contents increased but SOD activity decreased in LPS group, which were reversed by the concomitant exposure to NAC. NAC protects pulmonary artery endothelium and enhances endothelium-dependent relaxation response of pulmonary artery by antioxidation effect, which may be one of the mechanisms of its reversing pulmonary artery hypertension and following lung injury induced by LPS.

  19. Acute administration of cefepime lowers L-carnitine concentrations in early lactation stage rat milk.

    PubMed

    Ling, Binbing; Alcorn, Jane

    2008-07-01

    Our study investigated the potential for important in vivo drug-nutrient transport interactions at the lactating mammary gland using the L-carnitine transporter substrates, cefepime and L-carnitine, as proof-of-concept. On d 4 (n = 6/treatment) and d 10 (n = 6/treatment) of lactation, rats were administered cefepime (250 mg/h) or saline by continuous i.v. infusion (4 h). Serum and milk L-carnitine and cefepime concentrations were quantified by HPLC-UV. In whole mammary gland, organic cation/carnitine transporter (OCTN)1, OCTN2, OCTN3, amino acid transporter B(0,+) (ATB(0,+)), and L-carnitine transporter 2 expression were determined by quantitative RT-PCR and by western blot and immunohistochemistry when possible. Cefepime caused a 56% decrease in milk L-carnitine concentrations on lactation d 4 (P = 0.0048) but did not affect milk L-carnitine at lactation d 10 or serum L-carnitine concentrations at either time. The mean L-carnitine and cefepime milk:serum ratios (M/S) decreased from 9.1 +/- 0.4 to 4.9 +/- 0.6 (P < 0.0001) and 0.89 +/- 0.3 to 0.12 +/- 0.02 (P = 0.0473), respectively, between d 4 and d 10 of lactation. In both groups, OCTN2 (P < 0.0001), OCTN3 (P = 0.0039), and ATB(0,+) (P = 0.004) mRNA expression and OCTN2 protein (P < 0.0001) were higher in mammary glands at d 4 of lactation compared with d 10. Immunohistochemistry revealed OCTN1 and OCTN2 localization in the mammary alveolar epithelium and OCTN3 expression in the interstitial space and blood vessel endothelium. In conclusion, cefepime significantly decreased milk L-carnitine concentrations only at d 4 of lactation. Relative to d 10, enhanced expression of OCTN2 and ATB(0,+) in mammary glands at d 4 of lactation and higher M/S (L-carnitine and cefepime) suggests cefepime competes with L-carnitine for L-carnitine transporters expressed in the lactating mammary gland to adversely affect L-carnitine milk concentrations and these effects depend upon lactation stage.

  20. The effect of pregnancy and lactation on bone mineral density in fluoride-exposed rats.

    PubMed

    Yildiz, Mustafa; Oral, Baha

    2006-06-01

    Fluoride increases metabolic turnover of the bone in favour of bone formation. Excessive intake of fluoride may lead to pathological changes in teeth and bones: dental and skeletal fluorosis. In this study, we investigated the effect of pregnancy and lactation on bone mineral density (BMD) in fluoride-exposed rats. Female Wistar rats were given commercially available spring water with 100 ppm fluoride (N = 8), or without addition (N = 8) for 18 weeks. At 16 weeks of age, four female rats and one male rat were kept in a cage for 5 days; all females were successfully impregnated. BMD was measured at 16 weeks of age, on the first day postpartum, and at the end of lactation. Spinal BMD was significantly higher in fluoride-exposed rats than control (P < 0.05), but there were no differences in femoral BMD (P = 0.670). During pregnancy, spinal BMD and femoral BMD were not significantly changed in fluoride-exposed rats, whereas BMD of the spine was significantly decreased in the control rats (P = 0.013), but not in the femur. During lactation, BMD was significantly decreased at the two regions compared to initial values (P < 0.05) in both groups. This study shows that pregnancy has no effect on bone, but lactation has a decreasing effect on BMD in fluoride-exposed rats.

  1. Immunotoxicity of ochratoxin A and aflatoxin B1 in combination is associated with the nuclear factor kappa B signaling pathway in 3D4/21 cells.

    PubMed

    Hou, Lili; Gan, Fang; Zhou, Xuan; Zhou, Yajiao; Qian, Gang; Liu, Zixuan; Huang, Kehe

    2018-05-01

    The co-contamination of cereals, grains, crops, and animal feeds by mycotoxins is a universal problem. Humans and animals are exposed to several mycotoxins simultaneously as evidenced by extensive studies on this topic. Yet, most studies have addressed the effects of mycotoxins individually. Aflatoxin B1 and ochratoxin A can induce immunotoxicity. However, it remains unclear whether a combination of these mycotoxins aggravates immunotoxicity and the potential mechanism underlying this effect. In this study, we used the cell line 3D4/21, swine alveolus macrophages and innate immune cell. The results showed that the percentage of cell inhibition, annexin V/PI-positive rates, and the expression of pro-inflammatory cytokines (tumor necrosis factor alpha and interleukin-6) significantly increased and the release of lactate dehydrogenase and phagocytotic index were significantly decreased at different concentrations of aflatoxin B1 and ochratoxin A combination when compared with control. The combination of aflatoxin B1 and ochratoxin A significantly decreased the production of GSH and increased reactive oxygen species level. However, N-acetylcysteine suppressed the oxidative stress and alleviated the immunotoxicity induced by the combination. The combination of aflatoxin B1 and ochratoxin A markedly enhanced the degradation of IκBa, the phosphorylation of nuclear factor kappa B (p65), and the translocation of activated nuclear factor kappa B (NF-κB) into the nuclei as demonstrated by western blotting and confocal laser scanning microscopy. These effects could be reversed by BAY 11-7082, a specific inhibitor of NF-κB. Taken together, a combination of aflatoxin B1 and ochratoxin A could aggravate immunotoxicity by activating the NF-κB signaling pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Investigating free radical generation in HepG2 cells using immuno-spin trapping.

    PubMed

    Horinouchi, Yuya; Summers, Fiona A; Ehrenshaft, Marilyn; Kawazoe, Kazuyoshi; Tsuchiya, Koichiro; Tamaki, Toshiaki; Mason, Ronald P

    2014-10-01

    Oxidative stress can induce the generation of free radicals, which are believed to play an important role in both physiological and pathological processes and a number of diseases such as cancer. Therefore, it is important to identify chemicals which are capable of inducing oxidative stress. In this study, we evaluated the ability of four environmental chemicals, aniline, nitrosobenzene (NB), N,N-dimethylaniline (DMA) and N,N-dimethyl-4-nitrosoaniline (DMNA), to induce free radicals and cellular damage in the hepatoma cell line HepG2. Cytotoxicity was assessed using lactate dehydrogenase (LDH) assays and morphological changes were observed using phase contrast microscopy. Free radicals were detected by immuno-spin trapping (IST) in in-cell western experiments or in confocal microscopy experiments to determine the subcellular localization of free radical generation. DMNA induced free radical generation, LDH release and morphological changes in HepG2 cells whereas aniline, NB and DMA did not. Confocal microscopy showed that DMNA induced free radical generation mainly in the cytosol. Preincubation of HepG2 cells with N-acetylcysteine and 2,2'-dipyridyl significantly prevented free radical generation upon subsequent incubation with DMNA, whereas preincubation with apocynin and dimethyl sulfoxide did not. These results suggest that DMNA induces oxidative stress and that reactive oxygen species, metals and free radical generation play a critical role in DMNA-induced cytotoxicity. Copyright © 2014. Published by Elsevier Inc.

  3. The Use of Drugs to Reduce Hearing Loss Following Acute Acoustic Trama

    DTIC Science & Technology

    2012-07-01

    noise exposure: (1) L-N- acetylcysteine (L-NAC); (2) D-Methionine (D-MET); (3) Ebselen SPI-1005; (4) Acetyl-L-carnitine (ALCAR) and (5) Src-PTK inhibitor...exposed to a 4.0 kHz octave band of noise for 6 hours at 105 dB SPL: (1) L-N- acetylcysteine (L-NAC); (2) D-Methionine (D-MET); (3) Ebselen SPI-1005...effectively absent or severely depressed from 2 kHz and above (Figs. 14 & 15). Individual cochleograms for this group are shown in Figure 16. The

  4. A case of moderate liver enzyme elevation after acute acetaminophen overdose despite undetectable acetaminophen level and normal initial liver enzymes.

    PubMed

    Bebarta, Vikhyat S; Shiner, Drew C; Varney, Shawn M

    2014-01-01

    Liver function test (LFT) increase is an early sign of acetaminophen (APAP) toxicity. Typically, when an acute overdose patient is evaluated and has an initial undetectable APAP level and normal liver enzymes, the patient is not treated with N-acetylcysteine, and liver enzymes are not expected to increase later. We report a case of moderate LFT increase despite normal LFTs and an undetectable APAP level after delayed presentation of an APAP ingestion. A 22-year-old male with no medical history ingested 15-25 hydrocodone/APAP tablets (5 mg/500 mg). His suicide note and his bunkmate corroborated the overdose time. He arrived at the emergency department 16 hours after ingestion. At that time, his APAP level was <10 μg/mL, and his liver enzymes were normal [aspartate transaminase (AST) 31 U/L and alanine transaminase (ALT) 34 U/L]. Twenty-nine hours after ingestion, the psychiatry team obtained LFTs (AST 45, ALT 61). He had persistent nausea and diffuse abdominal pain. On repeat analysis, the APAP level at 36 hours was found to be <10 μg/mL, AST 150, and ALT 204. After 2 more days of increasing LFTs and persistent abdominal pain and nausea, the toxicology department was consulted, the patient was transferred to the medicine department, and intravenous N-acetylcysteine was started 66 hours after ingestion. He was treated for 16 hours and had a significant decline in LFTs and symptom resolution. His prothrombin time, bilirubin, lactate, creatinine, and mental status were normal throughout the admission. Other cases of LFT increase were excluded. Our case report illustrates that a moderate increase in liver transaminase may occur despite an initial undetectable APAP level and normal transaminases after a delayed presentation. In our case, no serious clinical effects were reported.

  5. Enzyme dehydration using Microglassification™ preserves the protein's structure and function.

    PubMed

    Aniket; Gaul, David A; Bitterfield, Deborah L; Su, Jonathan T; Li, Victoria M; Singh, Ishita; Morton, Jackson; Needham, David

    2015-02-01

    Controlled enzyme dehydration using a new processing technique of Microglassification™ has been investigated. Aqueous solution microdroplets of lysozyme, α-chymotrypsin, catalase, and horseradish peroxidase were dehydrated in n-pentanol, n-octanol, n-decanol, triacetin, or butyl lactate, and changes in their structure and function were analyzed upon rehydration. Water solubility and microdroplet dissolution rate in each solvent decreased in the order: butyl lactate > n-pentanol > triacetin > n-octanol > n-decanol. Enzymes Microglassified™ in n-pentanol retained higher activity (93%-98%) than n-octanol (78%-85%) or n-decanol (75%-89%), whereas those Microglassified™ in triacetin (36%-75%) and butyl lactate (48%-79%) retained markedly lower activity. FTIR spectroscopy analyses showed α-helix to β-sheet transformation for all enzymes upon Microglassification™, reflecting a loss of bound water in the dried state; however, the enzymes reverted to native-like conformation upon rehydration. Accelerated stressed-storage tests using Microglassified™ lysozyme showed a significant (p < 0.01) decrease in enzymatic activity from 46,560 ± 2736 to 31,060 ± 4327 units/mg after 3 months of incubation; however, it was comparable to the activity of the lyophilized formulation throughout the test period. These results establish Microglassification™ as a viable technique for enzyme preservation without affecting its structure or function. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Effects of ammonia-N stress on metabolic and immune function via the neuroendocrine system in Litopenaeus vannamei.

    PubMed

    Cui, Yanting; Ren, Xianyun; Li, Jian; Zhai, Qianqian; Feng, Yanyan; Xu, Yang; Ma, Li

    2017-05-01

    The purpose of this study was to evaluate the immunological responses, such as phenoloxidase (PO), antibacterial, and bacteriolytic activities, and metabolic variables, such as oxyhemocyanin, lactate, and glucose levels, of Litopenaeus vannamei exposed to ambient ammonia-N at 0, 2.5, 5, 7.5, and 10 mg/L for 0, 3, 6, 12, 24, and 48 h, and determine the effects of the eyestalk hormone on the metabolic and immune functions of unilateral eyestalk-ablated L. vannamei exposed to ambient ammonia-N at 10 mg/L. The actual concentrations of the control and test solutions were 0.04, 2.77, 6.01, 8.30, and 11.36 mg/L for ammonia-N and 0.01, 0.15, 0.32, 0.44, and 0.60 mg/L for NH 3 -N (unionized ammonia). The results showed a significant decrease in the PO, antibacterial, and bacteriolytic activities in the plasma as well as a significant increase in the glucose and lactate levels and decreased oxyhemocyanin levels in the hemolymph of L. vannamei exposed to elevated ammonia-N levels. These findings indicated that L. vannamei exposed to ammonia-N might demonstrate weakened metabolic and immunological responses. Moreover, eyestalk removal caused a dramatic decrease in PO, antibacterial, and bacteriolytic activities, which indicated that the eyestalk hormone in L. vannamei exhibited a higher immune response due to the induction of protective mechanisms against ammonia-N stress. Eyestalk removal also caused a dramatic decrease in glucose and lactate levels, suggesting that the eyestalk hormone is involved in glucose metabolism to meet the energy requirements under ammonia-N stress conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. N-Acetylcysteine Reverses Anxiety and Oxidative Damage Induced by Unpredictable Chronic Stress in Zebrafish.

    PubMed

    Mocelin, Ricieri; Marcon, Matheus; D'ambros, Simone; Mattos, Juliane; Sachett, Adrieli; Siebel, Anna M; Herrmann, Ana P; Piato, Angelo

    2018-06-06

    There is accumulating evidence on the use of N-acetylcysteine (NAC) in the treatment of patients with neuropsychiatric disorders. As a multi-target drug and a glutathione precursor, NAC is a promising molecule in the management of stress-related disorders, for which there is an expanding field of research investigating novel therapies targeting oxidative pathways. The deleterious effects of chronic stress in the central nervous system are a result of glutamatergic hyperactivation, glutathione (GSH) depletion, oxidative stress, and increased inflammatory response, among others. The aim of this study was to investigate the effects of NAC in zebrafish submitted to unpredictable chronic stress (UCS). Animals were initially stressed or not for 7 days, followed by treatment with NAC (1 mg/L, 10 min) or vehicle for 7 days. UCS decreased the number of entries and time spent in the top area in the novel tank test, which indicate increased anxiety levels. It also increased reactive oxygen species (ROS) levels and lipid peroxidation (TBARS) while decreased non-protein thiols (NPSH) and superoxide dismutase (SOD) activity. NAC reversed the anxiety-like behavior and oxidative damage observed in stressed animals. Additional studies are needed to investigate the effects of this agent on glutamatergic modulation and inflammatory markers related to stress. Nevertheless, our study adds to the existing body of evidence supporting the clinical evaluation of NAC in mood disorders, anxiety, post-traumatic stress disorder, and other conditions associated with stress.

  8. Effects of guaifenesin, N-acetylcysteine, and ambroxol on MUC5AC and mucociliary transport in primary differentiated human tracheal-bronchial cells.

    PubMed

    Seagrave, Jeanclare; Albrecht, Helmut H; Hill, David B; Rogers, Duncan F; Solomon, Gail

    2012-10-31

    Therapeutic intervention in the pathophysiology of airway mucus hypersecretion is clinically important. Several types of drugs are available with different possible modes of action. We examined the effects of guaifenesin (GGE), N-acetylcysteine (NAC) and ambroxol (Amb) on differentiated human airway epithelial cells stimulated with IL-13 to produce additional MUC5AC. After IL-13 pre-treatment (3 days), the cultures were treated with GGE, NAC or Amb (10-300 μM) in the continued presence of IL-13. Cellular and secreted MUC5AC, mucociliary transport rates (MTR), mucus rheology at several time points, and the antioxidant capacity of the drugs were assessed. IL-13 increased MUC5AC content (~25%) and secretion (~2-fold) and decreased MTR, but only slightly affected the G' (elastic) or G" (viscous) moduli of the secretions. GGE significantly inhibited MUC5AC secretion and content in the IL-13-treated cells in a concentration-dependent manner (IC50s at 24 hr ~100 and 150 μM, respectively). NAC or Amb were less effective. All drugs increased MTR and decreased G' and G" relative to IL-13 alone. Cell viability was not affected and only NAC exhibited antioxidant capacity. Thus, GGE effectively reduces cellular content and secretion of MUC5AC, increases MTR, and alters mucus rheology, and may therefore be useful in treating airway mucus hypersecretion and mucostasis in airway diseases.

  9. Synergist effects of n-acetylcysteine and deferoxamine treatment on behavioral and oxidative parameters induced by chronic mild stress in rats.

    PubMed

    Arent, Camila O; Réus, Gislaine Z; Abelaira, Helena M; Ribeiro, Karine F; Steckert, Amanda V; Mina, Francielle; Dal-Pizzol, Felipe; Quevedo, João

    2012-12-01

    A growing body of evidence has pointed to a relationship between oxidative stress and depression. Thus, the present study was aimed at evaluating the effects of the antioxidants n-acetylcysteine (NAC), deferoxamine (DFX) or their combination on sweet food consumption and oxidative stress parameters in rats submitted to 40days of exposure to chronic mild stress (CMS). Our results showed that in stressed rats treated with saline, there was a decrease in sweet food intake and treatment with NAC or NAC in combination with DFX reversed this effect. Treatment with NAC and DFX decreased the oxidative damage, which include superoxide and TBARS production in submitochondrial particles, and also thiobarbituric acid reactive substances (TBARS) levels and carbonyl proteins in the prefrontal cortex, amygdala and hippocampus. Treatment with NAC and DFX also increased the activity of the antioxidant enzymes, superoxide dismutase and catalase in the same brain areas. Even so, a combined treatment with NAC and DFX produced a stronger increase of antioxidant activities in the prefrontal cortex, amygdala and hippocampus. The results described here indicate that co-administration may induce a more pronounced antidepressant activity than each treatment alone. In conclusion, these results suggests that treatment with NAC or DFX alone or in combination on oxidative stress parameters could have positive effects against neuronal damage caused by oxidative stress in major depressive disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. [Antagonistic effect of N-acetylcysteine on apoptosis of L-02 hepatocyte induced by Cr(VI) with or without caspase inhibitor].

    PubMed

    Chen, Jing; Zhong, Caigao; Zeng, Ming; Liu, Xinmin; Deng, Yuanyuan; Xiao, Fang

    2010-11-01

    To explore the antagonistic effect of N-acetylcysteine (NAC) on hexevalent chromium (Cr(VI))-induced apoptosis in L-02 hepatocytes with or without caspase inhibitors. L-02 hepatocytes were randomly divided into a control group, and Cr( VI), Z-VAD-fmk + Cr(VI), NAC + Cr(VI), Z-VAD-fmk + NAC + Cr (VI) four treatment groups, in which L-02 hepatocytes were cultured with Cr (VI) at the dose of 20 micromol/L for 6h. The rates of apoptosis in all groups were detected by flow cytometry (FC) after staining with propidium iodide (PI). The changes of mitochondrial membrane potential (deltapsim) and permeability transition pore (PTP) were determined by fluorescent spectrometer. The DNA damages in hepatocytes were observed by the single cell gel electrophoresis (SCGE). Cr(VI) significantly induced apoptosis of L-02 hepatocytes at the dose of 20 micromol/L for 6 hours (P < 0.05). However, NAC significantly decreased the rates of apoptosis of L-02 hepatocytes and alleviated the damages to mitochondria and DNA caused by Cr(VI) in L-02 hepatocytes with or without caspase (P < 0.05). However, in comparition with the non caspase-inhibited group, the protective effects of NAC decreased in the caspase-inhibited group (P < 0.05). NAC could protect the apoptosis of L-02 hepatocyte induced with Cr(VI) with or without caspase inhibitor, and caspase could not play a decisive role in this process.

  11. The add-on N-acetylcysteine is more effective than dimethicone alone to eliminate mucus during narrow-band imaging endoscopy: a double-blind, randomized controlled trial.

    PubMed

    Chen, Ming-Jen; Wang, Horng-Yuan; Chang, Chen-Wang; Hu, Kuang-Chun; Hung, Chien-Yuan; Chen, Chih-Jen; Shih, Shou-Chuan

    2013-02-01

    Recent studies have shown that pronase can improve mucosal visibility, but this agent is not uniformly available for human use worldwide. This study aimed to assess the efficacy of N-acetylcysteine (NAC), a mucolytic agent, in improving mucus elimination as measured by decreased endoscopic water flushes during narrow-band imaging (NBI) endoscopy. A consecutive series of patients scheduled for upper gastrointestinal endoscopy at outpatient clinics were enrolled in this double-blind, randomized controlled trial. The control group drank a preparation of 100 mg dimethicone (5 ml at 20 mg/ml) plus water up to 100 ml, and the NAC group drank 300 mg NAC plus 100 mg dimethicone and water up to 100 ml. During the endoscopy, the endoscopist used as many flushes of water as deemed necessary to produce a satisfactory NBI view of the entire gastric mucosa. In all, 177 patients with a mean age of 51 years were evaluated in this study. Significantly lesser water was used for flushing during NBI endoscopy for the NAC group than the control group; 40 ml (30-70, 0-120) versus 50 ml (30-100, 0-150) (median (interquartile range, range), p = 0.0095). Considering the safety profile of NAC, decreasing the number of water flushes for optimal vision and unavailability of pronase in some areas, the authors suggest the use of add-on NAC to eliminate mucus during NBI endoscopy.

  12. Effects of guaifenesin, N-acetylcysteine, and ambroxol on MUC5AC and mucociliary transport in primary differentiated human tracheal-bronchial cells

    PubMed Central

    2012-01-01

    Background Therapeutic intervention in the pathophysiology of airway mucus hypersecretion is clinically important. Several types of drugs are available with different possible modes of action. We examined the effects of guaifenesin (GGE), N-acetylcysteine (NAC) and ambroxol (Amb) on differentiated human airway epithelial cells stimulated with IL-13 to produce additional MUC5AC. Methods After IL-13 pre-treatment (3 days), the cultures were treated with GGE, NAC or Amb (10–300 μM) in the continued presence of IL-13. Cellular and secreted MUC5AC, mucociliary transport rates (MTR), mucus rheology at several time points, and the antioxidant capacity of the drugs were assessed. Results IL-13 increased MUC5AC content (~25%) and secretion (~2-fold) and decreased MTR, but only slightly affected the G’ (elastic) or G” (viscous) moduli of the secretions. GGE significantly inhibited MUC5AC secretion and content in the IL-13-treated cells in a concentration-dependent manner (IC50s at 24 hr ~100 and 150 μM, respectively). NAC or Amb were less effective. All drugs increased MTR and decreased G’ and G” relative to IL-13 alone. Cell viability was not affected and only NAC exhibited antioxidant capacity. Conclusions Thus, GGE effectively reduces cellular content and secretion of MUC5AC, increases MTR, and alters mucus rheology, and may therefore be useful in treating airway mucus hypersecretion and mucostasis in airway diseases. PMID:23113953

  13. Acute acetaminophen overdose is associated with dose-dependent hypokalaemia: a prospective study of 331 patients.

    PubMed

    Waring, W Stephen; Stephen, Alexandra F L; Malkowska, Aleks M; Robinson, Oliver D G

    2008-03-01

    Hypokalaemia is a recognized complication of acute acetaminophen overdose. It is unclear whether this might be a pharmacological effect of acetaminophen, or due to association with confounding factors. The present study sought to better characterize the relationship between acetaminophen concentrations and risk of hypokalaemia. A prospective study of patients received N-acetylcysteine treatment within 15 hr of acute acetaminophen ingestion. Serum potassium concentrations were determined before and after N-acetylcysteine. Serum acetaminophen concentrations were used to indicate overall drug exposure by comparison to the Rumack-Matthew nomogram. Hypokalaemia was pre-defined by serum concentrations <3.5 mmol/l, and groups compared by Mann-Whitney tests. There were 331 patients. Median (95% confidence interval) fall in serum potassium concentration after N-acetylcysteine was 0.05 mmol/l (-0.11-0.30 mmol/l) if acetaminophen concentrations were below the 'high-risk' treatment line, 0.30 mmol/l (0.17-0.40 mmol/l) if between the 'high-risk' and 'normal' treatment lines (P = 0.0358), and 0.40 mmol/l (0.20-0.50 mmol/l) if above the 'normal' treatment line (P = 0.0136). A receiver operating characteristic showed that high acetaminophen concentrations were predictive of hypokalaemia (P = 0.0001 versus zero discriminatory line), and 4 hr acetaminophen concentration >156 mmol/l gave 81% sensitivity and 48% specificity. The risk of hypokalaemia after acute acetaminophen overdose depends on the extent of acetaminophen exposure, irrespective of N-acetylcysteine administration and independent of whether vomiting occurred. Acetaminophen appears to cause concentration-dependent hypokalaemia after overdose, and the pharmacological basis requires further consideration.

  14. N-acetylcysteine improves coronary and peripheral vascular function.

    PubMed

    Andrews, N P; Prasad, A; Quyyumi, A A

    2001-01-01

    We investigated whether N-acetylcysteine (NAC), a reduced thiol that modulates redox state and forms adducts of nitric oxide (NO), improves endothelium-dependent vasomotion. Coronary atherosclerosis is associated with endothelial dysfunction and reduced NO activity. In 16 patients undergoing cardiac catheterization, seven with and nine without atherosclerosis, we assessed endothelium-dependent vasodilation with acetylcholine (ACH) and endothelium-independent vasodilation with nitroglycerin (NTG) and sodium nitroprusside (SNP) before and after intracoronary NAC. In 14 patients femoral vascular responses to ACH, NTG and SNP were measured before and after NAC. Intraarterial NAC did not change resting coronary or peripheral vascular tone. N-acetylcysteine potentiated ACH-mediated coronary vasodilation; coronary blood flow was 36 +/- 11% higher (p < 0.02), and epicardial diameter changed from -1.2 +/- 2% constriction to 4.7 +/- 2% dilation after NAC (p = 0.03). Acetylcholine-mediated femoral vasodilation was similarly potentiated by NAC (p = 0.001). Augmentation of the ACH response was similar in patients with or without atherosclerosis. N-acetylcysteine did not affect NTG-mediated vasodilation in either the femoral or coronary circulations and did not alter SNP responses in the femoral circulation. In contrast, coronary vasodilation with SNP was significantly greater after NAC (p < 0.05). Thiol supplementation with NAC improves human coronary and peripheral endothelium-dependent vasodilation. Nitroglycerin responses are not enhanced, but SNP-mediated responses are potentiated only in the coronary circulation. These NO-enhancing effects of thiols reflect the importance of the redox state in the control of vascular function and may be of therapeutic benefit in treating acute and chronic manifestations of atherosclerosis.

  15. Emergency department spirometric volume and base deficit delineate risk for torso injury in stable patients

    PubMed Central

    Dunham, C Michael; Sipe, Eilynn K; Peluso, LeeAnn

    2004-01-01

    Background We sought to determine torso injury rates and sensitivities associated with fluid-positive abdominal ultrasound, metabolic acidosis (increased base deficit and lactate), and impaired pulmonary physiology (decreased spirometric volume and PaO2/FiO2). Methods Level I trauma center prospective pilot and post-pilot study (2000–2001) of stable patients. Increased base deficit was < 0.0 in ethanol-negative and ≤ -3.0 in ethanol-positive patients. Increased lactate was > 2.5 mmol/L in ethanol-negative and ≥ 3.0 mmol/L in ethanol-positive patients. Decreased PaO2/FiO2 was < 350 and decreased spirometric volume was < 1.8 L. Results Of 215 patients, 66 (30.7%) had a torso injury (abdominal/pelvic injury n = 35 and/or thoracic injury n = 43). Glasgow Coma Scale score was 14.8 ± 0.5 (13–15). Torso injury rates and sensitivities were: abdominal ultrasound negative and normal base deficit, lactate, PaO2/FiO2, and spirometric volume – 0.0% & 0.0%; normal base deficit and normal spirometric volume – 4.2% & 4.5%; chest/abdominal soft tissue injury – 37.8% & 47.0%; increased lactate – 39.7% & 47.0%; increased base deficit – 41.3% & 75.8%; increased base deficit and/or decreased spirometric volume – 43.8% & 95.5%; decreased PaO2/FiO2 – 48.9% & 33.3%; positive abdominal ultrasound – 62.5% & 7.6%; decreased spirometric volume – 73.4% & 71.2%; increased base deficit and decreased spirometric volume – 82.9% & 51.5%. Conclusions Trauma patients with normal base deficit and spirometric volume are unlikely to have a torso injury. Patients with increased base deficit or lactate, decreased spirometric volume, decreased PaO2/FiO2, or positive FAST have substantial risk for torso injury. Increased base deficit and/or decreased spirometric volume are highly sensitive for torso injury. Base deficit and spirometric volume values are readily available and increase or decrease the suspicion for torso injury. PMID:14731306

  16. Measures used to treat contrast-induced nephropathy: overview of reviews

    PubMed Central

    Kwok, C S; Pang, C L; Yeong, J K; Loke, Y K

    2013-01-01

    Objectives Despite many interventions that have been tried, controversy remains regarding the efficacy of interventions for contrast-induced nephropathy (CIN), so we aimed to evaluate the best evidence from recent meta-analyses. Methods We searched MEDLINE, EMBASE and the Cochrane library for interventions which have been used for CIN. We included only the most recent meta-analysis of each intervention. We extracted data on the methodology, quality and results of each meta-analysis. We performed narrative synthesis and adjusted indirect comparison of interventions that were shown to be statistically significant compared with a placebo. Results We included 7 systematic reviews and meta-analyses involving 9 different interventions for CIN, with a total of 15 976 participants. A significantly decreased risk of CIN was reported in meta-analysis of the following interventions: N-acetylcysteine [odds ratio (OR) 0.65, 95% confidence interval (CI) 0.48–0.88, I2=64%], theophylline [relative risk (RR) 0.48, 95% CI 0.26–0.89, I2=44%], statins (RR 0.51, 95% CI 0.34–0.77, I2=0%) and sodium bicarbonate (RR 0.62, 95% CI 0.45–0.86, I2=49%). Furosemide was shown to increase the risk of CIN (RR 3.27, 95% CI 1.48–7.26, I2=0%). Other interventions such as renal replacement therapy, angiotensin-converting enzyme inhibitors, dopamine and fenoldapam failed to show any significant difference from the control group. Conclusion Although there is some evidence to suggest that N-acetylcysteine, theophylline, sodium bicarbonate and statins may reduce incidence of CIN, limitations in the study quality and heterogeneity preclude any firm recommendations. Advances in knowledge N-acetylcysteine, theophylline, sodium bicarbonate and statins show some promise as potentially efficacious agents for preventing CIN, but more high-quality studies are needed before they can be recommended for use in routine practice. PMID:23239696

  17. N-acetylcysteine inhibits muscle fatigue in humans.

    PubMed Central

    Reid, M B; Stokić, D S; Koch, S M; Khawli, F A; Leis, A A

    1994-01-01

    N-acetylcysteine (NAC) is a nonspecific antioxidant that selectively inhibits acute fatigue of rodent skeletal muscle stimulated at low (but not high) tetanic frequencies and that decreases contractile function of unfatigued muscle in a dose-dependent manner. The present experiments test the hypothesis that NAC pretreatment can inhibit acute muscular fatigue in humans. Healthy volunteers were studied on two occasions each. Subjects were pretreated with NAC 150 mg/kg or 5% dextrose in water by intravenous infusion. The subject then sat in a chair with surface electrodes positioned over the motor point of tibialis anterior, an ankle dorsiflexor of mixed-fiber composition. The muscle was stimulated to contract electrically (40-55 mA, 0.2-ms pulses) and force production was measured. Function of the unfatigued muscle was assessed by measuring the forces produced during maximal voluntary contractions (MVC) of ankle dorsiflexor muscle groups and during electrical stimulation of tibialis anterior at 1, 10, 20, 40, 80, and 120 Hz (protocol 1). Fatigue was produced using repetitive tetanic stimulations at 10 Hz (protocol 1) or 40 Hz (protocol 2); intermittent stimulations subsequently were used to monitor recovery from fatigue. The contralateral leg then was studied using the same protocol. Pretreatment with NAC did not alter the function of unfatigued muscle; MVC performance and the force-frequency relationship of tibialis anterior were unchanged. During fatiguing contractions stimulated at 10 Hz, NAC increased force output by approximately 15% (P < 0.0001), an effect that was evident after 3 min of repetitive contraction (P < 0.0125) and persisted throughout the 30-min protocol. NAC had no effect on fatigue induced using 40 Hz stimuli or on recovery from fatigue. N-acetylcysteine pretreatment can improve performance of human limb muscle during fatiguing exercise, suggesting that oxidative stress plays a causal role in the fatigue process and identifying antioxidant therapy as a novel intervention that may be useful clinically. PMID:7989604

  18. Use of N-acetylcysteine plus simethicone to improve mucosal visibility during upper GI endoscopy: a double-blind, randomized controlled trial.

    PubMed

    Monrroy, Hugo; Vargas, Jose Ignacio; Glasinovic, Esteban; Candia, Roberto; Azúa, Emilio; Gálvez, Camila; Rojas, Camila; Cabrera, Natalia; Vidaurre, Josefa; Álvarez, Natalia; González, Jessica; Espino, Alberto; González, Robinson; Parra-Blanco, Adolfo

    2018-04-01

    Upper GI endoscopy (UGE) is essential for the diagnosis of gastrointestinal diseases. Mucus and bubbles may decrease mucosal visibility. The use of mucolytics could improve visualization. Our aim was to determine whether premedication with simethicone or simethicone plus N-acetylcysteine is effective in improving visibility during UGE. This was a randomized, double-blinded, placebo-controlled trial with 2 control groups: no intervention and water 100 mL (W); and 3 intervention groups: simethicone 200 mg (S); S + N-acetylcysteine (NAC) 500 mg (S+NAC500); and S + NAC 1000 mg (S+NAC1000). The solution was ingested 20 minutes before UGE. Gastric visibility was evaluated in 4 segments with a previously described scale. A score of less than 7 points was defined as adequate visibility (AV). Water volume was used to improve visibility, and adverse reactions were evaluated as a secondary outcome. Multiple group comparison was performed using non-parametric one-way analysis of variance (ANOVA). Two hundred thirty patients were included in the study, 68% female, mean age 49 years. The most common indication for UGE was epigastric pain/dyspepsia (33%). AV was more frequent in the S+NAC500 and S+NAC1000 groups (65% and 67%) compared with no intervention (44%, P = .044) and water (41%, P = .022). The gastric total visibility scale (TVS) was significantly better in the S+NAC500 and S+NAC1000 groups compared with water (P = .03 and P = .008). Simethicone was not different from no intervention and water. S+NAC1000 required less water volume to improve visibility. No adverse reactions from the study drugs were observed. Premedication with S+NAC500 and S+NAC1000 improves visibility during UGE. The use of simethicone did not show improvements in gastric visibility. TVS was worse in patients using water alone. (Clinical trial registration number: NCT 01653171.). Copyright © 2018 American Society for Gastrointestinal Endoscopy. All rights reserved.

  19. Effect of natural antibrowning agents on color and related enzymes in fresh-cut Fuji apples as an alternative to the use of ascorbic acid.

    PubMed

    Rojas-Graü, M A; Soliva-Fortuny, R; Niartín-Belloso, O

    2008-08-01

    Polyphenoloxidase (PPO) and peroxidase (POD) were evaluated in fresh-cut Fuji apple slices and the effeet of the individual or combined use of ascorbic acid, 4-hexylresorcinol, N-acetylcysteine, and glutathione on their respective activities was determined. Additionally, color changes during storage at 4 degrees C were measured throughout 14 d of storage. PPO activity increased with storage time and was inhibited by the individual use of N-acetylcysteine and glutathione. POD activity in the apple slices was effectively inhibited by the combined use of ascorbic acid with any of the other antibrowning agents. On the other hand, an individual treatment with 1% N-acetylcysteine helped in maintaining the color of fresh-cut apples during 14 d of storage, whereas the use of ascorbic acid was not enough to prevent color deterioration of the apple slices from the 1st day of storage. The results obtained corroborated the effectiveness of other natural antibrowning agents over the traditional use of ascorbic acid in the control of the enzymatic browning in the fresh-cut fruit industry.

  20. Spectroscopic study of N-acetylcysteine and N-acetylcystine/hydrogen peroxide complexation

    NASA Astrophysics Data System (ADS)

    Picquart, Michel; Abedinzadeh, Zohreh; Grajcar, Lydie; Baron, Marie Héléne

    1998-03-01

    A spectroscopic study of N-acetylcysteine (RSH) and N-acetylcystine (RSSR) has been performed using infrared absorption and Raman scattering in order to pinpoint the sites of complexation of these two species with H 2O 2. Molecules of RSH and RSSR were studied in KBr pellets, and in aqueous solutions of H 2O, D 2O and H 2O with H 2O 2 (1 mol l -1) to characterize the specific influence of the solvent molecules. A time-resolved Raman study was performed for RSH-H 2O 2 in aqueous solution at 1:1 molar ratio in order to observe the formation of RSSR and to discuss the mechanism of this redox reaction.

  1. Potentiation of lead-induced cell death in PC12 cells by glutamate: Protection by N-acetylcysteine amide (NACA), a novel thiol antioxidant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penugonda, Suman; Mare, Suneetha; Lutz, P.

    2006-10-15

    Oxidative stress has been implicated as an important factor in many neurological diseases. Oxidative toxicity in a number of these conditions is induced by excessive glutamate release and subsequent glutamatergic neuronal stimulation. This, in turn, causes increased generation of reactive oxygen species (ROS), oxidative stress, excitotoxicity, and neuronal damage. Recent studies indicate that the glutamatergic neurotransmitter system is involved in lead-induced neurotoxicity. Therefore, this study aimed to (1) investigate the potential effects of glutamate on lead-induced PC12 cell death and (2) elucidate whether the novel thiol antioxidant N-acetylcysteine amide (NACA) had any protective abilities against such cytotoxicity. Our results suggestmore » that glutamate (1 mM) potentiates lead-induced cytotoxicity by increased generation of ROS, decreased proliferation (MTS), decreased glutathione (GSH) levels, and depletion of cellular adenosine-triphosphate (ATP). Consistent with its ability to decrease ATP levels and induce cell death, lead also increased caspase-3 activity, an effect potentiated by glutamate. Exposure to glutamate and lead elevated the cellular malondialdehyde (MDA) levels and phospholipase-A{sub 2} (PLA{sub 2}) activity and diminished the glutamine synthetase (GS) activity. NACA protected PC12 cells from the cytotoxic effects of glutamate plus lead, as evaluated by MTS assay. NACA reduced the decrease in the cellular ATP levels and restored the intracellular GSH levels. The increased levels of ROS and MDA in glutamate-lead treated cells were significantly decreased by NACA. In conclusion, our data showed that glutamate potentiated the effects of lead-induced PC12 cell death by a mechanism involving mitochondrial dysfunction (ATP depletion) and oxidative stress. NACA had a protective role against the combined toxic effects of glutamate and lead by inhibiting lipid peroxidation and scavenging ROS, thus preserving intracellular GSH.« less

  2. N-acetylcysteine inhibits induction of nitric oxide synthase in 3T3-L1 adipocytes.

    PubMed

    Araki, Shunsuke; Dobashi, Kazushige; Kubo, Kazuyasu; Kawagoe, Rinko; Yamamoto, Yukiyo; Shirahata, Akira

    2007-12-01

    The present study was designed to determine whether N-acetylcysteine (NAC), a potent antioxidant, modulates nitric oxide (NO) production stimulated by lipopolysaccharide (LPS) and tumor necrosis factor-alpha (TNF-alpha) in adipocytes. Stimulation by the combination of 5 microg/ml of LPS and 100 ng/ml of TNF-alpha (LT) significantly enhanced NO production in 3T3-L1 adipocytes. Preincubation of the cells with NAC (5-20 mM) for 24 h suppressed the increased NO production in a dose-dependent manner. The production of NO was decreased by 49% at the concentration of 20 mM of NAC. The decrease in NO production by NAC was accompanied by a decrease in inducible nitric oxide synthase (iNOS) protein, detected by immunoblot analysis, and iNOS mRNA, determined by real-time reverse-transcriptase coupled polymerase chain reaction analysis. Nuclear factor-kappa B (NF-kappa B) was significantly activated by LT-treatment, while the pretreatment with 20 mM of NAC prevented the activity by 42%. Pyrrolidine dithiocarbamate (PDTC), a NF-kappaB inhibitor, also inhibited the LT-mediated NO production dose-dependently. One hundred microM of PDTC inhibited the NO production by 46%. We also investigated the effect of NAC and PDTC on the production of interleukein-6 (IL-6), which is regulated transcriptionally by NF-kappa B in 3T3-L1 adipocytes. IL-6 production was markedly increased by LT stimulus, and the enhanced secretion of IL-6 was suppressed in a dose-dependent manner by pretreatment with NAC or PDTC. These results suggest that NAC regulates iNOS expression and NO production in adipocytes through the modulating activation of NF-kappa B.

  3. N-acetylcysteine reverses cardiac myocyte dysfunction in a rodent model of behavioral stress

    PubMed Central

    Chen, Fangping; Hadfield, Jessalyn M.; Berzingi, Chalak; Hollander, John M.; Miller, Diane B.; Nichols, Cody E.

    2013-01-01

    Compelling clinical reports reveal that behavioral stress alone is sufficient to cause reversible myocardial dysfunction in selected individuals. We developed a rodent stress cardiomyopathy model by a combination of prenatal and postnatal behavioral stresses (Stress). We previously reported a decrease in percent fractional shortening by echo, both systolic and diastolic dysfunction by catheter-based hemodynamics, as well as attenuated hemodynamic and inotropic responses to the β-adrenergic agonist, isoproterenol (ISO) in Stress rats compared with matched controls (Kan H, Birkle D, Jain AC, Failinger C, Xie S, Finkel MS. J Appl Physiol 98: 77–82, 2005). We now report enhanced catecholamine responses to behavioral stress, as evidenced by increased circulating plasma levels of norepinephrine (P < 0.01) and epinephrine (P < 0.01) in Stress rats vs. controls. Cardiac myocytes isolated from Stress rats also reveal evidence of oxidative stress, as indicated by decreased ATP, increased GSSG, and decreased GSH-to-GSSG ratio in the presence of increased GSH peroxidase and catalase activities (P < 0.01, for each). We also report blunted inotropic and intracellular Ca2+ concentration responses to extracellular Ca2+ (P < 0.05), as well as altered inotropic responses to the intracellular calcium regulator, caffeine (20 mM; P < 0.01). Treatment of cardiac myocytes with N-acetylcysteine (NAC) (10−3 M) normalized calcium handling in response to ISO and extracellular Ca2+ concentration and inotropic response to caffeine (P < 0.01, for each). NAC also attenuated the blunted inotropic response to ISO and Ca2+ (P < 0.01, for each). Surprisingly, NAC did not reverse the changes in GSH, GSSG, or GSH-to-GSSG ratio. These data support a GSH-independent salutary effect of NAC on intracellular calcium signaling in this rodent model of stress-induced cardiomyopathy. PMID:23722706

  4. Arterial morphology responds differently to Captopril then N-acetylcysteine in a monocrotaline rat model of pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Molthen, Robert; Wu, Qingping; Baumgardt, Shelley; Kohlhepp, Laura; Shingrani, Rahul; Krenz, Gary

    2010-03-01

    Pulmonary hypertension (PH) is an incurable condition inevitably resulting in death because of increased right heart workload and eventual failure. PH causes pulmonary vascular remodeling, including muscularization of the arteries, and a reduction in the typically large vascular compliance of the pulmonary circulation. We used a rat model of monocrotaline (MCT) induced PH to evaluated and compared Captopril (an angiotensin converting enzyme inhibitor with antioxidant capacity) and N-acetylcysteine (NAC, a mucolytic with a large antioxidant capacity) as possible treatments. Twenty-eight days after MCT injection, the rats were sacrificed and heart, blood, and lungs were studied to measure indices such as right ventricular hypertrophy (RVH), hematocrit, pulmonary vascular resistance (PVR), vessel morphology and biomechanics. We implemented microfocal X-ray computed tomography to image the pulmonary arterial tree at intravascular pressures of 30, 21, 12, and 6 mmHg and then used automated vessel detection and measurement algorithms to perform morphological analysis and estimate the distensibility of the arterial tree. The vessel detection and measurement algorithms quickly and effectively mapped and measured the vascular trees at each intravascular pressure. Monocrotaline treatment, and the ensuing PH, resulted in a significantly decreased arterial distensibility, increased PVR, and tended to decrease the length of the main pulmonary trunk. In rats with PH induced by monocrotaline, Captopril treatment significantly increased arterial distensibility and decrease PVR. NAC treatment did not result in an improvement, it did not significantly increase distensibility and resulted in further increase in PVR. Interestingly, NAC tended to increase peripheral vascular density. The results suggest that arterial distensibility may be more important than distal collateral pathways in maintaining PVR at normally low values.

  5. Pivotal role of glutathione depletion in plasma-induced endothelial oxidative stress during sepsis.

    PubMed

    Huet, Olivier; Cherreau, Christaine; Nicco, Carole; Dupic, Laurent; Conti, Marc; Borderie, Didier; Pene, Frédéric; Vicaut, Eric; Benhamou, Dan; Mira, Jean-Paul; Duranteau, Jacques; Batteux, Frédéric

    2008-08-01

    Plasma from septic shock patients can induce production of reactive oxygen species (ROS) by human umbilical vein endothelial cells (HUVEC) in vitro. How endothelial cells defend themselves against ROS under increased oxidative stress has not yet been examined. This study investigates the antioxidant defenses of HUVEC exposed to plasma obtained from either septic shock patients or healthy volunteers. Prospective, observational study. Medical intensive care unit in a university hospital. Twenty-five patients with septic shock and 10 healthy volunteers. Blood samples were collected within the first 24 hrs of septic shock. In vitro HUVEC production of ROS was studied by spectrofluorimetry using 2',7'-dichlorodihydrofluorescein diacetate fluorescent dye. Reactive nitrogen species were also assessed. Intracellular reduced glutathione (GSH) levels were measured using monochlorobimane fluorescent dye. Activity of catalase and superoxide dismutase in HUVEC were also measured. Cell death was assessed using YOPRO fluorescent dye and the MTT assay. On admission, the septic shock population's mean age was 55 yrs old, the mean Sequential Organ Failure Assessment score was 12, mean simplified acute physiology score was 50, and intensive care unit mortality rate was 45%. Evaluation of HUVEC antioxidant defenses showed a significantly decreased GSH level, increased catalase activity, and unchanged superoxide dismutase activity. ROS levels and cell death were significantly reduced when cells were pretreated with N-acetylcysteine or GSH, but no changes in reactive nitrogen species were observed. This study demonstrates that plasma-induced ROS production by HUVEC is associated with an intracellular decrease in reduced GSH. Both ROS levels and cell death decreased when N-acetylcysteine or GSH were added before exposing the cells to plasma. These data suggest a pivotal role of alterations in GSH in damage caused by sepsis-generated ROS in endothelial cell.

  6. Variations in the milk yield and milk composition of dairy cows during lactation.

    PubMed

    Bedö, S; Nikodémusz, E; Percsich, K; Bárdos, L

    1995-01-01

    Variations in the milk yield and milk composition of a dairy cow colony (n = 23) were analyzed during 11 months of lactation. Milk yield followed a characteristic decreasing pattern in negative correlations with solid components (milk protein, lactose, total solids, milk fat). Titrable acidity (degree SH) was significantly (p < 0.1) higher in the milk of fresh-milking cows and it correlated negatively with lactose and positively with milk protein, milk fat and total solids. The concentrations of Zn, Fe and Cu tended to decrease, while Mn showed insignificant variation during lactation. Milk vitamin A showed a significant positive whilst milk vitamin E had a negative correlation with milk fat.

  7. N-acetylcysteine restores nitric oxide-mediated effects in the fetoplacental circulation of preeclamptic patients.

    PubMed

    Bisseling, Tanya M; Maria Roes, Eva; Raijmakers, Maarten T M; Steegers, Eric A P; Peters, Wilbert H M; Smits, Paul

    2004-07-01

    Preeclampsia is associated with an imbalance between oxidants and antioxidants, resulting in reduced effects of the endothelium-derived, relaxing-factor nitric oxide (NO). Antioxidants, like N-acetylcysteine (NAC), remove reactive oxygen species, resulting in an improvement of endothelial function. We aimed to investigate the effect of NAC on the NO-pathway in the human fetoplacental circulation in preeclampsia and control pregnancies. The NO-pathway was investigated by use of the NO-synthase inhibitor L-NAME in an ex vivo cotyledon perfusion model. At baseline, fetoplacental arterial pressure was comparable in preeclamptic pregnancies (n=8) and control pregnancies (n=8), and increased dose-dependently after L-NAME. The maximal L-NAME-induced rise in fetoplacental arterial pressure was attenuated in preeclamptic versus control pregnancies (20.8 +/- 2.0 mm Hg vs 36.7 +/- 3.5 mm Hg, P<.05). Addition of NAC increased the L-NAME-induced rise in fetoplacental arterial pressure to 36.4 +/- 3.4 mm Hg in preeclampsia pregnancies (P<.05) and to 49.2 +/- 2.6 mm Hg in control pregnancies (P<.05). Preeclampsia is associated with a dysfunction of the NO-pathway. N-acetylcysteine increases NO-mediated effects in the fetoplacental circulation in preeclamptic placentas as well as in healthy control placentas.

  8. Effects of oral N-acetylcysteine on fatigue, critical power, and W' in exercising humans.

    PubMed

    Corn, Sarah D; Barstow, Thomas J

    2011-09-15

    The accumulation of reactive oxygen species (ROS) is associated with muscular fatigue. The antioxidant N-acetylcysteine (NAC) can extend time to fatigue (TTF), but the effect appears to be exercise intensity dependent. The purpose of this study was to determine the effects of an acute oral dose of NAC on time to fatigue (TTF), critical power (CP), W' (curvature constant), V(O2) kinetics and muscle EMG during cycling exercise. Male (n=7) subjects performed four tests at power outputs corresponding to 80, 90, 100, and 110% of the peak power output achieved during the incremental test (Pmax) under NAC and placebo (PLA) conditions. TTF was increased only in the 80% Pmax trial (p=0.033). CP was higher with NAC (NAC: 232±28 W versus PLA: 226±31 W; p=0.032), but W' tended to decrease (NAC: 15.5±3.8 kJ versus W': 16.4±4.5 kJ; p=0.10). The change in W' was negatively related to the change in CP (r = -0.96). MdPF and RMS of EMG tended to change less with NAC. There were no significant differences in V(O2) kinetics. These results demonstrate that oral NAC was successful in extending time to fatigue at 80% Pmax but not at higher work rates. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Amelioration of Paracetamol-Induced Hepatotoxicity in Rat by the Administration of Methanol Extract of Muntingia calabura L. Leaves

    PubMed Central

    Mahmood, N. D.; Mamat, S. S.; Kamisan, F. H.; Yahya, F.; Kamarolzaman, M. F. F.; Nasir, N.; Mohtarrudin, N.; Tohid, S. F. Md.; Zakaria, Z. A.

    2014-01-01

    Muntingia calabura L. is a tropical plant species that belongs to the Elaeocarpaceae family. The present study is aimed at determining the hepatoprotective activity of methanol extract of M. calabura leaves (MEMC) using two models of liver injury in rats. Rats were divided into five groups (n = 6) and received 10% DMSO (negative control), 50 mg/kg N-acetylcysteine (NAC; positive control), or MEMC (50, 250, and 500 mg/kg) orally once daily for 7 days and on the 8th day were subjected to the hepatotoxic induction using paracetamol (PCM). The blood and liver tissues were collected and subjected to biochemical and microscopical analysis. The extract was also subjected to antioxidant study using the 2,2-diphenyl-1-picrylhydrazyl-(DPPH) and superoxide anion-radical scavenging assays. At the same time, oxygen radical antioxidant capacity (ORAC) and total phenolic content were also determined. From the histological observation, lymphocyte infiltration and marked necrosis were observed in PCM-treated groups (negative control), whereas maintenance of hepatic structure was observed in group pretreated with N-acetylcysteine and MEMC. Hepatotoxic rats pretreated with NAC or MEMC exhibited significant decrease (P < 0.05) in ALT and AST enzymes level. Moreover, the extract also exhibited good antioxidant activity. In conclusion, MEMC exerts potential hepatoprotective activity that could be partly attributed to its antioxidant activity and, thus warrants further investigations. PMID:24868543

  10. Effects of feeding birdsfoot trefoil hay on neutral detergent fiber digestion, nitrogen utilization efficiency, and lactational performance by dairy cows.

    PubMed

    Christensen, R G; Yang, S Y; Eun, J-S; Young, A J; Hall, J O; MacAdam, J W

    2015-11-01

    This experiment was conducted to determine effects of feeding birdsfoot trefoil hay-based diets in comparison with an alfalfa hay-based diet on N utilization efficiency, ruminal fermentation, and lactational performance by mid-lactation dairy cows. Nine multiparous lactating Holstein cows (131 ± 22.6 d in milk), 3 of which were rumen fistulated, were fed 3 experimental diets in a replicated 3 × 3 Latin square design with 3 periods of 14 d of adaptation and 7 d of data and sample collection. Within squares, cows were randomly assigned to diets as follows: alfalfa hay-based diet (AHT), alfalfa and birdsfoot trefoil hay-based diet (ABT), and birdsfoot trefoil hay-based diet (BT). Intakes of dry matter and crude protein were similar across treatments, whereas ABT and BT diets resulted in decreased fiber intake compared with AHT. Feeding BT tended to increase neutral detergent fiber digestibility compared with AHT and ABT. Milk yield tended to increase for cows consuming ABT or BT diets. Milk true protein concentration and yield were greater for cows consuming ABT relative to those fed AHT. Concentration of total volatile fatty acids tended to increase by cows fed BT compared with those fed AHT and ABT. Feeding birdsfoot trefoil hay in a total mixed ration resulted in a tendency to decrease acetate proportion, but it tended to increase propionate proportion, leading to a tendency to decrease acetate-to-propionate ratio. Whereas concentration of ammonia-N was similar across treatments, cows offered BT exhibited greater microbial protein yield relative to those fed AHT and ABT. Cows offered birdsfoot trefoil hay diets secreted more milk N than AHT, resulting in improved N utilization efficiency for milk N. The positive effects due to feeding birdsfoot trefoil hay were attributed to enhanced neutral detergent fiber digestion, and thus it could replace alfalfa hay in high-forage dairy diets while improving N utilization efficiencies and maintaining lactational performance compared with alfalfa hay. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Fat content, energy value and fatty acid profile of donkey milk during lactation and implications for human nutrition

    PubMed Central

    2012-01-01

    Background and aims Milk contains numerous nutrients. The content of n-3 fatty acids, the n-6/n-3 ratio, and short- and medium-chain fatty acids may promote positive health effects. In Western societies, cow’s milk fat is perceived as a risk factor for health because it is a source of a high fraction of saturated fatty acids. Recently, there has been increasing interest in donkey’s milk. In this work, the fat and energetic value and acidic composition of donkey’s milk, with reference to human nutrition, and their variations during lactation, were investigated. We also discuss the implications of the acidic profile of donkey’s milk on human nutrition. Methods Individual milk samples from lactating jennies were collected 15, 30, 45, 60, 90, 120, 150, 180 and 210days after foaling, for the analysis of fat, proteins and lactose, which was achieved using an infrared milk analyser, and fatty acids composition by gas chromatography. Results The donkey’s milk was characterised by low fat and energetic (1719.2kJ·kg-1) values, a high polyunsaturated fatty acids (PUFA) content of mainly α-linolenic acid (ALA) and linoleic acid (LA), a low n-6 to n-3 FA ratio or LA/ALA ratio, and advantageous values of atherogenic and thrombogenic indices. Among the minor PUFA, docosahesaenoic (DHA), eicosapentanoic (EPA), and arachidonic (AA) acids were present in very small amounts (<1%). In addition, the AA/EPA ratio was low (0.18). The fat and energetic values decreased (P < 0.01) during lactation. The fatty acid patterns were affected by the lactation stage and showed a decrease (P < 0.01) in saturated fatty acids content and an increase (P < 0.01) in the unsaturated fatty acids content. The n-6 to n-3 ratio and the LA/ALA ratio were approximately 2:1, with values <1 during the last period of lactation, suggesting the more optimal use of milk during this period. Conclusions The high level of unsaturated/saturated fatty acids and PUFA-n3 content and the low n-6/n-3 ratio suggest the use of donkey’s milk as a functional food for human nutrition and its potential utilisation for infant nutrition as well as adult diets, particular for the elderly. PMID:22963037

  12. Prolonged treatment with N-acetylcysteine and L-arginine restores gonadal function in patients with polycystic ovary syndrome.

    PubMed

    Masha, A; Manieri, C; Dinatale, S; Bruno, G A; Ghigo, E; Martina, V

    2009-12-01

    Nitric oxide (NO) plays a wide spectrum of biological actions including a positive role in oocyte maturation and ovulation. Free radicals levels have been shown elevated in polycystic ovary syndrome (PCOS) and therefore would be responsible for quenching NO that, in turn, would play a role in determining oligo- or amenorrhea connoting PCOS. Eight patients with PCOS displaying oligo-amenorrhea from at least 1 yr underwent a combined treatment with N-acetylcysteine (NAC) (1200 mg/die) plus L-arginine (ARG) (1600 mg/die) for 6 months. Menstrual function, glucose and insulin levels, and, in turn, homeostasis model assessment (HOMA) index were monitored. Menstrual function was at some extent restored as indicated by the number of uterine bleedings under treatment (3.00, 0.18-5.83 vs 0.00, 0.00-0.83; p<0.02). Also, a well-defined biphasic pattern in the basal body temperature suggested ovulatory cycles. The HOMA index decreased under treatment (2.12, 1.46-4.42 vs 3.48, 1.62-5.95; p<0.05). In conclusion, this preliminary, open study suggests that prolonged treatment with NAC+ARG might restore gonadal function in PCOS. This effect seems associated to an improvement in insulin sensitivity.

  13. Compatibility and osmolality of inhaled N-acetylcysteine nebulizing solution with fenoterol and ipratropium.

    PubMed

    Lee, Tzung-Yi; Chen, Chi-Ming; Lee, Chun-Nin; Chiang, Yi-Chun; Chen, Hsiang-Yin

    2005-04-15

    The compatibility, pH, and osmolality of N-acetylcysteine (NAC) nebulizing solution in the presence of ipratropium bromide or fenoterol hydrobromide were studied. Portions (400 microL) of each mixture were sampled immediately upon mixing and one, two, three, four, five, six, and seven hours after mixing and assayed by high-performance liquid chromatography. Osmolality was measured by sampling 100 microL from the filling cup at a five-minute interval during nebulization and by the freezing-point-depression method. Adding NAC solution to fenoterol solution raised the pH from 3.20 to 7.90 and the osmolality to a mean +/- S.D. of 1400.67 +/- 4.51 mOsm/kg. Fenoterol concentrations decreased to 93.71% and NAC concentrations to 92.54% of initial concentrations after seven hours. Mixing ipratropium with NAC solution raised the pH from 3.74 to 7.95 and the osmolality to a mean +/- S.D. of 1413 +/- 11.79 mOsm/kg. The initial ipratropium concentration declined 7.39% and 10.91% one and two hours after mixing with NAC solution, respectively. NAC and ipratropium were stable in nebulizing solution within one hour of mixing. NAC and fenoterol were compatible for at least seven hours.

  14. Sex-specific effects of N-acetylcysteine in neonatal rats treated with hypothermia after severe hypoxia-ischemia.

    PubMed

    Nie, Xingju; Lowe, Danielle W; Rollins, Laura Grace; Bentzley, Jessica; Fraser, Jamie L; Martin, Renee; Singh, Inderjit; Jenkins, Dorothea

    2016-07-01

    Approximately half of moderate to severely hypoxic-ischemic (HI) newborns do not respond to hypothermia, the only proven neuroprotective treatment. N-acetylcysteine (NAC), an antioxidant and glutathione precursor, shows promise for neuroprotection in combination with hypothermia, mitigating post-HI neuroinflammation due to oxidative stress. As mechanisms of HI injury and cell death differ in males and females, sex differences must be considered in translational research of neuroprotection. We assessed the potential toxicity and efficacy of NAC in combination with hypothermia, in male and female neonatal rats after severe HI injury. NAC 50mg/kg/d administered 1h after initiation of hypothermia significantly decreased iNOS expression and caspase 3 activation in the injured hemisphere versus hypothermia alone. However, only females treated with hypothermia +NAC 50mg/kg showed improvement in short-term infarct volumes compared with saline treated animals. Hypothermia alone had no effect in this severe model. When NAC was continued for 6 weeks, significant improvement in long-term neuromotor outcomes over hypothermia treatment alone was observed, controlling for sex. Antioxidants may provide insufficient neuroprotection after HI for neonatal males in the short term, while long-term therapy may benefit both sexes. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  15. Colonic and Hepatic Modulation by Lipoic Acid and/or N-Acetylcysteine Supplementation in Mild Ulcerative Colitis Induced by Dextran Sodium Sulfate in Rats

    PubMed Central

    Moura, Fabiana Andréa; de Andrade, Kívia Queiroz; de Araújo, Orlando Roberto Pimentel; Santos, Juliana Célia de Farias

    2016-01-01

    Lipoic acid (LA) and N-acetylcysteine (NAC) are antioxidant and anti-inflammatory agents that have not yet been tested on mild ulcerative colitis (UC). This study aims to evaluate the action of LA and/or NAC, on oxidative stress and inflammation markers in colonic and hepatic rat tissues with mild UC, induced by dextran sodium sulfate (DSS) (2% w/v). LA and/or NAC (100 mg·kg·day−1, each) were given, once a day, in the diet, in a pretreatment phase (7 days) and during UC induction (5 days). Colitis induction was confirmed by histological and biochemical analyses (high performance liquid chromatography, spectrophotometry, and Multiplex®). A redox imbalance occurred before an immunological disruption in the colon. NAC led to a decrease in hydrogen peroxide (H2O2), malondialdehyde (MDA) levels, and myeloperoxidase activity. In the liver, DSS did not cause damage but treatments with both antioxidants were potentially harmful, with LA increasing MDA and LA + NAC increasing H2O2, tumor necrosis factor alpha, interferon gamma, and transaminases. In summary, NAC exhibited the highest colonic antioxidant and anti-inflammatory activity, while LA + NAC caused hepatic damage. PMID:27957238

  16. Targeting Glia with N-Acetylcysteine Modulates Brain Glutamate and Behaviors Relevant to Neurodevelopmental Disorders in C57BL/6J Mice

    PubMed Central

    Durieux, Alice M. S.; Fernandes, Cathy; Murphy, Declan; Labouesse, Marie Anais; Giovanoli, Sandra; Meyer, Urs; Li, Qi; So, Po-Wah; McAlonan, Grainne

    2015-01-01

    An imbalance between excitatory (E) glutamate and inhibitory (I) GABA transmission may underlie neurodevelopmental conditions such as autism spectrum disorder (ASD) and schizophrenia. This may be direct, through alterations in synaptic genes, but there is increasing evidence for the importance of indirect modulation of E/I balance through glial mechanisms. Here, we used C57BL/6J mice to test the hypothesis that striatal glutamate levels can be shifted by N-acetylcysteine (NAC), which acts at the cystine-glutamate antiporter of glial cells. Striatal glutamate was quantified in vivo using proton magnetic resonance spectroscopy. The effect of NAC on behaviors relevant to ASD was examined in a separate cohort. NAC induced a time-dependent decrease in striatal glutamate, which recapitulated findings of lower striatal glutamate reported in ASD. NAC-treated animals were significantly less active and more anxious in the open field test; and NAC-treated females had significantly impaired prepulse inhibition of startle response. This at least partly mimics greater anxiety and impaired sensorimotor gating reported in neurodevelopmental disorders. Thus glial mechanisms regulate glutamate acutely and have functional consequences even in adulthood. Glial cells may be a potential drug target for the development of new therapies for neurodevelopmental disorders across the life-span. PMID:26696857

  17. Impact of N-acetylcysteine and sesame oil on lipid metabolism and hypothalamic-pituitary-adrenal axis homeostasis in middle-aged hypercholesterolemic mice

    PubMed Central

    Korou, Laskarina-Maria; Agrogiannis, George; Koros, Christos; Kitraki, Efthimia; Vlachos, Ioannis S.; Tzanetakou, Irene; Karatzas, Theodore; Pergialiotis, Vasilios; Dimitroulis, Dimitrios; Perrea, Despina N.

    2014-01-01

    Hyperlipidemia and stress are important factors affecting cardiovascular health in middle-aged individuals. We investigated the effects of N-acetylcysteine (NAC) and sesame oil on the lipidemic status, liver architecture and the hypothalamic-pituitary-adrenal (HPA) axis of middle-aged mice fed a cholesterol-enriched diet. We randomized 36 middle-aged C57bl/6 mice into 6 groups: a control group, a cholesterol/cholic acid diet group, a cholesterol/cholic acid diet group with NAC supplementation, a cholesterol/cholic acid diet enriched with 10% sesame oil and two groups receiving a control diet enriched with NAC or sesame oil. NAC administration prevented the onset of the disturbed lipid profile, exhibiting decreased lipid peroxidation and alkaline phosphatase (ALP) levels, restored nitric oxide bioavailability and reduced hepatic damage, compared to non-supplemented groups. High-cholesterol feeding resulted in increased hypothalamic glucocorticoid receptors (GR) levels, while NAC supplementation prevented this effect. NAC supplementation presented significant antioxidant capacity by means of preventing serum lipid status alterations, hepatic damage, and HPA axis disturbance due to high-cholesterol feeding in middle-aged mice. These findings suggest a beneficial preventive action of plant-derived antioxidants, such as NAC, on lipid metabolism and on the HPA axis. PMID:25348324

  18. Small molecular antioxidants effectively protect from PUVA-induced oxidative stress responses underlying fibroblast senescence and photoaging.

    PubMed

    Briganti, Stefania; Wlaschek, Meinhard; Hinrichs, Christina; Bellei, Barbara; Flori, Enrica; Treiber, Nicolai; Iben, Sebastian; Picardo, Mauro; Scharffetter-Kochanek, Karin

    2008-09-01

    Exposure of human fibroblasts to 8-methoxypsoralen plus ultraviolet-A irradiation (PUVA) results in stress-induced cellular senescence in fibroblasts. We here studied the role of the antioxidant defense system in the accumulation of reactive oxygen species (ROS) and the effect of the antioxidants alpha-tocopherol, N-acetylcysteine, and alpha-lipoic acid on PUVA-induced cellular senescence. PUVA treatment induced an immediate and increasing generation of intracellular ROS. Supplementation of PUVA-treated fibroblasts with alpha-tocopherol (alpha-Toc), N-acetylcysteine (NAC), or alpha-lipoic acid (alpha-LA) abrogated the increased ROS generation and rescued fibroblasts from the ROS-dependent changes into the cellular senescence phenotype, such as cytoplasmic enlargement, enhanced expression of senescence-associated-beta-galactosidase and matrix-metalloproteinase-1, hallmarks of photoaging and intrinsic aging. PUVA treatment disrupted the integrity of cellular membranes and impaired homeostasis and function of the cellular antioxidant system with a significant decrease in glutathione and hydrogen peroxide-detoxifying enzymes activities. Supplementation with NAC, alpha-LA, and alpha-Toc counteracted these changes. Our data provide causal evidence that (i) oxidative stress due to an imbalance in the overall cellular antioxidant capacity contributes to the induction and maintenance of the PUVA-induced fibroblast senescence and that (ii) low molecular antioxidants protect effectively against these deleterious alterations.

  19. Experimental and clinical evidence for modification of hepatic ischaemia–reperfusion injury by N-acetylcysteine during major liver surgery

    PubMed Central

    Jegatheeswaran, Santhalingam; Siriwardena, Ajith K

    2011-01-01

    Background Hepatic ischaemia–reperfusion (I/R) injury occurs in both liver resectional surgery and in transplantation. The biochemistry of I/R injury involves short-lived oxygen free radicals. N-acetylcysteine (NAC) is a thiol-containing synthetic compound used in the treatment of acetaminophen toxicity. The present study is a detailed overview of the experimental and clinical evidence for the use of NAC as a pharmaco-protection agent in patients undergoing major liver surgery or transplantation. Methods A computerized search of the Medline, Embase and SCI databases for the period from 1st January 1988 to 31st December 2008 produced 40 reports. For clinical studies, the quality of reports was assessed according to the criteria reported by the Cochrane communication review group. Results Nineteen studies evaluated NAC in experimental liver I/R injury. NAC was administered before induction of ischaemia in 13. The most widely used concentration was 150 mg/kg by intravenous bolus. Fifteen studies report an improvement in outcome, predominantly a reduction in transaminase. Seven studies used an isolated perfused liver model with all showing improvement (predominantly an improvement in bile production after N-acetylcysteine). Two out of four transplantation models showed an improvement in hepatic function. Clinical studies in transplantation show a modest improvement in transaminase levels with no beneficial effect on either patient or graft survival. Conclusion N-acetylcysteine, given before induction of a liver I/R injury in an experimental model can ameliorate liver injury. Clinical outcome data are limited and there is currently little evidence to justify use either in liver transplantation or in liver resectional surgery. PMID:21241423

  20. Efficacy of simethicone and N-acetylcysteine as premedication in improving visibility during upper endoscopy.

    PubMed

    Chang, Wei-Kuo; Yeh, Ming-Kung; Hsu, Hsuang-Chun; Chen, Hsuan-Wei; Hu, Ming-Kuan

    2014-04-01

    Simethicone and N-acetylcysteine have been widely used in improving endoscopic visibility. However, the optimal dose, volume, and dosing time for the premedication regimen are still unclear. Our aim was to assess the efficacy of premedication in improving endoscopic visibility and determine the contributions of dose, volume, and premedication time. A total of 1849 patients were prospectively treated in three groups: group A: 100-mg simethicone suspension in 5 mL water; group B: 100-mg simethicone suspension in 100 mL water; and group C: 100-mg simethicone suspension in 100 mL water containing 200 mg N-acetylcysteine. Mucosa visibility was assessed at seven sites of upper gastrointestinal tract. The sum of scores was considered as total mucosal visibility score (TMVS). The upper body of stomach had the worst visibility score for all groups. TMVS of groups B and C were significantly lower than those of group A. Group C had a significantly fewer patients requiring endoscopic flushing than groups A and B. The TMVS for groups B and C were significantly lower than for group A within 30 min of beginning premedication. Beyond 30 min of premedication, there was no significant difference in the TMVS among groups. Premedication using 100 mg simethicone in 100 mL of water improves endoscopic visibility. Addition of N-acetylcysteine to simethicone in 100 mL of water reduces the need for endoscopic flushing. For patients unable to tolerate a large fluid volume, a 5-mL simethicone suspension administered more than 30 min prior to upper endoscopy is suggested. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  1. Energy intake and expenditure of free-living, lactating Colombian women in an urban setting.

    PubMed

    Dufour, D L; Reina, J C; Spurr, G B

    2002-03-01

    To examine the components of energy balance during lactation in a population of economically disadvantaged women in an urban developing country setting in order to better understand the metabolic response to lactation. Cross-sectional comparison of lactating (LACT) and non-pregnant non-lactating (NPNL) women. Body size and composition were assessed via anthropometry, energy intake was measured using estimated diet records and energy expenditure using indirect calorimetry and the Flex-Heart Rate method. Low-income neighborhoods of Cali, Colombia. Lactating women (n=15) studied at 2.4+/-0.8, 5.5+/-0.8 and 8.9+/-1.2 months postpartum, and NPNL women (n=48) studied in three measurement rounds at 0, 3.5+/-0.6 and 7.1+/-1.0 months. There were no significant differences between LACT and NPNL women in anthropometric dimensions, but LACT women showed decreases in waist-hip ratio, lean body mass and increases in mid-arm circumference and percentage body fat with time. Energy intake was higher in LACT women (P=0.04), but there were no significant between-group differences in energy expenditure variables. This group of women met the cost of lactation principally via increased energy intake.

  2. Protective effect of 20-hydroxyeicosatetraenoic acid (20-HETE) on adriamycin-induced toxicity of human renal tubular epithelial cell (HK-2).

    PubMed

    Tian, Ting; Li, Jin; Wang, Meng-Ying; Xie, Xian-Fei; Li, Qi-Xiong

    2012-05-15

    20-Hydroxyeicosatetraenoic acid is a cytochrome P4504A11 metabolite of arachidonic acid that plays an important role in the regulation of human renal functions. In the present study, we investigated the role of 20-hydroxyeicosatetraenoic acid on adriamycin induced toxicity in human renal tubular epithelial cells. Results showed that cell viability was decreased significantly and lactate dehydrogenase activity was increased significantly in a concentration-dependent manner when human renal tubular epithelial cells were incubated with adriamycin (10⁻⁷-10⁻³ mol/l) for 24h. In contrast, 20-hydroxyeicosatetraenoic acid (0.1, 1, 10, 50 μmol/l) increased cell survival and decreased lactate dehydrogenase activity concentration dependently in human renal tubular epithelial cells. When 20-hydroxyeicosatetraenoic acid (10, 50 μmol/l) was co-administered with adriamycin (10⁻³ mol/l), it significantly increased cell viability and decreased lactate dehydrogenase activity. On the other hand, N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine (HET-0016) (1 μM), a selective inhibitor of 20-hydroxyeicosatetraenoic acid synthesizing enzyme exaggerated cell viability reduction and lactate dehydrogenase activity augmentation induced by adriamycin. Adriamycin suppressed the expression of cytochrome P4504A11 gene and its protein production in human renal tubular epithelial cells. Furthermore, adriamycin was more effective than N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine at lowering the expression of cytochrome P4504A11 gene and its protein. These results suggest that 20-hydroxyeicosatetraenoic acid may protect adriamycin-induced toxicity of human renal tubular epithelial cells, meanwhile, adriamycin-induced toxicity of human renal tubular epithelial cells possibly involves inhibiting cytochrome P4504A11 expression. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  3. Prediction of ammonia emission from dairy cattle manure based on milk urea nitrogen: relation of milk urea nitrogen to urine urea nitrogen excretion.

    PubMed

    Burgos, S A; Fadel, J G; Depeters, E J

    2007-12-01

    The objectives of this study were to assess the relationship between urinary urea N (UUN) excretion (g/d) and milk urea N (MUN; mg/dL) and to test whether the relationship was affected by stage of lactation and the dietary crude protein (CP) content. Twelve lactating multiparous Holstein cows were randomly selected and blocked into 3 groups of 4 cows intended to represent early [123 +/- 26 d in milk (DIM); mean +/- standard deviation], mid (175 +/- 3 DIM), and late (221 +/- 12 DIM) lactation stages. Cows within each stage of lactation were randomly assigned to a treatment sequence within a split-plot Latin square balanced for carryover effects. Stage of lactation formed the main plots (squares) and dietary CP levels (15, 17, 19, and 21% of diet dry matter) formed the subplots. Graded amounts of urea were added to the basal total mixed ration to linearly increase dietary CP content while maintaining similar concentrations of all other nutrients among treatments. The experimental periods lasted 7 d, with d 1 to 6 used for adjustment to diets and d 7 used for total collection of urine as well as milk and blood sample collection. Dry matter intake and yields of milk, fat, protein, and lactose declined progressively with lactation stage and were unaffected by dietary CP content. Milk and plasma urea-N as well as UUN concentration and excretion increased in response to dietary CP content. Milk and urine urea-N concentration rose at increasing and decreasing rates, respectively, as a function of plasma urea-N. The renal urea-N clearance rate differed among lactation stages and dietary CP contents. The relationship between UUN excretion and MUN differed among lactation stages and diverged from linearity for cows in early and late lactation. However, these differences were restricted to very high MUN concentrations. Milk urea N may be a useful tool to predict the UUN excretion and ultimately NH(3) emission from dairy cattle manure.

  4. Flaxseed oil during lactation changes milk and body composition in male and female suckling pups rats.

    PubMed

    Guarda, Deysla Sabino; Lisboa, Patricia Cristina; de Oliveira, Elaine; Nogueira-Neto, José Firmino; de Moura, Egberto Gaspar; Figueiredo, Mariana Sarto

    2014-07-01

    We have reported several changes in neonate or adult offspring after the maternal use of whole flaxseed or its components. However, it is unknown the use of higher oil intake in the neonatal period. Here we evaluated the effects of high maternal intake of flaxseed oil during lactation upon milk and body composition in male and female offspring. Lactating rats were divided into: (1) control (C, n=10), 7% soybean oil; (2) hyper 19% soybean oil (HS, n=10); and (3) hyper 17% flaxseed oil+2% soybean oil (HF, n=10). Dams and offspring were killed at weaning. HS and HF dams, male and female offspring presented lower body weight during lactation. HF mothers presented lower body and visceral fat masses. HF male offspring presented lower body and subcutaneous fat masses. HS and HF milk presented lower triglycerides (TG) and cholesterol. HF male and female offspring showed lower triglyceridemia and insulinemia, but no changes in glycemia and leptinemia. The higher intake of flaxseed oil during lactation reduced the body weight of mothers and offspring, decreases milk lipids and apparently increases insulin sensitivity in this critical period of life. Those changes may explain the previously reported programming effect of maternal flaxseed intake during lactation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effect of Lactation on myocardial vulnerability to ischemic insult in rats

    PubMed Central

    Askari, Sahar; Imani, Alireza; Sadeghipour, Hamidreza; Faghihi, Mahdieh; Edalatyzadeh, Zohreh; Choopani, Samira; Karimi, Nasser; Fatima, Sulail

    2017-01-01

    Background Cardiovascular diseases are the leading cause of mortality and long-term disability worldwide. Various studies have suggested a protective effect of lactation in reducing the risk of cardiovascular diseases. Objective This study was designed to assess the effects of pregnancy and lactation on the vulnerability of the myocardium to an ischemic insult. Methods Eighteen female rats were randomly divided into three groups: ischemia-reperfusion (IR), in which the hearts of virgin rats underwent IR (n = 6); lactating, in which the rats nursed their pups for 3 weeks and the maternal hearts were then submitted to IR (n = 6); and non-lactating, in which the pups were separated after birth and the maternal hearts were submitted to IR (n = 6). Outcome measures included heart rate (HR), left ventricular developed pressure (LVDP), rate pressure product (RPP), ratio of the infarct size to the area at risk (IS/AAR %), and ventricular arrhythmias - premature ventricular contraction (PVC) and ventricular tachycardia (VT). Results The IS/AAR was markedly decreased in the lactating group when compared with the non-lactating group (13.2 ± 2.5 versus 39.7 ± 3.5, p < 0.001) and the IR group (13.2 ± 2.5 versus 34.0 ± 4.7, p < 0.05). The evaluation of IR-induced ventricular arrhythmias indicated that the number of compound PVCs during ischemia, and the number and duration of VTs during ischemia and in the first 5 minutes of reperfusion in the non-lactating group were significantly (p < 0.05) higher than those in the lactating and IR groups. Conclusion Lactation induced early-onset cardioprotective effects, while rats that were not allowed to nurse their pups were more susceptible to myocardial IR injury. PMID:28444063

  6. Reducing crude protein and rumen degradable protein with a constant concentration of rumen undegradable protein in the diet of dairy cows: Production performance, nutrient digestibility, nitrogen efficiency, and blood metabolites.

    PubMed

    Bahrami-Yekdangi, M; Ghorbani, G R; Khorvash, M; Khan, M A; Ghaffari, M H

    2016-02-01

    The goals of ruminant protein nutrition are to provide adequate amounts of RDP for optimal ruminal efficiency and to obtain the desired animal productivity with a minimum amount of dietary CP. The aim of the present study was to examine effects of decreasing dietary protein by decreasing RDP with the optimum concentration of RUP on production performance, nutrient digestibility, N retention, rumen fermentation parameters, and blood metabolites in high-producing Holstein cows in early lactation. Nine multiparous lactating cows (second parities, averaging 50 ± 12 d in milk and milk yield of 48 ± 5 kg/d) were used in a triplicate 3 × 3 Latin square design with 3 rations: 1) a total mixed ration (TMR) containing 16.4% CP (10.9% RDP based on DM), 2) a TMR containing 15.6% CP (10% RDP), and 3) a TMR containing 14.8% CP (9.3% RDP). The level of RUP was constant at 5.5% DM across the treatments. All diets were calculated to supply a postruminal lysine to methionine ratio of about 3:1. Dry matter intake, milk yield and composition, 4% fat-corrected milk, and energy-corrected milk were not significantly affected by decreasing dietary CP and RDP levels. Cows fed 16.4% CP diets had greater ( < 0.01) CP and RDP intakes, which resulted in a trend toward greater concentrations of plasma urea N compared with other treatments. Daily N intake linearly decreased ( < 0.01) with decreasing dietary CP and RDP levels, whereas the intake of RUP and fecal N excretion (g/d) did not change. Apparent digestibility of nutrients, ruminal pH, and NH-N concentration were not affected with decreasing dietary CP and RDP levels. Apparent N efficiency increased, and RDP N intake and predicted urine N output decreased with decreased concentration of dietary CP and RDP in the diets ( < 0.01). Blood metabolites were not affected by treatments. In conclusion, to improve the efficiency of N utilization by early-lactation dairy cows, 9.3% RDP in rations provides adequate protein to optimize milk production while minimizing N excretion in urine when the amounts of lysine and methionine and the lysine to methionine ratio are balanced with sufficient dietary RUP.

  7. Antimicrobial Activity of Penicillin G and N-acetylcystein on Planktonic and Sessile Cells of Streptococcus suis.

    PubMed

    Espinosa, Ivette; Báez, Michel; Lobo, Evelyn; Martínez, Siomara; Gottschalk, Marcelo

    2016-01-01

    The aim of this study was to investigate the capacity of Streptococcus suis strains to form biofilms and to evaluate the antimicrobial activity of Penicillin G and N-acetylcystein (NAC) on both S. suis sessile and planktonic forms. Only non-typeable isolates of S. suis were correlated with a greater biofilm formation capacity. The MCI of Penicillin G and NAC required for inhibiting biofilm growth were higher than the required concentration for inhibiting planktonic growth. The combinations of NAC and Penicillin G showed a strong synergistic activity that inhibited biofilm formation and disrupted the pre-formed biofilm of S. suis.

  8. Acute, but not Chronic, Exposure to Arsenic Provokes Glucose Intolerance in Rats: Possible Roles for Oxidative Stress and the Adrenergic Pathway.

    PubMed

    Rezaei, Mohsen; Khodayar, Mohammd Javad; Seydi, Enayatollah; Soheila, Alboghobeish; Parsi, Isa Kazemzadeh

    2017-06-01

    Health problems due to heavy metals have become a worldwide concern. Along with its carcinogenicity, arsenic exposure results in impairment of glucose metabolism and insulin secretion as well as altered gene expression and signal transduction. However, the exact mechanism behind the behaviour of arsenic on glucose homeostasis and insulin secretion has not yet been fully understood. Fasting blood sugar and glucose tolerance tests were evaluated. In this study, we demonstrated that arsenic, when acutely administered, induced glucose intolerance in rats, although its chronic oral exposure did not provoke any glucose intolerance or hyperglycemia in rats. The protective activity of N-acetylcysteine, carvedilol and propranolol in male rats exposed to arsenic were also assessed, and N-acetylcysteine, particularly at 40 and 80 mg/kg, prevented the glucose intolerance induced in rats by arsenic. The present study showed that acute, but not chronic, contact with arsenic generates significant changes in the normal glucose tolerance pattern that may be due fundamentally to overproduction of reactive oxygen species and oxidative stress and is preventable by using N-acetylcysteine, a thiol-containing antioxidant. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  9. Reduction of estrogen-induced transformation of mouse mammary epithelial cells by N-acetylcysteine

    PubMed Central

    Venugopal, Divya; Zahid, Muhammad; Mailander, Paula C; Meza, Jane L.; Rogan, Eleanor G.; Cavalieri, Ercole L.; Chakravarti, Dhrubajyoti

    2009-01-01

    A growing number of studies indicate that breast cancer initiation is related to abnormal estrogen oxidation to form an excess of estrogen-3,4-quinones, which react with DNA to form depurinating adducts and induce mutations. This mechanism is often called estrogen genotoxicity. 4-catechol estrogens, precursors of the estrogen-3,4-quinones, were previously shown to account for most of the transforming and tumorigenic activity. We examined whether estrogen-induced transformation can be reduced by inhibiting the oxidation of a 4-catechol estrogen to its quinone. We demonstrate that E6 cells (a normal mouse epithelial cell line) can be transformed by a single treatment with a catechol estrogen or its quinone. The transforming activities of 4-hydroxyestradiol and estradiol-3,4-quinone were comparable. N-acetylcysteine, a common antioxidant, inhibited the oxidation of 4-hydroxyestradiol to the quinone and consequent formation of DNA adducts. It also drastically reduced estrogen-induced transformation of E6 cells. These results strongly implicate estrogen genotoxicity in mammary cell transformation. Since N-acetylcysteine is well-tolerated in clinical studies, it may be a promising candidate for breast cancer prevention. PMID:18226522

  10. Assessing the effects of melatonin and N-acetylcysteine on the McFarlane flap using a rat model

    PubMed Central

    Tunç, Süphan; Kesiktas, Erol; Yilmaz, Yeliz; Açikalin, Arbil; Oran, Gökçen; Yavuz, Metin; Gencel, Eyüphan; Eser, Cengiz

    2016-01-01

    OBJECTIVE To determine the effects of N-acetylcysteine (NAC) and melatonin, alone and in combination, on McFarlane flap viability in a rat model. METHODS Forty Wistar rats were divided into four groups and received daily intraperitoneal injections for one week before surgery: control (sham [n=10]); melatonin (n=10); NAC (n=10); and NAC+melatonin (n=10). One week after surgery, the experiment was terminated and photographs were taken for topographic studies. A transillumination study was performed to observe vascularization in the flaps and biopsies were obtained for histopathological studies. RESULTS Flap viability was significantly greater in the antioxidant- (ie, NAC and melatonin) treated groups compared with the control group; however, there were no significant differences among the groups that received antioxidants. CONCLUSIONS Melatonin and NAC are important antioxidants that can be used alone or in combination to increase flap viability and prevent distal necrosis in rats. PMID:28439512

  11. N-Acetylcysteine-induced vasodilatation is modulated by KATP channels, Na+/K+-ATPase activity and intracellular calcium concentration: An in vitro study.

    PubMed

    Vezir, Özden; Çömelekoğlu, Ülkü; Sucu, Nehir; Yalın, Ali Erdinç; Yılmaz, Şakir Necat; Yalın, Serap; Söğüt, Fatma; Yaman, Selma; Kibar, Kezban; Akkapulu, Merih; Koç, Meryem İlkay; Seçer, Didem

    2017-08-01

    In this study, we aimed to investigate the role of ATP-sensitive potassium (K ATP ) channel, Na + /K + -ATPase activity, and intracellular calcium levels on the vasodilatory effect of N-acetylcysteine (NAC) in thoracic aorta by using electrophysiological and molecular techniques. Rat thoracic aorta ring preparations and cultured thoracic aorta cells were divided into four groups as control, 2mM NAC, 5mM NAC, and 10mM NAC. Thoracic aorta rings were isolated from rats for measurements of relaxation responses and Na + /K + -ATPase activity. In the cultured thoracic aorta cells, we measured the currents of K ATP channel, the concentration of intracellular calcium and mRNA expression level of K ATP channel subunits (KCNJ8, KCNJ11, ABCC8 and ABCC9). The relaxation rate significantly increased in all NAC groups compared to control. Similarly, Na + /K + - ATPase activity also significantly decreased in NAC groups. Outward K ATP channel current significantly increased in all NAC groups compared to the control group. Intracellular calcium concentration decreased significantly in all groups with compared control. mRNA expression level of ABCC8 subunit significantly increased in all NAC groups compared to the control group. Pearson correlation analysis showed that relaxation rate was significantly associated with K ATP current, intracellular calcium concentration, Na + /K + -ATPase activity and mRNA expression level of ABCC8 subunit. Our findings suggest that NAC relaxes vascular smooth muscle cells through a direct effect on K ATP channels, by increasing outward K+ flux, partly by increasing mRNA expression of K ATP subunit ABCC8, by decreasing in intracellular calcium and by decreasing in Na + /K + -ATPase activity. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  12. Ecstasy induces reactive oxygen species, kidney water absorption and rhabdomyolysis in normal rats. Effect of N-acetylcysteine and Allopurinol in oxidative stress and muscle fiber damage

    PubMed Central

    de Bragança, Ana C.; Moreau, Regina L. M.; de Brito, Thales; Shimizu, Maria H. M.; Canale, Daniele; de Jesus, Denise A.; Silva, Ana M. G.; Gois, Pedro H.; Seguro, Antonio C.

    2017-01-01

    Background Ecstasy (Ec) use produces hyperthermia, excessive sweating, intense thirst, an inappropriate antidiuretic hormone secretion (SIADH) and a multisystemic toxicity due to oxidative stress (OS). Intense thirst induces high intake of pure water, which associated with SIADH, usually develops into acute hyponatremia (Hn). As Hn is induced rapidly, experiments to check if Ec acted directly on the Inner Medullary Collecting Ducts (IMCD) of rats were conducted. Rhabdomyolysis and OS were also studied because Ec is known to induce Reactive Oxygen Species (ROS) and tissue damage. To decrease OS, the antioxidant inhibitors N-acetylcysteine (NAC) and Allopurinol (Allo) were used. Methods Rats were maintained on a lithium (Li) diet to block the Vasopressin action before Ec innoculation. AQP2 (Aquaporin 2), ENaC (Epitheliun Sodium Channel) and NKCC2 (Sodium, Potassium, 2 Chloride) expression were determined by Western Blot in isolated IMCDs. The TBARS (thiobarbituric acid reactive substances) and GSH (reduced form of Glutathione) were determined in the Ec group (6 rats injected with Ec-10mg/kg), in Ec+NAC groups (NAC 100mg/Kg/bw i.p.) and in Allo+Ec groups (Allo 50mg/Kg/i.p.). Results Enhanced AQP2 expression revealed that Ec increased water transporter expression, decreased by Li diet, but the expression of the tubular transporters did not change. The Ec, Ec+NAC and Allo+Ec results showed that Ec increased TBARS and decreased GSH, showing evidence of ROS occurrence, which was protected by NAC and Allo. Rhabdomyolysis was only protected by Allo. Conclusion Results showed that Ec induced an increase in AQP2 expression, evidencing another mechanism that might contribute to cause rapid hyponatremia. In addition, they showed that NAC and Allo protected against OS, but only Allo decreased rhabdomyolysis and hyperthermia. PMID:28678861

  13. Effect of inhaled N-acetylcysteine monotherapy on lung function and redox balance in idiopathic pulmonary fibrosis.

    PubMed

    Muramatsu, Yoko; Sugino, Keishi; Ishida, Fumiaki; Tatebe, Junko; Morita, Toshisuke; Homma, Sakae

    2016-05-01

    An oxidant-antioxidant imbalance is considered to be involved in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Therefore, administration of antioxidants, such as N-acetylcysteine (NAC), may represent a potential treatment option for IPF patients. The aim of this study was to evaluate the effect of inhaled NAC monotherapy on lung function and redox balance in patients with IPF. A retrospective observational study was done, involving 22 patients with untreated early IPF (19 men; mean [±S.D.] age, 71.8 [±6.3]y). At baseline and at 6 and 12 months after initiating inhaled NAC monotherapy, we assessed forced vital capacity (FVC) and measured the levels of total glutathione, oxidized glutathione (GSSG), and the ratio of reduced to oxidized glutathione in whole blood (hereafter referred to as the ratio), and of 8-hydroxy-2'-deoxyguanosine in urine. To evaluate response to treatment, we defined disease progression as a decrease in FVC of ≥5% from baseline and stable disease as a decrease in FVC of <5%, over a period of 6 months. Change in FVC in the stable group at 6 and 12 months were 95±170mL and -70±120mL, while those in the progressive group at 6 and 12 months were -210±80mL, -320±350mL, respectively. The serial mean change in GSSG from baseline decreased as the ratio of reduced to oxidized glutathione increased in patients with stable disease, while it increased as this ratio decreased in patients with progressive disease. Receiver operating characteristic curve analysis revealed that a baseline GSSG level of ≥1.579μM was optimal for identifying treatment responders. Inhaled NAC monotherapy was associated with improved redox imbalance in patients with early IPF. Copyright © 2015 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  14. Stress reactivity to and recovery from a standardised exercise bout: a study of 31 runners practising relaxation techniques

    PubMed Central

    Solberg, E; Ingjer, F; Holen, A; Sundgot-Borgen, J; Nilsson, S; Holme, I

    2000-01-01

    Objective—To compare the efficacy in runners of two relaxation techniques with regard to exercise reactivity and recovery after exercise. Methods—Thirty one adult male runners were studied prospectively for six months in three groups practising either meditation (n = 11) or autogenic training (n = 11) or serving as controls (n = 10). Before and after the six months relaxation intervention, indicators of reactivity to exercise and metabolism after exercise (blood lactate concentration, heart rate (HR), and oxygen consumption (VO2)), were tested immediately after and 10 minutes after exercise. Resting HR was also assessed weekly at home during the trial. State anxiety was measured before and after the intervention. Results—After the relaxation training, blood lactate concentration after exercise was significantly (p<0.01) decreased in the meditation group compared with the control group. No difference was observed in lactate responses between the autogenic training group and the control group. There were no significant differences among the groups with regard to HR, VO2, or levels of anxiety. Conclusion—Meditation training may reduce the lactate response to a standardised exercise bout. Key Words: autogenic training; lactate; meditation; recovery; relaxation; psychology PMID:10953899

  15. Stress reactivity to and recovery from a standardised exercise bout: a study of 31 runners practising relaxation techniques.

    PubMed

    Solberg, E E; Ingjer, F; Holen, A; Sundgot-Borgen, J; Nilsson, S; Holme, I

    2000-08-01

    To compare the efficacy in runners of two relaxation techniques with regard to exercise reactivity and recovery after exercise. Thirty one adult male runners were studied prospectively for six months in three groups practising either meditation (n = 11) or autogenic training (n = 11) or serving as controls (n = 10). Before and after the six months relaxation intervention, indicators of reactivity to exercise and metabolism after exercise (blood lactate concentration, heart rate (HR), and oxygen consumption (VO2)), were tested immediately after and 10 minutes after exercise. Resting HR was also assessed weekly at home during the trial. State anxiety was measured before and after the intervention. After the relaxation training, blood lactate concentration after exercise was significantly (p<0.01) decreased in the meditation group compared with the control group. No difference was observed in lactate responses between the autogenic training group and the control group. There were no significant differences among the groups with regard to HR, VO2, or levels of anxiety. Meditation training may reduce the lactate response to a standardised exercise bout.

  16. Use of N-Acetylcysteine in Psychiatric Conditions among Children and Adolescents: A Scoping Review.

    PubMed

    Naveed, Sadiq; Amray, Afshan; Waqas, Ahmed; Chaudhary, Amna M; Azeem, Muhammad W

    2017-11-29

    N-acetylcysteine (NAC) is a well-known antidote for acetaminophen toxicity and is easily available over the counter. It has antioxidant and anti-inflammatory properties and an established tolerance and safety profile. Owing to its neuroprotective effects, its clinical use has recently expanded to include the treatment of different psychiatric and non-psychiatric disorders. Although a number of randomized controlled trials have documented the clinical evidence for NAC, there are no reviews that summarize the evidence. The present scoping review summarizes the study designs, the patient characteristics, the evidence and the limitations in randomized controlled trials designed to explore the efficacy of NAC for psychiatric conditions in the pediatric population.

  17. [A girl with self-harm treated with N-acetylcysteine (NAC)].

    PubMed

    Rus, C P

    Deliberate and recurrent self-harm could be regarded as addictive behaviour that can be treated with medication. In addiction, the dopaminergic mesolimbic reward system is activated. Pain caused by cutting stimulates the reward system through the opioid system. Glutamatergic neurotransmission follows the same pathway and plays a role in addiction as well. In this case-study a 17-year-old girl was successfully treated with N-acetylcysteine (nac) in order to reduce the frequency of self-cutting. In addition, in this case nac reduced the symptoms of attention deficit/hyperactivity disorder and depression. nac modulates the glutamatergic neurotransmission. This article provides possible explanations for the effect of nac in this case.

  18. Effects of supplementation and stage of lactation on performance of grazing dairy ewes.

    PubMed

    Mikolayunas, C M; Thomas, D L; Albrecht, K A; Combs, D K; Berger, Y M; Eckerman, S R

    2008-04-01

    The majority of dairy sheep in the world are fed pasture and supplemental grain during lactation; however, no trials have reported the effects of supplementation of dairy ewes grazing improved pastures in North America. In trial 1, 56 three-year-old grazing dairy ewes in early [21 +/- 10 d in milk (DIM)] or late (136 +/- 9 DIM) lactation were fed 0 or 0.82 kg of dry matter/d per ewe of supplement (16.5% crude protein mixture of corn and a soybean meal-based high-protein pellet) in a 2 x 2 factorial arrangement of treatments. There were no significant interactions between stage of lactation and supplementation treatments. Average test-day milk production was higher in early-lactation ewes than in late-lactation ewes (1.74 vs. 1.21 kg/d, respectively). Although test-day milk protein percentage was higher in late-lactation ewes than in early-lactation ewes (5.02 vs. 4.86%, respectively), there was no difference in milk fat percentage between stages of lactation. Supplemented ewes had higher milk production (1.59 vs. 1.36 kg/d, respectively), lower milk fat percentage (5.75 vs. 6.00%, respectively), and lower milk protein percentage (4.84 vs. 5.04%, respectively) than unsupplemented ewes. Milk urea N levels were similar between the 2 stages of lactation and between the 2 supplementation treatments and were above recommended levels for dairy sheep, indicating an excess intake or inefficient utilization of protein for both supplementation treatments. In trial 2, 96 two-, three-, and four-year-old grazing dairy ewes in midlactation (112 +/- 21 DIM) were randomly assigned to 4 treatments of 0, 0.41, 0.82, or 1.24 kg of dry matter/d per ewe of whole corn. Average test-day milk production increased linearly and milk fat percentage decreased quadratically with increasing amounts of corn supplementation. Milk protein yield increased linearly, and milk urea N levels decreased quadratically with increasing amounts of corn supplementation, suggesting an improvement in the utilization of pasture protein with increasing dietary energy intake.

  19. Effect of abomasal infusion of oligofructose on portal-drained visceral ammonia and urea-nitrogen fluxes in lactating Holstein cows.

    PubMed

    Røjen, B A; Larsen, M; Kristensen, N B

    2012-12-01

    The effects of abomasal infusion of oligofructose in lactating dairy cows on the relationship between hindgut fermentation and N metabolism, and its effects on NH(3) absorption and transfer of blood urea-N across the portal-drained viscera versus ruminal epithelia were investigated. Nine lactating Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in major splanchnic blood vessels were used in an unbalanced crossover design with 14-d periods. Treatments were continuous abomasal infusion of water or 1,500 g/d of oligofructose. The same basal diet was fed with both treatments. Eight sample sets of arterial, portal, hepatic, and ruminal vein blood, ruminal fluid, and urine were obtained at 0.5h before the morning feeding and at 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, and 6.5 h after feeding. It was hypothesized that an increased supply of fermentable substrate to the hindgut would increase the uptake of urea-N from blood to the hindgut at the expense of urea-N uptake to the forestomach. The study showed that abomasal oligofructose infusion decreased the total amount of urea-N transferred from the blood to the gut, NH(3) absorption, and arterial blood urea-N concentration. Subsequently, hepatic NH(3) uptake and urea-N production also decreased with oligofructose infusion. Additionally, urea-N concentration in milk and urinary N excretion decreased with oligofructose treatment. The oligofructose infusion did not affect ruminal NH(3) concentrations or any other ruminal variables, nor did it affect ruminal venous - arterial concentration differences for urea-N and NH(3). The oligofructose treatment did not affect milk yield, but did decrease apparent digestibility of OM, N, and starch. Nitrogen excreted in the feces was greater with the oligofructose infusion. In conclusion, the present data suggest that increased hindgut fermentation did not upregulate urea-N transfer to the hindgut at the expense of urea-N uptake by the rumen, and the observed reduction in arterial blood urea-N concentration appeared not to be due to increased urea-N transport, but rather could be explained by reduced NH(3) input to hepatic urea-N synthesis caused by increased sequestration of NH(3) in the hindgut and excretion in feces. Increasing the hindgut fermentation in lactating dairy cows by abomasal infusion of 1,500 g/d of oligofructose shifted some N excretion from the urine to feces and possibly reduced manure NH(3) volatilization without impairing rumen fermentation. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Lactate: Brain Fuel in Human Traumatic Brain Injury: A Comparison with Normal Healthy Control Subjects

    PubMed Central

    Martin, Neil A.; Horning, Michael A.; McArthur, David L.; Hovda, David A.; Vespa, Paul; Brooks, George A.

    2015-01-01

    Abstract We evaluated the hypothesis that lactate shuttling helps support the nutritive needs of injured brains. To that end, we utilized dual isotope tracer [6,6-2H2]glucose, that is, D2-glucose, and [3-13C]lactate techniques involving arm vein tracer infusion along with simultaneous cerebral (arterial [art] and jugular bulb [JB]) blood sampling. Traumatic brain injury (TBI) patients with nonpenetrating brain injuries (n=12) were entered into the study following consent of patients' legal representatives. Written and informed consent was obtained from control volunteers (n=6). Patients were studied 5.7±2.2 (mean±SD) days post-injury; during periods when arterial glucose concentration tended to be higher in TBI patients. As in previous investigations, the cerebral metabolic rate for glucose (CMRgluc, i.e., net glucose uptake) was significantly suppressed following TBI (p<0.001). However, lactate fractional extraction, an index of cerebral lactate uptake related to systemic lactate supply, approximated 11% in both healthy control subjects and TBI patients. Further, neither the CMR for lactate (CMRlac, i.e., net lactate release), nor the tracer-measured cerebral lactate uptake differed between healthy controls and TBI patients. The percentages of lactate tracer taken up and released as 13CO2 into the JB accounted for 92% and 91% for control and TBI conditions, respectively, suggesting that most cerebral lactate uptake was oxidized following TBI. Comparisons of isotopic enrichments of lactate oxidation from infused [3-13C]lactate tracer and 13C-glucose produced during hepatic and renal gluconeogenesis (GNG) showed that 75–80% of 13CO2 released into the JB was from lactate and that the remainder was from the oxidation of glucose secondarily labeled from lactate. Hence, either directly as lactate uptake, or indirectly via GNG, peripheral lactate production accounted for ∼70% of carbohydrate (direct lactate uptake+uptake of glucose from lactate) consumed by the injured brain. Undiminished cerebral lactate fractional extraction and uptake suggest that arterial lactate supplementation may be used to compensate for decreased CMRgluc following TBI. PMID:25594628

  1. Reduced glucose-induced insulin secretion in low-protein-fed rats is associated with altered pancreatic islets redox status.

    PubMed

    Cappelli, Ana Paula G; Zoppi, Claudio C; Silveira, Leonardo R; Batista, Thiago M; Paula, Flávia M; da Silva, Priscilla M R; Rafacho, Alex; Barbosa-Sampaio, Helena C; Boschero, Antonio C; Carneiro, Everardo M

    2018-01-01

    In the present study, we investigated the relationship between early life protein malnutrition-induced redox imbalance, and reduced glucose-stimulated insulin secretion. After weaning, male Wistar rats were submitted to a normal-protein-diet (17%-protein, NP) or to a low-protein-diet (6%-protein, LP) for 60 days. Pancreatic islets were isolated and hydrogen peroxide (H 2 O 2 ), oxidized (GSSG) and reduced (GSH) glutathione content, CuZn-superoxide dismutase (SOD1), glutathione peroxidase (GPx1) and catalase (CAT) gene expression, as well as enzymatic antioxidant activities were quantified. Islets that were pre-incubated with H 2 O 2 and/or N-acetylcysteine, were subsequently incubated with glucose for insulin secretion measurement. Protein malnutrition increased CAT mRNA content by 100%. LP group SOD1 and CAT activities were 50% increased and reduced, respectively. H 2 O 2 production was more than 50% increased whereas GSH/GSSG ratio was near 60% lower in LP group. Insulin secretion was, in most conditions, approximately 50% lower in LP rat islets. When islets were pre-incubated with H 2 O 2 (100 μM), and incubated with glucose (33 mM), LP rats showed significant decrease of insulin secretion. This effect was attenuated when LP islets were exposed to N-acetylcysteine. © 2017 Wiley Periodicals, Inc.

  2. Role of N-acetylcysteine in protecting against 2,5-hexanedione neurotoxicity in a rat model: changes in urinary pyrroles levels and motor activity performance.

    PubMed

    Torres, M Edite; dos Santos, A P Marreilha; Gonçalves, Luísa L; Andrade, Vanda; Batoréu, M Camila; Mateus, M Luísa

    2014-11-01

    The interference of N-acetylcysteine (NAC) on 2,5-hexanedione (2,5-HD) neurotoxicity was evaluated through behavioral assays and the analysis of urinary 2,5-HD, dimethylpyrrole norleucine (DMPN), and cysteine-pyrrole conjugate (DMPN NAC), by ESI-LC-MS/MS, in rats exposed to 2,5-HD and co-exposed to 2,5-HD and NAC. Wistar rats were treated with 4 doses of: 400mg 2,5-HD/kg bw (group I), 400mg 2,5-HD/kg bw+200mg NAC/kg bw (group II), 200mg NAC/kg bw (group III) and with saline (group IV). The results show a significant decrease (p<0.01) in urinary DMPN and free 2,5-HD, a significant increase (p<0.01) in DMPN NAC excretion, and a significant recovery (p<0.01) on motor activity in rats co-exposed to 2,5-HD+NAC, as compared with rats exposed to 2,5-HD alone. Taken together, our findings suggest that at the studied conditions NAC protects against 2,5-HD neurotoxicity and DMPN may be proposed as a new sensitive and specific biomarker of 2,5-HD neurotoxicity in animals treated with a toxic amount of 2,5-hexanedione. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. N-acetylcysteine improves redox status, mitochondrial dysfunction, mucin-depleted crypts and epithelial hyperplasia in dextran sulfate sodium-induced oxidative colitis in mice.

    PubMed

    Amrouche-Mekkioui, Ilhem; Djerdjouri, Bahia

    2012-09-15

    The effect of N-acetylcysteine (NAC), a pharmacological antioxidant was investigated in a murine model of chronic colitis. Male NMRI mice were given 5% dextran sulfate sodium (DSS) in drinking water for 5 days followed by 10 days of water, three times. Compared to control mice given water, DSS-treated mice displayed severe imbalanced redox status with decreased glutathione and catalase, but increased malondialdehyde, protein carbonyls, nitric oxide and myeloperoxidase levels, at days 35th (active colitis) and 45th (recovery period). It also resulted in mitochondrial dysfunction, mucosal ulcers, mucin-depleted crypts and epithelial cell apoptosis. Crypt abscesses and glandular hyperplasia occurred selectively in distal colon. NAC (150 mg/kg) given in drinking water for 45 days along with 3 DSS cycles improved the hallmarks of DSS-colitis. Interestingly, the moderate impact of NAC on lipids and proteins oxidation correlated with myeloperoxidase and nitric oxide levels.NAC as a mucoregulator and a thiol restoring agent is protective on oxidative crypt alterations, mucin depletion, epithelial cell hyperplasia and apoptosis. Taken together, our results highlight the role of NAC as a scavenger of phagocytes-derived reactive oxygen species in mice DDS-colitis, suggesting that a long term NAC diet might be beneficial in inflammatory bowel diseases and colorectal cancer. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Antioxidant N-acetylcysteine restores systemic nitric oxide availability and corrects depressions in arterial blood pressure and heart rate in diabetic rats.

    PubMed

    Xia, Zhengyuan; Nagareddy, Prabhakara R; Guo, Zhixin; Zhang, Wei; McNeill, John H

    2006-02-01

    Increased oxidative stress and reduced nitric oxide (NO) bioactivity are key features of diabetes mellitus that eventually result in cardiovascular abnormalities. We assessed whether N-acetylcysteine (NAC), an antioxidant and glutathione precursor, could prevent the hyperglycaemia induced increase in oxidative stress, restore NO availability and prevent depression of arterial blood pressure and heart rate in vivo in experimental diabetes. Control (C) and streptozotocin-induced diabetic (D) rats were treated or not treated with NAC in drinking water for 8 weeks, initiated 1 week after induction of diabetes. At termination, plasma levels of free 15-F2t-isoprostane, a specific marker of oxygen free radical induced lipid peroxidation, was increased while the plasma total antioxidant concentration was decreased in untreated diabetic rats as compared to control rats (P<0.05). This was accompanied by a significant reduction of plasma levels of nitrate and nitrite, stable metabolites of NO, (P<0.05, D vs. C) and a reduced endothelial NO synthase protein expression in the heart and in aortic and mesenteric artery tissues. Systolic, diastolic and mean arterial blood pressures (SBP, DBP and MAP) and heart rate (HR) were reduced in diabetic rats (P<0.05 vs. C) and NAC normalised the changes that occurred in the diabetic rats. The protective effects may be attributable to restoration of NO bioavailability in the circulation.

  5. A comparative study on radioprotective effect of N-acetylcysteine against 12C6+ ion versus X-rays

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Hong; Zhang, Luwei

    Purpose: The aim of this study was to evaluate the different protective efficacy of N-acetylcysteine (NAC, 200 mg/kg dose) against 12C6+ ion (4 Gy) and X-rays (4 Gy) - induced damage in vivo model. Method: Kung-Ming female mice were divided into six groups, each composed of twelve animals: control group, two irradiation groups, and two NAC-treated groups, as well as NAC alone-treated group. An acute study was carried out to determine alterations in the oxidative stress (malondialdehyde level) using with colorimetric method and cell apoptosis measuring by flow cytometry as well as DNA-single strand break analyzing by comet assay at 2h after irradiation in mouse liver. Results: Compared with respective irradiation group, NAC can significantly ameliorate injury induced by two types of ionizing irradiation, which marked by the decrease of malondialdehyde level, and the reduction of apoptosis cells percentage and DNA damage. But the greater efficacy of NAC was prominently observed to inhibit the damage induced by X-rays, suggesting that NAC-mediated protective effect is more advisable to X-rays than 12C6+ ion irradiation. Moreover, NAC treatment alone did not result in any damage as compared to the control group. Conclusion: NAC may merit development as a potential radioprotective agent. Furthermore, NAC might exert its best effort to respond X rays-caused damage.

  6. The role of the thiol N-acetylcysteine in the prevention of tumor invasion and angiogenesis.

    PubMed

    Morini, M; Cai, T; Aluigi, M G; Noonan, D M; Masiello, L; De Flora, S; D'Agostini, F; Albini, A; Fassina, G

    1999-01-01

    We have extensively studied the effects of N-acetylcysteine (NAC), a cytoprotective drug that can prevent in vivo carcinogenesis. Here we review our findings NAC completely inhibits gelatinolytic activity of metalloproteases and chemotactic and invasive activities of tumor cells. In addition, NAC reduces the number of lung metastases when malignant murine melanoma cells are injected into nude mice. NAC treatment decreases the weight of primary tumors and produces a dose-related increase in tumor latency. Moreover, oral administration of NAC reduces the formation of spontaneous metastases. In experimental metastasis assays, we have found a synergistic reduction in the number of lung metastases after treatment with doxorubicin (DOX) and NAC in nude mice. In tumorigenicity and spontaneous metastasis assays, the combined administration of DOX and oral NAC again has shown synergistic effects on the frequency and weight of primary tumors and local recurrences and completely prevented the formation of lung metastases. The addition of NAC to endothelial cells strongly reduces their invasive activity in response to angiogenic stimuli. NAC inhibited the degradation and release of radiolabeled type IV collagen by activated endothelial cells, indicating that NAC blocks gelatinase activity. Oral administration of NAC reduces the angiogenic response induced by KS tumor cell products, confirming the ability of NAC to inhibit the invasive activity of endothelial cells in vivo and thereby blocking angiogenesis.

  7. Protective Effects of Liposomal N-Acetylcysteine against Paraquat-Induced Cytotoxicity and Gene Expression

    PubMed Central

    Mitsopoulos, Panagiotis; Suntres, Zacharias E.

    2011-01-01

    Paraquat (PQ) is a herbicide that preferentially accumulates in the lung and exerts its cytotoxicity via the generation of reactive oxygen species (ROS). There is no specific treatment for paraquat poisoning. Attempts have been made to increase the antioxidant status in the lung using antioxidants (e.g., superoxide dismutase, vitamin E, N-acetylcysteine) but the outcome from such treatments is limited. Encapsulation of antioxidants in liposomes improves their therapeutic potential against oxidant-induced lung damage because liposomes facilitate intracellular delivery and prolong the retention of entrapped agents inside the cell. In the present study, we compared the effectiveness of conventional N-acetylcysteine (NAC) and liposomal-NAC (L-NAC) against PQ-induced cytotoxicity and examined the mechanism(s) by which these antioxidant formulations conferred cytoprotection. The effects of NAC or L-NAC against PQ-induced cytotoxicity in A549 cells were assessed by measuring cellular PQ uptake, intracellular glutathione content, ROS levels, mitochondrial membrane potential, cellular gene expression, inflammatory cytokine release and cell viability. Pretreatment of cells with L-NAC was significantly more effective than pretreatment with the conventional drug in reducing PQ-induced cytotoxicity, as indicated by the biomarkers used in this study. Our results suggested that the delivery of NAC as a liposomal formulation improves its effectiveness in counteracting PQ-induced cytotoxicity. PMID:21584258

  8. Potentiation of chemotherapeutics by bromelain and N-acetylcysteine: sequential and combination therapy of gastrointestinal cancer cells

    PubMed Central

    Amini, Afshin; Masoumi-Moghaddam, Samar; Ehteda, Anahid; Liauw, Winston; Morris, David Lawson

    2016-01-01

    Intraperitoneal chemotherapy together with cytoreductive surgery is the standard of care for a number of peritoneal surface malignancies. However, this approach fails to maintain the complete response and disease recurs due to microscopic residual disease. Although safer than systemic chemotherapy regimens, locoregional treatment with chemotherapeutics can induce toxicity which is a major concern affecting the patient’s treatment protocol and outcome. For an enhanced treatment efficacy, efforts should be made to maximize cytotoxic effects of chemotherapeutic agents on tumor cells while minimizing their toxic effects on host cells. Bromelain and N-acetylcysteine are two natural agents with good safety profiles shown to have anti-cancer effects. However, their interaction with chemotherapeutics is unknown. In this study, we investigated if these agents have the potential to sensitize in vitro gastrointestinal cancer models to cisplatin, paclitaxel, 5-fluorouracil, and vincristine. The drug-drug interaction was also analyzed. Our findings suggest that combination of bromelain and N-acetylcysteine with chemotherapeutic agents could give rise to an improved chemotherapeutic index in therapeutic approaches to peritoneal surface malignancies of gastrointestinal origin so that maximum benefits could result from less toxic and more patient-friendly doses. This represents a potentially efficacious strategy for the enhancement of microscopic cytoreduction and is a promising area for future research. PMID:27186409

  9. [The effects of increased dietary calcium intake on bone mineral density in long-term lactating women, and recovery of bone loss caused by long-term lactation with low calcium diet].

    PubMed

    Yoneyama, Kyoko; Ikeda, Junko

    2004-12-01

    The purpose of this study was to examine the efficacy of an increased calcium (Ca) diet for preventing bone mineral loss in long-term lactating women, considering bone metabolism, and recovery of bone loss caused by long-term lactation with low dietary Ca intake. Two groups of long-term (> 12 mon.) lactating women ... one with an enhanced Ca intake (Group M, n = 22) and the other with diet feeding no cow's milk and no milk products (Group N, n = 16) ... and a control group of 21 non-lactating postpartum women (Group C) were studied. Bone mineral density (BMD) was measured by ultrasonic bone densitometry. Stiffness calculated from the combined value of speed of sound and broadband ultrasound attenuation was used as an index of BMD. BMD and bone metabolic markers in urine and serum (only M and C groups) were assessed from 1 approximately 12 weeks postpartum (initial) at six-month intervals for a maximum of two years and changes were compared among the groups. 1. The mean (+/- SD) dietary Ca intake was 1032 (209) mg/day in the M group. 2. After lactating for one year, the N group demonstrated significant decrease in BMD, with both 1 and 2 babies, whereas the M group had no significant change. 3. The BMD in the N group returned to initial levels at 0.5 approximately 1 year post-weaning, 4. In the N group, compared with the M group, the urinary Hydroxyproline/creatinine ratio was significantly higher at the initial measurement and half a year thereafter, while urinary Ca/ creatinine ratio was significantly lower after a year. However, there were no significant differences between the M and C groups. 5. Serum bone alkaline phosphatase was significantly higher in the M group compared with the C group. Bone loss during long-term lactation can be prevented with adequate dietary Ca intake. Once lost, recovery to initial levels occurs 0.5 approximately 1 year post-weaning.

  10. Intravenous N-Acetylcysteine for Prevention of Contrast-Induced Nephropathy: A Meta-Analysis of Randomized, Controlled Trials

    PubMed Central

    Sun, Zikai; Fu, Qiang; Cao, Longxing; Jin, Wen; Cheng, LingLing; Li, Zhiliang

    2013-01-01

    Background Contrast-induced nephropathy (CIN) is one of the common causes of acute renal insufficiency after contrast procedures. Whether intravenous N-acetylcysteine (NAC) is beneficial for the prevention of contrast-induced nephropathy is uncertain. In this meta-analysis of randomized controlled trials, we aimed to assess the efficacy of intravenous NAC for preventing CIN after administration of intravenous contrast media. Study Design Relevant studies published up to September 2012 that investigated the efficacy of intravenous N-acetylcysteine for preventing CIN were collected from MEDLINE, OVID, EMBASE, Web of Science, Cochrane Central Register of Controlled Trials, and the conference proceedings from major cardiology and nephrology meetings. The primary outcome was CIN. Secondary outcomes included renal failure requiring dialysis, mortality, and length of hospitalization. Data were combined using random-effects models with the performance of standard tests to assess for heterogeneity and publication bias. Meta-regression analyses were also performed. Results Ten trials involving 1916 patients met our inclusion criteria. Trials varied in patient demographic characteristics, inclusion criteria, dosing regimens, and trial quality. The summary risk ratio for contrast-induced nephropathy was 0.68 (95% CI, 0.46 to 1.02), a nonsignificant trend towards benefit in patients treated with intravenous NAC. There was evidence of significant heterogeneity in NAC effect across studies (Q = 17.42, P = 0.04; I2 = 48%). Meta-regression revealed no significant relation between the relative risk of CIN and identified differences in participant or study characteristics. Conclusion This meta-analysis showed that research on intravenous N-acetylcysteine and the incidence of CIN is too inconsistent at present to warrant a conclusion on efficacy. A large, well designed trial that incorporates the evaluation of clinically relevant outcomes in participants with different underlying risks of CIN is required to more adequately assess the role for intravenous NAC in CIN prevention. PMID:23383076

  11. The role of depressive symptoms in treatment of adolescent cannabis use disorder with N-Acetylcysteine.

    PubMed

    Tomko, Rachel L; Gilmore, Amanda K; Gray, Kevin M

    2018-05-21

    Relative to adults, adolescents are at greater risk of developing a cannabis use disorder (CUD) and risk may be exacerbated by co-occurring depressive symptoms. N-Acetylcysteine (NAC), an over-the-counter antioxidant, is thought to normalize glutamate transmission. Oxidative stress and glutamate transmission are disrupted in both depression and CUD. Thus, NAC may be particularly effective at promoting cannabis abstinence among adolescents with elevated depressive symptoms. Secondary analyses were conducted using a sub-sample of adolescents with CUD (N = 74) who participated in an 8-week randomized placebo-controlled clinical trial examining the efficacy of NAC for cannabis cessation. It was hypothesized that NAC would reduce severity of depressive symptoms, and that decreases depressive symptom severity would mediate decreases in positive weekly urine cannabinoid tests (11-nor-9-carboxy-Δ9-tetrahydrocannabinol). Additionally, it was expected that adolescents with greater severity of baseline depressive symptoms would be more likely to become abstinent when assigned NAC relative to placebo. Results from linear mixed models and generalized estimating equations did not suggest that NAC reduced severity of depressive symptoms, and the hypothesis that NAC's effect on cannabis cessation would be mediated by reduced depressive symptoms was not supported. However, an interaction between treatment condition and baseline severity of depressive symptoms as a predictor of weekly urine cannabinoid tests was significant, suggesting that NAC was more effective at promoting abstinence among adolescents with heightened baseline depressive symptoms. These secondary findings, though preliminary, suggest a need for further examination of the role of depressive symptoms in treatment of adolescent CUD with NAC. Copyright © 2018. Published by Elsevier Ltd.

  12. Effects of Antioxidant N-acetylcysteine Against Paraquat-Induced Oxidative Stress in Vital Tissues of Mice

    PubMed Central

    Ortiz, Maricelly Santiago; Forti, Kevin Muñoz; Suárez Martinez, Edu B.; Muñoz, Lenin Godoy; Husain, Kazim

    2016-01-01

    Paraquat (PQ) is a commonly used herbicide that induces oxidative stress via reactive oxygen species (ROS) generation. This study aimed to investigate the effects of the antioxidant N-acetylcysteine (NAC) against PQ-induced oxidative stress in mice. Male Balb/C mice (24) were randomly divided into 4 groups and treated for 3 weeks: 1) control (saline), 2) NAC (0.5% in diet), 3) PQ (20 mg/kg, IP) and 4) combination (PQ + NAC). Afterwards mice were sacrificed and oxidative stress markers were analyzed. Our data showed no significant change in serum antioxidant capacity. PQ enhanced lipid peroxidation (MDA) levels in liver tissue compared to control whereas NAC decreased MDA levels (p<0.05). NAC significantly increased MDA in brain tissue (p<0.05). PQ significantly depleted glutathione (GSH) levels in liver (p=0.001) and brain tissue (p<0.05) but non-significant GSH depletion in lung tissue. NAC counteracted PQ, showing a moderate increase GSH levels in liver and brain tissues. PQ significantly increased 8-oxodeoxyguanosine (8-OH-dG) levels (p<0.05) in liver tissue compared to control without a significant change in brain tissue. NAC treatment ameliorated PQ-induced oxidative DNA damage in the liver tissue. PQ significantly decreased the relative mtDNA amplification and increased the frequency of lesions in liver and brain tissue (p<0.0001), while NAC restored the DNA polymerase activity in liver tissue but not in brain tissue. In conclusion, PQ induced lipid peroxidation, oxidative nuclear DNA and mtDNA damage in liver tissues and depleted liver and brain GSH levels. NAC supplementation ameliorated the PQ-induced oxidative stress response in liver tissue of mice. PMID:27398384

  13. N-Acetylcysteine (NAC)-Induced Hyponatremia Caused by an Electronic Medical Record (EMR) Order Error.

    PubMed

    Furmaga, Jakub; Wax, Paul; Kleinschmidt, Kurt

    2015-09-01

    Intravenous N-acetylcysteine (NAC) causes few adverse drug events, with mild anaphylactoid reactions being the most common. Hyponatremia as a complication of hypoosmolar NAC solution has been reported. We describe how a locally constructed electronic medical record (EMR) order set for IV NAC resulted in a seizure from hyponatremia due to excess free water administration. A 13-month-old female with no past medical history presented to a hospital after ingesting an unknown number of acetaminophen 500 mg tablets. The 4-h acetaminophen concentration was 343 mcg/mL, and she was started on IV NAC. 8.2 h into her 21-h IV NAC protocol, she developed a tonic-clonic seizure. Repeat serum sodium was 124 mEq/L, a decrease from 142 mEq/L at the time of admission. She was treated with hypertonic saline, lorazepam, and levetiracetam and had no further seizures. A brain MRI and EEG were both normal. After the seizure was stabilized, the providers noticed that the patient had receive a total of 900 mL of D5W (112.5 mL/kg) in the first 9 h of hospitalization. This was caused by a poorly constructed, restrictive, EMR order set that did not allow customization of the IV NAC preparation. Because the 21-h IV NAC administration involves preparation of 3 different doses infused over 3 different time intervals, an order set was developed to reduce ordering errors. However, error in its construction caused the pharmacist to prepare a solution containing too much free water, decreasing patient's intravascular sodium and resulting in a seizure. The purposes of our case report were to highlight the dangers of overreliance on EMR order sets and to recognize hyponatremic seizures as an adverse reaction of an inappropriately prepared IV NAC.

  14. Respiratory Syncytial Virus Inhibits Ciliagenesis in Differentiated Normal Human Bronchial Epithelial Cells: Effectiveness of N-Acetylcysteine

    PubMed Central

    Mata, Manuel; Sarrion, Irene; Armengot, Miguel; Carda, Carmen; Martinez, Isidoro; Melero, Jose A.; Cortijo, Julio

    2012-01-01

    Persistent respiratory syncytial virus (RSV) infections have been associated with the exacerbation of chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). This virus infects the respiratory epithelium, leading to chronic inflammation, and induces the release of mucins and the loss of cilia activity, two factors that determine mucus clearance and the increase in sputum volume. These alterations involve reactive oxygen species-dependent mechanisms. The antioxidant N-acetylcysteine (NAC) has proven useful in the management of COPD, reducing symptoms, exacerbations, and accelerated lung function decline. NAC inhibits RSV infection and mucin release in human A549 cells. The main objective of this study was to analyze the effects of NAC in modulating ciliary activity, ciliagenesis, and metaplasia in primary normal human bronchial epithelial cell (NHBEC) cultures infected with RSV. Our results indicated that RSV induced ultrastructural abnormalities in axonemal basal bodies and decreased the expression of β-tubulin as well as two genes involved in ciliagenesis, FOXJ1 and DNAI2. These alterations led to a decrease in ciliary activity. Furthermore, RSV induced metaplastic changes to the epithelium and increased the number of goblet cells and the expression of MUC5AC and GOB5. NAC restored the normal functions of the epithelium, inhibiting ICAM1 expression, subsequent RSV infection through mechanisms involving nuclear receptor factor 2, and the expression of heme oxygenase 1, which correlated with the restoration of the antioxidant capacity, the intracellular H2O2 levels and glutathione content of NHBECs. The results presented in this study support the therapeutic use of NAC for the management of chronic respiratory diseases, including COPD. PMID:23118923

  15. N-Acetylcysteine Attenuates Ischemia-Reperfusion-Induced Apoptosis and Autophagy in Mouse Liver via Regulation of the ROS/JNK/Bcl-2 Pathway

    PubMed Central

    Xia, Yujing; Dai, Weiqi; Wang, Fan; Shen, Miao; Cheng, Ping; Wang, Junshan; Lu, Jie; Zhang, Yan; Yang, Jing; Zhu, Rong; Zhang, Huawei; Li, Jingjing; Zheng, Yuanyuan; Zhou, Yingqun; Guo, Chuanyong

    2014-01-01

    Background Hepatic ischemia–reperfusion injury (HIRI) remains a pivotal clinical problem after hemorrhagic shock, transplantation, and some types of toxic hepatic injury. Apoptosis and autophagy play important roles in cell death during HIRI. It is also known that N-acetylcysteine (NAC) has significant pharmacologic effects on HIRI including elimination of reactive oxygen species (ROS) and attenuation of hepatic apoptosis. However, the effects of NAC on HIRI-induced autophagy have not been reported. In this study, we evaluated the effects of NAC on autophagy and apoptosis in HIRI, and explored the possible mechanism involved. Methods A mouse model of segmental (70%) hepatic warm ischemia was adopted to determine hepatic injury. NAC (150 mg/kg), a hepatoprotection agent, was administered before surgery. We hypothesized that the mechanism of NAC may involve the ROS/JNK/Bcl-2 pathway. We evaluated the expression of JNK, P-JNK, Bcl-2, Beclin 1 and LC3 by western blotting and immunohistochemical staining. Autophagosomes were evaluated by transmission electron microscopy (TEM). Results We found that ALT, AST and pathological changes were significantly improved in the NAC group. Western blotting analysis showed that the expression levels of Beclin 1 and LC3 were significantly decreased in NAC-treated mice. In addition, JNK, p-JNK, Bax, TNF-α, NF-κB, IL2, IL6 and levels were also decreased in NAC-treated mice. Conclusion NAC can prevent HIRI-induced autophagy and apoptosis by influencing the JNK signal pathway. The mechanism is likely to involve attenuation of JNK and p-JNK via scavenged ROS, an indirect increase in Bcl-2 level, and finally an alteration in the balance of Beclin 1 and Bcl-2. PMID:25264893

  16. Effects of N-acetylcysteine and terbutaline treatment on hemodynamics and regional albumin extravasation in porcine septic shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groeneveld, A.B.; den Hollander, W.; Straub, J.

    We studied the therapeutic effects of continuously infused N-acetylcysteine, an O2 radical scavenger (N, n = 6), and terbutaline, a beta 2-agonist (T, n = 6), versus dextrose (controls C, N = 6) on hemodynamics and regional albumin extravasation in porcine septic shock. After instrumentation, injection of 99mTc-labeled red blood cells, and baseline measurements, pigs received a 90 min infusion of 11 +/- 9 X 10(8).kg-1 live Escherichia coli bacteria. Thereafter, therapy was started, and 131I human serum albumin was injected. Images were obtained hourly using a gamma camera and a computer until 5 hours after baseline. Regions of interestmore » were drawn in the 99mTc images, yielding regional 131I/99mTc radioactivity ratios, with blood samples as reference. From these ratios, an albumin leak index, a rate constant of transvascular albumin transport, was calculated. Control pigs developed pulmonary hypertension, arterial hypotension, hemoconcentration, and lactic acidemia. In spite of tachycardia and unchanged filling pressures, cardiac output fell. In arterial blood, white cell count, PO2, albumin level, and colloid osmotic pressure fell. The albumin leak index (X10(-3).min-1) measured 1.56 +/- 0.59 over the lungs and 2.87 +/- 1.19 over the abdomen in C, confirming previously found increased albumin flux in both lung and abdomen, the latter exceeding the former. Neither N nor T significantly affected hemodynamic and biochemical changes. The drugs neither decreased the regional albumin leak index nor attenuated the formation of albumin-rich ascites found at autopsy. However, the lung albumin index obtained at autopsy was significantly reduced with N (P less than .01 vs. C), at similar gravimetrically determined extravascular lung water (EVLW). EVLW positively correlated with pulmonary albumin extravasation in C and T but not in N.« less

  17. Lactation performance of mid-lactation dairy cows fed ruminally degradable protein at concentrations lower than national research council recommendations.

    PubMed

    Cyriac, J; Rius, A G; McGilliard, M L; Pearson, R E; Bequette, B J; Hanigan, M D

    2008-12-01

    The aim of this study was to test whether feeding of diets containing lower proportions of ruminally degradable protein (RDP) but with a constant proportion of ruminally undegradable protein (RUP) alters feed intake, milk production and yield, and the apparent efficiency of N utilization by mid-lactation dairy cows. During the covariate period (d 1 to 28), 40 mid-lactation cows (36 Holstein and 4 Jersey x Holstein cross-breds) were fed a common diet formulated to contain 11.3% of diet dry matter (DM) as RDP. During the treatment period (d 29 to 47), cows were randomly assigned to 1 of 4 diets formulated to contain 11.3, 10.1, 8.8, or 7.6% RDP, whereas ruminally undegradable protein remained constant at 7.1% of DM. All diets contained 47.5% forage and 52.5% concentrate on a DM basis. Dry matter intake was significantly reduced for the 7.6% RDP diet. The lowest RDP content was associated with a trend for reduced milk yield. Dietary RDP had no effect on body weight or milk fat, protein, and lactose contents. Milk protein yield was not affected by RDP level; however, milk fat yield decreased linearly as dietary RDP was reduced. Concentrations of plasma essential amino acids were unaffected, whereas milk urea-N concentrations decreased linearly as dietary RDP content was reduced. The apparent efficiency of N utilization for milk N production increased from 27.7% on the 11.3% RDP diet to 38.6% on the 7.6% RDP diet. The dietary RDP requirement of cows in this study was apparently met between 15.9 and 14.7% dietary crude protein. Milk production was not significantly affected by the 8.8% RDP (15.9% crude protein) diet even though the NRC (2001) model predicted that RDP supply was 87% of that required, suggesting the current NRC recommendations for RDP may be overestimated for mid-lactation dairy cows in this study.

  18. Hepatic and pulmonary apoptosis after hemorrhagic shock in swine can be reduced through modifications of conventional Ringer's solution.

    PubMed

    Ayuste, Eduardo C; Chen, Huazhen; Koustova, Elena; Rhee, Peter; Ahuja, Naresh; Chen, Zhang; Valeri, C Robert; Spaniolas, Konstantinos; Mehrani, Tina; Alam, Hasan B

    2006-01-01

    Cytotoxic properties of racemic (D-,L-isomers) lactated Ringer's solution detected in vitro and in small animal experiments, have not been confirmed in large animal models. Our hypothesis was that in a clinically relevant large animal model of hemorrhage, resuscitation with racemic lactated Ringer's solution would induce cellular apoptosis, which can be attenuated by elimination of d-lactate. Yorkshire swine (n = 49, weight 40-58 kg) were subjected to uncontrolled (iliac arterial and venous injuries) and controlled hemorrhage, totaling 40% of estimated blood volume. They were randomized (n = 7/group) to control groups, which consisted of (1) no hemorrhage (NH), (2) no resuscitation (NR), or resuscitation groups, which consisted of (3) 0.9% saline (NS), (4) racemic lactated Ringer's (DL-LR), (5) L-isomer lactated Ringer's (L-LR), (6) Ketone Ringer's (KR), (7) 6% hetastarch in 0.9% saline (Hespan). KR was identical to LR except for equimolar substitution of lactate with beta-hydroxybutyrate. Resuscitation was performed in three phases, simulating (1) prehospital, (2) operative, (3) postoperative/recovery periods. Arterial blood gasses, circulating cytokines (TNF-alpha, IL-1, -6, -10), and markers of organ injury were serially measured. Metabolic activity of brain, and liver, was measured with microdialysis. Four hours postinjury, organs were harvested for Western blotting, ELISA, TUNEL assay, and immunohistochemistry. All resuscitation strategies restored blood pressure, but clearance of lactic acidosis was impeded following DL-LR resuscitation. Metabolic activity decreased during shock and improved with resuscitation, without any significant inter-group differences. Levels of cytokines in circulation were similar, but tissue levels of TNF in liver and lung increased six- and threefolds (p < 0.05) in NR group. In liver, all resuscitation strategies significantly decreased TNF levels compared with the NR group, but in the lung resuscitation with lactated Ringer (DL and L isomers) failed to decrease tissue TNF levels. DL-LR resuscitation also increased apoptosis (p < 0.05) in liver and lung, which was not seen after resuscitation with other solutions. In this large animal model of hemorrhagic shock, resuscitation with conventional (racemic) LR solution increased apoptotic cell death in liver and lung. This effect can be prevented by simple elimination of D-lactate from the Ringer's solution.

  19. Correlations among Stress Parameters, Meat and Carcass Quality Parameters in Pigs

    PubMed Central

    Dokmanovic, Marija; Baltic, Milan Z.; Duric, Jelena; Ivanovic, Jelena; Popovic, Ljuba; Todorovic, Milica; Markovic, Radmila; Pantic, Srdan

    2015-01-01

    Relationships among different stress parameters (lairage time and blood level of lactate and cortisol), meat quality parameters (initial and ultimate pH value, temperature, drip loss, sensory and instrumental colour, marbling) and carcass quality parameters (degree of rigor mortis and skin damages, hot carcass weight, carcass fat thickness, meatiness) were determined in pigs (n = 100) using Pearson correlations. After longer lairage, blood lactate (p<0.05) and degree of injuries (p<0.001) increased, meat became darker (p<0.001), while drip loss decreased (p<0.05). Higher lactate was associated with lower initial pH value (p<0.01), higher temperature (p<0.001) and skin blemishes score (p<0.05) and more developed rigor mortis (p<0.05), suggesting that lactate could be a predictor of both meat quality and the level of preslaughter stress. Cortisol affected carcass quality, so higher levels of cortisol were associated with increased hot carcass weight, carcass fat thickness on the back and at the sacrum and marbling, but also with decreased meatiness. The most important meat quality parameters (pH and temperature after 60 minutes) deteriorated when blood lactate concentration was above 12 mmol/L. PMID:25656214

  20. N-acetylcysteine for neuropsychiatric symptoms in a woman with Williams syndrome.

    PubMed

    Pineiro, Mildred Lopez; Roberts, Antoinette M; Waxler, Jessica L; Mullett, Jennifer E; Pober, Barbara R; McDougle, Christopher J

    2014-11-01

    Williams syndrome is a relatively rare genetic disorder caused by the hemizygous microdeletion of a region in chromosome 7q11.23. Individuals with Williams syndrome typically present with a highly social, overfriendly, and empathic personality. Comorbid medical and neuropsychiatric disorders are common. Reports of effective pharmacological treatment of associated neuropsychiatric disorders are limited. The authors describe the successful treatment of interfering anger, aggression, and hair-pulling with N-acetylcysteine in a 19-year-old woman with Williams syndrome. The neuropsychiatric symptoms emerged 1 week following an upper gastrointestinal endoscopy, for which fentanyl, midazolam, and propofol were used as anesthetics. The patient's treatment course and hypothesized mechanisms underlying the clinical presentation and symptom resolution are described. © The Author(s) 2014.

  1. N-Acetylcysteine interacts with copper to generate hydrogen peroxide and selectively induce cancer cell death

    PubMed Central

    Zheng, Jie; Lou, Jessica R.; Zhang, Xiao-Xi; Benbrook, Doris M.; Hanigan, Marie H.; Lind, Stuart E.; Ding, Wei-Qun

    2013-01-01

    A variety of metal-binding compounds have been found to exert anti-cancer activity. We postulated that N-acetylcysteine (NAC), which is a membrane-permeable metal-binding compound, might have anti-cancer activity in the presence of metals. We found that NAC/Cu(II) significantly alters growth and induces apoptosis in human cancer lines, yet NAC/Zn(II) and NAC/Fe(III) do not. We further confirmed that this cytotoxicity of NAC/Cu(II) is attributed to reactive oxygen species (ROS). These findings indicate that the combination of Cu(II) and thiols generates cytotoxic ROS that induce apoptosis in cancer cells. They also indicate a fourth class of anti-neoplastic metal-binding compounds, the “ROS generator”. PMID:20667650

  2. A maternal high n-6 fat diet with fish oil supplementation during pregnancy and lactation in rats decreases breast cancer risk in the female offspring.

    PubMed

    Su, Hui-Min; Hsieh, Pei-Hsuan; Chen, Hui-Feng

    2010-11-01

    The timing of dietary fat intake may modify breast cancer risk. In addition, n-3 fatty acids reduce, and n-6 fatty acids increase, the risk of breast cancer and a maternal high n-6 fat diet results in a greater risk of breast cancer in the female offspring. We hypothesized that the timing of n-3 fatty acid-enriched fish oil supplementation would be important for reducing the risk of breast cancer. Female rats were fed to a high n-6 fat diet containing 20% of the sunflower oil by weight during pregnancy and lactation, and the female offspring were exposed to fish oil by oral gavage either during the perinatal period via maternal intake or during puberty or adulthood. Exposure during the perinatal period to a maternal high n-6 fat diet with fish oil supplementation significantly reduced the incidence of carcinogen-induced mammary tumors in the female offspring compared to a maternal high n-6 fat diet with no fish oil supplementation or fish oil supplementation later in life (P=.0228 by Cox proportional hazards model). We found that a maternal high n-6 fat diet during pregnancy is more important in increasing the risk of mammary tumors in the female offspring than a maternal high n-6 fat diet during lactation. This study suggests that fish oil supplementation during the perinatal period decreases the effect of a maternal high n-6 fat diet on subsequent carcinogen-induced mammary tumor risk, whereas fish oil supplementation during puberty or adulthood does not. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Current evidence for the use of N-acetylcysteine following liver resection.

    PubMed

    Kemp, Richard; Mole, Jonathan; Gomez, Dhanny

    2018-06-01

    N-acetylcysteine (NAC) has many uses in medicine; notable in the management of paracetamol toxicity, acute liver failure and liver surgery. The aim of this review was to critically appraise the published literature for the routine use of NAC in liver resection surgery. An electronic search was performed of EBSCOhost (Medline and CINAHL database), PubMed and the Cochrane Library for the period 1990-2016. MeSH headings: 'acetyl-cysteine', 'liver resection' and 'hepatectomy' were used to identify all relevant articles published in English. Following the search criteria used, three articles were included. Two of these studies were randomized controlled trials. All the studies collated data on morbidity and mortality. All three studies did not show a significant difference in overall complications rates in patients that underwent hepatic resection that had NAC infusion compared with patients that did not. In one study, NAC administration was associated with a higher frequency of grade A post-hepatectomy liver failure. In another study, a significantly higher incidence of delirium was observed in the NAC group, which led to the trial to be terminated early. The current published data do not support the routine use of NAC following liver resection. © 2017 Royal Australasian College of Surgeons.

  4. Safety and tolerability of acetylcysteine and pirfenidone combination therapy in idiopathic pulmonary fibrosis: a randomised, double-blind, placebo-controlled, phase 2 trial.

    PubMed

    Behr, Jürgen; Bendstrup, Elisabeth; Crestani, Bruno; Günther, Andreas; Olschewski, Horst; Sköld, C Magnus; Wells, Athol; Wuyts, Wim; Koschel, Dirk; Kreuter, Michael; Wallaert, Benoît; Lin, Chin-Yu; Beck, Jürgen; Albera, Carlo

    2016-06-01

    Oral acetylcysteine (also known as N-acetylcysteine) is used with pirfenidone to treat idiopathic pulmonary fibrosis (IPF) in Europe. However, no randomised studies have investigated the safety and tolerability of this combination. The PANORAMA study assessed the safety and tolerability of acetylcysteine combined with pirfenidone in patients with IPF. Exploratory efficacy endpoints were also assessed. We did a double-blind randomised trial at 48 sites in eight countries. Patients with IPF aged 40-80 years and established on pirfenidone (at least 1602 mg/day for 8 weeks or longer) were randomly assigned in a 1:1 ratio by interactive voice response system to receive concomitant oral acetylcysteine (600 mg, three times daily) or placebo for 24 weeks. A stratified blocked randomisation scheme was used with a block size of 4. Randomisation was stratified by dose of pirfenidone (2403 mg/day [the maximum dose] or <2403 mg/day). Patients, physicians, study staff and the sponsor were masked to treatment group allocation. The primary endpoint was assessment of adverse events, which were collected at each visit and for 28 days after the last dose of study drug. Exploratory efficacy measurements included forced vital capacity (FVC), carbon monoxide diffusing capacity, and 6 min walk distance. Analyses were done in the modified intention-to-treat population, which included all patients who were randomised and received at least one dose of study medication. This study is registered with the European Clinical Trials Database (EudraCT number 2012-000564-14) and has been completed. 123 patients participated in the study between June 28, 2013, and Feb 24, 2015. 61 were assigned to the acetylcysteine group (60 received study medication and included in analysis) and 62 were assigned to the placebo group (all included in analysis). The occurrence of at least one adverse event (46 [77%] patients receiving acetylcysteine vs 50 [81%] receiving placebo), adverse events related to study treatment (17 [28%] vs 16 [26%]), and the number of patients experiencing severe adverse events (three [5%] vs two [3%]), life-threatening adverse events (one [2%] vs one [2%]), or death (one [2%] vs three [5%]) was similar between treatment groups. One case of diarrhoea in the acetylcysteine group was considered severe and related to study treatment. Nine serious adverse events were reported by seven patients: dyspnoea, headache, hypertension, intervertebral disc protrusion, and malignant lung neoplasm in the acetylcysteine group, and aortic aneurysm, contusion, forearm fracture, and worsening IPF in the placebo group. The most common adverse events were cough, nasopharyngitis, and diarrhoea. Photosensitivity occurred more frequently with acetylcysteine (eight [13%] patients) than placebo (one [2%] patient; difference 11·7%; 95% CI 2·6-20·9; p=0·016]), and was not attributable to differences in location, season, or concomitant medication. Four (7%) patients receiving acetylcysteine and three (5%) receiving placebo discontinued study treatment due to adverse events. In the exploratory analysis, change in FVC indicated that clinical benefit from addition of acetylcysteine to pirfenidone is unlikely, with the possibility of a harmful effect in patients with IPF (adjusted rate of decline 125·6 mL/6 months for acetylcysteine vs 34·3 mL/6 months for placebo; difference -91·3 mL; 95% CI -174·4 to -8·3; p=0·031). Findings from the PANORAMA study suggest that addition of acetylcysteine to pirfenidone does not substantially alter the tolerability profile of pirfenidone, and is unlikely to be beneficial in IPF. InterMune International AG (Roche). Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Normal lactate concentration range in the neonatal brain.

    PubMed

    Tomiyasu, Moyoko; Aida, Noriko; Shibasaki, Jun; Tachibana, Yasuhiko; Endo, Mamiko; Nozawa, Kumiko; Shimizu, Eiji; Tsuji, Hiroshi; Obata, Takayuki

    2016-11-01

    Lactate peaks are occasionally observed during in vivo magnetic resonance spectroscopy (MRS) scans of the neonatal brain, even in healthy patients. The purpose of this study was to investigate the normal range of neonatal brain lactate concentration, as a definitive normal range would be clinically valuable. Using a clinical 3T scanner (echo/repetition times, 30/5000ms), single-voxel MRS data were obtained from the basal ganglia (BG) and centrum semiovale (CS) in 48 healthy neonates (postconceptional age (PCA), 30-43weeks), nine infants (age, 1-12months old), and 20 children (age, 4-15years). Lactate concentrations were calculated using an MRS signal quantification program, LCModel. Correlations between regional lactate concentration and PCA (neonates), or age (all subjects) were investigated. Absolute lactate concentrations of the BG and CS were as follows: neonates, 0.77mM (0-2.02) [median (range)] and 0.77 (0-1.42), respectively; infants, 0.38 (0-0.79) and 0.49 (0.17-1.17); and children, 0.17 (0-0.76) and 0.22 (0-0.80). Overall, subjects' lactate concentrations decreased significantly with age (Spearman: BG, n=61, ρ=-0.38, p=0.003; CS, n=68, ρ=-0.57, p<0.001). However, during the neonatal period no correlations were detected between lactate concentration in either region and PCA. We determined normal ranges of neonatal lactate concentration, which may prove useful for diagnostic purposes. Further studies regarding changes in brain lactate concentration during development would help clarify the reasons for higher concentrations observed during the neonatal period, and contribute to improvements in diagnoses. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yuchao; Ramachandran, Anup; Breckenridge, David G.

    Metabolic activation and oxidant stress are key events in the pathophysiology of acetaminophen (APAP) hepatotoxicity. The initial mitochondrial oxidative stress triggered by protein adduct formation is amplified by c-jun-N-terminal kinase (JNK), resulting in mitochondrial dysfunction and ultimately cell necrosis. Apoptosis signal-regulating kinase 1 (ASK1) is considered the link between oxidant stress and JNK activation. The objective of the current study was to assess the efficacy and mechanism of action of the small-molecule ASK1 inhibitor GS-459679 in a murine model of APAP hepatotoxicity. APAP (300 mg/kg) caused extensive glutathione depletion, JNK activation and translocation to the mitochondria, oxidant stress and livermore » injury as indicated by plasma ALT activities and area of necrosis over a 24 h observation period. Pretreatment with 30 mg/kg of GS-459679 almost completely prevented JNK activation, oxidant stress and injury without affecting the metabolic activation of APAP. To evaluate the therapeutic potential of GS-459679, mice were treated with APAP and then with the inhibitor. Given 1.5 h after APAP, GS-459679 was still protective, which was paralleled by reduced JNK activation and p-JNK translocation to mitochondria. However, GS-459679 treatment was not more effective than N-acetylcysteine, and the combination of GS-459679 and N-acetylcysteine exhibited similar efficacy as N-acetylcysteine monotherapy, suggesting that GS-459769 and N-acetylcysteine affect the same pathway. Importantly, inhibition of ASK1 did not impair liver regeneration as indicated by PCNA staining. In conclusion, the ASK1 inhibitor GS-459679 protected against APAP toxicity by attenuating JNK activation and oxidant stress in mice and may have therapeutic potential for APAP overdose patients. - Highlights: • Two ASK1 inhibitors protected against acetaminophen-induced liver injury. • The ASK1 inhibitors protect when used as pre- or post-treatment. • Protection by ASK1 inhibitor is not due to inhibition of APAP metabolism. • The ASK1 inhibitor prevents JNK activation and translocation to mitochondria. • Treatment with ASK1 inhibitors does not impair liver regeneration after APAP.« less

  7. Impact of N-acetylcysteine on the hepatic microcirculation after orthotopic liver transplantation.

    PubMed

    Koeppel, T A; Lehmann, T G; Thies, J C; Gehrcke, R; Gebhard, M M; Herfarth, C; Otto, G; Post, S

    1996-05-15

    Recent observations showed an improvement of hepatic macro- and microhemodynamics as well as survival rates after warm ischemia of the liver following treatment with N-acetylcysteine (NAC). In this study we assessed the influence of NAC on the hepatic microcirculation after orthotopic liver transplantation (OLT) using intravital fluorescence microscopy. OLT with simultaneous arterialization was performed in 16 male Lewis rats following cold storage in University of Wisconsin solution for 24 hr. Within the experimental group (n = 8) donors received NAC (400 mg/kg) 25 min before hepatectomy. In addition, high-dose treatment of recipients with NAC (400 mg/kg) was started with reperfusion. Control animals (n = 8) received an equivalent amount of Ringer's solution. Intravital fluorescence microscopy was performed 30-90 min after reperfusion assessing acinar and sinusoidal perfusion, leukocyte-endothelium interaction, and phagocytic activity. Treatment with NAC reduced the number of nonperfused sinusoid from 52.4 +/- 0.8% to 15.7 +/- 0.5% (p = 0.0001) (mean +/- SEM). Furthermore, we achieved a significant reduction of leukocytes adhering to sinusoidal endothelium (per mm2 liver surface) from 351.9 +/- 13.0 in controls to 83.6 +/- 4.2 in the experimental group (P = 0.0001). In postsinusoidal venules, treatment with NAC decreased the number of sticking leukocytes (per mm2 endothelium) from 1098.5 +/- 59.6 to 425.9 +/- 37.7 (P = 0.0001). Moreover, bile flow was significantly increased after therapy with NAC (4.3 +/- 1.2 vs. 2.2 +/- 0.7 ml/90 min x 100g liver) (P < 0.05). Phagocytic activity was not influenced by application of NAC. We conclude that high-dose therapy with NAC in OLT attenuates manifestations of microvascular perfusion failure early after reperfusion and should be considered as a means to reduce reperfusion injury.

  8. Oxidative stress due to (R)-styrene oxide exposure and the role of antioxidants in non-Swiss albino (NSA) mice.

    PubMed

    Meszka-Jordan, Anna; Mahlapuu, Riina; Soomets, Ursel; Carlson, Gary P

    2009-01-01

    Styrene produces lung and liver damage that may be related to oxidative stress. The purpose of this study was to investigate the toxicity of (R)-styrene oxide (R-SO), the more active enantiomeric metabolite of styrene, and the protective properties of the antioxidants glutathione (GSH), N-acetylcysteine (NAC), and 4-methoxy-L-tyrosinyl-gamma-L-glutamyl-L-cysteinyl-glycine (UPF1) against R-SO-induced toxicity in non-Swiss Albino (NSA) mice. UPF1 is a synthetic GSH analog that was shown to have 60 times the ability to scavenge reactive oxygen species (ROS) in comparison to GSH. R-SO toxicity to the lung was measured by elevations in the activity of lactate dehydrogenase (LDH), protein concentration, and number of cells in bronchoalveolar lavage fluid (BALF). Toxicity to the liver was measured by increases in serum sorbitol dehydrogenase (SDH) activity. Antioxidants were not able to decrease the adverse effects of R-SO on lung. However, NAC (200 mg/kg) ip and GSH (600 mg/kg), administered orally prior to R-SO (300 mg/kg) ip, showed significant protection against liver toxicity as measured by SDH activity. Unexpectedly, a synthetic GSH analog, UPF1 (0.8 mg/kg), administered intravenously (iv) prior to R-SO, produced a synergistic effect with regard to liver and lung toxicity. Treatment with UPF1 (0.8 mg/kg) iv every other day for 1 wk for preconditioning prior to R-SO ip did not result in any protection against liver and lung toxicity, but rather enhanced the toxicity when administered prior R-SO. The results of the present study demonstrated protection against R-SO toxicity in liver but not lung by the administration of the antioxidants NAC and GSH.

  9. Proton MR spectroscopy in patients with acute temporal lobe seizures.

    PubMed

    Castillo, M; Smith, J K; Kwock, L

    2001-01-01

    Decreases in N-acetyl aspartate (NAA) as seen by proton MR spectroscopy are found in hippocampal sclerosis, and elevated levels of lipids/lactate have been observed after electroconvulsive therapy. Our purpose was to determine whether increased levels of lipids/lactate are found in patients with acute seizures of hippocampal origin. Seventeen patients with known temporal lobe epilepsy underwent proton MR spectroscopy of the mesial temporal lobes within 24 hours of their last seizure. Four of them were restudied when they were seizure-free. Five healthy individuals were used as control subjects. All MR spectroscopy studies were obtained using a single-voxel technique with TEs of 135 and 270. The relationship between the presence of lipids/lactate and seizures was tested using Fisher's exact test. Mean and standard deviations for NAA/creatine (Cr) were obtained in the hippocampi in patients with seizures on initial and follow-up studies and these values were compared with those in the control subjects. Seizure lateralization was obtained in 15 patients. Of the 17 seizure locations that involved hippocampi, 16 showed lipids/lactate by proton MR spectroscopy. Of the 13 hippocampi not directly affected by seizures, 10 showed no lipids/lactate and three showed lipids/lactate. The relationship between lipids/lactate and seizure location was confirmed. A comparison of NAA/Cr ratios for the involved hippocampi with those in control subjects showed significant differences on initial MR spectroscopy; however, no significant difference was found between acute and follow-up NAA/Cr ratios in hippocampi affected by seizures. Lipids/lactate were present in the hippocampi of patients with acute seizures and decreased when the patients were seizure-free. Thus, lipids/lactate may be a sensitive marker for acute temporal lobe seizures.

  10. N-acetylcysteine administration does not improve patient outcome after liver resection

    PubMed Central

    Robinson, Stuart M; Saif, Rehan; Sen, Gourab; French, Jeremy J; Jaques, Bryon C; Charnley, Richard M; Manas, Derek M; White, Steven A

    2013-01-01

    Background Post-operative hepatic dysfunction is a major cause of concern when undertaking a liver resection. The generation of reactive oxygen species (ROS) as a result of hepatic ischaemia/reperfusion (I/R) injury can result in hepatocellular injury. Experimental evidence suggests that N-acetylcysteine may ameliorate ROS-mediated liver injury. Methods A cohort of 44 patients who had undergone a liver resection and receiving peri-operative N-acetylcysteine (NAC) were compared with a further cohort of 44 patients who did not. Liver function tests were compared on post-operative days 1, 3 and 5. Peri-operative outcome data were retrieved from a prospectively maintained database within our unit. ResultsAdministration of NAC was associated with a prolonged prothrombin time on the third post-operative day (18.4 versus 16.4 s; P = 0.002). The incidence of grades B and C liver failure was lower in the NAC group although this difference did not reach statistical significance (6.9% versus 14%; P = 0.287). The overall complication rate was similar between groups (32% versus 25%; P = ns). There were two peri-operative deaths in the NAC group and one in the control group (P = NS). ConclusionIn spite of promising experimental evidence, this study was not able to demonstrate any advantage in the routine administration of peri-operative NAC in patients undergoing a liver resection. PMID:23458723

  11. Application of novel Ni(II) complex and ZrO2 nanoparticle as mediators for electrocatalytic determination of N-acetylcysteine in drug samples.

    PubMed

    Karimi-Maleh, Hassan; Salehi, Mehdi; Faghani, Fatemeh

    2017-10-01

    The electrooxidation of N-acetylcysteine (N-AC) was studied by a novel Ni(II) complex modified ZrO 2 nanoparticle carbon paste electrode [Ni(II)/ZrO 2 /NPs/CPE] using voltammetric methods. The results showed that Ni(II)/ZrO 2 /NPs/CPE had high electrocatalytic activity for the electrooxidation of N-AC in aqueous buffer solution (pH = 7.0). The electrocatalytic oxidation peak currents increase linearly with N-AC concentrations over the concentration ranges of 0.05-600μM using square wave voltammetric methods. The detection limit for N-AC was equal to 0.009μM. The catalytic reaction rate constant, k h , was calculated (7.01 × 10 2  M -1  s -1 ) using the chronoamperometry method. Finally, Ni(II)/ZrO 2 /NPs/CPE was also examined as an ultrasensitive electrochemical sensor for the determination of N-AC in real samples such as tablet and urine. Copyright © 2017. Published by Elsevier B.V.

  12. δ-Opioid receptor (DOR) signaling and reactive oxygen species (ROS) mediate intermittent hypoxia induced protection of canine myocardium.

    PubMed

    Estrada, Juan A; Williams, Arthur G; Sun, Jie; Gonzalez, Leticia; Downey, H Fred; Caffrey, James L; Mallet, Robert T

    2016-03-01

    Intermittent, normobaric hypoxia confers robust cardioprotection against ischemia-induced myocardial infarction and lethal ventricular arrhythmias. δ-Opioid receptor (DOR) signaling and reactive oxygen species (ROS) have been implicated in cardioprotective phenomena, but their roles in intermittent hypoxia are unknown. This study examined the contributions of DOR and ROS in mediating intermittent hypoxia-induced cardioprotection. Mongrel dogs completed a 20 day program consisting of 5-8 daily, 5-10 min cycles of moderate, normobaric hypoxia (FIO2 0.095-0.10), with intervening 4 min room air exposures. Subsets of dogs received the DOR antagonist naltrindole (200 μg/kg, sc) or antioxidant N-acetylcysteine (250 mg/kg, po) before each hypoxia session. Twenty-four hours after the last session, the left anterior descending coronary artery was occluded for 60 min and then reperfused for 5 h. Arrhythmias detected by electrocardiography were scored according to the Lambeth II conventions. Left ventricles were sectioned and stained with 2,3,5-triphenyl-tetrazolium-chloride, and infarct sizes were expressed as percentages of the area at risk (IS/AAR). Intermittent hypoxia sharply decreased IS/AAR from 41 ± 5 % (n = 12) to 1.8 ± 0.9 % (n = 9; P < 0.001) and arrhythmia score from 4.1 ± 0.3 to 0.7 ± 0.2 (P < 0.001) vs. non-hypoxic controls. Naltrindole (n = 6) abrogated the cardioprotection with IS/AAR 35 ± 5 % and arrhythmia score 3.7 ± 0.7 (P < 0.001 vs. untreated intermittent hypoxia). N-acetylcysteine (n = 6) interfered to a similar degree, with IS/AAR 42 ± 3 % and arrhythmia score 4.7 ± 0.3 (P < 0.001 vs. untreated intermittent hypoxia). Without the intervening reoxygenations, hypoxia (n = 4) was not cardioprotective (IS/AAR 50 ± 8 %; arrhythmia score 4.5 ± 0.5; P < 0.001 vs. intermittent hypoxia). Thus DOR, ROS and cyclic reoxygenation were obligatory participants in the gradually evolving cardioprotection produced by intermittent hypoxia.

  13. Increased circulating D-lactate levels predict risk of mortality after hemorrhage and surgical trauma in baboons.

    PubMed

    Sobhian, Babak; Kröpfl, Albert; Hölzenbein, Thomas; Khadem, Anna; Redl, Heinz; Bahrami, Soheyl

    2012-05-01

    Patients with hemorrhagic shock and/or trauma are at risk of developing colonic ischemia associated with bacterial translocation that may lead to multiple organ failure and death. Intestinal ischemia is difficult to diagnose noninvasively. The present retrospective study was designed to determine whether circulating plasma D-lactate is associated with mortality in a clinically relevant two-hit model in baboons. Hemorrhagic shock was induced in anesthetized baboons (n = 24) by controlled bleeding (mean arterial pressure, 40 mmHg), base excess (maximum -5 mmol/L), and time (maximum 3 h). To mimic clinical setting more closely, all animals underwent a surgical trauma after resuscitation including midshaft osteotomy stabilized with reamed femoral interlocking nailing and were followed for 7 days. Hemorrhagic shock/surgical trauma resulted in 66% mortality by day 7. In nonsurvivor (n = 16) hemorrhagic shock/surgical trauma baboons, circulating D-lactate levels were significantly increased (2-fold) at 24 h compared with survivors (n = 8), whereas the early increase during hemorrhage and resuscitation declined during the early postresuscitation phase with no difference between survivors and nonsurvivors. Moreover, D-lactate levels remained elevated in the nonsurvival group until death, whereas it decreased to baseline in survivors. Prediction of death (receiver operating characteristic test) by D-lactate was accurate with an area under the curve (days 1-3 after trauma) of 0.85 (95% confidence interval, 0.72-0.93). The optimal D-lactate cutoff value of 25.34 μg/mL produced sensitivity of 73% to 99% and specificity of 50% to 83%. Our data suggest that elevation of plasma D-lactate after 24 h predicts an increased risk of mortality after hemorrhage and trauma.

  14. Choline intakes exceeding recommendations during human lactation improve breast milk choline content by increasing PEMT pathway metabolites.

    PubMed

    Davenport, Crystal; Yan, Jian; Taesuwan, Siraphat; Shields, Kelsey; West, Allyson A; Jiang, Xinyin; Perry, Cydne A; Malysheva, Olga V; Stabler, Sally P; Allen, Robert H; Caudill, Marie A

    2015-09-01

    Demand for the vital nutrient choline is high during lactation; however, few studies have examined choline metabolism and requirements in this reproductive state. The present study sought to discern the effects of lactation and varied choline intake on maternal biomarkers of choline metabolism and breast milk choline content. Lactating (n=28) and control (n=21) women were randomized to 480 or 930 mg choline/day for 10-12 weeks as part of a controlled feeding study. During the last 4-6 weeks, 20% of the total choline intake was provided as an isotopically labeled choline tracer (methyl-d9-choline). Blood, urine and breast milk samples were collected for choline metabolite quantification, enrichment measurements, and gene expression analysis of choline metabolic genes. Lactating (vs. control) women exhibited higher (P < .001) plasma choline concentrations but lower (P ≤ .002) urinary excretion of choline metabolites, decreased use of choline as a methyl donor (e.g., lower enrichment of d6-dimethylglycine, P ≤ .08) and lower (P ≤ .02) leukocyte expression of most choline-metabolizing genes. A higher choline intake during lactation differentially influenced breast milk d9- vs. d3-choline metabolite enrichment. Increases (P ≤ .03) were detected among the d3-metabolites, which are generated endogenously via the hepatic phosphatidylethanolamine N-methyltransferase (PEMT), but not among the d9-metabolites generated from intact exogenous choline. These data suggest that lactation induces metabolic adaptations that increase the supply of intact choline to the mammary epithelium, and that extra maternal choline enhances breast milk choline content by increasing supply of PEMT-derived choline metabolites. This trial was registered at clinicaltrials.gov as NCT01127022. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Proton MRS of the peritumoral brain.

    PubMed

    Chernov, Mikhail F; Kubo, Osami; Hayashi, Motohiro; Izawa, Masahiro; Maruyama, Takashi; Usukura, Masao; Ono, Yuko; Hori, Tomokatsu; Takakura, Kintomo

    2005-02-15

    Long-echo (TR: 2000 ms, TE: 136 ms) proton MRS of the cerebral tissue in the vicinity to intracranial lesion was done in 15 patients, mainly with parenchymal brain tumors. Significant decrease of N-acetylaspartate (NAA) (P<0.001) and more frequent presence of lactate (P<0.01) comparing with distant normal white matter were found in the perilesional brain tissue. The level of NAA in the perilesional brain tissue had negative associations with presence of lactate in the lesion (P<0.05), excess of lactate in the lesion compared to perilesional brain (P<0.01), grade of the perilesional edema (P<0.01) and patient's age (P<0.05). Multivariate analysis disclosed that identification of lactate in the lesion is associated with lower relative NAA content in the perilesional brain tissue, independently on the presence or absence of any other factor, including brain edema (P<0.001). In patients with lobar lesions who had at least one epileptic seizure during course of their disease the relative NAA content in the perilesional brain was significantly lower, comparing with those who were seizure-free (P<0.05). Therefore, lactate diffused from the tumor, or other metabolites secreted by lactate-producing neoplasm, should be considered as important contributors to the neuronal dysfunction in the surrounding brain. Decrease of NAA in the vicinity to intracranial lesions may reflect neuronal alteration responsible for associated epilepsy.

  16. N-Acetylcysteine and Allopurinol Synergistically Enhance Cardiac Adiponectin Content and Reduce Myocardial Reperfusion Injury in Diabetic Rats

    PubMed Central

    Wang, Tingting; Qiao, Shigang; Lei, Shaoqing; Liu, Yanan; Ng, Kwok F. J.; Xu, Aimin; Lam, Karen S. L.; Irwin, Michael G.; Xia, Zhengyuan

    2011-01-01

    Background Hyperglycemia-induced oxidative stress plays a central role in the development of diabetic myocardial complications. Adiponectin (APN), an adipokine with anti-diabetic and anti-ischemic effects, is decreased in diabetes. It is unknown whether or not antioxidant treatment with N-acetylcysteine (NAC) and/or allopurinol (ALP) can attenuate APN deficiency and myocardial ischemia reperfusion (MI/R) injury in the early stage of diabetes. Methodology/Principal Findings Control or streptozotocin (STZ)-induced diabetic rats were either untreated (C, D) or treated with NAC (1.5 g/kg/day) or ALP (100 mg/kg/day) or their combination for four weeks starting one week after STZ injection. Plasma and cardiac biochemical parameters were measured after the completion of treatment, and the rats were subjected to MI/R by occluding the left anterior descending artery for 30 min followed by 2 h reperfusion. Plasma and cardiac APN levels were decreased in diabetic rats accompanied by decreased cardiac APN receptor 2 (AdipoR2), reduced phosphorylation of Akt, signal transducer and activator of transcription 3 (STAT3) and endothelial nitric oxide synthase (eNOS) but increased IL-6 and TNF-α (all P<0.05 vs. C). NAC but not ALP increased cardiac APN concentrations and AdipoR2 expression in diabetic rats. ALP enhanced the effects of NAC in restoring cardiac AdipoR2 and phosphorylation of Akt, STAT3 and eNOS in diabetic rats. Further, NAC and ALP, respectively, decreased postischemic myocardial infarct size and creatinine kinase-MB (CK-MB) release in diabetic rats, while their combination conferred synergistic protective effects. In addition, exposure of cultured rat cardiomyocytes to high glucose resulted in significant reduction of cardiomyocyte APN concentration and AdipoR2 protein expression. APN supplementation restored high glucose induced AdipoR2 reduction in cardiomyocytes. Conclusions/Significance NAC and ALP synergistically restore myocardial APN and AdipoR2 mediated eNOS activation. This may represent the mechanism through which NAC and ALP combination greatly reduces MI/R injury in early diabetic rats. PMID:21912612

  17. Role of glycolysis inhibition and poly(ADP-ribose) polymerase activation in necrotic-like cell death caused by ascorbate/menadione-induced oxidative stress in K562 human chronic myelogenous leukemic cells.

    PubMed

    Verrax, Julien; Vanbever, Stéphanie; Stockis, Julie; Taper, Henryk; Calderon, Pedro Buc

    2007-03-15

    Among different features of cancer cells, two of them have retained our interest: their nearly universal glycolytic phenotype and their sensitivity towards an oxidative stress. Therefore, we took advantage of these features to develop an experimental approach by selectively exposing cancer cells to an oxidant insult induced by the combination of menadione (vitamin K(3)) and ascorbate (vitamin C). Ascorbate enhances the menadione redox cycling, increases the formation of reactive oxygen species and kills K562 cells as shown by more than 65% of LDH leakage after 24 hr of incubation. Since both lactate formation and ATP content are depressed by about 80% following ascorbate/menadione exposure, we suggest that the major intracellular event involved in such a cytotoxicity is related to the impairment of glycolysis. Indeed, NAD(+) is rapidly and severely depleted, a fact most probably related to a strong Poly(ADP-ribose) polymerase (PARP) activation, as shown by the high amount of poly-ADP-ribosylated proteins. The addition of N-acetylcysteine (NAC) restores most of the ATP content and the production of lactate as well. The PARP inhibitor dihydroxyisoquinoline (DiQ) was able to partially restore both parameters as well as cell death induced by ascorbate/menadione. These results suggest that the PARP activation induced by the oxidative stress is a major but not the only intracellular event involved in cell death by ascorbate/menadione. Due to the high energetic dependence of cancer cells on glycolysis, the impairment of such an essential pathway may explain the effectiveness of this combination to kill cancer cells. (c) 2006 Wiley-Liss, Inc.

  18. Determination of the radioprotective effects of topical applications of MEA, WR-2721, and N-acetylcysteine on murine skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhey, L.J.; Sedlacek, R.

    1983-01-01

    Topical applications of MEA (beta-mercaptoethylamine or cysteamine), WR-2721 (S-2-(3-aminopropylamino)-ethylphosphorothioic acid), and N-acetylcysteine (NAC) were tested for their ability to protect the normal skin of the hind legs of mice against acute and late damage from single doses of /sup 137/Cs radiation. No significant protection was observed with either WR-2721 or NAC. MEA was shown to offer significant protection against acute skin damage in both buffered and unbuffered forms, but no significant protection against late contraction. The use of topical MEA on unanesthetized animals breathing carbogen (95% O2, 5% CO2) appears to give an enhanced level of radioprotection over that shownmore » for anesthetized, air-breathing animals.« less

  19. Effect of Exercise-Induced Lactate Elevation on Brain Lactate Levels During Hypoglycemia in Patients With Type 1 Diabetes and Impaired Awareness of Hypoglycemia.

    PubMed

    Wiegers, Evita C; Rooijackers, Hanne M; Tack, Cees J; Groenewoud, Hans J M M; Heerschap, Arend; de Galan, Bastiaan E; van der Graaf, Marinette

    2017-12-01

    Since altered brain lactate handling has been implicated in the development of impaired awareness of hypoglycemia (IAH) in type 1 diabetes, the capacity to transport lactate into the brain during hypoglycemia may be relevant in its pathogenesis. High-intensity interval training (HIIT) increases plasma lactate levels. We compared the effect of HIIT-induced hyperlacticacidemia on brain lactate during hypoglycemia between 1 ) patients with type 1 diabetes and IAH, 2 ) patients with type 1 diabetes and normal awareness of hypoglycemia, and 3 ) healthy participants without diabetes ( n = 6 per group). All participants underwent a hypoglycemic (2.8 mmol/L) clamp after performing a bout of HIIT on a cycle ergometer. Before HIIT (baseline) and during hypoglycemia, brain lactate levels were determined continuously with J-difference-editing 1 H-MRS, and time curves were analyzed using nonlinear mixed-effects modeling. At the beginning of hypoglycemia (after HIIT), brain lactate levels were elevated in all groups but most pronounced in patients with IAH. During hypoglycemia, brain lactate decreased ∼30% below baseline in patients with IAH but returned to baseline levels and remained there in the other two groups. Our results support the concept of enhanced lactate transport as well as increased lactate oxidation in patients with type 1 diabetes and IAH. © 2017 by the American Diabetes Association.

  20. Preclinical High-Dose Acetaminophen With N-Acetylcysteine Rescue Enhances the Efficacy of Cisplatin Chemotherapy in Atypical Teratoid Rhabdoid Tumors

    PubMed Central

    Neuwelt, Alexander J.; Nguyen, Tam; Wu, Y. Jeffrey; Donson, Andrew M.; Vibhakar, Rajeev; Venkatamaran, Sujatha; Amani, Vladimir; Neuwelt, Edward A.; Rapkin, Louis B.; Foreman, Nicholas K.

    2016-01-01

    Background Atypical teratoid rhabdoid tumors (AT-RT) are pediatric tumors of the central nervous system with limited treatment options and poor survival rate. We investigated whether enhancing chemotherapy toxicity by depleting intracellular glutathione (GSH; a key molecule in cisplatin resistance) with high dose acetaminophen (AAP), may improve therapeutic efficacy in AT-RT in vitro. Procedure BT16 (cisplatin-resistant) and BT12 (cisplatin-sensitive) AT-RT cell lines were treated with combinations of AAP, cisplatin, and the anti-oxidant N-acetylcysteine (NAC). Cell viability, GSH and peroxide concentrations, mitochondrial damage, and apoptosis were evaluated in vitro. Results AAP enhanced cisplatin cytotoxicity in cisplatin-resistant BT16 cells but not cisplatin-sensitive BT12 cells. Baseline GSH levels were elevated in BT16 cells compared to BT12 cells, and AAP decreased GSH to a greater magnitude in BT16 cells than BT12 cells. Unlike BT12 cells, BT16 cells did not have elevated peroxide levels upon treatment with cisplatin alone, but did have elevated levels when treated with AAP + cisplatin. Both cell lines had markedly increased mitochondrial injury when treated with AAP + cisplatin relative to either drug treatment alone. The enhanced toxic effects were partially reversed with concurrent administration of NAC. Conclusions Our results suggest that AAP could be used as a chemo-enhancement agent to potentiate cisplatin chemotherapeutic efficacy particularly in cisplatin-resistant AT-RT tumors with high GSH levels in clinical settings. PMID:23956023

  1. Role of reactive oxygen intermediates in the interferon-mediated depression of hepatic drug metabolism and protective effect of N-acetylcysteine in mice.

    PubMed

    Ghezzi, P; Bianchi, M; Gianera, L; Landolfo, S; Salmona, M

    1985-08-01

    Interferon (IFN) and IFN inducers are known to depress hepatic microsomal cytochrome P-450 levels, and the liver toxicity of IFN was reported to be lethal in newborn mice. We have observed that administration to mice of IFN and IFN inducers caused a marked increase in liver xanthine oxidase activity. Because this enzyme is well known to produce reactive oxygen intermediates and cytochrome P-450 was reported to be sensitive to the oxidative damage, we have tested the hypothesis that a free radical mechanism could mediate the depression of cytochrome P-450 levels by IFN. Administration to mice of the IFN inducer polyinosinic-polycytidylic acid (2 mg/kg i.p.) caused a 29 to 52% decrease in liver cytochrome P-450. Concomitant p.o. administration of the free radical scavenger, N-acetylcysteine (as a 2.5% solution in drinking water), or the xanthine oxidase inhibitor, allopurinol (100 mg/kg), protected against the IFN-mediated depression of P-450 kg), protected against the IFN-mediated depression of P-450 levels. The results suggest that an increased endogenous generation of free radicals, possibly due to the induction of xanthine oxidase, is implicated in the IFN-mediated depression of liver drug metabolism. The relevance of these data also extends to cases in which this side effect is observed in pathological situations (e.g., viral diseases and administration of vaccines) associated with an induction of IFN.

  2. N-acetylcysteine Protects Mice from High Fat Diet-induced Metabolic Disorders.

    PubMed

    Ma, Yongjie; Gao, Mingming; Liu, Dexi

    2016-08-01

    To study the effects of N-acetylcysteine (NAC, C5H9NO3S) on diet-induced obesity and obesity-related metabolic disorders. Six-week-old male C57BL/6 mice fed a chow or high-fat diet (HFD) were treated with NAC (2 g/L) in drinking water for 11 weeks. Its influences on body weight and food intake were manually measured, and influence on body composition were analyzed by magnetic residence imaging. Glucose meter and ELISA were used to determine serum glucose and insulin levels, as well as lipid content in the liver. The effects of NAC treatment on mRNA levels of genes involved in inflammation, thermogenesis, and lipid metabolism in various tissues were determined by real time PCR. NAC supplementation inhibited the increase of fat mass and the development of obesity when mice were fed an HFD. NAC treatment significantly lowered HFD-induced macrophage infiltration, and enhanced adiponectin gene expression, resulting in reduced hyperglycemia and hyperinsulinemia, and improvement of insulin resistance. NAC oral administration suppressed hepatic lipid accumulation, as evidenced by lower levels of triglyceride and cholesterol in the liver. The beneficial effects are associated with a decrease of hepatic Pparγ and its target gene expression, and an increase in the expression of genes responsible for lipid oxidation and activation of farnesoid X receptor. Furthermore, NAC treatment also stimulates expression of thermogenic genes. These results provide direct proof of the protective potential of NAC against HFD-induced obesity and obesity-associated metabolic disorders.

  3. Effects of Zinc and N-Acetylcysteine in Damage Caused by Lead Exposure in Young Rats.

    PubMed

    Pedroso, Taíse F; Oliveira, Cláudia S; Fonseca, Mariana M; Oliveira, Vitor A; Pereira, Maria Ester

    2017-12-01

    This study investigated the toxicity of rats exposed to lead acetate (AcPb) during the second phase of brain development (8-12 days postnatal) in hematological and cerebral parameters. Moreover, the preventive effect of zinc chloride (ZnCl 2 ) and N-acetylcysteine (NAC) was investigated. Pups were injected subcutaneously with saline (0.9% NaCl solution), ZnCl 2 (27 mg/kg/day), NAC (5 mg/kg/day) or ZnCl 2 plus NAC for 5 days (3rd-7th postnatal days), and with saline (0.9% NaCl solution) or AcPb (7 mg/kg/day) in the five subsequent days (8th-12th postnatal days). Animals were sacrificed 21 days after the last AcPb exposure. Pups exposed to AcPb presented inhibition of blood porphobilinogen-synthase (PBG-synthase) activity without changes in hemoglobin content. ZnCl 2 pre-exposure partially prevented PBG-synthase inhibition. Regarding neurotoxicity biomarkers, animals exposed to AcPb presented a decrease in cerebrum acetylcholinesterase (AChE) activity and an increase in Pb accumulation in blood and cerebrum. These changes were prevented by pre-treatment with ZnCl 2 , NAC, and ZnCl 2 plus NAC. AcPb exposure caused no alteration in behavioral tasks. In short, results show that AcPb inhibited the activity of two important enzymatic biomarkers up to 21 days after the end of the exposure. Moreover, ZnCl 2 and NAC prevented the alterations induced by AcPb.

  4. The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice.

    PubMed

    Farr, Susan A; Poon, H Fai; Dogrukol-Ak, Dilek; Drake, Jeniffer; Banks, William A; Eyerman, Edward; Butterfield, D Allan; Morley, John E

    2003-03-01

    Oxidative stress may play a crucial role in age-related neurodegenerative disorders. Here, we examined the ability of two antioxidants, alpha-lipoic acid (LA) and N-acetylcysteine (NAC), to reverse the cognitive deficits found in the SAMP8 mouse. By 12 months of age, this strain develops elevated levels of Abeta and severe deficits in learning and memory. We found that 12-month-old SAMP8 mice, in comparison with 4-month-old mice, had increased levels of protein carbonyls (an index of protein oxidation), increased TBARS (an index of lipid peroxidation) and a decrease in the weakly immobilized/strongly immobilized (W/S) ratio of the protein-specific spin label MAL-6 (an index of oxidation-induced conformational changes in synaptosomal membrane proteins). Chronic administration of either LA or NAC improved cognition of 12-month-old SAMP8 mice in both the T-maze footshock avoidance paradigm and the lever press appetitive task without inducing non-specific effects on motor activity, motivation to avoid shock, or body weight. These effects probably occurred directly within the brain, as NAC crossed the blood-brain barrier and accumulated in the brain. Furthermore, treatment of 12-month-old SAMP8 mice with LA reversed all three indexes of oxidative stress. These results support the hypothesis that oxidative stress can lead to cognitive dysfunction and provide evidence for a therapeutic role for antioxidants.

  5. The effect of L-cysteine and N-acetylcysteine on porphyrin/heme biosynthetic pathway in cells treated with 5-aminolevulinic acid and exposed to radiation.

    PubMed

    He, D; Behar, S; Roberts, J E; Lim, H W

    1996-10-01

    The effects of L-cysteine (LC) and N-acetylcysteine (NAC) on porphyrin accumulation in a human dermal microvascular endothelial cell line (HMEC-1) and a human epidermoid carcinoma cell line (A431) loaded with 5-aminolevulinic acid (ALA) and exposed to ultraviolet A (UVA) and blue light radiation were determined. Porphyrin accumulation was decreased in the presence of 0.1-7.5 mM LC (24.8%-31.4% suppression in HMEC-1 cell; 35.8%-48.9% suppression in A431 cells), and in the presence of 0.1-10.0 mM NAC (30.9%-58.0% suppression in HMEC-1 cells; 8.5%-45.3% in A431 cells). The suppression occurred in a LC or NAC dose-dependent fashion. The above was associated with partial reversal of suppression of ferrochelatase (FeC) activity in HMEC-1 cells and in A431 cells. As compared to FeC activity in cells treated with ALA and irradiation, enzyme activity was higher (by 31.9%-62.1%) in the presence of LC (1.0 mM or 5.0 mM) and in the presence of NAC (1.0 mM or 5.0 mM). These data indicate that LC and NAC have protective effects on porphyrin- and irradiation-induced diminution of FeC activity in HMEC-1 cells and A341 cells in vitro.

  6. N-acetylcysteine normalizes the urea cycle and DNA repair in cells from patients with Batten disease.

    PubMed

    Kim, June-Bum; Lim, Nary; Kim, Sung-Jo; Heo, Tae-Hwe

    2012-12-01

    Batten disease is an inherited disorder characterized by early onset neurodegeneration due to the mutation of the CLN3 gene. The function of the CLN3 protein is not clear, but an association with oxidative stress has been proposed. Oxidative stress and DNA damage play critical roles in the pathogenesis of neurodegenerative diseases. Antioxidants are of interest because of their therapeutic potential for treating neurodegenerative diseases. We tested whether N-acetylcysteine (NAC), a well-known antioxidant, improves the pathology of cells from patients with Batten disease. At first, the expression levels of urea cycle components and DNA repair enzymes were compared between Batten disease cells and normal cells. We used both mRNA expression levels and Western blot analysis. We found that carbamoyl phosphate synthetase 1, an enzyme involved in the urea cycle, 8-oxoguanine DNA glycosylase 1 and DNA polymerase beta, enzymes involved in DNA repair, were expressed at higher levels in Batten disease cells than in normal cells. The treatment of Batten disease cells with NAC for 48 h attenuated activities of the urea cycle and of DNA repair, as indicated by the substantially decreased expression levels of carbamoyl phosphate synthetase 1, 8-oxoguanine DNA glycosylase 1 and DNA polymerase beta proteins compared with untreated Batten cells. NAC may serve in alleviating the burden of urea cycle and DNA repair processes in Batten disease cells. We propose that NAC may have beneficial effects in patients with Batten disease. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Influence of cafeteria diet and fish oil in pregnancy and lactation on pups' body weight and fatty acid profiles in rats.

    PubMed

    Sánchez-Blanco, Clara; Amusquivar, Encarnación; Bispo, Kenia; Herrera, Emilio

    2016-06-01

    The aim was to determine the effects of cafeteria diet (CD) and fish oil supplements given to pregnant and lactating rats on the birth weight and fatty acid profiles of their offspring. Female rats were given standard diet (STD) or CD for 22 days before pregnancy. After mating, some animals remained on STD or CD; for some CD rats, the diet was supplemented with 8.78 % fish oil (CD-FO). After 12 days, half the CD-FO group returned to CD (CD-FO12) and the others remained on CD-FO. At birth, body weights of pups of the three CD groups were lower than STD, maintained until 21 days in the CD-FO group only. At the end of lactation, dams of the CD groups had increased plasma triacylglycerols (TAG), non-esterified fatty acids, and glycerol concentrations, whereas most n-6 long-chain polyunsaturated fatty acids (LCPUFA) were decreased, the effect being greatest in the CD-FO group, where most n-3 LCPUFA were increased and indices of Δ(5) and Δ(6) desaturase activities decreased. The 21-day-old pups of the CD group had increased plasma TAG, not present in the CD-FO group, which had increased 3-hydroxybutyrate concentrations. In both 2- and 21-day-old CD pups, plasma concentrations of ARA were lower than STD, and even lower in the two CD-FO groups. The effect of CD and CD-FO decreasing pups body weight could be related to decreased concentrations of ARA, caused by the inhibition of the Δ(5) and Δ(6) desaturases in the pathway of n-6 LCPUFA biosynthesis.

  8. Early Use of N-acetylcysteine With Nitrate Therapy in Patients Undergoing Primary Percutaneous Coronary Intervention for ST-Segment-Elevation Myocardial Infarction Reduces Myocardial Infarct Size (the NACIAM Trial [N-acetylcysteine in Acute Myocardial Infarction]).

    PubMed

    Pasupathy, Sivabaskari; Tavella, Rosanna; Grover, Suchi; Raman, Betty; Procter, Nathan E K; Du, Yang Timothy; Mahadavan, Gnanadevan; Stafford, Irene; Heresztyn, Tamila; Holmes, Andrew; Zeitz, Christopher; Arstall, Margaret; Selvanayagam, Joseph; Horowitz, John D; Beltrame, John F

    2017-09-05

    Contemporary ST-segment-elevation myocardial infarction management involves primary percutaneous coronary intervention, with ongoing studies focusing on infarct size reduction using ancillary therapies. N-acetylcysteine (NAC) is an antioxidant with reactive oxygen species scavenging properties that also potentiates the effects of nitroglycerin and thus represents a potentially beneficial ancillary therapy in primary percutaneous coronary intervention. The NACIAM trial (N-acetylcysteine in Acute Myocardial Infarction) examined the effects of NAC on infarct size in patients with ST-segment-elevation myocardial infarction undergoing percutaneous coronary intervention. This randomized, double-blind, placebo-controlled, multicenter study evaluated the effects of intravenous high-dose NAC (29 g over 2 days) with background low-dose nitroglycerin (7.2 mg over 2 days) on early cardiac magnetic resonance imaging-assessed infarct size. Secondary end points included cardiac magnetic resonance-determined myocardial salvage and creatine kinase kinetics. Of 112 randomized patients with ST-segment-elevation myocardial infarction, 75 (37 in NAC group, 38 in placebo group) underwent early cardiac magnetic resonance imaging. Median duration of ischemia pretreatment was 2.4 hours. With background nitroglycerin infusion administered to all patients, those randomized to NAC exhibited an absolute 5.5% reduction in cardiac magnetic resonance-assessed infarct size relative to placebo (median, 11.0%; [interquartile range 4.1, 16.3] versus 16.5%; [interquartile range 10.7, 24.2]; P =0.02). Myocardial salvage was approximately doubled in the NAC group (60%; interquartile range, 37-79) compared with placebo (27%; interquartile range, 14-42; P <0.01) and median creatine kinase areas under the curve were 22 000 and 38 000 IU·h in the NAC and placebo groups, respectively ( P =0.08). High-dose intravenous NAC administered with low-dose intravenous nitroglycerin is associated with reduced infarct size in patients with ST-segment-elevation myocardial infarction undergoing percutaneous coronary intervention. A larger study is required to assess the impact of this therapy on clinical cardiac outcomes. Australian New Zealand Clinical Trials Registry. URL: http://www.anzctr.org.au/. Unique identifier: 12610000280000. © 2017 American Heart Association, Inc.

  9. Premedication with simethicone and N-acetylcysteine in improving visibility during upper endoscopy: a double-blind randomized trial.

    PubMed

    Elvas, Luís; Areia, Miguel; Brito, Daniel; Alves, Susana; Saraiva, Sandra; Cadime, Ana T

    2017-02-01

    Background and study aim  Upper endoscopy is the most common method for the diagnosis of upper gastrointestinal tract diseases. The aim of this study was to determine whether premedication with simethicone or N -acetylcysteine improves mucosal visualization during upper endoscopy. Patients and methods  This was a randomized, double-blind, placebo-controlled study of 297 patients scheduled for upper endoscopy who were premedicated 15 - 30 minutes before the procedure with: 100 mL of water (placebo, group A); water plus 100 mg simethicone (group B); water plus 100 mg simethicone plus 600 mg N -acetylcysteine (group C). The primary outcome measure was the quality of mucosal visualization (score: excellent, adequate or inadequate). Results  The addition of simethicone (group B) or simethicone plus N -acetylcysteine to the water (group C) improved the visualization scores of endoscopies compared with water alone (group A). In particular, groups B and C produced a significantly higher percentage of endoscopies with excellent visualization for the esophagus (91.1 % and 86.7 %, respectively, vs. 71.4 % in group A; P  < 0.001) and stomach (76.2 % and 74.5 % vs. 38.8 % in group A; P  < 0.001). For the duodenum, the use of simethicone also showed an increase in the endoscopies with excellent visualization compared with water alone (85.1 % vs. 73.5 %; P  = 0.042). There were no significant differences in scores between groups B and C or between gastric scores in patients with previous subtotal gastrectomy (B and C vs. A): 60.0 % and 42.1 % vs. 28.6 % ( P  = 0.14). The rate of reported lesions was higher in group B but without statistical significance. Conclusions  Premedication with simethicone resulted in better mucosal visibility. Such premedication might improve diagnostic yield, and should be considered for standard practice. Trial registered at ClinicalTrials.gov (NCT02357303). © Georg Thieme Verlag KG Stuttgart · New York.

  10. Interventions for paracetamol (acetaminophen) overdose.

    PubMed

    Chiew, Angela L; Gluud, Christian; Brok, Jesper; Buckley, Nick A

    2018-02-23

    Paracetamol (acetaminophen) is the most widely used non-prescription analgesic in the world. Paracetamol is commonly taken in overdose either deliberately or unintentionally. In high-income countries, paracetamol toxicity is a common cause of acute liver injury. There are various interventions to treat paracetamol poisoning, depending on the clinical status of the person. These interventions include inhibiting the absorption of paracetamol from the gastrointestinal tract (decontamination), removal of paracetamol from the vascular system, and antidotes to prevent the formation of, or to detoxify, metabolites. To assess the benefits and harms of interventions for paracetamol overdosage irrespective of the cause of the overdose. We searched The Cochrane Hepato-Biliary Group Controlled Trials Register (January 2017), CENTRAL (2016, Issue 11), MEDLINE (1946 to January 2017), Embase (1974 to January 2017), and Science Citation Index Expanded (1900 to January 2017). We also searched the World Health Organization International Clinical Trials Registry Platform and ClinicalTrials.gov database (US National Institute of Health) for any ongoing or completed trials (January 2017). We examined the reference lists of relevant papers identified by the search and other published reviews. Randomised clinical trials assessing benefits and harms of interventions in people who have ingested a paracetamol overdose. The interventions could have been gastric lavage, ipecacuanha, or activated charcoal, or various extracorporeal treatments, or antidotes. The interventions could have been compared with placebo, no intervention, or to each other in differing regimens. Two review authors independently extracted data from the included trials. We used fixed-effect and random-effects Peto odds ratios (OR) with 95% confidence intervals (CI) for analysis of the review outcomes. We used the Cochrane 'Risk of bias' tool to assess the risks of bias (i.e. systematic errors leading to overestimation of benefits and underestimation of harms). We used Trial Sequential Analysis to control risks of random errors (i.e. play of chance) and GRADE to assess the quality of the evidence and constructed 'Summary of findings' tables using GRADE software. We identified 11 randomised clinical trials (of which one acetylcysteine trial was abandoned due to low numbers recruited), assessing several different interventions in 700 participants. The variety of interventions studied included decontamination, extracorporeal measures, and antidotes to detoxify paracetamol's toxic metabolite; which included methionine, cysteamine, dimercaprol, or acetylcysteine. There were no randomised clinical trials of agents that inhibit cytochrome P-450 to decrease the activation of the toxic metabolite N-acetyl-p-benzoquinone imine.Of the 11 trials, only two had two common outcomes, and hence, we could only meta-analyse two comparisons. Each of the remaining comparisons included outcome data from one trial only and hence their results are presented as described in the trials. All trial analyses lack power to access efficacy. Furthermore, all the trials were at high risk of bias. Accordingly, the quality of evidence was low or very low for all comparisons. Interventions that prevent absorption, such as gastric lavage, ipecacuanha, or activated charcoal were compared with placebo or no intervention and with each other in one four-armed randomised clinical trial involving 60 participants with an uncertain randomisation procedure and hence very low quality. The trial presented results on lowering plasma paracetamol levels. Activated charcoal seemed to reduce the absorption of paracetamol, but the clinical benefits were unclear. Activated charcoal seemed to have the best risk:benefit ratio among gastric lavage, ipecacuanha, or supportive treatment if given within four hours of ingestion. There seemed to be no difference between gastric lavage and ipecacuanha, but gastric lavage and ipecacuanha seemed more effective than no treatment (very low quality of evidence). Extracorporeal interventions included charcoal haemoperfusion compared with conventional treatment (supportive care including gastric lavage, intravenous fluids, and fresh frozen plasma) in one trial with 16 participants. The mean cumulative amount of paracetamol removed was 1.4 g. One participant from the haemoperfusion group who had ingested 135 g of paracetamol, died. There were no deaths in the conventional treatment group. Accordingly, we found no benefit of charcoal haemoperfusion (very low quality of evidence). Acetylcysteine appeared superior to placebo and had fewer adverse effects when compared with dimercaprol or cysteamine. Acetylcysteine superiority to methionine was unproven. One small trial (low quality evidence) found that acetylcysteine may reduce mortality in people with fulminant hepatic failure (Peto OR 0.29, 95% CI 0.09 to 0.94). The most recent randomised clinical trials studied different acetylcysteine regimens, with the primary outcome being adverse events. It was unclear which acetylcysteine treatment protocol offered the best efficacy, as most trials were underpowered to look at this outcome. One trial showed that a modified 12-hour acetylcysteine regimen with a two-hour acetylcysteine 100 mg/kg bodyweight loading dose was associated with significantly fewer adverse reactions compared with the traditional three-bag 20.25-hour regimen (low quality of evidence). All Trial Sequential Analyses showed lack of sufficient power. Children were not included in the majority of trials. Hence, the evidence pertains only to adults. These results highlight the paucity of randomised clinical trials comparing different interventions for paracetamol overdose and their routes of administration and the low or very low level quality of the evidence that is available. Evidence from a single trial found activated charcoal seemed the best choice to reduce absorption of paracetamol. Acetylcysteine should be given to people at risk of toxicity including people presenting with liver failure. Further randomised clinical trials with low risk of bias and adequate number of participants are required to determine which regimen results in the fewest adverse effects with the best efficacy. Current management of paracetamol poisoning worldwide involves the administration of intravenous or oral acetylcysteine which is based mainly on observational studies. Results from these observational studies indicate that treatment with acetylcysteine seems to result in a decrease in morbidity and mortality, However, further evidence from randomised clinical trials comparing different treatments are needed.

  11. A maternal Western diet during gestation and lactation modifies offspring's microbiota activity, blood lipid levels, cognitive responses, and hippocampal neurogenesis in Yucatan pigs.

    PubMed

    Val-Laillet, David; Besson, Marie; Guérin, Sylvie; Coquery, Nicolas; Randuineau, Gwénaëlle; Kanzari, Ameni; Quesnel, Hélène; Bonhomme, Nathalie; Bolhuis, J Elizabeth; Kemp, Bas; Blat, Sophie; Le Huërou-Luron, Isabelle; Clouard, Caroline

    2017-05-01

    A suboptimal early nutritional environment ( i.e., excess of energy, sugar, and fat intake) can increase susceptibility to diseases and neurocognitive disorders. The purpose of this study was to investigate in nonobese Yucatan minipigs ( Sus scrofa ) the impact of maternal diet [standard diet (SD) vs. Western diet (WD)] during gestation and 25 d of lactation on milk composition, blood metabolism, and microbiota activity of sows ( n = 17) and their piglets ( n = 65), and on spatial cognition ( n = 51), hippocampal plasticity ( n = 17), and food preferences/motivation ( n = 51) in the progeny. Milk dry matter and lipid content, as well as plasma total cholesterol and free fatty acid (FFA) concentrations ( P < 0.05) were higher in WD than in SD sows. Microbiota activity decreased in both WD sows and 100-d-old piglets ( P < 0.05 or P < 0.10, depending on short-chain FAs [SCFAs]). At weaning [postnatal day (PND) 25], WD piglets had increased blood triglyceride and FFA levels ( P < 0.01). Both SD and WD piglets consumed more of a known SD than an unknown high-fat and -sucrose (HFS) diet ( P < 0.0001), but were quicker to obtain HFS rewards compared with SD rewards ( P < 0.01). WD piglets had higher working memory ( P = 0.015) and reference memory ( P < 0.001) scores, which may reflect better cognitive abilities in the task context and a higher motivation for the food rewards. WD piglets had a smaller hippocampal granular cell layer ( P = 0.03) and decreased neurogenesis ( P < 0.005), but increased cell proliferation ( P < 0.001). A maternal WD during gestation and lactation, even in the absence of obesity, has significant consequences for piglets' blood lipid levels, microbiota activity, gut-brain axis, and neurocognitive abilities after weaning.-Val-Laillet, D., Besson, M., Guérin, S., Coquery, N., Randuineau, G., Kanzari, A., Quesnel, H., Bonhomme, N., Bolhuis, J. E., Kemp, B., Blat, S., Le Huërou-Luron, I., Clouard, C. A maternal Western diet during gestation and lactation modifies offspring's microbiota activity, blood lipid levels, cognitive responses, and hippocampal neurogenesis in Yucatan pigs. © FASEB.

  12. N-acetylcysteine in contrast-induced acute kidney injury: clinical use against principles of evidence-based clinical medicine!

    PubMed

    Sadat, Umar

    2014-01-01

    Contrast-induced acute kidney injury (CI-AKI) is one of the most widely discussed and debated topic in cardiovascular medicine and N-acetylcysteine (NAC) is the most widely used pharmacological agent assessed in clinical trials for offering renal protection against CI-AKI. Results of these clinical trials are though split between those that favor its use and vice versa. In this brief communication we discuss the latest research advances regarding the use of NAC against CI-AKI. Recent clinical evidence and overview of in-depth statistical analyses of relevant clinical trials and their meta-analyses do not support the use of NAC in prophylaxis against CI-AKI. Adequate hydration before and after contrast media exposure, along with avoidance of nephrotoxic drugs, remains the recommended prophylaxis against CI-AKI.

  13. Trichotillomania: a case report with clinical and dermatoscopic differential diagnosis with alopecia areata.

    PubMed

    Pinto, Ana Cecília Versiani Duarte; Andrade, Tatiana Cristina Pedro Cordeiro de; Brito, Fernanda Freitas de; Silva, Gardênia Viana da; Cavalcante, Maria Lopes Lamenha Lins; Martelli, Antonio Carlos Ceribelli

    2017-01-01

    Trichotillomania is a psychodermatologic disorder characterized by uncontrollable urge to pull one's own hair. Differential diagnoses include the most common forms of alopecia such as alopecia areata. It is usually associated with depression and obsessive-compulsive disorder. Trichotillomania treatment standardization is a gap in the medical literature. Recent studies demonstrated the efficacy of N-acetylcysteine (a glutamate modulator) for the treatment of the disease. We report the clinical case of a 12-year-old female patient who received the initial diagnosis of alopecia areata, but presented with clinical and dermoscopic features of trichotillomania. She was treated with the combination of psychotropic drugs and N-acetylcysteine with good clinical response. Due to the chronic and recurring nature of trichotillomania, more studies need to be conducted for the establishment of a formal treatment algorithm.

  14. Trichotillomania: a case report with clinical and dermatoscopic differential diagnosis with alopecia areata*

    PubMed Central

    Pinto, Ana Cecília Versiani Duarte; de Andrade, Tatiana Cristina Pedro Cordeiro; de Brito, Fernanda Freitas; da Silva, Gardênia Viana; Cavalcante, Maria Lopes Lamenha Lins; Martelli, Antonio Carlos Ceribelli

    2017-01-01

    Trichotillomania is a psychodermatologic disorder characterized by uncontrollable urge to pull one's own hair. Differential diagnoses include the most common forms of alopecia such as alopecia areata. It is usually associated with depression and obsessive-compulsive disorder. Trichotillomania treatment standardization is a gap in the medical literature. Recent studies demonstrated the efficacy of N-acetylcysteine (a glutamate modulator) for the treatment of the disease. We report the clinical case of a 12-year-old female patient who received the initial diagnosis of alopecia areata, but presented with clinical and dermoscopic features of trichotillomania. She was treated with the combination of psychotropic drugs and N-acetylcysteine with good clinical response. Due to the chronic and recurring nature of trichotillomania, more studies need to be conducted for the establishment of a formal treatment algorithm. PMID:28225970

  15. Oxidative stress and successful antioxidant treatment in models of RYR1-related myopathy

    PubMed Central

    Arbogast, Sandrine; Hur, Junguk; Nelson, Darcee D.; McEvoy, Anna; Waugh, Trent; Marty, Isabelle; Lunardi, Joel; Brooks, Susan V.; Kuwada, John Y.; Ferreiro, Ana

    2012-01-01

    The skeletal muscle ryanodine receptor is an essential component of the excitation–contraction coupling apparatus. Mutations in RYR1 are associated with several congenital myopathies (termed RYR1-related myopathies) that are the most common non-dystrophic muscle diseases of childhood. Currently, no treatments exist for these disorders. Although the primary pathogenic abnormality involves defective excitation–contraction coupling, other abnormalities likely play a role in disease pathogenesis. In an effort to discover novel pathogenic mechanisms, we analysed two complementary models of RYR1-related myopathies, the relatively relaxed zebrafish and cultured myotubes from patients with RYR1-related myopathies. Expression array analysis in the zebrafish disclosed significant abnormalities in pathways associated with cellular stress. Subsequent studies focused on oxidative stress in relatively relaxed zebrafish and RYR1-related myopathy myotubes and demonstrated increased oxidant activity, the presence of oxidative stress markers, excessive production of oxidants by mitochondria and diminished survival under oxidant conditions. Exposure to the antioxidant N-acetylcysteine reduced oxidative stress and improved survival in the RYR1-related myopathies human myotubes ex vivo and led to significant restoration of aspects of muscle function in the relatively relaxed zebrafish, thereby confirming its efficacy in vivo. We conclude that oxidative stress is an important pathophysiological mechanism in RYR1-related myopathies and that N-acetylcysteine is a successful treatment modality ex vivo and in a vertebrate disease model. We propose that N-acetylcysteine represents the first potential therapeutic strategy for these debilitating muscle diseases. PMID:22418739

  16. Protective Effect of N-acetylcysteine on Liver Damage During Chronic Intrauterine Hypoxia in Fetal Guinea Pig

    PubMed Central

    Hashimoto, Kazumasa; Pinkas, Gerard; Evans, LaShauna; Liu, Hongshan; Al-Hasan, Yazan

    2012-01-01

    Chronic exposure to hypoxia during pregnancy generates a stressed intrauterine environment that may lead to fetal organ damage. The objectives of the study are (1) to quantify the effect of chronic hypoxia in the generation of oxidative stress in fetal guinea pig liver and (2) to test the protective effect of antioxidant treatment in hypoxic fetal liver injury. Pregnant guinea pigs were exposed to either normoxia (NMX) or 10.5% O2 (HPX, 14 days) prior to term (65 days) and orally administered N-acetylcysteine ([NAC] 10 days). Near-term anesthetized fetuses were excised and livers examined by histology and assayed for malondialdehyde (MDA) and DNA fragmentation. Chronic HPX increased erythroid precursors, MDA (NMX vs HPX; 1.26 ± 0.07 vs 1.78 ± 0.07 nmol/mg protein; P < .001, mean ± standard error of the mean [SEM]) and DNA fragmentation levels in fetal livers (0.069 ± 0.01 vs 0.11 ± 0.005 OD/mg protein; P < .01). N-acetylcysteine inhibited erythroid aggregation and reduced (P < .05) both MDA and DNA fragmentation of fetal HPX livers. Thus, chronic intrauterine hypoxia generates cell and nuclear damage in the fetal guinea pig liver. Maternal NAC inhibited the adverse effects of fetal liver damage suggestive of oxidative stress. The suppressive effect of maternal NAC may implicate the protective role of antioxidants in the prevention of liver injury in the hypoxic fetus. PMID:22534333

  17. The effect of mineral-based alkaline water on hydration status and the metabolic response to short-term anaerobic exercise.

    PubMed

    Chycki, Jakub; Zając, Tomasz; Maszczyk, Adam; Kurylas, Anna

    2017-09-01

    Previously it was demonstrated that mineralization and alkalization properties of mineral water are important factors influencing acid-base balance and hydration in athletes. The purpose of this study was to investigate the effects of drinking different types of water on urine pH, specific urine gravity, and post-exercise lactate utilization in response to strenuous exercise. Thirty-six male soccer players were divided into three intervention groups, consuming around 4.0 l/day of different types of water for 7 days: HM (n=12; highly mineralized water), LM (n=12; low mineralized water), and CON (n=12; table water). The athletes performed an exercise protocol on two occasions (before and after intervention). The exercise protocol consisted of 5 bouts of intensive 60-s (120% VO 2max ) cycling separated by 60 s of passive rest. Body composition, urinalysis and lactate concentration were evaluated - before (t0), immediately after (t1), 5' (t2), and 30' (t3) after exercise. Total body water and its active transport (TBW - total body water / ICW - intracellular water / ECW - extracellular water) showed no significant differences in all groups, at both occasions. In the post-hydration state we found a significant decrease of specific urine gravity in HM (1021±4.2 vs 1015±3.8 g/L) and LM (1022±3.1 vs 1008±4.2 g/L). We also found a significant increase of pH and lactate utilization rate in LM. In conclusion, the athletes hydrated with alkaline, low mineralized water demonstrated favourable changes in hydration status in response to high-intensity interval exercise with a significant decrease of specific urine gravity, increased urine pH and more efficient utilization of lactate after supramaximal exercise.

  18. Massive paracetamol overdose: an observational study of the effect of activated charcoal and increased acetylcysteine dose (ATOM-2).

    PubMed

    Chiew, Angela L; Isbister, Geoffrey K; Kirby, Katharine A; Page, Colin B; Chan, Betty S H; Buckley, Nicholas A

    2017-12-01

    Paracetamol is commonly taken in overdose, with increasing concerns that those taking "massive" overdoses have higher rates of hepatotoxicity and may require higher doses of acetylcysteine. The objective was to describe the clinical characteristics and outcomes of "massive" (≥ 40 g) paracetamol overdoses. Patients were identified through the Australian Paracetamol Project, a prospective observational study through Poisons Information Centres in NSW and Queensland, over 3 and 1.5 years, respectively, and retrospectively from three clinical toxicology unit databases (over 2.5 to 20 years). Included were immediate-release paracetamol overdoses ≥ 40 g ingested over ≤ 8 h. Outcomes measured included paracetamol ratio[defined as the ratio of the first paracetamol concentration taken 4-16 h post-ingestion to the standard (150 mg/L at 4 h) nomogram line at that time] and hepatotoxicity (ALT >1000 U/L). Two hundred paracetamol overdoses were analysed, reported median dose ingested was 50 g (interquartile range (IQR): 45-60 g) and median paracetamol ratio 1.9 (IQR: 1.4-2.9, n = 173). One hundred and ninety-three received acetylcysteine at median time of 6.3 h (IQR: 4-9.3 h) post-ingestion. Twenty-eight (14%) developed hepatotoxicity, including six treated within 8 h of ingestion. Activated charcoal was administered to 49(25%), at median of 2 h post-ingestion (IQR:1.5-5 h). Those receiving activated charcoal (within 4 h of ingestion), had significantly lower paracetamol ratio versus those who did not: 1.4 (n = 33, IQR: 1.1-1.6) versus 2.2 (n = 140, IQR: 1.5-3.0) (p < .0001) (paracetamol concentration measured ≥ 1 h after charcoal). Furthermore, they had lower rates of hepatotoxicity [unadjusted OR: 0.12 (95% CI: <0.001-0.91); adjusted for time to acetylcysteine OR: 0.20 (95%CI: 0.002-1.74)]. Seventy-nine had a paracetamol ratio ≥2, 43 received an increased dose of acetylcysteine in the first 21 h; most commonly a double dose in the last bag (100 to 200 mg/kg/16 h). Those receiving increased acetylcysteine had a significant decrease risk of hepatotoxicity [OR:0.27 (95% CI: 0.08-0.94)]. The OR remained similar after adjustment for time to acetylcysteine and paracetamol ratio. Massive paracetamol overdose can result in hepatotoxicity despite early treatment. Paracetamol concentrations were markedly reduced in those receiving activated charcoal within 4 h. In those with high paracetamol concentrations, treatment with increased acetylcysteine dose within 21 h was associated with a significant reduction in hepatotoxicity.

  19. Reduced nursing frequency during prolonged lactation in the mouse decreases milk production and increases mammary expression of tryptophan hydroxylase 1 (TPH1), but does not accelerate mammary gland remodeling

    USDA-ARS?s Scientific Manuscript database

    We have observed that lactating mouse dams nursed 4 times per day (4X) maintained lactation, but had lower milk yields by the weigh-suckle-weigh method, than dams nursed ad libitum (AL). Therefore, we hypothesized that decreased nursing frequency would also decrease lactation persistence, increase m...

  20. Stability of acetylcysteine solution repackaged in oral syringes and associated cost savings.

    PubMed

    Kiser, Tyree H; Oldland, Alan R; Fish, Douglas N

    2007-04-01

    The physical and chemical stability of repackaged acetylcysteine 600 mg/3 mL solution in oral syringes stored under refrigeration or at room temperature was studied for six months; a cost analysis was also conducted. Acetylcysteine 20% solution for inhalation was repackaged undiluted as 600 mg/3 mL in capped oral syringes and stored either under refrigeration or at room temperature exposed to fluorescent light. Four samples for each storage condition were analyzed in duplicate on day zero, weekly for the first month, and then every two weeks during months 2-6. Physical stability was assessed, and the chemical stability of acetylcysteine was evaluated by high-performance liquid chromatography. Acetylcysteine solution in syringes was physically stable during the entire six-month study period. When stored at room temperature, acetylcysteine retained 99% of the original concentration at three months and 95% at six months after preparation of the syringes. Loss of acetylcysteine was <2% at six months when stored under refrigeration. Packaging acetylcysteine in batches of 100 syringes instead of preparing individual syringes reduced wastage to zero syringes, saving an estimated $247 in drug costs. The estimated pharmacy time savings was 30 hours ($702). Acetylcysteine 20% solution repackaged as 600 mg/3 mL in oral syringes is both physically and chemically stable under refrigeration or at room temperature under normal fluorescent lighting for six months. The total loss of acetylcysteine was approximately 5% at room temperature under fluorescent lighting and <2% under refrigeration. Repackaging the solution in syringes in bulk rather than in single doses demonstrated a measurable cost saving.

  1. Lactate Clearance and Normalization and Prolonged Organ Dysfunction in Pediatric Sepsis.

    PubMed

    Scott, Halden F; Brou, Lina; Deakyne, Sara J; Fairclough, Diane L; Kempe, Allison; Bajaj, Lalit

    2016-03-01

    To evaluate whether lactate clearance and normalization during emergency care of pediatric sepsis is associated with lower rates of persistent organ dysfunction. This was a prospective cohort study of 77 children <18 years of age in the emergency department with infection and acute organ dysfunction per consensus definitions. In consented patients, lactate was measured 2 and/or 4 hours after an initial lactate; persistent organ dysfunction was assessed through laboratory and physician evaluation at 48 hours. A decrease of ≥ 10% from initial to final level was considered lactate clearance; a final level < 2 mmol/L was considered lactate normalization. Relative risk (RR) with 95% CIs, adjusted in a log-binomial model, was used to evaluate associations between lactate clearance/normalization and organ dysfunction. Lactate normalized in 62 (81%) patients and cleared in 70 (91%). The primary outcome, persistent 48-hour organ dysfunction, was present in 32 (42%). Lactate normalization was associated with decreased risk of persistent organ dysfunction (RR 0.46, 0.29-0.73; adjusted RR 0.47, 0.29-0.78); lactate clearance was not (RR 0.70, 0.35-1.41; adjusted RR 0.75, 0.38-1.50). The association between lactate normalization and decreased risk of persistent organ dysfunction was retained in the subgroups with initial lactate ≥ 2 mmol/L and hypotension. In children with sepsis and organ dysfunction, lactate normalization within 4 hours was associated with decreased persistent organ dysfunction. Serial lactate level measurement may provide a useful prognostic tool during the first hours of resuscitation in pediatric sepsis. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The composition of polyunsaturated fatty acids in erythrocytes of lactating mothers and their infants.

    PubMed

    Jørgensen, Marianne Hørby; Nielsen, Pernille Kjaer; Michaelsen, Kim Fleischer; Lund, Pia; Lauritzen, Lotte

    2006-01-01

    Long-chain polyunsaturated fatty acids (LCPUFA) in breastmilk, specifically docosahexaenoic acid (DHA), are important for infant brain development. Accretion of DHA in the infant brain is dependent on DHA-status, intake and metabolism. The aim of this study was to describe changes in maternal and infant erythrocyte (RBC) DHA-status during the first four months of lactation. We examined 17 mothers and their term infants at 1, 2 and 4 months of age. Milk samples and RBC from the mothers and infants were obtained and analysed for fatty acid composition. Comparative analysis of the results showed that the content of DHA in maternal RBC-phosphatidylcholine (PE) decreased over the four month period and this was not accompanied by a decrease in DHA in infant RBC-PE (P = 0.005). The ratio of n-6 PUFA to n-3 PUFA increased over time in maternal RBC-PE, but not in infant RBC-PE (P < 0.001). The level of 22:5n-6 and the ratio of LCPUFA to precursor PUFAs in infant RBC was higher than in maternal RBC phospholipids. (P = and P < 0.001 respectively). We found a decrease in the level of LCPUFA in milk, specifically AA. However, we did not observe a significant decrease in milk DHA, which may have been due to two outliers. These results indicate better DHA-status and a higher n-3/n-6 PUFA in RBC of infants than in mothers. Whether these differences reflect preferential n-3 PUFA transfer via breastmilk or differences in PUFA-metabolism and utilization remains to be shown.

  3. Improvement of hepatic microhemodynamics by N-acetylcysteine after warm ischemia.

    PubMed

    Koeppel, T A; Thies, J C; Lehmann, T; Gebhard, M M; Herfarth, C; Otto, G; Post, S

    1996-01-01

    In this study we investigated the influence of N-acetylcysteine (NAC) on the hepatic microcirculation after warm ischemia by intravital fluorescence microscopy. Clamping of the left liver lobe was performed in 20 male Wistar rats for 70 min. The treatment group (n = 10) received 400 mg NAC/kg body weight 20 min prior to clamping. After reperfusion, acinar and sinusoidal perfusions were observed as well as the leukocyte-endothelium interaction. Phagocytic activity was assessed after application of latex beads. NAC reduced the number of nonperfused sinusoids in all acinar zones. A reduction in zone 1 (portal) was achieved from 15.5 to 7.1% (p < 0.0001), in zone 2 (midzonal) from 14.6 to 6.1% (p < 0.0001) and in zone 3 (central) from 11.9 to 2.9% (p < 0.0001). There were no significant differences in leukocyte adherence as well as in phagocytic activity detectable. We conclude that NAC improves hepatic microcirculation after warm ischemia by increasing sinusoidal blood flow.

  4. Effects of a new bicarbonate/lactate-buffered neutral peritoneal dialysis fluid for peritoneal failure in patients undergoing peritoneal dialysis.

    PubMed

    Hoshino, Taro; Ishii, Hiroki; Kitano, Taisuke; Shindo, Mitsutoshi; Miyazawa, Haruhisa; Yamada, Hodaka; Ito, Kiyonori; Ueda, Yuichiro; Kaku, Yoshio; Hirai, Keiji; Mori, Honami; Ookawara, Susumu; Tabei, Kaoru; Morishita, Yoshiyuki

    2016-02-01

    The highly concentrated lactate in peritoneal dialysis fluid (PDF) has been considered to contribute to peritoneal failure in patients undergoing PD. A new PDF containing a lower lactate concentration, physiological bicarbonate concentration, and neutral pH (bicarbonate/lactate-buffered neutral PDF) was recently developed. We compared the clinical effects of this bicarbonate/lactate-buffered neutral PDF and a lactate-buffered neutral PDF. Patients undergoing PD were changed from a lactate-buffered neutral PDF to a bicarbonate/lactate-buffered neutral PDF. We then investigated the changes in peritoneal functions as estimated by a peritoneal equilibration test (PET) and the following surrogate markers of peritoneal membrane failure in the drained dialysate: fibrin degradation products (FDP), vascular endothelial growth factor (VEGF), cancer antigen 125 (CA125), interleukin-6 (IL-6), and transforming growth factor beta 1 (TGF-β1). Fourteen patients undergoing PD were enrolled. The PET results were not different before and after use of the bicarbonate/lactate-buffered neutral PDF. The FDP concentration significantly decreased from 15.60 ± 13.90 to 6.04 ± 3.49 μg/mL (p = 0.02) and the VEGF concentration significantly decreased from 37.83 ± 15.82 to 27.70 ± 3.80 pg/mL (p = 0.02), while the CA125 and IL-6 concentrations remained unchanged before and after use of the bicarbonate/lactate-buffered neutral PDF. TGF-β1 was not detected in most patients. The bicarbonate/lactate-buffered neutral PDF decreased the FDP and VEGF concentrations in the drained dialysate. These results suggest that the decreased lactate level achieved by administration of bicarbonate with a neutral pH in PDF may contribute to decreased peritoneal membrane failure in patients undergoing PD.

  5. N-acetylcysteine improves established monocrotaline-induced pulmonary hypertension in rats

    PubMed Central

    2014-01-01

    Background The outcome of patients suffering from pulmonary arterial hypertension (PAH) are predominantly determined by the response of the right ventricle to the increase afterload secondary to high vascular pulmonary resistance. However, little is known about the effects of the current available or experimental PAH treatments on the heart. Recently, inflammation has been implicated in the pathophysiology of PAH. N-acetylcysteine (NAC), a well-known safe anti-oxidant drug, has immuno-modulatory and cardioprotective properties. We therefore hypothesized that NAC could reduce the severity of pulmonary hypertension (PH) in rats exposed to monocrotaline (MCT), lowering inflammation and preserving pulmonary vascular system and right heart function. Methods Saline-treated control, MCT-exposed, MCT-exposed and NAC treated rats (day 14–28) were evaluated at day 28 following MCT for hemodynamic parameters (right ventricular systolic pressure, mean pulmonary arterial pressure and cardiac output), right ventricular hypertrophy, pulmonary vascular morphometry, lung inflammatory cells immunohistochemistry (monocyte/macrophages and dendritic cells), IL-6 expression, cardiomyocyte hypertrophy and cardiac fibrosis. Results The treatment with NAC significantly decreased pulmonary vascular remodeling, lung inflammation, and improved total pulmonary resistance (from 0.71 ± 0.05 for MCT group to 0.50 ± 0.06 for MCT + NAC group, p < 0.05). Right ventricular function was also improved with NAC treatment associated with a significant decrease in cardiomyocyte hypertrophy (625 ± 69 vs. 439 ± 21 μm2 for MCT and MCT + NAC group respectively, p < 0.001) and heart fibrosis (14.1 ± 0.8 vs. 8.8 ± 0.1% for MCT and MCT + NAC group respectively, p < 0.001). Conclusions Through its immuno-modulatory and cardioprotective properties, NAC has beneficial effect on pulmonary vascular and right heart function in experimental PH. PMID:24929652

  6. Can anti-gravity running improve performance to the same degree as over-ground running?

    PubMed

    Brennan, Christopher T; Jenkins, David G; Osborne, Mark A; Oyewale, Michael; Kelly, Vincent G

    2018-03-11

    This study examined the changes in running performance, maximal blood lactate concentrations and running kinematics between 85%BM anti-gravity (AG) running and normal over-ground (OG) running over an 8-week training period. Fifteen elite male developmental cricketers were assigned to either the AG or over-ground (CON) running group. The AG group (n = 7) ran twice a week on an AG treadmill and once per week over-ground. The CON group (n = 8) completed all sessions OG on grass. Both AG and OG training resulted in similar improvements in time trial and shuttle run performance. Maximal running performance showed moderate differences between the groups, however the AG condition resulted in less improvement. Large differences in maximal blood lactate concentrations existed with OG running resulting in greater improvements in blood lactate concentrations measured during maximal running. Moderate increases in stride length paired with moderate decreases in stride rate also resulted from AG training. The use of AG training to supplement regular OG training for performance should be used cautiously, as extended use over long periods of time could lead to altered stride mechanics and reduced blood lactate.

  7. Effects of 3-nitrooxypropanol on methane emission, digestion, and energy and nitrogen balance of lactating dairy cows.

    PubMed

    Reynolds, C K; Humphries, D J; Kirton, P; Kindermann, M; Duval, S; Steinberg, W

    2014-01-01

    The objective was to measure effects of 3-nitrooxypropanol (3 NP) on methane production of lactating dairy cows and any associated changes in digestion and energy and N metabolism. Six Holstein-Friesian dairy cows in mid-lactation were fed twice daily a total mixed ration with maize silage as the primary forage source. Cows received 1 of 3 treatments using an experimental design based on two 3 × 3 Latin squares with 5-wk periods. Treatments were a control placebo or 500 or 2,500 mg/d of 3 NP delivered directly into the rumen, via the rumen fistula, in equal doses before each feeding. Measurements of methane production and energy and N balance were obtained during wk 5 of each period using respiration calorimeters and digestion trials. Measurements of rumen pH (48 h) and postprandial volatile fatty acid and ammonia concentrations were made at the end of wk 4. Daily methane production was reduced by 3 NP, but the effects were not dose dependent (reductions of 6.6 and 9.8% for 500 and 2,500 mg/d, respectively). Dosing 3 NP had a transitory inhibitory effect on methane production, which may have been due to the product leaving the rumen in liquid outflow or through absorption or metabolism. Changes in rumen concentrations of volatile fatty acids indicated that the pattern of rumen fermentation was affected by both doses of the product, with a decrease in acetate:propionate ratio observed, but that acetate production was inhibited by the higher dose. Dry matter, organic matter, acid detergent fiber, N, and energy digestibility were reduced at the higher dose of the product. The decrease in digestible energy supply was not completely countered by the decrease in methane excretion such that metabolizable energy supply, metabolizable energy concentration of the diet, and net energy balance (milk plus tissue energy) were reduced by the highest dose of 3 NP. Similarly, the decrease in N digestibility at the higher dose of the product was associated with a decrease in body N balance that was not observed for the lower dose. Milk yield and milk fat concentration and fatty acid composition were not affected but milk protein concentration was greater for the higher dose of 3 NP. Twice-daily rumen dosing of 3 NP reduced methane production by lactating dairy cows, but the dose of 2,500 mg/d reduced rumen acetate concentration, diet digestibility, and energy supply. Further research is warranted to determine the optimal dose and delivery method of the product. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Nebulized heparin and N-acetylcysteine for smoke inhalational injury: A case report.

    PubMed

    Ashraf, Umair; Bajantri, Bharat; Roa-Gomez, Gabriella; Venkatram, Sindhaghatta; Cantin, Amanda; Diaz-Fuentes, Gilda

    2018-05-01

    Every year, ∼40,000 people suffer burn-related injuries in the United States. Despite recent advances, the odds of dying from exposure to fire, flames, or smoke are one in ∼1500. Smoke inhalation causes injury to the airways via a complex physiological process, and the treatment is mainly supportive. Many recent interventions aim to decrease the formation of fibrin casts, the main cause of airway damage in these patients. Among these, treatment with a combination of nebulized heparin and N-acetylcysteine (NAC) has shown benefit. We describe the case of a 58-year-old man who presented after smoke inhalation during a fire. Soot was found in the nostrils when he was admitted to our hospital, and after he began coughing up carbonaceous material, he was electively intubated and placed on volume assist control ventilation. Bronchoscopy on the first day of intensive care confirmed the injury from smoke inhalation and revealed mucosal edema and soot involving the tracheobronchial tree. Inhaled unfractionated heparin of 10,000 IU in 3 mL of 0.9% normal saline alternating every 2 hours with 3 mL of 20% NAC was started 48 hours after admission and continued for 7 days. Bronchoscopy on the fifth day of intensive care showed significant improvement in airway edema and a resolution of soot. On the basis of our experience with this case and limited literature, we posit that nebulized heparin and NAC may be of benefit in patients with inhalational smoke-induced lung injury and mild-to-severe lung injury scores.

  9. N-acetylcysteine amide (AD4) reduces cocaine-induced reinstatement.

    PubMed

    Jastrzębska, Joanna; Frankowska, Malgorzata; Filip, Malgorzata; Atlas, Daphne

    2016-09-01

    Chronic exposure to drugs of abuse changes glutamatergic transmission in human addicts and animal models. N-acetylcysteine (NAC) is a cysteine prodrug that indirectly activates cysteine-glutamate antiporters. In the extrasynaptic space, NAC restores basal glutamate levels during drug abstinence and normalizes increased glutamatergic tone in rats during reinstatement to drugs of abuse. In initial clinical trials, repeated NAC administration seems to be promising for reduced craving in cocaine addicts. In this study, NAC-amide, called AD4 or NACA, was examined in intravenous cocaine self-administration and extinction/reinstatement procedures in rats. We investigated the behavioral effects of AD4 in the olfactory bulbectomized (OBX) rats, considered an animal model of depression. Finally, we tested rats injected with AD4 or NAC during 10-daily extinction training sessions to examine subsequent cocaine seeking. AD4 (25-75 mg kg(-1)) given acutely did not alter the rewarding effects of cocaine in OBX rats and sham-operated controls. However, at 6.25-50 mg kg(-1), AD4 decreased dose-dependently cocaine seeking and relapse triggered by cocaine priming or drug-associated conditioned cues in both phenotypes. Furthermore, repeated treatment with AD4 (25 mg kg(-1)) or NAC (100 mg kg(-1)) during daily extinction trials reduced reinstatement of drug-seeking behavior in sham-operated controls. In the OBX rats only, AD4 effectively blocked cocaine-seeking behavior. Our results demonstrate that AD4 is effective at blocking cocaine-seeking behavior, highlighting its potential clinical use toward cocaine use disorder.

  10. Oxidative Stress and Respiratory System: Pharmacological and Clinical Reappraisal of N-Acetylcysteine

    PubMed Central

    Santus, Pierachille; Corsico, Angelo; Solidoro, Paolo; Braido, Fulvio; Di Marco, Fabiano

    2014-01-01

    The large surface area for gas exchange makes the respiratory system particularly susceptible to oxidative stress-mediated injury. Both endogenous and exogenous pro-oxidants (e.g. cigarette smoke) trigger activation of leukocytes and host defenses. These mechanisms interact in a “multilevel cycle” responsible for the control of the oxidant/antioxidant homeostasis. Several studies have demonstrated the presence of increased oxidative stress and decreased antioxidants (e.g. reduced glutathione [GSH]) in subjects with chronic obstructive pulmonary disease (COPD), but the contribution of oxidative stress to the pathophysiology of COPD is generally only minimally discussed. The aim of this review was to provide a comprehensive overview of the role of oxidative stress in the pathogenesis of respiratory diseases, particularly COPD, and to examine the available clinical and experimental evidence on the use of the antioxidant N-acetylcysteine (NAC), a precursor of GSH, as an adjunct to standard therapy for the treatment of COPD. The proposed concept of “multilevel cycle” helps understand the relationship between respiratory diseases and oxidative stress, thus clarifying the rationale for using NAC in COPD. Until recently, antioxidant drugs such as NAC have been regarded only as mucolytic agents. Nevertheless, several clinical trials indicate that NAC may reduce the rate of COPD exacerbations and improve small airways function. The most plausible explanation for the beneficial effects observed in patients with COPD treated with NAC lies in the mucolytic and antioxidant effects of this drug. Modulation of bronchial inflammation by NAC may further account for these favorable clinical results. PMID:24787454

  11. Antioxidant Effect of Ukrain Versus N-Acetylcysteine Against Acute Biliary Pancreatitis in An Experimental Rat Model.

    PubMed

    Zeren, Sezgin; Bayhan, Zulfu; Koçak, Cengiz; Koçak, Fatma Emel; Metineren, Mehmet Huseyin; Savran, Bircan; Kocak, Havva; Algin, Mustafa Cem; Kahraman, Cuneyt; Kocak, Ahmet; Cosgun, Suleyman

    2017-04-01

    Purpose/Aim: Oxidative stress plays an important role in the pathogenesis of acute pancreatitis (AP). We compared the therapeutic effects of Ukrain (NSC 631570) and N-acetylcysteine (NAC) in rats with AP. Forty male Sprague Dawley rats were divided into four groups: controls; AP; AP with NAC; and AP with Ukrain. AP was induced via the ligation of the bile-pancreatic duct; drugs were administered intraperitoneally (i.p.) 30 min and 12 h after AP induction. Twenty-four hours after AP induction, animals were sacrificed and the pancreas was excised. Levels of malondialdehyde (MDA) and nitric oxide (NO), and activity levels of tumor necrosis factor (TNF)-α, and myeloperoxidase (MPO) were measured in tissue samples. Total oxidant status (TOS), total antioxidant status (TAS), and total bilirubin, as well as activity levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), amylase and lipase were measured in serum samples. Pancreatic tissue histopathology was also evaluated. Test drugs reduced levels of MDA, NO, TNF-α, total bilirubin, AST, ALT, TOS and MPO, amylase and lipase activities (P < 0.001), and increased TAS (P < 0.001). Rats treated with test drugs attenuated AP-induced morphologic changes and decreased pancreatic damage scores compared with the AP group (P < 0.05). Both test drugs attenuated pancreatic damage, but the therapeutic effect was more pronounced in rats that received Ukrain than in those receiving NAC. These results suggest that treatment with Ukrain or NAC can reduce pancreatic damage via anti-inflammatory and antioxidant effects.

  12. N-acetylcysteine-pretreated human embryonic mesenchymal stem cell administration protects against bleomycin-induced lung injury.

    PubMed

    Wang, Qiao; Zhu, Hong; Zhou, Wu-Gang; Guo, Xiao-Can; Wu, Min-Juan; Xu, Zhen-Yu; Jiang, Jun-feng; Shen, Ce; Liu, Hou-Qi

    2013-08-01

    The transplantation of mesenchymal stem cells (MSCs) has been reported to be a promising approach in the treatment of acute lung injury. However, the poor efficacy of transplanted MSCs is one of the serious handicaps in the progress of MSC-based therapy. Therefore, the purpose of this study was to investigate whether the pretreatment of human embryonic MSCs (hMSCs) with an antioxidant, namely N-acetylcysteine (NAC), can improve the efficacy of hMSC transplantation in lung injury. In vitro, the antioxidant capacity of NAC-pretreated hMSCs was assessed using intracellular reactive oxygen species (ROS) and glutathione assays and cell adhesion and spreading assays. In vivo, the therapeutic potential of NAC-pretreated hMSCs was assessed in a bleomycin-induced model of lung injury in nude mice. The pretreatment of hMSCs with NAC improved antioxidant capacity to defend against redox imbalances through the elimination of cellular ROS, increasing cellular glutathione levels, and the enhancement of cell adhesion and spreading when exposed to oxidative stresses in vitro. In addition, the administration of NAC-pretreated hMSCs to nude mice with bleomycin-induced lung injury decreased the pathological grade of lung inflammation and fibrosis, hydroxyproline content and numbers of neutrophils and inflammatory cytokines in bronchoalveolar lavage fluid and apoptotic cells, while enhancing the retention and proliferation of hMSCs in injured lung tissue and improving the survival rate of mice compared with results from untreated hMSCs. The pretreatment of hMSCs with NAC could be a promising therapeutic approach to improving cell transplantation and, therefore, the treatment of lung injury.

  13. Differential anti-inflammatory and anti-oxidative effects of dexamethasone and N-acetylcysteine in endotoxin-induced lung inflammation

    PubMed Central

    Rocksén, D; Lilliehöök, B; Larsson, R; Johansson, T; Bucht, A

    2000-01-01

    Inhalation of bacterial endotoxin induces an acute inflammation in the lower respiratory tract. In this study, the anti-inflammatory effects of the anti-oxidant N-acetylcysteine (NAC) and the glucocorticoid dexamethasone were investigated in mice exposed to aerosolized endotoxin (lipopolysaccharide (LPS)). Powerful reduction of neutrophils in bronchoalveolar lavage fluid (BALF) was obtained by a single i.p. injection of dexamethasone (10 mg/kg), whereas treatment with NAC only resulted in reduction of neutrophils when administered at a high dose (500 mg/kg). Measurement of cytokine and chemokine expression in lung tissue revealed a significant decrease of tumour necrosis factor-alpha, IL-1α, IL-1β, IL-6, IL-12p40, and MIP-1α mRNA when mice where treated with dexamethasone but not when treated with NAC. Analysis of oxidative burst demonstrated a remarkable reduction of oxygen radicals in BALF neutrophils after treatment with dexamethasone, whereas the effect of NAC was not significantly different from that in untreated animals. In conclusion, dexamethasone exerted both anti-inflammatory and anti-oxidative effects in acute airway inflammation, probably by blocking early events in the inflammatory cascade. In contrast, treatment with NAC resulted in a weak reduction of the inflammatory response but no inhibition of proinflammatory cytokines or reduction of oxidative burst in neutrophils. These results demonstrate dramatic differences in efficiency and also indicate that the two drugs have different actions. Combined treatment with NAC and dexamethasone revealed an additive action but no synergy was observed. PMID:11091282

  14. The effects of N-acetylcysteine and epigallocatechin-3-gallate on liver tissue protein oxidation and antioxidant enzyme levels after the exposure to radiofrequency radiation.

    PubMed

    Ozgur, Elcin; Sahin, Duygu; Tomruk, Arin; Guler, Goknur; Sepici Dinçel, Aylin; Altan, Nilgun; Seyhan, Nesrin

    2015-02-01

    The widespread and sustained use of mobile and cordless phones causes unprecedented increase of radiofrequency radiation (RFR). The aim of this experimental study was to investigate the effect of 900 MHz Global System for Mobile Communications (GSM)-modulated RFR (average whole body Specific Absorption Rate (SAR) of 0.4 W/kg, 10 or 20 min daily for consecutive 7 days) to the liver tissue of guinea pigs and the protective effects of antioxidant treatments. Adult male guinea pigs were randomly divided into nine groups as: Group I (sham/saline), Group II (sham/EGCG), Group III (sham/NAC), Group IV (10-min RF-exposure/saline), Group V (20-min RF-exposure/saline), Group VI (10-min RF-exposure/EGCG), Group VII (20-min RF-exposure/EGCG), Group VIII (10-min RF-exposure/NAC), and Group IX (20-min RF-exposure/NAC). Protein oxidation (PCO), advanced oxidation protein products (AOPP) and antioxidant enzyme activities of superoxide dismutase (SOD) were evaluated after the exposure and the treatments with N-acetylcysteine (NAC) and (-)-epigallocatechin-3-gallate (EGCG). Significant decreases in the activities of SOD were observed in the liver of guinea pigs after RFR exposure. Protein damage did not change due to RFR exposure. On the other hand, only NAC treatment induced increased PCO levels, whereas EGCG treatment alone elevated the level of AOPP. Due to antioxidants having pro-oxidant behavior, the well decided doses and treatment timetables of NAC and ECGC are needed.

  15. N-Acetylcysteine Attenuates Hexavalent Chromium-Induced Hypersensitivity through Inhibition of Cell Death, ROS-Related Signaling and Cytokine Expression

    PubMed Central

    Huang, Chien-Cheng; Sheu, Hamm-Ming; Tsai, Jui-Chen; Lin, Chia-Ho; Wang, Ying-Jan; Wang, Bour-Jr

    2014-01-01

    Chromium hypersensitivity (chromium-induced allergic contact dermatitis) is an important issue in occupational skin disease. Hexavalent chromium (Cr (VI)) can activate the Akt, Nuclear factor κB (NF-κB), and Mitogen-activated protein kinase (MAPK) pathways and induce cell death, via the effects of reactive oxygen species (ROS). Recently, cell death stimuli have been proposed to regulate the release of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1). However, the exact effects of ROS on the signaling molecules and cytotoxicity involved in Cr(VI)-induced hypersensitivity have not yet been fully demonstrated. N-acetylcysteine (NAC) could increase glutathione levels in the skin and act as an antioxidant. In this study, we investigated the effects of NAC on attenuating the Cr(VI)-triggered ROS signaling in both normal keratinocyte cells (HaCaT cells) and a guinea pig (GP) model. The results showed the induction of apoptosis, autophagy and ROS were observed after different concentrations of Cr(VI) treatment. HaCaT cells pretreated with NAC exhibited a decrease in apoptosis and autophagy, which could affect cell viability. In addition, Cr (VI) activated the Akt, NF-κB and MAPK pathways thereby increasing IL-1α and TNF-α production. However, all of these stimulation phenomena could be inhibited by NAC in both of in vitro and in vivo studies. These novel findings indicate that NAC may prevent the development of chromium hypersensitivity by inhibiting of ROS-induced cell death and cytokine expression. PMID:25248126

  16. Responses of the rotifer Brachionus plicatilis to flame retardant (BDE-47) stress.

    PubMed

    Jian, Xiaoyang; Tang, Xuexi; Xu, Ningning; Sha, Jingjing; Wang, You

    2017-03-15

    A series of short-term toxicological tests were conducted on the rotifer Brachionus plicatilis to assess the toxicity of the flame retardant 2,2',4,4'-tetrabrominated biphenyl ether (BDE-47). BDE-47 increased mortality, morphological damage, and altered population dynamics and fecundity of rotifer. Antioxidant enzymes were differentially changed to maintain the balance between antioxidant and pro-oxidant activity. However, with increases in the concentration of BDE-47, the metabolic and antioxidant activity decreased. Moreover, the reactive oxygen species (ROS) and malondialdehyde contents increased and the ratio between glutathione and glutathione-SH decreased, indicating oxidative stress. The addition of the ROS-inhibitor N-acetylcysteine alleviated the degree of damage and stimulated the activity of xenobiotic-metabolizing and antioxidant system, which suggested that ROS were the most important loop in the stress response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Chemical Changes in Nonthermal Plasma-Treated N-Acetylcysteine (NAC) Solution and Their Contribution to Bacterial Inactivation.

    PubMed

    Ercan, Utku K; Smith, Josh; Ji, Hai-Feng; Brooks, Ari D; Joshi, Suresh G

    2016-02-02

    In continuation of our previous reports on the broad-spectrum antimicrobial activity of atmospheric non-thermal dielectric barrier discharge (DBD) plasma treated N-Acetylcysteine (NAC) solution against planktonic and biofilm forms of different multidrug resistant microorganisms, we present here the chemical changes that mediate inactivation of Escherichia coli. In this study, the mechanism and products of the chemical reactions in plasma-treated NAC solution are shown. UV-visible spectrometry, FT-IR, NMR, and colorimetric assays were utilized for chemical characterization of plasma treated NAC solution. The characterization results were correlated with the antimicrobial assays using determined chemical species in solution in order to confirm the major species that are responsible for antimicrobial inactivation. Our results have revealed that plasma treatment of NAC solution creates predominantly reactive nitrogen species versus reactive oxygen species, and the generated peroxynitrite is responsible for significant bacterial inactivation.

  18. Corticostriatal circuitry in regulating diseases characterized by intrusive thinking

    PubMed Central

    Kalivas, Benjamin C.; Kalivas, Peter W.

    2016-01-01

    Intrusive thinking triggers clinical symptoms in many neuropsychiatric disorders. Using drug addiction as an exemplar disorder sustained in part by intrusive thinking, we explore studies demonstrating that impairments in corticostriatal circuitry strongly contribute to intrusive thinking. Neuroimaging studies have long implicated this projection in cue-induced craving to use drugs, and preclinical models show that marked changes are produced at corticostriatal synapses in the nucleus accumbens during a relapse episode. We delineate an accumbens microcircuit that mediates cue-induced drug seeking becoming an intrusive event. This microcircuit harbors many potential therapeutic targets. We focus on preclinical and clinical studies, showing that administering N-acetylcysteine restores uptake of synaptic glutamate by astroglial glutamate transporters and thereby inhibits intrusive thinking. We posit that because intrusive thinking is a shared endophenotype in many disorders, N-acetylcysteine has positive effects in clinical trials for a variety of neuropsychiatric disorders, including drug addiction, gambling, trichotillomania, and depression. PMID:27069381

  19. Effects of N-acetylcysteine on noise-induced temporary threshold shift and temporary emission shift

    NASA Astrophysics Data System (ADS)

    Robinette, Martin

    2004-05-01

    Animal research has shown that antioxidants can provide significant protection to the cochlea from traumatic noise exposure with some benefit when given after the exposure. Similar results in humans would have a significant impact on both prevention and treatment of noise-induced hearing loss. The current study evaluates the effectiveness of N-acetylcysteine (NAC) on temporary threshold shift (TTS) by using both behavioral and physiological measures. Sixteen healthy, normal-hearing subjects were given NAC or a placebo prior to exposure to a 10-min, 102-dB narrow-band noise, centered at 2 kHz. This exposure was designed to induce a 10-15-dB TTS. Following the noise exposure, pure-tone thresholds (Bekesy) and transient-evoked otoacoustic emissions (TEOAE) were measured for 60 min to monitor the effects of NAC on TTS recovery. Postexposure measures were compared to baseline data. [Work supported by American BioHealth Group.

  20. Chemical Changes in Nonthermal Plasma-Treated N-Acetylcysteine (NAC) Solution and Their Contribution to Bacterial Inactivation

    PubMed Central

    Ercan, Utku K.; Smith, Josh; Ji, Hai-Feng; Brooks, Ari D.; Joshi, Suresh G.

    2016-01-01

    In continuation of our previous reports on the broad-spectrum antimicrobial activity of atmospheric non-thermal dielectric barrier discharge (DBD) plasma treated N-Acetylcysteine (NAC) solution against planktonic and biofilm forms of different multidrug resistant microorganisms, we present here the chemical changes that mediate inactivation of Escherichia coli. In this study, the mechanism and products of the chemical reactions in plasma-treated NAC solution are shown. UV-visible spectrometry, FT-IR, NMR, and colorimetric assays were utilized for chemical characterization of plasma treated NAC solution. The characterization results were correlated with the antimicrobial assays using determined chemical species in solution in order to confirm the major species that are responsible for antimicrobial inactivation. Our results have revealed that plasma treatment of NAC solution creates predominantly reactive nitrogen species versus reactive oxygen species, and the generated peroxynitrite is responsible for significant bacterial inactivation. PMID:26832829

  1. Corticostriatal circuitry in regulating diseases characterized by intrusive thinking.

    PubMed

    Kalivas, Benjamin C; Kalivas, Peter W

    2016-03-01

    Intrusive thinking triggers clinical symptoms in many neuropsychiatric disorders. Using drug addiction as an exemplar disorder sustained in part by intrusive thinking, we explore studies demonstrating that impairments in corticostriatal circuitry strongly contribute to intrusive thinking. Neuroimaging studies have long implicated this projection in cue-induced craving to use drugs, and preclinical models show that marked changes are produced at corticostriatal synapses in the nucleus accumbens during a relapse episode. We delineate an accumbens microcircuit that mediates cue-induced drug seeking becoming an intrusive event. This microcircuit harbors many potential therapeutic targets. We focus on preclinical and clinical studies, showing that administering N-acetylcysteine restores uptake of synaptic glutamate by astroglial glutamate transporters and thereby inhibits intrusive thinking. We posit that because intrusive thinking is a shared endophenotype in many disorders, N-acetylcysteine has positive effects in clinical trials for a variety of neuropsychiatric disorders, including drug addiction, gambling, trichotillomania, and depression.

  2. N-Acetylcysteine reverses cocaine-induced metaplasticity.

    PubMed

    Moussawi, Khaled; Pacchioni, Alejandra; Moran, Megan; Olive, M Foster; Gass, Justin T; Lavin, Antonieta; Kalivas, Peter W

    2009-02-01

    Cocaine addiction is characterized by an impaired ability to develop adaptive behaviors that can compete with cocaine seeking, implying a deficit in the ability to induce plasticity in cortico-accumbens circuitry crucial for regulating motivated behavior. We found that rats withdrawn from cocaine self-administration had a marked in vivo deficit in the ability to develop long-term potentiation (LTP) and long-term depression (LTD) in the nucleus accumbens core subregion after stimulation of the prefrontal cortex. N-acetylcysteine (NAC) treatment prevents relapse in animal models and craving in humans by activating cystine-glutamate exchange and thereby stimulating extrasynaptic metabotropic glutamate receptors (mGluR). NAC treatment of rats restored the ability to induce LTP and LTD by indirectly stimulating mGluR2/3 and mGluR5, respectively. Our findings show that cocaine self-administration induces metaplasticity that inhibits further induction of synaptic plasticity, and this impairment can be reversed by NAC, a drug that also prevents relapse.

  3. The efficacy of adjunctive N-acetylcysteine in major depressive disorder: a double-blind, randomized, placebo-controlled trial.

    PubMed

    Berk, Michael; Dean, Olivia M; Cotton, Sue M; Jeavons, Susan; Tanious, Michelle; Kohlmann, Kristy; Hewitt, Karen; Moss, Kirsteen; Allwang, Christine; Schapkaitz, Ian; Robbins, Jenny; Cobb, Heidi; Ng, Felicity; Dodd, Seetal; Bush, Ashley I; Malhi, Gin S

    2014-06-01

    Major depressive disorder (MDD) is one of the most common psychiatric disorders, conferring considerable individual, family, and community burden. To date, treatments for MDD have been derived from the monoamine hypothesis, and there is a paucity of emerging antidepressants, especially with novel mechanisms of action and treatment targets. N-acetylcysteine (NAC) is a redox-active glutathione precursor that decreases inflammatory cytokines, modulates glutamate, promotes neurogenesis, and decreases apoptosis, all of which contribute to the neurobiology of depression. Participants with a current episode of MDD diagnosed according to DSM-IV-TR criteria (N = 252) were treated with NAC or placebo in addition to treatment as usual for 12 weeks and were followed to 16 weeks. Data were collected between 2007 and 2011. The omnibus interaction between group and visit for the Montgomery-Asberg Depression Rating Scale (MADRS), the primary outcome measure, was not significant (F₁,₅₂₀.₉ = 1.98, P = .067), and the groups did not separate at week 12 (t₃₆₀.₃ = -1.12, P = .265). However, at week 12, the scores on the Longitudinal Interval Follow-Up Evaluation-Range of Impaired Functioning Tool (LIFE-RIFT) differed from placebo (P = .03). Among participants with a MADRS score ≥ 25, NAC separated from placebo at weeks 6, 8, 12, and 16 (P < .05). Additionally, the rate of change between baseline and week 16 was significant (t₂₂₁.₀₃ = -2.11, P = .036). NAC treatment was superior to placebo at week 16 for secondary readouts of function and clinical impression. Remission and response were greater in the NAC group at week 16, but not at week 12. The NAC group had a greater rate of gastrointestinal and musculoskeletal adverse events. Being negative at the week 12 end point, and with some positive secondary signals, the study provides only limited support for the role of NAC as a novel adjunctive therapy for MDD. These data implicate the pathways influenced by NAC in depression pathogenesis, principally oxidative and inflammatory stress and glutamate, although definitive confirmation remains necessary. www.anzctr.org.au Identifier: ACTRN12607000134426. © Copyright 2014 Physicians Postgraduate Press, Inc.

  4. Oxidative stress-mediated hemolytic activity of solvent exchange-prepared fullerene (C60) nanoparticles

    NASA Astrophysics Data System (ADS)

    Trpkovic, Andreja; Todorovic-Markovic, Biljana; Kleut, Duska; Misirkic, Maja; Janjetovic, Kristina; Vucicevic, Ljubica; Pantovic, Aleksandar; Jovanovic, Svetlana; Dramicanin, Miroslav; Markovic, Zoran; Trajkovic, Vladimir

    2010-09-01

    The present study investigated the hemolytic properties of fullerene (C60) nanoparticles prepared by solvent exchange using tetrahydrofuran (nC60THF), or by mechanochemically assisted complexation with macrocyclic oligosaccharide gamma-cyclodextrin (nC60CDX) or the copolymer ethylene vinyl acetate-ethylene vinyl versatate (nC60EVA-EVV). The spectrophotometrical analysis of hemoglobin release revealed that only nC60THF, but not nC60CDX or nC60EVA-EVV, was able to cause lysis of human erythrocytes in a dose- and time-dependent manner. Atomic force microscopy revealed that nC60THF-mediated hemolysis was preceded by erythrocyte shrinkage and increase in cell surface roughness. A flow cytometric analysis confirmed a decrease in erythrocyte size and demonstrated a significant increase in reactive oxygen species production in red blood cells exposed to nC60THF. The nC60THF-triggered hemolytic activity was efficiently reduced by the antioxidants N-acetylcysteine and butylated hydroxyanisole, as well as by serum albumin, the most abundant protein in human blood plasma. These data indicate that nC60THF can cause serum albumin-preventable hemolysis through oxidative stress-mediated damage of the erythrocyte membrane.

  5. Replacing maize silage plus soybean meal with red clover silage plus wheat in diets for lactating dairy cows.

    PubMed

    Schulz, Franziska; Westreicher-Kristen, Edwin; Knappstein, Karin; Molkentin, Joachim; Susenbeth, Andreas

    2018-02-01

    The objectives of this study were to evaluate the effects of replacing maize silage plus soybean meal with red clover silage (RCS) plus wheat on feed intake, diet digestibility, N partitioning, urinary excretion of purine derivatives, and milk production in dairy cows. Forty-four lactating German Holstein cows were used in a 4 × 4 Latin square design with 21-d periods composed of a 13-d adaptation phase followed by an 8-d sampling phase. Experimental diets offered as total mixed ration consisted of a constant forage-to-concentrate ratio (75:25) with targeted proportions of RCS-to-maize silage of 15:60 (RCS 15 ), 30:45 (RCS 30 ), 45:30 (RCS 45 ), and 60:15 (RCS 60 ) on a dry matter (DM) basis. Increasing the proportion of RCS plus wheat in the diet decreased linearly the intake of DM from 22.4 to 19.8 kg/d, and of organic matter from 21.1 to 18.1 kg/d. The apparent total tract digestibility (ATTD) of DM and organic matter did not differ across diets and averaged 68.4 and 70.5%, respectively. However, ATTD of N decreased linearly from 68.5 to 63.2%, whereas ATTD of neutral detergent fiber and acid detergent fiber increased linearly from 50.4 to 59.6% and from 48.4 to 57.7%, respectively, when increasing the proportion of RCS plus wheat. Fecal N excretion increased from 31.6 (RCS 15 ) to 37.2% (RCS 60 ) of N intake, whereas urinary N excretion was the lowest (32.8% of N intake) with RCS 45 . Hence, N efficiency (milk N/N intake) decreased linearly with incremental levels of RCS plus wheat, being the lowest when feeding RCS 60 (25.4%), probably due to increased nonprotein N proportion in total dietary N. Urinary excretion of purine derivatives decreased linearly from 378 to 339 mmol/d, which suggests that increasing levels of RCS plus wheat reduced the microbial crude protein flow at the duodenum. Milk yield and milk protein concentration declined linearly from 35.9 to 30.2 kg/d and from 3.20 to 3.01%, respectively, when increasing the proportion of RCS plus wheat. In conclusion, caution should be taken before introducing high levels of RCS plus wheat in diets of high-yielding dairy cows. However, RCS plus wheat can be included up to 30% of the dairy cow diet (DM basis) without a reduction in lactation performance. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. A Multi-center Comparison of the Safety of Oral versus Intravenous Acetylcysteine for Treatment of Acetaminophen Overdose

    PubMed Central

    2010-01-01

    Oral and intravenous (IV) acetylcysteine are used for treatment of acetaminophen poisoning. The objective of this multi-center study was to compare the safety of these two routes of administration. METHODS We conducted a multi-center chart review of all patients treated with acetylcysteine for acetaminophen poisoning. The primary safety outcome was the percentage of patients with of acetylcysteine-related adverse events. RESULTS A total of 503 subjects were included in the safety analysis (306 IV only, 145 oral only and 52 both routes).There were no serious adverse events related to acetylcysteine for either route. Nausea and vomiting were the most common related adverse events and were more common with oral treatment (23% vs 9%). Anaphylactoid reactions were more common with IV administration (6% vs 2%). Conclusions Intravenous and oral acetylcysteine are both associated with minimal side effects and are safe for treatment of acetaminophen toxicity. PMID:20524832

  7. Protective effect of N-acetylcysteine activated carbon release microcapsule on myocardial ischemia-reperfusion injury in rats

    PubMed Central

    Cai, Zhaobin; Shi, Tingting; Zhuang, Rangxiao; Fang, Hongying; Jiang, Xiaojie; Shao, Yidan; Zhou, Hongping

    2018-01-01

    With the development of science and technology, and development of artery bypass, methods such as cardiopulmonary cerebral resuscitation have been practiced in recent years. Despite this, some methods fail to promote or recover the function of tissues and organs, and in some cases, may aggravate dysfunction and structural damage to tissues. The latter is typical of ischemia-reperfusion (IR) injury. Lipid peroxidation mediated by free radicals is an important process of myocardial IR injury. Myocardial IR has been demonstrated to induce the formation of large numbers of free radicals in rats, which promotes the peroxidation of lipids within unsaturated fatty acids in the myocardial cell membrane. Markers of lipid peroxidation include malondialdehyde, superoxide dismutase and lactic dehydrogenase. Recent studies have demonstrated that N-acetylcysteine (NAC) is able to dilate blood vessels, prevent oxidative damage, improve immunity, inhibit apoptosis and the inflammatory response and promote glutathione synthesis in cells. NAC also improves the systolic function of myocardial cells and cardiac function, prevents myocardial apoptosis, protects ventricular remodeling and vascular remodeling, reduces opiomelanocortin levels in the serum and increases the content of nitric oxide in the serum, thus improving vascular endothelial function. Therefore, NAC has potent pharmacological activity; however, the relatively fast metabolism of NAC, along with its large clinical dose and low bioavailability, limit its applications. The present study combined NAC with medicinal activated carbons, and prepared N-acetylcysteine activated carbon sustained-release microcapsules (ACNACs) to overcome the limitations of NAC. It was demonstrated that ACNACs exerted greater effective protective effects than NAC alone on myocardial IR injury in rats. PMID:29434769

  8. Premedication with N-acetylcysteine and simethicone improves mucosal visualization during gastroscopy: a randomized, controlled, endoscopist-blinded study.

    PubMed

    Neale, James R; James, Shirley; Callaghan, James; Patel, Praful

    2013-07-01

    Diagnostic gastroscopy provides a unique opportunity to diagnose early oesophagogastric neoplasia; however, intraluminal mucus and bile can obscure mucosal visualization. The aim of this study was to determine whether the use of a premedication solution containing the mucolytic agent N-acetylcysteine and the surfactant simethicone improves mucosal visualization within a UK diagnostic gastroscopy service. A total of 75 consecutive patients were recruited from a single (S.J.) endoscopist's diagnostic gastroscopy list. They were randomized into three treatment groups: (a) standard control=clear fluids only for 6 h, nil by mouth for 2 h; (b) water control=standard control+100 ml sterile water (given 20 min before gastroscopy); and (c) solution=standard control+100 ml investigated solution (20 min before gastroscopy). The endoscopist was blinded to patient preparation. Inadequate mucosal visualization was defined as fluid/mucus during gastroscopy that could not be suctioned and required flushing with water. The volume of flush, the site at which it was used and the total procedure times were recorded. All three groups showed no statistical difference for age, sex ratio, procedure priority or indication. The mean volume of flush required to obtain clear mucosa was significantly less in the solution group compared with the other groups. The mean overall procedure time was also less in the solution group compared with the other groups. Premedication with N-acetylcysteine and simethicone markedly improves mucosal visibility during gastroscopy. It also reduces the time taken for the procedure. This low-cost and well-tolerated intervention may improve detection of early neoplasia.

  9. Dietary protein quality and quantity affect lactational responses to corn distillers grains: a meta-analysis.

    PubMed

    Hollmann, M; Allen, M S; Beede, D K

    2011-04-01

    Diet fermentability influences lactational responses to feeding corn distillers grains (CDG) to dairy cows. However, some measures of diet fermentability are inherently related to the concentration and characteristics of corn-based ingredients in the ration. Corn-based feeds have poor protein quality, unable to meet the essential AA requirements of lactating cows. We conducted a meta-analysis of treatment means (n=44) from the scientific literature to evaluate responses in milk yield (MY) and milk true protein concentration and yield to dietary CDG. The test variable was the difference in response between the CDG diet mean and the control diet mean (0% CDG) within experiment. Fixed variables were CDG concentration of the diet [% of dietary dry matter (DM)] and crude protein (CP) concentration and fractions of CP based on origin (corn-based versus non-corn-based feeds) of control and CDG diets. Diets with CDG ranged from 4 to 42% CDG, DM basis. Non-corn-based dietary CP averaged 6.3±3.32% of total DM. Milk yield and milk true protein yield responses to added CDG were maximized when approximately 8.5% of the total dietary DM was non-corn-based CP. Milk yield response peaked for higher-producing cows (>30.0 kg MY/cow per day) at 4.3% dietary corn-based CP, but decreased linearly for lower-producing cows (<30.0 kg MY/cow per day) as corn-based dietary CP increased. Milk true protein yield response decreased as corn-based dietary CP concentration increased but milk true protein concentration response was not decreased when CDG diets had more than 6.5% dietary non-corn-based CP. Overall, 8.5% dietary non-corn-based CP was necessary in lactation diets to maximize lactational responses to dietary CDG. The necessity of dietary non-corn-based CP to maximize milk and milk protein yields limits the amount of dietary corn-based CP, including that from CDG, which can be included in rations without overfeeding N. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Effects of nitrogen fertilisation rate and maturity of grass silage on methane emission by lactating dairy cows.

    PubMed

    Warner, D; Hatew, B; Podesta, S C; Klop, G; van Gastelen, S; van Laar, H; Dijkstra, J; Bannink, A

    2016-01-01

    Grass silage is typically fed to dairy cows in temperate regions. However, in vivo information on methane (CH(4)) emission from grass silage of varying quality is limited. We evaluated the effect of two rates of nitrogen (N) fertilisation of grassland (low fertilisation (LF), 65 kg of N/ha; and high fertilisation (HF), 150 kg of N/ha) and of three stages of maturity of grass at cutting: early maturity (EM; 28 days of regrowth), mid maturity (MM; 41 days of regrowth) and late maturity (LM; 62 days of regrowth) on CH(4) production by lactating dairy cows. In a randomised block design, 54 lactating Holstein-Friesian dairy cows (168±11 days in milk; mean±standard error of mean) received grass silage (mainly ryegrass) and compound feed at 80 : 20 on dry matter basis. Cows were adapted to the diet for 12 days and CH(4) production was measured in climate respiration chambers for 5 days. Dry matter intake (DMI; 14.9±0.56 kg/day) decreased with increasing N fertilisation and grass maturity. Production of fat- and protein-corrected milk (FPCM; 24.0±1.57 kg/day) decreased with advancing grass maturity but was not affected by N fertilisation. Apparent total-tract feed digestibility decreased with advancing grass maturity but was unaffected by N fertilisation except for an increase and decrease in N and fat digestibility with increasing N fertilisation, respectively. Total CH(4) production per cow (347±13.6 g/day) decreased with increasing N fertilisation by 4% and grass maturity by 6%. The smaller CH(4) production with advancing grass maturity was offset by a smaller FPCM and lower feed digestibility. As a result, with advancing grass maturity CH(4) emission intensity increased per units of FPCM (15.0±1.00 g CH(4)/kg) by 31% and digestible organic matter intake (33.1±0.78 g CH(4)/kg) by 15%. In addition, emission intensity increased per units of DMI (23.5±0.43 g CH(4)/kg) by 7% and gross energy intake (7.0±0.14% CH(4)) by 9%, implying an increased loss of dietary energy with advancing grass maturity. Rate of N fertilisation had no effect on CH(4) emissions per units of FPCM, DMI and gross energy intake. These results suggest that despite a lower absolute daily CH(4) production with a higher N fertilisation rate, CH(4) emission intensity remains unchanged. A significant reduction of CH(4) emission intensity can be achieved by feeding dairy cows silage of grass harvested at an earlier stage of maturity.

  11. Effect of niacin supplementation on rumen fermentation characteristics and nutrient flow at the duodenum in lactating dairy cows fed a diet with a negative rumen nitrogen balance.

    PubMed

    Aschemann, Martina; Lebzien, Peter; Hüther, Liane; Südekum, Karl-Heinz; Dänicke, Sven

    2012-08-01

    The aim of the present experiment was to ascertain if a daily niacin supplementation of 6 g/cow to lactating dairy cow diets can compensate for the decrease in rumen microbial fermentation due to a negative rumen nitrogen balance (RNB). A total of nine ruminally and duodenally fistulated lactating multiparous German Holstein cows was used. The diets consisted of 10 kg dry matter (DM) maize silage and 7 kg DM concentrate and differed as follows: (i) Diet RNB- (n = 6) with energy and utilisable crude protein (CP) at the duodenum (uCP) according to the average requirement of the animals, but with a negative RNB (-0.41 g N/MJ metabolisable energy [ME]); (ii) Diet RNB0 (n = 7) with energy, uCP, and RNB (0.08 g N/MJ ME) according to the average requirement of the animals; and (iii) Diet NA (nicotinic acid; n = 5), which was the same diet as RNB-, but supplemented with 6 g niacin/d. The negative RNB affected the rumen fermentation pattern and reduced ammonia content in rumen fluid and the daily duodenal flows of microbial CP (MP) and uCP. Niacin supplementation increased the apparent ruminal digestibility of neutral detergent fibre. The efficiency of microbial protein synthesis per unit of rumen degradable CP was higher, whereby the amount of MP reaching the duodenum was unaffected by niacin supplementation. The number of protozoa in rumen fluid was higher in NA treatment. The results indicated a more efficient use of rumen degradable N due to changes in the microbial population in the rumen when niacin was supplemented to diets deficient in RNB for lactating dairy cows.

  12. Co-digestion of wheat and rye bread suspensions with source-sorted municipal biowaste.

    PubMed

    Li, Chaoran; Mörtelmaier, Christoph; Winter, Josef; Gallert, Claudia

    2015-06-01

    Acidification of wheat bread (WBS), rye bread (RBS) and fresh biowaste suspensions (FBS), leading to lactate+acetate, lactate+acetate+n-buyrate, and acetate+propionate+n-butyrate, respectively, and biogas production as well as population dynamics were investigated. Co-fermentation of FBS (14 kg m(-3) d(-1) organic loading rate (OLR)) with WBS or RBS was stable up to an OLR of 22 kg m(-3) d(-1) and resulted in up to 3 times as much biogas. During co-fermentation at more than 20 kg m(-3) d(-1) OLR the total population increased more than 2-fold, but the originally low share of propionate-oxidizing bacteria significantly decreased. The proportion of methanogens also decreased. Whereas the proportion of Methanosarcinales to Methanomicrobiales in biowaste and biowaste+WBS remained constant, Methanosarcinales and in particular Methanosaeta spec. in the biowaste+RBS assay almost completely disappeared. Methanomicrobiales increased instead, indicating propionate oxidation via acetate cleavage to CO2 and hydrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. N-acetylcysteine does not influence the activity of endothelium-derived relaxing factor in vivo.

    PubMed

    Creager, M A; Roddy, M A; Boles, K; Stamler, J S

    1997-02-01

    Nitric oxide forms complexes with an array of biomolecular carriers that retain biological activity. This reactivity of nitric oxide in physiological systems has led to some dispute as to whether endothelium-derived relaxing factors nitric oxide or a closely related adduct thereof, such as a nitrosothiol. In vitro bioassays used to address this question are limited by the exclusion of biological thiols that are requisite for nitrosothiol formation. Thus, the purpose of this study was to obtain insight into the identity of endothelium-derived relaxing factor in vivo. We reasoned that if endothelium-derived relaxing factor in nitric oxide, infusion of physiological concentrations of thiol would potentiate its bioactivity by analogy with effects seen in vitro, whereas nitrosothiol would be resistant to such modulation. We used venous-occlusion plethysmography to study forearm blood flow in normal subjects. Methacholine (0.3 to 10 micrograms/min) and nitroglycerin (1 to 30 micrograms/min) were infused via the brachial artery to elicit endothelium-dependent and endothelium-independent vasodilation, respectively. Dose-response determinations were made for each drug before and after an intra-arterial infusion of the reduced thiol, N-acetylcysteine, at rates estimated to achieve a physiological concentration of 1 mmol/L. Methacholine increased forearm blood flow in a dose-dependent manner. Infusion of N-acetylcysteine did not change the sensitivity (ED50, 1.7 versus 1.7 micrograms/min, P = NS) or maximal response to methacholine. In contrast, thiol increased the sensitivity to nitroglycerin (ED50, 4.7 versus 2.8 micrograms/min, P < .01). Thus, conflicting with reports in vitro, thiol does not modulate endothelium-derived relaxing factor responses in vivo. These data indicate that sulfhydryl groups are not a limiting factor for endothelium-derived relaxing factor responses in forearm resistance vessels in normal humans and are in keeping with reports that nitrosothiol contributes to endothelium-derived relaxing factor bioactivity in plasma and vascular smooth muscle. Potentiation of the effects of nitroglycerin by N-acetylcysteine can be attributed to its enhanced biotransformation to an endothelium-derived relaxing factor equivalent, such as nitrosothiol. These observations support the notion of an equilibrium between nitric oxide and nitrosothiol in biological systems that may be influenced by redox state.

  14. Interstitial pH, K(+), lactate, and phosphate determined with MSNA during exercise in humans

    NASA Technical Reports Server (NTRS)

    MacLean, D. A.; Imadojemu, V. A.; Sinoway, L. I.

    2000-01-01

    The purpose of the present study was to use the microdialysis technique to simultaneously measure the interstitial concentrations of several putative stimulators of the exercise pressor reflex during 5 min of intermittent static quadriceps exercise in humans (n = 7). Exercise resulted in approximately a threefold (P < 0.05) increase in muscle sympathetic nerve activity (MSNA) and 13 +/- 3 beats/min (P < 0.05) and 20 +/- 2 mmHg (P < 0.05) increases in heart rate and blood pressure, respectively. During recovery, all reflex responses quickly returned to baseline. Interstitial lactate levels were increased (P < 0.05) from rest (1.1 +/- 0.1 mM) to exercise (1. 6 +/- 0.2 mM) and were further increased (P < 0.05) during recovery (2.0 +/- 0.2 mM). Dialysate phosphate concentrations were 0.55 +/- 0. 04, 0.71 +/- 0.05, and 0.48 +/- 0.03 mM during rest, exercise, and recovery, respectively, and were significantly elevated during exercise. At the onset of exercise, dialysate K(+) levels rose rapidly above resting values (4.2 +/- 0.1 meq/l) and continued to increase during the exercise bout. After 5 min of contractions, dialysate K(+) levels had peaked with an increase (P < 0.05) of 0.6 +/- 0.1 meq/l and subsequently decreased during recovery, not being different from rest after 3 min. In contrast, H(+) concentrations rapidly decreased (P < 0.05) from resting levels (69.4 +/- 3.7 nM) during quadriceps exercise and continued to decrease with a mean decline (P < 0.05) of 16.7 +/- 3.8 nM being achieved after 5 min. During recovery, H(+) concentrations rapidly increased and were not significantly different from baseline after 1 min. This study represents the first time that skeletal muscle interstitial pH, K(+), lactate, and phosphate have been measured in conjunction with MSNA, heart rate, and blood pressure during intermittent static quadriceps exercise in humans. These data suggest that interstitial K(+) and phosphate, but not lactate and H(+), may contribute to the stimulation of the exercise pressor reflex.

  15. Improvement of exercise capacity of rats with chronic heart failure by long-term treatment with trandolapril

    PubMed Central

    Yamaguchi, Fuminari; Kawana, Ken-ichiro; Tanonaka, Kouichi; Kamano, Isamu; Igarashi, Takahiro; Gen, Eigyoku; Fujimoto, Yoko; Maki, Toshiyuki; Sanbe, Atsushi; Nasa, Yoshihisa; Takeo, Satoshi

    1999-01-01

    The effects of long-term treatment with trandolapril, an angiotensin I-converting enzyme inhibitor, on exercise capacity of rats with chronic heart failure (CHF) following coronary artery ligation were examined. CHF was developed by 8 weeks after the coronary artery ligation. The running time of rats with CHF in the treadmill test was shortened to approximately 65% of that of sham-operated rats (16.3±1.2 vs 25.1±1.6 min, n=7; P<0.05). ATP, creatine phosphate (CP), and lactate contents of the gracilis muscle of rats with CHF were similar to those of sham-operated rats before running. After running, ATP and CP were decreased and lactate was increased in both rats with CHF and sham-operated rats. There were no significant differences in the levels of energy metabolites between rats with CHF and sham-operated rats. The rates of decrease in ATP and CP and rate of increase in lactate in the gracilis muscle of rats with CHF during exercise were greater than those of sham operated rats (2.5, 2.0 and 1.5 fold high, respectively), suggesting wastage of energy during exercise in the animals with CHF. Myofibrillar Ca2+-stimulated ATPase (Ca-ATPase) activity of skeletal muscle of rats with CHF was increased over that of the sham-operated control (62.03±1.88 vs 52.34±1.19 μmol Pi mg−1 protein h−1 n=7; P<0.05). The compositions of myosin heavy chain (MHC) isoforms of gracilis muscle were altered by CHF; decreases in MHC types I and IIb and an increase in MHC type IIa were found (P<0.05). Rats with CHF were treated with 1 mg kg−1 day−1 trandolapril from the 2nd to 8th week after surgery. Treatment with trandolapril prolonged the running time, reversed the rates of decrease in ATP and CP and the rate of increase in lactate, and restored the Ca-ATPase activity (51.11±0.56 μmol Pi mg−1 protein h−1, n=7; P<0.05) and composition ratio of MHC isoforms in the gracilis muscle. The results suggest that long-term trandolapril treatment of rats with CHF may restore their ability to utilize energy without wastage and thus improve exercise capacity. PMID:10323590

  16. Workplace Lactation Support in Milwaukee County 5 Years After the Affordable Care Act.

    PubMed

    Lennon, Tyler; Willis, Earnestine

    2017-02-01

    Workplace lactation support has become increasingly important because returning to work is associated with discontinuing breastfeeding and women in the workforce are increasing. Research aim: This study examined workplace lactation support among Milwaukee County businesses 5 years after implementation of the Affordable Care Act's Break Time for Nursing Mothers provision. A cross-sectional survey of Milwaukee County businesses was conducted in the summer of 2015 that inquired about workplace policies, lactation spaces, and other lactation resources offered. Business supports were stratified based on employer sizes: large (> 500 employees), medium (50-499 employees), and small (20-49 employees). A lactation amenity score was calculated for each business based on lactation resources available. Three hundred surveys were distributed and 71 businesses voluntarily completed the survey. Small employers were excluded from statistical analysis due to fewer responses ( n = 8). Overall, 87.3% ( n = 55) of respondents reported providing access to a multiuser space for lactation and 65.1% ( n = 41) reported providing a designated lactation space. Large employers ( n = 30) were more likely than medium employers ( n = 33) to provide a designated lactation space for breastfeeding or expressing (86.7% vs. 45.5%, p < .001). Large employers' mean amenity score was significantly higher than that of medium employers (3.37 vs. 2.57, p = .014), and they were also more likely to offer additional supports including access to a lactation consultant, classes, and materials (46.7% vs. 12.1%, p < .01). Large employers provide more lactation support than medium employers in Milwaukee County. All employers, regardless of size, need to increase additional lactation support for women in the workplace.

  17. Effect of Lactation on myocardial vulnerability to ischemic insult in rats.

    PubMed

    Askari, Sahar; Imani, Alireza; Sadeghipour, Hamidreza; Faghihi, Mahdieh; Edalatyzadeh, Zohreh; Choopani, Samira; Karimi, Nasser; Fatima, Sulail

    2017-05-01

    Cardiovascular diseases are the leading cause of mortality and long-term disability worldwide. Various studies have suggested a protective effect of lactation in reducing the risk of cardiovascular diseases. This study was designed to assess the effects of pregnancy and lactation on the vulnerability of the myocardium to an ischemic insult. Eighteen female rats were randomly divided into three groups: ischemia-reperfusion (IR), in which the hearts of virgin rats underwent IR (n = 6); lactating, in which the rats nursed their pups for 3 weeks and the maternal hearts were then submitted to IR (n = 6); and non-lactating, in which the pups were separated after birth and the maternal hearts were submitted to IR (n = 6). Outcome measures included heart rate (HR), left ventricular developed pressure (LVDP), rate pressure product (RPP), ratio of the infarct size to the area at risk (IS/AAR %), and ventricular arrhythmias - premature ventricular contraction (PVC) and ventricular tachycardia (VT). The IS/AAR was markedly decreased in the lactating group when compared with the non-lactating group (13.2 ± 2.5 versus 39.7 ± 3.5, p < 0.001) and the IR group (13.2 ± 2.5 versus 34.0 ± 4.7, p < 0.05). The evaluation of IR-induced ventricular arrhythmias indicated that the number of compound PVCs during ischemia, and the number and duration of VTs during ischemia and in the first 5 minutes of reperfusion in the non-lactating group were significantly (p < 0.05) higher than those in the lactating and IR groups. Lactation induced early-onset cardioprotective effects, while rats that were not allowed to nurse their pups were more susceptible to myocardial IR injury. As doenças cardiovasculares são a principal causa de mortalidade e invalidez a longo prazo a nível mundial. Diversos estudos têm sugerido um efeito protetor da lactação na redução do risco para doenças cardiovasculares. Este estudo foi desenvolvido para avaliar os efeitos da gestação e da lactação sobre a vulnerabilidade do miocárdio ao insulto isquêmico. Dezoito ratas foram divididas aleatoriamente em três grupos: isquemia-reperfusão (IR), no qual os corações de ratas virgens foram submetidos à IR (n = 6); lactantes, no qual as ratas amamentaram seus filhotes por 3 semanas e os corações maternos foram, em seguida, submetidos à IR (n = 6); e não lactantes, no qual os filhotes foram separados após o nascimento e os corações maternos foram submetidos à IR (n = 6). As medidas de desfecho incluíram frequência cardíaca (FC), pressão desenvolvida no ventrículo esquerdo (PDVE), duplo produto (DP), razão do tamanho do infarto sobre a área sob risco (TI/ASR %) e arritmias ventriculares - contração ventricular prematura (CVP) e taquicardia ventricular (TV). O TI/ASR foi substancialmente menor no grupo de lactantes quando comparado ao grupo de não lactantes (13,2 ± 2,5 versus 39,7 ± 3,5, p < 0,001) e ao grupo IR (13,2 ± 2,5 versus 34,0 ± 4,7, p < 0,05). A avaliação das arritmias ventriculares induzidas pela IR indicou que o número de CVPs compostas na isquemia, e o número e a duração das TVs na isquemia e nos primeiros 5 minutos de reperfusão no grupo de não lactantes foram significativamente (p < 0,05) mais elevados do que os encontrados nos grupos IR e de lactantes. A lactação induziu o aparecimento precoce de efeitos cardioprotetores, enquanto ratas que não foram permitidas a amamentar seus filhotes se mostraram mais suscetíveis à lesão miocárdica por IR.

  18. Estimating total body water content in suckling and lactating llamas (Lama glama) by isotope dilution.

    PubMed

    Riek, Alexander; Gerken, Martina

    2010-08-01

    Total body water (TBW) in 17 suckling and six lactating llamas was estimated from isotope dilution at three different post natum and lactation stages using both (18)O and deuterium oxide (D(2)O). In total, 69 TBW measurements were undertaken. While TBW in lactating dams, expressed in kilogram, remained stable during the three measurement periods (91.8 +/- 15.0 kg), the body water fraction (TBW expressed in percent of body mass) increased slightly (P = 0.042) from 62.9% to 65.8%. In contrast, TBW (kilogram) in suckling llamas increased significantly (P < 0.001) with age and decreased slightly when expressed as a percentage of body mass (P = 0.016). Relating TBW to body mass across all animals yielded a highly significant regression equation (TBW in kilogram = 2.633 + 0.623 body mass in kilogram, P < 0.001, n = 69) explaining 99.5% of the variation. The water fraction instead decreased in a curve linear fashion with increasing body mass (TBW in percent of body mass = 88.23 body mass in kilogram(-0.064), P < 0.001, R (2) = 0.460). The present results on TBW can serve as reference values for suckling and lactating llamas, e.g., for the evaluation of fluid losses during disease. Additionally, the established regression equations can be used to predict TBW from body mass, providing that the body masses fall inside the range of masses used to derive the equations.

  19. Acetylcysteine for prevention of contrast-induced nephropathy after intravascular angiography: A systematic review and meta-analysis

    PubMed Central

    Bagshaw, Sean M; Ghali, William A

    2004-01-01

    Background Contrast-induced nephropathy is an important cause of acute renal failure. We assess the efficacy of acetylcysteine for prevention of contrast-induced nephropathy among patients undergoing intravascular angiography. Methods We conducted a systematic review and meta-analysis of randomized controlled trials comparing prophylactic acetylcysteine plus hydration versus hydration alone in patients undergoing intravascular angiography. Studies were identified by searching MEDLINE, EMBASE, and CENTRAL databases. Our main outcome measures were the risk of contrast-induced nephropathy and the difference in serum creatinine between acetylcysteine and control groups at 48 h. Results Fourteen studies involving 1261 patients were identified and included for analysis, and findings were heterogeneous across studies. Acetylcysteine was associated with a significantly reduced incidence of contrast-induced nephropathy in five studies, and no difference in the other nine (with a trend toward a higher incidence in six of the latter studies). The pooled odds ratio for contrast-induced nephropathy with acetylcysteine relative to control was 0.54 (95% CI, 0.32–0.91, p = 0.02) and the pooled estimate of difference in 48-h serum creatinine for acetylcysteine relative to control was -7.2 μmol/L (95% CI -19.7 to 5.3, p = 0.26). These pooled values need to be interpreted cautiously because of the heterogeneity across studies, and due to evidence of publication bias. Meta-regression suggested that the heterogeneity might be partially explained by whether the angiography was performed electively or as emergency. Conclusion These findings indicate that published studies of acetylcysteine for prevention of contrast-induced nephropathy yield inconsistent results. The efficacy of acetylcysteine will remain uncertain unless a large well-designed multi-center trial is performed. PMID:15500690

  20. Oral N-acetylcysteine reduces plasma homocysteine concentrations regardless of lipid or smoking status.

    PubMed

    Hildebrandt, Wulf; Sauer, Roland; Bonaterra, Gabriel; Dugi, Klaus A; Edler, Lutz; Kinscherf, Ralf

    2015-11-01

    Elevated total plasma homocysteine (tHcy) is considered to be an independent cardiovascular disease risk factor, although tHcy lowering by B-vitamins improves only certain clinical endpoints. N-acetylcysteine (NAC), a thiol-containing antioxidant, acutely lowers tHcy and possibly also blood pressure. However, to our knowledge, at present no conclusive long-term evaluation exists that controls for factors such as hyperlipidemia, smoking, medication, and disease stage, all of which affect the thiol redox state, including tHcy. We reanalyzed 2 double-blind, placebo-controlled trials in unmedicated middle-aged men, one in a hyperlipidemic group (HYL group; n = 40) and one in a normolipidemic group (NOL group; n = 42), each stratified for smokers and nonsmokers. We evaluated the effect of 4 wk of oral NAC (1.8 g/d) on tHcy (primary endpoint), plasma thiol (cysteine), and intracellular glutathione concentrations as well as on blood pressure. The HYL group had total cholesterol >220 mg/dL or triglycerides >150 mg/dL. NAC treatment significantly (P = 0.001, multivariate analysis of variance for repeated measures) lowered postabsorptive plasma concentrations of tHcy by -11.7% ± 3.0% (placebo: 4.1% ± 3.6%) while increasing those of cysteine by 28.1% ± 5.7% (placebo: 4.0% ± 3.4%) with no significant impact of hyperlipidemia or smoking. Moreover, NAC significantly decreased systolic (P = 0.003) and diastolic (P = 0.017) blood pressure within all subjects with a significant reduction in diastolic pressure in the HYL group (P = 0.008) but not in the NOL group. An explorative stepwise multiple regression analysis identified 1) post-treatment cysteine as well as 2) pretreatment tHcy and 3) albumin plasma concentrations as being significant contributors to tHcy reduction. Four weeks of oral NAC treatment significantly decreased plasma tHcy concentrations, irrespective of lipid or smoking status, and lowered systolic blood pressure in both normolipidemic and hyperlipidemic men, with significant diastolic blood pressure reductions in the HYL group only. Increased oral intake of cysteine may therefore be considered for primary or secondary prevention of vascular events with regard to the 2 independent risk factors of hyperhomocysteinemia and arterial hypertension. © 2015 American Society for Nutrition.

  1. Short communication: Development of the first follicular wave dominant follicle on the ovary ipsilateral to the corpus luteum is associated with decreased conception rate in dairy cattle.

    PubMed

    Miura, R; Haneda, S; Kayano, M; Matsui, M

    2015-01-01

    In this study, we examined the effect of the locations of the first-wave dominant follicle (DF) and corpus luteum (CL) on fertility. In total, 350 artificial insemination (AI) procedures were conducted (lactating dairy cows: n=238, dairy heifers: n=112). Ovulation was confirmed 24 h after AI. The locations of the first-wave DF and CL were examined 5 to 9d after AI using rectal palpation or transrectal ultrasonography. Lactating dairy cows and dairy heifers were divided into 2 groups: (1) the ipsilateral group (IG), in which the DF was ipsilateral to the CL; and (2) the contralateral group (CG), in which the DF was contralateral to the CL. Pregnancy was diagnosed using transrectal ultrasonography 40d after AI. Conception rates were 54.0% in all cattle: 48.9% in lactating dairy cows, and 58.9% in dairy heifers. The incidence of the first-wave DF location did not differ between IG and CG (all cattle: 184 vs. 166; lactating cows: 129 vs. 109; heifers: 55 vs. 57 for IG vs. CG). Conception rates were lower in IG than in CG (all cattle: 40.2 vs. 69.3%; lactating dairy cows: 38.0 vs. 67.0%; dairy heifers: 45.5 vs. 73.7%, for IG vs. CG). Conception rate was not affected by season or live weight in heifers and lactating cows. In addition, days in milk at AI, milk production, body condition score, and parity did not affect conception in lactating cows. In summary, development of the first-wave DF in the ovary ipsilateral to the CL was associated with reduced conception rates in both lactating cows and heifers. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Effects of urea formaldehyde condensation polymer treatment of flaxseed on ruminal digestion and lactation in dairy cows.

    PubMed

    Hawkins, A; Yuan, K; Armendariz, C K; Highland, G; Bello, N M; Winowiski, T; Drouillard, J S; Titgemeyer, E C; Bradford, B J

    2013-06-01

    Flaxseed is a potent source of the n-3 fatty acid α-linolenic acid (ALA), yet most ALA is lost during ruminal biohydrogenation when ground flaxseed is fed to ruminants. Heat processing and urea formaldehyde condensation polymer (UFCP) treatment of flaxseed were investigated as possible means of protecting ALA from ruminal degradation. Ground flaxseed (GF), heated ground flaxseed (HGF), or UFCP-treated ground flaxseed (UFCPGF) were incubated for 0, 4, 8, and 12h in 4 ruminally cannulated multiparous lactating Holstein cows. Compared with GF, HGF and UFCPGF decreased ruminal disappearance of dry matter, crude protein, and ALA. Pepsin-digestible protein remaining after 12h of ruminal incubation was greater for UFCPGF and HGF than for GF. Twenty-four lactating Holstein cows (207 ± 37 d in milk, 668 ± 66 kg of body weight, and 1.33 ± 0.56 lactations) were then used in a randomized complete block design experiment with a basal feeding period to assess effects of flaxseed treatment on ALA enrichment of plasma and milk as well as lactational performance. No evidence existed that supplementation of HGF and UFCPGF affected dry matter intake, milk fat content, milk protein content, or energy-corrected milk yield, but UFCPGF marginally decreased milk yield compared with HGF. Plasma concentration of ALA was not affected by treatment. Concentrations of n-3 fatty acids and conjugated linoleic acids in milk fat were increased by UFCPGF relative to HGF, but ALA yield was not affected. Taken together, in situ results suggest that heat-treated flaxseed, with or without UFCP treatment, slowed ruminal disappearance of ALA. Feeding UFCP-treated flaxseed failed to alter ALA content of plasma or milk ALA yield relative to heating alone. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Combining microdialysis and near-infrared spectroscopy for studying effects of low-load repetitive work on the intramuscular chemistry in trapezius myalgia.

    PubMed

    Flodgren, Gerd M; Crenshaw, Albert G; Hellström, Fredrik; Fahlström, Martin

    2010-01-01

    Epidemiological research provides strong evidence for a link between repetitive work (RW) and the development of chronic trapezius myalgia (TM). The aims were to further elucidate if an accumulation of sensitising substances or impaired oxygenation is evident in painful muscles during RW. Females with TM (n = 14) were studied during rest, 30 minutes RW and 60 minutes recovery. Microdialysate samples were obtained to determine changes in intramuscular microdialysate (IMMD) [glutamate], [PGE(2)], [lactate], and [pyruvate] (i.e., [concentration]) relative to work. Muscle oxygenation (%StO(2)) was assessed using near-infrared spectroscopy. During work, all investigated substances, except PGE(2), increased significantly: [glutamate] (54%, P < .0001), [lactate] (26%, P < .005), [pyruvate] (19%, P < .0001), while the %StO(2) decreased (P < .05). During recovery [PGE(2)] decreased (P < .005), [lactate] remained increased (P < .001), [pyruvate] increased progressively (P < .0001), and %StO(2) had returned to baseline. Changes in substance concentrations and oxygenation in response to work indicate normal increase in metabolism but no ongoing inflammation in subjects with TM.

  4. A single-arm clinical trial of a 48-hour intravenous N-acetylcysteine protocol for treatment of acetaminophen poisoning.

    PubMed

    Heard, K; Rumack, B H; Green, J L; Bucher-Bartelson, B; Heard, S; Bronstein, A C; Dart, R C

    2014-06-01

    Acetylcysteine prevents hepatic injury when administered soon after acetaminophen overdose. The most commonly used treatment protocols are a 72-hour oral and a 21-hour intravenous (IV) protocol. Between 1984 and 1994, 409 patients were enrolled in a study to describe the outcomes of patients who were treated using a 48-hour IV protocol. In 1991, an interim analysis reported the first 223 patients. The objective of this manuscript is to report the rates of hepatotoxicity and adverse events occurring during a 48-hour IV acetylcysteine protocol in the entire 409 patient cohort. This was a multicenter, single-arm, open-label clinical trial enrolling patients who presented with a toxic serum acetaminophen concentration within 24 h of acute acetaminophen ingestion. Patients were treated with 140 mg/kg loading dose followed by 70 mg/kg every 4 h for 12 doses. Serum aminotransferase activities were measured every 8 h during the protocol, and adverse events were recorded. The primary outcome was the percentage of subjects who developed hepatotoxicity defined as a peak serum aminotransferase greater than 1000 IU/L. Four hundred and nine patients were enrolled, and 309 met inclusion for the outcome analysis. The overall percentage of patients developing hepatotoxicity was 18.1%, and 3.4% of patients treated within 10 h developed hepatotoxicity. One acetaminophen-related death occurred in a patient treated at 22 h. Adverse events occurred in 28.9% of enrolled subjects; the most common adverse events were nausea, vomiting, and flushing, and no events were rated as serious by the investigator. Acetaminophen-overdosed patients treated with IV acetylcysteine administered as 140 mg/kg loading dose followed by 70 mg/kg every 4 h for 12 doses had a low rate of hepatotoxicity and few adverse events. This protocol delivers a higher dose of acetylcysteine which may be useful in selected cases involving very large overdoses.

  5. Effects of Hypergravity Exposure on Plasma Oxytocin (OT) Concentrations in Pregnant and Lactating Rat Dams

    NASA Technical Reports Server (NTRS)

    Baer, Lisa A.; Wade, Charles E.; Plaut, Karen; Ronca, April E.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    From pregnancy to weaning there is a progressive elevation of plasma oxytocin (OT) levels associated with nursing activity, irrespective of litter size. In the present study, we analyzed the effects of continuous 1.5G, 1.75G and 2.0G hypergravity exposure on OT plasma concentration in prepartum (Gestation Day 20) (G20) and lactating (Postnatal day) (P10) rat dams. For this study, litter size was controlled with a yoking procedure established in our lab where individual control litters were yoked-matched to individual hypergravity litters. We reviewed all data at hypergravity irrespective of gravitational level and compared the values with the controls in both G20 (HG, n=15;SC, n=9) and P10 (HG, n=21;SC, n=16). Results showed that over time, we did observe the expected OT increase in both groups. In G20 dams, measurement of OT concentrations showed no significance. However, at P10, measurements of OT concentrations suggest a reduction of about 20% compared to established controls in our laboratory, 0.9+/-0.09 ng/ml for the controls and 0.7+/-0.06 ng/ml for centrifuged animals (p<0.02). These data suggest that exposure to centrifugation may reduce OT levels during lactation. When these plasma samples were obtained, the dams were removed from the litters, and values were not adjusted for the size of the litters. The reduction in OT with centrifugation may reflect a decrease in nursing activity or a decreased responsiveness of the mammary hypothalamic axis. In addition, we have analyzed data on plasma prolactin concentrations and mammary gland development, which may give additional insight to the results of our OT measurements.

  6. N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why.

    PubMed

    Aldini, Giancarlo; Altomare, Alessandra; Baron, Giovanna; Vistoli, Giulio; Carini, Marina; Borsani, Luisa; Sergio, Francesco

    2018-05-09

    The main molecular mechanisms explaining the well-established antioxidant and reducing activity of N-acetylcysteine (NAC), the N-acetyl derivative of the natural amino acid l-cysteine, are summarised and critically reviewed. The antioxidant effect is due to the ability of NAC to act as a reduced glutathione (GSH) precursor; GSH is a well-known direct antioxidant and a substrate of several antioxidant enzymes. Moreover, in some conditions where a significant depletion of endogenous Cys and GSH occurs, NAC can act as a direct antioxidant for some oxidant species such as NO 2 and HOX. The antioxidant activity of NAC could also be due to its effect in breaking thiolated proteins, thus releasing free thiols as well as reduced proteins, which in some cases, such as for mercaptoalbumin, have important direct antioxidant activity. As well as being involved in the antioxidant mechanism, the disulphide breaking activity of NAC also explains its mucolytic activity which is due to its effect in reducing heavily cross-linked mucus glycoproteins. Chemical features explaining the efficient disulphide breaking activity of NAC are also explained.

  7. Low arsenic concentrations impair memory in rat offpring exposed during pregnancy and lactation: Role of α7 nicotinic receptor, glutamate and oxidative stress.

    PubMed

    Mónaco, Nina María; Bartos, Mariana; Dominguez, Sergio; Gallegos, Cristina; Bras, Cristina; Esandi, María Del Carmen; Bouzat, Cecilia; Giannuzzi, Leda; Minetti, Alejandra; Gumilar, Fernanda

    2018-04-17

    Inorganic arsenic (iAs) is an important natural pollutant. Millions of individuals worldwide drink water with high levels of iAs. Arsenic exposure has been associated to cognitive deficits. However, the underlying mechanisms remain unknown. In the present work we investigated in female adult offspring the effect of the exposure to low arsenite sodium levels through drinking water during pregnancy and lactation on short- and long-term memory. We also considered a possible underlying neurotoxic mechanism. Pregnant rats were exposed during pregnancy and lactation to environmentally relevant iAs concentrations (0.05 and 0.10 mg/L). In 90-day-old female offspring, short-term memory (STM) and long-term memory (LTM) were evaluated using a step-down inhibitory avoidance task. In addition, we evaluated the α7 nicotinic receptor (α7-nAChR) expression, the transaminases and the oxidative stress levels in hippocampus. The results showed that the exposure to 0.10 mg/L iAs in this critical period produced a significant impairment in the LTM retention. This behavioral alteration might be associated with several events that occur in the hippocampus: decrease in α7-nAChR expression, an increase of glutamate levels that may produce excitotoxicity, and a decrease in the antioxidant enzyme catalase (CAT) activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Ergometric and psychological findings during overtraining: a long-term follow-up study in endurance athletes.

    PubMed

    Urhausen, A; Gabriel, H H; Weiler, B; Kindermann, W

    1998-02-01

    In the present prospective longitudinal study 17 male endurance trained athletes (cyclists and triathletes; age 23.4+/-6.7 years, VO2max 61.2+/-7.5 ml x min(-1) x kg(-1); means+/-SD) were investigated both during a state of overtraining syndrome (OT: N=15), mainly induced by an increase of exercise intensity, as well as several times in a state of regular physical ability (NS: N=62). Cycle-ergometric and psychological data were compared for a period of approximately 19 months. On 2 separate days, each subject performed a maximum incremental graded exercise, two anaerobic tests (10 s and 30 s) as well as a short-endurance "stress test" with the intensity of 110% of the individual anaerobic threshold until volitional exhaustion. The mood state was recorded by a psychological questionnaire including 40 basic items. During OT the submaximal lactate concentrations were slightly decreased. The performance of the 10 s- and 30 s-tests was unaffected. In contrast, the duration of the "stress test" decreased significantly by approximately 27% during OT compared to the individual NS. The submaximal oxygen uptake measured during the incremental graded exercise was slightly higher during OT as compared to NS, whereas the submaximal and maximal respiratory exchange ratio, maximal heart rate and maximal lactate concentrations were decreased. At the 10th minute of the "stress test", ammonia tended to be increased during OT (P=0.048). The parameters of mood state at rest as well as the subjective rating of perceived exertion during exercise were significantly impaired during OT. In conclusion, the results indicate a decreased intramuscular utilization of carbohydrates with diminished maximal anaerobic lactacid energy supply during OT. Neither the lactate-performance relationship during incremental graded exercise nor the anaerobic alactacid performance showed alterations. The duration of the short-endurance "stress test", the maximal lactate concentration of the incremental graded exercise as well as the altered mood profile turned out to be the most sensitive parameters for the diagnosis of OT.

  9. The effect of mineral-based alkaline water on hydration status and the metabolic response to short-term anaerobic exercise

    PubMed Central

    Chycki, Jakub; Zając, Tomasz; Kurylas, Anna

    2017-01-01

    Previously it was demonstrated that mineralization and alkalization properties of mineral water are important factors influencing acid-base balance and hydration in athletes. The purpose of this study was to investigate the effects of drinking different types of water on urine pH, specific urine gravity, and post-exercise lactate utilization in response to strenuous exercise. Thirty-six male soccer players were divided into three intervention groups, consuming around 4.0 l/day of different types of water for 7 days: HM (n=12; highly mineralized water), LM (n=12; low mineralized water), and CON (n=12; table water). The athletes performed an exercise protocol on two occasions (before and after intervention). The exercise protocol consisted of 5 bouts of intensive 60-s (120% VO2max) cycling separated by 60 s of passive rest. Body composition, urinalysis and lactate concentration were evaluated – before (t0), immediately after (t1), 5’ (t2), and 30’ (t3) after exercise. Total body water and its active transport (TBW – total body water / ICW – intracellular water / ECW – extracellular water) showed no significant differences in all groups, at both occasions. In the post-hydration state we found a significant decrease of specific urine gravity in HM (1021±4.2 vs 1015±3.8 g/L) and LM (1022±3.1 vs 1008±4.2 g/L). We also found a significant increase of pH and lactate utilization rate in LM. In conclusion, the athletes hydrated with alkaline, low mineralized water demonstrated favourable changes in hydration status in response to high-intensity interval exercise with a significant decrease of specific urine gravity, increased urine pH and more efficient utilization of lactate after supramaximal exercise. PMID:29158619

  10. Quantitative Analysis of the Human Milk Whey Proteome Reveals Developing Milk and Mammary-Gland Functions across the First Year of Lactation

    PubMed Central

    Zhang, Qiang; Cundiff, Judy K.; Maria, Sarah D.; McMahon, Robert J.; Woo, Jessica G.; Davidson, Barbara S.; Morrow, Ardythe L.

    2013-01-01

    In-depth understanding of the changing functions of human milk (HM) proteins and the corresponding physiological adaptions of the lactating mammary gland has been inhibited by incomplete knowledge of the HM proteome. We analyzed the HM whey proteome (n = 10 women with samples at 1 week and 1, 3, 6, 9 and 12 months) using a quantitative proteomic approach. One thousand three hundred and thirty three proteins were identified with 615 being quantified. Principal component analysis revealed a transition in the HM whey proteome-throughout the first year of lactation. Abundance changes in IgG, sIgA and sIgM display distinct features during the first year. Complement components and other acute-phase proteins are generally at higher levels in early lactation. Proteomic analysis further suggests that the sources of milk fatty acids (FA) shift from more direct blood influx to more de novo mammary synthesis over lactation. The abundances of the majority of glycoproteins decline over lactation, which is consistent with increased enzyme expression in glycoprotein degradation and decreased enzyme expression in glycoprotein synthesis. Cellular detoxification machinery may be transformed as well, thereby accommodating increased metabolic activities in late lactation. The multiple developing functions of HM proteins and the corresponding mammary adaption become more apparent from this study. PMID:28250401

  11. Effect of P.G. 600 on rebreeding performance in sows limit-fed during lactation.

    PubMed

    Estienne, Mark J; Harper, Allen F; Horsley, B Ryan

    2006-03-01

    The objective was to determine whether treatment with 400 IU PMSG and 200 IU hCG (P.G. 600; Intervet America, Inc., Millsboro, DE, USA) at weaning improved rebreeding performance in sows that were limit-fed during lactation. Crossbred sows were allowed ad libitum access to feed or were limited to 3.2 kg of feed/day during an 18-day lactation. At weaning, limit-fed sows received im treatment with P.G. 600 (n = 16) or saline (n = 19) and ad libitum-fed sows received saline (n = 18). The percentage of sows in estrus by day 7 post-weaning was greater (p<0.05), and the weaning-to-estrus interval was shorter (p<0.05), for ad libitum-fed sows compared to limit-fed, saline-treated sows, with limit-fed, P.G. 600-treated sows having intermediate values that were not different from the other two groups. The percentage of sows pregnant and the numbers of corpora lutea and embryos at day 30 post-mating were not different (p>0.1) among groups. In summary, low feed intake during lactation decreased the percentage of sows that displayed estrus within 7 days after weaning and increased the weaning-to-estrus interval. These effects were at least partially remediated by gonadotropin treatment. Pregnancy rate, and litter size at day 30 of gestation, were similar for ad libitum- and limit-fed sows and not affected by P.G. 600 treatment in limit-fed sows.

  12. Plasma glucose and nonesterified fatty acids response to epinephrine challenges in dairy cows during a 670-d lactation.

    PubMed

    Marett, L C; Auldist, M J; Wales, W J; Macmillan, K L; Dunshea, F R; Leury, B J

    2018-04-01

    This experiment investigated the metabolic response to a 2-dose epinephrine challenge of dairy cows undergoing an extended lactation. Twelve multiparous Holstein-Friesian cows that calved in late winter in a seasonally calving pasture-based dairying system were managed for a 670-d lactation by delaying rebreeding. In each of four 40-d experimental periods commencing at 73, 217, 422, and 520 (±9.1) d in milk (DIM), cows were offered a diet of perennial ryegrass (73 and 422 DIM) or pasture hay and silage (217 and 520 DIM), supplemented with 1 (CON; n = 6) or 6 kg of grain (GRN; n = 6) as a ration. Daily energy intake was approximately 160 and 215 MJ of metabolizable energy/cow for the CON and GRN treatments, respectively. At all other times, cows were managed as a single herd and grazed pasture supplemented with grain to an estimated daily total intake of 180 MJ of metabolizable energy/cow. Cows were fitted with a jugular catheter during the final week of each experimental period. Two doses of epinephrine (0.1 and 1.6 µg/kg of body weight) were infused via the catheter 2 h apart to each cow at approximately 100, 250, 460, and 560 DIM. Blood plasma concentrations of glucose and nonesterified fatty acids (NEFA) were measured before and after infusions. Cows in the GRN treatment had greater milk yield, milk fat and protein yields, and body weight than cows in the CON treatment. The maximum plasma glucose concentration was observed at 100 DIM for both the low and high doses of epinephrine. Thus, sensitivity and responsiveness to exogenous epinephrine were greater during early lactation, coinciding with increased priority of milk synthesis. Both the sensitivity and responsiveness to epinephrine decreased with decreasing milk yield, as measured by the acute appearance of NEFA in the plasma. Increased plasma glucose and NEFA clearance rates before 300 DIM indicated greater uptake of these substrates by the mammary gland for milk synthesis in early and mid lactation. These results support previous findings that major changes occur in terms of adipose tissue metabolism during extended lactations. Overall, sensitivity to epinephrine was not affected by diet, but responsiveness was greater in cows fed the GRN diet. The endocrine regulation of nutrient partitioning throughout traditional and extended lactations is complex, with many interactions between stage of lactation, diet, and milk yield potential. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. N-Acetylcysteine in the Treatment of Pediatric Trichotillomania: A Randomized, Double-Blind, Placebo-Controlled Add-On Trial

    PubMed Central

    Bloch, Michael H.; Panza, Kaitlyn E.; Grant, Jon E.; Pittenger, Christopher; Leckman, James F.

    2013-01-01

    Objective To examine the efficacy of N-acetylcysteine (NAC) for the treatment of pediatric trichotillomania (TTM) in a double-blind, placebo-controlled, add-on study. Method A total of 39 children and adolescents aged 8 to 17 years with pediatric trichotillomania were randomly assigned to receive NAC or matching placebo for 12 weeks. Our primary outcome was change in severity of hairpulling as measured by the Massachusetts General Hospital–Hairpulling Scale (MGH-HPS). Secondary measures assessed hairpulling severity, automatic versus focused pulling, clinician-rated improvement, and comorbid anxiety and depression. Outcomes were examined using linear mixed models to test the treatment × time interaction in an intention-to-treat population. Results No significant difference between N-acetylcysteine and placebo was found on any of the primary or secondary outcome measures. On several measures of hairpulling, subjects significantly improved with time regardless of treatment assignment. In the NAC group, 25% of subjects were judged as treatment responders, compared to 21% in the placebo group. Conclusions We observed no benefit of NAC for the treatment of children with trichotillomania. Our findings stand in contrast to a previous, similarly designed trial in adults with TTM, which demonstrated a very large, statistically significant benefit of NAC. Based on the differing results of NAC in pediatric and adult TTM populations, the assumption that pharmacological interventions demonstrated to be effective in adults with TTM will be as effective in children, may be inaccurate. This trial highlights the importance of referring children with TTM to appropriate behavioral therapy before initiating pharmacological interventions, as behavioral therapy has demonstrated efficacy in both children and adults with trichotillomania. PMID:23452680

  14. N-Acetylcysteine in the treatment of pediatric trichotillomania: a randomized, double-blind, placebo-controlled add-on trial.

    PubMed

    Bloch, Michael H; Panza, Kaitlyn E; Grant, Jon E; Pittenger, Christopher; Leckman, James F

    2013-03-01

    To examine the efficacy of N-acetylcysteine (NAC) for the treatment of pediatric trichotillomania (TTM) in a double-blind, placebo-controlled, add-on study. A total of 39 children and adolescents aged 8 to 17 years with pediatric trichotillomania were randomly assigned to receive NAC or matching placebo for 12 weeks. Our primary outcome was change in severity of hairpulling as measured by the Massachusetts General Hospital-Hairpulling Scale (MGH-HPS). Secondary measures assessed hairpulling severity, automatic versus focused pulling, clinician-rated improvement, and comorbid anxiety and depression. Outcomes were examined using linear mixed models to test the treatment×time interaction in an intention-to-treat population. No significant difference between N-acetylcysteine and placebo was found on any of the primary or secondary outcome measures. On several measures of hairpulling, subjects significantly improved with time regardless of treatment assignment. In the NAC group, 25% of subjects were judged as treatment responders, compared to 21% in the placebo group. We observed no benefit of NAC for the treatment of children with trichotillomania. Our findings stand in contrast to a previous, similarly designed trial in adults with TTM, which demonstrated a very large, statistically significant benefit of NAC. Based on the differing results of NAC in pediatric and adult TTM populations, the assumption that pharmacological interventions demonstrated to be effective in adults with TTM will be as effective in children, may be inaccurate. This trial highlights the importance of referring children with TTM to appropriate behavioral therapy before initiating pharmacological interventions, as behavioral therapy has demonstrated efficacy in both children and adults with trichotillomania. Copyright © 2013 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. N-acetylcysteine modulates doxorubicin-induced oxidative stress and antioxidant vitamin concentrations in liver of rats.

    PubMed

    Koçkar, M Cem; Nazıroğlu, Mustafa; Celik, Omer; Tola, H Tahsin; Bayram, Dilek; Koyu, Ahmet

    2010-12-02

    Doxorubicin (DOX) is a chemotherapeutic agent, and is widely used in cancer treatment. The most common side effect of DOX was indicated on cardiovascular system by experimental studies. There are some studies suggesting oxidative stress-induced toxic changes on liver related to DOX administration. The aim of the present study was to evaluate whether antioxidant N-acetylcysteine (NAC) relieves oxidative stress in DOX- induced liver injury in rat. Twenty-four male rats were equally divided into three groups. First group was used as a control. Second group received single dose of DOX. NAC for 10 days was given to constituting the third group after giving one dose of DOX. After 10 days of the experiment, liver tissues were taken from all animals. Lipid peroxidation (LP) levels were higher in the DOX group than in control whereas LP levels were lower in the DOX+NAC group than in control. Vitamin C and vitamin E levels were lower in the DOX group than in control whereas vitamin C and vitamin E levels were higher in the DOX+NAC group than in the DOX group. Reduced glutathione levels were higher in the DOX+NAC group than in control and DOX group. Glutathione peroxidase, vitamin A and β-carotene values were not changed in the three groups by DOX and NAC administrations. In histopathological evaluation of DOX group, there were mononuclear cell infiltrations, vacuolar degeneration, hepatocytes with basophilic nucleus and sinusoidal dilatations. The findings were totally recovered by NAC administration. In conclusion, N-acetylcysteine induced modulator effects on the doxorubicin-induced hepatoxicity by inhibiting free radical production and supporting the antioxidant vitamin levels. Copyright © 2010 John Wiley & Sons, Ltd.

  16. N-Acetylcysteine Amide Protects Against Oxidative Stress–Induced Microparticle Release From Human Retinal Pigment Epithelial Cells

    PubMed Central

    Carver, Kyle A.; Yang, Dongli

    2016-01-01

    Purpose Oxidative stress is a major factor involved in retinal pigment epithelium (RPE) apoptosis that underlies AMD. Drusen, extracellular lipid- and protein-containing deposits, are strongly associated with the development of AMD. Cell-derived microparticles (MPs) are small membrane-bound vesicles shed from cells. The purpose of this study was to determine if oxidative stress drives MP release from RPE cells, to assess whether these MPs carry membrane complement regulatory proteins (mCRPs: CD46, CD55, and CD59), and to evaluate the effects of a thiol antioxidant on oxidative stress–induced MP release. Methods Retinal pigment epithelium cells isolated from human donor eyes were cultured and treated with hydrogen peroxide (H2O2) to induce oxidative stress. Isolated MPs were fixed for transmission electron microscopy or processed for component analysis by flow cytometry, Western blot analysis, and confocal microscopy. Results Transmission electron microscopy showed that MPs ranged in diameter from 100 to 1000 nm. H2O2 treatment led to time- and dose-dependent elevations in MPs with externalized phosphatidylserine and phosphatidylethanolamine, known markers of MPs. These increases were strongly correlated to RPE apoptosis. Oxidative stress significantly increased the release of mCRP-positive MPs, which were prevented by a thiol antioxidant, N-acetylcysteine amide (NACA). Conclusions This is the first evidence that oxidative stress induces cultured human RPE cells to release MPs that carry mCRPs on their surface. The levels of released MPs are strongly correlated with RPE apoptosis. N-acetylcysteine amide prevents oxidative stress–induced effects. Our findings indicate that oxidative stress reduces mCRPs on the RPE surface through releasing MPs. PMID:26842754

  17. Mycophenolic acid attenuates tumor necrosis factor-alpha-induced endothelin-1 production in human aortic endothelial cells.

    PubMed

    Yang, Won Seok; Lee, Joo Mi; Han, Nam Jeong; Kim, Yoon Ji; Chang, Jai Won; Park, Su-Kil

    2010-07-01

    Atherosclerotic cardiovascular disease is the major cause of morbidity and mortality in solid organ transplant recipients. Endothelin-1 (ET-1) is implicated in the pathogenesis of atherosclerosis and is one of the potential therapeutic targets. This study was conducted to evaluate the effect of mycophenolic acid (MPA), an immunosuppressant for the transplant recipients, on tumor necrosis factor-alpha (TNF-alpha)-induced ET-1 production in aortic endothelial cells. In cultured human aortic endothelial cells, TNF-alpha increased ET-1 through AP-1 and NF-kappaB, whereas MPA attenuated it by reducing both AP-1 and NF-kappaB DNA-binding activities. TNF-alpha increased ET-1 via c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), but not extracellular signal-regulated kinase. N-acetylcysteine that downregulated TNF-alpha-induced reactive oxygen species (ROS) inhibited JNK activation, but not p38 MAPK. N-acetylcysteine, SP600125 (JNK inhibitor) and SB203580 (p38 MAPK inhibitor) attenuated TNF-alpha-induced DNA-binding activities of both AP-1 and NF-kappaB. MPA inhibited JNK and p38 MAPK activations as well as ROS generation. N-acetylcysteine, SP600125, SB203580 and MPA had no effect on either TNF-alpha-induced IkappaBalpha degradation or p65 nuclear translocation, but attenuated p65 Ser276 phosphorylation. MPA attenuated TNF-alpha-induced ET-1 production through inhibitions of ROS-dependent JNK and ROS-independent p38 MAPK that regulated NF-kappaB as well as AP-1. These findings suggest that MPA could have an effect of amelioration of atherosclerosis. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Effect of antioxidants on histamine receptor activation and sustained post-exercise vasodilatation in humans

    PubMed Central

    Romero, Steven A.; Ely, Matthew R.; Sieck, Dylan C.; Luttrell, Meredith J.; Buck, Tahisha M.; Kono, Jordan M.; Branscum, Adam J.; Halliwill, John R.

    2015-01-01

    An acute bout of aerobic exercise elicits a sustained post-exercise vasodilatation that is mediated by histamine H1 and H2 receptor activation. However, the upstream signaling pathway that leads to post-exercise histamine receptor activation is unknown. We tested the hypothesis that the potent antioxidant ascorbate would inhibit this histaminergic vasodilatation following exercise. Subjects performed 1 hr unilateral dynamic knee extension at 60% of peak power in three conditions: 1) control; 2) intravenous ascorbate infusion; and, 3) ascorbate infusion plus oral H1/H2 histamine receptor blockade. Femoral artery blood flow (Doppler ultrasound) was measured before exercise and for 2 hr post-exercise. Femoral vascular conductance was calculated as flow/pressure. Post-exercise vascular conductance was greater for control condition (3.4 ± 0.1 ml min−1 mmHg−1) compared with ascorbate (2.7 ± 0.1 ml min−1 mmHg−1, P < 0.05) and ascorbate plus H1/H2 blockade (2.8 ± 0.1 ml min−1 mmHg−1, P < 0.05), which did not differ from one another (P = 0.9). Because ascorbate may catalyze the degradation of histamine in vivo, we conducted a follow-up study where subjects performed exercise in two conditions: 1) control and 2) intravenous N-acetylcysteine infusion. Post-exercise vascular conductance was similar for control (4.0 ± 0.1 ml min−1 mmHg−1) and N-acetylcysteine conditions (4.0 ± 0.1 ml min−1 mmHg−1; P = 0.8). Thus, the results in study 1 were due to the degradation of histamine in skeletal muscle by ascorbate, since the histaminergic vasodilatation was unaffected by N-acetylcysteine. Taken together, exercise-induced oxidative stress does not appear to contribute to sustained post-exercise vasodilatation. PMID:25664905

  19. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells.

    PubMed

    Haendeler, Judith; Hoffmann, Jörg; Diehl, J Florian; Vasa, Mariuca; Spyridopoulos, Ioakim; Zeiher, Andreas M; Dimmeler, Stefanie

    2004-04-02

    Aging is associated with a rise in intracellular reactive oxygen species (ROS) and a loss of telomerase reverse transcriptase activity. Incubation with H2O2 induced the nuclear export of telomerase reverse transcriptase (TERT) into the cytosol in a Src-family kinase-dependent manner. Therefore, we investigated the hypothesis that age-related increase in reactive oxygen species (ROS) may induce the nuclear export of TERT and contribute to endothelial cell senescence. Continuous cultivation of endothelial cells resulted in an increased endogenous formation of ROS starting after 29 population doublings (PDL). This increase was accompanied by mitochondrial DNA damage and preceded the onset of replicative senescence at PDL 37. Along with the enhanced formation of ROS, we detected an export of nuclear TERT protein from the nucleus into the cytoplasm and an activation of the Src-kinase. Moreover, the induction of premature senescence by low concentrations of H2O2 was completely blocked with the Src-family kinase inhibitor PP2, suggesting a crucial role for Src-family kinases in the induction of endothelial cell aging. Incubation with the antioxidant N-acetylcysteine, from PDL 26, reduced the intracellular ROS formation and prevented mitochondrial DNA damage. Likewise, nuclear export of TERT protein, loss in the overall TERT activity, and the onset of replicative senescence were delayed by incubation with N-acetylcysteine. Low doses of the statin, atorvastatin (0.1 micromol/L), had also effects similar to those of N-acetylcysteine. We conclude that both antioxidants and statins can delay the onset of replicative senescence by counteracting the increased ROS production linked to aging of endothelial cells.

  20. Comparative study of the oxidation behavior of sulfur-containing amino acids and glutathione by electrochemistry-mass spectrometry in the presence and absence of cisplatin.

    PubMed

    Zabel, Robert; Weber, Günther

    2016-02-01

    Small sulfur-containing compounds are involved in several important biochemical processes, including-but not limited to-redox regulation and drug conjugation/detoxification. While methods for stable redox pairs of such compounds (thiols/disulfides) are available, analytical data on more labile and short-lived redox intermediates are scarce, due to highly challenging analytical requirements. In this study, we employ the direct combination of reagentless electrochemical oxidation and mass spectrometric (EC-MS) identification for monitoring oxidation reactions of cysteine, N-acetylcysteine, methionine, and glutathione under simulated physiological conditions (pH 7.4, 37 °C). For the first time, all theoretically expected redox intermediates-with only one exception-are detected simultaneously and in situ, including sulfenic, sulfinic, and sulfonic acids, disulfides, thiosulfinates, thiosulfonates, and sulfoxides. By monitoring the time/potential-dependent interconversion of sulfur species, mechanistic oxidation routes are confirmed and new reactions detected, e.g., sulfenamide formation due to reaction with ammonia from the buffer. Furthermore, our results demonstrate a highly significant impact of cisplatin on the redox reactivity of sulfur species. Namely, the amount of thiol oxidation to sulfonic acid via sulfenic and sulfinic acid intermediates is diminished for glutathione in the presence of cisplatin in favor of the disulfide formation, while for N-acetylcysteine the contrary applies. N-acetylcysteine is the only ligand which displays enhanced oxidation currents upon cisplatin addition, accompanied by increased levels of thiosulfinate and thiosulfonate species. This is traced back to thiol reactivity and highlights the important role of sulfenic acid intermediates, which may function as a switch between different oxidation routes.

  1. Redox regulation of MMP-3/TIMP-1 ratio in intestinal myofibroblasts: effect of N-acetylcysteine and curcumin.

    PubMed

    Fontani, Filippo; Marcucci, Tommaso; Picariello, Lucia; Tonelli, Francesco; Vincenzini, Maria Teresa; Iantomasi, Teresa

    2014-04-15

    Matrix metalloproteinases (MMPs) play a critical role in inflammation and ulcerations in gut of Crohn׳s disease (CD) patients. Intestinal subepithelial myofibroblasts (ISEMFs) secrete MMPs in response to inflammatory stimuli. Previous data showed in CD-ISEMFs increased oxidative status. The aim of this study was to investigate the role of ISEMFs in modulating the production of MMP-3 and TIMP-1, an inhibitor of MMPs activity. A relationship among oxidative stress, activity of antioxidants and MMP-3/TIMP-1 was also studied. ISEMFs isolated from CD patient colon and human colonic cell line of myofibroblasts (18Co) were used. Oxidative state was modulated by buthionine sulfoximine, an inhibitor of glutathione (GSH) synthesis, and N-acetylcysteine (NAC), GSH precursor. An up-regulation of MMP-3 due to increased oxidative state was found in CD-ISEMFs. Stimulation by tumor necrosis factor (TNF)α increased further MMP-3 levels. On the contrary, no change in TIMP-1 production was determined. NAC treatment decreased MMP-3 production in CD-ISMEFs and removed the enhancement due to TNFα. Similar effects were observed in 18Co cells treated with curcumin, antioxidant with anti-inflammatory properties. The involvement of MAPKs on MMP-3 redox regulation was also shown. This study demonstrates the involvement of ISEMFs and high oxidative state in the increased MMP-3 production found in intestinal mucosa of CD patients. NAC and curcumin normalize MMP-3 levels mainly in TNFα stimulated cells. A modulation of MMP-3 production by NAC and curcumin due to their direct action on transcriptional factors has been also suggested. Therefore, they could have a therapeutic use for the prevention and treatment of fistulaes in CD. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Curcumin induces apoptosis and cell cycle arrest via the activation of reactive oxygen species-independent mitochondrial apoptotic pathway in Smad4 and p53 mutated colon adenocarcinoma HT29 cells.

    PubMed

    Agarwal, Ayushi; Kasinathan, Akiladdevi; Ganesan, Ramamoorthi; Balasubramanian, Akhila; Bhaskaran, Jahnavi; Suresh, Samyuktha; Srinivasan, Revanth; Aravind, K B; Sivalingam, Nageswaran

    2018-03-01

    Curcumin is a natural dietary polyphenol compound that has various pharmacological activities such as antiproliferative and cancer-preventive activities on tumor cells. Indeed, the role reactive oxygen species (ROS) generated by curcumin on cell death and cell proliferation inhibition in colon cancer is poorly understood. In the present study, we hypothesized that curcumin-induced ROS may promote apoptosis and cell cycle arrest in colon cancer. To test this hypothesis, the apoptosis-inducing potential and cell cycle inhibition effect of ROS induced by curcumin was investigated in Smd4 and p53 mutated HT-29 colon adenocarcinoma cells. We found that curcumin treatment significantly increased the level of ROS in HT-29 cells in a dose- and time-dependent manner. Furthermore, curcumin treatment markedly decreased the cell viability and proliferation potential of HT-29 cells in a dose- and time-dependent manner. Conversely, generation of ROS and inhibitory effect of curcumin on HT-29 cells were abrogated by N-acetylcysteine treatment. In addition, curcumin treatment did not show any cytotoxic effects on HT-29 cells. Furthermore, curcumin-induced ROS generation caused the DNA fragmentation, chromatin condensation, and cell nuclear shrinkage and significantly increased apoptotic cells in a dose- and time-dependent manner in HT-29 cells. However, pretreatment of N-acetylcysteine inhibited the apoptosis-triggering effect of curcumin-induced ROS in HT-29 cells. In addition, curcumin-induced ROS effectively mediated cell cycle inhibition in HT-29 cells. In conclusion, our data provide the first evidence that curcumin induces ROS independent apoptosis and cell cycle arrest in colon cancer cells that carry mutation on Smad4 and p53. Copyright © 2018. Published by Elsevier Inc.

  3. Resveratrol in Hepatitis C Patients Treated with Pegylated-Interferon-α-2b and Ribavirin Reduces Sleep Disturbance

    PubMed Central

    Pennisi, Manuela; Bertino, Gaetano; Gagliano, Caterina; Malaguarnera, Michele; Bella, Rita; Borzì, Antonio Maria; Madeddu, Roberto; Drago, Filippo

    2017-01-01

    Background: Hepatitis C virus infection and interferon treatment have shown to be risk factors for sleep disorder health-related quality of life. Aim: To determine whether the effects of resveratrol on sleep disorders were associated with different tests in subjects with chronic hepatitis C treated with Peg-IFN-α and RBV. Patients and Methods: In this prospective, randomized, placebo controlled, double blind clinical trial, 30 subjects (Group A) with chronic hepatitis received Pegylated-Interferon-α2b (1.5 mg/kg per week), Ribavirin and placebo (N-acetylcysteine 600 mg and lactoferrin 23.6 g), while 30 subjects (Group B) received the same dosage of Pegylated-Interferon-α2b, Ribavirin and association of N-acetylcysteine 600 mg, lactoferrin 23.6 g and Resveratrol 19.8 mg for 12 months. All subjects underwent laboratory exams and questionnaires to evaluate mood and sleep disorders (General Health Questionnaire (GHQ), Profile of Mood States (POMS), Pittsburgh Sleep Quality Inventory (PSQI), Epworth Sleepiness Scale (ESS)). Results: The comparison between Group A and Group B showed significant differences after six months in C-reactive protein (p < 0.0001); after 12 months in aspartate aminotransferase (AST) (p < 0.0001) Viremia (p < 0.0001), HAI (p < 0.0012) and C-reactive protein (p < 0.0001); and at follow up in AST (p < 0.0001), Viremia (p < 0.0026) and C-reactive protein (p < 0.0001). Significant differences were observed after 12 month and follow-up in General Health Questionnaire, after 1, 6, 12 and follow-up in Profile of Mood States, after 6, 12, follow-up in Pittsburgh Sleep Quality Inventory and Epworth Sleepiness Scale. Conclusions: Supplementation with Resveratrol decreased General Health Questionnaire score and reduced sleep disorders in patients treated with Peg–IFN-α and RBV. PMID:28820468

  4. N-acetylcysteine is able to reduce the oxidation status and the endothelial activation after a high-glucose content meal in patients with Type 2 diabetes mellitus.

    PubMed

    Masha, A; Brocato, L; Dinatale, S; Mascia, C; Biasi, F; Martina, V

    2009-04-01

    Post-prandial hyperglycemia seems to play a pivotal role in the pathogenesis of the cardiovascular complications of diabetes mellitus, as it leads to an oxidative stress which in turn causes a reduced NO bioavailability. These conditions produce an endothelial activation. The aim of this study was to assure that the administration of N-acetylcysteine (NAC), thiolic antioxidant, is able to decrease the oxidation status and endothelial activation after a high-glucose content meal. Ten patients with Type 2 diabetes mellitus (DMT2) (Group 1) and 10 normal subjects (Group 2) were studied. They assumed a high-glucose content meal without (phase A) or after (phase B) the administration of NAC. Glycemia, insulinemia, intercellular adhesion molecule 1, vascular adhesion molecule 1 (VCAM-1), E-selectin, malonaldehyde (MDA), and 4-hydroxynonenal (HNE) were assessed at -30, 0, +30, +60, +90, +120, and +180 min with respect to the meal consumption. During the phase A in Group 1, only HNE and MDA levels increased after the meal assumption; all parameters remained unchanged in Group 2. During the phase B, in Group 1, HNE, MDA, VCAM-1, and E-selectin levels after the meal were lower than those in phase A, while no change for all variables were observed in Group 2. A high-glucose meal produces an increase in oxidation parameters in patients with DMT2. The administration of NAC reduces the oxidative stress and, by doing so, reduces the endothelial activation. In conclusion, NAC could be efficacious in the slackening of the progression of vascular damage in DMT2.

  5. N-acetylcysteine possesses antidepressant-like activity through reduction of oxidative stress: behavioral and biochemical analyses in rats.

    PubMed

    Smaga, Irena; Pomierny, Bartosz; Krzyżanowska, Weronika; Pomierny-Chamioło, Lucyna; Miszkiel, Joanna; Niedzielska, Ewa; Ogórka, Agata; Filip, Małgorzata

    2012-12-03

    The growing body of evidence implicates the significance of oxidative stress in the pathophysiology of depression. The aim of this paper was to examine N-acetylcysteine (NAC) - a putative precursor of the most important tissue antioxidant glutathione - in an animal model of depression and in ex vivo assays to detect oxidative stress parameters. Imipramine (IMI), a classical and clinically-approved antidepressant drug was also under investigation. Male Wistar rats which underwent either bulbectomy (BULB; removal of the olfactory bulbs) or sham surgery (SHAM; olfactory bulbs were left undestroyed) were treated acutely or repeatedly with NAC (50-100mg/kg, ip) or IMI (10mg/kg, ip). Following 10-daily injections with NAC or IMI or their solvents, or 9-daily injections with a corresponding solvent plus acute NAC or acute IMI forced swimming test on day 10, and locomotor activity were performed; immediately after behavioral tests animals were decapitated. Biochemical tests (the total antioxidant capacity - TAC and the superoxide dismutase activity - SOD) were performed on homogenates in several brain structures. In behavioral studies, chronic (but not acute) administration of NAC resulted in a dose-dependent reduction in the immobility time seen only in BULB rats while chronic IMI produced a significant decrease in this parameter in both SHAM and BULB animals. On the other hand, chronic administration of NAC and IMI resulted in a significant increase in cellular antioxidant mechanisms (SOD activity) that reversed the effects of BULB in the frontal cortex, hippocampus and striatum. Our study further supports the antidepressant-like activity of NAC and links its effect as well as IMI actions with the enhancement of brain SOD activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Effects of N-acetylcysteine and imipramine in a model of acute rhythm disruption in BALB/c mice.

    PubMed

    Pilz, Luísa K; Trojan, Yasmine; Quiles, Caroline L; Benvenutti, Radharani; Melo, Gabriela; Levandovski, Rosa; Hidalgo, Maria Paz L; Elisabetsky, Elaine

    2015-03-01

    Circadian rhythm disturbances are among the risk factors for depression, but specific animal models are lacking. This study aimed to characterize the effects of acute rhythm disruption in mice and investigate the effects of imipramine and N-acetylcysteine (NAC) on rhythm disruption-induced changes. Mice were exposed to 12:12-hour followed by 10:10-hour light:dark cycles (LD); under the latter, mice were treated with saline, imipramine or NAC. Rhythms of rest/activity and temperature were assessed with actigraphs and iButtons, respectively. Hole-board and social preference tests were performed at the beginning of the experiment and again at the 8th 10:10 LD, when plasma corticosterone and IL-6 levels were also assessed. Actograms showed that the 10:10 LD schedule prevents the entrainment of temperature and activity rhythms for at least 13 cycles. Subsequent light regimen change activity and temperature amplitudes showed similar patterns of decline followed by recovery attempts. During the 10:10 LD schedule, activity and temperature amplitudes were significantly decreased (paired t test), an effect exacerbated by imipramine (ANOVA/SNK). The 10:10 LD schedule increased anxiety (paired t test), an effect prevented by NAC (30 mg/kg). This study identified mild but significant behavioral changes at specific time points after light regimen change. We suggest that if repeated overtime, these subtle changes may contribute to lasting behavioral disturbancess relevant to anxiety and mood disorders. Data suggest that imipramine may contribute to sustained rhythm disturbances, while NAC appears to prevent rhythm disruption-induced anxiety. Associations between sleep/circadian disturbances and the recurrence of depressive episodes underscore the relevance of potential drug-induced maintenance of disturbed rhythms.

  7. Activated carbon N-acetylcysteine microcapsule protects against nonalcoholic fatty liver disease in young rats via activating telomerase and inhibiting apoptosis

    PubMed Central

    Zhou, Hongping; Xi, Jianjun; Sun, Jingjing; Ke, Yunling; Zhang, Jiankang; Shao, Yidan; Jiang, Xiaojie; Pan, Xuwang; Liu, Shourong; Zhuang, Rangxiao

    2018-01-01

    Non-alcoholic fatty liver disease (NAFLD) is becoming one of the world's most common chronic liver diseases in childhood, yet no therapy is available that has been approved by the food and drug administration (FDA). Previous studies have reported that telomere and telomerase are involved the development and progression of NAFLD. This study was designed to investigate the potential beneficial effects of activated carbon N-acetylcysteine (ACNAC) microcapsules on the development of NAFLD in young rats as well as the underlying mechanism(s) involved. Three-week old male Sprague Dawley rats were given high-fat diet (HFD) with/without ACNAC treatment for 7 consecutive weeks. Liver pathologies were determined by hematoxylin and eosin (H&E) and Oil Red O staining, as well as by changes in biochemical parameters of plasma alanine transaminase (ALT) and aspartate transaminase (AST) levels, respectively. Glucose homeostasis was evaluated by the glucose tolerance test and the liver telomere length and activity were measured by real time PCR and telomeric repeat amplification protocol (TRAP). Western blot analysis was performed to determine the expression level of Bcl-2, Bax and Caspase-3. Our results demonstrated that ACNAC supplementation improved liver pathologies of rats that received long-term HFD feeding. ACNAC supplementation prevented HFD-induced telomere shortening and improved telomerase activity. Moreover, in comparison to HFD-fed rats, ACNAC supplementation markedly increased the expression of Bcl-2, but significantly decreased the expression of Bax and Caspase-3 in juvenile rats. Together, these results indicate that ACNAC may be a promising choice for preventing and treating NAFLD among children. PMID:29324774

  8. N-acetylcysteine enhances endothelium-dependent vasorelaxation in the isolated rat mesenteric artery.

    PubMed

    Lopez, B L; Snyder, J W; Birenbaum, D S; Ma, X I

    1998-10-01

    Previous studies have suggested that N-acetylcysteine (NAC) may confer additional protection in acetaminophen (APAP) overdose by improving hepatic microcirculation. We hypothesize that NAC enhances release of nitric oxide (NO) from the vasculature. Sprague-Dawley rat superior mesenteric artery rings were suspended in oxygenated Krebs-Henseleit tissue baths and contracted with U-46619 (a thromboxane A2-mimetic). In part 1, the effect of NAC on endothelial cell (EC) release of NO was assessed by measurement of vasorelaxation induced by acetylcholine (ACh, an EC-dependent vasorelaxor) in the presence and absence of NAC. In part 2, the effect of glutathione (a major component of NAC hepatoprotection) was examined by measuring ACh-induced vasorelaxation in rings from rats treated with L-buthionine sulfoxamine (BSO, a glutathione synthesis inhibitor). Data were analyzed by repeated-measures ANOVA. Addition of 15 to 30 mmol/L NAC after ring contraction had no direct vasodilatory effect. By contrast, pretreatment of rings with NAC (15 mmol/L) enhanced vasorelaxation induced by ACh (95.0% +/- 7.9% versus 62.3% +/- 7.6% for control; ACh dose, 1 mumol/L; P < .001) or by A23187, a receptor-independent, NO-mediated vasodilator (91.6% +/- 9.6% versus 68.3% +/- 12.1% for control; A23187 dose, 1 mumol/L; P < .001). In rings from BSO-treated rats, NAC also enhanced vasorelaxation (76.5% +/- 7.1%; P < .001 versus control), but to a lesser degree than in nontreated rats. NAC enhances endothelium-dependent vasodilation in an isolated rat mesenteric artery ring preparation. In addition to its antioxidant effects, NAC may decrease APAP hepatotoxicity by stimulating NO production and improving microvascular circulation.

  9. Effect of fraxetin on antioxidant defense and stress proteins in human neuroblastoma cell model of rotenone neurotoxicity. Comparative study with myricetin and N-acetylcysteine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molina-Jimenez, Maria Francisca; Sanchez-Reus, Maria Isabel; Cascales, Maria

    2005-12-15

    Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Recently, it has been shown that fraxetin (coumarin) and myricetin (flavonoid) have significant neuroprotective effects against apoptosis induced by rotenone, increase the total glutathione levels in vitro, and inhibit lipid peroxidation. Thus, these considerations prompted us to investigate the way in which fraxetin and myricetin affect the endogenous antioxidant defense system, such as Mn and CuZn superoxide dismutase (MnSOD, CuZnSOD), catalase, glutathione reductase (GR), and glutathione peroxidase (GPx) on rotenone neurotoxicity in neuroblastoma cells. N-acetylcysteine (NAC), a potent antioxidant, was employed as a comparative agent. Also,more » the expression and protein levels of HSP70 by Northern and Western blot analysis were assayed in SH-SY5Y cells. After incubation for 16 h, rotenone significantly increased the expression and activity of MnSOD, GPx, and catalase. When cells were preincubated with fraxetin, there was a decrease in the protein levels and activity of both MnSOD and catalase, in comparison with the rotenone treatment. The myricetin effect was less pronounced. Activity and expression of GPx were increased by rotenone and pre-treatment with fraxetin did not modify significantly these levels. The significant enhancement in HSP70 expression at mRNA and protein levels induced by fraxetin was observed by pre-treatment of cells 0.5 h before rotenone insult. These data suggest that major features of rotenone-induced neurotoxicity are partially mediated by free radical formation and oxidative stress, and that fraxetin partially protects against rotenone toxicity affecting the main protection system of the cells against oxidative injury.« less

  10. Effects of folic acid and N-acetylcysteine on plasma homocysteine levels and endothelial function in patients with coronary artery disease.

    PubMed

    Yilmaz, Hale; Sahin, Sinan; Sayar, Nurten; Tangurek, Burak; Yilmaz, Mehmet; Nurkalem, Zekeriya; Onturk, Ebru; Cakmak, Nazmiye; Bolca, Osman

    2007-12-01

    Hyperhomocysteinaemia is related with premature coronary artery disease and adverse cardiac events in patients with coronary artery disease (CAD). It is assumed that hyper-homocysteinaemia causes endothelial dysfunction. In this study, the effect of folic acid and oral N-acetylcysteine (NAC) therapies on plasma homocysteine levels and endothelial function were evaluated in hyperhomocysteinaemic patients with CAD. 60 patients were randomized to either folic acid 5 mg or NAC 600 mg or placebo daily for eight weeks. Brachial artery endothelial functions were studied by using high-resolution ultrasound and assessed by measuring endothelium-dependent dilation (EDD) and endothelium-independent dilation (NEDD). Folic acid and NAC therapies decreased plasma homocysteine (from 21.7 +/- 8.7 micromol/l to 12.5 +/- 2.5 micromol/l, P < 0.001; from 20.9 +/- 7.6 micromol/l to 15.6 +/- 4.3 micromol/l, P = 0.03, respectively), and increased EDD (6.7 +/- 6.1% P = 0.002, 4.4 +/- 2.6% P < 0.001, respectively) compared with placebo. There was no significant difference in improving EDD between the folic acid and the NAC group (6.7 +/- 6.1%, 4.4 +/- 2.6%, P = 0. 168). In the univariate analyses there was an inverse correlation between the post-treatment homocysteine level and the percent change in EDD with folic acid therapy (r= -0.490, P = 0.028), but there was no correlation with the NAC therapy (r = 0.259, P = 0.333) In patients with hyperhomocysteinaemic CAD, folic acid and NAC lowered plasma homocysteine levels and improved endothelial function. The effects of both treatments in improvement of EDD were similar.

  11. Inorganic mercury causes pancreatic beta-cell death via the oxidative stress-induced apoptotic and necrotic pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yawen; Huang Chunfa; Yang Chingyao

    2010-03-15

    Mercury is a well-known highly toxic metal. In this study, we characterize and investigate the cytotoxicity and its possible mechanisms of inorganic mercury in pancreatic beta-cells. Mercury chloride (HgCl{sub 2}) dose-dependently decreased the function of insulin secretion and cell viability in pancreatic beta-cell-derived HIT-T15 cells and isolated mouse pancreatic islets. HgCl{sub 2} significantly increased ROS formation in HIT-T15 cells. Antioxidant N-acetylcysteine effectively reversed HgCl{sub 2}-induced insulin secretion dysfunction in HIT-T15 cells and isolated mouse pancreatic islets. Moreover, HgCl{sub 2} increased sub-G1 hypodiploids and annexin-V binding in HIT-T15 cells, indicating that HgCl{sub 2} possessed ability in apoptosis induction. HgCl{sub 2} alsomore » displayed several features of mitochondria-dependent apoptotic signals including disruption of the mitochondrial membrane potential, increase of mitochondrial cytochrome c release and activations of poly (ADP-ribose) polymerase (PARP) and caspase 3. Exposure of HIT-T15 cells to HgCl{sub 2} could significantly increase both apoptotic and necrotic cell populations by acridine orange/ethidium bromide dual staining. Meanwhile, HgCl{sub 2} could also trigger the depletion of intracellular ATP levels and increase the LDH release from HIT-T15 cells. These HgCl{sub 2}-induced cell death-related signals could be significantly reversed by N-acetylcysteine. The intracellular mercury levels were markedly elevated in HgCl{sub 2}-treated HIT-T15 cells. Taken together, these results suggest that HgCl{sub 2}-induced oxidative stress causes pancreatic beta-cell dysfunction and cytotoxicity involved the co-existence of apoptotic and necrotic cell death.« less

  12. Effects of chronic N-acetylcysteine treatment on the actions of peroxynitrite on aortic vascular reactivity in hypertensive rats.

    PubMed

    Cabassi, A; Dumont, E C; Girouard, H; Bouchard, J F; Le Jossec, M; Lamontagne, D; Besner, J G; de Champlain, J

    2001-07-01

    Peroxynitrite (ONOO-), the product of superoxide and nitric oxide, seems to be involved in vascular alterations in hypertension. To evaluate the effects of ONOO- on endothelium-dependent and independent aortic vascular responsiveness, oxidized/reduced glutathione balance (GSSG/GSH), malondialdehyde aortic content, and the formation of 3-nitrotyrosine (3-NT), a stable marker of ONOO-, in N-acetylcysteine (NAC)-treated normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). In SHR only, NAC significantly reduced heart rate and systolic, but not diastolic, blood pressure. It also improved endothelium-dependent aortic relaxation in SHR, but not after exposure to ONOO-. Endothelium-dependent and independent aortic relaxations were markedly impaired by ONOO- in both strains of rat. NAC partially protected SHR against the ONOO- -induced reduction in endothelium-independent relaxation. Aortic GSSG/GSH ratio and malondialdehyde, which were higher in SHR than in WKY rats, showed a greater increase in SHR after exposure to ONOO-. NAC decreased GSSG/GSH and malondialdehyde in both strains of rat before and after exposure to ONOO-. The 3-NT concentration, which was similar in both strains of rat under basal conditions, was greater in SHR than in WKY rats after the addition of ONOO-, with a reduction only in NAC-treated SHR. These findings suggest an increased vulnerability of SHR aortas to the effects of ONOO- as compared with those of WKY rats. The selective improvements produced by NAC, in systolic arterial pressure, heart rate, aortic endothelial function, ONOO- -induced impairment of endothelium-independent relaxation, aortic GSSG/GSH balance, malondialdehyde content and 3-NT formation in SHR suggest that chronic administration of NAC may have a protective effect against aortic vascular dysfunction in the SHR model of hypertension.

  13. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    PubMed Central

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian; Ansari, G.A.S.; Khan, M. Firoze

    2017-01-01

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL+/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL+/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. PMID:23993974

  14. Normobaric Hyperoxia Extends Neuro- and Vaso-Protection of N-Acetylcysteine in Transient Focal Ischemia.

    PubMed

    Liu, Yushan; Liu, Wen-Cao; Sun, Yanyun; Shen, Xianzhi; Wang, Xiaona; Shu, Hui; Pan, Rong; Liu, Chun-Feng; Liu, Wenlan; Liu, Ke Jian; Jin, Xinchun

    2017-07-01

    N-acetylcysteine (NAC), a precursor of glutathione that reduces reperfusion-induced injury, has been shown protection when it was administered pre-ischemia. However, less is known about the effect when it was given post-ischemia and there is no positive result associated with anti-oxidant in clinical trials. This study investigated the neuro- and vaso-protection of post-ischemia NAC administration as well as combining NAC with normobaric hyperoxia (NBO). Male Sprague-Dawley rats were exposed to NBO or normoxia during 2-h occlusion of the middle cerebral artery, followed by 48-h reperfusion. NAC or vehicle was intraperitoneally administered to rats immediately before reperfusion onset. NAC and NBO treatments produced 1.2 and 30 % reduction of infarction volume, respectively, and combination treatment showed greater reduction (59.8 %) as well as more decrease of hemispheric swelling volume. Of note, combination therapy showed improved neurological assessment and motor function which were sustained for 7 days after reperfusion. We also determined that the combination therapy showed greater inhibitory effects on tight junction protein degradation accompanied by Evan's blue extravasation, hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) induction, and poly ADP-ribose polymerase (PARP)-1 activation in ischemic brain tissue. Our results showed that although post-ischemia NAC administration had limited protection, combination treatment of NAC plus NBO effectively prevented blood-brain barrier (BBB) damage and significantly improved the outcome of brain injury, providing new evidence to support the concept that "cocktail" treatment targeting different stages provides better neuro- and vaso-protection than current individual treatment that has all failed in their clinical trials.

  15. Peripheral Serotonin Regulates Maternal Calcium Trafficking in Mammary Epithelial Cells during Lactation in Mice

    PubMed Central

    Laporta, Jimena; Keil, Kimberly P.; Vezina, Chad M.; Hernandez, Laura L.

    2014-01-01

    Lactation is characterized by massive transcellular flux of calcium, from the basolateral side of the mammary alveolar epithelium (blood) into the ductal lumen (milk). Regulation of calcium transport during lactation is critical for maternal and neonatal health. The monoamine serotonin (5-HT) is synthesized by the mammary gland and functions as a homeostatic regulation of lactation. Genetic ablation of tryptophan hydroxylase 1 (Tph1), which encodes the rate-limiting enzyme in non-neuronal serotonin synthesis, causes a deficiency in circulating serotonin. As a consequence maternal calcium concentrations decrease, mammary epithelial cell morphology is altered, and cell proliferation is decreased during lactation. Here we demonstrate that serotonin deficiency decreases the expression and disrupts the normal localization of calcium transporters located in the apical (PMCA2) and basolateral (CaSR, ORAI-1) membranes of the lactating mammary gland. In addition, serotonin deficiency decreases the mRNA expression of calcium transporters located in intracellular compartments (SERCA2, SPCA1 and 2). Mammary expression of serotonin receptor isoform 2b and its downstream pathways (PLCβ3, PKC and MAP-ERK1/2) are also decreased by serotonin deficiency, which might explain the numerous phenotypic alterations described above. In most cases, addition of exogenous 5-hydroxy-L-tryptophan to the Tph1 deficient mice rescued the phenotype. Our data supports the hypothesis that serotonin is necessary for proper mammary gland structure and function, to regulate blood and mammary epithelial cell transport of calcium during lactation. These findings can be applicable to the treatment of lactation-induced hypocalcemia in dairy cows and can have profound implications in humans, given the wide-spread use of selective serotonin reuptake inhibitors as antidepressants during pregnancy and lactation. PMID:25299122

  16. [Bone loss in lactating women and post-pregnancy osteoporosis].

    PubMed

    Hirata, Go; Chaki, Osamu

    2011-09-01

    Measurement of the bone mineral density have shown that lactating women had 1 to 3% decrease in bone mineral density. Post pregnancy osteoporosis is rare condition that causes fragile fracture mostly in vertebrae. The bone loss in lactating women is caused by calcium loss, decrease in estrogen level, and increase in PTHrP (parathyroid hormone related protein) level. Some data have shown that extended lactation and amenorrhea had an association with the degree of bone loss. Mostly, the bone loss of the lactating women recovers to the baseline level, soon after the weaning, and there is no long term effect. Post pregnancy osteoporosis should be concerned, when we see a lactating woman with fragile fracture of the vertebrae.

  17. Oxidative Hemolysis of Erythrocytes

    ERIC Educational Resources Information Center

    Wlodek, Lidia; Kusior, Dorota

    2006-01-01

    This exercise for students will allow them to simultaneously observe lipid peroxidation and consequent hemolysis of rat erythrocytes and the effect of sodium azide, a catalase inhibitor, on these processes. It will also demonstrate a protective action of antioxidants, the therapeutically used N-acetylcysteine and albumins present in plasma.

  18. The promise of N-acetylcysteine in neuropsychiatry.

    PubMed

    Berk, Michael; Malhi, Gin S; Gray, Laura J; Dean, Olivia M

    2013-03-01

    N-Acetylcysteine (NAC) targets a diverse array of factors germane to the pathophysiology of multiple neuropsychiatric disorders including glutamatergic transmission, the antioxidant glutathione, neurotrophins, apoptosis, mitochondrial function, and inflammatory pathways. This review summarises the areas where the mechanisms of action of NAC overlap with known pathophysiological elements, and offers a précis of current literature regarding the use of NAC in disorders including cocaine, cannabis, and smoking addictions, Alzheimer's and Parkinson's diseases, autism, compulsive and grooming disorders, schizophrenia, depression, and bipolar disorder. There are positive trials of NAC in all these disorders, and although many of these require replication and are methodologically preliminary, this makes it one of the most promising drug candidates in neuropsychiatric disorders. The efficacy pattern of NAC interestingly shows little respect for the current diagnostic systems. Its benign tolerability profile, its action on multiple operative pathways, and the emergence of positive trial data make it an important target to investigate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. N-acetylcysteine for major depressive episodes in bipolar disorder.

    PubMed

    Magalhães, Pedro V; Dean, Olívia M; Bush, Ashley I; Copolov, David L; Malhi, Gin S; Kohlmann, Kristy; Jeavons, Susan; Schapkaitz, Ian; Anderson-Hunt, Murray; Berk, Michael

    2011-12-01

    In this report, we aimed to evaluate the effect of add-on N-acetylcysteine (NAC) on depressive symptoms and functional outcomes in bipolar disorder. To that end, we conducted a secondary analysis of all patients meeting full criteria for a depressive episode in a placebo controlled trial of adjunctive NAC for bipolar disorder. Twenty-four week randomised clinical trial comparing adjunctive NAC and placebo in individuals with bipolar disorder experiencing major depressive episodes. Symptomatic and functional outcome data were collected over the study period. Seventeen participants were available for this report. Very large effect sizes in favor of NAC were found for depressive symptoms and functional outcomes at endpoint. Eight of the ten participants on NAC had a treatment response at endpoint; the same was true for only one of the seven participants allocated to placebo. These results indicate that adjunctive NAC may be useful for major depressive episodes in bipolar disorder. Further studies designed to confirm this hypothesis are necessary.

  20. [Effectiveness of N-acetylcysteine in the treatment of schizophrenia].

    PubMed

    Miyake, Nobumi; Miyamoto, Seiya

    2016-04-01

    Oxidative stress and neuroinflammation have recently been focused on the pathological hypotheses of schizophrenia. N-acetylcysteine (NAC) is a precursor of endogenous antioxidant glutathione and has antioxidant, anti-inflammatory, and neuroprotective properties. NAC is widely available as an over-the-counter nutritional supplement. Increasing lines of evidence suggest that NAC is effective for various mental disorders. In randomized controlled trials, treatment with NAC as an add-on to antipsychotics showed beneficial effects and safety profiles in patients with chronic schizophrenia. The results of a recent preclinical study using a neurodevelopmental model of schizophrenia suggest that NAC may have promising effects in an early stage of schizophrenia and an at-risk mental state. However, there is little clinical evidence for the efficacy and safety of NAC at these stages of schizophrenia. In this review, we summarize the evidence regarding the effectiveness of NAC for the treatment of schizophrenia and its prodromal stage. We also introduce the preliminary results of our research on NAC.

  1. Comparative behavioral toxicity of four sulfhydryl radioprotective compounds in mice: Wr2721, cysteamine, diethyldithiocarbamate, and n-acetylcysteine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landauer, M.R.; Davis, H.D.; Dominitz, J.A.

    1988-01-01

    A number of sulfhydryl compounds have been shown to protect against ionizing radiation. One of the most effective radioprotectors is S-2(3-aminopropylamino)ethylphosphorothioic acid, also known aas ethiofos, gammaphos, or WR-2721 (Davidson, 1980; Giambarresi and Jacobs, 1987). This drug is currently under clinical investigation for its potential in protecting normal tissue during radiation treatment and chemotherapy (Blumberg et al., 1982; Glover et al., 1988; Yuhas et al., 1980). B-Mercaptoethylamine (MEA, cysteamine) was for years the standard against which the effectiveness of other radioprotectors was judged, but is more toxic than WR-2721 (Giambarresi and Jacobs, 1987). Diethyldithiocarbamate (DDC) and N-acetylcysteine (NAC) are othermore » compounds shown to have radioprotective properties (Milas et al., 1988; Weiss et al., 1984). Studies in a variety of animal species have shown significant behavioral toxicity after administration of WR-2721 (Bogo et al., 1985; Bogo, 1988; Landauer et al., 1987b, 1988).« less

  2. Protective effects of N-acetylcysteine against monosodium glutamate-induced astrocytic cell death.

    PubMed

    Park, Euteum; Yu, Kyoung Hwan; Kim, Do Kyung; Kim, Seung; Sapkota, Kumar; Kim, Sung-Jun; Kim, Chun Sung; Chun, Hong Sung

    2014-05-01

    Monosodium glutamate (MSG) is a flavor enhancer, largely used in the food industry and it was reported to have excitotoxic effects. Higher amounts of MSG consumption have been related with increased risk of many diseases, including Chinese restaurant syndrome and metabolic syndromes in human. This study investigated the protective effects of N-acetylcysteine (NAC) on MSG-induced cytotoxicity in C6 astrocytic cells. MSG (20 mM)-induced reactive oxygen species (ROS) generation and apoptotic cell death were significantly attenuated by NAC (500 μM) pretreatment. NAC effectively inhibited the MSG-induced mitochondrial membrane potential (MMP) loss and intracellular reduced glutathione (GSH) depletion. In addition, NAC significantly attenuated MSG-induced endoplasmic reticulum (ER) stress markers, such as XBP1 splicing and CHOP, PERK, and GRP78 up-regulation. Furthermore, NAC prevented the changes of MSG-induced Bcl-2 expression level. These results suggest that NAC can protect C6 astrocytic cells against MSG-induced oxidative stress, mitochondrial dysfunction, and ER stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. N-acetylcysteine – passe-partout or much ado about nothing?

    PubMed Central

    Aitio, Mirja-Liisa

    2006-01-01

    In experimental studies, the old mucolytic agent N-acetylcysteine (NAC) has had beneficial effects in disorders supposedly linked to oxidative stress. Numerous, mainly small clinical trials with variable doses have yielded inconsistent results in a wide variety of diseases. NAC added to the conventional therapy of human immunodeficiency virus infection might be of benefit; in respect of chronic obstructive pulmonary disease, systematic reviews and meta-analyses suggested that prolonged treatment with NAC is efficacious, but a recent multicentre study has questioned this. In a large intervention trial on cancer recurrence, NAC was ineffective. NAC infusions have been widely used in acute hepatic failure but convincing evidence of its benefits is lacking. A preliminary study reported that NAC is effective in preventing radiocontrast-induced nephropathy but thereafter highly mixed results have been published, and even meta-analyses disagree on its efficacy. In intensive care NAC has mostly been a disappointment but recently it has ‘given promises’ in surgery with cardiopulmonary bypass. NAC therapy is routine only in paracetamol intoxication. PMID:16390346

  4. Increased leukocyte adhesion to vascular endothelium in preeclampsia is inhibited by antioxidants.

    PubMed

    Ryu, Seongho; Huppmann, Alison R; Sambangi, Nirmala; Takacs, Peter; Kauma, Scott W

    2007-04-01

    To test the hypothesis that plasma from women with preeclampsia increases leukocyte adhesion to vascular endothelial cells and that antioxidants inhibit this effect. Plasma from 12 women with severe preeclampsia and 12 with normal pregnancy was tested in an in vitro leukocyte-endothelium adhesion assay in the presence or absence of vitamin E, vitamin C, or N-acetylcysteine. Preeclamptic plasma significantly increased monocyte (U937 cells) and T-cell (Jurkat) adhesion to human umbilical vein (HUVEC) and microvascular endothelial cells, compared with normal pregnant plasma. The antioxidants vitamin E, vitamin C, and N-acetylcysteine significantly inhibited monocyte adhesion to HUVEC in the presence of preeclamptic but not normal pregnant plasma. Increased adhesion in response to preeclamptic plasma was not mediated through a protein kinase C (PKC) mechanism, because the PKC inhibitor bisindolylmaleimide I had no effect on adhesion in the presence of preeclamptic plasma. Severe preeclampsia is associated with increased leukocyte-endothelium adhesion and clinically useful antioxidants can inhibit this effect.

  5. Exercise and recovery metabolism in the Pacific spiny dogfish (Squalus acanthias).

    PubMed

    Richards, J G; Heigenhauser, G J F; Wood, C M

    2003-08-01

    We examined the effects of exhaustive exercise and post-exercise recovery on white muscle substrate depletion and metabolite distribution between white muscle and blood plasma in the Pacific spiny dogfish, both in vivo and in an electrically stimulated perfused tail-trunk preparation. Measurements of arterial-venous lactate, total ammonia, beta-hydroxybutyrate, glucose, and L-alanine concentrations in the perfused tail-trunk assessed white muscle metabolite fluxes. Exhaustive exercise was fuelled primarily by creatine phosphate hydrolysis and glycolysis as indicated by 62, 71, and 85% decreases in ATP, creatine phosphate, and glycogen, respectively. White muscle lactate production during exercise caused a sustained increase (approximately 12 h post-exercise) in plasma lactate load and a short-lived increase (approximately 4 h post-exercise) in plasma metabolic acid load during recovery. Exhaustive exercise and recovery did not affect arterial PO2, PCO2, or PNH3 but the metabolic acidosis caused a decrease in arterial HCO3- immediately after exercise and during the first 8 h recovery. During recovery, lactate was retained in the white muscle at higher concentrations than in the plasma despite increased lactate efflux from the muscle. Pyruvate dehydrogenase activity was very low in dogfish white muscle at rest and during recovery (0.53 +/- 0.15 nmol g wet tissue(-1) min(-1); n=40) indicating that lactate oxidation is not the major fate of lactate during post-exercise recovery. The lack of change in white muscle free-carnitine and variable changes in short-chain fatty acyl-carnitine suggest that dogfish white muscle does not rely on lipid oxidation to fuel exhaustive exercise or recovery. These findings support the notion that extrahepatic tissues cannot utilize fatty acids as an oxidative fuel. Furthermore, our data strongly suggest that ketone body oxidation is important in fuelling recovery metabolism in dogfish white muscle and at least 20% of the ATP required for recovery could be supplied by uptake and oxidation of beta-hydroxybutyrate from the plasma.

  6. Adverse reactions associated with acetylcysteine.

    PubMed

    Sandilands, E A; Bateman, D N

    2009-02-01

    Paracetamol (acetaminophen) is one of the most common agents deliberately ingested in self-poisoning episodes and a leading cause of acute liver failure in the western world. Acetylcysteine is widely acknowledged as the antidote of choice for paracetamol poisoning, but its use is not without risk. Adverse reactions, often leading to treatment delay, are frequently associated with both intravenous and oral acetylcysteine and are a common source of concern among treating physicians. A systematic literature review investigating the incidence, clinical features, and mechanisms of adverse effects associated with acetylcysteine. A variety of adverse reactions to acetylcysteine have been described ranging from nausea to death, most of the latter due to incorrect dosing. The pattern of reactions differs with oral and intravenous dosing, but reported frequency is at least as high with oral as intravenous. The reactions to the intravenous preparation result in similar clinical features to true anaphylaxis, including rash, pruritus, angioedema, bronchospasm, and rarely hypotension, but are caused by nonimmunological mechanisms. The precise nature of this reaction remains unclear. Histamine now seems to be an important mediator of the response, and there is evidence of variability in patient susceptibility, with females, and those with a history of asthma or atopy are particularly susceptible. Quantity of paracetamol ingestion, measured through serum paracetamol concentration, is also important as higher paracetamol concentrations protect patients against anaphylactoid effects. Most anaphylactoid reactions occur at the start of acetylcysteine treatment when concentrations are highest. Acetylcysteine also affects clotting factor activity, and this affects the interpretation of minor disturbances in the International Normalized Ratio in the context of paracetamol overdose. This review discusses the incidence, clinical features, underlying pathophysiological mechanisms, and treatment of adverse reactions to acetylcysteine and identifies particular "at-risk" patient groups. Given the commonality of adverse reactions associated with acetylcysteine, it is important to ensure that any adverse event does not preclude patients from receiving maximal hepatic protection, particularly in the context of significant paracetamol ingestion. Further work on mechanisms should allow specific therapies to be developed.

  7. Mechanisms for an effect of acetylcysteine on renal function after exposure to radio-graphic contrast material: study protocol.

    PubMed

    Sandilands, Euan A; Cameron, Sharon; Paterson, Frances; Donaldson, Sam; Briody, Lesley; Crowe, Jane; Donnelly, Julie; Thompson, Adrian; Johnston, Neil R; Mackenzie, Ivor; Uren, Neal; Goddard, Jane; Webb, David J; Megson, Ian L; Bateman, Nicholas; Eddleston, Michael

    2012-02-03

    Contrast-induced nephropathy is a common complication of contrast administration in patients with chronic kidney disease and diabetes. Its pathophysiology is not well understood; similarly the role of intravenous or oral acetylcysteine is unclear. Randomized controlled trials to date have been conducted without detailed knowledge of the effect of acetylcysteine on renal function. We are conducting a detailed mechanistic study of acetylcysteine on normal and impaired kidneys, both with and without contrast. This information would guide the choice of dose, route, and appropriate outcome measure for future clinical trials in patients with chronic kidney disease. We designed a 4-part study. We have set up randomised controlled cross-over studies to assess the effect of intravenous (50 mg/kg/hr for 2 hrs before contrast exposure, then 20 mg/kg/hr for 5 hrs) or oral acetylcysteine (1200 mg twice daily for 2 days, starting the day before contrast exposure) on renal function in normal and diseased kidneys, and normal kidneys exposed to contrast. We have also set up a parallel-group randomized controlled trial to assess the effect of intravenous or oral acetylcysteine on patients with chronic kidney disease stage III undergoing elective coronary angiography. The primary outcome is change in renal blood flow; secondary outcomes include change in glomerular filtration rate, tubular function, urinary proteins, and oxidative balance. Contrast-induced nephropathy represents a significant source of hospital morbidity and mortality. Over the last ten years, acetylcysteine has been administered prior to contrast to reduce the risk of contrast-induced nephropathy. Randomized controlled trials, however, have not reliably demonstrated renoprotection; a recent large randomized controlled trial assessing a dose of oral acetylcysteine selected without mechanistic insight did not reduce the incidence of contrast-induced nephropathy. Our study should reveal the mechanism of effect of acetylcysteine on renal function and identify an appropriate route for future dose response studies and in time randomized controlled trials. Clinical Trials.gov: NCT00558142; EudraCT: 2006-003509-18.

  8. Mammary-Specific Ablation of the Calcium-Sensing Receptor During Lactation Alters Maternal Calcium Metabolism, Milk Calcium Transport, and Neonatal Calcium Accrual

    PubMed Central

    Mamillapalli, Ramanaiah; VanHouten, Joshua; Dann, Pamela; Bikle, Daniel; Chang, Wenhan; Brown, Edward

    2013-01-01

    To meet the demands for milk calcium, the lactating mother adjusts systemic calcium and bone metabolism by increasing dietary calcium intake, increasing bone resorption, and reducing renal calcium excretion. As part of this adaptation, the lactating mammary gland secretes PTHrP into the maternal circulation to increase bone turnover and mobilize skeletal calcium stores. Previous data have suggested that, during lactation, the breast relies on the calcium-sensing receptor (CaSR) to coordinate PTHrP secretion and milk calcium transport with calcium availability. To test this idea genetically, we bred BLG-Cre mice with CaSR-floxed mice to ablate the CaSR specifically from mammary epithelial cells only at the onset of lactation (CaSR-cKO mice). Loss of the CaSR in the lactating mammary gland did not disrupt alveolar differentiation or milk production. However, it did increase the secretion of PTHrP into milk and decreased the transport of calcium from the circulation into milk. CaSR-cKO mice did not show accelerated bone resorption, but they did have a decrease in bone formation. Loss of the mammary gland CaSR resulted in hypercalcemia, decreased PTH secretion, and increased renal calcium excretion in lactating mothers. Finally, loss of the mammary gland CaSR resulted in decreased calcium accrual by suckling neonates, likely due to the combination of increased milk PTHrP and decreased milk calcium. These results demonstrate that the mammary gland CaSR coordinates maternal bone and calcium metabolism, calcium transport into milk, and neonatal calcium accrual during lactation. PMID:23782944

  9. Improvement of cognitive function in schizophrenia with N-acetylcysteine: A theoretical review.

    PubMed

    Yolland, Caitlin O B; Phillipou, Andrea; Castle, David J; Neill, Erica; Hughes, Matthew E; Galletly, Cherrie; Smith, Zoe M; Francis, Paul S; Dean, Olivia M; Sarris, Jerome; Siskind, Dan; Harris, Anthony W F; Rossell, Susan L

    2018-05-30

    Schizophrenia is a debilitating psychiatric illness associated with positive and negative symptoms as well as significant impairments in cognition. Current antipsychotic medications do not alleviate these cognitive deficits, and more effective therapeutic options are required. Increased oxidative stress and altered antioxidant levels, including glutathione (GSH) have been observed both in individuals with cognitive impairment and in people with schizophrenia. A GSH precursor, the antioxidant N-acetylcysteine (NAC) has been investigated as a novel treatment for the cognitive symptoms of schizophrenia, and recent research suggests that NAC may be a promising adjunctive treatment option. However, the current literature lacks integration as to why NAC may effectively improve cognition in schizophrenia. The present theoretical synthesis aimed to address this gap by examining the processes by which NAC may improve cognitive function in schizophrenia. The schizophrenia literature was reviewed in three key domains: cognitive impairment, the relationship between oxidative stress and cognition, and the efficacy of NAC as a novel treatment. This led to a theoretical analysis of the neurobiological processes by which NAC may improve cognition in schizophrenia. This theoretical review concluded that improved cognition may result from a combination of factors, including decreased oxidative stress, neuroprotection of cognitive networks and an increase in glutamatergic modulation of the N-methyl-d-aspartate receptor system. Whilst a number of mechanisms by which NAC may improve cognition and symptoms in schizophrenia have been proposed, there is still limited understanding of the specific metabolic pathways involved and how they interrelate and modify specific symptomology. Exploration of how NAC treatment may act to improve cognitive function could guide clinical trials by investigation of the specific neurotransmitter systems and processes involved, allowing for targeted neurological outcome measures. Future research would benefit from the investigation of both in vivo cortical GSH concentration and peripheral plasma GSH in a population of individuals with chronic schizophrenia.

  10. Glucose and lactate are equally effective in energizing activity-dependent synaptic vesicle turnover in purified cortical neurons.

    PubMed

    Morgenthaler, F D; Kraftsik, R; Catsicas, S; Magistretti, P J; Chatton, J-Y

    2006-08-11

    This study examines the role of glucose and lactate as energy substrates to sustain synaptic vesicle cycling. Synaptic vesicle turnover was assessed in a quantitative manner by fluorescence microscopy in primary cultures of mouse cortical neurons. An electrode-equipped perfusion chamber was used to stimulate cells both by electrical field and potassium depolarization during image acquisition. An image analysis procedure was elaborated to select in an unbiased manner synaptic boutons loaded with the fluorescent dye N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide (FM1-43). Whereas a minority of the sites fully released their dye content following electrical stimulation, others needed subsequent K(+) depolarization to achieve full release. This functional heterogeneity was not significantly altered by the nature of metabolic substrates. Repetitive stimulation sequences of FM1-43 uptake and release were then performed in the absence of any metabolic substrate and showed that the number of active sites dramatically decreased after the first cycle of loading/unloading. The presence of 1 mM glucose or lactate was sufficient to sustain synaptic vesicle cycling under these conditions. Moreover, both substrates were equivalent for recovery of function after a phase of decreased metabolic substrate availability. Thus, lactate appears to be equivalent to glucose for sustaining synaptic vesicle turnover in cultured cortical neurons during activity.

  11. Synthesis of the 3-sulfates of N-acetylcysteine conjugated bile acids (BA-NACs) and their transient formation from BA-NACs and subsequent hydrolysis by a rat liver cytosolic fraction as shown by liquid chromatography/electrospray ionization-mass spectrometry.

    PubMed

    Mitamura, Kuniko; Sakai, Toshihiro; Nakai, Risa; Wakamiya, Tateaki; Iida, Takashi; Hofmann, Alan F; Ikegawa, Shigeo

    2011-06-01

    Previous work from this laboratory has reported the chemical synthesis of N-acetylcysteine (NAC) conjugates of natural bile acids (BAs) and shown that such novel conjugates can be formed in vivo in rats to which NAC has been administered. The subsequent fate of such novel conjugates is not known. One possible biotransformation is sulfation, a major pathway for BAs N-acylamidates in patients with cholestatic liver disease. Here, we report the chemical synthesis of the 3-sulfates of the S-acyl NAC conjugates of five natural BAs (cholic, chenodeoxycholic, deoxycholic, ursodeoxycholic, and lithocholic). We also measured the sulfation of N-acetylcysteine-natural bile acid (BA-NAC) conjugates when they were incubated with a rat liver cytosolic fraction. The chemical structures of the BA-NAC 3-sulfates were confirmed by proton nuclear magnetic resonance, as well as by means of electrospray ionization-linear ion trap mass spectrometry with negative-ion detection. Upon collision-induced dissociation of singly and doubly charged deprotonated molecules, structurally informative product ions were observed. Using a triple-stage quadrupole instrument, selected reaction monitoring analyses by monitoring characteristic transition ions allowed the achievement of a highly sensitive and specific assay. When BA-NACs were incubated with a rat liver cytosolic fraction to which 3'-phosphoadenosine 5'-phosphosulfate was added, sulfation occurred, but the dominant reaction was hydrolysis of the S-acyl linkage to form the unconjugated BAs. Subsequent sulfation occurred at C-3 on the unconjugated BAs that had been formed from the BA-NACs. Such sulfation was proportional to the hydrophobicity of the unconjugated bile acid. Thus, NAC conjugates of BAs as well as their C-3 sulfates if formed in vivo are rapidly hydrolyzed by cytosolic enzymes.

  12. Effect of antioxidants on histamine receptor activation and sustained postexercise vasodilatation in humans.

    PubMed

    Romero, Steven A; Ely, Matthew R; Sieck, Dylan C; Luttrell, Meredith J; Buck, Tahisha M; Kono, Jordan M; Branscum, Adam J; Halliwill, John R

    2015-04-01

    What is the central question of this study? Is exercise-induced oxidative stress the upstream exercise-related signalling mechanism that leads to sustained postexercise vasodilatation via activation of H1 and H2 histamine receptors? What is the main finding and its importance? Systemic administration of the antioxidant ascorbate inhibits sustained postexercise vasodilatation to the same extent as seen previously with H1 and H2 histamine receptor blockade following small muscle-mass exercise. However, ascorbate has a unique ability to catalyse the degradation of histamine. We also found that systemic infusion of the antioxidant N-acetylcysteine had no effect on sustained postexercise vasodilatation, suggesting that exercise-induced oxidative stress does not contribute to sustained postexercise vasodilatation. An acute bout of aerobic exercise elicits a sustained postexercise vasodilatation that is mediated by histamine H1 and H2 receptor activation. However, the upstream signalling pathway that leads to postexercise histamine receptor activation is unknown. We tested the hypothesis that the potent antioxidant ascorbate would inhibit this histaminergic vasodilatation following exercise. Subjects performed 1 h of unilateral dynamic knee extension at 60% of peak power in three conditions: (i) control; (ii) i.v. ascorbate infusion; and (iii) ascorbate infusion plus oral H1 /H2 histamine receptor blockade. Femoral artery blood flow was measured (using Doppler ultrasound) before exercise and for 2 h postexercise. Femoral vascular conductance was calculated as flow/pressure. Postexercise vascular conductance was greater for control conditions (3.4 ± 0.1 ml min(-1) mmHg(-1) ) compared with ascorbate (2.7 ± 0.1 ml min(-1) mmHg(-1) ; P < 0.05) and ascorbate plus H1 /H2 blockade (2.8 ± 0.1 ml min(-1) mmHg(-1) ; P < 0.05), which did not differ from one another (P = 0.9). Given that ascorbate may catalyse the degradation of histamine in vivo, we conducted a follow-up study, in which subjects performed exercise in two conditions: (i) control; and (ii) i.v. N-acetylcysteine infusion. Postexercise vascular conductance was similar for control (4.0 ± 0.1 ml min(-1) mmHg(-1) ) and N-acetylcysteine conditions (4.0 ± 0.1 ml min(-1) mmHg(-1) ; P = 0.8). Thus, the results in the initial study were due to the degradation of histamine in skeletal muscle by ascorbate, because the histaminergic vasodilatation was unaffected by N-acetylcysteine. Overall, exercise-induced oxidative stress does not appear to contribute to sustained postexercise vasodilatation. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  13. Effects of dietary PCB exposure on reproduction in the white-footed mouse (Peromyscus leucopus)

    USGS Publications Warehouse

    Voltura, M.B.; French, J.B.

    2007-01-01

    Studies of the impact of environmental contaminants on reproduction have typically focused on effects on fertility and subsequent reproductive failure. Contaminants may also impact reproductive output or other aspects of life history through effects on resource acquisition or allocation. We fed successfully breeding female white-footed mice (Peromyscus leucopus) diets containing polychlorinated biphenyls (2:1 Aroclor 1242:1254) at levels of 0 (n = 10), 10 (n = 12), and 25 (n = 10) ppm (mg polychlorinated biphenyls [PCBs]/kg food). After 4 months on the diets, female mice were bred with male mice maintained on control food. There was no effect of PCB exposure on litter size at birth or weaning, although fewer female mice on the 25-ppm diet gave birth. There was no effect of PCB dose on maternal metabolic rate at peak lactation or on total food (dry matter) intake during lactation. Female mice on the 10-ppm diet, however, consumed more food per pup during lactation and weaned larger pups, although these differences disappeared after 4 weeks of age. We conclude that although moderate-term exposure to PCBs did decrease the number of litters produced for high-dose female mice, it did not change litter size, pup growth rate, or energetic measures for those female mice that did successfully reproduce.

  14. Lactation induces increases in the RANK/RANKL/OPG system in maxillary bone.

    PubMed

    Macari, Soraia; Sharma, Lavanya A; Wyatt, Amanda; da Silva, Janine Maíra; Dias, George J; Silva, Tarcília A; Szawka, Raphael E; Grattan, David R

    2018-05-01

    The underlying causes of maxillary bone loss during lactation remain poorly understood. We evaluated the impact of lactation on physiological and mechanically-induced alveolar bone remodeling. Nulliparous non-lactating (N-LAC) and 21-day lactating (LAC) mice underwent mechanically-induced bone remodeling by orthodontic tooth movement (OTM). Micro-computed tomography (microCT) was performed in the maxilla, femur and vertebra. Tartrate-resistant-acid phosphatase (TRAP) and Masson's trichrome labelling was performed in the maxillary bone and gene expression was determined in the periodontal ligament. The effect of prolactin on osteoclast (OCL) and osteoblast (OBL) differentiation was also investigated in N-LAC and LAC mice. Lactation increased alveolar bone loss in the maxilla, femur and vertebra, while OTM was enhanced. The number of OCL and OBL was higher in the maxilla of LAC mice. OTM increased OCL in both groups; while OBL was increased only in N-LAC but not in LAC mice, in which cell numbers were already elevated. The alveolar bone loss during lactation was associated with increased expression of receptor activator of nuclear factor-KappaB (RANK), RANK ligand (RANKL), and osteoprotegerin (OPG) in the maxilla. OTM induced the same responses in N-LAC mice, whereas it had no further effect in LAC mice. Lactation enhanced differentiation of OCL and OBL from bone marrow cells, and prolactin recapitulated OCL differentiation in N-LAC mice. Thus, lactation increases physiological maxillary bone remodeling and OTM, and both require activation of RANK/RANKL/OPG system. These findings expand our knowledge of lactation-induced osteopenia and have possible impact on clinical practice regarding orthodontic treatments and dental implants in lactating women. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Formulation of a medical food cocktail for Alzheimer's disease: beneficial effects on cognition and neuropathology in a mouse model of the disease.

    PubMed

    Parachikova, Anna; Green, Kim N; Hendrix, Curt; LaFerla, Frank M

    2010-11-17

    Dietary supplements have been extensively studied for their beneficial effects on cognition and AD neuropathology. The current study examines the effect of a medical food cocktail consisting of the dietary supplements curcumin, piperine, epigallocatechin gallate, α-lipoic acid, N-acetylcysteine, B vitamins, vitamin C, and folate on cognitive functioning and the AD hallmark features and amyloid-beta (Aβ) in the Tg2576 mouse model of the disease. The study found that administering the medical food cocktail for 6 months improved cortical- and hippocampal- dependent learning in the transgenic mice, rendering their performance indistinguishable from non-transgenic controls. Coinciding with this improvement in learning and memory, we found that treatment resulted in decreased soluble Aβ, including Aβ oligomers, previously found to be linked to cognitive functioning. In conclusion, the current study demonstrates that combination diet consisting of natural dietary supplements improves cognitive functioning while decreasing AD neuropathology and may thus represent a safe, natural treatment for AD.

  16. Alcohol consumption decreases lactate clearance in acutely injured patients☆

    PubMed Central

    Dezman, Zachary D.W.; Comer, Angela C.; Narayan, Mayur; Scalea, Thomas M.; Hirshon, Jon Mark; Smith, Gordon S.

    2017-01-01

    Introduction Alcohol, a common risk factor for injury, has direct toxic effects on the liver. The use of lactate clearance has been well described as an indicator of the adequacy of resuscitation in injured patients. We investigated whether acutely injured patients with positive blood alcohol content (+BAC) had less lactate clearance than sober patients. Methods We conducted a retrospective cohort study of acutely injured patients treated at an urban Level 1 trauma centre between January 2010 and December 2012. Blood alcohol and venous lactate levels were measured on all patients at the time of arrival. Study subjects were patients transported directly from the scene of injury, who had an elevated lactate concentration on arrival (≥3.0 mmol/L) and at least one subsequent lactate measurement within 24 h after admission. Lactate clearance ([Lactate1 − Lactate2]/Lactate1) was calculated for all patients. Chi-squared tests were used to compare values from sober and intoxicated subjects. Lactate clearance was plotted against alcohol levels and stratified by age and Injury Severity Score (ISS). Results Serial lactate concentration measurements were obtained in 3910 patients; 1674 of them had +BAC. Patients with +BAC were younger (mean age: 36.6 [SD 14.7] vs 41.0 [SD 19.9] years [p = 0.0001]), were more often male (83.4% vs 75.9% [p = 0.0001]), had more minor injuries (ISS < 9) (33.8% vs 27.1% [p = 0.0001]), had a lower in-hospital mortality rate (1.4% vs 3.9% [p = 0.0001]), but also had lower average lactate clearance (37.8% vs 47.6% [p = 0.0001]). The lactate clearance of the sober patients (47.6 [SD 33.5]) was twice that of those with +BAC >400 (23.5 [SD 6.5]). Lactate clearance decreased with increasing BAC irrespective of age and ISS. Conclusions In a large group of acutely injured patients, a dose-dependent decrease in lactate clearance was seen in those with elevated BAC. This relationship will cause a falsely elevated lactate reading or prolong lactate clearance and should be taken into account when evaluating patients with +BAC. PMID:27025567

  17. Evaluation of initial plasma lactate values as a predictor of gastric necrosis and initial and subsequent plasma lactate values as a predictor of survival in dogs with gastric dilatation-volvulus: 84 dogs (2003-2007).

    PubMed

    Green, Tiffany I; Tonozzi, Caroline C; Kirby, Rebecca; Rudloff, Elke

    2011-02-01

    To test whether an initial plasma lactate ≥ 6.0 mmol/L is associated with the presence of macroscopic gastric wall necrosis and overall survival in dogs presenting with gastric dilatation-volvulus (GDV). Additionally, if no association was identified we sought to identify a different predictive initial plasma lactate concentration and to examine whether serial plasma lactate concentrations provide better prediction of survival. Retrospective study over a 5-year period (2003-2007). Urban private referral small animal teaching hospital. Eighty-four client-owned dogs with a diagnosis of GDV and plasma lactate measurements. None. There was no statistically significant relationship found between survival and the presence of macroscopic gastric wall necrosis with the initial plasma lactate ≥ 6 mmol/L. There was a significant relationship between the initial plasma lactate >2.9 mmol/L for predicting necrosis and <4.1 mmol/L for predicting survival to discharge. Forty dogs that had an increased initial plasma lactate (>2.5 mmol/L) also had a subsequent plasma lactate measured within 12 hours of presentation, with 37/40 dogs surviving and 70% of these surviving dogs having the subsequent lactate decrease by ≥ 50% within 12 hours. The 3/40 that died failed to decrease their plasma lactate by ≥ 50% from the initial blood lactate. The results of this study indicate that an initial presenting plasma lactate concentration ≥ 6.0 mmol/L is not predictive of macroscopic gastric wall necrosis or survival in dogs presenting with GDV. A decrease in plasma lactate concentrations ≥ 50% within 12 hours may be a good indicator for survival. Limitations to the study include its retrospective nature, the small number of patients, and the number of dogs that were euthanized rather than allowed to progress to a natural outcome. © Veterinary Emergency and Critical Care Society 2011.

  18. New evidence of neuroprotection by lactate after transient focal cerebral ischaemia: extended benefit after intracerebroventricular injection and efficacy of intravenous administration.

    PubMed

    Berthet, Carole; Castillo, Ximena; Magistretti, Pierre J; Hirt, Lorenz

    2012-01-01

    Lactate protects mice against the ischaemic damage resulting from transient middle cerebral artery occlusion (MCAO) when administered intracerebroventricularly at reperfusion, yielding smaller lesion sizes and a better neurological outcome 48 h after ischaemia. We have now tested whether the beneficial effect of lactate is long-lasting and if lactate can be administered intravenously. Male ICR-CD1 mice were subjected to 15-min suture MCAO under xylazine + ketamine anaesthesia. Na L-lactate (2 µl of 100 mmol/l) or vehicle was administered intracerebroventricularly at reperfusion. The neurological deficit was evaluated using a composite deficit score based on the neurological score, the rotarod test and the beam walking test. Mice were sacrificed at 14 days. In a second set of experiments, Na L-lactate (1 µmol/g body weight) was administered intravenously into the tail vein at reperfusion. The neurological deficit and the lesion volume were measured at 48 h. Intracerebroventricularly injected lactate induced sustained neuroprotection shown by smaller neurological deficits at 7 days (median = 0, min = 0, max = 3, n = 7 vs. median = 2, min = 1, max = 4.5, n = 5, p < 0.05) and 14 days after ischaemia (median = 0, min = 0, max = 3, n = 7 vs. median = 3, min = 0.5, max = 3, n = 7, p = 0.05). Reduced tissue damage was demonstrated by attenuated hemispheric atrophy at 14 days (1.3 ± 4.0 mm(3), n = 7 vs. 12.1 ± 3.8 mm(3), n = 5, p < 0.05) in lactate-treated animals. Systemic intravenous lactate administration was also neuroprotective and attenuated the deficit (median = 1, min = 0, max = 2.5, n = 12) compared to vehicle treatment (median = 1.5, min = 1, max = 8, n = 12, p < 0.05) as well as the lesion volume at 48 h (13.7 ± 12.2 mm(3), n = 12 vs. 29.6 ± 25.4 mm(3), n = 12, p < 0.05). The beneficial effect of lactate is long-lasting: lactate protects the mouse brain against ischaemic damage when supplied intracerebroventricularly during reperfusion with behavioural and histological benefits persisting 2 weeks after ischaemia. Importantly, lactate also protects after systemic intravenous administration, a more suitable route of administration in a clinical emergency setting. These findings provide further steps to bring this physiological, commonly available and inexpensive neuroprotectant closer to clinical translation for stroke. Copyright © 2012 S. Karger AG, Basel.

  19. Impairment of endothelium-dependent relaxation of rat aortas by homocysteine thiolactone and attenuation by captopril.

    PubMed

    Liu, Yu-Hui; You, Yu; Song, Tao; Wu, Shu-Jing; Liu, Li-Ying

    2007-08-01

    To explore the effects of angiotensin-converting enzyme (ACE) inhibitors on endothelial dysfunction induced by homocysteine thiolactone (HTL). Both endothelium-dependent relaxation and nondependent relaxation of thoracic aortic rings in rats induced by acetylcholine (Ach) or sodium nitroprusside (SNP) and biochemical parameters including malondialdehyde (MDA) and nitric oxide (NO) were measured in rat isolated aorta. Exposure of aortic rings to HTL (3 to 30 mM) for 90 minutes made a significant inhibition of endothelium-dependent relaxation induced by Ach, decreased contents of NO, and increased MDA concentration in aortic tissue. After incubation of aortic rings with captopril (0.003 to 0.03 mM) attenuated the inhibition of endothelium-dependent relaxation (EDR) and significantly resisted the decrease of NO content and elevation of MDA concentration caused by HTL (30 mmol/L) in aortic tissues, a similarly protective effect was observed when the aortic rings were incubated with both N-acetylcysteine (0.05 mM). Treatment with enalaprilat (0.003 to 0.01 mM) made no significant difference with the HTL (30 mM) group regarding EDR, but enalaprilat (0.03 mM) and losartan (0.03 mM) could partly restore the EDR in response to HTL (30 mM). Captopril was more effective than enalaprilat and losartan in attenuation of the inhibition of on acetylcholine-stimulated aortic relaxation by HTL in the same concentration. Moreover, superoxide dismutase (SOD, 200 U/mL), which is a scavenger of superoxide anions, apocynin (0.03 mM), which is an inhibitor of NADPH oxidase, and l-Arginine (3 mmol/L), a precursor of nitric oxide (NO), could reduce HTL (30 mM)-induced inhibition of EDR. After pretreatment with not only the NO synthase inhibitor Nomega-nitro-l-arginine methyl ester (L-NAME, 0.01 mM) but also the free sulfhydryl group blocking agent p-hydroxymercurybenzoate (PHMB, 0.05 mM) could abolish the protection of captopril and N-acetylcysteine, respectively. These results suggest that mechanisms of endothelial dysfunction induced by HTL may include the decrease of NO and the generation of oxygen free radicals and that captopril can restore the inhibition of EDR induced by HTL in isolated rat aorta, which may be related to scavenging oxygen free radicals and may be sulfhydryl-dependent.

  20. Effects of lactate and modified atmospheric packaging on premature browning in cooked ground beef patties.

    PubMed

    Mancini, R A; Ramanathan, R; Suman, S P; Konda, M K R; Joseph, P; Dady, G A; Naveena, B M; López-López, I

    2010-06-01

    Our objectives were to determine the effects of lactate and modified atmosphere packaging on raw surface color, lipid oxidation, and internal cooked color of ground beef patties. Eight chubs (85% lean) were divided in half and each half was either assigned to the control (no lactate) or mixed with 2.5% lactate (w/w). Following treatment, patties were prepared and packaged in either vacuum, PVC (atmospheric oxygen level), high-oxygen (80% O(2)+20% CO(2)), or 0.4% CO (30% CO(2)+69.6% N(2)) and stored for 0, 2, or 4days at 2 degrees C. After storage, raw surface color and lipid oxidation were measured and patties were cooked to either 66 degrees C or 71 degrees C. Lactate improved (p<0.05) color stability of PVC, high-oxygen, and vacuum packaged raw patties, but had no effect (p>0.05) on the a * values and visual color scores of patties in 0.4% CO. Lactate decreased (p<0.05) lipid oxidation in all packaging atmospheres. Nevertheless, high-oxygen and PVC-packaged patties had more (p<0.05) lipid oxidation than patties in CO and vacuum. Lactate had no effect (p>0.05) on premature browning, whereas patties packaged in high-oxygen demonstrated premature browning. Conversely, cooked patties in 0.4% CO and vacuum were more red (p<0.05) than both high-oxygen and PVC-packaged patties. Although lactate improved raw color stability, it did not minimize premature browning in cooked ground beef patties. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons.

    PubMed

    Bak, Lasse K; Schousboe, Arne; Sonnewald, Ursula; Waagepetersen, Helle S

    2006-10-01

    Glucose is the primary energy substrate for the adult mammalian brain. However, lactate produced within the brain might be able to serve this purpose in neurons. In the present study, the relative significance of glucose and lactate as substrates to maintain neurotransmitter homeostasis was investigated. Cultured cerebellar (primarily glutamatergic) neurons were superfused in medium containing [U-13C]glucose (2.5 mmol/L) and lactate (1 or 5 mmol/L) or glucose (2.5 mmol/L) and [U-13C]lactate (1 mmol/L), and exposed to pulses of N-methyl-D-aspartate (300 micromol/L), leading to synaptic activity including vesicular release. The incorporation of 13C label into intracellular lactate, alanine, succinate, glutamate, and aspartate was determined by mass spectrometry. The metabolism of [U-13C]lactate under non-depolarizing conditions was high compared with that of [U-13C]glucose; however, it decreased significantly during induced depolarization. In contrast, at both concentrations of extracellular lactate, the metabolism of [U-13C]glucose was increased during neuronal depolarization. The role of glucose and lactate as energy substrates during vesicular release as well as transporter-mediated influx and efflux of glutamate was examined using preloaded D-[3H]aspartate as a glutamate tracer and DL-threo-beta-benzyloxyaspartate to inhibit glutamate transporters. The results suggest that glucose is essential to prevent depolarization-induced reversal of the transporter (efflux), whereas vesicular release was unaffected by the choice of substrate. In conclusion, the present study shows that glucose is a necessary substrate to maintain neurotransmitter homeostasis during synaptic activity and that synaptic activity does not induce an upregulation of lactate metabolism in glutamatergic neurons.

  2. Negative effects of long-term feeding of high-grain diets to lactating goats on milk fat production and composition by regulating gene expression and DNA methylation in the mammary gland.

    PubMed

    Tian, Ping; Luo, Yanwen; Li, Xian; Tian, Jing; Tao, Shiyu; Hua, Canfeng; Geng, Yali; Ni, Yingdong; Zhao, Ruqian

    2017-01-01

    It is well known that feeding a high concentrate (HC) diet to lactating ruminants likely induces subacute ruminal acidosis (SARA) and leads to a decrease in milk fat production. However, the effects of feeding a HC diet for long periods on milk fatty acids composition and the mechanism behind the decline of milk fat still remains poorly understood. The aim of this study was to investigate the impact of feeding a HC diet to lactating dairy goats on milk fat yield and fatty acids composition with an emphasis on the mechanisms underlying the milk fat depression. Seventeen mid-lactating dairy goats were randomly allocated to three groups. The control treatment was fed a low-concentrate diet (35% concentrate, n  = 5, LC) and there were two high-concentrate treatments (65% concentrate, HC), one fed a high concentrate diet for a long period (19 wks, n  = 7, HL); one fed a high concentrate diet for a short period of time (4 wk, n  = 5, HS). Milk fat production and fatty acids profiles were measured. In order to investigate the mechanisms underlying the changes in milk fat production and composition, the gene expression involved in lipid metabolism and DNA methylation in the mammary gland were also analyzed. Milk production was increased by feeding the HC diet in the HS and HL groups compared with the LC diet ( P  < 0.01), while the percentage of milk fat was lower in the HL ( P  < 0.05) but not in the HS group. The total amount of saturated fatty acids (SFA) in the milk was not changed by feeding the HC diet, whereas the levels of unsaturated fatty acids (UFA) and monounsaturated fatty acids (MUFA) were markedly decreased in the HL group compared with the LC group ( P  < 0.05). Among these fatty acids, the concentrations of C15:0 ( P  < 0.01), C17:0 ( P  < 0.01), C17:1 ( P  < 0.01), C18:1n-9c ( P  < 0.05), C18:3n-3r ( P  < 0.01) and C20:0 ( P  < 0.01) were markedly lower in the HL group, and the concentrations of C20:0 ( P  < 0.05) and C18:3n-3r ( P  < 0.01) were lower in the HS group compared with the LC group. However, the concentrations of C18:2n-6c ( P  < 0.05) and C20:4n-6 ( P  < 0.05) in the milk fat were higher in the HS group. Real-time PCR results showed that the mRNA expression of the genes involved in milk fat production in the mammary gland was generally decreased in the HL and HS groups compared with the LC group. Among these genes, ACSL1 , ACSS1 & 2 , ACACA , FAS , SCD , FADS2, and SREBP1 were down-regulated in the mammary gland of the HL group ( P  < 0.05), and the expressions of ACSS2 , ACACA, and FADS2 mRNA were markedly decreased in the HS goats compared with the LC group ( P  < 0.05). In contrast to the gene expression, the level of DNA methylation in the promoter regions of the ACACA and SCD genes was increased in the HL group compared with the LC group ( P  < 0.05). The levels of ACSL1 protein expression and FAS enzyme activity were also decreased in the mammary gland of the HL compared with the LC group ( P  < 0.05). Long-term feeding of a HC diet to lactating goats induced milk fat depression and FAs profile shift with lower MUFAs but higher SFAs. A general down-regulation of the gene expression involved in the milk fat production and a higher DNA methylation in the mammary gland may contribute to the decrease in milk fat production in goats fed a HC diet for long time periods.

  3. Improved biocompatibility of bicarbonate/lactate-buffered PDF is not related to pH.

    PubMed

    Zareie, Mohammad; Keuning, Eelco D; ter Wee, Piet M; Schalkwijk, Casper G; Beelen, Robert H J; van den Born, Jacob

    2006-01-01

    Chronic exposure to conventional peritoneal dialysis fluid (PDF) is associated with functional and structural alterations of the peritoneal membrane. The bioincompatibility of conventional PDF can be due to hypertonicity, high glucose concentration, lactate buffering system, presence of glucose degradation products (GDPs) and/or acidic pH. Although various investigators have studied the sole effects of hyperosmolarity, high glucose, GDPs and lactate buffer in experimental PD, less attention has been paid to the chronic impact of low pH in vivo. Rats received daily 10 ml of either conventional lactate-buffered PDF (pH 5.2; n=7), a standard bicarbonate/lactate-buffered PDF with physiological pH (n=8), bicarbonate/lactate-buffered PDF with acidic pH (adjusted to pH 5.2 with 1 N hydrochloride, n=5), or bicarbonate/lactate buffer, without glucose, pH 7.4 (n=7). Fluids were instilled via peritoneal catheters connected to implanted subcutaneous mini vascular access ports for 8 weeks. Control animals with or without peritoneal catheters served as control groups (n=8/group). Various functional (2 h PET) and morphological/cellular parameters were analyzed. Compared with control groups and the buffer group, conventional lactate-buffered PDF induced a number of morphological/cellular changes, including angiogenesis and fibrosis in various peritoneal tissues (all parameters P<0.05), accompanied by increased glucose absorption and reduced ultrafiltration capacity. Daily exposure to standard or acidified bicarbonate/lactate-buffered PDF improved the performance of the peritoneal membrane, evidenced by reduced new vessel formation in omentum (P<0.02) and parietal peritoneum (P<0.008), reduced fibrosis (P<0.02) and improved ultrafiltration capacity. No significant differences were found between standard and acidified bicarbonate/lactate-buffered PDF. During PET, acidic PDF was neutralized within 15 to 20 min. The bicarbonate/lactate-buffered PDF, acidity per se did not contribute substantially to peritoneal worsening in our in vivo model for PD, which might be explained by the buffering capacity of the peritoneum.

  4. N-acetylcysteine for major mental disorders: a systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Zheng, W; Zhang, Q-E; Cai, D-B; Yang, X-H; Qiu, Y; Ungvari, G S; Ng, C H; Berk, M; Ning, Y-P; Xiang, Y-T

    2018-05-01

    This systematic review and meta-analysis of randomized controlled trials (RCTs) examined the efficacy and safety of adjunctive N-acetylcysteine (NAC), an antioxidant drug, in treating major depressive disorder (MDD), bipolar disorder, and schizophrenia. The PubMed, Cochrane Library, PsycINFO, CNKI, CBM, and WanFang databases were independently searched and screened by two researchers. Standardized mean differences (SMDs), risk ratios, and their 95% confidence intervals (CIs) were computed. Six RCTs (n = 701) of NAC for schizophrenia (three RCTs, n = 307), bipolar disorder (two RCTs, n = 125), and MDD (one RCT, n = 269) were identified and analyzed as separate groups. Adjunctive NAC significantly improved total psychopathology (SMD = -0.74, 95% CI: -1.43, -0.06; I 2 = 84%, P = 0.03) in schizophrenia, but it had no significant effect on depressive and manic symptoms as assessed by the Young Mania Rating Scale in bipolar disorder and only a small effect on major depressive symptoms. Adverse drug reactions to NAC and discontinuation rates between the NAC and control groups were similar across the three disorders. Adjunctive NAC appears to be a safe treatment that has efficacy for schizophrenia, but not for bipolar disorder or MDD. Further higher quality RCTs are warranted to determine the role of adjunctive NAC in the treatment of major psychiatric disorders. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Effects of exposure to artificial long days on milk yield, maternal insulin-like growth factor 1 levels and kid growth rate in subtropical goats.

    PubMed

    Hernández, Horacio; Flores, José Alfredo; Delgadillo, José Alberto; Fernández, Ilda G; Flores, Manuel de Jesús; Mejía, Ángel; Elizundia, José Manuel; Bedos, Marie; Ponce, José Luis; Ramírez, Sergio

    2016-04-01

    This study was designed to determine whether any relationship exists between exposure to artificial long days, milk yield, maternal plasma insulin-like growth factor 1 (IGF-1) levels, and kid growth rate in goats. One group of lactating goats was maintained under naturally decreasing day length (control group; n = 19), while in another one, they were kept under artificial long days (LD group; n = 19). Milk yield was higher in goats from the LD group than that in the control group (P < 0.05). Maternal IGF-1 levels at day 57 of lactation were higher (P < 0.05) in goats from the LD group than the levels in the control group and were positively correlated with the total milk yields per goat at days 43 and 57 of lactation (r = 0.77 and r = 0.84, respectively; P < 0.01). Daily weight gain at week 4 was higher (P < 0.01) in kids from the LD group than that in kids from the control group and was correlated with total and average IGF-1 maternal levels (r = 0.60 and r = 0.60, P < 0.05). It was concluded that submitting lactating goats to artificial long days increases milk yield, plasma IGF-1 maternal levels and the growth rate of the kids. © 2015 Japanese Society of Animal Science.

  6. Role of the monocarboxylate transporter MCT1 in the uptake of lactate during active recovery.

    PubMed

    Cupeiro, Rocío; Pérez-Prieto, Raúl; Amigo, Teresa; Gortázar, Pilar; Redondo, Carlos; González-Lamuño, Domingo

    2016-05-01

    We assessed the role of monocarboxylate transporter 1 (MCT1) on lactate clearance during an active recovery after high-intensity exercise, by comparing genetic groups based on the T1470A (rs1049434) MCT1 polymorphism, whose influence on lactate transport has been proven. Sixteen young male elite field hockey players participated in this study. All of them completed two 400 m maximal run tests performed on different days, followed by 40 min of active or passive recovery. Lactate samples were measured immediately after the tests, and at min 10, 20, 30 and 40 of the recoveries. Blood lactate decreases were calculated for each 10-min period. Participants were distributed into three groups according to the T1470A polymorphism (TT, TA and AA). TT group had a lower blood lactate decrease than AA group during the 10-20 min period of the active recovery (p = 0.018). This period had the highest blood lactate for the whole sample, significantly differing from the other periods (p ≤ 0.003). During the passive recovery, lactate declines were constant except for the 0-10-min period (p ≤ 0.003), suggesting that liver uptake is similar in all the genetic groups, and that the difference seen during the active recovery is mainly due to muscle lactate uptake. These differences according to the polymorphic variant T1470A suggest that MCT1 affects the plasma lactate decrease during a crucial period of active recovery, where the maximal lactate amount is cleared (i.e. 10-20 min period).

  7. N-acetylcysteine inhibits the up-regulation of mitochondrial biogenesis genes in livers from rats fed ethanol chronically

    USDA-ARS?s Scientific Manuscript database

    Background: Chronic ethanol (EtOH) administration to experimental animals induces hepatic oxidative stress and up-regulates mitochondrial biogenesis. The mechanisms by which chronic EtOH up-regulates mitochondrial biogenesis have not been fully explored. In this work, we hypothesized that oxidative ...

  8. Systematic Review and Network Meta-analysis of Idiopathic Pulmonary Fibrosis Treatments.

    PubMed

    Fleetwood, Kelly; McCool, Rachael; Glanville, Julie; Edwards, Susan C; Gsteiger, Sandro; Daigl, Monica; Fisher, Mark

    2017-03-01

    The antifibrotics pirfenidone and nintedanib are both approved for the treatment of idiopathic pulmonary fibrosis (IPF) by regulatory agencies and are recommended by health technology assessment bodies. Other treatments such as N-acetylcysteine are used in clinical practice but have not received regulatory approval. No head-to-head trials have been conducted to directly compare the efficacy of these therapies in IPF. To compare the efficacy of treatments for IPF. A systematic review was conducted up to April 2015. Phase II/III randomized controlled trials in adults with IPF were eligible. A Bayesian network meta-analysis (NMA) was used to compare pirfenidone, nintedanib, and N-acetylcysteine with respect to forced vital capacity (FVC) and mortality. Nine studies were included in the NMA. For change from baseline in FVC, the NMA indicated that pirfenidone and nintedanib were more effective than placebo after 1 year (pirfenidone vs. placebo: difference = 0.12 liter (L), 95% credible interval [CrI] = 0.03-0.21 L; nintedanib vs. placebo: difference = 0.11 L, 95% CrI = 0.00-0.22 L). There was no evidence that N-acetylcysteine had an effect on FVC compared with placebo (N-acetylcysteine vs. placebo: difference = 0.01 L, 95% CrI = -0.15-0.17 L). Patients treated with pirfenidone also had a lower risk of experiencing a decline in percent predicted FVC of ≥ 10% over 1 year (odds ratio [OR]: 0.58, 95% CrI = 0.40-0.88), whereas there was no conclusive evidence of a difference between nintedanib and placebo (OR: 0.65, 95% CrI = 0.42-1.02). The NMA indicated that pirfenidone reduced all-cause mortality relative to placebo over 1 year (hazard ratio [HR]: 0.52, 95% CrI = 0.28-0.92). There was no evidence of a difference in all-cause mortality between nintedanib and placebo (HR: 0.70, 95% CrI = 0.32-1.55), or N-acetylcysteine and placebo (HR: 2.00, 95% CrI=0.46-8.62). Our primary analysis of the available evidence indicates that over 1 year, pirfenidone and nintedanib are effective at reducing lung-function decline, and pirfenidone may reduce the odds of experiencing a decline in percent predicted FVC of ≥10% compared with placebo in the first year of treatment. The results of our analysis also suggest that pirfenidone improves survival. Fleetwood is an employee of Quantics Consulting. McCool and Glanville are employees of York Health Economics Consortium (YHEC). Quantics and YHEC received funding from F. Hoffmann-La Roche for conducting the systematic review and network meta-analysis reported in this paper. Edwards, Gsteiger, and Daigl are employees of F. Hoffmann-La Roche. Fisher was employed by InterMune UK, a wholly owned Roche subsidiary, until July 2015. He is currently employed by FIECON, which has received funding from F. Hoffmann-La Roche for consulting services. The systematic review and network meta-analysis reported in this paper were conducted by Fleetwood (Quantics Consulting) and McCool and Glanville (YHEC), funded by F. Hoffmann-La Roche. The original network analysis was funded by InterMune. Study concept and design were contributed by Edwards, Gsteiger, and Daigl, along with Fleetwood, McCool, and Glanville. Fleetwood, McCool, and Glanville collected the data, with assistance from Edwards, Gsteiger, and Daigl. Data interpretation was performed by Fleetwood and Fisher, with assistance from the other authors. The manuscript was written by Fleetwood, McCool, and Glanville, with assistance from Edwards, Daigl, and Fisher, and revised by all the authors.

  9. Reference values of blood parameters in beef cattle of different ages and stages of lactation.

    PubMed Central

    Doornenbal, H; Tong, A K; Murray, N L

    1988-01-01

    Reference (normal) values for 12 blood serum components were determined for 48 Shorthorn cows (2-10 years old) and their 48 calves, 357 crossbred cows (12-14 years old), 36 feedlot bulls and 36 feedlot steers. In addition, hemoglobin, hematocrit, triiodothyronine, thyroxine and cortisol levels were determined for the crossbred cows, and feedlot bulls and steers. Reference values were tabulated according to sex, age and stage of lactation. Serum concentrations of urea, total protein and bilirubin, and serum activity of aspartate aminotransferase and lactate dehydrogenase increased with age (P less than 0.05), while calcium, phosphorus and alkaline phosphatase decreased with age (P less than 0.05) from birth to the age of ten years. The Shorthorn cows had the highest levels of glucose at parturition (P less than 0.05) with decreasing levels during lactation. Creatinine concentration decreased during lactation and increased during postweaning. Both lactate dehydrogenase and aspartate aminotransferase levels increased (P less than 0.05) during lactation. Urea and uric acid were present at higher concentrations in lactating than nonlactating cows (P less than 0.05). The values reported, based on a wide age range and large number of cattle, could serve as clinical guides and a basis for further research. PMID:3349406

  10. Effect of condensed tannins in rations of lactating dairy cows on production variables and nitrogen use efficiency.

    PubMed

    Gerlach, K; Pries, M; Tholen, E; Schmithausen, A J; Büscher, W; Südekum, K-H

    2018-01-08

    The objective of this study was to evaluate the effect of supplemented condensed tannins (CT) from the bark of the Black Wattle tree (Acacia mearnsii) on production variables and N use efficiency in high yielding dairy cows. A feeding trial with 96 lactating German Holstein cows was conducted for a total of 169 days, divided into four periods. The animals were allotted to two groups (control (CON) and experimental (EXP) group) according to milk yield in previous lactation, days in milk (98), number of lactations and BW. The trial started and finished with a period (period 1 and 4) where both groups received the same ration (total-mixed ration based on grass and maize silage, ensiled sugar beet pulp, lucerne hay, mineral premix and concentrate, calculated for 37 kg energy-corrected milk). In between, the ration of EXP cows was supplemented with 1% (CT1, period 2) and 3% of dry matter (DM) (CT3, period 3) of a commercial A. mearnsii extract (containing 0.203 g CT/g DM) which was mixed into the concentrate. In period 3, samples of urine and faeces were collected from 10 cows of each group and analyzed to estimate N excretion. Except for a tendency for a reduced milk urea concentration with CT1, there was no difference between groups in period 2 (CON v. CT1; P>0.05). The CT3 significantly reduced (P<0.05) milk protein yield, the apparent N efficiency (kg milk N/k feed N) and milk urea concentration; but total milk yield and energy-corrected milk yield were not affected by treatment. Furthermore, as estimated from 10 cows per group and using urinary K as a marker to estimate the daily amount of urine voided, CT3 caused a minor shift of N compounds from urine to faeces, as urea-N in urine was reduced, whereas the N concentration in faeces increased. As an improvement in productivity was not achieved and N use efficiency was decreased by adding the CT product it can be concluded that under current circumstances the use in high yielding dairy cows is not advantageous.

  11. Lactate dilates cochlear capillaries via type V fibrocyte-vessel coupling signaled by nNOS.

    PubMed

    Dai, Min; Yang, Yue; Shi, Xiaorui

    2011-10-01

    Transduction of sound in the inner ear demands tight control over delivery of oxygen and glucose. However, the mechanisms underlying the control of regional blood flow are not yet fully understood. In this study, we report a novel local control mechanism that regulates cochlear blood flow to the stria vascularis, a high energy-consuming region of the inner ear. We found that extracellular lactate had a vasodilatory effect on the capillaries of the spiral ligament under both in vitro and in vivo conditions. The lactate, acting through monocarboxylate transporter 1 (MCT1), initiated neuronal nitric oxide (NO) synthase (nNOS) and catalyzed production of NO for the vasodilation. Blocking MCT1 with the MCT blocker, α-cyano-4-hydroxycinnamate (CHC), or a suppressing NO production with either the nonspecific inhibitor of NO synthase, N(G)-nitro-L-arginine methyl ester (L-NAME), or either of two selective nNOS inhibitors, 3-bromo-7-nitroindazole or (4S)-N-(4-amino-5[aminoethyl]aminopentyl)-N'-nitroguanidine (TFA), totally abolished the lactate-induced vasodilation. Pretreatment with the selective endothelial NO synthase inhibitor, L-N(5)-(1-iminoethyl)ornithine (L-NIO), eliminated the inhibition of lactate-induced vessel dilation. With immunohistochemical labeling, we found the expression of MCT1 and nNOS in capillary-coupled type V fibrocytes. The data suggest that type V fibrocytes are the source of the lactate-induced NO. Cochlear microvessel tone, regulated by lactate, is mediated by an NO-signaled coupling of fibrocytes and capillaries.

  12. [The effect of prophylactically administered n-acetylcysteine on clinical indicators for tissue oxygenation during hyperoxic ventilation in cardiac risk patients].

    PubMed

    Spies, C; Giese, C; Meier-Hellmann, A; Specht, M; Hannemann, L; Schaffartzik, W; Reinhart, K

    1996-04-01

    Hyperoxic ventilation, used to prevent hypoxia during potential periods of hypoventilation, has been reported to paradoxically decrease whole-body oxygen consumption (VO2). Reduction in nutritive blood flow due to oxygen radical production is one possible mechanism. We investigated whether pretreatment with the sulfhydryl group donor and O2 radical scavenger N-acetylcysteine (NAC) would preserve VO2 and other clinical indicators of tissue oxygenation in cardiac risk patients. Thirty patients, requiring hemodynamic monitoring (radial and pulmonary artery catheters) because of cardiac risk factors, were included in this randomized investigation. All patients exhibited stable clinical conditions (hemodynamics, body temperature, hemoglobin, F1O2 < 0.5). Cardiac output was determined by thermodilution and VO2 by cardiovascular Fick. After baseline measurements, patients randomly received either 150 mg kg-1 NAC (n = 15) or placebo (n = 15) in 250 ml 5% dextrose i.v. over a period of 30 min. Measurements were repeated 30 min after starting NAC or placebo infusion, 30 min after starting hyperoxia (F1O2 = 1.0), and 30 min after resetting the original F1O2. There were no significant differences between groups in any of the measurements before treatment and after the return to baseline F1O2 at the end of the study, respectively. NAC, but not placebo infusion, caused a slight but not significant increase in cardiac index (CI), left ventricular stroke work index (LVSWI) and a decrease in systemic vascular resistance. Significant differences between groups during hyperoxia were: VO2 (NAC: 108 +/- 38 ml min-1m-2 vs placebo: 79 +/- 22 ml min-1m-2; P < or = 0.05), CI (NAC: 4.6 +/- 1.0 vs placebo: 3.7 +/- 1.11 min-1m-2; P < or = 0.05) and LVSWI (NAC: 47 +/- 12 vs placebo: 38 +/- 9; P < or = 0.05). The mean decrease of VO2 was 22% in the NAC group vs 47% in the placebo group (P < or = 0.05) and the mean difference between groups in venoarterial carbon dioxide gradient (PvaCO2) was 14% (P < or = 0.05). ST segment depression ( > 0.2 mV) was significantly less marked in the NAC group (NAC: -0.02 +/- 0.17 vs placebo: -0.23 +/- 0.15; P < or = 0.05). NAC helped preserve VO2, oxygen delivery, CI, LVSWI and PvaCO2 during brief hyperoxia in cardiac risk patients. Clinical signs of myocardial ischemia did not occur such as ST-depression if patients were prophylactically treated with NAC. This suggests that pretreatment with NAC could be considered to attenuate impaired tissue oxygenation and to preserve myocardial performance better in cardiac risk patients during hyperoxia.

  13. Dietary selenium and nutritional plane alter specific aspects of maternal endocrine status during pregnancy and lactation.

    PubMed

    Lemley, C O; Meyer, A M; Neville, T L; Hallford, D M; Camacho, L E; Maddock-Carlin, K R; Wilmoth, T A; Wilson, M E; Perry, G A; Redmer, D A; Reynolds, L P; Caton, J S; Vonnahme, K A

    2014-01-01

    Objectives were to examine effects of selenium (Se) supply and maternal nutritional plane during gestation on placental size at term and maternal endocrine profiles throughout gestation and early lactation. Ewe lambs (n = 84) were allocated to treatments that included Se supply of adequate Se (ASe; 11.5 μg/kg BW) or high Se (HSe; 77 μg/kg BW) initiated at breeding and nutritional plane of 60% (RES), 100% (CON), or 140% (EXC) of requirements beginning on day 40 of gestation. At parturition, lambs were removed from their dams, and ewes were transitioned to a common diet that met requirements of lactation. Blood samples were taken from a subset of ewes (n = 42) throughout gestation, during parturition, and throughout lactation to determine hormone concentrations. Cotyledon number was reduced (P = 0.03) in RES and EXC ewes compared with CON ewes. Placental delivery time tended (P = 0.08) to be shorter in HSe ewes than in ASe ewes, whereas placental delivery time was longer (P = 0.02) in RES ewes than in CON and EXC ewes. During gestation, maternal progesterone, estradiol-17β, and GH were increased (P < 0.05) in RES ewes and decreased (P < 0.05) in EXC ewes compared with CON ewes. In contrast, maternal cortisol, IGF-I, prolactin, triiodothyronine, and thyroxine were decreased in RES ewes and increased in EXC ewes compared with CON ewes during gestation. Selenium supply did not alter maternal hormone profiles during gestation. During parturition and lactation, maternal hormone concentrations were influenced by both Se and maternal nutritional plane. During the parturient process, HSe ewes tended to have greater (P = 0.06) concentrations of estradiol-17β than ASe ewes. Three hours after parturition a surge of GH was observed in ASe-RES ewes that was muted in HSe-RES ewes and not apparent in other ewes. Growth hormone area under the curve during the parturient process was increased (P < 0.05) in ASe-RES vs HSe-RES ewes. Ewes that were overfed during gestation had reduced (P < 0.05) estradiol-17β but greater IGF-I, triiodothyronine, and thyroxine (P < 0.05) compared with RES ewes. Even though ewes were transitioned to a common diet after parturition, endocrine status continued to be affected into lactation. Moreover, it appears that gestational diet may partially affect lactational performance through altered endocrine status. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. The validity and internal structure of the Bipolar Depression Rating Scale: data from a clinical trial of N-acetylcysteine as adjunctive therapy in bipolar disorder.

    PubMed

    Berk, Michael; Dodd, Seetal; Dean, Olivia M; Kohlmann, Kristy; Berk, Lesley; Malhi, Gin S

    2010-10-01

    Berk M, Dodd S, Dean OM, Kohlmann K, Berk L, Malhi GS. The validity and internal structure of the Bipolar Depression Rating Scale: data from a clinical trial of N-acetylcysteine as adjunctive therapy in bipolar disorder. The phenomenology of unipolar and bipolar disorders differ in a number of ways, such as the presence of mixed states and atypical features. Conventional depression rating instruments are designed to capture the characteristics of unipolar depression and have limitations in capturing the breadth of bipolar disorder. The Bipolar Depression Rating Scale (BDRS) was administered together with the Montgomery Asberg Rating Scale (MADRS) and Young Mania Rating Scale (YMRS) in a double-blind randomised placebo-controlled clinical trial of N-acetyl cysteine for bipolar disorder (N = 75). A factor analysis showed a two-factor solution: depression and mixed symptom clusters. The BDRS has strong internal consistency (Cronbach's alpha = 0.917), the depression cluster showed robust correlation with the MADRS (r = 0.865) and the mixed subscale correlated with the YMRS (r = 0.750). The BDRS has good internal validity and inter-rater reliability and is sensitive to change in the context of a clinical trial.

  15. Evaluation of the warming sensation, acceptability, and local tolerability of an acetylcysteine oral solution containing the flavoring agent IFF flavor 316282 in the treatment of productive cough
.

    PubMed

    Donath, Frank; Grinienko, Anna; Mallefet, Pascal; Ozun, Michel Jean-Pierre; Shneyer, Lucy

    2018-04-01

    This open-label study sought to evaluate the warming sensation produced by IFF flavor 316282 in an acetylcysteine oral solution in subjects with productive cough. 2% ace-tylcysteine oral solution (200 mg per 10 mL) containing IFF flavor 316282. Subjects (N = 57; mean age 38.7 years; 58% female) with a productive cough lasting < 7 days and rated as mild to moderate in severity received 10 mL of study product. Warming sensation intensity was assessed using a 100-mm visual analog scale, its onset and duration using stopwatches, its acceptability using a 9-point scale (from "dislike extremely" to "like extremely") and the taste, texture, and overall acceptability of the solution using 5-point scales (from "unacceptable" to "excellent"). 53 (93.0%) subjects perceived a warming sensation within 10 minutes of swallowing the solution; median onset was ~ 14 seconds, and median duration was ~ 2.8 minutes. Warming sensation intensity increased from baseline by a mean of 29.2 mm when evaluated 60 seconds after ingestion. 30 subjects (52.6%) thought the warming sensation was "just about right"; 25 (43.9%) considered it "too weak" or "much too weak." Most subjects had positive overall ratings ("fair," "good," or "excellent") of the taste (79.0%), texture (96.5%), and solution (91.2%). No treatment-emergent adverse events were reported, and no evidence of oral mucosal irritation was found. The addition of IFF flavor 316282 to a 2% acetylcysteine oral solution produced a warming sensation with rapid onset and relatively short duration, which the majority of subjects found acceptable.
.

  16. Supplementation of methionine and selection of highly digestible rumen undegradable protein to improve nitrogen efficiency for milk production.

    PubMed

    Noftsger, S; St-Pierre, N R

    2003-03-01

    Metabolizable protein (MP) supply and amino acid balance were manipulated through selection of highly digestible rumen-undegradable protein (RUP) sources and methionine (Met) supplementation. Effects on production efficiency and N utilization of lactating dairy cows were determined. Thirty-two multiparous (647 kg) and 28 primiparous (550 kg) Holstein cows were assigned during the fourth week of lactation to one of four dietary treatments. Treatments were 1) 18.3% crude protein (CP) with low estimated intestinal digestibility of RUP (HiCP-LoDRUP), 2) 18.3% CP with high digestibility RUP (HiCP-HiDRUP), 3) 16.9% CP with high digestibility RUP (LoCP-HiDRUP), and 4) 17.0% CP with high digestibility RUP and supplemental Met (LoCP-HiDRUP + Met). Diets were balanced to have equal concentrations of net energy for lactation (NE(L)), acid detergent fiber (ADF), neutral detergent fiber (NDF), and ash. Milk yields (40.8, 46.2, 42.9, 46.6 kg/d), protein percentages (2.95, 2.98, 2.99, 3.09%), and fat percentages (3.42, 3.64, 3.66, 3.73%) are reported here for HiCP-LoDRUP, HiCP-HiDRUP, LoCP-HiDRUP, and LoCP-HiDRUP + Met, respectively. Milk urea N and BUN decreased when feeding a lower CP diet. Efficiency of use of N for milk protein production was higher when feeding higher digestibility RUP, especially with the LoCP-HiDRUP + Met diet. A digestibility study followed the production trial, with six cows per treatment group continuing on the same treatment for an additional week. The experimental periods were 5 d long, with 1 d of adjustment and 4 d of total collection of urine and feces. Dry matter intake, milk production, milk protein production, and N digestibility were not significantly different among treatments during the collection trial, whereas N intake and N absorbed increased with the higher CP diets. The quantity of N in feces did not change with diet, but quantity of N in urine decreased in the low CP diets. Milk N as a percentage of intake N and milk N as a percentage of N absorbed showed a trend toward increasing as CP concentration in the diet decreased. The supplementation of Met did not improve the efficiency of N utilization during the digestibility study, in contrast to what was estimated during the production trial. Supplementing the highly digestible RUP source with rumen available and rumen escape sources of Met resulted in maximal milk and protein production and maximum N efficiency by cows during the production trial, indicating that postruminal digestibility of RUP and amino acid balance can be more important than total RUP supplementation.

  17. Mechanisms for an effect of acetylcysteine on renal function after exposure to radio-graphic contrast material: study protocol

    PubMed Central

    2012-01-01

    Background Contrast-induced nephropathy is a common complication of contrast administration in patients with chronic kidney disease and diabetes. Its pathophysiology is not well understood; similarly the role of intravenous or oral acetylcysteine is unclear. Randomized controlled trials to date have been conducted without detailed knowledge of the effect of acetylcysteine on renal function. We are conducting a detailed mechanistic study of acetylcysteine on normal and impaired kidneys, both with and without contrast. This information would guide the choice of dose, route, and appropriate outcome measure for future clinical trials in patients with chronic kidney disease. Methods/Design We designed a 4-part study. We have set up randomised controlled cross-over studies to assess the effect of intravenous (50 mg/kg/hr for 2 hrs before contrast exposure, then 20 mg/kg/hr for 5 hrs) or oral acetylcysteine (1200 mg twice daily for 2 days, starting the day before contrast exposure) on renal function in normal and diseased kidneys, and normal kidneys exposed to contrast. We have also set up a parallel-group randomized controlled trial to assess the effect of intravenous or oral acetylcysteine on patients with chronic kidney disease stage III undergoing elective coronary angiography. The primary outcome is change in renal blood flow; secondary outcomes include change in glomerular filtration rate, tubular function, urinary proteins, and oxidative balance. Discussion Contrast-induced nephropathy represents a significant source of hospital morbidity and mortality. Over the last ten years, acetylcysteine has been administered prior to contrast to reduce the risk of contrast-induced nephropathy. Randomized controlled trials, however, have not reliably demonstrated renoprotection; a recent large randomized controlled trial assessing a dose of oral acetylcysteine selected without mechanistic insight did not reduce the incidence of contrast-induced nephropathy. Our study should reveal the mechanism of effect of acetylcysteine on renal function and identify an appropriate route for future dose response studies and in time randomized controlled trials. Trial registration Clinical Trials.gov: NCT00558142; EudraCT: 2006-003509-18. PMID:22305183

  18. Simplification of the standard three-bag intravenous acetylcysteine regimen for paracetamol poisoning results in a lower incidence of adverse drug reactions.

    PubMed

    Wong, Anselm; Graudins, Andis

    2016-01-01

    Adverse reactions to intravenous (IV) acetylcysteine treatment in paracetamol overdose, are common. Previous studies suggest the incidence and severity of non-allergic anaphylactic reactions (NAARs) are influenced by the rate of acetylcysteine infusion. We compared the incidence of adverse drug events of a two-bag IV acetylcysteine regimen with that of the traditional three-bag regimen. This was a retrospective analysis of patients presenting with paracetamol overdose requiring treatment with acetylcysteine to three emergency departments. We prospectively identified all presentations where IV acetylcysteine was administered using a 20 h, two-bag regimen (200 mg/kg over 4 h followed by 100 mg/kg over 16 h) from February 2014 to June 2015. We compared this to an historical cohort treated with the 21 h three-bag IV regimen (150 mg/kg over 1 h, 50 mg/kg over 4 h and 100 mg/kg over 16 h) from October 2009 to October 2013. Medical and nursing notes were searched retrospectively for entries suggesting the presence of an adverse reaction. The primary outcome was incidence of NAARs and gastrointestinal reactions in each group. 389 presentations were treated with the three-bag regimen and 210 presentations received the two-bag regimen. NAARs were recorded more commonly with the three-bag acetylcysteine regimen than the two-bag regimen (10% vs 4.3%, p = 0.02, OR 2.5, 95% CI 1.1-5.8). There was no difference in reports of gastrointestinal reactions between cohorts (three-bag 39% vs two-bag 41%, p = 0.38, OR 1.17 95% CI (0.83-1.65)). The incidence of NAARs was significantly reduced by combining the first two bags of the traditional three-bag regimen and infusing these over 4 h at 50 mg/kg/hr. Simplifying the administration of acetylcysteine may have other benefits such as better utilisation of nursing time and reduced infusion administration errors. A two-bag 20 h acetylcysteine regimen was well tolerated and resulted in significantly fewer and milder NAARs than the standard three-bag regimen.

  19. Outcomes from massive paracetamol overdose: a retrospective observational study

    PubMed Central

    Marks, Daniel J. B.; Dargan, Paul I.; Archer, John R. H.; Davies, Charlotte L.; Dines, Alison M.; Wood, David M.

    2017-01-01

    LINKED ARTICLE This article is commented on by Bateman DN and Dear JW. Should we treat very large paracetamol overdose differently? Br J Clin Pharmacol 2017; 83: 1163–5. https://doi.org/10.1111/bcp.13279 Aims Treatment of paracetamol (acetaminophen) overdose with acetylcysteine is standardized, with dose determined only by patient weight. The validity of this approach for massive overdoses has been questioned. We systematically compared outcomes in massive and non‐massive overdoses, to guide whether alternative treatment strategies should be considered, and whether the ratio between measured timed paracetamol concentrations (APAPpl) and treatment nomogram thresholds at those time points (APAPt) provides a useful assessment tool. Methods This is a retrospective observational study of all patients (n = 545) between 2005 and 2013 admitted to a tertiary care toxicology service with acute non‐staggered paracetamol overdose. Massive overdoses were defined as extrapolated 4‐h plasma paracetamol concentrations >250 mg l−1, or reported ingestions ≥30 g. Outcomes (liver injury, coagulopathy and kidney injury) were assessed in relation to reported dose and APAPpl:APAPt ratio (based on a treatment line through 100 mg l−1 at 4 h), and time to acetylcysteine. Results Ingestions of ≥30 g paracetamol correlated with higher peak serum aminotransferase (r = 0.212, P < 0.0001) and creatinine (r = 0.138, P = 0.002) concentrations. Acute liver injury, hepatotoxicity and coagulopathy were more frequent with APAPpl:APAPt ≥ 3 with odds ratios (OR) and 95% confidence intervals (CI) of 9.19 (5.04–16.68), 35.95 (8.80–158.1) and 8.34 (4.43–15.84), respectively (P < 0.0001). Heightened risk persisted in patients receiving acetylcysteine within 8 h of overdose. Conclusion Patients presenting following massive paracetamol overdose are at higher risk of organ injury, even when acetylcysteine is administered early. Enhanced therapeutic strategies should be considered in those who have an APAPpl:APAPt ≥ 3. Novel biomarkers of incipient liver injury and abbreviated acetylcysteine regimens require validation in this patient cohort. PMID:28002875

  20. Outcomes from massive paracetamol overdose: a retrospective observational study.

    PubMed

    Marks, Daniel J B; Dargan, Paul I; Archer, John R H; Davies, Charlotte L; Dines, Alison M; Wood, David M; Greene, Shaun L

    2017-06-01

    This article is commented on by Bateman DN and Dear JW. Should we treat very large paracetamol overdose differently? Br J Clin Pharmacol 2017; 83: 1163-5. https://doi.org/10.1111/bcp.13279 AIMS: Treatment of paracetamol (acetaminophen) overdose with acetylcysteine is standardized, with dose determined only by patient weight. The validity of this approach for massive overdoses has been questioned. We systematically compared outcomes in massive and non-massive overdoses, to guide whether alternative treatment strategies should be considered, and whether the ratio between measured timed paracetamol concentrations (APAP pl ) and treatment nomogram thresholds at those time points (APAP t ) provides a useful assessment tool. This is a retrospective observational study of all patients (n = 545) between 2005 and 2013 admitted to a tertiary care toxicology service with acute non-staggered paracetamol overdose. Massive overdoses were defined as extrapolated 4-h plasma paracetamol concentrations >250 mg l -1 , or reported ingestions ≥30 g. Outcomes (liver injury, coagulopathy and kidney injury) were assessed in relation to reported dose and APAP pl :APAP t ratio (based on a treatment line through 100 mg l -1 at 4 h), and time to acetylcysteine. Ingestions of ≥30 g paracetamol correlated with higher peak serum aminotransferase (r = 0.212, P < 0.0001) and creatinine (r = 0.138, P = 0.002) concentrations. Acute liver injury, hepatotoxicity and coagulopathy were more frequent with APAP pl :APAP t  ≥ 3 with odds ratios (OR) and 95% confidence intervals (CI) of 9.19 (5.04-16.68), 35.95 (8.80-158.1) and 8.34 (4.43-15.84), respectively (P < 0.0001). Heightened risk persisted in patients receiving acetylcysteine within 8 h of overdose. Patients presenting following massive paracetamol overdose are at higher risk of organ injury, even when acetylcysteine is administered early. Enhanced therapeutic strategies should be considered in those who have an APAP pl :APAP t  ≥ 3. Novel biomarkers of incipient liver injury and abbreviated acetylcysteine regimens require validation in this patient cohort. © 2016 The British Pharmacological Society.

  1. Pea Fiber and Wheat Bran Fiber Show Distinct Metabolic Profiles in Rats as Investigated by a 1H NMR-Based Metabolomic Approach

    PubMed Central

    Liu, Guangmang; Xiao, Liang; Fang, Tingting; Cai, Yimin; Jia, Gang; Zhao, Hua; Wang, Jing; Chen, Xiaoling; Wu, Caimei

    2014-01-01

    This study aimed to examine the effect of pea fiber (PF) and wheat bran fiber (WF) supplementation in rat metabolism. Rats were assigned randomly to one of three dietary groups and were given a basal diet containing 15% PF, 15% WF, or no supplemental fiber. Urine and plasma samples were analyzed by NMR-based metabolomics. PF significantly increased the plasma levels of 3-hydroxybutyrate, and myo-inositol as well as the urine levels of alanine, hydroxyphenylacetate, phenylacetyglycine, and α-ketoglutarate. However, PF significantly decreased the plasma levels of isoleucine, leucine, lactate, and pyruvate as well as the urine levels of allantoin, bile acids, and trigonelline. WF significantly increased the plasma levels of acetone, isobutyrate, lactate, myo-inositol, and lipids as well as the urine levels of alanine, lactate, dimethylglycine, N-methylniconamide, and α-ketoglutarate. However, WF significantly decreased the plasma levels of amino acids, and glucose as well as the urine levels of acetate, allantoin, citrate, creatine, hippurate, hydroxyphenylacetate, and trigonelline. Results suggest that PF and WF exposure can promote antioxidant activity and can exhibit common systemic metabolic changes, including lipid metabolism, energy metabolism, glycogenolysis and glycolysis metabolism, protein biosynthesis, and gut microbiota metabolism. PF can also decrease bile acid metabolism. These findings indicate that different fiber diet may cause differences in the biofluid profile in rats. PMID:25541729

  2. Effects of feeding fatty acid calcium and the interaction of forage quality on production performance and biochemical indexes in early lactation cow.

    PubMed

    Hu, Z Y; Yin, Z Y; Lin, X Y; Yan, Z G; Wang, Z H

    2015-10-01

    Multiparous early lactation Holstein cows (n = 16) were used in a randomized complete block design to determine the effects of feeding fatty acid calcium and the interaction of forage quality on production performance and biochemical indexes in early lactation cow. Treatments were as follows: (i) feeding low-quality forage without supplying fatty acid calcium (Diet A), (ii) feeding low-quality forage with supplying 400 g fatty acid calcium (Diet B), (iii) feeding high-quality forage without supplying fatty acid calcium (Diet C) and (iv) feeding high-quality forage with supplying 400 g fatty acid calcium. This experiment consisted 30 days. The milk and blood samples were collected in the last day of the trail. Intakes were recorded in the last 2 days of the trail. Supplementation of fatty acid calcium decreased significantly dry matter intake (DMI) (p < 0.01). Addition fatty acid calcium decreased milk protein percentage (p < 0.01) and milk SNF percentage (p < 0.01), but increased MUN (p < 0.05). Supplemented fatty acid decreased concentration of blood BHBA (p < 0.05), but increased TG, NEFA, glucagon, GLP-1, CCK, leptin, ApoA-IV, serotonin and MSH concentration in blood, the CCK concentration and feed intake showed a significant negative correlation (p < 0.05). Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  3. Characterization of binding of N'-nitrosonornicotine to protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, M.F.

    1986-01-01

    The NADPH-dependent activation of the carcinogenic nitrosamine, N'-nitrosonornicotine (NNN) to a reactive intermediate which binds covalently to protein was assessed using male Sprague-Dawley rat liver and lung microsomes. The NADPH-dependent covalent binding of (/sup 14/C)NNN to liver and lung microsomes was linear with time up to 90 and 45 min, respectively and was also linear with protein concentrations up to 3.0 and 2.0 mg/ml, respectively. The apparent K/sub m/ and V/sub max/ of the NADPH-dependent binding to liver microsomes were determined from the initial velocities. Addition of the thiols glutathione, cystein, N-acetylcysteine or 2-mercapthoethanol significantly decreased the non-NADPH-dependent binding tomore » liver microsomal protein, but did not affect the NADPH-dependent binding. Glutathione was required in order to observe any NADPH-dependent binding to lung microsomal protein. In lung microsomes, SKF-525A significantly decreased the NADPH-dependent binding by 79%. Replacement of an air atmosphere with N/sub 2/ or CO:O/sub 2/ (8:2) significantly decreased the NADPH-dependent binding of (/sup 14/C)NNN to liver microsomal protein by 40% or 27% respectively. Extensive covalent binding of (/sup 14/C)NNN to liver and muscle microsomal protein occurred in the absence of an NADPH-generating system, in the presence of 50% methanol and also to bovine serum albumin, indicating a nonenzymatic reaction. These data indicate that cytochrome P-450 is at least in part responsible for the metabolic activation of the carcinogen NNN, but also suggest additional mechanisms of activation.« less

  4. CD147 Required for Corneal Endothelial Lactate Transport

    PubMed Central

    Li, Shimin; Nguyen, Tracy T.; Bonanno, Joseph A.

    2014-01-01

    Purpose. CD147/basigin is a chaperone for lactate:H+ cotransporters (monocarboxylate transporters) MCT1 and MCT4. We tested the hypothesis that MCT1 and -4 in corneal endothelium contribute to lactate efflux from stroma to anterior chamber and that silencing CD147 expression would cause corneal edema. Methods. CD147 was silenced via small interfering ribonucleic acid (siRNA) transfection of rabbit corneas ex vivo and anterior chamber lenti-small hairpin RNA (shRNA) pseudovirus in vivo. CD147 and MCT expression was examined by Western blot, RT-PCR, and immunofluorescence. Functional effects were examined by measuring lactate-induced cell acidification, corneal lactate efflux, [lactate], central cornea thickness (CCT), and Azopt (a carbonic anhydrase inhibitor) sensitivity. Results. In ex vivo corneas, 100 nM CD147 siRNA reduced CD147, MCT1, and MCT4 expression by 85%, 79%, and 73%, respectively, while MCT2 expression was unaffected. CD147 siRNA decreased lactate efflux from 3.9 ± 0.81 to 1.5 ± 0.37 nmol/min, increased corneal [lactate] from 19.28 ± 7.15 to 56.73 ± 8.97 nmol/mg, acidified endothelial cells (pHi = 6.83 ± 0.07 vs. 7.19 ± 0.09 in control), and slowed basolateral lactate-induced acidification from 0.0034 ± 0.0005 to 0.0012 ± 0.0005 pH/s, whereas apical acidification was unchanged. In vivo, CD147 shRNA increased CCT by 28.1 ± 0.9 μm at 28 days; Azopt increased CCT to 24.4 ± 3.12 vs. 12.0 ± 0.48 μm in control, and corneal [lactate] was 47.63 ± 6.29 nmol/mg in shCD147 corneas and 17.82 ± 4.93 nmol/mg in paired controls. Conclusions. CD147 is required for the expression of MCT1 and MCT4 in the corneal endothelium. Silencing CD147 slows lactate efflux, resulting in stromal lactate accumulation and corneal edema, consistent with lactate efflux as a significant component of the corneal endothelial pump. PMID:24970254

  5. CD147 required for corneal endothelial lactate transport.

    PubMed

    Li, Shimin; Nguyen, Tracy T; Bonanno, Joseph A

    2014-06-26

    CD147/basigin is a chaperone for lactate:H(+) cotransporters (monocarboxylate transporters) MCT1 and MCT4. We tested the hypothesis that MCT1 and -4 in corneal endothelium contribute to lactate efflux from stroma to anterior chamber and that silencing CD147 expression would cause corneal edema. CD147 was silenced via small interfering ribonucleic acid (siRNA) transfection of rabbit corneas ex vivo and anterior chamber lenti-small hairpin RNA (shRNA) pseudovirus in vivo. CD147 and MCT expression was examined by Western blot, RT-PCR, and immunofluorescence. Functional effects were examined by measuring lactate-induced cell acidification, corneal lactate efflux, [lactate], central cornea thickness (CCT), and Azopt (a carbonic anhydrase inhibitor) sensitivity. In ex vivo corneas, 100 nM CD147 siRNA reduced CD147, MCT1, and MCT4 expression by 85%, 79%, and 73%, respectively, while MCT2 expression was unaffected. CD147 siRNA decreased lactate efflux from 3.9 ± 0.81 to 1.5 ± 0.37 nmol/min, increased corneal [lactate] from 19.28 ± 7.15 to 56.73 ± 8.97 nmol/mg, acidified endothelial cells (pHi = 6.83 ± 0.07 vs. 7.19 ± 0.09 in control), and slowed basolateral lactate-induced acidification from 0.0034 ± 0.0005 to 0.0012 ± 0.0005 pH/s, whereas apical acidification was unchanged. In vivo, CD147 shRNA increased CCT by 28.1 ± 0.9 μm at 28 days; Azopt increased CCT to 24.4 ± 3.12 vs. 12.0 ± 0.48 μm in control, and corneal [lactate] was 47.63 ± 6.29 nmol/mg in shCD147 corneas and 17.82 ± 4.93 nmol/mg in paired controls. CD147 is required for the expression of MCT1 and MCT4 in the corneal endothelium. Silencing CD147 slows lactate efflux, resulting in stromal lactate accumulation and corneal edema, consistent with lactate efflux as a significant component of the corneal endothelial pump. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  6. Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity

    PubMed Central

    Matsui, Takashi; Omuro, Hideki; Liu, Yu-Fan; Soya, Mariko; Shima, Takeru; McEwen, Bruce S.; Soya, Hideaki

    2017-01-01

    Brain glycogen stored in astrocytes provides lactate as an energy source to neurons through monocarboxylate transporters (MCTs) to maintain neuronal functions such as hippocampus-regulated memory formation. Although prolonged exhaustive exercise decreases brain glycogen, the role of this decrease and lactate transport in the exercising brain remains less clear. Because muscle glycogen fuels exercising muscles, we hypothesized that astrocytic glycogen plays an energetic role in the prolonged-exercising brain to maintain endurance capacity through lactate transport. To test this hypothesis, we used a rat model of exhaustive exercise and capillary electrophoresis-mass spectrometry–based metabolomics to observe comprehensive energetics of the brain (cortex and hippocampus) and muscle (plantaris). At exhaustion, muscle glycogen was depleted but brain glycogen was only decreased. The levels of MCT2, which takes up lactate in neurons, increased in the brain, as did muscle MCTs. Metabolomics revealed that brain, but not muscle, ATP was maintained with lactate and other glycogenolytic/glycolytic sources. Intracerebroventricular injection of the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-d-arabinitol did not affect peripheral glycemic conditions but suppressed brain lactate production and decreased hippocampal ATP levels at exhaustion. An MCT2 inhibitor, α-cyano-4-hydroxy-cinnamate, triggered a similar response that resulted in lower endurance capacity. These findings provide direct evidence for the energetic role of astrocytic glycogen-derived lactate in the exhaustive-exercising brain, implicating the significance of brain glycogen level in endurance capacity. Glycogen-maintained ATP in the brain is a possible defense mechanism for neurons in the exhausted brain. PMID:28515312

  7. Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity.

    PubMed

    Matsui, Takashi; Omuro, Hideki; Liu, Yu-Fan; Soya, Mariko; Shima, Takeru; McEwen, Bruce S; Soya, Hideaki

    2017-06-13

    Brain glycogen stored in astrocytes provides lactate as an energy source to neurons through monocarboxylate transporters (MCTs) to maintain neuronal functions such as hippocampus-regulated memory formation. Although prolonged exhaustive exercise decreases brain glycogen, the role of this decrease and lactate transport in the exercising brain remains less clear. Because muscle glycogen fuels exercising muscles, we hypothesized that astrocytic glycogen plays an energetic role in the prolonged-exercising brain to maintain endurance capacity through lactate transport. To test this hypothesis, we used a rat model of exhaustive exercise and capillary electrophoresis-mass spectrometry-based metabolomics to observe comprehensive energetics of the brain (cortex and hippocampus) and muscle (plantaris). At exhaustion, muscle glycogen was depleted but brain glycogen was only decreased. The levels of MCT2, which takes up lactate in neurons, increased in the brain, as did muscle MCTs. Metabolomics revealed that brain, but not muscle, ATP was maintained with lactate and other glycogenolytic/glycolytic sources. Intracerebroventricular injection of the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-d-arabinitol did not affect peripheral glycemic conditions but suppressed brain lactate production and decreased hippocampal ATP levels at exhaustion. An MCT2 inhibitor, α-cyano-4-hydroxy-cinnamate, triggered a similar response that resulted in lower endurance capacity. These findings provide direct evidence for the energetic role of astrocytic glycogen-derived lactate in the exhaustive-exercising brain, implicating the significance of brain glycogen level in endurance capacity. Glycogen-maintained ATP in the brain is a possible defense mechanism for neurons in the exhausted brain.

  8. Hypothalamic neuropeptides, not leptin sensitivity, contributes to the hyperphagia in lactating Brandt's voles, Lasiopodomys brandtii.

    PubMed

    Cui, Jian-Guo; Tang, Gang-Bing; Wang, De-Hua

    2011-07-01

    Both pregnancy and lactation are associated with hyperphagia, and circulating leptin levels are elevated during pregnancy but decreased during lactation in Brandt's voles, Lasiopodomys brandtii. Previous findings suggest that impaired leptin sensitivity contributes to hyperphagia during pregnancy. The present study aimed to examine whether the decreased circulating leptin level and/or hypothalamic leptin sensitivity contributed to the hyperphagia during lactation in Brandt's voles. The serum leptin level and mRNA expression of the long form of the leptin receptor (Ob-Rb), suppressor-of-cytokine-signalling-3 (SOCS-3), neuropeptide Y (NPY), agouti-related protein (AgRP), pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) in the hypothalamus were examined on dioestrous, day 5, day 17 of lactation and day 27 (1 week after weaning) in Brandt's voles. Compared with controls, hypothalamic Ob-Rb and SOCS-3 mRNA expression was not significantly changed during lactation. The serum leptin level was significantly lower in lactating females than in the non-reproductive group. Hypothalamic NPY and AgRP mRNA expression significantly increased whereas POMC mRNA expression was significantly decreased during lactation compared with controls. However, there were no significant changes in hypothalamic CART mRNA expression. Food intake was positively correlated with NPY and AgRP mRNA expression but negatively correlated with POMC mRNA expression during lactation. These data suggest that hyperphagia during lactation was associated with low leptin levels, but not impaired leptin sensitivity, and that the hypothalamic neuropeptides NPY, AgRP and POMC are involved in mediating the role of leptin in food intake regulation in lactating Brandt's voles.

  9. Dietary verbascoside supplementation in donkeys: effects on milk fatty acid profile during lactation, and serum biochemical parameters and oxidative markers.

    PubMed

    D'Alessandro, A G; Vizzarri, F; Palazzo, M; Martemucci, G

    2017-09-01

    Various uses of donkeys' milk have been recently proposed for human consumption on the basis of its nutritional characteristics. Improvements in milk fatty acid profile and animal oxidative status can be induced through dietary supplementation of phenolic compounds. The study aimed to evaluate in donkeys the effects of dietary supplementation with verbascoside (VB) on: (i) the fatty acid profile and vitamins A and E contents of milk during a whole lactation, and (ii) blood biochemical parameters and markers of oxidative status of the animals. At foaling, 12 lactating jennies were subdivided into two groups (n 6): control, without VB supplement; VB, receiving a lipid-encapsulated VB supplement. Gross composition, fatty acid profile and vitamins A and E contents in milk were assessed monthly over the 6 months of lactation. Serum total cholesterol, high-density lipoproteins cholesterol and low-density lipoproteins cholesterol, tryglicerides, non-esterified fatty acid, bilirubin, alanine aminotransferase (ALT), aspartate aminotransferase, reactive oxygen metabolites, thiobarbituric acid reactive substances (TBARs), vitamin A and vitamin E were evaluated at 8 days after foaling (D0) and then at D90, D105 and D120 of lactation. In milk, the VB supplementation decreased the saturated fatty acids (P<0.05) and increased the monounsaturated fatty acids (P<0.05), and vitamins A and E (P<0.01) values. On the serum parameters, the VB supplementation decreased total cholesterol (P<0.01), tryglicerides, bilirubin, ALT and TBARs, and increased (P<0.01) vitamin E. In conclusion, the VB dietary supplementation affects the nutritional quality of donkey's milk with a benefit on the oxidative status and serum lipidic profile of the animals.

  10. Brain oxygen utilization is unchanged by hypoglycemia in normal humans: lactate, alanine, and leucine uptake are not sufficient to offset energy deficit.

    PubMed

    Lubow, Jeffrey M; Piñón, Ivan G; Avogaro, Angelo; Cobelli, Claudio; Treeson, David M; Mandeville, Katherine A; Toffolo, Gianna; Boyle, Patrick J

    2006-01-01

    During hypoglycemia, substrates other than glucose have been suggested to serve as alternate neural fuels. We evaluated brain uptake of endogenously produced lactate, alanine, and leucine at euglycemia and during insulin-induced hypoglycemia in 17 normal subjects. Cross-brain arteriovenous differences for plasma glucose, lactate, alanine, leucine, and oxygen content were quantitated. Cerebral blood flow (CBF) was measured by Fick methodology using N(2)O as the dilution indicator gas. Substrate uptake was measured as the product of CBF and the arteriovenous concentration difference. As arterial glucose concentration fell, cerebral oxygen utilization and CBF remained unchanged. Brain glucose uptake (BGU) decreased from 36.3+/-2.6 to 26.6+/-2.1 micromol.100 g of brain(-1).min(-1) (P<0.001), equivalent to a drop in ATP of 291 micromol.100 g(-1).min(-1). Arterial lactate rose (P<0.001), whereas arterial alanine and leucine fell (P<0.009 and P<0.001, respectively). Brain lactate uptake (BLU) increased from a net release of -1.8+/- 0.6 to a net uptake of 2.5+/-1.2 micromol.100 g(-1).min(-1) (P<0.001), equivalent to an increase in ATP of 74 micromol.100 g(-1).min(-1). Brain leucine uptake decreased from 7.1+/-1.2 to 2.5 +/- 0.5 micromol.100 g(-1).min(-1) (P<0.001), and brain alanine uptake trended downward (P<0.08). We conclude that the ATP generated from the physiological increase in BLU during hypoglycemia accounts for no more than 25% of the brain glucose energy deficit.

  11. Influence of lactation and pregnancy + lactation on mechanical properties and mineral content of the rat femur.

    PubMed

    Peng, T C; Kusy, R P; Garner, S C; Hirsch, P F; De Blanco, M C

    1987-06-01

    The quality of bone was assessed from femurs of rats both during lactation and after pregnancy + lactation. Mechanical properties of stiffness, strength, toughness, and ductility were measured, along with standard measurements of dry weight, ash weight, and total bone mineral. No changes occurred during the first week of lactation. During the second and third weeks of lactation all bone parameters except ductility decreased significantly. These data are consistent with bone losing mineral in order to supplement the dietary calcium intake necessary for milk production. In other experiments, femurs were collected from nulliparous rats and from rats that had previously undergone 1-3 pregnancy + lactations. The largest changes in bone mineral and mechanical properties occurred after a single pregnancy + lactation period, although significant further decreases in stiffness and strength occurred after the second pregnancy + lactation. No additional losses occurred following the third pregnancy + lactation. Even 5 months after only one pregnancy + lactation period, the bone quality was still impaired as all bone properties were lower than in nulliparous controls. Because the changes, especially stiffness and strength, were relatively larger than the changes in dry and ash weights of bone, measurements of these mechanical properties provide a more sensitive method to evaluate the quality of bone.

  12. Age related rise in lactate and its correlation with lactate dehydrogenase (LDH) status in post-mitochondrial fractions isolated from different regions of brain in mice.

    PubMed

    Datta, Siddhartha; Chakrabarti, Nilkanta

    2018-04-18

    Rise in brain lactate is the hallmark of ageing. Separate studies report that ageing is associated with elevation of lactate level and alterations of lactate dehydrogenase (LDH)-A/B mRNA-expression-ratio in cerebral cortex and hippocampus. However, age related lactate rise in brain and its association with LDH status and their brain regional variations are still elusive. In the present study, level of lactate, LDH (A and B) activity and LDH-A expression were evaluated in post-mitochondrial fraction of tissues isolated from four different brain regions (cerebral cortex, hippocampus, substantia nigra and cerebellum) of young and aged mice. Lactate levels elevated in four brain regions with maximum rise in substantia nigra of aged mice. LDH-A protein expression and its activity decreased in cerebral cortex, hippocampus and substantia nigra without any changes of these parameters in cerebellum of aged mice. LDH-B activity decreased in hippocampus, substantia nigra and cerebellum whereas its activity remains unaltered in cerebral cortex of aged mice. Accordingly, the ratio of LDH-A/LDH-B-activity remains unaltered in hippocampus and substantia nigra, decreased in cerebral cortex and increased in cerebellum. Therefore, rise of lactate in three brain regions (cerebral cortex, hippocampus, substantia nigra) appeared to be not correlated with the alterations of its regulatory enzymes activities in these three brain regions, rather it supports the fact of involvement of other mechanisms, like lactate transport and/or aerobic/anaerobic metabolism as the possible cause(s) of lactate rise in these three brain regions. The increase in LDH-A/LDH-B-activity-ratio appeared to be positively correlated with elevated lactate level in cerebellum of aged mice. Overall, the present study indicates that the mechanism of rise in lactate in brain varies with brain regions where LDH status plays an important role during ageing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. N-Acetylcysteine, a glutathione precursor, reverts vascular dysfunction and endothelial epigenetic programming in intrauterine growth restricted guinea pigs.

    PubMed

    Herrera, Emilio A; Cifuentes-Zúñiga, Francisca; Figueroa, Esteban; Villanueva, Cristian; Hernández, Cherie; Alegría, René; Arroyo-Jousse, Viviana; Peñaloza, Estefania; Farías, Marcelo; Uauy, Ricardo; Casanello, Paola; Krause, Bernardo J

    2017-02-15

    Intrauterine growth restriction (IUGR) is associated with vascular dysfunction, oxidative stress and signs of endothelial epigenetic programming of the umbilical vessels. There is no evidence that this epigenetic programming is occurring on systemic fetal arteries. In IUGR guinea pigs we studied the functional and epigenetic programming of endothelial nitric oxide synthase (eNOS) (Nos3 gene) in umbilical and systemic fetal arteries, addressing the role of oxidative stress in this process by maternal treatment with N-acetylcysteine (NAC) during the second half of gestation. The present study suggests that IUGR endothelial cells have common molecular markers of programming in umbilical and systemic arteries. Notably, maternal treatment with NAC restores fetal growth by increasing placental efficiency and reverting the functional and epigenetic programming of eNOS in arterial endothelium in IUGR guinea pigs. In humans, intrauterine growth restriction (IUGR) is associated with vascular dysfunction, oxidative stress and signs of endothelial programming in umbilical vessels. We aimed to determine the effects of maternal antioxidant treatment with N-acetylcysteine (NAC) on fetal endothelial function and endothelial nitric oxide synthase (eNOS) programming in IUGR guinea pigs. IUGR was induced by implanting ameroid constrictors on uterine arteries of pregnant guinea pigs at mid gestation, half of the sows receiving NAC in the drinking water (from day 34 until term). Fetal biometry and placental vascular resistance were followed by ultrasound throughout gestation. At term, umbilical arteries and fetal aortae were isolated to assess endothelial function by wire-myography. Primary cultures of endothelial cells (ECs) from fetal aorta, femoral and umbilical arteries were used to determine eNOS mRNA levels by quantitative PCR and analyse DNA methylation in the Nos3 promoter by pyrosequencing. Doppler ultrasound measurements showed that NAC reduced placental vascular resistance in IUGR (P < 0.05) and recovered fetal weight (P < 0.05), increasing fetal-to-placental ratio at term (∼40%) (P < 0.001). In IUGR, NAC treatment restored eNOS-dependent relaxation in aorta and umbilical arteries (P < 0.05), normalizing eNOS mRNA levels in EC fetal and umbilical arteries (P < 0.05). IUGR-derived ECs had a decreased DNA methylation (∼30%) at CpG -170 (from the transcription start site) and this epigenetic signature was absent in NAC-treated fetuses (P < 0.001). These data show that IUGR-ECs have common molecular markers of eNOS programming in umbilical and systemic arteries and this effect is prevented by maternal treatment with antioxidants. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  14. Effects of n-3 long-chain PUFA supplementation to lactating mothers and their breastfed children on child growth and morbidity: a 2 × 2 factorial randomized controlled trial in rural Ethiopia.

    PubMed

    Argaw, Alemayehu; Wondafrash, Mekitie; Bouckaert, Kimberley P; Kolsteren, Patrick; Lachat, Carl; Belachew, Tefera; De Meulenaer, Bruno; Huybregts, Lieven

    2018-03-01

    Recurrent infections and inflammation contribute to growth faltering in low-income countries. n-3 (ω-3) Long-chain polyunsaturated fatty-acids (LC-PUFAs) may improve immune maturation, resistance to infections, and growth in young children who are at risk. We evaluated the independent and combined effects of fish oil (500 mg n-3 LC-PUFAs/d) supplementation to lactating mothers and their breastfed children, aged 6-24 mo, on child morbidity, systemic inflammation, and growth in southwest Ethiopia. A 4-arm double-blind randomized controlled trial was conducted by enrolling 360 mother-infant pairs with infants 6-12 mo old. Study arms were both the lactating mother and child receiving fish oil intervention (MCI), only the lactating mother receiving fish oil intervention and child receiving placebo control (MI), only the child receiving intervention and mother receiving placebo control (CI), and both mother and child receiving a placebo supplement or control (C). The primary study outcome was linear growth using monthly changes in length-for-age z score. Anthropometric measurements were taken monthly, and hemoglobin, C-reactive protein, and blood LC-PUFAs were measured at baseline and after 6 and 12 mo of follow-up. Weekly morbidity surveillance was conducted throughout the study. Fish-oil supplementation significantly increased blood n-3 LC-PUFA concentration (P < 0.01) and decreased the arachidonic acid:(docosahexaenoic acid + eicosapentaenoic acid) ratio (P < 0.001) in all intervention arms. No significant intervention effect was found on linear growth, morbidity, or systemic inflammation. Compared to the control group, a small positive effect on monthly changes in weight-for-length z scores was found in the CI arm (effect size: 0.022/mo; 95% CI: 0.005, 0.039/mo; P = 0.012) and the MCI arm (effect size: 0.018/mo; 95% CI: 0.001, 0.034/mo; P = 0.041). n-3 LC-PUFA supplementation of lactating mothers and children did not affect child linear growth and morbidity in a low-income setting. n-3 LC-PUFA supplementation given directly to children modestly increased relative weight gain. This trial was registered at clinicaltrials.gov as NCT01817634.

  15. Electronic waste leachate-mediated DNA fragmentation and cell death by apoptosis in mouse fibroblast (NIH/3T3) cell line.

    PubMed

    Alabi, Okunola A; Bakare, Adekunle A; Filippin-Monteiro, Fabíola B; Sierra, Jelver A; Creczynski-Pasa, Tânia B

    2013-08-01

    This study investigated the apoptotic effect of electronic waste on fibroblast cell line. Cells were treated with different concentrations of the leachate for 24h. Cell viability was detected by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test, nuclear morphology of cells was explored by acridine orange (AO)/ethidium bromide (EB) double staining, mitochondrial membrane potential was evaluated using JC-1 probe while cell cycle analysis was conducted using flow cytometry. The oxidative status was detected using DCFH-DA (dichlorofluorescin diacetate) probe and the relationship between cell death and ROS (reactive oxygen species) was investigated using N-acetylcysteine. Results showed an increased cell death as detected by MTT assay and AO/EB staining. Cell cycle analysis indicated an induction of sub/G1 events while JC-1 probe showed significant disruption of mitochondrial membrane potential. There was significant induction of ROS, while N-acetylcysteine protected the cells from DNA damage. These suggest apoptotic pathway as a possible mechanism of e-waste induced cyto-genotoxicity. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Clinical trials of N-acetylcysteine in psychiatry and neurology: A systematic review.

    PubMed

    Deepmala; Slattery, John; Kumar, Nihit; Delhey, Leanna; Berk, Michael; Dean, Olivia; Spielholz, Charles; Frye, Richard

    2015-08-01

    N-acetylcysteine (NAC) is recognized for its role in acetaminophen overdose and as a mucolytic. Over the past decade, there has been growing evidence for the use of NAC in treating psychiatric and neurological disorders, considering its role in attenuating pathophysiological processes associated with these disorders, including oxidative stress, apoptosis, mitochondrial dysfunction, neuroinflammation and glutamate and dopamine dysregulation. In this systematic review we find favorable evidence for the use of NAC in several psychiatric and neurological disorders, particularly autism, Alzheimer's disease, cocaine and cannabis addiction, bipolar disorder, depression, trichotillomania, nail biting, skin picking, obsessive-compulsive disorder, schizophrenia, drug-induced neuropathy and progressive myoclonic epilepsy. Disorders such as anxiety, attention deficit hyperactivity disorder and mild traumatic brain injury have preliminary evidence and require larger confirmatory studies while current evidence does not support the use of NAC in gambling, methamphetamine and nicotine addictions and amyotrophic lateral sclerosis. Overall, NAC treatment appears to be safe and tolerable. Further well designed, larger controlled trials are needed for specific psychiatric and neurological disorders where the evidence is favorable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Isolation of tissue layers in hermatypic corals by N-acetylcysteine: morphological and proteomic examinations

    NASA Astrophysics Data System (ADS)

    Peng, S.-E.; Luo, Y.-J.; Huang, H.-J.; Lee, I.-T.; Hou, L.-S.; Chen, W.-N. U.; Fang, L.-S.; Chen, C.-S.

    2008-03-01

    Corals are diploblastic in body pattern and include two tissue layers, the epidermis and gastrodermis, interconnected by an acellular matrix mesoglea. During development, cells in these tissue layers differentiate morphologically and functionally. In most hermatypic corals, the gastrodermis further develops an ability to associate with microalgae dinoflagellates. This endosymbiosis occurs inside specific host gastrodermal cells, and its mechanism still remains unclear notwithstanding decades of research. The delay in progress is partly due to the difficulty in separating the gastrodermis and its symbionts from the epidermis for detailed cellular and biochemical investigations. The present study reports a simple method to separate these two tissue layers in hermatypic corals using the reducing agent, N-acetylcysteine (NAC). Efficient tissue and proteomic isolations are demonstrated by microscopy and two-dimensional SDS polyacrylamide gel electrophoresis (2D SDS-PAGE). The NAC treatment was able to separate tissue layers without inducing protein degradation. Furthermore, the sensitivity of protein detection greatly increases in the isolated tissue layers. The application of the present technique provides future research on endosymbiosis and coral development with a tool for higher accuracy and sensitivity.

  18. Differentiation of Sclerotinia minor depends on thiol redox state and oxidative stress.

    PubMed

    Patsoukis, Nikolaos; Georgiou, Christos D

    2008-01-01

    Sclerotial differentiation in Sclerotinia minor is associated with oxidative stress and thiol redox state. The significance of oxidative stress to sclerotial differentiation was revealed by the higher oxidative stress of S. minor compared with a nonsclerotiogenic counterpart. The effect of thiol redox state on sclerotial differentiation was shown by the antioxidant action of the thiol (-SH) group of N-acetylcysteine and cysteine and by an unknown (not antioxidant) role of glutathione (GSH) on S. minor. The nonantioxidant role of GSH was indicated by the differentiation-inhibiting and differentiation-noninhibiting actions of the GSH biosynthesis inhibitor L-buthionine-S,R-sulfoximine and the GSH biosynthesis inducer L-2-oxo-thiazolidine-4-carboxylate, respectively, and by the increase of oxidative stress they caused during the transition from the undifferentiated to differentiated state of S. minor. Moreover, N-acetylcysteine can be used as a potent nontoxic fungicide against this phytopathogenic fungus by acting as a growth-inhibiting cytotoxic oxidant and by sustaining the fungus in the undifferentiated hyphal stage, which is vulnerable to degradation by soil microorganisms.

  19. Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution.

    PubMed

    Ma, Hongbo; Wallis, Lindsay K; Diamond, Steve; Li, Shibin; Canas-Carrell, Jaclyn; Parra, Amanda

    2014-10-01

    The present study investigated the impact of solar UV radiation on ZnO nanoparticle toxicity through photocatalytic ROS generation and photo-induced dissolution. Toxicity of ZnO nanoparticles to Daphnia magna was examined under laboratory light versus simulated solar UV radiation (SSR). Photocatalytic ROS generation and particle dissolution were measured on a time-course basis. Two toxicity mitigation assays using CaCl2 and N-acetylcysteine were performed to differentiate the relative importance of these two modes of action. Enhanced ZnO nanoparticle toxicity under SSR was in parallel with photocatalytic ROS generation and enhanced particle dissolution. Toxicity mitigation by CaCl2 to a less extent under SSR than under lab light demonstrates the role of ROS generation in ZnO toxicity. Toxicity mitigation by N-acetylcysteine under both irradiation conditions confirms the role of particle dissolution and ROS generation. These findings demonstrate the importance of considering environmental solar UV radiation when assessing ZnO nanoparticle toxicity and risk in aquatic systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Antiapoptotic and antigenotoxic effects of N-acetylcysteine in human cells of endothelial origin.

    PubMed

    Aluigi, M G; De Flora, S; D'Agostini, F; Albini, A; Fassina, G

    2000-01-01

    N-Acetylcysteine (NAC) is a drug bearing multiple preventive properties that can inhibit genotoxicity and carcinogenicity. NAC also inhibits invasion and metastasis of malignant cells, as well as tumor take. We recently demonstrated the effects of NAC on Kaposi's sarcoma cells supernatant-induced invasion in vitro and angiogenesis in vivo. Many anticancer agents act through cytotoxicity of rapidly proliferating cells and several antineoplastic drugs induce apoptosis of cancer cells. Since endothelial cells are the target for the inhibition of angiogenesis, we wanted to verify that NAC, while inhibiting tumor vascularization and endothelial cell invasion would not induce endothelial cell apoptosis. We tested the ability of NAC to modulate apoptosis and cytogenetic damage in vitro and to promote differentiation on a reconstituted basement membrane (matrigel) in two endothelial cell lines (EAhy926 and HUVE). Treatment with NAC protected endothelial cells from TGF-beta-induced apoptosis and paraquat-induced cytogenetic damage. Therefore, NAC acts as an antiangiogenic agent and, at the same time, appears to prevent apoptosis and oxygen-related genotoxicity in endothelial cells.

  1. N-acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities

    PubMed Central

    Bavarsad Shahripour, Reza; Harrigan, Mark R; Alexandrov, Andrei V

    2014-01-01

    Background There is an expanding field of research investigating the benefits of medicines with multiple mechanisms of action across neurological disorders. N-acetylcysteine (NAC), widely known as an antidote to acetaminophen overdose, is now emerging as treatment of vascular and nonvascular neurological disorders. NAC as a precursor to the antioxidant glutathione modulates glutamatergic, neurotrophic, and inflammatory pathways. Aim and discussion Most NAC studies up to date have been carried out in animal models of various neurological disorders with only a few studies completed in humans. In psychiatry, NAC has been tested in over 20 clinical trials as an adjunctive treatment; however, this topic is beyond the scope of this review. Herein, we discuss NAC molecular, intracellular, and systemic effects, focusing on its potential applications in neurodegenerative diseases including spinocerebellar ataxia, Parkinson's disease, tardive dyskinesia, myoclonus epilepsy of the Unverricht–Lundbor type as well as multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's disease. Conclusion Finally, we review the potential applications of NAC to facilitate recovery after traumatic brain injury, cerebral ischemia, and in treatment of cerebrovascular vasospasm after subarachnoid hemorrhage. PMID:24683506

  2. Evidence against a direct role for oxidative stress in cadmium-induced axial malformation in the chick embryo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Jennifer, E-mail: jennifer.thompson@ucd.i; Doi, Takashi; The Children's Research Centre, Our Lady's Children's Hospital, Dublin 12

    Cadmium (Cd) is a powerful inducer of oxidative stress. It also causes ventral body wall defects in chick embryos treated at Hamburger-Hamilton stages 16-17. By measuring malondialdehyde levels (TBARS method) and cotreating with antioxidants (tempol, ascorbate, and N-acetylcysteine), we sought to determine if oxidative stress were directly related to teratogenesis. We also investigated the expression of mRNAs for antioxidant enzymes superoxide dismutase (SOD) -1 and -2, catalase (CAT), and glutathione peroxidase (GPx). RT-PCR showed reductions in SOD-1, SOD-2, and CAT 1 hour after treatment with Cd. MDA levels increased 4 hours after Cd, and remained elevated 24 hours after treatment.more » Of the antioxidants, only N-acetylcysteine reduced MDA levels to control values. Nonetheless, no antioxidant could reduce embryo lethality or malformation rates. Furthermore, MDA levels 24 hours after treatment were identical in malformed and normal embryos exposed to Cd. Hence, we conclude that oxidative stress may not have a direct role in Cd teratogenesis.« less

  3. N-Acetylcysteine Selectively Antagonizes the Activity of Imipenem in Pseudomonas aeruginosa by an OprD-Mediated Mechanism

    PubMed Central

    Rodríguez-Beltrán, Jerónimo; Cabot, Gabriel; Valencia, Estela Ynés; Costas, Coloma; Bou, German; Oliver, Antonio

    2015-01-01

    The modulating effect of N-acetylcysteine (NAC) on the activity of different antibiotics has been studied in Pseudomonas aeruginosa. Our results demonstrate that, in contrast to previous reports, only the activity of imipenem is clearly affected by NAC. MIC and checkerboard determinations indicate that the NAC-based modulation of imipenem activity is dependent mainly on OprD. SDS-PAGE of outer membrane proteins (OMPs) after NAC treatments demonstrates that NAC does not modify the expression of OprD, suggesting that NAC competitively inhibits the uptake of imipenem through OprD. Similar effects on imipenem activity were obtained with P. aeruginosa clinical isolates. Our results indicate that imipenem-susceptible P. aeruginosa strains become resistant upon simultaneous treatment with NAC and imipenem. Moreover, the generality of the observed effects of NAC on antibiotic activity was assessed with two additional bacterial species, Escherichia coli and Acinetobacter baumannii. Caution should be taken during treatments, as the activity of imipenem may be modified by physiologically attainable concentrations of NAC, particularly during intravenous and nebulized regimes. PMID:25801561

  4. N-acetylcysteine selectively antagonizes the activity of imipenem in Pseudomonas aeruginosa by an OprD-mediated mechanism.

    PubMed

    Rodríguez-Beltrán, Jerónimo; Cabot, Gabriel; Valencia, Estela Ynés; Costas, Coloma; Bou, German; Oliver, Antonio; Blázquez, Jesús

    2015-01-01

    The modulating effect of N-acetylcysteine (NAC) on the activity of different antibiotics has been studied in Pseudomonas aeruginosa. Our results demonstrate that, in contrast to previous reports, only the activity of imipenem is clearly affected by NAC. MIC and checkerboard determinations indicate that the NAC-based modulation of imipenem activity is dependent mainly on OprD. SDS-PAGE of outer membrane proteins (OMPs) after NAC treatments demonstrates that NAC does not modify the expression of OprD, suggesting that NAC competitively inhibits the uptake of imipenem through OprD. Similar effects on imipenem activity were obtained with P. aeruginosa clinical isolates. Our results indicate that imipenem-susceptible P. aeruginosa strains become resistant upon simultaneous treatment with NAC and imipenem. Moreover, the generality of the observed effects of NAC on antibiotic activity was assessed with two additional bacterial species, Escherichia coli and Acinetobacter baumannii. Caution should be taken during treatments, as the activity of imipenem may be modified by physiologically attainable concentrations of NAC, particularly during intravenous and nebulized regimes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Predicting risk in patients with acetaminophen overdose

    PubMed Central

    James, Laura P.; Gill, Prit; Simpson, Pippa

    2014-01-01

    Acetaminophen (APAP) overdose is a very common cause of drug overdose and acute liver failure in the US and Europe. Mechanism-based biomarkers of APAP toxicity have the potential to improve the clinical management of patients with large dose ingestions of APAP. The current approach to the management of APAP toxicity is limited by imprecise and time-constrained risk assessments and late-stage markers of liver injury. A recent study of “low-risk” APAP overdose patients who all received treatment with N-acetylcysteine, found that cell-death biomarkers were more sensitive than alanine aminotransferase (ALT) and APAP concentrations in predicting the development of acute liver injury. The data suggest a potential role for new biomarkers to identify “low risk” patients following APAP overdose. However, a practical and ethical consideration that complicates predictive biomarker research in this area is the clinical need to deliver antidote treatment within 10 hours of APAP overdose. The treatment effect and time-dependent nature of N-acetylcysteine treatment must be considered in future “predictive” toxicology studies of APAP-induced liver injury. PMID:23984999

  6. Hormones, metabolites, and reproduction in Holsteins, Jerseys, and their crosses.

    PubMed

    Brown, K L; Cassell, B G; McGilliard, M L; Hanigan, M D; Gwazdauskas, F C

    2012-02-01

    Holsteins (HH), Jerseys (JJ), and their crosses in first (n=157) and second (n=107) lactation were used to determine if reproduction, progesterone (P4), insulin-like growth factor 1 (IGF-1), insulin, nonesterified fatty acids (NEFA), and milk production differed between genetic groups. Thirty-four cows were Holstein-Jersey (HJ) crosses, 46 were Jersey-Holstein (JH) crosses, 48 were purebred Holsteins (HH), and 29 were purebred Jerseys (JJ) in first lactation, whereas the second-lactation animals included 23 HJ, 35 JH, 35 HH, and 14 JJ. Blood samples were collected weekly for the first 10 wk postpartum. Analyses were conducted using the MIXED, chi-square, and GLIMMIX procedures (SAS Institute Inc., Cary, NC). Seasons of calving were cold (November to May) and hot (June to October) and were combined with year to form 8 year-seasons. Days open and number of services were affected by genetic group. The HH were open 169±8 d, which was greater than HJ (143±9 d), JJ (132±10 d), and JH (127±8 d). The HH had 2.4±0.1 services per pregnancy, which was greater than JH (1.9±0.1), but not different from HJ (2.1±0.2) or JJ (2.1±0.2). Concentrations of NEFA were greater in lactation 2 (0.52±0.02 mEq/L) than in lactation 1 (0.45±0.02 mEq/L) and decreased over the 10-wk period. Concentrations of NEFA were greater in the cold season except in yr 3. Insulin in lactation 1 (0.81±0.03 ng/mL) was greater than in lactation 2 (0.72±0.03 ng/mL); insulin decreased to wk 2 then gradually increased. The HJ had the greatest insulin concentrations (0.87±0.04 ng/mL) and the JJ had the lowest (0.66±0.04 ng/mL), and IGF-1 gradually increased over the 10-wk period. Milk production (actual yield in the first 305 d, not adjusted for fat and protein) was affected by genetic group, lactation number, year-season, and wk 1 insulin. The HH produced 10,348±207 kg of milk, which was greater than the HJ (9,129±230 kg), the JH (9,384±190 kg), and the JJ (7,080±240 kg). Milk production in lactation 2 (9,676±163 kg) was greater than that in lactation 1 (8,294±160 kg). The JJ (10.3±4.7%) had the highest frequency of mastitis. The chance of getting mastitis for HH (1.1±0.9%) differed from that for HJ (9.4±4.1%), JH (8.1±3.4%), and JJ (10.3±4.7%). Genetic group affected hormones and metabolites, which may partially explain differences in reproductive measures and milk yield. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Different effects of low- and high-dose insulin on ROS production and VEGF expression in bovine retinal microvascular endothelial cells in the presence of high glucose.

    PubMed

    Wu, Haixiang; Jiang, Chunhui; Gan, Dekang; Liao, Yujie; Ren, Hui; Sun, Zhongcui; Zhang, Meng; Xu, Gezhi

    2011-09-01

    Clinical trials have demonstrated that acute intensive insulin therapy may cause transient worsening of retinopathy in type 1 and type 2 diabetes patients. However, the related mechanism still remains controversial. The purpose of the present study was to investigate the effect of insulin on the mitochondrial membrane potential (△Ψm), reactive oxygen species (ROS) production, UCP-2 and VEGF expression in bovine retinal microvascular endothelial cells (BRECs) in the presence of normal or high glucose and the related mechanisms. BRECs were isolated as primary cultures and identified by immunostaining. Passage BRECs were initially exposed to normal (5 mM) or high glucose (30 mM) for 3 days, with equimolar L: -glucose supplemented for osmotic equation. Then the cells were treated with 1 nM, 10 nM, or 100 nM insulin for 24 h: △Ψm and ROS production were determined by JC-1 and CM-H2DCFDA, respectively. Expression of UCP-2 and VEGF mRNA was determined by real-time RT-PCR; expression UCP-2 and VEGF protein was determined by Western-blotting analysis. A general ROS scavenger N-acetylcysteine (NAC, 10 mM) and an NADPH oxidase inhibitor apocynin (1 mmol/l) were added 1 h before treatment with 100 nM insulin. Insulin increased △Ψm, ROS production, and expression of UCP-2 and VEGF in BRECs at normal glucose (5 mM) in a dose-dependent manner. Low-dose insulin (1 nM) decreased △Ψm, ROS production, and UCP-2, VEGF expression in BRECs at high glucose (30 mM); and high-dose insulin (10 nM, 100nM) recovered △Ψm, ROS production, and UCP-2, VEGF expression. Pretreatment of cells with NADPH oxidase inhibitor apocynin significantly suppressed 100 nM insulin-induced ROS production (p < 0.01, one-way ANOVA). Pretreatment of cells with ROS scavenger N-acetylcysteine completely blocked insulin-induced UCP-2 expression (p < 0.01, one-way ANOVA) and significantly suppressed VEGF expression (p < 0.01, one-way ANOVA). High-dose insulin-induced ROS production and VEGF expression in BRECs in the presence of high glucose might be one of the reasons for the transient worsening of diabetic retinopathy during intensive insulin treatment.

  8. Effect of uterine size on fertility of lactating dairy cows.

    PubMed

    Baez, Giovanni M; Barletta, Rafael V; Guenther, Jerry N; Gaska, Jerry M; Wiltbank, Milo C

    2016-05-01

    There are multiple reasons for reduced fertility in lactating dairy cows. We hypothesized that one cause of reduced fertility could be the overall size of the reproductive tract, particularly the uterus, given well-established uterine functions in many aspects of the reproductive process. Thus, the objectives of this study were to evaluate the variability in uterine size in primiparous and multiparous dairy cows and to analyze whether there was an association between uterine size and fertility, particularly within a given parity. Lactating Holstein dairy cows (n = 704) were synchronized to receive timed artificial insemination (TAI) on Day 81 ± 3 of lactation by using the Double-Ovsynch protocol (GnRH-7d-PGF-3d-GnRH-7d-GnRH-7d-PGF-56h-GnRH-16h-TAI). At the time of the last injection of PGF, uterine diameter was determined at the greater curvature using ultrasound, uterine length was determined by rectal palpation, and uterine volume was calculated from these two measurements. Blood samples were also taken to measure progesterone to assure synchronization of all cows used in the final analysis (n = 616; primiparous, n = 289; multiparous, n = 327). Primiparous cows had greater percentage pregnant/AI (P/AI) compared to multiparous cows (49.8% vs. 39.1% at 67 days of pregnancy diagnosis, P = 0.009). Diameter, length, and volume of the uterus were larger in multiparous than in primiparous cows (P < 0.001). For multiparous cows, uterine diameter and volume were smaller in cows that became pregnant compared to cows that were not pregnant to the TAI with a similar tendency observed in primiparous cows. Logistic regression and quartile analysis also showed that as uterine volume increased, there was decreased P/AI in either primiparous or multiparous cows. Thus, there is a negative association between uterine size and fertility in lactating dairy cows with a larger uterus associated with reduced fertility, particularly for multiparous cows. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows.

    PubMed

    van Gastelen, S; Visker, M H P W; Edwards, J E; Antunes-Fernandes, E C; Hettinga, K A; Alferink, S J J; Hendriks, W H; Bovenhuis, H; Smidt, H; Dijkstra, J

    2017-11-01

    Complex interactions between rumen microbiota, cow genetics, and diet composition may exist. Therefore, the effect of linseed oil, DGAT1 K232A polymorphism (DGAT1), and the interaction between linseed oil and DGAT1 on CH 4 and H 2 emission, energy and N metabolism, lactation performance, ruminal fermentation, and rumen bacterial and archaeal composition was investigated. Twenty-four lactating Holstein-Friesian cows (i.e., 12 with DGAT1 KK genotype and 12 with DGAT1 AA genotype) were fed 2 diets in a crossover design: a control diet and a linseed oil diet (LSO) with a difference of 22 g/kg of dry matter (DM) in fat content between the 2 diets. Both diets consisted of 40% corn silage, 30% grass silage, and 30% concentrates (DM basis). Apparent digestibility, lactation performance, N and energy balance, and CH 4 emission were measured in climate respiration chambers, and rumen fluid samples were collected using the oral stomach tube technique. No linseed oil by DGAT1 interactions were observed for digestibility, milk production and composition, energy and N balance, CH 4 and H 2 emissions, and rumen volatile fatty acid concentrations. The DGAT1 KK genotype was associated with a lower proportion of polyunsaturated fatty acids in milk fat, and with a higher milk fat and protein content, and proportion of saturated fatty acids in milk fat compared with the DGAT1 AA genotype, whereas the fat- and protein-corrected milk yield was unaffected by DGAT1. Also, DGAT1 did not affect nutrient digestibility, CH 4 or H 2 emission, ruminal fermentation or ruminal archaeal and bacterial concentrations. Rumen bacterial and archaeal composition was also unaffected in terms of the whole community, whereas at the genus level the relative abundances of some bacterial genera were found to be affected by DGAT1. The DGAT1 KK genotype was associated with a lower metabolizability (i.e., ratio of metabolizable to gross energy intake), and with a tendency for a lower milk N efficiency compared with the DGAT1 AA genotype. The LSO diet tended to decrease CH 4 production (g/d) by 8%, and significantly decreased CH 4 yield (g/kg of DM intake) by 6% and CH 4 intensity (g/kg of fat- and protein-corrected milk) by 11%, but did not affect H 2 emission. The LSO diet also decreased ruminal acetate molar proportion, the acetate to propionate ratio, and the archaea to bacteria ratio, whereas ruminal propionate molar proportion and milk N efficiency increased. Ruminal bacterial and archaeal composition tended to be affected by diet in terms of the whole community, with several bacterial genera found to be significantly affected by diet. These results indicate that DGAT1 does not affect enteric CH 4 emission and production pathways, but that it does affect traits other than lactation characteristics, including metabolizability, N efficiency, and the relative abundance of Bifidobacterium. Additionally, linseed oil reduces CH 4 emission independent of DGAT1 and affects the rumen microbiota and its fermentative activity. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  10. Oral N-acetylcysteine and exercise tolerance in mild chronic obstructive pulmonary disease.

    PubMed

    Hirai, Daniel M; Jones, Joshua H; Zelt, Joel T; da Silva, Marianne L; Bentley, Robert F; Edgett, Brittany A; Gurd, Brendon J; Tschakovsky, Michael E; O'Donnell, Denis E; Neder, J Alberto

    2017-05-01

    Heightened oxidative stress is implicated in the progressive impairment of skeletal muscle vascular and mitochondrial function in chronic obstructive pulmonary disease (COPD). Whether accumulation of reactive oxygen species contributes to exercise intolerance in the early stages of COPD is unknown. The purpose of the present study was to determine the effects of oral antioxidant treatment with N -acetylcysteine (NAC) on respiratory, cardiovascular, and locomotor muscle function and exercise tolerance in patients with mild COPD. Thirteen patients [forced expiratory volume in 1 s (FEV 1 )-to-forced vital capacity ratio < lower limit of normal (LLN) and FEV 1 ≥ LLN) were enrolled in a double-blind, randomized crossover study to receive NAC (1,800 mg/day) or placebo for 4 days. Severe-intensity constant-load exercise tests were performed with noninvasive measurements of central hemodynamics (stroke volume, heart rate, and cardiac output via impedance cardiography), arterial blood pressure, pulmonary ventilation and gas exchange, quadriceps muscle oxygenation (near-infrared spectroscopy), and estimated capillary blood flow. Nine patients completed the study with no major adverse clinical effects. Although NAC elevated plasma glutathione by ~27% compared with placebo ( P < 0.05), there were no differences in exercise tolerance (placebo: 325 ± 47 s, NAC: 336 ± 51 s), central hemodynamics, arterial blood pressure, pulmonary ventilation or gas exchange, locomotor muscle oxygenation, or capillary blood flow from rest to exercise between conditions ( P > 0.05 for all). In conclusion, modulation of plasma redox status with oral NAC treatment was not translated into beneficial effects on central or peripheral components of the oxygen transport pathway, thereby failing to improve exercise tolerance in nonhypoxemic patients with mild COPD. NEW & NOTEWORTHY Acute antioxidant treatment with N -acetylcysteine (NAC) elevated plasma glutathione but did not modulate central or peripheral components of the O 2 transport pathway, thereby failing to improve exercise tolerance in patients with mild chronic obstructive pulmonary disease (COPD). Copyright © 2017 the American Physiological Society.

  11. A one-year observational study of all hospitalized acute poisonings in Oslo: complications, treatment and sequelae

    PubMed Central

    2012-01-01

    Objectives Changes in poisoning trends may affect both complications and outcomes in patients with acute poisoning. This study reports the treatments given and the frequency of complications, also related to treatment, mortality and sequelae related to various toxic agents. Methods All acute poisonings in adults (≥16 years) admitted to the five hospitals in Oslo were included consecutively during one year (2008 to 2009) in an observational cross-sectional multicenter study. A standardized form was completed by the treating physician, which covered the study aims. Results There were 1065 admissions in 912 patients. The median length of hospital stay was one day, and 49% were observed in an intensive care unit (ICU). Active treatment was given to 83%, and consisted of supportive therapy (70%), antidote(s) (38%), activated charcoal (16%) and gastric lavage (9%). The most commonly used antidotes were flumazenil (19%), naloxone (17%) and N-acetylcysteine (11%). The rate of treatment-related complications was 2.4% (21/884). Neither flumazenil, naloxone, nor the combination, was associated with convulsions or other complications. Among those receiving N-acetylcysteine, 5% (6/120) developed allergic reactions, one of which mandated discontinuation of treatment. Nineteen percent presented in a coma. Complications developed in 30%, compared with 18% in a 2003 study, mainly respiratory depression (12%), prolonged QTc interval (6%) and hypotension (5%). Eight patients died (0.8%) and five (0.5%) survived with permanent sequelae, mainly anoxic brain damage. Discussion Few patients stayed more than two days. The use of the ICU was liberal, considering that only one out of five presented in a coma. Antidotes were frequently given diagnostically. Although N-acetylcysteine induced allergic reactions, most were mild and treatment discontinuation was only necessary once. The frequency of complications had almost doubled in five years, although the poisoning pattern was largely unchanged. However, few patients developed permanent sequelae. PMID:22828054

  12. A randomized controlled trial of pre-procedure simethicone and N-acetylcysteine to improve mucosal visibility during gastroscopy – NICEVIS

    PubMed Central

    Basford, Peter John; Brown, James; Gadeke, Lisa; Fogg, Carole; Haysom-Newport, Ben; Ogollah, Reuben; Bhattacharyya, Rupam; Longcroft-Wheaton, Gaius; Thursby-Pelham, Fergus; Neale, James R.; Bhandari, Pradeep

    2016-01-01

    Background and study aims: Mucosal views can be impaired by residual bubbles and mucus during gastroscopy. This study aimed to determine whether a pre-gastroscopy drink containing simethicone and N-acetylcysteine improves mucosal visualisation. Patients and methods: We conducted a randomized controlled trial recruiting 126 subjects undergoing routine gastroscopy. Subjects were randomized 1:1:1 to receive: A—pre-procedure drink of water, simethicone and N-acetylcysteine (NAC); B—water alone; or C—no preparation. Study endoscopists were blinded to group allocation. Digital images were taken at 4 locations (lower esophagus/upper gastric body/antrum/fundus), and rated for mucosal visibility (MV) using a 4-point scale (1 = best, 4 = worst) by 4 separate experienced endoscopists. The primary outcome measure was mean mucosal visibility score (MVS). Secondary outcome measures were procedure duration and volume of fluid flush required to achieve adequate mucosal views. Results: Mean MVS for Group A was significantly better than for Group B (1.35 vs 2.11, P < 0.001) and Group C (1.35 vs 2.21, P < 0.001). Mean flush volume required to achieve adequate mucosal views was significantly lower in Group A than Group B (2.0 mL vs 31.5 mL, P = 0.001) and Group C (2.0 mL vs 39.2 mL P < 0.001). Procedure duration did not differ significantly between any of the 3 groups. MV scores at each of the 4 locations demonstrated significantly better mucosal visibility in Group A compared to Group B and Group C (P < 0.0025 for all comparisons). Conclusions: A pre-procedure drink containing simethicone and NAC significantly improves mucosal visibility during gastroscopy and reduces the need for flushes during the procedure. Effectiveness in the lower esophagus demonstrates potential benefit in Barrett’s oesophagus surveillance gastroscopy. PMID:27853746

  13. A randomized controlled trial of pre-procedure simethicone and N-acetylcysteine to improve mucosal visibility during gastroscopy - NICEVIS.

    PubMed

    Basford, Peter John; Brown, James; Gadeke, Lisa; Fogg, Carole; Haysom-Newport, Ben; Ogollah, Reuben; Bhattacharyya, Rupam; Longcroft-Wheaton, Gaius; Thursby-Pelham, Fergus; Neale, James R; Bhandari, Pradeep

    2016-11-01

    Background and study aims: Mucosal views can be impaired by residual bubbles and mucus during gastroscopy. This study aimed to determine whether a pre-gastroscopy drink containing simethicone and N-acetylcysteine improves mucosal visualisation. Patients and methods: We conducted a randomized controlled trial recruiting 126 subjects undergoing routine gastroscopy. Subjects were randomized 1:1:1 to receive: A-pre-procedure drink of water, simethicone and N-acetylcysteine (NAC); B-water alone; or C-no preparation. Study endoscopists were blinded to group allocation. Digital images were taken at 4 locations (lower esophagus/upper gastric body/antrum/fundus), and rated for mucosal visibility (MV) using a 4-point scale (1 = best, 4 = worst) by 4 separate experienced endoscopists. The primary outcome measure was mean mucosal visibility score (MVS). Secondary outcome measures were procedure duration and volume of fluid flush required to achieve adequate mucosal views. Results: Mean MVS for Group A was significantly better than for Group B (1.35 vs 2.11, P  < 0.001) and Group C (1.35 vs 2.21, P  < 0.001). Mean flush volume required to achieve adequate mucosal views was significantly lower in Group A than Group B (2.0 mL vs 31.5 mL, P  = 0.001) and Group C (2.0 mL vs 39.2 mL P  < 0.001). Procedure duration did not differ significantly between any of the 3 groups. MV scores at each of the 4 locations demonstrated significantly better mucosal visibility in Group A compared to Group B and Group C ( P  < 0.0025 for all comparisons). Conclusions: A pre-procedure drink containing simethicone and NAC significantly improves mucosal visibility during gastroscopy and reduces the need for flushes during the procedure. Effectiveness in the lower esophagus demonstrates potential benefit in Barrett's oesophagus surveillance gastroscopy.

  14. Performance and methane emissions in dairy cows fed oregano and green tea extracts as feed additives.

    PubMed

    Kolling, G J; Stivanin, S C B; Gabbi, A M; Machado, F S; Ferreira, A L; Campos, M M; Tomich, T R; Cunha, C S; Dill, S W; Pereira, L G R; Fischer, V

    2018-05-01

    Plant extracts have been proposed as substitutes for chemical feed additives due to their potential as rumen fermentation modifiers and because of their antimicrobial and antioxidant activities, possibly reducing methane emissions. This study aimed to evaluate the use of oregano (OR), green tea extracts (GT), and their association as feed additives on the performance and methane emissions from dairy between 28 and 87 d of lactation. Thirty-two lactating dairy cows, blocked into 2 genetic groups: 16 Holstein cows and 16 crossbred Holstein-Gir, with 522.6 ± 58.3 kg of body weight, 57.2 ± 20.9 d in lactation, producing 27.5 ± 5.0 kg/cow of milk and with 3.1 ± 1.8 lactations were evaluated (means ± standard error of the means). Cows were allocated into 4 treatments: control (CON), without plant extracts in the diet; oregano extract (OR), with the addition of 0.056% of oregano extract in the dry matter (DM) of the diet; green tea (GT), with the addition of 0.028% of green tea extract in the DM of the diet; and mixture, with the addition of 0.056% oregano extract and 0.028% green tea extract in the DM of the diet. The forage-to-concentrate ratio was 60:40. Forage was composed of corn silage (94%) and Tifton hay (6%); concentrate was based on ground corn and soybean meal. Plant extracts were supplied as powder, which was previously added and homogenized into 1 kg of concentrate in natural matter, top-dressed onto the total mixed diet. No treatment by day interaction was observed for any of the evaluated variables, but some block by treatment interactions were significant. In Holstein cows, the mixture treatment decreased gross energy and tended to decrease the total-tract apparent digestibility coefficient for crude protein and total digestible nutrients when compared with OR. During the gas measurement period, GT and OR increased the digestible fraction of the ingested DM and decreased CH 4 expressed in grams per kilogram of digestible DMI compared with CON. The use of extracts did not change rumen pH, total volatile fatty acid concentration, milk yield, or most milk traits. Compared with CON, oregano addition decreased fat concentration in milk. The use of plant extracts altered some milk fatty acids but did not change milk fatty acids grouped according to chain length (short or long), saturation (unsaturated or saturated), total conjugated linoleic acids, and n-3 and n-6 contents. Green tea and oregano fed separately reduced gas emission in cows during the first third of lactation and have potential to be used as feed additives for dairy cows. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Therapeutic Effect of Nisin Z on Subclinical Mastitis in Lactating Cows▿

    PubMed Central

    Wu, Junqiang; Hu, Songhua; Cao, Liting

    2007-01-01

    Bovine subclinical mastitis is an inflammation of the mammary gland caused by bacterial intramammary infection, accounting for large economic losses. Treatment of subclinical mastitis is not suggested for lactating cows due to the risk of milk contamination. The objectives of this study were to evaluate an antimicrobial peptide, nisin, in the treatment of subclinical mastitis in lactating cows. A total of 90 lactating Holstein cows with subclinical mastitis were randomly divided into nisin-treated (n = 46) and control (n = 44) groups. In the nisin-treated group, cows received an intramammary infusion of nisin at a dose of 2,500,000 IU once daily for 3 days while the control cows received no treatment. Milk samples were collected from the affected mammary quarters before treatment and 1 and 2 weeks after treatment for analyses of bacteria, somatic cells, and N-acetyl-β-d-glucosaminidase (NAGase). Results indicated that nisin therapy had bacteriological cure rates of 90.1% for Streptococcus agalactiae (10 of 11), 50% for Staphylococcus aureus (7 of 14), 58.8% for coagulase-negative staphylococci (7 of 17), and 65.2% for all cases (30 of 46). Meanwhile, only 15.9% (7 of 44) of untreated cows spontaneously recovered. NAGase activity in milk samples and the number of mammary quarters with a milk somatic cell count of ≥500,000/ml were significantly decreased after nisin treatment while no significant changes took place in the control group. Because of its therapeutic effects on bovine subclinical mastitis, as well as its safety in humans, nisin deserves further study to clarify its effects on mastitis caused by different pathogens. PMID:17606675

  16. Mixed lactate and caffeine compound increases satellite cell activity and anabolic signals for muscle hypertrophy.

    PubMed

    Oishi, Yoshimi; Tsukamoto, Hayato; Yokokawa, Takumi; Hirotsu, Keisuke; Shimazu, Mariko; Uchida, Kenji; Tomi, Hironori; Higashida, Kazuhiko; Iwanaka, Nobumasa; Hashimoto, Takeshi

    2015-03-15

    We examined whether a mixed lactate and caffeine compound (LC) could effectively elicit proliferation and differentiation of satellite cells or activate anabolic signals in skeletal muscles. We cultured C2C12 cells with either lactate or LC for 6 h. We found that lactate significantly increased myogenin and follistatin protein levels and phosphorylation of P70S6K while decreasing the levels of myostatin relative to the control. LC significantly increased protein levels of Pax7, MyoD, and Ki67 in addition to myogenin, relative to control. LC also significantly increased follistatin expression relative to control and stimulated phosphorylation of mTOR and P70S6K. In an in vivo study, male F344/DuCrlCrlj rats were assigned to control (Sed, n = 10), exercise (Ex, n = 12), and LC supplementation (LCEx, n = 13) groups. LC was orally administered daily. The LCEx and Ex groups were exercised on a treadmill, running for 30 min at low intensity every other day for 4 wk. The LCEx group experienced a significant increase in the mass of the gastrocnemius (GA) and tibialis anterior (TA) relative to both the Sed and Ex groups. Furthermore, the LCEx group showed a significant increase in the total DNA content of TA compared with the Sed group. The LCEx group experienced a significant increase in myogenin and follistatin expression of GA relative to the Ex group. These results suggest that administration of LC can effectively increase muscle mass concomitant with elevated numbers of myonuclei, even with low-intensity exercise training, via activated satellite cells and anabolic signals. Copyright © 2015 the American Physiological Society.

  17. Resveratrol Rescues Kidney Mitochondrial Function Following Hemorrhagic Shock

    PubMed Central

    Wang, Hao; Guan, Yuxia; Karamercan, Mehmet Akif; Ye, Lan; Bhatti, Tricia; Becker, Lance B.; Baur, Joseph A.; Sims, Carrie A.

    2015-01-01

    Objective Hemorrhagic shock may contribute to acute kidney injury by profoundly altering renal mitochondrial function. Resveratrol (RSV), a naturally occurring sirtuin-1 (SIRT1) activator, has been shown to promote mitochondrial function and reduce oxidative damage in a variety of aging-related disease states. We hypothesized that RSV treatment during resuscitation would ameliorate kidney mitochondrial dysfunction and decrease oxidative damage following hemorrhagic shock. Method Using a decompensated hemorrhagic shock model, male Long-Evans rats (n=6 per group) were sacrificed prior to hemorrhage (Sham), at severe shock, and following either lactated Ringer’s (LR) Resuscitation or LR+RSV Resuscitation (RSV: 30mg/kg). At each time point, blood samples were assayed for arterial blood gases, lactate, blood urea nitrogen (BUN) and serum creatinine. Mitochondria were also isolated from kidney samples in order to assess individual electron transport complexes (CI, CII, and CIV) using high-resolution respirometry. Total mitochondria reactive oxygen species (ROS) were measured using fluorometry and lipid peroxidation was assessed by measuring 4-hydroxynonenal by Western blot. qPCR was used quantify mRNA from PGC1-α, SIRT1, and proteins known to mitigate oxidative damage and promote mitochondrial biogenesis. Results RSV supplementation during resuscitation restored mitochondrial respiratory capacity, decreased mitochondrial ROS and lipid peroxidation. Compared to standard LR resuscitation, RSV treatment significantly increased SIRT1 and PGC1-α expression and significantly increased both SOD2 and catalase expression. Although RSV was associated with decreased lactate production, pH, BUN and serum creatinine values did not differ between resuscitation strategies. Conclusions Resuscitation with RSV significantly restored renal mitochondrial function and decreased oxidative damage following hemorrhagic shock. PMID:25895148

  18. Adaptative decrease in expression of the mRNA for uncoupling protein and subunit II of cytochrome c oxidase in rat brown adipose tissue during pregnancy and lactation.

    PubMed Central

    Martin, I; Giralt, M; Viñas, O; Iglesias, R; Mampel, T; Villarroya, F

    1989-01-01

    Uncoupling-protein (UCP) mRNA expression is decreased to 15% of virgin control levels between days 10 and 15 of pregnancy, and remains at these low values during late pregnancy and lactation. Abrupt weaning of mid-lactating rats causes a slight but significant increase in UCP mRNA. Expression of mRNA for subunit II of cytochrome c oxidase (COII) decreased to half that of virgin control in late pregnancy and during lactation. Whereas COII mRNA expression is in step with the known modifications of brown-fat mitochondria content during the breeding cycle of the rat, UCP mRNA expression appears to be diminished much earlier than the mitochondrial proton-conductance-pathway activity. On the other hand, the reactivity of brown fat to increase expression of UCP and COII mRNAs in response to acute cold or noradrenaline treatment is not impaired during lactation. Images Fig. 1. Fig. 2. Fig. 3. PMID:2557014

  19. Accuracy of the paracetamol-aminotransferase product to predict hepatotoxicity in paracetamol overdose treated with a 2-bag acetylcysteine regimen.

    PubMed

    Wong, Anselm; Sivilotti, Marco L A; Gunja, Naren; McNulty, Richard; Graudins, Andis

    2018-03-01

    Paracetamol concentration is a highly accurate risk predictor for hepatotoxicity following overdose with known time of ingestion. However, the paracetamol-aminotransferase multiplication product can be used as a risk predictor independent of timing or ingestion type. Validated in patients treated with the traditional, "three-bag" intravenous acetylcysteine regimen, we evaluated the accuracy of the multiplication product in paracetamol overdose treated with a two-bag acetylcysteine regimen. We examined consecutive patients treated with the two-bag regimen from five emergency departments over a two-year period. We assessed the predictive accuracy of initial multiplication product for the primary outcome of hepatotoxicity (peak alanine aminotransferase ≥1000IU/L), as well as for acute liver injury (ALI), defined peak alanine aminotransferase ≥2× baseline and above 50IU/L). Of 447 paracetamol overdoses treated with the two-bag acetylcysteine regimen, 32 (7%) developed hepatotoxicity and 73 (16%) ALI. The pre-specified cut-off points of 1500 mg/L × IU/L (sensitivity 100% [95% CI 82%, 100%], specificity 62% [56%, 67%]) and 10,000 mg/L × IU/L (sensitivity 70% [47%, 87%], specificity of 97% [95%, 99%]) were highly accurate for predicting hepatotoxicity. There were few cases of hepatotoxicity irrespective of the product when acetylcysteine was administered within eight hours of overdose, when the product was largely determined by a high paracetamol concentration but normal aminotransferase. The multiplication product accurately predicts hepatotoxicity when using a two-bag acetylcysteine regimen, especially in patients treated more than eight hours post-overdose. Further studies are needed to assess the product as a method to adjust for exposure severity when testing efficacy of modified acetylcysteine regimens.

  20. Effects of Systemic Metabolic Fuels on Glucose and Lactate Levels in the Brain Extracellular Compartment of the Mouse

    PubMed Central

    Béland-Millar, Alexandria; Larcher, Jeremy; Courtemanche, Justine; Yuan, Tina; Messier, Claude

    2017-01-01

    Classic neuroenergetic research has emphasized the role of glucose, its transport and its metabolism in sustaining normal neural function leading to the textbook statement that it is the necessary and sole metabolic fuel of the mammalian brain. New evidence, including the Astrocyte-to-Neuron Lactate Shuttle hypothesis, suggests that the brain can use other metabolic substrates. To further study that possibility, we examined the effect of intraperitoneally administered metabolic fuels (glucose, fructose, lactate, pyruvate, ß-hydroxybutyrate, and galactose), and insulin, on blood, and extracellular brain levels of glucose and lactate in the adult male CD1 mouse. Primary motor cortex extracellular levels of glucose and lactate were monitored in freely moving mice with the use of electrochemical electrodes. Blood concentration of these same metabolites were obtained by tail vein sampling and measured with glucose and lactate meters. Blood and extracellular fluctuations of glucose and lactate were monitored for a 2-h period. We found that the systemic injections of glucose, fructose, lactate, pyruvate, and ß-hydroxybutyrate increased blood lactate levels. Apart for a small transitory rise in brain extracellular lactate levels, the main effect of the systemic injection of glucose, fructose, lactate, pyruvate, and ß-hydroxybutyrate was an increase in brain extracellular glucose levels. Systemic galactose injections produced a small rise in blood glucose and lactate but almost no change in brain extracellular lactate and glucose. Systemic insulin injections led to a decrease in blood glucose and a small rise in blood lactate; however brain extracellular glucose and lactate monotonically decreased at the same rate. Our results support the concept that the brain is able to use alternative fuels and the current experiments suggest some of the mechanisms involved. PMID:28154523

  1. New regimens for intravenous acetylcysteine, where are we now?

    PubMed

    Bateman, D Nicholas; Dear, James W; Thomas, Simon H L

    2016-01-01

    Acetylcysteine has been used as a treatment for paracetamol overdose as a 20.25- or 21-h infusion for nearly 40 years. These regimens give 50% of the dose in the first 15 min or 1 h, and are associated with high rates of adverse reactions. A randomised controlled trial has demonstrated that a shorter (12 h) and simpler (two infusions) acetylcysteine regimen using a slower initial infusion rate produces lower rates of adverse events than the original 20.25-h regimen. However, this study was not sufficiently large to show therapeutic equivalence as a hepatoprotective therapy in paracetamol overdose. Two further studies are now reported, which also suggest lower rates of adverse reactions with lower initial rates of acetylcysteine administration. These modified regimens can now be accepted as better tolerated, but it is unlikely that a randomised study of sufficient size to demonstrate non-inferiority of any novel regimen would ever be funded. Against this background we suggest what can be done to establish the efficacy of these less toxic and potentially shorter alternative acetylcysteine regimens and to establish them into routine clinical use.

  2. Pumpkin (Cucurbita moschata) fruit extract improves physical fatigue and exercise performance in mice.

    PubMed

    Wang, Shih-Yi; Huang, Wen-Ching; Liu, Chieh-Chung; Wang, Ming-Fu; Ho, Chin-Shan; Huang, Wen-Pei; Hou, Chia-Chung; Chuang, Hsiao-Li; Huang, Chi-Chang

    2012-10-09

    Pumpkin (Cucurbita moschata) is a popular and nutritious vegetable consumed worldwide. The overall purpose of this study was to evaluate the effects of C. moschata fruit extract (CME) on anti-fatigue and ergogenic functions following physiological challenges. Male ICR mice from four groups designated vehicle, CME-50, CME-100 and CME-250, respectively (n = 8 per group in each test) were orally administered CME for 14 days at 0, 50, 100 and 250 mg/kg/day. The anti-fatigue activity and exercise performance were evaluated using exhaustive swimming time, forelimb grip strength, as well as levels of plasma lactate, ammonia, glucose, and creatine kinase after an acute swimming exercise. The resting muscular and hepatic glycogen was also analyzed after 14-day supplementation with CME. Trend analysis revealed that CME treatments increased grip strength. CME dose-dependently increased 5% body weight loaded swimming time, blood glucose, and muscular and hepatic glycogen levels. CME dose-dependently decreased plasma lactate and ammonia levels and creatine kinase activity after a 15-min swimming test. The mechanism was relevant to the increase in energy storage (as glycogen) and release (as blood glucose), and the decrease of plasma levels of lactate, ammonia, and creatine kinase. Therefore, CME may be potential for the pharmacological effect of anti-fatigue.

  3. Effects of decreasing metabolizable protein and rumen-undegradable protein on milk production and composition and blood metabolites of Holstein dairy cows in early lactation.

    PubMed

    Bahrami-Yekdangi, H; Khorvash, M; Ghorbani, G R; Alikhani, M; Jahanian, R; Kamalian, E

    2014-01-01

    This study was conducted to evaluate the effects of decreasing dietary protein and rumen-undegradable protein (RUP) on production performance, nitrogen retention, and nutrient digestibility in high-producing Holstein cows in early lactation. Twelve multiparous Holstein lactating cows (2 lactations; 50 ± 7 d in milk; 47 kg/d of milk production) were used in a Latin square design with 4 treatments and 3 replicates (cows). Treatments 1 to 4 consisted of diets containing 18, 17.2, 16.4, and 15.6% crude protein (CP), respectively, with the 18% CP diet considered the control group. Rumen-degradable protein levels were constant across the treatments (approximately 10.9% on a dry matter basis), whereas RUP was gradually decreased. All diets were calculated to supply a postruminal Lys:Met ratio of about 3:1. Dietary CP had no significant effects on milk production or milk composition. In fact, 16.4% dietary CP compared with 18% dietary CP led to higher milk production; however, this effect was not significant. Feed intake was higher for 16.4% CP than for 18% CP (25.7 vs. 24.3 kg/d). Control cows had greater CP and RUP intakes, which resulted in higher concentrations of plasma urea nitrogen and milk urea nitrogen; cows receiving 16.4 and 15.6% CP, respectively, exhibited lower concentrations of milk urea nitrogen (15.2 and 15.1 vs. 17.3 mg/dL). The control diet had a significant effect on predicted urinary N. Higher CP digestibility was recorded for 18% CP compared with the other diets. Decreasing CP and RUP to 15.6 and 4.6% of dietary dry matter, respectively, had no negative effects on milk production or composition when the amounts of Lys and Met and the Lys:Met ratio were balanced. Furthermore, decreasing CP and RUP to 16.4 and 5.4%, respectively, increased dry matter intake. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Supplementation with Ca salts of soybean oil interacts with concentrate level in grazing dairy cows: intake, ingestive behavior, and ruminal parameters.

    PubMed

    Macedo, Fernanda Lopes; Batistel, Fernanda; de Souza, Jonas; Chagas, Lucas Jado; Santos, Flávio Augusto Portela

    2016-12-01

    In this study, we investigated the associative effects of concentrate levels and Ca salts of soybean oil (CSSO) supplementation on performance and ruminal parameters of mid-lactation dairy cows grazing on tropical pasture. Twenty-four Jersey × Holstein cows were used in a randomized block design and assigned to four treatments arranged in a 2 × 2 factorial design. Factors evaluated were concentrate levels (low, 3 kg/day vs. high, 7 kg/day of concentrate) and CSSO supplementation (without CSSO vs. with 250 g CSSO cow/day). All cows grazed on elephant grass (Pennisetum purpureum cv. Cameroon) and received the supplemental treatments for a 90-day period. The high concentrate level decreased forage intake and grazing time. In addition, the high concentrate level increased rumen propionate concentration and microbial synthesis and tended to decrease ammonia-N compared with low concentrate level. The addition of CSSO tended to decrease valerate, isobutyrate, isovalerate, and microbial synthesis. In conclusion, feeding CSSO for mid lactating cows grazing on tropical pasture had negative effects on rumen function. In contrast, CSSO supplementation tended to interact with concentrate level and increased energy intake when fed at low concentrate level. Feeding the high level of concentrate was an effective strategy to increase energy intake and microbial synthesis and improve N utilization.

  5. Antioxidant defence of colostrum and milk in consecutive lactations in sows

    PubMed Central

    2012-01-01

    Background Parturition is supposed to be related to oxidative stress, not only for the mother, but also for the newborn. Moreover, it is not clear whether consecutive pregnancies, parturitions, and lactations are similar to each other in regards to intensity of metabolic processes or differ from each other. The aim of the study was to compare dynamic changes of antioxidative parameters in colostrum and milk of sows taken during 72 h postpartum from animals in consecutive lactations. Activities of glutathione peroxidase (GSH-Px), glutathione transferase (GSH-Tr), and superoxide dismutase (SOD), and amount of vitamin A and C were measured. Healthy pregnant animals were divided into 4 groups according to the assessed lactation: A -1st lactation (n = 10), B - 2nd and 3rd lactation (n = 7), C - 4th and 5th lactation (n = 11), D - 6th - 8th lactation (n = 8). The colostrum was sampled immediately after parturition and after 6, 12, 18 and 36 h while the milk was assessed at 72 h after parturition. Spectrophotometric methods were used for measurements. Results The activity of antioxidative enzymes and the concentration of vitamin A increased with time postpartum. The concentration of vitamin C was the highest between the 18th and 36th h postpartum. Conclusions Dynamic changes in the values of antioxidant parameters measured during the study showed that sows milk provides the highest concentration of antioxidants in the 2nd and 3rd and 4th and 5th lactation giving the best defence against reactive oxygen species to newborns and mammary glands. PMID:22429994

  6. Preventing, treating, and predicting barbering: a fundamental role for biomarkers of oxidative stress in a mouse model of trichotillomania

    USDA-ARS?s Scientific Manuscript database

    Barbering, where a “barber” mouse plucks hair from its cagemates or itself, is both a spontaneously occurring abnormal behavior in mice and a well validated model of Trichotillomania (TTM). N-Acetylcysteine, (NAC) a cysteine derived food additive, is remarkably effective in treating TTM patients, bu...

  7. The antioxidant n-acetylcysteine reduced necrosis, but exacerbated liver fibrosis induced by chronic alcohol in rats fed via total enteral nutrition

    USDA-ARS?s Scientific Manuscript database

    Despite many years of research, the molecular mechanisms underlying progression of alcoholic liver injury from simple steatosis through steatohepatitis and fibrosis remain in dispute. In the current study male Sprague-Dawley rats (350 g) were chronically fed a high unsaturated fat diet for 120 d usi...

  8. Use of calcium folinate in the management of accidental methotrexate ingestion in two dogs.

    PubMed

    Lewis, Daniel H; Barfield, Dominic M; Humm, Karen R; Goggs, Robert A

    2010-12-15

    2 English Pointers were suspected of having consumed toxic doses of methotrexate, a dihydrofolate reductase inhibitor frequently used in human and veterinary chemotherapeutic protocols. Potentially toxic plasma concentrations of methotrexate were detected in both dogs. Results of physical examination, a CBC, blood gas analysis, and serum biochemical analysis were predominantly unremarkable, although 1 dog had mild hyponatremia (1372 mmol/L; reference range, 140 to 153 mmol/L) and mild hypocalcemia (1.03 mmol of ionized calcium/L; reference range, 1.13 to 1.33 mmol of ionized calcium/L). Point-of-care determination of plasma methotrexate concentrations was not available; thus, palliative care was provided. Emesis was induced in both dogs by SC administration of apomorphine, and 3 doses of a suspension of activated charcoal with sorbitol were administered orally over a 6-hour period. Fluid diuresis was initiated in both dogs by administration of a compound sodium lactate solution, and N-acetylcysteine was administered IV to both dogs as a hepatoprotectant. A solution of calcium folinate (also known as leucovorin) was administered IV to both dogs to mitigate the effects of ingested methotrexate. No adverse effects associated with calcium folinate administration were identified, and no clinical or pathological evidence of methotrexate intoxication was detected. IV administration of calcium folinate appeared to prevent the pathological sequelae of methotrexate intoxication without adverse effects. Administration of calcium folinate is recommended for the treatment of dogs with suspected or confirmed methotrexate overdose.

  9. Development and utilization of extracorporeal regional complexing hemodialysis as a means of mobilizing and enhancing the excretion of methylmercury in the dog. [N-acetylcysteine; N-acetylpenicillamine; 2,3-dimercaptosuccinic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostyniak, P.J.

    1975-01-01

    The present investigation was directed at developing and testing a new procedure for increasing methylmercury excretion in the dog. The procedure utilizes hemodialysis in conjunction with the extracorporeal reversal of protein binding of methylmercury in blood by the presence of low molecular weight sulfhydryl containing complexing agents (cysteine, N-acetylcysteine, penicillamine, N-acetylpenicillamine, 2,3-dimercaptosuccinic acid) having a high chemical affinity for methylmercury. Using such a procedure, the complexed methylmercury and the free complexing agent were found to be readily removed from blood by the dialyzer. Unlike chelation therapy, this procedure does not rely on the attainment of high systemic concentrations of complexingmore » agent in order to attain enhanced excretion by normal routes. It rather introduces into the circulatory system a shunt designed specifically for methylmercury extraction from blood. In vitro testing of this procedure revealed that methylmercury removal from blood was dependent upon the concentration of complexing agent in blood and the dialyzer blood flow rate. In vivo testing of the procedure in the dog utilized a standard hemodialyzer with infusion of complexing agent into the arterial dialyzer blood line. The rate of methylmercury removal from the dog during the treatment procedures were as high as 400 times the excretion rate of mercury in untreated dogs.« less

  10. Evaluating the Effect of Intracoronary N-Acetylcysteine on Platelet Activation Markers After Primary Percutaneous Coronary Intervention in Patients With ST-Elevation Myocardial Infarction.

    PubMed

    Eshraghi, Azadeh; Talasaz, Azita Hajhossein; Salamzadeh, Jamshid; Salarifar, Mojtaba; Pourhosseini, Hamidreza; Nozari, Yones; Bahremand, Mostafa; Jalali, Arash; Boroumand, Mohammad Ali

    2016-01-01

    During percutaneous coronary intervention (PCI), trauma occurs in the arterial endothelium, resulting in platelet activation and aggregation. As platelet aggregation may lead to coronary thrombosis, antiplatelet agents are essential adjunctive therapies in patients undergoing PCI. The aim of this study was to determine the effect of the intracoronary administration of high-dose N-acetylcysteine (NAC) for the evaluation of its antiplatelet effects in human subjects. In this triple-blind trial, 147 patients undergoing primary PCI were enrolled. Finally, 100 patients were randomized to receive high-dose intracoronary NAC (100 mg/kg bolus, followed by 10 mg·kg⁻¹·h⁻¹ intracoronary continued intravenously for 12 hours) (n = 50) or dextrose solution (n = 50). Platelet activation biomarkers were measured before and 24 hours after the procedure. Secondary end points, comprising all-cause death, reinfarction, and target-vessel revascularization, were assessed at 30 days and 2 years. In comparison with the placebo, NAC could not reduce the level of platelet activation biomarkers within a 24-hour period after its prescription. Major adverse clinical events at 30 days and 2 years were infrequent and not statistically different between the 2 groups. Our results revealed that NAC, compared with the placebo, did not provide an additional clinical benefit as an effective antiplatelet agent after PCI.

  11. Characterization of plasma metabolites at late gestation and lactation in early parity sows on production and post-weaning reproductive performance

    USDA-ARS?s Scientific Manuscript database

    Lactation is a very energy demanding period for sows. The current study provides a better understanding of the biochemical response of first- (n = 246) or second-parity (n = 127) sows during late gestation through lactation and assesses relationships with piglet production and dam reproductive perfo...

  12. Protein and nitrogen composition of equine (Equus caballus) milk during early lactation.

    PubMed

    Zicker, S C; Lonnerdal, B

    1994-01-01

    Separation of whey protein from casein in equine milk was achieved by adjustment of pH to 4.3 without addition of calcium, and by ultracentrifugation at 189,000 g for 1 hr. True protein, whey protein, and casein decreased significantly during the first 28 days of lactation with the magnitude of decrease being greatest for whey protein. The proportion of nitrogen in whey protein:casein decreased from 85:15 to 54:46 during the 28 day time period. The concentration of non-protein nitrogen remained relatively constant at 500 mg nitrogen/l but increased in proportion from 2 to 13% of the total nitrogen during the first 28 days of lactation. These results illustrate the unique nitrogen composition of equine milk, which is intermediate between human and ruminant milk, and how it changes during early lactation.

  13. [Effect of pregnancy and lactation on the nutritional status of essential fatty acids in rat].

    PubMed

    Araya, J; Barriga, C

    1996-08-01

    Pregnancy and lactation could be high risk situations for the development of essential fatty acid deficiencies. To study the effect of pregnancy and lactation on red blood cell phospholipids percentual fatty acid composition of virgin, pregnant and lactating rats. Twenty four pregnant rats of 50 +/- 1 days of age were supplement with soy and 24 with fish oil during 21 days. Twelve rats of each group were sacrificed after 18 days of lactation, twenty four non pregnant rats received soy oil and acted as controls of pregnant and lactating rats. Red blood cell phospholipid fatty acid composition was analyzed by gas chromatography. The percentage of total omega-6 fatty acids of red blood cell phospholipid was 37.8 +/- 5.9, 32.6 +/- 0.6 and 38.3 +/- 3.5% in non pregnant, pregnant and lactating rats respectively (p < 0.001). The figures for total omega-3 fatty acids were 6.33 +/- 1.52, 4.31 +/- 0.39 and 2.7 +/- 0.46 respectively (p < 0.001). There was no change in eicosatrienoic fatty acid percentage. Supplementation with fish oil reverted the decrease in omega-6 and omega-3 fatty acid percentage of pregnant and lactating rats. Pregnancy and lactation decrease the capacity to transform precursors of essential fatty acids in long chain polyunsaturated fatty acids.

  14. Cumulative lactate and hospital mortality in ICU patients

    PubMed Central

    2013-01-01

    Background Both hyperlactatemia and persistence of hyperlactatemia have been associated with bad outcome. We compared lactate and lactate-derived variables in outcome prediction. Methods Retrospective observational study. Case records from 2,251 consecutive intensive care unit (ICU) patients admitted between 2001 and 2007 were analyzed. Baseline characteristics, all lactate measurements, and in-hospital mortality were recorded. The time integral of arterial blood lactate levels above the upper normal threshold of 2.2 mmol/L (lactate-time-integral), maximum lactate (max-lactate), and time-to-first-normalization were calculated. Survivors and nonsurvivors were compared and receiver operating characteristic (ROC) analysis were applied. Results A total of 20,755 lactate measurements were analyzed. Data are srpehown as median [interquartile range]. In nonsurvivors (n = 405) lactate-time-integral (192 [0–1881] min·mmol/L) and time-to-first normalization (44.0 [0–427] min) were higher than in hospital survivors (n = 1846; 0 [0–134] min·mmol/L and 0 [0–75] min, respectively; all p < 0.001). Normalization of lactate <6 hours after ICU admission revealed better survival compared with normalization of lactate >6 hours (mortality 16.6% vs. 24.4%; p < 0.001). AUC of ROC curves to predict in-hospital mortality was the largest for max-lactate, whereas it was not different among all other lactate derived variables (all p > 0.05). The area under the ROC curves for admission lactate and lactate-time-integral was not different (p = 0.36). Conclusions Hyperlactatemia is associated with in-hospital mortality in a heterogeneous ICU population. In our patients, lactate peak values predicted in-hospital mortality equally well as lactate-time-integral of arterial blood lactate levels above the upper normal threshold. PMID:23446002

  15. Neuroenergetic Response to Prolonged Cerebral Glucose Depletion after Severe Brain Injury and the Role of Lactate.

    PubMed

    Patet, Camille; Quintard, Hervé; Suys, Tamarah; Bloch, Jocelyne; Daniel, Roy T; Pellerin, Luc; Magistretti, Pierre J; Oddo, Mauro

    2015-10-15

    Lactate may represent a supplemental fuel for the brain. We examined cerebral lactate metabolism during prolonged brain glucose depletion (GD) in acute brain injury (ABI) patients monitored with cerebral microdialysis (CMD). Sixty episodes of GD (defined as spontaneous decreases of CMD glucose from normal to low [<1.0 mmol/L] for at least 2 h) were identified among 26 patients. During GD, we found a significant increase of CMD lactate (from 4 ± 2.3 to 5.4 ± 2.9 mmol/L), pyruvate (126.9 ± 65.1 to 172.3 ± 74.1 μmol/L), and lactate/pyruvate ratio (LPR; 27 ± 6 to 35 ± 9; all, p < 0.005), while brain oxygen and blood lactate remained normal. Dynamics of lactate and glucose supply during GD were further studied by analyzing the relationships between blood and CMD samples. There was a strong correlation between blood and brain lactate when LPR was normal (r = 0.56; p < 0.0001), while an inverse correlation (r = -0.11; p = 0.04) was observed at elevated LPR >25. The correlation between blood and brain glucose also decreased from r = 0.62 to r = 0.45. These findings in ABI patients suggest increased cerebral lactate delivery in the absence of brain hypoxia when glucose availability is limited and support the concept that lactate acts as alternative fuel.

  16. Secondary Increase of Lactate Levels in Asphyxiated Newborns during Hypothermia Treatment: Reflect of Suboptimal Hemodynamics (A Case Series and Review of the Literature)

    PubMed Central

    Al Balushi, Asim; Guilbault, Marie-Pier; Wintermark, Pia

    2015-01-01

    Objective To evaluate whether a secondary increase of serum lactate levels in asphyxiated newborns during hypothermia treatment may reflect suboptimal dynamics. Methods–Retrospective case series and review of the literature. We present the clinical course of four asphyxiated newborns treated with hypothermia who presented with hypotension requiring inotropic support, and who displayed a secondary increase of serum lactate levels during hypothermia treatment. Serial serum lactate levels are correlated with blood pressure and inotropic support within the first 96 hours of life. Results Lactate levels initially decreased in the four patients. However, each of them started to present lower blood pressure, and lactate levels started to increase again. Inotropic support was started to raise blood pressure. The introduction of an epinephrine drip consistently worsened the increase of lactate levels in these newborns, whereas dopamine and dobutamine enabled the clearance of lactate in addition to raising the blood pressure. Rewarming was associated with hemodynamics perturbations (a decrease of blood pressure and/or an increase of lactate levels) in the three newborns who survived. Conclusions Lactate levels during the first 4 days of life should be followed as a potential marker for suboptimal hemodynamic status in term asphyxiated newborns treated with hypothermia, for whom the maintenance of homeostasis during hypothermia treatment is of utmost importance to alleviate brain injury. PMID:26929870

  17. Fatigue and changes of ATP, creatine phosphate, and lactate during the 400-m sprint.

    PubMed

    Hirvonen, J; Nummela, A; Rusko, H; Rehunen, S; Härkönen, M

    1992-06-01

    Fatigue during the 400-m sprint was studied by measuring muscle ATP, creatine phosphate (CP), lactate (M-La), and blood lactate (B-La) in six male runners before and after four experimental sprints (100, 200, 300, and 400 m). During the first 100 m, muscle CP decreased from 15.8 +/- 1.7 to 8.3 +/- 0.3 mmol/kg while M-La increased to 3.6 +/- 0.4 mmol/kg. After 200 m the CP had decreased to 6.5 +/- 0.5 mmol/kg and M-La had increased to 8.3 +/- 1.1 mmol/kg. At the end of the 400 meters, ATP and CP concentrations had decreased by 27% and 89%, respectively, and M-La had increased to 17.3 +/- 0.9 mmol/kg. It was concluded that after 200 m the speed of running decreased, although CP was not depleted and lactate concentration was not at maximum level. Complete fatigue occurred when CP stores were depleted and B-La and M-La attained an individual maximum.

  18. Hypoxic resistance of KRAS mutant tumor cells to 3-Bromopyruvate is counteracted by Prima-1 and reversed by N-acetylcysteine.

    PubMed

    Orue, Andrea; Chavez, Valery; Strasberg-Rieber, Mary; Rieber, Manuel

    2016-11-18

    The metabolic inhibitor 3-bromopyruvate (3-BrPA) is a promising anti-cancer alkylating agent, shown to inhibit growth of some colorectal carcinoma with KRAS mutation. Recently, we demonstrated increased resistance to 3-BrPA in wt p53 tumor cells compared to those with p53 silencing or mutation. Since hypoxic microenvironments select for tumor cells with diminished therapeutic response, we investigated whether hypoxia unequally increases resistance to 3-BrPA in wt p53 MelJuso melanoma harbouring (Q61L)-mutant NRAS and wt BRAF, C8161 melanoma with (G12D)-mutant KRAS (G464E)-mutant BRAF, and A549 lung carcinoma with a KRAS (G12S)-mutation. Since hypoxia increases the toxicity of the p53 activator, Prima-1 against breast cancer cells irrespective of their p53 status, we also investigated whether Prima-1 reversed hypoxic resistance to 3-BrPA. In contrast to the high susceptibility of hypoxic mutant NRAS MelJuso cells to 3-BrPA or Prima-1, KRAS mutant C8161 and A549 cells revealed hypoxic resistance to 3-BrPA counteracted by Prima-1. In A549 cells, Prima-1 increased p21CDKN1mRNA, and reciprocally inhibited mRNA expression of the SLC2A1-GLUT1 glucose transporter-1 and ALDH1A1, gene linked to detoxification and stem cell properties. 3-BrPA lowered CAIX and VEGF mRNA expression. Death from joint Prima-1 and 3-BrPA treatment in KRAS mutant A549 and C8161 cells seemed mediated by potentiating oxidative stress, since it was antagonized by the anti-oxidant and glutathione precursor N-acetylcysteine. This report is the first to show that Prima-1 kills hypoxic wt p53 KRAS-mutant cells resistant to 3-BrPA, partly by decreasing GLUT-1 expression and exacerbating pro-oxidant stress.

  19. Influence of the protein kinase C activator phorbol myristate acetate on the intracellular activity of antibiotics against hemin- and menadione-auxotrophic small-colony variant mutants of Staphylococcus aureus and their wild-type parental strain in human THP-1 cells.

    PubMed

    Garcia, Laetitia G; Lemaire, Sandrine; Kahl, Barbara C; Becker, Karsten; Proctor, Richard A; Tulkens, Paul M; Van Bambeke, Françoise

    2012-12-01

    In a previous study (L. G. Garcia et al., Antimicrob. Agents Chemother. 56:3700-3711, 2012), we evaluated the intracellular fate of menD and hemB mutants (corresponding to menadione- and hemin-dependent small-colony variants, respectively) of the parental COL methicillin-resistant Staphylococcus aureus strain and the pharmacodynamic profile of the intracellular activity of a series of antibiotics in human THP-1 monocytes. We have now examined the phagocytosis and intracellular persistence of the same strains in THP-1 cells activated by phorbol 12-myristate 13-acetate (PMA) and measured the intracellular activity of gentamicin, moxifloxacin, and oritavancin in these cells. Postphagocytosis intracellular counts and intracellular survival were lower in PMA-activated cells, probably due to their higher killing capacities. Gentamicin and moxifloxacin showed a 5- to 7-fold higher potency (lower static concentrations) against the parental strain, its hemB mutant, and the genetically complemented strain in PMA-activated cells and against the menD strain in both activated and nonactivated cells. This effect was inhibited when cells were incubated with N-acetylcysteine (a scavenger of oxidant species). In parallel, we observed that the MICs of these drugs were markedly reduced if bacteria had been preexposed to H(2)O(2). In contrast, the intracellular potency of oritavancin was not different in activated and nonactivated cells and was not decreased by the addition of N-acetylcysteine, regardless of the phenotype of the strains. The oritavancin MIC was also unaffected by preincubation of the bacteria with H(2)O(2). Thus, activation of THP-1 cells by PMA may increase the intracellular potency of certain antibiotics (probably due to synergy with reactive oxygen species), but this effect cannot be generalized to all antibiotics.

  20. N-acetylcysteine reduces oxidative stress, nuclear factor-κB activity and cardiomyocyte apoptosis in heart failure

    PubMed Central

    WU, XIAO-YAN; LUO, AN-YU; ZHOU, YI-RONG; REN, JIANG-HUA

    2014-01-01

    The roles of oxidative stress on nuclear factor (NF)-κB activity and cardiomyocyte apoptosis during heart failure were examined using the antioxidant N-acetylcysteine (NAC). Heart failure was established in Japanese white rabbits with intravenous injections of doxorubicin, with ten rabbits serving as a control group. Of the rabbits with heart failure, 12 were not treated (HF group) and 13 received NAC (NAC group). Cardiac function was assessed using echocardiography and hemodynamic analysis. Myocardial cell apoptosis, apoptosis-related protein expression, NF-κBp65 expression and activity, total anti-oxidative capacity (tAOC), 8-iso-prostaglandin F2α (8-iso-PGF2α) expression and glutathione (GSH) expression levels were determined. In the HF group, reduced tAOC, GSH levels and Bcl-2/Bax ratios as well as increased 8-iso-PGF2α levels and apoptosis were observed (all P<0.05), which were effects that were attenuated by the treatment with NAC. NF-κBp65 and iNOS levels were significantly higher and the P-IκB-α levels were significantly lower in the HF group; expression of all three proteins returned to pre-HF levels following treatment with NAC. Myocardial cell apoptosis was positively correlated with left ventricular end-diastolic pressure (LVEDP), NF-κBp65 expression and 8-iso-PGF2α levels, but negatively correlated with the maximal and minimal rates of increase in left ventricular pressure (+dp/dtmax and −dp/dtmin, respectively) and the Bcl-2/Bax ratio (all P<0.001). The 8-iso-PGF2α levels were positively correlated with LVEDP and negatively correlated with +dp/dtmax and −dp/dtmin (all P<0.001). The present study demonstrated that NAC increased the antioxidant capacity, decreased the NF-κB activation and reduced myocardial cell apoptosis in an in vivo heart failure model. PMID:24889421

Top